

Lecture Notes in Computer Science 4080
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stephane Bressan Josef Küng
Roland Wagner (Eds.)

Database and Expert
Systems Applications

17th International Conference, DEXA 2006
Kraków, Poland, September 4-8, 2006
Proceedings

13

Volume Editors

Stephane Bressan
National University of Singapore
School of Computing
3 Science Drive 2, Singapore 117543, Republic of Singapore
E-mail: steph@nus.edu.sg

Josef Küng
Roland Wagner
University of Linz
Institute for Applied Knowledge Processing (FAW)
Altenbergerstraße 69, 4040 Linz, Austria
E-mail:{jkueng,rrwagner}@faw.uni-linz.ac.at

Library of Congress Control Number: 2006931200

CR Subject Classification (1998): H.2, H.4, H.3, H.5, I.2, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-37871-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37871-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11827405 06/3142 5 4 3 2 1 0

Preface

The annual international conference on Database and Expert Systems Applications
(DEXA) is now well established as a reference scientific event. The reader will find in
this volume a collection of scientific papers that represent the state of the art of
research in the domain of data, information and knowledge management, intelligent
systems, and their applications.

The 17th instance of the series of DEXA conferences was held at the Andrzej
Frycz Modrzewski Cracow College in Kraków, Poland, during September 4–8, 2006.

Several collocated conferences and workshops covered specialized and
complementary topics to the main conference topic. Four conferences − the 8th
International Conference on Data Warehousing and Knowledge Discovery (DaWaK),
the 7th International Conference on Electronic Commerce and Web Technologies
(EC-Web), the 5th International Conference on Electronic Government (EGOV), and
the Third International Conference on Trust, Privacy, and Security in Digital Business
(TrustBus) − and 14 workshops were collocated with DEXA.

The whole forms a unique international event with a balanced depth and breadth of
topics. Its much-appreciated conviviality fosters unmatched opportunities to meet,
share the latest scientific results and discuss the latest technological advances in the
area of information technologies with both young scientists and engineers and senior
world-renown experts.

This volume contains the papers selected for presentation at the conference. Each
submitted paper was reviewed by three or four reviewers, members of the Program
Committee or external reviewers appointed by members of the Program Committee.
Based on the reviews, the Program Committee accepted 90 of the 296 originally
submitted papers.

The excellence brought to you in these proceedings would not have been possible
without the efforts of numerous individuals and the support of several organizations.

First and foremost, we thank the authors for their hard work and for the quality of
their submissions.

We also thank A Min Tjoa, Norman Revell, Gerald Quirchmayr, Gabriela Wagner,
the members of the Program Committee, the reviewers, and the many others who
assisted in the DEXA organization for their contribution to the success and high
standard of DEXA 2006 and of these proceedings.

Finally we thank the DEXA Association, the Austrian Computer Society, the
Research Institute for Applied Knowledge Processing (FAW), and The Andrzej Frycz
Modrzewski Cracow College for making DEXA 2006 happen.

June 2006 Stéphane Bressan (National University of Singapore),
Josef Küng (FAW, University of Linz, Austria)

and Roland Wagner (FAW, University of Linz, Austria).

Organization

Program Committee

Conference Program Chairpersons
Stéphane Bressan, National University of Singapore, Singapore
Josef Küng, FAW, University of Linz, Austria

Workshop Chairpersons
A Min Tjoa, Technical University of Vienna, Austria
Roland R. Wagner, FAW, University of Linz, Austria

Publication Chairperson
Vladimir Marik, Czech Technical University, Czech Republic

Local Arrangement Chairperson
Janusz Wielki, Opole University of Technology, Poland

Program Committee
Witold Abramowicz, The Poznan University of Economics, Poland
Michel Adiba, IMAG - Laboratoire LSR, France
Hamideh Afsarmanesh, University of Amsterdam, The Netherlands
Ala Al-Zobaidie, University of Greenwich, UK
Walid G. Aref, Purdue University, USA
Ramazan S. Aygun, University of Alabama in Huntsville, USA
Leonard Barolli, Fukuoka Institute of Technology (FIT), Japan
Kurt Bauknecht, Universität Zürich, Switzerland
Bishwaranjan Bhattacharjee, IBM T.J. Watson Research Center, USA
Sourav S Bhowmick, Nanyang Technological University, Singapore
Omran Bukhres, Purdue University School of Science, USA
Luis Camarinah - Matos, New University of Lisbon, Portugal
Antonio Cammelli, ITTIG-CNR, Italy
Malu Castellanos, Hewlett-Packard Laboratories, USA
Barbara Catania, Universita' di Genova, Italy
Aaron Ceglar, Flinders University of South Australia, Australia
Wojciech Cellary, University of Economics at Poznan, Poland
Elizabeth Chang, Curtin University, Australia
Sudarshan S. Chawathe, University of Maryland, USA
Henning Christiansen, Roskilde University, Denmark
Rosine Cicchetti, IUT, University of Marseille, France
Frans Coenen, The University of Liverpool, UK
Carlo Combi, Università degli Studi di Verona, Italy
Tran Khanh Dang , HoChiMinh City University of Technology, Vietnam

VIII Organization

John Debenham, University of Technology, Sydney, Australia
Misbah Deen, University of Keele, UK
Elisabetta Di Nitto, Politecnico di Milano, Italy
Gill Dobbie, University of Auckland, Australia
Johann Eder, University of Vienna, Austria
Amr El Abbadi, University of California, USA
Tomoya Enokido, Rissho University, Japan
Peter Fankhauser, Fraunhofer IPSI, Germany
Ling Feng, University of Twente, The Netherlands
Eduardo Fernandez, Florida Atlantic University, USA
Simon Field, Matching Systems Ltd., Switzerland
Mariagrazia Fugini, Politecnico di Milano, Italy
Antonio L. Furtado, Pontificia Universidade Catolica do R.J., Brazil
Manolo Garcia-Solaco, IS Consultant, USA
Georges Gardarin, University of Versailles, France
Alexander Gelbukh, Centro de Investigacion en Computacion (CIC),
Instituto Politecnico Nacional (IPN), Mexico
Parke Godfrey, The College of William and Mary, Canada
Jan Goossenaerts, Eindhoven University of Technology, The Netherlands
William Grosky, University of Michigan, USA
Le Gruenwald, University of Oklahoma, USA
Abdelkader Hameurlain, University of Toulouse, France
Wook-Shin Han, Kyungpook National University, Korea
Igor T. Hawryszkiewycz, University of Technology, Sydney, Australia
Wynne Hsu, National University of Singapore, Singapore
Mohamed Ibrahim, University of Greenwich, UK
Dimitris Karagiannis, University of Vienna, Austria
Randi Karlsen, University of Tromsö, Norway
Rudolf Keller, Zühlke Engineering AG, Switzerland
Latifur Khan, University of Texas at Dallas, USA
Myoung Ho Kim, KAIST, Korea
Stephen Kimani, University of Rome "La Sapienza," Italy
Masaru Kitsuregawa, Tokyo University, Japan
Gary J. Koehler, University of Florida, USA
John Krogstie, SINTEF, Norway
Petr Kroha, Technische Universität Chemnitz-Zwickau, Germany
Lotfi Lakhal, University of Marseille, France
Christian Lang, IBM T.J. Watson Research Center, USA
Jiri Lazansky , Czech Technical University, Czech Republic
Mong Li Lee, National University of Singapore, Singapore
Thomas Lee, University of Pennsylvania, USA
Young-Koo Lee, Kyung Hee University, Korea
Michel Leonard, Université de Genève, Switzerland
Tok Wang Ling, National University of Singapore, Singapore
Volker Linnemann, University of Luebeck, Germany
Mengchi Liu, Carleton University, Canada
Peri Loucopoulos, UMIST, UK

 Organization IX

Feng Luo, Clemson University, USA
Sanjai Kumar Madria, University of Missouri-Rolla, USA
Vladimir Marik, Czech Technical University, Czech Republic
Simone Marinai, University of Florence, Italy
Heinrich C. Mayr, University of Klagenfurt, Austria
Subhasish Mazumdar, New Mexico Tech, USA
Pietro Mazzoleni, Università di Milano, Italy
Dennis McLeod, University of Southern California, USA
Elisabeth Metais, CNAM, France
Mukesh Mohania, IBM-IRL, India
Yang-Sae Moon, Kangwon National University, Korea
Reagan Moore, San Diego Supercomputer Center, USA
Tadeusz Morzy, Poznan University of Technology, Poland
Noureddine Mouaddib, University of Nantes, France
Günter Müller, Universität Freiburg, Germany
Mario Nascimento, University of Alberta, Canada
Wilfred Ng, University of Science & Technology, Hong Kong
Matthias Nicola, IBM Silicon Valley Lab, USA
Gultekin Ozsoyoglu, University Case Western Research, USA
Georgios Pangalos, University of Thessaloniki, Greece
Stott Parker, University of Los Angeles (UCLA), USA
Oscar Pastor, Universidad Politecnica de Valencia, Spain
Verónika Peralta, Universidad de la Republica, Uruguay
Günter Pernul, University of Regensburg, Germany
Evaggelia Pitoura, University of Ioannina, Greece
Gerald Quirchmayr, Univ. of Vienna, Austria, Univ. of South Australia, Australia
Fausto Rabitti, CNUCE-CNR, Italy
Wenny Rahayu, La Trobe University, Australia
Isidro Ramos, Technical University of Valencia, Spain
P. Krishna Reddy, International Institute of Information Technology, India
Werner Retschitzegger, University of Linz, Austria
Norman Revell, Middlesex University, UK
Sally Rice, University of South Australia, Australia
John Roddick, Flinders University of South Australia, Australia
Colette Rolland, University Paris I, Sorbonne, France
Elke Rundensteiner, Worcester Polytechnic Institute, USA
Domenico Sacca, University of Calabria, Italy
Simonas Saltenis, Aalborg University, Denmark
Marinette Savonnet, Université de Bourgogne, France
Erich Schweighofer, University of Vienna, Austria
Ming-Chien Shan, Hewlett-Packard Laboratories, USA
Keng Siau, University of Nebraska-Lincoln, USA
Darunee Smavatkul, Chiangmai University, Thailand
Giovanni Soda, University of Florence, Italy
Uma Srinivasan, University of Western Sydney, Australia
Bala Srinivasan, Monash University, Australia
Olga Stepankova, Czech Technical University, Czech Repuplic

X Organization

Zbigniew Struzik, The University of Tokyo, Japan
Makoto Takizawa , Tokyo Denki University, Japan
Katsumi Tanaka , Kyoto University, Japan
Yufei Tao, City University of Hong Kong, Hong Kong
Stephanie Teufel , University of Fribourg, Switzerland
Jukka Teuhola, University of Turku, Finland
Bernd Thalheim, University of Kiel, Germany
J.M. Thevenin, University of Toulouse, France
A Min Tjoa, Technical University of Vienna, Austria
Roland Traunmüller, University of Linz, Austria
Aphrodite Tsalgatidou, University of Athens, Greece
Genoveva Vargas-Solar, LSR-IMAG, France
Krishnamurthy Vidyasankar , Memorial Univ. of Newfoundland, Canada
Jesus Vilares Ferro, University of Coruña, Spain
Pavel Vogel, TU München, Germany
Roland Wagner, University of Linz, Austria
Vilas Wuwongse, Asian Institute of Technology, Thailand
Jeffrey Yu, The Chinese University of Hong Kong, Hong Kong
Gian Piero Zarri, CNRS, France
Arkady Zaslavsky, Monash University, Australia
Baihua Zheng, Singapore Management University, Singapore

External Reviewers

Alexander Bienemann
Hans-Joachim Klein
Peggy Schmidt
Gunar Fiedler
Alain Casali
Lotfi Lakhal
Noel Novelli
Cyril Pain-Barre
Nicolas Prcovic
Lipyeow Lim
Eugenio Cesario
Alfredo Cuzzocrea
Andrea Gualtieri
Riccardo Ortale
Andrea Pugliese
Massimo Ruffolo
Francesco Scarcello
Agustinus Borgy Waluyo
Franck Morvan
Sharifullah Khan
Christophe Bobineau
Cyril Labbe

Norbert Meckl
Jan Kolter
Jörg Gilberg
Ludwig Fuchs
Wolfgang Dobmeier
Rasmus Knappe
Davide Martinenghi
Kyoung Soo Bok
Beda Christoph Hammerschmidt
Dirk Kukulenz
Henrike Schuhart
Christian Koncilia
Marek Lehmann
Karl Wiggisser
Thomas Weishäupl
Miguel A. Alonso
Jose A. Gonzalez-Reboredo
Fco. Mario
Manuel Vilares
Francisco J. Ribadas
Victor M. Darriba
Michael Oakes

 Organization XI

Hans-Joachim Klein
Peggy Schmidt
Gunar Fiedler
Victor Cuevas Vicenttin,
José Luis Zechinelli MartiniHéctor
Manuel Pérez Urbina
Alberto Portilla Flores
Hanh Tan,
Huagang Li
Ping Wu
Shyam Anthony
Stacy Patterson
Ahmed Metwally
Arsany Sawires
Nagender Bandi
Dawid Weiss
Witold Andrzejewski
Robert Wrembel
Krzysztof Krawiec
Christos Ilioudis
Jiaheng Lu
Wei Ni
Tian Yu
Christian Schläger
Rolf Schillinger
Björn Muschall

Victoria Torres
Marta Ruiz
Javier Muñoz
Sergiusz Strykowski
Jacek Chmielewski
Wojciech Wiza
Franck Ravat
Huang Zhiyong
Masato Oguchi
Botao Wang
Shingo Ohtsuka
Kazuo Goda
Zhenglu Yang
Anirban Mondal
Wee Hyong Tok
Artur Boronat
Nenifer Pérez
José H. Canós
Pepe Carsí
Silke Eckstein
Harumi Kuno
Jim Stinger
An Lu
James Cheng
Yiping Ke
Arne Ketil Eidsvik

Table of Contents

XML I

Efficient Processing of Multiple XML Twig Queries 1
Huanzhang Liu, Tok Wang Ling, Tian Yu, Ji Wu

Effectively Scoring for XML IR Queries . 12
Zhongming Han, Jiajin Le, Beijin Shen

Selectively Storing XML Data in Relations . 22
Wenfei Fan, Lisha Ma

Data and Information I

A Context-Aware Preference Model for Database Querying
in an Ambient Intelligent Environment . 33

Arthur H. van Bunningen, Ling Feng, Peter M.G. Apers

Andromeda: Building e-Science Data Integration Tools 44
Vı́ctor Cuevas-Vicentt́ın, José Luis Zechinelli-Martini,
Genoveva Vargas-Solar

Improving Web Retrieval Precision Based on Semantic Relationships
and Proximity of Query Keywords . 54

Chi Tian, Taro Tezuka, Satoshi Oyama, Keishi Tajima,
Katsumi Tanaka

Invited Talk DEXA Conference

From Extreme Programming to Extreme Non-programming: Is It the
Right Time for Model Transformation Technologies? 64

Óscar Pastor

XML II

Using an Oracle Repository to Accelerate XPath Queries 73
Colm Noonan, Cian Durrigan, Mark Roantree

A Relational Nested Interval Encoding Scheme for XML Data 83
Gap-Joo Na, Sang-Won Lee

A Prototype of a Schema-Based XPath Satisfiability Tester 93
Jinghua Groppe, Sven Groppe

XIV Table of Contents

Data and Information II

Understanding and Enhancing the Folding-In Method in Latent
Semantic Indexing . 104

Xiang Wang, Xiaoming Jin

DCF: An Efficient Data Stream Clustering Framework for Streaming
Applications . 114

Kyungmin Cho, Sungjae Jo, Hyukjae Jang, Su Myeon Kim,
Junehwa Song

Analysis of BPEL and High-Level Web Service Orchestration: Bringing
Benefits to the Problems of the Business . 123

Adam Strickland, Dick Whittington, Phil Taylor, Bing Wang

XML III

Rewriting Queries for XML Integration Systems . 138
Ling Li, Mong Li Lee, Wynne Hsu

A Tale of Two Approaches: Query Performance Study of XML Storage
Strategies in Relational Databases . 149

Sandeep Prakash, Sourav S. Bhowmick

Visual Specification and Optimization of XQuery Using VXQ 161
Ryan H. Choi, Raymond K. Wong, Wei Wang

Data and Information III

MSXD: A Model and a Schema for Concurrent Structures Defined over
the Same Textual Data . 172

Emmanuel Bruno, Elisabeth Murisasco

Estimating Aggregate Join Queries over Data Streams Using Discrete
Cosine Transform . 182

Zhewei Jiang, Cheng Luo, Wen-Chi Hou, Feng Yan, Qiang Zhu

Datamining and Data Warehouses

Evaluation of a Probabilistic Approach to Classify Incomplete Objects
Using Decision Trees . 193

Lamis Hawarah, Ana Simonet, Michel Simonet

Multiway Pruning for Efficient Iceberg Cubing . 203
Xiuzhen Zhang, Pauline Lienhua Chou

Mining and Visualizing Local Experiences from Blog Entries 213
Takeshi Kurashima, Taro Tezuka, Katsumi Tanaka

Table of Contents XV

Mining RDF Metadata for Generalized Association Rules 223
Tao Jiang, Ah-Hwee Tan

Database Applications I

Analysing Social Networks Within Bibliographical Data 234
Stefan Klink, Patrick Reuther, Alexander Weber, Bernd Walter,
Michael Ley

Automating the Choice of Decision Support System Architecture 244
Estella Annoni, Franck Ravat, Olivier Teste, Gilles Zurfluh

Dynamic Range Query in Spatial Network Environments 254
Fuyu Liu, Tai T. Do, Kien A. Hua

Context and Semantic Composition of Web Services 266
Michael Mrissa, Chirine Ghedira, Djamal Benslimane,
Zakaria Maamar

XML IV

An Efficient Yet Secure XML Access Control Enforcement by Safe
and Correct Query Modification . 276

Changwoo Byun, Seog Park

Detecting Information Leakage in Updating XML Documents
of Fine-Grained Access Control . 286

Somchai Chatvichienchai, Mizuho Iwaihara

Faster Twig Pattern Matching Using Extended Dewey ID 297
Chung Keung Poon, Leo Yuen

Data and Information IV

A Vector Space Model for Semantic Similarity Calculation and OWL
Ontology Alignment . 307

Rubén Tous, Jaime Delgado

Scalable Automated Service Composition Using a Compact Directory
Digest . 317

Walter Binder, Ion Constantinescu, Boi Faltings

Topic Structure Mining for Document Sets Using Graph-Based
Analysis . 327

Hiroyuki Toda, Ryoji Kataoka, Hiroyuki Kitagawa

XVI Table of Contents

XML V

An Approach for XML Inference Control Based on RDF 338
Zhuan Li, Yuanzhen Wang

Recursive SQL Query Optimization with k-Iteration Lookahead 348
Ahmad Ghazal, Alain Crolotte, Dawit Seid

An Effective, Efficient XML Data Broadcasting Method in a Mobile
Wireless Network . 358

Sang-Hyun Park, Jae-Ho Choi, SangKeun Lee

Data and Information V

Formalizing Mappings for OWL Spatiotemporal Ontologies 368
Nacéra Bennacer

Multi-term Web Query Expansion Using WordNet . 379
Zhiguo Gong, Chan Wa Cheang, Leong Hou U

Fast Computation of Database Operations Using Content-Addressable
Memories . 389

Nagender Bandi, Divyakant Agrawal, Amr El Abbadi

CLEAR: An Efficient Context and Location-Based Dynamic Replication
Scheme for Mobile-P2P Networks . 399

Anirban Mondal, Sanjay Kumar Madria, Masaru Kitsuregawa

Datamining and Data Warehouses

Lossless Reduction of Datacubes . 409
Alain Casali, Rosine Cicchetti, Lotfi Lakhal, Noël Novelli

Multivariate Stream Data Classification Using Simple Text Classifiers . . . 420
Sungbo Seo, Jaewoo Kang, Dongwon Lee, Keun Ho Ryu

Location-Based Service with Context Data for a Restaurant
Recommendation . 430

Bae-Hee Lee, Heung-Nam Kim, Jin-Guk Jung, Geun-Sik Jo

Cascaded Star: A Hyper-Dimensional Model for a Data Warehouse 439
Songmei Yu, Vijayalakshmi Atluri, Nabil Adam

Database Applications II

Using JDOSecure to Introduce Role-Based Permissions to Java Data
Objects-Based Applications . 449

Matthias Merz, Markus Aleksy

Table of Contents XVII

A Forced Transplant Algorithm for Dynamic R-tree Implementation 459
Mingbo Zhang, Feng Lu, Changxiu Cheng

An Approach for a Personal Information Management System
for Photos of a Lifetime by Exploiting Semantics . 467

Khalid Latif, Khabib Mustofa, A. Min Tjoa

Topic Distillation in Desktop Search . 478
Alex Penev, Matthew Gebski, Raymond K. Wong

WWW I

Interactions Between Document Representation and Feature Selection
in Text Categorization . 489

Miloš Radovanović, Mirjana Ivanović

WebDriving: Web Browsing Based on a Driving Metaphor for Improved
Children’s e-Learning . 499

Mika Nakaoka, Taro Tezuka, Katsumi Tanaka

Semantic Wikis for Personal Knowledge Management 509
Eyal Oren, Max Völkel, John G. Breslin, Stefan Decker

Bioinformatics

Integration of Protein Data Sources Through PO . 519
Amandeep S. Sidhu, Tharam S. Dillon, Elizabeth Chang

3D Protein Structure Matching by Patch Signatures 528
Zi Huang, Xiaofang Zhou, Heng Tao Shen, Dawei Song

WWW II

Segmented Document Classification: Problem and Solution 538
Hang Guo, Lizhu Zhou

User Preference Modeling Based on Interest and Impressions for News
Portal Site Systems . 549

Yukiko Kawai, Tadahiko Kumamoto, Katsumi Tanaka

Cleaning Web Pages for Effective Web Content Mining 560
Jing Li, C.I. Ezeife

Process Automation and Workflow

An Applied Optimization Framework for Distributed Air Transportation
Environments . 572

Thomas Castelli, Joshua Lee, Waseem Naqvi

XVIII Table of Contents

On the Completion of Workflows . 582
Tai Xin, Indrakshi Ray, Parvathi Chundi, Sopak Chaichana

Concurrency Management in Transactional Web Services
Coordination . 592

Adnene Guabtni, François Charoy, Claude Godart

Acquisition of Process Descriptions from Surgical Interventions 602
Thomas Neumuth, Gero Strauß, Jürgen Meixensberger,
Heinz U. Lemke, Oliver Burgert

Knowledge Management and Expert Systems

Adaptive Policies in Information Lifecycle Management 612
Rohit M. Lotlikar, Mukesh Mohania

Implementation and Experimentation of the Logic Language
NP Datalog . 622

Sergio Greco, Cristian Molinaro, Irina Trubitsyna

Converting a Naive Bayes Models with Multi-valued Domains
into Sets of Rules . 634

Bart�lomiej Śnieżyński

Hypersphere Indexer . 644
Navneet Panda, Edward Y. Chang, Arun Qamra

Database Theory I

Distributed Continuous Range Query Processing on Moving Objects 655
Haojun Wang, Roger Zimmermann, Wei-Shinn Ku

Optimal Route Determination Technology Based on Trajectory
Querying Moving Object Database . 666

Kyoung-Wook Min, Ju-Wan Kim, Jong-Hyun Park

Efficient Temporal Coalescing Query Support in Relational Database
Systems . 676

Xin Zhou, Fusheng Wang, Carlo Zaniolo

Query Processing I

Efficient Evaluation of Partially-Dimensional Range Queries Using
Adaptive R*-tree . 687

Yaokai Feng, Akifumi Makinouchi

Table of Contents XIX

Parallelizing Progressive Computation for Skyline Queries in Multi-disk
Environment . 697

Yunjun Gao, Gencai Chen, Ling Chen, Chun Chen

Parameterizing a Genetic Optimizer . 707
Victor Muntés-Mulero, Marta Pérez-Casany, Josep Aguilar-Saborit,
Calisto Zuzarte, Josep-Ll. Larriba-Pey

Database Theory II

Interpolating and Using Most Likely Trajectories in Moving-Objects
Databases . 718

Byunggu Yu, Seon Ho Kim

Relaxing Constraints on GeoPQL Operators to Improve Query
Answering . 728

Arianna D’Ulizia, Fernando Ferri, Patrizia Grifoni,
Maurizio Rafanelli

High-Dimensional Similarity Search Using Data-Sensitive Space
Partitioning . 738

Sachin Kulkarni, Ratko Orlandic

Query Processing II

Truly Adaptive Optimization: The Basic Ideas . 751
Giovanni Maria Sacco

Applying Cosine Series to XML Structural Join Size Estimation 761
Cheng Luo, Zhewei Jiang, Wen-Chi Hou, Qiang Zhu,
Chih-Fang Wang

On the Query Evaluation in Document DBs . 771
Yangjun Chen

A Novel Incremental Maintenance Algorithm of SkyCube 781
Zhenhua Huang, Wei Wang

Database Theory III

Probabilistic Replication Based on Access Frequencies in Unstructured
Peer-to-Peer Networks . 791

Takahiro Hara, Yuki Kido, Shojiro Nishio

Role-Based Serializability for Distributed Object Systems 801
Youhei Tanaka, Tomoya Enokido, Makoto Takizawa

XX Table of Contents

MDSSF - A Federated Architecture for Product Procurement 812
Jaspreet Singh Pahwa, Pete Burnap, W.A. Gray, John Miles

Knowledge Management and Expert Systems

Argumentation for Decision Support . 822
Katie Atkinson, Trevor Bench-Capon, Sanjay Modgil

Personalized Detection of Fresh Content and Temporal Annotation
for Improved Page Revisiting . 832

Adam Jatowt, Yukiko Kawai, Katsumi Tanaka

Clustering of Search Engine Keywords Using Access Logs 842
Shingo Otsuka, Masaru Kitsuregawa

Database Theory IV

Non-metric Similarity Ranking for Image Retrieval . 853
Guang-Ho Cha

An Effective Method for Approximating the Euclidean Distance
in High-Dimensional Space . 863

Seungdo Jeong, Sang-Wook Kim, Kidong Kim, Byung-Uk Choi

Dynamic Method Materialization: A Framework for Optimizing Data
Access Via Methods . 873

Robert Wrembel, Mariusz Masewicz, Krzysztof Jankiewicz

Privacy and Security

Towards an Anti-inference (K, �)-Anonymity Model with Value
Association Rules . 883

Zude Li, Guoqiang Zhan, Xiaojun Ye

Analysis of the Power Consumption of Secure Communication
in Wireless Networks . 894

Kihong Kim, Jinkeun Hong, Jongin Lim

Implementing Authorization Delegations Using Graph 904
Chun Ruan, Vijay Varadharajan

Modeling and Inferring on Role-Based Access Control Policies Using
Data Dependencies . 914

Romuald Thion, Stéphane Coulondre

Table of Contents XXI

Database Theory V

Multi-dimensional Dynamic Bucket Index Based on Mobile Agent
System Architecture . 924

Marcin Gorawski, Adam Dyga

An Incremental Refining Spatial Join Algorithm for Estimating Query
Results in GIS . 935

Wan D. Bae, Shayma Alkobaisi, Scott T. Leutenegger

Extensions to Stream Processing Architecture for Supporting Event
Processing . 945

Vihang Garg, Raman Adaikkalavan, Sharma Chakravarthy

Author Index . 957

Efficient Processing of Multiple XML Twig
Queries

Huanzhang Liu, Tok Wang Ling, Tian Yu, and Ji Wu

School of Computing, National University of Singapore
{liuhuanz, lingtw, yutian, wuji}@comp.nus.edu.sg

Abstract. Finding all occurrences of a twig pattern in an XML docu-
ment is a core operation for XML query processing. The emergence of
XML as a common mark-up language for data interchange has spawned
great interest in techniques for filtering and content-based routing of
XML data. In this paper, we aim to use the state-of-art holistic twig join
technique to address multiple twig queries in a large scale XML data-
base. We propose a new twig query technique which is specially tailored
to match documents with large numbers of twig pattern queries. We in-
troduce the super-twig to represent multiple twig queries. Based on the
super-twig, we design a holistic twig join algorithm, called MTwigStack,
to find all matches for multiple twig queries by scanning an XML docu-
ment only once.

1 Introduction

Recently, XML has emerged as a standard information exchange mechanism on
the Internet. XML employs a tree-structured model to represent data. XML
query languages, such as XQuery and XPath, typically specify patterns with se-
lection predicates on multiple elements for matching XML documents. Twig pat-
tern matching has been identified as a core operation in querying tree-structured
XML data.

Many algorithms have been proposed to match XML twig pattern [3,7,8,11].
[3] decomposes the twig pattern into binary structural relationships, then match-
ing the binary structural relationships and merging these matches. Bruno et al.
[7] improved the methods by proposing a holistic twig join algorithm, called
TwigStack. The algorithm can largely reduce the intermediate result comparing
with the previous algorithms. Later on, Chen et al. [8] proposed a new Tag+Level
labeling scheme and iTwigJoin algorithm to improve TwigStack. Lu et al. [11]
designed a novel algorithm, called TJFast, which employed extended Dewey to
match XML twig queries.

XML query processing also arises in the scenario of information dissemina-
tion, such as publish-subscribe (pub-sub) systems. In a typical pub-sub system,
many user submitted profiles are presented by XPath expressions, and an XML
document is presented as input. The goal is to identify the queries and their
matches in the input XML document, and disseminate this information to the
users who posed the queries [4,9].

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 H. Liu et al.

In a huge system, where many XML queries are issued towards an XML
database, we expect to see that the queries have many similarities. In traditional
database systems, there have been many studies on efficient processing of similar
queries using batch-based processing. Since pattern matching is an expensive
operation, it would save a lot in terms of both CPU cost and I/O cost if we
can process multiple similar twig queries simultaneously and only scan the input
data once to get all the results. [6] has proposed Index-filter to process multiple
simple XPath queries (no branch) against an XML document and it aims to find
all matches of multiple simple path queries in an XML document. To eliminate
redundant processing, it identifies query commonalities and combines multiple
queries into a single structure. But Index-Filter does not consider how to process
multiple twig queries.

Motivated by the recent success in efficient processing multiple XML queries,
we consider the scenario of matching multiple XML twig queries with high sim-
ilarity against an XML document.

The contributions of this paper can be summarized as follows:

– We introduce a new concept, called super-twig, which combines multiple twig
queries into just one twig pattern. We also give the algorithm of constructing
super-twig.

– Based on super-twig, we develop a new multiple twig queries processing al-
gorithm, namely MTwigStack. With the algorithm, we can find all matches
of multiple twig queries by scanning input data only once.

– Our experimental results show that the effectiveness, scalability and effi-
ciency of our algorithm for multiple twig queries processing.

The rest of this paper is organized as follows. Preliminaries are introduced
in Section 2. The algorithm MTwigStack is described in Section 3. Section 4 is
dedicated to our experimental results and we close this paper by conclusion and
future work in Section 5.

2 Preliminaries

2.1 Data Model

We model XML documents as ordered trees, each node corresponding to an
element or a value, and the edges representing element-subelement or element-
value relationships. Each node is assigned a region code (start :end, level) based
on its position in the data tree [3,6,7], start is the number in sequence assigned
to an element when it is first encountered and end is equal to one plus the end
of the last element visited, level is the level of a certain element in its data
tree. Each text value is assigned a region code that has the same start and end
values. Then structural relationships between tree nodes (elements or values),
such as parent-child or ancestor-descendant, whose positions are labelled with
region encoding can be determined easily. Figure 1 (a) shows an example XML
data tree with region encoding.

Efficient Processing of Multiple XML Twig Queries 3

book

title author

book

title author

fn

"Jane"(b) (c) (d)

fn

"Jane"

"XML"

book

title author

book

title author

fn

"Jane"

"XML"

(e)

"XML"

1:40,1
book

6:13,3
author

14:21,3
author

2:4,2
title

8,4
John

11,4
Poe

25:39,2
chapter

3,3
XML

26:28,3
title

27,4
Xml

29:38,3
section

30:32,4
title

34:37,4
keyword

33,5
XML index

36,5
index

5:22,2
authors

23:25,2
year

24,3
2004

7:9,3
fn

10:12,3
ln

16,4
Jane

19,4
Doe

15:17,3
fn

18:20,3
ln

(a)

Fig. 1. An XML tree (a), three twig queries (b, c, d) and the super-twig query (e)

2.2 Super-Twig Query

When multiple twig queries are processed simultaneously, it is likely that signif-
icant commonalities between queries exist. To eliminate redundant processing
while answering multiple queries, we identify query commonalities and combine
multiple twig queries into a single twig pattern, which we call super-twig. Super-
twig can significantly reduce the bookkeeping required to answer input queries,
thus reducing the execution time of query processing. We will use q (and its
variants such as qi) to denote a node in the query or the subtree rooted at q
when there is no ambiguity. We introduce the concepts OptionalNode and Op-
tonalLeafNode to distinguish super-twig query from general twig queries.

In this paper, we only consider the tree patterns belonging to the fragment of
XPath XP {/,//,[]} [5] and the scenario that commonalities only existing in the
top parts of the twigs. Given a set of twig queries against an XML document,
Q = {q1,. . . , qk} belonging to XP {/,//,[]}, and assuming there is no repeated
node in each query, we combine all the queries into a super-twig such that:

– The set of nodes in the super twig pattern equals the union of the sets of
nodes of all individual twig queries;

– Each twig query is a subpattern (defined by [10]) of the super twig pattern;
– If the queries have different root nodes, we rewrite the queries whose root

nodes are not the root of the XML document and add the document’s root
as the root node of the queries. Then the root node of the super twig pattern
is same as the document’s root;

– Suppose n is a query node which appears in qi and qj , Pi and Pj are the
paths from the root to n in qi and qj respectively, Pi is same as Pj and m
is the parent node of n in these two queries. If the relationship between m
and n is Parent-Child (P-C) in qi, Ancestor-Descendant (A-D) in qj , then
the relationship between m and n in super-twig is relaxed to A-D;

– Suppose n is a query node in one query qi of Q, and m is the parent node of
n in qi. Let Qn is the subset of twig queries of Q which contain node n, and
Qm is the subset of twig queries which contain node m (the path from its

4 H. Liu et al.

root to m must be a prefix of the path from its root to n). If Qn ⊂ Qm, we
call n an OptionalNode. And if all the relationships between m and n in Qn

are P-C relationships, then the relationship between m and n in the super
twig pattern is P-C (called optional parent-child relationship and depicted
by a single dotted line); otherwise, the relationship between m and n in
the super twig is A-D (called optional ancestor-descendant relationship and
depicted by double dotted lines);

– Following the same situations of the above item and assuming n is Option-
alNode, let Qx = Qm − Qn. If m is a leaf node in some queries of Qx (so
Qx �= ∅), then we call m an OptionalLeafNode.

Example 1. In Figure 1, (e) shows the super-twig query of three queries (b), (c)
and (d). “XML” and fn are OptionalNodes, title and author are OptionalLeaf-
Nodes. The edge which connects “XML” to title represents optional parent-child
relationship. It means that we can output path solution “book-title” whether or
not the element title has a child whose content is “XML” in an XML document,
or output path solution “book-title-‘XML’ ” when the element title has a child
whose content is “XML” in an XML document.

2.3 Super-Twig

To combine multiple twigs into a super-twig, we should normalize them first.
It means to obtain a unique XPath query string from a tree pattern sorting
the nodes lexicographically. We use the method proposed in [12], for example,
the normal form of /a[q][p]/b[x[z]/y] is /a[p][q]/b[x[y][z]]. Then we design an
algorithm according to the principles proposed in the last section, as shown
in Algorithm 1. We input twig queries one by one and output the super-twig
presented by XPath query.

Algorithm 1. SuperTwig(s, r, q)
input: s is the current super-twig and r is its root, q is a twig query
1: q = NormalizeTwig(q)
2: if s = NULL then return q
3: rewrite q and s with the root of document
4: let sk denote each children(r) in s for k = 1, . . . , n and j = 1
5: for each child qi of the root rq in q
6: findmatchedNode = FALSE
7: while j ≤ n
8: if qi = sj then
9: update the edge between r and sj

10: SuperTwig(subtree(sj), subtree(qi), sj)
11: let findmatchedNode = TRUE and break while
12: else j + +
13: if findmatchedNode = FALSE then
14: if isLeaf(r) then r is marked as OptionalLeafNode in s
15: append subtree(qi) to s below r and assign edge between r and qi

16: qi is marked as OptionalNode in s
17: return s

Efficient Processing of Multiple XML Twig Queries 5

3 Multiple Twig Queries Matching

3.1 Data Structure and Notations

Let SQ denote the super-twig pattern, and root represent the root node of SQ.
In our algorithm, each node q in SQ is associated with a list Tq of database
elements, which are encoded with (start:end, level) and sorted in ascending
order of the start field. We keep a cursor Cq for each query node q. The cursor
Cq points to the current element in Tq. Initially, Cq points to the head of Tq. We
can access the attribute values of Cq by Cq.start and Cq.end.

In MTwigStack algorithm, we also associate each query node q in the super-
twig query with a stack Sq. Each data node in the stack consists of a pair: (region
encoding of a element from Tq, pointer to a element in Sparent(q)). Initially,
all stacks are empty. During query processing, each stack Sq may cache some
elements and each elements is a descendant of the element below it. In fact,
cached elements in stacks represent the partial results that could be further
contributed to final results as the algorithm goes on.

3.2 The MTwigStack Algorithm

Given the super-twig query SQ of {q1, . . . , qn} and an XML document D, a
match of SQ in D is identified by a mapping from nodes in SQ to elements
and content values in D, such that: (i) query node predicates are satisfied by
the corresponding database elements or content values, and (ii) the structural
relationships between any two query nodes are satisfied by the corresponding
database elements or content values. The answer to the super-twig query SQ
with n twig queries can be represented as a set R = {R1, . . . , Rn} where each
subset Ri consists of the twig patterns in D which match query qi.

Algorithm MTwigStack, for the case when the lists contain nodes from a single
XML document, is presented in Algorithm 2. We execute MTwigStack(root) to
get all answers for the super-twig query rooted at root. MTwigStack operates
in two phases. In the first phase, it repeatedly calls the getNext(q) function to
get the next node for processing and outputs individual root-to-leaf and root-to-
OptionalLeafNode path solutions. After executing the first phase, we can guar-
antee that either all elements after Croot in the list Troot will not contribute to
final results or the list Troot is consumed entirely. Additionally, we guarantee
that for all descendants qi of root in the super-twig, every element in Tqi with
start value smaller than the end value of last element processed in Troot was
already processed. In the second phase, the function mergeAllPathSolutions()
merges the individual path solutions for respective original twig queries.

To get the next query node q to process, MTwigStack repeatedly calls function
getNext(root) and the function will call itself recursively. If q is a leaf node of the
super-twig, the function returns q without any operation because we need not
check whether there exist its descendants matching the super-twig; otherwise,
the function returns a query node qx with two properties: (i) if qx = q, then
Cq.start < Cqi .start and Cq.end > Cqmax .start for all qi ∈ children(q) and

6 H. Liu et al.

Algorithm 2. MTwigStack(root)
1: while NOT end(root) do
2: q = getNext(root)
3: if NOT isRoot(q) cleanStack(Sparent(q), Cq.start)
4: cleanStack(Sq, Cq .start)
5: if isRoot(q) OR NOT empty(Sparent(q))
6: push(Cq, Sq)
7: if isLeaf(q) outputSolution(Sq), pop(Sq)
8: else if isOptionalLeafNode(q) outputSolution(Sq)
9: else advance(Cq)

10: end while
11: mergeAllPathSolutions()

Function getNext(q)
1: if isLeaf(q) return q
2: for qi ∈ children(q) do
3: ni = getNext(qi)
4: if ni �= qi return ni

5: qmin= the node whose start is minimal start value of all qi ∈ children(q)
6: qmax= the node whose start is maximal start value of all qi ∈ children(q)

which are not OptionalNodes
7: while qmax �= NULL and Cq.end < Cqmax .start do advance(Cq)
8: if Cq.start < Cqmin .start return q
9: else return qmin

Procedure cleanStack(Sp, qStart)
1: pop all elements ei from Sp such that ei.end < qStart

Procedure mergeAllPathSolutions()
1: for each qi ∈ Q do
2: read the path solution lists whose leaf node is a leaf node of qi

3: merge the path solutions and check the relationships between any two nodes

qi is not OptionalNode (lines 5-8 in Func. getNext(q)). In this case, q is an
internal node in the super-twig and Cq will participate in a new potential match.
If the maximal start value of Cq’s children which are not OptionalNodes is
greater than the end value of Cq, we can guarantee that no new match can
exist for Cq, so we advance Cq to the next element in Tq (see Figure 2(a));
(ii) if qx �= q, then Cqx .start < Cqj .start, for all qj is in siblings of qx and
Cqx .start < Cparent(qx).start (lines 9 in Func. getNext(q)). In this case, we always
process the node with minimal start value for all qi ∈ children(q) even though
qi is OptionalNode (see Figure 2(b)). These properties guarantee the correctness
in processing q.

Next, we will process q. Firstly, we discard the elements which will not con-
tribute potential solutions in the stack of q’s parent (see Figure 2(c)) and execute
the same operation on q’s stack. Secondly, we will check whether Cq can match
the super-twig query. In the case that q is root or the stack of q’s parent is not
empty, we can guarantee Cq must have a solution which matches the subtree

Efficient Processing of Multiple XML Twig Queries 7

rooted at q. If q is a leaf node, then it means that we have found a root-to-leaf
path which will contribute to the final results of some or all queries; hence, we
can output possible path solutions from the node to root; especially, if q is an
OptionalLeafNode, we can also output the path for some queries, but we do
not pop up Sq because q is an internal node and maybe will contribute to other
queries in which q is not a leaf node. Otherwise, Cq must not contribute any
solutions and we just advance the pointer of q to the next element in Tq (see
Figure 2(d)).

Tq

Tqmax

advance(Cq)
Sp(q)

Tq

pop(Sp(q))

(a) Func. getNext Line 7

advance(Cq)

(c) Algo. 2 Line 3 (d) Algo. 2 Line 9

Sp(q)

Tq

Tq

Tqmin

(b) Func. getNext Line 9

Fig. 2. Possible scenarios in the execution of MTwigStack

In [7], when TwigStack processes a leaf node, it outputs root-to-leaf solutions.
However, for super-twig, there are leaf nodes and optional leaf nodes. Differ-
ent from TwigSack in the first phase, MTwigStack will output path-to-leaf and
path-to-OptionalLeafNode solutions if a node q of super-twig is leaf or Option-
alLeafNode (it means q is a leaf node in some queries). Furthermore, in the
function getNext(q), qmax is the node whose start is maximal start value of all
q’s children which are not OptionalNodes. This restriction guarantees that some
nodes in Tq are not skipped mistakenly by advance(Cq) when some children of
q are not necessary for all the twig queries.

After all possible path solutions are output, they are merged to compute
matching twig instances for each twig query respectively. In this phase, we will
not only join the intermediate path solutions for each query but also check
whether P-C relationships of the queries are satisfied in these path solutions.
Merging multiple lists of sorted path solutions is a simple practice of a multi-
way merge join. In this paper, we do not explain the details for saving space.

MTwigStack is a modification of the TwigStack algorithm. The main diver-
sification is to introduce the concept of OptionalLeafNode, which is treated as
a leaf node when processing the super-twig. The algorithm will output interme-
diate matches when processing the OptionalLeafNodes as they are in fact leaf
nodes of some twig queries. Hence, we can easily modify other algorithms such
as iTwigJoin [8], TJFast [11], etc.

Example 2. In Figure 3, SQ is the super-twig of q1, q2, and q3; in SQ, C is an
OptionalLeafNode, D and E are OptionalNodes ; Doc1 is an XML document.
Initially, getNext(A) recursively calls getNext(B) and getNext(C). At the first
loop, a1 is skipped and CA advances to a2 because a1 has no descendant node
C. Then node B is returned and q = B. Now the stack (SA) for parent of B is
empty, hence, b1 is skipped and CB points to b2. In the next loop, A is returned

8 H. Liu et al.

and a2 is pushed into SA; next, B is returned and (a2, b2) is output; then A
is returned again and a3 is pushed into SA but a2 will be not popped; B is
returned and b3 is pushed into SB, (a3, b3) and (a2, b3) are output. At the sixth
loop, C is returned and c1 is pushed into SC . C is an OptionalLeafNode, hence
(a3, c1) and (a2, c1) are output but c1 is not popped. Next D is returned and
d1 is pushed into SD; Then F is returned, (a3, c1, d1, f1) and (a2, c1, d1, f1) are
output. Next, c2 is processed, (a3, c2) and (a2, c2) are output. Finally, E is
returned, then (a3, c2, e1), (a3, c1, e1), (a2, c2, e1) and (a2, c1, e1) are output.
At the second phase, mergeAllPathSolutions() merges the path solutions of (A,
B) and (A, C) for q1, (A, B) and (A, C, D, F) for Q2, and (A, B) and (A, C, E)
for q3. In this phase, we also check whether P-C relationships are satisfied.

(e) Doc1

A

B C

D

F

(a)Q1 (b)Q2 (c)Q3

A

B C

A

(d)SQ

A

B C

E

B C

D E

F

a3

b3 c1

a2

c2d1

f1 e1

b2

root

a1

b1

Fig. 3. Illustration to MTwigStack

4 Experimental Evaluation

4.1 Experimental Setup

We implemented MTwigStack algorithm in Java. All experiments were run on
a 2.6 GHz Pentium IV processor with 1 GB of main memory, running windows
XP system. We used the TreeBank [1] and XMark [2] data sets for our experi-
ments. The file size of TreeBank is 82M bytes, and the file sizes of XMark are
128KB, 2MB, and 32MB respectively. We test our MTwigStack comparing with
TwigStack [7] and Index-Filter [6] with different numbers of queries on these
different data sets.

The set of queries consists of 1 to 10000 twig queries, with a random number
of nodes between 10 to 20. The total number of distinct tags in these twig queries
is less than 30% of total distinct tags (75 tags) for XMark data sets, and is less
than 15% of total distinct tags (249 tags) for TreeBank data set.

4.2 Experimental Results

MTwigStack vs. TwigStack. Figure 4 (a) shows the execution time of Twig-
Stack to the execution time of MTwigStack on the four data sets when processing
different numbers of queries. We find that whatever the data size is, when there
is only one query, these two methods consume the same time; with the number

Efficient Processing of Multiple XML Twig Queries 9

of queries increasing, the processing time increase of MTwigStack is far lower
than the increase of TwigStack (e.g. the ratio is about 60 for 1000 queries on the
TreeBank data set). This is explained by the fact that MTwigStack process all
the multiple queries simultaneously, while TwigStack needs to match the queries
one by one.

In table 1, we show the number of elements scanned by MTwigStack and
TwigStack when processing different numbers of queries. Obviously, MTwigStack
scans far less elements than TwigStack does. The reason is, for the nodes which
appear in multiple queries, MTwgStack scans them only once. But extremely,
MTwigStack and TwigStack will scan the same number of elements only when
there is no node that appears in all the queries repeatedly, that is, all nodes in
the multiple queries are distinct.

MTwigStack vs. Index-Filter. We implemented Index-Filter as follows: fir-
stly, decomposing twig pattern into simple path queries for each twig query and
combining these path queries into a prefix tree; next, executing the Index-Filter
algorithm to get intermediate solutions for each path; finally, joining the path
solutions which belong to the same query and eliminating useless solutions.

Figure 4 (b) shows the execution time of Index-Filter to the execution time
of MTwigStack. With the increase of data size and number of queries, Index-
Filter will run longer time even though it scans the same number of elements as
MTwigStack does, as shown in Table 1. The reason is, Index-Filter decomposes
a twig query into multiple simple paths during query processing and it will

(a) MTwigStack vs. TwigStack (b) MTwigStack vs. Index-Filter

Fig. 4. Execution time ratio for different data sets

Table 1. The number of scanned elements

Data Set 128K XMark 2M XMark 32M XMark 82M TreeBank
No. of Queries 10 100 10 100 10 100 10 100

MTwigStack 286 397 5027 6059 78167 96357 1278766 1465232
Index-Filter 286 397 5027 6059 78167 96357 1278766 1465232
TwigStack 2312 18455 40337 354260 635718 6005265 11685319 106760340

10 H. Liu et al.

Table 2. The number of intermediate path solutions

Data Set 128K XMark 2M XMark 32M XMark 82M TreeBank
No. of Queries 10 100 10 100 10 100 10 100

MTwigStack 29 33 349 459 5401 7386 646 678
Index-filter 134 157 2332 2827 37197 44797 496691 498688
TwigStack 127 1215 1237 10425 19897 172360 775 3965

produce many useless intermediate path solutions, as shown in Table 2. Merging
more path solutions also need consume more time. Furthermore, Index-Filter
also requires more space to keep intermediate results.

5 Conclusion and Future Work

In this paper, we proposed a new twig join algorithm, called MTwigStack, to
process multiple twig queries with a high structural similarity. Although holistic
twig join has been proposed to solve single twig pattern, applying it to multiple
twig patterns matching is nontrivial. We developed a new concept super-twig
with OptionalNode and OptionalLeafNode to determine whether an element is
in the shared structure of the XML twig patterns. We also made the contribution
by processing the shared structure in the super-twig only once. The experimen-
tal results showed that our algorithm is more effective and efficient than the
applying TwigStack to each individual twig quires, or applying Index-Filter by
decomposing twig queries into many simple path queries.

In the future, we will improve the algorithm based on the following two issues:
one is to design an efficient index scheme to fasten the processing speed. Another
issue is our method only supports a subset of XPath queries. Some queries, such
as //A[B]/C and //D[B]/C, can not be processed efficiently. We will try to
process more XPath queries.

References

1. Treebank. Available from http://www.cis.upenn.edu/treebank/.
2. The xml benchmark project. Available from http://www.xml-benchmark.org.
3. S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and Y. Wu. Struc-

tural joins: A primitive for efficient XML query pattern matching. In Proceedings
of ICDE, 2002.

4. M. Altinel and M. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proceedings of VLDB, 2000.

5. S. Amer-Yahia, S. Cho, L. K. S. Lakshmanan, and D. Srivastava. Minimization of
tree pattern queries. In Proceedings of ACM SIGMOD, 2001.

6. N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation- vs. index-based
XML multi-query processing. In Proceedings of ICDE, 2003.

7. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML pattern
matching. In Proceedings of ACM SIGMOD, 2002.

Efficient Processing of Multiple XML Twig Queries 11

8. T. Chen, J. Lu, and T. Ling. On boosting holism in XML twig pattern matching
using structural indexing techniques. In Proceedings of ACM SIGMOD, 2005.

9. Y. Diao, M. Altinel, M. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. In ACM Transactions
on Database Systems (TODS), volume 28, pages 467–516, 2003.

10. S. Flesca, F. Furfaro, and E. Masciari. On the minimization of xpath queries. In
Proceedings of VLDB, 2003.

11. J. Lu, T. Ling, C. Chan, and T. Chen. From region encoding to extended dewey:
On efficient processing of XML twig pattern matching. In Proceedings of VLDB,
2005.

12. B. Mandhani and D. Suciu. Query caching and view selection for xml databases.
In Proceedings of VLDB, 2005.

Effectively Scoring for XML IR Queries

Zhongming Han, Jiajin Le, and Beijin Shen

College of Information Science and Technology of Donghua University
1882 Yanan Road Shanghai P.R. China (200051)

hx zm@mail.dhu.edu.cn, klein beijin@mail.dhu.edu.cn

Abstract. This paper focuses on relevance scoring for XML IR queries.
We propose a novel and effective algorithm for relevance scoring, which
considers both structural information and semantic. Experiments show
that the algorithm can effectively improve the Precision and Recall for
XML information retrieval.

1 Introduction

Effectively finding the useful information from XML documents has became a
challenging problem. For different xml retrieval systems, there is a very common
and important problem: relevance scoring. In traditional information retrieval
system, the score unit is the document, which is fixed. However, in XML retrieval
system, the unit is the element included in one or more documents. Furthermore
the element could not be defined when one retrieval query is proposed. During
the query process, according to the relevance between the query fragment and
the document, appropriate elements could be selected to return. So it is very
important to utilize the document structure information in ranking not only in
filtering. Furthermore, relevance score should be related to element semantic in
XML documents, i.e. element names and element types. However, these factors
are not considered yet in current XML IR system.

In this paper, we propose a novel and effective algorithm to compute the
relevance score that considers both the frequency distribution of the terms,
structural distribution of the terms and semantic of the elements. Our main
contributions are as follows:

• A relevance scoring algorithm is presented, which considers both the term
frequency, structural relevance and semantic of the element. The associated
ranking function is proposed too.
• The comprehensive experiments are conducted to evaluate all the related

technologies.

2 Preliminary

We assume that a single document D is a node labelled acyclic tree with the
set V of nodes and the set E of edges, and labels are taken from the set L of

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 12–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Effectively Scoring for XML IR Queries 13

strings. Furthermore, text values come from a set T of text strings and they can
be attached to any type of nodes, not just leaf nodes. root is the root of the D.
The following definitions introduce some fundamental notions used in the rest
of the paper.

Definition 1. Let n1 and n2 be two nodes in an XML document. If n2 is a
child node of n1, i.e. n2 ∈ children(n1), then local position of n2, denoted
lposition(n2), is the position of node n2 in children(n1) with respect to nodes
that have the same label label(n2). The arity of node n2, arity(n2), is the number
of nodes with label label(n2) in the n1’s list of children.

Definition 2. Let n1 and n2 be two nodes in an XML document. If n2 is a
child node of n1, i.e. n2 ∈ children(n1), then sibling position of n2, denoted
sposition(n2), is the position of node n2 in children(n1) with respect to nodes
that are child nodes of label(n1).

An XML document from Sigmod Record in XML is listed in Table 1.

Table 1. XML Document Example

<Papers>
<Article>

<Title=’XML Information Retrieval’><\Title>
<Authors=’David Jon, John Tom’><\authors>
<section>
<title=’Introduction’><\title>
<text=’...XML... information retrieval...’><\text>

<\section>
<\Article>
<Article>

<title=’XML Data Query’><\Title>
<Authors="David John"><\Authors>
<section>
<title=’Basic Concepts’><\title>
<text=’...XML... retrieval...’><\text>

<\section>
<\Article>

<\papers>

As we all know, the structural information of XML documents is very impor-
tant to both XML query and XML information retrieval. Thus, a summary tree
is presented, which includes label paths for the XML document and is a node
labelled acyclic tree with the set V of elements. Formally, we define summary
tree as follows.

Definition 3. A summary tree ST for an XML document D is a tree (V ,
root,children),where V is a finite set of element coming from the label set of D;

14 Z. Han, J. Le, and B. Shen

root ∈ V is the root of D; children is a mapping from elements to a partially
ordered sequence of child elements. This tree satisfies:

- For each path p in ST , there is a corresponding label path in D;
- For each label path in D, there is a corresponding path p in ST ;
- For two nodes N1 and N2 with same parent node and different label in D,if

sposition(N1) < sposition(N2), then the element of label(N1) appear earlier
than label(N2).

Figure 1 shows the summary tree for the XML document listed in Table 1.

Papers

Paper

Title
Authors Section

Title Text

1.0

1.0

0.4
0.3 0.3

0.6 0.4

Fig. 1. The summary tree

ad

pc

$1

$2

$3

TCs:
$1.tag = Article
$2.tag = Authors
$3.tag = Last Name
$4.tag = *

VBs:
$1.score =$4.score.
$4.score=FContains(“XML ” , Information
Retrieval ”).
$3.score = FContains(“John ”).

ad

$4

Fig. 2. Scored Pattern Tree

Usually, an XML data query can be represented by an XQuery expression.
However even a simple XML IR style query cannot be easily transformed into
an XQuery expression. the following is a simple example.

Example 1 Find all document components in DBLP.xml that are part of an
article written by an author with the last name ’John’ and are about ’XML’.
Relevance to ’Information Retrieval’.

An XML IR style query can be viewed as a scored pattern tree. Like definition in
[6], we can define scored pattern tree. However the differences are we distinguish
the different constraints and ’*’ node can be applied.

Definition 4. A scored pattern tree is a triple p = (T, F, S), where t = (V, E)
is a rooted node-labelled and edge-labelled tree such that:

• Each node in V labelled by a distinct integer;
• E = Ec

⋃
Ed consists of pc-edges(parent-child relationship) and ad-edges

(ancestor-descendant relationship);
• F is a conjunction of predicates, including tag constraints (TCs), value-based

constraints (VBs) and node constraints (NCs);
• S is a set of score and rank functions applied to nodes;

For the XML IR style query, example 1, the terms ’XML’ and ’Information
Retrieval’ are not explicitly applied to a node. Then we apply these term con-
straints to an extra node ’*’ in the scored pattern tree,which is shown in figure 2.
Meanwhile, we add a score function to the parent node.

Effectively Scoring for XML IR Queries 15

3 Relevance Scoring

For XML information retrieval system, TF need to be modified because the
unit of XML IR is element not document. Formally, we denote TF (te, e) for
term frequency of term te in element e. It means the number of occurrences
of term te in element e. For each unique term in the XML fragment of query
answer, the inverse document frequency IDF is calculated as:

IDF (te) = log
N

n(te)
(1)

with N being the total number of unique terms, and n(te) the number of text
fragments in which term t occurs.

Using TF (te, e) and IDF to evaluate the relevance for term te of element e is
sufficient for term constraints explicitly applied to a node. So we use TF (te, e) ∗
IDF (te) for relevance score for terms belonging to an XML element explicitly.

In our intuition, the relevance score for the term constraints applied to a ’*’
node involves the following aspects:

• Term Frequency(TF)
• Structure Relevance. Different terms are possibly distributed over different

elements. The shorter the distance between these different elements is, the
higher the relevance score will be.
• Semantic Relevance. Since a term is possibly distributed over different ele-

ments. Thus, the term could have different meanings. This means that the
semantic of the element could affect the relevance score of the term.

3.1 Structural Relevance

We propose a new concept, term distance, which can reflect the term structure
distribution. The following is the formula by which the term distance can be
computed.

TD(te1, te2) = (2)

1. 1, if pa(te1) = pa(te2)
2. |spos(pa(te1))− spos(pa(te2))|, if pa(pa(te1)) = pa(pa(te2))
3. |lev(pa(te1))− lev(pa(te2))|, if pa(te1)//pa(te2) or pa(te2)//pa(te1)
4. |lev(pa(te1))− lev(tec))|+ |lev(pa(te2))− lev(tec))|, Otherwise.

Where TD(te1, te2) means term distance between te1 and te2. Function spos
returns sposition of the element. Function pa(tei) returns corresponding parent
element of the term. And pa(te1)//pa(te2) means that pa(te1) and pa(te2) have
ancestor-descendant relationship. Function lev returns the level of the element.
tec is the common ancestor element for te1 and te2.

When te1 and te2 have the same parent,the term distance is the minimum
according to the formula. When pa(pa(te1)) and pa(pa(te2)) are different and
these two elements do not satisfy ancestor-descendant relationship, these terms

16 Z. Han, J. Le, and B. Shen

should have less relevance. Based on term distance of two terms, term distance
for more terms can be computed by the following formula.

TD(te1, te2, · · · , ten) =
n−1∑
i=1

TD(tei, tei+1) (3)

Based on term distance, the structural relevance score for n terms in the ’*’
node can be computed by formula 4.

RSt =
1

1 + TD(te1, te2, · · · , ten)
×

n∑
i=1

TF (tei, pa(tei)) (4)

Since the relevance is for a ’*’ node and the parent node has the same relevance
function with the ’*’ node, the relevance of corresponding parent node also have
been computed.

3.2 Semantic Relevance

The same term in a XML IR style query could occur on different elements,
which have different semantics. Then for these terms, it should have different
relevances. It is the intuition of considering semantic relevance.

Consider example 1 over the document fragment listed in Table 1. The term
’Information retrieval’ occurred thrice in different elements. Then relevances
should be different. For example, the relevance score for element ’title’ should
be higher than for element ’section’.

The first sub-question for computing semantic relevance is how to weigh se-
mantic for elements. We denote semantic relevance weight for an element sew(ei).
Basically, semantic relevance weights produced by any methods should satisfy
two properties:

1. For any element e with child elements,
∑

sew(ei)= 1, ∀ei ∈ children(e).
2. For any element e, 0 ≤ sew(e) ≤ 1.

From Property 1, we can know that the semantic weight is local weight. Ob-
viously, the semantic of an element has affinity to the semantics of sub-elements.
As for the descendent elements, there is less semantic affinity. Property 2 guar-
antees that each semantic weight is normalization.

The number labelled in each element in Figure 1 means the semantic weight
for the element.

How to evaluate semantic relevance for terms of a ’*’ node based on the
summary tree with semantic weights? Firstly, when a term te is found in the
node with label e in the XML document, then the label path also has been
knowing. By searching the path of the element in the summary tree, we can get
a list of semantics from the summary tree. Thus, the semantic weight of this
element can be computed by formula 5.

WS(e) =
∏

ei∈path(e)

sew(ei) (5)

Effectively Scoring for XML IR Queries 17

where path(e) is the path from root(PT) to the element e, PT is the query
pattern tree. And sew(ei) means the semantic weight of element ei.

Thus, based on formula 5, the semantic relevance score of term te can be
obtained by formula 6.

RSs(te, e) =
∑
ei

TF (te, ei) ∗WS(ei) (6)

Where ei means that element that term te occupy. Formula 5 counts all the
elements where the term te appears. Usually, a ’*’ node will possess more term
constraints. Then, the semantic relevance for terms of a ’*’ node N∗ of the IR
style query can be computed by formula 7.

RSs =
∑

tei∈term(N∗)

RSs(tei, ei) (7)

where term(N∗) is the set of terms that users assign to a ’*’ node. Formula 6
counts all the elements where these terms appear. The

∑
represents boolean

sum, which is discussed in the next subsection.

3.3 Integrated Relevance Score

To flexibly support boolean predicate connection, two boolean predicate ’and’
and ’or’ are implemented in our method. The boolean connectives in a query
statesmen can be assigned a score based on the probabilistic interpretation of
relevance score of the terms.

RS(s1ands2) = RS(s1)×RS(s2)
RS(s1ors2) = RS(s1) + RS(s2)−RS(s1)×RS(s2)

We can combine this interpretation to express more complex queries. In for-
mula 7, the boolean sum is interpreted by this interpretation. The last step for
computing complete relevance score for the ’*’ node is to integrate the structure
relevance and semantic relevance. The simple method is weight sum.

RS(N∗) = α ∗RSt + (1 − α) ∗RSs (8)

where RS(N∗) means the relevance score of a ’*’ node of the XML IR style query.
RSt and RSs are structure relevance score and semantic relevance score for the
’*’ node in the query respectively. α is a parameter can be selected by users or
experts. The parameter α represents the preference of the users for structural
relevance and semantic relevance. The optimum value of this parameter could
be learned during experiments.

We denote RS(Q) for integrated relevance score for an XML IR style query.
The formula for computing is RS(Q) listed as follows.

RS(Q) =
∑

ei∈G,

TF (tei, ei) +
∑

N∗i
∈GS

RS(N∗) (9)

where G is the set of nodes, to which some terms applied. And all paths of these
nodes have not ’*’ node. GS is the set of ’*’ nodes. In an query pattern tree, it
is possible that more than one ’*’ node appear in it.

18 Z. Han, J. Le, and B. Shen

4 Experiment

We choose SIGMOD Record in XML [22] and sample data collection for XQuery
1.0 and XPath 2.0 Full-Text Use Cases [20]. The first data collection consists of a
collection of three books. For more competitive purposes, we extended this data
collection to 100 books, which have the same structure with the origin elements.
The extended Data collection have more than 10000 elements with total size of
40MB. Based on the XML database system [23] and HiD [24]index structure, we
implement the query algorithm and score algorithm.

Table 2. Queries for Experiment

Query Content
Q1 /books/book//subject[.ftcontains ”usability”]
Q2 /books/*[.ftcontains ”usability testing”]
Q3 /books/book[./* [.ftcontains ”goal” & ”obstacles” & ”task”]]/title ftcontains

”Software”
Q4 /books/book[./*[.ftcontains ”usability testing”]]/Authors/*[.ftcontains ”Soft-

ware”]
Q5 /books/book[/metadata/*[.”usability testing”]]//content/*[.ftcontains ”Soft-

ware”]
Q6 /IndexTermsPage//Author[.ftcontains ”Han”]
Q7 /IndexTermsPage/*[.ftcontains ”XML” | ”Information Retrieval”]
Q8 /IndexTermsPage[/Author/*[.ftcontains ”Wang”]]//abstract ftcontains

”XML”

Table 2 list the queries. We use ’ftcontains’ phrase to represent the full text
retrieval, and use ’&’ and ’|’ to respectively represent the ’and’ and ’or’ relation-
ship between two terms. Query 1 to query 5 ran over the data collection. Query
6 to query 8 ran over Sigmod Record in XML. For objectively evaluating the
effectiveness of our algorithm, we investigated the Precision and Recall measure,
which are often used to evaluate different algorithms of IR system. We tested our
algorithm with two steps on each query with different parameter α. We mainly
analyze results for average precision and average recall for different parameter
α values.

The average precision values for different parameter are shown in fig.3(a),
where V Precsion 1 represent the average precision for queries running on SIG-
MOD Record in XML and V Precsion 2 represent the average precision for
queries running on data collection for Query 1.0 and XPath 2.0 Full-Text Use
Cases. It is clear that the average precision reach its highest at about α = 0.64
for SIGMOD Record and about α = 0.45 for data collection for Query 1.0 and
XPath 2.0 Full-Text Use Cases.

The average recall values for different parameter are shown in fig.3(b), where
V Recall 1 represent the average recall for queries running on SIGMOD Record
in XML and V Recall 2 represent the average recall for queries running on data
collection for Query 1.0 and XPath 2.0 Full-Text Use Cases. The average recall

Effectively Scoring for XML IR Queries 19

(a) Average Precision with Different Para-
meter

(b) Average Recall with Different Para-
meter

Fig. 3. Experiment Results

reach its highest at about α = 0.65 for SIGMOD Record and about α = 0.42 for
data collection for Query 1.0 and XPath 2.0 Full-Text Use Cases.

From these experiments, we can know that better relevance can be obtained
under different optimize value for different XML document.

5 Related Work

XML query languages with full text search are presented in some papers, such as
[2,6,7,11,16]. These languages have different features. In [2], a language XIRQL is
presented, which integrates IR related features. However the language presented
in this paper is based on XQL but not on XQuery [18] and XPath [19], so
does the language presented in [11]. TeXQuery [6] is a powerful full-text search
extension to XQuery, which provides a rich set of fully composable full text
search primitives. TeXQuery satisfies the FTTF Requirements specified in [17].

Some XML retrieval systems which can handle XML full text query to some
extent are presented in [1,3,4,5,6,8,9]. Timber system [1] is a system integrating
information retrieval techniques into a XML database system. System [3] tar-
gets to support more specific user friendliness via a very simple fragment-based
language. In [6], a bulk-algebra called TIX is presented. It can be used as a basis
for integrating information retrieval techniques into a standard pipelined data-
base query evaluation engine. The XRANK system [8] for ranked keyword search
over XML documents is presented in this paper, which considers the hierarchical
and hyperlinked structure of XML documents, and a two-dimensional notion of
keyword proximity. In [9], FleXPath, a framework that integrates structure and
full-text querying in XML is presented.

Vector space model is still used to evaluate relevance score by some re-
searches [10,3]. Ranking approach [3]is assigning weights to individual contexts
by extended vector space model. Main contribution of [10] is to dynamically
derive the vector space that is appropriate for the scope of the query from un-
derlying basic vector spaces. Researches [12,13,14,15] focus on how to query full
text on XML documents. Most of these researches show that combining structure
index and inverted list can have better performance for querying tasks.

20 Z. Han, J. Le, and B. Shen

6 Conclusion and Future Work

In this paper, we present an effective algorithm to compute relevance scoring
for XML IR style query, which takes both structural relevance and semantic
relevance into account.

The INEX document collection is an XML document,which is frequently used
to test different system supported XML IR style query. However, we have not yet
been able to access the collection by now. Next, we will have our algorithms run
over this data collection. In traditional IR system, dictionary or thesaurus can
be used to improve performance. In XML IR query system, effectively utilizing
dictionary or thesaurus is also an ongoing research job.

References

1. Cong Yu, Hong Qi, H. V. Jagadish. Integration of IR into an XML Database.
In First Annual Workshop of the Initiative for the Evaluation of XML Retrieval
(INEX), 2002.

2. N. Fuhr and K. Grobjohann. XIRQL: A Query Language for Information Retrieval
in XML Documents. In Proceedings of the 24th Annual ACM SIGIR Conference
on Research and Development in Information Retrieval, 2001.

3. Y. Mass, M. Mandelbrod, E. Amitay, D. Carmel,Y. Maarek, and A. Soffer.
JuruXML-an XML retrieval system at INEX’02.

4. ET. Grabs, H.-J. Schek. Flexible Information Retrieval from XML with PowerD-
BXML. In INEX 2002.

5. T. Schlieder and H. Meuss. Result Ranking for Structured Queries against XML
Documents. In DELOS Workshop on Information Seeking, Searching and Querying
in Digital Libraries, 2000.

6. Shurug Al-Khalifa, Cong Yu, H. V. Jagadish. Querying Structured Text in an XML
Database.In Sigmod 2003.

7. Sihem AmerYahia, Chavdar Botev, Jayavel. TeXQuery: A FullText Search Exten-
sion to XQuery. In WWW 2004.

8. L. L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In Sigmod 2003.

9. Sihem AmerYahia, Laks V.S. Lakshmanan, Shashank Pandit. FleXPath: Flexible
Structure and FullText Querying for XML. In Sigmod 2004.

10. T. Grabs and H.-J. Schek. Generating Vector Spaces On-the-fly for Flexible XML
Retrieval. In Proceedings of the ACM SIGIR Workshop on XML and Information
Retrieval, 2002.

11. Daniela Florescu, Donald Kossmann, Ioana Manolescu. Integrating Keyword
Search into XML Query Processing. In Proc. of the Intern. WWW Conference,
Amsterdam, 2000.

12. R.Sacks-Davis, T.Dao, J.A. Thom, J.Zobel. Indexing Documents for Queries on
Structure, Content and Attributes. Proc. of International Symposium on Digital
Media Information Base (DMIB), Nara, 1997.

13. Jaap Kamps, Maarten de Rijke, Borkur Sigurbjornsson. Length. Normalization in
XML Retrieval. In ACM SIGIR 2004.

14. Hugh E. Williams, Justin Zobel, Dirk Bahle. Fast Phrase Querying with Multiple
Indexes. In ACM Transactions on Information Systems 22(4):573-594, 2004.

Effectively Scoring for XML IR Queries 21

15. Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F. Naughton,Raghu Ramakr-
ishnan. On the Integration of Structure Indexes and Inverted Lists. In Sigmod
2004.

16. Taurai T. Chinenyanga, Nicholas Kushmerick. An expressive and efficient language
for XML information retrieval.In J. American Society for Information Science &
Technology 53(6):438-453 2002.

17. The World Wide Web Consortium. XQuery and XPath Full-Text
Requirements.http://www.w3.org/TR/xmlquery-full-text-requirements/.

18. The World Wide Web Consortium. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/.

19. The World Wide Web Consortium. XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20/.

20. he World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text Use Cases.
http://www.w3.org/TR/xmlquery-full-text-use-cases/.

21. Initiative for the Evaluation of XML Retrieval.
http://www.is.informatik.uni-duisburg.de/projects/inex03/.

22. Sigmod Record in XML.
http://www.sigmod.org/sigmod/dblp/db/conf /xml/index.html.

23. Galax.http://www.galaxquery.com.
24. Zhongming Han, Congting Xi, Jiajin Le. Efficiently Coding and Indexing XML

Document.In DASFAA 2005.

Selectively Storing XML Data in Relations

Wenfei Fan1 and Lisha Ma2

1 University of Edinburgh and Bell Laboratories
2 Heriot-Watt University

Abstract. This paper presents a new framework for users to select relevant data
from an XML document and store it in an existing relational database, as opposed
to previous approaches that shred the entire XML document into a newly created
database of a newly designed schema. The framework is based on a notion of
XML2DB mappings. An XML2DB mapping extends a (possibly recursive) DTD

by associating element types with semantic attributes and rules. It extracts either
part or all of the data from an XML document, and generates SQL updates to
increment an existing database using the XML data. We also provide an efficient
technique to evaluate XML2DB mappings in parallel with SAX parsing. These
yield a systematic method to store XML data selectively in an existing database.

1 Introduction

A number of approaches have been proposed for shredding XML data into rela-
tions [3,6,14,15], and some of these have found their way into commercial sys-
tems [10,7,13]. Most of these approaches map XML data to a newly created database
of a “canonical” relational schema that is designed starting from scratch based on an
XML DTD, rather than storing the data in an existing database. Furthermore, they of-
ten store the entire XML document in the database, rather than letting users select
and store part of the XML data. While some commercial systems allow one to de-
fine schema-based mappings to store part of the XML data in relations, either their
ability to handle recursive DTDs is limited [7,10] or they do not support storing the
data in an existing database [13]. In practice, it is common that users want to specify
what data they want in an XML document, and to increment an existing database with
the selected data. Moreover, one often wants to define the mappings based on DTDs,
which may be recursive as commonly found in practice (see [4] for a survey of real-life
DTDs).

Example 1.1. Consider a registrar database specified by the relational schema R0
shown in Fig. 1(a) (with keys underlined). The database maintains student data, en-
rollment records, course data, and a relation prereq, which gives the prerequisite hier-
archy of courses: a tuple (c1, c2) in prereq indicates that c2 is a prerequisite of c1.

Now consider an XML DTD D0 also shown in Fig. 1(a) (the definition of elements
whose type is PCDATA is omitted). An XML document conforming to D0 is depicted in
Fig. 1(b). It consists of a list of course elements. Each course has a cno (course number),
a course title, a prerequisite hierarchy, and all the students who have registered for the
course. Note that the DTD is recursive: course is defined in terms of itself via prereq.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 22–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Selectively Storing XML Data in Relations 23

Relational schema R0:
course(cno, title),
student(ssn, name),
enroll(ssn, cno),
prereq(cno1, cno2).

DTD D0:
<!ELEMENT db (course∗)>
<!ELEMENT course (cno, title,

prereq, takenBy)>
<!ELEMENT prereq (course∗)>
<!ELEMENT takenBy(student∗)>
<!ELEMENT student(ssn, name)>

(a) Relational schema R0 and DTD D0 (b) An XML document of D0

Fig. 1. Relational Schema R0, DTD D0 and an example XML document of D0

We want to define a mapping σ0 that, given an XML document T that conforms to D0
and a relational database I of R0, (a) extracts from T all the CS courses, along with their
prerequisites hierarchies and students registered for these related courses, and (b) inserts
the data into relations course, student, enroll and prereq of the relational database I ,
respectively. Observe the following. (a) We only want to store in relations a certain part
of the data in T , instead of the entire T . (b) The selected XML data is to be stored in
an existing database I of a predefined schema R0 by means of SQL updates, rather than
in a newly created database of a schema designed particularly for D0. (c) The selected
XML data may reside at arbitrary levels of T , whose depth cannot be determined at
compile time due to the recursive nature of its DTD D0. To our knowledge, no existing
XML shredding systems are capable of supporting σ0. �

Contributions. To overcome the limitations of existing XML shredding approaches, we
propose a new framework for mapping XML to relations. The framework is based on
(a) a notion of XML2DB mappings that extends (possibly recursive) DTDs and is capable
of mapping either part of or an entire document to relations, and (b) a technique for
efficiently evaluating XML2DB mappings.

XML2DB mappings are a novel extension of attribute grammars (see, e.g., [5] for
attribute grammars). In a nutshell, given a (possibly recursive) XML DTD D and a pre-
defined relational schema R, one can define an XML2DB mapping σ : D → R to select
data from an XML document of D, and generates SQL inserts to increment an existing
relational database of R. More specifically, σ extends the DTD D by associating seman-
tic attributes and rules with element types and their definitions in D. Given an XML

document T of D, σ traverses T , selects data from T , and generates SQL inserts Δ by
means of the semantic attributes and rules during the traversal. Upon the completion of
the traversal, the SQL updates Δ are executed against an existing database I of R, such
that the updated database Δ(I) includes the extracted XML data and is guaranteed to be
an instance of the predefined schema R. For example, we shall express the mapping σ0
described in Example 1.1 as an XML2DB mapping (Fig. 2(a)).

To evaluate efficiently an XML2DB mapping σ, we propose a technique that com-
bines the evaluation with the parsing of XML data by leveraging existing SAX [9]

24 W. Fan and L. Ma

parsers. This allows us to generate SQL updates Δ in a single traversal of the document
without incurring extra cost. To verify the effectiveness and efficiency of our technique
we provide a preliminary experimental study.

Taken together, the main contributions of the paper include the following:

– A notion of XML2DB mappings, which allow users to increment an existing rela-
tional database by using certain part or all of the data in an XML document, and are
capable of dealing with (possibly recursive) XML DTDs in a uniform framework.

– An efficient technique that seamlessly integrates the evaluation of XML2DB map-
pings and SAX parsing, accomplishing both in a single pass of an XML document.

– An experimental study verifying the effectiveness of our techniques.

The novelty of our uniform framework consists in (a) the functionality to support
mappings based on (possibly recursive) DTDs from XML to relations that, as opposed
to previous XML shredding approaches, allows users to map either part of or the en-
tire XML document to a relational database, rather than core-dumping the entire doc-
ument; (b) the ability to extend an existing relational database of a predefined schema
with XML data rather than creating a new database starting from scratch; (c) efficient
evaluation techniques for XML2DB mappings via a mild extension of SAX parsers for
XML.

Organization. Section 2 reviews DTDs and SAX. Section 3 defines XML2DB mappings.
Section 4 presents the evaluation technique. A preliminary experimental study is pre-
sented in Section 5, followed by related work in Section 6 and conclusions in Section 7.

2 Background: DTDs and SAX

DTDs. Without loss of generality, we formalize a DTD D to be (E, P, r), where
E is a finite set of element types; r is in E and is called the root type; P defines
the element types: for each A in E, P (A) is a regular expression α defined by
PCDATA | ε | B1, . . . , Bn | B1 + . . . + Bn | B∗, where ε is the empty word,
B is a type in E (referred to as a child type of A), and ‘+’, ‘,’ and ‘∗’ denote disjunc-
tion, concatenation and the Kleene star, respectively (we use ‘+’ instead of ‘|’ to avoid
confusion). We refer to A → P (A) as the production of A. A DTD is recursive it has
an element type defined (directly or indirectly) in terms of itself.

Note that [2] all DTDs can be converted to this form in linear time by using new ele-
ment types and performing a simple post-processing step to remove the introduced ele-
ment types. To simplify the discussion we do not consider XML attributes, which can be
easily incorporated. We also assume that the element types B1, . . . , Bn in B1, . . . , Bn

(resp. B1 + . . . + Bn) are distinct, w.l.o.g. since we can always distinguish repeated
occurrences of the same element type by referring to their positions in the production.

SAX Parsing. A SAX [9] parser reads an XML document T and generates a
stream of SAX events of five types: startDocument(), startElement(A, eventNo), text(s),
endElement(A), endDocument(), where A is an element type of T and s is a string (PC-
DATA). The semantics of these events is self-explanatory.

Selectively Storing XML Data in Relations 25

3 XML2DB Mappings: Syntax and Semantics

In this section we formally define XML2DB mappings.

Syntax. The idea of XML2DB mappings is to treat the XML DTD as a grammar and
extend the grammar by associating semantic rules with its productions. This is in the
same spirit of Oracle XML DB [13] and IBM DB2 XML Extender [7], which specify XML

shredding by annotating schema for XML data. When the XML data is parsed w.r.t. the
grammar, it recursively invokes semantic rules associated with the productions of the
grammar to select relevant data and generate SQL updates.

We now define XML2DB mappings. Let D = (E, P, r) be a DTD and R be a
relational schema consisting of relation schemas R1, . . . , Rn. An XML2DB mapping
σ : D → R takes as input an XML document T of D, and returns an SQL group of in-
serts Δ which, when executed on a database I of R, yields an incremented instance ΔI
of schema R. The mapping extracts relevant data from T and uses the data to construct
tuples to be inserted into I . More specifically, σ is specified as follows.

• For each relation schema Ri of R, σ defines a relation variable ΔRi , which is to hold
the set of tuples to be inserted into an instance Ii of Ri. The set ΔRi is initially empty
and is gradually incremented during the parsing of the XML document T .

• For each element type A in E, σ defines a semantic attribute $A whose value is either a
relational tuple of a fixed arity and type, or a special value
 (denoting $r at the root r)
or ⊥ (denoting undefined); intuitively, $A extracts and holds relevant data from the
input XML document that is to be inserted into the relational database I of R. As will
be seen shortly, $A is used to pass information top-down during the evaluation of σ.

• For each production p = A→ α in D, σ specifies a set of semantic rules, denoted by
rule(p). These rules specify two things: (a) how to compute the value of the semantic
attribute $B of B children of an A element for each child type B in α, (b) how to incre-
ment the set in ΔRi ; both $B and ΔRi are computed by using the semantic attribute $A
and the PCDATA of text children of the A element (if any). More specifically, rule(p)
consists of a sequence of assignment and conditional statements:

rule(p) := statements
statements := ε | statement; statements
statement := X := expression | if C then statements else statements

where ε denotes the empty sequence (i.e., no semantic actions); and X is either a re-
lation variable ΔRi or a semantic attribute $B. The assignment statement has one of
two forms. (a) $B := (x1, . . . , xk), i.e., tuple construction where xi is either of the
form $A.a (projection on the a field of the tuple-valued attribute $A of the A ele-
ment), or val (B′), where B′ is an element type in α such that it precedes B in α
(i.e., we enforce sideways information passing from left to right), B’s production is of
the form B′ → PCDATA, and val (B′) denotes the PCDATA (string) data of B′ child.
(b) ΔRi := ΔRi ∪ {(x1, . . . , xk)}, where (x1, . . . , xk) is a tuple as constructed above
and in addition, it is required to have the same arity and type as specified by the schema
Ri. The condition C is defined in terms of equality or string containment tests on atomic

26 W. Fan and L. Ma

Relational variables: Δcourse, Δprereq, Δstudent,
Δenroll, with ∅ as their initial value.

Semantic rules:

db → course*
$course := �;

course → cno, title, prereq, takenBy
if val (cno) contains ‘CS’ or ($course 	= ⊥

and $course 	= �)
then $prereq := val (cno); $takenBy := val (cno);

Δcourse := Δcourse ∪ {(val (cno), val (title))};
if $course 	= � and $course 	= ⊥
then Δprereq := Δprereq ∪ {($course, val (cno))};

else $title := ⊥; $prereq := ⊥; $takenBy := ⊥;

prereq → course*
$course := $prereq;

takenBy → student*
$student := $takenBy;

student → ssn, name
if $student 	= ⊥
then Δstudent := Δstudent ∪ {(val (ssn), val (name))};

Δenroll := Δenroll ∪ {(val (ssn), $student)};

(a) XML2DB mapping σ0

Relational variables: Δcourse, Δprereq, Δstudent,
Δenroll, with ∅ as their initial value.

Semantic rules:

db → course*
$course := �;

course → cno, title, prereq, takenBy
$prereq := val (cno); $takenBy := val (cno);
Δcourse := Δcourse ∪ {(val (cno), val (title))};
if $course 	= �
then Δprereq := Δprereq ∪ {($course, val (cno))};

prereq → course*
$course := $prereq;

takenBy → student*
$student := $takenBy;

student → ssn, name
Δstudent := Δstudent ∪ {(val (ssn), val (name))};
Δenroll := Δenroll ∪ {(val (ssn), $student)};

(b) XML2DB mapping σ1

Fig. 2. Example XML2DB mappings: storing part of (σ0) and the entire (σ1) the document

terms of the form val (B′), $A.a,
,⊥, and it is built by means of Boolean operators
and, or and not, as in the standard definition of the selection conditions in relational
algebra. The mapping σ is said to be recursive if the DTD D is recursive.

We assume that if p is of the form A→ B∗, rule(p) includes a single rule $B := $A,
while the rules for the B production select data in each B child. This does not lose
generality as shown in the next example, in which a list of student data is selected.

Example 3.2. The mapping σ0 described in Example 1.1 can be expressed as the
XML2DB mapping σ0 : D0 → R0 in Fig. 2(a), which, given an XML document T
of the DTD D0 and a relational database I of the schema R0, extracts all the CS courses,
their prerequisites and their registered students from T , and inserts the data as tuples
into I . That is, it generates Δcourse, Δstudent, Δenroll and Δprereq, from which SQL

updates can be readily constructed. Note that a course element c is selected if either its
cno contains ‘CS’ or an ancestor of c is selected; the latter is captured by the condition
($course �= ⊥ and $course �=
). The special value ⊥ indicates that the correspond-
ing elements are not selected and do not need to be processed. Note that the rules for
takenBy and student select the data of all student who registered for such courses. �

Semantics. We next give the operational semantics of an XML2DB mapping σ : D → R
by presenting a conceptual evaluation strategy. This strategy aims just to illustrate the
semantics; a more efficient evaluation algorithm will be given in the next section.

Given an input XML document (tree) T , σ(T) is computed via a top-down depth-first
traversal of T , starting from the root r of T . Initially, the semantic attribute $r of r is
assigned the special value
. For each element v encountered during the traversal, we

Selectively Storing XML Data in Relations 27

do the following. (1) Identify the element type of v, say, A, and find the production
p = A → P (A) from the DTD D and the associated semantic rules rule(p) from the
mapping σ. Suppose that the tuple value of the semantic attribute $A of v is t. (2) Ex-
ecute the statements in rule(p). This may involve extracting PCDATA value val (B′)
from some B′ children, projecting on certain fields of the attribute t of v, and perform-
ing equality, string containment tests and Boolean operations, as well as constructing
tuples and computing union of sets as specified in rule(p). The execution of rule(p)
assigns a value to the semantic attribute $B of each B child of v if the assignment of
$B is defined in rule(p), and it may also increment the set ΔRi . In particular, if p is
of the form A → B∗, then each B child u of v is assigned the same value $B. (3) We
proceed to process each child u of v in the same way, by using the semantic attribute
value of u. (4) The process continues until all the elements in T are processed. Upon
the completion of the process, we return the values of relation variables ΔR1

, . . . , ΔRn

as output, each of which corresponds to an SQL insert. More specifically, for each Δi,
we generate an SQL insert statement:

insert into Ri select * from ΔRi

That is, at most n SQL inserts are generated in total.

Example 3.3. Given an XML tree T as shown in Fig 1(b), the XML2DB mapping σ0
of Example 3.2 is evaluated top-down as follows. (a) All the course children of the
root of T are given
 as the value of their semantic attribute $course. (b) For each
course element v encountered during the traversal, if either $course contains ‘CS’ or
it is neither ⊥ nor
, i.e., v is either a CS course or a prerequisite of a CS course,
the PCDATA of cno of v is extracted and assigned as the value of $title, $prereq and
$takenBy; moreover, the set Δcourse is extended by including a new tuple describing
the course v. Furthermore, if $course is neither
 nor ⊥, then Δprereq is incremented
by adding a tuple constructed from $course and val (cno), where $course is the cno of
c inherited in the top-down process. Otherwise the data in v is not to be selected and
thus all the semantic attributes of its children are given the special value ⊥. (c) For
each prereq element u encountered, the semantic attributes of all the course children
of u inherit the $prereq value of u, which is in turn the cno of the course parent of u;
similarly for takenBy elements. (d) For each student element s encountered, if $student
is not ⊥, i.e., s registered for either a CS course c or a prerequisite c of a CS course,
the sets Δstudent and Δenroll are incremented by adding a tuple constructed from the
PCDATA val (ssn), val (name) of s and the semantic attribute $student of s; note that
$student is the cno of the course c. (e) After all the elements in T are processed, the sets
Δcourse, Δstudent, Δenroll and Δprereq are returned as the output of σ0(T). �

Handling Recursion in a DTD. As shown by Examples 3.2 and 3.3 XML2DB mappings
are capable of handling recursive DTDs. In general, XML2DB mappings handle recursion
in a DTD following a data-driven semantics: the evaluation is determined by the input
XML tree T at run-time, and it always terminates since T is finite.

Storing Part of an XML Document in Relations. As demonstrated in Fig. 2(a), users
can specify in an XML2DB mapping what data they want from an XML document and
store only the selected data in a relational database.

28 W. Fan and L. Ma

Shredding the Entire Document. XML2DB mappings also allow users to shred the
entire input XML document into a relational database, as shown in Fig. 2(b). Indeed, for
any XML document T of the DTD D0 given in Example 1.1, the mapping σ1 shreds the
entire T into a database of the schema R0 of Example 1.1.

Taken together, XML2DB mappings have several salient features. (a) They can be
evaluated in a single traversal of the input XML tree T and it visits each node only once,
even if the embedded DTD is recursive. (b) When the computation terminates it gener-
ates sets of tuples to be inserted into the relational database, from which SQL updates Δ
can be readily produced. This allows users to update an existing relational database of
a predefined schema. (c) The semantic attributes of children nodes inherit the semantic
attribute of their parent; in other words, semantic attributes pass the information and
control top-down during the evaluation. (d) XML2DB mappings are able to store either
part of or the entire XML document in a relational database, in a uniform framework.

4 Evaluation of XML2DB Mappings

We next outline an algorithm for evaluating XML2DB mappings σ : R→ D in parallel
with SAX parsing, referred to as an extended SAX parser. Given an XML document T of
the DTD D, the computation of σ(T) is combined with the SAX parsing process of T .

The algorithm uses the following variables: (a) a relation variable ΔRi for each table
Ri in the relational schema R; (b) a stack S, which is to hold a semantic attribute $A
during the evaluation (parsing); and (c) variables Xj of string type, which are to hold
PCDATA of text children of each element being processed, in order to construct tuples to
be added to ΔRi . The number of these variables is bounded by the longest production
in the DTD D, and the same string variables are repeatedly used when processing differ-
ent elements. Recall the SAX events described in Section 2. The extended SAX parser
incorporates the evaluation of σ into the processing of each SAX event, asbreakfollows.

• startDocument(). We push the special symbol
 onto the stack S, as the value of the
semantic attribute $r of the root r of the input XML document T .

• startElement(A, eventNo). When an A element v is being parsed, the semantic at-
tribute $A of v is already at the top of the stack S. For each child u of v to be processed,
we compute the semantic attribute $B of u based on the semantic rules for $B in
rule(p) associated with the production p = A → P (A); we push the value onto S,
and proceed to process the children of u along with the SAX parsing process. If the
production of the type B of u is B → PCDATA, the PCDATA of u is stored in a string
variable Xj . Note that by the definition of XML2DB mappings, the last step is only
needed when p is of the form A→ B1, . . . , Bn or A→ B1 + . . . + Bn.

• endElement(A). A straightforward induction can show that when this event is en-
countered, the semantic attribute $A of the A element being processed is at the top of
the stack S. The processing at this event consists of two steps. We first increment the
set ΔRi by executing the rules for ΔRi in rule(p), using the value $A and the PCDATA

values stored in string variables. We then pop $A off the stack.

• text(s). We store PCDATA s in a string variable if necessary, as described above.

Selectively Storing XML Data in Relations 29

• endDocument(). At this event we return the relation variables ΔRi as the output of
σ(T), and pop the top of the stack off S. This is the last step of the evaluation of σ(T).

Upon the completion of the extended SAX parsing process, we eliminate duplicates
from relation variables ΔRis, and convert ΔRi to SQL insert command Δis.

Example 4.4. We now revisit the evaluation of σ0(T) described in Example 3.3 using
the extended SAX parser given above. (a) Initially,
 is pushed onto the stack S as the
semantic attribute $db of the root db of the XML tree T ; this is the action associated with
the SAX event startDocument(). The extended SAX parser then processes the course
children of db, pushing
 onto S when each course child v is encountered, as the
semantic attribute $course of v. (b) When the parser starts to process a course element
v, the SAX event startElement(course, eNo) is generated, and the semantic attribute
$course of v is at the top of the stack S. The parser next processes the cno child of
v, extracting its PCDATA and storing it in a string variable Xj ; similarly for title. It
then processes the prereq child of u, computing $prereq by means of the corresponding
rule in rule(course); similarly for the takenBy child of v. After all these children are
processed and their semantic attributes popped off the stack, endElement(course) is
generated, and at this moment the relation variables Δcourse and Δprereq are updated,
by means of the corresponding rules in rule(course) and by using $course at the top
of S as well as val (cno) and val (title) stored in string variables. After this step the
semantic attribute $course of v is popped off the stack. Similarly the SAX events for
prereq and takenBy are processed. (c) When endDocument() is encountered, the sets
Δcourse, Δstudent, Δenroll and Δprereq are returned as the output of σ0(T). �

Theorem 4.1. Given an XML document T and an XML2DB mapping σ : D → R, the
extended SAX parser computes σ(T) via a single traversal of T and in O(|T ||σ|) time,
where |T | and |σ| are the sizes of T and σ, respectively. �

5 Experimental Study

Our experimental study focuses on the scalability of our extended SAX parser, denoted
by ESAX, which incorporates the XML2DB mapping evaluation. We conducted two sets
of experiments: we ran ESAX and the original SAX parser (denoted by SAX) (a) on XML

documents T of increasing sizes, and (b) on documents T with a fixed size but different
shapes (depths or widths). Our experimental results showed (a) that ESAX is linearly
scalable and has the same behavior as SAX, and (b) the performance of ESAX is only
determined by |T | rather than the shape of T . The experiments were conducted on a
PC with a 1.40 Ghz Pentium M CPU and 512MB RAM, running Windows XP. Each
experiment was repeated 5 times and the average is reported here; we do not show
confidence interval since the variance is within 5%.

We built XML documents of the DTD of Fig. 1(a), using the Toxgene XML generator
(http://www.cs.toronto.edu/tox/toxgene). We used two parameters, XL and XR, where
XL is the depth of the generated XML tree T , and XR is the maximum number of
children of any node in T . Together XL and XR determine the shape of T : the larger
the XL value, the deeper the tree; and the larger the XR value, the wider the tree.

30 W. Fan and L. Ma

Fig. 3. Scalability with the size of XML document T : vary |T |

Fig. 4. Scalability with the shape of XML document T : vary XL and XR with a fixed |T |

Figure 3 shows the scalability of ESAX by increasing the XML dataset size from
153505 elements (3M) to 1875382 (39M). The time (in ms) reported for ESAX includes
the parsing and evaluation time of XML2DB mapping. As shown in Fig. 3, ESAX is
linearly scalable and behaves similarly to SAX, as expected. Furthermore, the evaluation
of an XML2DB mapping does not incur a dramatic increase in processing time vs. SAX.

To demonstrate the impact of the shapes of XML documents on the performance of
ESAX, we used XML documents T of a fixed size of 160,000 elements, while varying
the height (XL) and width (XR) of T . Figure 4 (a) shows the elapsed time when varying
XL from 8 to 20 with XR = 4, and Fig. 4(b) shows the processing time while varying
XR from 2 to 16 with XL = 12. The results show that ESAX takes roughly the same
amount of time on these documents. This verifies that the time-complexity of ESAX is
solely determined by |T | rather than the shape of T , as expected.

6 Related Work

Several approaches have been explored for using a relational database to store XML

documents, either DTD-based [3,15,13,7] or schema-oblivious [6,14,10] (see [8] for a
survey). As mentioned in section 1, except [10,7] these approaches map the entire XML

document to a newly created database of a “canonical” relational schema, and are not
capable of extending an existing database with part of the data from the document.

Microsoft SQL 2005 [10] supports four XML data-type methods QUERY(), VALUE(),
EXIST() and NODES(), which take an XQuery expression as argument to retrieve parts
of an XML instance. However, the same method is not able to shred the entire docu-
ment into relations via a single pass of an XML document, in contrast to our uniform
framework to store either the entire or part of an XML document. Furthermore, it does
not support semantic-based tuple construction, e.g., when constructing a tuple (a, b), it

Selectively Storing XML Data in Relations 31

does not allow one to extract attribute b based on the extracted value of a, which is sup-
ported by XML2DB mappings via semantic-attribute passing. Both Oracle XML DB [13]
and IBM DB2 XML Extender [7] use schema annotations to map either the entire or parts
of XML instances to relations. While Oracle supports recursive DTDs, it cannot incre-
ment an existing database. Worse, when an element is selected, the entire element has
to be stored. IBM employs user-defined Document Access Definitions (DADs) to map
XML data to DB2 tables, but supports only fixed-length DTD recursion (see also [12] for
upcoming XML support in DB2). Neither Oracle nor IBM supports semantic-based tuple
construction, which is commonly needed in practice.

We now draw the analogy of XML2DB mappings to attribute grammars (see,
e.g., [5]). While the notion of XML2DB mappings was inspired by attribute grammars, it
is quite different from attribute grammars and their previous database applications [11].
First, an attribute grammar uses semantic attributes and rules to constrain the parsing of
strings, whereas an XML2DB mapping employs these to control the generation of data-
base updates. Second, an attribute grammar outputs a parse tree of a string, whereas an
XML2DB mapping produces SQL updates.

Closer to XML2DB mappings are the notion of AIGs [2] and that of structural
schema [1], which are also nontrivial extensions of attribute grammars. AIGs are speci-
fications for schema-directed XML integration. They differ from XML2DB mappings in
that they generate XML trees by extracting data from relational sources. Furthermore,
the evaluation of AIGs is far more involved than its XML2DB mapping counterpart.
Structural schemas were developed for querying text files, by extending context-free
grammars with semantic attributes. The evaluation of structural schemas is different
from the SAX-parser extension of XML2DB mappings.

7 Conclusion

We have proposed a notion of XML2DB mappings that in a uniform framework, al-
lows users to select either part of or an entire XML document and store it in an existing
relational database of a predefined schema, as opposed to previous XML shredding ap-
proaches that typically shred the entire document into a newly created database of a new
schema. Furthermore, XML2DB mappings are capable of supporting recursive DTDs and
flexible tuple construction. We have also presented an efficient algorithm for evaluat-
ing XML2DB mappings based on a mild extension of SAX parsers. Our preliminary
experimental results have verified the effectiveness and efficiency of our technique.
This provides existing SAX parsers with immediate capability to support XML2DB

mappings.
We are extending XML2DB mappings by incorporating (a) the support of SQL queries

and (b) the checking of integrity constraints (e.g., keys and foreign keys) on the underly-
ing relational databases. We are also developing evaluation and optimization techniques
to cope with and leverage SQL queries and constraints.

Acknowledgment. Wenfei Fan is supported in part by EPSRC GR/S63205/01,
GR/T27433/01 and BBSRC BB/D006473/1. We thank Hamish Taylor for the helpful
comments.

32 W. Fan and L. Ma

References

1. S. Abiteboul, S. Cluet, and T. Milo. Querying and updating the file. In VLDB, 1993.
2. M. Benedikt, C. Y. Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both types and con-

straints in data integration. In SIGMOD, 2003.
3. P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Bridging the XML

relational divide with LegoDB. In ICDE, 2003.
4. B. Choi. What are real DTDs like. In WebDB, 2002.
5. P. Deransart, M. Jourdan, and B. Lorho (eds). Attribute grammars. LNCS, 1988.
6. D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS. IEEE

Data Eng. Bull, 1999.
7. IBM. DB2 XML Extender. http://www-3.ibm.com/software/data/db2/extended/xmlext/.
8. R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL query translation literature: The

state of the art and open problems. In Xsym, 2003.
9. D. Megginson. SAX: A simple API for XML. http://www.megginson.com/SAX/.

10. Microsoft. XML support in Microsoft SQL server 2005, December 2005.
http://msdn.microsoft.com/library/en-us/dnsql90/html/sql2k5xml.asp/.

11. F. Neven. Extensions of attribute grammars for structured document queries. In DBPL, 1999.
12. M. Nicola and B. Linden. Native XML support in DB2 universal database. In VLDB, 2005.
13. Oracle. Oracle database 10g release 2 XML DB technical whitepaper.
14. A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage and

retrieval of XML documents. In WebDB, 2000.
15. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational

databases for querying XML documents: Limitations and opportunities. In VLDB, 1999.

A Context-Aware Preference Model for Database
Querying in an Ambient Intelligent Environment

Arthur H. van Bunningen, Ling Feng, and Peter M.G. Apers

Centre for Telematics and Information Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

{bunninge, ling, apers}@cs.utwente.nl

Abstract. Users’ preferences have traditionally been exploited in query person-
alization to better serve their information needs. With the emerging ubiquitous
computing technologies, users will be situated in an Ambient Intelligent (AmI)
environment, where users’ database access will not occur at a single location in a
single context as in the traditional stationary desktop computing, but rather span a
multitude of contexts like office, home, hotel, plane, etc. To deliver personalized
query answering in this environment, the need for context-aware query prefer-
ences arises accordingly. In this paper, we propose a knowledge-based context-
aware query preference model, which can cater for both pull and push queries.
We analyze requirements and challenges that AmI poses upon such a model and
discuss the interpretation of the model in the domain of relational databases. We
implant the model on top of a traditional DBMS to demonstrate the applicability
and feasibility of our approach.

1 Introduction

With the coming anytime/anywhere ubiquitous data access paradigm in an AmI envi-
ronment, context plays an important role in information delivery and dissemination.
Database and recommendation systems nowadays are more and more aware of the con-
text while serving users’ information needs. In this paper, we investigate user’s query
preferences in an AmI environment, taking their applicable contexts into account. Our
design of the context-aware preference model is influenced and guided by the following
AmI philosophies:

– Smartness requirement. The smartness requirement in an AmI environment implies
reasoning and learning capabilities that the preference model must possess, calling
for an inevitable knowledge ingredient. For example, a user may input a preference
like prefer a nearby restaurant when the weather is bad. With the model, it should
be able to infer the applicability of the preference no matter whether it rains or
snows, since both are bad weather.

– Proactiveness requirement. Following the smartness requirement, the database sys-
tems in an AmI environment should proactively deliver anytime/anywhere useful
information to their users. The designed context-aware query preference model
should therefore provide sufficient flexibility and adaptiveness to the two access
modes, namely pull query where users actively query databases to pull relevant in-
formation, and push query where the systems push proactively possibly relevant

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 33–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 A.H. van Bunningen, L. Feng, and P.M.G. Apers

information to users (e.g., querying the background information about a person
when s/he enters a room).

– Closure requirement. To support preference propagation and deduction, the model
should preferably possess the closure property so that the output preference can
serve as the input context of some other preferences. For instance, suppose a user
has two preferences: “prefer cheerful TV programs when having a bad mood” and
“prefer channel 5 if looking for cheerful TV programs” As a consequence, when
this user has a bad mood, cheerful TV programs on channel 5 will be the most
preferable program alternatives for him/her.

– Scalability requirement. Performance is highly demanded at data management level
to process real-time queries raised by different users anytime/anywhere in an AmI
environment. The context-aware preference model must be easily interpreted and
executed in a database world to achieve scalability.

– Traceability requirement. The behaviors of database querying systems in an AmI
environment, and thus the preference model should be traceable by the users. In
other words, it should be possible for a human to conveniently enter, view, and edit
context-aware preferences in a way which is close to the world model of the users.
An intuitive user-friendly interface for preference declaration is therefore needed.

In the following sections, we first review some closely related work in Section 2. We
present our knowledge-based context modeling approach, followed by the context-
aware query preference modeling using Description Logics in Section 3. We depict
a framework for implanting this model on top of a traditional DBMS, and interpret the
model in a relational database in Section 4. The implementation of the model in serving
pushing queries is illustrated in Section 5. We conclude the paper in Section 6.

2 Related Work

The notion of preference query was first introduced to the database field in [1]. It
extended the Domain Relational Calculus to express preferences for tuples satisfying
certain logical conditions. Since its introduction, extensive investigation has been con-
ducted, and two main lines of approaches have been formed in the literature to deal
with users’ preferences, namely, quantitative and qualitative [2]. The qualitative ap-
proach intends to directly specify preferences between the tuples in the query answer,
typically using binary preference relations. An example preference relation is “pre-
fer one book tuple to another if and only if their ISBNs are the same and the price
of the first is lower.” These kinds of preference relations can be embedded into re-
lational query languages through relational operators or special preference construc-
tors, which select from their input the set of the most preferred tuples (e.g., winnow
[2], PreferenceSQL BMO [3], and skyline [4]). The quantitative approach expresses
preferences using scoring functions, which associate a numeric score with every tu-
ple of the query. Then tuple t1 is preferred to tuple t2 if and only if the score of t1 is
higher than the score of t2. A framework for expressing and combining such kinds of
preference functions was provided in [5]. [6] presented a more rich preference model
which can associate degrees of interest (like scores) with preferences over a database
schema.

A Context-Aware Preference Model for Database Querying in an AmI Environment 35

Recently, situated and context-aware preferences start to receive attentions due to the
fact that user preferences do not always hold in general but may depend on underlying
situations [7,8]. [7] used the ER model to model different situations. Each situation has
an id and consists of one timestamp and one location. It can also have one or more
influences (e.g., a personal and a surrounding influence). Such situations are linked
with uniquely identified preferences through a m:n relation. An XML-based preference
repository was developed to store and manage the situated preferences. [8] used a com-
bination of context and non-context attribute-value pairs associated with a degree of
interest to define a preference. The work reported in this paper distinguishes from these
two studies in the following three aspects. First, our study targets at the Ambient In-
telligent environment which has high demands on smartness, reasoning, proactiveness,
traceability, etc. Driven by these requirements, we propose a knowledge-based context-
aware preference model, where both contexts and preferences are treated in a uniform
way using Description Logics. Second, we take both pull and push queries into consid-
eration while designing our context-aware query preference model. Third, we interpret
and implant this preference model upon a traditional DBMS.

3 A Knowledge-Based Context-Aware Query Preference Model

A context-aware query preference states, among a set of alternatives, a particular like
or dislike for some of these alternatives under certain contexts, like “prefer sporting TV
programs when the user is dinning”, “prefer TV programs of the human interest genre
when the user is doing some free time activity with some friend(s) around”, etc. The
term context here refers to the situation under which a database access happens. Our
context-aware query preference model tightly couples a preference with its applicable
contexts, and expresses both in a uniform way.

In the following, we describe our approach of modeling context, followed by the
representation of context-aware query preferences.

3.1 Context Categorization and Modeling

We view context from two perspectives: user-centric and environmental [9]. Examples
of user-centric contexts are: user’s background (e.g., working area, friends, etc.), behav-
ior (activity, intention, etc.), physiological state (temperature, heart rate, etc.), and emo-
tional state (happy, sad, fear, etc.). Environmental contexts can be physical environment
(e.g., location, time, humidity, etc.), social environment (e.g., traffic jam, surrounding
people, etc.), and computational environment (e.g., surrounding devices, etc.).

In the literature, there exist several possibilities to model context. Most of them are
surveyed in [10,11], where it is concluded that ontology based languages are prefer-
able for context modeling. Driven by the reasoning/inference requirement as described
in Section 1, we exploit a variant of Description Logics (DL) to represent context for
several reasons. First, DL [12] is a (decidable) fragment of first order logic, and is espe-
cially suited for knowledge representation. It forms the basis of ontological languages
such as OWL, which has been used to model context in [13]. Furthermore, there exist
many tools for dealing with DL knowledge bases such as reasoners and editors. Finally,

36 A.H. van Bunningen, L. Feng, and P.M.G. Apers

extensive research has been conducted to investigate the relationship between databases
and DL, and map a DL knowledge base into database schemas [14].

As known, a DL knowledge base consists of a TBox and an ABox. The TBox
(i.e., the vocabulary) contains assertions about concepts (e.g., Child, Female) and roles
(e.g., hasRoom, hasActivity). The ABox contains assertions about individuals (e.g.,
ROOM3061). Concepts and roles can be either atomic or constructed using concept
and role constructors intersection (), union (�), and complement (¬) (e.g., Child
Female, hasRoom hasActivity). The top concept (
) and bottom concept (⊥) de-
note respectively all individuals and no individuals. A role specific operator is the
role-inverse which defines the inverse of a certain role (e.g., roomOf is the inverse of
hasRoom, denoted as hasRoom ≡ roomOf−1). Moreover, roles can have full and exis-
tential quantification (e.g., ∀ hasChild.Female denotes the individuals of whose children
are all female, and ∃ hasChild.Female denotes the individuals having a female child).
A concept expression contains a set of concepts and/or quantified roles which are con-
nected via concept and role constructors. The basic inference on concept expressions in
DL is subsumption C � D, which is to check whether the concept denoted by D (the
subsumer) is more general than the one denoted by C (the subsumee).

We use DL to describe a world model (i.e., ontology) upon which our context-aware
query preferences can be founded. A small ontology example is given in Figure 1, where
concepts are represented in CamelCase (e.g. OfficeActivity) , roles in lowerCamelCase
(e.g. hasRoom), and individuals in all capital letters (e.g. ROOM3061).

We express diverse contexts of query preferences via DL concept expressions. For
example, the DL concept expression {PETER}(∃hasActivityType.FreeTimeActivity)
(∃ hasFriend(∃ hasRoom(∃ roomOf .{PETER}))) describes such a context that user PE-
TER is doing some free time activity with at least one friend in the same room.

Person � Thing � ∀ hasRoom.Room ActivityType � Thing

� ∀ hasActivityType.ActivityType FreeTimeActivity � ActivityType

� ∀ hasFriend.Person Relaxing � FreeTimeActivity

� ∀ hasTvInterest.Genre Sporting � FreeTimeActivity

Room � Location Location � Thing

TVProgram � Thing � ∃ hasGenre.Genre Genre � Thing

hasRoom ≡ roomOf −1 hasTvInterest ≡ tvInterestOf −1

Fig. 1. A simplified ontology example using DL

3.2 Context-Aware Query Preference Modeling

Beyond contexts, DL concept expressions also offer a natural way to convey infor-
mation needs. For instance, the DL concept expression TvProgram (∃ hasGenre.
{HUMAN-INTEREST}) can be viewed as a query which selects all TvProgram in-
dividuals of the HUMAN-INTEREST genre. Therefore, in a similar fashion as context,
we describe users’ preferences through DL concept expressions. Formally, we define a
context-aware query preference as a tuple of the form (Context,Preference), where

A Context-Aware Preference Model for Database Querying in an AmI Environment 37

Context and Preference are DL concept expressions. When a preference is applicable
to any context, Context =
.

As an example, user PETER’s context-aware query preference “prefer TV programs
of the human interest genre while doing some free time activity” can be specified as:

Context :{PETER} � (∃ hasActivityType.FreeTimeActivity)

Preference :TvProgram � (∃ hasGenre.{HUMAN-INTEREST})

In comparison with this preference example, where the preferred genre (HUMAN-
INTEREST) of TV programs is a constant, sometimes, a users preference varies with
the concrete context. For instance, “prefer TV programs of the common genre interests
while with at least one friend in the same room”. In this case, the preferred genres of
TV programs depend on whom the user is with at that moment. In this case, we use a
variable v to denote it:

Context :{PETER} � (∃ hasFriend.((∃ hasRoom.(∃ roomOf .{PETER})) � v)

Preference :TvProgram � (∃ hasGenre.((∃ tvInterestOf .{PETER}) � (∃ tvInterestOf .v)))

We call this kind of preferences variable context-aware query preference, and the
former constant context-aware query preference.

4 Implanting the Context-Aware Query Preference Model on Top
of a DBMS

Context-aware query preferences can assist two kinds database accesses. 1) In the pull
access mode, context-aware preferences can be used for query augmentation (e.g., en-
forcing the query constraint genre=“HUMAN-INTEREST” to the user’s query over
TV programs when s/he is doing some free time activity with some friend(s) in the
same room.) 2) In the push access mode, context-aware preferences can be used as
query triggers (e.g., retrieving the background information about a person when s/he is
nearby).

4.1 The Framework

Figure 2 shows the pull-push query execution framework equipped with the context-
aware query preference model. It contains six major components. 1) The context sup-
plier is responsible for supplying the current query context Contextcur. Some static
contexts like user’s background, friends, TV programs, etc. can be obtained from
context database; while some dynamic contexts like user’s location, emotion, traffic,
surrounded people, etc. can be obtained from sensors or external service providers. 2)
The preference selector selects from the preference repository relevant context-aware
query preferences, if necessary by reasoning. A context-aware preference (Context,
Preference) is related to a database access if (Contextcur � Context) and the pref-
erence Preference contains concepts which can be mapped to certain relations in-
cluded in the user’s query quser (pull query) or included in the database (push query).
3) In the pull mode, the query adaptor augments user’s query quser with the rele-
vant preference, and optimizes it further into q′

user. 4) In the push mode, the query

38 A.H. van Bunningen, L. Feng, and P.M.G. Apers

Query adapter
(pull mode)

Environment

Access log

Context supplier

User

Context DB

Preference managerPreferencePreference selector

Query trigger
(push mode)

Preference miner

DBMS

quser

context

r

q’user qtrigger

Fig. 2. The preference aware pull-push query framework

trigger proactively generates a query qtrigger according to the preference, and sends it
to the underlying DBMS for execution. 5) User-system interactions are recorded in
the access log, from which the preference miner can discover users’ context-aware
preferences. Users can also directly input their preferences. 6) The Preference man-
ager is responsible for storing, maintaining, and managing users’ context-aware
preferences.

4.2 Explicating the Context-Aware Query Preferences in a Database World

To integrate context-aware preferences with database queries, we need to provide a way
which can explicate context-aware query preferences (including Context DL concept
expression and Preference DL concept expression) in a database world1.

Since the basic elements of DL are concepts and roles, we propose to view each
concept as a table, which uses the concept name as the table name and has one ID
attribute. The tuples of the table correspond to all the individuals of the concept.
A virtual table TOPTABLE contains all the individuals in the domain. Similarly, we
view each role as a table, with the role name as its table name and containing two at-
tributes SOURCE and DESTINATION. For each tuple of the table, the role relates the
SOURCE individual with the DESTINATION individual. Figure 3 gives examples of
this method.

We adapt the approach of [15] to express DL concept expressions using SQL queries
(Table 1, where C, D, E are DL concepts, R is a DL role, and a is a DL individual).

An important remark here is that we provide a uniform tabular view towards both
static and dynamic contexts, despite the later (e.g., location, surrounding people, etc.)
must be acquired real-time from external sources/services like sensor networks. This
is in line with the efforts of the sensornet community which has embraced declarative

1 We focus on the relational data model in this study.

A Context-Aware Preference Model for Database Querying in an AmI Environment 39

ID
ERIC
PETER
MAARTEN
...

Person
ID
ROOM3061
ROOM4061
...

Room
ID
OPRAH
24
VOYAGER
...

TVProgram
ID
READING
SLEEPING
PLAYPIANO
...

Relaxing

SOURCE
ERIC
PETER
PETER
...

hasFriend
DESTINATION
PETER
ERIC
MAARTEN
...

SOURCE
PETER
ERIC
MAARTEN
...

hasRoom
DESTINATION
ROOM3061
ROOM3061
ROOM4061
...

SOURCE
OPRAH
24
VOYAGER
...

hasGenre
DESTINATION
HUMANINTEREST
THRILLER
SCIFI
...

SOURCE
ERIC
PETER
MAARTEN
...

hasActivityType
DESTINATION
READING
SLEEPING
PLAYPIANO
...

SOURCE
ERIC
PETER
MAARTEN
...

hasTvInterest
DESTINATION
HUMANINTEREST
HUMANINTEREST
SCIFI
...

Fig. 3. Role and concept tables

Table 1. Mapping DL concept expressions to SQL query expressions

DL SQL
C SELECT ID FROM C
a VALUES (’a’)

 (SELECT ID FROM TOPTABLE)
⊥ NULL
¬D (SELECT ID FROM TOPTABLE) EXCEPT (SELECT ID FROM D)
D � E (SELECT ID FROM D) INTERSECT (SELECT ID FROM E)
D � E (SELECT ID FROM D) UNION (SELECT ID FROM E)
∃ R.D SELECT R.SOURCE FROM R WHERE R.DESTINATION IN (SELECT ID FROM D)
∀ R.D (SELECT ID FROM TOPTABLE) EXCEPT

(SELECT R.SOURCE FROM R WHERE DESTINATION IN
((SELECT ID FROM TOPTABLE) EXCEPT (SELECT ID FROM D)))

queries as a key programming paradigm for large sets of sensors [16]. Here, we take the
SQL query language as a uniform interface to the contexts. Another reason for doing
this is that AmI imposes the need for storing context histories, which can be explored
later for analysis purpose to achieve smartness [17].

With the mapping mechanism in Table 1, we can construct an SQL query for the DL
concept expression Context in (Context,Preference). A non-empty query result implies
that the current context includes/complies with Context. The associated Preference is
then activated for either query adaptation (when a user’s pull query contains table(s)
which is/are specified in Preference) or query trigger (where Preference is translated
into SQL as a proactive push query).

As an example, suppose a user raises a pull query for TV programs.

SELECT ID FROM TvProgram

The context-aware preference

Context :{PETER} � (∃ hasFriend.(∃ hasRoom.(∃ roomOf .{PETER})))
Preference :TvProgram � (∃ hasGenre.{HUMAN-INTEREST})

40 A.H. van Bunningen, L. Feng, and P.M.G. Apers

contains a concept TvProgram which appears in the query. Its Context expression is
translated straightforward into:

SELECT * FROM ((VALUES (’PETER’))
INTERSECT

(SELECT hasFriend.SOURCE FROM hasFriend
WHERE hasFriend.DESTINATION IN

(SELECT hasRoom.SOURCE FROM hasRoom
WHERE hasRoom.DESTINATION IN

(SELECT roomOf.SOURCE FROM roomOf
WHERE roomOf.DESTINATION IN (VALUES (’PETER’)))

))) AS contexttable

which can then be optimized into:

SELECT *
FROM hasFriend, hasRoom, roomOf
WHERE hasFriend.SOURCE = ’PETER’ AND

hasFriend.DESTINATION = hasRoom.SOURCE AND
hasRoom.DESTINATION = roomOf.SOURCE AND
roomOf.DESTINATION = ’PETER’

Note that to execute the above query, some reasoning is needed based on the knowl-
edge that roomOf is the inverse of hasRoom, and FreeTimeActivity embraces Relaxing,
Sporting, etc.

When the query returns a non-empty result, the original pull query will be augmented
with the additional constraint in the WHERE clause:

SELECT ID FROM TvProgram
WHERE ID IN

(SELECT hasGenre.SOURCE FROM hasGenre WHERE hasGenre.DESTINATION IN
(VALUES (’HUMAN INTEREST’)))

5 Implementation

We implement the context-aware preference model by creating a plugin for Protégé 2 (a
free open source ontology editor and knowledge-base framework) and apply the model
to push queries on top of DB2 DBMS through DB2 triggers.

The plugin enables one to define the world model (ontology), including the context
and preference notions. By combining both context and preference DL concept expres-
sions, context-aware query preferences can then be constructed and further stored in an
OWL-based knowledge base. This plugin can also facilitate the generation of the corre-
sponding relational database schema based on the ontology and preferences. A screen-
shot of inputing a preference’s applicable context DL expression is shown in Figure 4.

A context-aware query preference may trigger a push query proactively. For example,
consider a preference “retrieving the TV interest of the person when s/he enters room
ROOM3061”

Context :{v} � ∃ hasRoom.{ROOM3061}
Preference :∃ tvInterestOf .v

2 http://protege.stanford.edu

A Context-Aware Preference Model for Database Querying in an AmI Environment 41

Fig. 4. Screenshot of inputting a preference’s context expression

A DB2 query trigger can be created as follows (Figure 5):

CREATE TRIGGER queryTvInterest AFTER INSERT ON hasRoom
REFERENCING NEW AS n FOR EACH ROW

WHEN (n.DESTINATION IN VALUES (‘ROOM3061’))
SELECT SOURCE
FROM tvInterestOf
WHERE DESTINATION = n.SOURCE

Fig. 5. The trigger in DB2

42 A.H. van Bunningen, L. Feng, and P.M.G. Apers

According to the example database schema in Figure 3, the query result will include
HUMAN-INTEREST.

6 Conclusion

In this paper, we presented a context-aware query preference model for personalized in-
formation delivery and dissemination in an AmI environment. Revisiting the
challenges raised by AmI, we adopted a knowledge-based approach to facilitate reason-
ing/inference (smartness requirement). The natural correspondence between DL con-
cept expressions and data requests ensures the applicability of the model to both pull
and push queries (proactiveness requirement). Preferences and associated applicable
contexts are treated uniformly through DL concept expressions (closure requirement).
Interpreting the knowledge-based preference model into a database world enables to ad-
dress the scalability requirement. Through user-defined preferences, we can achieve the
traceability requirement. We implanted the model on top of a DB2 DBMS and created a
Protégé plugin was for defining, storing, and managing the context-aware preferences,
and applying them to database queries.

Of course there remains much more to be done. Next to obvious directions, such as
testing the scalability of the approach on realistic data sets and analyzing the expressive
power of the model, we are currently investigating the uncertainty problem due to the
imprecise context measurement and its impact on the context-aware query preference
model.

References

1. Lacroix, M., Lavency, P.: Preferences; putting more knowledge into queries. In: VLDB ’87.
(1987) 217–225

2. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4)
(2003) 427–466

3. Kießling, W.: Foundations of preferences in database systems. In: VLDB ’02. (2002) 311–322
4. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE ’01. (2001) 421–430
5. Agrawal, R., Wimmers, E.: A framework for expressing and combining preferences. In:

SIGMOD ’00. (2000) 297–306
6. Koutrika, G., Ioannidis, Y.: Personalized queries under a generalized preference model. In:

ICDE ’05. (2005) 841–852
7. Holland, S., Kießling, W.: Situated preferences and preference repositories for personalized

database applications. In: ER ’04. (2004) 511–523
8. Stefanidis, K., Pitoura, E., Vassiliadis, P.: On supporting context-aware preferences in rela-

tional database systems. In: First International Workshop on Managing Context Information
in Mobile and Pervasive Environments (MCMP’2005). (2005)

9. Feng, L., Apers, P., Jonker, W.: Towards context-aware data management for ambient intel-
ligence. In: DEXA ’04. (2004) 422–431

10. Strang, T., Linnhoff–Popien, C.: A context modeling survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management. (2004)

11. van Bunningen, A.: Context aware querying - challenges for data management in ambient
intelligence. Technical Report TR-CTIT-04-51, University of Twente, P.O. Box 217 (2004)

A Context-Aware Preference Model for Database Querying in an AmI Environment 43

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The Descrip-
tion Logic Handbook Cambridge University Press (2003)

13. Chen, H., Finin, T., Joshi, A.: The soupa ontology for pervasive computing. In: Ontologies
for Agents: Theory and Experiences. Springer. (2005)

14. Borgida, A.: Description logics in data management. IEEE TKDE 7(5) (1995) 671–682
15. Borgida, A., Brachman, R.: Loading data into description reasoners. In: SIGMOD ’93.

(1993) 217–226
16. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven data ac-

quisition in sensor networks. In: VLDB ’04. (2004) 588–599
17. First international workshop on exploiting context histories in smart environments

(ECHISE). (2005)

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 44 – 53, 2006.
© Springer-Verlag Berlin Heidelberg 2006

ANDROMEDA: Building e-Science Data Integration Tools

Víctor Cuevas-Vicenttín, José Luis Zechinelli-Martini, and Genoveva Vargas-Solar*

Research Center of Information and Automation Technologies, UDLAP
Ex-hacienda Sta. Catarina Mártir s/n, San Andrés Cholula, México

* National Council on Scientific Research (CNRS), LSR-IMAG,
BP 72 38402 Saint-Martin d’Hères, France

{joseluis.zechinelli, victor.cuevasv}@udlap.mx,
Genoveva.Vargas@imag.fr

Abstract. This paper presents ANDROMEDA (Astronomical Data Resources Me-
diation), an XML-based data mediation system that enables transparent access to
astronomical data sources. Transparent access is achieved by a global view that
expresses the requirements of a community of users (i.e., astronomers) and data
integration mechanisms adapted to astronomical data characteristics. Instead of
providing an ad hoc mediator, ANDROMEDA can be configured for giving access
to different data sources according to user requirements (data types, content, data
quality, and provenance). ANDROMEDA can be also adapted when new sources
are added or new requirements are specified. Furthermore, in ANDROMEDA the
data integration process is done in a distributed manner, taking advantage of the
available computing resources and reducing data communication costs.

Keywords: data and information integration, XML query processing, distrib-
uted databases, data mediation.

1 Introduction

In recent years, there has been a prodigious increase in the quantity of available data
for astronomical research. Extended surveys like 2dF, SDSS, 2MASS, VIRMOS, and
DEEP2 are making available huge amounts of high quality data covering distinct
wavelengths (x-ray, optical, infrared, radio). In the years to come, astronomers will be
able to generate calibrated data far more rapidly than they can process and analyze
them. Consequently, the need arises for tools and applications that will help them to
deal with these vast amounts of valuable data.

The complexity associated with the large size and the wide wavelength coverage
nature of these databases will be augmented by the existence of measurement errors,
deviations and tendencies in the data. Still, the greatest difficulty is the absence of
homologation between the different databases. Each one has its own set of parameters
and its own access tools, which makes the cross match between them a significantly
difficult task [12].

Virtual Observatory (VO) projects have emerged to develop solutions to the grow-
ing burden of the large amounts of data. The VO is an integrated facility that links the
vast astronomical archives and databases around the world, together with analysis tools

 Andromeda: Building e-Science Data Integration Tools 45

and computational services. Several VO projects are now funded through national and
international programs, and many of them work together under the International Vir-
tual Observatory Alliance (IVOA) to share expertise and develop common standards
and infrastructures for data exchange and interoperability [4]. Thanks to VO projects, it
will be possible to access online a detailed sky map or object class catalogue instead of
relying on restricted and expensive observational facilities. Query engines will become
more sophisticated, providing a uniform interface to all these datasets [9].

Driven by this vision, the objective of our work is to provide data integration
mechanisms that can help astronomers to avoid the tedious task of manual data inte-
gration. Such mechanisms can be tuned for accessing specific collections of data
sources according to different information requirements. Therefore, inspired in [1, 5,
7] we propose an approach for automatically generating mediation queries and apply-
ing the necessary transformations for integrating astronomical data. This paper
presents our approach for integrating astronomical data and the design and implemen-
tation of ANDROMEDA (Astronomical Data Resources Mediation).

The remainder of this paper is organized as follows. Section 2 describes
ANDROMEDA, its architecture, data sources, and implementation issues. Section 3 in-
troduces our approach for integrating astronomical data. Section 4 presents an
experimental validation that we conducted with real astronomical data. Section 5
compares related works with our solution. Finally, Section 6 concludes the paper and
discusses future work.

2 ANDROMEDA

ANDROMEDA is an XML based astronomical distributed data mediation system for
integrating astronomical data sources used in the Mexican Virtual Observatory at
INAOE (National Institute of Astrophysics, Optics, and Electronics). Users specify
their information needs through a mediation schema created with their expert knowl-
edge through a multiple choice interface [3] which is then transformed into the XML
Schema language. The mediation schema contains the data elements of interest that
should be retrieved from one or several of the astronomical data sources. Currently,
ANDROMEDA only supports spatial search queries expressed by specifying the right
ascension and declination coordinates of the centre of a circular area in the celestial
sphere, the radius of the circle, and the data sources of interest. The data correspond-
ing to all the astronomical objects (i.e. stars or galaxies) found in such area are re-
trieved. The coordinates are given in decimal format according to the J2000 epoch
convention and the radius in arc minutes, via a web interface. ANDROMEDA has been
implemented in Java and relies on SAXON 8.0-B for executing XQuery expressions.

2.1 Architecture

Figure 1 illustrates the general architecture of ANDROMEDA. The system consists of a
series of cooperating nodes of equal capabilities. In turn, each instance of
ANDROMEDA deployed in a particular node follows the wrapper-mediator architecture
[13]. In this architecture, a mediator provides a uniform interface to query integrated
views of heterogeneous information sources while wrappers provide local views of
data sources in a global data model [5].

46 V. Cuevas-Vicenttín, J.L. Zechinelli-Martini, and G. Vargas-Solar

Fig. 1. ANDROMEDA general architecture

The current prototype version of ANDROMEDA enables access to three data sources:
Sky Server photometric data [10], Two Micron All Sky Survey [11] photometric data,
and Sky Server spectrographic data1. All of these are public databases that provide an
HTML form in which the user can specify an area of the sky of interest; the results
can be obtained in several formats such as HTML, text, and XML. Each of these da-
tabases is accessed via a specific wrapper that retrieves the results in XML and ap-
plies XSL transformations to them; in order to present a local view, referred to as
exported schema, to the mediator.

The ANDROMEDA mediator adopts the semi-structured data model as pivot model,
using XML and its related standards. It gives a global view of a set of data sources
while making transparent their heterogeneity by automating data integration. The me-
diator receives a spatial search query ought to be responded in terms of the mediation
schema. It dispatches the query to the local data sources, retrieves partial results and
integrates them. The final result is in accordance to the given user requirements as ex-
pressed in the mediation schema.

ANDROMEDA is designed in such a way that different machines can have an in-
stance of the mediator and cooperate in order to answer a query. This allows taking
advantage of the locality of data sources to reduce communication costs as well as
performing pipelined parallel execution, thereby achieving better QoS in terms of re-
source utilization and response time.

2.2 Query Execution

When a query is received on a particular node, an evaluation plan is generated to exe-
cute it. This plan consists of a tree of join nodes that successively perform a spatial

1 Although both, the photometric and spectrographic data of the Sky Server [10] are accessible

by a single interface, for validation purposes we considered them as separate data sources.

 Andromeda: Building e-Science Data Integration Tools 47

join procedure and structural transformations to integrate the data of its children in
accordance to the mediation schema; as well as scan and mapping operators at the
leaves that obtain the data from the sources. The root node represents the information
desired by the user that contains the data from all of the data sources of interest.

The query plan is evaluated by an execution engine following the iterator model.
Scan operators retrieve data from wrappers, and then mapping operators transform
these data into their corresponding mapping schema. The mapping schema is an in-
termediate schema that presents the data of an exported schema in a structure that
resembles as close as possible that of the mediation schema. The Mapper module
creates the associated mapping schemata and mapping queries for each of the regis-
tered sources according to the mediation schema.

The data items manipulated by the iterators are DOM trees, each one representing
an astronomical object. Using a technique described in the next section, the join nodes
generate the identifiers necessary to perform a hash join on the data from different
sources. The transformation of mapped data into the mediation schema also occurs at
the join nodes, which rely on an algorithm [3] that manipulates the nodes to reorgan-
ize them to adhere to the mediation schema.

When ANDROMEDA is deployed on different machines, each of which contains a
data source, the query plan can be evaluated in a distributed manner. In this case send
and receive operators are added to the query plan and each operator is assigned a ma-
chine for its execution, communication is performed by sockets. The scheduling of
the operators is driven by data locality, scans are assigned to the machines where the
relevant data resides and joins are assigned to the machine of the larger input. This
distributed evaluation strategy in conjunction with the iterator model, which enables
pipelined parallelism, allows reducing computation time for intensive queries.

3 Astronomical Data Integration

The key aspect in ANDROMEDA is the automatic generation of mediation queries for
integrating data (populating completely or partially de mediation schema) based on
metadata relating the sources and the mediation schema. Such metadata are essential
during the integration process. The automation of the integration process is especially
beneficial as the number of data sources increases, relieving the user of the burden of
performing manual integration. In our approach, astronomical data integration is exe-
cuted in three phases:

• Identify for each data source which of its data elements are relevant, i.e., useful to
populate the mediation schema. The relevant elements can be found provided it is
established a priori which elements in the exported schemata correspond to ele-
ments in the mediation schema. The result of this first phase is a series of couples
<mapping schema, intentional specification>. Each couple as-
sociates a mapping schema (expressed as a tree) with its intentional specification
expressed as an XQuery statement, which allows transforming a document from
the exported into the mapping schema.

• Apply matching operations to the mapped instances of the different sources to de-
termine when they represent the same astronomical object, deriving groups of in-
stances encompassing all of the desired data elements.

48 V. Cuevas-Vicenttín, J.L. Zechinelli-Martini, and G. Vargas-Solar

• Transform these instances encompassing the data from the various mapping sche-
mata into entities that adhere to and populate the mediation schema. This can be done
by generating a mediation query, expressed as an XQuery statement, which inten-
tionally expresses the content of the mediation schema in terms of mapped sources.

3.1 Mapping Schemata and Queries Generation

The objective of this phase is to identify for each exported schema a mapping schema
(i.e., the set of nodes that are relevant for populating the mediation schema) and to
compute an XQuery expression that specifies how to transform data from the ex-
ported schema to the mapping schema. Data integration is possible as long as meta-
information describing the semantic correspondences2 between data sources and
mediation schemas (attribute equivalence) is available. Then mediation query expres-
sions can be applied in order to populate the mediation schema.

For example, consider the exported and mediation schemata presented in Figure 2.
The tree on the top represents the mediation schema, while the exported schema cor-
responding to the Sky Server spectrographic data source is located at the bottom. The
dashed lines represent semantic correspondences between elements.

Fig. 2. Mediation and exported schemata

In order to find the relevant nodes in an exported schema we perform an algorithm
consisting of two phases. First, the mediation schema tree is traversed in preorder to
find all the nodes that have a semantic correspondence with a node in the exported
schema or that are no-text nodes. These nodes are used to create a new tree with a
structure resembling that of the mediation schema. Next, it is necessary to eliminate
all the remaining no-text leaves of the tree that do not have semantic correspon-
dences with nodes in the mediation schema. This is done by a procedure based on a
postorder traversal of the new tree. Once completing its second phase the algorithm
yields the schema tree presented in Figure 3.

2 A semantic correspondence establishes a relationship between two elements that refer to the

same object of the real world.

 Andromeda: Building e-Science Data Integration Tools 49

<objectAll>{
 for $var1 in doc("SkyServerSpectraData.xml")
 /specObjAll/specObj return
 <object>
 <redshift>
<zConf>{$var1/redshift/zConf/text()}</zConf>
 <zError>{$var1/redshift/zErr/text()}</zError>
 <z>{$var1/redshift/z/text()}</z>
 </redshift>
 <coordinates>
 <dec>{$var1/coordinates/dec/text()}</dec>
 <ra>{$var1/coordinates/ra/text()}</ra>
 </coordinates>
 </object>
}</objectAll>

Fig. 3. Final Sky Server spectrographic data mapping schema

Finally, this mapping schema tree is traversed for creating its intentional descrip-
tion as an XQuery expression. The algorithm used to generate this expression is pre-
sented in [3] along with the algorithm for obtaining the mapping schema tree. The
derived mapping XQuery expression is shown in Figure 3.

3.2 Matching Operations

Having a mapping schema and its associated XQuery statement for each source, it is
necessary to determine when the instances from different sources represent the same
astronomical object in order to be able to integrate them. In the case of astronomical
data sources, usually no universal identifiers are available for uniquely identifying a
particular object (e.g. star or galaxy). So in our solution we consider a spatial join, in
which entries of the same object are identified in different data sources based on their
position (right ascension and declination coordinates).

Due to the variability on the position measured by each survey, which is worsened
by the different error magnitudes of each survey, object positions are approximate and
thus the same object can have different positions in different data sources. To over-
come these discrepancies, the mediator performs a spatial join procedure based on the
Hierarchical Triangular Mesh (HTM) [6].

Fig. 4. The Hierarchical Triangular Mesh subdivision scheme

The HTM (see Figure 4) is the indexing structure used in the SDSS Science Ar-
chive to partition the data by location on the celestial sphere. The HTM divides the
surface of the unit sphere into spherical triangles in a hierarchical scheme in which
the subdivisions have roughly equal areas. This recursive subdivision scheme allows

50 V. Cuevas-Vicenttín, J.L. Zechinelli-Martini, and G. Vargas-Solar

generating ids for triangles of increasingly smaller areas that correspond to higher
depths in the subdivision scheme. Given the coordinates of an object, its correspond-
ing HTM id at a given depth can be efficiently computed and used as a foreign key
with an acceptable precision degree. Thus the problem is reduced to a traditional join
and any of the existing techniques can be applied for its evaluation.

3.3 Transformation of Mapped Instances into the Mediation Schema

The objective of this phase is to take the instances from the different mapped sources
identified as representing the same physical object, and transform their structure to
create a single entity in accordance with the mediation schema. The result of this
phase is a collection of instances that populate the mediation schema. This is achieved
by generating an XQuery expression that specifies the mediation schema intention.
The complete transformation algorithm is presented in [3].

We should point out that when the data elements from the different mapped
sources are integrated, not all of the elements should be handled the same way. The
coordinates elements, for example, require special considerations; since the same as-
tronomical object does not have exactly the same position in different data sources. In
order to provide a global view over the data, each object needs to be associated with
singular coordinate values. This is done by a simple transformation function which
computes the average of the values of the object's position for all the involved
sources. Furthermore, multi-valued nodes (e.g. magnitude elements) from different
sources should be grouped together in order to respect the syntax of the mediation
schema. The generated mediation XQuery expression for the integration of the ex-
ported schemata of the Sky Server photometric and Sky Server spectrographic data
sources according to the mediation schema shown in Figure 2 follows:

<objectAll>{
for $var1 in
doc("SkyServerPhotoMappedData.xml")/objectAll/object
for $var2 in doc("SkyServerSpectraMappedData.xml")/objectAll/object
where (andromedaf:distance(
number($var1/coordinates/ra/text()),
number($var1/coordinates/dec/text()),
number($var2/coordinates/ra/text()),
number($var2/coordinates/dec/text())) < 0.08)
return
 <object>
 <magnitudes>
 {for $var3 in $var1/magnitudes/magnitude
 return $var3}
 </magnitudes>
 <coordinates>
 <ra>{(number($var1/coordinates/ra/text()) +
 number($var2/coordinates/ra/text()) div 2}
 </ra>
 <dec>{(number($var1/coordinates/dec/text()) +
 number($var2/coordinates/dec/text())
 div 2}
 </dec>
 </coordinates>
 <redshift>
 <zConf>{$var2/redshift/zConf/text()}</zConf>
 <zError>
 {$var2/redshift/zError/text()}
 </zError>
 <z>{$var2/redshift/z/text()}</z>
 </redshift>
 </object>
}</objectAll>

 Andromeda: Building e-Science Data Integration Tools 51

The transformations performed by the previous XQuery expression can be alterna-
tively achieved on a one by one basis by the means of operators that manipulate the
data structures associated with the instances. The latest version of our system, de-
scribed in Section 2, follows this approach. This provides advantages such as flexibil-
ity to evaluate the query in a distributed manner and using algorithms well suited for
this particular scenario.

4 Experimentation

We validated ANDROMEDA with a realistic experiment that consists of a list of objects
in the SDSS of particular relevance to the INAOE. The objective was to obtain the
data for each of these objects available from both Sky Server and 2MASS. For the
spatial join procedure, we used an HTM depth of 16 corresponding approximately to
0.0014 degrees (aprox. 5 seconds of arc) side length as was suggested. Since the posi-
tions of the objects in the SDSS were given, we only needed to give a radius similar
to the spatial join tolerance itself. In this case we used a radius of 0.1 arc minutes. For
the list containing 409 objects, matches were found for 322 of them, and within these
322 objects, multiple possible matches were found for 71 objects. The total execution
time was approximately 20 minutes.

In addition, to determine the global query execution time of our solution we tried
to integrate as much objects as possible from all three of the incorporated data sources
by defining increasingly larger regions. The evaluation was done in a Dell Inspiron
8600, Intel Pentium M 1.50GHz, 512MB RAM (the same as for the previous experi-
ment). The first observation is that execution time increases polynomially with re-
spect to the number of objects to be integrated.

The statistics concerning this experiment are summarized in Figure 5. For a 2 arc
minutes radius, results contain respectively 508 objects from Sky Server photometric
(139,983 bytes), 22 objects from Two Mass (6,595 bytes) and 2 from Sky Server
spectrographic (555 bytes). Both of these last two objects could be integrated
(matches were found in the other surveys). The largest radius that could be processed
under the specified conditions was 18 arc minutes, representing 60 integrated objects
(96,570 bytes). Our execution time is reasonable even if it will be penalizing for

radius
(arcmin)

time
(msec)

time
(sec)

SkyServerPhoto TwoMASS SkyServerSpectra Global SkyServerPhoto TwoMASS SkyServerSpectra Global

1 6599 6,599 143 10 2 2 139983 6595 555 3284

2 5598 5,598 508 22 2 2 496980 14439 555 3284

4 17655 17,66 1616 79 4 4 1580806 51678 1043 6502

6 40198 40,2 2755 144 10 8 2695023 94134 2506 12939

8 74888 74,89 3859 234 18 12 3775458 152957 4460 19367

10 131949 131,9 5173 332 27 19 5060981 216997 6647 30616

12 228839 228,8 6700 444 37 24 6554558 290199 9084 38663

14 394297 394,3 8538 594 49 37 8352454 388212 11989 59540

16 663905 663,9 10539 777 60 47 10309689 507790 14661 75632

18 1034667 1035 12746 961 74 60 12468276 628033 18059 96570

retrieved objects file sizes (bytes)

Fig. 5. Query results

52 V. Cuevas-Vicenttín, J.L. Zechinelli-Martini, and G. Vargas-Solar

large sky areas and it can remain interesting even if the number of sources increases.
Additional statistics we recollected demonstrate that the time required for data inte-
gration and the communication between nodes does not exceed the time required to
obtain the data from the Web and transform them into their mapping schemata.

Finally, it is important to note that providing transparent access to astronomical
data sources and enabling data integration must also be evaluated under qualitative
criteria. It is always a significant advantage to automate a process that is in general
done manually.

5 Related Work

Several approaches have been proposed for astronomical data integration and the con-
struction of the Virtual Observatory. SkyQuery [2] is probably the most representative
prototype of a federated database application for this purpose. It is implemented using
a set of interoperating Web services. In SkyQuery, a portal provides an entry point
into a distributed query system relying on metadata and query services provided by a
series of SkyNodes. The query system consists of individual databases representing a
particular survey located at different sites along with their wrappers. SkyQuery re-
ceives queries expressed in a query language similar to SQL; it locates the referenced
SkyNodes and submits the query to every SkyNode. The final result is computed by
applying a probabilistic spatial join to partial results. SkyQuery differs from our sys-
tem in that it does not provide a unified global view over the set of data sources, so
the user needs to be familiar with the schema of each data source in order to build a
query and interpret results. Especially when the number of sources increases, it is de-
sirable that the user does not need to remember details about each source.

Other existing partially automated astronomical data integration approaches con-
cern homogeneous relational data sources [8]. However, astronomical data integration
is still mostly done manually especially when heterogeneous data are involved. The
challenge we address is to provide an integrated view over a set of astronomical data
sources, thus making transparent to the users the heterogeneity of these sources.

6 Conclusions and Future Work

The methodology and algorithms presented in this paper provide a feasible solution to
the integration of distributed, heterogeneous and autonomous data sources in the do-
main of astronomy. In addition, the inclusion of new data sources can be achieved
with relative ease. Our prototype implementation demonstrates that our approach pro-
vides a viable method for astronomical data integration. The system provides users a
unified global view over the set of data sources, while it hides the specificities of each
source. The particularities of astronomical data were addressed by adapting existing
techniques specifically designed for this domain. The distributed execution strategy
allows taking advantage of shared resources.

Distributed query evaluation opens the opportunity to introduce partitioned paral-
lelism techniques in the future. Thus, this integration strategy makes the current ver-
sion of ANDROMEDA more suitable for large databases. In the future we expect to
deploy ANDROMEDA on several machines and evaluate the efficiency of our distrib-

 Andromeda: Building e-Science Data Integration Tools 53

uted execution strategy. To obtain more representative results we plan to compare the
efficiency of our system with SkyQuery, under the consideration that we do not aim
to provide the same capabilities. The query evaluation strategy can also be signifi-
cantly improved by incorporating more sophisticated scheduling techniques. The
overall performance of the system could also be improved by using alternative data
structures for the manipulation of XML trees. There is also room for improvement in
the spatial join procedure, by taking into consideration the specificities of each data
source in order to lead to more reliable cross identification of objects among different
surveys.

References

[1] Bouzeghoub, M., Farias-Lóscio, B., Kedad, Z., and Soukane, A. Heterogeneous Data
Source Integration and Evolution. In Proceedings of the 13th International Conference on
Database and Expert Systems Applications DEXA ‘02. Aix-en-Provence, France, 2002.

[2] Budavári, T., Malik, T., Szalay, A., and Thakar, A. SkyQuery – A Prototype Distributed
Query Web Service for the Virtual Observatory. In Payne, H. E., Jedrzejewski, R. I., and
Hook, R. N., eds. Astronomical Data Analysis Software and Systems XII ASP Conference
Series, Vol. 295, 2003.

[3] Cuevas-Vicenttín, V., Zechinelli-Martini, J.L., Vargas-Solar, G., ANDROMEDA: Astro-
nomical Data Mediation for Virtual Observatories. Research Report, RR n° 1082-I, LSR-
IMAG, Grenoble, 2006.

[4] Hanisch, R. J., and Quinn, P. J. The IVOA. http://www.ivoa.net/pub/info/TheIVOA.pdf
[5] Kedad, Z., and Xue, X. Mapping generation for XML data sources: a general framework.

In Proceedings of WIRI 2005, in conjuction with ICDE'05, 2005.
[6] Kunszt, P., Szalay, A., and Thakar, A. The Hierarchical Triangular Mesh. ESO Astro-

physics Symposia, Vol. 6, 2001.
[7] Métais, E., Kedad, Z., Comyn-Wattiau, I., and Bouzeghoub, M. Using Linguistic Knowl-

edge in View Integration: toward a third generation of tools. International Journal of
Data and Knowledge Engineering (DKE), 1 (23), North Holland, 1997.

[8] Nieto-Santisteban, M. A. When Database Systems Meet the Grid. Microsoft Technical
Report, MSR-TR-2004-81, 2004.

[9] Szalay, A., Gray, J., Kunszt, P., and Thakar, A. Designing and Mining Multi-Terabyte
Astronomy Archives: The Sloan Digital Sky Survey. In Proceedings of ACM SIGMOD
Conference, 2000.

[10] Szalay, A., Kunszt, P., Thakar, A., Gray, J., and Slutz, D. The Sloan Digital Sky Survey
and its Archive. In Manset, N., Veillet, C., and Crabtree, D., eds. Astronomical Data
Analysis Software and Systems IX ASP Conference Series, Vol. 216, 2000.

[11] 2MASS Explanatory Supplement to the 2MASS All Sky Data Release. http://
www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html

[12] Terlevich, R., López-López, A., and Terlevich, E. El Grupo de Ciencia con Observatorios
Virtuales del INAOE, 2003. http://haro.inaoep.mx/ov/archivos/ObservatorioVirtual.pdf.

[13] Wiederhold, G., Mediators in the architecture of future information systems. Computer,
Vol. 25, 1992.

Improving Web Retrieval Precision Based on Semantic
Relationships and Proximity of Query Keywords

Chi Tian1, Taro Tezuka2, Satoshi Oyama2, Keishi Tajima2, and Katsumi Tanaka2

1 Informatics of the Faculty of Engineering, Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501 Japan

tianchi@dl.kuis.kyoto-u.ac.jp
2 Department of Social Informatics, Graduate School of Informatics, Kyoto University

Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501 Japan
{tezuka, oyama, tajima, tanaka}@dl.kuis.kyoto-u.ac.jp

Abstract. Based on recent studies, the most common queries in Web searches
involve one or two keywords. While most Web search engines perform very well
for a single-keyword query, their precisions is not as good for queries involv-
ing two or more keywords. Search results often contain a large number of pages
that are only weakly relevant to either of the keywords. One solution is to fo-
cus on the proximity of keywords in the search results. Filtering keywords by
semantic relationships could also be used. We developed a method to improve
the precison of Web retrieval based on the semantic relationships between and
proximity of keywords for two-keyword queries. We have implemented a system
that re-ranks Web search results based on three measures: first-appearance term
distance, minimum term distance, and local appearance density. Furthermore, the
system enables the user to assign weights to the new rank and original ranks so
that the result can be presented in order of the combined rank. We built a proto-
type user interface in which the user can dynamically change the weights on two
different ranks. The result of the experiment showed that our method improves
the precision of Web search results for two-keyword queries.

1 Introduction

Based on recent studies, queries involving one or two keywords are most common in
Web searches [1][2]. While most Web search engines perform very well for a single-
keyword query, their precisions is not as good for queries involing two or more key-
words because the search results usually contain a large number of pages with weak
relevance to the query keywords. The reasons for this are as follows:

1. Generally, a Web page consists of numerous parts describing different subjects.
Such a page is not always an exact in the search results when the query keywords
are included in different parts of the Web page, so the precision of the search is low.

2. Subject structure in a Web page is rarely considered in ranking algorithms of Web
search engines. For example, Google’s [3] ranking algorithm1 is based on the num-
ber of cover links, while subject structure is not considered.

1 Google ranking algorithm, PageRank.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 54–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving Web Retrieval Precision Based on Semantic Relationships 55

For example, when we used a two-keyword query “Shijo Street” and “Chinese food”
for the search, we acquired not only Web pages about Chinese food restaurants on
Shijo Street, but also those about restaurants other than Chinese on Shijo Street and
Chinese food restaurants that are not on Shijo Street were included in the highly ranked
results. This is caused by the keywords appearing in remote places on Web pages and
the semantic relationship between them is weak. One method of removing such “noise”
is to focus attention on the proximity of the query keywords. In addition, there is a
technique of filtering based on semantic relationships between query keywords.

We developed a method to improve the precision of web retrieval by the semantic
relationships between and proximity of query keywords for two-keyword queries. In our
method, we first send query keywords to a Web search engine and acquire search results.
We then perform morphological analysis on the results and analyze three measures
for proximity. We defined first-appearence term distance, minimum term distance, and
local appearance density as the measures, and re-ranked search results based on them.
Furthermore, we assigned weights for the original rank from the Web search engine
and the new rank and combined them. We developed a system with a user interface that
enables a user to dynamically change the weight assigned to the original and new ranks.
The system displays the results in order of the combined rank.

The rest of this paper is organized as follows. Section 2 is the related work. Sec-
tion 3 explains the semantic relationships between query keywords. Section 4 discusses
our method and the mechanism of the re-ranking algorithm. Section 5 describes the
prototype user interface. Section 6 discusses the experiment. Section 7 outlines our
conclusions and future work plans.

2 Related Work

2.1 Proximity of Query Keywords

The term distance between query keywords in a document is widely used in the field of
information retrieval [4][5]. Callan showed that the precision of information retrieval
was improved by performing the retrieval in a restricted domain rather than in the full
text [6]. As a method of Web page retrieval based on the proximity of query keywords,
Sadakane and Imai developed a high-speed algorithm to extract the Web page in which
most keywords appear together [7]. In contrast, our method not only focuses attention
on the proximity of, but also on the semantic relationships between query keywords
to improve the precison of Web retrieval. Although a proximity operation is already
performed in most full-text retrieval systems, it is rarely performed in Web information
retrieval.

2.2 Density Distribution of Query Keywords

The technique of using density distribution of query keywords is widely used in the field
of information retrieval. Kurohashi et al. developed a method for detecting important
descriptions of a word based on its density distribution in text [8]. Sano et al. developed
a method of scoring and extracting the inner structure of a Web page by the density
distribution of query keywords [9]. Nakatani et al. developed a method to divide a Web

56 C. Tian et al.

page into meaningful units by the density distribution of query keywords [10]. We sub-
stituted local appearance density2 for density distribution to improve the precision of
Web retrieval.

2.3 Roles of Query Keywords

Usually, multiple query keywords has an asymmetrical relationship like a subject mod-
ifying type3. Oyama and Tanaka developed a method to improve the precision of Web
retrieval based on the hierarchical structure of query keywords [11]. In contrast, we
focused attention on the semantic relationships between keywords.

3 Semantic Relationships Between Query Keywords

In this section, we explain the semantic relationships between query keywords for two-
keyword queries. Mainly, there are two semantic relationships between query keywords.
A and B represent the query keywords.

3.1 Subject Modifying Type

In this case, one keyword represents a particular subject and the other modifies it. The
two keywords are subordinating and can be joined in the form “B of A.” For example,
query keywords such as “Japan, History” belong to the subject modifying type.

This type of keywords is used when a user wants to do a search about a particular
aspect of a subject.

3.2 Subject Juxtapoing Type

In this case, both keywords represent an individual subject. They belong to parallel
structures and can be joined in the form “A and B” For example, keywords such as
“Precision, Recall” belong to the subject juxtaposing type.

This type of keywords is used when a user wants to do a search about the relationship
between two different subjects.

4 Our Method

4.1 Summary of Our Method

The flow of our method is shown in Figure 1.

(1) Input query keywords and assign weights for the original and new ranks, then do a
search and acquire search results.

(2) Perform morphological analysis [12] on the search results and analyze them using
measures for proximity.

(3) Re-rank the search results based on the measures for proximity, and calculate the
new ranks.

2 Local appearance density is defined in Section 4.
3 Subject modifying type is explained in detail in Section 3.

Improving Web Retrieval Precision Based on Semantic Relationships 57

Search engine Results of search engine

Measures for proximity

Weight of rank

Results of combined rank

Client Server

4

3

2

Results of

developed method

Combined rank

5

1
4

4

Fig. 1. Flow of our method

(4) Combine the ranks by the weight of the original and new ranks.
(5) Display the results in order of combined rank.

4.2 Measures for Proximity

A and B represent the query keywords. Functions that we will describe in this section
are defined as follows:

– TD(A, B) : The term distance between A and B.
– first(A) : The first appearance of A in a Web page.
– last(A) : The last appearance of A in a Web page.
– first(A, B) : The first appearance of A and B.
– last(A, B) : The last appearance of A and B.
– f{M,N}(A, B) : The sum of A and B appearing in the range of {M, N}.

(1) First-appearance Term Distance (FTD)

FTD(A, B) = TD(first(A), f irst(B)), (1)

FTD means the term distance (TD) between the first appearances of A and B in a
Web page. For example, the FTD of A and B is 4 in Figure 2. The reason for using

LANDYBDABH

FTD(A,B)=4 MTD(A,B)=1

LAD(A,B)=4/8=0.5

Fig. 2. FTD, MTD, and LAD

58 C. Tian et al.

FTD is based on a hypothesis that important terms always appear in the forefront
of a document. In other words, we suppose that both query keywords emerge at the
top of a document when they are contained in the subject of the document.

(2) Minimum Term Distance (MTD)

MTD(A, B) = min({TD(A, B)}), (2)

MTD means the smallest of all term distances between A and B in a Web page. For
example, the MTD of A and B is 1 in Figure 2. The reason for using MTD is based
on a hypothesis that related terms appear in close proximity.

(3) Local Appearance Density (LAD)

LAD(A, B)=
f{first(first(A),first(B)),last(last(A),last(B))}(A, B)

TD(first(first(A), f irst(B), last(last(A), last(B)))+1
, (3)

LAD is defined as a ratio of the sum of two keywords (A and B) to the sum of
all terms appearing between the first and last appearance keywords. For example,
the LAD of A and B in Figure 2 is 0.5. The reason for using LAD is based on a
hypothesis that important terms appear repeatedly in a Web page.

4.3 Re-ranking Algorithm

(1) Re-ranking by FTD
In the FTD method, the original results of a Web search engine are re-ranked based
on the FTD of the query keywords. We performed the sorting of the search results
and ranked them in ascending order of FTD. The smaller the FTD, the higher the
ranking of the results.

(2) Re-ranking by MTD
In the MTD method, the original results of a Web search engine are re-ranked based
on the MTD of the query keywords. We performed the sorting of the search results
and ranked them in ascending order of MTD. The smaller the MTD, the higher the
ranking of the results.

(3) Re-ranking by LAD
In the LAD method, the original results of a Web search engine are re-ranked based
on the LAD of the query keywords. We performed sorting of the search results
and ranked them in descending order of LAD. The higher the LAD, the higher the
ranking of the results.

4.4 Combining Results from Web Search Engine and Re-ranking Method

We developed a method to combine the results from a Web search engine and a re-
ranking method by operating a user interface. The combination value (Z) is defined as
follows:

Z = (1− S)X + SY, (4)

=⇒
{

S = 0⇒ Z = X,
S = 1⇒ Z = Y,

(5)

Improving Web Retrieval Precision Based on Semantic Relationships 59

X represents the rank of the result from the Web search engine, Y represents the rank
using our method. S(S ∈ [0, 1]) represents the weight of Y and (1 − S) represents the
weight of X .

We combined the ranks of search results from the Web search engine and our method
and re-ranked the combined rank based on the ascending order of Z . As shown in
equation 5, the combined rank is equal to the rank from search engine when the value
of S is 0, and the combined rank is equal to the rank in our re-ranking method when the
value of S is 1. A user can set the value of S close to 0 if he or she wants to emphasize
on the results of Web search engine. Also, the user can set the value of S close to 1 if
he or she wants to emphasize on the results of the re-ranking method.

5 User Interface

5.1 User Interface Overview

We implemented a prototype system SSRP (Search by Semantic Relationship and Prox-
imity) based on our method.

As shown in Figure 3, the prototype user interface consists of four areas as follows.

1. Input area
2. Summary area
3. Analysis area
4. Display area

A user inputs query keywords into the input area, sets the weight of the rank on
scroll bar, and does a search with a Web search engine. The analysis results of each
re-ranking method are output in the analysis area. In addition, snippets of search results
and text contents are displayed in the summary area. The Web page including images is
displayed in the display area.

Query keyword

Scrollbar↑ Input area

SSRP

Calculated Value

↑ Analysis area

 1. Input area 2.Summary area

 3.Analysis area

 4.Display area

Fig. 3. User interface of SSRP

60 C. Tian et al.

5.2 Senario Example

Figure 3 shows a sample image of our prototype system when searching with a two-
keyword query ”Chinese food, Shijo Street”. First, we input the query keywords in the
input area and set the value of scroll bar to 1. In this system, we prepared five levels of
scrollbar values from 0 to 4. We calculated the combined rank based on the standards
shown as follows.

– Level 0 (S= 0): Use only the ranking by a conventional search engine.
– Level 1 (S= 0.25): Put more weight on the ranking by a conventional search engine.
– Level 2 (S= 0.5): Put equal weight on the ranking by a conventional search engine

and the ranking by our re-ranking method.
– Level 3 (S= 0.75): Put more weight on the ranking by our re-ranking method.
– Level 4 (S= 1): Use only the ranking by our re-ranking method.

Next, the system performs morphological analysis and outputs results in the analysis
area, where not only the title, URL, snippet, and Web contents of search results, but also
the first-appearance term distance, the minimum term distance, the local appearance
density, and the rankings based on them are displayed.

6 Evaluation

6.1 Experiment Setup

We performed the experiment4 with 20 pairs of subject modifying type and 10 pairs of
subject juxtaposing type query keywords (Table 1). We set the number of search results
acquired from Google as 20. In the experiment, we applied each re-ranking method to
the top 20 search results acquired from Google. Then, we evaluated the three re-ranking
methods and Google by comparing the precision5 of the results.

6.2 Experimental Results

We compared the average precision in the FTD, MTD, and LAD methods with that
obtained from Google using the query keywords in Table 1. Figure 4 shows the average
precision of subject modifying type keywords. Figure 5 shows the average precision of
subject juxtaposing type keywords. Table 2 shows the improvement point in average
precision for each re-ranking method compared to Google for subject modifying type
(SMT) keywords.Table 3 shows the improvement point in average precision for each
re-ranking method compared to Google for subject juxtaposing type (SJT) keywords.

6.3 Discussion of Experimental Results

(1) Discussion of subject modifying type query keywords
As shown in Table 2, the MTD method is superior for subject modifying type query
keywords. In the MTD method, improvements in average precision were 19.0, 11.0,

4 The experiment was performed in Japanese.
5 Precision is the ratio of conformity of documents in search results. [13]

Improving Web Retrieval Precision Based on Semantic Relationships 61

Table 1. Query keywords used for experiment

Subject modifying type

Q1 Kyoto notable sights
Q2 Kyoto University Information department
Q3 gravity definition
Q4 Java origin
Q5 Japan history
Q6 robot history
Q7 Shijo Street Chinese food
Q8 Kiya Street Japanese food
Q9 cake recipe
Q10 PowerPoint use

Q10 − Q20 : abbreviated

Subject juxtaposing type

Q1 appetite season
Q2 age sleep
Q3 employment rate economy
Q4 salary academic background
Q5 height longevity
Q6 precison recall
Q7 calorie diet
Q8 age of marriage number of children
Q9 memory age
Q10 character blood type

Subject modifying type

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Search Results Top K

A
ve

ra
ge

 P
re

ci
so

n

FTD

MTD

LAD

Google

Fig. 4. Results of subject modifying type

Suject juxtaposing type

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Search Results Top K

A
ve

ra
ge

 P
re

ci
si

on

FTD

MTD

LAD

Google

Fig. 5. Results of subject juxtaposing type

62 C. Tian et al.

Table 2. Improvement in precison compared
to Google (SMT)

SMT Top5 Top10 Top15 Average

FTD 4.0 5.0 1.4 5.0
MTD 19.0 11.0 2.0 10.7
LAD 8.0 7.5 0.3 4.6

Table 3. Improvement in precison compared
to Google (SJT)

SJT Top5 Top10 Top15 Average

FTD −10.0 −1.0 −3.3 −3.7
MTD 6.0 8.0 4.0 7.2
LAD 20.0 15.0 5.3 12.3

and 2.0 points for the top 5, 10, and 15 search results, respectively. In addition, the
average improvement was 10.7 points. The improvement with the MTD method
is more significant than that with either the FTD or LAD methods. The average
improvement was 5.0 points with the FTD method and 4.6 points with the LAD
method. Though the improvement is not significant, it appears to have a certain
level of effect. For subject modifying type query keywords, the average precision
was improved in all the three re-ranking methods. Particularly, the MTD method
showed the most significant improvement.

(2) Discussion of subject juxtaposing type query keywords
As shown in Table 3, the LAD method is superior for subject juxtaposing type
query keywords. In the LAD method, the improvements in average precision were
20.0, 15.0, and 5.3 points for the top 5, 10, and 15 results, respectively. In addi-
tion, the average improvement was 12.3 points. The improvement with the LAD
method is more significant than that with either the FTD or MTD methods. In the
MTD method, the average improvement was 7.2 points, and this is the most sig-
nificant improvement next that with the LAD method. On the other hand, in the
FTD method, the average improvement was -3.7 points, which means that the av-
erage precision in the FTD method is inferior to that for the results obtained using
Google. For subject juxtaposing type query keywords, the average precision was
improved in the LAD and MTD methods. Particularly, the LAD method showed
the most significant improvement.

7 Conclusion

We developed a method to improve the precision of Web retrieval based on the seman-
tic relationships between and proximity of keywords for two-keyword queries. We have
implemented a system that re-ranks Web search results based on three measures: first-
appearance term distance, minimum term distance, and local appearance density. Fur-
thermore, the system enables the user to assign weights to the new and original ranks so
that the result can be presented in order of the combined rank. We built a prototype user
interface in which a user can dynamically change the weights on two different ranks.
The evaluation experiment showed that for subject modifying type query keywords, the
MTD method had the most remarkable effect on improving Web retrieval precision and
for subject juxtaposing type query keywords, the LAD method had the most remarkable
effect on improving Web retrieval precision.

Our future works will include a system for judging the semantic relationships between
query keywords automatically and performing the most effective re-ranking method and
developing a method for using more than three query keywords in a Web search.

Improving Web Retrieval Precision Based on Semantic Relationships 63

Acknowledgements

This work was supported in part by the Japanese Ministry of Education, Culture, Sports,
Science and Technology under the 21st Century COE (Center of Excellence) Program
”Informatics Research Center for Development of Knowledge Society Infrastructure”
(Leader: Katsumi Tanaka, 2002-2006), and Grant-in-Aid for Scientific Research on Pri-
ority Areas: ”Cyber Infrastructure for the Information-explosion Era,” Planning Re-
search: ”Contents Fusion and Seamless Search for Information Explosion” (Project
Leader: Katsumi Tanaka, A01-00-02, Grant#: 18049041), and Grant-in-Aid for Young
Scientists (B) ”Trust Decision Assistance for Web Utilization based on Information In-
tegration” (Leader: Taro Tezuka, Grant#: 18700086).

References

1. B. J. Jansen, A. Spink, J. Bateman and T. Saracevic: Real life information retrieval: A study
of user queries on the Web. ACM SIGIR Forum, Vol. 32, No. 1, pp. 5-17, 1998.

2. Trellian, http://www.trellian.com/
3. Google, http://www.google.co.jp
4. T. Yamamoto, H. Hashizume, N. Kando, and M. Shimizu: Full-text search: Technology and

applications, Maruzen Co., Ltd., 1998.
5. M. Saraki and Y. Nitta: Regular expression and text mining, Akashi Shoten Co.,Ltd, 2003.
6. J. Callan: Passage-level evidence in document retrieval. Proceedings of the 17th Annual In-

ternational ACM SIGIR Conference, pp. 302-309, 1994.
7. K. Sadakane and H. Imai: On k-word Proximity Search. IPSJ SIG Notes 99-AL-68, 1999.
8. S. Kurohashi, N. Shiraki, and M. Nagao: A method for detecting important descriptions of a

word based on its density distribution in text. IPSJ, Vol. 38, No. 04, pp.845-854, 1997.
9. R. Sano, T. Matsukura, K. Hatano, and K. Tanaka: Web document retrieval based on minimal

matching subgraphs as units and word appearance density. IPSJ, Vol.99, No.61, pp.79-84,
1999.

10. K. Nakatani, Y. Suzuki, and K. Kawagoe: Personalized Web link generation method using
Keywords and Document Similarities. DBSJ Letters, Vol. 4, No. 1, pp.89-92, 2005.

11. S. Oyama and K. Tanaka: Web search using hierarchical structuring of queries. DBSJ Letters,
Vol.1, No.1, pp.63-66, October 2002

12. Japanese language morphological analysis system: Chasen,
http://chasen.naist.jp/hiki/chasen

13. C. J. van Rijsbergen: Information Retrieval (Second Edition), Butterworths, 1979.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 64 – 72, 2006.
© Springer-Verlag Berlin Heidelberg 2006

From Extreme Programming to Extreme
Non-programming: Is It the Right Time for Model

Transformation Technologies?

Óscar Pastor

Department of Information Systems and Computation
Valencia University of Technology

Camino de Vera s/n, 46071 Valencia, España
Phone: +34 96 387 7000; Fax: +34 96 3877359

opastor@dsic.upv.es

Abstract. Object-Oriented Methods, Formal Specification Languages, Compo-
nent-Based Software Production... This is just a very short list of technologies
proposed to solve a very old and, at the same time, very well-known problem:
how to produce software of quality. Programming has been the key task during
the last 40 years, and the results have not been successful yet. This work will
explore the need of facing a sound software production process from a different
perspective: the non-programming perspective, where by non-programming we
mainly mean modeling. Instead of talking about Extreme Programming, we will
introduce a Extreme Non-Programming (Extreme Modeling-Oriented)
approach. We will base our ideas on the intensive work done during the last
years, oriented to the objective of generating code from a higher-level system
specification, normally represented as a Conceptual Schema. Nowadays,
though, the hip around MDA has given a new push to these strategies. New
methods propose sound model transformations which cover all the different
steps of a sound software production process from an Information Systems
Engineering point of view. This must include Organizational Modeling,
Requirements Engineering, Conceptual Modeling and Model-Based Code
Generation techniques. In this context, it seems that the time of Model
Transformation Technologies is finally here…

1 Introduction

The main problem historically faced by the Software Engineering and Information
Systems communities is how to obtain a software product of quality. What we mean
by quality in this context is to have a final software product that lives up to the
customer expectations, as they are gathered in the corresponding source Requirements
Model. Going step by step from the Problem Space (conceptual level) to the Solution
Space (software technology level) is supposed to be the task of a sound Software
Process, intended to lead this Model Transformation Oriented set of activities.

Apparently, it is a simple task to state the quoted problem: how to provide an
adequate Software Process that fulfills the goal of building software of quality. But
the last forty years have made clear that this is a major problem. We need the right

 From Extreme Programming to Extreme Non-programming 65

tools, but the reality is that they are not being provided. The ever-present software
crisis problem is not being solved by just working on programming-based software-
production processes. We should wonder why this happens, and how this could be
solved. The main objective of this keynote is to answer these questions.

Section 2 states the problem and introduces some alternatives intended to
overcome it. In section 3, an example of a Software Process that covers the relevant
phases of Requirements Modeling, Conceptual Modeling, and Software Product
generation will be presented. After that, some reflections around the more significant
present and future trends related with how to put into practice Model Transformation
Technologies will be discussed. Conclusions and references end up the work.

2 The Problem

During the last decades, software engineering courses around the world have
extensively argued -using different formats- over how complicated to construct a
software system is. Commonly, it is known that

• costs can be increased at any time,
• the final product is too frequently delivered out of time,
• the provided functionality is not the one required by the customers,
• it is not guaranteed that the system will work

It is also well-known and well-reported the cost of this low quality. For instance, in an
study done by Giga Group, Gartner Group, Standish Group, CCTA and the Brunel
University, and presented in [6], it is reported that at least $350 Billion are lost each
year on Information Technology, due to abandoned projects, rectification of errors or
consequential losses due to failures. Certainly, not all of this could have been saved
by following a better process. Operational errors and changing business conditions are
a source of unpredictable problems, even if a sound and complete Software
Production Process is provided. In any case, the estimation of potential savings
presented in the quoted report is at least $200 Billion per year, a huge amount of
money lost due to the absence of the desired Software Process.

Summarizing, in terms of stating the problem, we face a problem that is at the
same time simple to state and complicated to solve. The issue is that producing an
Information System today is costly (because expensive resources have to be used over
extended periods of time), much too slow for modern business conditions, very risky
(in the sense that it is hard to control and with a high failure rate) and highly unsafe
(because it introduces hidden failure points).

The main problem is that the development process has not changed much over the
past 40 years; that is, the task of programming is still the “essential” task.
Programming is the key activity associated with the fact of creating a software
product. But considering the very bad results the programming-oriented techniques
are historically obtaining, a simple question arises: is it worth looking for a better way
of producing software?

We should ask ourselves why so many software systems historically fail to meet
the needs of their customers. For decades, the “silver bullet” has apparently been
provided to the community in the form of some new, advanced software technology,

66 Ó. Pastor

but always unsuccessfully. We have a large list of technologies that were intended to
solve the problem: we could set down in this list Assembler, Third Generation
Languages, Relational Databases, Declarative Programming, Methodologies and
CASE tools (Structured Analysis and Design, Object-Oriented Modelling, UML-
based), Component-based Programming, Aspect-based, Agent-Oriented, Extreme
Programming, Agile Methods, Requirements Engineering, Organizational
Modelling… But always, the same “phantom of the opera”: the unsolved Crisis of
Software notion.

Going back to this idea of “programming” as the key strategy for building a
software product, the characteristics of the well-known Extreme Programming
approach should be commented. Generally speaking, this approach is mainly based on
the idea of having developers (programmers) that interpret the business descriptions
providing by the Business Owner. Developers create and refine the source code that
finally conforms the operational system by properly integrating all the corresponding
software modules. In any case, not only programming, but programming at the
extreme is the issue here. The key skill is programming, and the most important idea
is that “the code is the model”.

According to all the negative results commented above, just going one step further
on programming does not seem to be the correct way. On the contrary, it seems that
one could easily conclude that, with such an strategy, no solution will be provided for
the problem of providing software of quality. But are there any alternatives?

2.1 Extreme Non-programming

Proposed initially in [6], there is a first challenging alternative, and it is centered on
the idea that programming is not the way. Extreme Non-Programming (XNP) stresses
the idea that the conceptual model is the key artifact of a Software Production
Process. The model includes an structured business description, obtained through the
interaction with the Business Owner, and the corresponding machine readable views
(the programs) should be generated from the model following a model transformation
process.

In this case, the key skill is modeling, and the main idea is that “the model is the
code” (instead of “the code is the model”). Under this hypothesis, a sound Software
Production Process should provide a precise set of models (representing the differents
levels of abstraction of a system domain description), together with the corresponding
transformations from a higher level of abstraction to the subsequent abstraction level.
For instance, a Requirements Model should be properly transformed into its
associated Conceptual Schema, and this Conceptual Schema should be converted into
the corresponding Software Representation (final program).

Assuming that behind any programmer decision, there is always a concept, the
problem to be properly faced by any Model Transformation Technology is the
problem of accurately identifying those concepts, together with their associated
software representations. A precise definition of the set of mappings between
conceptual primitives or conceptual patterns and their corresponding software
representations, provides a solid basis for building Conceptual Model Compilers.

 From Extreme Programming to Extreme Non-programming 67

2.2 Conceptual Schema-Centric Development (CSCD)

XNP is not the only alternative. In [1], Prof. Olivé presents his CSCD approach as a
grand challenge for Information Systems Research. Close to the central ideas of XNP,
CSCD is based on the assumption that, to develop an Information System (IS), it is
necessary and sufficient to define its Conceptual Schema.

Being the advancement of science or engineering the primary purpose of the
formulation and promulgation of a grand challenge, the proposal focuses on the
advancement of IS engineering towards automation. Even if this is not at all a new,
disruptive proposal (see how [10], dated at 1971, already argues on the importance of
facing the automation of systems building to improve the software production
process), the fact is that, forty years later, this goal of automated systems building has
not been achieved. There has been a lot of progress, definitely yes, but still today the
design, programming and testing activities require a substantial manual effort in most
projects. In neither of the two most popular development approaches –Visual Studio
or Eclipse- the automation of the system building plays a significant role. Again,
programming is the central activity and most (if not all) tool improvements are
directed to help with the complex task of writing a program, but not with the task of
compiling a conceptual model to avoid the repetitive, tedious and complex task of
programming.

At this point, is it necessary to think about why has this goal not been achieved. Is
it probably unachievable? Is it perhaps worthless to continue trying? Of course, we
don’t think so. On the contrary, even accepting that a number of problems remain to
be solved (especially technical problems, and problems related with the maturity of
the field and the lack of standards), the situation is changing drastically, mainly from
this last aspect of the absence of standards.

Recent progress on widely accepted and well-known standards as UML [4], MDA
[3], XMI, MOF, J2EE, .NET, among others, are really providing an opportunity to
revisit the automation goal. The MDA proposal is specially relevant, because it
intends to provide Software Processes where Model Transformation is a natural
consequence of this view of using models at different levels of abstraction, to
represent the Computer-Independent Model (CIM) at the highest level, the Platform
Independent Model (PIM) as the subsequent level of abstraction, and finally moving
progressively to the solution space through the Platform Specific Model (PSM) and to
the final code. The corresponding transformations between those models provide a
kind of Software Process where all the previous ideas fit perfectly well. Industrial
tools as OptimalJ [2] and ArcStyle [5] allows to experiment these approaches in
practice with quite interesting reported results.

2.3 Model Transformation Technology Through Model Compilation

In the same line of argumentation, there is still a third alternative. The overall
objective of Model Transformation Technology (MTT) is to improve software
development productivity. This objective is pursued by contributing to the realisation
of the vision of model-driven software development. Model Compilation plays a basic
role in achieving this objective. Under the hypothesis that behind any programmer
decision there is always a concept, the task of a sound MTT is to correctly get those

68 Ó. Pastor

concepts, to define the corresponding catalog of conceptual patterns, and to associate
to each of them its corresponding software representation. This set of mappings
constitutes the core of a Conceptual Model Compiler.

Assuming that the history of Software Engineering (SE) has been one of growing
levels of abstraction, MTT technology is just one step further. From the programming
languages point of view, SE first moved from Binary to Assembler code, then from
Assembler to what we consider today to be “Source Code”. Next logical step is to
move from Source Code to Conceptual Schemas. This is the step taken by Conceptual
Model Compilers.

From the industrial point of view, there are some industrial tools providing such a
kind of full Model-Based Code Generation environments, e.g. OlivaNova Model
Execution [7], what allow us to conclude that we are really entering the time of Model
Compilation seen as an operational technology. More details on this potential type of
solutions are given in the next section.

Finally, before closing this section we want to remark that these three approaches
are not the only existing alternatives. We could add the works of S. Kent on Model
Driven Engineering [11], or the proposal of K. Czarnecki around Generative
Programming [12] Al these works are providing a context where we can talk about real
solutions to the problems commented for the current software production processes.

3 The Solutions

In practical terms, what we mean by Extreme Non Programming is just a software
production process, where Requirements Modeling and Conceptual Modeling are the
key issues, and where the Conceptual Model becomes the program itself in the sense
that it can be transformed into the final software product through a process of Model
Compilation.

Any Software Process XNP-compliant will start by specifying a precise
Requirements Model, where the organization structure and relevant components are
properly described, and where the software system is not –yet- an active actor. This
Requirements Model has to be transformed into a Conceptual Schema, where a
particular solution for the Software System is considered, but still at a higher level of
abstraction than the programming level. Model Execution tools will be the
responsible of compiling the model and generating the final application. Working
within a XNP strategy, the final product will be compliant to the business model that
originates it, as the whole process is conceived to assure that.

The alternatives presented in the previous section are closely related when we talk
about concrete solutions. In the rest of this section, we present what could be seen as
an example of a complete software production process that combines functional
requirements specification, conceptual modelling (including data, behaviour and user
interaction design), and implementation. It is defined on the basis of OlivaNova
Model Execution (ONME) [7], a model-based environment for software development
that complies with the MDA paradigm by defining models of a different abstraction
level. Figure 1 shows the parallelism between the models proposed by MDA and the
models dealt with in OO-Method [8], the methodology underlying ONME.

At the most abstract level, a Computation-Independent Model (CIM) describes the
information system without considering if it will be supported by any software

 From Extreme Programming to Extreme Non-programming 69

application; in OO-Method, this description is called the Requirements Model. The
Platform-Independent Model (PIM) describes the system in an abstract way, still
disregarding the underpinning computer platform; this is called the Conceptual Model
in OO-Method. ONME implements an automatic transformation of the Conceptual
Model into the source code of the final user application. This is done by a Model
Compilation process that has implicit knowledge about the target platform. This step
is equivalent to the Platform Specific Model (PSM) defined by MDA.

Fig. 1. An MDA-based development framework for Information Systems development

An important aspect to highlight is that data, function and user interaction
modeling are the three basic components that must be present in every considered
level of abstraction. The success of the final software product is only achieved when
all these three basic modeling perspectives are properly integrated and managed.

The modeling strategies vary depending on the considered level of abstraction. For
instance, at the requirements modeling level, either a functional, use-case oriented
strategy or a goal-oriented modeling approach could be followed from a functional
point of view. Concurrent Task Trees [9] could provide a sound basis for User
Interface-oriented Requirements Gathering.

Fig. 2. A Conceptual Schema must integrate the four complementary views of object modeling,
dynamic modeling, functional modeling and presentation modeling

Object Model Dynamic Model

Functional Model Presentation Model

70 Ó. Pastor

At the Conceptual Modeling level, an Object Model, a Dynamic Model, a
Functional Model and a Presentation Model (see Figure 2) are the correct projection
of the Requirement Models, while a Model Compiler is the responsible of generating
the fully-functional Software Product. This approach provides a rigorous Software
Production Process, that makes true the statement “the Model is the Code”, and where
programming in the conventional, old-fashioned way is not anymore the essential
task, but instead modeling is.

4 The Present and the Future…

We introduce in this section some final reflections. It seems to be clear that adoption
of MTT requires tools. Why don’t sound tools accompany these initiatives? Probably
it is just a matter of time, and we are just now facing the right time. The usefulness of
these tools is quite obvious considering the bad current situation. Usability should just
be a logical consequence of adoption and usefulness.

We have discussed that we face a precise problem –how to produce software with
the required quality-, we have seen a set of potential valid solutions (XNP, CSCD,
MTT…). A relevant set of challenging proposal are on the table to do SE better, and
for the first time, CASE tools could be perceived as a powerful help to solve the
problem of obtaining a correct and complete software product. For too many years,
CASE tools have been perceived as a “problem generator” more than a “code
generator”, because instead of providing a solution for having a better software
production process, they were seen as a new problem –how to use the CASE tool
properly- added to the main software production problem. To avoid this situation, the
modelling effort must be strongly and clearly perceived as a basic effort for
generating quality software. And to do that, it must be proved that the model can be
the code of the application to be. As it has been said before, this is the real challenge
to overcome, and it is successfully being faced.

But would this be accepted even if tools are available? Why do industry mainly
ignore current tools that really implement MTT? The programming inertia is still too
strong. In a world were programming is seen as the essential SE-oriented task, it is not
easy to make programmers accept that the model compiler will do the greatest part of
the conventional programming work.

On the other side, this is not a new situation. Assembler programmers were in the
past very sceptical when they were told that a close-to-english programming language
called COBOL would do the Assembler programming work through the associated
Compiler, and even better than them. But nowadays no people are worried about the
quality of the Assembler generated by Compilers, because they have reached by far
the required level of reliability.

We will face the same situation with the Model Compilers. It is hard to accept by
now that a Java program is just the result of a Conceptual Model Compilation process.
But the truth is that this is possible, and that in fact there are already tools that provide
this capability.

Another important question is to wonder about the role of Interaction / Presentation
Modelling. It is curious to remark that, being user interface design and
implementation, one of the most costly tasks related with software production, it is

 From Extreme Programming to Extreme Non-programming 71

not normally present at modeling level. Everybody knows the Entity-Relationship or
the UML Class Diagram Model as a representative of Data / Object Modeling resp.
When we talk about Functional Modeling, Data Flow Diagrams, UML Interaction
Diagrams, etc. are well-known techniques. But what about asking which is a well-
known, widely accepted User Interaction Modelling Approach? There is no consensus
on that matter.

Probably, the reason of this situation is that traditionally the SE community has
been interested in defining methods and processes to develop software by specifying
its data and behaviour disregarding user interaction. On the other hand, the Human-
Computer Interaction community has defined techniques oriented to the modelling of
the interaction between the user and the system, proposing a user-oriented software
construction. Within a sound MTT-based technology, these two views have to be
reconciled by integrating them in a whole software production process.

In any case, the lack of a precise User Interaction Modelling strategy, properly
embedded in the conventional data and functional modelling tasks is one common
problem of many MTT-based approaches. To overcome this problem, a User
Interaction Model must be present in any software production process to deal with
those aspects related with the user interface to be. This model must be integrated with
the other systems views in the context of a unified system model, and this must be
properly faced at all the relevant levels of abstraction (requirements, conceptual, code).

5 Conclusions

Even though we’ve been talking about the Crisis of Software for the last decades,
producing an Information System today is still a costly process (expensive resources
are used over extended periods), much too slow than required for modern business
conditions, very risky (hard to control, and with a high failure rate) and highly unsafe
(due to the many hidden failure points). Considering that the software development
process has not changed much over the last forty years, and that it has been basically
centered on the idea of programming, it is time to wonder if it is worth looking for a
better way. The fact is that Programming by itself, or complemented with some initial
modeling activity, has failed in providing a solution to the ever-present software crisis
problem. A new perspective is needed to solve the problem of generating a correct
and complete Software Product.

If Programming is not the answer, its most modern versions as Extreme
Programming could just generate “extreme failures”, and we could be talking about the
Crisis of Software issue for many more years. Extreme Programming is just putting
even more emphasis on the programming task, while the well-known problems
associated to the software production process are still present, if not enlarged. What we
propose is just avoiding programming at the traditional low-level, machine-oriented
level of abstraction, and to accomplish a new non-programming-based process,
centered on concepts which are closer to the user domain and the human way of
conceptualizing reality. We called it Extreme Non Programming (XNP).

Accepting that this new perspective is really needed, in this paper we argue on a
software production process based on the idea of Non-Programming. What we call
Extreme Non-Programming (a term already introduced in [6]), is basically in the line

72 Ó. Pastor

of the modern approaches based on MDA, Model Transformation-based Techno-
logies, Conceptual-Schema Centered Development and the like.

We have presented the fundamentals for providing those XNP methods (with their
supporting tools) based on a different “motto”: the idea that “the model is the code”
instead of the conventional, programming-based where “the code is the model”.
According to that, Computer-Aided Software Development Environments intended to
deal with Information Systems Development through the required process of
successive Model Transformation, are strongly required.

In particular, precise Conceptual Schemas must be provided, and how to convert
them into their corresponding software products, by defining the mappings between
conceptual primitives and their software representation counterparts, should be the
basis for a sound transformation process. These mappings are the core of a Model
Compiler, intended to make real the following statement: “to develop an Information
System, it is necessary and sufficient to define its Conceptual Schema”. The
automation of systems building becomes in this way an affordable dream, just looking
for tools (some of them already existing as commented before) to justify its adoption
in practice.

References

[1] A. Olivé, "Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research" Procs. Advanced Information Systems Engineering, 17th
International Conference, CAiSE 2005, Porto, Portugal, June 13-17, 2005. Lecture Notes
in Computer Science 3520 Springer 2005

[2] Compuware. www.compuware.com/products/optimalj/, last visited June 2006
[3] http://www.omg.org/mda, last visited June 2006
[4] http://www.uml.org , last visited June 2006
[5] Interactive Objects www.arcstyler.com/ , last visited June 2006
[6] Morgan,T. "Business Rules and Information Systems – Aligning IT with Business

Goals", Addison-Wesley, 2002
[7] OlivaNova Model Execution System, CARE Technologies, http://www.care-t.com.
[8] Pastor O., Gomez J., Infrán E. and Pelechano V. “The OO-Method approach for

information systems modeling: from object-oriented conceptual modeling to automated
programming”. In Information Systems 26(7), Elsevier, 2001, pp. 507-534.

[9] Paternò, F., “Model-Based Design and Evaluation of Interactive Applications”, Springer-
Verlag, Berlin, 2000.

[10] Teichroew,D.,Sayani,H. “Automation of System Building”, Datamation, 1971
[11] Kent,S. “Model Driven Engineering. IFM’02. Proceeding of the Third International

Conference on Integrated Formal Methods, Springer Verlag, 2002, 286-298.
[12] Czarnecki,K. Generative Programming. Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component
Models. Department of Computer Science and Automation. Technical University of
Ilmenau, 1998

Using an Oracle Repository to Accelerate XPath
Queries�

Colm Noonan, Cian Durrigan, and Mark Roantree

Interoperable Systems Group, Dublin City University, Dublin 9, Ireland
{cnoonan, cdurrigan, mark}@Computing.DCU.ie

Abstract. One of the problems associated with XML databases is the
poor performance of XPath queries. Although this has attracted much
attention by the research community, solutions are either partial (not
providing full XPath functionality) or unable to manage database up-
dates. In this work, we exploit features of Oracle 10g in order to rapidly
build indexes that improve the processing times of XML databases. Sig-
nificantly, we can also support XML database updates as the rebuild
time for entire indexes is reasonably fast and thus, provides for flexible
update strategies. This paper discusses the process for building the in-
dex repository and describes a series of experiments that demonstrate
our improved query response times.

1 Introduction

Native XML databases perform badly for many complex queries where the data-
base size is large or the structure complex. Efforts to use an index are hampered
by the fact that the reconstruction of these indexes (after update operations) is
time-consuming.

In previous research [9], we devised an indexing method to improve the per-
formance of XPath queries. In this work, we focused on the theoretical aspects
of indexing and devised a method of providing fast access to XML nodes based
on the principal axes used by XPath to generate query results. In our previ-
ous work we introduced the PreLevel indexing method and provided theoretical
proofs of its ability to cover the full functionality of the XPath Query Language
and presented optimised algorithms for XML tree traversals [9]. For each of the
primary XPath axes, conjunctive range predicates were derived from the intrin-
sic properties of the preorder traversal ranks and level ranks. By recording both
preorder and level rankings (together with appropriate element values) in the
PreLevel index, we provided algorithms to facilitate optimised query response
times.

The work presented in our current paper was carried out as part of the FAST
project (Flexible indexing Algorithm using Semantic Tags). This research is
funded by a Proof of Concept grant where theoretical ideas are deployed to
provide state-of-the art solutions to current problems. The contribution of this
� Funded By Enterprise Ireland Grant PC/2005/0049.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 73–82, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

74 C. Noonan, C. Durrigan, and M. Roantree

work is in the provision of a new XPath Query Interface that performs well
against the current efforts in the area. Furthermore, we have extended the work
in [9] by delivering a fast method of creating the Semantic Repository and also
by introducing a multi-index system to fine-tune query performance.

The paper is structured as follows: in §2, we discuss similar research in XML
querying; in §3, an outline of the FAST Repository is provided, together with the
process used to construct it; in §4, we describe our process for semantic query
routing; in §5, we provide experimental data in §6, we offer some conclusions.

2 Related Research

Our approach is to employ a native XML database and support the query
processing effort with an indexing method deployed using traditional database
techniques. In this section, we examine similar efforts in this area.

XML Enabled Databases. Many researchers including [5,13] have chosen to
enable relational databases systems rather than employ a native XML database.
In [13], they explore how XML enabled databases can support XML queries by:

1. Utilising two separate indexes on element and text values.
2. Incorporating the MPMGJN algorithm, that is different from the standard

merge join algorithms found on commercial databases.
3. Converting XQuery expressions into SQL statements.

The results [13] suggest that the MPMGJN algorithm is more efficient at sup-
porting XML queries than any of the join algorithms found in commercial XML
enabled databases. By incorporating the MPMGJN algorithm into the query ex-
ecution machinery of the RDBMS, they can become efficient in XML storage and
processing. However, this approach requires that all XML queries be converted
to SQL and in [7], they show that not all XQuery expressions can be translated
into SQL, and in some cases, translate into inefficient SQL statements. A fur-
ther disadvantage of enabled XML databases is their inefficiency at retrieving
entire or subsets of an XML document, as it may require several costly joins to
construct the required result [3].

Native XML Databases. Our PreLevel index structure is an extension of the
XPath Accelerator [4], which uses an index structure designed to support the
evaluation of XPath queries. This index is capable of supporting the evaluation
of all XPath axes (including ancestor, following, child, etc) [2]. It employs a
SAX processor to create pre and post order encoding of nodes that capture the
structural and value-based semantics of an XML document. Furthermore, the
ability to start traversals from arbitrary context nodes in an XML document
allows the index to support XPath expressions that are embedded in XQuery
expressions.

In [11], the experience of building Jungle, a secondary storage manager for
Galax (an open source native XML database) is detailed. In order to optimise

Using an Oracle Repository to Accelerate XPath Queries 75

query processing, they used the XPath Accelerator and indexing structure. How-
ever, one major limitation they encountered was the evaluation of the child axis,
which they found to be as expensive as evaluating the descendant axis. They
deemed this limitation to be unacceptable and designed their own indexes to
support the child axis. Although the XPath Accelerator’s pre/post encoding
scheme has since been updated in [5] to use pre/level/size, our PreLevel Struc-
ture as demonstrated in [9] supports highly efficient evaluations of not just chil-
dren but also of descendants of any arbitrary node. The Jungle implementation
experience also highlighted the significant overhead imposed at document load-
ing time by a postorder traversal, which is not required by the PreLevel index
structure.

3 The FAST Repository

The processing architecture illustrated in Fig. 1 has three levels: document level,
metadata level and storage level. In this section, we begin by describing the role
of the processors connecting the levels and at the end of the section, we present
the comparative times for a range of XML databases. For reasons of clarity, we
now present some of the terminology we use. The metadata extraction file (see 1
in Fig. 1) is a text document; the Oracle table identified as 2 in the same figure
is called the Base Index Table (BIT); and the set of tables identified as 3 are
called the Primary Index Tables (PIT).

3.1 Metadata Extraction

The Metadata Extractor processes the document set at level 1 to generate the
metadata document set at level 2. A basic SAX parser has been enhanced with
semantic rules that trigger events to extract the data required for the PreLevel
indexing method. These events deliver the attributes stored in the metadata
document and are described below:

– As each node is visited the PreOrder and Level events obtain the pre-order
value of the node and the level at which it occurs in the XML document
tree.

– For performance reasons, the Position event determines the position of each
node as it occurs at each level in the hierarchy (left to right). This is used
to optimise algorithms that operate across a single level.

– As each node is read, the Parent event returns the preorder value of the
node’s parent.

– The Type event is used to distinguish between elements and attributes.
– The Name and Value events record the name and value of the node.
– The FullPath event is used to record the entire XML path (from node to

root).
– The DocID event is fired by the eXist database to provide its internal doc-

ument identifier for the XML document.

76 C. Noonan, C. Durrigan, and M. Roantree

XML
Document set

metadata

Metadata
Extractor

Bulk
Storage

eXist
Storage

eXist

Level 1: Document

Level 2: Metadata

Level 3: Storage

Semantic
Indexing

1

2 3

Fig. 1. Repository Processing Architecture

3.2 eXist Storage Processor

The eXist database [6] provides a schema-less storage of XML documents in
hierarchical collections and can store a large amount of XML data. It also uses
built-in methods to store XML documents in its document store with indexed
paged files. The eXist Storage Processor stores an XML document in the form of
collections (of sub-documents), in a hierarchical structure. There is a single par-
ent collection that acts as the root and using this organisational structure, eXist
ensures the speed of querying and information retrieval is significantly faster.

3.3 Bulk Storage Processor

One of the problems with constructing indexes for XML documents is that they
tend to be very large with one or more tuples for each node. Thus, building
the index can be time-consuming and makes the prospect of document updates
difficult. While some form of incremental updating process can be used to address
this problem, we sought to find a means of building entire indexes quickly. Using
Oracle, it is possible to significantly reduce the time required for large amounts
of information (in the case of DBLP, millions of rows) to be inserted, through a
bulk loading process. Oracle’s SQL*Loader provides a means of bypassing time
consuming SQL INSERT commands by presenting the loader with a control file
containing a metadata description of a large text file (generated by our Metadata
Extraction processor).

The Oracle Storage Processor loads the text file generated by the Metadata
Extractor and creates the control file required by the SQL*Loader. The output
from this processor is the creation of the Base Index Table (BIT) in Oracle.

Using an Oracle Repository to Accelerate XPath Queries 77

3.4 Semantic Indexing Processor

This processor is used to create a set of Primary Index Tables that can be used
to improve times for different types of queries. At present, the semantic rules are
quite simple. Initially, a Metadata Table is created containing useful statistics of
the XML data and one set of statistics contains the total number of data elements
in the document set (EntireTotal), each element name (ElemName), the number
of element types (ElemTypeCount) and the number of occurrences of this element
(ElemTotal). For each element that exceeds a threshold Tix, the Semantic Index
Processor generates a Primary Index Table. Tix is calculated by multiplying
the average number of elements (ElemAvg = EntireTotal/ElemTypeCount) by
an IndexFactor that is currently set at 2, based on our empirical study of
XML document content. Thus, an element whose value for ElemTotal≥ Tix will
have a Primary Index Table created. We have found that this has performance
advantages over the creation of multiple indexes on the Base Index Table.

3.5 Repository Build Times

In our experiments, we built the semantic repository for five XML databases on
a Dell Optiplex GX620 (3.20GHz) workstation with 1GB RAM on a Windows
platform. In Fig. 2 we provide the build times for five standard XML databases
[12]. The role of the Bulk Storage Processor played a significant role as the time
required to generate the Semantic Repository for DBLP using SQL INSERT
commands was 8.13 hours and is now reduced to 258.9 seconds using the same
workstation.

Name Size Rows Elems. Atts. Levels BIT PIT BIT+PIT

DBLP 127MB 3736407 3332130 404276 6 258.9s 299.0s 557.9s

Line
Item

30MB 1022978 1022976 2 3 63.4s 3.7s 67.1s

UWM 2MB 66735 66729 6 5 3.8s 0.3s 4.1s

AT_meta 28MB 552987 492005 60982 9 59.4s 75.7s 135.1s

Mondial 1MB 69846 22423 47423 5 3.4s 1.6s 5.0s

Fig. 2. Repository Construction Times

4 Query Processing

The first role of the Query Router (QR) is to classify the query into one of the
following three categories:

– Index Query. These queries are resolved at the index level and are regarded
as text node queries (see §5).

– Partial XPath Query. These queries are processed and routed to more
precise locations in the database. They then use the XQuery processor of
the native XML database.

78 C. Noonan, C. Durrigan, and M. Roantree

– Full XPath Query. These queries are resolved at the index level to gen-
erate a set of unique eXist identifiers. These identifiers allow direct access
to the result documents in the database and do not require eXist’s XQuery
Interface.

For reasons of space, we concentrate on the Partial XPath Query category as
this employs all features of the Semantic Repository and works with the native
XML database to generate the query result set. The QR currently accepts only
XPath queries as input but will convert these to XQuery FLWOR expressions
on output.

4.1 Query Router

The Query Router breaks the location path of an XPath expression into its loca-
tion steps. Each location step comprises an axis, a node test (specifies the node
type and name) and zero or more predicates. The role of this processor is to
modify the XPath axis to provide a more precise location using the algorithms
described in [9] and the data stored in the Semantic Repository. In example 1,
the XPath query retrieves the book titles for the named author.

Example 1. //book[author = ‘Bertrand Meyer’]/title

In Fig. 3(a), the location steps generated by the XPath parser are shown. The
XPath axes, the appropriate nodes and the predicate for the book node are dis-
played. The main role of the Query Router is to provide a more precise location
path and thus improve query performance. Using the descendant-or-self axis
from the root, query processing involves the root node and all of its descendants
until it finds the appropriate book node: our optimiser (using the PreLevel in-
dex) can quickly identify a precise path from the root to this book node. In this
example, it requires a modified location step as displayed in Fig. 3(b).

The Base Index Table is the default index used to improve performance but
before this takes place, a check is made to determine if one of the Primary Index
Tables can be used. In the node test part of the XPath expression, the Query
Router checks to see if one of the PIT set is sorted on that particular element
and if so, can use that index.

Example 2. for $title in doc(‘/db/dblp/dblp.xml’)/dblp/book[author=‘Bertrand
Meyer’]/title return $title

 (a) (b)

Step Axis Node
Test

Predicates

1 child dblp
2 child book [author = ‘Bertrand Meyer’]
3 child title

Step Axis Node
Test

Predicates

1 descendant-or-self node()
2 child book [author = ‘Bertrand Meyer’]
3 child title

Fig. 3. Location Steps

Using an Oracle Repository to Accelerate XPath Queries 79

The final part of this process is the construction of one or more XQuery FLWOR
expressions by inserting the modified axis expressions into the for clause. This
expression in example 2 is passed to the native XQuery processor to complete
the result set.

5 Details of Query Performance

All experiments were run using a 3GHz Pentium IV machine with 1GB memory
on a Windows XP platform. The Query Router runs using Eclipse 3.1 with Java
virtual machine (JVM) version 1.5. The Repository was deployed using Oracle
10g (running a LINUX operating system, with a 2.8 GHz Pentium IV processor
and 1GB of memory) and eXist (Windows platform with a 1.8 GHz Pentium IV
processor and 512MB of memory) database servers. The default JVM machine
settings of eXist were increased from -Xmx128000k to -Xmx256000k to maximise
efficiency. The DBLP XML database was chosen (see Fig. 2 for details) for its
size. For the purpose of this paper, we extracted a subset of the original query
set [8], and extended a categorisation originally used in [1].

– Empty queries (Q5) are those that return zero matches.
– Text node queries (Q6) are queries that return text nodes i.e. XPath queries

that end with the text() function.
– Wildcard queries (Q2) are queries that contain a wildcard character.
– Punctual queries (Q1, Q3, Q4) query only a small portion of the database

and have a high selectivity, thus they return a small number of matches.
– Low selectivity queries (Q6, Q7) are queries that may return a large number

of matches.

Table 1. DBLP Queries used in our experiments

Query XPath Expression Matches
Q1 //inproceedings[./title/text() = ‘Semantic Analysis Patterns.’]/author 2
Q2 //inproceedings[./*/text() = ‘Semantic Analysis Patterns.’]/author 2
Q3 //book[author = ‘Bertrand Meyer’]/title 13
Q4 //inproceedings[./author = ‘Jim Gray’][./year = ‘1990’]/@key 6
Q5 //site/people/person[@id = ‘person’] 0
Q6 //title/text() 328,859
Q7 /dblp/book/series 420

5.1 Queries and Performance Measures

In order to obtain contrasting results, we ran all queries under varying support
modes :

1. eXist. The XPath query is executed using the eXist query processor only.
2. eXist + BIT. The XPath query pre-processed using the Base Index Table

before being passed to the eXist query processor.

80 C. Noonan, C. Durrigan, and M. Roantree

3. eXist + PIT. The XPath query pre-processed using a Primary Index Table
before being passed to the eXist query processor.

4. PreLevel. The XPath query is processed at the PreLevel index without
using the eXist query processor.

For each query, all the execution times are recorded in milliseconds (ms), to-
gether with the number of matches. The times were averaged (with the first run
elimination) to ensure that all results are warm cache numbers.

Table 2 displays the execution times for each of the seven queries in each support
mode. Some of the queries (Q2, Q6) in the eXist mode failed to return any results
(R2, R6), as eXist continually returned an out of memory error. Although the
eXist user guide suggests the alteration of JVM settings in order to address the
problem, even with optimum JVM settings, these queries fail to generate a result.

Table 2. Query Execution Times

Result eXist eXist+BIT eXist+PIT PreLevel
R1 20,324.1 19,807.8 19,408.2 N/A
R2 19,864.4 19,412.9 N/A
R3 801.1 759.3 As eXist + BIT N/A
R4 3,209 2,819.9 2,721.3 N/A
R5 178 6 As eXist + BIT N/A
R6 102,641.2 100,083.4 16,648.2
R7 234.2 1,480 As eXist +BIT N/A

5.2 Performance Analysis

Results R1, R3 and R4 show that the Query Router (QR) can make a significant
difference to punctual queries. Furthermore, the results indicate that the PIT
(where available) is more efficient than the BIT at routing XPath queries.

Result R5 suggests that the QR can efficiently handle queries that return
empty result sets. This is because the QR will always consult its Semantic Repos-
itory (SR) to ensure that a query has a positive number of matches before passing
the query to eXist. The multi-index feature of the SR ensures that this type of
query is identified quickly. As text node queries (Q6) require only the PreLevel
index for processing, they run far more efficiently in the PreLevel mode.

Result R7 indicates that the QR will not improve the performance of child
queries. This is not unexpected as eXist handles this form of query well. The QR
performs less favourably because it must perform an index look-up in order to
determine the respective document URI(s) which are required in each XQuery
expression. However we believe that with the incorporation of a meta-metatable
containing summarised data for each fullpath expression and their respective doc-
ument URIs, the QR will be able to outperform eXist for even this form of query.
This research forms part of ongoing research and initial results are positive [10].

The eXist processor cannot handle the upper scale of low selectivity queries
such as Q6 that return a very large number of matches. However the QR can
process the upper scale of low selectivity queries, by:

Using an Oracle Repository to Accelerate XPath Queries 81

– Utilising our Semantic Repository to calculate the number of matches for a
low selectivity query.

– If the number of matches is greater than a set threshold (50,000 in our
current experiment setup), the QR will break the low selectivity query into
a number (equal to (number of matches/threshold) + 1) of child queries.

– The resulting child queries are equivalent to the low selectivity query.

The eXist processor also fails to handle wildcards where the search range is
high or the database is very large (Q2). If there is a wildcard character in the
node test or predicate clauses, the QR removes the wildcard by processing the
wildcard option at the PreLevel index. This aspect of the QR is not yet fully
functional: it can only remove wildcards in certain queries.

6 Conclusions

In this paper, we presented our approach to improving the performance of XPath
queries. In this context, we discussed the construction of the FAST Semantic
Repository, which includes an indexing structure based upon our prior work on
level based indexing for XPath performance. In our current work, we provide
an extended indexing structure deployed using Oracle 10g and exploit some of
Oracle’s features to ensure a fast rebuilding of the index. Using our Query Router
we can then exploit our indexing structures in one of two broad modes: using
the indexing method to fully resolve the query; use either the Base or Primary
Index Table together with the eXist XQuery processor to generate the result
set. The Query Router accepts XPath expressions as input and creates XQuery
expressions (where necessary) for the eXist database.

We also describe a series of experiments to support our claims that XPath
expressions can be optimised using our indexing structures. Together with the
fast rebuilding of the index, this method supports not only fast XPath queries,
but also a strong basis for the provision of updates. The construction time for
a large index is between 60 and 260 seconds, and this allows for rebuilding the
index multiple times during the course of the day. This provides the basis for
appending to updateable indexes with full rebuilds at set intervals. Thus, our
current research focus is on managing update queries. We are also examining the
cost of PIT builds against their increase in query performance as a fine-tuning
measure for the index. Finally, our next version of the FAST prototype should
include an interface for both XPath and XQuery expressions.

References

1. Barta A., Consens M. and Mendelzon A. Benefits of Path Summaries in an XML
Query Optimizer Supporting Multiple Access Methods. In Proceedings of the 31st
VLDB Conference, pp 133-144, Morgan Kaufmann, 2005.

2. Berglund A. et al. XML Path Language (XPath 2.0), Technical Report W3C Work-
ing Draft, WWW Consortium 2005. (http://www.w3.org/TR/xpath20/).

82 C. Noonan, C. Durrigan, and M. Roantree

3. Beyer K. et al. System RX: One Part Relational, One Part XML. In Proceedings
of ACM SIGMOD Conference on Management of data, pp 347-358, ACM Press,
2005.

4. Grust T. Accelerating XPath Location Steps. In Proceedings of the 2002 ACM
SIGMOND International Conference on the Management of Data, volume 31, SIG-
MOND Record, pp 109-120, ACM Press, 2002.

5. Grust T., Sakr S. and Teuber J. XQuery on SQL Hosts. In Proceedings of the 30th
International Conference on Very Large Databases (VLDB), pp 252-263, Morgan
Kaufmann, 2004.

6. Meier W. eXist: An Open Source Native XML Database. In Web, Web-Services,
and Database Systems, LNCS 2593, pp 169-183, Springer, 2002.

7. Manolescu I., Florescu D., Kossmann D. Answering XML Queries on Heteroge-
neous Data Sources, In Proceedings of the 27th International Conference on Very
Large Databases (VLDB), pp 241-250, Morgan Kaufmann, 2001.

8. Noonan C. XPath Query Routing in the FAST Project. Technical Report ISG-06-
01, http://www.computing.dcu.ie/∼isg, 2006.

9. O’Connor M., Bellahsene Z. and Roantree M. An Extended Preorder Index for
Optimising XPath Expressions. In Proceedings of 3rd XML Database Symposium
(XSym), LNCS Vol. 3671, pp 114-128, Springer, 2005.

10. Roantree M. The FAST Prototype: a Flexible indexing Algorithm using Semantic
Tags. Technical Report ISG-06-02, http://www.computing.dcu.ie/∼isg, 2006.

11. Vyas A., Fernández M. and Simèon J. The Simplest XML Storage Manager Ever.,
In Proceedings of the First International Workshop on XQuery Implementation,
Experience and Perspectives <XIME-P/>, in cooperation with ACM SIGMOD,
pp 27-42, 2004.

12. The XML Data Repository. http://www.cs.washington.edu/research/
xmldatasets/, 2002.

13. Zhang C. et al. On Supporting Containment Queries in Relational Database Man-
agement Systems, In Proceedings of the 2001 ACM SIGMOD International Con-
ference on the Management of Data, pp 425-436, ACM Press, 2001.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 83 – 92, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Relational Nested Interval Encoding Scheme for
XML Data*

Gap-Joo Na and Sang-Won Lee

Dept. of Computer Engineering, Sungkyunkwan University, Suwon-si, Kyunggi, 440-746
{factory, swlee}@skku.edu

Abstract. As XML is rapidly becoming the de-facto standard for data
representation and exchange in the Internet age, there has been a lot of research
on how to store and retrieve XML data in relational databases. However, even
though the XML data is mostly tree-structured, the XML research community
has shown little attention to the traditional RDBMS-based encoding scheme for
tree data. In this paper, we investigate one of the encoding schemes, called
Nested Interval, for the storage and retrieval of XML data. In particular, our
approach is very robust in updating XML data, including insertion of new node.
In fact, the existing RDBMS-based XML storage and indexing techniques work
very poorly against XML data update because the XML data should be re-
encoded from the scratch for virtually any update in XML data. In contract,
Nested Interval scheme does not require re-encoding all nodes. In this respect,
our approach is a viable option for storing and querying update-intensive XML
application.

1 Introduction

As XML is rapidly becoming the de-facto standard for data representation and
exchange in the Internet age, a lot of research has been done on how to store and
retrieve XML data in DBMS(database management system). The existing work is
mainly on how to store and retrieve XML data efficiently in native XML database
management system, ORDBMS(object-relational database management system), or
pure RDBMS(relational database management system).

Among these research, the pure RDBMS-based research on XML data is getting
more popularity recently as the relational databases are more dominant for XML
storage in market shares [1][2][3]. However, the existing RDBMS-based research has
a common problem that we must re-index whole document when a new XML
document insertion or a new element insertion. In order to attack this problem, we
review one of the traditional RDBMS-based encoding scheme, called Nested Interval
[6], and apply it for storage and retrieval of XML data. This technique can efficiently
insert new XML data into the relational databases incrementally, which is impossible
or very inefficient in the existing approach.

* This research was supported by the Ministry of Information and Communication, Korea

under the Information Technology Research Center support program supervised by the
Institute of Information Technology Assessment, IITA-2005-(C1090-0501-0019).

84 G.-J. Na and S.-W. Lee

The XML data is in general tree-structured. Traditionally, RDBMS is known to be
inefficient in storing tree data. Recently, however, several RDBMS-based encoding
schemes for tree data have been proposed, which are not intended for XML data
[5,6,7,8,9]. In particular, Nested Interval tree encoding with continued fractions [8] is
very smart tree encoding scheme in RDBMS. In this paper, we introduce this
technique for storing and retrieving XML data, implement a Web-based XML storage
system based on the technique, and show that this scheme is very efficient in
managing the XML data, including the XML update.

The remainder of this paper is organized as follows. In Section 2, we examine
related work how to store and query a tree-structured data in RDBMS and a recent
well-known RDBMS-based XML encoding scheme, called XPath Accelerator. In
Section 3, we present the nested interval tree encoding scheme with continued
fractions. Section 4 describes an implementation of the nested interval encoding
scheme with continued fractions. Finally, Section 5 concludes with some future work.

2 Related Work

This section briefly reviews the three representative techniques for representing tree-
structured data in RDBMS [5] and also one of the well-known RDBMS-based XML
encoding scheme, called XPath Accelerator.

2.1 Adjacency List Model

Adjacency List model[5] is the method to store a current node key and a parent node
key to store tree-structured data. So, this storage model is easy to search a parent node
from arbitrary node, but the main problem with this approach is that it is inefficient to
find child node, ancestor node and descendant node.

2.2 Materialized Path Model

In this model, we can store each node with the whole path from root node. The path-
value represents a node as an ordered position. For example, the root node is '1' and
'1.1' is a first child node of the root node. The main advantage of this technique is that
we can find a position of current node with only a path value.

2.3 Nested Set Model

In case of Nested Set model[5], each node is indexed using the left(denoted as lft) and
right(denoted as rgt) columns and these columns are stored in a table. Using this
indexing technique, we can know that total node number equals (root node's rgt)/2. In
the nested set model, the difference between the (lft, rgt) values of leaf nodes is always
1, and the descendants of a node can be found by looking for the nodes whose (lft, rgt)
numbers are between the (lft, rgt) values of their parent node. If a parent node has
(p_lft, p_rgt) and a child node has (c_lft, c_rgt), their relation is the relation p_lft <
c_lft, p_rgt > c_rgt. So we can get easily result as we query. Fig.1. shows an example
of Nested Set Model. However, this indexing technique has the disadvantage that we
should re-index the whole nodes when a new node is inserted, updated, or deleted.

 A Relational Nested Interval Encoding Scheme for XML Data 85

Fig. 1. Structure of Nested Set model

2.4 Xpath Accelerator

XPath Accelerator[4], an index model to store XML document in RDBMS, indexes a
node to pre-ordered value and post-ordered value. Fig.2. shows how nodes can index
to pre-ordered value and post-ordered value. Pre-ordered and post-ordered value
stored in RDBMS as we shown Fig.2. Using this indexing model, we can find
ancestor, following, preceding and descendant nodes in the pre/post plane as shown in
Fig.2. However, this indexing technique has a serious disadvantage. When there is
any change in stored XML data, we should re-index all nodes like Nested Set
indexing model.

Fig. 2. Pre-order and post-order traverse

3 Nested Interval Tree Encoding with Continued Fractions

In this section, we review a recent relational approach, called continued fractions, to
apply Nested Interval model [6] to store tree-structured data in RDBMS. This
approach is proposed to support efficient updates in hierarchical data. The concept of
Nested Interval generalizes the idea of Nested Set [5]. Thus, from Nested Interval
encoding, we can easily calculate Materialized Path. Consequently, we can exploit the
advantages of both models. However, Nested Interval model encodes each node with

N
O
D
E

P
R
E

P
O
S
T

a 0 7

b 1 5

c 7 6

d 2 0

e 3 4

f 4 1

g 5 3

h 6 2

86 G.-J. Na and S.-W. Lee

binary rational numbers and thus the size of binary encoding data grows
exponentially, both in breadth and in depth.[6] So, in this paper, we adopt a new
variant of the nested interval model, called Nested Interval Tree Encoding Scheme
with continued fractions[8].

3.1 Basic Structure

A basic structure of the Nested Interval is similar to that of Nested Set, but the
difference between Nested Interval and Nested Set is to represent a node by a rational
numbers in Nested Interval. Like Nested Set, if a parent node has (p_lft, p_rgt) and a
child node has (c_lft, c_rgt), their relation is plft <= clft and crgt >= prgt. So we can
find easily the relationship of nodes.

Nested Interval model uses a rational number set because integer number set can
not represent infinity number between lft and rgt value. One example of such a policy
would be finding an unoccupied segment (lft1, rgt1) within a parent interval (plft,
prgt) and inserting a child node ((2*lft1+rgt)/3, (lft1+2*rgt1)/3) as we shown Fig.3.
After insertion, we still have two more unoccupied segments (lft1, (2*lft1+rgt)/3) and
((lft1+2*rgt1)/3), rgt1) to add more children to the parent node.

Fig. 3. Nested Interval

3.2 Nested Intervals Tree Encoding with Continued Fractions

In basic Nested Interval scheme [6], each node has a represent binary rational number.
But this scheme has a serious problem that the size of binary encoding grows
exponentially, both in breadth and in depth. More seriously, it can cause numeric
overflow. To solve this problem, we use Nested Intervals Tree Encoding with
continued fractions [8].

First, we describe how a node, which encodes a materialized path, can be
converted into a rational number, which is unique to each node. Next, we describe
how we can get relations of nodes with mathematical computation.

3.2.1 The Encoding
Nested Interval labels tree node with rational numbers a/b such that a b 1 and
GCD(a,b)=1, where GCD is the abbreviation for Greatest Common Divisor. For
example, node with a=181 and b=34 can be converted to Materialized Path ‘5.3.11’
by using Euclidean Algorithm[8].

181 = 34 * 5 + 11
34 = 11 * 3 + 1,
11 = 1 * 11 + 0

 A Relational Nested Interval Encoding Scheme for XML Data 87

3.2.2 Continued Fractions
And then, the materialized path ‘5.3.11’ can be converted to rational number by using
simple continued fractions. The following is an example. (Materialized Path ‘5.3.11’
=> Rational Number ‘181/34’)

34

181

11

1
3

1
5 =

+
+

3.2.3 Nested Intervals
In previous section, we could know that one node has a unique Rational Number
value. But, for XML retrieval, we have to know the interval of each node. For this, we
mapped every continued fraction into an interval in 2 steps. First, we associate a
rational number with each continued fraction as follows:

334

16181

1
11

1
3

1
5

+
+=

+
+

+
x

x

x

Then, we assume x [1,). Substituting the boundary values for x into the
Rational Function for Materialized Path ‘5.3.11’, we can find that it ranges inside the
(181/34, 197/37] semi-open interval. Moreover, we can find rational number of parent
node in same time. In a nested interval (a/b, c/d), rational number of parent node is
(a-c)/(b-d).

3.3 XPath Style Queries

To query XML data, we present the details of translating each step in an XPath style
query to use our indexing model. The purpose of this paper is to present suitability for
XML storage and retrieval. So, we describe how XPath style queries[4] can be
computed easily with mathematics computation. In this section, we explain how to
compute relationship of nodes mathematically.

3.3.1 Child Node and Parent Node
To get the parent node, first, we have to find the Materialized Path of a current node,
and then we can get parent node value with the path. For example, if one node has a
rational value ‘181/34’, we can get Materialized Path ‘5.3.11’ with using Euclidean
Algorithm. Next, we represent path 5.3.11 as matrix product.

=⋅⋅
334

16181

01

111

01

13

01

15

In the result matrix, (1,2) value / (2,2) value is a rational value of parent node. So
the parent node of ‘181/34’ is ‘16/3’. To get the child node, we can easily calculate
node value with using matrix product. For more detail processing, refer the paper [8].

88 G.-J. Na and S.-W. Lee

3.3.2 Ancestor Node and Descendant Node
We can find ancestor node and descendant node using Nested Interval. Relation
between ancestor node (ax, ay) and descendant node (dx, dy) is ax < dx < dy < ax. So,
we can get relation of two nodes.

3.3.3 Following Node and Preceding Node
Following node and preceding node can also get to use Nested Interval and using
3.3.1. First, we can get the nested interval of parent node (px, py), and then following
node (fx, fy) is px<py<fx<fy. And we can get preceding nodes (prx, pry) to use
reverse relation.

prx<pry<px<py

3.3.4 Following-Sibling and Preceding-Sibling
To get next sibling node (following node), we just add two nodes (current node,
parent node). But, we must add two nodes separately about numerator, denominator.

For example, we can get next sibling node ‘5.3.12’ of current node ‘5.3.11’.
Current node is ‘181/34’ and parent node of the node is ‘16/3’, so, following sibling
node ‘5.3.12’ is ‘181+16 / 34+3’. In the same manner, preceding sibling node ‘5.3.10’
is ‘181-16 / 34-3’.

4 Implementations

Now, we describe how to implement Nested Interval indexing model system in a
commercial RDBMS. Even though our system uses a particular commercial RDBMS,
it can be applied to any RDBMS products.

Our implementation uses 2.0GHz Pentium IV processor with 1GB of physical
memory running Redhat AS3 Linux Server. We use an Apache 2.0 Web-Server
compiled with PHP 4.1.12 and Oracle 10g database management system. Our XML
data used [11] (The Plays of Shakespeare in XML).

4.1 System Architecture

Fig.4. shows the system architecture and it consists of two processes. One process is
to store XML data as following step.

(1) Parsing XML document using JAVA SAX Parser[10] to Materialized Path.
(2) Encoding Materialized Path to Nested Interval Scheme using Java stored

procedure.
(3) Storing XML data to RDBMS.

The other process is to query process. User must input pure SQL query to the
system because our system can not support to XPath query. We will add an Xpath
Parser(Xpath -> SQL) to the system later.

 A Relational Nested Interval Encoding Scheme for XML Data 89

Fig. 4. System Architecture

4.2 Mapping Functions

We implement some functions that map Materialized Path into Nested Interval with
an XML document to store RDBMS. Each function was coded using Java Class, and
they are called from Oracle PL-SQL. Followings are functions of each group.

− Storing function group : x_numer, x_denom, y_numer, y_denom, …
− Relation function group : parent_numer, distance, child_numer, ...
− Path function group : path, path_numer, path_denom, sibling_number, …

4.3 Table Scheme and Data Inserting

We create a table for storing XML document in RDBMS and table scheme is
following.

CREATE TABLE XML_DOCS(
 DOCID INT NOT NULL,
 NODEID INT NOT NULL,
 DOC_NAME VARCHAR2(30) NOT NULL,
 NODE_TYPE INT NOT NULL,
 NODE VARCHAR2(100),
 CONTENT VARCHAR2(2000),
 L_NUMER INT NOT NULL,
 L_DENOM INT NOT NULL,
 R_NUMER INT NOT NULL,
 R_DENOM INT NOT NULL,
 P_NUMER INT,
 P_DENOM INT,

DEPTH INT,
 CONSTRAIONT XML_PK PRIMARY KEY(DOCID, NODEID));

4.4 Inserting XML Document

When we insert each node into the table in RDBMS, we can use the previous scheme.
And when we insert XML document for the first time, we can insert values calculated
through the parsing stage with functions.

90 G.-J. Na and S.-W. Lee

INSERT INTO XML (DOCID, NODEID, DOC_NAME, NODE_TYPE, NODE, CONTENT, L_NUM
ER, L_DENOM, R_NUMER, R_DENOM, P_NUMER, P_DENOM, DEPTH)
VALUES(8, 2, 'hamlet.xml', 1, 'TITLE', ' ', path_numer('2.2'), path_denom('2.2'), path_numer('2.2')+ pat
h_pnumer('2.2'), path_denom('2.2')+ path_pdenom('2.2'), path_pnumer('2.2'), path_pdenom('2.2'), depth
(path_numer('2.2'), path_denom('2.2')))

Fig. 5. XML File List

This insert step can be processed automatically like Fig.5., and it takes the constant
time because our indexing technique has the advantage that it does not need to re-index
whole document when we insert additional nodes into RDBMS. Table.1. shows a
result that the total time increases linearly as we insert new nodes. For this experiment,
first we deleted mid-nodes of an XML document in [10] and parsed it. And then, we
stored XML document in RDBMS and inserted new nodes that had been deleted. So
we could obtain the result that the inserting time per each node is increase linearly.

Table 1. Total elapsed time vs. Number of nodes

Number of node(add new nodes) 100 500 1000 2000 3000 4000 5000

Total Elapsed Time(ms) 96 510 997 1992 3013 4101 5078

4.5 Translating XPath Queries into SQL Queries

The following is an example that describes how XPath query translate into SQL
query. In the system, we have to query using only SQL query. So user must convert
an Xpath to SQL manually. The conversion can be decided performance of query
process. So Xpath parser(Xpath to SQL) is very important and hard to develop. We
will develop efficient XPath parser as soon as possible. So, currently we query to the
system manually like Fig.6.

 A Relational Nested Interval Encoding Scheme for XML Data 91

<Query for descendant node>
• //ACT/ descendant::TITLE
SELECT x1.doc_name, x1.node||'('||x1.l_numer||'/'||x1.l_denom||','|| x1.r_numer||'/'||x1.r_denom ||')', x2.no
de||'('||x2.l_numer||'/'||x2.l_denom||','|| x2.r_numer||'/'||x2.r_denom ||')' FROM xml x1, xml x2
WHERE x1.node='ACT' and x2.node='TITLE' AND x1.docid=x2.docid AND x1.l_numer/x1.l_denom
< x2.l_numer/x2.l_denom AND x1.r_numer/x1.r_denom > x2.r_numer/x2.r_denom
[Elapsed: 00:00:00.10 Sec]

Fig. 6. XML Retrieval

In case of related research XPath Accelerator[3], in order to improve the
performance in query processing, they try to narrow scanning range(from one value to
infinity). But in our scheme Nested Interval, each node has fixed range, which is
called Nested Interval. So, we can expect much better performance to query large
volume data.

5 Conclusions and Future Work

In this paper, we exploited the nested interval model for encoding tree data in
RDBMS, and applied the technique for XML storage, in particular, in order to avoid
re-indexing the whole data whenever an update occur in XML document. The Nested
Interval model generalizes nested set so it provides the same advantages of both
Nested Set and Materialized Path. The key advantage of Nested Interval is that we do
not need to re-index whole document as additional nodes inserted in RDBMS. And
we can find easily position values of each node by calling some functions which use
mathematical computation. So we can find a position value of parent or child node
without access RDBMS. In conclusion, Nested Interval model, which is proposed to
store tree-structure data, can be used for XML storage as we have shown in section 4.

Our next work is to develop Xpath Parser, which translates XPath queries into SQL
queries automatically. By using this parser, we can expect user convenience. And we
must show the performance advantages of our scheme, through various benchmark

92 G.-J. Na and S.-W. Lee

tests. Lastly, we will apply this scheme to ORDBMS by using extensible
index[12][13]. So, users can handle and index the XML data as easily as they do
numeric or string data with B+ tree index.

References

1. D.Floresce, D.kossman, “Storing and Querying XML data Using a RDBMS”, IEEE Data
Engineering Bulletin, Vol.22, No 3, 1999

2. I. Tatarinov et al., “Storing and Querying Ordered XML Using a Relational Database
System”, Proc. ACM SIGMOD Int’l Conf. on Management of Data, 2002

3. Torsten Grust, “Accelerating XPath Location Steps”, ACM SIGMOD, Madison, June,
2003

4. W3C, XML Path Language(XPath), Version 1.0, W3C Recommendation, November 1999
5. CELKO.J, “Joe Celko's Trees & Hierarchies in SQL for Smarties”, Morgan Kaufmann,

2004
6. TROPASHKO, V. 2003a. Trees in SQL:Nested Sets and Materialized Path. http://www.

dbazine.com/tropashko4.shtml
7. V. TROPASHKO “Nested Intervals with Farey Fractions.”, http://arxiv.org/html/cs.DB/

0401014
8. V. TROPASHKO “Nested Intervals Tree Encoding with Continued Fractions.”, http://

arxiv.org/pdf/cs.DB/040251
9. V. TROPASHKO “Nested Intervals Tree Encoding in SQL.”, SIGMOD 2005

10. http://www.saxproject.org/
11. The Plays of Shakespeare in XML. (http://www.xml.com/pub/r/396)
12. S. Sundara et al., "Developing an Indexing Scheme for XML Document Collections using

the Oracle8i Extensibility Framework," Proceedings of VLDB 2001
13. Oracle Corp., "Data Cartridge Developer's Guide 10g Release1 (10.1)," http://download-

west.oracle.com/docs/cd/B14117_01/appdev.101/b10800/toc.htm

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 93 – 103, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Prototype of a Schema-Based XPath
Satisfiability Tester

Jinghua Groppe and Sven Groppe

University of Innsbruck, Technikerstrasse 21a, AT-6020 Innsbruck, Austria
{Jinghua.Groppe, Sven.Groppe}@uibk.ac.at

Abstract. The satisfiability test of queries can be used in query optimization for
avoiding submission and computation of unsatisfiable queries. Thus, applying the
satisfiability test before executing a query can save evaluation time and
transportation costs in distributed scenarios. Therefore, we propose a schema-
based approach to the satisfiability test of XPath queries, which checks whether or
not an XPath query conforms to the constraints in a given schema. If an XPath
query does not conform to the constraints given in the schema, the evaluation of
the query will return an empty result for every XML document. Thus, the XPath
query is unsatisfiable. We present a complexity analysis of our approach, which
proves that our approach is efficient at typical cases. We present an experimen-
tal analysis of our developed prototype, which shows the optimization potential of
avoiding the evaluation of unsatisfiable queries.

1 Introduction

XPath is a query language for XML data. A key determinant in XPath evaluation is
the satisfiability problem of XPath queries. An XPath query Q is unsatisfiable, if the
evaluation of Q on any XML document (which conforms to a schema) returns every
time an empty answer. Therefore, the satisfiability test of XPath queries plays a criti-
cal role in query optimization. The application of the satisfiability test can avoid un-
necessary submission and evaluation of unsatisfiable queries, thus saving processing
time and query cost. Therefore, several contributions focus on the satisfiability test of
XPath queries with or without respect to schemas [1][6][7][8].

We focus on the satisfiability test in the presence of XML Schemas, since the satis-
fiability test with schemas can detect more errors in XPath queries than without sche-
mas. Our approach supports recursive and non-recursive schemas and all XPath axes.

Our approach evaluates XPath queries on XML Schema definitions rather than the
instance documents of the schemas. Since the satisfiability test for the XPath subset
supported by our approach in the presence of schemas is undecidable [1], we present
an incomplete, but fast satisfiability tester, i.e. if our tester returns unsatisfiable, then
we are sure that the XPath query is unsatisfiable, but if our tester returns maybe satis-
fiable, then the XPath query may be satisfiable or may be unsatisfiable. Note that we
do not loose correctness in the proposed application scenarios of our satisfiability
tester when using an incomplete tester.

Related Work. Many research efforts are dedicated into the satisfiability problem of
XPath queries. [1] theoretically studies the complexity problem of XPath satisfiability

94 J. Groppe and S. Groppe

in the presence of DTDs, and shows that the complexity of XPath satisfiability de-
pends on the considered subsets of XPath queries and DTDs. We present a practical
algorithm for testing the satisfiability of XPath queries. [6] investigates the problem
of XPath satisfiability in the absence of schemas. [8] examines the test of satisfiability
of tree pattern queries (i.e. reverse axes are not considered) with respect to non-
recursive schemas. [7] suggests an algorithm to test the satisfiability of XPath queries,
but allows only non-recursive DTDs and does not support all XPath axes. We support
recursive schemas and all XPath axes. [5] filters the unsatisfiable XPath queries by a
set of simplification rules while we use the constraints given by an XML Schema
definition to check the satisfiability of XPath. [3] extends the applications of satisfi-
ability test to optimizations for XML query reformulation and shows how to reduce
the containment and intersection test of XPath expressions to the satisfiability test.
We extend our contribution in [4] by a complexity analysis of our approach, which
shows that our approach is efficient for typical cases, and a performance analysis,
which proves the optimization potential of using our satisfiability tester in query
optimization.

The rest of the paper is organized as follows: Section 2 describes the supported
subsets of XPath and XML Schema. Section 3 describes a data model for XML
Schema, which is used by our XPath satisfiability tester that is presented in Section 4.
Section 4 also includes a complexity analysis of our XPath satisfiability tester. A
comprehensive performance analysis is presented in Section 5. Finally, we end up
with the summary and conclusions in Section 6.

2 XPath and XML Schema

In this paper, we consider the basic properties of the XPath language [13][14]. Let e
be an XPath expression, q be a predicate expression of XPath and C be a literal, i.e. a
string or a number. The abstract syntax of the supported XPath subset is defined in
Extended Backus Naur Form (EBNF) as follows:

e::= e|e | /e | e/e | e[q] | axis::nodetest.
q::= e | e=C | e=e | q and q | q or q | not(q) | (q) | true() | false().
axis::= child | attr | desc | self | following | preceding | parent | ances | DoS | AoS | FS | PS.
nodetest::= label | ∗ | node() | text().

where we write DoS for descendant-or-self, AoS for ancestor-or-self, FS for following-sibling and
PS for preceding-sibling. Furthermore, we use attr as short name for attribute, desc for de-
scendant and ances for ancestor.

We support the subset of the XML Schema language [12], which contains the most
important language constructs to express XML Schema definitions, where a given
XML Schema definition must conform to the following rules defined in EBNF.

 XSchema ::= <schema > (elemD|attrGD|groupD|compTD)* </schema>.
elemD ::= <element name='N' occurs? (type=‘T’)?> <complexType (mixed='true')?
 (ref='N)?> complexType? </complexType> (attrR|attrD)* </element>.
groupD ::= <group name='N'> complexType? </group>.
compTD ::= <complexType name='N'> complexType </complexType>.
complexType ::= <all occurs?> complexType?</all> | <sequence occurs?> complexType?
 </sequence> | (elems|groupR)*.

 A Prototype of a Schema-Based XPath Satisfiability Tester 95

elems ::= (elemD | <element ref='N' occurs? />)*.
groupR ::= <group ref='N'/>.
attrR ::= <attributeGroup ref='N'/>.
attrGD ::= <attributeGroup name='N'> (attrD)* </attributeGroup>.
attrD ::= <attribute name=’N’ type=’T’ (use= ‘required’)?/>
occurs ::= minOccurs=num maxOccurs=(num|'unbounded').

where T is a simple type, N is a name and num is a number.

Example 1. Fig. 1 presents an example of an XML Schema definition web.xsd, which
describes webpages.

(D1) <schema>
(D2) <group name=‘pages’>
(D3) <sequence>
(D4) <element name=‘page’

minOccurs=‘0’ maxOccurs=‘1’>
(D5) <complexType>
(D6) <sequence>
(D7) <element name=‘title’ minOccurs=‘0’

maxOccurs=‘1’ type=‘string’/>
(D8) <element name=‘link’

minOccurs=‘0’>
(D9) <complexType>

(D10) <group ref=‘pages’ minOccurs=‘0’
maxOccurs=‘unbounded’/>

</complexType> </element>
</sequence> </complexType>

</element> </sequence> </group>

(D11) <element name=‘web’>
(D12) <complexType>
(D13) <group ref=‘pages’
minOccurs=‘0’ maxOccurs=‘unbounded’/>

</complexType> </element>
</schema>

Fig. 1. An XML Schema definition web.xsd

3 Data Model for XML Schema Language

Based-on the data models for the XML language given by [11] and [9], we develop a
data model for XML Schema for identifying the navigation paths of XPath queries on
an XML Schema definition. The transitive closure f+ and reflexive transitive closure
f* of a relationship function f:T→Set(T) are defined as follows:

f n(x) = { z | y∈f n-1(x) ∧ z∈f(y) }, where f 0(x) = {x}, f 1(x) = f (x)
f +(x) = ∪n=1

∞ f n(x) and f *(x) = ∪n=0
∞ f n(x)

An XML Schema definition is a set of nodes of type Node. There are four specific
Node types in an XML Schema definition, which are associated with instance nodes
of the XML Schema defintion: root, iElem, iAttr and iText. Accordingly, we define four
functions of Node→Boolean to test the type of a node: isRoot, isiElem, isiAttr, and isiText,
which return true if the type of the given node is a root node, is of type iElem, iAttr or
iText respectively, otherwise false.

Definition 1 (instance nodes). The instance nodes of an XML Schema definition are

• <element name=N> (which is of type iElem),
• <attribute name=N> (which is of type iAttr),
• <complextType mixed= ‘true’> (which is of type iText),
• <element type=T> (which is of type iText), where T is a simpleType.

96 J. Groppe and S. Groppe

Definition 2 (succeeding nodes). A node N2 in an XML Schema definition is a suc-
ceeding node of a node N1 in the XML Schema definition if

• N2 is a child node of N1, or
• N1=<element type=N> and N2=<complexType name=N> with the same N, or
• N1=<element ref=N> and N2=<element name=N> with the same N, or
• N1=<group ref=N> and N2=<group name=N> with the same N, or
• N1=<attributeGroup ref=N> and N2=<attributeGroup name=N> with the same N.

Definition 3 (preceding nodes). Node N1 in an XML Schema definition is a preceding
node of a node N2 in the XML Schema definition if N2 is a succeeding node of N1.

Fig. 2 defines the relation functions of Node→Set(Node), which relate a schema node to
other schema nodes. For instances, root(x) returns the root node of the document in
which x occurs; iChild relates a node to its instance child nodes. For computing iChild(x),
an auxiliary function S(x) is defined, which relates the node x to the self node and all
the descendant nodes of x, which occur before the instance child nodes of x in the
document order. iDesc relates a node to all its instance descendant nodes and is defined
to be the transitive closure iChild+. The relation function iSibling(x) relates the node x to
its instance sibling nodes. iBranch(x) relates node x to all the instance element nodes
excluding any ancestors and descendants of the node x. iPS(x) relates the node x to its
instance sibling nodes that occur before node x in the document order, and iPreceding(x)
relates node x to its instance branch nodes that occur before node x in the document
order. We write y<<x to indicate that the node y occurs before the node x in the docu-
ment order of an instance document. The document order is computed from an XML
Schema definition in the following way: if a set of elements is declared as sequence
with the attribute maxOccurs set to 1, the document order of elements is the order in
which they are defined; if it is declared as all or as sequence with the attribute maxOccurs
set to a number greater than 1, any element of this set of elements can occur before
any other elements of this element set in an instance document.

root(x) = { y | isRoot(y)}
succe(x) = { y | y is a succeeding node of x }
prece(x) = { y | y is preceding node of x }
S(x) = ∪i=0

∞ Si, where S0 = {x}, Si = { z | y∈Si-1 ∧
z∈succe(y) ∧ ¬isiElem(z) ∧ ¬isiAttr(z) }

P(x) = ∪i=0
∞ Pi, where P0 = {x}, Pi = { z | y∈Pi-1 ∧

z∈prece(y) ∧ ¬isiElem(z) ∧ ¬isiAttr(z) }
iChild(x) = { z | y∈S(x) ∧ z∈succe(y) ∧

(isiElem(z) ∨ isiText(z)) }
iAttribute(x) = { z | y∈S(x) ∧ z∈succe(y) ∧ isiAttr(z) }
iParent(x) = { z | y∈P(x) ∧ z∈prece(y) ∧ isiElem(z) }
iSibling(x) = {y | z∈iParent(x) ∧ y∈iChild(z)}

iBranch(x) = {y | y∈iChild+(root(x)) ∧
y ∉iParent∗(x) ∧ y ∉iChild+(x) ∧
¬isiAttr(y)}

iDesc(x) = {z | z∈iChild+(x)}
iAnces(x) = {z | z∈iParent+(x)}
iDoS(x) = {z | z∈iChild∗(x)}
iAoS(x) = {z | z∈iParent∗(x)}
iPS(x) = {y | y∈iSibling(x) ∧ y << x}
iFS(x) = {y | y∈iSibling(x) ∧ x << y}
iPreceding(x) = {y | y∈iBranch(x) ∧ y << x }
iFollowing(x) = {y | y∈iBranch(x) ∧ x << y}

Fig. 2. Used relation functions

Let NodeTest be the type of the node test of XPath. An auxiliary function attr(x, name)
retrieves the value of the attribute name of the node x. The function NT: Node × Node-
Test→Boolean, which tests a schema node against a node test of XPath, is defined as:

 A Prototype of a Schema-Based XPath Satisfiability Tester 97

• NT(x, ∗) = isiElem(x) ∨ isiAttr(x) • NT(x, label) = (isiElem(x) ∧ (attr(x, name)=label))
• NT(x, text()) = isiText(x) ∨ (isiAttr(x) ∧ (attr(x, name)=label))
• NT(x, node()) = true

4 Satisfiability Tester for XPath Queries

Our proposed XPath satisfiability tester evaluates an XPath query on an XML Schema
definition, and computes a set of schema paths to the possible nodes specified by the
XPath query when the XPath query is evaluated by a common XPath evaluator on
XML instance documents of the schema. If an XPath query cannot be evaluated com-
pletely, the schema paths for the XPath query are computed to an empty set of schema
paths, i.e. the XPath query is unsatisfiable according to the schema.

Definition 4 (Schema paths). A schema path is a sequence of pointers to either the
schema path records <XP’, N, z, lp, f> or the schema path records <o, {f, …, f}>, where

• XP’ is an XPath expression,
• N is a node in an XML Schema definition,
• z is a set of pointers to schema path records,
• lp is a set of schema paths,
• f is a schema path list, or a predicate expression q’, and q’ ∈ {true(), false(),

self::node()=C}, where C is a literal, i.e. a number or a string, and
• o is a keyword.

XP’ is the part of a given XPath query, which has been evaluated; N is a resultant
node of a schema whenever XP’ is evaluated by our satisfiability tester on the schema
definition; z is a set of pointers to the schema path records in which the schema node
is the parent of the schema node of the current schema path record. Note whenever a
schema path record is the first schema path record of a loop, the schema path record
has more than one possible parent schema path record. lp represents loop schema
paths; f represents either a schema path list computed from a predicate q that tests the
node N, or the predicate expression q itself from which no schema paths can be com-
puted like true() or false(), but also including self::node()=C. o represents operators like
or, and and not.

4.1 Computing Schema Paths

We use the technique of the denotational semantics [10] to describe our XPath satisfi-
ability tester, and define the following notations. Let z be a pointer in a schema path
and d is a field of a schema path record, we write z.d to refer to the field d of the
schema path record to which the pointer z points. We use the letter S to represent the
size of a schema path p, thus p(S) to represent the last pointer, p(S-1) the pre-last
pointer, and so on.

Fig. 3 defines the denotational semantics L of the XPath satisfiability tester. The
function L takes an XPath expression and a schema path as argument and yields a set
of new schema paths, and is defined recursively on the structure of XPath expres-
sions. For evaluating each location step of an XPath expression, our XPath satisfi-
abiliy tester first computes the axis and the node test of the location step by iteratively

98 J. Groppe and S. Groppe

taking the schema node p(S).N from each schema path p in the path set as the context
node. The path set is computed from the part xp’’ of the XPath expression, which has
been evaluated by the XPath satisfiability tester. For each resultant node r selected by
the current location step xpf, a new schema path is generated based on the old path p.
The auxiliary function ϑ(r, g) generates a new schema path record e=<xp’, r, g, -, ->, adds
a pointer to e at the end of the given schema path p and returns a new schema path,
where xp’=xp’’/xpf and g is a set of pointers to schema path records.

• L DoS::n (p)= L self::n (p) ∪ L desc::n (p)
• L AoS::n (p) = L self::n (p) ∪ L ances::n (p)
• L FS::n (p) = { ϑ(r, p(S).z) | r∈iFS(p(S).N) ∧ NT(r,n) }
• L following::n (p) = L AoS:: ∗/FS :: ∗/DoS::n (p)
• L PS::n (p) = { ϑ(r, p(S).z) | r∈iPS(p(S).N) ∧ NT(r,n) }
• L preceding::n (p) = L AoS:: ∗/PS :: ∗/DoS ::n (p)
• L attr::n (p) = { ϑ(r, p(S)) | r∈iAttr(p(S).N) ∧ NT(r,n) }
• L e[q] (p) = A({L q (p’+f)}, S, p’), where f=∅ ∧ p’∈L e (p)
• L e[q1[q2]] (p) = A({L q1[q2] (p’+f)}, S, p’),

where f=∅ ∧ p’∈L e (p)
• L e[self::node()=C] (p) = A({‘self::node()=C’}, S, p’),

where p’∈L e (p)
• L e[e1 = C] (p) = L e[e1[self::node()=C]] (p)
• L e[q1][q2] (p) = A({A({L q2 (p’+f2), L q1 (p’+f1)}, S, f)},

S, p’), where p’∈L e (p) ∧ f=(<‘and’, ->) ∧ f1=∅ ∧ f2=∅.
• L e[q1 and q2] (p) = L e[q1][q2] (p)
• L e[q1 or q2] (p) = A({A({L q2 (p’+f2), L q1 (p’+f1)}, S, f)},

S, p’), where p’∈L e (p) ∧ f=(<‘or’, ->) ∧ f1=∅ ∧ f2=∅.
• L e[q1 = q2] (p) = A({A({L q2 (p’+f2), L q1 (p’+f1)}, S, f)},

S, p’), where p’∈L e (p) ∧ f=(<‘=’, ->) ∧ f1=∅ ∧ f2=∅.
• L e[not(q)] (p) = A({A({L q (p’+f1)}, S, f)} , S, p’),

where f=(<‘not’, ->) ∧ p’∈L e (p) ∧ f1=∅.

• L e1|e2 (p) = L e1 (p) ∪ L e2 (p)
• L /e (p) = L e (p1) ∧ p1=(</,/,-, -, - >)
• L e1/e2 (p) = { p2 | p2∈L e2 (p1) ∧ p1∈L e1 (p) }
• L self::n (p) = { ϑ(p(S).N, p(S).z) | NT(p(S).N, n) }
• L child::n (p) = {ϑ(r, p(S)) | r∈iChild(p(S).N) ∧ NT(r,n)}
• L’ self::n (p) = { p | NT(p(S).N, n) }
• L desc::n (p) = { p’ | p’∈∪i=1

∞ L’ self::n (pi) ∧
∀k∈{1, …, S-1 }: pi(k).N≠pi(S).N ∨ pi(k).XP’≠pi(S).XP’

where pi∈L child::∗ (pi-1) ∧ p1∈L child::∗ (p), or
p’∈∪i=1

∞ L’ self::n (pi-1) ∧ X(pi(k), (pi(k),..,pi(S-1))) ∧
Z(pi(k), pi(S).z)) ∧ ∃k∈{ 1,.., S-1 }: pi(k).N=pi(S).N ∧

pi(k).XP’=pi(S).XP’, where pi∈L child::∗ (pi-1) ∧
pi-1∈ L child::* (pi-2) ∧ p1∈L child::∗ (p).

•L parent::n (p) = { ϑ(r, x)| r=Z1.N ∧ Z1∈p(S).z ∧
x=Z1.z ∧ NT(r,n) }

• L ances::n (p) = { p’ | p’∈∪i=1
∞ L’ self::n (pi) ∧

∀k∈{1,.., S-1}: pi(k).N≠pi(S).N ∨ pi(k).XP’≠pi(S).XP’,
where pi∈L parent::∗ (pi-1) ∧ p1∈L parent::∗ (p), or

p’∈∪i=1
∞ L’ self::n (pi-1) ∧ X(pi(k), (pi(k),..,pi(S-1))) ∧

Z(pi(k), pi(S).z)) ∧ ∃k∈{1,.., S-1}: pi(k).N=pi(S).N ∧
pi(k).XP’=pi(S).XP’, where pi∈L parent::∗ (pi-1) ∧

pi-1∈L parent::* (pi-2) ∧ p1∈L parent::∗ (p).

L: XPath expression × schema path → set(schema path)

Fig. 3. Formulas for constructing schema paths

In the case of recursive schemas, it may occur that the XPath satisfiability tester
revisits a node N of the XML Schema definition without any progress in the process-
ing of the query. We call this a loop. A loop might occur when an XPath query con-
tains the axis desc, ances, preceding or following, which are boiled down to the recursive
evaluation of the axis child or parent respectively. We detect loops in the following
way: Let r be a visited schema node when evaluating the part xp’ of an XPath expres-
sion. If there exists a schema path record p(i) in p, such that p(i).N=r, and p(i).XP’=xp’, a
loop is detected and the loop path segment is lp = (p(i), …,p(S)). lp will be attached to the
schema node p(i).N where the loop occurs. For computing L desc::n (p), we first compute
pi | pi∈L child::* (pi-1) where p1=L child::* (p). If no loop is detected in the path pi, i.e. ∀k∈{1,
..., S-1}: pi(k).N≠pi(S).N ∨ pi(k).XP’≠pi(S).XP’, L’ self::n (pi) is then computed in order to con-
struct a possible new path from pi. If a loop is detected in the path pi, i.e. ∃k∈{1,.., S-1}:
pi(k).N=pi(S).N ∧ pi(k).XP’=pi(S).XP’, a loop path segment, i.e. {pi(k), …, pi(S-1)} is identified.
The function X modifies the schema path record, which is the head of the loop, by

 A Prototype of a Schema-Based XPath Satisfiability Tester 99

adding the loop path into the schema path record, i.e. X(pi(k), (pi(k),..,p(S-1))), and returns
true. Furthermore, although the schema nodes in two schema path records are the
same, i.e. pi(k).N=pi(S).N, these two nodes have different parents, i.e, pi(k).z ≠ pi(S).z.
Therefore, the new parent pi(S).z has to be recorded and this is done by the function Z,
which adds a parent pointer into the schema path record pi(k), i.e. Z(pi(k), pi(S).z), and
returns true.

The schema paths of a predicate are attached to the context node of the predicate.
The function A(F, i, p) writes F into the field p(i).f and returns the modified schema path
p. The parameter F = {f1,..,fk} is computed from a set of predicates q1,..qk. fi is either a
schema path list computed from a predicate qi, or is the predicate expression qi itself
when qi does not contain location steps. The node p(i).N is the context node of these
predicates. qi is evaluated to false if qi is computed to the empty schema paths with the
exception of not(qi), which is computed to true. For instance, L e[q1 and q2] (p) is com-
puted to empty paths if q1 or q2 are evaluated to false. When computing the schema
paths of a predicate, the XPath satisfiability tester initializes a schema path variable f
with null, which is logically concatenated with the main path p, denoted by p+f, for the
need of both finding the context node of the predicate and finding the nodes specified
by reverse axes in the predicate, which occur before the context node of the predicate
in the document order.

Example 2. Our XPath satisfiability tester evaluates XPath queries
Q=//page[not(parent::web)]/title and Q’=//link/title[AoS::page] on the XML Schema definition
in Fig. 1 and computes the schema paths (cf. Fig. 4) from Q. Fig. 5 is the graphical
representation of Fig. 4, in which we only present the schema node item of schema
path records. An empty set of schema paths is computed from Q’, since the element
title is not a child of the element link, thus Q’ is unsatisfiable.

(R1) { (</, /, -, -, -> ,
(R2) <Q1, D11, {R1}, -, ->,
(R3) <Q1, D4, {R2, R4},
(R4) {(<Q1, D8, {R3}, -, ->)},
(R5) {(<‘not’,
(R6) {(<q1, D11, {R1}, -, ->)})} >,
(R7) <Q, D7, {R3}, -, ->)}
where Q1=//page[not(parent::web)]

q1=parent::web

Fig. 4. Schema paths of the query Q

D11

/

D4

D8 D11

‘not’

D7

main schema path
loop schema path

predicate schema path

schema path record

Fig. 5. Graphical representation of schema paths
of Fig. 4

4.2 Satisfiability Test

Definition 5 (Satisfiability of XPath queries). A given XPath query Q is satisfiable
according to a given XML Schema definition XSD, if there exists an XML document
D, which is valid according to XSD, and the evaluation of Q on D returns a non-empty
result. Otherwise Q is unsatisfiable according to XSD.

100 J. Groppe and S. Groppe

Proposition 1 (Unsatisfiable XPath queries). If the evaluation of an XPath query Q
on a given XML Schema definition XSD by the XPath satisfiability tester generates an
empty set of schema paths, then Q is unsatisfiable according to XSD.

Proof. The XPath satisfiability tester is constructed in such a way that the XPath
satisfiability tester returns an empty set of schema paths, if the constraints given in Q
and the constraints given in XSD exclude the constraints of the other. Thus, there does
not exist a valid XML document according to XSD, where the application of Q returns
a non-empty result.

If the XPa satisfiability tester computes a non-empty set of schema paths for an
XPath query, the XPath query is only maybe satisfiable, since the satisfiability test of
XPath queries formulated in the supported subset of XPath is undecidable[1].

4.3 Complexity Analysis

Let a be the number of location steps in query Q and let N be the number of instance
nodes in an XML Schema definition. Each schema path contains at most a*N nodes,
each of which can be the start node of at most O(Σi=1

N-1(N!/(N-i)!)) different
schema paths of length 1 to N in the worst case of a preceding or a following axis until we
recognize a loop. Thus, for each schema path of the result of the previous location
step, we can detect at most O(a*N*Σi=1

N-1(N!/(N-i)!))=O(a*N*N!) different
schema paths as the result of the current location step. For all locations steps, we can
detect at most O((a*N*N!)a) different schema paths, each of which contains at most
O(a*N) schema nodes, for Q. Therefore, the worst case complexity of both the run-
time and the space is O(a*N*(a*N*N!)a).

We assume that the typical case is characterized as follows: Each instance schema
node in an XML Schema definition has only a small number of successor nodes. Fur-
thermore, we assume that the query Q specifies a small node set so that we only detect
a small number, which is less than a constant k, of schema paths. Therefore, the com-
plexity of both runtime and space is O(k*a*N) for the typical case.

5 Performance Analysis

We have implemented a prototype of the XPath satisfiability tester in order to verify
the correctness of our approach and to demonstrate the optimization potential for
avoiding the evaluation of unsatisfiable XPath queries. The performance study
focuses on the detection of unsatisfiable XPath queries by our XPath satisfiability
tester and the evaluation of these unsatisfiable queries by common XPath
evaluators.

The test system for all experiments is an Intel Pentium 4 processor 2.4 Gigahertz
with 512 Megabytes RAM, Windows XP as operating system and Java VM build
version 1.4.2. We use the XQuery evaluators Saxon version 8.0 (//saxon.sourceforge.net)
and Qizx version 0.4pl (//www.xfra.net/quizxopen) in order to evaluate the XPath queries.
We use the XPathMark benchmark [2] as the source of our experimental data, and
transform the benchmark DTD benchmark.dtd into the XML Schema definition

 A Prototype of a Schema-Based XPath Satisfiability Tester 101

benchmark.xsd by using the tool Syntext Dtd2xs-2.0 (//freshmeat.net/projects/syntext_dtd2xs/).
We generate data from 0.116 Megabytes to 11.597 Megabytes by using the data gen-
erator of [2], and modify the queries of [2] into unsatisfiable queries.

Fig. 7 presents the evaluation time of the used unsatisfiable XPath queries (see
Fig. 6) on benchmark.xsd by our XPath satisfiability tester, which detects that these
queries are unsatisfiable and avoids the unnecessary evaluation of these unsatisfiable
queries. Fig. 8 and Fig. 9 present the evaluation time of these queries using the Saxon
and the Qizx evaluator respectively when an empty result is returned. Fig. 10 and Fig.
11 present the speed-up factors by our approach over the Saxon evaluator and the
Qizx evaluator respectively. The experimental results show that our approach can
check the satisfiability of XPath queries effectively. Our approach is 26 times (4.2
times respectively) faster on average when evaluating the XPath queries with

Q1: /site/closed_auctions/closed_auction/

annotation/description/parlist/text/keyword
Q2: /site/regions/*/item[parent::america]
Q3: /open_auctions/open_auction[bidder

[people/attribute::person='person0']/
following-sibling::bidder]

Q4: /descendant::keyword[name]
Q5: /descendant::text[italic]
Q6: /descendant-or-self::persons/

person[name='WANG']
Q7: /descendant-or-self::item

[not(self::node()/mailbox)]
Q8: /descendant::person

[address and not(emailaddress)]

Fig. 6. Used unsatisfiable XPath queries

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

0,500

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Queries

tim
e

in
 s

ec
on

ds

Fig. 7. Time of testing satisfiability with our
prototype

Fig. 8. Processing the queries in Fig.6 with
Saxon Evalutor

Fig. 9. Processing the queries on Fig. 6 with
Qizx Evalutor

102 J. Groppe and S. Groppe

Fig. 10. Speedup factor by our prototype over
Saxon

Fig. 11. Speedup factor by our prototype
over Qizx

desc axis, and 546 times (87 times respectively) faster when evaluating the XPath
queries without desc axis than Saxon (Qizx respectively) at 12 Megabytes in compari-
son with the evaluation of the unsatisfiable queries. Different queries have remarkably
influence on the evaluation performance of our satisfiability tester, e.g. the queries
with desc axis are 15 times slower than the queries without desc axis.

6 Summary and Conclusions

We have proposed a data model for XML Schema language, which identifies the
navigation paths of XPath queries on XML Schema definitions. Based-on the data
model, we have developed a satisfiability tester of XPath queries, which evaluates
XPath queries on an XML Schema definition in order to check whether or not the
queries conform to the constraints imposed by the schema definition. When an XPath
query does not conform to the constraints in a given schema definition, our satisfiabil-
ity tester computes an empty set of schema paths, i.e. the XPath query is unsatisfiable,
otherwise the XPath query is only maybe satisfiable. Our approach supports all XPath
axes and recursive as well as non-recursive schemas. The experimental results of our
prototype show that application of our approach can significantly optimize the evalua-
tion of XPath queries by filtering unsatisfiable XPath queries. A speed-up factor up to
several magnitudes is possible.

References

1. M. Benedikt, W. Fan, F. Geerts: XPath Satisfiability in the presence of DTDs. In PODS
2005.

2. M. Franceschet: XPathMark – An XPath benchmark for XMark. Research report PP-
2005-04, University of Amsterdam, the Netherlands, 2005.

3. S. Groppe: XML Query Reformulation for XPath, XSLT and XQuery. Sierke-Verlag,
Göttingen, Germany, 2005. ISBN 3-933893-24-0.

 A Prototype of a Schema-Based XPath Satisfiability Tester 103

4. J. Groppe, S. Groppe: Filtering Unsatisfiabile XPath Queries, ICEIS 2006, Paphos-Cyprus.
5. S. Groppe, S. Böttcher and J. Groppe: XPath Query Simplification with regard to the

Elimination of Intersect and Except Operators. In XSDM’06 in association with ICDE’06.
6. J. Hidders: Satisfiability of XPath Expressions. DBPL 2003. LNCS 2921, pp. 21–36.
7. A. Kwong, M. Gertz: Schema-based optimization of XPath expressions. Techn. Report

University of California, 2002.
8. L. Lakshmanan, G. Ramesh, H. Wang, Z. Zhao: On Testing Satisfiability of Tree Pattern

Queries. In VLDB 2004.
9. D. Olteanu, H. Meuss, T. Furche, F. Bry : XPath: Looking Forward. XML-Based Data

Management (XMLDM), EDBT Workshops, 2002.
10. D.A. Schmidt: The structure of Typed programming languages. MIT Press, Cambridge,

MA, USA, 1994.
11. P. Wadler: Two semantics for XPath. Tech. Report, 2000.
12. W3C: XML Schema Part 1: Structures Second Edition. W3C Recommendation,

www.w3.org/TR/xmlschema-1, 2004.
13. W3C: XPath Version 1.0, W3C Recommendation, www.w3.org/TR/xpath/, 1999.
14. W3C: XPath Version 2.0, W3C Working Draft, www.w3.org/TR/xpath20/, 2003.

Understanding and Enhancing the Folding-In
Method in Latent Semantic Indexing

Xiang Wang and Xiaoming Jin

School of Software, Tsinghua University, Beijing 100084, China
xiang w00@mails.tsinghua.edu.cn,

xmjin@tsinghua.edu.cn

Abstract. Latent Semantic Indexing(LSI) has been proved to be ef-
fective to capture the semantic structure of document collections. It is
widely used in content-based text retrieval. However, in many real-world
applications dealing with very large document collections, LSI suffers
from its high computational complexity, which comes from the process of
Singular Value Decomposition(SVD). As a result, in practice, the folding-
in method is widely used as an approximation to the LSI method. How-
ever, in practice, the folding-in method is generally implemented ”as is”
and detailed analysis on its effectiveness and performance is left out.
Consequentially, the performance of the folding-in method cannot be
guaranteed. In this paper, we firstly illustrated the underlying principle
of the folding-in method from a linear algebra point of view and analyzed
some existing commonly used techniques. Based on the theoretical analy-
sis, we proposed a novel algorithm to guide the implementation of the
folding-in method. Our method was justified and evaluated by a series of
experiments on various classical IR data sets. The results indicated that
our method was effective and had consistent performance over different
document collections.

1 Introduction

Latent Semantic Indexing(LSI), proposed by Deerwester et al.[1] in 1990s, is
one of the most widely used and effective methods in content-based text re-
trieval. LSI is based on Vector Space Model(VSM) and uses a mathematical tool
called Singular Value Decomposition(SVD) to explore the underlying semantic
structure of the vector space built by VSM. In real-world applications, the most
critical problem of LSI lies in its high computational complexity. It is difficult,
if not impossible, to apply LSI on very large document collections directly.

Instead, the folding-in method, which was proposed together with LSI[1], is
commonly used in practice. The folding-in method utilizes a subset of original
document collection as the training set and performs SVD on the training set
instead as an approximation. Consequentially, the most important issue about
the folding-in method is the selection of training set. With proper selection, the
performance of the folding-in method in practice would be satisfiable[2][3][4].
However, there is no comprehensive theoretical or empirical analysis of different
selection strategies. For document collections with different semantic structures,

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 104–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Understanding and Enhancing the Folding-In Method in LSI 105

or distributions, a given training set selection strategy may perform inconsis-
tently. Therefore, it is desirable to design a principled training set selection
strategy, which would have reliable performance over document collections with
various distributions.

In this paper, we analyzed the underlying principle of the folding-in method
in detail with a linear algebra approach. We theoretically illustrated that the
essential of the folding-in method is a subspace tracking process with reduced
information. In other words, when choosing the training set, it is expected that
the subspace decided by the training set is a good approximation of the subspace
decided by the original document collection. Therefore, the performance of the
folding-in method mainly depends on the deterioration of the subspace derived
by the training set from the actual one.

Based on our theoretical conclusion, various selection strategies were analyzed
and a novel selection strategy was proposed. We showed that existing methods
are effective only in some cases while not in other cases. Especially for dynamic
document collections or document collections with varied distributions, the dete-
rioration of existing methods could be large. To solve such problem, we proposed
a new training set selection strategy, which is deterministic. It utilizes the lin-
ear algebra properties of document collection and selects document vectors that
best approximate the target subspace as the training set. Thus it is effective on
various document collections and outperforms existing methods in general.

A series of experiments were conducted to evaluate the retrieval performance
of our method. Existing methods were also implemented as the baseline. It was
clearly showed that our method consistently outperformed existing methods and
was robust against different document collections.

The rest of the paper is organized as following: The folding-in method was
analyzed theoretically in Sect. 2; Our novel training set selection strategy was
proposed in Sect. 3; Experimental results were presented in Sect. 4; Related
works were introduced in Sect. 5; In Sect. 6 we drew our conclusion.

2 Understanding the Folding-In Method

2.1 Background and Preliminaries

The motivation of Latent Semantic Indexing(LSI) is to decompose the vector
space generated from a document collection under Vector Space Model(VSM)
with Singular Value Decomposition(SVD), and then reduce the dimension of the
vector space. By the dimension-reduction process, the influence of synonymy and
polysemy, which is considered as noise, is removed[1].

Given a m × n term-document matrix A, which is generated by VSM, each
matrix element aij is the weight of term i in document j. The n columns of A
represent n documents in the document collection. In LSI, SVD is performed on
A. It writes:

A = UΣV T , (1)

where U , Σ, V are m× r, r × r, n× r matrices respectively. Here r is the rank
of A and Σ = diag(σ1, σ2, . . . , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular

106 X. Wang and X. Jin

values of A. Also note that the columns of U and V are orthogonal, which means
that UT U = I and V T V = I, where I is the identity matrix[5].

The effectiveness of LSI comes from the dimension reduction process based on
the result of SVD[6][7][8]. A rank-k approximation to A is created, where k ≤ r.
It writes:

Ak = UkΣkV T
k , (2)

where Uk is a m × k matrix whose columns are the first k columns of U , Vk

is a n × k matrix whose columns are the first k columns of V , and Σk =
diag(σ1, σ2, . . . , σk). It is easy to see that the rank of Ak is k and Ak is called
a rank-k approximation of A. In fact, it has been proved that Ak is the best
rank-k approximation of A in terms of Frobenius norm[9].

For document i, 1 ≤ i ≤ n, its original vector representation di is the ith
column of A, where di is a m× 1 vector. Now document i is indexed as:

d̂i = UT
k di. (3)

Here d̂i is a k × 1 vector, and is sometimes referred as the pseudo-document
representation of document i. For a query q, where q is the m× 1 vector repre-
sentation of the query, we firstly compute its pseudo-document representation by
q̂ = UT

k q. Then the similarity between document i and query q is defined as the
cosine value of the angle between d̂i and q̂[7], which writes sim(di, q) = q̂T ·d̂i

‖q̂‖2‖d̂i‖2

.
Since the computational complexity of SVD is very high[6], in practice, the

folding-in method is used as an approximation to LSI[1]. Instead of performing
SVD on A, a subset of the columns of A is selected as the training set. Suppose
A1 is a m × n1 matrix, whose columns are a subset of the columns of A. The
SVD process is performed on A1, similarly we have A1 = U1Σ1V

T
1 . And then we

also find the rank-k approximation of A1, which writes A1k = U1kΣ1kV T
1k. Now

all the documents in the document collection A are indexed as:

d̂i = UT
1kdi, (4)

where 1 ≤ i ≤ n.

2.2 Analyzing the Performance of the Folding-In Method

As an approximation to LSI, where does the deterioration of the folding-in
method come from? In [6], it was mentioned that the orthogonality of Vk is
corrupted by the folding-in step. In [7], it was claimed that for those documents
not in A1, if they are almost orthogonal to the columns of U1k, their information
is likely to be lost in the folding-in step. However, we illustrate the underly-
ing principle under the folding-in method from an alternative point of view and
analyze existing training set selection strategies theoretically.

We emphasize that the process of LSI substantially can be considered as a
process of subspace tracking. Denote the range space of A to be S, i.e. S =
{Ax|∀x ∈ R

n}, then UUT is an orthogonal projection from R
m onto S. Sim-

ilarly, denote the range spaces of Ak to be Sk, then UUT
k is an orthogonal

Understanding and Enhancing the Folding-In Method in LSI 107

projection from R
m onto Sk. Furthermore we have S = range(UUT), and

Sk = range(UkUT
k)[5]. Notice that Sk is a k-dimensional subspace of S. Con-

sequentially, the essential of LSI can be considered as a process to capture an
optimal k-dimensional subspace of S with respect to A, which is Sk, through
the SVD process. We can see that Sk is decided by Uk, thus the most critical
problem of LSI should be how to find Uk, or any matrix that can approximate
Uk properly.

Recall the process the of the folding-in method, we will find that it is es-
sentially trying to track the target subspace Sk by approximating Uk with
U1k. Denote the range space of A1 to be S1 and the range space of A1k to
be S1k, then U1 and U1k are expected to approximate U and Uk respectively,
and S1k = range(U1kUT

1k) is supposed to be an approximation to Sk. Thus the
deterioration of the folding-in method is caused by the difference between S1k

and Sk. Having that S1k is decided by U1k and U1k is decided by A1, this is ex-
actly how the selection of training set decides the performance of the folding-in
method.

Based on above analysis, let us review some existing training set selection
strategies to see why they are effective in some cases while not in other cases.
Random sampling and its variations are among the most commonly used strate-
gies. Their effectiveness relies on a statistical expectation that the sample could
retain the structure of original vector space. With prior knowledge of a given
document collection on its distribution, we can hopefully find a representative
sample and then find the subspace S1k that is close enough to Sk. The danger
of sampling lies behind the fact that prior knowledge of any document collection
is generally unavailable so that we do not know whether our sample is proper.

Similarly, sometimes clustering is used as a training set selection strategy. Nor-
mally the centroids of clusters are used as the training set and they are expected
to retain the structure of original vector space. However, the proper selection
of clustering techniques and parameter tuning also require prior knowledge of
document collections, which would be unavailable in many cases.

3 A Novel Training Set Selection Strategy

3.1 Algorithm

As we have analyzed, the performance of a given training set is determined by the
deterioration between the subspace decided by the training set and the target
subspace, which is decided by the original document collection. Nevertheless,
existing methods do not fully utilize the semantic structure of the document
collection. Thus we proposed a method which utilizes the semantic properties of
document collection so that an enhancement of the performance of the folding-
in method can be guaranteed over various document collections. Our method
focuses on the relationship between document vectors and target subspace. The
vectors most close to the target subspace are selected to rebuild a new subspace
as an approximation to the original one.

108 X. Wang and X. Jin

Now we introduce our training set selection strategy as below. Given a docu-
ment collection and the corresponding m×n term-document matrix A, we would
like to find a m × n1 matrix A1 whose columns are a subset of the columns of
A as the training set. In addition, it is assumed that the columns of A are all
normalized, i.e. given d any column of A, we have ‖d‖2 = 1.

Following Eq. 1 and Eq. 2, we have Ak = UkΣkV T
k . For 1 ≤ i ≤ n, we have

d̂i = UT
k di, where d̂i is the pseudo-document representation of document di.

As we have mentioned before, UkUT
k is an orthogonal projection onto Sk, so

‖d̂i‖2 = ‖UT
k di‖2 is the length of the projection of di on subspace Sk. Also note

that ‖di‖2 = 1 for any 1 ≤ i ≤ n, larger ‖d̂i‖2 implies smaller angle between
vector di and subspace Sk. In other words, those documents with longer projec-
tion are more close to the subspace Sk. Intuitively, in sense of plane fitting, we
should choose documents that are most close to Sk as the training set and con-
sequentially the subspace S1k decided by the training set will best approximate
Sk. That is to say, we compute wi = ‖UT

k di‖2 for all 1 ≤ i ≤ n, and the first n1
documents with largest wi are selected as the training set.

However, with further consideration, we notice that from Eq. 2, we have
UT

k Ak = ΣkV T
k , which is equivalent to that d̂i = UT

k di = ΣkvT
i , where vi is

the ith row of Vk. It reminds us that the vector representation of a document
includes two parts: global weight and local weight[7]. In the context of our prob-
lem, Σk contains the k largest singular values of A, i.e. Σk is decided by A. For
1 ≤ i ≤ k, σk is only related to the k-th dimension of the subspace, which is a
linear combination of original m dimensions[7]. The value of σk represents the
significance of the k-th dimension, which is related to the statistical properties
of the whole document collection. Thus it can be considered as global weight.
On the other hand, vi reflects the relation between elements within document
di, which can be considered as local weight.

In practice, we usually have n1 � n. Since Σ1k is decided by A1, it would be
biased from Σk, which is decided by A. To avoid the influence of biased global
weights, during the training set selection process, we ignore the global weights
Σk and only take the local weights V T

k into consideration. Our method TS is
summarized as in Algorithm 1.

Algorithm 1. Training Set Selection Strategy TS
Input: A, k, n1

Output: A1

1. Find Uk for A.
2. Compute wi = ‖vi‖2 for all 1 ≤ i ≤ n.
3. The first n1 documents with largest wi are selected as the columns A1, which is
the training set.

3.2 Implementation of Our Method

Notice that in Algorithm 1, our method is based on the result of the SVD on A.
However, in practice, the folding-in method is used only when it is difficulty or

Understanding and Enhancing the Folding-In Method in LSI 109

impossible to compute SVD for A. That is to say, Algorithm 1 cannot be applied
in real-world applications.

To solve the problems in real-world applications, such as large document
archives or text streams, including news streams, emails and blog websites, our
method can be implemented in an incremental and greedy style. Specifically,
for very large document collection, we can divide it into several smaller block
as subjected to our computational capability. We apply TS method to find the
training set for each block. Then we merge the training sets into one as the final
result, or we can also perform TS method further to find a new training set with
smaller size. The performance of such implementation will be showed below in
Sect. 4.

3.3 Remarks

In our method, the training set is derived from subspace Sk, which represents the
semantic structure of the document collection. Therefore, the selection process
actually becomes a process determined by the semantic structure of correspond-
ing document collections. Such relation gives our method stable performance, in
comparison with random sampling method whose performance is unexpectable.
Moreover, as opposed to various clustering methods, our method is more deter-
ministic and does not need extra ad hoc tunings except for the LSI factor k, as
discussed below.

There are two parameters that influence the performance of TS method. The
first one is n1. It is obvious that bigger training set leads to better performance.
The other important parameter is k. For different document collections, the
optimal values of k are different[8][10]. Nevertheless, it is necessary to mention
that in our TS method, as the global weights matrix Σk is ignored, all terms are
equally weighted. As a result, in practice, the value of k should not be too large
with respect to n1. Otherwise the influence of some local semantic properties of
the training set would defect the performance of our method.

4 Experiments

4.1 Methodology

To evaluate the performance of our method, experiments were conducted over
several classical IR data sets1, as listed in Table 1. We used TMG 2.02 to remove
stop words, assign term weights, and normalize document vectors. In practice,
various weighting strategies are used in order to enhance the retrieval perfor-
mance. However, weighting strategy was not the focus of our work. Therefore
we simply used term frequency only through our experiments.

Our method was evaluated in two ways. The first one was to compute efd =
‖A−U1kUT

1kA‖F and compare it to elsi = ‖A−UkUT
k A‖F . Here e represents the

1 ftp://ftp.cs.cornell.edu/pub/smart.
2 http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/

110 X. Wang and X. Jin

Table 1. Data sets used in experiments

Identifier Description Documents Terms Queries
MED Medical abstracts 1033 5735 30
CISI Information science abstracts 1460 5544 35
NPL Large collection of very short documents 11429 7536 93

Table 2. Approximation error of different selection strategies

LSI TS Rand-best Rand-avg
MED 28.6173 29.5181 29.9066 30.0368
CISI 32.7119 34.2771 34.3745 34.5770

approximation error between A and Ak and elsi is the minimal error among all
rank-k matrices Ak. We will show that the approximation error of our method is
more close to elsi than other methods. The second metric used was the precision-
recall metric with respect to LSI. That is to say, we firstly performed LSI on the
document collection and took the first 10 most relevant documents suggested
by LSI for each query as the referenced results. Then we performed our method
to calculate recall and precision for each query. Here we used the result of LSI
instead of the standard referenced revelent documents for each query because
that we were mainly concerned with how close our method approximates LSI
rather than its actual retrieval results.

To be compared with, we also performed folding-in method with a random
sampling strategy. As far as we concern, there is no specific sampling method
mentioned in the literature for the folding-in method. To be statistically reliable,
we used 100 different randomly generated samples as the training set through all
experiments and the average and highest performance were recorded as baseline.

4.2 Results and Analysis

Firstly, we performed the folding-in method on MED and CISI collection with TS
and random sampling strategy respectively. The NPL collection was not used due
to the limitation of the memory space of our computer. Then ‖A− U1kUT

1kA‖F
was computed and compared with ‖A−UkU

T
k A‖F from LSI, see Table 2. Here k

was 25 and the size of training set n1 was 100. We can see that the approximation
error of our method was always smaller than random sampling method.

Then we performed retrieval task on MED and CISI with TS and random
sampling strategy and evaluated them with respect to the results of LSI, as
described above. Here still we had k to be 25 and n1 to be 100. See Fig. 1. The
average precision used here was the mean of average precision at recall level
20%, 50%, and 80%. We can see that the retrieval performance of TS method
was better than the average performance random sampling strategy on MED and
very close to the best performance of random sampling method. Here we address

Understanding and Enhancing the Folding-In Method in LSI 111

MED CISI
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
ve

ra
ge

 P
re

ci
si

on

TS
Rand−best
Rand−avg

Fig. 1. Average precision with respect to LSI over MED and CISI collection

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Recall

A
ve

ra
ge

 P
re

ci
si

on

TS
Rand−best
Rand−avg

Fig. 2. Average precision with respect
to LSI over NPL collection

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Recall

A
ve

ra
ge

 P
re

ci
si

on

TS−g
Rand−best
Rand−avg

Fig. 3. Retrieval performance of incremen-
tal method over NPL collection

that due to the lack of guidance in sampling process, the best performance of
randomly sampling is generally unexpectable. On CISI, the performance of TS
method even outperformed the best performance of random sampling method.
Similar experiment was conducted on the larger document collection NPL. Here
we had k to be 50 and n1 to be 200. The result was plotted in 11-pt precision-
recall curve, see Fig. 2. We can see that at each recall level, the average precision
of TS method was higher than the best performance of random sampling method.

Furthermore, we simulated the situation of dealing with very large document
collection and applied our strategies in an incremental style . The first 10000
documents of NPL collection were used and divided into 5 groups. We firstly
applied TS method on each group to find a training set with 200 documents for
each group. Then the 5 training sets were merged into one and a new training set
with 200 documents was selected out of them. The new training set was used as
the training set for the whole NPL collection. Then retrieval task was performed
on NPL collection and the result was in Fig. 3. Here we still had k to be 50. It
was clearly showed that for large document collections, where our method was
applied in an incremental way, the performance of TS method still outperformed
the average performance of random sampling method and approached the best
performance of random sampling method, which was unguaranteed though.

112 X. Wang and X. Jin

5 Related Work

LSI was proposed by Deerwester et al. in [1] and was later discussed more com-
prehensively in [6]. It was applied on text retrieval and proved to be effective
[2][3][4][10]. LSI was analyzed from a linear algebra point of view by Berry et al.
in [7].

The most essential process of LSI is SVD, which is costly to compute. The
computational complexity of LSI and SVD was discussed in [6][11][12]. Due to the
high computational complexity of LSI, in real-world application, the folding-in
method, which was introduced together with LSI in [1], is widely used to handle
very large document collections, e.g. in [13][14]. The performance of the folding-in
method relies on the selection of training set. The deterioration of the folding-
in method was mentioned in [6] and [7], very briefly and incomprehensively
though.

In practice, as the folding-in method is widely implemented, there are sev-
eral commonly used training set selection strategies. The most straightforward
strategy is random sampling[2][3][4]. Random sampling may work well some-
times while its performance cannot be guaranteed over document collections with
various distributions. Clustering is also used as a preprocessing subroutine[15].
Documents in the collection are firstly clustered and the centroids of all clus-
ters are regarded as the training set of the document collection. However, the
performance of such kind of methods heavily relies on the clustering method
used. Without prior knowledge of the document collection, the performance of
clustering could not be guaranteed either.

6 Conclusion

LSI has been accepted as an effective retrieval method, which can explore the
latent semantic structure of document collections. In practice, the folding-in
method is widely used as an approximation to LSI to deal with large docu-
ment collections. The performance of the folding-in method is mainly decided
by the selection of training set. However, the underlying principle of the folding-
in method and the training set selection strategy had never been discussed
in detail. As a result, the performance of the folding-in method had been
unexpectable.

In this paper, the effectiveness and performance of the folding-in method was
analyzed with a linear algebra approach. We suggested that the selection of
training set is in fact a process of subspace tracking. Based on theoretical analy-
sis, a novel training set selection method was proposed. It is easy to understand
and implement. It can be applied on document collections with various distribu-
tions and needs no extra parameter tuning. Through a series of experiments, we
showed that our method had superior performance on different data sets, where
random sampling method was also implemented as the baseline. We also showed
that the performance of our method when applied in an incremental style as in
real-world application scenario was satisfiable.

Understanding and Enhancing the Folding-In Method in LSI 113

Acknowledgements. This work was supported by the NSFC 60403021 and
the National Key Fundamental Research Program of China 2004CB719400. The
authors thank the anonymous reviewers for their helpful comments and advice.

References

1. Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–407, 1990.

2. Susan T. Dumais. LSI meets TREC: A status report. In The First Text REtrieval
Conference(TREC1), pages 137–152, 1992.

3. Susan T. Dumais. Latent semantic indexing(LSI) and TREC-2. In The Second
Text REtrieval Conference(TREC2), pages 105–116, 1993.

4. Susan T. Dumais. Latent semantic indexing(LSI): TREC-3 report. In The Third
Text REtrieval Conference(TREC3), pages 105–115, 1994.

5. Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore MD, 3rd edition, 1996.

6. Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear algebra
for intelligent information retrieval. SIAM Rev., 37(4):573–595, 1995.

7. Michael W. Berry, Zlatko Drmač, and Elizabeth R. Jessup. Matrix, vector spaces,
and information retrieval. SIAM Rev., 41(2):335–362, 1999.

8. April Kontostathis and William M. Pottenger. A framework for understanding LSI
performance. In Proceedings of ACM SIGIR Workshop on Mathematical/Formal
Methods in Information Retrieval (ACMSIGIRMF/IR ’03), 2003.

9. C. Eckart and G. Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1:211–218, 1936.

10. Susan Dumais. Enhancing performance in latent semantic indexing (LSI) retrieval.
Technical Report TM-ARH-017527, 1990.

11. Gavin W. O’Brien. Information management tools for updating an SVD-encoded
indexing scheme. Master’s thesis, The University of Knoxville, Tennessee, TN,
1994.

12. Ricardo D. Fierro and Eric P. Jiang. Lanczos and the Riemannian SVD in infor-
mation retrieval applications. Numer. Linear Algebra Appl., 12(4):355–372, 2005.

13. Chung-Min Chen, Ned Stoffel, Mike Post, Chumki Basu, Devasis Bassu, and Clif-
ford Behrens. Telcordia LSI engine: Implementation and scalability issues. In
RIDE ’01: Proceedings of the 11th International Workshop on research Issues in
Data Engineering, 2001.

14. Chunqiang Tang, Sandhya Dwarkadas, and Zhichen Xu. On scaling latent se-
mantic indexing for large peer-to-peer systems. In SIGIR ’04: Proceedings of the
27th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 112–121, 2004.

15. Devasis Bassu and Clifford Behrens. Distributed LSI: Scalable concept-based in-
formation retrieval with high semantic resolution. In Proceedings of the 3rd SIAM
International Conference on Data Mining (Text Mining Workshop), 2003.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 114 – 122, 2006.
© Springer-Verlag Berlin Heidelberg 2006

DCF: An Efficient Data Stream Clustering Framework
for Streaming Applications

Kyungmin Cho, Sungjae Jo, Hyukjae Jang, Su Myeon Kim, and Junehwa Song

Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology (KAIST)

{kmcho, sjjo, hjjang, smkim, junesong}@nclab.kaist.ac.kr

Abstract. Streaming applications, such as environment monitoring and vehicle
location tracking require handling high volumes of continuously arriving data
and sudden fluctuations in these volumes while efficiently supporting multi-
dimensional historical queries. The use of the traditional database management
systems is inappropriate because they require excessive number of disk I/O in
continuously updating massive data streams. In this paper, we propose DCF
(Data Stream Clustering Framework), a novel framework that supports efficient
data stream archiving for streaming applications. DCF can reduce a great
amount of disk I/O in the storage system by grouping incoming data into
clusters and storing them instead of raw data elements. In addition, even when
there is a temporary fluctuation in the amount of incoming data, it can stably
support storing all incoming raw data by controlling the cluster size. Our
experimental results show that our approach significantly reduces the number of
disk accesses in terms of both inserting and retrieving data.

Keywords: Data Archiving, OLAP, Clustering, R-tree, Fast Insertion, Query
Performance.

1 Introduction

Rapid and continued advances in sensor and wireless communication technologies
have fueled a new type of application called streaming applications [16] such as
habitat and environment monitoring, RFID-enabled supply chain networks, vehicle
location tracking, and transaction log analysis. Such applications have different
workload characteristics from traditional applications. Extremely high volumes of
data are continuously generated from a lot of data sources. These data need to be
stored in permanent storage systems in order to apply analysis tools such as online
analytical processing (OLAP) and data mining. These analytical operations are
complex and require quite high processing costs. Additionally, in some special
situations such as a forest fire, the application monitoring those events must face a
sudden rise in data updates.

In such streaming applications, the high costs of disk accesses overload the storage
system. Processing a high volume of continuous data requires numerous disk accesses
in the storage system in order to write new incoming data into disk and update the
index structure. Processing retrieval queries also causes many disk accesses to look up
the index structure and retrieve the corresponding data from disk. In the case of

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 115

temporary load peaks, the situation would become much more severe. Considering
these challenges, for streaming applications, exploiting traditional data management
systems, which are designed to support applications over static data sets, is
inappropriate.

In this paper, we propose DCF (Data Stream Clustering Framework), a novel
framework that supports efficient data stream archiving for streaming applications. It
can handle high rates of data insertion and adapt to sudden spikes in the input rate while
not degrading retrieval performance. DCF can reduce a great amount of disk I/O for
both index updates and look-ups. The key idea of DCF is adopting the scheme of cluster
indexing, in which the storage system stores data in units of clusters and leaf nodes in
the index structure point to clusters instead of individual data. In the case of an insertion,
a set of data is grouped into a cluster based on a clustering policy and inserted the
cluster via a single insertion operation. Hence, the total number of insertion operations,
each of which causes multiple disk accesses, can be considerably reduced. In addition,
DCF constructs the resulting index structure with fewer indexing nodes, thereby
reducing the index lookup time. DCF also provides the ability to adapt to load
fluctuations by monitoring the rate of incoming data and controlling cluster size.

The cluster indexing scheme could cause two additional overheads in retrieving
data from disk, since the retrieval operation returns data in units of clusters, not as
individual data items. Depending on the cluster size, a cluster could occupy more than
one disk block and thus may require multiple disk block accesses to get a cluster from
disk. Thus, although the larger cluster size yields the better insertion performance, the
retrieval performance is decreased as the cluster size increases. However, typically
retrieving a data item from disk requires at least one disk block access. A good
compromise is confining the cluster size less than one block, thereby avoiding this
overhead. There is another overhead in filtering out unwanted data from a retrieved
cluster, but this computation cost of post-processing can be ignored. Typically, the
dominant cost of processing a query is the time that it takes to bring a block from disk
into main memory. Once we have fetched the block, the time to scan the entire block
is negligible.

The rest of the paper is organized as follows. Section 2 describes the proposed DCF.
In Section 3, we discuss the scheme of cluster indexing. Section 4 presents experimental
results. Section 5 reviews related work. Finally, Section 6 concludes our work.

2 DCF Framework

This section details how our DCF framework is constructed and how it handles a
large number of data streams and queries. As shown in Figure 1, DCF is composed of
three components: the Clusterer, Load Monitor, and Query Handler. The back-end
storage system is responsible for indexing, storing and retrieving stream clusters.

Our framework processes two types of queries: insertion and retrieval queries. For
insertion requests, which are stream data elements, the Clusterer first receives and
clusters them according to the clustering policy. The clustering policy is a system
parameter set by the system administrator. Then, data elements are stored in the
internal buffer and periodically sent to the back-end storage system.

116 K. Cho et al.

Fig. 1. Overall Architecture of DCF

In the case of a retrieval queries, the Query Handler (QH) temporarily stores the
query information for post-processing, then forwards the query to the storage system.
The QH has to delay the forwarding of the query until all the corresponding data are
processed and stored in the storage system. Since the result is in the form of clusters,
the QH needs to do post-processing on the result. Next, we will describe each
component in detail.

Clusterer
The Clusterer receives data streams from data stream sources. Its primary role is
making incoming data into a set of clusters. When receiving a data element, the
Clusterer assigns it to the proper cluster, and then loads the data into the buffer. In
order to prevent the storage system from being overloaded, the Clusterer should
bound the total number of generated clusters to the maximum available update rate
that the storage system can hold. The Clusterer receives the data arrival rate from the
Load Monitor and uses this information for load adaptation. Depending on the data
input rate, more data elements are included in one cluster. Also, note that the
Clusterer could use multiple threads to manage multiple requests efficiently.

Load Monitor (LM)
The Load Monitor is in charge of monitoring the data input rate and notifying the
Clusterer. Once the input rate of stream data reaches a threshold, the LM warns the
Clusterer.

Query Handler (QH)
The Query Handler is mainly responsible for processing retrieval queries. Since the
query result is a series of clusters, it could contain a set of data not matching the range
of user’s query. Thus, the QH unpacks the clusters and filters out unnecessary data
elements in order to return the exact query results. For this filtering process, the QH
stores and maintains a list of user queries, which are registered in the Query
Repository when receiving them. In the context of streaming applications, it is
common for a number of users to show similar interests. Thus, with the aid of more
intelligent refinement or buffering scheme, the query processing could be further
optimized by reusing the pre-fetched clusters.

Query Handler

Storage System

Clusters

Query Result

Data Stream

Query

Retrieved
Clusters

Load
Monitor

Clusterer

Buffer
Query

Repository
Buffer

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 117

3 Cluster Indexing

This section describes the difference between cluster indexing and data indexing, and
several advantages of cluster indexing.

Index StructureData Stream Index StructureData Stream

(a) Data Indexing

Index StructureClustererData Stream Index StructureClustererData Stream

(b) Cluster Indexing

Fig. 2. Brief scheme of data indexing and cluster indexing

Figure 2-(a) shows data indexing, the existing indexing process where leaf nodes in
the index structure point to individual data. On the other hand, Figure 2-(b) shows
cluster indexing where the storage system stores data in units of clusters grouped by
the Clusterer. Leaf nodes in the index structure point to clusters instead of individual
data. Hence, cluster indexing leads to an index structure with fewer nodes as
compared to data indexing and thus reduce the tree height of the index structure.
Given N number of data and fanout f, the height of index structure can be described as

1log −= Nh f
. Since cluster indexing reduces the total number of indexed objects N

to N’=N/C, where C is average cluster size, the height of resulting index structure is
likely to be reduced.

Cluster indexing, which has the reduced number of the indexed objects, provides
several advantages in both insertion and retrieval operations. It can reduce the number
of disk I/O occurred in insertion operations by reducing the frequency of updating
index structure. Due to the shortened height of the resulting index structure, the
number of nodes visited by a retrieval query is decreased. Cluster indexing is also
beneficial in supporting complex queries such as region query or k-nearest-neighbor
query. As noted, cluster indexing groups individual data based on its proximity and
stores them in one cluster. Thus, for collecting a number of data belonging to the
queried area, cluster indexing only need to search a small number of clusters.

118 K. Cho et al.

We use R-tree (an R-tree [1] or one of its variants) as an index structure for cluster
indexing. We assume that the main purpose of data stream archiving is online
analytical processing and data mining operations, so the most prevalent query type is
the multi-attribute range query. R-tree is the most common index structure for such
query type. Also, R-tree doesn’t need to be modified for cluster indexing, since R-tree
and our cluster indexing scheme use the same data representation type. Every object
is abstracted as Minimum Bounding Rectangle (MBR) in R-tree and the Clusterer
represent clusters as MBR.

4 Experiment

In this section, we demonstrate the performance benefit of DCF compared with the
existing approach. For evaluation, we made DCF prototype in GNU C/C++ and we
ran performance comparisons on the Linux platform. For rapid DCF prototyping,
existing library package including the R-tree and the storage manager [15] was used
for the storage system. The fill factor of the R-tree is set to 40% and the maximum
number of entries each node can hold in the R-tree index structure is set to 100.

As an experimental scenario, we suppose that DCF is used for a taxi location
tracking application. It receives and manages all the position data of taxis in a
downtown area. Our experimental scenario is modeled with the following parameters:
(1) the size of the area is 30Km x 30Km, (2) the total number of taxis varies from
1,000 to 8,000, (3) every taxi reports its new position – longitude, altitude, and time -
every three seconds, (4) all the taxis move at an average speed of 60Km/h, (5) initially
all vehicles are uniformly distributed over the whole area and continue to move to the
top-right direction. According to the above scenario, we synthetically generate position data
of vehicles using the “Generate_Spatio_Temporal_Data” (GSTD) [14], which is a well-
known spatiotemporal data generator.

Clustering policies affect the retrieval performance of the index structure. To show
this effect, we present three different clustering algorithms, which are a well-known
K-means clustering algorithm, a 3D R-tree clustering algorithm which is used for
spatiotemporal databases, and a Hash-based clustering algorithm.

The Hash-based clustering is the simplest way to group data streams into clusters.
Each data consists of several attributes. Entire attributes’ value ranges are divided into
equal sized grids in the Hash algorithm. Incoming data stream’s attribute values are
hashed into a specific grid. Data in the same grid are periodically grouped into a
cluster. In this scheme, there is no overlap between clusters.

The K-means clustering [17] is the most popular clustering algorithm. We give
parameter values; the number of clusters k, the coarsening value C, and the refining
value R, and the flush values fmin and fmax. Initially, the first k data become a cluster
of size one, and the next data elements are assigned to the closest cluster. After
finishing the first assignment, the K-means algorithm repeats the calculation of the
centroid for each cluster and reassigns all data to the closest cluster.

The 3D R-tree clustering periodically builds a small in-memory 3D R-tree [18]
with incoming data stream. Data elements pointed to by the same leaf-node of the in-
memory R-tree are grouped as one cluster. Because the tree algorithm is a one-pass
algorithm, overlaps between clusters are much larger than other two clustering
algorithms.

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 119

Fig. 3. Insertion performance with varying number of objects

In order to examine the insertion performance of DCF, we measure the total number
of disk I/O for updating the index structure. The two hours of position data generated
from 1,000, 2,000, 4,000, and 8,000 cars are inserted into the index structure. As
shown in Figure 3, in the case of OBO insertion, the total number of disk I/O increases
with the number of objects. However, in the case of the clustering schemes, the total
number of disk I/O remains stable since our cluster indexing scheme generates equal or
fewer clusters than the maximum number of data which can be handled by the storage
system, which is assumed to be 200 insertions per second in our experiment.

The total number of nodes at each level after finishing the whole insertion process
is shown in Table 1. We can see that DCF has a smaller space requirement than OBO
insertion.

Table 1. Total number of nodes and height of the resulting R-tree index structure

Hash-based K-mean 3D R-tree OBO
of objects

of nodes Height # of nodes Height # of nodes Height # of nodes Height
1,000 19,370 4 16,370 4 21,246 4 63,779 4
2,000 22,612 4 19,591 4 22,562 4 120,846 4
4,000 23,168 4 21,553 4 22,774 4 233,901 5
8,000 24,429 4 22,755 4 22,800 4 394,652 5

We also investigate the retrieval performance of our approach. The query type is the
window query, which is “find all objects that exists in a certain area during a certain time
range.” The ranges of queries are 0.05%, 0.1%, 0.5%, and 1% of the total range with
respect to each dimension. Each query set includes 1,000 queries. We measure the total
number of disk I/O caused by index lookup operations to process each query set when
the R-tree is populated with data generated from 1,000, 2,000, 4,000, and 8,000 objects.

As seen in Figure 4, DCF using the Hash-based and the K-mean clustering
algorithms outperforms the existing OBO approach. However, DCF using the 3D R-
tree clustering algorithm shows that its retrieval performance decreases more severely
as the query range increases. From 0.1% of the query range, the 3D R-tree clustering
algorithm generates a resulting R-tree having worse retrieval performance than OBO
insertion. This indicates that DCF does not always provide better retrieval
performance than OBO insertion. We measure the MBR overlap between clusters

120 K. Cho et al.

(a) query range: 0.05% (b) query range: 0.1%

(c) query range: 0.5% (d) query range: 1%

Fig. 4. Retrieval Performance with varying number of objects at different query ranges

Table 2. MBR overlap of clusters generated over the same period

of objects Hash-based K-mean 3D R-tree
1,000 0.00E+00 3.88E-11 1.94E-10
2,000 0.00E+00 5.54E-10 1.23E-08
4,000 0.00E+00 5.56E-09 3.69E-07
8,000 0.00E+00 3.12E-08 1.27E-06

generated over the same period as shown in Table 2. The larger overlap increases the
number of nodes to be traversed and results in an inefficient index structure. The
clusters generated by the 3D R-tree clustering algorithm show the largest overlap
between clusters such that its overlap is almost two orders of magnitude larger. Thus,
although cluster indexing generates fewer objects to be indexed and allows the
resulting R-tree to be more compact, a poor clustering algorithm like the 3D R-tree
clustering algorithm results in an index structure with poor retrieval performance.

5 Related Work

Many researchers have studied indexing overhead reduction, since indexing is the
most serious bottleneck in handling large amounts of data. [2][3] try to mitigate
indexing overhead by dropping those updates which do not affect the current
structure. They are very effective in handling position data of moving objects.
However, they are not suitable for data archiving where every update should be

 DCF: An Efficient Data Stream Clustering Framework for Streaming Applications 121

recorded without any loss of data. a bottom-up R-tree [4] speeds up index updates by
utilizing locality among incoming data.

Bulk loading approaches [5][6][7][8][9][10] have been proposed to efficiently
build multidimensional index structures such as R-trees on massive amounts of data.
In these approaches, input data are first sorted according to a certain criteria such as
proximity. Then, a number of sorted data are grouped together and the index tree is
built upon the data groups. The indexing overhead is reduced by about a factor of the
average size of the groups. However, since all the data should be known before using
bulk loading, this approach can not be used directly for streaming applications, where
data are continuously coming from data sources.

Bulk updating, a.k.a. bulk insertion, [11][12][13] is an approach to efficiently load
a bulk of data into an already existing index tree. [11] achieves this goal by creating
new index trees on partitions of incoming data, then the index trees are merged with a
pre-existing big tree. [12] further improves the performance of index merging by
exploiting the characteristics of an existing index tree while constructing a new small
index tree. However, there still remains the problem of how to efficiently build the
small tree when updates occur very frequently. [13] reduces the frequency of index
updates by delaying the propagation of insertions to other tree nodes until a threshold
number of data are collected. But this approach requires too much main memory for
buffering. Especially, this problem becomes very serious in historical data archiving
since the indexing tree grows endlessly. In addition, bulk updating techniques do not
address the problem of adapting to load fluctuations, which happens frequently when
dealing with stream-based applications.

6 Conclusion

In this paper, we describe DCF, a novel framework that supports data stream
archiving for streaming applications. High volumes of continuously arriving data
cause a lot of disk I/O, overloading the storage system. The proposed framework,
DCF can reduce a great amount of disk I/O in both updating and looking up index
structure. The basic idea of DCF is indexing a group of data, namely a cluster, instead
of individual data. Our experimental studies show that DCF is very effective in
reducing disk I/O resulting from updating index structures, and it is beneficial in
reducing the number of disk accesses required to process queries due to the
compactness of the index structure.

Possible future works include thorough cost analysis in order to reveal influential
factors to retrieval performance, exploration about standard criterion for developing a
clustering algorithm, and an adaptive load management mechanism for DCF.

References

1. Antonin Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching, In
Proceedings of ACM SIGMOD, pages 47-57, 1984

2. Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, and Yelena Yesha, Updating and
Querying Databases that Track Mobile Units, Special issue on mobile data management and
applications of distributed and parallel databases, Vol. 7, Issue 3, July, 1999, pp 257-387

122 K. Cho et al.

3. Dongseop Kwon, Sangjun Lee, and Sukho Lee, Indexing the Current Positions of Moving
Objects Using the Lazy Update R-tree, Proceeding of the Third International Conference
on Mobile Data Management, Singapore, January, 2002

4. Mong Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and Keng Lik Teo, Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach, In Proceedings of the 29th VLDB
Conferences, Berlin, Germany, pages 608-619, 2003

5. Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos, Fast Subsequence
Matching in Time-Series Databases, Proceeding of ACM SIGMOD Conference,
Mineapolis, MN, 1994.

6. Ibrahim Kamel, and Christos Faloutsos, On Packing R–trees, Proceedings of the second
international conference on Information and Knowledge Management, Washington D.C.,
US., pp 490-499, 1993

7. D. J. Dewitt, N. Kabra, J. Luo, J. M. Patel, and J.-B. Yu. Client-server Paradise, In
Proceedings of the 20th International Conference on Very Large Data Base (VLDB ’94),
pages 558-569, Morgan Kaufmann, 1994

8. Kamel, M. Khalil, and V. Kouramajian, Bulk insertion in dynamic R-trees. In Proceedings
of the 4th International Symposium on Spatial Data Handling (SDH ’96), pages 3B.31-
3B.42, 1996

9. S. T. Leutenegger, M.A. Lopez, and J. Edgington. STR: A simple and efficient algorithm
for R-tree packing. Proceedings of the Thirteenth International Conference on Data
Engineering, pages 497-506, 1997

10. N. Roussopoulos and D. Leifker, Direct spatial search on pictorial databases using packed
R-trees, In Proceedings ACM-SIGMOD International Conference on Management of
Data, SIGMOD Record, Vol 14.4, pages 17-31

11. Li Chen, Rupesh Choubey, and Elke A. Rundensteiner, Bulk-insertions into R-trees using
the samll-tree-large-tree approach. In Proceedings of the sixth ACM international
symposium on Advances in geographic information systems, pages 161-162, 1998.

12. Taewon Lee, Bongki Moon, and Sukho Lee, Bulk Insertion for R-tree by Seeded
Clustering, Proceeding of the DEXA 2003, pp. 129-138

13. L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter, Efficient Bulk Operations on
Dynamic R-trees. Algorithmica, 33 (1), pages 104-128, 2002

14. Yannis Theodoridis, and Mario A. Nascimento, Generating Spatiotemporal Datasets on
the WWW, SIGMOD Record, Vol 29., No 3., pp 39-43, 2000

15. http://www.cs.ucr.edu/~marioh/spatialindex/index.html
16. Lukasz Golab, M. Tamer Ozsu, Data Stream Management Issues – A Survey, Technical

Report CS 2003-08, University of Waterloo, April 2003
17. M. R. Anderberg, Probability and Mathematical Statistics, Academic Press, New York,

San Francisco, London, 1973
18. M. Vazirgiannis, Y. Theodoridis, and T. Sellis, Spatio-temporal composition and indexing

for large multimedia applications, Multimedia Systems, 6(4):284-298, 1998

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 123 – 137, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Analysis of BPEL and High-Level Web Service
Orchestration: Bringing Benefits to the Problems of the

Business

Adam Strickland1, Dick Whittington1, Phil Taylor1, and Bing Wang2

1 The Salamander Organization, York Science Park, York, United Kingdom
{Adam.Strickland, Dick.Whittington, Phil.Taylor}@tsorg.com

2 University of Hull, Computer Science, Cottingham Road, Hull, United Kingdom
B.Wang@hull.ac.uk

Abstract. As a business evolves, the number of systems used to run the busi-
ness increases. This can be either through continued development of the IT
strategy, or acquisition of other companies with different systems. For any
business there is a real requirement to link these systems. Web services and
Web service orchestration offer a secure, accessible, scalable and future-proof
mechanism for system communication. This linking of disparate systems within
a company’s IT strategy contributes towards a key SOA strategy. Generally, a
company’s IT strategy is arranged and organised by high-level business manag-
ers; not technical IT officers. Due to the fact that SOA implementations are
generally a very technical implementation, business personnel are unable to get
heavily involved in the process at the present time. This paper presents the con-
cepts behind Service Oriented Architectures and Web service orchestration. A
custom software tool for developing SOA strategies via BPEL and Web service
orchestration is outlined towards the end of the paper. Based on an established
modelling tool, the SOA add-in is capable of producing complex SOA strate-
gies for a company’s IT department. This tool is pitched at a sufficient level for
semi-technical business managers to be able to utilise it in an efficient manner.
This moves away from the traditional low-level design being carried out by
highly skilled IT professionals. We also discuss potential future improvements
to the BPEL standard.

Keywords: Web Service, BPEL, WSDL, SOA, model checking.

1 Introduction

The Web services framework exists to provide a standards-based implementation of
the Service Oriented Architecture computing paradigm. Here, disparate IT systems
built on differing technologies can communicate with each other in a distributed sys-
tems architecture. In order to operate in an SOA environment, services must declara-
tively define their functional and non-functional requirements and capabilities in an
agreed, machine-readable format [1]. Based on declarative service descriptions, selec-
tion and binding are an integral part of an SOA environment. A consequence of this
binding capability is a looser coupling model between applications.

124 A. Strickland et al.

By collating services that can communicate with each other in a self-contained
manner, new applications are created that can form a key role in an SOA strategy.
Such an application could follow a composition pattern to achieve a business goal,
solve a scientific problem, or provide new service functions in general.

Fig. 1. Web Services Standards Stack

Fig 1 displays a stack of standards for Web services whereby XML [4] sits as the
foundation. Since communicating Web services can be deployed at different locations
using different implementation platforms, agreeing on a set of standards for data
transmission and service descriptions is very important. XML messages form the ba-
sic standard for Web service communication. XML schema [5] forms the basis of the
type system for Web service XML messages. The SOAP [6] communication protocol
can then be used to transmit XML messages. Interfaces for Web services is described
in WSDL [3] which, very importantly, describes the ports that other Web services can
connect to in order to communicate with each other. Although a WSDL specification
defines the public interface of a Web service, it does not provide any information re-
garding its behaviour. Behavioural descriptions of Web services can be defined using
higher-level standards such as BPEL [2] or XLANG [7]. Web service orchestrations
based on these standards is supported by different (and competing) implementation
platforms such as Microsoft .Net [8] and J2EE [9]. Finally, Web service descriptions
can be listed publicly on UDDI [10] servers. UDDI provides the basis of a ‘Yellow
Pages’ listing functionality for Web services. From here, services can be searched for
and utilised via their WSDL descriptions.

In order to move beyond the basic Web service framework into the behavioural na-
ture of interacting services; service composition and quality of protocols are required.
Several specifications have been proposed in these areas, most notably Business
Process Execution Language for Web Services (BPEL4WS), Web Services Coordina-
tion (WS-Coordination) [11] and Web Services Transactions (WS-Transaction) [12]
to support robust service interactions, Web Services Security (WS-Security), and Web
Services reliable messaging (WS-ReliableMessaging). All of these aspects are critical
elements of meaningful business interactions.

 Analysis of BPEL and High-Level Web Service Orchestration 125

In this paper we focus on how the three specifications, BPEL4WS (or BPEL for
short), WS-Coordination and WS-Transaction support creating robust service compo-
sitions. BPEL provides a mechanism for defining service compositions in the form of
organised collections of Web services (sometimes called choreographies [1]). A cho-
reography consists of the aggregation of services according to certain business rules.
WS-Coordination and WS-Transaction complement BPEL to provide mechanisms for
defining specific standard protocols for use by transaction processing systems, work-
flow engines, or other applications that need to coordinate multiple Web services. We
briefly describe the key aspects of each specification and explain how the three fit to-
gether to provide a framework for composing and coordinating distributed Web ser-
vices. Finally, we look at a software tool that can be used to create the aforementioned
Web service choreographies (or orchestrations) that adhere to the BPEL specification.

2 Background Review

The development of Web service technology for integrating wide-spread legacy sys-
tems is not sufficient for multi-company applications. This is due to the fact that
Web services themselves cannot describe their own behaviour. However, service or-
chestration paradigms are able to do this; this is illustrated in the Web Services Stack
in Figure 1. Web service orchestrations address such behavioural needs. Modern day
e-business transactions are a prime candidate for orchestrations and SOA-based
technologies. Take the example of a travel booking through a website. hen we use a
website for booking flights we are using a service provided by the flight provider and
also services provided by individual airlines. We may even request the lowest quote
from several different airlines during the transaction. Figure 2 shows a typical busi-
ness activity model for a flight booking Web service orchestration. Clients register
their interest in booking a flight by logging on to a travel agent’s site. They fill in the

Fig. 2. A Flight Booking Orchestration Model

126 A. Strickland et al.

request for travel, specifying the origin, destination and preferred travel dates.
The travel agent’s service now passes this information to various airlines to obtain
the availability of seats and their best quotes. The availability, along with the lowest
fare is then communicated back to the calling clients.

This is one contemporary example of how today’s e-business transactions are op-
erated. However, this kind of application architecture can also be used by companies
with disparate IT systems, possibly resulting from mergers or just general business
growth. An example of Web service orchestration here may be the booking of em-
ployees onto training courses. Course registration could be handled by disparate
systems that provide their own Web services. The client application would pass an
employee’s data to these services in order to retrieve a course availability date. Once
this data is received the client application could go ahead and book the employee on a
course. Here, we can see that the Web service framework is identical to that of an e-
business implementation.

Service orchestration is a very powerful tool, although does still have a small num-
ber of drawbacks. Firstly, transactional processing is made very difficult in orchestra-
tions due to the fact that processes can potentially be very long running. For example,
an employee may be part-way through booking a training course when he/she decides
to go to lunch leaving the process open. This makes transactional processing almost
impossible. Also, orchestrations are stateless by nature meaning that no data can be
stored in between individual Web service calls. This can be worked around however,
by passing key data into services as parameters in the individual operation calls.

Web service orchestrations and SOA strategies provide companies with many
benefits. The industry-standard orchestration paradigm (BPEL) is built on a founda-
tion of XML. Like Web services themselves, which are also built on XML, this pro-
vides an extensible framework of technologies for pulling together disparate IT
systems. BPEL also extends the basic WSDL functionality of Web services in order
to provide self-contained units of logic which are essentially software systems in their
own right. This makes for a powerful tool in a company’s SOA armoury.

3 Orchestration Composition

BPEL is an XML-based specification language that specifies how to define a business
process in terms of compositions of existing Web services. BPEL models the actual
behaviour of a participant in a business interaction as well as the visible message ex-
change behaviour of all the parties involved in the orchestration.

3.1 Defining Orchestration Business Protocols

A BPEL orchestration is a container for the individual processes, activities and work-
flows within. Each orchestration is defined using the same WSDL XML schema lan-
guage as the contained services; facilitating common-language components. This
permits one BPEL orchestration to be contained within another as if it was an atomic
service. Indeed they can be treated as Web Services due to the fact that they contain
their very own WSDL definition in order to define their interface and port bindings. A
process, like any Web service, supports a set of WSDL interfaces that enable it toex-
change messages with its partners. The process interacts with them by invoking

 Analysis of BPEL and High-Level Web Service Orchestration 127

operations and passing their message types back and forth via the process service in-
terface. Figure 3 illustrates such a set of interactions. Here, the external links (Part-
ners) are external to the core process itself.

Fig. 3. A BPEL process interacting with two partners: black circles are activities, arrows are
control links

The interaction between a BPEL orchestration and its partners is generally as-
sumed to be a peer-to-peer conversational one, in which each party invokes opera-
tions. This is performed by sending messages to, or receiving messages from the other
activities within the orchestration.

Only abstract interfaces are used in the partner definitions, which makes BPEL or-
chestrations platform and transport-independent. This means that the same BPEL
process may be accessed over standard HTTP using SOAP messages, as well as, say,
J2EE protocols such as IIOP and JMS [13].

3.2 Nature of BPEL Orchestrations

Once the partners for a process are defined, a set of primitive activities is used to de-
fine how messages are exchanged with each partner. These activities are similar to
those used in modular programming languages and define the logic and workflow
elements of the orchestration. A message is sent to a partner using an Invoke activity.
The BPEL process can wait for a process operation to be invoked by an external client
using the Receive activity. The response of an input/output operation is returned via
the Reply activity. The BPEL specification also includes structural primitives that
may be combined to form complex data-manipulation algorithms: Sequence defines
an ordered set of steps; Switch implements Boolean conditional logic; While to define
loops; Pick to execute one of several alternative paths provided by a set of events; and
Flow to execute a set of steps in parallel. Additional primitives are provided to sup-
port abnormal process termination.

128 A. Strickland et al.

3.2.1 Fault Handling and Compensation
BPEL provides comprehensive support for dealing with errors through the use of
Fault and Compensation handlers. Fault handlers provide a structured model in order
to deal with unexpected errors within a process. This is very similar to the Try-Catch
methodology in Java and .Net programming languages. Fault handling is closely re-
lated to the concept of Compensation. Compensation [18] is BPEL’s answer to ACID
transactions [19]. However, BPEL processes are potentially very long running proc-
esses meaning that the ACID transaction model would not suit the needs of most
businesses running such processes. Therefore, Compensation effectively provides an
‘undo’ path in order to reverse the actions of a business process (such as cancelling a
booking for an employee training course). A process designer would define the proc-
ess that occurs when a compensation handler is triggered. The BPEL Compensation
model is closely related to the protocols defined by the WS-Transaction specification.

3.2.2 WS-Coordination and WS-Transaction
WS-Coordination defines a framework that supports the concept of pluggable coordi-
nation models. The approach to implementing a specific coordination model is to ex-
tend the mechanisms provided by WS-Coordination. Specific coordination and trans-
action models are each represented as a coordination type supporting a set of
coordination protocols. A coordination protocol is the set of well-defined messages
that are exchanged between Web service participants. The correct execution of a set
of distributed activities is taken care of via coordination protocols, such as completion
protocols, synchronization protocols, or outcome notification protocols. The WS-
Coordination framework defines three main elements commonly required by various
coordination models:

• A Coordination Context – the shared, extensible context representing the coordina-
tion that is sent to the distributed participants.

• An Activation Service – the service used by clients to create a coordination context.
• A Registration Service – the service used by participants to register resources for

inclusion in specific coordination protocols.

The Activation and Registration services are generic. Together with the set of services
that represent the specific coordination protocols for a given coordination type, they
make up a Coordination service (shortened to Coordinator).

In order to coordinate a set of Web services, the coordination client starts the coor-
dination by sending a request message to the Activation service of a chosen coordina-
tor. A CoordinationContext is then created by the Activation service. The Coordina-
tionContext contains a global identifier, expiration information, the port reference for
the Registration service, and can also be extended to include atomic transaction in-
formation. The port reference is a WSDL definition type that is used to identify a spe-
cific port. When the client initiates a Web service invocation, the CoordinationCon-
text must be sent along with the application message. The service being invoked can
then discover the Registration service’s port reference to register for the coordination
protocol that it wishes to participate in.

WS-Transaction supports WS-Coordination by defining two particular coordina-
tion types: “Atomic Transaction (AT)” and “Business Activity (BA)”. ATs model

 Analysis of BPEL and High-Level Web Service Orchestration 129

short-running atomic transactions, whereas BAs model business transactions for long
running processes.

ATs are analogous to traditional distributed transactions and map to the ‘Atomic-
ity’ element of the ACID model. The AT coordination type supports this in an ‘all or
nothing’ sense. It also includes the two-phase commit protocol.

The BA coordination type supports transactional coordination of long running
processes. BAs do not require resources to be held, although they do require business
logic to be applied in the event of exceptions. Participants in BAs are viewed as busi-
ness tasks that are children of the BA for which they register. The participant list is
dynamic and participants are loosely-coupled.

4 Orchestration Software Tools

Our work on gaining an understanding for the BPEL specification with regard to SOA
strategies led us to look at methods for creating BPEL orchestrations themselves. A
number of commercially available software tools that aid the process of creating
BPEL orchestrations exist. Tools such as IBM WebSphere Studio Application Devel-
oper [15] allow for the creation of BPEL orchestrations via the in-built GUI. Orches-
tration processes can then be deployed and executed in a production environment
using WebSphere Business Integration Server Foundation [16]. Oracle’s BPEL Proc-
ess Manager provides a similar GUI interface, although it is specifically designed for
the generation of BPEL workflows and orchestrations. Similarly, the process can then
be deployed onto the bundled Oracle server and run under a production environment.

The two tools mentioned here have one thing in common; that is that their target
audience is predominantly the highly-skilled IT professional. This would pose little
problem for the kind of company whose IT strategy was determined by these kinds of
employees with a high level of technical expertise. However, we have found that lar-
ger companies wanting to adopt SOA IT strategies would ideally like to have their
SOA models and processes designed by employees with a greater business knowledge
than a technical one. For this reason we have developed a BPEL orchestration tool to
specifically meet the needs of business-oriented users.

4.1 MooD® and Process Activation

The Salamander Organization Ltd, based in York, UK, has developed the MooD®
Transformation Toolset to support large-scale business transformation programmes.
The software is marketed to business managers and consultants, enabling them to dis-
cover and map organisational processes, systems, people, performance measures, and
map them to real-world systems and applications through an award-winning patented
process called Activation; the output is something Salamander calls a Knowledge
Map and this can be published onto an intranet and in other document forms. Under
the auspice of a two-year Knowledge Transfer Partnership programme the University
of Hull and The Salamander Organization have collaborated to extend the visual and
integration capabilities of MooD to include BPEL orchestrations within the business
modelling context.

130 A. Strickland et al.

The MooD Transformation Toolset may be extended using an add-in mechanism.
We used this to create the BPEL orchestration add-in called Process Activation, al-
lowing users to construct and ‘storyboard’ business process models, using MooD
Business Developer’s familiar user interface. The Process Activation add-in extends
MooD’s process modeling capabilities in such a way that they be ‘activated’ in order
to execute Web service operations. The difference between MooD Process Activation
and other BPEL orchestration tools however, is that here we are only really interested
in the general workflow of a particular process. We are not concerning ourselves with
the more complex elements of orchestration construction, such as compensation and
fault handling. The primary purpose of Process Activation is to ‘storyboard’ orches-
trations before exporting them into a BPEL-compliant server tool of choice. Once in
the production server tool the lower level operations can be ‘filled-in’ before being
deployed and put into production.

4.2 Process Activation Features

Because Process Activation is aimed at business personnel rather than technical em-
ployees, the more complex BPEL constructs are either unavailable or abstracted from
the user.

Before orchestrations can be created, Web services have to be imported into Proc-
ess Activation. This can be done in one of three ways. We can import an individual
service by locating its WSDL and importing it. This method is fine if we know where
the service resides. However, if the location of the service is unknown, we can browse
UDDI servers and search for services that reside there. Here, multiple services can be
imported simultaneously. Finally, if a service that we require has not been created and
deployed to a web server, we can create a pseudo service within Process Activation.
This is known as Requirements generation. Here, if we know what the individual op-
eration interfaces will look like, we can design the interface stubs of each operation
within a service. Despite the fact that the process cannot actually be executed, it en-
ables the ‘storyboarding’ of an orchestration to take place without necessarily having
all required services available.

In terms of BPEL activities, Process Activation contains only the more basic ones.
Process workflow logic is covered with the While and Choose activities, whilst Wait
and Abort activities are also included to improve BPEL compliance. The Assign ac-
tivity is included but only to transform the value of an available BPEL variable. The
assigning of parameters to Web service operations is handled in a much simpler way
and is abstracted from the user. This is described in the following section.

Process Activation also includes two other process types – the ‘start node’ and ‘end
node’. These can be placed on a model to show the start and end points of a process
execution flow and are an integral part of the BPMN standards [17] for business proc-
ess modelling.

4.3 Using Process Activation

Through its Business Developer user interface MooD is capable of holding complex
models with detailed graphical content. MooD models are generally made up of a num-
ber of ‘processes’ that can be linked via relationships. For Web service orchestration

 Analysis of BPEL and High-Level Web Service Orchestration 131

these processes can be ‘Process Activated’ by dragging the name of an imported Web
service operation onto the required process on the model. This forms the basis of a
BPEL Invoke activity.

The available BPEL activities can be added to a model by selecting them from the
custom Process Activation menu. Once added, they can be connected to the rest of
the model through the use of specialist relationship links that are custom to Process
Activation. Expressions for Choose and While activities are added to the orchestra-
tion via an easy-to-use expression builder that should provide all the functionality re-
quired to create powerful BPEL orchestrations.

Figure 4 shows an example BPEL orchestration that has been created within MooD
Process Activation. We can see the flow control logic of the Choose operators; how-
ever, we are not concerned in inputting complex assign statements in order to manipu-
late variables before passing them into Web service invocations. Instead, we map
data flows onto Web service parameters using a much higher level parameter map-
ping technique. This is done by simply pairing each link (the black lines in Figure 4)
to the appropriate parameter required to invoke the Web service operation (the yellow
ellipses). The user completes this mapping through a simple user interface, whereby
the required parameters of an operation can be mapped to the available data flows.
Compare this to the traditional BPEL engineering tools, in which complex BPEL As-
sign statements have to be written by hand in XPath.

Fig. 4. An example orchestration from MooD Process Activation

As soon as an orchestration is created and the basic validation is passed it can be
executed within the Process Activation environment. Here, we are executing our or-
chestration in a kind of ‘debug’ mode. This is where we concern ourselves with how
the process would run under a full executable environment, i.e. we can check that our
conditional workflow logic is operating correctly, that all Web services are being in-
voked with the correct parameters, and ultimately, that the expected value(s) are

132 A. Strickland et al.

output at the end of the process. Note, that this execution is only possible if all of the
services in the orchestration are bound and therefore can be executed. Any service
operations that have been created using Process Activation’s Requirements generation
cannot be executed.

4.4 Process Activation to BPEL

Once we are confident that our orchestration contains the appropriate workflows and
returns the correct data, it is ready to be placed in a production environment in order
to form part of an SOA implementation. This is the ultimate aim of Process Activa-
tion; that an orchestration can be storyboarded and loosely constructed before being
exported into a workflow engine of choice. Oracle BPEL Process Manager and IBM
WebSphere are two such products.

The answer to server tool interoperability lies of course in BPEL. Due to the fact
that BPEL is by nature an XML-based scripting language, it is inherently interoper-
able. Because Process Activation provides BPEL compliance, its orchestrations can
be exported to the BPEL XML scripting language. Once the BPEL is generated, it can
then be imported into the platform of choice.

The next section of the paper outlines a current shortcoming in the BPEL specifica-
tion. The issue here is that each server tool interprets the tying together of
collaborated Web services in a slightly different way. Whilst the BPEL specification
is standard, the collaborative service definitions are not. For this reason Process Acti-
vation is able to target specific server and workflow tools. These are called Export
Activators in Process Activation and currently target four workflow engines:

• Oracle BPEL Process Manager
• IBM WebSphere Business Integration Server Foundation
• BEA WebLogic
• Microsoft BizTalk

Due to the extensible nature of the Export Activator architecture, new server tools
could be added with little extra effort.

Currently, Process Activation contains sufficient functionality for orchestrations to
be storyboarded before being exported into a server tool of choice. Future functional-
ity is set to include a corresponding BPEL import feature that will import some BPEL
generated from a server tool. This may include more complex BPEL activities that
have been ‘filled in’ whilst deployed on the BPEL server. This ‘round-trip’ capability
will ensure both the business-level representation and IT implementation are synchro-
nized and remain up-to-date.

We have seen here that Process Activation is simple to use. By omitting complex
BPEL activities and abstracting programmatic logic away from the user, more busi-
ness-oriented personnel are able to use the tool for their SOA requirements.

5 Process Activation Case Study

Now that we have seen how Process Activation and MooD can be used together, let
us now look at a hypothetical real-world example of its use.

 Analysis of BPEL and High-Level Web Service Orchestration 133

One type of company The Salamander Organization work with is large multi-
nationals. One such example could be a media company who already use MooD soft-
ware to map out processes for the generation of advertisements within newspapers.
Due to the high-level nature of the process models, they would have always been cre-
ated and maintained by business personnel, rather than the technical equivalent. Prior
to the implementation of Process Activation, the company may use these models to
produce training and technical documentation for their advertising employees to use
in the production of newspaper advertisements.

The various tasks required in order to generate a successful advertisement in a
newspaper may require a number of disparate IT systems to be utilized. For example,
advertisement content is created and updated on one system, whereas approval and
publication is carried out on another. Due to the fact that these systems are built on
radically different technologies and that they are widespread, the media company
would have had to undertake the task of advertisement creation manually. This would
be a very painstaking and costly process. A well pitched SOA implementation would
solve these problems.

The disparate IT systems used for advertisement generation could all be managed
by the media company. Therefore, each system would be able to provide a Web ser-
vice interface in order to expose their inherent functionality. As soon as these services
were implemented and available for use, the final hurdle to overcome would be ser-
vice collaboration. This is where the BPEL specification for Web service orchestra-
tion plays the key role in an SOA implementation.

The media company would need to implement a workflow BPEL-engine in order
to realize their SOA implementation. For the purposes of this scenario the media
company already have IBM WebSphere implemented in a production environment.
Due to the fact that the company’s advertisement creation processes would have al-
ready been defined within The Salamander Organization’s MooD software, they
would have already ‘storyboarded’ their orchestration. By using the Process Activa-
tion add-in for MooD, they could simply attach Web service operations to the existing
MooD processes in order to create a fully-functional end-to-end process.

The advertisement creation process is illustrated in Figure 5. The individual tasks
that make up the overall process are categorized by role (represented by the light blue
and yellow swim lanes). The blue boxes on the model indicate individual sub-
processes within the orchestration. The processes with Operation boxes above them
are mapped onto Web service operations to form part of the BPEL orchestration. No-
tice that the model shown here is a purely linear one, i.e. there is no use of conditional
logic or iterative looping functionality. However, future orchestrations designed by
the company could contain such functionality.

Once the company is confident that their orchestration is operating correctly within
Process Activation, it is time to deploy it to IBM WebSphere Business Integration
Server Foundation Edition. In order to do this they would simply use the Process Ac-
tivation BPEL Export Activator for IBM WebSphere. The exported orchestration
would then be imported into IBM WebSphere. Here, lower-level functionality could
be added to the orchestration, such as exception handling and concurrent processing
via the BPEL Flow activity. As soon as the orchestration is configured to be executed
within a production environment it can be deployed to the WebSphere Foundation
Server where it is put into production. Once this has taken place the media company

134 A. Strickland et al.

would see the immediate benefits of having an automated advertisement creation
process. The manual invocation of disparate systems would no longer be necessary
saving valuable time and cumulative effort in their daily business operations.

Fig. 5. The Advertisement Creation Process

6 BPEL Specification Improvements

As a standard for Web service orchestration, BPEL addresses the majority of
requirements for a company to implement SOA. However, we have identified a
portion of the specification that seems to be currently omitted.

In order to import a valid BPEL orchestration into a workflow engine, such as
Oracle BPEL Process Manager, 3 separate files are required.

• An XML file containing the BPEL activities that make up the orchestration work-
flow of the process. This file acts as the BPEL process ‘roadmap’.

• A WSDL file that contains the interface and binding data for the whole BPEL
process. This ensures that the whole process can be treated as a Web service in its
own right.

• A BPEL Suitcase file. This is an XML-based file that tells the BPEL engine where
it can find the WSDL files that belong to the Web service partners used in the
BPEL process.

Figure 6 shows an Oracle BPEL Process Manager BPEL Suitcase file that contains
links to three separate WSDL files. The first is the ‘client’ WSDL; this is the WSDL
for the BPEL process and defines the interface for the BPEL receive and reply
activities. The remaining two ‘partnerLinkBinding’ elements exist to tell the Oracle

 Analysis of BPEL and High-Level Web Service Orchestration 135

Fig. 6. An Oracle BPEL Suitcase file

workflow engine where to find the WSDL files for the associated Web service part-
ners in the BPEL process. Without this information the BPEL process would be
unable to be executed in a production environment.

Similarly, IBM WebSphere has a requirement to know where the Web service
partner WSDL files are located in order to execute the BPEL process. This is
achieved through the use of an additional WSDL file for the BPEL process. As well
as the WSDL to define the interface for the BPEL process, an additional one is used
to define the location of each Web service partner. The principle here is very similar
to that of the BPEL Suitcase used in Oracle BPEL Process Manager.

Fig. 7. An example of Partner Link declarations in the existing BPEL specification

The issue with having Web service partner locations defined in a separate file is
that each workflow tool vendor interprets this concept in a slightly different way. This
means that in order to import BPEL orchestrations into workflow engines, extra files
have to be created differently depending on which tool is being targeted. Essentially,
this leads to a lack of interoperability within the BPEL specification. One of the

136 A. Strickland et al.

advantages of specifications and standards is that interoperability is gained between
similar software tools and engines. However, the BPEL specification loses some of
this interoperability due to the fact that special measures have to be taken in order to
inform the workflow engine where specific WSDL files are located.

Figure 7 shows an implementation of Partner Links in a BPEL file that adheres to
the current specification. Very simply, the partner link has a name that is used to ref-
erence it in the document, a type that references a namespace, and a role that is refer-
enced when the partner’s services are invoked.

Fig. 8. Our recommendation for the BPEL specification regarding Partner Links

We believe that the BPEL specification could be improved in order to state the lo-
cations of WSDL files that are associated to partner links. Figure 8 contains the same
partner links declarations as those shown in Figure 7, with one significant difference.
Here, we have added a ‘location’ element to each ‘partnerLink’ element. This element
contains the physical location of the WSDL file associated with the partner link. By
including this tool vendors would no longer have to implement bespoke methods for
informing the BPEL engine of where to locate WSDL files for partner links. There-
fore, BPEL would be a true standard and would place SOA in a stronger position
within the IT community.

7 Conclusions

Due to their inherent technical nature, the design and storyboarding of BPEL orches-
trations must be undertaken at a particularly low and technical level. We at the Uni-
versity of Hull, working in conjunction with The Salamander Organization have
designed and implemented a BPEL design tool that can be used by business personnel
rather than the more technically skilled IT employees of a company. This tool can de-
ploy SOA technologies into the domain of the business person in order to achieve a
common understanding across the high-level business layer and the lower-level tech-
nical IT layer of a business. We have shown that this can make SOA along with
BPEL an even stronger proposition for companies wanting to undertake SOA imple-
mentations as part of a wider transformation programme.

The Web services framework is very much coming to the forefront of the IT com-
munity as we move ever-closer to an SOA-governed IT world. Over the last few years
SOA has evolved into a technology stack based on XML standards. BPEL design
tools and server-based engines such as IBM WebSphere and Oracle BPEL Process
Manager have helped BPEL Web service orchestrations become a large part of a
company’s IT strategy.

 Analysis of BPEL and High-Level Web Service Orchestration 137

Whilst the BPEL specification addresses many needs with regard to SOA and ser-
vice orchestration, it is by no means perfected. In this paper, we have outlined issues
regarding the location of partner link WSDL files within a BPEL process. This means
that for a high level design tool like Process Activation certain server tools have to be
specifically targeted for BPEL export. With the improvements to the BPEL specifica-
tion suggested here, any compliant workflow engine could simply import and execute
a single BPEL file, along with its associated WSDL.

Acknowledgements

Our thanks to the Knowledge Transfer Partnership (KTP) for facilitating the collabo-
rative work between The University of Hull and The Salamander Organization Ltd.
Extended thanks must go to The Salamander Organization Ltd and MooD Interna-
tional Ltd for the opportunity to develop the Process Activation BPEL add-in for their
existing MooD® product.

References

1. Francisco Curbera, Rania Khalaf, Nimal Mukhi, Stefan Tai, Sanijiva Weerawarana. The
next step in Web Services. October 2003.

2. Business Process Execution Language for Web Services (BPEL), Version 1.1
http://www.ibm.com/developerworks/library/ws-bpel May 2003.

3. Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl March 2001
4. Extensible Markup Language (XML). http://www.w3.org/XML
5. XML Schema. http://www.w3.org/XML/Schema
6. Simple Object Access Protocol (SOAP) 1.1. W3C http://www.w3.org/TR/SOAP
7. XLANG. Microsoft http://www.devx.com/enterprise/Link/7962
8. Joseph Williams. The Web services debate J2EE vs .Net. Communications of the ACM,

46(6):59-63, June 2003.
9. Gerry Miller. .Net vs J2EE. Communications of the ACM, 46(6):64-67, June 2003.

10. UDDI, Version 3.0.2 http://uddi.org/pubs/uddi_v3.htm October 2004
11. Web Services Coordination (WS-Coordination) 1.0 http://www-106.ibm.com/

developerworks/library/ws-coor
12. Web Services Transaction (WS-Transaction) 1.0 http://www-106.ibm.com/developerworks/

library/ws-transpec
13. Mukhi, n., Khalaf, R., and Fremantle, P. Multi-protocol Web services for enterprises and

the grid. In Proceedings of EuroWeb ’02 (Oxford, UK, December 2002).
14. Oracle BPEL Process Manager 10.1 http://www.oracle.com/technology/products/ias/bpel/
15. IBM WebSphere Studio Application Developer Integration Edition 5.1. http://www-306.

ibm.com/software/awdtools/studioappdev/
16. IBM WebSphere Business Integration Server Foundation http://www-

306.ibm.com/software/integration/wbisf/
17. Business Process Modeling Notation (BPMN) http://www.bpmn.org/Documents/

BPMN%20V1-0%20May%203%202004.pdf
18. Van der Aalst, W. and van Hee, K. Workflow Management: Methods, Models and Sys-

tems. MIT Press, 2002.
19. Khaled Nagi. A Robust Approach for Scheduling Orders in a Competitive Just-In-Time

Manufacturing Environment

Rewriting Queries for XML Integration Systems

Ling Li, Mong Li Lee, and Wynne Hsu

National University of Singapore, School of Computing
{lil, leeml, whsu}@comp.nus.edu.sg

Abstract. A data integration system typically creates a target XML
schema to represent an application domain and source schemas are map-
ped to the target schema. A user poses a query over the target schema,
and the system rewrites the query into a set of queries over the data
sources. Existing algorithms generate a set of static rules based on the
target schema and mappings, and rewrite the target query using these
rules. We design a flexible and dynamic approach that rewrites XML
queries directly based on the mappings between the target and source
schemas. Theoretical analysis and experiments on both synthetic and
real-world datasets indicate that the proposed approach is efficient and
scalable.

1 Introduction

A data integration system is an important framework for supporting querying
across multiple heterogeneous data sources in a uniform manner. A target schema
is created to model a particular application domain and source schemas are
mapped to the target schema. A user issues a query over the target schema
and the data integration system reformulates the query into queries that can be
executed over the data sources. In this way, a user can retrieve comparatively
more information than querying each source individually.

In a dynamic environment like the Web, data sources may change their schemas,
and new data sources may be added to an integration system. These changes will
affect the mappings between the target and source schemas. [9] develop a frame-
work for automatically adapting the mappings as schemas evolve. [5] describe an
automatic solution called MAVERIC to detect broken mappings. [11] present a
mapping composition approach to maintain the mappings between the target and
source schemas as the source schemas change.

[10] examine how XML queries can be rewritten in a data integration system.
Based on the mappings between the target and source schemas, their method
generates a set of rules that specify the transformations needed to rewrite a
target query into a set of queries over the source schemas. However, using a set
of static rules to rewrite queries in a data integration system is not suitable in a
dynamic environment since changes in the mappings will require the regeneration
of invalidated rules.

Related Work. Query rewriting is an important task in query optimization and
data integration, and has been well-studied in the context of relational databases

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 138–148, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rewriting Queries for XML Integration Systems 139

[2,3,7,8]. Recent works [1,4,6,10] examine approaches to rewrite XML queries.
[1,4] address the problem of rewriting XML queries for optimization.

[10] investigate the problem of rewriting target queries in XML data integra-
tion systems and develop a method to generate rewriting rules from the mappings
between the target and source schemas. The method uses target constraints to
specify how the retrieved data is merged. This approach is expensive for two rea-
sons. First, changes in the mappings will require the regeneration of invalidated
rules. Second, unnecessary substitutions are introduced when rewriting queries
based on the rules, which increases the complexity of the process.

Contribution. We investigate how queries in a data integration system can be
rewritten directly based on the mappings between target and source schemas. We
develop a basic rewriting method to handle both simple path and branch XML
queries. We give a theoretical analysis of the correctness and time complexity of
the proposed method. Experiment results indicate that the proposed approach
scales well with respect to mapping and query complexities.

2 Motivating Example

Consider the target schema T12 in Fig 1 and source schemas S1 and S2 in Fig 2
and Fig 3 respectively. T12 captures the textbook and lecturer information of a
module, with code as the key. The mappings between S1 and T12, and S2 and
T12 are given by M1 and M2 respectively. These mappings map modules with 4
credits in the source schemas S1 and S2 to the target schema T12.

Based on the target schema T12 and mapping M1, [10] will generate two
rewriting rules, one each for the non-leaf nodes module and book in T12:

R1: module = λ().{
for m1 in module1 where m1.credit = 4
return [module = [code = m1.code, book = SK0(m1.code),

lecturer = m1.lecturer]]}
R2: SK0 = λ(l1).{

for m1 in module1, b1 in m1.book where l1 = m1.code and m1.credit = 4
return [book = [ISBN = b1.ISBN,title = b1.title,

author = b1.author, price = b1.price]]}

Target schema T12:
<!DOCTYPE module [

<!ELEMENT module (book+, lecturer+)>
<!ATTLIST module code ID #REQUIRED>
<!ELEMENT book (title, author+, publisher+, price)>

<!ATTLIST book ISBN ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#CDATA)>

<!ELEMENT lecturer (#PCDATA)>
]>

Fig. 1. Target Schema T12

140 L. Li, M.L. Lee, and W. Hsu

Source schema S1:

<!DOCTYPE module1 [

<!ELEMENT module1 (credit, book+, lecturer+)>

<!ATTLIST module1 code ID #REQUIRED>

<!ELEMENT credit (#CDATA)>

<!ELEMENT book (title, author+, price)>

<!ATTLIST book ISBN ID #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT price (#CDATA)>

<!ELEMENT lecturer (#PCDATA)>

]>

Mapping M1:

foreach m1 in module1, b1 in m1.book

where m1.credit = 4

exists m in module, b in m.book

with m.code = m1.code

and b.ISBN = b1.ISBN

and b.title = b1.title

and b.author = b1.author

and b.price = b1.price

and m.lecturer = m1.lecturer

Fig. 2. Source Schema S1 and the Corre-
sponding Mapping

Source schema S2:

<!DOCTYPE module2 [

<!ELEMENT module2 (credit, book+, lecturer+)>

<!ATTLIST module2 code ID #REQUIRED>

<!ELEMENT credit (#CDATA)>

<!ELEMENT book (title, publisher+, price)>

<!ATTLIST book ISBN ID #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#CDATA)>

<!ELEMENT lecturer (#PCDATA)>

]>

Mapping M2:

foreach m2 in module2, b2 in m2.book

where m2.credit = 4

exists m in module, b in m.book

with m.code = m2.code

and b.ISBN = b2.ISBN

and b.title = b2.title

and b.publisher = b2.publisher

and b.price = b2.price

and m.lecturer = m2.lecturer

Fig. 3. Source Schema S2 and the Corre-
sponding Mapping

Fig. 4. Source Schema S3 Fig. 5. Target Schema T ′
12

Since a rewriting rule is created for each non-leaf node in the target schema,
the time complexity for the rule generation step is O((nt − lt) ∗ ft), where nt is
the number of nodes in the target schema, lt is the number of leaf nodes, and
ft is the average fanout of a non-leaf node. This is significant because a target
schema tends to be highly complex with many nodes.

Figure 4 shows a source schema S3. If we integrate S3 with S1 and S2, we
will obtain a new target schema T ′

12 (see Figure 5). The evolution of the target
schema from T12 to T ′

12 will change the mapping between S1 and the target
schema T ′

12 as follows (changes are highlighted in bold):

Rewriting Queries for XML Integration Systems 141

Mapping M ′
1:

foreach m1 in module1, b1 in m1.book where m1.credit = 4
exists m in module, b in m.book,t in m.staff, a in t.acadStaff
with m.code = m1.code and b.ISBN = b1.ISBN

and b.title = b1.title and b.author = b1.author
and b.price = b1.price and a.lecturer = m1.lecturer

With the addition of the non-leaf node staff and acadStaff in the target
schema T ′

12, two new rewriting rules need to be generated, and the existing rule
for module(R1) needs to be updated as follows:

R′
1: module = λ().{

for m1 in module1 where m1.credit = 4
return [module = [code = m1.code, book = SK0(m1.code),

staff = SK1(m1.code)]]}
The rewriting rule for book(R2) remains valid since there is no change in the

child nodes of this element in the target schema. We also find that the rewriting
rule approach tends to introduce unnecessary substitutions. Suppose we issue
query QA on T ′

12:

QA: for m in module, t in m.staff, a in t.acadStaff
where a.lecturer = ”John” return m.code

The QueryTranslate algorithm in [10] first applies rule R′
1 to substitute the

element module in query QA with the corresponding element module1 in the
source schema S1. A new variable, say m1’, is introduced to denote the ele-
ment module1. The elements m.code in the return clause of QA is replaced with
m1’.code. Next, the element staff in the in clause of QA is substituted with the
right-hand side of the rule SK1 as indicated in the return clause of R′

1. This
substitution process continues until only source elements occur in the in clause
of the query QA. We observe that some of the substitutions are not necessary,
e.g., the substitutions for the elements staff and acadStaff when rewriting QA

to a query over S1 since these two elements are not modelled in S1.

3 Rewriting Queries Dynamically

In this section, we describe the proposed method to rewrite target queries directly
based on the mappings between the target and source schemas. Let us issue query
QB on the target schema T12 to retrieve information about each module.

QB: for p in module, q in p.book return p.code, q.ISBN, q.title, p.lecturer

Step 1. Rewrite query variables.
We use the mappings between the target and source schemas to unify and replace
each element variable that occurs in the target query with the corresponding
element variable of the target schema in the mapping. The for and in clauses
of the query will be emptied. This step facilitates the subsequent mapping of
target elements to the source elements.

142 L. Li, M.L. Lee, and W. Hsu

Algorithm 1. Basic Rewrite
Input: Target schema T; Query Q; Mapping M between source schema S and T
Output: Q’ - query on source schema S

/* Step 1. Rewrite variables */
for each element E1 in in clause of query Q do

find variable e1 that corresponds to E1 in M;
replace all variables corresponding to E1 with e1 in all clauses except for clause in Q;
empty for and in clauses in Q;
/* Step 2. Map elements in query */

for each element E in Q do
find corresponding element E’ in with clause in M;
replace E with E’;
/* Step 3. Add where clause */

for each where clause W in M after foreach clause do
add W to where clause in Q;
/* Step 4. Complete rewriting by adding variables */

for each variable V in Q do
call addVariable(V);

FUNCTION addVariable(V)
check if V already exists in for clause of Q;
if V is a new variable then

find same variable in foreach clause;
add both variable and corresponding element in in clause I after foreach clause in M to for
and in clauses in Q;
for each variable V’ that appears in I do

call addVariable(V’);

The variables p and q in query QB denote the elements module and book
respectively. However, the mapping M1 uses the variables m and b to denote the
corresponding elements. Step 1 will replace all the p with m, and all the q with
b. The resulting query on the source S1 is:

Q1 1: for in return m.code, b.ISBN, b.title, m.lecturer
Next, we use the mapping M2 to rewrite QB to query Q2 1 on source S2

Q2 1: for in return m.code, b.ISBN, b.title, m.lecturer

Step 2. Map query elements.
We replace the elements in the query with the corresponding elements in the
source schema according to the mapping between the target and source schemas.
Any query elements that do not have the corresponding elements in the mapping
are discarded since these elements will not be modeled in the source schema. The
queries obtained after mapping the elements are:

Q1 2: for in return m1.code, b1.ISBN, b1.title, m1.lecturer
Q2 2: for in return m2.code, b2.ISBN, b2.title, m2.lecturer

Step 3. Add where clause.
We augment the query with the where clause in the mapping which specifies the
conditions that materialize the source data to the target schema.

Q1 3: for in where m1.credit = 4
return m1.code, b1.ISBN, b1.title, m1.lecturer

Q2 3: for in where m2.credit = 4
return m2.code, b2.ISBN, b2.title, m2.lecturer

Rewriting Queries for XML Integration Systems 143

Step 4. Add paths of elements.
Finally, we specify the paths to the element variables in the query. The path
information is found in the foreach and in clauses that corresponds to the source
schema. The final queries issued on S1 and S2 are Q1 4 and Q2 4:

Q1 4: for m1 in module1, b1 in m1.book where m1.credit = 4
return m1.code, b1.ISBN, b1.title, m1.lecturer

Q2 4: for m2 in module2, b2 in m2.book where m2.credit = 4
return m2.code, b2.ISBN, b2.title, m2.lecturer

4 Theoretical Analysis

4.1 Soundness and Completeness

Lemma 1: Let T be the target schema of source schemas S1, S2, . . . , SN , and
DS1, DS2, . . . , DSN be the data sources of S1, S2, . . . , SN respectively. Let Mi

be the mapping between Si and T , 1 ≤ i ≤ N . A tuple t′ is retrieved via T
iff there exists some corresponding tuple t, t ∈ DSi such that t satisfies the
conditions specified in Mi, 1 ≤ i ≤ N .

Based on Lemma 1, we partition the set of tuples retrieved via T into N sets
W1, W2, . . . , WN , where Wi is the set of tuples retrieved from data source DSi.

Lemma 2: Let Mi be the mapping between a source schema Si and target
schema T . Suppose QMi is the query generated from Mi, and QMi(DSi) is the
set of tuples retrieved by QMi from the data source DSi that corresponds to the
source schema Si. A tuple t ∈ QMi(DSi) iff t ∈Wi, where Wi is the set of tuples
retrieved via T which originates from DSi.

Theorem 1: Algorithm Basic Rewrite is sound and complete.

Proof: Let T be a target schema and S1, S2, . . . , SN be N source schemas that
are mapped to T . Let DS1, DS2, . . . , DSN be the data sources of S1, S2, . . . , SN

respectively, and Mi be the mapping between Si and T , 1 ≤ i ≤ N . Let Q be
a query issued over T . The first two steps in Basic Rewrite uses Mi to rewrite
Q to Qi such that all the elements expressed in terms of T are mapped to the
corresponding elements expressed in terms of Si. Since these two steps do not
add or change any constraints in the original query Q, the rewritten query Qi

will capture the same constraints as Q.
Step 3 in Basic Rewrite combines the mapping conditions in Mi with the

constraints in Qi. This gives us the query Qi.QMi where QMi denotes the query
that is generated from mapping Mi. Sine query constraints are commutative

Qi.QMi(DSi) ≡ Qi(QMi(DSi)) (1)

Let Wi denote the set of tuples that is retrieved from DSi via T. From
Lemma 2, the set of tuples Qi(QMi(DSi)) is equal to Q(Wi).

Qi.QMi(DSi) ≡ Q(Wi) (2)

144 L. Li, M.L. Lee, and W. Hsu

Since Q can be answered by each source individually, we have⋃N
i=1 Q(Wi) ≡Q(

⋃N
i=1 Wi) ≡Q(W) where W =

⋃N
i=1 Wi (3)

From (2) and (3), we have⋃N
i=1(Qi.QMi(DSi)) ≡ Q(W) (4)

Thus, Algorithm Basic Rewrite is sound and complete. �

4.2 Time Complexity

Next, we examine the complexity of the proposed approach. In the worst case,
a query on the target schema will contain the maximum possible number of
elements in each clause. Let nt be the total number of nodes in the target schema,
and lt be the number of leaf nodes. Then we have (nt − lt) variables in the for
and in clauses. Both the where and return clauses will have lt elements. Let ns

be the total number of nodes in the source schema, and ls be the number of leaf
nodes. The mapping between the target and source schemas will have ls number
of elements in the where clause after the foreach clause.

Step 1 processes each element in the in clause of the query and looks for
the corresponding variable in the mapping. These variables are used to replace
the element variables in the where and return clauses of the query. This takes
O((nt−lt)∗lt) time. Step 2 maps and replaces each element in the query with the
corresponding element in the mapping. This takes O(lt) time since the number
of elements in the query is proportional to lt. Step 3 adds the elements of the
where clause in the mapping to the query. The time complexity is proportional
to the number of elements in the where clause, i.e., O(ls). Step 4 finds the
paths of all the element variables in the query. Since we have (ns − ls) non-leaf
nodes in the source schema, this step requires O((ns − ls) ∗ hs), where hs is the
depth of the source schema. Thus, the total time complexity of Basic Rewrite is
O((nt − lt) ∗ lt + lt + ls + (ns − ls) ∗ hs).

5 Experiment Evaluation

We implement the algorithms Basic Rewrite and QueryTranslate [10] in JAVA.
The experiments are run on a 1.68 GHz Pentium 4 with 1 GB RAM, running
WinXP. We repeat each experiment 8 times, and record the average time.

5.1 Mapping Complexity

Depth of Target Schema. We use the chain scenario in [10] (see Figure 6)
to evaluate the performance when the depth of the target schema varies. The
chain scenario simulates the situation where multiple inter-linked XML schemas
(component schemas) of a source schema are mapped into an XML target schema
with a large number of nesting levels. By varying the number of component
schemas in each source schema, we can change the depth of the target schema.
We issue two queries on the target schema in the chain scenario:

Rewriting Queries for XML Integration Systems 145

Qc1: for t1 in T1, t2 in t1.T2, t3 in t2.T3 return t3.B3

Qc2: for t1 in T1, t2 in t1.T2, . . . , tn in tn−1.Tn return tn.Bn

Query Qc1, which is adapted from [10], tests whether a rewriting method is
affected by the depth of the target schema. We design a second query Qc2 to
evaluate the performance as the depth of the target schema increases.

Figure 8 shows that changing the depth of the target schema does not affect
the time taken by algorithm Basic Rewrite to rewrite Qc1 since the rewriting is
carried out directly based on the mapping between the source and target schema.
In contrast, the time to rewrite Qc2 grows linearly as the depth of the target
schema grows. Increasing the depth of the target schema increases the number
of elements in the in clause of Qc2, while increasing the number of component
schemas increases the number of elements in where clause in the mapping, which
affects the last step in the Basic Rewrite algorithm.

Figure 9 shows that Basic Rewrite clearly outperforms QueryTranslate. Query-
Translate rewrites queries based on rewriting rules which requires element

Fig. 6. Chain Scenario Fig. 7. Authority Scenario

Fig. 8. Cost of Basic Rewrite (NoSour-
ces = 5)

Fig. 9. Cost of Approaches as Depth of
Target Schema Increases (NoSources = 5)

146 L. Li, M.L. Lee, and W. Hsu

Fig. 10. Cost of Basic Rewrite (NoSour-
ces = 5)

Fig. 11. Cost of Approaches as Fanout of
Target Schema Increases (NoSources = 5)

variables in the query to be iteratively substituted by variables in the rewriting
rules. Thus, renaming and resolution of the variables are needed, with redundant
substitutions.

Fanout of Target Schema. We use the authority scenario in [10] (see Figure 7)
to investigate how the two approaches are affected by the average fanout of the
target schema. The average fanout of the target schema is varied by the number
of component schemas in each source schema. We use the two target queries
from [10].

Qe1: for t0 in T0 return t0.A1, . . . , t0.A5

Qe2: for t0 in T0, c1 in t0.C1, cn in t0.Cn return c1.B1, cn.Bn

Figure 10 shows the time taken by Basic Rewrite increases linearly as the
average fanout of the target schema increases. This is because of the linear
increase in the number of the component schemas of a source schema. Figure 11
shows that algorithm Basic Rewrite outperforms QueryTranslate [10] for the
same reasons as given in the chain scenario.

5.2 Query Complexity

We investigate the performance of the proposed approach as the query com-
plexity increases. We use a nested query which contains a single variable in the
for and return clauses in each subquery. The query complexity is increased by
increasing the number of levels (subqueries) in the query. Figure 12 shows that
Basic Rewrite scales well as the number of subqueries increases.

5.3 Real World Scenario

Finally, we demonstrate how the proposed approach handles a wide range of
queries in a real world scenario efficiently. We use the real world module schema
in http://www.comp.nus.edu.sg/ lil/module/ as the target schema, and design 6
source schemas with varying depth (5 to 11) and average fanout (4 to 10). We
issue the following queries on the target schema, and record the time taken by
the algorithms Basic Rewrite and QueryTranslate:

Rewriting Queries for XML Integration Systems 147

Q1. retrieve details of each module: id, level, credits, date
Q2. retrieve module id, lectures, tutorials, and total times
Q3. retrieve essential readings of each module
Q4. retrieve the elements book1 and book2 in each module
Q5. retrieve readings of each module
Q6. retrieve details of each lecturer

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9

Number of Nested Level

T
im

e(
m

s)

Rewriting (Chain Scenario) Rewriting (Authority Scenario)

Fig. 12. Cost to Rewrite Nested Queries Fig. 13. Cost of Approaches in Real World
Scenario (NoSources = 5)

Figure 13 clearly indicate that Basic Rewrite outperforms QueryTranslate.
Rewriting queries directly from the mappings is definitely more optimal com-
pared to using pre-generated rewriting rules.

6 Conclusion

Motivated by the drawbacks of rewriting queries using pre-generated rules, we
develop a method to rewrite queries directly based on the mappings between
the target and source schemas. From the theoretical analysis and experimental
results, we conclude that rewriting queries directly from the mappings between
the target and source schemas is both efficient and scalable with respect to
mapping and query complexities.

References

1. D. Calvanese, G. Giacomo, and M. Lenzerini. Rewriting of regular expressions and
regular path queries. Computer and System Sciences, 64, 2002.

2. S. Chaudhuri. An overview of query optimization in relational systems. ACM
SIGMOD, 1998.

3. D. Florescu, L. Raschid, and P. Valduriez. Using heterogeneous equivalences for
query rewriting in multidatabase systems. COOPIS, 1995.

4. I. Manolescu, D. Florescu, and D. Kossmann. Answering xml queries over hetero-
geneous data sources. VLDB, 2001.

148 L. Li, M.L. Lee, and W. Hsu

5. R. McCann, B. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan. Mapping main-
tenance for data integration systems. VLDB, 2005.

6. Y. Papakonstantinou and V. Vassalos. Query rewriting for semistructured data.
ACM SIGMOD, 1999.

7. H. Pirahesh, J.M. Hellerstein, and W. Hasan. Extensible/rule based query rewrite
optimization in starburst. ACM SIGMOD, 1992.

8. R. Pottinger and A. Levy. A scalable algorithm for answering queries using views.
VLDB, 2000.

9. Y. Velegrakis, R.J. Miller, and L. Popa. Mapping adaptation under evolving
schemas. VLDB, 2003.

10. C. Yu and L. Popa. Constraint-based xml query rewriting. ACM SIGMOD, 2004.
11. C. Yu and L. Popa. Semantic adaptation of schema mappings when schemas evolve.

VLDB, 2005.

A Tale of Two Approaches: Query Performance
Study of XML Storage Strategies in Relational

Databases

Sandeep Prakash and Sourav S. Bhowmick

School of Computer Engineering,
Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Abstract. Several recent papers have investigated a relational approach
to store XML data and there is a growing evidence that schema-conscious
approaches are a better option than schema-oblivious techniques as far
as query performance is concerned. This paper studies three strategies
for storing XML document including one representing schema-conscious
approach (Shared-Inlining) and two representing schema-oblivious ap-
proach (XParent and Sucxent++). We implement and evaluate each
approach using benchmark non-recursive XQueries. Our analysis shows
an interesting fact that schema-conscious approaches are not always
a better option than schema-oblivious approaches! In fact, it is possi-
ble for a schema-oblivious approach (Sucxent++) to be faster than a
schema-conscious approach (Shared-Inlining) for 55% of the bench-
mark queries (the highest observed factor being 87.8 times). Sucxent++
also outperforms XParent by up to 1700 times.

1 Introduction

Recently, therehasbeena substantial researcheffort in storingandprocessingXML
data using relational backends. This approach either shred the XML documents
into relational tables using some sort of encoding scheme [1,5,7,8,12,15,18,19] or
use aBLOBcolumnto store theXMLdocument [6,20,21].BLOB-basedapproaches
use stored procedures to invoke an external XPath/XQuery processor. The main
advantages of this approach are fast retrieval of full XML document and ability of
storing any XML document irrespective of the availability of the schema. However,
in this paper, we focus on shredding-based approaches as in the BLOB-based ap-
proaches, usually the entire XML document must be brought into memory before
processing, severely limiting the size of the data and optimization possibilities.

The shredding-based approaches can be classified into two major categories:
the schema-oblivious and the schema-conscious approaches. In brief, the schema-
oblivious method consists of a fixed schema which is used to store XML docu-
ments. This approach does not require existence of an XML schema/DTD. Some
examples of schema-oblivious approaches are Edge approach [7], XRel [18], XPar-
ent [8], Sucxent++[12]. The schema-conscious method, on the other hand,

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 149–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

150 S. Prakash and S.S. Bhowmick

derives a relational schema based on the DTD/XML schema of the XML docu-
ments. Examples of such approaches are Shared-Inlining [15] and LegoDB [1].
Once XML data is stored using either schema-conscious or schema-oblivious ap-
proach, an XQuery/XPath is translated into SQL for evaluation. A comprehen-
sive review of methods for XML-to-SQL query translation and their limitations
is beyond the scope of this paper and can be found in [9].

In this paper, we study the performance of schema-conscious and schema-
oblivious approaches and compare these alternatives. In particular, we compare
the performance of one schema-conscious approach (Shared-Inlining [15])
with two representative schema-oblivious approaches (XParent[8] and Sucx-
ent++[12]). At this point, one would question the justification of this work as
a growing body of research suggests that schema-conscious approaches perform
better than schema-oblivious approaches. After all, it has been demonstrated in
[16] that schema-conscious approaches generally perform substantially better in
terms of query processing and storage size. However, we believe that the superior-
ity of schema-conscious approaches (such as Shared-Inlining) as demonstrated
in [16] may not hold anymore! This is primarily due to the following reasons.

The Edge approach[7] was used in [16] as the representative schema-oblivious
approach for comparison. Although the Edge approach is a pioneering relational
approach, we argue that it is not a good representation of the schema-oblivious
approach as far as query processing is concerned. In fact, XParent [8] and XRel
[18] have been shown to outperform the Edge approach by up to 20 times,
with XParent outperforming XRel [8,11]. This does not necessarily mean that
XParent outperforms schema-conscious approaches. However, it does raise the
question whether there exists a schema-oblivious approach in the literature that
can outperform XParent significantly and consequently outperform a schema-
conscious approach? In [12], we provided answer to this question by presenting
a novel schema-oblivious approach called Sucxent++ (Schema Unconscious
XML Enabled System) that outperforms XParent by up to 15 times and a
schema-conscious approach (Shared-Inlining) by up to 8 times for certain types of
recursive XML queries. A recursive XML query is an XML query which contains
the descendant axis (//) [10].

Although our effort in [12] asserts that it is indeed possible for a schema-
oblivious approach to outperform the schema-conscious approach, it was demon-
strated only for recursive XML queries. Naturally, we would like to know whether
this result holds for non-recursive XML queries. Note that a non-recursive XML
query does not contain any descendant axis. Such queries are prevalent in GUI-
based XML query formulation framework in the presence of DTDs/XML
schemas. In other words, is it possible for Sucxent++ to outperform XParent
and Shared-Inlining for non-recursive XML queries as well? In this paper,
we provide the answer to this question.

2 Related Work

One of the earliest work on performance evaluation of XML storage strategies
was carried out by Tian et al. [16]. In this paper five strategies for storing XML

A Tale of Two Approaches 151

documents were studied including one that stores documents in the file system,
three that uses a relational database system (Edge and Attribute approaches [7],
Shared-Inlining [15]), and one that uses an object manager. Recently, Lu et
al. [11] reported results on benchmarking six relational approaches on two com-
mercial RDBMS and two native XML database systems using the XMark[14]
and XMach[2] benchmarks. Both these efforts showed that schema-conscious
approaches perform better than schema-oblivious approaches. Our study dif-
fers from the above efforts in the following ways. First, we consider a relatively
more efficient schema-oblivious storage strategy (Sucxent++) compared to
the approaches used in [16,11] for our study. Second, we evaluate the perfor-
mance of our representative systems on much larger data sets (1GB) having
richer variety (data and text-centric single and multiple documents). Note that
the maximum size of the data set was 140 MB and 150MB in [16] and [11],
respectively. This gives us a better insight on the scalability of the represen-
tative approaches. Third, we experimented with wider and richer variety of
XML queries. Finally, contrary to the insight gained by Tian et al. and Lu
et al., we show that it is indeed possible for a schema-oblivious approach to out-
perform a schema-conscious approach for certain types of non-recursive XML
queries.

XMach-1 [2] is a multi-user benchmark that is based on a Web application
and considers text documents and catalog data. The goal of the benchmark is
to test how many queries per second a database can process at what cost. Addi-
tional measures include response times, bulk load times and database or index
sizes. XMark [14] is a single-user benchmark. The database model is based on
the Internet auction site and therefore, its database contains one large XML doc-
ument with text and non-text data. XOO7 [3] was derived from OO7 [4], which
was designed to test the efficiency of object-oriented DBMS. Besides mapping
the original queries of OO7 into XML, XOO7 adds some specific XML queries.
Workloads of the above benchmarks, cover different functionalities, but leave
out a number of XQuery features [17]. XBench [17] was recently proposed to
cover all of XQuery functionalities as captured by XML Query Use Cases. As
our work is based on XBench data set and queries, we also cover all these func-
tionalities. In summary, all of these are application benchmarks and measure
the overall performance of a DBMS. That is, they compare the performance of
different RDBMSs (e.g., IBM DB2, SQL Server in XBench) and native XML
DBMS (e.g., X-Hive) for processing XML data. On the contrary, we focus on
evaluating performance of schema-oblivious and schema-conscious approaches
on a specific commercial RDBMS.

3 Background

In this section, we present the framework for our performance study. We begin
by identifying the representative schema-oblivious and schema-conscious systems
chosen for our performance study and justify their inclusion. Then, we present
the experimental setup and data sets used for our study.

152 S. Prakash and S.S. Bhowmick

3.1 Representative Systems

We chose XParent[8], Sucxent++[13], and Shared-Inlining [15] as represen-
tative shredding-based approaches for performance study. The reasons are as
follows.

First, we intend to ensure that the implementation of our selected storage
scheme does not require modification of the relational engine. This is primarily
because such approach enhances portability and ease of implementation of the
storage approach on top of an off-the-shelf commercial RDBMS. Consequently,
we did not choose the dynamic intervals approach [5] and the approach in [19]
as these approaches enhance the relational engine with XML-specific primitives
for efficient execution. Note that in the absence of such XML-specific primitives,
the query processing cost can be expensive in these approaches. For instance,
without the special relational operators defined in [5], the query performance is
likely to be inferior even for simple path expressions [9].

Second, the selected approach must have good query performance. Jiang et
al. [8] showed that XParent outperforms Edge [7] (up to 20 times) and XRel [18]
approaches significantly. In [12], we have shown that Sucxent++ outperforms
XParent (up to 15 times) and Shared-Inlining [15] (up to 8 times) for cer-
tain types of recursive XML queries. Moreover, XParent takes 2.5 times more
storage space compared to the Sucxent++ approach. Hence, XParent and
Sucxent++ are chosen as representatives of the schema-oblivious approach.

Finally, we chose Shared-Inlining over LegoDB [1] as the representative of
schema-conscious approaches for the following reasons. First, Shared-Inlining
is widely used in the literature as a representative of schema-conscious ap-
proaches. Second, unlike Shared-Inlining , LegoDB is application and query
workload-dependent. Third, despite our best efforts (including contacting the
authors), we could not get the source code of LegoDB.

3.2 Experimental Setup

Prototypes for Sucxent++, XParent and Shared-Inlining were developed
using Java JDK 1.5 and a commercial RDBMS1. The experiments were con-
ducted on a P4 1.4GHz machine with 256MB of RAM and a 40GB (7200rpm)
IDE hard disk. The operating system was Windows 2000 Professional.

The XBench [17] data set was used for comparison of storage size, insertion
and extraction times, as it provides a comprehensive range of XML document
types. We studied both data-centric and text-centric applications consisting of
single as well as multiple XML documents. We also test for scalability (small
(10MB), normal (100 MB) and large (1 GB) dataset) of the schema-conscious
and schema-oblivious approaches. Figures 1(a) and 1(b) summarize the charac-
teristics of the data sets used. In our experiments, we create separate database
instances for all the scenarios. For example, we create three database instances
for TC/SD, called TC/SD-small, TC/SD-normal, and TC/SD-large. A total of
22 queries as described in [17] were tested on this data set. The list of queries

1 Our licensing agreement disallows us from naming the product.

A Tale of Two Approaches 153

SD
(Single Document)

MD
(Multiple Document)

Online dictionaries
Digital libraries,

news corpus

E-commerce
catalogs

Transactional data

TC
(Text-centric)

DC
(Data-centric)

Data set
No of Nodes

10MB 100MB 1GB

DC/MD

DC/SD

TC/MD

TC/SD

219,382 2,183,331 23,821,115

238,260 2,394,886 24,810,315

229,258 2,335,180 23,704,294

279,004 2,765,209 28,419,013

(a) Data set (b) Data set of XBench

Fig. 1. Data set of XBench

for $order in input()/order[@id="1"]

return

$order/customer_id

- DCMD

- Exact match

for $a in input()/order[@id="2"]

return

$a/order_lines/order_line[1]

- DCMD

- Exact match,

 ordered access

for $a in input()/order[@id="4"]

return

$a//item_id

- DCMD

- Exact match

- One ‘//’ axis

for $a in input()/order

where $a/total gt 11000.0

order by $a/ship_type

return

 <Output>

 {$a/@id}{$a/order_date}{$a/ship_type}

 </Output>

- DCMD

- Sort

- Return multiple

 elements

Query Characteristics

1

2

3

4

#

for $item in input()/catalog/:item

where every $add in

 $item/authors/author/

contact_information/mailing_address

satisfies $add/name_of_country =

"Canada"

return $item

- DCSD

- Quantification

for $order in input()/order,

 $cust in input()/customers/customer

where $order/customer_id = $cust/@id

and $order/@id = "7" return

<Output>{$order/@id}{$order/

order_status}{$cust/first_name}{$cust/

last_name}{$cust/phone_number}</Output>

- DCMD

- Join

- Multiple return

 elements

for $item in input()/catalog/

item[@id="I1"]

return $item

- DCSD

- Exact match

6

7

8

for $a in input()/order[@id="6"]

return

$a

- DCMD

- Exact match

- Document

 reconstruction

5

Query Characteristics#

for $a in input()/catalog/item[@id="I6"]

return

 <Output>

 {$a/authors/author[1]/

contact_information/mailing_address}

 </Output>

- DCSD

- Document

 construction

for $a in input()/catalog/:item

where $a/date_of_release gt "1990-01-01"

and $a/date_of_release lt "1991-01-01"

and empty($a/publisher/

contact_information/FAX_number)

return

 <Output>

 {$a/publisher/name}

 </Output>

- DCSD

- Data type

 casting

- Irregular data

9

10

Fig. 2. XBench queries

and their characteristics is shown in Figures 2 and 3. Observe that we focus on
non-recursive XML queries.

The queries were executed in the reconstruct mode where not only the inter-
nal nodes are selected, but also all descendants of that node. Several steps were
taken to ensure the consistency of the test results. Prior to our experiments, we
ensure that statistics had been collected, allowing well-informed plan selection.
Each test query was executed 6 times while the performance results of the first
run discarded. A 95% confidence interval was computed. In our experiments, the
estimated error was small (< 10%). The bufferpool of the DBMS was cleared
before each run to ensure times reported are from cold runs. Also, appropriate
indexes were constructed for all the three approaches through a careful analy-
sis on the benchmark queries. Note that the RDBMS we have used can only
create an index for varchar, which is less than 255. Hence, in schema-oblivious
approaches, if a single text in the “value” attribute exceeds the limit, which is
highly possible for text-centric XML documents, then we cannot create an index
on this attribute to facilitate XML query processing. Similar to [11], we use a
two-table approach to handle short/long data values separately.

154 S. Prakash and S.S. Bhowmick

for $size in input()/catalog/:item/

attributes/size_of_book

where $size/length*$size/width*$size/

height > 500000

return

 <Output>

 {$size/../../title}

 </Output>

- DCSD

- Data type

 casting

for $prolog in input()/article/prolog

where

$prolog/authors/author/name="Ben Yang"

return

$prolog/title

- TCMD

- Exact

 match

Query Characteristics

11

12

#

for $a in input()/article/prolog/

authors/author

where empty($a/contact/text())

return

 <NoContact>

 {$a/name}

 </NoContact>

- TCMD

- Irregular data

for $a in input()/article

where contains ($a//p, "the hockey")

return

 <Output>

 {$a/prolog/title}

 {$a/body/abstract}

 </Output>

- TCMD

- Text search

- One ‘//’ axis

for $a in input()/article

where some $b in $a/body/abstract/p

satisfies (contains($b, "the") and

contains($b, "hockey"))

return $a/prolog/title

- TCMD

-Quantification

for $a in input()/article[@id="5"]

return

 <Output>

 {$a/prolog/title}

 {$a/prolog/authors/author/name}

 {$a/prolog/dateline/date}

 {$a/body/abstract}

 </Output>

- TCMD

- Multiple

 return paths

14

15

16

17

for $a in input()/article[@id="8"]/body/

section[@heading="introduction"]

return

 <HeadingOfSection>

 {$a/@heading}

 </HeadingOfSection>

- TCMD

- Two

 conditions

13

Query Characteristics#

for $ent in input()/dictionary/e

where $ent/hwg/hw="the"

return $ent

- TCSD

- Exact match

- Reconstruction

18

for $ent in input()/dictionary/e

where $ent/*/hw = "and"

return

 $ent/ss/s/qp/*/qt

- TCSD

- Path

 expressions

19

for $a in input()/dictionary/e

 [hwg/hw="the"]/ss/s/qp/q

order by $a/qd return

 <Output>

 {$a/a}{$a/qd}

 </Output>

- TCSD

- Sorting

20

for $a in input()/dictionary/e

where contains ($a, "hockey")

Return $a/hwg/hw

- TCSD

- Text search

21

for $ent in input()/dictionary/e

where $ent/ss/s/qp/q/qd="1900"

return $ent/hwg/hw

- TCSD

- Exact match

- Deep path

22

Fig. 3. XBench queries (contd.)

4 Data-Centric Query Processing

In this section we study the performance of the representative approaches
(Shared-Inlining , Sucxent++, and XParent) for XML queries on data-
centric XML documents. The reader may refer to [15], [12,13], and [8] for al-
gorithmic details related to XML query translation and evaluation. Note that
we do not discuss storage size, document insertion and extraction performance
here as we have already presented this in [13]. In general, Sucxent++ is 5.7 -
47 times faster than XParent and marginally better than Shared-Inlining as
far as insertion time is concerned. Sucxent++ is also the most efficient among
the three approaches as far as document extraction is concerned. On the other
hand, Shared-Inlining requires the least amount of storage. XParent takes 2.5
times more storage space compared to Sucxent++.

We use the queries Q1 to Q11 in Figures 2 and 3 for our performance study.
The results are shown in Figure 4. The maximum time we allowed a query to
run for all experiments was 60 minutes; if the execution did not finish in that
period, we do not show it in the figures. Note that we use the optimized ver-
sion of Sucxent++ for our performance study. In non-optimized Sucxent++,
the join between the Path and PathValue tables took a significant portion of
the query processing time. The optimized version of Sucxent++ reduces this
overhead by altering the translated SQL queries. The join expression v1.PathId
= p1.Id and p1.PathExp = path in a translated SQL query is replaced with
v1.PathId = n where n is the PathId value corresponding to path in the table
Path. Similarly, v1.PathId = p1.Id and p1.PathExp LIKE path % is replaced
with v1.PathId >= n and v1.PathId <= m. For the second case PathIds are

A Tale of Two Approaches 155

0

0.3

0.6

0.9

1.2

1.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining

XParent

SUCXENT++

6.159 4.673 6.81 40.01 15.101

(a) 10 MB (c) 1 GB

0

2

4

6

8

10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining XParent SUCXENT++

198.8 658.218.2 10.6 15.9 2719

(b) 100 MB

0

1

2

3

4

5

6

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining

XParent

SUCXENT++

58.1 35.6 19327.2 362

Fig. 4. Query performance (data-centric)

assigned in lexicographic order and (n, m) correspond to the first and last oc-
currences of expressions that have the prefix path. Furthermore, the optimized
version also incorporates strategies to optimize recursive path expressions. The
reader may refer to [12,13] for further details. We now elaborate on the perfor-
mance results.

QueryQ1 [Exactmatch (DCMD)]:For all three data sizes Shared-Inlining
performs the best. This can be explained based on the relational schema gener-
ated for Shared-Inlining and the SQL query corresponding to query Q1. The
Shared-Inlining version involves a single predicate on a single table. All other
approaches involve several joins and predicates. Observe that XParent performs
marginally better than Sucxent++ for the 10MB data set. This is due to two rea-
sons. First, Sucxent++ involves θ-joins whereas XParent use equi-joins. Second,
the data set has several small documents instead of one large document. The trans-
lations of both schema-oblivious approaches involve a join of the DocId attribute
to filter nodes in the same document. This generates much smaller join sizes and
the results are particularly obvious for equi-join based queries. However, for the
100MB and 1GB data sets Sucxent++ performs better than XParent by up to
41.7 times. This is due to the following reasons. First, XParent incurs a greater
number of joins on a much larger data set. Second, the optimization strategies
in Sucxent++ reduce the number of path joins significantly. This reduces the
advantage of equi-joins to a great extent as the data size increases.

Queries Q2, Q3 [Exact match and ordered access (DCMD)]: Sucx-
ent++ outperforms both Shared-Inlining and XParent for these queries as
data size increases (see Figure 6 also). This is because for Shared-Inlining as
data size increases the cost of join operation to extract order line and item id
(especially with descendant axis) from other tables increases. Sucxent++ per-
forms better than XParent due to its more optimal storage strategy (as discussed
above).

QueryQ4 [Sortandreturnmultiple elements (DCMD)]:Shared-Inlining
performs better than the other two approaches. The main observation here is that
Sucxent++ significantly outperforms XParent (up to 970 times) with the in-
crease in data size. This is because the number of joins in the translated SQL

156 S. Prakash and S.S. Bhowmick

statement increases with the number of predicates or return clause elements in
the XQuery query. Observe that this query has quite a few return elements (in ad-
dition to a sort operation). As a result, XParent requires a greater number of joins
(and on larger data) than Sucxent++.

Query Q5 [Document reconstruction (DCMD)]: Shared-Inlining per-
forms better as evaluation of @id=6 is faster due to smaller (fragmented) tables.
But the cost of join becomes higher with increasing data size and therefore the
gap between Shared-Inlining and Sucxent++ decreases.

Query Q6 [Join and multiple return elements (DCMD)]: Sucxent++
now performs better than both Shared-Inlining and XParent (up to 1629 times
better than XParent). This can be attributed to the fact that even Shared-
Inlining has to execute more joins for this query as it involves an XQuery join.
XParent is outperformed significantly by other two approaches due to larger
number of joins.

Query Q7 [Exact match (DCSD)]: Shared-Inlining performs significantly
better for smaller data size than the other two approaches. However, the gap be-
tweenSucxent++ andShared-Inliningdecreaseswith the increase in data size
(reasons are similar to the above discussion). Observe that XParent outperforms
Sucxent++ for the small data set. However, Sucxent++ performs better than
XParent for the 100 MB and 1GB data sets. This is because, unlike the DCMD
version of this query, the join on the DocId attribute no longer generates small join
sizes and the advantages of equi-joins are negated by the large data size in XParent.

Query Q8 [Quantification (DCSD)]: This query is quite complex as it in-
volves quantification in the form of the every clause. The Shared-Inlining ap-
proach performs the best even though it has to execute quite a few joins as well.
This is because the execution of the quantification clause is much better in the
Shared-Inlining approach. Sucxent++ performs significantly better than
XParent. In fact, XParent failed to return results in 60 minutes for the 1GB
data set and are, therefore, not included in the figures.

Query Q9 [Document Construction (DCSD)]: Shared-Inlining outper-
forms Sucxent++ for 10MB and 100MB data sets. With its inherent greater
data fragmentation one would expect Shared-Inlining to perform the worst.
However, the query involves a predicate and the construction is only for a small
part of the document - with the entire part available in a single table. As a result
Shared-Inlining performs better. Particularly, for smaller data size the join cost
to extract child elements is not significant enough for Shared-Inlining . Cost of
evaluating @Id=I6 is lower for Shared-Inlining due to smaller tables. However,
as the data size increases the cost of the join increases. As a result, the overall
performance difference is not as significant with the increase in data size. In fact,
for 1GB data set Sucxent++ marginally outperforms Shared-Inlining . Note
that the mapping strategies in [15] do not allow mapped documents to be faith-
fully reconstructed [9]. Hence, the resulting mapping may be lossy.

A Tale of Two Approaches 157

Query Q10 [Irregular Data (DCSD)]: For Shared-Inlining , all the data re-
quired for this query could be found in just one table.Therefore,Shared-Inlining
performs the best. Also, the empty clause is quite easily implemented by using =
null in the corresponding SQL statement. The translation for schema-oblivious
approaches is quite complicated as there is no notion of "null" in these two ap-
proaches. Both approaches implement this query using the SQL not in clause. As
a result the performance is much worse than that of Shared-Inlining . Sucx-
ent++ as expected outperforms XParent. In fact, XParent failed to complete ex-
ecution in 60 minutes for the 100 MB and 1 GB data sets.

Query Q11 [Datatype Casting (DCSD)]: Shared-Inlining can implement
datatype casting in a much cleaner fashion than schema-oblivious approaches.
Schema-oblivious approaches (in this case at least) store all data as strings in
a single column. Shared-Inlining uses several different columns and each can
be assigned a specific datatype. As a result, the query performance in Shared-
Inlining is much better. In the schema-oblivious approach, data has to be first
filtered based on the path expression and only then can it be typecast. Note
that this query has five path expressions. As a result the number of joins in
XParent is significantly higher than in Sucxent++. Therefore, Sucxent++
significantly outperforms XParent by up to 1700 times.

5 Text-Centric Query Processing

Text search plays a very important role in XML document systems. In this
section we study the performance of the representative approaches for XML
queries on text-centric XML documents. We use the queries Q12 to Q22 in
Figure 3 for our performance study. The results are shown in Figure 5. Note that
for fair comparison we use the default text processing support of the RDBMS
and do not build any additional full text indexes on the underlying RDBMS.

Query Q12 [Exact match (TCMD)]: The performance characteristics for
this query are quite similar to those of Q1 except that the difference between

0

0.3

0.6

0.9

1.2

1.5

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Query

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Shared Inlining

XParent

SUCXENT++

3.108

8.592 4.419 3.198

2.716

3.473

(a) 10 MB

0

1

2

3

4

5

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining

XParent

SUCXENT++

6.13

26-12 64 13-69 14.9

(b) 100 MB (c) 1 GB

0

3

6

9

12

15

18

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Query

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Shared Inlining

XParent

SUCXENT++

89.7 162 - 164 60.1 59.7

Fig. 5. Query performance (text-centric)

158 S. Prakash and S.S. Bhowmick

Shared-Inlining and the schema-oblivious approaches is not a significant as
in the data-centric case (Q1 to Q3). This is because the query in the Shared-
Inlining approach requires two tables (compared to one in Q1).

Queries [Q13 to Q15 (TCMD)]: For Q13, the evaluation of @heading=
"introduction" is faster for Shared-Inlining . The join operation to extract
child elements is not very expensive for this query. For larger data sizes Shared-
Inlining outperforms Sucxent++ mainly due to the smaller table that needs
to be queried for evaluating @heading="introduction". For Sucxent++ the
PathValue table becomes quite large for larger data sets and hence it takes
longer time. Q14 has the contains clause which requires all child elements to
be queried. This involves a large number of joins for Shared-Inlining . Con-
sequently, Sucxent++ performs better. Shared-Inlining performs better for
Q15 for the same reasons as discussed for Q13.

Query Q16 [Irregular Data (TCMD):] Unlike Q10, this query has only
two path expressions. The join cost for Shared-Inlining increases significantly
with the increase in data size (especially in the absence of an exact predicate)
due to several steps in the path expressions. As a result, even though both the
schema-oblivious approaches perform worse than Shared-Inlining for smaller
data size, Sucxent++ performs better for 1GB data set.

Query Q17 [Text search (TCMD)]: Shared-Inlining performs signifi-
cantly worse than the schema-oblivious approaches. This is due to the recursive
nature of the query. In Shared-Inlining , the resolution of the path expres-
sion /article//p requires the use of the UNION operator on three sub-queries.
In addition, one of the sub-queries requires a join across several tables. Due to
reasons discussed earlier, Sucxent++ performs better than XParent.

Query Q18 [Exact match/Reconstruction (TCSD)]: Sucxent++ again
performs the best. Unlike in Q9, Shared-Inlining has to join four tables to
reconstruct the element e.

Queries Q19, Q20 [Path expressions (TCSD)]: Sucxent++ performs bet-
ter than all the other approaches. XParent performs the worse due to the multiple
path expressions in the query. Shared-Inlining performs slightly worse due to
multiple joins in the resulting SQL query - although the performance is still com-
parable to Sucxent++. Specifically, Shared-Inlining involves both join and
the union operators due to the wild card path expressions /dictionary/e/*/hw
and /dictionary/e/ss/s/qp/*/qt.

Query Q21 [Text search (TCSD)]: Sucxent++ performs the best for this
query again. The query for the Shared-Inlining approach has several joins in
small subqueries that are finally combined with a UNION clause. This is due to
the contains clause in the XQuery query. In addition, Shared-Inlining must
execute multiple joins to reconstruct the hw element. However, with increasing
size querying for "hockey" in the PathValue table becomes more and more

A Tale of Two Approaches 159

Query
Shared-Inlining / SUCXENT++ XParent / SUCXENT++

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

10MB 100MB 1GB 10MB 100MB 1GB

0.89 0.57 0.70 0.98 8.75 41.71

1.00 0.96 1.59 1.60 27.03 24.60

0.61 1.04 1.29 1.37 18.21 39.16

0.47 0.80 0.96 24.58 320.96 970.07

0.26 0.10 0.15 3.76 8.87 21.78

1.06 1.55 2.16 26.55 88.91 1629.09

0.23 0.33 0.92 0.57 1.26 7.06

0.91 0.77 0.64 10.62 472.97 DNF

0.76 0.93 1.07 8.29 9.48 16.62

0.52 0.16 0.12 153.33 DNF DNF

0.95 0.33 0.22 84.84 475.41 1699.74

Query
Shared-Inlining / SUCXENT++ XParent / SUCXENT++

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

10MB 100MB 1GB 10MB 100MB 1GB

1.07 0.67 0.92 1.67 1.81 3.24

1.96 1.09 0.91 3.62 4.27 11.45

2.55 2.64 3.85 6.67 45.76 134.26

1.04 0.17 0.10 3.10 5.56 62.41

0.30 0.51 1.89 10.02 7.63 18.05

26.12 9.14 13.90 4.30 4.23 14.06

10.56 20.63 33.01 39.11 270.90 DNF

3.67 2.75 4.48 3.12 14.55 DNF

2.59 5.73 1.04 5.93 7.34 5.07

16.38 9.89 5.49 6.00 5.21 5.63

69.46 87.84 68.66 6.70 12.38 14.81

Fig. 6. Performance summary

expensive compared to searching for it in smaller tables in Shared-Inlining .
Therefore, the gap reduces with increasing data size.

Query Q22 [Exact match (TCSD)]: This query presents a “deep” path ex-
pression resulting in several joins for the Shared-Inlining approach. As a result
Sucxent++ significantly outperforms Shared-Inlining by up to 88 times.

6 Summary

In this paper, we compared the performance of one schema-conscious approach
(Shared-Inlining [15]) with two representative schema-oblivious approaches
(XParent[8] and Sucxent++[12]). We show that it is indeed possible for a
schema-oblivious approach to outperform a schema-conscious approach for sev-
eral types of non-recursive XML queries. Figure 6 provides summary of the
performance results for the compared approaches with respect to Sucxent++.
These figures show the ratio of time taken for a given approach to the time
taken in Sucxent++. If a query fails to execute in 60 minutes then we show
it as “DNF” in the corresponding column. Observe that Shared-Inlining out-
performs XParent for all queries except Q22. However, Sucxent++ can be
several times faster than the schema-conscious approach (Shared-Inlining)
for text-centric documents; the highest observed factor being 87.8. On the other
hand, Shared-Inlining fares better for large data-centric XML documents as it
outperforms Sucxent++ for 73% of the benchmark queries (Queries Q1 - Q11).

Sucxent++ significantly outperforms XParent for all non-recursive queries
that we have experimented with. In particular, Sucxent++ is 7-1700 times (ex-
cluding “DNF” queries in XParent) faster than XParent for queries (Q1-Q11) on
large data-centric XML documents (1GB). For large text-centric documents, it is
still 3-134 times faster. Note that the optimization techniques in Sucxent++ as
described in [12] can also be applied to XParent. A preliminary study of the query
plans generatedby the RDBMS forXParent suggests thatXParent can also benefit
fromthese optimizations.However, a considerableperformancedifference shall still
exists between Sucxent++ and XParent, especially for large data set, primarily
due to XParent’s large storage requirements and consequently greater I/O-cost.

160 S. Prakash and S.S. Bhowmick

References

1. P. Bohannon, J. Freire, P. Roy, J. Simeon. From XML Schema to Relations:
A Cost-based Approach to XML Storage. In IEEE ICDE , 2002.

2. T. Böhme, E. Rahm. XMach-1: A Benchmark for XML Data Management. In
German Database Conference, 2001.

3. S. Bressan, M-L. Lee, Y. G. Li, Z. Lacroix, U. Nambiar. The XOO7 Bench-
mark.In EEXTT , 2002.

4. M. Carey, D. DeWitt, J. Naughton. The OO7 Benchmark. In ACM SIGMOD ,
1993.

5. D. DeHaan, D. Toman, M. P. Consens, M. T. Ozsu. A Comprehensive XQuery
to SQL Translation Using Dynamic Interval Coding. In ACM SIGMOD , 2003.

6. L. Ennser, C. Delporte, M. Oba, K. Sunil. Integrating XML and DB2 XML
Extender and DB2 Text Extender. IBM Redbooks, 2001.

7. D. Florescu, D. Kossman. Storing and Querying XML Data using an RDBMS.
IEEE Data Engineering Bulletin. 22(3), 1999.

8. H. Jiang, H. Lu, W. Wang and J. Xu Yu. Path Materialization Revisited: An
Efficient Storage Model for XML Data. 13th Australasian Database Conference
(ADC’02) , 2002.

9. R. Krishnamurthy, R. Kaushik, J. F. Naughton. XML to SQL Query Trans-
lation Literature: The State of the Art and Open Problem.In XSym, 2003.

10. R. Krishnamurthy, V. T. Chakaravarthy, R. Kaushik, J. F. Naughton.
Recursive XML Schemas, Recursive XML Queries, and Relational Storage: XML-
to-SQL Query Translation.In IEEE ICDE, 2004.

11. H. Lu, H. Jiang, J. X. Xu, G. Yu et al. What Makes the Differences: Bench-
marking XML Database Implementations. In ACM Trans. on Internet Technology ,
5(1), 2005.

12. S. Prakash, S. S. Bhowmick, S. K. Madria. Efficient Recursive XML Query
Processing Using Relational Databases. In ER, 2004.

13. S. Prakash, S. S. Bhowmick, S. K. Madria. Efficient Recursive XML Query
Processing Using Relational Databases. To appear in Data and Knowledge Engi-
neering Journal , Special Issue on Best Papers of ER 2004, Elsevier Science, 2006.

14. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu and R.
Busse. XMark: A Benchmark for XML Data Management. In VLDB, 2002.

15. J. Shanmugasundaram, K. Tufte et al. Relational Databases for Querying
XML Documents: Limitations and Opportunities. In VLDB 1999.

16. F. Tian, D. DeWitt, J. Chen and C. Zhang. The Design and Performance Eval-
uation of Alternative XML Storage Strategies. ACM Sigmod Record, Vol. 31(1),
2002.

17. B. Yao, M. Tamer Özsu, N. Khandelwal. XBench: Benchmark and Perfor-
mance Testing of XML DBMSs. In ICDE , Boston, 2004.

18. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A Path-
based Approach to Storage and Retrieval of XML Documents Using Relational
Databases. ACM TOIT 1(1):110-141, 2001.

19. C. Zhang, J. Naughton, D. Dewitt, Q. Luo and G. Lohmann. On Supporting
Containment Queries in Relational Database Systems. In ACM SIGMOD, 2001.

20. Microsoft SQL Server 2000 SDK Documentation, Microsoft 2000,
http://www.microsoft.com.

21. Oracle XML DB. http://www.oracle.com.

Visual Specification and Optimization of XQuery
Using VXQ

Ryan H. Choi, Raymond K. Wong, and Wei Wang

1 National ICT Australia, Sydney, NSW 2052, Australia
2 School of Computer Science and Engineering

The University of New South Wales, Sydney, NSW 2052, Australia
{ryanc, wong, weiw}@cse.unsw.edu.au

Abstract. As the popularity of XML increases, the need for querying
collections of XML data from various systems becomes imperative. Pro-
posed by W3C, XQuery is becoming a standard for querying such sys-
tems. However, the complexity of XQuery prevents its usage by broad
audience. This paper proposes a visual XQuery specification language
called VXQ to address this issue. By intuitive abstractions of XML and
XQuery, the proposed system can generate XQueries for users that have
little knowledge about the language. We show that our visual language
is more expressive than previous proposals. Finally, we extend our pro-
posed visual XQuery to support query rewriting and optimization for
multiple XQuery systems.

1 Introduction

The extensive use of XML in today’s applications requires a wide range of users to
interact with and query XML documents to acquire the information they desire.
However, expressing a request for the right information in a form of a query
language can be a difficult task for those who do not have good XML and/or
database backgrounds. XQuery is the de facto standard query language designed
for retrieving XML data by W3C, which has recently gained attention among
database communities and industry. Although the motivation behind XQuery is
to better facilitate data exchange among various types of applications, especially
over the Internet, the complexity of the query language has made itself not as
successful as expected despite its rich expressive power. To make the language
appealing to broader audiences, a user-friendly, visual design environment which
generates XQuery expressions without being exposed to the complexity of the
language can be very useful.

This paper describes a prototype for visual query specification called VXQ
that enables users to easily generate efficient XQuery expressions. To enhance
the user experience, users only need to draw graphs, diagrams and select avail-
able options without the need of remembering the complex syntax of XQuery
language. The user interface of the system is heavily based on mouse movements,
pop-up menus and dialog boxes, and keyboard input is limited to a minimum.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 161–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 R.H. Choi, R.K. Wong, and W. Wang

In addition, users do not need to know the structure of the documents in-
cluding the names of elements that they wish to query. This is because the
system automatically generates the schema of XML documents involved in the
query, and presents the schema with a list of relevant elements in the interface.
It implicitly checks the correctness of the diagrams by limiting the options that
users can select. These design choices can greatly reduce the chance of draw-
ing queries that produce empty or incorrect results due to typing mistakes or
misunderstanding of the underlying data schema.

Another distinct feature of our prototype is to automatically rewrite queries
expressed by users to semantically equivalent queries which are more likely to
be efficient. It is not uncommon that queries expressed by users are not always
the most efficient form, in terms of their execution performance. Our system can
rewrite the original user queries into semantically equivalent ones that are likely
to have better runtime performance against the backend XML query process-
ing system. Our experiments using several popular XQuery processing backends
(e.g., Galax [1] and Saxon [2]) have shown that, in practice, even simple query
rewriting often reduces the query execution times significantly even though many
XQuery processors perform their own internal optimizations.

The goal of this paper is to make complex XML query languages, such as
XQuery, easier for non-technical users without limiting the features provided
by the languages. One interesting application will be an XQuery learning and
designing tool that interacts with users visually. It guides the user to design a
query, verifies the query, and even suggests equivalent queries expressed in a
more efficient form.

The organization of this paper is as follows. Sec. 2 presents related work, and
Sec. 3 overviews our prototype system. Sec. 4 demonstrates its expressive power
by visually expressing some queries from the W3C XML Use Cases [3]. Sec. 5
demonstrates how a query can be optimized by automatic query rewriting to
improve runtime performance. Finally, Sec. 6 concludes the paper.

2 Related Work

Visual or graphical query languages have been complementary approaches to
formal query languages in database systems. In RDBMSs, QBE [4] is a typical
example, which has been integrated into products like Microsoft Access. With
QBE, queries are formulated by filling “examples” of the values to be queried in
the templates of relations. Equivalent SQL queries can then be generated without
loosing the ability to express the core queries in a user-friendly environment. It is
expressive and supports advanced queries including grouping, aggregation, etc.
A number of graphical languages had also been proposed for object-oriented
databases, such as G [5], G+ [6], Graphlog [7].

With the wide adoption of XML and its query languages, there has been much
interests in graphical query language for XML. Due to the increasing complex-
ities in XML query languages (e.g., XQuery), graphical XML query languages
play an important role in simplifying the query formulation for casual users

Visual Specification and Optimization of XQuery Using VXQ 163

and providing a means to verify the correctness of the query visually. Existing
work can be classified into two categories—form-based approach influenced by
PESTO [8], and the graph-based approach motivated by XML-GL [9]. Exam-
ples of form-based approaches include EquiX [10], QSByE [11], GXML-QL [12],
XMLApe [13], BBQ [14], XQForms [15], Xing [16] and GXQL [17]. Examples of
graph-based approaches include WC-Log [18], its descendant XML-GL [9] and
XQBE [19].

Most of the previous approaches do not support all of the advanced constructs
in XML Query Languages. In addition, the complexity of the graph layout on
the screen could be rather high for moderate complex queries. In contrast, the
VXQ proposed in this paper can visually express all flwor expressions and
advanced features such as XPath predicates/axes, restructuring output, nested
for loops and if-then. The complexity of large graphs is reduced by exploiting
intuitive mouse movements such as drag-and-drops and automatically generated
options/selections. A unique feature of our system is the ability to rewrite the
query into an equivalent but more efficient one such that a good balance between
usability and quality of the query in terms of the efficiency can be achieved. At
our best knowledge, our prototype is the first implementation that addresses
these issues.

3 System Overview

A snapshot of the query interface of our system is presented in Fig. 1. The
interface contains two main parts, and they are separated by a vertical separator
in the middle. The left side is called the source pane and the right is called the
query pane. The purpose of the source pane is to represent the structures of
the source XML documents and let the user explore the documents, and allow
them to select part(s) of the documents to be queried and further processed.
The query pane lets the user visualize the query, and its layout can be used to
project the the structure of the query results. A rectangle denotes an element
and an oval represents an attribute. There are other visual elements for XPath

Fig. 1. The query interface of the system

164 R.H. Choi, R.K. Wong, and W. Wang

predicates and axes that can be displayed on both panes. These are explained
later in this section. We will call all graphical constructs of the system on either
pane nodes.

Users can obtain the automatically generated XQuery by exploring the schema
graph for the XML documents on the source pane first, and then specifying the
output layout and constraints on the query pane. In the first step, users need
to load an XML document that they wish to query into the source pane. To
do this, they right click on the source pane and select the ‘New Root Element’
option using the pop-up menu. A dialog box appears and asks for a filename or
url of the XML document to be loaded. After loading the specified document, a
root node is displayed on the source pane. A root node on the source pane is a
special node which conceptually represents the entire XML document as well as
the root element of it. The name of the document is shown inside the node. In
Fig. 1, bib is the name of the root element of bib.xml.

Users can navigate an XML document by “expanding” a node in the source
pane. Right clicking on a node brings up a pop-up menu. It displays all the
names of the descendant elements and attributes of the selected node. Choosing
an element or an attribute creates a new node under the selected node. The
name of the new node is determined by the name of the element in the XML
document it represents. A special node *, called a wildcard node, is also sup-
ported. It is used to represent any elements at a particular level. For example,
in Fig. 1, the book and the wildcard node on the source pane represent the path
expression book/*. The parent-child relationship is represented by an arrow—it
originates from a parent node and points to a child node. The arrow is drawn
automatically every time a new child node is created. The arrow with * repre-
sents an ancestor-descendant relationship between two nodes. For example, the
relationship between the book and last nodes on the query pane is book//last.

Expanding nodes can be repeated until the leaf nodes are reached. The source
pane only allows creating new nodes by expanding parent nodes, except the
creation of the root nodes as discussed above. Any node that is no longer needed
during the construction of a query (e.g., users build a query by adding and
deleting nodes in a trial and error fashion) can be deleted. Deleting a node
simply removes itself and all of its descendant nodes.

The query pane on the right displays which parts of the source documents
are to be retained and how the query results are structured. There are several
ways of creating nodes on the query pane. One way is by dragging a node from
the source pane and dropping it on the query pane. If a node is dropped over
(i.e., on top of) another node, the dragged node will become a child node of the
destination node on the query pane. This means all the elements represented by
the dragged node will be nested inside the destination node. This is the primary
method to retain the nodes of interest for output and therefore to include them
in the query results. A node created in this way is later translated into either
(nested) for or let clauses.

Users may add predicates that will be inserted to the where clause of query
expressions. To do this, they right click on the node on the source pane to

Visual Specification and Optimization of XQuery Using VXQ 165

which they want to add predicates, and select the ‘Add Predicate’ option on the
pop-up menu. They then type the predicates in the dialog box that appears.
The predicates that the user supplied are displayed at the bottom part of the
node. For example, in Fig. 1, only the titles that contain ‘XML’ are to be
selected.

Users may insert XPath predicates and axes into an element to further qualify
the final query results. A node that looks like a pair of “big square brackets” is
called a predicate node and is used to represent a XPath predicate. It is typically
placed next to the node which contains the predicate. A predicate node is added
by right clicking on a node and selecting ‘Add Predicate’ option on the pop-up
menu. Users then supply a predicate expression by selecting a XPath predicate
from the list that appears automatically or by typing it in explicitly. The name
of the predicate node is the same as the predicate which it represents. A node
with double borders is called an axis node. It denotes an axis. Predicate and axis
nodes can be combined and nested to any depth level.

4 Running Examples

This section presents two examples to illustrate the expressiveness of VXQ by
visually specifying queries from the W3C XMP XQuery Use Cases [3]. Due to
limited space, we present and group only a few queries from [3]. However, our
implementation is expressive enough and works correctly for the use cases in [3].

4.1 Selection, Projection and Sort

Query 1. For each book found in bib.xml and is published by Addison-Wesley
after 1991, list the year, title, publisher, price and the last name of the authors
of the book. In addition, present those books in alphabetical order by titles, pub-
lishers, prices and last name of authors. [Combined Q1, Q3 and Q7 in [3]].

<bib>
{ for $a in doc("bib.xml")/bib/book
where $a/@year > 1991 and

$a/publisher = "Addison-Wesley"
order by $a/author/last ascending,

$a/title ascending,
$a/publisher ascending,
$a/price ascending

return
<book year="{$a/@year}">

{$a/title}
{$a/publisher}
{$a/price}
{$a/author/last}</book>

}
</bib>

Fig. 2. Query 1

166 R.H. Choi, R.K. Wong, and W. Wang

Query 1 is expressed as in Fig. 1. After loading bib.xml, we expand the bib node
to display the book, and expand it again to display year and publisher nodes on
the source pane. We then add the two predicates ‘> 1991’ and ‘Addison-Wesley’
to them.

On the query pane, we create a new root node and name it as bib. The book
node is drag-and-dropped over the root node, and is expanded similarly to the
nodes on the source pane to create their child nodes. If any other nodes were to
be renamed, we would type new names for them at this stage.

By default, a node on the query pane represents itself and all of its descendant
nodes. If we did not expand the author node, all descendant elements such as
first would be included in the query results. The author node is drawn in
dashed lines to show that the author elements are not part of the result.

To specify a sorting order, we first invoke a sorting-order dialog box, and click
on the nodes on the query pane in the order we wish to sort the query results.
We can optionally specify how each element is sorted—in ascending (default,
represented as ‘A->Z’) or descending (represented as ‘Z->A’) order. In this
example, we simply click on the title, publisher, price and last nodes. If we
wished to sort price in descending order, we would select ‘descending’ option
for price. The nodes on the query pane display their ordering if they are to be
involved in the sorting criteria.

4.2 If-Then Statements

Query 2. For each book that has at least one author, list the title and first two
authors, and an empty “et-al” element if the book has additional authors [Q6
in [3]].

Query 2 is expressed as in Fig. 3. This example has been modified such that it
uses a XPath predicate ([count(author)>0]).The book node on the source pane
is drag-and-dropped over onto the bib node on the query pane, and the author
node on the source pane is drag-and-dropped over onto the book node which was

<bib>
{ for $b in doc("bib.xml")

//book[count(author) > 0]
return <book>

{ $b/title }
{ for $a in $b/author[position()<=2]

return $a }
{ if (count($b/author) > 2)

then <et-al/>
else () }

</book>
}
</bib>

Fig. 3. Query 2

Visual Specification and Optimization of XQuery Using VXQ 167

just created. Note that both the book and author elements are created by drag-
and-drop processes and have the same root element. The two drag-and-dropped
nodes are translated to nested for clauses.

We create a if-then statement as follows. We first expand the book node to
display author node on the query pane. We then “convert” this author node to
a “if” node by right clicking on it and selecting the ‘if-then statement’ option.
The rectangular node is then changed to a rounded-edge rectangular node to
indicate that the node now represents a if-then statement. We add predicates by
right clicking on the if node similar to adding predicates to any other nodes.
We now expand the if node twice to display then and else nodes on the query
pane. We finally add “et-al” statement to the then node and we leave the else
node as it is.

5 Query Rewriting

XML query optimization has become a popular topic in database research com-
munity. However, most of the popular XML query processors do not have so-
phisticated, in-built query optimization mechanisms. Even some XQuery proces-
sors have in-built query optimization modules, their performances on different
queries are various due to their different optimization techniques. In this sec-
tion, we present an example of how a graphical query expression drawn by user
is rewritten to semantically equivalent but more efficient expression. VXQ can
be integrated with multiple XQuery processors for visually specifying XQuery
interactively. During the interaction with the underlying XQuery processors, the
performance characteristics of each processor will be collected and used to deter-
mine the best set of rewriting rules for that processor. As a result, the visually
specified XQuery will be rewritten to a more efficient form (i.e., optimized for
a given XQuery processor) and displayed to the user for reference and further
modification.

Many rewriting rules can be applied by our system before a query is exe-
cuted by the backend XQuery processors. In our experiments, we used Galax [1]
and open source version of Saxon [2] as the XQuery processors. All the experi-
ments were conducted on a Pentium 4M 2GHz machine with 384Mb ram running
Debian Linux without turning off their built-in query optimizations. The XML
documents we used were generated by XMark [20]. All the queries were executed
five times and the average times were taken.

Consider the Query in Fig. 4(a), which is expressed as in Fig. 5(a). The
two binary predicates in the where clause can equally be expressed by using
XPath predicates. The efficiency of the query is likely to be improved because
by applying predicates at early stage, it may reduce the size of the elements
to which each variable has to be bounded. It therefore reduces the number of
iterations that have to be made resulting in increasing performance, although
this method is highly implementation dependent.

We further improve the efficiency of the query by replacing ‘//’ by a path
containing only ‘/’ whenever it is possible using the structure of the documents

168 R.H. Choi, R.K. Wong, and W. Wang

<sellers>
{ for $i in doc("10m.xml")

//open_auctions//open_auction
for $j in doc("50m.xml")

//open_auctions//open_auction
where $i/seller/@person = $j/seller/@person and

$i/seller/@person > "person1000" and
$j/seller/@person < "person2000"

return <s-happiness> {$i/seller}
{$i/annotation/happiness}
{$j/annotation/happiness}

<s-happiness>
} <sellers>

(a) Initial query

<sellers>
{ for $i in doc("10m.xml")

/site/open_auctions/open_auction} <--
[seller/@person>"person1000"] <--

for $j in doc("50m.xml")
/site/open_auctions/open_auction <--

[seller/@person<"person2000"] <--
where $i/seller/@person = $j/seller/@person
return <s-happiness> {$i/seller}

{$i/annotation/happiness}
{$j/annotation/happiness}

</s-happiness>
} <sellers>

(b) Optimized query using rewriting rule
1 & 2 (<-- denotes changes)

Fig. 4. Query rewriting

(a) Query drawn by user. (b) Rewritten query.

Fig. 5. VXQ query rewriting

obtained from our own XML schema which has already been generated. The
modified query after the rewriting, denoted as the second rewriting rule, is shown
in Fig. 4(b). Fig. 5(b) shows the graphical representation of the same query after
applying both rewriting rules.

Other example rewriting rules supported by our system are listed as follows.

Rewriting |: Paths that contain common subexpressions separated by | such
as a/b/c | a/b/d are rewritten as a/b/(c|d). We find that it reduces query
execution times by more than 10% when used with Galax for some sets of
documents. Saxon does similar optimization internally so it is not affected.

Replacing count(): For example, count($x)>5 is rewritten as exists($x)[6]
which is likely to be more efficient because only the first five elements are
likely to be read.

Replacing count($x)=0: This special case of count() is replaced by empty($x)
to avoid unnecessary counting of elements.

Removing duplicate predicates: Predicate such as
[@year>2000 and @year>1995] is replaced by [@year>2000].

Visual Specification and Optimization of XQuery Using VXQ 169

Fig. 6 shows the execution times taken before and after applying our query
rewriting. The experiment shows that our first rewriting rule reduces the query
execution time by 38% for large document sets when queried by Saxon, although
it does not have any effect on Galax. Our second rewriting rule reduces execution
times for both Galax and Saxon by 13–59%.

Fig. 6. Query execution times Fig. 7. The XQBE representation of Query 1

Our system is the first graphical query implementation which addresses the
issue of query rewriting at the query design level. We showed that semantically
equivalent queries but in different formats run with different runtime costs, and
the performance of a query processor can be improved by rewriting some parts
of a query. We also showed that even the processors that perform their own
optimizations benefit from our query rewriting (e.g., Galax).

In a heterogeneous database environment, various backend systems or mid-
dleware may be involved in processing and answering a query. Hence, the goal
of the query rewriting in this paper is to find the most efficient query expression
for a particular XQuery processor involving a particular set of XML documents
at query design phase. Our query rewriting techniques can be applied repeatedly
for each underlying XQuery processor to find the efficient query expression, and
display it graphically to the users.

6 Conclusion

We have presented a visual XQuery specification prototype called VXQ which
generates executable XQuery expressions from their given visual specification.
We showed that our visual language is more expressive than previous proposals,
such as XQBE, by illustrating the visual specification of various W3C XQuery
Use Cases. For example, XQBE is visually more complicated and less scalable
than VXQ. Fig. 7 shows the XQBE equivalent of Query 1. In general, VXQ
can express and generate many queries that cannot be visually specified and
generated by previous graphical query languages such as XQBE and GXQL,
for instance Q3–Q7 in the XQuery Use Cases. Finally, VXQ supports query

170 R.H. Choi, R.K. Wong, and W. Wang

rewriting to optimize queries for individual underlying XQuery processors and
presents the rewritten queries for further editing.

The future research work includes extending VXQ to support advanced fea-
tures of XQuery such as user defined functions and conducting detailed user
evaluation. For users without extensive knowledge about XQuery, VXQ can be
evaluated by how it helps users to learn XQuery and how well it interactively
and intuitively generates XQueries. For users who have experience in XQueries,
it can be evaluated by how well it generates efficient XQueries quickly on mobile
devices such as PDAs.

References

1. Galax: (2005) http://www.galaxquery.org/.
2. Kay, M.H.: Saxon (2005) http://saxon.sourceforge.net/.
3. W3C: Xml query use cases (2003) http://www.w3.org/TR/xquery-use-cases/.
4. Zloof, M.M.: Query-by-example: A database language. IBM Systems Journal 16(4)

(1977) 324–343
5. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting

recursion. In: SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD international
conference on Management of data, New York, NY, USA, ACM Press (1987)
323–330

6. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: G+: Recursive queries without
recursion. 2nd Int. Conf. on Expert Database Systems (1988) 355–368

7. Consens, M.P., Mendelzon, A.O.: The graphlog visual query system (1990)
8. Carey, M., Haas, L., Maganty, V., Williams, J.: Pesto: An integrated query/browser

for object databases. Proc. of the 22nd Int. Conf. on Very Large Databases (VLDB)
(1996) 203–214

9. Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., Tanca, L.:
XML-GL: A graphical language for querying and restructuring XML documents.
In: Sistemi Evoluti per Basi di Dati. (1999) 151–165

10. Cohen, S., Kanza, Y., Logan, Y.A., Nutt, W., Sagiv, Y., Serebrenik, A.: Equix
easy querying in xml databases. WebDB (Informal Proceedings) (1999) 43–48

11. Filha, I.M.R.E., Laender, A.H.F., da Silva, A.S.: Querying semistructured data
by example: The qsbye interface (2002)

12. Gupta, A., Khan, Z.: Graphical xml query language (2000) College of Comput-
ing, Georgia Institute of Technology http://www.cc.gatech.edu/computing/
Database/faculty/xml/xmlql.html.

13. Mark, L., et al: Xmlape (2002) College of Computing, Georgia Institue of
Technology http://www.cc.gatech.edu/projects/XMLApe/.

14. Munroe, K.D., Papakonstantinou, Y.: BBQ: A visual interface for integrated
browsing and querying of XML. In: VDB. (2000)

15. Petropoulos, M., Vassalos, V., Papakonstantinou, Y.: Xml query forms (xqforms):
declarative specification of xml query interfaces. In: WWW ’01: Proceedings of
the 10th international conference on World Wide Web, New York, NY, USA,
ACM Press (2001) 642–651

16. Erwig, M.: A visual language for xml. In: IEEE Symp. on Visual Languages.
(2000) 47–54

Visual Specification and Optimization of XQuery Using VXQ 171

17. Qin, Z., Yao, B.B., Liu, Y., McCool, M.: A graphical xquery language using nested
windows (2004) School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1.

18. Comai, S., Damiani, E., Posenato, R., Tanca, L.: A schema based approach to
modeling and querying www data. FQAS’98 (1998)

19. Braga, D., Campi, A.: A graphical environment to query xml data with xquery.
In: Fourth International Conference on Web Information Systems Engineering,
IEEE Computer Society (2003) 31–40

20. The XML Benchmark Project: (2001) http://www.xml-benchmark.org/.

MSXD: A Model and a Schema for Concurrent
Structures Defined over the Same Textual Data

Emmanuel Bruno and Elisabeth Murisasco

Université du Sud Toulon-Var
LSIS - Equipe INCOD - UMR CNRS 6168

Avenue de l’Université, BP 20132
F-83957 La Garde cedex, France

{bruno, murisasco}@univ-tln.fr

Abstract. This work aims at defining a model and a schema for mul-
tistructured (noted MS) textual documents. Our objectives are (1) to
describe several independent hierarchical structures over the same tex-
tual data (represented by several structured documents) (2) to consider
annotations added by the user in each structured document and (3) to
define weak constrains over the concurrent structures and annotations.
Our proposal is based on the use of hedge (the foundation of RelaxNG).
It is associated with an algebra defined on the structures and annotations
of a document in order to specify constraints between them (by means
of Allen’s relations).

1 Motivation and Objectives

XML documents [1] are mainly hierarchical. The hierarchy, captured in a tree-like
structure [2], corresponds to one level of analysis of the data contained into the
document (e.g a logical analysis). But, some applications - especially in context
of document - centric encoding - need to consider more than one hierarchy over
the same text, which correspond to different analysis for different uses of that
document. Since SGML [3], physical and logical structures of a document tend
to be separated. The physical structure is generally automatically generated by
transformation of the logical structure (DSSSL, XSLT). But the construction of
a structure from another one is not the general case: the structures are generally
independent and they are not conjointly used. This aspect has been already
identified with the CONCUR feature of SGML.

Recently, works about concurrent markups have been published
[4,5,6,7,8,9,10,11]. They propose solutions to describe multiple hierarchies (with
overlapping) into a single document. Our work stands is this context.

We aim at defining a model called MSXD (MultiStructured XML Documents)
and a schema for multistructured (MS) documents. Our work is based on the
use of hedges [12] (the foundation of RelaxNG [14]).

Our objectives are:

– to propose several segmentations of the same text,
– to define a hierarchical structure for each of these segmentations (producing

several structured documents over the same text). Each structure must exist

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 172–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MSXD: A Model and a Schema for Concurrent Structures 173

independently from others and there is no main structure. They could be
stored in separate XML documents (the text is then replicated),

– to insert user annotations into each structured document
– to define a MS schema in order to describe weak constraints over the con-

current structures and annotations (by means of Allen’s relations).

Each structure is represented by an XML document with possible annotations,
their schema is defined with RelaxNG. The MS document is never instantiated:
we want to keep each structure safe (for its construction and manipulation).

To illustrate our work, we choose, as running example, an extract of the sonnet
“Mon rêve familier”, by the French poet Verlaine. The same text is fragmented
and marked up in three ways: its physical structure S1 (see figure 1, the text is
mainly tagged with Stanza and Verse), its linguistic structure S2 (see figure 2,
Sentences are marked up), and its rhythmic structure S3 (see figure 3, the text
is split with R while Enj and Rej mark up enjambments: a part of a text in a
verse rejected in the next verse). Each structure is independent from the others.
In S3, the user adds annotations (in italic font): each textual fragment tagged by
R begins by an annotation tagged by Syl which indicates the number of syllables
contained in the fragment. This number is a textual data added to the text of
the poem and so missing in the other structures (S1 and S2).

Structures and annotations can be defined by means of a grammar like a
DTD, an XML schema [13] or an relaxNG schema. Annotations are not used
for structuring the text (contrary to structures), it is the reason why they are
described with a separated vocabulary. Users could share both the schema of a
structure and an instance of a document for personal annotations (They could
also share the schema of an annotation).

<Sonnet>
<Head>

<Title>Mon rêve familier </Title><Author>Monsieur Paul Verlaine </Author>
</Head>
<Stanza>

<Verse>Je fais souvent ce rêve étrange et pénétrant</Verse>
<Verse>D‘une femme inconnue , et que j‘aime , et qui m‘aime ,</Verse>
<Verse>Et qui n‘est , chaque fois , ni tout à fait la même</Verse>
<Verse>Ni tout à fait une autre , et m‘aime et me comprend .</Verse>

</Stanza>
...

</Sonnet>

Fig. 1. Physical structure S1

Notice that the relationship (eventually weak) between parts of these struc-
tures is not defined. It could be useful to use it during querying and to check
consistency between structures. Here, Sentence (figure 2) are always contained
in Stanza (figure 1), an enjambment, tagged by Enj in figure 3, always overlaps a
group of two Verses (figure 1). The rejected fragment, tagged by Rej in figure 3,
always begins a Verse.

This paper is organized as follows: section 2 presents the related works. The
section 3 describes the MSXD model, section 4 proposes a schema enabling to
express constraints between structures and annotations, section 5 concludes.

174 E. Bruno and E. Murisasco

<Poem>
<Text>Mon rêve familier </Text>
<Text>Monsieur <Name>Paul Verlaine </Name></Text>
<Sentence>Je fais souvent ce rêve étrange et pénétrant

D‘une femme inconnue , et que j‘aime , et qui m‘aime ,
Et qui n‘est, chaque fois , ni tout à fait la même
Ni tout à fait une autre , et m‘aime et me comprend .</Sentence>

...
</Poem>

Fig. 2. Linguistic structure S2

<Poem tit le =’Mon rêve familier ’ author=’Monsieur Paul Verlaine ’>
<R><a:Syl>4</ a:Syl >Je fais souvent </R>
<Enj><R><a:Syl>4</a:Syl >ce rêve étrange </R>

<R><a:Syl>4</a:Syl >et pénétrant</R>
<Rej><R><a:Syl >6</a:Syl >D‘une femme inconnue ,</R></Rej>

</Enj>
<R><a:Syl>3</ a:Syl >et que j‘aime ,</R>
<R><a:Syl>3</ a:Syl >et qui m‘aime ,</R>
<R><a:Syl>3</ a:Syl >Et qui n‘est,</R>
<R><a:Syl>3</ a:Syl >chaque fois ,</R>
<R><a:Syl>6</ a:Syl >ni tout à fait la même</R>
<R><a:Syl>6</ a:Syl >Ni tout à fait une autre ,</R>
<R><a:Syl>6</ a:Syl >et m‘aime et me comprend .</R>...

</Poem>

Fig. 3. Rhythmic structure S3

2 Related Works

If we look at available XML standards, it seems clear that the standard tree-
like model [2] and namespaces [15] could be used to represent MS documents
if each structure is hierarchical and can be merged with others. Nevertheless,
this is not the case in general. In our example, some elements from the physical
and linguistic structures can overlap (Verse and Sentence). The problem of
overlapping is not recent (see [16] for a review).

Several works have studied multistructured documents in the context of XML
for document-centric encoding. For example, a syntactic solution is proposed by
TEI1 to link different structures using a part of the document structure. It needs
to choose either a flat representation of the MS document or a main (hierarchi-
cal) structure and to use references (ID/IDREF) in order to describe the other
structures. Another solution is to propose a new markup language and model
such as LMNL [6] to overcome the limitations of hierarchical markup in XML
and to get an instance of a MS document. The model is not XML compatible
even if it is able to import/export. Notice that this proposal considers user an-
notations. A very interesting framework is proposed in [10]. It is a new model
based on Goddags data structure [4] which is a generalization of DOM trees for
the representation of multi hierarchical XML documents. This proposal defines
an XML compatible model and an extension of XPath (specific axis for con-
current querying such like overlapping) to navigate between different structures
1 http://www.tei-c.org/P4X/NH.html

MSXD: A Model and a Schema for Concurrent Structures 175

sharing the same textual data. We are close to this proposal. Indeed, we want to
keep the hierarchical aspect of each structures, then classical XML tools remain
available. Moreover, Goddag does not provide mechanisms to add annotations.
Finally, none of these proposals describe relationships between structures.

Another proposal, the colored trees [17], deals with multiple hierarchies but
in a data-centric context. It aims at sharing atomic data and it does not consider
overlapping, it is out of our scope.

3 The MSXD Model

Definition 1. A Multistructured document M is a triplet (T, V, S) where T is a
textual value, V a set of segmentations of T and S a set of structures associated
to segmentations from V .

A MS document can be seen as a textual value augmented with different hi-
erarchical structures defined over it. These structures share the same text but
concern (in general) different strings extracted from that text.

Definition 2. A segmentation of the textual value V of length l is a list XV

of strings such that XV = {xi|xi = V [bi..ei] and b0 = 0 and ei ≥ bi and
bi = ei−1 + 1 and e|Xv|−1 = l − 1}. We define two functions for each XV [i],
start(XV [i]) = bi and end(XV [i]) = ei.

We use two concepts to define structures: fragments to mark up a segmentation
and annotations to represent values added by users to fragments. Fragments
positions in the textual value are useful to compute their relative positions.

Definition 3. A fragment f is defined over a segmentation XV of the textual
value V and an alphabet ΣV :
1. f = ε (the empty fragment), start(f) = end(f) = 0 (by default)
2. f = vi with vi ∈ XV , start(f) = start(XV [i]), end(f) = end(XV [i])
3. f = v < x > with v ∈ ΣV and x a fragment, start(f) = start(x)

end(f) = end(x) (f is called a tree)
4. f = xy with x and y two fragments and start(y) = end(x) + 1, start(f) =

start(x), end(f) = end(y).

Definition 4. An annotation is defined over an alphabet ΣA and a finite set of
variables XA:
1. ε (the empty annotation)
2. a < v > (a ∈ ΣA, v ∈ XA)
3. a < x > (a ∈ ΣA, x an annotation)
4. xy (x and y two annotations)

Notice that rule 4 in definitions 3 and 4 produces sequences of fragments or
annotations. We do not make distinction between a fragment or an annotation
and a singleton sequence containing that fragment or that annotation. Moreover,
we do not consider nested sequences.

176 E. Bruno and E. Murisasco

A fragment can be annotated. Let x be a fragment and a an annotation, an
annotated fragment f has the following form: f = x[a] with start(f) = start(x),
end(f) = end(x) and annotation(f) = a (the function annotation(f) returns
annotations associated to f). Several annotations added to the same fragment
are cumulative and their order is not taken into account. If an annotation is
added to a sequence of fragments, it is added to the last item of the sequence.

Definition 5. A structure is a tree f (a labelled fragment) over a segmentation
of the textual value V , end(f) = |XV | − 1 and start(f) = 0.

For our example, V is the text of the poem preceded of its title and the name of
the poet. We define three segmentations X1

V , X2
V and X3

V , and three structures
S1, S2 and S3 defined over them (and represented as XML documents, see
figures 1, 2 and 3). Annotations have been added to S3.

For the physical analysis, Σ1
V ={Sonnet, Head, T itle, Author, Stanza, V erse},

X1
V = x1...∪ ...x6, with in particular x1 = “Mon rêve familier” and x3 = “Je fais

souvent ce rêve étrange et pénétrant”.
For the linguistic analysis, Σ2

V = {Poem, Text, Name, Sentence}, X2
V =

x1... ∪ ...x4, with in particular x1 = “Mon rêve familier”, and
x3 = “ Je fais souvent ce rêve étrange et pénétrant
D’une femme inconnue, . . . , et qui m’aime,
Et qui n’est, chaque fois, ni tout à fait la même
Ni tout à fait une autre, . . . et me comprend.”.

For the rhythmic analysis, ΣA = {Syl}, Σ3
V = {Poem, T itle, Author, R, Rej,

Enj}, XA = {3, 4, 6} and X3
V = x1... ∪ ...x13, with x1 = “Mon rêve familier”

and x13 =“et m’aime et me comprend.”.
We give now some examples of fragments respectively constructed over seg-

mentations X1
V and X3

V

– f1 = x1 with x1 =“Mon rêve familier”, start(f1) = 1 and end(f1) = 17,
– f2 = T itle < x1 >, start(f2) = start(f1), end(f2) = end(f1),
– f3 = x2 with x2 = “Monsieur Paul Verlaine”, start(f3) = 18, end(f3) = 39,
– f4 = Author < x2 >, start(f4) = start(f3) and end(f4) = end(f3),
– f5 = f2f4, start(f5) = start(f2) = 1 and end(f5) = end(f4) = 39

The XML elements <Title>Mon rêve familier</Title><Author>
Monsieur Paul Verlaine</Author> extracted from S1 can be represented
in our model by Title<"Mon rêve familier">Author<"Monsieur Paul
Verlaine">

– f1 = x3 with x4= “Je fais souvent”, start(f1) = 31, end(f1) = 45
– f2 = R < x4 >, start(f2) = start(f1), end(f2) = end(f1)
– f3 = f2[a1] with a1 is an annotation, a1 = syll < 4 >, start(f3) = start(f2),

end(f3) = end(f2) (an annotation has the same position than the fragment
to which it is linked), annotation(f3) = a1

The XML element <R><Syl>4</Syl>Je fais souvent</R> extracted from
S3, can be represented in our model by R<"Je fais souvent">[Syl<"4">]

MSXD: A Model and a Schema for Concurrent Structures 177

Our model is designed so that Allen’s relations [18] can be used on fragments
in order to calculate their relative position inside a segmentation or between two
segmentations. If f1 and f2 are defined on the same segmentation the predicates
meets and overlaps are always false.

Definition 6. Predicates on two fragments f1 and f2 are defined over one or
two segmentations on the same textual value:
before(f1, f2) ≡ finishes(f2, f1) ≡ end(f1) < start(f2)
before(f1, f2, n) ≡ finishes(f2, f1, n) ≡ start(f2)− end(f1) = n
meets(f1, f2) ≡ met-by(f2, f1) ≡ end(f1) = start(f2)
during(f1, f2) ≡ contains(f2, f1)

≡ start(f1) > start(f2) and end(f1) < end(f2)
overlaps(f1, f2) ≡ is-overlapped(f2, f1)

≡ start(f1) < start(f2) and end(f1) > start(f2)
and end(f1) < end(f2))

starts(f1, f2) ≡ started-by(f2, f1)
≡ start(f1) = start(f2) and end(f1) < end(f2)

finishes(f1, f2) ≡ finished-by(f2, f1)
≡ end(f1) = end(f2) and start(f1) > start(f2)

equals(f1, f2) ≡ start(f1) = start(f2) and end(f1) = end(f2)

Finally, we need to compute the level of a fragment in a structure. This level
captures the parent/child relationship between two fragments of a structure.

Definition 7. Let F (s) (s is a structure) be the set of fragments f such that
f = s or ∃x ∈ F (s), ∃a ∈ ΣV |x = a < f >. The function level(s, f) returns
the level of the fragment f in the structure s, it is calculated with the following
algorithm:
– level(s, s) = 0
– level(s, y) = level(s, x) + 1 with x = a < y > (x and y ∈ F (s)),

Here are examples of predicates and level calculus for our poem:

– fi = enj < ... > (used in S3) and fj = verse < ... > (used in S1),
overlaps(fi, fj) is true.

– fi = sonnet < ... > (used in S1), fj = poem < ... > (used in S2) and
fk = poem < ... > (used in S3), equals(fi, fj) and equals(fj, fk) are true.

– level(S1, sonnet < ... >) = 0, level(S1, head < ... >) = 1, level(S1,
title < ... >) = 2, ..., level(S1, stanza < ... >) = 1.

4 A Schema for Multistructured Documents

We see that for a given MS document, each structure can be described us-
ing an XML syntax, thus its schema can be described using RelaxNG. We
choose RelaxNG because our model is close to the use of hedges to model XML

178 E. Bruno and E. Murisasco

Structure S1

default namespace =
"http://sis.univ -tln.fr/msxd/

poem/physical "
start =

element Sonnet {
element Head {

element Title { text },
element Author { text },

},
element Stanza {

element Verse { text }+
}+

}

Structure S3

default namespace =
"http://sis.univ -tln.fr/msxd/

poem/rythmic "
start =

element Poem {
attribute author { text },
attribute title { text },
(R
| element Enj {

R+,
element Rej { R }

})+
}

R = element R {text}
}

Structure S2

default namespace =
"http://sis.univ -tln.fr/msxd/

poem/ linguistic"
start =

element Poem {
element Text {

(text
| element Name { text })+

}+,
element Sentence { text }+

}

Annotation A3

default namespace =
"http: //sis.univ -tln.fr/annot"

start = element Syl = {text}

Fig. 4. S1, S2, S3 and A3 grammars

<MsXml>
<TextalValue uri="http://sis.univ -tln.fr/msxd/value/reve"/>
<Structure type="http://sis.univ -tln.fr/msxd/structure/poem/physical "

uri="http://sis.univ -tln.fr/msxd/instance /S1.xml"
<Structure type="http://sis.univ -tln.fr/msxd/structure/poem/linguistic"

uri="http://sis.univ -tln.fr/msxd/instance /S2.xml"
<Structure type="http://sis.univ -tln.fr/msxd/structure/poem/rythmic "

uri="http://sis.univ -tln.fr/msxd/instance /S3.xml"
</MsXml>

Fig. 5. XML syntax for our running example

documents and the design of RelaxNG is based on this theory [12]. Figure 4
shows the grammars for the structures and annotation of our example.

We define an XML syntax for MS documents (see figure 5). Segmentations
are implicit. We consider as annotations any information in a structure that is
not defined into the grammar.

We define a schema for MS documents as a set of rules (vs a content model
definition) because our structures are weakly coupled and the MS document is
not hierarchical. Allen’s relations enable to constrain both the relative position
of fragments belonging to different structures and the position of annotations
into a structure. The constrains are expressed using XPath based predicates, we
suppose that an XPath expression applied to a structure returns a sequence of
fragments or a sequence of annotations.

MSXD: A Model and a Schema for Concurrent Structures 179

<MsXmlSchema xmlns:a =’http://sis.univ -tln.fr/annot’>
<!-- Identification of the structures and annotations -->
<Structures>
<Structure type="http://sis.univ -tln.fr/msxd/structure/poem/physical "

alias="poem_physical" grammar="poem_physical.rnc"/>
<Structure type="http://sis.univ -tln.fr/msxd/structure/poem/linguistic"

alias="poem_linguistic" grammar ="poem_linguistic.rnc"/>
<Structure type="http://sis.univ -tln.fr/msxd/structure/poem/rythmic "

alias="poem_rythm" grammar ="poem_rythm.rnc"/>
<Structures>
<Annotations>
<Annotation type="http://sis.univ -tln.fr/ annot"

alias="rythm_annot" grammar="rythm_annotation.rnc"/>
<Annotations>
<Constrains>
<!-- RELATIVE CONSTRAINTS BETWEEN STRUCTURES -->
<!-- Sonnet and poem are equals -->
<Equal>

<Fragments type="poem_physical" select="/Sonnet"/>
<Fragments type="poem_linguistic" select="/Poem"/>

</Equal>
<Equal>

<Fragments type="poem_linguistic" select="/Poem"/>
<Fragments type="poem_rythm" select="/Poem"/>

</Equal>
<!-- Attributes or elements title and author are equals -->
<Equal>

<Fragments type="poem_physical" select="/Sonnet/Head/Title"/>
<Fragments type="poem_rythm" select="/Poem/@title"/>

</Equal>
<Equal>

<Fragments type="poem_physical" select="/Sonnet/Head/Author"/>
<Fragments type="poem_rythm" select="/Poem/@author "/>

</Equal>
<!-- A reject begins a verse -->
<Begins >

<Fragments type="poem_rythm" select="Rej"/>
<Fragments type="poem_physical" select="Verse"/>

</Begins >
<!-- A enjambment must overlap two verses -->
<Overlaps >

<Fragments type="poem_rythm" select="Enj"/>
<Fragments type="poem_physical" select="Verse"/>

</Overlaps >
<!-- First Sentence begins just after (meets) Head -->
<Meets>

<Fragments type="poem_physical" select="Head"/>
<Fragments type="poem_linguistic" select="Sentence [1]"/>

</Meets>
<!-- Each sentence append after the head of the sonnet -->
<Succeeds >

<Fragments type="poem_linguistic" select="Sentence "/>
<Fragments type="poem_physical" select="Head"/>

</Succeeds >
<!-- Each sentence is contained in a stanza -->
<During >

<Fragments type="poem_linguistic" select="Sentence "/>
<Fragments type="poem_physical" select="Stanza"/>

</During >
<!-- CONSTRAINTS ON THE POSITION OF ANNOTATIONS INSIDE STRUCTURES -->
<!-- Each R must be begun an annotation Syl -->
<Begun -by>

<Fragments type="poem_rythm" select ="R"/>
<Fragments type="rythm_annot" select="a:Syl"/>

</Begun -by>
<!-- Each Syl must begin a R -->
<Begin>

<Fragments type="rythm_annot" select="a:Syl"/>
<Fragments type="poem_rythm" select="R"/>

</Begin>
</Constrains>

</MsXmlSchema>

Fig. 6. A grammar for our MD document

180 E. Bruno and E. Murisasco

Definition 8. A Multistructured document schema is a triplet (GS , GA, C)
where GS and GA are two sets of grammars defining respectively valid struc-
tures and annotations, C = {ci|ci = c(p1 in s1, p2 in s2)} is a set of constrains,
where c is the name of an allen’s predicate and p1, p2 are XPath expressions ap-
plied to the structures s1 and s2. The constrain is true if for each fragment f1 in
val(p1), it exists a fragment f2 in val(p2) such that c(f1, f2) is true. A document
is valid according to the schema if and only if every constrains in C are true.

The figure 6 (see comments in the figure) shows an XML syntax for MS docu-
ments schemas and illustrates some constrains between fragments (overlaps) or
fragment and annotations (begun-by). Every constrain could be read in the same
way, for example the first one: every fragments matching “/Sonnet” in every
documents valid according to the structure (whose alias is) “poem physical”
must be equal to at least one fragment matching “/Poem” in every document
valid according to the structure (whose alias is) “poem linguistic”.

5 Conclusion

In this paper, our intention was to define a model and a schema for MS docu-
ments. Our contributions are (1) keeping the hierarchical aspect of each struc-
tures for using XML tools (proposed by goddags but not by LMNL), (2) adding
annotations (proposed by LMNL but not by goddags) (3) first step towards val-
idation across multiple hierarchies [16]. Recall that a multistructured document
is defined as a set of fragments (possibly annotated) defined on the same textual
value and grouped in concurrent hierarchical structures. We showed how each
structure and the corresponding annotations can be described in an XML doc-
ument. The MS document is never instantiated. A schema is defined as a set of
rules, Allen’s relations are used to constrain the relative position of fragments in
the structures and the position of annotations in a structure. We are developing
a prototype to implement our model (see http://sis.univ-tln.fr/msxd/).

Our current work is to study the complexity of the validation and to propose
an efficient algorithm. The main perspective is to integrate Allen’s relations in
XPath to be able to select fragments using their relative position with fragments
from other structures or even their content model in other structure. So the ex-
pression of multistructured constrains would be possible. In a proposal, currently
reviewed, we have defined an extension of XQuery. To illustrate this possible use
of our model, we give here some simple XQueries:

Q1 - Children of the fragments Poem in every structures (i.e. Head, Stanza (in
S1), Text, Sentence (in S2), R, Enj (in S3),
msxd:doc("doc.msxd")/Poem/*

Q2 - Verses containing rejects
msxd:doc("doc.msxd")//Verse[descendant::Rej]

Q3 - First Sentence after Head
msxd:doc("doc.msxd")/Poem/Head/following::Sentence[1]

MSXD: A Model and a Schema for Concurrent Structures 181

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML)
1.0. Rec., W3C (1998)

2. Fernandez, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and
XPath 2.0 Data Model. Draft, W3C (2003)

3. Goldfarb, C.F., Rubinsky, Y.: The SGML handbook. Clarendon Press, Oxford
(1990)

4. Sperberg-McQueen, C.M., Huitfeldt, C.: Goddag: A data structure for overlapping
hierarchies. In: DDEP/PODDP. (2000) 139–160

5. Sperberg-McQueen, C.M., Burnard, L.: Tei p4 guidelines for electronic text encod-
ing and interchange (2001)

6. Tennison, J., Piez, W.: Layered markup and annotation language (lmnl). In:
Extreme Markup Languages 2002. (2002)

7. Durusau, P., O’Donnell, M.B.: Concurrent markup for xml documents. In: Pro-
ceedings of XML Europe Atlanta 2002. (2002)

8. N. Chatti et al.: Vers un environnement de gestion de documents à structures
multiple. In: Proceedings of BDA 2004, Montpellier, France (2004) 47–64

9. Witt, A.: Multiple hierarchies : news aspects of an old solution. In: Extreme
markup language 2004 Conference Proceedings. (2004)

10. Dekhtyar, A., Iacob, I.E.: A framework for management of concurrent xml markup.
Data and Knowledge Engineering 52(2) (2005) 185–208

11. Hilbert, M., Schonefeld, O., Witt, A.: Making concur work. In: Extreme Markup
Languages 2005. (2005)

12. Murata, M.: Hedge automata: a formal model for XML schemata.
http://www.xml.gr.jp/relax/hedge_nice.html (2000)

13. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes. Rec., W3C (2001)
14. Clark, J., Murata, M.: RELAX NG Specification. Technical report, OASIS (2001)
15. Bray, T.: Namespaces in XML 1.1. Rec., W3C (2004)
16. DeRose, S.: Markup overlap : a review and a horse. In: Extreme markup language

2004 Conference Proceedings. (2004)
17. H. V. Jagadish et al.: Colorful XML: One Hierarchy Isn’t Enough. In: SIGMOD

Conference. (2004) 251–262
18. Allen, J.: Time and time again : The many ways to represent time. International

Journal of Intelligent Systems 6(4) (1991) 341–355

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 182 – 192, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Estimating Aggregate Join Queries over Data Streams
Using Discrete Cosine Transform

Zhewei Jiang1, Cheng Luo1, Wen-Chi Hou1, Feng Yan1, and Qiang Zhu2

1 Department of Computer Science, Southern Illinois University
Carbondale, IL 62901, USA

{zjiang, cluo, hou}@cs.siu.edu
2 Department of Computer and Information Science, University of Michigan

Dearborn, MI 48128, USA
qzhu@umich.edu

Abstract. Data stream processing is required to be an on-line, one-pass, and time
and space efficient process. In this paper, we develop a framework for estimating
equi-join query size based on the cosine transform. The discrete cosine transform
(DCT) is able to provide concise and accurate representations of data
distributions. It can also be updated easily in the presence of insertions and
deletions. We have performed analyses and experiments to compare the DCT
with sketch-based methods. The experimental results show that given the same
amount of space, our method yields more accurate estimates than sketch methods
most of the time. Experimental results have also confirmed that the cosine series
can be updated quickly to cope with the rapid flow of data.

1 Introduction

Many applications, such as telephone fraud detection, network monitoring, tele-
communications data management, etc., generate data in the form of a continuous
stream rather than a persistent data set. Elements of data streams arrive continuously and
there is no control over the order in which they arrive. Moreover, a data stream is usually
unbounded and there is only one chance to look at it as it passes by.

The queries over data streams are typically referred to as continuous queries because
they are issued once and then run continuously [4]. Continuous query processing
generally requires queries to be executed in real-time using limited space, and thus it
must be an on-line, one-pass, and time and space efficient process.

Approximate aggregate query processing has been an important research topic in
traditional databases for more than a decade. Various techniques, such as sampling [1,
13], histogram [8, 9, 10], wavelet [5, 12], sketch [2, 3, 15], and discrete cosine
transform [11, 14] etc., have been proposed. Although those methods provide the
effective frameworks for the query processing over traditional data set, they suffer from
some serious drags when they are adapted to the data stream. Details shall be discussed
in section 2.

In this research, we shall focus on estimation of aggregate queries with equi-join
operations over data streams. To the best of our knowledge, only Dobra et al. [6]
addresses the same type of query as we do here – multi-equi-join query over continuous
data stream. We develop a framework for estimating aggregate equi-join queries using

 Estimating Aggregate Join Queries over Data Streams Using DCT 183

the discrete cosine transform (DCT). DCT has a simple update scheme for dynamic
data stream environments. We perform analysis on estimation errors and conduct
experiments to compare the space requirement, estimation speed, accuracy, and
updatability with the sketch methods. The experimental results show that DCT yields
much better estimates, from several times up to hundreds of times better, in most cases
than the sketch-based methods.

The rest of the paper is organized as follows. Section 2 is a brief survey of the
techniques used in aggregate query processing. Section 3 introduces the background of
the discrete cosine transform for estimating aggregate queries. Section 4 details our
method on estimating aggregate query with equi-join operators. In section 5, we
compare estimation accuracy, speed, space, and updatability of our approach with the
sketch methods for single and multiple join queries. Section 6 concludes.

2 Related Work

In this section, we briefly review techniques used in approximate aggregate query
processing and discuss their potentials in aggregate join queries over data streams.
Here, a join mainly refers to an equi-join.

There is a long history of using sampling in aggregate query processing and
selectivity estimation on traditional data [12,13]. While sampling may be very
dynamic, the accuracy on join queries is far from satisfactory unless the sample size is
very large [1]. Histogram provides a simple way to represent data distributions for
selection queries [10] and join size estimation [8,9]. The storage space of histograms
can increase dramatically when the number of dimensions increases. This situation is
further exacerbated by usually large domains of attribute values in data stream
applications. Wavelet Transform has been used to compress histograms into small
numbers of coefficients. It has been used for range, point, and range-sum queries
[5,12]. Unfortunately, as the number of dimensions increases, the accuracy also
degrades drastically. The update of the wavelet coefficients also faces a severe
challenge in data stream environment. Alon et al. [3] uses a set of independent
randomized linear-projection variables, called atomic sketches, to estimate (self)join
sizes. It has been shown that the expected value of the square of the atomic sketch X is
the size of the self-join. Furthermore, Alon et al. [2,3] uses groups of such independent
atomic sketches to estimate the join size. Here, we shall call Alon et al.’s sketch method
[2,3] the basic sketch as it has become the basis of several other methods. To improve
the accuracy, Dobra et al. partitions the underlying join attribute domains and estimates
the join size of each sub-domain individually using sketches [6]. This approach
however requires a priori knowledge of the data distributions and relies on the
independence assumption of join attributes, which may not be feasible in data stream
environment. Ganguly’s skimmed sketch [15] skims (extracts) the dense frequencies
that are greater than a certain threshold into another distribution. Better estimation
results than the basic sketch [3] are reported. However, extra space, in the order of the
attribute domain size, is needed to store the (extracted) dense frequencies. Discrete
cosine transform (DCT) provides an elegant way to approximate data distributions
[11,14]. Similar to the wavelet transform, DCT requires only a small amount of space
to store approximated data distributions. Another advantage of the method is that its

184 Z. Jiang et al.

coefficients can be updated easily and dynamically. As compared to histogram based
DCT, our DCT implementation can approximate attributes with large domains, which
are often the case in data stream environments, more easily and accurately.
Furthermore the performance of histogram based DCT is constrained by the underlying
histograms, while ours does not.

3 DCT Approximation

3.1 Attribute Values and Normalization

In general, an attribute can either be numerical or categorical. By mapping each
categorical value to a distinct number, we can here assume all attributes are numerical.
Since join attributes generally have discrete domains, we shall assume each join
attribute Xk has a domain {1, 2, …, nk}. To simplify the notations and implementation
of the cosine transform, a normalization of the attribute values to the domain (0, 1) is
performed first. Let maxXi and minXi be the maximal and minimal values of attribute
Xi of the data stream, respectively. Then, each value v of Xi is normalized as follows:

)1min(max2

1)min(2

+−
+−

=
ii

iz

XX

Xv
v (3.1)

where zv denotes the normalized value of v. The range (0, 1) is partitioned into 2nk

regions according to the grid points and {1, 2, …, nk} is mapped to {1/2nk, 3/2nk, …,
(2nk-1)/2nk}. Note that we have tried not to map attribute values to the starting and
ending values of the normalized domain (0, 1). The minimal and maximal values of an
attribute can usually be determined based on knowledge of the data. For example, the
minimal and maximal values of the attribute “Age” can be reasonably assumed to be 0
and 150, respectively. From now on, we shall assume all attributes are so normalized to
a domain (0, 1), unless otherwise stated.

3.2 Discrete Cosine Transform (DCT)

To illustrate the applications of discrete cosine transform to attribute value
distributions, we first consider a one-dimensional case. Let N be the total number of
tuples seen so far in the data stream, and n be the number of distinct values in the
attribute of concern. We define the basis functions: 1)(=xkφ if k = 0; otherwise,

.cos2)(xkxk πφ = The DCT coefficients, ,0, ≥kkα of frequency function of the

attribute value are computed by

)(
1

)(
1

1
ikv

N

i
ikk vCount

N
v

N i
φφα ⋅==

=

 (3.2)

where vi is the ith value (i.e., nivi 2/)12(−=) of the attribute, and
ivCount is the

number of tuples in the data stream with the value vi.
The DCT is known to have an excellent engergy compaction property, where most

of the signal information tends to be concentrated in a few low-frequency components

 Estimating Aggregate Join Queries over Data Streams Using DCT 185

of the transform [16]. Therefore, the distribution, in common practice, is approximated
by the first m coefficient terms, where m is a number that is much smaller than the
domain size n. To apply the transform to the d-dimensional case, the distribution is
approximated by its md coefficients,

dkk ,...,1
α 1,...,0 1 −≤≤ mkk d

:

,])([
1

1 1
,...,1 ∏

= =

=
N

i

d

j
ijkkk t

N jd
φα (3.3)

where
ijjijk tkt

j
πφ cos2)(= with ,1)(0 =ijtφ and tij is the jth attribute of the ith tuple ti,

As observed from Eq. (3.3), each coefficient
dkk ,...,1

α of the transform is just the

average of the sum of the products of the basis functions (i.e., φ) on the tuples.
Therefore, for insertion or deletion of a tuple, we just compute the “contribution” of
that tuple to the transform separately and then combine it with the old coefficients. That
is, for the arrival of a new tuple t = (t1, t2, …, td) in the data stream which has already
had N tuples,

dkk ,...,1
α is updated as

∏
=+

+
+

=
d

j
jkkkkk t

NN

N
jdd

1
,...,,...,)(

1

1

1
'

111
φαα (3.4)

Here,
dkk ,...,1

'α represents the updated coefficient. Similarly, to delete a tuple t = (t1,

t2,…, td), the coefficient is updated as

∏
=−

−
−

=
d

j
jkkkkk t

NN

N
jdd

1
,...,,...,)(

1

1

1
'

1111
φαα (3.5)

As observed, coefficients can be updated easily. Note that the set of coefficients
derived by the above incremental update scheme (using Eq. (3.4)) is exactly the same as
if we had derived it in a batch fashion using Eq. (3.3). This property implies that the
DCT is suitable for ordinary relations as well as data streams. The updates of the
coefficients can be performed on-line as well as in batch.

4 Estimating Join Size

A typical equi-join query may look like “Select Count(*) from R1, R2, …., Rn where
Ri.A = Rj.B and Rk.C=Rl.D and …”. Without loss of generality, we assume that each
pair of attributes in a join operation (predicate), e.g., Ri.A and Rj.B or Rk.C and Rl.D,
have the same domains and are normalized to (0, 1).

4.1 Join Size Estimation

Consider a query with a single equi-join predicate, say, R1.A = R2.B. Let n be the
domain size for both attributes A and B, and }{ ka and }{ kb be the DCT coefficients of

R1.A and R2.B, respectively. By Parseval's identity [16]

n

b

n

a

N

Count

N

Count
k

n

k

kB
n

k

A
iviv ⋅=⋅

−

=

−

=

1

021

1

0 1

 (4.1)

186 Z. Jiang et al.

Here,
iv

ACount and
ivBCount denote the number of tuples whose values are vi in R1.A

and R2.B, respectively. On the other hand, the join size, denoted as J, is computed as:

−

=

=
1

0

.
n

k
BA

iviv
CountCountJ (4.2)

By using only the first m coefficients, J is estimated by:

−

=

=
1

0

21
m

k
kk ba

n

NN
Est (4.3)

As shown by Eq. (4.3), the join size estimate can be easily derived by adding up the
products of corresponding coefficients. Discussions on queries with multiple equi-join
should follow directly.

4.2 Error Analysis

In this section, we give a brief discussion on the number of coefficients needed to
guarantee the relative error to be smaller than a threshold e.

We assume both relations have the same size N, for simplicity. Let n be the size of
join attribute domains. As shown in Eq. (4.3), the join size estimate Est of the two
relations is calculated as

.
1

1

221

0

2

k

m

k
k

m

k
kk ba

n

N

n

N
ba

n

N
Est

−

=

−

=

+== (4.4)

As shown in Eq (4.2), we only need the first n terms to compute the actual join size J.
That is,

.
1

1

221

0

2

k

n

k
k

n

k
kk ba

n

N

n

N
ba

n

N
J

−

=

−

=

+== (4.5)

We know that 10 =a , and from Eq. (3.2), .1,cos2
1

1

≥=
=

kvkcount
N

a
n

i
ivk i

π

Since ,1cos1 ≤≤− ivkπ we derive .22 ≤≤− ka similarly, 10 =b

and 22 ≤≤− kb . Using the bounds 2,2 ≤≤− kk ba , we obtain

.
)(2

||||
212

n

mnN
ba

n

N
EstJ

n

mk
kk

−≤=−
−

=

 (4.6)

The relative error is defined as

Jn

mnN

J

EstJ
errorrelative

)(2||
_

2 −≤−= (4.7)

by assuming J > 0. To guarantee the relative error to be smaller than or equal to a given

number e, from Eq. (4.7), we derive m
N

eJn
n ≤−

22
. Consequently, the space requirement

to guarantee an error e is:

 Estimating Aggregate Join Queries over Data Streams Using DCT 187

−=
22N

eJn
nm (4.8)

As a simple comparison, the basic sketch [3] has a best case space bound)/(2 JNΩ

and worst case bound)/(24 JNO [17]. By boosting the basic sketch’s worst case bound to

),/(2 JNO the skimmed sketch [15] has a space bound of (N2/J). However, this bound is

valid only when the join size is greater than a sanity bound of N3/2 or NlogN [3]. When
the join size is small, the required space could be much greater than the bounds given
above. Moreover, the skimmed sketch uses extra space to store extracted frequencies;
this extra space is in the order of n (i.e., O(n)). In general, it is very difficult or
impossible to derive tighter bounds for our approach as well as other approaches because
of the diversities of the frequency functions, which are further complicated by the join
operations. However, there are some interesting properties that may shed some light on
the comparisons. That is, the best and worst cases of our approach happen to be the worst
and best cases of the sketches’. We shall discuss these situations in the following.

4.2.1 Best/Worst Case Error
The cosine transform approximates smooth distributions better. Therefore, the best
case, in terms of estimation accuracy, happens when the join attribute values are
uniformly distributed, regardless of the range of the attribute values n is. The cosine
coefficients a0=1 and b0=1. As for ak and bk, ,1 mk ≤≤ they can be derived as:

=

⋅⋅=
n

i
VVk ii

kcount
N

a
1

cos2
1 π 0

2

)12(
cos

2

1

=−=
=

n

i n

ik

n

π (4.9)

Similarly, bk = 0. Thus, the join size estimate Est is:

J
n

N
ba

n

N
ba

n

N
Est

m

k
kk ==⋅⋅==

−

=

2
2
0

2
0

21

0

2
 (4.10)

That is, using only the first term of the transforms, i.e., a0=b0=1, is already enough to
represent the uniform distributions and gives no-error join size estimation.

On the other hand, both sketch methods could have a problem for the uniform
distribution. They require at least

)()
/

()(2

22

nO
nN

N
O

J

N
O == space, which makes them

not better than the brute-force method. As a result, for uniform distributions, the atomic
sketches are very small, which result in the join size estimate of (close to) 0 as
compared to the actual join size N2/n, no matter how large a space is used. Note that our
approach requires only 1 coefficient for uniform distributions.

The worst case happens when all the tuples in a data stream have the same and sole
join attribute value. Let

1j
v and

2j
v be the sole join attribute values in the two data

streams, respectively. Due to space limitation, we shall consider only the case where

1j
v =

2j
v Since J=N2 in this case, by Eq. (4.8), the number of coefficients needed to

guarantee the relative error is smaller than or equal to e is −=
2

.
en

nm . On the other

hand, the sketch methods can obtain the exact join size (J=N2) because there is only one
value in the attributes. The sketch methods have their lower bound O(1) space here.

188 Z. Jiang et al.

From the discussion above, we derive that (1) and)
2

.(− en
nO are our lower and

upper space bounds, respectively.
As observed each method has its strengths and weaknesses. No single method is best

for all distributions. Therefore, in the next section we shall perform extensive
experiments to see how they react to different types of data and which method is likely
to cope with more types of data, especially real-life (like) data.

5 Experimental Results

 We shall compare our method with Alon’s basic sketch [3] and Ganguly’s skimmed
sketch [15] as none of these requires a priori knowledge of data distributions and an
independence assumption of join attributes as does Dobra’s [6].

5.1 Data Sets and Performance Measure

Experiments are performed on synthetic data sets as well as real-life data sets. We
generate two types of synthetic data. The first type possesses several distinct
characteristics; it is used to explore the strengths and weaknesses of these estimation
methods. The second type of data consists of several real-life like datasets; they are
generated by the data generator proposed in [6,12]. The data generated are correlated
and sparsely clustered, which are believed to be similar to the real-life data. The data
sets are used to assess the potentials of the methods in real world applications. For the
real-life data sets, we chose the Current Population Survey data as [6]. The results are
omitted for the space limitation, Readers can find it in [17].

We compare the accuracies of the methods by using the same number of coefficients
(for our methods) or atomic sketches (for others). The commonly used average relative
error is adopted as the accuracy measure. The relative error is defined as |Act(ual) –
Est(imate)| / Act(ual). Each result is the average of 200 queries. Note that skimmed
sketch uses additional O(n) space to store extracted dense frequencies. The additional
space used, from thousands to 105, is not reported in the figures presented here and is
generally much larger than the largest number of coefficients or atomic sketches used in
other methods.

5.2 Experiments on Synthetic Data

5.2.1 Synthetic Data Type I
Two relations, R1 and R2, are generated, each with 107 (N) tuples. Each relation has an
attribute with a domain size of 105 (n). These figures are the same as the experimental
setting in related papers [6,12,15]. The frequencies of the attribute values in the
relations follow the Zipfian distributions. A zipf value of 0.5, 1, or 1.5 roughly
represents a slightly skewed, skewed, or a highly skewed distribution, respectively.
Besides skew, correlations and smoothness are also instilled in the join attribute values
by using different mappings from the frequencies to attribute values in two relations.
Here, positively correlated attributes, say, A and B, refer to the cases where if the
frequency of a value x in A is greater than the frequency of another value y in A, then

 Estimating Aggregate Join Queries over Data Streams Using DCT 189

the frequency of x in B is also greater than y in B. Smoothness is introduced by orderly
mapping frequencies to attribute values.

Figures 1 to 4 show how these methods perform with different types of data. As
observed in Figure 1, sketches perform better than the cosine method. Actually, the
positively correlated case is a generalization of the self-join case for which the sketch
was shown to be most suitable [3]. However, as the positive correlations weaken, their
performance degrades and our approach performs better as shown in Figures 2, 3 and 4.
For example, with 500 coefficients (or atomic sketches), the relative errors of the
skimmed and basic sketches are 2.7 and 8.3 times greater than the cosine method in the
weak positively correlated case (Figure 2), 9.3 and 33.4 times in the independent case
(Figure 3) and 3.0 and 8.9 times in the negatively correlated case (Figure 4).

The data set used in Figure 2 is obtained by permuting only 10% of the frequencies
of R2 in Figure 1. The permutation introduces some randomness and weakens the
positive correlations.

Single-Join, zipf1=0.5, zipf2=1.0, Strong Positive Correlation

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (%
)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 1. Strong Positively Correlated Attributes

Single-Join,zipf1=0.5, zipf2=1.0, Weak Positive Correlation

0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients/ Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (
%

)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 2. Weak Positively Correlated Attributes

Single-Join, zipf1=0.5, zipf2=1.0, Independent Correlation

0

100

200
300
400

500

600

700

800

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (
%

)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 3. Independent Join Attributes

Single-Join, zipf1=0.5, zipf2=1.0, Negative Correlation

0

200

400

600

800

1000

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (%
)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 4. Negatively Correlated Attributes

Let us now examine the impact of the smoothness of distribution functions on the

performance by comparing Figures 1 and 5. The data used in these two figures are
basically identical, except that the frequency functions of R1 and R2 in Figure 1 are
rugged (due to the random mapping between frequencies and attribute values) while they
are smooth in Figure 5 (due to the orderly mapping between frequencies and attribute
values). The two relations are positively correlated just like in Figure 1. As observed,
smoothness plays in favor of the cosine method. The cosine method has improved its
performance a lot here, as compared to Figure 1, on this strongly correlated dataset due to
the smoothness. For example, with 500 coefficients, the cosine method yields an average
error of 56.24% in Figure 4, down from 96.58% in Figure 1. As expected, smoothness has
no effect on sketches since as they do not approximate distributions.

190 Z. Jiang et al.

Single-Join, zipf1=0.5 (smooth), zipf2=1.0 (smooth)

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (
%

)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 5. Strong Positively Correlated Attri-
butes with Smooth Distributions

Single-Join, zipf1=0.5, zipf2=1.5, Independent Correlation

0

200

400

600

800

1000

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (%
)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 6. Independent Join Attributes with
Skewer distributions

Let us now examine the effects of skew by comparing Figures 3 and 6. When the
distributions become skewer, all methods suffer from performance degradation. For
example, with 500 coefficients, the relative errors of the cosine, skimmed sketch, and
basic sketch increase from 9.98%, 92.40%, and 333.09% (in Figure 3) to 24.21%,
158.76%, and 837.85% (in Figure 6), respectively. The skew does not seem to play
particularly in favor of any method. But still the errors of skimmed and basic sketches
are several times up to tens of times greater than ours, respectively.

As a short summary of this qualitative study, we observe that the sketch methods are
suitable for strong positively correlated data, while our approach is more suitable for
from weak positively correlated, random, to negatively correlated data. In addition, our
approach can also benefit from the smoothness of distributions functions, which often
exhibits in the real-life data, such as the distributions of ages and salaries of employees.

5.2.2 Synthetic Data Type II
The purpose of this experiment is to assess the potentials of these methods in real-life
applications. We implemented the data generator proposed by Vitter, et al.[12] and
extended by Dobra, et al. [6] to generate real-life like data. The data are clustered and
positively correlated. The datasets are generated by distributing tuples across and
within the randomly picked rectangular regions (clusters) in the multi-dimensional
attribute space of a relation. We also choose the same parameter setting as in [6]: skew
across regions (zinter) =1.0 and skew within each region (zintra) =0.0-0.5; number of
regions=10 and 50 (the later is in addition to Dobra’s [6]); size of each domain=1024;
size of each relation=107, volume of each region =1,000 – 2,000 and perturbation
parameter p=0.5 - 1.0.

Figure 7 and 8 show the results of single-join queries with different numbers of
clusters. Again, the cosine method outperforms the sketch methods. For example, with
500 coefficients in Figure 7, our method generates an average error of 0.60% while the
errors of skimmed sketch and basic sketch method are 7.98% and 8.24%, respectively,
which are 13.2 and 13.6 times greater than ours. Figure 8 shows a similar result as the
number of clusters increases to 50. The superiority of our method in these experiments
is mainly due to the not so strong positive correlations (as compared to that in Figure 1)
in the data although the clusters are still positively correlated. Randomness sets in when
the centers of the clusters are selected randomly within their respective shrunk regions
in the correlated relations. Clustered data could also make the distribution curves a little
smoother than a completely random distribution.Similar results are observed in the
two-join query cases, the results are presented in [17] and are omitted here for reasons
of space.

 Estimating Aggregate Join Queries over Data Streams Using DCT 191

Single-Join, Clustered Data, No. of Clusters: 10

0
2
4
6
8

10
12
14
16
18

100 200 300 400 500 600 700 800 900 1000

Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (%
)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 7. Single-Join Query, Cluster Data, No.
of Clusters: 10

Single-Join, Clustered Data, No. of Clusters: 50

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000
Storage Space (No. of Coefficients / Atomic Sketches)

R
el

at
iv

e
E

rr
or

 (%
)

Cosine
Skimmed Sketch
Basic Sketch

Fig. 8. Single-Join Query, Cluster Data, No.
of Clusters: 50

5.3 Computation Speed

When a tuple arrives, we immediately update the coefficients, following Eq. (3.4). On
the average, it takes 0.32 s to update one coefficient. So, even for the case with 10,000
coefficients, it takes only 3.2 ms to do the job. To estimate join sizes, we follow Eq.
(4.3). On the average, it takes about 0.4 ms to derive an estimate from 10,000
coefficients. As for the sketch methods, to update 10,000 atomic sketches, it takes
about 1.0 ms, which is faster than ours; this is due to simpler computations involved in
updating atomic sketches. But to derive an estimate from 10,000 atomic sketches, it
would take 1.6 ms, as compared to our 0.4 ms, because they need to find the median of
a large number of group means. Nevertheless, all these approaches have demonstrated
their abilities to cope with the on-line one-pass dynamic properties of data stream
processing.

6 Conclusions and Future Work

In this paper, we discuss equi-join query size estimation over data streams with limited
storage space. We use cosine series to approximate distributions of data streams and
then use them to estimate equi-join queries. Experimental results have shown that our
approach produces faster and more accurate estimates than sketches in most of the
situations. We have also demonstrated that our approach can be updated dynamically
and quickly. The proposed method is well suited for approximate equi-join queries over
continuous data streams. Our method can also be directly applied to non-equal-joins,
range, and point queries.

References

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy. “Join synopses for approximate
query answering”, In SIGMOD. ACM Press, 1999 pp275-28

[2] N. Alon, Y. Matias and M.Szegedy. “The Space Complexity of Approximation the
Frequency Moments”, In Proc of 28th Annual ACM STOC, May 1996, pp 20-29

192 Z. Jiang et al.

[3] N. Alon, P.B Gibbons, Y. Matias and M.Szegedy. “Tracking Join and Self-join Sizes in
Limited Storage”, In proc of the 18th ACM PODS May 1999, pp.10-20

[4] S. Babu and J. Widom. “Continuous queries over data streams”. SIGMOD Record, 2001,
30(3): pp109-120.

[5] A. Bulut and A. K. Singh. “SWAT: Hierarchical stream summarization in large networks”.
In IEEE 19th ICDE, Mar 2003 pp303-314

[6] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. “Processing complex aggregate
queries over data stream”, In ACM-SIGMOD, June 2002, pp61-72.

[7] A. C. Gilbert and Y. Kotidis and S. Muthukr- ishnan and M. J. Strauss, “Surfing Wavelets
on Streams: One-pass Summaries for Approximate Aggregate Queries”, In Proc. of VLDB,
2001, Sep, 2001 , pp79-88

[8] Y. Ioannidis and S. Christodoulakis. “Optimal Histograms for Limiting Worst-Case Error
Propagation in the Size of Join Results”. ACM TODS, Dec1993, Vol. 18, No. 4, 709-748.

[9] Y. E. Ioannidis and V. Poosala. “Balancing Histogram Optimality and Practicality for
Query Result Size Estimation”. In ACM SIGMOD, 1995, pp233-244.

[10] N. Koudas, S. Muthukrishnan and D. Srivastava. “Optimal Histograms for Hierarchical
Range Queries (Extended Abstract) (2000)”, In PODS, 2000, pp196 - 204

[11] J-H. Lee, D-H. Kim and C-W Chung, “Multi-dimensional Selectivity Estimation Using
Compressed Histogram Information”, SIGMOD 1999, pp205-214.

[12] J.S. Vitter and M. Wang. “Approximate Computation of Multidimensional Aggregates of
Sparse Data Using Wavelets.” SIGMOD, 1999, pp193- 204

[13] Y-L Wu, D. Agrawal and A. E. Abbadi, “Applying the Golden Rule of Sampling for Query
Estimation”, ACM SIGMOD 2001, May 2001, pp 449- 460

[14] F. Yan, W-C. Hou, Q. Zhu, “Selectivity Estimation Using Orthogonal Series”, 8th
DASFAA, March, 2003, pp 157-164.

[15] S. Ganguly, M. Garofalakis, R. Rastogi, “Processing Data-Stream Join Aggregates Using
Skimmed Sketches”, Proc of EDBT, March 2004, pp. 569-586

[16] W. L. Briggs and V. E. Henson, DFT : an owner's manual for the discrete Fourier
transform, Philadelphia : Society for Industrial and Applied Mathematics Published, 1995.

[17] Z. Jiang, W. Hou, Y.Feng, Q. Zhu, “Estimating Aggregate Join Queries Over Data Streams
Using Cosine Series”, www.cs.siu.edu/~zjiang

Evaluation of a Probabilistic Approach
to Classify Incomplete Objects Using

Decision Trees

Lamis Hawarah, Ana Simonet, and Michel Simonet

TIMC-IMAG
Institut d’Ingenierie et de l’Information de Santé

Faculté de Médecine
38700 LA Tronche

{Lamis.Hawarah, Ana.Simonet, Michel.Simonet}@imag.fr
http://www-timc.imag.fr

Abstract. We describe an approach to fill missing values in decision
trees during classification. This approach is derived from the ordered
attribute trees method, proposed by Lobo and Numao in 2000, which
builds a decision tree for each attribute and uses these trees to fill the
missing attribute values. Both our approach and theirs are based on the
Mutual Information between the attributes and the class. Our method
takes the dependence between attributes into account by using the Mu-
tual Information. The result of the classification process is a probabil-
ity distribution instead of a single class. In this paper, we present tests
performed on some real databases using our approach and Quinlan’s
method. We analyse the classification results of some instances in test
data and finally we discuss some perspectives.

1 Introduction

Decision Trees are one of the most popular classification algorithms currently
in use in Data Mining and Machine Learning. Decision Trees belong to super-
vised classification methods and are built from a training data set, according
to the divide-and-conquer approach [18]. Once built, decision trees are used to
classify new cases. A case is classified by starting at the root node of the tree,
testing the attribute specified by this node, then moving through the tree until
a leaf is encountered; the case is classified by the class associated with the leaf.
It may happen that some objects do not have any value for some attributes.
This problem, known as the problem of missing values, may occur during the
building phase of the decision tree. It may also occur during the classification
phase: when classifying an object, if the value of a particular attribute which
was branched on in the tree is missing, it is not possible to decide which branch
to take in order to classify this object, and the classification process cannot be
completed. Our objective is to classify an object with missing values. There are

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 193–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

194 L. Hawarah, A. Simonet, and M. Simonet

several methods to deal with missing values using decision trees [20], [15]. The
simplest one is to ignore instances containing missing values [15]. The methods
in [7] and [15] consist in replacing an attribute’s missing values with its most
probable value. Quinlan’s method [18] replaces missing values with a distribution
of probability. The CART method [5], which constructs binary decision trees,
consists in using a surrogate split when an unknown value is found in the at-
tribute originally selected. Other methods include the lazy decision tree method
[8], Shapiro’s method [16] and the Ordered Attribute Trees method [12], [13], [14].
Our work is situated in the framework of probabilistic decision trees [5], [17],
[18]. We use a probabilistic decision tree, instead of a classic decision tree, by
keeping on each leaf in a decision tree all the class values with their probabil-
ities. Replacing an unknown attribute by only one value eliminates some other
possible values; therefore, giving a probability distribution for each unknown
attribute instead of a single value seems to us closer to reality. We aim at using
the dependencies between attributes to predict missing attribute values; when
we estimate the values of an unknown attribute from its dependent attributes,
we use the maximum amount of information contained in the object in order
to fill the missing values of this attribute. In our work, we are interested in the
type of approaches which use decision trees to fill in missing values [12], [16],
because if a decision tree is able to determine the class of an instance thanks
to the values of its attributes, then it can be used to determine the value of an
unknown attribute from its dependent attributes. Decision trees are suitable to
represent relations among the most important attributes when determining the
value of a target attribute [12]. In our work, we extend the Ordered Attribute
Trees method (OAT), proposed by Lobo and Numao [12]; it uses decision trees
to deal with missing values in training data and test data [13], [14]. In this
paper, we first present Lobo’s approach (OAT). We then describe our method
to estimate missing values, that uses the dependencies between attributes and
gives a probabilistic result; we test our approach on real data bases and we
compare our results with Quinlan’s results. We also measure the quality of our
classification results by comparing each instance in the test data with all the
instances in the training data using a Distance Function. Finally, we present
some perspectives.

1.1 Ordered Attribute Trees Method

Ordered Attribute Trees (OAT) is a supervised learning method to fill missing
values in categorical data. It uses decision trees as models for estimating un-
known values. This method constructs a decision tree for each attribute, using
a training subset that contains instances with known values for the attribute.
These cases in the training subset, for a target attribute, are described only by
the attributes whose relation with the class has lower strength than the strength
of the relation between the target attribute and the class. The resulting decision
tree is called an attribute tree. This method uses Mutual Information [19] as a

Evaluation of a Probabilistic Approach to Classify Incomplete Objects 195

measure of the strength of relations between the attributes and the class1. There
is an order for the construction of the attribute trees. This order is guided by the
Mutual Information between the attributes and the class. The method orders the
attributes from those with low mutual information to those with high mutual
information. It constructs attribute trees according to this order. These trees are
used to determine unknown values for each attribute. The first attribute tree
constructed is a one-node tree with the most frequent value among the values
of the attribute. An attribute tree is constructed for an attribute Ai using a
training subset which contains instances with known values for the attribute Ai,
and the attributes whose missing values have already been filled before. Then,
the attributes Ak for which MI(Ai, C) < MI(Ak,C) are excluded [12]. During the
calculation of MI(Ai, C), instances which have missing values for the attribute
Ai are ignored [14]. This method is not general enough to be applicable to
every domain [14]. The domains in which there are strong relations between
the attributes appear to be the most suitable to apply the OAT method. In
this method, the idea to start by dealing with the attribute which is the less
dependent on the class [12], [13], [14] is interesting, because it is the attribute
which has the least influence on the class.

2 Probabilistic Approach

We present in this section our work that estimates missing values during classi-
fication using a decision tree to predict the value of an unknown attribute from
its dependent attributes [9]. This value is represented by a probability distrib-
ution. We have two proposals. The first one simply extends Lobo’s OATs with
probabilistic data; the second uses the dependence between attributes and also
gives a probabilistic result [9], [10].

2.1 Probabilistic Ordered Attribute Trees (POATs)

For each attribute we propose to construct an attribute tree using Lobo’s OAT
approach, enriched with probabilistic information. We call these trees Probabilis-
tic Ordered Attribute Trees (POAT) [9]. The POAT method extends OATs on
two points: 1) each leaf in such an attribute tree is associated with a probability
distribution for the possible attribute values instead of its most probable value;

1 Mutual Information (MI) between two categorical random variables X and Y is the
average reduction in uncertainty about X that results from learning the value of Y:

MI(X, Y) = −
x∈Dx

P (x)log2P (x) +
y∈Dy

P (y)
x∈Dx

P (x|y)log2P (x|y) (1)

Dx and Dy are the domains of the categorical random variables X and Y. P(x) and
P(y) are the probability of occurrence of x ∈ Dx and y ∈ Dy , respectively. P(x|y)
is the conditional probability of X having the value x once Y is known to have the
value y.

196 L. Hawarah, A. Simonet, and M. Simonet

2) attributes used to build a POAT for an attribute Ai are those whose miss-
ing values have already been filled before and are dependent on Ai. The result
of classifying an object with missing values using POAT is a class distribution
instead of a single class. These trees give a probabilistic result which is more
refined than Lobo’s initial OATs. However, they do not take into account all the
dependencies between attributes, because they are built in an ordered manner.
Therefore, we suggest another approach (Probabilistic Attribute Trees) which is
based on the dependencies between attributes.

2.2 Probabilistic Attribute Trees (PATs)

To take into account the dependencies, we calculate the Mutual Information
between each pair of attributes in order to determine for each attribute its de-
pendent attributes. Then, a Probabilistic Attribute Tree (PAT) is constructed
for each attribute, using all the attributes depending on it. A PAT is a deci-
sion tree whose leaves are associated with distributions of probability for the
attribute values. For an attribute Ai we first determine its set of dependent at-
tributes: Dep(Ai) = {Aj | MI(Ai, Aj) > threshold 2}. Then we construct for Ai

a Probabilistic Attribute Tree (PAT) according to its Aj .

3 Experimentation

In this section, we will test our approach on several databases and compare
our results with those generated by Quinlan’s method [18]. Each database is
tested on several thresholds. To choose a threshold, we calculate the average
of the Mutual Information calculated between each attribute and the class, we
then choose some thresholds that are closer to this average [11]. Because Mutual
Information, between an attribute and the class, tends to be high when the
number of this attribute values is high [6], we use Normalized Mutual Information
as proposed by Lobo and Numao [14] instead of Mutual Information. Normalized
Mutual Information used is defined as:

MIN (X, Y) ≡ 2MI(X, Y)
log ||Dx||+ log ||Dy||

(2)

3.1 Testing and Comparison with C4.5 Method

First, we have tested our approach on the vote database [4]. A training data,
which has 232 instances with 16 discrete attributes (all are Boolean and take
the values: y or n), is used to construct our POATs and PATs. The class in this
database can take two values (Democrat and Republican). This training data does
not have any missing values. However, we used a test data which contains 240
objects with missing values. The missing values rates in the test data are shown
in Table 1. The average of Normalized Mutual Information is 0.26. Therefore,
2 A threshold will be fixed.

Evaluation of a Probabilistic Approach to Classify Incomplete Objects 197

Table 1. The missing values rates

ID Attributes Missing values rates

1 handicapped-infants 05,00 %
2 water-project-cost-sharing 24,58%
3 adoption-of-the-budget-resolution 04,58%
4 physician-fee-freeze 48,33%
5 el-salvador-aide 08,75%
6 religious-groups-in-schools 04,58%
7 anti-satellite-test-ban 07,50%
8 aid-to-nicaraguan-contras 07,08%
9 mx-missile 10,41%
10 immigration 02,50%
11 synfuels-corporation-cutback 11,25%
12 education-spending 17,08%
13 superfund-right-to-sue 13,75%
14 crime 08,33%
15 duty-free-exports 14,58%
16 export-administration-act-south-africa 50,20%

we have tested our approach on several thresholds: 0.2, 0.3, 0.4 and 0.5. The
result of the tests is shown in Table 2. The column 50% in Table 2 contains the
percentage of objects having probability 0.5 for each value of class.

Generally, when we decrease the threshold, we increase the degree of depen-
dence between attributes, and consequently we use more attributes to construct
our trees. In this case, we decrease the number of instances on each leaf in
each tree. In Table 2, we note that when we decrease the threshold, our results
improve and the best results are obtained by PATs for 0.2 threshold.

The only attribute used to construct the decision tree using C4.5 method
is physician-fee-freeze which has the greatest influence on the decision. How-
ever, if this attribute is unknown, C4.5 calculates its frequency in all the train-
ing data without taking into account the other attributes which depend on it.
Consequently, in the test data each object which has a missing value for physi-
cian-fee-freeze is classified Democrat with probability 0.53 and Republican with
probability 0.47. Contrary to C4.5, each object in which the attribute physician-
fee-freeze is unknown is classified according to attributes depending on physician-
fee-freeze.

For the threshold 0.5, our probabilistic decision tree corresponding to the
training data is also constructed using only the attribute physician-fee-freeze.
The physician-fee-freeze’s PAT is constructed using the attribute el-salvador-aid.
Consequently, when physician-fee-freeze is unknown, we calculate his probability
according to el-salvador-aid.

For the threshold 0.4, our probabilistic decision tree corresponding to the train-
ing data is constructed using the attributes physician-fee-freeze, el-salvador-aid
and education-spending. The PAT for physician-fee-freeze is constructed using

198 L. Hawarah, A. Simonet, and M. Simonet

Table 2. Result of testing PAT and C4.5 on vote database

Vote database Threshold Good classification Bad classification 50%

0.2 91.25% 08.33% 0.41%
0.3 90% 09.16% 0.83%

PAT 0.4 88.33% 11.66%
0.5 87.08% 12.91%

C4.5 83.75% 16.25%

Table 3. Result of testing C4.5 and PAT with threshold 0.4 Vote database

physician-fee el-salvador education-spend crime PAT results C4.5 results

? y y y (11%, 89%) 1 (53%, 47%)
? ? n n (99%, 01%) (53%, 47%)
? y n n (85%, 15%) (53%, 47%)

1(11%, 89%)means classification’s result is 11% for Democrat and 89% for
Republican

Table 4. Result of testing PAT and C4.5 on Breast-cancer database

Breast-cancer database Threshold Good classifi Bad classifi 50%

0.02 76.08% 19.56% 4.34%
PAT 0.03 70.65% 23.91% 5.43 %

0.04 71.73% 28.26%
C4.5 70.65% 29.34%

el-salvador-aid, education-spending and crime. Consequently, when physician-
fee-freeze is unknown, we calculate its probability according to its dependent
attributes, and so on. For example, in Table 3, we notice that the probability
distribution of each object depends on the other attributes values. However, with
C4.5, this distribution depends only on physician-fee-freeze’s frequency. In our
work, when two attributes are dependent and unknown at the same time3, we
deal first with the attribute which is less dependent on the class by using its
POAT constructed according to the first proposal. Then, for the other attribute,
we use its PAT constructed according to the second proposition.

We now present tests performed on the Breast-cancer database [4]. We have
constructed our PATs and POATs using a training data that has 277 objects
without missing values. Each object contains 9 discrete attributes whereof the
attribute breast-quad has 5 values, age has 9 values, tumor-size has 12 values,
inv-nodes has 13 values, and each of the attributes menopause and deg-malig has
3 values; the class can take two values (no-recurrence-events, recurrence-events).
Therefore, using Normalized Mutual Information is important here because some
attributes values’s number are more than two. We also use a test data that has
3 Cycle problem.

Evaluation of a Probabilistic Approach to Classify Incomplete Objects 199

92 objects. The missing values rates in test data are: 60.86% for the attribute
node-caps, 39.13% for the attribute deg-malig, 16.30% for irradiat and 3.23%
for tumor-size. The result of classification of all objects in test-data is shown in
Table 4. We notice that for all the thresholds, our result is equal or better than
that given by C4.5.

3.2 Analysis of Classification Result

Our approach is based on the dependence between attributes. We aim at mea-
suring the quality of our classification results to improve the performance of our
approach. For this purpose, we are interested in an algorithm [3] called Relief
Algorithm4 which has been shown to be very efficient in estimating attributes.

RELIEF. The key idea of Relief is to estimate attributes according to how
well their values distinguish among instances that are near each other. For that
purpose, given a randomly selected instance R from m instances, RELIEF [2]
searches for its two nearest neighbors: one H from the same class and the other M
from different class. It uses a function diff that calculates the difference between
the values of attribute for two instances. For a discrete attribute this difference is
either 1 when the values are different or 0 when the values are equal. Estimating
the quality W[A] of attribute A is defined as shown below:

W [A] = W [A]− diff (A, R, H)/m + diff (A, R, M)/m (3)

The original Relief can deal with discrete and continuous attributes. However,
it cannot deal with incomplete data and is limited to two-class problem. Its
extension which solves these and some other problems is called ReliefF [1], [2].
ReliefF is able to deal with incomplete and noisy data and can be used for
evaluating the attribute quality in multi-class problem. ReliefF also generalizes
function diff(A, Instance1, Instance2) to deal with missing values. This function
becomes for a discrete attribute A:

diff(A, I1, I2) =

⎧⎪⎪⎨
⎪⎪⎩

0 if V (A,I1) = V (A,I2)

1 if V (A,I1) �= V (A,I2)

1− P (V (A,I2)|ClassI1) if A is unknown in I1

(4)

Where:

– V (A,Ij) is the value of A in the instance Ij

– ClassI1 is the value of class in the instance I1
– 1− P (V (A,I2)/ClassI1) is the probability that two instances I1 and I2 have

different value of the given attribute A when one of instances (I1 here) has
unknown value of A .

We notice that this function calculates also the probability that two instances
I1 and I2 have different value of the given attribute A when both instances have
unknown attribute values, but we do not explain it in equation 4. However, we
can find it in [1], [2].
4 The algorithm relies entirely on statistical analysis and employs few heuristics.

200 L. Hawarah, A. Simonet, and M. Simonet

Calculating the Distance Between Instances. Relief and ReliefF inspired
us to calculate the distance between two instances using function in equation 4.
The first instance is from the test data with missing values, the other one is from
the training data without unknown attributes. The total distance is simply the
sum of difference over all the attributes [2]. The Distance function is shown in
equation 5 below:

Distance(I1, I2) =
j=n∑
j=1

diff(Aj, I1, I2)5 (5)

For example, if the distance between two instances is 5, it means that there are
5 attributes whose values are different in the two instances.

In our experimentation, to measure the quality of our classification results,
we compare each instance in the test data with all the instances in the training
data by calculating the distance between them using the function in equation 5.
Then for each test instance, we calculate the frequency of its nearest instances
from each class. This frequency, which is a statistical result, will be compared
with the classification result obtained by the PAT approach for the same test
instance. For this purpose, we propose an algorithm which is presented below.

Instance Analysis Algorithm

Input: test instance Inst, n training instances I;
Output: for Inst: frequency of nearest instances from the same class

and frequency of nearest instances from the different class;
Function Instance-Analysis(Inst:test instance,

I:array[1..n] of instances):Pc:array[1..2] of real;
Const
near=5;

var
nbSCL, nbDCL, k, near: integer;

dis: real;
begin
nbSCL=0, nbDCL=0;
For k:=1 to n do

begin
dis= Distance(Inst,I[k])
If dis < near {the two instances are nearest neighbor}
then

If (two instances Inst and I[k] are from the same Class)
then nbSCL++
else nbDCL++;

end; (*for k*)
Pc1= P(nearest instances from the same class)= nbSCL/(nbDCL+nbSCL)
Pc2= P(nearest instances from the different class)= nbDCL/(nbDCL+nbSCL)
end;
return(Pc);

5 n is the number of attributes.

Evaluation of a Probabilistic Approach to Classify Incomplete Objects 201

Table 5. Result of testing Instance Analysis Algorithm on Vote database

physician-fee el-salvador education crime near=8 near=10 near=12

? y y y (16%, 83%) (29%, 70%) (38%, 61%)
? ? n n (91%, 08%) (84%, 15%) (70%, 29%)
? y n n (92%, 07%) (75%, 24%) (57%, 42%)

In the algorithm given above, we present only the treatment of two-class prob-
lems. However, in our experimentation, we also deal with the mutli-class prob-
lem. The constant near is fixed by the user. We consider that two instances are
nearest if the distance between them is lower than near. For a test instance,
this algorithm tells us statistically about the proportion of its nearest instances
from each class. We then compare this frequency with the classification result
obtained by the PAT approach for the same test instance.

Results: To illustrate our experience using the Instance Analysis Algorithm
proposed above, we present only the result of testing this algorithm on the same
examples as presented in Table 3 from the vote database. The vote database
has 16 attributes, so the constant near may be 8, 9, 10, 11, or 12. Table 5
contains the results of testing this algorithm only when near is 8, 10 and 12. By
comparing Table 3 which contains PAT’s results and C4.5’s results with Table 5
which contains statistical results according to Analysis-Instance algorithm for
the same examples, we remark that PAT’s results in Table 3 are closer to the
statistical results in Table 5 when near is 8. Therefore, they are better than
the C4.5’s results when near is 8, 10 or 12. Therefore, our results are closer to
reality.

4 Conclusion and Perspectives

In this paper, we have introduced a probabilistic approach to fill missing values
in decision trees during classification. We proposed replacing an unknown at-
tribute with a probability distribution and taking into account the dependence
between attributes. We tested our approach on some real databases and we
compared our results with those given by C4.5 for the same databases. We are
also inspired by Relief and its extensions to calculate the distance between two
instances with missing values. For each instance in the test data, our Analysis-
Instance algorithm tells us statistically the proportion of its nearest instances
from each class. We compared the results obtained by Analysis-Instance algo-
rithm with PAT’s results and C4.5’s results. Moreover, we observed that our
classification results are closer to reality and better than those given by C4.5.
We note that a recursive algorithm, which is not presented in this paper, is
proposed in our approach (PAOTs and PATs) to classify an instance with miss-
ing values. This algorithm is more complex. In future work, we are currently
calculating the complexity of this algorithm and testing our approach on more
databases.

202 L. Hawarah, A. Simonet, and M. Simonet

References

1. Robnik-Sikonja M., Kononenko I.: Attribute Dependencies, Understandability and
Split Selection in Tree Based Models. In: Bratko, I. and Dzeroski, S., (eds.), Ma-
chine Learning: Proceedings of the Sixteenth International Conference ICML99),
pages 344–353. Morgan Kaufmann Publishers (1999)

2. Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In Pro-
ceedings of the 1994 European Conference on Machine Learning (1994) 171–182.

3. Kira, K. and Rendell, L.A.: A Practical Approach to Feature Selection In Sleeman,
D. and Edwards, J. (eds.) Proceedings of International Conference on Machine
Learning, pages 249-256, Morgan Kaufmann, (1992)

4. Blake C.L. and Merz C.J.: UCI Repository of machine learning databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science (1998)

5. Breiman L., Friedman J.H., Olshen R.A. and Stone C.J.: Classification and Re-
gression Trees, Wadsworth and Brooks (1984)

6. Crémilleux B.: Induction automatique: aspects théoriques, le systéme ARBRE,
Applications en médecine. Thése de doctorat, Université Joseph Fourier(1991)

7. Kononenko I., Bratko I. and Roskar E.: Experiments in Automatic Learning of
Medical Diagnostic Rules, Technical Report, Jozef Stefan Institute, Ljubljana, Yu-
goslavia (1984)

8. Friedman J.H., Kohavi R. and Yun Y.: Lazy Decision Trees, AAAI (1996)
9. Hawarah L., Simonet A. and Simonet M.: A probabilistic approach to classify

incomplete objects using decision trees, Spain, DEXA. LNCS 3180 pp. 549-558,
(2004)

10. Hawarah L., Simonet A. and Simonet M.: Classement d’objets incomplets dans un
arbre de dcision probabiliste, Deuxime atelier sur la ”Fouille de donnes complexes
dans un processus d’extraction des connaissances”, Paris, EGC (2005)

11. Hawarah L., Simonet A. and Simonet M.: Evaluation d’une approche proba-
biliste pour le classement d’objets incompltement connus dans un arbre de dcision,
Troisime atelier sur la ”Fouille de donnes complexes dans un processus d’extraction
des connaissances”, Lille, EGC (2006)

12. Lobo O.O. and Numao M.: Ordered estimation of missing values, Pacific-Asia
Conference on Knowledge Discovery and Data Mining(1999)

13. Lobo O.O. and Numao M.: Ordered estimation of missing values for propositional
learning, Japanese Society for Artificial Intelligence, JSAI, vol.15, no.1(2000)

14. Lobo O.O. and Numao M.: Suitable Domains for Using Ordered Attribute Trees to
Impute Missing Values. IEICE TRANS. INF. and SYST., Vol.E84-D, NO.2 (2001)

15. Quinlan J.R.: Unknown attribute values in induction. Proc. Sixth International
Machine Learning Workshop, Morgan Kaufmann (1989)

16. Quinlan J.R.: Induction of decision trees. Machine Learning, 1, pp.81–106 (1986)
17. Quinlan J.R.: Probabilistic decision trees, in Machine Learning: an Artificial Intelli-

gence Approach, ed.Y.Kodratoff, vol.3, Morgan Kaufmann, San Mateo, pp.140-152
(1990)

18. Quinlan. J.R: C4.5 Programs for Machine Learning, Morgan Kaufmann(1993)
19. Shannon C.E., Weaver W.: Théorie Mathématique de la communication, les clas-

siques des sciences humaines (1949)
20. White A.P. Liu W.Z., Thompson S.G. and Bramer M.A.: Techniques for Dealing

with Missing Values in Classification. LNCS 1280, pp. 527-536 (1997)

Multiway Pruning for Efficient Iceberg Cubing

Xiuzhen Zhang and Pauline Lienhua Chou

School of CS & IT, RMIT University, Melbourne, VIC 3001, Australia
{zhang, lchou}@cs.rmit.edu.au

Abstract. Effective pruning is essential for efficient iceberg cube com-
putation. Previous studies have focused on exclusive pruning: regions
of a search space that do not satisfy some condition are excluded from
computation. In this paper we propose inclusive and anti-pruning. With
inclusive pruning, necessary conditions that solutions must satisfy are
identified and regions that can not be reached by such conditions are
pruned from computation. With anti-pruning, regions of solutions are
identified and pruning is not applied. We propose the multiway pruning
strategy combining exclusive, inclusive and anti-pruning with bounding
aggregate functions in iceberg cube computation. Preliminary experi-
ments demonstrate that the multiway-pruning strategy improves the ef-
ficiency of iceberg cubing algorithms with only exclusive pruning.

1 Introduction

Since the introduction of the CUBE operator [6], the computation of data cubes
has attracted much research [3,7,10]. Data cubes consist of aggregates for parti-
tions produced by group-by’s of all subsets of a given set of grouping attributes
called dimensions. Given an aggregation constraint, aggregates in a data cube
that satisfy the constraint form an iceberg cube [3]. Pruning is critical to the
efficiency of iceberg cube computation, as the cube size grows exponentially with
the number of dimensions. With traditional pruning strategies [1,3,4,7,9,10] re-
gions of the search space that do not satisfy a constraint are identified and then
pruned from computation.

In this paper, we propose two new pruning techniques. (1) Inclusive pruning
identifies conditions that the solutions must meet, and units under search that
do not meet any of these conditions can not be solutions and thus are pruned. (2)
Anti-pruning identifies regions where all units in the regions are solutions and
testing for pruning is saved. We also propose inclusive and anti-pruning strate-
gies with bounding aggregate functions for efficient iceberg cubing. Our initial
experiments confirm that multiway-pruning improves the efficiency of cubing.

With traditional pruning, conditions are identified that warrant non-solutions.
In this sense, it is termed exclusive pruning. With traditional exclusive pruning,
the larger the solution set, the more tests for the pruning condition result in
fruitless effort and become extra unnecessary cost. To the contrary of exclusive
pruning, the cost for inclusive pruning does not increase and anti-pruning be-
comes better with larger solution set. Exclusive, inclusive and anti-pruning are

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 203–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 X. Zhang and P.L. Chou

collectively called the multiway pruning strategy. Without inclusive pruning and
anti-pruning, traditional exclusive pruning still compute the complete solutions
and prunes correctly. However, it incurs extra cost. Inclusive and anti-pruning
can not replace exclusive pruning, but complement exclusive pruning and in
many cases greatly reduce the cost for pruning.

1.1 Related Work

Studies in the iceberg cubing literature have all focused on exclusive pruning
strategies in iceberg cube computation [3,7,10,12].

Another related area is constraint data mining. Several types of constraints
have been proposed and their properties are used for pruning [1,8,9]. All these
work focus on exclusive pruning, expect in Reference [8]. The succinct constraints
in Reference [8] are conceptually similar to inclusive pruning, however they are
constraints orthogonal to the constraints for exclusive pruning. Our inclusive
pruning does not rely on extra constraints and it is used to enhance exclusive
pruning.

The term inclusive pruning was coined by Webb [11] in the area of machine
learning. Specific pruning rules were developed for classification learning. We in-
troduce inclusive pruning into iceberg cube mining and develop inclusive pruning
strategies for aggregation constraints based on bounding.

The concept of border was used in data mining to represent large spaces [2,5].
Rather than computing borders, we focus on using borders for more effective
pruning and to compute all solutions in the space represented by borders.

2 Preliminaries on Data Cubes

Dimensional datasets are defined by dimensions and measures. In Table 1, there
are 4 dimensions Month, Product, SalesMan (Man) and City, and Sale (aggre-
gated as Sum(Sale)) is the measure. Throughout this paper we use upper-case
letters to denote dimensions and lower-case letters to denote dimension-values.
For example (A, B, C) denotes a group-by and (a, b, c) denotes a partition of tu-
ples from the (A, B, C) group-by, and is called a group. We also use an upper case
letter for a measure attribute to represent the set of values for the measure.

The group-bys in a data cube form a lattice structure called the cube lattice.
Fig. 1 shows an example 4-dimensional cube lattice, where each node denotes a
group-by list. The empty group-by that aggregates all tuples in a dataset is at
the bottom of the lattice and the group-by with all dimensions is at the top of
the lattice. Group-bys form subset/superset relationships. Groups from different
group-bys also form super-group/sub-group relationships.

A special value “*” is assumed in the domain of all dimensions, which can
match any value of the dimension. With the Sales dataset, the (Jan, ∗, ∗, ∗) group
denotes the partition of tuples with Month = January and no restriction on val-
ues for the other dimensions. For simplicity, (Jan, ∗, ∗, ∗) is also written as (Jan).
The 3-dimensional group (Jan, TV, Perth) is a sub-group of the 2-dimensional
groups (Jan, TV), (Jan, Perth) and (TV, Perth).

Multiway Pruning for Efficient Iceberg Cubing 205

Table 1. A sales dataset, partially aggre-
gated

Month Prod Man City Cnt(*) Sum(Sale)
Jan Toy John Perth 5 200
Mar TV Peter Perth 40 100
Mar TV John Perth 20 100
Mar TV John Syd 10 100
Apr TV Peter Perth 8 100
Apr Toy Peter Syd 5 100

Table 2. The bounds of some aggregate
functions ({Xi|i = 1..n} are MSPs)

F upper bound; lower bound
Cnt Sum

i
Cnt(Xi); Min

i
Cnt(Xi)

Max Max
i

Max(Xi); Min
i

Max(Xi)

Min Max
i

Min(Xi); Min
i

Min(Xi)

Avg Max
i

Avg(Xi); Min
i

Avg(Xi)

Sum

if there exists Sum(Xi) > 0,
Sum

Sum(Xi)>0
Sum(Xi),

otherwise Max
i

Sum(Xi);

if there exists Sum(Xi) < 0,
Sum

Sum(Xi)<0
Sum(Xi),

otherwise Min
i

Sum(Xi)

Given a dataset S of n dimensions A1, ..., An with the measure X , the data
cube of applying F on S can be expressed in two ways: (1) Cube(A1, ..., An) can
be viewed as the set of possible group-bys, or the set of possible groups for all
group-bys. (2) Cube(X) = {Xi = {t[X] | t ∈ gi} | gi is a partition of the cube};
that is, a data cube is expressed as partitions of multi-set of measure values
following the grouping of tuples.

3 Bounding Aggregate Functions

Bounding was proposed as a technique to prune for complex aggregation con-
straints [12]. The idea of bounding is to estimate the upper and lower bounds for
data cubes from the most specific partitions (MSPs) of data. The Sales dataset
comprises 6 MSPs, as shown in Table 1. Each MSPs has been aggregated with
functions Count(*) (denoted as Cnt(*)) and Sum(Sale).

We generalize the original definition of data cubes [6]. Fig. 1 shows Cube (ABCD),
and it can be decomposed into two lattice structures: The nodes in the right
polygon form Cube (BCD). For each partition of data with ai ∈ domain(A), the
nodes in the left polygon form a data cube on dimensions {B, C, D} conditioned
on ai ∈ domain(A). In later discussions we use the term data cube to refer to both
unconditional data cubes and conditional data cubes.

The concept of data cube core was coined by Gray et al. [6] it was general-
ized to conditional data cubes. Given Cube(A1, ..., An) over measure X , all n-
dimensional partitions {(a1, ..., an)|ai �= ∗, ai ∈ domain(Ai), 1 ≤ i ≤ n} comprise
the core of the data cube and each partition g in the core is a Most Specific Par-
tition (MSP). The multi-set of measure values for tuples in an MSP g, namely
{t[X]|t ∈ gi}, is an MSP of the measure. All aggregates in a data cube can be
computed from its MSPs. In Fig. 1, any group in Cube(BCD)|a1 can be computed
from some (a1, bi, cj, dk) groups and any group in Cube(BCD) can be computed

206 X. Zhang and P.L. Chou

ABD

ABCD

ABC ACD BCD

AB AC AD BC CD BD

A B C D

All

Fig. 1. Cube(ABCD) decomposition

 (a) 1

 (a) 1 (a) 1 (a) 1 (a) 1

 (a) 1 (a) 1 (a) 1 (a) 1 (a) 1

 (a) 1 (a) 1 (a) 1 (a) 1

 (a) 1

 (a) 1

B C

CD CE DEBD

BCD BCE

ALL

BE

BCDE

BC

BDE CDE

ED

B

B

L

U

Fig. 2. An anti-pruning border on the lat-
tice conditioned on (a1)

from some (bi, cj, dk) groups, where i, j and k iterates over values in the domain
of B, C and D respectively.

Given an aggregate function F , and a multi-dimensional dataset with measure
X , the upper (lower) bound for a data cube is a real number such that for any
partition Xi ∈ Cube(X), F (Xi) is no larger (smaller) than the upper (lower)
bound. An aggregate function F is boundable for a data cube if the upper and
lower bounds for the data cube can be determined with a single scan of the local
aggregate values of the MSPs. The bounds for some commonly seen aggregate
functions are listed in Table 2. We use Count(*) as an example to explain. The
Count(*) for any group in a data cube is no larger than Sumi Cnt(Xi), the sum
of Count(*) all MSPs. The Count(*) for any group in a data cube is no smaller
than Mini Cnt(Xi), the smallest Count(*) among all MSPs. Moreover, these
bounds are the tightest bounds for Count(*). Indeed arithmetic expressions of
base functions Sum, Count, Min, and Max are boundable. Details of bounding
algorithms are discussed in Reference [12].

4 Inclusive Pruning with Bounding

Inclusive pruning is applied before computing the bounds of data cubes for
exclusive pruning. Dimension values that solutions in a lattice must have are
called inclusive dimension values. Groups that are defined by only non-inclusive
dimension-values are definitely not solutions and should be pruned.

Definition 1. Given a data cube to be computed with some constraint, the in-
clusive dimension values are those that define groups that are solutions.

From this definition, dimension values that do not involve any solutions are
non-inclusive dimension values.

Theorem 1 (Inclusive pruning). Given a cube lattice L, an aggregation con-
straint, and a set of inclusive dimension values, groups in L that are defined by
only non-inclusive dimension values are not solutions and can be pruned.

Multiway Pruning for Efficient Iceberg Cubing 207

Proof. All solution groups in L must be grouped by at least one inclusive di-
mension value. A group in L whose grouping dimension values are solely defined
by non-inclusive dimensions can not be a solution and so can be pruned.

The question to answer now is how to identify the inclusive dimension values in
a cube lattice before it is computed. As will be seen in Section 6, the inclusive
dimension values for a cube are decided in the previous computation of its super-
cubes: all dimensions-values whose bounds have non-empty intersection with the
interval defined by thresholds of the given constraint are inclusive dimension
values for the cube. Importantly these bounds can be computed by a single
traversal of the MSPs. As a result we have the benefit of pruning with little
extra cost. Inclusive pruning is achieved by removing branches that contain only
non-inclusive dimension-values. Note that these branches are pruned from all
sub-trees that are to be computed.

5 Anti-pruning with Bounding

When the selectivity of an aggregation constraint is high, a large number of
groups are qualified as iceberg groups. When the data is skewed, the iceberg
groups reside in a few regions of the cube. In both cases, examining the pruning
conditions on these groups does not result in any pruning. We introduce the
notion of the Anti-pruning border to mark regions where all groups are solutions.

Definition 1. (Anti-pruning region) In iceberg-cubing, given a lattice L an
anti-pruning region is a convex space of groups that are all solutions. An anti-
pruning region B can be denoted as 〈BL,BU 〉: BL is the lower border where none
of their supergroups are in B. BU is the upper border consisting of groups in B
where none of their subgroups are in B.

Example 1. An example anti-pruning border on the lattice of B, C, D, and E
conditioned on (a1) is shown in Fig. 2. The upper border consists of the (a1BC),
(a1BDE), and (a1CDE) group-bys and the lower border consists of the (a1BC),
(a1D), and (a1E) group-bys. The anti-pruning region contains groups that are
supergroups of some group in the (a1BC), (a1BDE), and (a1CDE) group-bys as
well as subgroups of some group in the (a1BC), (a1D), and (a1E) group-bys.

An anti-pruning region is a maximum region in a group-lattice where pruning is
unnecessary. The groups within the region covered by the anti-pruning borders
are definitely solutions. We aim to compute anti-pruning regions that are lattices
with little extra cost. We observe that lattices are convex spaces: Given a lattice
conditioned on a group g, the lattice is a convex space where all groups are
subgroups of g and supergroups of some MSPs. We make use of bounding to
detect anti-pruning regions that are lattices, as shown in the observation below.

Observation 1. Given a lattice conditioned on a group g, if both bounds satisfy
a given constraint, the MSPs are the upper anti-pruning border BU , and g is
the lower anti-pruning border BL; the lattice of g is an anti-pruning region. All
groups in the lattice satisfy the constraint.

208 X. Zhang and P.L. Chou

For iceberg cubes with complex aggregation constraints, the cost of checking for
the pruning conditions is high. Detecting a group-lattice that is an anti-pruning
region supposedly improves the efficiency of cubing algorithms.

6 Multiway Bound-Prune Cubing on G-Trees

The Group tree (G-tree) is our data structure for cubing. The G-tree for an
n-dimensional dataset is of depth n, where each level represents a dimension.
A common path starting from the root collapses the tuples with common di-
mension-values. Each tree node keeps the local aggregates necessary to compute
the iceberg cube for a given aggregate function. A G-tree is constructed by one
scan of the input data.

The G-tree in Fig. 3 represents the Sales dataset. To compute the data
cube with aggregate function Average, the local aggregates in each node are
Sum(Sale) and Cnt(∗). On the leftmost path node (March) shows that there
are 70 tuples with Sum(Sale) = 300 in the (March, ∗, ∗, ∗) group, whereas the
node (Peter) shows that there are 40 tuples with Sum(Sale) = 100 in the
(March, TV, Peter, ∗) group.

6.1 Top-Down Aggregation on G-Trees

Top-down aggregation on G-trees is based on the following observation: Con-
struction of an n-dimensional G-tree has computed n group-bys, namely the
group-bys whose dimensions are prefixes of the given list of dimensions. With
the G-tree in Fig. 3, the root node has the aggregate for the group (∗, ∗, ∗, ∗)
with Cnt (∗) = 88 and Sum (Sale) = 700; The nodes at level one compute
the aggregates for groups in (Month, ∗, ∗, ∗), which are (March, ∗, ∗, ∗, 70, 300),
(January, ∗, ∗, ∗, 5, 200), and (April, ∗, ∗, ∗, 13, 200). The nodes at the next 3
levels compute the aggregates for (Month, Product), (Month, Product, Man), and
(Month, Product, Man, City) respectively.

Let A, B, C and D denote the four dimensions of the Sales dataset. The group-
bys that are not represented on the G-tree in Fig. 3 are computed by collapsing
one dimension at a time to construct sub-G-trees. In Fig. 4, each node represents
a G-tree and all group-bys that are simultaneously computed on the G-tree. The
ABCD-tree representing the tree of Fig. 3 is at the top. The group-bys (A,B,C,D),
(A,B,C), (A,B), (A) and () are computed on the (A,B,C,D)-tree. The sub-trees
of the ABCD-tree, (−A)BCD, A(−B)CD, and AB(−C)D, are formed by collapsing on
dimensions A, B, and C respectively.

6.2 Multiway Pruning on G-Trees

In Fig. 3, the leaf nodes of the G-tree are the MSPs for Cube (Mon, Prod, Man, City).
The dimensions after “/” in each node of Fig. 4 denote prefix dimensions for the
tree at the node and all its sub-trees. A is the prefix dimension for the ACD-tree and
its sub-trees. All group-bys that are computed on the ACD-tree and its sub-trees
form data cubes conditioned on some A-value, Cube(CD)|ai, where i iterates over

Multiway Pruning for Efficient Iceberg Cubing 209

Sydney
(5, 100)

March
(70, 300)

TV
(70, 300)

Peter
(40, 100)

January
(5, 200)

April
(13, 200)

Toy
(5, 200)

Toy
(5, 100)

John
(30, 200)

Perth
(40, 100)

John
(5, 200)

Perth
(20, 100)

Sydney
(10, 100)

Perth
(5, 200)

Peter
(8, 100)

Perth
(8, 100)

root
(88, 700)

Peter
(5, 100)

TV
(8, 100)

Fig. 3. A sample G-tree

-C -C -B

-C -B -A
(ABCD, ABC, AB, A, All)1

(BCD, BC, B)2 (ACD, AC)/A6 (ABD)/AB8

(CD,C)3

 (D)4

(BD)/B5 (AD)/A7

-C

Fig. 4. Top-down cubing of a 4 dimen-
sional data cube with shared dimen-
sions

the values of A. The leaf nodes originated from ai are the MSPs for Cube(CD)|ai.
The bounds for Cube(ACDE)|ai are obtained by a traversal of the leaf nodes origi-
nated from ai. With the G-tree over dimensions Month, Product, Man, and City
in Fig. 3, before collapsing on Product, we calculate the bounds for the cube
lattices conditioned on each dimension value. Following Fig. 2, the bounds for
Cube (Product, Man, City)|March are computed from the three leaf nodes origi-
nated from (March) of G:

Avg(Cube (Man, City)|Mar) = Max({100/40, 100/20, 100/10}) = 10;
Avg(Cube (Man, City)|Mar) = Min({100/40, 100/20, 100/10}) = 2.5.

Inclusive pruning is achieved by identifying I, the set of inclusive dimension-
values for a cube lattice before its aggregates are computed. Given a G-tree G on
dimensions A1, ..., An, the bounds for Cube(Ak+1, ..., An)|a1, ..., ak−1, 1 < k < n,
are computed from the leaf nodes originated from the node ak. If the bound
interval does not violate the given constraint, ak should be added to I. After
I is obtained, the G-tree is traversed again in depth-first order for inclusive
pruning. At each node, if its dimension-value is from I, the traversal to its
children is terminated because the branch is not to be trimmed. If the traversal
reaches a leaf node, the branch is trimmed. From the leaf upwards, the nodes on
the branch that have no children are deleted.

Observation 2 (Inclusive pruning). Consider computing an iceberg cube with
the constraint “F (X) in [δ1, δ2]”. Given a G-tree with n dimensions A1, ..., An,
Suppose [b1, b2] are the bounds for Cube(Ak+1, ..., An)|a1, ..., ak−1, the sub-cube
by collapsing ak (1 < k < n), inclusive dimension-values are those ak such that
[b1, b2]∩ [δ1, δ2] �= φ. Branches defined by only non-inclusive dimension-values are
pruned from computation.

After inclusive pruning branches on a G-tree that can not contain solutions have
been pruned from computation. With the bounds computed for each cube lattice,
exclusive- and anti-pruning are then applied.

210 X. Zhang and P.L. Chou

Observation 3 (Exclusive- and anti-pruning). Consider computing an ice-
berg cube with the constraint “F (X) in [δ1, δ2]”. Given a G-tree for dimensions
A1, ..., An, let [b1, b2] be the bounds for Cube(Ak+1, ..., An)|a1, ..., ak−1, the cube
by collapsing Ak (1 < k < n). If [b1, b2] ∩ [δ1, δ2] = φ, the branches originated
from the node (a1, ..., ak−1) can be pruned; otherwise if [b1, b2]∩ [δ1, δ2] = [b1, b2],
all groups in Cube(Ak+1, ..., An) are qualified groups.

6.3 The MBPC Algorithm

We present the Multiway Bound-Prune Cubing (MBPC) algorithm for com-
puting iceberg cubes, with inclusive- exclusive and anti-pruning strategies. The
algorithm is shown as Algorithm 1.

Algorithm 1. The MBPC Algorithm
// Assume that an n-dimensional G-tree T with aggregate function F is constructed.
// The iceberg cube is computed by calling MBPC(T (A1, ..., An), φ).
Input: a) T is a G-tree with conditional base B.

b) Aggregate constraint “ F (X) in [δ1, δ2]” is assumed global.
Output: The iceberg groups in the iceberg cube.
MBPC(T (B1, ..., Bm), B)
(1) for each dimension i = 1..m − 1 do
(2) for each node bi of dimension Bi on T
(3) Output the group g conditioned on B if F(g) in [δ1, δ2];
(4) Compute the bounds [b1, b2] and I for Cube(Bi+1, ..., Bm)|B ∪ {bi};

// inclusive pruning
(5) Prune branches formed by only dimension-values from ¬I;
(6) if ([b1, b2] ∩ [δ1, δ2] = φ)
(7) break; // exclusive pruning
(8) else if ([b1, b2] ∩ [δ1, δ2] = [b1, b2])
(9) compute all groups in Cube(Bi+1, ..., Bm)|B ∪ {bi};
(10) break; //anti-pruning
(11) for j = i + 1..m do
(12) Construct the sub-tree Ts by collapsing Bj ;
(13) MBPC(Ts, B ∪ {bi});

A G-tree is built by one scan of the input dataset and is the input for
MBPC. MBPC is a recursive procedure where with each recursion, an addi-
tional dimension-value is accumulated in g, the group to be computed. For the
ease of presentation, one group g is processed a time in Algorithm 1. Indeed with
top-down cubing on the G-tree, multiple groups are simultaneously processed.
The steps involved in each group are the same.

At line 3 of the algorithm, the groups that are computed on an G-tree are
conditioned on the conditional base B of the tree. Initially the conditional base
is empty. The prefix dimension-value before the collapsing dimension is accumu-
lated into the conditional base B within each recursion. The bounds are obtained

Multiway Pruning for Efficient Iceberg Cubing 211

[1,100]

[1,90]

[1,80]

[1,70]

[1,60]

[1,50]

[1,40]

[1,30]

[1,20]

[1,10]

Average Range

 8

0

8

10

12

14

16

18

R
un

 T
im

e(
se

c)

 BPC
 MBPC (anti-pruning)

(a) Weather (100,000 tuples, 9 dimensions)

[500,60000]

[500,55000]

[500,50000]

[500,45000]

[500,40000]

[500,35000]

[500,30000]

[500,25000]

[500,20000]

[500,15000]

[500,10000]

Average Range

 2.8

0

3.0

3.2

3.4

3.6

R
un

 T
im

e
(s

ec
)

BPC

MBPC (anti-pruning)

(b) Census (88,443 tuples, 12 dimensions)

Fig. 5. Performance comparison of MBPC (anti-pruning) and BPC

when the branches under the prefix groups are amalgamated. No extra scan of
the tree is required.

Inclusive pruning (line 5) is applied before further aggregation of subgroups.
For the top-down iceberg cubing on the G-tree, a list I is created when the G-tree
is built. The list consists of dimension-values of the G-tree, each is associated
with a bit-vector. When the G-tree is traversed in depth-first order to obtain the
bounds for the nodes on the G-tree, the bounds for the dimension-values in the
the list are also obtained; they determine which branches can be trimmed.

The test for anti-pruning (line 8) can be combined with that for exclusive
pruning (line 6) as a single test, where the intersection of the two ranges is
performed only once. Anti-pruning (line 9) is applied by aggregation of groups
without any bounding or bounding test being performed.

7 Experiments

We conducted preliminary experiments to examine the performance of MBPC.
We implemented MBPC with anti-pruning and compared its performance with
that of BPC, that uses only exclusive bound pruning. Experiments were con-
ducted on a PC with i686 processor running GNU/Linux.

Two datasets were used in our experiments. The weather dataset1 is the
weather reports collected at various weather stations globally in 1985. Nine of
the attributes such as station-id, longitude, and latitude are used as di-
mensions and the cardinalities range from 2 to 6505. Numbers between 1 and
100 were randomly generated as the measure. The US census dataset2 was col-
lected from surveys about various aspects of individuals in the households in US
in 1990. The original dataset has 61 different attributes such as hrswork1(hours
worked last week) and valueh(value of the house). We selected 12 discrete

1 http://cdiac.ornl.gov/ftp/ndp026b/SEP85L.DAT.Z
2 ftp://ftp.ipums.org/ipums/data/ip19001.Z

212 X. Zhang and P.L. Chou

attributes as dimensions and a numeric attribute as the measure. Census is
dense and skewed and Weather is very sparse.

The results of computing iceberg cubes with the constraint “Avg(X) in [δ1, δ2]”
are shown in Fig. 5. The time reported does not include time for output. Gener-
ally anti-pruning further improves the efficiency of the BPC algorithm. Moreover,
as δ2 get larger and the iceberg cube to compute get larger, more pronounced
improvement can be observed. MBPC shows significant improvement in run time
over BPC on Weather. MBPC outperforms BPC consistently by about 13% for
different aggregation constraint thresholds. MBPC shows modest improvement
over BPC on the Census dataset.

8 Conclusions

We have proposed multiway pruning strategies in iceberg cubing: exclusive, in-
clusive and anti-pruning. We have also presented an iceberg cubing algorithm
with the multiway pruning strategy with bounding. Our initial experiments with
anti-pruning has shown that the multiway pruning strategy can significantly im-
prove efficiency of cubing algorithms, especially on computing large cubes. More
extensive experiments are underway to examine the effectiveness of inclusive
pruning and the multiway pruning strategy with respect to general data charac-
teristics.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
of VLDB’94, pages 487–499, Santiago, Chile.

2. R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. of SIG-
MOD’98, pages 85–93.

3. K Beyer and R Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In Proc. of SIGMOD’99.

4. L. Chou and X. Zhang. Computing complex iceberg cubes by multiway aggregation
and bounding. In Proc. of DaWak’04 (LNCS 3181), Zaragoza Spain.

5. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Proc. of KDD’99, pages 15–18, San Diego, USA.

6. J Gray et al. Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1), 1997.

7. J Han, J Pei, G Dong, and K Wang. Efficient computation of iceberg cubes with
complex measures. In Proc. of SIGMOD’01.

8. R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. In Proc. of SIGMOD’98.

9. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convertible
constraints. In Proc. of ICDE’01.

10. K. Wang et al. Divide-and-approximate: A novel constraint push strategy for
iceberg cube mining. IEEE TKDE, 17(3):354–368, March 2005.

11. G. I. Webb. Inclusive pruning: a new class of pruning rules for unordered search
and its application to classification learning. In Proc. of ACSC’96.

12. X. Zhang, L. Chou and G. Dong. Efficient computation of iceberg cubes by bound-
ing aggregate functions. IEEE TKDE, In submission.

Mining and Visualizing Local Experiences
from Blog Entries

Takeshi Kurashima�, Taro Tezuka, and Katsumi Tanaka

Department of Social Informatics,Graduate School of Informatics,
Kyoto University,

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
{ktakeshi, tezuka, tanaka}@dl.kuis.kyoto-u.ac.jp

http://www.dl.kuis.kyoto-u.ac.jp/

Abstract. We describe a way to extract visitors’ experiences from
Weblogs (blogs) and also a way to mine and visualize activities of visitors
at sightseeing spots. A system using our proposed method mines asso-
ciation rules between locations, time periods, and types of experiences
out of blog entries. Association rules between experiences are also ex-
tracted. We constructed a local information search system that enables
the user to specify a location, a time period, or a type of experience in
a search query and find relevant Web content. Results of experiments
showed that three proposed refinement algorithms applied to a conven-
tional text mining method raises the precision and recall of the extracted
rules.

1 Introduction

An important characteristic of Weblogs (blogs) is that they contain many de-
scriptions of people’s experiences in the real world, including experiences specific
to certain time periods and geographic regions. Until recently, people gathered
local information mainly from tour guides, magazine articles, local portal sites,
and other commercial sources. Unfortunately, these sources contain only a small
amount of information about the experiences and impressions of people who ac-
tually visited the various places. In contrast, blog entries contain a vast amount
of this type of information. Actual experiences, unlike commercially prepared
tourist guides or media reports, are of particular importance to potential visi-
tors and market analysts tracking local trends. Indeed, experiences expressed on
blogs are feedback from people who received local advertisements.

In this paper, we propose a way to extract tourists’ experiences from blogs
and also a way to mine and visualize the activities of tourists at sightseeing
spots. The system obtains association rules between locations, time periods, and
types of experiences based on blog entries. By combining extractions of geo-
graphic keywords with the entry time stamps, the system extracts rules among

� Kurashima is currently with NTT Cyber Solutions Laboratories, NTT Corporation,
1-1 Hikarinooka, Yokosuka-shi, Kanagawa 239-0847, Japan.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 213–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

214 T. Kurashima, T. Tezuka, and K. Tanaka

these three attributes. It also extracts rules between experiences to examine the
behaviors of visitors.

As an application of our proposed method, we constructed a local information
search system that enables the user to specify a location, a time period, and a
type of experience in a search query. The system returns candidates for the
unspecified attributes. The user can choose from these candidates and move to
relevant Web content. Since the extracted rules are based on activities described
by a large number of blog authors, they should reflect the common preferences
of visitors.

2 Related Work

Kumar et al. discussed blog link structures and proposed using time graphs and
time-dense community tracking to represent the growth of blog communities
and to track changes within communities [1][2]. Bar-Ilan examined links between
blogs and their postings and obtained statistics [3]. Nakajima et al. also analyzed
blog link structures and identified bloggers who played important roles in the
blog community [4]. Fujimura et al. developed the EigenRumor algorithm for
calculating a “hub score” and “authority score” after consolidating link in each
blogger [5]. These analyses focused only on the relationships between blogs; they
did not target the content of blog entries.

There has been a variety of research into aggregating blog entries. Okumura et
al. proposed a system that collects blog entries and presents aggregated results
[6][7]. The blogWatcher extracts hot topics that are attracting a lot of attention
based on the burst extraction method proposed by Kleinberg [8]. Avesani et al.
proposed a system that aggregates blog entries on specified topics [9]. Unlike
our system, they are generic extraction systems that do not perform spatial
aggregation.

There are various services that unify geographic information with blogs. DC
Metro Blogmap and nyc bloggers link personal blogs to metro maps. Users of
these services can find bloggers related to specific areas in a city [10][11]. World-
Kit is a toolkit for creating map-based applications on the Web; it has also
been applied to a blog mapping service [12]. These services require manual reg-
istration and do not support the automatic extraction of knowledge from blog
entries.

In our previous papers, we suggested a method for experience extraction
[13][14]. However, there were several remaining problems. One was that the
precisions of extracted experiences were relatively low. Another was that the
visualization method for browsing experiences was not described at full length.
In this paper, we first indicate the method of experience extraction improved by
considering dependency between the terms and analyzing Fillmore’s case gram-
mer. We then go into the detail of visualization method of experiences, and
indicate the implemented map interface. As a new type of rules, we also mined
rules between experiences. At the evaluation section, we present rules extracted
by this type of mining.

Mining and Visualizing Local Experiences from Blog Entries 215

3 Experience Mining Method

Our proposed experience mining method consists of three steps.

1. Collect blogs
2. Extract experiences
3. Mine association rules

Before the association rules are extracted, transaction sets are extracted from
the blog entries. A transaction is a tuple consisting of a location, a point in
time, an action, and an object of action. To obtain rules for actual experiences,
we extract sentences that refer to actions. In text mining, the target data are
documents that are not structured, so it is important to index the documents
because the accuracy of the extracted rules greatly depends on it.

A simple sentence that describes a visitor’s experience consists of an action
and its object. In our approach, we first extract pairs of verb, noun, and particle
from blog entries and enter them into the database. The system then applies
three refinement algorithms based on the case of the object and on the verb
meaning. The system can then spatially and temporally extract specific asso-
ciation rules from the blog entries because visitors’ real-life experiences most
likely have limited spatial and temporal extensions. The time attribute of each
transaction is extracted from the RSS metadata of the corresponding blog en-
try, and the location attribute is extracted from the place name in the entry.
Visitors often describe where they visited and the actions they performed in
the same blog entry. Therefore, a co-occurrence between an action and a place
name is likely to be found. Furthermore, the system extracts association rules
between experiences. The following subsections describe each of these steps in
more detail.

3.1 Blog Collection

Blog entries are collected using generic blog search engines provided by blog
hosting services. The system first sends location name as query to generic blog
search engine, and retrieve search results in RSS metadata format. The system
then extract titles, contents, links, and dates from search results. The results are
stored in blog database.

3.2 Experience Extraction

Analyze Dependencies. From the collected entries, transaction sets are ex-
tracted. The scheme for a transaction is

T = (DID, T ime,Location, verb1, ..., verbm, noun1, ..., nounn, particle1, ..., particleo)
DID: document id
T ime: date of blog entry containing the sentence
Location: location name (query)

216 T. Kurashima, T. Tezuka, and K. Tanaka

The system first morphologically analyzes the verbi, nouni, particlei tuples
extracted from each document and obtains a set of verbs for each blog entry. It
then analyzes the dependencies between terms using dependency parsers. Each
of the obtained verbs, phrasal units depend on the verb are extracted. Phrasal
units consist of a noun and a particle.

Refinement 1: Extract Fillmore’s Objective. To extract only the rules
related to experiences, the transaction database must be refined. The system
does this using Fillmore’s case grammar, in which each phrase has a case meaning
indicating its role in modifying the sentence predicate. Fillmore categorized case
meaning into nine types, including agentive, instrumental, and objective. We
extract sentences containing Fillmore’s objective from the transactions because
an experience consists of an action and its object. In Japanese, case meanings
are expressed using case particles. According to a survey, the object is generally
marked by “wo” or “ni” [15]. We extract sentences containing these particles.

Refinement 2: Extract Verbs Referring to Actions. In general, sentences
are categorized into three groups based on their verbs.

1. “Do” statements (ex. I saw autumn leaves.)
2. “Become” statements (ex. The autumn leaves turned yellow.)
3. “Be” statements (ex. Autumn leaves are beautiful.)

Experiences are most closely related with the “do” statements because they
indicate user action. For each of the transactions, the system eliminates any verbs
not used in a do statement as well as any nouns and particles dependent on them.

Refinement 3: Eliminate Verbs Indicating Movements. Actions that do
not take place in a specified location are eliminated. For example, verbs such as
“go” and “come” do not indicate actions that take place at a specified location.
They indicate movement toward a location. For each of the transactions, the sys-
tem eliminates these verbs as well as any nouns and particles dependent on them.

3.3 Association Rule Mining

Spatially and Temporary Specific Experiences. The first target of our as-
sociation rule mining is spatially and temporary specific experiences. We assume
there is a strong correlation between a time, a location, a verb, and its object
in the description of visitors’ activities. When a visitor writes about his or her
experiences on a blog, he or she generally describes where he or she visited and
what he or she did, so there is usually a correlation between a location and an
activity. Three types of rules are extracted.

– Type 1: [Location, (Time)] ⇒ [Verb, Noun]
The Type 1 rule is useful to visitors wanting to know about typical activities
taking place at a specific place and in a certain time period.

– Type 2: [Location, Verb, (Time)] ⇒ [Noun]
The Type 2 rule is useful to visitors wanting to know about the object of a
specified activity taking place at a specific place and time.

Mining and Visualizing Local Experiences from Blog Entries 217

– Type 3: [Verb, Noun, (Time)] ⇒ [Location]
The Type 3 rule is useful to visitors wanting to know about the location of
a specified activity and object.

Between Experiences. The second target is association rules between ex-
periences. A typical application of association rule mining is a “market-basket
analysis,” which is used to specify groups of products that are likely to be pur-
chased together. The results are useful to retails planning a marketing strategy.
In the same way, the extracted rules between experiences are also useful to travel
agents and potential tourists planning a trip. Therefore, the following type of
rules is also extracted.

– Type 4: [Verb, Noun] ⇒ [Verb, Noun]

These association rules are extracted using the APRIORI algorithm [16].
Other rules, such as those between nouns, are eliminated because they do not
match our purpose.

4 Application

A system implementing our proposed method presents rules extracted from blogs
and supports the user in finding local information. The user specifies a location, a
time period, or a type of experience in a search query. The system returns candi-
dates for the unspecified attributes and visualizes them on a map interface. The
user chooses from among the candidates to reach relevant Web content. Since the
rules are based on information provided by a large number of blog authors and the
ratio of commercial blogs is still small, the rules reflect commonvisitor preferences.

4.1 Visualization of Experiences

The visualization module uses Type 1 rules and visualizes their consequents,
which consist of a verb-noun pair on a map interface. A visual interface is shown
in Figure 1. The user chooses a location name from a set of candidates, and by
selecting an experience associated with the location name, the user can reach
Web content of his or her interest.

The user can also specify the time attribute by a pull-down menu. By speci-
fying an action in the text input field, the user can search for objects associated
with it. For example, if the user inputs “eat” in the text input field, popular foods
such as “yudouhu (boiled tohu),” “yatsuhashi (traditional cinnamon cookie),”
and “matcha (green powdered tea)” are presented, together with a map indicat-
ing their associated locations. The user can then choose a destination based on
his or her preference. In this instance, the system presents Type 2 rules.

4.2 Ranking of Location Names

The system ranks location names based on the extracted association rules. The
user can search for Web pages of sightseeing spots using an experience query.

218 T. Kurashima, T. Tezuka, and K. Tanaka

Fig. 1. Visual user interface for browsing experiences

This is useful when the wants to find the locations for a specified activity and
object. The ranking results reflect their actual popularity among the bloggers.
The rankings often differ greatly from the biased information in advertisements.
They are calculated from the Type 3 rules. The ranking results are presented in
the list box.

4.3 Blog Search

By clicking on an experience presented on the map interface, a user can refer to
blog entries that contain the term. In other words, the experiences are used as
a query index for the blog search engine. A user can obtain information specific
to an experience of interest. Impressions based on a real-life experience are often
found in blogs containing a description of an experience. A series of these user
manipulations correspond to asking someone who actually experienced it what
they think about it. This approach is a popular and efficient method of gathering
information in the real world as well.

5 Evaluation

5.1 Prototype System

We evaluated our proposed method using a prototype system based on the imple-
mentation described in the previous section. The system configuration is shown

Mining and Visualizing Local Experiences from Blog Entries 219

Fig. 2. System configuration

in Figure 2. It collects blog entries from two popular blog hosting services in
Japan: “Bulkfeeds” [17] and “goo blog ” [18]. The blog entries were morpho-
logically analyzed using the Chasen morphological analyzer [19]. Chasen divides
sentences into words and estimates their parts of speech. Dependency parsing
between words was performed using the CaboCha, which is based on support
vector machines [20]. The dependency between words was analyzed using the
Chasen results. A collection of verbs referring to actions was obtained from
the lexical database of the Japanese Vocabulary System [21], which categorizes
verbs into a tree structure and groups verbs referring to actions into one top-level
category. We manually selected verbs indicating movement, e.g., “go,” “come,”
and their synonyms. The interface was implemented using the Google Maps
API [22].

5.2 Evaluation of Refinement Algorithms

Association rules were mined from the data after each of the three refinement
algorithms was applied. We then calculated the recall and precision for different
numbers of the extracted rules and observed whether each algorithm improved
the recall and precision. The blog data used for this evaluation was as follows.

– Target locations: 30 popular sightseeing spots in Kyoto City, Japan
– Number of blog entries: 62,396
– Period covered by blog entries: August 15-December 15, 2005

We first extracted the Type 1 rules from each transaction set. The top i rules
were obtained in decreasing order of the support value. We then evaluated the
extracted verb-noun pairs to see whether they described experiences specific to
location and time. Table 1 is the average precision and recall. As shown in Figure
3, application of each refinement algorithm improved the precision of the rule
set, and the final rule set had the highest precision.

In our previous work, Type 1 rules contained too much noise, and the preci-
sions of these rules were around 10 percent [13][14]. The precisions of the rules
extracted after applying refinement methods described in this paper were around
60 percent (for top 5 rules).

220 T. Kurashima, T. Tezuka, and K. Tanaka

Table 1. Average precision and recall after application of refinement algorithms

top i rulesUnrefinedRefinement 1Refinement 1 and 2Refinement 1,2, and 3
Precision 5 0.093 0.133 0.200 0.580

10 0.077 0.140 0.270 0.427
15 0.089 0.151 0.253 0.356

Recall 5 0.090 0.128 0.208 0.575
10 0.149 0.256 0.525 0.752
15 0.260 0.433 0.676 0.872

Fig. 3. Precision-recall curves after application of refinement algorithms

5.3 Results of Extraction of Association Rules Between Experiences

In the implementation described in Section 4, the extraction of association rules
between experiences and the visualization of such rules were not implemented.
They were implemented in our evaluation prototype. The blog entries used for
the evaluation were as follows.

– Target locations: 139 popular temples in Japan
– Number of blog entries: 20,593
– Period covered by blog entries: January 1-15, 2006

The value of the minimum support value is 5, and the minimum confidence
value is 0.30. We extracted 15 rules, and their average confidence is 0.50. The
visualization of the extracted rules is shown in Figure 4. The support of each
rule is represented by the width of its arc, and the number on each arc indi-
cates the confidence value. The rules, their antecedent has a number of items,
are expressed by using the box-shaped areas as points of union. For example,
discovering association rule buy an amulet ⇒ consult an oracle enable market
analysts to formulate marketing strategy that selling space of amulet is located
close to the place where an oracle is consulted. The result is also useful to visitors
planning a new year’s visit to a shrine.

Mining and Visualizing Local Experiences from Blog Entries 221

Fig. 4. Visualization of association rules between experiences

6 Conclusion

In this paper, we described a system for extracting geographically specific ac-
tivities by applying text mining and association rule mining to blog content.
We implemented a novel local information system that enables the user to find
relevant Web content by specifying a location, a time period, or a type of ex-
perience, based on the extracted data from blog entries. We also proposed a
method of extracting association rules between different activities at a specific
geographic location. The result of the experiment showed that the system can
extract relevant activities for various sightseeing spots at relatively high preci-
sions. Our future work includes experiments with a larger number of blog entries,
and further evaluation with a larger group of subjects.

Acknowledgments

This work was supported in part by the Japanese Ministry of Education,Culture,
Sports, Science and Technology under the 21st Century COE (Center of Ex-
cellence) Program ”Informatics Research Center for Development of Knowledge
Society Infrastructure” (Leader: Katsumi Tanaka, 2002-2006), and Grant-in-Aid
for ”Development of Fundamental Software Technologies for Digital Archives,”
Software Technologies for Search and Integration across Heterogeneous-Media
Archives (Project Leader: Katsumi Tanaka), and Grant-in-Aid for Young Scien-
tists (B) ”Trust Decision Assistance for Web Utilization based on Information
Integration” (Leader: Taro Tezuka, Grant#: 18700086).

References

1. R. Kumar, J. Novak, P. Raghavan and A. Tomkins, On the bursty evolution of
blogspace, Proceedings of the 12th International World Wide Web Conference, pp.
568-576, 2003

2. R. Kumar, J. Novak, P. Raghavan and A. Tomkins, Structure and evolution of
blogspace, Communications of the ACM, 47(12) pp. 35-39, 2004

222 T. Kurashima, T. Tezuka, and K. Tanaka

3. J. Bar-Ilan, An outsider’s view on ’topic-oriented’ blogging, Proceedings of the
Alternate Papers Track of the 13th International World Wide Web Conference,
pp. 28-34, 2004

4. S. Nakajima, Identifying Agitators as Important Blogger based on Analyzing Blog
Threads, The Eighth Asia-Pacific Web Conference (APWeb2006), LNCS 3841, pp.
285-296, 2006

5. K. Fujimura, T. Inoue, and M. Sugisaki, The Eigen Algorithm for Ranking Blogs, In
Proceedings of the WWW2005 2nd Annual Workshop on the Weblogging Ecosys-
tem: Aggregation, Analysis and Dynamics, 2005

6. M. Okumura, T. Nanno, T. Fujiki and Y. Suzuki, Text mining based on auto-
matic collection and monitoring of Japanese weblogs, The 6th Web and Ontology
Workshop, The Japanese Society for Artificial Intelligence, 2004

7. T. Fujiki, T. Nanno, Y. Suzuki and M. Okumura, Identification of bursts in a
document stream, First International Workshop on Knowledge Discovery in Data
Streams (in conjunction with ECML/PKDD 2004), pp. 55-64, 2004

8. J. Kleinberg, Bursty and hierarchical structure in streams, Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 91-101, 2002

9. P. Avesani, M. Cova, C. Hayes and P. Massa, Proceedings of the WWW2005 2nd
Annual Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dy-
namics, Chiba, Japan, 2005

10. DC Metro Blogmap, http://www.reenhead.com/map/metroblogmap.html
11. nyc bloggers, http://www.nycbloggers.com/
12. worldKit, http://www.brainoff.com/worldkit/index.php
13. T. Kurashima, T. Tezuka, and K. Tanaka, Blog Map of Experiences: Extracting

and Geographically Mapping Visitor Experiences from City Blogs, WISE2005, pp.
496-503, Springer-Verlag, 2005

14. T. Tezuka, T. Kurashima, and K. Tanaka, Toward Tighter Integration of Web
Search with a Geographic Information System, Proceedings of the Fifteenth World
Wide Web Conference (WWW2006), Edinburgh, Scotland, 2006

15. The National Language Research Institute, Cases and Japanese Postpositions, The
National Language Research Institute, 1997

16. R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large
databases, Proceedings of the 20th International Conference on Very Large Data
Bases, pp. 487-499, 1994

17. Bulkfeeds, http://bulkfeeds.net/
18. goo blog, http://blog.goo.ne.jp
19. Chasen, http://chasen.aist-nara.ac.jp/index.html
20. CaboCha, http://chasen.org/ taku/software/cabocha/
21. Japanese Vocabulary System, http://www.ntt-tec.jp/technology/C404.html
22. Google Maps API http://www.google.com/apis/maps/

Mining RDF Metadata for Generalized
Association Rules

Tao Jiang and Ah-Hwee Tan

School of Computer Engineering
Nanyang Technological University, Nanyang Avenue, Singapore 639798

{jian0006, asahtan}@ntu.edu.sg

Abstract. In this paper, we present a novel frequent generalized pattern
mining algorithm, called GP-Close, for mining generalized associations
from RDF metadata. To solve the over-generalization problem encoun-
tered by existing methods, GP-Close employs the notion of generalization
closure for systematic over-generalization reduction. Empirical experi-
ments conducted on real world RDF data sets show that our method
can substantially reduce pattern redundancy and perform much better
than the original generalized association rule mining algorithm Cumulate
in term of time efficiency.

1 Introduction

Resource Description Framework (RDF)1 is a specification proposed by the
World Wide Web Consortium (W3C) for describing and interchanging semantic
metadata on the Semantic Web [1]. Due to the continual popularity of the Seman-
tic Web, in a foreseeable future, there will be a sizeable amount of RDF-based
content available on the web, offering tremendous opportunities in discovering
useful knowledge from large RDF databases.

The basic element of RDF is RDF statements, each consisting of a subject, a
predicate, and an object. For simplicity, we use a triplet of the form <subject,
predicate, object> to express a RDF statement. Based on RDF, RDF Schema2

(RDFS) is further proposed for defining vocabulary definitions. A RDF vocab-
ulary defines a set of types (RDFS classes) and predicates (RDF properties) for
describing web resources. Taxonomic relations between classes (properties) can
also be defined. Given a set of RDF vocabularies that defines a set of taxonomies
of RDFS classes, generalized association rule mining can be applied to RDF doc-
uments for discovering generalized associations between RDF statements. The
discovered associations may have applications including optimizing RDF storage
and query processing, enhancing information source recommendation in Seman-
tic Web, and association-based classification or clustering of web resources.

Generalized association rule mining (GARM) [2] extends association rule min-
ing [3] by exploiting item taxonomies in the mining task. Given a set of items I
1 http://www.w3.org/RDF/
2 http://www.w3.org/TR/rdf-schema/

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 223–233, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 T. Jiang and A.-H. Tan

and a large database of transactions D, where each transaction is a set of items
T ⊆ I with a unique identifier tid, an association rule is an implication of the
form X ⇒ Y , where X, Y ⊆ I (called itemsets or patterns) and X ∩ Y = ∅. A
taxonomy T is defined as an acyclic directed graph on the set of all items I.
An edge in T from i1 to i2 represents an “is-a” relationship. GARM aims to
discover rules spanning items across different levels of taxonomies.

The unique characteristics of RDF data sets lie in the large sizes of RDF doc-
uments and the complex structures of the RDF statement hierarchies wherein
a RDF statement can be generalized in many ways, by generalizing its subject,
object, predicate, or their combinations (see Figure 1(b) in subsection 3.2). In
GARM, frequent pattern mining (FPM) is usually the most time-consuming part.
For RDF data sets, existing GARM algorithms extracting all possible frequent
generalized patterns do not work efficiently due to the fact that a large portion of
the frequent generalized patterns is over-generalized. Processing over-generalized
patterns can seriously increase the computation cost and degrade the perfor-
mance of the mining algorithms. In this paper, we present a novel algorithm,
called GP-Close (Closed Generalized Pattern Mining), for mining frequent gen-
eralized patterns from RDF metadata with full over-generalization reduction.
We employ the notion of generalization closure to formulate over-generalization
reduction as a closed pattern mining problem [4] [5].

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 formalized the problem of mining frequent generalized patterns
from RDF metadata and highlights the over-generalization problem. Section 4
presents the GP-Close algorithm. Section 5 reports our experiments based on
two real world RDF data sets. Concluding remarks are given in the final section.

2 Related Work

Generalized association rule mining was first proposed in [2], where a family
of algorithms, namely Basic, Cumulate, Stratify, Estimate and EstMerge, was
reported. Basic is almost a direct application of Apriori algorithm [6] to the ex-
tended transaction databases. Cumulate extends Basic by employing three opti-
mization strategies: filtering the useless ancestors in transactions, pre-computing
items’ ancestors, and pruning itemsets containing an item and its ancestors.
Based on Cumulate, further optimizations are involved in Stratify, Estimate,
and EstMerge. However, they only perform marginally better than Cumulate.

In [7], Prutax algorithm makes use of tidset-intersection for support count-
ing to avoid multiple database scans. It adopts a right-most and depth-first
search (DFS) strategy for itemset enumeration. Prutax further guarantees that
the generalized itemsets are always generated before their specialized itemsets.
The downward closure property and taxonomy information are also used for
candidate pruning. More recently, an algorithm, SET [8], adopted a tax-based
and join-based strategy for itemset enumeration. Nevertheless, this strategy may
cause problems when the taxonomies used in the mining process are not tree-
structured. In such cases, duplicated patterns may be generated.

Mining RDF Metadata for Generalized Association Rules 225

A common limitation of the above algorithms is that they generate all the
frequent patterns including over-generalized ones. On RDF data sets, most of
the extracted patterns may be over-generalized. Calculation of over-generalized
patterns can seriously increase computation cost. Over-generalization problem is
first identified in [9] when mining generalized substructure in connected graphs.
Though [9] adopted a pruning strategy to remove some over-generalized patterns,
it did not provide a solution for full over-generalization reduction.

3 Mining Frequent Generalized Patterns from RDF Data

3.1 Problem Statement

We define the frequent generalized pattern mining task based on a simplified
view of RDF model as follows.

Definition 1. Let V = {E ,P ,H, domain, range} defines an RDF vocabu-
lary, where E = {e1, e2, . . ., em} is a set of entity identifiers; P = {p1, p2, . . ., pn}
is a set of predicate identifiers; and H is a directed acyclic graph. An edge in H
represents an is-a relationship between two entities(See Figure 1(a)). If there is
an edge from e1 to e2, we say e1 is a parent of e2 and e2 is a child of e1. We call ê
an ancestor of e, if there is a path from ê to e. The function, domain: P → 2E ,
relates a predicate to a set of entities that can be its subject. The function, range:
P → 2E , relates a predicate to a set of entities that can be its object.

The above definition simplifies the RDF model in two aspects:

– We treat instances and RDF classes both as entities. Correspondingly, we
treat “rdf:type” and “rdfs: subClassOf” predicates as “is-a” relation without
discrimination. By this way, we can integrate instances and RDF classes into
one taxonomy so that the mining task can be simplified.

– We do not consider the hierarchy of RDF properties (predicate hierarchy)
at the current stage. However, the predicate hierarchy can be easily incor-
porated into the generalized association mining framework.

Definition 2. Given a RDF vocabulary V = {E ,P ,H, domain, range}, we de-
fine a relation (RDF statement) r on V as a triplet <x, p, y>, where x, y ∈ E,
p ∈ P, x ∈ domain(p), and y ∈ range(p). We call x, p, and y the subject, the
predicate, and the object of r. A relation r̂ =<x1, p1, y1> is called a gener-
alized relation (ancestor) of another relation r =<x2, p2, y2>, if and only if:
(1) r̂ �= r, (2) p1 = p2, (3) x1 is an ancestor of x2 or x1 = x2 and (4) y1 is
an ancestor of y2 or y1 = y2. We use RV to denote the set of all relations on
V. Relations in RV and their generalization/specialization relationships form a
relation hierarchy, HV

r (see Figure 1(b)).

Definition 3. A relationset (pattern) is a set of relations X ⊆ RV (X does
not contain both a relation and its ancestor). We call X a generalized rela-
tionset of another relationset Y and Y a specialized relationset of X, if and

226 T. Jiang and A.-H. Tan

Terrorist Group (ab)

Hamas (a) JI (b)

Terrorist Activity
(cdef)

Financial
Crime
(cd)

Bank Robbery
(c)

Card
Cheating

(d)

Car
Bombing

(e)

Suicide Bombing
(f)

Bombing
(ef)

participate
(p)

(a) A sample RDF vocabulary.
<ab,p,cdef>

<ab,p,cd> <ab,p,ef>

<ab,p,c> <ab,p,d> <ab,p,e> <ab,p,f><a,p,cdef>

<a,p,cd> <a,p,ef>

<a,p,c> <a,p,d> <a,p,e> <a,p,f> <b,p,c> <b,p,d> <b,p,e> <b,p,f>

<b,p,cd> <b,p,ef>

<b,p,cdef>

(b) Generalized relation hierarchy.

Pattern X:
{<Terrorist Group, participate, Financial Crime>, <Terrorist Group, participate, Car Bombing>}

Generalization Closure of X:
{<Terrorist Group, participate, Financial Crime>, <Terrorist Group, participate, Car Bombing>,
<Terrorist Group, participate, Bombing>, <Terrorist Group, participate, Terrorist Activity>}

(c) An illustration of generalization closure.

Fig. 1. Elements of RDF data sets

only if: (1)X �= Y , (2)∀r ∈ X, ∃r∗ ∈ Y such that r = r∗ or r is an ancestor of
r∗ and (3) ∀r∗ ∈ Y, ∃r ∈ X such that r = r∗ or r is an ancestor of r∗. Given
a set of RDF documents D, where each document consists of a set of relations,
the support of a relationset X (supp(X)) is defined as the proportion of RDF
documents containing X or a specialized relationset of X.

Based on the above definitions, given a set of RDF documents, our task of mining
frequent generalized patterns is to extract frequent relationsets (patterns) whose
supports are larger than a predefined minimum support (minsup).

3.2 Over-Generalization and Mining Closed Generalization
Closures

We explain the over-generalization problem using an example. Figure 1(a) shows
a RDF vocabulary V = {E ,P ,H, domain, range}, where E = {a, b, c, d, e, f, ab,
cd, ef, cdef},P={p}, dom(p)={a, b, ab}, and range(p)={c, d, e, f, cd, ef, cdef}.
Figure 1(b) shows the relation hierarchy containing all relations inRV . A sample
RDF database D on V is shown in Table 1. Given minsup = 50%, all frequent

Mining RDF Metadata for Generalized Association Rules 227

Table 1. A sample RDF database

ID RDF Documents
1 <a, p, d> <a, p, e>
2 <b, p, c> <b, p, e>
3 <a, p, f>
4 <b, p, f>

Table 2. Frequent generalized relationsets in sample RDF database

Support Frequent Generalized Relationsets (minsup=50%)

50%
{<a, p, ef>} {<a, p, cdef>} {<ab,p,cd>} {<ab, p, e>} {<ab, p, f>}
{<b, p, ef>} {<b, p, cdef>} {<a, p, cdef> <ab, p, ef>} {<ab, p, cd>
<ab, p, e>} {<ab, p, cd> <ab, p, ef>} {<ab, p, ef> <b, p, cdef>}

100% {<ab, p, ef>} {<ab, p, cdef>}

generalized relationsets are listed in Table 2. Note that some patterns look quite
similar, e.g. {<ab, p, cd>, <ab, p, e>} and {<ab, p, cd>, <ab, p, ef>}. In fact,
the second pattern is a generalization of the first one and they have the same
support (50%). Intuitively, with the same support, a specialized pattern should
be more interesting than its generalizations as the information conveyed by the
specialized pattern is more precise. Therefore, the second pattern is redundant.
Based on this observation, we define over-generalization as follows:

Definition 4. A frequent relationset X is over-generalized if there exists a
specialized relationset Y of X with supp(X) = supp(Y).

In Table 2, six (46%) frequent patterns (underlined) are over-generalized. In real-
world RDF data sets, the proportion of over-generalized patterns may be much
higher than this. For reducing redundant over-generalized patterns, we propose
an innovative approach based on the notion of generalization closures.

Definition 5. Given a RDF vocabulary V = {E ,P ,H, domain, range} and RV

on V, we define a function ϕgc on 2R
V
: ϕgcX =

⋃
r∈X G(r), where X ⊂ RV and

G(r) is a set of relations that contains r and all its generalized relations. ϕgc is
a closure operator [10], called generalization closure operator. And ϕgcX
is called the generalization closure of X.

A sample generalization closure of a pattern X is shown in Figure 1(c). We can
prove that ϕgc is a closure operator and all generalization closures form a closure
system [10] with the three properties: X ⊆ Y ⇒ ϕgcX ⊆ ϕgcY (monotony),
X ⊆ ϕgcX (extensity), and ϕgcϕgcX = ϕgcX (idempotency).

Five useful lemmas related to generalization closures are listed below. The
first three lemmas are intuitive. For the space limitation, we only give the proofs
of Lemma 4 and 5.

Lemma 1. Given a relationset X and a RDF databaseD, supp(X)=supp(ϕgcX).

228 T. Jiang and A.-H. Tan

Lemma 2. Given X is a generalized relationset of Y , ϕgcX ⊂ ϕgcY holds.

Lemma 3. Given two generalization closures ϕgcX and ϕgcY (X, Y ⊆ RV),
ϕgcX ∪ ϕgcY is also a generalization closure (ϕgc(X ∪ Y)).

Lemma 4. Given a frequent relationset X, if ϕgcX is closed (i.e. there is not
a ϕgcY ⊃ ϕgcX where supp(ϕgcX) = supp(ϕgcY)), X is not over-generalized.

Proof. Suppose X is over-generalized. It follows that there is a specialized pat-
tern Y of X , where supp(Y) = supp(X). According to Lemma 1 and 2, easy to
see that ϕgc(X) ⊂ ϕgc(Y) and supp(ϕgc(X)) = supp(ϕgc(Y)), i.e. ϕgc(X) is not
closed. This is contradictory to the statement that ϕgc(X) is closed.

Lemma 5. The support of all frequent relationsets can be derived from the set
of all frequent closed generalization closures.

Proof. As each relationset X has a generalization closure ϕgc(X) with the same
support, the support of X can be derived from ϕgc(X) by the following ways:

1. If ϕgc(X) is a closed closure, supp(X) = supp(ϕgc(X)).
2. Otherwise, there exists a closed closure ϕgc(Y) ⊃ ϕgc(X) and does not exist

a closed closure ϕgc(Z) with ϕgc(X) ⊂ ϕgc(Z) ⊂ ϕgc(Y). It follows that
supp(X) = supp(ϕgc(X)) = supp(ϕgc(Y)).

Lemma 4 and 5 motivate us to discover all closed generalization closures for
over-generalization reduction.

4 GP-Close Algorithm

Based on Lemma 4 and 5, we propose an algorithm, called GP-Close (Closed
Generalized Pattern Mining), for discovering all closed generalization closures.
Comparing with existing GARM algorithms, such as Cumulate, our algorithm
discover closed generalization closures but not frequent generalized patterns.
However, Lemma 5 shows that all frequent generalized patterns can be easily
derived from the output of the GP-Close algorithm.

4.1 Closure Enumeration and Sorting

Lemma 3 guarantees that we can gradually generate larger closures by merging
smaller ones. Based on this, GP-Close adopts a depth-first closure enumeration
method using an enumeration tree. The pseudo-code of GP-Close algorithm is
presented in Algorithm 1 and 2. GP-Close first calculates all 1-frequent relation-
sets. Then, the generalization closures of the 1-frequent relationsets are created
and sorted (see Algorithm 1). A support-increasing and length-decreasing strat-
egy is adopted for closure sorting. This implies that the specialized closures will
be enumerated first. Later in this section, we will discuss this in more details.

Figure 2 shows the closure enumeration process based on the RDF database
in Table 1. Initially, the enumeration tree contains only the root closure, i.e. the

Mining RDF Metadata for Generalized Association Rules 229

Algorithm 1. GP-Close
Input :

RDF database: D
Generalized relation lookup table: GRT
Support Threshold: minsup

Output :
The set of all closed frequent generalization closures: C

1: ce tree.root = ∅ //initialize closure enumeration tree
2: ce tree.root.supp = 1
3: ce tree.gc list = {ϕgc{r}|r ∈ RV ∧ supp(r) � minsup} ////Constructing child

closure set of ce tree.root from 1-frequent RDF statements by looking up GRT
4: Sort(ce tree.gc list) //sort closures (length-decreasing/support-increasing)
5: Closure-Enumeration(ce tree, C = ∅)
6: return C

empty set with the support of 100%, and a set of closures of 1-frequent relation-
sets as children of the root (see Algorithm 1). Then, for each child of the root
closure, we can expand it by merging it with other child closures. For example, in
Figure 2, the closure {<ab, p, f>, <ab, p, ef>, <ab, p, cdef>} is combined with
the closure {<ab, p, cd>, <ab, p, cdef>} to generate a larger closure {<ab, p, f>,
<ab, p, ef>, <ab, p, cd>, <ab, p, cdef>}. Using this child closure as the root and
the newly generated closures as its children, a sub closure enumeration tree is
constructed (Algorithm 2 line 7 - 22). We can see that all descendants of a (sub)
enumeration tree are expansions of the tree root. If a (sub) tree root can be
subsumed by a discovered closed closure, i.e. it is not closed, traversing this
(sub) tree cannot generate new closed generalization closures. Therefore, the
(sub) tree can be pruned (Algorithm 2 line 1). For example, in Figure 2, the clo-
sure {<ab, p, cd>, <ab, p, cdef>} is subsumed by the closed closure {<ab, p, f>,
<ab, p, ef>, <ab, p, cd>, <ab, p, cdef>}. As a result, the corresponding sub clo-
sure enumeration tree is pruned. The following are three cases in which one
closure can subsume another:

1. A specialized closure can subsume a generalized closure.
2. A closure can be subsumed by one of its super relationsets (closures).
3. A closure can be subsumed by a super set of its specialized closures.

Our specialization-first sorting strategy increases the occurrences of subsump-
tion cases (1) and (3), i.e. there is a larger probability that a later constructed
enumeration tree can be pruned.

The function Prune (Algorithm 2 line 2) performs two tasks. One is removing
infrequent closures. Another is checking the subsumption among children of the
current enumeration tree root and eliminating the closures that can be subsumed.
In Figure 2, {<b, p, cdef>, <ab, p, cdef>} can be subsumed by {<b, p, ef>,
<b, p, cdef>, <ab, p, ef>, <ab, p, cdef>}. Thus it can be pruned.

The function Closed-Closure (Algorithm 2 line 3) generates the closed gen-
eralization closure. It finds all child closures that have the same support as the

230 T. Jiang and A.-H. Tan

Algorithm 2. Closure-Enumeration
Input :

Closure enumeration tree: ce tree
A set of discovered closed frequent generalization closures: C

Output :
The expanded set of closed frequent generalization closures: C

1: If ∃c∗ ∈ C where c∗ subsumes n, return C. //Subtree Pruning
2: Prune(ce tree.gc list)
3: c = Closed-Closure(ce tree)
4: C = C ∪ {c} //if c is not subsumed by another closed closure c∗ ∈ C
5: candidates = ∅
6: for each closure gci ∈ ce tree.gc list do
7: ce tree∗.root = gci; ce tree∗.gc list = ∅ //initialize a sub enumeration tree
8: for each gcj ∈ ce tree.gc list, with i < j do
9: gc∗ = gci ∪ gcj

10: if gci.tidset �= null and gcj .tidset �= null then
11: tidset = gci.tidset ∩ gcj .tidset
12: if tidset-buffer is not overflow then
13: gc∗.tidset = tidset; gc∗.supp = |tidset|
14: else
15: gc∗.supp = |tidset|
16: end if
17: else
18: candidates = candidates ∪ {gc∗}
19: end if
20: ce tree∗.gc list = ce tree∗.gc list ∪ {gc∗}
21: end for
22: If candidates �= ∅, perform hash-counting(candidates).
23: Closure-Enumeration(ce tree∗, C)
24: end for
25: return C

root of current closure enumeration tree. We call such child closures support-
undescending expansions of the root closure (or simply undescending ex-
pansions). Then, these undescending expansions are merged to form a closed
closure. In Figure 2, there exist two undescending expansions {<ab, p, ef>,
<ab, p, cdef>} and {<ab, p, cdef>} of root closure {}, so that {<ab, p, ef>,
<ab, p, cdef>} is extracted as a closed closure. If there is no such undescending
expansion, the root will be extracted as a closed closure.

4.2 Hybrid Support Counting

Some existing association rule mining algorithms propose to use the transaction
ID set (tidset) for itemset support counting [5]. However, in real life applications,
tidsets may not be able to fit into the physical memory. A hybrid counting
strategy is thus designed in GP-Close for handling data sets under different
circumstances. It allows users to define a tidset buffer with a maximum buffer
size. The support counting is initially performed by scanning databases (DB).
During DB scans, the algorithm tries to build tidsets for candidate closures if
these tidsets can fit into the pre-located buffer. The constructed tidsets are then
used for subsequent tidset based support counting (Algorithm 2 line 10-17).

Mining RDF Metadata for Generalized Association Rules 231

{<a,p,ef>,
<a,p,cdef>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

{}
supp=100

%

{<a,p,cdef>,
<ab,p,cdef>}
supp=50%

{<ab,p,ef>,
<ab,p,cdef>}
supp=100%

{<ab,p,cdef>}
supp=100%

{<ab,p,cd>,
<ab,p,cdef>}
supp=50%

{<ab,p,e>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

{<ab,p,f>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

{<b,p,ef>,
<b,p,cdef>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

{<b,p,cdef>,
<ab,p,cdef>}
supp=50%

{<ab,p,ef>,
<ab,p,cdef>}
supp=100%

Generating a closed closure

Generating larger frequent closures

No frequent
expansion.

Closed generalization closure

{<a,p,ef>,
<a,p,cdef>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

No frequent
expansion.

{<b,p,ef>,
<b,p,cdef>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

No frequent
expansion.

{<ab,p,f>,
<ab,p,cd>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

No
Expansion

{<ab,p,f>,
<ab,p,cd>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

Closure merging

Undescending expansion

{<ab,p,e>,
<ab,p,ef>,

<ab,p,cdef>}
supp=50%

Tree
Pruning

Fig. 2. Closure Enumeration

5 Experiments

The GP-Close algorithm was implemented using Java (JDK 1.4.2). GP-Close
with different sizes of tidset buffer were used in our experiments, namely GP-
Close-0, GP-Close-500, and GP-Close-50000, with a tidset buffer of 0 KB, 500
KB, and 50,000 KB respectively. We also implemented the Cumulate algo-
rithm [2] as a reference of performance comparison.

5.1 Data Sets

Our experiments are conducted on two real world RDF data sets, namely the
foafPub data set provided by the UMBC eBiquity Research Group and the ICT-
CB data set extracted from an online database of International Policy Institute
for Counter-Terrorism. foafPub is a set of RDF files that describes peoples and
their relationships with the use of the FOAF vocabulary3. ICT-CB documents
are descriptions of car bombing events. The statistics of the RDF vocabularies
and RDF documents in the two data sets are summarized in Table 3.

5.2 Performance Study

Figure 3(a) and 3(d) show the computation time of the algorithms with respect
to minimum support. We find that Cumulate can work properly only with high
minsup. When the minsup is high, the performance of the algorithms are com-
parable. The GP-Close-0 is slightly slower than other versions of GP-Close due
3 http://xmlns.com/foaf/0.1/

232 T. Jiang and A.-H. Tan

Table 3. Statistics of the foafPub and ICT-CB Data Sets. Nd - number of RDF
documents, Nr - number of RDF relations, N∗

r - number of distinct RDF relations, Ngr

- number of distinct generalized relations.

RDF
Data set

RDF
property

RDF
class

Instance
Avg.

Fanout
Nd Nr N∗

r Ngr
Min
len.

Max
len.

Avg.
len.

foafPub 36 6801 66613 13 6170 85778 83759 207119 1 3188 14
ICT-CB 53 1806 2546 3 127 2224 1814 175020 1 104 17

0246810
10

1

10
2

10
3

10
4

minsup(%)

T
im

e
(s

ec
)

foafPub

Cumulate
GP−Close−0
GP−Close−500
GP−Close−50000

(a) Exec time on foafPub

0246810
10

0

10
1

10
2

10
3

foafPub

minsup (%)

N
um

be
r

of
 D

B
 S

ca
ns

Cumulate
GP−Close−0
GP−Close−500
GP−Close−50000

(b) DB scans on foafPub

0246810
10

1

10
2

10
3

10
4

foafPub

minsup (%)

N
um

be
r

of
 G

en
er

al
iz

ed
 P

at
te

rs

Cumulate
GP−Close

(c) Patterns from foafPub

0 10203034
10

1

10
2

10
3

10
4

minsup (%)

T
im

e
(s

ec
)

ICT−CB

Cumulate
GP−Close−0
GP−Close−500

(d) Exec time on ICT-CB

0 10203034
10

0

10
1

10
2

ICT−CB

minsup (%)

N
um

be
r

of
 D

B
 S

ca
ns

Cumulate
GP−Close−0
GP−Close−500

(e) DB scans on ICT-CB

0 10203034
10

0

10
2

10
4

10
6

ICT−CB

minsup (%)

N
um

be
r

of
 G

en
er

al
iz

ed
 P

at
te

rn
s

Cumulate
GP−Close

(f) Patterns from ICT-CB

Fig. 3. Performance of GP-Close compared with Cumulate

to the fact that it involves more IO accesses. When the minsup is low, all three
versions of GP-Close algorithm perform more than an order of magnitude faster
than Cumulate. This is because the CPU computation becomes the bottleneck
of the algorithms as the number of frequent patterns increases.

Figure 3(b) and 3(e) show the number of DB scans performed by the algo-
rithms. The overall trend is that the number of DB scans increases when minsup
decreases. For GP-Close-50000, the tidsets can always fit in the tidset buffer af-
ter two DB scans. The number of DB scans performed by GP-Close-0 increases
rapidly as more branches of the enumeration tree are constructed when minsup
decreases. However, for low minsup, though GP-Close-0 and GP-Close-500 scan
for many more times than Cumulate, the performance of the two algorithms is
still more than one order of magnitude better than Cumulate. This further re-
flects the fact that when minsup is low, the bottleneck of the algorithms lies in
CPU computation instead of IO access.

Figure 3(c) and 3(f) show that the number of closed generalization closures is
almost one to two orders of magnitude smaller than the number of all frequent

Mining RDF Metadata for Generalized Association Rules 233

relationsets discovered by Cumulate. This is despite the fact that all frequent
relationsets can be derived from the set of closed generalization closures. Note
that a scale is used in Figure 3(c). Therefore, the stable margin between the
two curves actually implies an exponential growth in the difference between the
number of frequent generalized patterns and the number of closed closures.

6 Conclusion

This paper has presented an innovative approach for mining frequent generalized
patterns from RDF metadata with over-generalization reduction. We presented
the GP-Close algorithm which efficiently discovers a small set of closed fre-
quent generalization closures from which all frequent generalized patterns can
be derived. Extensive experiments show that our proposed method can substan-
tially reduce the pattern redundancy and perform much better than the original
GARM algorithm Cumulate in term of time efficiency.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: Semantic web. Scientific American 284(5)
(2001) 35–43

2. Srikant, R., Agrawal, R.: Mining generalized association rules. In: VLDB ’95, San
Francisco (1995) 407–419

3. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD Conference. (1993) 207–216

4. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explorations 2(2) (2000) 66–75

5. Zaki, M.J., Hsiao, C.J.: Charm: An efficient algorithm for closed itemset mining.
In: SDM. (2002)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of VLDB’94, Santiago de Chile. (1994) 487–499

7. Hipp, J., Myka, A., Wirth, R., Güntzer, U.: A new algorithm for faster mining of
generalized association rules. In: PKDD. (1998) 74–82

8. Sriphaew, K., Theeramunkong, T.: A new method for finding generalized frequent
itemsets in generalized association rule mining. In: ISCC. (2002) 1040–1045

9. Inokuchi, A.: Mining generalized substructures from a set of labeled graphs. In:
ICDM. (2004) 415–418

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997)

Analysing Social Networks
Within Bibliographical Data

Stefan Klink1,
Patrick Reuther2, Alexander Weber2, Bernd Walter2, and Michael Ley2

1 Institute of Applied Informatics and Formal Description Methods,
Universität Karlsruhe (TH), Germany
Stefan.Klink@aifb.uni-karlsruhe.de

2 Department for Databases and Information Systems,
University of Trier, Germany

{reuther, aweber, walter, ley}@uni-trier.de

Abstract. Finding relationships between authors and thematic simi-
lar publications is getting harder and harder due to the mass of infor-
mation and the rapid growth of the number of scientific workers. The
io-port.net portal and the DBLP Computer Science Bibliography in-
cluding more than 2,000,000 and 750,000 publications, respectively, from
more than 450,000 authors are major services used by thousands of com-
puter scientists which provides fundamental support for scientists search-
ing for publications or other scientists in similar communities.

In this paper, we describe a user–friendly interface which plays the
central role in searching authors and publications and analysing social
networks on the basis of bibliographical data.

After introducing the concept of multi-mode social networks, the
DBL–Browser itself and various methods for multi-layered browsing th-
rough social networks are described.

1 Introduction

Nowadays, searching for relevant publications, similar authors, and interesting
conferences is more crucial than ever. But the modern information society faces
the severe dilemma that more and more information is available but exploring
relevant information for satisfying the users’ information need is still a very chal-
lenging task. Most traditional retrieval systems are strictly document oriented.

In contrast to common web information systems like Yahoo, Lycos, or Google
(Scholar), bibliographical data bases like the DBLP [14] or io-port.net [9] offer
much more information which can not be directly retrieved by querying. The lat-
ter provide abundant information, i. e., about author relationships, conferences,
and the evolvement of scientific communities. Although basic information, i. e.,
the author/coauthor relationship is given directly in the bibliographical entity
relations beyond documents are not detected by traditional systems and are not
accessible by the user.

With the DBL–Browser we have attempted to work against this problem
by providing an efficient way for browsing a given bibliographical data base.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 234–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysing Social Networks Within Bibliographical Data 235

By combining both textual and visual browsing functionality we established a
browsing–based retrieval and visualisation system which enables users to bet-
ter understand their search domain and consequently offers the opportunity to
expand their original query. As already indicated by [4] users like both the graph-
ical nature of information organisation and multi–level browsing systems. Both
mentioned features are central parts in our browser.

For the digital library domain we developed a combination of the query–based
and browsing–based approach which in comparison with the mentioned practices
is superior for solving the vocabulary problem [10]. Starting from an unspe-
cific query or using hyperlinks to browse from the ’homepage’ users can browse
through the bibliographical data. During the browsing process all data is visu-
alised by appropriate graphical techniques which help users to understand their
search domain, helps them find relevant authors or publications and above all
provides information about further researchers or related conferences/journals.

2 Multi-mode Social Networks

The theoretical background of this paper is based on the theory of social networks
[17]. Due to the fact that bibliographical data contains not only authors but also
single publications, conferences, journals, etc. common one-mode diadic author
networks are not sufficient to represent the given network structure. In our case, we
need so called multi-mode social networks described in the following paragraphs.

2.1 Basics of Social Networks

A social network can be seen as a graph G = (V, E) in which the vertices V
represent the actors, the edges E a tie between these actors. Clustering describes
the situation that if one actor has a tie (of arbitrary origin) to two other actors
then it is likely that these two individuals will start a tie as well. This can easily
be seen while looking at friends one has and then at the friends they have. It
is likely, as Watts points out that there will be a certain overlap between these
two sets of people [18]. If the clustering is advanced and the characteristic path
length in a social network satisfies certain conditions, then the observed social
network is a specific subtype of network, a so called small world network.

Such a small world network is the basis of the new algorithm for similarity
measurement. The network considered is the co-author network constructed from
the DBLP database. The actors are the authors listed in the dataset. A tie
between two authors is inserted into the graph if the actors collaborated one a
single publication. The usage of co-author networks or co-author relationships
in general is not new in order to find synonyms [12], [8], [6], [7], [3]. However the
manner of how the information is used is innovative.

2.2 Multi-mode Social Networks

For representing additional information multi-mode networks are needed. In con-
trast to common one-mode networks with authors as actors and coauthorship

236 S. Klink et al.

as relation, multi-mode networks are capable to represent relationships of and
to affiliations, single publications, conferences, journals, etc. These kinds of net-
works are also known as affiliation or membership networks where one set of
actors (here: authors) and multiple sets of events (here: publications, affiliations,
conferences, journals, etc.) are present [17, Chapter 8]. Relationships within bib-
liographical data can be listed as a hierarchy with increasing indirection:

– authors within the same publication (i. e., coauthors),
– coauthors of coauthors (i. e., friend-of-a-friend),
– authors of the same conference (journal issue) (i. e., DEXA’06),
– authors of the same conference stream (journal) (i. e., VLDB),
– authors within similar conferences (journal),
– authors with similar publications.

Coauthors. Needless to say that the elementary form of a relationship is the
coauthor relationship of authors which have written the same publication. Of
cause they are thematically connected and do know each other.

Coauthors of Coauthors. But thinking one step further, regarding coauthors
of coauthors, then it is possible that these scientists do not know each other but
nevertheless they are thematically connected and possible publishing in a similar
area. This idea is also the basis of classical social networks environments in the
business area, i. e., FOAF [16] or openBC [15].

Clustering in the context of coauthor networks describes that it is likely for
two initially not collaborating authors to get to know each other if they have a
common coauthor. In this case these three authors are each connected by a tie
and form a triangle in the network. Formally a triangle� = (V, E) can be de-
scribed as a subgraph of G consisting of three vertices with V = {A1, A2, A3} ⊂
V and E = {eA1,A2

, eA2,A3
, eA3,A1

} ⊂ E. However if there exists no tie between
the two not collaborating authors not a triangle but using the terminology of
Watts a Connected Triple between these three authors occurs in the graph. A
Connected Triple ∧ = {V∧, E∧} can be described as a subgraph of G consisting of
three vertices with V∧ = {A1, A2, A3} ⊂ V and E∧ = {eA1,A2

, eA1,A3
} ⊂ E. The

actor connecting the two not connected actors is called center of the connected
triple.

Authors Within the Same Conference/Workshop or Journal Issue.
Another level of relationship is the one of authors within the same Conference/
Workshop or Journal issue. Indeed, they are all working within the same themat-
ically area – otherwise they wouldn’t have been published there – but especially
on huge international conferences it is unlikely, that all authors know each other.
Nevertheless, the thematically relationship between these authors is interesting
for social analysis. With the help of this information it is possible to get further
information about relevant topics for own research areas.

Authors Within the Same Conference/Workshop or Journal Stream.
Analogue to the paragraph above but more weakly is the relationship of authors

Analysing Social Networks Within Bibliographical Data 237

within the same Conference/Workshop or Journal stream. The relationship is
weaker because during time research interests of authors could change or the
topics presented and discussed in conferences or journals could shift to more
’modern’ themes. But regarding social networks authors which have changed
research interests are of interest because their knowledge on this field might be
present even now.

Authors Within Similar Conferences/Workshops or Journal Streams.
In most cases authors are publishing not only in one conference, i. e., VLDB,
but also in other conferences which are thematically similar to each other. Or,
even more, they are related to each other in the case that they are alternating,
i. e., ICDAR and DAS, MKWI and WI, or that they are local or international,
respectively, i. e., ECML and ICML. However, it is very likely, that an author of
the ECML is researching in the same area than an author of the ICML, namely
machine learning.

For calculating this kind of relationship, the definition of a similarity of con-
ferences/workshop or journal stream, respectively, is crucial. Such a similarity
can be calculated in different ways. First the similarity can be calculated on the
basis of all the authors that published in the journals. The bigger the overlap
between the scientists publishing in two streams is, the higher the similarity of
the the streams is. A second approach is to consider the topics of the journals.
This can be obtained by making use of title, abstract and fulltext if available in
order to calculate a similarity. As a last approach one could combine the author
and the topic based approach.

Similar Authors. The most general and most complex relationship is the simi-
larity criterium on author level. For that, an appropriate similarity measurement
between two authors must be defined, which regards as much information as pos-
sible to use every hint which authors might be similar to each other, despite the
fact that they never heard of each other.

One example building a similarity measurement on the basis of bibliographical
data is using the upper mentioned Connected Triples.

In order to calculate the similarity between two authors the amount of con-
nected triples they both are member of, but in which neither of them is a center
is used as a simple similarity function.

Sim(i, j)ConnectedTripleBasic =
|C∧ij |

maxk=0...m,l=0...m|(C∧kl
)| (1)

Fig. 1 shows recall precision curves calculated on basis of the DBLP-SUB02-
03 collections in which the performance of standard Jaro-Winkler distance,
ConnectedTripleBasic and a combination of the previous mentioned criteria is
illustrated. Using only ConnectedTripleBasic and not considering any syntacti-
cal characteristics is, although not very effective, a possibility to identify syn-
onyms. Syntactical approaches like the Jaro-Winkler exceed the semantical based
ConnectedTripleBasic distance. However, the best result can be achieved by com-
bining syntactical and semantical similarity measures.

238 S. Klink et al.

Fig. 1. Recall/Precision curves for DBLP-SUB02 and DBLP-SUB03 showing Con-
nected TripleBasic

This simple form of similarity function relying on the amount of Connected
Triples can be systematically improved by considering different other aspects on
how the triples emerged and which characteristics they have. Such enhancements
are for example to consider the amount of publications which lead to the number
of Connected Triples. It is possible that two publications lead to n Connected
Triples for two authors, if in these two publications once n authors collaborated
with author A1 and in the other publications the same n authors published with
A2 but not with A1. Besides making use of topical and time aspects can improve
the performance of the Connected Triple Approach.

More comprehensive similarity measurements are taking into account in which
conference/workshop streams or journals the authors are publishing. Further-
more, if abstracts or full-text is available, then text-based similarity measure-
ments known from information retrieval are additionally used to calculate the
similarity of authors [1], [2], [10]. Extracting and comparing affiliation data could
be also valuable to a certain amount, if it is correct. But one difficulty is, that
nowadays affiliations can change very rapidly and due to the grow of companies
and departments diverse themes are researched within one company.

3 Multi-layered Browsing

In this section we will show how the theoretical aspects of social networks de-
scribed above can be applied with the help of our DBL–Browser .

3.1 Introducing the Bibliographical Data

The DBLP (Digital Bibliography & Library Project) [14] indexes more than
750,000 publications published by more than 450,000 authors and is accessed
more than two million times a month on the main site maintained at our de-
partment (June 2006). The bibliographical database is focused on a high quality

Analysing Social Networks Within Bibliographical Data 239

which is restricted to the main bibliographical data. Very limited resources pre-
vent us to produce detailed meta-data or abstracts of a substantial number. For
each attribute of the meta-data the degree of consistency makes the difference:
By crawling the web it is easy to produce a huge number of bibliographic records
without duplicate detection, standardization of journal names, conference names,
person names, etc. But as soon as you try to guarantee that an entity (journal,
conference, person, . . .) is always represented by exactly the same character
string and no entities share the same representation, data maintenance becomes
very expensive. As a result the underlying data for analysing social networks is
of remarkable quality.

The information portal ioport.net [9] contains a more comprehensive biblio-
graphical database where separate databases like CompuScience, DBLP,
LEABIB and The Collection of Computer Science Bibliographies (CCSB) are
integrated within one common portal. With the help of thematically focused
internet crawlers based on ontologies the portal provides more than two million
publications in various fields of computer science with the ability to access the
abstracts and full-texts via third-party providers like TIBORDER or via direct
links to the publisher like SpringerLink, etc.

3.2 Browsing Bibliographical Data

To browse large bibliographic data sets we developed a specialised tool, that helps
the user to navigate through the complex data: The Digital Bibliographic Library
Browser (DBL–Browser). The main idea is to have always a textual and at least
a graphic representation of the current visible data. There are several things, that
make the DBL–Browser an easy–to–use everyday application: One of the main
aspects is it’s straightforward user interface. Anybody using a common web–
browser is able to use the DBL–Browser . All essential features are at hand – like
searching and filtering the data. The search system has all typically functions,
with additional features such as combined searches or vague searches, based on
the Levenshtein distance [13].

In addition to the classic navigation, the user interface offers the concept
of Tabs, thus the user is able to put different stages of a search session into
different tabs. These tabs can be visually aligned to show more than one part of
information at one time or giving different visualisations of the same information
– so you can have a histogram view of an author as well as a view showing authors
that are related to the current author. We call this multi–layered browsing,
because the user is always able to get different views (layers) to the same data.
For example, they can switch between a chronological text representation of all
publications from a given author to a graphical histogram, showing the same
data in a different representation.

The other main feature of the browser is the additional navigation provided
by the everything–is–clickable concept. Every piece of information shown by the
browser provides a link to more associated information, i. e., a search or a Table
of Contents (TOC) page.

240 S. Klink et al.

3.3 Analysing Social Networks

With it’s searching and browsing capability the DBL–Browser is predestined
for analysing social networks. As described in section 2.2, we are regarding not
only plain networks but also multi-mode networks with various hierarchy levels.
The DBL–Browser is capable of supporting all levels of the hierarchy listed the
section above.

Coauthors. After searching for an author or a specific publication, the biblio-
graphical data can be visualised in a textual manner in form of a tabular. Every
coauthor is listed in the original occurrence of the publication (see Fig. 2). Due
to the proofed quality, the names are normalised and surname as well as the
lastname is written out, i. e., ”Ian Witten” or ”James L. Peterson”.

Fig. 2. Textual visualization in tabular form

Coauthors of Coauthors. Due to our everything–is–clickable concept, the user
of the DBL–Browser is just one click away from further coauthors. The only thing
to do is to click on any authors’ name in the first line. Then all publications of
that author is visualised again in the same form. Though the DBL–Browser gives
an easy support for browsing from one author to coauthors to their coauthors
to their coauthors etc. to get a quick overview of the coauthorship network.

Authors Within the Same Conference/Workshop or Journal Issue.
More on the meta-level is the relationship of authors within the same conference/
workshop or of one Journal issue. These authors do not have a direct connection
and maybe they do not know each other – except well established Professors
researching since a long time within this community. And even these, rarely have
a direct coauthorship relationship but they are publishing since years within the
same community and same theme. For this case a relationship on conference
level is needed for analysing the social network. The DBL–Browser provides a
visualisation for each Conference/Workshop and Journal on issue level as a Table
Of Content (TOC) page (see Fig. 3).

Authors Within the Same Conference/Workshop or Journal Stream.
As illustrated in Fig. 3 on the top left side, all conferences of all years are listed
and can be accessed with one single click. Again, for each conference the table
of content is generated and all publications from all authors are visualised in a
tabular form. Thus, social network analysis within a conference or journal stream
is just a matter of some clicks and getting an overview of the key-players is very
easy and comfortable.

Analysing Social Networks Within Bibliographical Data 241

Fig. 3. TOC of the AAAI in the DBL-Browser with histogram and similarity

Fig. 4. Textual an graphics visualization of an author

242 S. Klink et al.

Authors Within Similar Conferences/Workshops or Journal Streams.
As mentioned above, finding authors of similar conferences or similar journal
streams is not trivial and heavy depending on the appropriate similarity. The
DBL–Browser provides a visualisation for similar conferences or journal streams
(see Fig. 3) which makes it easy to see the relation between them and to get a
quick overview of similar conferences or journals, respectively.

Similar Authors. Finding similar authors is even more complex and getting
the right ones out of the hundreds of thousands of authors within the database
is a nearly inextricable task by using a web search engine. But using the DBL–
Browser , similar authors are visualised sorted by their similarity (see Fig. 4).
Furthermore, darker colors indicate that these authors are coauthors.

Encouragement

Main parts of this work was supported by the German Ministry for Education
and Research (bmb+f) in the SemIPort and FIS-I project [11], [5].

Our intention is to provide the DBL–Browser as a framework for experiments.
Due to its modularisation, it is an easy challenge for anyone interested to in-
tegrate his or her ideas and algorithms. The XML and compressed version of
the DBLP data and the source code of the browser are available on our web
server (http://dbis.uni-trier.de/DBL-Browser/). Feedback and further ideas are
also very welcome.

Unfortunately it is far beyond our resources to include all publications we are
asked to consider but we hope to find more sponsors ...

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley Publishing Company, 1999. http://citeseer.nj.nec.com/433337.html.

2. N. J. Belkin and W. B. Croft. Retrieval techniques. Annual Review of Information
Science and Technology, 22:109–145, 1987.

3. I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and integration.
In Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, DMKD 2004, Paris, France, June 13, 2004,
pages 11–18. ACM, 2004.

4. Y. Ding, G. G. Chowdhury, S. Foo, and W. Qian. Bibliometric information retrieval
system (BIRS): A web search interface utilizing bibliometric research results. Jour-
nal of the American Society for Information Science, 51(13):1190–1204, 2000.

5. P. Fankhauser et al. Fachinformationssystem Informatik (FIS-I) und Semantische
Technologien für Informationsportale (SemIPort). In A. B. Cremers et al., editors,
GI Jahrestagung (2), volume 68 of LNI, pages 698–712. GI, 2005.

6. H. Han et al. Two supervised learning approaches for name disambiguation in
author citations. In H. Chen et al., editors, ACM/IEEE Joint Conference on
Digital Libraries, JCDL 2004, pages 296–305, Tuscon, AZ, USA, 2004. ACM.

7. H. Han, C. L. Giles, and H. Zha. A model-based k-means algorithm for name dis-
ambiguation. In Proceedings of the Second International Semantic Web Conference
(ISWC-03) Workshop on Semantic Web Technologies for Searching and Retrieving
Scientific Data, 2003.

Analysing Social Networks Within Bibliographical Data 243

8. H. Han, H. Zha, and C. L. Giles. Name disambiguation in author citations using
a k-way spectral clustering method. In M. Marlino, T. Sumner, and F. M. S.
III, editors, Proceedings of the ACM/IEEE Joint Conference on Digital Libraries,
JCDL 2005, pages 334–343. ACM, 2005.

9. Informatics online. http://www.io-port.net/, 2006.
10. S. Klink. Improving Document Transformation Techniques with Collaborative

Learned Term-based Concepts, volume 2956 of Lecture Notes in Computer Science,
pages 281–305. Springer-Verlag, Berlin, Heidelberg, New York, April 2004.

11. S. Klink, M. Ley, E. Rabbidge, P. Reuther, B. Walter, and A. Weber. Visualising
and mining digital bibliographic data. In P. Dadam and M. Reichert, editors,
INFORMATIK 2004 - Informatik verbindet, Band 2, Beiträge der 34. Jahrestagung
der Gesellschaft für Informatik e.V. (GI), volume 51 of LNI, pages 193–197. GI,
2004.

12. M.-L. Lee, W. Hsu, and V. Kothari. Cleaning the spurious links in data. 19(2):28–
33, 2004.

13. V. I. Levenshtein. Binary codes capable of correcting spurious insertions and dele-
tions of ones (original in Russian). Russian Problemy Peredachi Informatsii, 1:12–
25, 1965.

14. M. Ley. The DBLP Computer Science Bibliography: Evolution, Research Issues,
Perspectives. In A. H. F. Laender and A. L. Oliveira, editors, SPIRE, volume 2476
of Lecture Notes in Computer Science, pages 1–10. Springer, 2002.

15. Open business club. http://www.openBC.com/, 2006.
16. Friend of a Friend project. http://www.foaf-project.org/, 2006.
17. S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications,

volume 8 of Structural Analysis in the Social Sciences. Cambridge University Press,
New York, 1994.

18. D. J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton &
Company, New York, 2004.

Automating the Choice of Decision Support System
Architecture

Estella Annoni, Franck Ravat, Olivier Teste, and Gilles Zurfluh

IRIT-SIG (UMR 5505)Institute
University of Paul Sabatier

118 Route de Narbonne
F-31062 Toulouse Cedex 9

{annoni, ravat, teste, zurfluh}@irit.fr

Abstract. Due to the wide-spread use of decision support systems (DSS), meth-
ods are required by software companies. Several concepts and methods have been
suggested for decision-making. The development of DSS is still complex due to
the variety of architectures, the number and the type of modules which compose
them.

Therefore, This paper present our method of DSS development, which is based
on an architecture of 1 to 4 levels, focusing on the choice of an adapted architec-
ture (composed of data warehouses and data marts). Our method is based on a
mixed approach integrating the assessment of existing sources and user require-
ments. These are taken into account from the early step of DSS engineering, e.g.
from the analysis step, so DSS architecture choice integrates them.

1 Introduction

1.1 Context

The development of decision support systems (DSS) is widespread in companies. How-
ever, increasing the use of such systems follows an anarchical development due to
inappropriate development methods. For example the design methods of information
systems (IS) used by designers turn out to be inadequate [1]. The standard representa-
tion model (E-R) rarely matches multidimensional concepts of the DSS [2].

The DSS development is a very complex task [3] due to multiple architectures. Cur-
rent approaches tend to develop architectures with several levels. Each level is com-
posed of modules [4] and [5]. A collaboration with the I-D6 company1 allows us to
identify a DSS architecture based on four modules (see figure 1):

– the Decision Gateway (DG) is an interface for accessing directly to data sources,
– the Operational Data Store (ODS) is an intermediate storage area which allows the

copy, the cleaning, the consolidation and the preparation of data upstream in or-
der to transform them in to an homogeneous format. So, it offers an external and
homogeneous view of the existing data sources which are varied, distributed and
independent. This system is often based on relational schemas without the manage-
ment of historicization,

1 I-D6 is the Software Company collaborator of the CIFRE PhD led by one of the authors.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 244–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automating the Choice of Decision Support System Architecture 245

– the Data Warehouse (DW) is a centralized storage space where enterprise data are
integrated into aggregated levels and eventually with an history of the different
refreshments. Data warehouses are based on traditional data models which are gen-
erally relational or object models. They ensure historicization and aggregation.

– the Data Mart (DM) is a consistent set of data which fulfill a specific user class
requirements. This data organization must make easy decision-making activities.
The multidimensional model is a reference because it improves the analysis of an
interest item for the enterprise, called fact. This analysis is done by axis which
represent the context of analysis, called dimensions. The most used representation
is the well-known star schema [6].

Fig. 1. DSS architectural modules

Basically, DSS architectures are a combination of one or several DSS architectural mod-
ules. This architecture enables us to manage separately the functional problems of load-
ing, storage and presentation [3]. All these challenges mandate specific design methods
for DSS, adapted to user requirements and which integrate the multiple architectures.
Regarding the complexity and the time required for DSS development, it would be in-
teresting to define an automatic process. Thus, we define a process which guides the
DSS architecture definition task [3].

1.2 Related Work

Several methods have been suggested : top-down, bottom-up and mixed methods.
The top-down approach defines DSS from the analysis of the operational database

model. In [7] and [8] the authors provide to build a data mart from the E-R sources. They
find out respectively the “Multidimensional Model” and the “Dimensional Fact Model”
which represent the subject and the axis of the analysis. This approach is very heavy
when the number and the complexity of existing data sources are hight. Moreover, the
user requirements are not taken into account.

246 E. Annoni et al.

The bottom-up approach defines the DSS from the user requirement analysis. In [9],
the authors define a multidimensional database lifecycle based on a “Bus Matrix Archi-
tecture”. The drawback of this approach is schemas which could end up impossible to
implement due to a lack of data and/or heavy costs of data retrieval and integration. In
[10], the authors offer a first solution by integrating existing sources, but only at a phys-
ical level. They do so after the transformation of the user requirements into a “Unified
Multidimensional Schema”.

Due to the drawbacks of these two approaches, a third has been put forward, mixing
the two previous ones. It has been the object of numerous important propositions [1],
[4] and [11]. The authors generate an ideal multidimensional schema from user require-
ments and confront the latter to several candidate schemas defined by the analysis of
sources. The more complete method, suggested by [4], is based on an iterative and in-
cremental lifecycle. However, as the previous works, these do not guide the designer for
the DSS architecture choice. Furthermore, the assessment of the data sources is realized
later, during a third step named the “confrontation step”.

This paper is organized in 5 sections. Section 2 describes the approach of our method,
e.g. DSS Trident approach. Afterwards, we focus on the automation of the choice of an
adequate architecture in section 3. We present an example in section 4 . We conclude
by summarizing the properties of our proposition and present some outlines to future
work in section 5.

2 Our Approach: DSS Trident

2.1 DSS Trident Specificities

The tasks and processes that we define are based on requirements formulated by groups
of DSS actors. Therefore, before presenting our approach, we will define the groups of
actors and their requirements. Like the authors [12], we distinguish three groups which
have different roles : users, business and system. In remainder of this paper, the word
“users” will refer to end-users, and the word “actors” will refer to all DSS actors (users,
business, system).

The “DSSRequirements” are requirements formulated by all actors. Therefore we
can find, the “UsersRequirements”, the “SystemRequirements” and the “BusinessRe-
quirements”. The “UsersRequirements” are both functional and non-functional require-
ments. The “SystemRequirements” are related to technical aspects like existing data
sources and DSS modules. The “BusinessRequirements” put specific roles in DSS
projects. They solve problems about project management, technical requirement like
security, performance and strategic plan. Therefore, we provide the DSS Trident ap-
proach which is an extension of the Y process provided by [13].

The Y diagram, also called “Two Track Unified Process” (2TUP), is the UML pro-
cess of development based on four steps : Initialization, Elaboration, Construction and
Transition. We extend it with the Business track (see figure 2). Thus, it integrates strate-
gic and technical aspects of DSS business group. The Trident is composed of three
tracks corresponding to requirements classification [14]. They represent respectively
(from left to right in figure 2) “UsersRequirements” analysis, “BusinessRequirements”

Automating the Choice of Decision Support System Architecture 247

Fig. 2. Activity diagram of DSS Trident

analysis and “SystemRequirements” analysis. The Trident allows parallel treatment of
these tracks. They are related to the first step of our approach: the “First study” of the
DSS.

2.2 DSS Trident Steps

This first step begins by defining groups of actors, more precisely the definition of the
three groups, roles and members properties. It finishes by the task “Assess environment
knowledge”. It determines whether the data required by DSS requirements are presented
on existing sources and if not, it allows designers to count the missing data.

248 E. Annoni et al.

The second step, called “Study”, consists in the designing of the DSS engineering. It
follows three stages, starting with the choice of architecture and finishing with the def-
inition of mapping schemas from a module to another or from the sources to a module
via the conceptual design of modules. The choice of an architecture which is relevant
regarding requirements is monitored by DSS Trident approach.

The third step is the DSS implementation, called “Realization”. It starts with the
implementation of the modules and their treatments. It finishes with the deployment of
a prototype or the final system, according to iterations of the lifecycle (the spiral picture
in figure 2). The DSS Trident is an iterative and incremental process based on two main
iterations. The first iteration allows the assessment of the added value brought to the
company. Thus, it is possible to determine the feasibility and to generate a prototype in
order to verify the suitability of the system regarding the DSS requirements. The three
analysis, upstream of the design process, determine the adapted architecture and the
required treatments on the data sources. The end of the first iteration corresponds to the
deployment of a prototype, with the actors feedbacks about DSS adequacy after testings.
Unlike the 2TUP, our first iteration does not cover all the four steps. But, it covers only
the first two steps “Initialization” and “Elaboration” in order to avoid design of schemas
which could end up impossible to implement.

Note that without adequacy between DSS requirements and existing sources, the
end of the “First-study” step occurs after the task “Assess environment knowledge”.
The next iteration must start by integrating these feedbacks. In this instance, the project
lasts for three iterations. Actually, each time the evaluation of knowledge highlights
problems, an iteration is added to the project lifecycle. Consequently, a project with
n (n integer) tasks of assessing environment knowledge will last n+1 iterations. The
final iteration (the n+1 th) allows designers to fulfill the goals related to the two latter
steps of a project based on 2TUP process : “Construction” and “Transition”. During this
iteration, the DSS is implemented and evaluated in the production environment, after
which it will go into maintenance step.

According to the classification of the approaches, our method of DSS development
is based on a mixed approach monitored by DSS requirements [14]. Contrary to the
existing mixed approaches, we integrate data sources earlier, more precisely at the con-
ceptual level to design adequate schemas and to select an adapted architecture.

3 Choice of the DSS Architecture

3.1 Heterogeneous Architectures Typology

As we mentioned in section 1.1, a particularity of DSS compared to IS is the num-
ber of modules which can be combined to build an architecture. For this reason, we
present the possible and valid combinations in our architectural context which attempts
exhaustiveness.

DSS architecture are composed of the four modules which compose the set E={DG,
ODS, DW, DM}. The number of possibilities are the combination of 1, 2, 3 and 4 mod-
ules of E, therefore 15. But some combinations of modules are invalid, so we provide
the DSS architecture typology, commonly used by the I-D6 company.

Automating the Choice of Decision Support System Architecture 249

Table 1. Valid combinations of DSS heterogeneous architecture

Number of type of modules
1 2 3 4

A
rc

hi
te

ct
ur

e

{DG1..N} {DG1..N ,DM1..N} {DG1..N ,ODS1..N ,ODS1..N ,DM1..N} {DG1..N , DM1..N ,DW}
{DW} {DG1..N , DW} {DG1..N , ODS1..N , DW}

{ODS1..N , DM1..N} {DG1..N , DM1..N ,DW}
{ODS1..N , DW} {ODS1..N , DM1..N ,DW}
{DM1..N ,DW}

The definition of the DSS architecture must satisfy some coherence rules as follows:

– all the modules must be reachable by the actor queries, to have access at detailled
levels of data,

– an ODS is an intermediate module in which the data are not kept. So, DSS cannot
only be composed of {ODS} or {ODS, DG}. So, these two combinations are not
valid,

– a DSS architecture composed of more than one data mart must contain a data ware-
house in order to integrate the data,

– a DSS architecture can be composed of several modules of the same type, without
several data warehouse module in order to keep the data in a unique data storage
and to simplify the requests.

3.2 Automation of the DSS Architecture Choice

In our approach the choice is entirely driven by the analysis of the three user groups
requirements. The “First study” step let us know the production context of the next
DSS. This context is defined by the 5-tuple LDT, LDE, LEE, LSC, LCD. We define
these 5 measurable criteria to qualify the requirements. More precisely, we define

– LCD: the task of assessing environment knowledge determine the cover level of the
requirements,

– LDT: the user group assesses the level of data transformation,
– LEE: the system group assesses the level of existing equipment,
– LSC: the level of sources complexity evaluated by system group,
– LDE: the business group assesses the level of decision design expected.

With these five levels, the definition of the DSS architecture is automatic. This process
is implemented by the function “architecture choice” which has the following interface:

TCover X TTransformation X TArchitecture X TComplexity X TDecision -> TAr-
chitecture.

This function has five input parameters and one output which is the adapted archi-
tecture defined according to the activity diagrams shown in figure 3 and figure 4. The
datatypes mean:

250 E. Annoni et al.

– TCover expresses whether the concerned data sources are “vertical” or “trans-
verse”,

– TTransform expresses the type of transformation: “little transformed” or “trans-
formed”

– TArchitecture expresses the combination of types and number of modules. The
function does not calculate the number of data mart, which can be calculated with
the number of existing data marts and gateways in the company Cold and the num-
ber of different user classes of the next DSS Cnew. Thus, the number of data marts
or the number of different classes of users (new and old) of the system CDSS is
calculated as follows:

if Cold ∩ Cnew = �
then CDSS = Cold + Cnew

if Cold ∩ Cnew �= �
then CDSS = Cold + Cnew − Cold ∩ new

– TComplexity expresses the degree of data sources complexity: “little complex” or
“complex”,

– TDecision expresses the decision design expected: “not complete” or “complete”.

For performance reasons we implement our architecture choice function, with an array
of five dimensions corresponding to the input parameters. Results coming from analysis
of the three types of requirements are independent, and the number of possible values of

Fig. 3. Activity diagram of the DSS architecture choice

Automating the Choice of Decision Support System Architecture 251

Fig. 4. Activity diagram of the DSS architecture choice with the subcontext {“transverse”, “trans-
formed”,{DM}}

levels LDT, LDE, LEE, LSC, LCD are respectively 2, 2, 12, 2, 2. Therefore number of
contexts is 2*2*12*2*2 equals to 184. Each dimension of the array has respectively 2,
2, 12, 2, 2 possible values. The array has 184 cells which contains the DSS architecture
adapted to the 184 contexts.

4 Application

We consider a project with a company which expect a complete DSS. Before, the de-
signers of this company managed their sales with several distant and heterogeneous
data sources which are distributed. However, they have already a data mart for plan-
ing management. We assume that the “First study” is finished. Thus, the production
context {LDT, LDE, LEE, LSC, LCD} is defined by the 5-tuple {“transverse”, “trans-
formed”, {DM}, “complex”, “complete”}. The cover level of DSS requirements (LDT)
is transversal because this project takes into account several classes of users which are
these of sales. The level of data transformation (LDE) is transformed because the users
need consolidated data from several data sources which are not in the same currency.
The existing architectural module is a DM, then level of existing equipment (LEE) is a
set composed of this only element. The level of sources complexity is complex because
the data sources are heterogeneous and distributed. Moreover, they are distant thus it is
necessary to gather them in a same storage space. The business group require a DSS

252 E. Annoni et al.

architecture complete regarding DSS requirements, hence the level of decision design
expected is complete.

From these five values, we can define an adapted architecture. Hence, we execute the
function architecture choice with the parameters as follows architecture choice
(“transverse”, “transformed”, {DM}, “complex”, “complete”). The process of the ar-
chitecture choice assesses the following adapted architecture : {ODS, DW, 2 DM}.
This architecture has been chosen according to the following criteria:

– sources are distributed and complex. They are managed by the ODS,
– the company has already a data mart related to the planning. The users of the exist-

ing data mart are not the same of this project users. Hence, there are two different
user classes : sales and planning,

– as there are two data marts, the architecture is composed of a data warehouse.

Now, the designers can define the multidimensional conceptual schema of our project
which is composed of each architectural module schema.

5 Conclusion

This paper provides our automatic choice of decision support system (DSS) architec-
ture. This task takes place in a mixed approach of DSS development called DSS Trident.
Our DSS design method includes the earliest confrontation of these three groups of ac-
tors (users, business, system) requirements which drives the DSS architectural modules
choice. One of the contributions is the five measurable criteria to assess DSS environ-
ment about user requirements, data sources and strategic plans. With these five criteria,
DSS architecture choice is monitored according to a proposed activity diagram.

This proposition must also satisfy the I-D6 requirements about DSS architecture
choice automation for an easy maintenance system. Thus, we will continue by integrat-
ing the reuse concepts in our design method to capitalize the recurrent points of design
methods used on several projects. In this perspective, we plan to provide reusable com-
ponents in order to achieve the quickening of the DSS development and the reliability
of DSS.

References

1. Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data marts for
data warehouses. ACM Trans. Softw. Eng. Methodol. 10(4) (2001) 452–483

2. Trujillo, J., Palomar, M., Gomez, J., Song, I.Y.: Designing data warehouses with OO con-
ceptual models. Computer 34(12) (2001) 66–75

3. Sen, A., Sinha, A.P.: A comparison of data warehousing methodologies. Commun. ACM
48(3) (2005) 79–84

4. Luján-Mora, S., Trujillo, J.: A comprehensive method for data warehouse design. In:
DMDW. (2003)

5. Golfarelli, M., Rizzi, S., Saltarelli, E.: Wand: A case tool for workload-based design of a
data mart. In: SEBD. (2002) 422–426

6. Kimball, R.: The data warehouse toolkit: practical techniques for building dimensional data
warehouses. John Wiley & Sons, Inc., New York, NY, USA (1996)

Automating the Choice of Decision Support System Architecture 253

7. Cabibbo, L., Torlone, R.: A logical approach to multidimensional databases. Lecture Notes
in Computer Science 1377 (1998) 155–162

8. Golfarelli, M., Rizzi, S.: Methodological framework for data warehouse design. In: DOLAP
’98, ACM First International Workshop on Data Warehousing and OLAP, November 7, 1998,
Bethesda, Maryland, USA, Proceedings, ACM (1998) 3–9

9. Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., Thornwaite, W.: The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing. John Wiley & Sons, Inc., New York, NY,
USA (1998)

10. Akoka, J., Comyn-Wattiau, I., Prat, N.: From uml to rolap multidimensional databases using
a pivot model. Technical report (2001)

11. Cavero, J.M., Costilla, C., Marcos, E., Piattini, M.G., Sánchez, A.: A multidimensional data
warehouse development methodology. (2003) 188–201

12. Bruckner, R., List, B., Schiefer, J.: Developping requirements for data warehouse systems
with use cases, AMCIS (1999)

13. Roques, P.: UML in Practice - The Art of Modeling Software Systems Demonstrated
Through Worked Examples and Solutions. John Wiley & Sons, Inc., New York, NY, USA
(2003)

14. Annoni, E., Ravat, F., Teste, O., Zurfluh, G.: Les systèmes d’informations décisionnels :
une approche d’analyse et de conception à base de patrons. revue RSTI srie ISI, Méthodes
Avancées de Développement des SI 10(6) (2005)

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 254 – 265, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Range Query in Spatial Network Environments

Fuyu Liu, Tai T. Do, and Kien A. Hua

School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL, USA
{fliu, tdo, kienhua}@cs.ucf.edu

Abstract. Moving range queries over mobile objects are important in many
location management applications. There have been quite a few research works
in this area. However, all existing solutions assume an open space environment,
which are either not applicable to spatial network environment or require non-
trivial extensions. In this paper, we consider a new class of query called
Dynamic Range Query. A dynamic range query is a moving range query in a
network environment, which retrieves the moving objects within a specified
network distance of the moving query point. As this query point moves in the
network, the footprint (or shape) of the query range changes accordingly to
reflect the new relevant query area. Our execution strategy leverages computing
power of the moving objects to reduce server load and communication costs.
This scheme is particularly desirable for many practical applications such as
vehicles in a street environment, where mobile energy is not an issue. We
describe the design details and present our simulation study. The performance
results indicate that our solution is almost two magnitudes better than a query
index method in terms of server load, and requires similar number of messages
when compared to a query-blind optimal scheme.

1 Introduction

With the advance in wireless communication technology and advanced positioning
systems, there have been many research efforts in query processing for mobile
objects. One important query type is monitoring query which, unlike traditional
queries, requires real-time processing and has a relatively long lifetime. Moreover,
object mobility entails frequent location updates during query execution.

A typical mobile data management system has one or more central servers and a
large number of moving objects. Two scalability issues for such a system are server
side computation cost and wireless communication cost. Most existing solutions take
a centralized approach where moving objects need to report their locations to a central
server periodically [2, 4, 6, 7, 9, 10, 12, 16, 17]. The focus of these solutions is to
efficiently compute query results without worrying about location updates. More
recently, some distributed approaches have been proposed [8, 1, 3, 15]. In this
environment, moving objects utilize their own computing power to help process
queries in order to reduce server load and avoid frequent location update.

In terms of the spatial database, most existing solutions assume an open space
environment, in which moving objects can move freely without any restriction on
their movement. In this paper, we focus on processing moving range queries over a
spatial network, in which objects move over a set of connecting network segments.

 Dynamic Range Query in Spatial Network Environments 255

This environment models manmade transportation networks (airways, seaways,
roadways, and railroads) more realistically. A moving range query is issued by a
moving object to monitor neighboring moving objects within a defined network
distance (range) of the querying object. As the querying object moves, the footprint
(shape) of the query region also changes; hence, we name this class of queries
Dynamic Range Query (DRQ) in this paper. This name also clearly distinguishes the
studied query from the traditional rectangular-shaped range queries [1]. Many
practical applications can benefit from an efficient processing of DRQ. As an
example, a truck carrying sensitive material from location A to location B may want
to continuously monitor the surrounding traffic. This monitoring task can be
accomplished by issuing a DRQ, in which the querying object is the truck and the
range is whatever deemed safe for that truck.

In this paper, we propose an efficient solution for processing DRQ. In our
technique, the road network is partitioned into road segments, and moving objects
need only update their location when they move into a new segment. Upon a location
update, the server informs the moving object the queries overlapping its current road
segment. The moving object then monitors these relevant queries, and contacts the
server to update the affected query results as it moves in or out of the corresponding
queries. The contributions of this paper are as follows:

• To the best of our knowledge, we are the first to consider a new class of queries
with the footprint of the query area changes dynamically with query mobility.

• We propose a scalable distributed solution for processing the DRQ that leads
to reduced server load and substantial savings in wireless communication
costs. Besides the distributed query processing model, the solution also
contains another notable technical contribution, in which we introduce a novel
concept called Edge Distance to speed up network distance computation on
mobile objects.

The remainder of this paper is organized as follows. Related work is discussed in
Section 2. In Section 3, we give formal definitions and present background
information. The proposed solution is introduced in Section 4. We evaluate our
solution with simulation in Section 5. Finally, we conclude this paper in Section 6.

2 Related Work

Q-index [8] is the first to address the problem of static range query monitoring over
moving objects. In Q-index, queries are indexed by an R-tree and mobile objects
probe the R-tree to determine if they are included by the queries. Q-index avoids
periodical updates from moving objects by introducing a concept called safe region.
Each moving object is assigned a safe region. As long as a moving object is moving
in its safe region, it does not need to report to the server with its location update. In
[1], Cai and Hua proposed a Monitoring Query Management (MQM) technique that
also addresses the same problem. In their technique, each moving object is assigned a
resident domain. A moving object needs to monitor all queries whose regions
intersect with its assigned resident domain and reports to the server when it enters or
exits any of these queries’ regions. Gedik and Liu introduced a MobiEyes system [3],
which is capable of answering moving queries over moving objects. In MobiEyes, the

256 F. Liu, T.T. Do, and K.A. Hua

underlying open space is divided into grid cells. Each moving query has a monitoring
region which is defined as a union of cells that can be potentially intersected by the
query region, provided that the query’s focal object moves within its current cell. The
moving object only needs to monitor queries whose monitoring regions intersect with
its current cell. Recently, Hu et al. proposed a framework in [15] to answer
monitoring queries over moving objects, where mobile clients use safe regions to help
reduce communication cost. All these solutions mentioned above assume an open
space as the underlying network. As pointed out in Section 1, traditional query models
used in an open space are not applicable in a spatial network environment.

Query processing in a spatial network environment has been studied in the
literature. Tao et al. [11] proposed algorithms on how to compute static range queries
and nearest neighbor queries in a spatial network. A network Voronoi diagram-based
algorithm [5] is proposed by Kolahdouzan for k nearest neighbor search. Cho et al.
[13] introduced a novel method to answer continuous k nearest neighbor in a road
network. A system demonstrated by Huang et al. [14] can answer k nearest neighbor
queries effectively. However, all these works are trying to answer either snapshot
queries or moving nearest neighbor queries on static objects, and none of them are
applicable to answer moving range queries on moving objects.

3 Preliminaries

In this section, we first define the underlying spatial network. We then give
definitions for moving objects, dynamic range queries and monitoring regions.

Definition 1 (Network). A network is an undirected graph G = (N, E), where N is a
set of nodes, and E is a set of edges. Distance between two nodes ni and nj is denoted
by d(ni, nj). If two nodes are directly connected by an edge, d(ni, nj) is equal to the
length of the edge. If the two nodes are not directly connected, d(ni, nj) denotes the
shortest network distance from ni to nj.

Definition 2 (Edge). An edge is expressed as <ni, nj>, where ni and nj are two nodes.
We assume that there is a universal labeling for nodes, and we express an edge in a
way such that ni < nj to avoid ambiguity. We refer to ni and nj as the start node and the
end node of an edge, respectively. In this paper, we use road segment and edge
interchangeably whenever there is no confusion.

The next definition introduces a new concept, edge distance, which is not typical in
conventional graph theory. Edge distance will be utilized by mobile objects to
compute network distances efficiently in Section 4.5.

Definition 3 (Edge Distance). The distance between any two different edges ei and ej
can be classified into the following four types: SS, SE, ES, EE, depending on the types
of nodes connecting the two edges. If both nodes are start (S) nodes, then the distance
type is SS. If one node is a start node and the other one is an end (E) node, then the
distance type is SE. Similarly, there are distance types ES and EE. Formally, given ei
= <nis, nie> and ej = <njs, nje>, dxy(ei, ej) = d(nix, njy), where x, y ∈ {S, E}. When the
two edges are the same, we define an extra distance type called SAME (SM) and the
distance is zero. Formally, if i = j, dSM(ei, ej) = 0, otherwise, dSM(ei, ej) = ∞.

 Dynamic Range Query in Spatial Network Environments 257

Consequently, the shortest distance between any two edges can be expressed as d(ei,
ej) = mintype ∈ {SM, SS, SE, ES, EE}{dtype(ei, ej)}

Definition 4 (Moving Object). A moving object is represented by a moving point in the
road network. At any one time, an object o can be described as <e, pos, direction, velocity,
reportTime, hasQuery>, where e is the edge that o is moving on and pos is the distance
from o to the start node of e. Formally, if e = <ni, nj>, then d(o, ni) = pos and d(o, nj) =
d(ni, nj) – pos. If o is moving from the start node of e to the end node of e, the direction is
set to 1; otherwise, the direction is set to -1. reportTime records the time when the pos is
reported. hasQuery is a boolean variable which indicates whether o has issued a DRQ or
not. In the rest of this paper, we refer to moving objects that have issued monitoring
queries as query objects, and moving objects that have not issued monitoring queries as
data objects. Distance between any two objects oi and oj, denoted as d(oi, oj), is the
shortest network distance from oi to oj. It can be calculated by using Property 1 below.

Property 1. Assume the positions of objects oi and oj are denoted as <ei, posi> and
<ej, posj>, where ei = <na, nb> and ej= <nc, nd>. The distance between oi and oj can
be calculated as follows: if ei = ej, then d(oi, oj) = |posi – posj|; otherwise, d(oi, oj) =
minx∈{a,b}, y∈{c,d}{d(oi, nx) + d(nx,ny) + d(ny, oj)}

Property 2. For a moving object, with pos, direction, velocity, and reportTime all
known, and provided that the moving object still moves on the same edge, the new
position of the moving object at current time currentTime can be calculated as
(currentTime – reportTime) × velocity × direction + pos

Definition 5 (Dynamic Range Query). A DRQ q can be denoted as <o, length>,
where o is the object issuing the query, and length is the range of the query. Assume
the set of all moving objects as O, q.results = {oi | oi ∈ O, d(o, oi) length}

Definition 6 (Monitoring Region). A monitoring region of a DRQ is a set of edges
that can be reached by the query’s range while the query object moves within its
current edge. Formally, for a query q = <o, length> where o moves on edge e, its
monitoring region r = {ei | ei ∈ E, d(e, ei) < length}. If an edge is included in a query’s
monitoring region, we say that this edge intersects with the query’s monitoring region.

In order to handle long road segments, such as highways, we set a maximum road
length allowed in the system. Any road segments longer than that maximum will be cut
into multiple shorter road segments. At each position where the road segment is cut, a
virtual node is created and the resultant shorter road segments become virtual edges. In
our system, virtual nodes and virtual edges are treated just like real nodes and real edges.

4 Proposed Solution

In this section, we give assumptions for our system first and discuss the designs for
the server and moving objects in detail.

4.1 System Assumption

1. Every moving object is equipped with some kind of positioning devices.
2. Every moving object can determine its current road segment ID and its relative

position on the road segment by communicating with the server. Moving objects

258 F. Liu, T.T. Do, and K.A. Hua

only needs to communicate with the server each time they enter a new road
segment. (A moving object knows that it has entered a new segment if its relative
position on the previous segment is less than zero or greater than the length of
that segment.)

3. Every moving object has some computing power to perform data processing.

4.2 Server Data Structure

On the server, the road network is stored with an adjacency matrix. Information about
query objects and monitoring queries are also stored on the server. Besides, for each
road segment, all queries whose monitoring regions intersect with it are stored. We
use the following three tables in our system: a query object table to store query
objects in the format of <oid, eid, pos, direction, velocity, reportTime>, a query table
to store monitoring queries in the following format: <qid, oid, eid, length,
monitoringRegion, results>, and a segment-query table to store monitoring queries for
each road segment in the format of <eid, list of queries>.

4.3 Server Side Message Processing

Our system treats data object and query object differently in message processing. We
start the discussion with the data object.

In the initialization phase, a data object sends to the server a message containing its
location and where it is heading. The server first finds the segment that the data object
is on, and then determines the data object’s relative position on that segment and the
object’s moving direction (either -1 or 1) using Definition 4 given in Section 3. The
server expects the following kinds of messages from a data object.

• When a data object exits its current segment and enters a new segment, it will
provide the server with its new location and request a new set of queries to be
monitored. The server will first remove the data object from the current query
results (if the data object is covered by any query), and send the data object a
new set of queries, the length of the new segment, the data object’s relative
position on the new segment, and its new moving direction.

• When a data object finds out that it enters or exits a query’s region (the detail
will be discussed in Section 4.5), it will notify the server. The server will
update the query result accordingly.

Apart from playing the role of a data object for other queries, a query object needs
to do some extra steps. In the initialization phase, queries are submitted to the server
by query objects. After the server receives the request from a query object, the server
first saves the information about the query object and the query, and calculates the
monitoring region for the query using the algorithm mentioned in Procedure 1. After
finding the monitoring region, the server will update the segment-query table and
notify moving objects on all segments of that monitoring region about this DRQ using
broadcast. How moving objects respond to the broadcast message will be discussed in
Section 4.5. There are three kinds of messages expected from a query object.

• When a query object moves to a new road segment, it needs to report to the
server. The server will take the following four steps. In step one, the server
will look up in the monitoring query table and retrieve the query’s current
monitoring region, and then notify all data objects in the monitoring region to

 Dynamic Range Query in Spatial Network Environments 259

stop monitoring the query. In step two, the server will update the information
for the query object and the query. In step three, the server will find a new
monitoring region for the query with the updated location. In the last step, the
server will update the segment-query table and broadcast a message to notify
all data objects in the new monitoring region to add this query for monitoring.

• When a query object changes its velocity, it will notify the server. The server
will update the query object table and broadcast the updated information.

• When a query object requests a different query range, the system treats it as
the query object is moving to a new road segment.

Given a query qi = <oi, qlength>, and oi moving on edge ei = <ns, ne>, the server
determines the monitoring region of the query by calling Procedure 1 and Procedure
2. The pseudocodes for Procedure 1 and Procedure 2 are provided below. Procedure 2
utilizes a depth-first search to retrieve all edges included in the monitoring region
starting from the input node. The outputs of these two procedures are a set of tuples
with format <e, type, dist>, where e is the edge included in the monitoring region,
type is the type of the edge distance from e to ei defined by Definition 3 in Section 3,
and dist is the actual distance.

Procedure 1: CalculateMonitoringRegion
Input: queryEdge ei = <ns, ne>, queryLength qLength
Output: {<e, type, dist> | e ∈ E,type ∈ {SM, SS, SE,
ES, EE}, dist = dtype(e, ei) < qLength }
1. r = {<ei, SM, 0>}
2. Find the start and end nodes of ei
3. r = r ∪ FindEdge(ns, ei , 0, start, qLength)
4. r = r ∪ FindEdge(ne, ei , 0, end, qLength)
5. Sort entries in r, remove duplicates. For entries

with same e and type,keep the one with the shortest dist.
6. Return r

Procedure 2: FindEdge
Input: startNode n, startEdge se, startDist dist,
queryNodeType t, queryLength len
Output: {<e, type, dist >}
1. r = ∅ // initialization
2. For each adjacent edge e of node n and e ≠ se
2. If(n is the start node of edge e)
3. If(t = start)r = r ∪ <e, SS, dist>
4. Elseif(t = end)r = r ∪ <e, SE, dist>
6. Else // n is the end node of edge e
7. If(t = start)r = r ∪ <e, ES, dist>
8. Elseif(t = end)r = r ∪ <e, EE, dist>
11. If((dist + e.length) < len)
12. Find the other node of edge e as n’
13. r = r ∪ FindEdge(n’, e,(dist+e.length), t,len)
14. Return r

260 F. Liu, T.T. Do, and K.A. Hua

Here we show an example using the above algorithms. Assume a simple road
network as drawn in Fig. 1, a query object A is moving on edge n1n6, where n1 is the
start node and n6 is the end node, and the query’s range is 5. Then in the first line of
Procedure 1, we include the current edge into the result set as <n1n6, SM, 0>. Next, in
line 3 of Procedure 1, we call Procedure 2 and add the following entries into the result
set: <n1n2, SS, 0>. Because the length of edge n1n2 is less than the query’s range (line
11 through line 13 in Procedure 2), Procedure 2 is called again. This time, <n2n3, SS,
3> is added. Next, <n2n10, SS, 3> is added. Similarly, <n1n8, SS, 0>, <n1n9, SS, 0> are
added. After executing line 4 and line 5 in Procedure 1, we get the final result set as
{<n1n2, SS, 0>, <n1n2, EE, 4>, <n1n6, SM, 0>, <n1n8, SS, 0>, <n1n9, SS, 0>, <n2n3, EE,
2>, <n2n3, SS, 3>, <n2n10, SS, 3>, <n2n10, SE, 4>, <n3n4, SE, 2>, <n3n6, EE, 0>, <n5n6,
EE, 0>, <n6n7, SE, 0>}. In Fig. 1, all thick edges are included in the monitoring region.

n1

n6

n2

n3

n10

n9 n7

n8

n5

n4

 4
3

2
2

4

6

6

7

6
5

B

 A

Fig. 1. An example of calculating monitoring region

4.4 Moving Object Data Structure

On a moving object, a table is used to store all queries whose monitoring regions
intersect with the edge that the object is on. An entry in the table has the following
format: <qid, oid, qLength, eLength, {<type, dist>}>, where qid is the query id, oid is
the corresponding query object id, qLength is the query’s range, eLength is the length
of the road segment that the query object is on, and {<type, dist>} stores a set of
tuples, where each tuple specifies the edge distance type and the actual distance from
the query object’s segment to the moving object’s segment. For each stored query, the
corresponding query object’s information is also stored.

4.5 Moving Object Message Processing

While a moving object is moving on a road segment, it needs to listen to broadcast
messages from the server. If its road segment is covered by a new query’s monitoring
region, the moving object needs to add that query into its monitoring query list. If the
message is for update of an existing query, the moving object will update that query
in its monitoring query list.

A moving object needs to periodically check queries in its monitoring query list
with the algorithm discussed in Procedure 3. If it enters a query region or exits a

 Dynamic Range Query in Spatial Network Environments 261

query region, it will notify the server, and the server will update the query result
accordingly. Besides, a moving object also needs to periodically check if it is still in
its current road segment. If it enters a new road segment, it will first remove all old
queries from its current monitoring query list and send a message to the server with its
new location. After receiving a new set of queries and the new segment information,
the moving object will save these data and start the periodic checking steps again.

Procedure 3: CalculateDistanceToQueryObject
Input: objectPosition oPos, objectEdgeLength oeLength,
monitoring queries: {<qid, oid, qLength, eLength,
{<type, dist>}>}
Output: {<qid>}
1. r = ∅ // initialization
2. For each query q in the monitoring query list
2. d = ∞, minDist = ∞ // initialization
3. Estimate query object’s current position as qPos
4. For each <type, dist> tuple in query q
5. If(type=SM) d = |oPos - qPos|
6. Elseif(type=SS) d = oPos + qPos + dist
7. Elseif(type=SE) d = oPos+(eLength–qPos)+dist
8. Elseif(type=ES) d = (oeLength–oPos)+qPos+dist
9. Else d = (oeLength–oPos)+(eLength–qPos)+dist
10. If (d < minDist) minDist = d
11. If(minDist ≤ qLength) r = r ∪ {qid}
12. Return r

Procedure 3 takes inputs as the data structures stored in the moving object as
described in section 4.4, and outputs the list of monitoring queries still containing the
moving object in their results. Specifically, in step 3, we apply Property 2 in Section 3
to estimate the current position of the query object, given that necessary information
about the query object is available. Then with the pre-calculated edge distances
{<type, dist>} between two edges in which the data object and query object are
currently moving on, step 4-10 uses Property 1 in Section 3 to compute the shortest
distance between the data object and the query object. Finally, step 12 returns all
monitoring queries that contain the data object in their results. The interesting point of
the algorithm is the utilization of pre-calculated edge distances. By using the server to
carry out the computationally expensive computation of edge distances, we gain the
following advantages: 1) there is no need to transfer the network map from the server
to mobile objects for shortest network distance computation, and 2) we avoid the
expensive shortest path computation on mobile objects. Even in the case in which
each mobile object possesses a network map, pre-calculated edge distances can still
be useful in realizing the second advantage.

We still use the example given in Section 4.3 to illustrate the idea. In Fig. 1,
assume the query object A is at location 3.6 on edge n1n6, and there is a data object B
at location 0.5 on edge n2n10. From the discussion of Section 4.3, we know that the
data object B has two entries for the query issued by the query object A stored as
{<SS, 3>, <SE, 4>}. Using the first entry will yield a distance as 7.1, which is out of

262 F. Liu, T.T. Do, and K.A. Hua

the query’s range (the range is 5). With the second entry, the distance will be 4.9, and
the data object B should be included into the query’s result.

5 Performance Study

A simulator is implemented to evaluate the performance of our technique. The
performance metrics we use include:

• Server side work load. The work load can be characterized by I/O time and
CPU time, of which I/O time is more dominant. Therefore, server side work
load is measured as the total number of road segments accessed in order to
answer queries.

• Server side communication cost. This is measured by counting the total
number of received messages and sent messages to reflect bandwidth
consumption.

• Moving object side communication cost. We count both received messages
and sent messages to measure energy consumption. However, since sending
message is more costly than receiving message in a wireless environment, we
set the cost for uplink twice as the cost for downlink (i.e. two received
messages are counted as one message).

As mentioned in Section 2, all existing distributed approaches are not applicable to
a spatial network environment or extensions are non-trivial; therefore, we compare
our technique with centralized approaches.

For the server side work load, we compare our technique with one popular
centralized solution: query index [8]. The query index scheme is adapted for the
spatial network environment, where queries are indexed by a segment-query table that
is similar to the table used in our technique. In this segment-query table, for each
segment, all queries whose ranges (note: not monitoring regions) intersect with that
segment are saved. Each time when a moving object updates its location, the system
first retrieves the segment that the object is on, then compare the object’s new
location with all queries stored in that segment to determine if this moving object is
included by some queries. Every time when a query object updates its location or
requests a different query range, first the system will treat it as a data object and find
out which queries cover this object, then the system will update the segment-query
table accordingly.

We also compare communication cost against a centralized approach, where
moving objects send messages to the server whenever they change velocities or move
to new road segments. When a moving object moves to a new road segment, the
server will send the moving object a message containing information about the new
road segment to help the moving object determine when it moves out of the new road
segment. At each time unit, the server will estimate every moving object’s new
location, and answer all queries with the newly estimated locations. This solution is
optimal on communication cost if we assume that moving objects have no
information about queries, in other words, this is a query-blind optimal solution.
Other than this approach, we also include a naïve approach which serves as a basis for
comparison. In the naïve approach, all moving objects report their locations to the

 Dynamic Range Query in Spatial Network Environments 263

server at every time step. Consequently, the server does not need to send any message
back to moving objects.

5.1 Simulation Setup

The area of interest in our simulation is a square shaped region of 10,000 square
miles. A synthetic road network is generated by first placing nodes randomly on the
region, then connecting nodes randomly to form road segments. In our setup, there are
2000 nodes and 4000 edges. The longest road segment allowed in our simulation is 20
miles. Moving objects are randomly placed on road segments with initial velocities
and directions. The velocities of these moving objects follow a Zipf distribution with
a deviation of 0.7, and the values are between 0.5 and 1 mile per time unit. The
direction is set as either 1 or -1. When a moving object approaches a road intersection,
it will move to a new randomly selected road segment. At each time unit, one tenth of
the moving objects will change their velocities.

Query objects are selected randomly from the moving objects. In our simulation,
there are 100,000 moving objects in total and we vary the number of queries from 10
to 1000 to test the scalability of the system. Query’s range is also specified randomly
where the maximum range length allowed is 2 miles. We run simulation for 10 times
and take the average as the final output. Each simulation lasts for 200 time units. The
simulation was run on a Pentium 4 2.6GHz desktop pc with 2GB memory.

5.2 Simulation Results

Fig. 2.a shows the server loads for our technique and the query index method when
the number of queries increases from 10 to 1000. Please note that the y-axis is in
logarithmic scale. It is observed that our technique provides almost two magnitudes of
improvement on server load. This is mainly because computations carried out on
moving objects can reduce a lot of work load on the server.

1

10

100

1000

10000

100000

10 20 50 100 200 500 1000
of Queries

S

eg
m

en
ts

/T
im

e
u

ni
t

DRQ Query Index

0

20000

40000

60000

80000

100000

120000

10 20 50 100 200 500 1000
of Queries

o

f
M

es
sa

g
es

/T
im

e
u

n
it

DRQ Query-blind Optimal Naive

0

20000

40000

60000

80000

100000

120000

10 20 50 100 200 500 1000
of Queries

o

f
M

es
sa

g
es

/T
im

e
u

n
it

DRQ Query-blind Optimal Naive

 (a) (b) (c)

Fig. 2. Effect of # of queries on (a) Server side work load, (b) Server side communication,
(c) Moving object side communication

Fig. 2.b and 2.c study communication cost on server side and moving object side
by varying the number of queries. The number of messages per time unit is plotted as
a function of the number of queries. As shown by the figures, in our technique, the
number of messages increases as the number of queries increases, simply because
more queries require more communication. However, in the query-blind optimal

264 F. Liu, T.T. Do, and K.A. Hua

method, the number of messages is not affected. The reason is that the majority of
communication cost is from the moving objects changing segment or speed, as long
as the total number of moving objects stay the same, the communication cost will not
vary significantly. On the server side, our technique is always better than the query-
blind optimal method even when there are 1000 concurrent queries. On the moving
object side, when the number of queries is small, our technique performs better than
the query-blind optimal method. When there are too many queries involved, our
technique has a higher communication cost than the query-blind optimal method. But
the cost is still acceptable considering that the huge gain obtained in server load. In
these two figures, we also include the naïve method for comparison, which has a
much higher communication cost.

6 Conclusions and Future Work

In this paper, we propose a distributed solution to answer dynamic range query over
moving objects in spatial network environments. Our solution uses road segments as
building blocks for monitoring regions of moving queries. Moving objects utilize
their own computing power to help reduce server load and save wireless bandwidth.
The simulation results show that our method is almost two magnitudes better than the
query index method in terms of server load and has lower communication cost when
there are light or medium amount of queries when compared to the query-blind
optimal scheme. Future work of this study will be extending our technique to answer
more complicated moving monitoring queries.

References

[1] Y. Cai and K. A. Hua. An adaptive query management technique for efficient real-time
monitoring of spatial regions in mobile database systems. In IEEE IPCCC, 2002

[2] K. Mouratidis, M. Hadjieleftheriou, D. Papadias, Conceptual Partitioning: An Efficient
Method for Continuous Nearest Neighbor Monitoring. In SIGMOD 2005

[3] B. Gedik and L. Liu, MobiEyes: Distributed Processing of Continuously Moving Queries
on Moving Objects in a Mobile System, in EDBT 2004

[4] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In PODS, 2000
[5] M. R. Kolahdouzan, C. Shahabi: Voronoi-Based K Nearest Neighbor Search for Spatial

Network Databases. In VLDB 2004: 840-851
[6] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In PODS, 1999
[7] X. Xiong, M. Mokbel, W. Aref, SINA: Scalable Incremental Processing of Continuous

Queries in Spatio-temporal Databases. In SIGMOD, 2004
[8] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query

indexing and velocity constrained indexing: Scalable techniques for continuous queries
on moving objects. IEEE Transactions on Computers, 51(10), 2002

[9] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of
continuously moving objects. In SIGMOD, 2000

[10] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databases. In
SIGMOD, 2002

 Dynamic Range Query in Spatial Network Environments 265

[11] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao: Query Processing in Spatial Network
Databases. In VLDB 2003: 802-813

[12] Y. Xia, S. Prabhakar, S. Lei, R. Cheng, R. Shah: Indexing continuously changing data
with mean-variance tree. SAC 2005: 1125-1132

[13] H. Cho, C. Chung: An Efficient and Scalable Approach to CNN Queries in a Road
Network. In VLDB 2005: 865-876

[14] B. Huang, Z. Huang, D. Lin, H. Lu, Y. Song, H. Li: ITQS: An Integrated Transport
Query System. In SIGMOD 2004: 951-952

[15] H. Hu, J. Xu, D. L. Lee: A Generic Framework for Monitoring Continuous Spatial
Queries over Moving Objects. In SIGMOD 2005

[16] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over moving
objects. In IEEE ICDE, 2005.

[17] X. Xiong, M. Mokbel, W. Aref, SEA-CNN:Scalable Processing of Continuous K-Nearest
Neighbor Queries in Spatio-temporal Databases. In IEEE ICDE 2005.

Context and Semantic Composition
of Web Services

Michael Mrissa1, Chirine Ghedira1, Djamal Benslimane1, and Zakaria Maamar2

1 Claude Bernard Lyon 1 University, Lyon, France
firstname.lastname@liris.cnrs.fr

2 Zayed University, Dubai, U.A.E
zakaria.maamar@zu.ac.ae

Abstract. Composition of Web services is a cornerstone step in the
development of interoperable systems. However, Web services still face
data-heterogeneity challenges, although several attempts of using seman-
tics. In addition, the context in which Web services evolve is still some-
how ”ignored”, hampering their adaptability to changes in composition
situations. In this paper, we argue how context permits to determine
the semantics of interfaces that Web services expose to third parties.
We show the need for a context- and semantic-based approach for Web
services composition.

Keywords: Web service, semantics, context, composition, mediation.

1 Introduction

Web services are now accepted as standards for bridging heterogeneous appli-
cations. Web services possess the capability of deploying high-level processes
referred to as composite Web services. Composition addresses the situation in
which a user request cannot be satisfied by a single Web service, whereas a com-
posite Web service consisting of a combination of Web services (either simple or
composite) could satisfy this request [2]. A composition is always associated with
a specification that describes amongst others the list of component Web services,
their execution chronology, and the corrective strategies in case of exceptions.

Current approaches only achieve Web services composition at the level of mes-
sage interactions [6]. The standard Web services protocol stack (SOAP, WSDL,
UDDI) was not initially built with meeting the requirements of semantic ex-
change. Composition needs, too, to be conducted at the semantic level. Ignoring
or poorly assessing semantics are obstacles to composition since Web services
have to be initially checked whether they can effectively work together [8].

Despite multiple attempts, the smooth automation of Web services semantic
reconciliation remains a challenge. First, description techniques of the seman-
tic functionalities of Web services are still in their ”infancy” stage, despite the
tremendous growth in semantic description languages like OWL-S [7]. Second,
the context in which Web services evolve is to a certain extent ”ignored”, which
hampers their adaptability to changes in composition situations.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 266–275, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Context and Semantic Composition of Web Services 267

In this paper we aim at investigating how context drives the semantic recon-
ciliation of Web services. The rationale of this reconciliation is backed by Maa-
mar et al., who argue that Web services composition is subject to satisfying two
conditions [5]. The first condition is that Web services must agree on the meaning
of the exchanged data. And the second condition is that semantic-data conflicts
must be automatically resolved using the information that context caters. In this
paper we focus on data heterogeneities that arise when Web services from dif-
ferent origins take part in a composition. We propose a language for enhancing
Web services descriptions with data semantics. This language is integrated into
a semantic-mediation architecture that solves information heterogeneities using
semantic values and Web services’ context.

The role of context in data conflicts of type value is not properly handled
in other semantic composition systems. Our proposed solution is built upon
Sciore et al.’s work who suggest using the concept of semantic value to solve
such conflicts [11]. A semantic value is a basic value (i.e., type instance such as
like ”5” is an ”integer” instance), which has a semantic information for facilitat-
ing its contextual understanding, e.g., ”5(currency=euro)” describes ”5” units
of currency of type euros. This semantic information will be anchored to the
semantic context of the Web service.

Section 2 overviews related work on context awareness and semantics of Web
services. Section 3 motivates the need for semantics in Web service description
and details how WSDL is extended into SVE-WSDL (standing for Semantic-
Value Enhanced-WSDL). Section 4 explains the semantic-based mediation ar-
chitecture for Web services engaged in composition. The implementation of this
architecture is also given in this section. Finally, Section 5 draws our conclusions
and overviews different aspects of future work.

2 Related Work

2.1 Semantics and Web Services

Semantic Web services constitute an active domain of research. There are sev-
eral ways of inserting semantics into Web Services. One way consists of using
description languages like OWL-S [7], and another way consists of extending
syntactic standards like WSDL with semantic features [10,13].

The first way consists of developing languages to semantically describe Web
services: OWL-S and WSMO (Web Service Modeling Ontology) [1] currently are
the leading languages towards semantic description of Web services. OWL-S is
based on the OWL description language and was intended to be combined with
syntactic description languages like WSDL. WSMO uses F-Logic to describe
the features of Web services. Based on OWL-S, several research projects have
been developed for example ODESWS [3] and METEOR-S (LSDIS) [10]. In
these systems, ontologies are used to annotate Web services [12], which is useful
during discovery, selection, and composition.

Martin et al. introduced the OWL-S language to describe a Web service along
a profile, a model, and a grounding [7]. The service profile answers ”what does

268 M. Mrissa et al.

the service do?”. The service model answers ”how does the service work?”. And
the service grounding answers ”how to access the service?”. Spencer et al. pro-
pose a rule-based approach to semantically match outputs and inputs of Web
services [14]. An inference engine analyzes OWL-S descriptions and generates
multiple data transformation rules using a description-logic reasoning system.

The second way of inserting semantics into Web Services enriches WSDL with
the semantics of a domain expressed in an ontology The WSDL-S language [10]
from the LSDIS laboratory, extends the WSDL format by adding an ”LSDIS-
Concept” element to the ”part” tag of the WSDL input/output message. This
additional element does not itself contain the semantic information, but it rather
refers to an element described in an OWL ontology. With the help of the exten-
sibility support of WSDL, files can be extended with semantic information [13].

2.2 Context and Web Services

In the area of Web services, context has been recently investigated in many
research projects. The main objective of these projects is to facilitate the devel-
opment and deployment of context-aware and adaptable Web services. Standard
Web services descriptions are augmented with context information (e.g., loca-
tion, time, user profile) and new frameworks are developed to support this.
The approach proposed in [9] is intended to provide an enhancement of WSDL
language with context aware features. The proposed Context-based Web Ser-
vice Description Language (CWSDL) adds to WSDL a new part called Context
Function which is used to select the best Web service. This function represents
the sensitivity of the Web service to the context. Another interesting approach
was proposed in [4] to deal with context in Web services. The approach consists
of two parts: a context infrastructure and a context type set. The context infras-
tructure allows context information to be transmitted as a SOAP header-block
within the SOAP messages.

3 Semantics and Context for Web Services Composition

3.1 A Motivating Example

The following simple yet-realistic example discusses why semantic mediation
is a key step for Web services composition. Let us assume planning a trip to
Japan. The airport of our destination city offers free-of-charge access to the
Internet. Promotion fliers distributed to passengers contain some recommended
hotels with their HTTP addresses. A hotel, which has attractive rates, provides a
Web service interface1 for booking price estimation (implementation technology
transparent to passengers). To check if this hotel is affordable for an European
passenger, the following composition of Web services occurs: HotelBooking for
estimate charges in Yens based on a number of booking nights, and PersonalEu-
roBanking for payment management.
1 A WSDL interface is the set of functions with their input and output parameters.

Context and Semantic Composition of Web Services 269

This example highlights the importance of semantic reconciliation between
both Web services. The semantics of their interfaces needs to be explicitly de-
scribed for a free-of-conflict composition. Indeed each Web service manages a
different currency, so there are two heterogeneous semantic contexts in this ex-
ample: the first Web service in a ”Japanese” semantic context delivers figures in
Yens, whereas the second one in an ”European” semantic context expects figures
in Euros. The composition is not sensitive if the data from the first Web service is
directly submitted to the second one without any extra-processing. This results
in managing figures (e.g., 100 Yens, 250 Euros) without a real understanding
of their appropriateness. This calls for adapting data between services. In this
example, currency from HotelBooking service needs to be converted so that it
matches the currency used by PersonalEuroBanking service.

3.2 The Core Idea of the Proposed Approach

In a simple composition (Figure 1-(a)), Web services’ interfaces are described using
WSDL. During Web services interactions, any data conflict of type value is resolved
in ad-hoc way at the level of the receiver Web-service. For example, upon reception
of a value V in Yens from WS1, WS2 explicitly converts it into V ′ in local currency.

(a) Simple composition (b) Semantic composition

Hotel Booking
Service (WS)

Euro-Banking
Service (WS)

Inputs Inputs

Outputs Outputs

"num_days"
integer

"price_yens"
double

"available"
boolean

"price_euros"
double

Hotel Booking
Service (WS)

"num_days"
integer

"price_yens"
double

"available"
boolean

"price_euros"
double

trigger

Semantic
Mediator

Unresolvable
heterogeneity

Euro-Banking
Service (WS)

Inputs

Outputs

Inputs

Outputs

1 12 2

Fig. 1. Simple vs. semantic composition

To conduct semantic composition that includes the context of the exchanged
data (Figure 1-(b)), the context that defines these data’s role must be provided.
This context is any metadata that explicitly describes the meaning of the data
to be exchanged between Web services. When Web services’ inputs and outputs
are described using metadata, they can automatically be transformed from one
context to another one during Web services execution. By automatically, we
mean that conversion function is not embedded into the body of any Web ser-
vice. This function is loosely-attached to Web services (i.e., independent), and
becomes, thus, an active component that intervenes during Web services com-
position and execution. A possible solution to achieve a semantic composition of
Web services is built upon the semantic-value concept.

270 M. Mrissa et al.

3.3 Semantic Value Concept

Sciore et al. introduce the notion of semantic value to describe a value (i.e., type
instance) with additional semantic information (its context) [11]. Formally, a
semantic value A is defined as follows: A = a(p1 = a1, ...pi = ai, ..., pn = an)
where a is a simple value, pi a property, and ai a simple or a semantic value.

While a simple value is simply defined as an instance of a type (e.g., 5 as
integer), a semantic value associates a value with a context in which its interpre-
tation happens. For example, 5(context=(currency, euro)) is a semantic value
that defines 5 as a currency in euros. Recursive descriptions is also possible
since the value of a property can also have its own context, e.g. 5(currency, euro
(context=(scalefactor,1000))) is a recursive description of the semantic value 5.

It is important to note that the values ”5” and ”50” can be considered as
different with each other if considered as simple values. However, they can be
considered as equivalent if they are interpreted as semantic values with different
contexts, e.g., 5(currency, euro) = 50(currency, yen) when 1 euro worths 10 yens.

Then, the main purpose of enabling semantic mediation between Web services
consists of associating context to web services and using conversion functions to
convert a semantic value from the context of a Web service to another. The
semantic value 5(currency, euro) can be converted into another semantic value
50(currency, yen). Depending on the conversion to adopt, a conversion function
can be lossless or lossy (like for compression/decompression), total or non-total
(for example city to country is not reversible), and order preserving or not (if a
< b then cvt(a) > cvt(b) where cvt is a function).

3.4 From WSDL to SVE-WSDL

To develop an enriched semantic description of a Web service, we investigated
how the representation of some WSDL elements could be extended. Each repre-
sentation would be associated with some specific information that depends for
example on the ontology that the Web service binds to. To add more semantics to
Web services’ descriptions, we proposed SVE-WSDL as an extension of WSDL.
This extension adds the concept of semantic value to a WSDL description.

To keep the paper self-contained, we overview the main structure of a WSDL
document: <type> element defines data types exchanged in messages. <message>
elementdescribes thedata elements of anoperation.Eachmessage consists of oneor
more parts. Each part has a <name> element, a <type> element, and may consist of
additional <element>elements. These three constructs define the names and types
of the parameters that are used by the Web service in the message. For platform
independence requirement, WSDL uses XML syntax to define data types. Some
messageparts maybe of type complex, andmay contain a structure of severalXML
Schema elements. <portType> elementprovides an abstract description of theWeb
service. It defines the operations (using one or more <operation> elements) that
can be performed over a Web service, and the messages involved. Each operation
may contain one <input>, one <output>, and one <fault> sections. Each section
contains a <message> element that specifies what the Web service receives (input

Context and Semantic Composition of Web Services 271

Part
+name

+type

+element

Context
+name

+type
Value

0..*1 1..*10..*

Message
+name

Fig. 2. Proposed extension of the WSDL metamodel

message) and sends when its execution fails (fault message) or succeeds (output
message). Finally, <binding> element defines the message format and protocol de-
tails for each port. Several protocols may be used such as SOAP over HTTP.

Ourproposal forSVE-WSDLis tobinda semanticvaluedescriptionto the inputs
and outputs of a Web service. The extension of the WSDL metamodel is partially
shown in Figure 2. It is now enhanced with context meta-class associated with part
meta-class. Inputandoutput elements containa singlemessage, that consists of one
orseveralparts. Infact,weaimatextendingeachpartofamessagewithanadditional
element to be referred to as ”context”. Compared to the concept of semantic values
of Sciore et al. [11], <part> tag describes the simple value and <context> structure
represents the semanticsassociatedwith thisvalue.Asa result,wedefineastructure
todescribethecontexttobeassociatedwiththevaluesdescribed in<part>elements
of a Web service’s messages. This structure consists of: (i) a <name> element that
labels the semantic information; (ii) a <type> element that indicates the type of the
semantic information; (iii) a <value> element that contains the information itself;
and an optional <context> element providing additional context information to
the <value> element, thus enabling recursive descriptions. Listing 1.1 illustrates a
part of a SVE-WSDL description of a Web service.

� �
<?xml version=" 1.0 " encoding="UTF -8 "?>
<d e f i n i t i o n s name=" HotelService " tns=" http: // example . HotelService /" . . .>

<message name=" HotelServiceEndpoint - Booking">
<part name=" Num - Days " type=" xsd:integer ">

<context name=" time " type=" xsd:string " va lue=" time - unit ">
<context name=" duration " type=" xsd:string " va lue=" day "/>

</ context>
</ part>

</message>
<message name=" HotelServiceEndpoint - BookingResponse ">

<part name=" price " type=" xsd:int">
<context name=" currency " type=" xsd:string " va lue=" yen "/>
<context name=" scalefactor " type=" xsd:string " va lue="1"/>

</ part>
</message>
<portType name=" HotelServiceEndpoint ">

<operat ion name=" Booking " parameterOrder="Num - Days ">
<input message=" tns:HotelServiceEndpoint - Booking "/>
<output message=" tns:HotelServiceEndpoint - BookingResponse "/>

</ operat ion>
</portType>

. . .
</ d e f i n i t i o n s>
� �

Listing 1.1. SVE-WSDL description of a Web service

272 M. Mrissa et al.

4 Semantic-Based Mediation for Web Services

4.1 Components of the Architecture

Figure 3 presents the architecture for context- and semantic-based mediation of
Web services composition. It consists of six components:

WSSVE-WSDL WS SVE-WSDL

Conversion
libraries

Conversion rules
repository

Shared
Ontology

Semantic
mediator

Composition Specification
trigger

Provider level

Composition level

Mediation level

1 2

Fig. 3. SVE-WSDL mediation architecture

SVE-WSDL Annotations. They extend WSDL descriptions of Web services
by using semantics. Web services can now ”understand” the values they ex-
change. Interesting to note that Web services still exchange simple values during
the execution, so that the interactions with Web services during invocation re-
main unchanged. These values are more understandable since their semantics in
terms of meta-data can be extracted from SVE-WSDL descriptions. The Web
service’s provider does not have to undertake any changes, except of adhering
their WSDL description to the SVE-WSDL format.

Value Triggers. The data flow during composition needs to be intercepted at
some points between component Web services. To keep Figure 3 clear, triggers
are not represented. A trigger intervenes between Web services, extracts data
from SOAP messages, and sends a conversion request to the semantic mediator.
Then the trigger waits for an answer from the mediator and, depending on the
answer it receives (or a timeout), either forwards converted data to the next
Web service(s), or throws an exception. Still remains the question about where
to physically place the triggers. For scalability reasons, we recommended that
triggers should be along with the specification execution program, most of the
times on the client side. An example of implementation is to use the BPELJ
language for specifying the composition, and to integrate the triggers under the
form of code snippets that are located between composed Web services. Indeed,

Context and Semantic Composition of Web Services 273

as shown (Figure 1-(b)), the trigger intercepts the values exchanged during com-
position and passes them on to the mediator where data heterogeneities remain
unresolved in a simple composition. Thus, triggers do not have to know that
they are part of an architecture that deals with semantic values. This separation
between the actual mediation process and the composition specification allows
a better scalability and adaptability of the architecture to future modifications.

Semantic Mediator. It works in close collaboration with the triggers by re-
ceiving their outputs. The semantic mediator is a service (either local service or
Web service). It acts as a listener that gets a semantic value from a source con-
text and returns, if possible, the conversion of this value to a target context. To
this end, the semantic mediator is supported in its work with a conversion rules
repository while searching for the appropriate conversion functions. The media-
tor delivers the resulting basic value to the trigger that sent out the request, or
returns an exception in case of non semantic comparability (i.e. the conversion is
not meaningful). The semantic comparability of two semantic values is detailed
in Sciore’s work [11].

Conversion Rules Repository. It contains the mappings between terms used
in various semantic contexts and lists as well the conversion opportunities be-
tween these terms. It is expected that the repository can refer to several con-
version libraries including remote ones. New conversion libraries can be added
upon request, i.e., each time a composition requires new conversion functions for
a new application domain.

Conversion Libraries. Conversion functions are stored in libraries and permit
converting semantic values from one context into another.

Application Domain Ontologies. The mediator refers back to these ontolo-
gies to check whether or not it is possible to clearly identify a semantic value.
We do not discuss here the mechanisms that could help the mediator identify
a term in an ontology, as we focus on the enhancement of the process of medi-
ation with semantic values. This point is to be considered in future work. For
the moment, let us consider that the identification of the terms is performed by
a simple pattern-matching technique. For instance, in the domain of currencies,
providers may differently name the same concept (devise, currency, moneyU-
nit, etc.) and its instances (USD, Dollar, USDollars, etc.). The ontologies help
the mediator find out what similarities and inconsistencies are between semantic
value descriptions.

4.2 Architecture Operation Through the Prototype

A prototype that supports the proposed architecture is fully operational. We
use JavaTM NetBeans environment. Figure 4 is the GUI to read/write context
annotations from/to WSDL files.

As part of our implementation efforts, we developed the context-aware medi-
ation architecture for Web services. This consists of reading context annotation

274 M. Mrissa et al.

Fig. 4. Screenshot of the WSDL extension editor

from WSDL files and converting data received from a source context to a target
context. This mediation is part of the example given in Section 3.1. We deployed
the ”HotelBooking”, ”Mediation” and ”PersonalEuroBanking” Web services on
an Apache Axis server and composed them using BPEL. The implementation
shows that dynamic and accurate interpretation of context enable a meaningful
composition to be performed. With the context-aware mediation Web service
and annotated WSDL files, not only the ”price” semantic types match, but data
is transformed at the execution stage, to comply with the different scale factors,
heterogeneous date formats (that allow getting up-to-date conversion rates be-
tween currencies), and different VAT rates (that also are not always included in
the price) that form the context of data.

5 Conclusion

In this paper we presented an approach that supports semantic interoperability
among individual Web services engaged in composition. To this end we enhanced
WSDL descriptions of Web services with semantic metadata for capturing con-
textual information. We also proposed an architecture that exploits these onto-
logical annotations for adapting data on the fly when they are transferred from
Web service to another constitutive one. The heart of our architecture is the
context mediator; which adapts exchanged data so as to be compliant with the
receiver’s requirements.

Our future work revolves around different aspects. First, the use of context
should be considered, so that applications can become aware of their environ-
ment. Second, different local ontologies can be used when providers develop Web
services, so there is a need to generate contextual mappings between ontologies
in an automatic way.

Context and Semantic Composition of Web Services 275

References

1. S. Arroyo and M. Stollberg. WSMO Primer. WSMO Deliverable D3.1, DERI
Working DRAFT. Technical report, WSMO, 2004. http://www.wsmo.org/2004/
d3/d3.1/.

2. J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying MDA Approach for
Web Service Platform. In Proceedings of The IEEE Enterprise Distributed Object
Computing Conference (EDOC’2004), Monterey, California, 2004.

3. Ó. Corcho, A. Gómez-Pérez, M. Fernández-López, and M. Lama. ODE-SWS:
A Semantic Web Service Development Environment. In Proceedings of The first
International Workshop on Semantic Web and Databases (SWDB’2003), Berlin,
Germany, 2003.

4. M. Keidl and A. Kemper. A framework for context-aware adaptable web services.
In Proceedings of The 9th International Conference on Extending Database Tech-
nology (EDBT’2004), Heraklion, Greece, 2004.

5. Z. Maamar, D. Benslimane, and N. C. Narendra. What Can Context do for Web
Services? Communications of the ACM, 2006 (forthcoming).

6. Z. Maamar, N. C. Narendra, and S. Sattanathan. Towards an Ontology-based
Approach for Specifying and Securing Web Services. Journal of Information &
Software Technology, Elsevier Science Publisher, 2006 (forthcoming).

7. D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V. McDermott,
D. L. McGuinness, B. Parsia, T. R. Payne, M. abou, M. Solanki, N. Srinivasan,
and K. P. Sycara. Bringing Semantics to Web Services: The OWL-S Approach. In
Proceedings of The First International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC’2004), San Diego, California, USA, 2004.

8. B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani. Infrastructure for
E-Government Web Services. IEEE Internet Computing, 7(1), 2003.

9. Soraya Kouadri Mostéfaoui and Béat Hirsbrunner. Towards a context-based service
composition framework. In Liang-Jie Zhang, editor, ICWS, pages 42–45, Las Vegas,
Nevada, USA, 2003.

10. P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing Web Ser-
vices Description and Discovery to Facilitate Composition. In Proceedings of The
First International Workshop on Semantic Web Services and Web Process Com-
position (SWSWPC’2004), San Diego, California, USA, 2004.

11. E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate in-
teroperability among heterogeneous information systems. ACM Transactions on
Database Systems, 19(2), 1994.

12. A. P. Sheth and C. Ramakrishnan. Semantic (Web) Technology In Action: Ontol-
ogy Driven Information Systems for Search, Integration and Analysis. IEEE Data
Engineering Bulletin, 26(4), 2003.

13. K. Sivashanmugam, K. Verma, A. P. Sheth, and J. A. Miller. Adding Semantics to
Web Services Standards. In Proceedings of The International Conference on Web
Services (ICWS’2003), Las Vegas, Nevada, USA, 2003.

14. B. Spencer and S. Liu. Inferring Data Transformation Rules to Integrate Se-
mantic Web Services. In Proceedings of The International Semantic Web Confer-
ence (ISWC’2004), Hiroshima, Japan, 2004.

An Efficient Yet Secure XML Access Control
Enforcement by Safe and Correct Query

Modification

Changwoo Byun and Seog Park

Department of Computer Science, Sogang University,
Seoul, 121-742, South Korea

{chang, spark}@dblab.sogang.ac.kr

Abstract. This work is a proposal for an efficient yet secure XML ac-
cess control enforcement which has been specifically designed to support
fine-grained security policy. Based on metadata in the DTD, we propose
the SQ-Filter which is a pre-processing method that checks on necessary
access control rules, and rewrites a user’s query by extending/eliminating
query tree nodes, and by injecting operators that combine a set of nodes
from the user’s query point of view. The scheme has several advantages
over other suggested schemes. These include small execution time over-
head, and safe and correct query modification. The experimental results
clearly demonstrate the efficiency of the approach.

1 Introduction

As various users and applications require the distribution and sharing of in-
formation in Extensible Markup Language (XML) documents [1], the need for
an efficient yet secure access of XML data has become very important. Despite
this, relatively little work has been done to enforce access controls particularly
for XML databases in the case of query access. Developing an efficient mecha-
nism for XML databases to control query-based access is therefore the central
theme of this paper.

We focused our attention on two problems: the abstraction of access control
rules that correspond to a user’s query, and the generation of a safe query.

The abstraction of access rules means the development of an effective and
efficient choosing mechanism that abstracts only necessary access control rules
based on a user’s query. Meanwhile, the generation of a safe query is the de-
velopment of an efficient query rewriting mechanism that transforms an unsafe
query into a safe yet a correct one that keeps the user’s access control policies.

We implemented the Secure Query Filter system (SQ-Filter), and came up
with detailed performance analyses of its implementation.

The rest of the paper is organized as follows. Section 2 briefly reviews re-
lated works and describes their weaknesses. Section 3 gives the metadata of the
Document Type Definition (DTD) and the basic notations for the SQ-Filter
system. In Section 4, we present an overview of the SQ-Filter system and the

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 276–285, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Efficient Yet Secure XML Access Control Enforcement 277

construction algorithms used. Section 5 presents the results of our experiments,
which reveal the effective performance of the SQ-Filter system as compared to
the QFilter [10]. Finally, Section 6 summarizes our work.

2 Related Works

Authorizations for XML documents should be associated with protection objects
at different granularity levels. To enforce the fine-level granularity requirement,
the specification of the object uses XPath expressions.

In the studies of E. Damiani textitet al. [3], E. Bertino textitet al. [4,5] and
Gabilon and Bruno [6], the object part of access control rule is associated with
each XML document/DTD. It provides a useful algorithm for computing the
view using tree labeling. However, aside from its high cost and maintenance
requirement, this algorithm is also not scalable for a large number of users.

M. Murata textitet al. [9] simply focused on filtering out queries that do
not satisfy access control policies. B. Luo textitet al. [10] took extra steps to
rewrite queries in combination with related access control policies before pass-
ing these revised queries to the underlying XML query system for process-
ing. However, the shared Nondeterministic Finite Automata (NFA) of access
control rules is not made by a user’s query but by a user (or a user’s role)
itself. Thus, the shared NFA involves many unnecessary access control rules
from the user’s query point of view. Although the proposed NFA-based algo-
rithm is useful for rewriting queries with path expressions starting from the
root, this approach is very inefficient for rewriting queries with the descendant-
or-self axis(”//”) due to the exhaustive navigation of NFA which results in
performance degradation and the generation of unsafe queries as described in
Section 4.5.

3 Preliminary

3.1 Basic Notations

It is important that the search mechanism returns safe answers, which means
they do not contain any data that violate access control policies.

Definition 1. [Safe Query] If a query is assured to retrieve only safe answers,
it is called a safe query; otherwise, it is an unsafe query.

Generally speaking, an XPath expression [2] declares the query requirement
by identifying the node of interest via the path from the root of the document to
the elements which serve as the root of the subtrees to be returned [11]. QFilter
[10] defines these semantics as ’answer-as-subtrees’. We call the root of sub-trees
to be returned as target nodes. For example, the target node of an XPath,
/site/people/person is a person node.

In this paper, we focus on the ’answer-as-subtrees’ model to define a new
concept of the access control rule (ACR).

278 C. Byun and S. Park

Definition 2. [Three Integrity Rules of ACR]

1. It is impossible for any node to have both a negative and a positive ACR.
If a conflict occurs between positive and negative ACRs, the negative ACR
takes precedence.

2. We also assume ”denial downward consistency”1 [9].
3. It is impossible for any node which is not in the scope of positive ACRs to

have negative ACRs.

Meanwhile, XPath 2.0 [2] supports operators (i.e., UNION, INTERSECT, and
EXCEPT) that combine two sets of node. They are invariably used in conjunc-
tion with path expressions, so they are useful in transforming unsafe queries into
safe queries. We confirm these operators by using XML spy 2006 version2.

3.2 PRE/POST Structure

Figure 1(a) shows that the nodes of the DTD3 tree are assigned with PRE(order)
and POST(order) ranks, as seen when parsing the DTD tree sequentially.

site

regions people open_auctions

america
person

emailaddress
phone

name

open_auction

current seller annotation quantity

@person

closed_auctions

closed_auction

seller itemref

price

asia

item

location

quantity

name
payment

description

text

creditcard

@featured

@id

item

location

quantity

name
payment

description

text

@featured

@id

@id

@id

author description

@person text

@person

buyer

@person @item

quantity

(0, 50)

(1, 20)

(2, 9)

(3, 8)

(4, 0)

(5, 1)

(6, 2)

(7, 3)

(8, 4)
(9, 5)

(10, 7)

(11, 6)

(12, 19)

(13, 18)

(14, 10)

(15, 11)
(16, 12)

(17, 13)

(18, 14)

(19, 15)

(21, 16)

(20, ,17)

(22, 27)

(23, 26)

(24, 21)

(25, 22)

(26, 23)
(27, 24)

(28, 25)

(29, 39)

(30, 38)

(31, 28)

(32, 29)
(33, 31)

(34, 30)

(36, 33)

(37, 32)
(39, 34)

(38, 35)

(35, 36) (40, 37)

(41, 49)

(42, 48)

(43, 41)

(44, 40) (46, 42) (48, 44)

(45, 43)(47, 45)

(49, 46)

(50, 47)

site

regions people open_auctions

america
person

emailaddress
phone

name

open_auction

current seller annotation quantity

@person

closed_auctions

closed_auction

seller itemref

price

asia

item

location

quantity

name
payment

description

text

creditcard

@featured

@id

item

location

quantity

name
payment

description

text

@featured

@id

@id

@id

author description

@person text

@person

buyer

@person @item

quantity

(0, 50)

(1, 20)

(2, 9)

(3, 8)

(4, 0)

(5, 1)

(6, 2)

(7, 3)

(8, 4)
(9, 5)

(10, 7)

(11, 6)

(12, 19)

(13, 18)

(14, 10)

(15, 11)
(16, 12)

(17, 13)

(18, 14)

(19, 15)

(21, 16)

(20, ,17)

(22, 27)

(23, 26)

(24, 21)

(25, 22)

(26, 23)
(27, 24)

(28, 25)

(29, 39)

(30, 38)

(31, 28)

(32, 29)
(33, 31)

(34, 30)

(36, 33)

(37, 32)
(39, 34)

(38, 35)

(35, 36) (40, 37)

(41, 49)

(42, 48)

(43, 41)

(44, 40) (46, 42) (48, 44)

(45, 43)(47, 45)

(49, 46)

(50, 47)

(a)

person

person

person

person

person

people

site

…

description

item

iem

item

item

item

item

item

asia

regions

site

Parent

253028creditcard

243027phone

233026emailaddress

223025name

500500site

21

26

27

…

6

7

5

4

3

2

1

0

8

9

20

post

3

2

1

…

5

4

4

4

4

4

4

4

3

2

1

level

0

5

6

…

0

1

0

0

0

0

0

0

8

9

20

size

24@id

23person

22people

……

11text

10description

9payment

8name

7quantity

6location

5@featured

4@id

3item

2asia

1regions

PreTag-Name

person

person

person

person

person

people

site

…

description

item

iem

item

item

item

item

item

asia

regions

site

Parent

253028creditcard

243027phone

233026emailaddress

223025name

500500site

21

26

27

…

6

7

5

4

3

2

1

0

8

9

20

post

3

2

1

…

5

4

4

4

4

4

4

4

3

2

1

level

0

5

6

…

0

1

0

0

0

0

0

0

8

9

20

size

24@id

23person

22people

……

11text

10description

9payment

8name

7quantity

6location

5@featured

4@id

3item

2asia

1regions

PreTag-Name

closed_auction

…

closed_auction

seller

closed_auction

closed_auctions

site

open_auction

description

annotation

author

annotation

open_auction

seller

open_auction

open_auction

open_auction

open_auctions

site

Parent

473050quantity

……………

433145buyer

3911129open_auctions

3821030open_auction

283031@id

293032current

313133seller

304034@person

363435annotation

334136author

4 40

41

48

49

37

34

35

32

post

3

2

1

3

5

4

5

level

0

1

8

9

0

0

1

0

size

44@person

43seller

42closed_auction

41closed_auctions

40quantity

39text

38description

37@person

PreTag-Name

closed_auction

…

closed_auction

seller

closed_auction

closed_auctions

site

open_auction

description

annotation

author

annotation

open_auction

seller

open_auction

open_auction

open_auction

open_auctions

site

Parent

473050quantity

……………

433145buyer

3911129open_auctions

3821030open_auction

283031@id

293032current

313133seller

304034@person

363435annotation

334136author

4 40

41

48

49

37

34

35

32

post

3

2

1

3

5

4

5

level

0

1

8

9

0

0

1

0

size

44@person

43seller

42closed_auction

41closed_auctions

40quantity

39text

38description

37@person

PreTag-Name

(b)

Fig. 1. (a) DTD PRE/POST Structure of auction.dtd, (b) Relational Storage of (a)

1 The combination of a negative authorization with positive authorizations allows the
definition of positive authorizations as exceptions to a negative authorization at a
higher level in granularity hierarchy.

2 http://www.altova.com
3 It is a portion of an auction.dtd source extracted from the XMark [12], which we

consider as a running example in our paper.

An Efficient Yet Secure XML Access Control Enforcement 279

Figure 1(b) shows the actual relational DTD representation. LEVEL refers to a
DTD tree level, and SIZE is the sub-tree size of any node. This PRE/SIZE/LEVEL
encoding is equivalent toPRE/POSTsincePOST =PRE+SIZE−LEV EL [7,8].

4 Overview of the SQ-Filter System

4.1 The Architecture of the SQ-Filter System

The architecture of the SQ-Filter system is shown in Figure 2. The primary
input is a user’s query. If an input query is accepted, the output may be the
original input query or a rewritten query which has filtered out conflicting or
redundant parts from the original query. Otherwise, the output may be the result
of rejecting the query. This concept is similar to that of the QFilter [10].

The SQ-Filter system is divided into two parts. At compile time, the SQ-Filter
system constructs the actual relational DTD representation (in Section 3.2). It
also constructs ACRs and PREDICATES databases. At run time, the SQ-Filter
system runs three components, namely, QUERY ANALYZER, ACR-FINDER,

• Extract Pre/Post

• Extract predicate info.

Query AnalyzerQuery Q

ACRs-base PREDICATES-base

ACRsACRsACRs
ACRsACRsACRs

PRE/POST

Structure

DTDXML Document XML Schema

Q
• Prune unnecessary ACRs

ACR-Finder

Reject query Q

SQ-Filter Engine

Compile time

Run time

PRE/POST generator Two databases

• Rewriting algorithm

• Path rewriting

• Predicate-rewriting

Query Executor

Re-written query Q’

purified

ACRs

Predicate Info.

Fig. 2. The Architecture of the SQ-Filter System

(R1): /site/regions/*/item[location=“LA”]

(R2): /site/people/person[name = “chang”]

(R3): /site/open_auctions/open_auction

(R4): //open_auction[quantity]/seller

Positive ACRs

(R5): /site/regions/*/item/payment

(R6): /site/people/person/creditcard

(R7): /site/*/open_auction[@id>50]/seller[@person=“chang”]

Negative ACRs

//open_auction[quantity]/seller

/site/open_auctions/open_auction

/site/people/person

/site/regions/*/item

path

p3

P2

P1

P_link

33

30

23

3, 13

Pre

31R4

38R3

8, 18R1

26R2

Postrule

//open_auction[quantity]/seller

/site/open_auctions/open_auction

/site/people/person

/site/regions/*/item

path

p3

P2

P1

P_link

33

30

23

3, 13

Pre

31R4

38R3

8, 18R1

26R2

Postrule

ACR+-base

50>@id30P4

chang=@person33p5

chang=name23P2

LA

value

=

operator

30

3, 13

Parent-PRE

quantity

location

property

P1

P3

P-id

50>@id30P4

chang=@person33p5

chang=name23P2

LA

value

=

operator

30

3, 13

Parent-PRE

quantity

location

property

P1

P3

P-idPREDICATES-base

/site/*/open_auction[@id>50]/seller[@person=“chang”]

/site/people/person/creditcard

/site/regions/*/item/payment

path

p4, p5

P_link

33

28

9, 19

Pre

31R7

5, 15R5

25R6

Postrule

/site/*/open_auction[@id>50]/seller[@person=“chang”]

/site/people/person/creditcard

/site/regions/*/item/payment

path

p4, p5

P_link

33

28

9, 19

Pre

31R7

5, 15R5

25R6

Postrule

ACR--base

(a)

(b)

Fig. 3. (a) Sample positive/negative ACRs, (b) Sample ACRs and PREDICATES
databases

280 C. Byun and S. Park

and QUERY EXECUTOR. We describe them in detail in the following sections.
Meanwhile, in this section, we describe the two databases.

After a security officer determines the ACRs of which each object part uses an
XPath expression in Figure 3(a), each ACR information is stored into ACRs and
PREDICATES databases in Figure 3(b). Note that the entity of PRE and POST
columns may be more than two. For example, the target node of R1 is item. The
(PRE, POST) value set of the item is (3, 8) and (13, 18). This value set is stored
into the PRE and POST columns, respectively. Moreover, R1 has one predicate
([location=”xxxx”]). The parent element of the predicate is item. The entity of
Parent-PRE column is (3, 13), and the entities of property, operator, and value
columns are ’location’, ’=’, and ’xxxx’, respectively. Finally, P1 as Predicate ID
is stored into the P link column in the ACRs database. In a similar way, other
ACRs are stored into the ACRs and PREDICATES databases.

4.2 QUERY ANALYZER Component

The objective of the QUERY ANALYZER (QA) is to acquire information from
a user’s query. Given a query Q1, the target node of Q1 is phone node.

Q1 : /site/people/person[name=”chang”]/phone/
First, the QA looks up the Figure 1(b) and gets the (27, 24) value of the target

node phone. It also obtains the predicate information of Q1. Note that there may
also be more than two (PRE, POST) pairs. However, all (PRE, POST) pairs may
not be the (PRE, POST) pairs of the user’s query. Let a user’s query be footnote-
size/site/regions/america/item. The target node of the user’s query is the item
node. Although the (PRE, POST) pairs of the item are (3, 8) and (13, 18), (3, 8)
is not a suitable (PRE, POST) pair of the given query. Its main idea is that the
preorder (postorder) value of each node of a user’s query is less (greater) than that
of the target node of the user’s query. Figure 4 shows the pruning algorithm that
eliminates the unsuitable (PRE, POST) pairs of a user’s query.

Input : a user’s query

Output : suitable (PRE, POST) values of the target node of the query

BEGIN

1. for each (PREtn, POSTtn) value of projection node of the query

2. { for (PREstep, POSTstep) value of each step of the query

3. If (!(PREstep < PREtn and POSTstep > POSTtn))

4. break;

5. suitable_(PRE, POST) set := (PREtn, PREtn)

6. }

END

Fig. 4. The Prune-TNs Algorithm

4.3 ACR-FINDER Component

The objective of ACR-FINDER (ACR-F) component is to extract the necessary
ACRs out of the ACRs database. Recall Q1 as shown in Section 4.2. By the QA,
the (PRE, POST) value of the target node phone is (27, 24). As shown in Fig-
ure 5(a), namely, the PRE/POST plane of ACRs, only R2 is necessary for Q1 be-
cause the target node of R2 has an ancestor relation to that of Q1. R1 and R5
(R3, R4, R6, and R7) are a preceding (following) relation of the query. They are

An Efficient Yet Secure XML Access Control Enforcement 281

Input: (PrQ, PoQ) := QA(query), ACRs
Output: suitable ACRs’
BEGIN
for each rule R1 in ACRs
if ((PrQ PrR1 and PoQ PoR1) or // ACENSTOR
(PrQ PrR1 and PoQ PoR1)) // DESCENDANT
ACRs’:= R1;
END

ancestor

preceding descendant

following

PRE/POST of a query Q1

(27, 24)

PRE of DTD

POST of DTD

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

R6ancestor

preceding descendant

following

PRE/POST of a query Q1

(27, 24)

PRE of DTD

POST of DTD

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

R6

PRE of DTD

POST of DTD

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

PRE of DTD

POST of DTD

12 10 20 30 …

1
2

10

20

30

38

50

…

R1

R1

R2

R3
R4, R7

R5

R5

R6

(a)

(b)

Fig. 5. (a) Semantics of PRE/POST Plane of Positive ACRs, (b) The ACR-FINDER
Algorithm

identified as unnecessary ACRs for Q1. Figure 5(b) shows the ACR-FINDER
algorithm which finds descendant-or-self (or ancestor-or-self) ACRs that corre-
spond to a user’s query.

4.4 QUERY EXECUTOR Component

The goal of the QUERY EXECUTOR (QE) is to make a safe query by extend-
ing/eliminating query tree nodes and combining a set of nodes by the operators.
Before describing our method in detail, we give sample queries as follows:

(Q2): /site/people/person/creditcard/
(Q3): //open auction[@id<100]
A user’s query passed by the ACR-F may be classified into three relations as

compared to an ACR: SELF, ANCESTOR, and DESCENDANT.
Beforedescribing theprocess of theQE,we introduce two functions: theREFINE

and PREDICATE functions. The REFINE function focuses on replacing a wild
card ”*” with an actual node name (element tag) and removing superfluous ”//”
axes.

For example, the REFINE function gets the XPath expression:
/site/regions/*/item.
Since the (PRE, POST) value set of the target node (item) of the XPath is (3, 8)

and (13, 18), the REFINE function begins first (3, 8). In the reverse order, once the
REFINE function meets the ”*” node, it obtains item before the node. The (PRE,
POST) value of item is (3, 8). The REFINE function gets the parent node (asia) of
the item as shown in Figure 1(b). Finally, the REFINE function gives the output
/site/regions/asia/item. In the case of (13, 8) value, the REFINE function results
in /site/regions/america/item.

Another example is /site/people//name. Although the (PRE, POST) value set
of the target node (name) of the XPath is (8, 4), (18, 14) and (25, 22), only (25,
22) is selected by the Prune TNs alogorthm. Once the REFINE function meets
the ”//” node, it obtains name before the node and the next node (people). As
shown in Figure 1(b), each LEVEL of name and people is 3 and 1, respectively.
LEV ELname − LEV ELpeople = 2. In this case, it is the same as people/*/name.
Finally, the REFINE function results in /site/people/person/name.

282 C. Byun and S. Park

In addition, we introduce the PREDICATE function. From the query rewrit-
ing point of view, it is desirable to keep the predicate’s position of a user’s query or
ACRs in the process of refining the user query. At compile time, each predicate con-
tent andposition information of theACRs is stored in thePREDICATES database
as shown in Figure 3(b). When the QE prompts the REFINE function, the latter
subsequently prompts the PREDICATE function which adds predicates of ACRs
into the user’s query. The PREDICATE function also considers some optimiza-
tions in Figure 6. We think that the optimization between a query and a negative
ACR is the same with the negative ACR. In the future, we will consider some other
optimizations.

[@id < “3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

[@id = “3”][@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

[@id > “1” and @id < ”3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

reject[@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

OptimizationPredicate of a
negative ACR

Predicate of a
positive ACR

Predicate of
a query

[@id < “3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

[@id = “3”][@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

[@id > “1” and @id < ”3”][@id < “3”][@id > “1”]

[@id > “3”][@id > “3”][@id > “1”]

reject[@id = “3”][@id = “1”]

[@id = “1”][@id = “1”][@id = “1”]

OptimizationPredicate of a
negative ACR

Predicate of a
positive ACR

Predicate of
a query

Fig. 6. Examples of the Optimizations of Predicates

Weomit the algorithms of theREFINE function and thePREDICATE function
for brevity’s sake.

Step 1. (Handling negative ACRs)
– Case 1.1 (SELF). SELF means that the (PRE, POST) pair of a user’s query

is equal to that of an ACR. If a user’s query is SELF related to a negative ACR,
the output of the QE is that the query is rejected. The (PRE, POST) pair ofQ2
is (28, 25). As shown in Figure 3(b), R6 (in the negative ACRs database) has
a value of (28, 25). In this case, the QE rejects Q2. However, when predicates
exist in negative ACRs, the output range part of the user’s query is disallowed
to access. As a result, the QE transforms the query except the region of the
negative ACR.

– Case1.2(DESCENDANT).DESCENDANTmeans that thepreorder (pos-
torder) value of a user’s XPath query is greater (less) than that of an ACR,
respectively. As a result, it is similar to Case 1.1.

– Case 1.3 (ANCESTOR). ANCESTOR means that the preorder (postorder)
value of a user’s query is less (greater) than that of an ACR, respectively. If a
user’s query is ANCESTOR related to a negative ACR, the QE rewrites the
query except the region of the negative ACR. For example, Q3 (30, 38) is AN-
CESTOR related to R7 (33, 31) by the ACR-FINDER algorithm. Thus, the
QE prompts the REFINE function, then Q3 is transformed as follows:
Q3’ : Q3 EXCEPT
(/site/open auactions/open auction[@id>50]/seller[@person=”chang”]).
Then R4 (go to Step 2) should be taken for granted.

An Efficient Yet Secure XML Access Control Enforcement 283

– Case 1.4 (Null). If any negative ACR does not exist against a user’s query,
the QE proceeds to Step 2.

Step 2. (Handling positive ACRs)

– Case 2.1 (SELF). If a user’s query is SELF related to a positive ACR, the QE
prompts the REFINE function.

– Case 2.2 (DESCENDANT). It is similar to Case 2.1.
– Case 2.3 (ANCESTOR). If a user’s query is ANCESTOR related to some

positive ACRs, the user’s query may contain the unsafe parts of an XML docu-
ment. Thus, the user’s query should be transformed into a safe query. Q3 (30,
38) is also ANCESTOR related to R4 (33, 31). First, the QE prompts the RE-
FINE function whose output is
/site/open auctions/open auction[quantity][@id<100]/seller .
Second, the QE combines the refined query of positive ACRs with that of neg-
ative ACRs as shown in Case 1.3 of Step1 by injecting the EXCEPT operator
between them:
(/site/open auctions/open auction[quantity][@id<100]/seller)
EXCEPT
(/site/open auactions/open auction[@id>50]/seller[@person=”chang”])

4.5 Comparison with QFilter

In this section, we point out the QFilter’s mistake from the query rewriting point
of view. After checking the DTD as shown in Figure 1(a), we found that the rewrit-
ten query of Q3 generated by the QFilter is wrong. Without any metadata support
from the DTD (i.e., order information among elements), if a user’s query contains
//-child and a sharedNFA does not contain /-child or //-child state, the navigation
of the shared NFA runs to each final state. If answer model is ”answer-as-nodes”,
the query is rejected.However, if answermodel is ”answer-as-subtrees”, theQFilter
appends //-child to each final state. As a result, the output may be an incorrectly
rewritten query as follows:

((/site/regions/*/item[@location=”LA”]//open auction[@id<100]) UNION
(/site/people/person[name=”chang”]//open auction[@id<100])UNION
(/site/open auctions/open auction[@id<100]) UNION
(//open auction[quantity][@id<100]/seller))
EXCEPT
((/site/regions/*/item/payment//open auction[@id<100])UNION
(/site/people/person/creditcard//open auction[@id<100]) UNION
(/site/*/open auction[@id<100 and @id>50]))

5 Experiments

We compared the performance of our SQ-Filter with QFilter [10] according to syn-
tactic data sets generated by the publicly available XMark [12]. We present two

284 C. Byun and S. Park

experiments4 based on this implementation. To estimate the effectiveness and effi-
ciency of the SQ-Filter system, we generated 26 ACRs (8 positive and 18 negative)
for each experiment.

We implemented theQFilter, SQ-Filter, andSQ-NFA(combiningSQ-Filterwith
the NFA technique) in the Java programming language using the Eclipse v.3.1.1
development tool.

First, using random 100 XPath queries for each query type, we measured the
number of rejecting query. A rejection query refers to a user’s query which is al-
ways denied. The result is shown in Figure 7(a). From this, we can observe that the
QFilter’s rejection rate of queries with the ”//” axis is not 100%. In particular, the
QFilter’s rejection rate of queries starting with the ”//” axis is 0%.

Second, we measured each average processing time for the output (rejection,
rewritten query) per 30, 50, 100, 200, 300, and 500 random queries, accordingly.
By the ACR-F in Section 4.3, the SQ-Filter and the SQ-NFA use ACRs less than
the QFilter. In addition, The SQ-Filter and the SQ-NFA can rewrite queries faster
with the ”*” wildcard and the ”//” axis. The result is shown in Figure 7(b). From
this, we can also see that the SQ-Filter and the SQ-NFA can better degrade the
processing time than the QFilter.

Fig. 7. (a) The number of rejecting prohibited queries corresponding to various query
types, (b) Processing time of the security check on XPath queries

6 Conclusion

The SQ-Filter system for XML access control enforcement described in this paper
exploits the tree properties encoded in the PRE/POST plane to eliminate unnec-
essary access control rules for a user’s query, and to reject unauthorized queries

4 The experiments were performed on a Pentium IV 2.66GHz platform, with an MS-
Windows XP OS and 1 GB of main memory.

An Efficient Yet Secure XML Access Control Enforcement 285

ahead of rewriting. In addition, the SQ-Filter system exploits the simple hash tree
of a DTD to find a parent node of a node with the descendant-or-self axis (”//”),
and to rewrite an unsafe query into a safe one by receiving help fromoperators com-
bining the two sets of node. We note that our work is the very first to explore this
important area of secure yet efficient access of XML data using only the necessary
access control rules of a user in an XML document.

In the future, we will plan to add update operations in the SQ-Filter system.

Acknowledgements

This work was supported by grant No. (R01-2006-000-10609-0) from the Basic Re-
search Program of the Korea Science and Engineering Foundation.

References

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensi-
ble Markup Language (XML) 1.0, World Wide Web Consortium (W3C), 2004.
(http://www.w3.org/TR/REC-xml)

2. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Ro-
bie, and J. Siméon. XPath 2.0, World Wide Web Consortium (W3C), 2005.
(http://www.w3.org/TR/xpath20/)

3. E. Damiani, S. Vimercati, S. Paraboachk and P.Samarati, ”A Fine-grained Access
Control System for XML Documents”, ACM Trans. Information and System Sec.,
Vol.5, No.2, May 2002.

4. E. Bertino, S. Castano, E. Ferrari, M. Mesiti, ”Specifying and Enforcing Access Con-
trol Policies for XML Document Sources”, WWW Journal, Baltzer Science Publish-
ers, Vol.3, N.3, 2000.

5. E. Bertino, S. Castano, E. Ferrai, ”Securing XML documents with Author-x”, IEEE
Internet Comput-ing, May.June, pp.21-31, 2001.

6. A. Gabillon and E. Bruno, ”Regulating Access to XML Documents”, In Proc. IFIP
WG11.3 Working Conference on Database Security, 2001.

7. T. Grust, ”Accelerating XPath Location Steps”, In Proc. of the 21st Int’l ACM SIG-
MOD Conf. on Management of Data, pages 109-120, Madison, Wisconsin, USA, June
2002.

8. T. Grust, M. van Keulen, and J. Teubner, ”Staircase Join: Teach a Relational DBMS
to Watch its Axis Steps”, Proc. of the 29th VLDB Conference, Berlin, Germany,
September 2003.

9. M. Murata, A. Tozawa, and M. Kudo, ”XML Access Control using Static Analysis”,
In ACM CCS, Washington D.C., 2003.

10. B. Luo, D. W. Lee, W. C. Lee, P. Liu, ”Qfilter: Fine-grained Run-Time XML Ac-
cess Control via NFA-based Query Rewriting”, In Proc. of the Thirteenth ACM Con-
ference on Information and Knowledge Management 2004 (CIKM’04), November 8,
2004, Washington, USA.

11. S. Mohan, A. Sengupta, Y. Wu, J. Klinginsmith, ”Access Control for XML- A Dy-
namic Query Rewriting Approach”, Proc. of the 31st VLDB Conference, Trondheim,
Norway, 2005.

12. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and
R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI, April
2001.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 286 – 296, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Detecting Information Leakage in Updating
XML Documents of Fine-Grained Access Control

Somchai Chatvichienchai1 and Mizuho Iwaihara2

1 Dept. of InfoMedia, Siebold University of Nagasaki, Nagasaki, Japan
somchaic@sun.ac.jp

2 Dept. of Social Informatics, Graduate School of Informatics, Kyoto University,
Kyoto, Japan

iwaihara@i.kyoto-u.ac.jp

Abstract. To provide fine-grained access control to data in an XML document,
XML access control policy is defined based on the contents and structure of the
document. In this paper, we discuss confidential information leakage problem
caused by unsecure-update that modifies contents or structures of the document
referred by the access control policy. In order to solve this problem, we propose
an algorithm that computes update constraints of a user on some data in the
document under access control policy of the user. We also propose an algorithm
that decides whether a given update request of a user against an XML document
is an unsecure-update under the user’s access control policy.

1 Introduction

XML [11] is rapidly gaining popularity as a mechanism for sharing and delivering
information among businesses, organizations, and users on the Internet. The need of
protecting confidential data in XML documents is becoming more and more impor-
tant. A number of XML access control models are proposed in the literature [1, 4, 7].
Recently XACML [8] has been approved by OASIS as a standard access control
markup language for XML documents. To provide fine-grained access control to data
in XML document, these models use path expressions of XPath [12] for locating
sensitive nodes in XML documents. The identification of a sensitive node is no longer
restricted to the value of the node itself but depends on the context, the form of the
path (from the root node to that node) and the children/descendants of that node.
Hence definition of access authorization rules (authorization rules, for short) is
strongly related to the node values and the structural relationship between nodes of
XML documents. Updating XML data is still a research issue [10, 2]. In [10], a set of
basic update operations for both ordered and unordered XML data is proposed. The
authors describe extensions to the proposed standard XML query language, XQuery
[13], to incorporate the update operations. In [2], the authors have proposed an infra-
structure for managing secure update operations on XML data. Each subject in the
collaborative group only receives the symmetric key(s) for the portion(s) he/she is
enabled to see and/or modify. Additionally, attached to the encrypted document, a
subject receives some control information, with the purpose of making him/her able to
locally verify the correctness of the updates performed so far on the document, with-
out the need of interacting with the document server.

 Detecting Information Leakage in Updating XML Documents 287

Motivating Scenarios: Consider the sample XML document of Fig.1(a) that is stored
at a database server. Suppose that Jane is allowed to maintain information of members
of sales teams which take care of zones whose area codes are less than 20. Jane is not
allowed to access wage information of a member whose position is chief. Based on
this security requirement, the security manager defines authorization rules shown in
Fig.1(b) for Jane. R1 states that Jane is allowed to read/write data of the subtree
rooted by sales_teams node of sales_teams.xml. R2 states that Jane is not allowed to
read/write wage data of the team members whose positions are ‘chief’. Based on the
authorization rules of Fig.1(b), the view over sales_teams.xml for Jane is shown at
Fig.2(b).

Information Leakage Problem by Update Operation: Jane can read Sara’s wage to
which she is not allowed to access by issuing an update request modifying position
value of Sara from “chief” to “salesperson” and requesting the server to send her the
view over the updated sales_teams.xml.

Information Leakage Problem by Append Operation: Jane can read information
of Jack to which she is not allowed to access by issuing an update request that ap-
pends another area node of value “10” after the area node of value “20” and request-
ing the server to send her the view over the updated sales_teams.xml.

R1: <Jane, sales_team.xml, /sales_team, rw, + >
R2: <Jane, sales_team.xml, //member[position= chief]/wage, rw, – >
R3: <Jane, sales_team.xml, /sales_team[zone/area /members, rw, – >
R4: <Jane, sales_team.xml, /sales_team[zone/area //member, rw, + >

(a) An example of an XML document (sales_teams.xml).

(b) Authorization rules of Jane.

Fig. 1. An example of a sample XML document and sample authorization rules

In aspect of security control, data update of users should not result in these confi-
dential information leakage problems. These problems arise because there is no au-
thorization rule denying Jane to modify/append the data referred by the predicates of
path expression of authorization rules. To the best of our knowledge, there is no pre-
vious work discussing this problem. The objective of this paper is to propose a tech-
nique that decides whether a given update request against an XML document will not
cause the information leakage problem. In order to simplify our solution, the infer-
ence problem [14] is not in the scope of this paper.

288 S. Chatvichienchai and M. Iwaihara

The contribution of this paper is summarized as follows:

1. We define properties of secure remove, append, and change operations that will
not cause the information leakage problem.

2. Given an XML document tree and access control policy of a subject, we show a
polynomial-time algorithm that computes security labels enforcing sufficient up-
date constraints to prevent the information leakage problem.

3. Given an XML document tree with security labels, access control policy of a sub-
ject and an update request on the document tree, we show a polynomial-time algo-
rithm that decides whether an update request of the subject can be permitted under
the access control policy and will not cause the information leakage problem.

The rest of the paper is organized as follows. In Section 2, we give formal defini-
tions of XML tree, tree patterns, tree embedding, authorization rules and update re-
quests. Section 3 presents a formal definition of the problem. In Section 4, we present
an algorithm that computes security labels that impose update constraints in depth. An
algorithm deciding whether a given update request is not unsecure-update is also
presented. Finally, the last section concludes this paper.

2 Basic Concepts and Definitions

2.1 Trees, Tree Patterns and Tree Embedding

We view an XML document as an unordered tree. Each node in the tree corresponds
to an element, attribute or value. The edges in the tree represent immediate element-
subelement or element-value relationships. Attribute nodes and text values can be
handled similarly to element nodes.

Definition 2.1 (XML Trees): An XML tree is a tree t = <Vt, Et, rt> over an infinite
alphabet , where Vt is the node set and Et is the edge set; rt ∈ Vt is the root of t; and
each node v in Vt has a label (denoted as labelt(v)) from .

We assume that each text node is labeled with its textual value. In this paper, we dis-
cuss a fragment of XPath, called Simple XPath, which can be generated by the follow-
ing grammar (‘ε’ is the empty path, ‘l’ is a label for element or attribute name, and ‘c’
is a string constant):

(Simple xpath) p ::= ε | l | /p | //p | p1/p2 | p1//p2 | p[q]
(Qualifier) q ::= p | p θ c
(Comparison operator) θ ::= < | ≤ | = | ≥ | >

The above simple XPatoh expressions can be represented by the following tree
patterns.

Definition 2.2 (Tree Patterns): A tree pattern p is a tree <Vp, Ep, rp, op, cp> over ,
where Vp is the node set and Ep is the edge set. Each node v in Vp has a label from ,
denoted as labelp(v). rp, op ∈ Vp are the root and output node of p respectively. cp is a
labelling function assigning a symbol from {‘<’, ‘≤’, ‘=’, ‘≥’, ‘>’} to a text node.

 Detecting Information Leakage in Updating XML Documents 289

We present a child edge with a single line and present a descendant edge with a dou-
ble line. For example, an XPath query members[//name=“Sara”]//position is
represented as a tree pattern shown in Fig. 2(a), where the double circle node denotes
the output node. In order to compute XPath expressions without knowledge of DTD
of the XML tree, we assume that tree patterns of XPath expressions of authorization
rules have the following properties: For the leaf node whose type is an element or
attribute, the edge between the leaf node and its parent nodes is a child-edge. For the
leaf node whose type is a text node, the edge between its parent node v and the parent
of v is a child-edge.

If an XML tree has nodes that are satisfied by a tree pattern, all nodes of the tree
pattern must have a corresponding matching node in the XML tree, and each prede-
cessor-successor relationship of nodes in the tree pattern should be guaranteed by
those in the XML tree. This is also known as the tree embedding. The following defi-
nition of tree embedding is inspired by the unordered path inclusion defined in [6].

Fig. 2. Embedding of the tree pattern p on the view v

Definition 2.3 (Tree Embedding): Given an XML tree t = <Vt, Et, rt> and a tree
pattern p = <Vp, Ep, rp, op, cp>, an embedding from p to t is a function emb: Vp Vt,
with the following properties for every x, y ∈ Vp:

 Label-preserving: ∀x ∈ Vp, labelp(x) = labelt(emb(x));
 Structure-preserving: ∀e = (x, y) ∈ Ep, if labelp(e) = ‘/’, emb(y) is a child of

emb(x) in t ; otherwise, emb(y) is a descendent of emb(x) in t; and
 Value-matching: ∀x∈Vp where emb(x)∈Vt is a text node, the Boolean expres-

sion: labelt(emb(x)) cp(x) labelp(x) is true.

Let t = <Vt, Et, rt> be an XML tree, p = <Vp, Ep, rp, op> be a tree pattern, emb: Vp
Vt be an embedding from p to t. We denote by η(t, p, emb) = {vi∈Vt | emb(vj) = vi and
vj∈Vp} the set of nodes of t mapped from p by emb. We also denote by τ(t, p) = {vi∈
Vt | ∃vk∈p(t) (vi = emb(vk) or vi is a descendant of emb(vk))} the node set of the sub-
trees rooted by p(t). Furthermore, we define that the result of evaluating an empty

290 S. Chatvichienchai and M. Iwaihara

pattern ε over any XML tree is an empty tree. Figure 2 depicts the embedding of p
over XML tree t.

2.2 Authorization Rules

We use the term access control policy for a set of authorization rules. Each authoriza-
tion rule has the following format: <subject, doc-id, path, priv, sign>, where subject is
a user name, a user group, or a role[9]; doc-id denotes an XML document identifier;
path denotes a path expression of XPath identifying nodes within the XML document;
priv is either read denoted by r or read/write denoted by rw; and sign ∈ {‘+’, ‘–’},
where ‘+’ denotes grant and ‘–’ denotes denial. Authorization specified on a node is
propagated to its all descendant nodes. The possibility of specifying authorization
with different sign introduces potential conflicts among authorization rules. Here, the
conflict resolution of the model is based on the following policies:

 Descendant-take-precedence: An authorization rule specified at a given level in
the document hierarchy prevails over the authorization rules specified at higher
levels; and

 Denial-take-precedence: In case conflicts are not solved by descendant-take-
precedence policy, the authorization rule with negative sign takes precedence.

Table 1. Necessary privileges for executing an update request

op content Necessary privilege
The remove operation
allows the subtrees rooted
by the selected context
nodes to be removed.

 The read/write privileges on the
selected context nodes and all of
their descendant nodes.

The append operation
appends a new node as a
child of the context node.

Element name, attribute
name, or textual value of
the new node.

The read privilege on the selected
context node. The read/write
privilege on the new node.

The change operation
allows the text node of the
selected context node to
be changed.

The new textual value. The read/write privileges for
removing the selected context
node. The read/write privilege on
the new node.

2.3 Update Requests

We give a definition of an update request as follows: <subject, op, doc-id, path, con-
tent>, where subject is a user name, a user group or a role; op is remove, append, or
change operation; doc-id is an XML document identifier; path denotes a path expres-
sion of XPath identifying the context nodes within the XML tree; and content denotes
either (i) name of an element / attribute, or (ii) textual value of the node to be written.
Table 1 explains details of the op argument of an update request and necessary privi-
leges of a subject for executing the operation. In this paper, for simplicity we assume
that the documents before and after update hold the same doc-id.

 Detecting Information Leakage in Updating XML Documents 291

3 Problem Formulation

In order to solve the information leakage problem, we need to impose update con-
straints on the nodes and structural relationship between nodes that are referred by
path expressions of negative authorization rules. Therefore, we need to compute an
authorization type (positive or negative) of the subject on nodes of the XML tree.
Read and write privileges of the subject on node v∈Vt under an access control policy
A, denoted by readA(v) and writeA(v), respectively; where values of readA(v) and
writeA(v) are ‘+’ or ‘–’. In Section 4, we will explain how to compute readA(v) and
writeA(v). We define tree-mapping used to denote how a node of an XML tree before
update is mapped to that of XML tree after update as follows.

Definition 3.1 (Tree Mapping): Let t be an XML tree before update and t' be the
XML tree after executing update u. Let Nt be the node set of t, and Nt' be the node set
of t'. tmapu: Nt Nt' is a mapping from Nt to Nt'.

Definition 3.2 (Unsecure-Update Request): Let Nt be the node set of XML tree t
before update, and Nt' be the node set of XML tree t' after executing update u of sub-
ject s, and tmapu: Nt Nt' is a mapping from Nt to Nt' by u. u is an unsecure-update
request under access control policy A of subject s if there exist v∈Nt and v′∈Nt' such
that v' =imapu(v) and readA(v) = ‘−’ and readA(v′) = ‘+’.

For example, information leakage by update request u: <Jane, change,
sales_teams.xml, //member[name=“Sara”]/position, “salesperson”> occurs under
access control policy A = {R1, R2, R3, R4} because wage of Sara which is confiden-
tial information becomes readable by Jane after executing u.

We use the following notations for defining properties of remove, append and
change requests which are secure update requests.

Definition 3.3 (Relevant Node Set): Let t be an XML tree, Path = {p1, p2, .., pm} be
a set of path expressions of authorization rules of access control policy A, and embi be
an embedding from pi to t. Relevant node set of t under Path, denoted by RelNode(t,
Path), is defined as follows:

RelNode(t, Path) = {v | v∈η(t, pi, embi), pi∈ Path, i=1,..,m}, where
η(t, pi, embi) is the set of nodes of t mapped from pi by embi.

Lemma 1 (Secure Remove Request): Let t be an XML tree, A be an access control
policy of subject s on t. Let Path− be the set of path expressions of authorization rules
with negative sign, and RelNode(t, Path−) be the relevant node set of t under Path−. <s,
“remove”, t, p, > is a secure update request under A if the following conditions hold:

• ∀v∈τ(t, p) writeA(v) = ‘+’, where τ(t, p) is the node set of the subtrees rooted by
p(t); and

• p(t) ∩ RelNode(t, Path−) = ∅.

Due to space limitation, all proofs are presented at [3].

Definition 3.4 (Relevant Paths): Let t = <Vt, Et, rt> be an XML tree, and <s, “ap-
pend”, t, p, content> be an append request. Let Path = {p1, p2, .., pm} be a set of path

292 S. Chatvichienchai and M. Iwaihara

expressions of authorization rules of access control policy A. Relevant paths of p for
appending content under A, denoted by RelPath(p, content, A), is the subset Q of Path
where each q∈Q holds one of the following properties:

(i) q has a text node v s.t. the Boolean expression: labelt(v) cq(v) content (where
cq(v) ∈ {‘<’, ‘≤’, ‘=’, ‘≥’, ‘>’}) is true and the parent node of v has the same
label as that of the parent of the output node of p, or

(ii) q has a leaf node v of element or attribute type s.t. labelt(v) = content and the
parent node of v has the same label as that of the parent of the output node of p

We denote SubRelPath(p, content, A) the set of path expressions computed from
path expressions of RelPath(p, content, A) by deleting node v of the above property.

Lemma 2 (Secure Append Request): Let t = <Vt, Et, rt> be an XML tree, A be an
access control policy of subject s. Let A− and A+ be the set of authorization rules with
negative sign and positive sign, respectively, where A− ∪ A+ = A. <s, “append”, t, p,
content> is a secure append request under A if the following conditions hold:

(1) ∀v∈p(t) readA(v) = ‘+’ ;
(2) One of the following conditions hold:

2.1 ∀v∈ p(t), writeA(v) = ‘+’ ; or
2.2 ∃q+∈SubRelPath(p, content, A+) s.t. q+(t) ⊇ p(t);

(3) ¬∃q−∈SubRelPath(p, content, A−) s.t. q−(t) ∩ p(t) ∅; and
(4) p(t) ∩ RelNode(t, SubRelPath(p, content, A+)) = ∅.

Lemma 3 (Secured Change Request): Let t be an XML tree, A be access control
policy of subject s. Let A− and A+ be the set of authorization rules of subject s with
negative sign and positive sign, respectively, where A− ∪ A+ = A, and RelNode(t, A−)
be the relevant node set of t under A−. <s, “change”, t, p, content> is a secure update
request under A if the following conditions hold:

(1) ∀v∈ p(t) writeA(v) = ‘+’;
(2) ∃q+∈SubRelPath(p, content, A+) s.t. q+(t) ⊇ p(t);
(3) ¬∃q−∈SubRelPath(p, content, A−) s.t. q−(t) ∩ p(t) ∅; and
(4) p(t) ∩ RelNode(t, SubRelPath(p, content, A+)) = ∅.

4 An Approach to Detecting the Information Leakage Problem

We now present the LabelTree algorithm which computes necessary security labels of
nodes of a given XML tree t = <Vt, Et, rt> under a given access control policy A of a
subject. There are two types of security labels: read label and write label. Read label
of node v under A, denoted by rlbl(v), has one of the following values: ‘+R’, ‘-R’, and
φ where ‘+R’ denotes permitting read on the subtree rooted by v, ‘-R’ denotes deny-
ing read on the subtree rooted by v, and φ denotes no label. The write label set of node
v under A, denoted by wlbl(v), has the following values: ‘+W’, ‘-W’, ‘-w’ and φ,
where ‘+W’ denotes permitting write on the subtree rooted by v, ‘-W’ denotes deny-
ing write on the subtree rooted by v, and ‘-w’ denotes denying write on v.

 Detecting Information Leakage in Updating XML Documents 293

4.1 Security Label Computing Algorithm

As shown in Fig. 3, for each authorization rule Ri of A, Step4 through Step11 of La-
belTree assign read and write labels to the nodes addressed by pathi of Ri. If sign of
the authorization rule is negative, Step13 through Step16 of LabelTree also assign ‘-
w’ to the nodes of t mapped from nodes of tree pattern of pathi in order to prevent the
confidential information leakage problem. As depicted in Fig. 4, LabelTree generates
write label ‘-w’ for the nodes that are mapped from tree pattern p depicted in Fig. 2(b)
by tree embedding so that Jane is not allowed to modify names/values of these nodes
and structural relationship among these nodes. For simplicity, φ which denotes no
label is not shown in Fig.4.

Fig. 3. The LabelTree Algorithm

Theorem 1: Given an XML tree t = <Vt, Et, rt>, an access control policy A = {R1, R2,
.., Rn} for subject s, where Ri = <s, doc-idi, pi, privi, signi>, LabelTree computes secu-
rity labels for document nodes of t in O(|t|2•|A|) where |t| is the size of t and |A| is the
number of authorization rules of A.

Proof: Gottlob et al. [5] have proposed the linear-time algorithms for XPath process-
ing by using a form of dynamic programming. Based on this, computation of the node
set satisfied by the XPatterns [5], which covers our simple XPath expression, is proc-
essed in time O(|t|•|p|), where |t| denotes the size of the XML document tree and |p| is

Algorithm LabelTree (t, A)
Input: 1. XML tree t = <Vt, Et, rt>, and

2. Access control policy A = {R1, R2, .., Rm} of subject s on t.
Output: XML tree t with security labels.
Method:
Step1: Initialize read and write labels of each v ∈Vt with φ.
Step2: For each Ri = <s, doc-idi, pathi, privi, signi> ∈ A, where 1 i m do {
Step3: Let p be the tree pattern of pathi. Compute p(t).
Step4: For each uk ∈ p(t) do {
Step5: If (privi = ‘r’ or privi = ‘rw’) then
Step6: If (signi = ‘+’) and (rlbl(uk) = φ) then rlbl(uk) = ‘+R’
Step7: Else If signi = ‘-’ then rlbl(uk) = ‘-R’ /* denial-take-precedence*/
Step8: If (privi = ‘w’ or privi = ‘rw’) then
Step9: If (signi = ‘+’) and (wlbl(uk) = φ) then wlbl(uk) = ‘+W’
Step10: Else If signi = ‘-’ then wlbl(uk) = ‘-W’ /* denial-take-precedence*/
Step11: Else If signi = ‘+’ and ‘-W’ ∉ wlbl(uk) then wlbl(uk) = wlbl(uk) ∪ ‘+W’
Step12: If signi = ‘-’ then {
Step13: Let embk be the embedding from p = <Vp, Ep, rp, op> to t, where uk = embk(op).
Step14: For each v ∈ Vp and v op do
Step15: /* update constraint for preventing information leak of uk */
Step16: If ‘-W’ ∉ wlbl(uk) then wlbl(embk(v)) = wlbl(embk(v)) ∪ ‘-w’

 }
 }
 }

Step17: return t.

294 S. Chatvichienchai and M. Iwaihara

the size of the query. The complexity of step3 is O(|t|•|p|•|A|). The complexity of step4
thru step16 is O(|p|•|p(t)|•|A|). Since |p| and |p(t)| can be as big as |t|, the complexity of
LabelTree is bounded by O(|t|2•|A|).

Fig. 4. The XML tree after labeling read/write security labels by the LabelTree
algorithm

Now we explain how to compute readA(v) and writeA(v) of subject s on document
node v of XML tree t from the read and write labels of t. readA(v) is determined by the
following criteria.

• In case rlbl(v) ≠ φ, readA(v) is the sign of rlbl(v).
• In case rlbl(v) = φ, readA(v) is the sign of ‘+R’ or ‘-R’ of the nearest ancestor

node of v.

writeA(v) is determined by the following criteria.

• In case ‘-w’∈wlbl(v) or ‘-W’∈wlbl(v), writeA(v) is equal to ‘-’
• In case wlbl(v) = {‘+W’}, writeA(v) is equal to ‘+’.
• In case wlbl(v) = φ, writeA(v) is the sign of ‘+W’ or ‘-W’ of the nearest ancestor

node of v.

For example, write privilege of Jane on text node (whose value is “Sara”) is ‘+’
which is determined by the sign of ‘+W’ of sales_teams node.

Based on the read labels computed from access control policy A, the view for sub-
ject s on XML tree t can be computed by the following criteria. Node v of t can be
pruned out from t if one of the following conditions holds.

• v is a leaf node and readA(v) = ‘-’; or
• v is not a leaf node and each node v′ of the subtree rooted by v has readA(v′) = ‘-’.

By the above criteria, we need not to rewrite an XPath query of the subject on the
view to match the original structure of the underlying document tree.

4.2 Update Request Checking Algorithm

Given an access control policy A of a subject s, and XML tree t with security labels
computed by LabelTree and an update request updreq of s on t, we propose the algo-
rithm UpdReqCheck (see Fig. 5) that decides whether updreq on t can be permitted

 Detecting Information Leakage in Updating XML Documents 295

under A without the confidential information leakage problem. The main idea is that
UpdReqCheck first checks if all data used to evaluate p(t) of the update request is in
the view of subject s. By checking the properties of the update request, UpdReqCheck
decides whether subject s has privilege to execute updreq and updreq is not an unse-
cure update request.

Fig. 5. The UpdReqCheck algorithm

Theorem 2: Given an XML tree t = <Vt, Et, rt> with security labels, access control
policy A of s on XML tree t, and an update request updreq <s, op, doc-id, p, content>,
UpdReqCheck decides whether updreq is not an unsecure update request under A in
O(|t|2•|p|•|A|), where |t| is the size of t, |p| is the size of query of updreq, |A| is the num-
ber of authorization rules of A.

Proof: Computation of p(t) at Step2 can be done in O(|t|•|p|). Step3 is processed |p(t)|
times. Time complexity of processing Step3 and Step9 is bounded by O(|t|•|p|•|A|•|p(t)|).
As total time complexity of step2 thru step9 is O(|t|•|p|+|t|•|p|•|A|•|p(t)|) and |p(t)| can be
as big as |t|, time complexity of UpdReqCheck is bounded by O(|t|2•|p|•|A|).

Algorithm UpdReqCheck (t, A, updreq, Permit)
Input:
 1. XML tree t = <Vt, Et, rt> with read and write labels,
 2. Access control policy A of subject s on t, and
 3. Update request updreq of s on t, where updreq = <s, op, doc-id, p, content>.
Output:

 Permit = TRUE if the update request should be permitted, FALSE otherwise.
Method:

Step1: Let A− and A+ be the sets of authorization rules with negative sign and positive
sign, respectively, where A− ∪ A+ = A. Path− and Path+ be the sets of path ex-
pressions of A− and A+, respectively. Permit = FALSE.

Step2: Compute p(t).
Step3: For each vi ∈ p(t) do {
Step4: /* Check if all document nodes mapped from p by embedding is

 in the view of subject s */
Step5: Let embi be the embedding from p to t such that vi is mapped to

 the output node of p.
 If (∀v∈η(t, p, embi), readA(v) = ‘+’) then {

Step6: If op = ‘remove’ or op = ‘change’ then
Step7: /* Check properties of remove/change request */

 If (∃v∈τ(t, p) writeA(v) = ‘−’) or
 (vi ∈ RelNode(t, Path−) then return Permit.

Step8: If op = ‘append’ or op = ‘change’ then {
 /* Check properties of append/change request */

Step9: If readA(vi) = ‘−’ or writeA(vi) = ‘−’ or
 ¬∃q+∈SubRelPath(p, content, A+) s.t. vi∈q+(t)) or
 ∃q−∈SubRelPath(p, content, A−) s.t. vi∈q−(t) or
 vi ∈ RelNode(t, SubRelPath(p, content, A+)) then return Permit.

 }
 }
 }

Step10: Permit = TRUE.
Step11: return Permit.

296 S. Chatvichienchai and M. Iwaihara

5 Conclusion and Future Work

In this paper, we have presented confidential information leakage problem when
modifying XML documents with fine-grained access control. The problem may occur
when the system allows a user modifying the values or the structural relationship
between document nodes referred by path expressions of the authorization rules. We
have discussed properties of secure append, remove and change operations for XML
documents. Given an XML document tree, access control policy of a subject, we have
proposed the polynomial-time algorithm that decides whether a given update request
against the labeled XML tree is permitted under the subject’s access control policy
and will not cause the information leakage problem. We are going to investigate the
possibility of utilizing DTDs or schemas of XML documents to reduce the complexity
of computing security labels for XML tree and the complexity of deciding whether a
given update request is unsecure.

References

1. E. Bertino, S. Castano, E. Ferrari, M. Mesiti, “Specifying and Enforcing Access Control
Policies for XML Document Sources,” WWW Journal, vol.3, n.3, 2000.

2. E. Bertino, G. Mella, G. Correndo, E. Ferrari. “An infrastructure for managing secure up-
date operations on XML data,” In Proc. of 8th ACM Symposium on Access Control Mod-
els and Technologies (SACMAT03), pp.110-122, 2003.

3. S. Chatvichienchai, “Detecting Confidential Data Disclosure in Updating XML Docu-
ments”, Technical Report No.2006-01, Siebold University of Nagasaki, 2006.

4. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, “A Fine-Grained
Access Control System for XML Documents,” ACM TISSEC, vol. 5, no. 2, 2002.

5. G. Gottlob, C. Koch, and R. Pichler, “XPath Query Evaluation: Improving Time and
Space Efficiency”. In Proc. 19th IEEE International Conference on Data Engineering
(ICDE'03), 379-390, 2003.

6. P. Kilpelainen and H. Mannila. “Ordered and unordered tree inclusion” Siam Journal on
Computing, pp.340-356, 1995.

7. M. Kudo and S. Hada, “XML Document Security based on Provisional Authorization,”
Proc.7th ACM Conf. Computer and Communications Security, pp. 87-96, 2000.

8. OASIS XACML Technical Committee, “eXtensible Access Control Markup Language
(XACML) Version 2.0,” http://www.oasis-open.org/specs/index.php#xacmlv2.0 (Feb 2005).

9. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based Access Control Mod-
els,” IEEE Computer, 29(2), pp.38-47, 1996.

10. I. Tatarinov, G.Z. Yves, A.Y. Halevy, D.S. Weld. “Updating XML”. In ACM SIGMOD
2001, Santa Barbara, California, USA (May 2001).

11. W3C (2000). Extensible Markup Language (XML) 1.0 (Second Edition). Available at
http://www.w3c.org/TR/ REC-xml (Oct 2000).

12. W3C (1999). XML Path Language (XPath) Version 1.0. Available at
http://www.w3c.org/TR/xpath (Nov 1999).

13. W3C (2005). XML Query Language (XQuery) Version 1.0. Available at
http://www.w3.org/TR/xquery/. (Nov 2005).

14. X. Yang, C. Li: Secure XML Publishing without Information Leakage in the Presence of
Data Inference. VLDB 2004: pp.96-107, Toronto, Canada (Aug 2004).

Faster Twig Pattern Matching Using Extended
Dewey ID�

Chung Keung Poon and Leo Yuen

Department of Computer Science
City University of Hong Kong

{ckpoon, leo}@cs.cityu.edu.hk

Abstract. Finding all the occurrences of a twig pattern in an XML
database is a core operation for efficient evaluation of XML queries. Re-
cently, Lu et al. [7] proposed the TJFast algorithm that uses the extended
Dewey labelling scheme and reported better performance compared with
other state-of-the-art holistic twig join algorithms, both in terms of num-
ber of elements scanned and stored during the computation. In this paper,
we designed an enhancement to further exploit the power of the extended
Dewey ID. This reduces the CPU cost and also favors indexed inputs.
Our algorithm can be shown analytically as efficient as TJFast in terms
of worst case I/O, and experimentally performs significantly better.

1 Introduction

An XML document can be naturally modelled as a tree in which nodes represent
XML elements while edges represent nesting between elements. A query in many
important XML query languages such as XPath and XQuery can also be mod-
elled as a tree in which nodes represent node tests in location steps while edges
represent the structural relationships between nodes connected by the edges.
Finding all the occurrences of such tree pattern (a.k.a twig pattern) in an XML
document is a core operation for efficient evaluation of XML queries.

An early approach for the problem proceeds by breaking down the twig pat-
tern into edges representing the required binary structural relationships (e.g.,
parent-child, ancestor-descendant), then applying structural joins to match the
binary relationships against the XML document and finally stitching together
these basic matches. With clever labelling schemes (e.g. region or prefix coding)
for the XML documents, the structural relationships between two nodes can
be determined using only their labels without actually traversing the document
tree. However, the problem of such approach is that the intermediate results can
become very large, independent of the input and output sizes.

Other algorithms such as ViST [10] and PRIX [8] work by serializing the
twig pattern and the XML document into strings and then finding common
subsequences. However, time-consuming postprocessing is needed to remove false
hits and false dismissals from the subsequence matchings.
� This research was fully supported by a grant from the Research Grants Council of

the Hong Kong SAR, China [Project No. 9040906 (RGC Ref. No. CityU 1164/04E)].

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 297–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

298 C.K. Poon and L. Yuen

Another line of development started by Bruno et al. [1] is to recursively build
up the matchings following the structure of the twig pattern. Their algorithm,
TwigStack, is provably optimal for twig queries with only ancestor-descendant re-
lationship under their specific I/O model. Jiang et al. [4] modified and enhanced
TwigStack to TSGeneric+ to favor indexed input data stream and to reduce the
query time by avoiding certain useless recursive calls. Other algorithms along
this line includes the GTwigMerge algorithm of Jiang et al. [3] that deals with
twig pattern with OR-predicates and the TwigStackList algorithm of Lu et al.
[6] which is a look-ahead approach to better handle query twigs with parent-
child edge. It is proved in [2] that no algorithm for twig queries can read the
input stream only once under the model of Bruno et al. when the twig contains
parent-child edges.

All these stack-based algorithms rely on a labelling scheme called region encod-
ing which allows for checking of ancestor-descendant relationship using the labels
of two nodes only. Recently, Lu et al. [7] proposed the extended Dewey labelling
scheme in which one can derive the names of all the elements on the path from
the root to an element given the extended Dewey ID of this element. This unique
feature is essential to their algorithm, TJFast, that requires scanning, by far, the
least number of input elements and storing the smallest amount of intermediate
results among all holistic twig join algorithms under the same I/O model.

In this paper, we observe that TJFast has not yet fully utilized the power of the
extended Dewey labelling. By a small twist to TJFast, we obtain an improved
algorithm which we called TJFaster. Compared with TJFast, our algorithm is
more effective in skipping elements and hence avoids more useless recursive calls.
It also replaces certain root-leaf path matchings by simpler label comparisons.
Further, it fits well on indexed input. We perform a comprehensive experiment
to demonstrate the benefits of our algorithm over the previous one.

The rest of the paper is organized as follow. After stating the problem, model
and some notations in the next section, the extended Dewey ID is given in the sec-
tion 3. This is followed by details of our enhancement and the experimental eval-
uation in section 4 and 5 respectively. The paper is then concluded in section 6.

2 Problem Statement, Model and Notations

In the rest of this paper, “node” refers to a tree node in the query twig pattern
while “element” refers to an element in the XML document. For any node v in
the query tree, we let Pv be the path from the root to v; and Qv be the query
subtree rooted at v together with Pv. The path Pe for element e in the document
tree is similarly defined.

We say that Qv has a matching if there is a mapping of Qv to the document
tree that preserves the node types and structural relations of edges in Qv. A
node v matches an element e if Qv has a matching in which node v is mapped to
e. Let vtb be the top branching node in the query tree, i.e., the branching node
that is an ancestor of all branching nodes in the query tree. Thus, our problem
is to find all the matchings of Qvtb

.

Faster Twig Pattern Matching Using Extended Dewey ID 299

A matching of Q with n nodes (v1, · · · , vn) can be represented as an n-tuple
(d1, · · · , dn) where for 1 ≤ i ≤ n, node vi is mapped to element di in the XML
document in the matching.

Following the model employed in Ref. [1,7], we assume that each leaf f in the
query tree is associated with a stream Tf of all the elements that match the node
type of f , sorted in ascending lexicographical order of their labels. A stream T
supports the get(T) function that reads the “current” element of the stream, the
advance(T) function that moves the stream cursor to the next element and the
eof(T) function that tells if T reaches its end. Initially, the stream cursor points
to the first element of T .

To describe our algorithms, we assume the following functions (whose im-
plementations are straightforward): isLeaf(v) and isBranching(v) determine if a
query node v is a leaf or a branching node respectively, leafNodes(v) returns
the set of leaf nodes in the twig rooted at v; and dbl(v) (for direct branching or
leaf node) returns the set of all branching nodes b and leaf nodes f in the twig
rooted at v such that there is no branching nodes along the path from v to b or
f , excluding v, b or f . We will also refer to the (conceptual) functions anc(e)
and desc(e) which denote the set of all ancestors and descendants of an element
e in the document respectively.

3 Extended Dewey ID and Some Intuition

Tatarinov et al. [9] proposed the Dewey ID labelling scheme to represent the
position of an element occurrence in an XML document. By labelling the root
as an empty string ε, each non-root element u is labelled as label(s).x where u
is the x-th child of s. From now on, writing “a < b” means that element a has
a smaller label than that of b.

The extended Dewey ID [7] encodes not only the positions but also the element
names along the path from the root to the element. To overcome the problem of
large label size, Lu et al. made use of schema constraints such as DTD or XML
schema. They embedded such constraints in a finite state transducer so that given
the extended Dewey ID of an element, all the element names along the path from
the root to that element can be decoded efficiently. Due to this ancestor name
vision property, determining if there is a matching between a simple query path
(i.e. without twig) and a document path is now straightforward (taking time
linear to the sum of lengths of the two paths). The remaining problem is to
determine which root-leaf path matchings can be combined to form a matching
for the whole query tree.

To give some intuition of our algorithm, consider the following problem that
pops up again and again, namely, that of finding a matching for Qv where v
is a branching node with dbls v1, . . . , vd. Suppose for each i, some matchings of
Qvi have been found and Svi stores a set of elements with which vi matches.
Furthermore, assume that all the elements in each Svi lie on the same path (in
the document tree). Now we want to combine the matchings of the Qvi ’s to form
matchings of Qv.

300 C.K. Poon and L. Yuen

Let ei be the maximum element in Svi , i.e., the element with the largest
depth since all elements in Svi lie on the same path. Define MB(vi,v) as the set
of all ancestors, a, of ei such that a can match node v in the path solution of
ei to Pvi . Observe that if there is an element a present in all the MB(vi,v)’s,
then for each i, there is a matching of Qvi such that the path Pv is mapped
in the same way for different i’s (in particular, node v is mapped to element
a) while the subtree rooted at vi is mapped to the document subtree rooted
at ei. This forms a matching for Qv. In fact, other matchings may be possi-
ble by mapping the subtree rooted at vi to elements in Svi higher than ei but
below a.

To detect if such an element a exists, it suffices to check for the intersection
of MB(vmax, v) ∩ MB(vmin, v) where vmax and vmin are the children with the
maximum and minimum ei respectively. Any element in the intersection must
also be present in every other MB(vi,v) and hence qualifies for such an a. Also,
note that all the elements in MB(vmax, v) ∩ MB(vmin, v) must lie on the same
path from the root to the lowest common ancestor of emax and emin in the
document tree. Hence we can set Sv to be MB(vmax, v) ∩ MB(vmin, v).

Thus we can associate with each node b in the query twig a set Sb and build
up the matchings from the leaves towards the top branching node vtb using the
above idea. This gives us a recursive approach for the problem.

4 Details of Our Design

Our algorithm has the same high level structure as TJFast (shown in Algorithm
1). Like other holistic twig join algorithms, it operates in two phases. In the
first phase (line 1-7), some solutions to individual root-leaf path patterns are
computed. In the second phase (line 8), these solutions are merged to form the
answers to the query twig pattern. To allow for efficient merging of root-leaf path
into output during the second phase, a blocking technique is used in outputSo-
lutions(line 5) so that the path solutions are in sorted order, irrespective of the
root-leaf path provided. It is commonly employed in previous works [1,2,3,4,6,7],
and its details are omitted due to space limitation. From now on, we focus on
the task of outputting all and only those individual root-leaf paths that can be
merged in the second phase, without duplication.

Algorithm 1. TJFaster
1: for all f ∈leafNodes(root) do
2: locateMatchedLabel(f)
3: while ∃f ∈ leafNodes(root) : ¬ eof(Tf) do
4: fact =getNext(vtb)
5: outputSolutions(fact)
6: advance(Tfact)
7: locateMatchedLabel(fact)
8: mergeAllPathSolutions()

Faster Twig Pattern Matching Using Extended Dewey ID 301

The procedure locateMatchedLabel(f) locates the first element e in Tf such
that Pe matches Pf . This is done by repeatedly matching get(Tf) with Pf and
calling advance(Tf) until a match is found. It is called in the initialization step
(line 1-2) and whenever a stream has just been advanced (line 6-7).

Function getNext(v) is the core function in the algorithm. Our getNext func-
tion is very similar to that of TJFast (shown in Algorithm 2). Later, we will point
out the inefficiency in the function and the changes we made. Taking a query
node v as parameter, the function updates the set Sv and returns a query leaf
node f ∈ leafNodes(v) whose stream is “safe to advance”. Roughly speaking, Sv

will be updated to contain the set of elements to which v maps, in the same
matching of Qv when get(Tf) is matched to f unless there is no such matching.
Note that this set of elements will lie on the same (document) path.

By using the top branching node vtb as parameter, TJFaster calls getNext re-
peatedly to identify the next stream fact to advance among all the input streams.
Before advancing Tfact , those path matching solutions are output (in outputSolu-
tions) if all the elements along the path of get(Tf) that match a branching node
b can be found in the corresponding set Sb.

The main weakness of TJFast is that the leaf streams are only advanced in line
6 and 7 after an expensive call to getNext(vtb) in the main loop. We will show here

Algorithm 2. getNext(v)
1: if isLeaf(v) then
2: return v
3: else
4: skipElement(v) {newly introduced in TJFaster}
5: for all vi ∈dbl(v) do
6: fi = getNext(vi)
7: if isBranching(vi) ∧ empty(Svi) then
8: return fi

9: ei = max{p|p ∈MB(vi, v)}
10: min = minargi{ei}
11: max = maxargi{ei}
12: for all vi ∈dbl(v) do
13: if ∀e ∈MB(vi,v):e /∈ anc(emax) then
14: return fi

15: for all e ∈MB(vmin, v) do
16: if e ∈ anc(emax) then
17: Sv = ((desc(e) ∪ anc(e)) ∩ Sv) ∪ {e}
18: return fmin

Function MB(v, b)
1: if isBranching(v) then
2: Let e = max{p|p ∈ Sv}
3: else
4: Let e =get(Tv)
5: return the set of ancestors, a, of e such that b can be mapped to a in some mapping

of Pv to Pe.

302 C.K. Poon and L. Yuen

that there are other elements that will surely not contribute to any matchings
and that we can identify them while performing a call to getNext. The immediate
benefit is the saving of more useless recursive getNext calls. Moreover, we can
filter elements by checking only their lexicographic order. This way, path pattern
matchings need not be done on all input elements. Furthermore, in addition to
the existing advance method, if the input stream T is indexed and supports an
efficient method to forward the cursor to the first element such that get(T)> e
for any given element e, the I/O access can also be saved.

To achieve the above improvement, all we need is to add the function call
SkipElement(v) (see Algorithm 3) in line 4 of getNext(v) (Algorithm 2).

Algorithm 3. skipElement(v)
1: Let fmax be leaf f ∈LeafNodes(v) with the maximum get(Tf)
2: a = the highest ancestor of get(Tfmax) such that Pv matchable to Pa

3: for all f in leafNodes(v) do
4: if empty(Sv) or ∀e ∈ Sv : get(Tf) /∈ desc(e) then
5: while get(Tf) < a do
6: advance(Tf)
7: locateMatchedLabel(f)

Given a query node v as a parameter, SkipElement skips those elements in the
leaf streams in the twig rooted at v that cannot contribute to any output solution.
Clearly, Qv has a matching only if an element in each stream in leafNodes(v)
is found to share at least one common ancestor a such that v matches a. In
particular, Pv has to match Pa. The following lemma is also obvious:

Lemma 1. Consider two elements, a and b in the document tree. If a < b,
then either a precedes b (i.e., b follows a), or a is an ancestor of b (i.e., b is a
descendant of a).

We now argue that SkipElement(v) will only advance a stream Tf if get(Tf)
cannot participate in any matching of Qv. Note that we need only consider the
possibility of get(Tf) forming a matching of Qv with other get(Tf ′) or elements
following them for all f ′ ∈leafNodes(v). The other matchings involving elements
of a stream Tf ′ preceding get(Tf ′), if any, should have been processed already
by the construction of getNext(v).

We first consider the case when Sv is empty. So there has not been any match-
ing of Qv. Consider two arbitrary leaves f and f ′ in leafNodes(v) and let a be
the highest ancestor of get(Tf) such that Pv matches Pa. Suppose get(Tf ′) has
a smaller label than that of a. Then get(Tf ′) precedes a (by Lemma 1) and
by definition of a, get(Tf ′) cannot participate in any matching of Qv involv-
ing get(Tf). Furthermore, get(Tf ′) precedes get(Tf) as well (since a <get(Tf)).
Hence, get(Tf ′) cannot participate in any matching involving elements of Tf

following get(Tf). In other words, get(Tf ′) is not useful in generating any new
matching of Qv. Hence it is safe to advance Tf ′ .

Faster Twig Pattern Matching Using Extended Dewey ID 303

Note that the above argument holds for any f . Picking the stream f with the
largest a will result in skipping the largest number of elements. In SkipElement(v),
we therefore choose f = fmax that maximizes get(Tf) (Line 1-2). This will give
the largest corresponding ancestor a among all streams f ∈leafNodes(v).

For the case when Sv is not empty, Sw is also nonempty for any descendant
w of v. Moreover, some of the elements in the Sw’s may form a matching of Qv,
possibly with some get(Tf) for some f in leafNodes(v). If a get(Tf) is involved,
it can be proved that get(Tf) must be a descendant of some element in Sv.
Hence we have the following lemma which is important in proving our algorithm
correctness.

Lemma 2. Let v, a and f be as defined in Algorithm 3. If Sv is empty, or
get(Tf) is not a descendant of some element in Sv, then Tf can be advanced
until get(Tf) > a without missing any matching of Qv.

Theorem 1. Given a twig query Q and an XML database D, algorithm TJFaster
correctly returns all the answers for Q on D.

Now we analyse the complexities of our algorithm. Note that our algorithm
uses no more space than that of TJFast. As for the query time, note that the
stream cursors never go back during the execution of the algorithm. Therefore,
the worst-case I/O time is O(n) for any index method used, where n is the
total number of input elements. Morever, any element scanned by TJFaster is
also scanned by TJFast (which reads every input element in each stream once).
Therefore, our algorithm is asymptotically no worse than TJFast in terms of the
I/O cost. The next section will show that in practice, our algorithm is much
faster than TJFast.

5 Experimental Evaluation

In this section, we present our experimental evaluation on the effectiveness of our
enhancement. All experiments were conducted on a 2.6GHz Pentium 4 processor
with 1GB main memory running Windows XP. We implemented TJFast and
TJFaster in JDK 1.4 using PostgreSQL. TJFaster uses the identical program
code with TJFast except for the additonal SkipElement function. We tested the
algorithms with the following well-known datasets:

XMark : A synthetic benchmark dataset generated by the XML Generator,
containing information about auctions.

Shakespeare plays : Shakespeare’s plays in XML format.
TreeBank : A file with deep recursive structure.

We are interested in the following three performance measures: (1) the number
of elements skipped, (2) the number of getNext calls, and (3) the elapsed time
(which counts only the CPU cost). We measure the elapsed time by fetching the
whole input streams into main memory before executing the algorithms. The
number of elements skipped will indicate the effectiveness of the SkipElement

304 C.K. Poon and L. Yuen

LINE SPEAKER

SPEECH

PLAY

"ROMEO""Juliet"

LINE SPEAKER

SPEECH

PLAY

"First Musician"

(a) Q1 − Q2 for Shakespeare

S

MD ADJ

S

VP

PP

IN NP

VBN

VP

PP

VBN

DT PRP_DOLLAR_

(b) Q3 − Q5 for TreeBank

text

emphbold keyword

item

location name shipping

"China" "Will ship internationally

item

location name shipping

"Will ship internationally"United State"

(c) Q6 − Q8 for XMark

Fig. 1. Twig Queries Tested

function and hence the reduction in the CPU cost of algorithm. If the input
streams are indexed so that the cursors can be advanced directly to the desired
element (without going through the uncessary elements), we expect that the I/O
cost will also be proportional to the CPU cost.

We tested two twig queries in Shakespeare play “The Tragedy of Romeo and
Juliet”, three twig queries in TreeBank and three twig queries in XMark (Figure
1). We included some nodes that select text value (indicated by the double quota-
tion marks) to control the selectivity. These queries represent some useful queries
with semantic. Queries without text value are adopted from experiments in other
earlier papers. All edges in the experimental queries are ancestor-descendant
edges because TJFast deals with parent-child edges much in the same way as
ancestor-descendant edges, though without guaranteeing optimality.

The major results are shown in Table 1 and Figure 2. The input size is counted
as the total number of elements in all the input streams while the output size is
the number of output elements in the leaf streams before the merging in phase 2.

Table 1. Major results

Input Output # of elts. # of Elapsed % of Useless
Query Size Size skipped getNext calls Time (in ms) elts. Recursion

in TJFaster TJFast TJFaster TJFast TJFaster skipped Avoided
Q1 167 0 149 495 48 47 1 89.2% 90.3%
Q2 3102 18 2641 9306 1383 313 78 85.1% 85.1%
Q3 13670 18 12434 40710 3654 1562 172 91.0% 91.0%
Q4 168536 15732 126000 298890 47520 15235 4860 74.8% 84.1%
Q5 155886 3349 128693 375664 30456 16375 2703 82.6% 91.9%
Q6 21156 10276 9403 84624 47012 3047 2219 44.4% 44.4%
Q7 5360 0 4400 10824 36 375 31 95.1% 99.7%
Q8 7919 1173 2944 17264 5488 578 297 37.2% 68.2%

Faster Twig Pattern Matching Using Extended Dewey ID 305

0

50

100

150

200

250

300

350

400

Q2Q1

E
la

ps
ed

 ti
m

e
(m

s)

TJFast
TJFaster

0

5

10

15

20

Q5Q4Q3

E
la

sp
ed

 ti
m

e
(s

)

TJFast
TJFaster

0

500

1000

1500

2000

2500

3000

3500

Q8Q7Q6

E
la

ps
ed

 ti
m

e
(m

s)

TJFast
TJFaster

Fig. 2. Experimental results on computational time

The results show that the elapsed time is highly correlated to the number
of getNext calls and the number of elements skipped. Moreover, the enhanced
performance can now reflect the output size better rather than depending heavily
on the input size as TJFast does. (For example, compare the elapsed time of Q4
and Q5 for the two algorithms.) We conclude that this optimization improves
the previous design significantly, especially if the query is selective (i.e., produce
small outputs).

6 Conclusions and Future Work

XML twig pattern matching is a key issue for XML query processing. In this pa-
per, we have proposed TJFaster as an efficient algorithm to address this problem
using some unexplored feature of extended Dewey ID. Our design improves the
performance of the TJFast significantly when the selectivity is high. If an index
of the input stream can efficiently support the finding of the successor of a given
label, the new algorithm can avoid accessing elements that do not contribute to
final results to save I/O access. Even without index support, the optimization
saves the processing time in doing useless recursive calls and root-leaf pattern
matchings.

For future work, we would like to apply the principle to region encoding,
making use of RI-Tree[5], a relational data structure for selecting all intervals
enclosing a given query point. Yuen and Poon [11] showed that an RI-tree can
be used to support the ancestor axis efficiently in XPath when we regard each
element as an interval, using region encoding. This may be used to substitute
the ancestor name vision property when extended Dewey ID cannot be used.

References

1. Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal
XML pattern matching. In Proceedings of the 2002ACM SIGMOD Conference on
the Management of Data, pages 310–321, 2002.

2. Byron Choi, Malika Mahoui, and Derick Wood. On the optimality of holistic
algorithms for twig queries. In DEXA, pages 28–37, 2003.

306 C.K. Poon and L. Yuen

3. Haifeng Jiang, Hongjun Lu, and Wei Wang. Efficient processing of XML twig
queries with or-predicates. In SIGMOD ’04: Proceedings of the 2004 ACM SIG-
MOD international conference on Management of data, pages 59–70, New York,
NY, USA, 2004. ACM Press.

4. Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig joins in
indexed XML documents. In Proceedings of the 30th International Conference on
Very Large Data Bases, 2003.

5. Hans-Peter Kriegel, Marco Potke, and Thomas Seidl. Managing intervals efficiently
in object-relational databases. In Proceedings of the 26th International Conference
on Very Large Data Bases, pages 407–418, 2000.

6. Jiaheng Lu, Ting Chen, and Tok Wang Ling. Efficient processing of XML twig pat-
terns with parent child edges: a look-ahead approach. In CIKM ’04: Proceedings of
the thirteenth ACM conference on Information and knowledge management, pages
533–542, New York, NY, USA, 2004. ACM Press.

7. Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen. From region en-
coding to extended dewey: on efficient processing of XML twig pattern matching.
In VLDB ’05: Proceedings of the 31st international conference on Very large data
bases, pages 193–204. VLDB Endowment, 2005.

8. Praveen Rao and Bongki Moon. PRIX: indexing and query XML using Prüfer
sequences. In 20th International Conference on Data Engineering, pages 288–300,
2004.

9. Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eu-
gene Shekita, and Chun Zhang. Storing and querying ordered XML using a rela-
tional database system. In Proceedings of the 2002ACM SIGMOD Conference on
the Management of Data, pages 204–215, 2002.

10. H. Wang, S. Park, W. Fan, and P. Yu. Vist: A dynamic index method for querying
XML data by tree structures, 2003.

11. Leo Yuen and Chung Keung Poon. Relational index support for XPath axes. In
XSym, pages 84–98, 2005.

A Vector Space Model for Semantic Similarity
Calculation and OWL Ontology Alignment

Rubén Tous and Jaime Delgado

Distributed Multimedia Applications Group (DMAG)
Universitat Politècnica de Catalunya (UPC), Dpt. d’Arquitectura de Computadors

Universitat Pompeu Fabra (UPF), Dpt. de Tecnologia
rtous@ac.upc.edu, jaime.delgado@upf.edu

Abstract. Ontology alignment (or matching) is the operation that takes
two ontologies and produces a set of semantic correspondences (usually
semantic similarities) between some elements of one of them and some el-
ements of the other. A rigorous, efficient and scalable similarity measure
is a pre-requisite of an ontology alignment process. This paper presents
a semantic similarity measure based on a matrix represention of nodes
from an RDF labelled directed graph. An entity is described with respect
to how it relates to other entities using N-dimensional vectors, being N
the number of selected external predicates. We adapt a known graph
matching algorithm when applying this idea to the alignment of two on-
tologies. We have successfully tested the model with the public testcases
of the Ontology Alignment Evaluation Initiative 2005.

1 Introduction

1.1 Motivation

For many knowledge domains (biology, music, web directories, digital rights man-
agement, etc.) several overlapping ontologies (middle ontologies) are being en-
gineered. Each one is a different abstraction and representation of the same or
similar concepts. There are proliferating also a myriad of problem-specific on-
tologies (lower ontologies) for many applications, metadata repositories, personal
information systems and peer-to-peer networks.

To enable collaborationwithin and across information domains, software agents
require the semantic alignment (mapping) of the different formalisms. The align-
ment process will identify the equivalences between some entities (e.g. classes and
properties) of the participating ontologies, and the different levels of confidence.
These mappings are required before the querying of semantic data from
autonomous sources can take place.

1.2 Ontology Alignment Formal Definition

Ontology alignment (or matching) is the operation that takes two ontologies
and produces a set of semantic correspondences (usually semantic similarities)
between some elements of one of them and some elements of the other. Several

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 307–316, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

308 R. Tous and J. Delgado

ontology alignment algorithms have been provided like GLUE [2], OLA [7] or
FOAM [4]. A more formal definition, borrowed from [3], can be given:

Definition 1. Given two ontologies O and O′, an alignment between O and O′

is a set of correspondences (i.e., 4-uples): < e, e′, r, n > with e ∈ O and e′ ∈ O′

being the two matched entities, r being a relationship holding between e and e′,
and n expressing the level of confidence [0..1] in this correspondence.

It is typically assumed that the two ontologies are described within the same
knowledge representation language (e.g. OWL [12]). Here we will focus on au-
tomatic and autonomous alignment, but other semi-automatic and interactive
approaches exist.

1.3 Semantic Similarity Measures

The ontology alignment problem has an important background work in discrete
mathematics for matching graphs [8][13], in databases for mapping schemas [14]
and in machine learning for clustering structured objects [1]. Most part of on-
tology alignment algorithms are just focused on finding close entities (the ”=”
relationship), and rely on some semantic similarity measure.

A semantic similarity measure tries to find clues to deduce that two different
data items correspond to the same information. Data items can be ontology
classes and properties, but also instances or any other information representation
entities. Semantic similarity between ontology entities (within the same ontology
or between two different ones) may be defined in many different ways. The
recently held Ontology Alignment Evaluation Initiative 2005 [11] has shown
that the best alignment algorithms combine different similarity measures. [7]
provides a classification (updating [14]) inherited from the study of similarity in
relational schemas. This classification can be simplified to four categories when
being applied to ontologies: Lexical, Topological, Extensional and Model-based.

1.4 Our Approach

The work presented in this paper takes a topological or structure-based seman-
tic similarity approach. As ontologies and knowledge-representation languages
evolve, more sophisticated structure-based similarity measures are required. In
RDF (Resource Description Framework [15]) graphs, relationships are labeled
with predicate names, and trivial distance-based strategies cannot be applied.
Some works like [6] explore similarity measures based on structure for RDF
equivalent bipartite graphs.

Our work focus also in RDF, but faces directly the natural RDF labelled
directed graphs. The approach can be outlined in the following two points:

1. To compute the semantic similarity of two entities we have taken the common
RDF and OWL predicates as a semantic reference. Objects are described and
compared depending on how they relate to other objects in terms of these
predicates. We have modeled this idea as a simple vector space.

A VSM for Semantic Similarity Calculation and OWL Ontology Alignment 309

2. To efficiently apply our similarity measure to the ontology alignment problem
we have adapted it to the graph matching algorithm of [5].

2 Representing RDF Labelled Directed Graphs with a
Vector Space Model (VSM)

In linear algebra a vector space is a set V of vectors together with the operations
of addition and scalar multiplication (and also with some natural constraints such
as closure, associativity, and so on). A vector space model (VSM) is an algebraic
model introduced a long time ago by Salton [16] in the information retrieval field.
In a more general sense, a VSM allows to describe and compare objects using
N-dimensional vectors. Each dimension corresponds to an orthogonal feature of
the object (e.g. weight of certain term in a document).

In an OWL ontology, we will compare entities taking into consideration their
relationships with all the other entities present in the ontology - First we will
focus on similarity within the same ontology, next we will study its application
to the alignment of two ontologies -. Because relationships can be of different
nature we will model them with a vector space. For this vector space, we will
take as dimensions any OWL, RDF Schema, or other external predicate (not
ontology specific) e.g. rdfs:subClassOf, rdfs:range or foaf:name. We can formally
define the relationship of two nodes in the model:

Definition 2. Given any pair of nodes n1 and n2 of a directed labelled RDF
graph GO representing the OWL ontology O, the relationship between them,
rel(n1, n2), is defined by the vector {arc(n1, n2, p1), ..., arc(n1, n2, pN)}, where
arc is a function that returns 1 if there is an arc labelled with the predicate pi

from n1 to n2 or 0 otherwise. pi is a predicate from the set of external predicates
P (e.g. {rdfs:subClassOf, foaf:name}).

rel(n1, n2) ={arc(n1, n2, p1), ..., arc(n1, n2, pN)} |
n1, n2 ∈ GO ∧ ∀i ∈ [0; N] , pi ∈ P

arc(n1, n2, pi) =

{
1 if there is an arc labelled with pi from n1 to n2;
0 otherwise.

Example 1. Let us see a simple example. Take the following graph GA represent-
ing an ontology OA. Imagine a trivial two-dimensional vector space to model
the relationships between nodes. External predicates rdfs:domain and rdfs:range
have been chosen for dimensions 0 and 1 respectively.

The relationship between the property directs and the class director will be
described by {1, 0}. The relationship between the property actsIn and the class
movie will be described by {0, 1}, and so on.

Now, the full description of an entity can be achieved with a vector containing
the relationships between it and all the other entities in the ontology. Putting all

310 R. Tous and J. Delgado

Fig. 1. GA

the vectors together we obtain a three-dimensional matrix A representation of
the labelled directed graph GA (row order: director, actor, movie, directs, actsIn,
voiceIn):

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 0) (0, 0) (0, 1) (0, 0) (0, 0) (0, 0)
(0, 0) (1, 0) (0, 1) (0, 0) (0, 0) (0, 0)
(0, 0) (1, 0) (0, 1) (0, 0) (0, 0) (0, 0)

⎞
⎟⎟⎟⎟⎟⎟⎠

3 Similarity of Entities Within the Same Ontology

In the general case, the correlation between two vectors x and y in an N-
dimensional vector space can be calculated using the scalar product. We can
normalize it by dividing this product by the product of the vector modules, ob-
taining the cosine distance, a traditional similarity measure. In our case, vectors
describing entities in terms of other entities are composed by relationship vec-
tors (so they are matrices). We can calculate the scalar product of two of such
vectors of vectors V and W using also the scalar product to compute ViWi:

V ·W =
N∑

i=1

M∑
j=1

VijWij

Applying this equation to the above example we can see that the scalar
product of e.g. the vector describing directs and the vector describing actsIn is
directs·actsIn = 1. The scalar product of actsIn and voiceIn is actsIn·voiceIn =
2, and so on. Normalizing these values (to keep them between 0 and 1) would
allow to obtain a trivial similarity matrix of the ontology entities. However, we
aim to propagate the structural similarities iteratively, and also to apply this

A VSM for Semantic Similarity Calculation and OWL Ontology Alignment 311

idea to the alignment of two different ontologies. In the following sections we
will describe how to do it by adapting the ideas described in [5].

4 Applying the Model to an Ontology Alignment Process

To calculate the alignment of two ontologies represented with our vector space
model we have adapted the graph matching algorithm of [5]. This adapted algo-
rithm calculates entity similarities in an RDF labelled directed graph by itera-
tively using the following updating equation 1 :

Definition 3. Sk+1 = BSkAT + BT SkA, k = 0, 1, ...
where Sk is the NB ∗ NA similarity matrix of entries sij at iteration k, and A
and B are the NB ∗ NB ∗ NP and NA ∗ NA ∗ NP three-dimensional matrices
representing GA and GB respectively. NA and NB are the number of rows of A
and B, and P is the number of predicates selected as dimensions of the VSM.

Note that, as it is done in [5], initially the similarity matrix S0 is set to 1
(assuming for the first iteration that all entities from GA are equal to all entities
in GB). If we start the process already knowing the similarity values of some pair
of entities, we can modify this matrix accordingly, and keep the known values
between iterations.

Example 2. Let’s see a simple example. Take the following graphs GA and GB.
Figure 2 shows their corresponding RDF labelled directed graphs.

Fig. 2. GA (left) and GB (right)

A =

⎛
⎝ (0, 0) (1, 0) (0, 1)

(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

⎞
⎠B =

⎛
⎝ (0, 0) (1, 0) (0, 1)

(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

⎞
⎠S0 =

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠

S1 = BS0A
T + BT S0A =

⎛
⎝2 0 0

0 1 0
0 0 1

⎞
⎠

1 The graph matching algorithm from [5] is exactly the same as the algorithm shown
here, but using simple matrices of 1’s and 0’s instead of matrices of vectors. We omit
more details to avoid redundancies and because the paper remains self-contained.

312 R. Tous and J. Delgado

To normalize the similarity matrix (to keep its values between 0 and 1) [5] di-
vides all its elements by the Frobenius norm of the matrix, defined as the square
root of the sum of the absolute squares of its elements.

S1 = S1/frobeniusNorm(S1) =

⎛
⎝0, 816 0 0

0 0, 408 0
0 0 0, 408

⎞
⎠

Iterating the algorithm 4 times it converges to the following result:

S4 =

⎛
⎝0, 577 0 0

0 0, 577 0
0 0 0, 577

⎞
⎠

So, as expected the entities a′, b′ and c′ (rows) are similar to a, b and c (columns)
respectively.

4.1 Computational Cost and Optimization

Because the number of selected external predicates pi ∈ P can be small and it
is independent of the size of the ontologies, operations involving relationships
vectors can be considered of constant cost, and the general algorithm of order
O(N2). Because the number of nodes can be considerably high, some optimiza-
tions are required to constraint the processing time. Inspired in [6], we have
classified nodes into five types: Properties (p), Classes (c), Instances (i), Ex-
ternal Classes (c′) and External Instances (i′). Because nodes from one type
cannot be similar to nodes of another type, the matrices can be rewritten (rows
and columns correspond to types previously mentioned and in the same order):

A =

⎛
⎜⎜⎜⎜⎝

Ap−p Ap−c Ap−i Ap−c′ Ap−i′

Ac−p Ac−c Ac−i Ac−c′ Ac−i′

Ai−p Ai−c Ai−i Ai−c′ Ai−i′

Ac′−p Ac′−c Ac′−i Ac′−c′ Ac′−i′

Ai′−p Ai′−c Ai′−i Ai′−c′ Ai′−i′

⎞
⎟⎟⎟⎟⎠

Sk =

⎛
⎜⎜⎜⎜⎝

Sp 0 0 0 0
0 Sc 0 0 0
0 0 Si 0 0
0 0 0 Sc′ 0
0 0 0 0 Si′

⎞
⎟⎟⎟⎟⎠

Definition 4. The Sk+1 equation can be decomposed into three formulas:

Spk+1 = Bp−pSpk
AT

p−p + Bp−cSck
AT

p−c + Bp−iSik
AT

p−i + Bp−c′Sc′
k
AT

p−c′ +
Bp−i′Si′

k
AT

p−i′ + BT
p−pSpk

Ap−p + BT
c−pSck

Ac−p + BT
i−pSik

Ai−p +
BT

c′−pSc′
k
Ac′−p + BT

i′−pSi′
k
Ai′−p

A VSM for Semantic Similarity Calculation and OWL Ontology Alignment 313

Sck+1 = Bc−pSpk
AT

c−p + Bc−cSck
AT

c−c + Bc−iSik
AT

c−i + Bc−c′Sc′
k
AT

c−c′ +
Bc−i′Si′

k
AT

c−i′ + BT
p−cSpk

Ap−c + BT
c−cSck

Ac−c + BT
i−cSik

Ai−c +
BT

c′−cSc′
k
Ac′−c + BT

i′−cSi′
k
Ai′−c

Sik+1 = Bi−pSpk
AT

i−p + Bi−cSck
AT

i−c + Bi−iSik
AT

i−i + Bi−c′Sc′
k
AT

i−c′ +
Bi−i′Si′

k
AT

i−i′ + BT
p−iSpk

Ap−i + BT
c−iSck

Ac−i + BT
i−iSik

Ai−i +
BT

c′−iSc′
k
Ac′−i + BT

i′−iSi′
k
Ai′−i

Sc′
k+1

and Si′
k+1

are diagonal matrices passed as input parameters. They are kept
unchanged between iterations.

4.2 Comparison Against Algorithms Based on Bipartite Graphs

The use of an algorithm to measure similarity between directed graphs could
lead to think that it would be better to directly apply it over the ontologies
equivalent bipartite graphs (like it is done in [6]), instead of adapting it to RDF
labelled directed graphs. However, our approach has some advantages; on one
hand we reduce critically the number of nodes and the computational cost. On
the other hand, in bipartite graphs the core predicates of OWL are treated as
all the other nodes, while in our model they become the semantic reference to
describe and compare entities. Figure 3 shows the equivalent bipartite version
of the previous example with two graphs of three nodes.

Fig. 3. GA (left) and GB (right)

Appying the alignment algorithm for bipartite graphs described in [6] we obtain
the following similarity matrix between a′, b′, c′ and a, b, c:

X22 =

⎛
⎝0, 405 0 0

0 0, 153 0, 05
0 0, 05 0, 153

⎞
⎠

As can be seen, the inclusion of statement nodes adds some symmetries not
present in the original graphs, resulting in less precise results. Some similarities
between nodes b′ and c (and vice-versa) appear.

314 R. Tous and J. Delgado

5 Results

To test our approach we have used the Ontology Alignment Evaluation Initiative
2005 testsuite [11]. The evaluation organizers provide a systematic benchmark
test suite with pairs of ontologies to align as well as expected (human-based) re-
sults. The ontologies are described in OWL-DL and serialized in the RDF/XML
format. The expected alignments are provided in a standard format expressed in
RDF/XML and described in [11]. Because our model does not deal with lexical
similarity, we have integrated our algorithm inside another hybrid aligner, Fal-
con [6] (replacing its structure similarity module by ours). This constraints the
interest of the obtained results, but otherwise it hadn’t been possible a compar-
ative evaluation. Because most part of the tests include more lexical similarity
than structural similarity challenges, our aligner and Falcon2 obtain very simi-
lar results (the same for tests 101-104 and 301-304). The differences fall between
tests 201-266, that we show in table 1.

Table 1. OAEI 2005 tests where our approach (vsm) obtains a different result than [6]

vsm falcon foam ola
test prec. rec. prec. rec. prec. rec. prec. rec.
205 0.90 0.89 0.88 0.87 0.89 0.73 0.43 0.42
209 0.88 0.87 0.86 0.86 0.78 0.58 0.43 0.42
230 0.97 0.96 0.94 1.0 0.94 1.0 0.95 0.97
248 0.83 0.80 0.84 0.82 0.89 0.51 0.59 0.46
252 0.64 0.64 0.67 0.67 0.67 0.35 0.59 0.52
257 0.66 0.66 0.70 0.64 1.0 0.64 0.25 0.21
260 0.44 0.42 0.52 0.48 0.75 0.31 0.26 0.17
261 0.45 0.42 0.50 0.48 0.63 0.30 0.14 0.09
262 1.0 0.27 0.89 0.24 0.78 0.21 0.20 0.06
265 0.44 0.42 0.48 0.45 0.75 0.31 0.22 0.14
266 0.45 0.42 0.50 0.48 0.67 0.36 0.14 0.09

Rows correspond to test numbers, while columns correspond to the obtained
values of precision (the number of correct alignments found divided by the total
number of alignments found) and recall (the number of correct alignments found
divided by the total of expected alignments).

From 50 tests our results just differ in 11 with respect to the aligner in which
we have embedded our algorithm. We improve the results of Falcon in tests 205
and 206 (where labels have been replaced by synonyms), test 230 (where classes
have been flattened) and test 262 (where everything except classes have been
omitted). In test 257 (where names, comments and specialization hierarchy have
been omitted) we just improve the recall value. In the other five tests our results
are below the Falcon ones. We still cannot claim to outperform the original
2 A description of all the tests can be obtained from [11]. Our results for tests not

present in the table are the same as those of Falcon, and can be obtained in [6].

A VSM for Semantic Similarity Calculation and OWL Ontology Alignment 315

structural similarity algorithm of [6], but we can show that similar results (pretty
good with respect to the other aligners) can be obtained by directly working over
the RDF labelled directed graph, instead of working over the equivalent bipartite
graph, that is bigger and can introduce symmetries not present in the original
structure.

6 Related Work

The initial work around structure-based semantic similarity just focused on is-a
constructs (taxonomies). Previous works like [10] measure the distance between
the different nodes. The shorter the path from one node to another, the more
similar they are. Given multiple paths, one takes the length of the shortest one.
[17] finds the path length to the root node from the least common subsumer
(LCS) of the two entities, which is the most specific entity they share as an
ancestor. This value is scaled by the sum of the path lengths from the individual
entities to the root. [9] finds the shortest path between two entities, and scales
that value by the maximum path length in the is–a hierarchy in which they
occur.

Recently, new works like [5] define more sophisticated topological similar-
ity measures, based on graph matching from discrete mathematics. These new
graph-based measures suit the particularities of the new ontologies, built with
more expressive languages like OWL [12]. Our work is based on the previous work
in [5], and also in its adaptation to OWL-DL ontologies alignment in [6]. This
last work describes a structural similarity strategy called GMO (Graph Matching
for Ontologies). Differently from our work, GMO operates over RDF bipartite
graphs. It allows a more direct application of graph matching algorithms, but
also increases the number of nodes and reduces scalability.

7 Conclusions

We have presented here an approach to structure-based semantic similarity mea-
surement that can be directly applied to OWL ontologies modelled as RDF la-
belled directed graphs. The work is based on the intuitive idea that similarity of
two entities can be defined in terms of how these two entities relate to the world
they share (e.g. two red objects are similar with respect to the colour dimen-
sion, but their similarity cannot be determined in a general way). We describe
and compare ontological objects in terms of how they relate to other objects. We
model these relationships with a vector space of N dimensions being N the num-
ber of selected external predicates (e.g. rdfs:subClassOf, rdfs:range or foaf:name).
We have adapted the graph matching algorithm of [5] to these idea to iteratively
compute the similarities between two OWL ontologies. We have presented also
an optimization of the algorithm to critically reduce its computational cost. The
good results obtained in the tests performed over the Ontology Alignment Eval-
uation Initiative 2005 testsuite has proven the value of the approach in situations
in which structural similarities exist.

316 R. Tous and J. Delgado

Acknowledgements

This work has been partly supported by the Spanish administration (DRM-MM
project, TSI 2005-05277).

References

1. M. Bisson. Learning in fol with a similarity measure. In Proceedings of the 10th
American Association for Artificial Intelligence conference, San-Jose (CA US),
pages 8287, 1992.

2. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web, 2002. citeseer.ist.psu.edu/doan02learning.html.

3. M. Ehrig and J. Euzenat. Relaxed precision and recall for ontology matching.
http://km.aifb.uni-karlsruhe.de/ws/intont2005/intontproceedings.pdf.

4. M. Ehrig and S. Staab. Qom - quick ontology mapping. citeseer.ist.psu.edu/
727796.html.

5. Vincent D. Blondel et al. A measure of similarity between graph vertices: Ap-
plications to synonym extraction and web searching. SIAM Rev., 46(4):647–666,
2004.

6. Wei Hu et al. Gmo: A graph matching for ontologies. In Integrating Ontologies,
2005.

7. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in owl-lite. In
Proc. of ECAI 2004, pages 333–337, Valencia, Spain, August 2004, 2004.

8. J. E. Hopcroft and R.M. Karp. An O(n5/2) algorithm for maximum matching in
bipartite graphs. SIAM J. Comput., 4:225–231, 1973.

9. C. Leacock and M. Chodorow. Combining local context and wordnet similarity for
word sense identification. WordNet: An Electronic Lexical Database, 49(2):265–283,
1998.

10. J. H. Lee, M. H. Kim, and Y. J. Lee. Information retrieval based on conceptual
distance in is-a hierarchies. Journal of Documentation, 49(2):188–207, 1993.

11. Ontology alignment evaluation initiative, 2005. http://oaei.inrialpes.fr/2005/.
12. Owl web ontology language overview. w3c recommendation 10 february 2004. See

http://www.w3.org/TR/owl-features/.
13. C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and

complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.
14. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema

matching. VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001. cite-
seer.ist.psu.edu/rahm01survey.html.

15. Resource description framework. See http://www.w3.org/RDF/.
16. G. Salton. The smart retrieval system. Experiments in Automatic Document

Processing, 1971.
17. Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings of the

32nd annual meeting on Association for Computational Linguistics, pages 133–138,
Morristown, NJ, USA, 1994. Association for Computational Linguistics.

Scalable Automated Service Composition Using a
Compact Directory Digest

Walter Binder, Ion Constantinescu, and Boi Faltings

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory
CH–1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract. The composition of services that are indexed in a large-scale service
directory often involves many complex queries issued by the service composi-
tion algorithm to the directory. These queries may cause considerable processing
effort within the directory, thus limiting scalability. In this paper we present a
novel approach to increase scalability: The directory offers a compact digest that
service composition clients download to solve the hard part of a composition
problem locally. In this paper we compare two different digest representations, a
sparse matrix and a Zero-Suppressed Reduced Ordered Binary Decision Diagram
(ZDD). Our evaluation confirms that both representations are compact and shows
that the ZDD enables more efficient service composition.1

Keywords: Web services, service composition, service directories, ZDDs.

1 Introduction

Service-oriented computing enables the construction of distributed applications by in-
tegrating services that are available over the web [9]. The building blocks of such ap-
plications are web services2 that are accessed using standard protocols.

Service discovery is the process of locating providers advertising services that can
satisfy a given service request. Automated service composition addresses the problem
of assembling individual services based on their functional specifications in order to
create a value-added, composite service that fulfills a service request. Most approaches
to automated service composition are based on AI planning techniques [11,4,10,13].
They assume that all relevant service advertisements are initially loaded into a reasoning
engine.

However, due to the large number of service advertisements and to the loose coupling
between service providers and consumers, services are indexed in service directories.
As loading a large directory of service advertisements into a reasoning engine is not
practical, planning algorithms have been modified in order to dynamically retrieve rel-
evant service advertisements from a service directory during composition [2,1].

1 This work was supported by the Swiss National Funding Agency OFES as part of the European
project KnowledgeWeb (FP6-507482).

2 In this paper, service stands for web service.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 317–326, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

318 W. Binder, I. Constantinescu, and B. Faltings

In such an approach, a single service composition may involve several complex di-
rectory queries, and each query may have to process a significant part of the directory.
E.g., in the case of service composition algorithms using forward chaining, a single
directory query may require the processing of up to 20% of the directory data, even
though the directory uses an optimized index structure [1].3 As the service directory is
a shared resource, it is likely to become a performance bottleneck. Massive replication
of the service directory is needed for scalability, which is expensive due to the large
number of needed directory servers.

In this paper we present a novel approach to service composition, which avoids
complex directory queries. In our approach, the directory offers a compact digest that
summarizes the input/output behaviour of advertised services. The service composition
clients download the digest and use it to solve the hard part of the composition problem
locally. Only simple directory queries are issued to obtain the final result.

We compare two different representations of the directory digest, a sparse matrix
and a Zero-Suppressed Reduced Ordered Binary Decision Diagram (ZDD). Both of
them are compact, but the ZDD-based digest enables more efficient service composition
algorithms.

The original contributions of this paper are: (1) a new approach of integrating ser-
vice composition with large-scale service directories, (2) the introduction of a directory
digest, (3) an evaluation of the digest size using different data structures, and (4) an
evaluation of the performance of service composition algorithms leveraging the digest.

This paper is structured as follows: Section 2 introduces a simplified service descrip-
tion formalism and our definition of service composition. Section 3 gives an overview of
service composition exploiting a directory digest. Section 4 evaluates the size of differ-
ent digest representations. Section 5 evaluates the performance and scalability of service
composition algorithms operating on the digest. Finally, Section 6 concludes this paper.

2 Definitions and Basic Service Composition Algorithm

Service descriptions are a key element for service discovery and service composition,
as they enable automated interactions between applications. We distinguish between an
invokable service instance (including service grounding) and its service signature. A
service signature specifies the input/output behaviour of one or more service instances.

We describe a service signature S by two parameter sets – the required input para-
meters in(S) and the generated output parameters out(S). Each parameter is identified
by a unique name in its set. We assume that the parameter name defines the semantics of
the parameter. Despite its simplicity, our formalism is consistent with existing service
description formalisms, such as WSDL [12] and OWL-S [7]. Part of the input/output
specification of services described in WSDL or OWL-S can be mapped to our simplified
formalism.

A service directory stores service advertisements, describing features of service in-
stances available over the web. Each service advertisement includes the service signa-
ture of the advertised service instance.

3 A naive directory implementation may have to process the whole directory contents in order
to discover all relevant service advertisements.

Scalable Automated Service Composition Using a Compact Directory Digest 319

A service request R is a query for a particular service functionality. R consists of a
set of provided input parameters in(R) and a set of required output parameters out(R).

Service discovery involves the submission of a service request R to a service di-
rectory and the retrieval of service advertisements with a service signature S that
matches R. In the literature, different matching relations between R and S have been
studied [14,8,3]. One particularly useful matching relation is the plugin match, which
requires that in(S) ⊆ in(R) and out(S) ⊇ out(R). I.e., given the provided input para-
meters in(R), a service instance with service signature S can be invoked, which gener-
ates all required output parameters out(R).

Even if there is no single service advertisement to fulfill a given service request R,
it may be still possible to compose multiple services in such a way that the compos-
ite service (which can be represented as a workflow) meets R. E.g., assume there are
service advertisements with the following signatures S1 and S2: in(S1) = {A, B},
out(S1) = {C}, in(S2) = {B, C}, out(S2) = {D} Neither S1 nor S2 matches the
service request R, where in(R) = {A, B} and out(R) = {C, D}. However, a service
instance with signature S1 can be invoked with the provided input parameters {A, B},
which generates the output parameter C. Now the parameters {A, B, C} are available,
enabling an invocation of a service instance with signature S2, which generates the
required output parameter D.

Algorithm 1 shows a simple service composition algorithm using forward chaining.
It takes a set of service signatures Dir and a service request R as inputs and returns
success resp. failure, depending on whether R can be fulfilled. For the sake of sim-
plicity, we show only a decision algorithm; an extension to keep track of the applied
services is trivial.

Algorithm 1. Simple decision algorithm based on forward-chaining to determine
whether a service request R can be fulfilled by a set of service signatures Dir.

Compose(Dir,R) :
services ← Dir ;
availableInputs ← in(R) ;
requiredOutputs ← out(R) ;
while requiredOutputs �⊆ availableInputs do

applicableServices ← {s ∈ services | in(s) ⊆ availableInputs} ;
if applicableServices = ∅ then

return failure ;

newAvailableInputs ←
s∈applicableServices

out(s) ;

availableInputs ← availableInputs ∪ newAvailableInputs ;
services ← services \ applicableServices ;

return success ;

The algorithm iteratively extends the set availableInputs. In each iteration of the
loop, it selects those service signatures for which all required input parameters are
available and adds the output parameters of the selected service signatures to the set
availableInputs. The algorithm terminates if all required output parameters are avail-
able or no further service signatures can be selected. In order to avoid the repeated

320 W. Binder, I. Constantinescu, and B. Faltings

selection of the same service signature, the set services is updated to include only
those service signatures that have not been selected yet.

3 Service Composition with Directory Digest

In previous work [1], we used complex directory queries in order to dynamically re-
trieve relevant service advertisements from a large-scale service directory during ser-
vice composition. This approach caused very high workload within the service direc-
tory and consequently also slowed down the service composition algorithm because of
expensive remote interactions with the service directory.

The approach presented here increases scalability by avoiding complex directory
queries during composition. The service directory offers a compact digest that summa-
rizes the service signatures of all service advertisements stored in the directory. Ser-
vice composition clients download the digest, which contains sufficient information to
perform service composition locally on the client side. The service composition client
interacts with the service directory as follows:

1. Download Digest. The client periodically downloads the most recent version of the
digest. As service advertisements usually remain valid for a longer period of time,
the clients do not have to reload their copy of the digest for every service request.
Typical refresh rates would be once per day, once per week, etc.

2. Transform Service Request R. As the digest is a compressed representation of the
service signatures in the directory, full parameter names are not available in the
digest. Hence, the composition client sends R to the directory and receives RT .
The directory maps each parameter of in(R) (resp. out(R)) to the corresponding
digest parameter of in(RT) (resp. out(RT)). This translation is a simple mapping
and can be processed in linear time with the number of parameters in R.

3. Compute Composition. Using the digest and RT , the client locally computes a
service composition, without any queries to the service directory. If the composition
fails, the client may update its local copy of the digest and retry (the new version
of the digest may include additional service signatures of recently added service
advertisements).

4. Transform Composition Result. If the service request has been successfully solved
in the step before, the client knows the signatures of the selected services that are
part of the composition workflow. It asks the directory to provide service adver-
tisements that match the selected service signatures. The resulting directory query
looks only for exact matches, which can be processed very efficiently by the di-
rectory. E.g., the directory may simply use the service signature to compute a hash
key and look up matching service advertisements in a hash table. If the desired
service signature is not found in the directory (i.e., services have been removed re-
cently), the client has to download an up-to-date digest and re-run the composition
algorithm.

4 Directory Digest Representation

The digest representation should meet the following requirements:

Scalable Automated Service Composition Using a Compact Directory Digest 321

– Incremental Update. The addition or removal of a service signature shall not require
to rebuild the digest from scratch.

– Incremental Addition of Service Parameters. The addition of a new service para-
meter shall not require restructuring the digest.

– Compact Network Transfer Format. The (serialized) digest shall be as small as
possible in order to reduce network bandwidth.

– Compact in-memory Representation. Also the in-memory representation of the di-
gest shall be compact in order to allow clients with limited computing resources to
keep a copy of the digest in memory.

– Enabling Efficient Service Composition. The digest representation shall enable ef-
ficient service composition algorithms.

In the following we consider different ways to represent the directory digest. In Sec-
tion 4.1 we discuss simple matrix representations, whereas in Section 4.2 we argue for
an efficient representation as a combination set.

4.1 Matrix Representation

The directory digest can be regarded as a bit matrix, where each column corresponds
to a certain parameter and each row describes a service signature. Assume there are n
different parameters used in service signatures in the directory, which are identified by
their index i (0 ≤ i < n). The column position 2i corresponds to the ith parameter used
as input, while the position 2i+1 corresponds to the ith parameter used as output. This
representation is extensible, i.e., a new parameter can be included by adding 2 columns.

As an example, assume we have the parameters A (index 0), B (index 1), C (index
2), D (index 3) and the two example service signatures S1 and S2 of Section 2:
in(S1) = {A, B}, out(S1) = {C}, in(S2) = {B, C}, out(S2) = {D} This can be
represented by the following bit matrix:

Column index 0 1 2 3 4 5 6 7 Corresponding
Column meaning Ain Aout Bin Bout Cin Cout Din Dout service

1 0 1 0 0 1 0 0 S1
0 0 1 0 1 0 0 1 S2

For a large number of parameters and a large number of different service signatures,
the matrix may become quite large. For instance, assume we have 1000 different para-
meters and 106 different service signatures. The resulting matrix has 2 ∗ 109 bits, i.e.,
about 238MB.

However, in practice, the matrix is sparse, i.e., each row has only a few bits set, be-
cause the number of parameters per service signature is limited. Hence, a more compact
representation can be obtained by listing the column indices of only those parameters
that are present. If there are 1000 different parameters, the column indices range from
0 to 1999, which can be represented by 11 bits. As row delimiter, either an otherwise
unused index (e.g., 211 − 1) may be defined or we add one extra bit to mark the end
of a row. If we assume that on average each service has 3 input and 3 output parame-
ters and we use an extra bit to mark the end of rows, the matrix can be represented

322 W. Binder, I. Constantinescu, and B. Faltings

by (3 + 3) ∗ 12 ∗ 106 bits, which is less than 9MB. Further reductions of the network
transfer format could be obtained e.g. by applying standard compression algorithms.
Concerning the in-memory representation, typically 16 bits would be used for a column
index (byte alignment). I.e., a client keeping the matrix in memory would consume
(3 + 3) ∗ 16 ∗ 106 bits, less than 12MB.

While the sparse matrix representation is compact and can be updated incrementally,
it is not the best data structure for efficient service composition. In order to discover
applicable service signatures, the whole matrix has to be processed repeatedly. Each
iteration of the service composition algorithm causes processing effort that is propor-
tional to the size of the matrix.

4.2 Combination Set Representation

If we consider a service signature a combination of parameters, the directory
digest can be seen as a combination set. E.g., the example service signatures
S1 and S2 shown before can be represented by the following combination set:
{〈Ain, Bin, Cout〉, 〈Bin, Cin, Dout〉}

Zero-suppressed Reduced Ordered Binary Decision Diagrams (ZDD) are known as
an efficient representation of sparse combination sets [5]. ZDDs efficiently support set
operations, such as union, intersection, and difference. Moreover, many specialized
ZDD operations have been developed for particular use cases, such as e.g. the restriction
and exclusion operations in the context of constraint satisfaction [6].

We adopted ZDDs, because they allow a compact digest representation and enable
the implementation of efficient service composition algorithms exploiting ZDD oper-
ations. Below we discuss some experimental results concerning the size of the ZDD
representation. In Section 5 we present performance measurements for a service com-
position algorithm that leverages ZDD operations.

In order to measure the size of ZDDs for different settings, we created service di-
rectories with an increasing number of randomly generated, distinct service signatures
(0–106). Each service signature S has 3 input and 3 output parameters, randomly cho-
sen from a set of 1000 different parameters with the constraint in(S) ∩ out(S) = ∅. In
practice, services often have parameters only from a single, domain-specific ontology
(e.g., travel domain, financial domain, sports domain, etc.). Hence, we partitioned the
1000 parameters into an increasing number of domains (1–100) and required the input
parameters (resp. the output parameters) of each service signature to come from the
same domain (the input parameters’ domain can be different from the output parame-
ters’ domain).

Fig. 1 shows the size of a ZDD representing a directory digest depending on the
number of different service signatures and the number of domains. As ZDDs are graphs,
we use the number of nodes in the graph as metric. Not surprisingly, the ZDD size
increases with the number of distinct service signatures. A small number of domains
results in larger ZDDs than a high number of domains. In the worst case (106 service
signatures, 1 domain), the ZDD has about 2.9 ∗ 106 nodes. For 100 domains (each
consisting of 10 parameters), 106 service signatures require only about 106 nodes. The
reason for the smaller ZDD size is that the number of possible parameter combinations
is reduced.

Scalable Automated Service Composition Using a Compact Directory Digest 323

1
20

40
60

80
100 0

2E+5
4E+5

6E+5
8E+5

1E+60

1E+6

2E+6

3E+6

Service signatures# Domains

ZDD nodes

Fig. 1. Number of nodes in a ZDD representing a directory digest as a function of the number of
service signatures in the digest and the number of domains

Our directory digest implementation is based on the JDD library4, which is pro-
grammed in pure Java. Concerning the in-memory representation, JDD stores the ZDD
nodes in an array of 32 bit integers. Each node uses 3 entries in the array: One entry
stores a variable5 and the other two entries store indices to other nodes. In total, a node
consumes 12 bytes in memory. For the network transfer of the directory digest, the ZDD
can be serialized more compactly: 11 bits are enough to store a parameter index and 24
bits suffice to index other nodes, i.e., 59 bits per node are sufficient. Further compres-
sion of the bitstream using standard compression techniques would be possible as well.

Fig. 2 compares the size of different directory digest representations. The sparse
matrix is more compact, although in a setting with 20 domains, the ZDD representation
is not much larger. As we will see in the next Section, the ZDD representation enables
more efficient service composition algorithms.

5 Service Composition Performance

In this Section we present experimental results concerning the performance of service
composition algorithms operating on a sparse matrix resp. on a ZDD representation
of the directory digest. The algorithms are specialized implementations of the generic
structure of Algorithm 1 introduced in Section 2.

As in-memory representation of the sparse matrix we chose an array of service sig-
natures (matrix rows), where each service signature is an array of parameter indices
(matrix columns). Moreover, we use a boolean array to indicate for each service sig-
nature whether it has been applied. The algorithm iterates through the array of service

4 http://javaddlib.sourceforge.net/
5 We map parameters to ZDD variables. We encode each parameter P as two different ZDD

variables Pin and Pout. E.g., in our experimental setting we have 2000 ZDD variables.

324 W. Binder, I. Constantinescu, and B. Faltings

0

5

10

15

20

25

30

35

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

Service signatures

M
B

ZDD in-memory (1 domain)
ZDD transfer (1 domain)
ZDD in-memory (20 domains)
ZDD transfer (20 domains)
Sparse matrix in-memory
Sparse matrix transfer

Fig. 2. Directory digest size (in megabytes) of in-memory and network transfer representations
based on a sparse matrix resp. on a ZDD

signatures in a cyclic way, selecting and applying those signatures for which all required
input parameters are available (and which have not been applied before).

Our ZDD-based service composition algorithm relies on the repeated application
of the subset0() primitive [5] in order to filter out those service signatures that re-
quire a parameter which is not available. The remaining service signatures are selected.
Then the algorithm leverages the subset1() primitive to test for each missing parame-
ter, whether a selected service generates it as output. If at least one missing parameter
becomes available, the whole process is iterated.

Fig. 3 compares the performance of the two service composition algorithms for dif-
ferent digest size (0–106) and distinct number of domains (1 and 20). As before, we
assume 1000 possible parameters and service signatures with 3 input and 3 output pa-
rameters. Each measurement represents the total execution time for processing a set of
2000 random service requests. We chose service requests that are particularly hard to
process, providing only 3 input parameters and requiring all 1000 output parameters.
As we kept the set of 2000 service requests unchanged throughout all experiments, the
percentage of solvable service requests is increasing with the number of service signa-
tures in the digest. Both algorithms operate on the same digest contents and on the same
set of service requests. For a fair comparison, we disabled all caches in the JDD library.
As execution platform we chose a typical client system: Pentium 4, 2.4GHz clockrate,
512MB RAM, Windows XP, Sun JDK 1.5.0 Hotspot Server VM. In order to obtain
reproducible measurements, we disabled background processes as much as possible.
Each measurement represents the median of 15 executions on identical data.

As expected, the algorithm based on the sparse matrix digest representation performs
linear with the number of service signatures in the digest. The number of domains does

Scalable Automated Service Composition Using a Compact Directory Digest 325

0

10

20

30

40

50

60

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

Service signatures

Ti
m

e
[s

]
Sparse matrix (1 domain)

Sparse matrix (20 domains)

ZDD (1 domain)

ZDD (20 domains)

Fig. 3. Elapsed processing time [s] for 2000 random service requests

not have much impact on the performance (the matrix size is not affected by the number
of domains). The algorithm based on the ZDD representation performs significantly
better. In the case of a single domain (i.e., larger digest), the ZDD algorithm is 5–100
times faster than the matrix algorithm; in the case of 20 domains (i.e., smaller digest),
the ZDD algorithm is 40–500 times faster. In the latter setting, the performance of the
ZDD algorithm does not degrade with an increasing number of service signatures.

6 Conclusion

Service composition algorithms that dynamically retrieve relevant service advertise-
ments from a large-scale service directory tend to issue a large number of complex di-
rectory queries, causing high workload within the directory. As such an approach does
not scale well, we introduce a compact directory digest that is downloaded by service
composition clients and allows to solve the hard part of a composition problem locally
without expensive remote interactions with the directory. Directory queries are only
needed to translate the initial composition problem and to obtain the final result. These
queries are very simple and require only a lookup in a table, significantly reducing the
workload in the directory and boosting scalability.

We compared two different representations of the directory digest – sparse matrix
versus ZDD. Both representations result in a compact digest. However, a service com-
position algorithm based on the ZDD representation performs and scales significantly
better than an algorithm operating on the matrix representation.

326 W. Binder, I. Constantinescu, and B. Faltings

References

1. I. Constantinescu, W. Binder, and B. Faltings. Flexible and efficient matchmaking and rank-
ing in service directories. In 2005 IEEE International Conference on Web Services (ICWS-
2005), pages 5–12, Florida, July 2005.

2. I. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service composi-
tion. In IEEE International Conference on Web Services (ICWS-2004), pages 506–513, San
Diego, CA, USA, July 2004.

3. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. In Proceedings of the 12th International Conference on the World Wide Web,
pages 331–339, 2003.

4. S. A. McIlraith and T. C. Son. Adapting Golog for composition of semantic web services. In
D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, Proceedings of the
8th International Conference on Principles and Knowledge Representation and Reasoning
(KR-02), pages 482–496, San Francisco, CA, Apr. 2002. Morgan Kaufmann Publishers.

5. S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In Pro-
ceedings of the 30th ACM/IEEE Design Automation Conference, pages 272–277, Dallas, TX,
June 1993. ACM Press.

6. H. G. Okuno, S. ichi Minato, and H. Isozaki. On the properties of combination set operations.
Information Processing Letters, 66(4):195–199, May 1998.

7. OWL-S. DAML Services, http://www.daml.org/services/owl-s/.
8. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of web services

capabilities. In Proceedings of the 1st International Semantic Web Conference, pages 333–
347, 2002.

9. M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented computing. Com-
munications of the ACM, 46(10):24–28, Oct. 2003.

10. S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composition. In
11th World Wide Web Conference (Web Engineering Track), 2002.

11. S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically composing web
services from on-line sources. In Proceeding of the AAAI-2002 Workshop on Intelligent
Service Integration, pages 1–7, Edmonton, Alberta, Canada, July 2002.

12. W3C. Web services description language (WSDL) version 1.2, http://www.w3.org/
TR/wsdl12

13. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services
composition using SHOP2. In Proceedings of 2nd International Semantic Web Conference
(ISWC-2003), pages 195–210, 2003.

14. A. M. Zaremski and J. M. Wing. Specification matching of software components. ACM
Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

Topic Structure Mining for Document Sets
Using Graph-Based Analysis

Hiroyuki Toda1,2, Ryoji Kataoka1, and Hiroyuki Kitagawa2,3

1 NTT Cyber Solutions Laboratories, NTT Corporation,
1-1 Hikarinooka Yokosuka-shi, Kanagawa 239-0847, Japan

2 Graduate School of Systems and Information Engineering,
3 Center for Computational Sciences,

University of Tsukuba, Tennoudai, Tsukuba-shi, Ibaraki 305-8573, Japan
toda.hiroyuki@lab.ntt.co.jp

Abstract. This paper proposes a novel text mining method for a docu-
ment set based on graph-based analysis. Graph-based analysis first iden-
tifies the similarity links in the document set and then determines core
documents, those that have the highest level of centrality. Each core doc-
ument represents a different topic. Next, the centrality scores are used
together with the graph structure to identify those documents that are
associated with the core documents. This process results in a predeter-
mined number of topics. For each topic the user is presented with a
set of documents in three-layer structure: core document, supplemental
documents (those that are strongly associated with the core document),
and subtopic documents (those that are only slightly associated with
the core document and supplemental documents). The user can select
any the topics and browse the documents related to that topic. Further-
more, the user can select documents according to the level; for example,
subtopic documents are assumed to contain information that differs from
the topic indicated and so might be interesting. In analyses of a set of
newspaper articles, we evaluate “accuracy of topic identification” and
“accuracy of document collecting related to the topics”. Furthermore,
we show an example of document set visualization based on graph struc-
ture and centrality score; the results indicate the method’s usefulness for
browsing and analyzing document sets.

1 Introduction

Recently, the amount of information that can be accessed has vastly increased.
Users now want to be able to find the desired documents from a document set,
for example, search engine results, and latest news articles collected by RSS
Reader. We assume that the user has two main goals.

– get an outline of the document set
– access the documents of specified topics present in the document set

The first goal is equivalent to browsing and summarizing with the user receiv-
ing a list of the main topics in the document set. The second goal is set by the

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 327–337, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

328 H. Toda, R. Kataoka, and H. Kitagawa

user who has clear information needs; for this we must collect the documents
related to the main topics and providing an understanding of how closely each
document is related to the core document. Documents that are strongly related
to the core document (supplemental documents) add depth and more details
about the topic. Subtopic documents are only weakly associated with the core
document and so are expected to provide unexpected or new information.

One solution to achive this goal is to apply clustering algorithms[5][4][9]. They
are intended to output document clusters that assist the user in understanding
the outline of the document set. Unfortunately, existing algorithms assume that
all documents in the set have equal importance, and that it should be possible to
put each document into some cluster. Real data sets, however, contain documents
which are not related to any other document, do not have any clear cluster
number, and so on. Another solution is to regard the clustering task as the task
of extracting salient keywords [13][14][3][11]. Methods based on this approach
present a salient keyword list together with the search result. One characteristic
of these methods is that the cluster labels are clear. However, clustering is based
on a simple rule, whether the document includes the keyword or not, so it is not
likely to yield good clusters. Namely, clustering can yield several labels for one
topic; some labels may be related to more than one topic.

This paper proposes a graph-based method that uses the level of similarity
between documents to identify core documents, those that have the highest level
of connection density. Each core document is taken to represent a different topic.
The centrality scores of the documents is, together with the graph structure, used
to segregate the documents so that we form sets of documents; one set equals
one topic. Documents that are only weakly associated with the grouped docu-
ments are treated as outliers. Next, for each topic, the documents other than
the core document are ranked as either supplemental documents, those that are
strongly associated with the core document, and the subtopic documents, those
that slightly associated with either of the other two types. To extract this in-
formation from the original document set, we create a graph structure based on
the similarity of documents in the document set and determine node centrality
for this graph. Though the metric of centrality was originally used for search
result ranking[1][7] , this metric has been recently used for extracting sentences
for document summarization, and the usefulness of this metric in extracting rep-
resentative sentences that well represent the document has been reported[10][2].

However, we cannot develop good document segregation, according to topic,
only using this score. Our proposal is to use both the centrality scores and the
graph structure. Namely, we assign the graph structure to a 2-D plane and plot
the centrality scores as the 3rd dimension. This allows us to extract mountains
of nodes, each of which is founded on a core document. Experiments confirm
the ability of our proposal to realize “main topic extraction” and “extraction of
documents related to each main topic, with inner relationships”. Moreover, we
show that visualization of the document set using the structure promotes easier
overviewing and browsing the document set.

Topic Structure Mining for Document Sets Using Graph-Based Analysis 329

In this paper, one “document” corresponds to one “node”. When we explain
the graph structure, we mainly use the word “node”.

The paper is organized as follows. The next section introduces related works.
In Section 3, we detail the proposed method. Section 4 evaluate the proposed
method. Section 5 demonstrates the effectiveness of visualization. Finally we
conclude the paper in Section 6.

2 Related Works

There is an increase in the use of techniques based on graphs to extract the im-
plicit relationships between documents or other linguistic items. More recently,
some research has used the centrality of graphs to rank linguistic items and ex-
tract some items from sets of linguistic items. Mihalcea et al.[10] experimentally
proved that PageRank[1] is effective for achieving these goals if the edges of the
graph have weight or do not have direction. They also report that the method
is useful for the tasks of text summarization and keyword extraction. Erkan[2]
also proposed a graph-based method for text summarization and reported that
the method yields much higher precision than any other method. Furthermore,
Kurland et al.[8] proposed a graph based on a language model for calculating
PageRank and used it to rerank search results. Our method also uses the central-
ity score of graphs generated by the implicit relationships between documents.
Though ordinary methods simply use the centrality score for ranking items or
selecting top ranked items, we use both centrality score and graph structure for
segregating items into topics.

3 Proposed Method

The method proposed in this paper first identifies the similarity links between
all documents in the set, and then determines core documents, those that have
the highest level of centrality. Each core document represents a different topic.
Next, the centrality scores are used together with the graph structure to iden-
tify those documents that are most strongly associated with the core docu-
ments. Section 3.1 describes how the graph structure is generated. Section 3.2
explains the calculation of the centrality score of each node in the graph struc-
ture. The meaning of the centrality score of each node in the graph structure
is elucidated in Section 3.3, along with information extraction based on node
meaning.

3.1 Generation of Graph Structure

We construct a graph structure, where each node represents one document and
each edge represents the relationship between a pair of documents. This graph
structure is based on the “Interested Reader model” proposed by Kamvar[6].
This model is similar to the “Random Surfer model” of PageRank. It assumes
that the document collection consists of documents covering several topics, and

330 H. Toda, R. Kataoka, and H. Kitagawa

that the reader starts to read some document in the collection and go on to
read other documents. The reader’s next choice is strongly related to his cur-
rent document. These transition probabilities define a Markov chain among the
documents in the collection. If many documents are strongly related, the tran-
sition probability among the documents is high while the transition probability
to other documents is low. Furthermore, this model assumes the following. The
self transition probability is high, when all documents are dissimilar. On the
other hand, when there are many similar documents, the self transition proba-
bility is low. According to the assumption, the matrix is calculated by following
equation.

N = (A + dmaxE −D)/dmax (1)

Here, N is the matrix based on the “interested reader model”. E is a unit matrix.
D is a diagonal matrix whose elements Dii =

∑
j Aij , where dmax is the largest

element of D. A is an adjacent matrix that indicates the similarity between
nodes; it is defined in this paper as follows.

Ai,j =
{

sim(i, j) if j ∈ TopSimp(i)
0 otherwise

(2)

Here, TopSimp(i) means the set of documents that have top p ranked similarity
with document i. Our reason for using only documents with highest similarity
to generate the outlinks, is that accuracy is degraded when all similarity values
are used[6][8]. sim(i, j) is calculated by cosine measure of log tf-idf weighted
document vectors.

We note that Kamvar[6] did not apply random jumping, which is a key char-
acteristic of the “random surfer model”. However, we use random jumping when
calculating the centrality scores. Details are shown in the next subsection.

3.2 Calculating Centrality of the Graph

In this subsection, we explain how to calculate the centrality scores. We consider
here PageRank since it is one of the most representative methods of calculating
centrality. The definition is as follows.

S(Vi) = (1− d)×
∑

Vj∈IN(Vi)

(
1

|OUT (Vj)|
× S(Vj)) + d (3)

Here, S(Vi) is the centrality score of node Vi. IN(Vi) is the set of nodes linked
to Vi. OUT (Vi) is the set of nodes linked by Vi. d is a damping factor which
represents the probability of random jumping. This random jumping helps the
random walker move from periodic node or unconnected nodes to any node in the
graph. In our method, we use PageRank to calculate the centrality and we also
use random jumping. We differ from PageRank with regard to edge weighting;
we use the following equation to calculate node centrality.

S(Vi) = (1 − d)×
∑
∀j

(Nj,i × S(Vj)) + d (4)

Topic Structure Mining for Document Sets Using Graph-Based Analysis 331

3.3 Data Mining Using Centrality Scores and the Graph Structure

Our proposal is to assign the graph structure to a plane and plot the node
centrality scores in the 3rd dimension. A typical image is shown in Fig 1. The
nodes named “ax”(“bx”) indicate the documents related to topic “a”(“b”).

The method of [8] simply uses the centrality scores to rank the documents.
However, our purpose is to segregate items by extracting topics. We cannot
extract items separately if only the centrality score is used. Namely, if we or-
der the nodes in Fig. 1 according to their centrality score, we get the order
“a1,a2,a3,b1,b2,a4,...” and the topics “a” and “b” are mixed together.

To realize the segregating, we use the mountain-like structure generated by
the graph structure and centrality scores to uncover the topics and permit in-
formation extraction based on node meaning.

First, we consider the relationship between graph structure and centrality
score. According to the definition of the centrality score, areas that have many
edges have high scores. Such an area also has high transition probability between
the nodes in the area and the similarity between each node in this area is high.
That is to say, the documents in this area cover the same topic. Accordingly,
each mountain-like area in Fig.1 is considered to correspond to a different topic.
Next, we assign each node to one of 4 categories.

The 1st type are the top nodes (“a1” and “b1” in Fig.1) of the mountain-
like areas (one top node per area). This kind of node has the highest transition
probability from surrounding nodes and is the most representative of the topic.
That is to say, the document of a top node specifies the main topic in the area.
We call this “core document(node)”.

The 2nd category are neighbor nodes (“a2”, “a3”, “a4” and “b2”, “b3” in
Fig.1). These nodes are reached from the top node only via two-way links either
directly with the top node or via another neighbor node. A two-way link is bidi-
rectional and has high connectivity. These nodes have high transition probability
with the top node and their contents are similar to that of the top node. If the

Fig. 1. Document set structure using graph structure and centrality score of each node
in the graph

332 H. Toda, R. Kataoka, and H. Kitagawa

Fig. 2. Concept of our document set structuring

top node is quite close to one or more neighbors nodes, the topic may need to
be identified from several nodes; this situation must be considered in subsequent
research. We call these “supplemental documents(nodes)”.

The 3rd category covers nodes that are linked to the top node or neighbor
nodes; examples are “a5”, “a6”, “a7”, “a8” and “b4” in Fig. 1. This type of
node, which has higher transition probability to the top or top neighbor node
than to outside nodes or self-transition, are documents that are strongly related
to the topic. This kind of document provides somewhat unexpected information.
We call these “subtopic documents(nodes)”.

The last category is for nodes that are not strongly associated with any topic.
“c1” of Fig.1 is an example of this type. This node does not have any other
similar node and its self-transition probability is high. We call these “outlier
documents(nodes)”.

The 4 node categories are shown in Fig.2. The node set related to a topic is
hierarchically sited around the top node.

To use this structure, the user can access the documents related to a particular
topic. Furthermore, the user can select documents within one topic; for example,
the document that is most representative of the topic or a document that many
provide unexpected information. Furthermore, the relationship of two topics can
be discerned through their sharing of supplemental nodes and subtopic nodes.
Topics that sharing only outlier nodes are not related.

In Section 4.2, the result of topic identification by identifying the top nodes
is shown. Section 4.3 shows the effectiveness of collecting documents according
to their topic. In Section 5, we show an example of visualization using graph
structure and centrality scores. It confirms that the proposed method is useful
for browsing and overviewing document sets.

4 Evaluation
4.1 Evaluation Resource

In this evaluation, we used search results of a Japanese newspaper collection.
The collection covers 2 years(1994 and 1995) and holds about 2000,000 articles.

Topic Structure Mining for Document Sets Using Graph-Based Analysis 333

Two data sets were created by submitting the queries “scandal or bribery or
corruption” and “murder”, and recording the top 200 search results. We called
these sets “scandal” and “murder”, respectively.

The documents in the sets were are manually labeled after being read. Each
label reflects the dominant topic in the document. We created two main topic lists
by selecting the topics with at least 2 or at least 3 documents. The documents
were grouped according the main topic lists. Details are shown in Table 1.

Table 1. Specification of the corpora for evaluation

name of copora scandal murder
of docs. 200 200
of label(topics are described in 2 or more documents) 22 26
of labeled docs.(topics are described in 2 or more documents) 170 98
of label(topics are described in 3 or more documents) 19 13
of labeled docs.(topics are described in 3 or more documents) 164 72

4.2 Main Topic Identification

Here, we show the performance of topic identification using the core document.
We used recall, precision, and F-Measure to evaluate the performance of topic

identification. These scores are calculated by following equations, respectively.

Recall =
of identified relevant topics

of relevant topics
(5)

Precision =
of identified relevant topics

of identified topics
(6)

F-Measure =
2× Recall× Precision

Recall + Precision
(7)

In this evaluation, we use p = 3, 5 (p is the permissible number of outlinks in
each node). The evaluation results are shown in Table 21. When we use p = 5,
the precision is very high for both sets but recall is very low. The reason is
considered that some top nodes were connected to other top nodes. On the
other hand, when we set p = 3, the precision falls but the recall rises signif-
icantly which increases the F-Measure. The improvement in recall is due to
the reduction in link number. Namely, links between several pairs of top nodes
disappear when (p = 3), top nodes are extracted as nodes that clearly iden-
tify different topics. This tendency was observed in both sets. We note that in
some sets reducing p does not ensure that all top node links are broken. Fur-
ther work is needed to address this problem with the goal of raising the recall
performance.
1 Precision(m), Recall(m),and F-Measure(m) are the results when we regard topics,

which is descibed in m or more documents, as main topics.

334 H. Toda, R. Kataoka, and H. Kitagawa

Table 2. Evaluation result of topic identification

corpus scandal scandal murder murder
of outlink(p) 3 5 3 5
Precision(2) 0.8095 1 0.8 0.6667
Precision(3) 0.8095 1 0.7333 0.6667
Recall(2) 0.7727 0.4545 0.4615 0.1538
Recall(3) 0.8947 0.5263 0.8462 0.3077
F-Measure(2) 0.7907 0.625 0.5854 0.25
F-Measure(3) 0.85 0.6897 0.7857 0.4211

When we regard main topics as the topics that are given in three or more
documents, the F-Measure value is high (about 0.8) in both sets. However, the
topics, which are given in just two documents, are not extracted in either set.
This is because the top node is unclear when the related node number is 2.
Therefore, we can say that topics can be extracted by this method if there are
at least 3 representative nodes.

The above discussion shows that we can detect the top nodes, which represent
main topics, using graph structure and the centrality scores of the nodes in the
graph. However, there is room for improving accuracy and we anticipate a more
advanced top node extraction method.

4.3 Document Collecting

We also evaluated the accuracy of document collection according to their topic.
Document collection involves only “core document”,“supplementary documents”,
and “subtopic documents”.

We used F-score to evaluate the selected document set. F-score is an evaluation
method of clustering. F-score represents the weighted average of accuracy of the
clusters, which are most similar to the clusters in the correct cluster data. The
detail of F-Score is shown in [15]. For evaluation, we used following two correct
cluster data sets.

– Document sets of all topics described in 3 or more documents
– Document sets of all topics specified by the proposed method

The evaluation using the first correct cluster data set evaluates the proposed
method in terms of topic identification and document selection. The second
correct cluster data set, on the other hand, evaluate its document collection
performance.

In this evaluation, we use p = 3 for topic identification because this value
yields the highest accuracy as shown in Section 4.2. According to a preliminary
experiment on collecting sub topic nodes, some nodes can be related to the topic,
even if the transition probability to the top or neighbor nodes is slightly under
0.5(This value comes from subtopic node definition in Section 3.3). According,
we also considered another value, 0.3, as threshold(t) in this experiment.

Topic Structure Mining for Document Sets Using Graph-Based Analysis 335

Table 3. Evaluation result of document collecting

corpus scandal scandal murder murder
threshold(t) 0.3 0.5 0.3 0.5
result when we use 1st correct cluster data 0.8185 0.7712 0.7847 0.7158
result when we use 2nd correct cluster data 0.8580 0.8073 0.8737 0.8230

The result is shown in Table 3. When t = 0.5, the F-score is lower than is true
with t = 0.3. This tendency is same in every combination of corpora and correct
cluster data. This is because it tends to select only high accuracy nodes in this
setting (t = 0.5). We find that the coverage is narrow and the F-score is low.

When we use second correct cluster data set, the F-score value is high, greater
than 0.8. This indicates that the proposed method can collect documents very
accurately. This indicates that if the accuracy of topic identification is raised,
the proposed method will become more useful.

The above evaluation results show that the proposed method can collect doc-
uments according to their topic with high accuracy. Setting t = 0.3 yields better
accuracy than t = 0.5.

5 Visualization

In this section, we show an example of document set visualization based on the
graph structure and centrality scores. We use some of the nodes described in Sec-
tion 3.3. Furthermore, we provide an example of relation mining for two topics.

Fig. 3 and 4 shows a visualization of the “murder” set. In this visualization, the
graph structure was generated by the Yamada’s method[12] and the centrality
scores are plotted on the 3rd dimension. The white spheres are nodes(documents)
and lines between them are links. The direction of the link is represented by the

Fig. 3. Visualization example of corpus “murder”

336 H. Toda, R. Kataoka, and H. Kitagawa

Fig. 4. Visualization example of corpus “murder”(zooming version)

gradation: the “from” side is light and the “to” side is dark. Two-way links are
white. Though we show the label and document id of each node (the light colored
characters), we could display the document titles instead of their labels.

In Fig. 3, there are several mountains, each mountain represents one topic
and the top node is the “core document(node)”. The positioning of the supple-
mentary and subtopic documents makes it easy to find documents related to
particular topics as well as understanding the relationships between topics.

Fig. 4 shows the two topics that share a high level node. This suggests that
the two topics are strongly related. In fact, these topics involve murder by the
same religious community.

It is clear that this visualization will provide new browsing methods and
enhance the knowledge discovery process. The results indicate the method’s
usefulness for browsing and analyzing document sets.

6 Conclusion

This paper proposes a novel text mining method for document sets. The method
uses graph structure and the centrality of nodes in the graph. The proposed
method has three main benefits.

– Main topic identification of a document set
– Extraction of documents related to each main topic, with inner relationships
– Visualization of document set for browsing and mining

We conducted an evaluation using a newspaper article corpus. The results
indicated that the method offers high accuracy. Furthermore, we showed an

Topic Structure Mining for Document Sets Using Graph-Based Analysis 337

example of document set visualization based on graph structure and centrality
score; the results indicate the method’s usefulness for browsing and analyzing
document sets.

Our future works include a comparison between proposed method and other
state-of-the-art methods and refinement of the proposed method.

Acknowledgements

We would like to thank Dr. Kazumi Saito for providing us the graph visualization
tool, and Dr. Ko Fujimura for a helpful discussion.

References

1. Brin, S. and Page, L.: “The anatomy of a large-scale hypertextual web search
engine.” Proceedings of WWW7, pp.107-117, 1998.

2. Erkan, G. and Radev, D. R.: “LexRank: Graph-based Lexical Centrality as
Salience in Text Summarization.” Journal of Artificial Intelligence Research, Vo.
22, pp.457-479, 2004.

3. Ferragina, P. and Gulli, A.: “The Anatomy of a Hierarchical Clustering Engine for
Web-page, News and Book Snippets.” Proceedings of ICDM’04, pp.395-398, 2004.

4. He, X., Ding, C. H. Q., Zha, H. and Simon, H. D.: “Automatic Topic Identification
Using Webpage Clustering.” Proc. of ICDM’01, pp.195-202, 2001.

5. Hearst, M., and Pedersen, J.: “Reexamining the cluster hypothesis: scatter/gather
on retrieval results.” Proc. of SIGIR’96, pp.76-84, 1996.

6. Kamvar, S. D., Klein, D. and Manning, C. D.: “Spectral Learning.” Proc. of IJ-
CAI’03, pp.561-566, 2003.

7. Kleinberg, J.: “Authoritative source in a hyperlinked environment.” Journal of the
ACM, Vol. 46, pp.604-632, 1999.

8. Kurland, O. and Lee, L.: “PageRank without hyperlinks: Structural re-ranking
using links induced by language models.” Proc. of SIGIR’05, pp.306-313, 2005.

9. Leuski, A.: “Evaluating document clustering for interactive information retrieval.”
Proc. of CIKM’01, pp.33-40, 2001.

10. Mihalcea, R. and Tarau, P.: “TextRank: Bringing Order into Texts.” Proc. of
EMNLP’04, pp.404-411, 2004.

11. Toda, H. and Kataoka, R.: “A search result clustering method using informatively
named entities.” Proc. of WIDM’05, pp.81-86, 2005.

12. Yamada, T., Saito, K. and Ueda, N.: “Cross-Entropy Directed Embedding of Net-
work Data.” Proc. of ICML’03, pp.832-839, 2003.

13. Zamir, O., and Etzioni, O.: “Grouper: A Dynamic Clustering Interface to Web
Search Results.” Proc. of WWW8, pp.1361-1374, 1999.

14. Zeng, H. J., He, Q. C., Chen, Z., Ma, W. Y. and Ma, J.: “Learning to Cluster Web
Search Results.” Proc. of SIGIR’04, pp.210-217, 2004.

15. Zhao, Y. and Karypis, G.: “Evaluation of Hierarchical Clustering Algorithms for
Document Datasets” Proc. of CIKM’02, pp.515-524, 2002.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 338 – 347, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Approach for XML Inference Control Based on RDF

Li Zhuan and Wang Yuanzhen

School of computer science and technology,
Huazhong University of science and technology,

Wuhan, Hubei, P.R. China
Zhuan.L@gmail.com, wangyz2005@163.com

Abstract. In this paper, we present a new approach for XML inference control,
which is on the foundation of some improvements of an access control model
that based on RDF. By using some concepts that derived from XML, such as
XML type, XML object etc, we encapsulate the nodes of an XML document to
represent the semantic relations among them. We also represent a method about
document combination based on XML keys, which can maintain the structural
consistency and content consistency between history files and original
documents. Since the range of inference control is enlarged and the granularity
of authorized objects is expanded, our approach can provide higher security and
flexibility for XML documents.

1 Introduction

The widespread adoption of XML has made the security of XML documents to be a
primary concern and one of the most important research points. Early researches [1],
[2], [3] concern about the trust transmission of XML data. In those works, encryption
and digital signature contributed to security by keeping information private and
authenticating senders’ identities. A number of recent researches [6], [7], [8] have
considered access control models for XML data. Access control request that any user
who wants to read or write any data must be proper authorized before he does such an
access. Thus, it can prevent adversary from directly obtaining sensitive information.

However, indirectly disclosure cannot be avoided yet. For example, Figure 1 shows
a segment of an XML document about hospital data [4]. Patient Alice’s disease is
sensitive and should not be released. Access control model can easily realize such a
secure requirement by a proper authorization policy. However, an authorized user can
easily infer out the truth by knowledge, “patients in the same ward have the same
disease”. Intuitively, inference is a potential threaten to the security of a system and
needs to be researched in a new way as secure inference control.

Recent researches [4], [9] on XML inference control only consider some simple
constraints between the nodes of a document, such as function dependency, etc., and
abundant of other semantic information couldn’t be effectively expressed yet.
Gowadia and Farkas [5] have studied association sensitivity in XML access control.
By using RXACL, they present an access control framework that provides flexible
security granularity for XML documents. They adopt RDF statements to encapsulate
XML nodes to represent security objects and the security policy. The idea in this
paper is just derived from them. By the semantic representation ability of RDF, we
can depict the relations between XML nodes conveniently.

 An Approach for XML Inference Control Based on RDF 339

Another significant problem is the query history. If a query is rejected because of
security violation, adversary may decompose it into several valid sub-queries and
submit each of them at an interval of any time. The combination of results may still
cause the leakage of sensitive information. Hence, maintaining history files for every
user is crucial for high secure of XML documents. A premise to realize such purpose
is XML documents’ combination. We also use RDF to redefine XML Key to conduct
the combination of user’s current query and his history file.

The outline of the rest paper is as follows. Section 2 gives us some preliminary
concepts. The content in section 3 is our inference control architecture. In section 4,
we improve the access model and adapt it for the inference control. Some main
algorithms and procedure in the process of inference control are stated in section 5.
Finally in section 6, we give our conclusion.

2 Preliminaries

2.1 XML Document Tree and Path Expression

An XML document is a semi-structured document that is consisted of a list of nested
elements and values [10]. The structure of an XML document is described by DTD
(Document Type Definition) that can be modeled a labeled tree.

Definition 1 (XML Document Tree). An XML document tree is a 3-tuple of the
following form: (V, E, r), where V is the node set of the tree and E denotes the arc set,
r is the root of the tree. All nodes in V can be divided into two types: inner-node and
leaf-node, corresponding to an element and a value in the document respectively.
Each arc in E presents a parent-child relation between the nodes in V. Given two
document tree t1 and t2, we say that t1=t2 if the V, E and r of one tree are all the same
with the other tree’s; t1 has same structure with t2 if both of them are valid in a same
DTD specification.

Using path-expression can exactly identify a node or a sub-tree in an XML document.
We just use a simple but effectual subset of XPath, and redefine path-expression as p:
l1/l2/…/ln, where “/” denote a parent-child relation.

Given a path-expression p of a document t, the nodes identified by p in t is the last
node whose name is ln after traversing t along with the sequence l1, l2, …, ln; the sub-
trees identified by p is the tree whose root is ln. We use p(t) to denote such sub-trees.

Fig. 1. A segment of an XML document about hospital data

patient

name

Cathy

disease

leukemia

ward

W101

patient

name

Alice

disease

leukemia

ward

W101

patient

name

Tom

disease

AIDS

ward

W301

hospital

340 Z. Li and Y. Wang

Definition 2 (Path Containment). Given an XML document t and a path-expression
p: l1/l2/…/ln, we say that p is path contained in t if: (1) l1 t when n=1; and (2) p':
l2/…/ln is also path contained and l1/l2 is satisfied in t when n>1.

Let p.s denote the start node in a path-expression and p.e is the end one, say p is an
absolute path-expression of t if p.s is the root of t; otherwise, p is a relative path-
expression. We use pa and pr denote them respectively. If two path-expression p1 and
p2 which contained in document t satisfied p1.e/p2.s, then p2 is a sub-expression of p1
in t. Assume P is a path-expression set of t, for any p' P, if p' is contained in p(t), we
say that p.e is the associate root of P, using asscroot denote. Obviously, the root of a
document tree is the asscroot to any path-expression subset of it.

2.2 Resource Description Framework

The main limitation of XML is that it only provides syntax, notations and the
hierarchies for data. RDF (Resource Description Framework) [11], which based on
the idea of identifying resources by using URI, supplements this by providing
semantic information in a standardized way.

Definition 3 (RDF Statement). An RDF statement is a 3-tuple of the following form:
(subject, predicate, object), where subject is used to identify resources; predicate
describes different properties of the resources; object is the value corresponding to
each property. Every Object might be a literals or another resource.

Describing a resource in detail may need a few of statements. RDF models such
statements as nodes and arcs in a graph. Every statement that belongs to a same
resource has different arc and object node, but sharing one subject node. In the rest
paper, we just use a single tuple to describe some objects and their relations, which
derived from an XML document, instead of the graph.

3 Architecture

Being as a major supplement for information system’s security, inference control is
always built on access control system. The architecture of our XML inference control
system is showed in Figure 2, which including two phases. In secure designing phase
(I~II in the figure), administrators create an RDF repository, including RDF types,
objects and semantic relations among them; specify the sensitive object for secure
requirements; and finally establish a security policy for all the documents.

In secure running phase (1~9 in the figure), query engine will creates an answer for
every request that submitted by users. The system will first check authorization for
direct disclosure validations, according to the security policy. The query will be
rejected if there are violations detected. Otherwise, the system will then check
inference disclosure, which may appear in the result of the combination and inference
extension of the answer and the user’s history file. If there is no violation occurred,
the history file will be updated before the answer’s returning. Otherwise, history file
will be maintained the same and the query is rejected.1

1 For every user of the system, a separate XML document is created to record his query

history. More secure method is to create one history file for all users in a same group, thus
the common collusion among them would be avoided.

 An Approach for XML Inference Control Based on RDF 341

4 Improvement of Access Control

4.1 Sensitive Objects and Their Authorization

Instead of using URI to identify resources and their semantic relations in the Web, we
just use object id (OID) to distinguish different XML objects.

Definition 4 (XML Object). Given an XML document, a simple XML object is a sub-
tree, which is located by a path-expression of the document and is only once
encapsulated by RDF statements; an associated XML object, which is also located by
a path-expression, is a composition of simple objects and/or other associated objects.

Not the same with simple objects, the path-expression in an associated object is used
to identify the asscroot of its sub-objects.

Example 1. Some XML objects of the document showed in Figure 1 are listed as:
Simple objects: SO01 (locate: name/Alice, type: SIMPLE-OBJECT); SO02 (locate:

disease/leukemia, type: SIMPLE-OBJECT); SO03 (locate: disease/AIDS, type: SIMP-
LE-OBJECT)

Associated object: AO01 (asscroot: hospital/patient, component: {SO01, SO02},
type: ASSC-OBJECT)

In the example, literals “SO01” etc., which represents a subject, is the identifier
OID; predicate “type” represents the type of the object; predicate “locate” locates
the object in the document; predicate “component” indicates the components of an
associated object; the literals, which follows a colon, represents the object of a
predicate that followed by that colon.

All privileges that a user obtained from authorized objects, are equated to what he can
obtain directly from nodes. The sensitive designation on XML objects can be
naturally transferred to the nodes; and also the secure requirements can be represented
by object instead of node.

Fig. 2. XML inference control architecture based on RDF

1 Query XML Documents Query
Engine

History

Update
History

9
Answer

8
7

Answer

5

Reject Query 7 Violated

6

5

4 Answer

4 Violated Reject Query

Check
Inference

Extension

6 5 Answer

Check
Authorization

2 Answer

RDF Repository

Security
Policy

II

3

I

342 Z. Li and Y. Wang

Definition 5 (XML Authorization). An XML authorization is an RDF statement that
describes the subject, type and object of it, where type can be divided into positive
authorization and negative authorization, using “+” and “-” represent respectively.
The granularity of authorization object is RDF object and (1) simple object has the
same authorization type with the nodes encapsulated by it; and (2) sub-objects’
authorization is positive if their parent object is positive authorized; and (3) sub-
objects can have a different authorization from their negative authorized parent.

Example 2. An XML authorization that satisfied a security requirement: “Disease
AIDS is sensitive to user US01”.

XML authorization: AU01 (user: US01, access-type: -, object: SO03, type: AUTH-
ORIZATION)

Example 3. An XML authorization that satisfied a security requirement: “Alice’s
disease is sensitive to user US01”.

XML authorization: AU02 (user: US01, access-type: -, object: AO01, type: AUTH-
ORIZATION)

In these examples, predicates “user”, “access-type” and “object” represent the
subject, type and object of an authorization respectively.

Since XML object is the minimum granularity of authorization and is transparent to
user, we assume that (1) a sensitive node’s disclosure is equal to the whole simple
object’s, which encapsulate it; and (2) only all sub-objects have been disclosed will
the parent object be disclosed.

4.2 Improvement

The above object-oriented model can simplify the specification of sensitive informati-
on and resolve the association sensitive problem opposite to node-oriented authoriza-
tion. However, when the security requirement in Example 3 is expanded to all
patients, a mass of redundancy will again appear in the security policy. If we could
abstract XML type from XML objects that have same structures, then such situation
will be ultimately avoid. In addition, XML type is also a foundation to describe
semantic relations in a document.

Definition 6 (XML Type). A simple XML type is similar to a simple XML object, but
not include its leaf-nodes; an associated XML type is consisted of simple types and/or
other associated types. XML types use TID to identify each other.

Example 4. Some XML types of the document showed in Figure 1 are listed as
follows.

Simple types: ST01 (locate: name, type: SIMPLE-TYPE); ST02 (locate: disease,
type: SIMPLE-TYPE)

Associated type: AT01 (asscroot: hospital/patient, component: {ST01, ST02}, type:
ASSC-TYPE)

XML object is an instance of its type and can automatically obtain the authorization
specifications of it. Authorization on object can be changed and such operation will
not affect other instance of the same type.

 An Approach for XML Inference Control Based on RDF 343

Example 5. An XML authorization that satisfied a security requirement: “All patien-
ts’ disease is sensitive to user US02”.

XML authorization: AU03 (user: US02, access-type: -, object: AT01, type: AUTH-
ORIZATION)

There are always some conflicts included in a security policy. Existed conflict
resolutions [6, 7] can be addressed in several standard ways such as general versus
specific, negative versus positive, etc. These conflicted authorizations are related to a
single authorized object. However, conflicts may also exist among different
authorized objects, especially the ones that are semantic related. They are the origin of
inference disclosure, and their resolution is the essence of the whole inference control.

After the nodes’ objectifying and objects’ typifying, we can conveniently use RDF
to describe semantic relations in a document.

Example 6. An XML relation of the document showed in Figure 1 is listed as follows.
Simple types: ST04 (locate: ward, type: SIMPLE-TYPE)2
XML relation: RE01 (asscroot: hospital/patient, premise: ST04, conclusion: ST02,

type: FD)
In the example, predicates “premise” and “conclusion” represents the two parties

of the relation “RE01” respectively. How to use such a relation in the inference
control procedure is indicated by the literals “FD”, which will be described in detail
by using RDF in a period of the system’s realization.

A relation is called I-relation when one part of it will directly cause the other’s
disclosure, e.g. special prescription always determines a same disease. A relation is
called II-relation, if there must be some conditions only in which a disclosure will
take place. Relation RE01 is just an example; adversary must need to find another
patient, who is in the same ward with Alice, and her disease before using RE01. Our
purpose of classifying XML relations is to take different expanding strategies in
document extending period of inference control.

5 Secure Inference Control

5.1 Assumption of Inference Control

Not all inference activities should be controlled. Referring to “Closed world Assump-
tion” in researches of relational database security [12], we present some similar
assumptions to restrict the range of the resolution of inference control.

Assumption 1. Inference is dependent on the nodes and their relations in an XML
document. Otherwise, such an inference can’t be controlled.

Assumption 2. The result of inference must exist in the document. Only the inference
that causes the leakage of sensitive information in the document need to be
controlled.

2 Other kind of relations may have different RDF representation and document- expanding

strategy. Administrator can easily add them to the RDF repository.

344 Z. Li and Y. Wang

In a closed access control strategy, all authorizations of some user generate a division
of objects: permit-set, explicit-refuse-set and implicit-refuse-set. We assume that: all
the objects in some query result are passed through security validation by access
control mechanism; inference control mechanism should make sure that objects in
explicit-refuse-set cannot be inferred from the result; objects in implicit-refuse-set
needn’t to be controlled even if they could be inferred out. That is, only the objects in
explicit-refuse-set are considered as sensitive information under these assumptions.

5.2 Document’s Security Validation

Both the direct disclosure control and inference disclosure control need to check the
result to make sure whether the security policy is violated or not. Given a document,
what we need to do is to finding whether there is a sensitive object to some user that
is contained in the document. We give a validation procedure as follows.

Procedure 1. XML document’s security check for some
user
Input: XML document t, Sensitive objects O of some user
Output: TRUE if the security is violated, otherwise
FALSE
Method:
1. For any object o in O:
(a) If o is a single object, then return TRUE if
o.locate is path contained in t.
(b) If o is an associated object, then return TRUE if
there exist a sub-tree identified by o.asscroot(t) that
contains all the sub-objects of o.
2. Return FALSE

5.3 Combination of Documents

Every query result is always a sub-tree with different structure, simple combination
will cause a confusing and useless forest. To maintain structural-consistency between
history file and original document, we use some non-existent dummy nodes, which
will never returned to any user, to supplement every query result before merging it to
history file.

Another problem is the node’s more designation in a document’s schema defini-
tion, which will inevitably cause same sub-trees to be simultaneously appeared in the
result of a combination. Hence, it is also important to keep content-consistency
between combination result and original document. We use XML keys as a main
approach to eliminate such redundancy.

Definition 7 (XML Key). An XML key is represented as (pa, {p1
r, p2

r, …, pn
r}), where

pa indicates the root of a sub-tree to which the key belonged; p1
r, p2

r, …, and pn
r

indicate items of the key respectively, and all of them are the sub-express of pa in t. An
XML key (pa, {p1

r, p2
r, …, pn

r}) is used to ensure that there not exist two different sub-
tree t1 and t2 in t, whose roots are both pa.e and pi

r(t1) = pi
r(t2)(1 i n).

 An Approach for XML Inference Control Based on RDF 345

The approach of using XML keys in document combination is showed in algorithm 1.

Algorithm 1. Merging the documents of same structure
Input: XML document t and t', XML key set K of an
original document that t and t' have same structure
with
Output: result of the combination
Method:
1. Let n be the root of t'
2. If n is not a leaf-node, for each sub-node n' of n:
(a) If n' is not contained in t, or it is defined to be
repeatable, then copy the sub-tree that root of it to t
at a corresponding position;
(b) Otherwise, n = n', goto 2 for a recursion
3. For each k = (pa, {p1r, p2r, …, pnr}) in K, if k is
contained in t, let T be the sub-tree set of pa(t), and
if T is not empty:
(a) Let t1 be a sub-tree in T, T = T - {t1};
(b) For each t2 in T, if pir(t1) = pir(t2)(1 i n), then
prune t2 and merge it to t1 in t recursively, T = T -
{t2};
(c) If T is still not empty, repeat to execute (a)
4. Return the result t

Figure 3 is a comparison of document combination by using XML key KY01 and
none. It shows that in (c), there are two patients whose name are both Cathy and the
result is not content consistency with original document in Figure 1; in (d) on the
contrary, such a problem has been solved effectively by using the above algorithm
with the key KY01.

5.4 Document Extension

A promise of inference disclosure detection is to obtain a maximum document tree from
the combination result of all sub-trees that a user received. If there isn’t any inf- erence
disclosure in the maximum tree, then intuitively, the sub-tree is secure too. A successful
inference in a given sub-tree is a repeated process; new incoming for the sub-tree will
activate other relations to a further inference. Hence, the order of using relations for an
expanding will impact the efficiency of inference control. It is necessary to compute and
preserve all dependency chains among the relations beforehand.

Fig. 3. A comparison of the combination of XML documents

hospital

patient

disease name

Cathy leukemia

(b) Document t2 (d) Result by using a key

hospital

patient

name

Cathy

disease

leukemia

ward

W101

hospital

patient

ward name

Cathy W101

(a) Document t1 (c) Result of none key used

name

Cathy

ward

W101

patient

hospital

name

Cathy

disease

leukemia

patient

346 Z. Li and Y. Wang

As mentioned in section 4.2, different kinds of relation has a different expanding
strategy in document’s extending. For I-relation, only its premise is contained in a tree
will its conclusion can be used for an extension; and for II-relation, a sub-tree that
only contains its premise will be expanded if there exist another sub-tree that contains
both the premise and conclusion. Here, we give an algorithm of document’s extension
that forced by only one relation as below.

Algorithm 2. Document extending forced by a functional
dependency relation
Input: XML document t, functional dependency relation r
Output: Result of the extension
Method:
1. Let p be the asscroot of r
2. If r is an I-relation, then expand r.conclusion to
the sub-trees that are identified by p(t) and contain
r.premise
3. If r is an II-relation, then let T1 be a sub-tree set
whose item is identified by p(t) and contains r, let T2
be another sub-tree set whose item is also identified
by p(t) but not contains r:
(a) If T1 or T2 is empty, then return t.
(b) Take a sub-tree t' out of T1. For each sub-tree t"
in T2, if r.premise in t' and t" are the same, then
expand r.conclusion in t' to the sub-tree, which t"
corresponds in t, and remove t" from T2;
(c) Repeat to execute (a).

Figure 4 is an example of document extension by using the II-relation RE01 given in
Example 6. The nodes with bold font are the new incoming for the document after
extending.

When all the relations have been used and no other new node is inferred out, the
result is the maximum tree. The following we need to do is to validate its security. If
the maximum tree is secure, then the query result can be returned to the current user
and the corresponding history will be updated too.

Fig. 4. An extension of XML document by using an II-relation

name

Alice

ward

W101

patient

hospital

name

Cathy

disease

leukemia

ward

W101

patient

(a) Document before an extension (b) Document after an extension

hospital

name

Cathy

disease

leukemia

ward

W101

patient

ward

W101

name

Alice

patient

disease

leukemia

 An Approach for XML Inference Control Based on RDF 347

6 Conclusion

In this paper, we present a new approach of inference control, which is on the
foundation of some improvements of an access control model that based on RDF. By
using some concepts that derived from XML, such as XML type, XML object etc, we
encapsulate the nodes of an XML document to represent the semantic relations among
them. Thus the capability of inference description is improved. By studying the effect
of query history in inference control, we represent a method about document
combination based on XML keys, and develop some algorithms for such a
combination and the extension after it. Since the range of inference control is enlarged
and the granularity of authorized objects is expanded, our approach can provide
higher security and flexibility for XML documents.

References

1. A. Kwong, M. Gertz. Authentic Publication of XML Document Data. In Proceedings of
the 2nd International Conference on Web Information Systems Engineering, pages 331-
340, 2001.

2. P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic Third-Party Data
Publication. DBSec, 18: 101-112, 2000.

3. E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta. Selective and
Authentic Third-Party Distribution of XML Documents. IEEE Transaction on Knowledge
and Data Engineering, 16(10): 1263-1278, 2004.

4. Yang XC, Li C. Secure XML Publishing without Information Leakage in the Presence of
Data Inference. In Proceedings of the 30th VLDB Conference, pages 96-107, 2004.

5. Vaibhav Gowadia, Csilla Farkas. RDF metadata for XML access control. In Proceedings
of the 2003 ACM workshop on XML security, pages 39-48, 2003.

6. Damiani E, Vimercati SDC, Paraboschi S, Samarati P. A fine-grained access control
system for XML documents. ACM TISSEC, 5(2): 169-202, 2002.

7. L. Bouganim, F. Dang Ngoc, P. Pucheral. Client-Based Access Control Management for
XML documents. In Proceeding of the 30th VLDB Conference, pages 84-95, 2004.

8. Wenfei Fan, Chee-Yong Chan, Minos Garofalakis. Secure XML Querying with Security
Views. In Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 587-598, 2004.

9. C. Farkas, A. Stoica. Correlated data inference in ontology guided XML security engine.
In Proceedings of 17th WG 11.3 working conference on Data and Application Security,
2003.

10. 10.W.W.W.Consortium. Extensible Markup Language 1.0 specification. W3C
Recommendation, retrieved from http://www.w3.org/TR/2000/REC-xml-20001006, 2000.

11. 11.W.W.W.Consortium. RDF Primer. W3C Recommendation, retrieved from
http://www.w3.org/TR/2004/REC-rdf-primer-20040210, 2004.

12. 12.D. E. Denning. A Preliminary Note on the Inference Problem in Multilevel Database
Management Systems. In Proceedings of the National Computer Security Center
Invitational Workshop on Database Security, 1986.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 348 – 357, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Recursive SQL Query Optimization with k-Iteration
Lookahead

Ahmad Ghazal, Alain Crolotte, and Dawit Seid

NCR Corporation, Teradata Division
100 N. Sepulveda Blvd. El Segundo, CA, 90245

{ahmad.ghazal, alain.crolotte, dawit.seid}@ncr.com

Abstract. Relational implementation of recursive queries is part of the ANSI
SQL99 and was implemented in Teradata V2R6. Recursive queries allow proc-
essing of hierarchical data like air flight schedules, bill-of-materials, data cube
dimension hierarchies, and ancestor-descendant information (e.g. XML data
stored in relations). The initial Teradata recursive query implementation is
based on a static (fixed) execution plan for all recursive iterations. This may not
be optimal since the intermediate results from recursive iterations vary in size.
To address this problem, this paper proposes dynamic re-optimization tech-
niques to produce execution plans that are optimal for all recursive iterations.
The approach employs a mix of multi-iteration pre-planning and dynamic feed-
back techniques that are generally applicable to any recursive query implemen-
tation in an RDBMS. We validate our proposed techniques by conducting
experiments on a prototype implementation using airline flights data.

1 Introduction and Problem Definition

For over two decades recursive queries were handled in deductive databases until the
adoption of a recursive query standard in SQL99 allowed its implementation in com-
mercial relational DBMS products. The motivation behind the implementation of
recursive queries is to allow relational DBMS users to easily query hierarchical and
directed graph data. The recursive view definition below shows an example of how
recursion is specified in SQL99. This view is based on a table called Flights that
contains a simplified airline roster. The Flights table consists of departure city,
arrival city, departure time, arrival time and cost (one way trip fare).

CREATE RECURSIVE VIEW
all_trips (source, destination, src_time, dest_time, cost, depth, path) AS
SELECT dep_city, arr_city, dep_daytime, arr_daytime, cost, 0 as depth,

 cast(source||' '||destination as varchar(100))
FROM Flights
UNION ALL
SELECT results_before.source, next_leg.arr_city, results_before.src_time,

next_leg.arr_daytime,results_before.cost + next_leg.cost, results_before.depth + 1,
results_before.path||' '||next_leg.arr_city

FROM all_trips results_before
 INNER JOIN Flights next_leg ON results_before.destination = next_leg.dep_city

WHERE results_before.path not like '%'||next_leg.arr_city||'%';

The all_trips recursive view captures all multi-leg flights with no cycles (enforced
by checking if the new arrival city is not part of the flight path). This view, like other

 Recursive SQL Query Optimization with k-Iteration Lookahead 349

recursive views, can be broken down into a seed part and a recursive part. The seed in
the all_trips view is the first SELECT (simple select from Flights) which represents all
direct flights. The second SELECT is the recursive part of the view where the
Flights table is joined with all_trips. In general, both the seed and recursive part
could be a UNION of numerous SELECT statements. A statement belongs to the seed
if it does not reference the recursive view. All other statements (SELECTs that have
self references) comprise the recursive part of the view.

To further illustrate the semantics of recursive queries, we describe the execution
logic of recursive queries using the all_trips view as an example. The following pro-
cedure, which we will also use later to illustrate our new optimization techniques,
describes the execution of query “select * from all_trips”.

Procedure ExecuteAllTrips
Begin

1. Retrieve from Flights into Spool 1 and Spool 2.
2. Join Flights with Spool 2.
3. If join result is empty go to step 7.
4. Empty Spool 2.
5. Send join result to Spool 1 and Spool 2.
6. Go to step 2.
7. Return the contents of Spool 1 to the user as the final result of the query.

End

The above steps are generated by the optimizer and executed by what is called the
execution engine. The first step corresponds to performing the seed part (first
SELECT). It produces the initial result and feeds into the recursion. The recursive
steps are steps 2 - 6. Spool 2 is used to hold the running seed (recursive result in each
iteration) which then becomes part of the cumulative result (held in spool 1). The final
result is basically the UNION of the initial seed and the result of all recursive itera-
tion. Notice that while in this simple example Spool 2 is joined only with the Flights
table, in a complex query Spool 2 may be joined with many other tables in Step 2
(either in a multi-way join or as part of multiple unioned SELECT statements). Spool
2 may also be involved in an outer join or joined with subqueries.

The optimizer finds the best way to perform the seed and recursive steps based on
cost estimates. For example, the optimizer may find an index access to Flights in step 1
above. The optimizer also finds the best join method to join Flights with Spool 2 in step
2 above. For complex queries, the join plan for Step 2 becomes more complex.

The initial Teradata implementation uses a static plan in step 2 based on the esti-
mated demographics of Spool 2 computed once when it is first created. These demo-
graphics are basically the outcome of the seed steps. Hence, the plan is optimal for the
first iteration of the recursive execution but may not be for subsequent iterations. The
reason is that Spool 2’s demographics may change during the recursive execution
rendering the initial plan non-optimal. For example, as the cardinality of Spool 2
changes from iteration i to iteration i+1, it is possible that hash join is the optimal way
to join Flights to Spool 2 in i-th iteration but merge join is the optimal way to do the
same for the i+1th iteration.

We are aware of only a few solutions proposed to address the shortcomings of
static plans for recursive queries. In the context of a deductive database system, [4]

350 A. Ghazal, A. Crolotte, and D. Seid

adopted a feedback mechanism to generate iteration specific plans when needed. This
paper compared two alternatives: The Never Strategy (that never re-optimizes the
initial plan) and The Change Strategy (that re-optimizes when cardinalities change).
Since re-optimization is considered to be costly, [4] tried to avoid re-optimization for
every iteration by using some rules to decide when to re-optimize and when to con-
tinue using the same plan for the next iteration. Specifically, three options were
considered: (1) re-optimize if there is any change in cardinality, (2) re-optimize if
cardinality increased/decreased by x percent for a given x, and (3) during the first
iteration, rank relations by cardinality and re-optimize if the rank of any relation
changes.

We also address the same problem but propose a different solution. Our solution
is based on the observation that, in most cases, there are costs in re-optimizing at
every step in addition to the optimization cost itself. Indeed, in order to collect feed-
back after a given iteration, the recursive result of that iteration needs to be written to
disk (assuming this intermediate result is not small enough to fit in memory). After a
plan is generated for the next iteration, the current iteration result is read again from
disk to execute the iteration. In contrast, if no feedback/re-planning is needed, the
execution engine can directly feed the join result of the i-th iteration to the (i+1)th
iteration. As we explain in detail in 2.1, this leads to more efficient query execution
including creating opportunities for inter-operator (“vertical”) parallelism via
pipelining.

The new technique we propose generates plans for the different iterations upfront
to allow pipelining. Specifically, the optimizer tries to estimate the join cost of subse-
quent iterations based on predicted demographics at each of these iterations. Since
most of the time the number of recursive iterations is not known, the optimizer gener-
ates plans for a fixed number k of iterations. This means, the query optimizer has
access to plans for the subsequent k iterations (which can be different for different
iterations) thereby allowing it to exploit pipelining. After k iterations (if applicable)
the execution engine provides feedback (actual cardinality of the last recursive itera-
tion) to the optimizer. The optimizer then generates the next k plans and so on.

By making the k plans available, our k-iteration lookahead planning also allows the
optimizer to consider further optimization using global (multi-query) optimization
techniques [13,14,15]. This optimization tries to identify common subexpressions and
scans that can be shared among the k query plans.

In addition to using database demographics for estimating join cardinalities of the
next k-iterations, we also investigate sampling based techniques to gain such esti-
mates (currently only for queries whose recursive part involves a single table). Our
sampling methods are inspired by sampling based techniques developed for estimat-
ing the cardinality of a relation’s transitive closure [6,7,8]. [6,7] gave an algorithm
that uses adaptive sampling for selecting starting nodes and uses breadth-first travers-
als to compute the size of these nodes’ reachability set. An improvement of this
method is presented in [8].

In general, although recursive queries have been supported in deductive databases,
these systems do not normally use cost-based optimizations. Instead they use heuris-
tics to select an order of execution based on a set of precedence rules for applicable
techniques [5]. The work in [12] considers cost-based optimization of recursive
queries in a parallel database. However, this paper did not address dynamic

 Recursive SQL Query Optimization with k-Iteration Lookahead 351

re-optimization. Ordonez [9] also deals with recursive query optimization in the Tera-
data RDBMS. The discussion in that paper was limited to selection pushdown, dupli-
cate row elimination and using indexes on the base table and the result table.

There has been a significant amount of work on dynamic re-optimization of plans
in a relational optimizer [1,2,3,10,11]. However, these studies did not consider recur-
sive queries. Indeed this body of work can be viewed as complementary to ours in
that it deals with changing a plan for a single iteration of a recursive plan while we
deal with adaptive re-optimization of repetitive execution of joins.

The paper is organized as follows. Section 2 covers dynamic re-optimization tech-
niques including our proposed k-iteration lookahead planning approach. Section 3
provides experimental results quantifying the benefits of our proposed method. We
conclude in section 4 with a summary of results and future work.

2 Dynamic Optimization Techniques

As mentioned above, previous results on dynamic optimizations are based on the
tradeoffs between producing more optimal plans and the overhead cost of re-
optimization. However, in real-life decision support queries running on commercial
database systems like Teradata, optimization time is a very small fraction of the total
execution time. This may suggest that the problems of static plans can be simply
solved by re-optimizing the plan at every recursive iteration based on the actual
demographics produced in the previous iteration. In section 2.1 we discuss the demer-
its of such an approach, which we refer to as Full-Feedback based dynamic optimiza-
tion. Then in section 2.2 we describe the k-iteration lookahead and sampling based
planning techniques.

2.1 Full Feedback Based Optimization

In the Full-Feedback Planning (FFB) technique, the optimizer produces and sends a
plan to the execution engine at every iteration, and the execution engine executes the
plan and feeds back1 the demographic information of the result to the optimizer. In
general, the demographic information relevant to join planning includes cardinality,
average, maximum and minimum number of rows per unique value, most frequent
values and their frequency, field correlation information, and so on. Among these the
two most critical values that can also be gathered cheaply are relation cardinality and
number of unique values. The demographics sent by the execution engine are just the
cardinality of the recursive iteration result which it produces for free. We can then use
unique value demographics from the base table (e.g. Flights) and the seed as well as the
current recursive result’s cardinality to estimate the number of unique values.

Below we show the application of FFB to the execution of the all_trips recursive
view described previously:

1 It should be noted that there are many scenarios where feedback is not possible altogether.

That happens when an SQL expression should be pre-compiled and the execution plan is
stored. Examples are stored procedures and cached plans.

352 A. Ghazal, A. Crolotte, and D. Seid

Procedure ExecAllTrips-FFB
Begin

1. i = 0
2. Retrieve from Flights into Spool 1 and Spool 2.
3. Optimizer finds plan for i-th iteration(0-th iteration is the initial seed)
4. Optimizer sends i-th iteration plan (steps) to execution engine.
5. Execution engine executes the plan
6. If i-th iteration result is empty go to step 10.
7. Send current join result to Spool 1 and Spool 2
8. Collect available demographics and send it back to the optimizer.
9. Increment i by one and go to step 3.
10. Return the contents of Spool 1 as the final result of the query.

End

Pipelining. FFB generates the execution plan for each recursive iteration in isolation.
As a result, the optimizer can not exploit pipelining to achieve cross-execution-step
optimizations. Cross-execution-step optimization (aka vertical parallelism) allows a
consumer operator to start before the producer finished execution. Pipelining is de-
fined in different ways in the database literature and therefore we first define this term
in the context of this paper. In an execution plan of some database query or queries,
step X pipelines to step Y if

- the output of step X is used as input in step Y and
- The input of Step Y requires some preprocessing like sorting or relocation

of data (redistribution or duplication in a distributed database system).
- Step X performs the preprocessing needed by step Y.

In ExecAllTrips shown in section 1, Steps 1 or Step 5 could pipeline into step 2 if
the join step between Flights and Spool 2 requires first sorting of Spool 2 on the des-
tination field. Specifically, the sort can be done along with the read steps of step 1
or step 5 rather than writing the result to disk and performing a separate sort step.

The optimizer finds out if a certain step X can pipeline into another step Y and in-
cludes the preparation processing in step X. That can only be done if both steps are
seen by the optimizer, which is not possible for FFB. For example, in ExecAllTrips-
FFB, the optimizer can not apply pipelining from step 7 in the i-th iteration into step 5
of the i+1th iteration since it produces the plan of only one iteration at a time.

Global Query Optimization (GQO). Another limitation of FFB is that it cannot take
advantage of GQO. GQO finds an optimal plan for a set of queries. One important
aspect of GQO is finding and leveraging common sub-expressions across multiple
queries submitted as a batch. Since each iteration can be considered a “query”, execu-
tion of a recursive query is equivalent to execution of a set of queries. And, since these
queries have generally a lot in common, the chances of benefiting from GQO are high.
Notice also that GQO is complementary to pipelining in that, once a shared expression
is identified, its result is pipelined to its consumers in all iterations. Again, since it
processes one iteration at a time, the FFB technique can not take advantage of GQO.

Finally, note that ExecuteAllTrips, the static planning approach, does not require
feedback and can take advantage of pipelining and GQO since the execution steps for

 Recursive SQL Query Optimization with k-Iteration Lookahead 353

all iterations are known in advance. But, as mentioned before, ExecuteAllTrips has its
own limitations due to its use of a fixed plan for all iterations.

2.2 Planning with k-Iteration Lookahead

Next we describe our new approach that avoids the limitations of both static planning
and FFB. The approach, called k-iteration lookahead planning (KLP), is based on
generating plans of multiple iterations before execution. One possible realization of
KLP is to generate a plan every k iteration and use that same plan for the next k itera-
tions. Another approach, which we pursue here, is to generate a possibly varying plan
for each of the k iterations. The optimizer starts by finding the optimal plan for the first
iteration the same way as exemplified in ExecuteAllTrips. A by-product of the plan of
the first iteration is a size estimate of the result produced in that iteration. The opti-
mizer uses that estimate to set the demographics of the input to the second iteration and
proceeds with generating the second iteration plan. This process continues until a fixed
k number of iterations are planned. Section 2.2.1 will discuss how the value of k is
determined. In cases where k is less than the total number of iterations (TNI), the exe-
cution engine feeds back to the optimizer after k iterations. The optimizer then applies

KLP for the next k iterations. This process continues for kTNI times.

Notice here that KLP essentially leverages the database demographics traditionally
used for one-step join planning to generate multi-iteration join plans. Also note that
the Full-feedback technique is indeed a version of KLP where k = 1. Hence, the
estimates used by KLP for k > 1 can be less accurate than FFB. However, as our ex-
periments will show, when k is set appropriately, the impact of lost accuracy is out-
stripped by gains from pipelining, GQO and saved cost of feedback/re-optimization.
Also, as will be discussed below, confidence in the estimates can be considered in the
determination of k for KLP.

2.2.1 Computing the Value of k
The value of k in KLP is determined by the optimizer for each query. The value of
TNI is an upper bound on the value of k but in general it is difficult to find the exact
value of TNI. However, there are common cases where an upper bound on the value
of TNI can be found. One way to do this is by considering the number of distinct
values (NDV) of the join fields involved in the recursion. For example, in the view
all_trips, it is reasonable to assume that TNI maximum(NDV(source),
NDV(destination)). This is true since the recursion in all_trips is not cyclic and is
guaranteed to terminate. Cyclic recursion is not considered in this paper since it is
either handled by a compilation error (by the optimizer) or a run-time error (by the
execution engine).

Also, some recursive queries have an explicit condition to cap the recursion depth.
For example, all_trips could have an explicit condition (or a condition pushed into the
recursive part by query re-write) like “depth <= V” in the WHERE clause of the recur-
sive part (second SELECT). It is not hard for the optimizer to find the limit value V. In
fact some commercial databases require such a limit in any valid recursive query. If
both NDV and depth limit are available, the value of TNI is set to the minimum of
these values. Hence, the value of k can be chosen by the optimizer to be TNI.

354 A. Ghazal, A. Crolotte, and D. Seid

Various issues can be considered in choosing the exact value of k. The key is the
tradeoff between maximizing pipelining and GQO and producing good plans. Also,
the CPU and I/O cost of gathering feedback and generating k plans (relative to data
size) needs to be considered. The Teradata optimizer provides levels of confidence for
the join plans and spool cardinality estimates. In this case, KLP can terminate generat-
ing plans when it determines that it has no confidence in the estimate of the join re-
sult. It can also stop generating new plans altogether if it finds that the optimization
time of the i-th iteration is more (or above a certain threshold) than its estimated exe-
cution time. In our current prototype, the value of k is based on the confidence and
parsing times as just described.

2.2.2 Sampling Based Demographics Estimation
Depending on the connectivity distribution the recursive table’s underlying graph and
the value of k, some of the plans produced by KLP may be inefficient if the estimates
are significantly affected by the propagation of errors across the k iterations. Notice
that misleading estimates caused by quick propagation of errors in size estimation is
also a problem for base-table joins if the query expression involves several joins [16].
Since estimates feed into each other, KLP can be affected by this problem more se-
verely. Here, we briefly discuss a sampling based approach to mitigate this problem in
a particular class of queries. Our sampling technique is currently applicable only for
queries whose recursive part includes only the self-join and whose seed part does not
join the recursive table with another table (except in a semi-join like EXISTS, IN,
NOT IN, etc.). For recursive queries that include joins of recursive results with other
tables, in addition to the self-join, the result of each iteration is also affected by the
joins with the other tables and our sampling technique does not currently factor in the
impact of these joins. In queries where the recursive table is joined with another table
in the seed part, the size of the seed may grow to be bigger than the recursive table
itself or the distribution of values of source and/or sink fields may be completely
different from the recursive table. Since our sampling only depends on the recursive
table, it can not be used for cardinality estimation in such cases.

As we mentioned in the introduction, [6,7] have given an adaptive sampling based
algorithm, henceforth called the LN-algorithm, for estimating the cardinality of the
generalized transitive closure of a relation. Note that the transitive closure estimate
produced by the LN-algorithm is essentially a cardinality estimate of a recursive
query that uses the entire table as a seed. Hence, the global estimate found in this
manner can be combined with selectivity estimates of a particular query’s seed (pro-
duced by the optimizer) to estimate the recursive result cardinality of that query.
However, instead of the transitive closure size, for join planning we need cardinality
estimates at each iteration. We get these estimates by capturing per-iteration estimates
as part of the LN-algorithm as described below.

Computing iteration estimates: As part of the general demographics collection in
the database, we collect recursive cardinality demographics (RCD) for a given recur-
sive table. Like any demographics collection, this incurs a one-time cost (updating
this statistics during table update is beyond the scope of this paper). Below, again
using the flights example, we give the algorithm which essentially extends the

 Recursive SQL Query Optimization with k-Iteration Lookahead 355

LN-algorithm with a strategy to capture per-iteration statistics. As such, this algorithm
inherits all the tight accuracy and confidence intervals of the LN-algorithm.

Procedure CollectRCD
IterationEstimates [] /* array storing per-iteration cardinality */
 sampleClosure = 0; noOfSamples = 0;
while (sampleClosure >= αN)

randomly choose a source s from Flights;
 /* do breadth first search */
 add s to ReachableSet;
 for i = 1 to TNI

 copy ReachableSet to IterationReachableSet and empty ReachableSet;
 for each row r in IterationReachableSet

ReachableSet = neighbors of r; /* can use index scan for this*/;
IterationEstimates[i] = IterationEstimates[i] + |ReachableSet|;
sampleClosure = sampleClosure + max (1, |ReachableSet|);
increment noOfSamples by 1;

End

In CollectRCD, N is the number of unique values of source and α is a function of the
confidence interval within which we wish to estimate the size of the transitive closure.

Specifically, α is set to)1()1(pdd −+ , where 0 < p ≤ 1 is the confidence and

d>0 is a fixed value[7]. Note that depending on availability of histograms on the
source field, the random sampling can also be directed by the distribution in the histo-
gram to get more representative samples.

Using RCD for dynamic planning. At the completion of CollectRSD, IterationEsti-
mates will capture the sample-based cardinality at each iteration. As in the LN-
algorithm, the size of the transitive closure can be estimated by N* sampleClosure/
noOfSamples. In a similar manner, we can estimate global size at iteration i as N*
IterationEstimates[i]/ noOfSamples. When given a cardinality of any seed, n < N, we
can replace N with n in the above to estimate its cardinality at iteration i. We can use
these demographics to estimate join cardinality of an iteration in the execution of a
given query in both non-feedback based and feedback-based way. In a non-feedback
based approach, we generate all the TNI plans upfront based entirely on demographics
from IterationEstimates. In a feedback-based approach like KLP, the current result
size, n, is gathered as a feedback at every k iteration.

3 Experimental Results

In order to assess the performance of the KLP algorithm we built a real-life example
on a 2-node NCR 5200 with 2 disk array modules. This configuration is fairly old but
well-suited for this comparison task because it is balanced with respect to CPU and
I/Os (the system does not favor a CPU-bound workload nor an I/O bound workload).
On a set of 16 cities in the USA with two major hubs and graph topology such that the
maximum path length (without loops) is 9 legs, we generated a database with 3,000
rows representing all flights for a week. The distances between cities were actual
distances and the cost of flights was based on the actual between-city distances and a

356 A. Ghazal, A. Crolotte, and D. Seid

random factor. Arrival times were based on the number of miles between the depar-
ture city and the arrival city with a random element. To be able to get to the next leg,
the passenger had to arrive no later than 45 minutes before the departure of the next
flight and passengers would not get into a flight departing more than 12 hours after
the arrival of the first flight. We used a view similar to all_trips depicted in section 1
with two addition al conditions to reflect the two constraints on departure and arrival
times.

Two sets of experiments were conducted. The first set dealt with the simple case of
two tables (one table joined recursively to itself) as in all_trips while the second set of
experiments dealt with a more complex case with four tables (we added a table con-
taining meals data and another for available seats). In each case the test consisted of
selecting all rows from the recursive view. The first test was run with the current
released Teradata implementation that employs static planning (this could be consid-
ered as the k=0 case). The other experiments were run on a prototype implementing
the KLP algorithm with k=1, i.e. FFB, and k=3, i.e. KLP. Two KLP experiments were
run: one using optimizer estimates (OE) and another using sample-based estimates
(SE). SE was run only for the simpler case of two tables with the algorithm described
in section 2. The results obtained are summarized in Table 1 below. We show total
time for 9 iterations. Due to lack of space, we do not show per-iteration times.

Table 1. Total runtime for two classes of queries (in seconds)

static k=1 k=3, KLP-OE k=3, KLP-SE
simple 2496 2064 1795 1846

complex 2217 1983 1822 N/A

Overall, static planning had the worst performance. FFB performed better than
static planning which suggests that although FFB’s plans did not benefit from pipelin-
ing and GQO, still its gains due to better plans allowed to make up for this deficiency.
As shown in table 1, the situation improves further with k-lookahead plans as better
plans are obtained while at the same time benefiting from pipelining and GQO. The
time shown for KLP-SE includes the sampling-based demographics collection also.
For the simple SQL, in case of KLP-SE, we obtained the same plans as in KLP-OE.
The runtime of KLP-OE is higher since we incurred the sampled statistics collection
cost while the optimizer estimates are provided at no cost. Finally, note that although
for both query types KLP provided an improvement over static and FFB, the percent-
age of improvement was higher for the simple SQL case than for the complex SQL
case. This was expected due to the lower quality of the optimizer estimates in the
more complex SQL case.

4 Conclusions and Future Work

In this paper, we identified several query optimization issues with the relational data-
base implementation of recursive queries that were not addressed in prior research.
We presented the KLP approach which avoids the problems of the static and the full

 Recursive SQL Query Optimization with k-Iteration Lookahead 357

feedback approaches and described how sampling and join cardinality estimates are
exploited in this approach. In the future, we plan to explore ways to extend the use of
sampling to more complex cases of recursive queries. In addition, we plan to devise a
comprehensive framework of cost-based recursive query optimization that systemati-
cally considers all the relevant aspects of pipelining, GQO, parsing time, cost of sam-
pling and the optimal value of k.

References

1. Chen, C. M and Roussopoulos, N., “Adaptive Selectivity Estimation Using Query Feed-
back”, ACM SIGMOD Record”, Vol. 23, No. 2, June 1994, 161-172

2. Brueining, D., Garnett, T, and Amarasinghe, S. “An Infrastructure for Adaptive Dynamic
Optimization”, Int. Symp. on Code Generation and Optimization, 265-275,2003.

3. Kabra, N. and DeWitt, D. J. “Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans”, Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, Seattle, 1998, pp. 106-117.

4. Derr, M. “Adaptive Query Optimization in a Deductive Database System”, Proc. of the 2nd
Int. Conf. on Information and Knowledge Management, 1993, pp. 206-215.

5. Zaniolo, Carlo, et al. Advanced Database Systems. Morgan Kauffman, 1997.
6. Lipton, R. J and Naughton, J. F. Estimating the size of generalized transitive closures.

VLDB, 1989, pp: 315-326.
7. Lipton, R. J. “Query size estimation by adaptive sampling”, J. of Computer and System

Sciences, 51(1), 18 – 25, 1995.
8. Cohen, E. Size-estimation framework with applications to transitive closure and reachabil-

ity, J. of Computer and System Sciences, 55 (3), 441 – 453, 1997.
9. Ordonez, C. “Optimizing recursive queries in SQL”, SIGMOD 2005, pp: 834 – 839.

10. Markl, V. et al, “Robust query processing through progressive optimization”, SIGMOD
2004, pp: 659 – 670.

11. Babu, S., Bizarro, P. and DeWitt, D., “Proactive re-optimization”, SIGMOD 2005, pp:
107 – 118.

12. Zurek, T. and Thanisch, P. , "Optimization Strategies for Parallel Linear Recursive Query
Processing", CSG Technical Report ECS-CSG-16-95, July 1995.

13. Sellis, T., “Multiple Query Optimization”, ACM Transactions on Database Systems, pp:
23-52, 1988.

14. Roy, P., Seshadri, S., Sudarshan, S., Bhobhe, S., “Efficient and extensible algorithms for
multi-query optimization”, SIGMOD, 249–260, 2000.

15. Dalvi, N. N., et al. “Pipelining in multi-query optimization”, PODS, 59 - 70, 2001.
16. Y. Ionnidis and S. Christodoulakis. “Optimal histograms for limiting worst-case error

propagation in the size of join results”. ACM TODS, 18(4), 709 – 748, 1993.

An Effective, Efficient XML Data Broadcasting
Method in a Mobile Wireless Network�

Sang-Hyun Park, Jae-Ho Choi, and SangKeun Lee��

Department of Computer Science and Engineering,
Korea University, Seoul, South Korea

{newtypus, redcolor25, yalphy}@korea.ac.kr

Abstract. With the rapidly increasing popularity of XML, an effective
method to transmit XML data over wireless broadcasting environments
is urgently required. In this paper, a novel XML data streaming method
for wireless broadcasting environments, is proposed. An XML stream is
organized to enable a selective access scheme for simple XPath queries,
by borrowing the path summary technique, which was originally devised
for indexing semi-structured data. In order to utilize structure infor-
mation as an XML stream index, the structure information and text
values of an XML document are separated. In experimental results, the
proposed method demonstrates superior performance over previous ap-
proaches with regard to both access and tuning time.

1 Introduction

In the future, propelled by the growth of mobile devices and wireless technolo-
gies, more services will be delivered in wireless broadcasting environments [12].
These services may include traffic conditions, weather reports, and financial in-
formation. The eXtensible Markup Language (XML) [2] has become a standard
information exchange language on the Internet and an increasing amount of
information is available in XML formats.

The research area of XML is currently expanding into wireless environments
[13][15]. In particular, wireless data broadcasting can reduce bandwidth, since a
large number of users requesting data items can be served at no additional cost
[5]. Using an auxiliary index in a wireless broadcast, a client does not require
access to all objects in a broadcast cycle to retrieve the desired data [10]. When
initially accessing the broadcast index, the mobile client is able to predict the
arrival time of desired data. Thus, it can stay in power saving mode most of the
time and tune into the broadcast channel only when the requested data arrives.

The XML document consists of hierarchically nested elements, which can
either be atomic, such as raw character data, or composite, such as a sequence
of nested sub-elements. Tags stored with the elements describe the semantics of
� This work was supported by grant No. R01-2006-000-10510-0 from the Basic Re-

search Program of the Korea Science & Engineering Foundation.
�� Corresponding author.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 358–367, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Effective, Efficient XML Data Broadcasting Method 359

the data, i.e., data stored in XML is hierarchically structured and self-describing.
Observed from this, structure information of XML documents might be used as
a stream index to transfer XML documents from the server to clients via a
broadcast channel. This observation is the basic idea of our work.

In this paper, with the benefit of wireless broadcasting, an XML streaming
method for wireless broadcast as a way of disseminating information to a massive
number of mobile clients equipped with battery powered palmtops, is considered.
The contributions of this paper include the following.

• XML stream structure suitable for wireless broadcasting environments,
• Utilization of a path summary of an XML document as a stream index,
• Query processing technique over wireless XML stream, and
• Experimental results to demonstrate the effectiveness and the efficiency

of the proposed method.

The paper is organized as follows. Section 2 presents related work. In Section 3,
the XML streaming method is introduced and the query processing technique is
presented. Section 4 presents experimental results and Section 5 provides con-
cluding remarks.

2 Related Work

Some recent research has considered XML transmission through wireless net-
works. Xstream [15] provides middleware which can be used to stream XML
documents over wireless environments and proposes fragmentation and packe-
tizing strategies, based on the semantic and structural characteristics of a given
XML document in wireless environments. However, the interest is not in the
energy efficient transmission of an XML document, and the method does not
provide a selective access scheme for client side streaming data. In addition, the
work [13] presents a wireless streaming method for XML data, supporting energy
efficient processing of queries in mobile clients over a stream. S-Node structure is
defined as a streaming unit for XML data. The objective of this work is similar
to that of our current work. However, S-Node still has redundancy of label paths
in stream data, this causes access time latency.

Independently of this direction, the path summary technique [8] was intro-
duced for efficient indexing of semi-structured data. Interestingly, we borrow
the path summary technique and utilize it as a stream index in wireless broad-
casting environments. With this idea, we could remove the redundancy of label
paths of an XML document. Stream data can therefore be optimized for wireless
broadcast environments, and a client is able to receive required XML data from
broadcast channel, based on simple XPath queries.

3 Proposed XML Streaming Method

In this section, the XML data model and path summary is presented, and the
XML streaming method for wireless broadcasting is introduced.

360 S.-H. Park, J.-H. Choi, and S. Lee

Fig. 1. An example of XML data tree

3.1 XML Data Model

An XML document consists of data and related structure information. An XML
document can be formally defined as follows [7].

Definition 1. An XML document D is a tuple d = (Nd, Ed, fd, rd), where:

– Nd = Ne
d ∪ Na

d are finite nonempty nodes representing elements and at-
tributes. Each element node n ∈ Ne

d has an associated element identifier and
each attribute node n ∈ Na

d has an associated value.
– Ed = Ee

d ∪ Ea
d is a set of edges representing an element-element relationship

or a link (Ee
d) and an element-attribute relationship (Ea

d). Ed is a finite set
of edges.

– fd is a partial function Nd × Ed → Str, where Str is a finite set of element
tags and attributes names.

– rd ∈ Nd is the root node of an XML document.

According to Definition 1, an XML document can be seen as an ordered la-
beled tree, where nodes represent elements and attributes, and edges represent
relationships between them.

An XML document can be divided into two parts. The first part consists of
element tags and attribute names. The second consists of text and attribute val-
ues. The attribute names and attribute values can be replaced by element tags
and text values respectively. For simplicity, attributes and attribute values in an
XML document are processed as element tags and text values. A node repre-
senting an element contains the element identifier and its associated text value.
The first part may be regarded as structure information of an XML document.

For example, Figure 1 demonstrates a sample XML data tree with an element
identifier in the circles and element name beside the circles. The element and
text value relationship is represented by a dotted line.

Definitions of label path and equivalent nodes are now given, as in [16], which
are useful for describing a path summary and data model of an XML stream.

Definition 2. A label path of a node n in an XML document D, is a sequence
of dot-separated labels of the nodes on the path from the rd to n.

In Figure 1, node 5 can be reached from the root node 1 through the path :
1→2→5. Therefore the label path of node 5 is dblp.article.year.

An Effective, Efficient XML Data Broadcasting Method 361

Fig. 2. A path summary of XML data tree

Definition 3. Nodes in an XML data tree D are equivalent if they have the
same label path.

In Figure 1, nodes 5 and 19 are equivalent since label paths are the same
dblp.article.year.

3.2 Path Summary

In an effort to improve the performance of query processing for the semi-structu-
red data, the path summary has received a lot of attention [8]. For data tree D,
a path summary sharing label path l for equivalent label paths is built. The set
of nodes having the same label path can be merged into a group. The equivalent
nodes in every group are sorted by their pre-order identifiers.

Figure 2 presents a path summary for the XML data tree presented in Fig-
ure 1. Each dotted circle represents a group and the number in the circle is the
identifier of equivalent nodes. Each group has a label and an identifier listed
above the group. In Figure 2, data nodes 4, 15, 18 are in group 4, since their
label paths are the same dblp.article.author.

The order of group identifiers is made in a breadth-first manner, which is used
to generate stream data for wireless broadcasting. In order to obtain the answers
of a simple XPath query for duplicated label paths in an XML data tree, an XML
tree should be traversed multiple times. A path summary provides efficient query
facility for evaluating a simple XPath query. With the path summary in Figure
2, for instance, if a sample query Q1 is /dblp/article/title (i.e., if we want to
know all titles of article in dblp), the answers will be text values of node 3,
14, and 17. Since path summary enables clients to minimize the node access
frequency for simple XPath queries, this characteristic contributes to the XML
data broadcasting method by reducing time and resource consuming.

3.3 The Structure of an XML Stream

Based on path summary of an XML document, an XML stream which has two
kinds of groups, is organized. The first group contains structure information of
an XML document, which takes the role of an index, whereas the second group
contains text values. Each group is arranged according to the breadth-first order
of a path summary.

362 S.-H. Park, J.-H. Choi, and S. Lee

Fig. 3. The structure of XML stream

An index is transmitted prior to text values, through the broadcast channel.
An index of an XML stream consists of a path summary of the XML document.
In order to maintain the parent-child relationship of a path summary, each node
in an index contains the distance of the next child nodes, meaning the time
interval between two nodes. The order for text values is made consistent with
the order of group identifiers in an index. Figure 3 presents the structure of an
XML stream. Gray boxes represent the index of an XML stream and white boxes
represent text values. An XML stream is defined as follows:

Definition 4. An XML stream XS is a data stream of D constructed from a
path summary. XS consists of two kinds of group, gindex and gtext. Both gindex

and gtext contain the following information.

– gindex.id : current node id. Identifiers are made according to the breadth-first
manner from the path summary.

– gindex.name : current node name.
– gindex.cname[] : array of child nodes.
– gindex.cname[k].address : distance to the kth child of current node.
– gindex.text.address : distance to the text values of current node.
– gtext : sequence of text values which arranged according to the order of

gindex.id.

Note that, maintenance of all distances to the text values of the current node is
not required. This is because simple XPath queries can be served from the index
part, gindex, of an XML stream. For example, in Figure 3, each node in gindex

only maintains the distance to the start and end position of text values.
Algorithm 1 presents the pseudo code used to construct an XML stream.

First, a path summary is created, and all label paths of an XML data tree are
removed. In order to separate structure information and text values in path
summary, temporary storage, denoted as list, is used. If an intermediate node in
a path summary has text values, they are stored in list. Whenever a new node is
added to XS, the algorithm checks whether the current node has child elements
or text values. If child elements exist, they are added to XS and distances from
current node to each child node are recorded. When all element nodes are written
to XS, text values in list and distance are added to XS. For example, the specific
XML stream shown in Figure 3 is constructed from the path summary in Figure
2, which was derived from the XML data tree in Figure 1. Each node in the
stream index has distance to its child elements and text values.

An Effective, Efficient XML Data Broadcasting Method 363

Algorithm 1. An algorithm to build XML stream XS

Function buildXMLStream()
Input XML data tree D
Output XML Stream XS
begin
01: create a path summary P for D
02: for each node in P do /* trace nodes with breadth-first manner */
03: if current node is a element node then
04: write current node to XS;
05: if current node has child elements then
06: write child elements to XS;
07: write distances from current node to each child element in XS
08: else current node has text values then
09: add the text values to list;
10: end if
11: else current node is text values
12: add the text values to list;
13: end if
14: end for
15: write text values of list to XS;
16: write distance from each element node to it’s text values in XS;
17: return XS
end

3.4 Query Processing over an XML Stream

XPath [4] is a standard language for an XML data model. Mobile users can
obtain parts of an XML document by describing an XPath expression. In this
section, a selective access method for an XML stream is provided on the client
side. Algorithm 2 presents the pseudo code to obtain results of user queries from
the XML stream.

All nodes in an index maintain the array of child nodes and the distance to
the each child node. If the root node of an XML stream is identified as the
first label of a simple XPath query, the mobile client can obtain subsequent
labels of a simple XPath query from the XML stream. All descendant nodes
being irrelevant to the query, can be skipped using the child address in the XML
stream, as demonstrated in line 06 and line 13. Thus, the client device can stay
in power saving mode until the next child nodes are available in the broadcast
channel. In Figure 3, for instance, if a clients query Q2 is /dblp/thesis/title/, the
client can identify the distance to the thesis node from the dblp node. Similarly,
the client can identify the distance to the title node. From the title node, the
client can know that the start and the end position of text values of the title
node.

364 S.-H. Park, J.-H. Choi, and S. Lee

Algorithm 2. An algorithm to search XML Stream XS

Function readXMLStream()
Input An XML Stream XS and a simple XPath query Q
Output An answers of query A satisfy Q
begin
01: get the root node xsroot from XS;
02: if the first node q of Q is same with xsroot then
03: read xsroot from XS and write to A;
04: identify distance to the child node of q from xsroot;
05: delete q from Q;
06: skip to the next child node;
07: while (XS is not the end of stream and Q is not NULL)
08: if the first node q of Q same with a current node xs in XS
09: read xs from XS and write to A;
10: if (child node of q is not NULL) then
11: identify distance to the child node of q from xs;
12: delete q from Q;
13: skip to the next child node;
14: end if
15: end if
16: end while
17: end if
end

4 Performance Evaluation

The XML streaming method algorithm was evaluated using four real-life XML
data sets: XMARK [14], DBLP [11], Shakespeare [6] and SigmodRecord [3].
The data sets were stored on a local disk. The experiments were performed on
Pentium III-2.8Ghz platform with MS-Windows XP Professional and 768Mbytes
of main memory.

Generally, two kinds of criteria are used for evaluating the performance of
wireless broadcasting [5][9]. Access time is the period of time elapsed from the
moment a mobile client issuing a query, to the moment when the requested
data is received by the client. Tuning time is the period of time spent by a
mobile client staying active in order to obtain the requested data. The tuning
time is frequently used to estimate the power consumption of a mobile client,
since receiving data is power dominant in mobile environments. In this paper,
we adopt both access and tuning time to evaluate the proposed scheme.

Our model consists of a single server, which serves multiple clients, one broad-
cast channel. In our simulation model, We assume broadcast bandwidth is fully
utilized for broadcasting. To measure the access/tuning time, we just observe
one client, because, in this simulation environment, the activity of a client does
not affect the performance of other clients.

An Effective, Efficient XML Data Broadcasting Method 365

The algorithms were implemented to build and search an XML stream in Java
programming language. The Apache Xerces parser [1] was used to parse XML
data. As in [13], XML data are transmitted and accessed in the unit of buckets
whose size is 64KB and the experiment for various simple XPath queries was
performed. An answer of each query has redundant label paths in original XML
document.

The XML data set and queries are listed in Table 1. The performance metrics
are the stream size and the access/tuning time ratio of XML stream relative to
the original XML data tree which are same with S-Node. The access and tuning
time was measured by the number of buckets. These are defined as follows:

T ime ratio =
Number of buckets to read XML stream

Number of buckets to read original XML data
(1)

Size ratio =
Size of the XML stream

Size of original XML data
(2)

Table 1. XML Data Set and XPath Queries

XML data Size(MB) The queries
XMARK 4.54 Q1:/site/open auctions/open auction/bidder/increase/

Q2:/site/open auctions/open auction/reserves/
DBLP 2.95 Q3:/dblp/article/author/

Q4:/dblp/www/editor/
Shakespeare 1.03 Q5:/plays/play/act/scene/title/

Q6:/plays/play/act/scene/speech/speaker/
SigmodRecord 0.48 Q7:/SigmodRecord/issue/articles/article/title/

Q8:/SigmodRecord/issue/articles/article/authors/author/

Figure 4(a) presents the size ratio of the XML stream to the different XML
data sets. On average, the size of XML streams is reduced to 73% of the XML
data tree. Since the redundancy of label paths in the XML data tree is removed,
the size of an XML document which has a number of equivalent label paths (i.e.,
SigmodRecord) is reduced more than others. According to the properties of a
query and/or a document, the performance of access and tuning time changes.
In Figure 4(b), Q7 and Q8 require relatively more text values than other queries.
If the results of a query are located at the end of an XML stream, access time
becomes longer, such as Q6. However, even in the worst case scenario, tuning
time does not exceed access time, as presented in Q3. The average tuning/access
time ratio of an XML stream is 10% and 24% respectively. The performance of
the proposed method is compared with S-Node [13] in terms of size ratio and
access/tuning time ratio. The same XML data set and XPath queries are used
in the S-Node, as presented in Table 2. Since the SwissProt data presents higher
regularity in the structure, part of the original SwissProt data is used. The ratio
of text values to tags are the same as with the original data.

366 S.-H. Park, J.-H. Choi, and S. Lee

(a) (b)

Fig. 4. Performance of proposed method

Table 2. XML Data Set and XPath Queries

XML data Size(MB) The queries
Mondial 1.7 Q9:/mondial/country/province/

Q10:/mondial/country/province/city/name/
SwissProt 9.93 Q11:/root/entry/org/

Q12:/root/entry/features/chain/

As expected, the proposed method is superior to that of S-Node. Since Mon-
dial and SwissProt have high redundancy in terms of the label path, and the
size of the XML stream is smaller than that of S-Node. In Figure 5(b), the
performance of the access time ratio in Q9 and Q12 significantly outperforms
the S-Node. This can be explained as follows: the results of Q9 and Q12 do not
contain text values. Therefore, in the proposed method, each label only needs
to be read once from the XML stream index. However, the S-Node should skip
irrelevant nodes from the streaming data. Thus, the waiting time for receiving
each label is longer than the proposed method.

(a) (b) (c)

Fig. 5. Performance comparison of proposed method with S-Node

An Effective, Efficient XML Data Broadcasting Method 367

5 Conclusion

In this paper, a novel XML streaming method for wireless broadcasting environ-
ments has been proposed. Using the path summary of an XML data tree as an
index of an XML stream, mobile clients can retrieve the desired parts of an XML
stream through the broadcast channel. Algorithms to build and search the XML
stream for simple XPath queries have been provided. The experimental results
demonstrate that the proposed algorithms provide superior performance over
previous work, with regard to access and tuning time. In the future, the XML
data broadcasting method will be extended to support both complex XPath
queries. Also, caching techniques in mobile computing will be considered.

References

1. Apache xml project. http://xml.apache.org/.
2. Extensible markup language. http://www.w3.org/XML.
3. Xml data repository. http://www.cs.washington.edu/research/xmldataset/.
4. Xml path language. http://www.w3.org/TR/XPath.
5. S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data manage-

ment for asymmetric communication. In Proceedings of ACM SIGMOD Conference
on Management of Data, pages 199–210, 1995.

6. R. Cover. The xml cover pages. http://www.oasis-open.org/cover/xml.html.
7. E. F. Elisa Bertino. Secure and selective dissemination of xml documents. ACM

Transactions on Information and System Security, 9(3):290–331, 2002.
8. R. Goldman and J. Widom. Dataguides: Enabling query formulation and opti-

mization in semistructured databases. In Proceedings of International Conference
on Very Large Data Bases, pages 436–445, 1997.

9. Q. Hu and W.-C. Lee. Hybrid index technique for power efficient data broadcast.
Distributed and Parallel Databases, 9(2):151–177, 2001.

10. T. Imielinski, S. Viswanathan, and B. Badrinath. Data on air: Organization and
access. IEEE Transactions on Knowledge and Data Engineering, 9(3):353–372,
1997.

11. M. Ley. Dblp xml records. http://www.informatik.uni-trier.de/∼ley/db/.
12. F. J. O. Martinez, J. S. Gonzalez, and I. Stojmenovic. A parallel hill climb-

ing algorithm for pushing dependent data in clients-providers-servers systems.
ACM/Baltzer Journal on Special Topics in Mobile Networks and Applications,
9(4):257–264, 2004.

13. C.-S. Park, C. S. Kim, and Y. D. Chung. Efficient stream organization for wireless
broadcasting of xml data. In Proceedings of Asian Computing Science Conference,
pages 223–235, 2005.

14. A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
Xmark: A benchmark for xml data management. In Proceedings of the International
Conference on Very Large Data Bases, pages 974–985, 2002.

15. E. Y. Wong, A. T. Chan, and H. V. Leong. Xstream: A middleware for streaming
xml contents over wireless environments. IEEE Transactions on Software Engi-
neering, 30(12):918–935, 2004.

16. Q. Zou, S. Liu, and W. W. Chu. Ctree: A compact tree for indexing xml data.
In Proceedings of ACM International Workshop on Web Information and Data
Management, pages 39–46, 2005.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 368 – 378, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Formalizing Mappings for OWL Spatiotemporal
Ontologies

Nacéra Bennacer

Supélec, Ecole Supérieure d’électricité
F-91192 Gif-Sur-Yvette Cedex, France
Nacera.Bennacer@supelec.fr

Abstract. Ontology mappings provide a common layer which allows distrib-
uted applications to share and to exchange semantic information. Providing
mechanized ways for mapping ontologies is a challenging issue and main prob-
lems to be faced are related to structural and semantic heterogeneity. The
complexity of these problems increases in the presence of spatiotemporal in-
formation such as geometry and topological intrinsic characteristics. Our pro-
posal is intended for spatiotemporal ontologies and focuses on providing an
integrated access to information sources using local ontologies. Our approach is
set to build a system that guides users to derive meaningful mappings and to
reason about them. To achieve this we use a description logic extended to spa-
tiotemporal concrete domain. The ontology of each source is normalized in a
common extended Ontology Web Language (OWL) which enables a natural
correspondence with the spatiotemporal description logic formalism.

1 Introduction

Ontologies are today a crucial element for exchange information and sharing knowl-
edge. Ontology mapping provides a common layer for applications to access to them
and to exchange information in semantic manner. Ontology mapping is defined as a
process relating the concepts of different ontologies sharing the same domain of dis-
course. It is required to enable a fragment of a more ambitious and complex task. For
example in ontology integration, mappings enable to answer queries over a mediated
ontology. For ontology alignment, mappings are defined to establish links between
ontologies to reuse information from one another. For the migration of ontology in-
stances, mappings enable to populate a target ontology given the extensions of the
ontology sources. In ontology merging where the purpose is to build a single merged
ontology, mappings are used to answer all the queries that are handled by each ontol-
ogy source. Ontology mapping is considered by many researchers as similar to map-
ping conventional databases [1]. Indeed, techniques proposed in the literature for
database schema mapping might be of interest to ontology mapping researchers but
there are differences which should be considered [2, 3]. A variety of works originat-
ing from diverse communities focus on establishing such mappings and investigate
various issues of ontology mapping, such as automation of mapping discovery task
and mapping representation entailing fields ranging from machine learning, databases

 Formalizing Mappings for OWL Spatiotemporal Ontologies 369

and linguistics (see Section 4). Central to the approaches claiming the automation is
the use of heuristics identifying structural, syntactic features and linguistic naming
similarities in input ontologies. The absence of structural and naming similarities
between ontologies or the lack of common instances makes the automation of match-
ing task difficult and generally based on strong and not realistic hypothesis. Main
problems to be faced are related to semantic heterogeneity which is introduced when
different modeling constructs and different terminologies are used to represent the
same piece of information in different contexts related to information use of the
involved ontology sources. This problem is not easy to solve and its complexity in-
creases in the presence of spatiotemporal information as we have to deal with prob-
lems such as the granularity used for the representation of spatiotemporal objects.
Moreover these objects possess various and complex intrinsic characteristics and are
related by topological relations and by hierarchy and aggregation relations. Specifying
mappings for those objects requires an appropriate knowledge-representation lan-
guage preserving their semantics and allowing well-defined semantics for mapping
between them. Our proposal focuses on providing an integrated access to spatiotem-
poral information sources using local ontologies where each one is provided adopting
a common language OWL (Ontology Web Language) extended to spatiotemporal
features. Our approach relies on a formal representation equipped by a powerful mod-
eling constructs and reasoning capabilities to guide user to capture meaningful and
consistent mappings and to reason about them. In particular, we use a description
logic extended to spatiotemporal concrete domain ALCRP (D) [4].

This paper is structured as follows. Section 2 presents an overview about spatiotem-
poral description logics. Section 3 presents our approach framework which relies on
two formalisms OWL and ALCRP (D). We focus in this section on specifying mapping
phase and we illustrate it using an example dedicated to the tourism domain. Section 4
presents the related work. In Section 5 we conclude and summarize our work.

2 Spatiotemporal Description Logic Overview

Description Logics (DL) are terminological formalism family equipped with formal
logic semantics and designed for representing knowledge and reasoning about it [5].
Elementary descriptions in a DL are atomic concepts, atomic roles, universal concept

 and bottom concept ⊥. Complex concepts and roles can be built from atomic ones
using the considered DL constructors. Standard description logic ALC provides the
following concept constructors: ¬C (negation), C D (conjunction), ∀R.C (value
restriction) and ∃R.C (exists restriction) where C and D are concepts and R is an
atomic role. For example a contemporary museum can be defined, using ALC, as a
museum which exposes contemporary paintings as follows:

Museum TouristSite
ContemporaryMuseum Museum ∃ expose.ContemporaryPainting

Where TouristSite, Museum, ContemporaryPainting are abstracts concepts and ex-
pose is an abstract role.

The expressiveness of ALC is insufficient to describe spatiotemporal objects. For
representing and reasoning about these objects, spatial DLs are proposed in the

370 N. Bennacer

a b

dc

a b

ec

a b

po tpp, tppi

a
b

ntpp, ntppi

a
b

eq

b
a

Fig. 1. Topological relationships RCC8

literature and use qualitative spatial reasoning based on the well-known RCC8 rela-
tions [6]. RCC8 relations consist of eight exhaustive and mutually exclusive relations
describing the relationships between any two regular closed regions in a topological
space: eq (equal), dc (disconnect), ec (externally connected), po (partial overlap), tpp
(tangential proper part), ntpp (non-tangential proper part) and their respective inverses
tppi and ntppi (see Fig. 1). Using qualitative spatial reasoning derived from the RCC
composition tables we can say that two objects are overlapping, disjoint from each
other, that one is contained within the other, etc. Extending DLs with concrete do-
mains allows for dealing with data types such as numbers, strings and in particular
with specific dimensions of objects such as spatial or temporal features. The DL
ALC(D) [7] divides the set of objects into two disjoint sets, the abstract and the con-
crete objects. Abstract objects can be related to abstract objects via abstract roles and
to concrete objects via concrete roles. The relationships between concrete objects are
described with a set of specific domain predicates. The pair consisting of a set of
concrete objects and a set of predicates is a concrete domain. Thus, ALC (D) extends
ALC operators by adding a new concept-forming predicate operator. The ALCRP (D)
DL proposed in [4, 8] extends ALC (D) to build complex roles based on the role-
forming predicate operator. In particular, an appropriate concrete domain S2 is defined
for polygons using RCC8 relations as basic predicates of concrete domain. Using
ALCRP (S2) we can define a monument that contains a museum as follows:

area ∃hasArea.isRegion and Monument area
MonumentMuseum1 ≡ Monument ∃contains.Museum
contains ≡ ∃ (hasArea)(hasArea).tpp-ntpp

Where the spatial role contains is defined using role constructor where hasArea is a
concrete role in S2, isRegion is a S2 domain predicate and tpp-ntpp is a disjunction of
tpp and ntpp S2 domain predicates.

For temporal aspect, the concrete domain T is a set of time intervals and the 13 Allen
relations (before, after, meets, met-by, overlaps, overlapped-by, during, contains, starts,
started-by, finishes, finished-by, equal) are used as basic predicates describing the rela-
tionships between intervals. The combination of S2 and T, S2⊕T, defines a spatiotempo-
ral concrete domain. Thus, we can define using ALCRP (S2 ⊕ T) a museum that is
spatially connected with a monument and their open times are overlapped as follows:

interval ∃hasDuration.isInterval and Museum area interval
MonumentMuseum2 Museum ∃ connectOverlap.Monument
connectOverlap ∃(hasArea, hasDuration)(hasArea, hasDuration).connected-overlaps
connected ∃ (hasArea)(hasArea).ec-po-tpp-tppi-ntpp-ntppi-eq

Where hasDuration is a concrete role in T, isInterval is a T domain predicate and
connected-overlaps is a S2 ⊕ T domain predicate.

 Formalizing Mappings for OWL Spatiotemporal Ontologies 371

These descriptions combine not only abstract and concrete objects but also the spatial
and temporal concrete domains. This aspect ensures that a reasoning system can be
achieved according to the intended semantics of spatiotemporal objects. For our pur-
pose we exploit ALCRP (S2 ⊕ T) power expressiveness and reasoning services to
describe ontology sources and matching between them.

3 Our Approach Framework

Figure 2 illustrates the components of our approach architecture. It is based on OWL
domain ontology community which is constituted of a set of different domain ontol-
ogy sources. The semantics of these ones are normalized to a uniform Ontology Web
Language (OWL). The mediated agent encapsulates all necessary information to
retrieve instances from different sources corresponding to a query. It provides an
integrated access to information sources using semantic mappings between local on-
tologies and their semantic descriptions. OWL formalism is based on description
logics and consequently the transformation into DL preserves naturally the mapping
semantics. In particular, to fully describe spatiotemporal aspects, we extend OWL by
preserving its natural transformation into ALCRP (S2 ⊕ T) DL. Once the formaliza-
tion in ALCRP (S2 ⊕ T) description logic is provided for each spatiotemporal OWL
source ontology representation, the inter-model mappings are established to com-
pletely characterize the set of instances of one concept in a model in terms of the set
of instances of a concept in another model. This task is distinguished to be incre-
mental, i.e. assertions can be further added to enrich the existing set of mapping asser-
tions. Reasoning component is based on description logic reasoning mechanisms to
derive the implicit information and to validate the source ontology descriptions and
the mapping assertions between them. In the following we detail our approach using
an example dedicated to tourism domain.

OWL domain Ontology
Community

Databases Web pages

Mediated
Agent

Mapping descriptions
Reasoning component

Query

Interface

Fig. 2. Our approach architecture

3.1 OWL Formalism Extended to Spatiotemporal Objects

Ontology Web Language (OWL) is an ontology language for the semantic Web; de-
veloped by the W3C and layered on top of RDF Schema language. It extends RDFS’s
capabilities with richer modeling primitives. OWL is based on DLs [5] which offer

372 N. Bennacer

LineObject

rdfs :range
rdfs :domain
rdfs :subProper tyOf
rdfs :subClassOf

AreaObject

topological Relation

connected disjoint

STObject

inside
contains overlaps

equal

O1:composedOf

O1:locatedIn O1:MServe

O1:BServe O1:accessO2:beLocated

O2:access

TemporalObject

PointObject

Fig. 3. OWL Extended to Spatiotemporal Objects

formal foundations to define the language semantics, to understand properties such as
the complexity of inference problems and to use reasoning algorithms. In the follow-
ing to illustrate OWL examples, we use RDF graph representation which is more
readable than official OWL exchange syntax RDF/XML.

To describe spatiotemporal objects, TemporalObject and AreaObject classes are
defined as subclasses of STObject class and LineObject and PointObject are defined
as subclasses of AreaObject. These classes are type of owl:class. To describe topo-
logical relationships, topologicalRelation property is defined as type of
owl:ObjectProperty that links AreaObject objects. The topological relations are cate-
gorized into two types using connected and disjoint subproperties. equal, inside, con-
tains and overlaps properties are defined as subproperties of connected property and
hold RCC8 relation semantics (see Fig. 3). In the same way, temporal relationships
based on Allen relations can be defined. Using these owl definitions, complex objects
of domain of interest can be represented. For instance in Fig.4, a part of tourism
ontology O1 is described; in particular spatiality (polygon, line or point) and
temporality (an interval) features may be associated at the class or property definition
levels. TouristySite concept has both spatiality (subclass of AreaObject) and
temporality (subclass of TemporalObject) characteristics. The topological relation
locatedIn is defined as a subproperty of inside property (see Fig. 3 and 4) to relate
TouristySite objects (domain of property) to District objects (range of property).

3.2 Local Ontology Semantics in ALCRP (S2 ⊕ T) DL Formalism

In the following we consider the ontologies O1 and O2 depicted respectively in Fig-
ures 4 and 5 and we translate them in ALCRP (S2 ⊕ T) DL. The point and line geome-
tries are considered as a polygon. The new roles equal, contains, inside, overlaps and
connected are defined using role-forming constructor as follows:

equal ∃ (hasArea)(hasArea).eq
contains ∃ (hasArea)(hasArea).tpp-ntpp

 Formalizing Mappings for OWL Spatiotemporal Ontologies 373

inside ∃ (hasArea)(hasArea).tppi-ntppi
overlaps ∃ (hasArea)(hasArea).ec-po
connected ∃ (hasArea)(hasArea).ec-po-tpp-tppi-ntpp-ntppi-eq

Fig. 4. Part of Ontology 1 in OWL

The formalization in ALCRP (S2 ⊕ T) defined below focuses on spatiotemporal
features. The four first assertions state that the TouristySite concept defined in O1 is
an area characterized by an interval and covering Museum, Monument and OtherSites
concepts which are mutually disjoint and subsumed by TouristySite concept. The city
concept is an area spatially related (contains) to District concept and related to Trans-
port concept by circulate role. In the same manner, District concept is an area spa-
tially related to TouristySite, BStation and MStation concepts which are spatially
related (connected) respectively to LineBus and LineMetro concepts.

O1:TouristySite area interval (O1:Museum O1:Monument O1:OtherSites)
O1:Museum O1:TouristySite ¬ O1:Monument ¬ O1:OtherSites
O1:Monument O1:TouristySite ¬ O1:Museum ¬ O1:OtherSites
O1:OtherSites O1:TouristySite ¬ O1:Monument ¬ O1:Museum
O1:City area ∃contains.O1:District ∃ O1:circulate.O1:Transport
O1:District area ∃contains.O1:TouristySite ∃connected.O1:BStation ∃con-
nected.O1:MStation
O1:Transport O1:Bus O1:Metro
O1:Bus O1:Transport ¬ O1:Metro ∃Bstop.O1:BStation
O1:Metro O1:Transport ¬ O1:Bus ∃Mstop.O1:MStation
O1:MStation area interval ∃overlaps.O1:LineMetro
O1:BStation area interval ∃overlaps.O1:LineBus

374 N. Bennacer

O1:LineMetro area
O1:LineBus area
O2:TouristPlace area interval (O2:HistoryCulture O2:Shopping
O2:ParkGarden)
O2:HistoireCulture O2:TouristPlace ¬ O2:Shopping ¬ O2:ParkGarden
O2:ParkGarden O2:TouristPlace ¬ O2:HistoryCulture ¬ O2:Shopping
O2:Shopping O2:TouristPlace ¬ O2:HistoryCulture ¬ O2:ParkGarden
O2:District area ∃contains.O2:TouristPlace
O2:Center area ∃connected.O2:District ∃connected.O2:TransportStation
O2:TransportStation area interval

Fig. 5. Part of Ontology 2 in OWL

3.3 Mapping Semantic Specification

Given the two above ontology examples, the user has to define semantic mappings
between their respective semantic descriptions. His task consists of firstly establishing
similarity relations that exist between selected concepts. This selection may be pro-
posed by the system from syntactic similarities between concept names and the con-
cepts structurally related to them or from common instances of local ontologies. There
are mainly three elementary mapping relations:

- Equivalence mapping relations state that two concepts are equivalent or not. Two
concepts C1 and C2 are equivalent if the instances described by C1 can be described
by C2 and inversely. In DL we test if C1 C2 assertion is true.
- Subsumption mapping relations state that a concept is subsumed by another concept.
The concept C1 subsumes the concept C2 if the instances described by C1 can be
described by C2 and the inverse is false. In DL we test if C1 C2 assertion is true.
- Overlapping and Disjoint mapping relations state respectively that two concepts C1
and C2 have or not a subset of instances that can be described both by C1 and C2.

In the case of the ontologies O1 and O2, the user states the following subsumption
mapping relations:

O2:District O1:District
O2:ParkGarden O1:OtherSites
O2:Shopping O1:OtherSites

The first mapping relation concerns two concepts which have similar names; the user
establishes that District concept of O2 subsumes District concept of O1 by querying

 Formalizing Mappings for OWL Spatiotemporal Ontologies 375

the corresponding instances and by using their semantics. In fact, District concept is
related to Center concept in O2 whereas District concept is related to City concept in
O1. The two following relations concern concepts that are sub-concepts of Tourist-
Place in O2 and TouristySite in O1 concepts which have similar names and are re-
lated to concepts for which a mapping is defined (District in O2 and District in O1).
The user establishes these relations by querying the corresponding instances and by
using their name semantics.

These elementary mapping relations describe only relations between two defined
concepts and are insufficient to state the mapping relations between different ontolo-
gies describing similar concepts with different degree of detail. For example, the
ontology O1 describes the tourist sites and transport means of the city whereas the
ontology O2 focuses on describing the tourist sites and the transport located in the
center of the city but categorizes more generally than O1 the different sites of tourism.

To describe the intersection between ontologies mapping relations should be de-
fined involving new concepts and properties to relate and to constrain existent con-
cepts and their properties and to enhance the expressive power of such assertions. In
the following we emphasize the elementary and complex topological mapping rela-
tions. Elementary ones state that two spatial concepts C1 and C2 are related with
topological relations. For example, the user can state that the concept City defined in
O1 is related to the concept Center defined in O2 by contains topological relation.
These two concepts can be selected by the system because they are related to concepts
for which a mapping is defined (District in O2 and District in O1).

O1:City ∃contains.O2:Center

Complex topological mapping relations are needed to refine the above similarity
relations to completely characterize and to enrich the relationships between different
concept ontology sources. For example, the user can state that metro and bus station
described in O1 and located in the center are also described by TranportStation con-
cept defined in O2.

TransportStationCenter (O1:BStation O1:MStation) ∃inside.O2:Center
TransportStationCenter O2:TransportStation

We can also define museums and monuments located in the center as subconcepts
of HistoryCulture concept defined in O2.

O1:Museum ∃inside.O2:Center O2:HistoryCulture
O1:Monument ∃inside.O2:Center O2:HistoryCulture

The typical kinds of reasoning services needed in order to support the designer in
applying the mapping process is to check the consistency of the mappings and with
the ontology sources For example, the reasoning system detect immediately that these
assertions are inconsistent:
O1: Museum O2:HistoryCulture
O1: Monument O2:HistoryCulture

Indeed, the concepts Museum and Monumen of O1 describe respectively museums
and monuments of the city while the concept HistoryCulture of O2 describes (among
others) only those connected spatially to the center.

376 N. Bennacer

This specification is incremental the user defines elementary mappings for con-
cepts found by the system by exploiting naming similarities between concepts and
concepts related to them or from common instances between concepts found by que-
rying local ontology instances. Typically queries allow the definition of new concepts
relating source concepts to establish complex mappings. For example, TransportSta-
tionCenter concept defined above is the result of query responding to metro and bus
stations located in the center. Thus the user refines and enriches the mappings using
complex topological relations. The reasoning component validates or invalidates the
added mapping assertions regarding semantic descriptions of ontologies.

4 Related Work

Several works developed for constructing mappings are based on heuristics that iden-
tify structural and naming similarities using intentional or extensional descriptions of
ontologies. PROMPT and PROMPTDIFF system presented in [9, 10] are based on
linguistic similarity for matching concepts. ONION system presented in [11] is based
on graph-based technique to define rules for mapping using algebra ontology opera-
tors. Its linguistic matcher looks at all pairs of terms from the two ontologies and
assigns them a similarity score taking into account that nodes have many attributes in
common, classes with common parents, and so on. GLUE system presented in [12]
employs machine learning techniques to find mappings. It finds the most similar con-
cepts using probabilistic measures and multiple learners exploiting information in
concept instances and taxonomic structure of ontologies. FCA-Merge method defined
in [13] for merging ontologies relies on the fact that the source ontologies should have
a set of shared instances of the domain and annotated with concepts from source on-
tologies. Once the instances are extracted, FCA-Merge uses mathematical and natural
processing techniques to derive a lattice of concepts relating the concepts from source
ontologies. This construction is semi-automatic as it requires background knowledge
about the domain. In the MAFRA framework [14], ontologies are described in RDFS
representation and a Semantic Bridge Ontology (SBO) component establishes simi-
larities between the source and target ontology entities. Other works are focused on
the need of an appropriate formal representation language for well-defined mapping
semantics. Mena and al [15] developed OBSERVER which helps the users by looking
for synonyms, hyponyms and hypernyms defined between terms in source ontologies.
Users pose then queries in DL terms using their own ontology then OBSERVER
employs mappings to pose queries to source ontologies. In [16] a formal framework
to merge a global ontology is defined. Ontology sources are expressed in DL, and
mappings between them are expressed through suitable mechanisms based on queries.
Two approaches are proposed, in the first one, the concepts of the global ontology are
mapped into queries over the local ones. In contrast, the second approach requires
reformulation of the concepts of the local ontologies in terms of the queries to the
global ontology. In [17] a framework is defined for specifying mappings and their
associated semantics. It enables mapping between models in different representation
languages such as DAML+OIL, RDF and relational models without translating the
models into a common language using a helper model.

 Formalizing Mappings for OWL Spatiotemporal Ontologies 377

5 Conclusion

Specifying mapping assertions is a crucial and difficult task all the more so that we
have to deal not only with syntactic, structural and semantic heterogeneity but also
with the inherent complexity of spatiotemporal objects. Our approach aims at provid-
ing an integrated access to spatiotemporal information sources using local ontologies
where each one is provided adopting a common language OWL (Ontology Web Lan-
guage) extended to spatiotemporal features. It exploits ALCRP (S2 ⊕ T) power expres-
siveness for mapping and reasoning services to detect both inconsistencies and
implicit information in ontology mappings. It provides a support to reduce the effort
required by a user to inspect the input ontologies, to understand the associated seman-
tics, to capture and to establish incrementally meaningful mappings between ontology
sources. The user defines elementary mappings found by the system using naming
concept similarities or from common instances between concepts found by queries.
Thus he refines and enriches the mappings. The reasoning component validates or
invalidates the added mapping assertions regarding semantic descriptions of ontolo-
gies. Our approach carries a great flexibility and ensures a preservation of spatiotem-
poral semantics.

References

1. Rahm, A. and Bernstein, A., 2001. A survey of approaches to automatic schema matching.
The Very Large Database Journal. 10(4) 334-350.

2. Kalfoglou, Y. and Schorlemmer, M., 2003. Ontology mapping: the state of the art. The
Knowledge Engineering Review. 18(1) 1-31. Cambridge University Press.

3. Noy, NF. and Klein, M., 2002. Ontology evolution: not the same as schema evolution.
Knowledge and Information Systems.

4. Haarslev, V., Lutz, C., Möller, R., 1999. A Description Logic with Concrete Domains and
a Role-forming Predicate Operator. Journal of Logic and Computation. 9(3).

5. Baader, F., Horrocks, I., Sattler, U., 2003. Description logics as ontology languages for the
semantic web. Lecture Notes in Artificial Intelligence. Springer.

6. Cohn, A.G., Hazarika, S. M., 2001. Qualitative Spatial Representation and Reasoning: an
Overview. Fundamenta Informaticae, 46(1-2), 1-29.

7. Baader, F., Hanschke, P., 1991. A scheme for integrating concrete domains into concept
languages. In proceedings of the Twelfth International Joint Conference on Artificial Intel-
ligence (IJCAI). 452-457.

8. Lutz, C., 2003. Description Logics with Concrete Domains - A Survey. In Advances in
Modal Logics. 4. King's College Publications.

9. Noy, N. and Musen, M., 2000. PROMPT: algorithm and tool for automated ontology
merging and alignment. Proceedings of the 17th National Conference on Artificial Intelli-
gence (AAAI).

10. Noy, NF. and Musen, M., 2002. PROMPTDIFF: a fixed-point algorithm for comparing
ontology versions. Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI).

11. Mitra, P. and Wiederhold, G., 2002. Resolving terminological heterogeneity in ontologies.
Proceedings of the ECAI workshop on Ontologies and Semantic Interoperability.

12. Doan, A., Madhavan, J., Domingos, P. and Halevy, A., 2002. Learning to map between
ontologies on the semantic web. Proceedings of the 11th International World Wide Web
Conference (WWW).

378 N. Bennacer

13. Stumme, G., and Maedche, A., 2001. Ontology merging for federated ontologies on the
semantic web. Proceedings of the International Workshop for Foundations of Models for
Information Integration (FMII).

14. Maedche, A., Motik, B., Silva, N., Volz, R., 2002. MAFRA - A Mapping Framework for
Distributed Ontologies. Proceedings of the European Conference on Knowledge Acquisi-
tion and Management (EKAW). Springer.

15. Mena, E., Kashyap,V., Illarramendi, A. and Sheth, A., 1998. Domain Specific Ontologies
for Semantic Information Brokering on the Global Information Infrastructure. Proceedings
of the 1st International Conference on Formal Ontology in Information Systems(FOIS’98).

16. Calvanese D., De Giacomo G., and Lenzerini M. “A Framework for Ontology Integration“
In proceedings of International Semantic Web Working Symposium (SWWS 2001), pages
301-316, 2001.

17. Madhavan, J, Bernstein, PA, Domingos, P and Halevy, A, 2002, “Representing and rea-
soning about mappings between domain models” Proceedings of the 18th National Con-
ference on Artificial Intelligence (AAAI’02).

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 379 – 388, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multi-term Web Query Expansion Using WordNet

Zhiguo Gong, Chan Wa Cheang, and Leong Hou U

Faculty of Science and Technology
University of Macau

Macao, PRC
{zggong, ma36600, ma36575}@umac.mo

Abstract. In this paper, we propose a method for multi-term query expansions
based on WordNet. In our approach, Hypernym/Hyponymy and Synonym
relations in WordNet is used as the basic expansion rules. Then we use
WordNet Lexical Chains and WordNet semantic similarity to assign terms in
the same query into different groups with respect to their semantic similarities.
For each group, we expand the highest terms in the WordNet hierarchies with
Hypernym and Synonym, the lowest terms with Hyponym and Synonym, and all
other terms with only Synonym. Furthermore, we use collection related term
semantic network to remove the low-frequency and unusual words in the
expansions. And our experiment reveals that our solution for query expansion
can improve the query performance dramatically.

1 Introduction

One challenging issue, among others, in information retrieval is the problem caused
by word mismatch. That is, the query words may not rightly be contained in the
document even though their semantics are highly relevant to the user’s need.
Evidently, if the word mismatch problem is not appropriately addressed by
information retrieval systems, it could degrade their retrieval performance greatly. To
deal with this problem, query expansion is one of the promising approaches. Typical
methods include Lexical-Based [13, 14, 15], Statistical-Based [16,17,18], Query-Log-
Based [19], and Web Link-Based [20].

Lexical-Based method utilizes some manually created lexical thesaurus for the
expansion. For any term in the query, a list of semantic relevant terms is selected from
the thesaurus and then used for the expansion. In such method, the thesaurus used is
often collection independent, thus may not catch the dynamic change of the
vocabulary used in the collection. Therefore, the effectiveness of such method is often
not as expected in practice.

Statistical-Based solutions, on the other hand, describe word relations using their
co-occurrences in the collection. Actually, term co-occurrences can be globally
extracted in the scope of whole collection (Global Expansion) or locally obtained
from the results of initial query (Local Expansion). With these methods, a term is
selected for expansion if it has higher degree of co-occurrences with the query terms.
The effectiveness of such kind of methods is dependant on the collection. If the size
of collection is not huge enough, it may not well capture the relations between terms.

380 Z. Gong, C.W. Cheang, and L. Hou U

Another problem lies in the fact that term relations captured are only pair based,
without a semantic architecture among all the expanded terms. Therefore, it is hard to
control the mutual impairing caused by multiple terms in the query.

Query-Log-Based expansion methodologies describe term-term relations by
introducing users’ click-though activities. In other words, term t2 can be used to
expand query term t1 if, historically, many users, who query term t1, have clicked
documents which contain t2 in the results. In general, users’ click-through activities
are captured in the system logs. As a matter of the fact, users click-though
information can only be considered as implicit indicators for the term relations. That
is, a user may click a result document just because he is motivated by any other
reasons than relevant. As the result, it may provide poor performance if less people
previously query the words. This is common especially when the system is just
created.

Web Link-Based solutions expand Web queries with a thesaurus which is
constructed by using links of the Web. To create the thesaurus, Web pages as the
training set are selected manually. And the semantic of a target Web page of a link is
represented as the words or concepts appearing in the anchor texts in the source page
of the link. Then the semantic relations among the words or concepts are derived
using the links.

The method in this paper belongs to the first type. However, we have two
important improvements in the expansion: (1) clustering all terms of a query into
different groups by their semantic similarities, then expanding each group by taking
into account their positions in WordNet [6]; (2) reducing noise terms in the expansion
by term co-occurrences supported by the collection.

In our approach, Hypernym/Hyponymy and Synonym relations in WordNet is used
as the basic expansion rules. Then we use WordNet Lexical Chains and WordNet
semantic similarity to assign terms in the same query into different groups with
respect to their semantic similarities. For each group, we expand the highest terms in
the WordNet hierarchies with Hypernym and Synonym, the lowest terms with
Hyponym and Synonym, and all other terms with only Synonym. In this way,
contradictory caused by full expansion can be well controlled. Furthermore, we use
collection related term semantic network to remove the low-frequency and unusual
words in the expansions. And our experiment reveals that our solution for query
expansion can improve the query performance dramatically.

In reminder of this paper, section 2 provides our detail methodologies for query
expansion with WordNet::Similarity and reduction using TSN. The experiment results
are illustrated and discussed in section 3. Finally, we conclude our work in section 4.

2 Expansion Method

In this section, after a brief introduction of our previous work for single word query
expansions, we address our multi-term query expansion methodologies in detail.

2.1 Single Term Query Expansion

In [7], we have addressed our solutions for single word query expansions using
WordNet and TSN (Term Semantic Network). WordNet organizes words or concepts

 Multi-term Web Query Expansion Using WordNet 381

Fig. 1. An Example for WordNet

lexically into hierarchies. Figure 1 is a typical example in which term ‘Software’ can
be semantically expanded along three chains, say, Hypernym (i.e. ‘code’), Hyponym
(i.e. ‘program’, ‘freeware’, ‘shareware’, ‘upgrade’, ‘groupware’) and Synonym (i.e.
‘software system’, ‘software package’, ‘package’). Actually, Hypernym is the
abstractive concepts of the term while Hyponym, reversely, includes specific concepts
of the terms. And Synonym contains all the synonyms of the term. However, their
impacts for the expansion are different in letter of retrieval performance.

According to our experiments in
previous research, WordNet may bring
many noises for the expansion because
of its collection independent characteri-
stic. And it may not catch current state
of words and their relationships since
the explosive increase of the Web. To
overcome those problems, collection-
related TSN (Term Semantic Network)
is created with respect to word co-
occurrence in the collection. We use
TSN both as a filter and a supplement
for WordNet.

For any term t, let Hypert, Hypot, Synt and TSNt stand for the concept sets of its
Hypernym, Hyponym, Synonym, and Top-k of TSN respectively. Let R(p|q) be the
rank of Web page p with respect to query q. Ranking model tf or tf*idf is popularly
employed in the information retrieval world because of its robustness and simplicity
[8]. And in our Web image search system, we modify model tf into model ttf by
incorporating term t’s locations in p with respect to the corresponding Web image [5,
11]. For any single word query t, we define its expanded rank function ER(p|t) as

tTSNz zpRtSynz zpRtHypoz zpRtHyperz zpRtpRtpER)|()|()|()|()|()|((1)

where , , and are factors used to indicate different effects from different
expansion directions. In our work, we suppose the expansion along each dimension is
independent. And we use Average Precision (AP) of the retrieval as the objective
function in determining the optimal values of those factors which can maximize AP
value. Table 1 shows the optimal factor values with their corresponding AP values in
our Web image retrieval system [7].

Table 1. Factor Values and Average Precision

Factor Values Average Precision
 0.47 0.2406
 0.84 0.3888
 0.70 0.3404

 0.94 0.3559

In Web image retrieval system [7], we combined the query expansions along each
semantic dimension as our overall solution. Our experiments reveal that the combined

382 Z. Gong, C.W. Cheang, and L. Hou U

Fig. 2. Group Terms in the WordNet

expansion can provide a satisfied result for the Web query performance. However,
previous method ignored the mutual affections among the terms in the same query.

2.2 Multi-term Query Expansion

Even though most of Web users search the Web with only one word, we still find
many queries with multiple terms. For example, a user uses a pair words (computer,
speaker) as one query to search Web images. Our previous expansion method will
automatically expand these two words with three semantic relations independently.
As a result, the expanded query will contain too many words which may include
many noise words, thus, reduce the precision of the query results. For example, a Web
user may use q=(software, groupware) as the query. With single word expansions,
query q will be expanded to include all the words or concepts from both ‘software’
and ‘groupware’s WordNet expansions. However, as in figure 1, ‘groupware’ is in the
Hyponym of ‘software’. The user, who uses ‘groupware’ to combine ‘software’,
implicitly wants to exclude other words in the Hyponym of ‘software’ for the query.
Therefore, the overall expansions of these two words may bring many words which
contradict to the user’s query intention.

Figure 2 shows another situation, in
which “computer” and “speaker” have
the closest super-ordinate class “device”
along the WordNet chains. Even though
‘speaker’ is not in the direct Hyponym
of ‘computer’, it is sill located in the
lower level with respect to ‘computer’
in the WordNet hierarchies. Therefore,
we also suppose ‘speaker’ is a restraint
for ‘computer’ in Hyponym expansions
of ‘computer’. Reversely, ‘computer’ is
taken as the constraint of ‘speaker’s
Hypernym expansions.

In this work, we use Jian-Conrath [4] to measure the distances of two words in
WordNet. In fact, this measure method combines WordNet lexical taxonomy structure
with corpus statistical information such that the semantic distances between nodes in
the semantic space constructed by the taxonomy can be better quantified with the
computational evidence derived from a distributional analysis of corpus data.

Jian-Conrath approach uses the notion of information content, but in the form of
the conditional probability of encountering an instance of a child-synset given an
instance of a parent-synset. Thus the information content of the two nodes, as well as
that of their most specific subsumer, is taken into account in the measure calculations.
Notice that this formula measures semantic distance in the inverse of similarity as:

))(log())((log())),((log(2),(212121 cpcpcclsopccDist +−= (2)

where c1 and c2 are synsets, p(c) is the probability of encountering an instance of a
synset c in some specific corpus, lso(c1, c2) is the similarity between two concepts
lexicalized in WordNet to be the information content of their lowest super-ordinate
(most specific common subsumer). Therefore, we could use this approach to measure
the semantic strength between tow words.

 Multi-term Web Query Expansion Using WordNet 383

The larger the Dist(t1, t2) is, the farer term t1 to term t2 is in the WordNet
hierarchies. In case t1 > t2 (t1 is located in a higher level than t2 in WordNet), we do
not expand Hyponym for t1 and Hypernym for t2 as the reason we discussed
previously. Going back for our last example, we only expand “computer” with
Hypernym and Synonym relations, and “speaker” with Hyponym and Synonym
relations. In fact, we will assign terms in the same query q into groups. Within each
group, terms are clustered with respect to Dist(t1,t2), and we expand Synonym for all
terms and Hypernym only for the words on the highest level in the WordNet
hierarchies, and Hyponym only for the words on the lowest level of WordNet
hierarchies. Figure 3 provide our detail expansion algorithm.

Fig. 3. Algorithm of our expand method

Below we use some examples as illustrations for the algorithm. Let q=(‘Macau’,
‘camera’, ‘photo’) be a three-term query. Our expansion algorithm divides them into
two groups by checking their similarities. One group contains the word “Macau”,
another one contains “camera” and “photo”. According to the similarity measure,
“Macau” does not have similarity relation with other two words. Therefore, in this
example, we expand ‘Macau’ via three WordNet chains. In the second group,
“camera” and “photo” have a high degree in similarity and they are under the same
concept in WordNet hierarchies, with ‘camera’ > ‘photo’. So the system expands
“camera” through hypernym and synonym relations and “photo” through hyponym
and synonym relations (Figure 4).

Figure 5 provides another example, where query q=(‘movie’, ‘camera’,
‘character’). By tracing them in WordNet, these three words are under the same
concept and with close similarity values mutually. Thus, our algorithm keeps them in
one group, with WordNet hierarchal levels like ‘movie’>‘camera’> ‘character’. In this
case, the algorithm only expands “movie” with hypernym and synonym relations
because of its highest WordNet hierarchical level within the group, and “character” is
expanded in hyponym and synonym relations due to its lowest level within the group.
The word “camera” is only expanded in synonym relation because its location in
WordNet is between “movie” and “character”.

384 Z. Gong, C.W. Cheang, and L. Hou U

Fig. 4. Query expansion with two relative
terms

Fig. 5. Query expansion with three relative
terms

2.3 Similarity Threshold for Grouping Words

As in our discussions of last section, term grouping in a multi-term query is a critical
step in our expansion algorithm. In this section, we are going to determine the optimal
similarity threshold for grouping terms in the query.

Similarity Measure

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

Similarity Values

A
ve

ra
g

e
P

re
ci

si
o

n

Fig. 6. Average precision versus Similarity Values

To determine the threshold value for term grouping, we select AP (average
precision) as the objective function [8,9]. In other words, the optimal value for the
similarity threshold should maximize AP values of retrievals. In this work, we use 40
single-word queries, 40 two-word queries, 20 three-word queries, 10 four-word
queries and 10 five-words as our sample queries. And we select about 60% of them as
our training set for the threshold determination. In the same query, if the similarity of
two terms is over the threshold (UD) we assign them in the same group. Figure 6 is
the performance of average precision via similarity threshold (UD). From this figures,
it is obvious that the retrieval performance reaches its maximum when threshold UD
is at 0.05. As a matter of the fact, in our sample data there are no pair of words whose
similarity is greater than 0.2, so we ignore the figure plot when similarity range are
between 0.2 to 1. Furthermore, we could find the retrieval performance drops down
dramatically when the value is over 0.05.

 Multi-term Web Query Expansion Using WordNet 385

2.4 Query Reduction

In general, query expansion using a thesaurus may be expanded to include too many
words. And some of them are low-frequency and unusual words in the collection.
Those unusual words may bring in some noise and decrease retrieval performances.
Therefore, it is important to exclude noise words during query expanding. In our
system, a term semantic network (TSN) is extracted from the collection. Actually,
TSN is a direct graph with words as its nodes and the associations as the edges
between two words.

To extract TSN from the collection, we use a popular association mining algorithm –
Apriori [12] — to mine out the association rules between words. Here, we only consider
one-to-one term relationship. Two functions—confidence and support— are used in
describing word relations. We define confidence (conf) and support (sup) of term
association ti tj as follows, let

())() ,(jiji tDtDttD ∩= (3)

where D(ti) and D(tj) stand for the documents including term ti and ti respectively.
Therefore, ())(ji tDtD ∩ is the set of documents that include both ti and tj. We

define

||)(||

||) ,(||

i

ji
tt

tD

ttD
Conf ji =>− (4)

where ||),(|| ji ttD stands for the total number of documents that include both term ti,

and tj; and ||)(|| itD stands for the total number of documents that include ti ,

D

ttD
Sup ji

tt ji

||) ,(||
=>− (5)

where D stands for the number of document in the database.

Fig. 7. Keyword filtering process of word “robot”

In this paper, we only remain the expanded words which have minimum
confidence over 0.1 and support over 0.01 with the original query keyword into our
query expansion. As the keyword “robot” in Fig 7, we filter out the words “golem,
humanoid, mechanical man”.

386 Z. Gong, C.W. Cheang, and L. Hou U

3 Evaluation

The crawler of our system gathered about 150,000 Web pages with a given set of
seeds which are randomly selected from dot-com, dot-edu and dot-gov domains. After
the noise images (icons, banners, logos, and any image with size less than 5k)
removed by the image extractor, about 12,000 web images embedded in the Web
pages are left. In order to calculate the precision/recall value, our system needs
domain experts to annotate the sample Web images with their semantics. Our system
provides a user-friendly interface, to let the experts define the corresponded meanings
for each image easily by using the mouse [5]. Then the human experts are assigned to
define the subjects of the Web images manually. And sometimes, more than one
subject is defined for the same images. For example, concepts ‘Laptop’, ‘Notebook’
and ‘Computer’ may be annotated to the same Web image.

As in Figure 9, we have used different expansion method in our experiment in
order to compare their performances. In the evaluation, we use the remaining 40% of
the sample queries as the testing queries. Below are the descriptions for different
expansion models:

No Expand – use original queries in the testing, without any expansion.
All Expand – use WordNet three semantic relations (Hypernym, Hyponyms,
Synonym) to expand original queries fully, without word grouping.
UD_Expand – we treat all terms in the same query as one group without concerning
their similarities, and only expand the highest level terms with hypernym and
synonym relations and the lowest level terms with hyponym and synonym relations.
Other terms only expand its synonym relation.
UD~0.05 – Group terms with the similarity threshold as 0.05 in the same query. In
each group, we expand the highest terms with hypernym and synonym and lowest
terms with hyponym and synonym, all others with only synonyms.
Reduction – This model is UD~0.05 + Term Reduction. We use UD~0.05 for term
expansion, and remove noise words using TSN.

As revealed in Figure 8, even though ALL_EXPAND can improve recalls of queries
a little bit, however, its retrieval precision is the lowest among all the models. The
reason is due to the fact that, besides the noise words, there are too many words
included in the expansion, and some of them are contradictory with each other.
UD_EXPAND model has improved both precision and recall comparing with
NO_EXPAND model. It impose some constraint on the expansion scope, thus reduce
some contradictories among words in contrast to ALL_EXPAND method. UD~0.05
model produce a quite good performance comparing with both ALL_EXPAND and
UD_EXPAND models. That means grouping terms with similarity threshold UD=0.05
is both critical and necessary in improving the retrieval performances. This model can
effectively reduce the contradictories among words when expanding the queries. This
model overcomes the weaknesses of two extremes –ALL_EXPAND and
UD_EXPAND. Finally, REDUCTION model is the best in term of retrieval
performances among all those models. As we know, it enhances UD~0.05 by further
removing words which have lower associations with the words in the original query
which may disturb the searching.

 Multi-term Web Query Expansion Using WordNet 387

Through our discussions above, we can conclude that query expansions with
WordNet yield significant increases in the number of correct documents retrieved and
in the number of answerable queries, and query expansions followed by reduction
makes even more substantial improvements.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000

Recall

P
re

ci
si

o
n

No Expand All Expand UD_Expand

UD~0.05 Reduction

Fig. 8. Performance of Multi-term Query Expansion method

4 Conclusions

In this paper, we propose a method for multi-term query expansions. We use
WordNet noun hypernym/hyponymy and synonym relations between words as the
base expansion dimensions. In our approach, we divide terms in the same query into
groups with respect to semantic similarities between terms. Within each group, the
terms are closely related in semantics. We determine expansion dimensions for each
word in the same group by their relative positions in the WordNet hierarchies. We
only expand the top words with Hypernym and Synonym, the bottom words with
Hyponym and Synonym, all other words with only Synonyms. By this way, the
contradictories among words in the expansions can be well controlled, thus retrieval
performances can be improved. Furthermore, in order to avoid noise words in the
expansions, we apply term co-occurrence information further to remove unusual
words during query expansion processing.

References

1. Ted Pedersem, Siddharth Patwardhan and Jason Michelizzi, WordNet::Similarity –
Measuring the Relatedness of Concept, In Proc. of Fifth Annual Meeting of the North
American Chapter of the ACL (NACCL-04), Boston, MA, 2004.

2. WordNet::Similarity, http://search.cpan.org/dist/WordNet-Similarity/
3. Alexander Budanitsky and Graeme Hirst, Semantic distance in WordNet: An experimental,

application-oriented evaluation of five measures, In NAACL Workshop on WordNet and
Other Lexical Resources, 2001.

4. Jay J. Jiang and David W. Conrath, Semantic Similarity Based on Corpus Statistics and
Lexical Taxonomy, In the Proceedings of ROCLING X, Taiwan, 1997

388 Z. Gong, C.W. Cheang, and L. Hou U

5. Zhiguo Gong, Chan Wa Cheang, Leong Hou U, Web Query Expansion by WordNet,
DEXA 2005

6. Miller, G. A., Beckwith, R., Felbaum, C., Gross, D., and Miller, K., Introduction to
WordNet: An On-line Lexicala Database, Revised Version 1993.

7. Zhiguo Gong, Leong Hou U and Chan Wa Cheang, An Implementation of Web Image
Search Engine, Digital Libraries: International Collaboration and Cross-Fertilization: 7th
International Conference on Asian Digital Libraries, ICADL 2004, Shanghai, China,
December 13-17, 2004. Proceedings Pages:355 – 367

8. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, Addison Wesley,
1999

9. R. K. Sriari, Z. Zhang and A. Rao, Intelligent indexing and semantic retrieval of
multimodal documents, Information Retrieval 2(2), Kluwer Academic Publishers, 2000,
pp. 1-37.

10. Hang Cui, Ji-Rong Wen, Jian-Yun Nie, Wei-Ying Ma, Query Expansion by Mining User
Logs, IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 4,
July/August 2003, pp. 829-839

11. Zhiguo Gong, Leong Hou U and Chan Wa Cheang, Text-Based Semantic Extractions of
Web Images, To appear in Knowledge and Information Systems: An International Journal,
Springer.

12. R. Agrawaland R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th
Int’l Conf. Very Large Data Bases, (VLDB), Sept. 1994.

13. E. M. Voorhees, Query Expansion using Lexical-Semantic Relations. In Proceedings of
the 17th ACM-SIGIR Conference, pp. 61-69, 1994.

14. A.F. Smeaton and C. Berrut. Thresholding postings lists, query expansion by word-
worddistance and POS tagging of Spanish text. In Proceedings of the 4th Text Retrieval
Conference, 1996.

15. Oh-Woog Kwon, Myoung-Cheol Kim, Key-Sun Choi. Query Expansion Using Domain-
Adapted Thesaurus in an Extended Boolean Model. In Proceedings of ACM CIKM’94. pp.
140-146.

16. Yonggang Qiu and H.P. Frei. Concept Based Query Expansion. In Proceedings of ACM-
SIGIR’93. pp. 160-169.

17. Jinxi Xu and W. B Croft. Improving the Effectiveness of Information Retrieval with Local
Context Analysis. ACM Transactions on Information Systems, Vol. 18, No. 1, January
2000, pp. 79-112.

18. Jing Bai, Dawei Song, Peter Bruza, Jian-yun Nie, and Guihong Cao. Query Expansion
Using Term Relationships in Language Models for Information Retrieval. In Proceedings
of ACM CIKM’05, pp. 688-695.

19. B. Billerbeck, F. Scholer, H.E. Williams, and J. Zobel. Query Expansion Using Associated
Queries. In Proceedings of ACM CIKM’03, pp. 2-9.

20. Z. Chen, S. Liu, W. Liu, A. Pu, and W. Ma. Building a Web Thesaurus from Web Link
Structure. In Proceedings of ACM SIGIR’03, pp. 48-55.

Fast Computation of Database Operations Using
Content-Addressable Memories

Nagender Bandi, Divyakant Agrawal, and Amr El Abbadi

Computer Science
University of California at Santa Barbara
{nagender, agrawal, amr}@cs.ucsb.edu

Abstract. Research efforts on conventional CPU architectures over the
past decade have focused primarily on performance enhancement. In con-
trast, the NPU (Network Processing Unit) architectures have evolved
significantly in terms of functionality. The memory hierarchy of a typical
network router features a Content-Addressable Memory (CAM) which
provides very fast constant-time lookups over large amounts of data and
facilitates a wide range of novel high-speed networking solutions such as
Packet Classification, Intrusion Detection and Pattern Matching. While
these networking applications span an entirely different domain than the
database applications, they share a common operation of searching for a
particular data entry among huge amounts of data. In this paper, we in-
vestigate how CAM-based technology can help in addressing the existing
memory hierarchy bottlenecks in database operations. We present several
high-speed CAM-based solutions for computationally intensive database
operations. In particular, we discuss an efficient linear-time complexity
CAM-based sorting algorithm and apply it to develop a fast solution for
complex join operations widely used in database applications.

1 Introduction

CPU speed has been increasing at a much faster pace than memory access speed
over the past decades. Therefore, memory access has become a performance bot-
tleneck for many applications. To overcome this bottleneck, fast memories called
caches have been integrated into the memory hierarchy between the CPU and
main memory. Recent research on DBMS performance [1,2], however, demon-
strates that typical database applications suffer from poor cache performance.
Caches exploit the principle of temporal and spatial locality by caching data
that has recently been accessed and by prefetching blocks of data. Since many
database applications have poor data locality, prefetching often pollutes precious
cache space with irrelevant data. As a consequence, changes in data layout [3] and
cache-conscious algorithms [2,4] have been proposed. Experimental results show
that cache performance can be improved by applying these techniques. However,
the gap between CPU speed and memory access speed continues to widen every
year. Therefore we postulate a change at the hardware level in addition to the
existing software techniques.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 389–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

390 N. Bandi, D. Agrawal, and A.E. Abbadi

While the memory hierarchy architecture of a conventional CPU has not
changed significantly over the past decade, the changes are very evident in the
case of network router architectures. Network Processing Units (NPUs), which
form the core of a network router, now interface with a Ternary Content Ad-
dressable Memory (TCAM or just a CAM) in a similar fashion as a conventional
processor interfaces with a DRAM. TCAMs are a new family of memories that,
in addition to Read and Write, offer constant-time lookups (or searches) over
large amounts of data. TCAMs have been successfully deployed in sophisticated
routers primarily for their very fast lookup speeds with the leading solutions
providing speeds as high as 133 Million lookups per second. Research efforts in
the networking arena show TCAMs being increasingly used to provide a wide
range of high speed networking solutions such as packet classification[5], intru-
sion detection[6]. Although networking and database applications span different
domains, the very core of both these applications involves “looking-up” for a
particular data entry among a huge data collection. In this context, we started
exploring whether Content Addressable Memories can alleviate the memory-
access latency problems which persist in the database systems.

As is the case in many research endeavors in computer science, it is worth
noting that the notion of integrating associative search in the context of data-
bases using specialize hardware is not a new idea. In fact, database pioneers in
the 1970s proposed using associative memories for accelerating database perfor-
mance [7]. However, these novel ideas were not widely accepted because such
integration would have required significant investment in developing highly spe-
cialized hardware technology. Thus the notion of integrating associative search
in databases perhaps was before its time. As silicon became cheaper and with the
increasing demand from the network industry, TCAMs have become a commod-
ity hardware. In particular, industry standard TCAMs can now have a capacity
of a few megabytes at nominal costs. Thus, we believe the time is ripe to evaluate
fine-grained hardware integration of TCAMs with conventional DBMSs.

We have been involved with the market leader in TCAM technology for the
past few years in bringing this idea to fruition. Only recently we were able to cre-
ate an integrated prototype which integrates TCAM with a conventional CPU.
In [8], we described a novel architecture called CAM-Cache, which integrates a
TCAM into the memory hierarchy of a general purpose processor. We also devel-
oped a software framework for building TCAM-based algorithms and integrating
them into a commercial database. Building up on this frame-work, we develop
new techniques and report the findings in this paper. The main contributions of
this paper are:

• We present a fast linear-complexity sorting algorithm based on CAM-Cache.
Although a theoretical analysis of a sorting algorithm using TCAMs was
reported earlier [9], to the best of our knowledge, we are the first to report
an evaluation of implementation of sorting on TCAM hardware. Using special
features provided by a TCAM, we present an efficient variant of the TCAM-
based sorting technique which requires 40% lesser number of TCAM searches
as compared to the original sorting technique [9].

Fast Computation of Database Operations Using CAM 391

• We propose a novel non-equi join technique which is based on the high-speed
sorting and range-matching capabilities of a TCAM. Experimental evaluation
against efficient software-based techniques on a popular commercial database
show significant performance improvement of this hardware-based technique
over its software-based counterparts.

2 CAM-Cache

In this section, we briefly summarize the details of our CAM-Cache architec-
ture [8] which extends the typical memory hierarchy (disk, memory and caches)
and provides read, write and fast constant-time search functionality to a software
application (e.g. database).

2.1 TCAM Primer

A TCAM provides read/write/constant-time search operations over a large array
of data. The TCAM basically stores an array of words and given a query word,
it compares the query word with each of the data entries in the array in parallel
in a SIMD fashion and the first word from the top of the array which matches
the query word is reported. Upon a successful match, the TCAM drives the
matching address on its output lines. If there is more than one match for a given
query word, a special flag inside the TCAM, the multi hit flag, is set by the
hardware.

2.2 CAM-Cache Architecture

The CAM-Cache architecture, which integrates the TCAMs into the memory
hierarchy of CPU, consists of three hardware sub-units: A simple FPGA1 also
called a bridge processor, an array of search engine chips and an array of SRAM
chips which store associative data. The bridge processor acts as a bridge between
the CPU on one side and a search engine and SRAM on the other. In an ideal
setup, the CPU would directly communicate with the TCAMs over the system
bus in the same way as an NPU communicates with the TCAMs. As CPU
architectural restrictions only allow new devices to be integrated through a set of
standard interfaces (e.g., PCI) and not directly through the system bus, we need
a device such as the bridge processor which understands this standard interface
and interacts with TCAMs. A more detailed description of the architecture, the
supported data model and the prototype can be seen in [8].

3 Database Functionality on CAM-Cache

In this section we discuss integrating database functionality on top of hard-
ware functions provided by the TCAM. In our preliminary evaluation [8], we
proposed a hardware-based database equi-join technique over CAM-Cache and
1 Field Programmable Gate Array.

392 N. Bandi, D. Agrawal, and A.E. Abbadi

Fig. 1. CAM-Cache architecture

presented a feasibility analysis of our approach by comparing the performance
against leading software-based equi-join solutions. Although datbase equi-joins,
where two database relations are joined with a conditional of “=” over the join
predicates, are the most commonly used joins, other forms of conditional joins
(with conditionals of ≤,≥, inbetween, <>), which we refer to as non-equi joins,
are equally important. While equi-joins have very efficient hashing, sorting and
index-based implementations, non-equi joins are typically implemented using
nested loop joins or expensive sorting-based implementations. They do not have
efficient hashing based solution because hashing does not preserve ranges. In
this section, we develop a TCAM-based algorithm which efficiently solves the
Non-equi joins. This technique is based on the capability to use the TCAM as
an efficient linear-complexity sorting device.

3.1 Sorting Using CAM-Cache

Sorting using TCAM has already been described in the context of networks [9].
Panigrahy et al. [9] presented a TCAM-based sorting algorithm which has linear
time complexity in the size of the input set. In this section, we describe the sorting
algorithm described in [9] and using the special features provided by the TCAM,
we implement an optimized variant of the original technique which decreases the
number of TCAM accesses required by the sorting technique.

Searching Algorithm - Range Matching. The idea behind the TCAM-
based sorting is primarily based on the ability to store and lookup for ranges
(range-matching) in TCAMs using the masking feature of the TCAMs. The
problem of range-matching can be described as follows. Given a set of disjoint
ranges {(a1, b1), (a2, b2), ..., (ak, bk)}, searching for a value c returns the range
(ai, bi) such that ai ≤ c ≤ bi.

Extended Longest Common Prefix (ELCP). In [9], Panigrahy et al. pro-
posed the concept of Extended Longest Common Prefixes (ELCPs) for efficient

Fast Computation of Database Operations Using CAM 393

range-matching. For any range (a, b), the Longest Common Prefix (LCP) range
is a binary range with the prefix string representing the prefix shared by both
ends of the range. A binary range is a range of numbers represented by a bi-
nary string (string of 0’s and 1’s) with a suffix of the string masked out. The
authors of [9] show that simply storing the LCP for representing a range in-
side the TCAM does not suffice for range-matching. They proposed a variant of
LCPs, called the Extended LCPs and show that ELCPs are sufficient for provid-
ing range-matching with efficient TCAM space usage. There are two ELCPs for
every range. The 0-ELCP (similarly 1-ELCP) is basically the LCP of the range
with the LCP extended by a bit value of 0 (1).

The authors [9] prove that for any value c in the range (a, b), the value c
definitely matches either the 0-ELCP or the 1-ELCP. They divide the TCAMs
into 2 logical spaces : one for storing the 0-ELCPs and the other for storing
the 1-ELCPs. The range-matching problem degenerates to finding the longest
prefix match inside both classes. However, TCAMs currently do not provide the
longest prefix match support at the hardware level. In order to find a longest
prefix match, a binary-search using different prefix lengths is performed.

Multi-hit Based Optimization. We observe that the binary search algorithm
for finding an ELCP, as described in [9], can be made more efficient by utilizing
the multi-match feature of the TCAM. In the original description, even if there is
a single match inside the TCAM, the binary search continues for log(b) searches.
For example, if there is only one prefix of length 17 and the data are 32-bit, the
algorithm searches for prefixes of length 17-32, 17-24, 17-20, 17-18 and 17-17
while all the search results point to the same TCAM location because it is the
only match for the given search key. This can be avoided using the multi-hit
feature of the TCAM. As described in Section 2.1, the multi-hit bit is set as
a result of a search command if there are more than 2 matches for the given
search. In the case when the search result shows that the multi-hit is 0 and there
is a match inside the TCAM, this implies that the current match location is the
only possible match. Using this feature, a modified version of the original binary
search [9] can be implemented which avoids multiple searches in the case of a
single match. We refer to this multi-hit based implementation of the binary
search as MHBS and discuss the performance improvement resulting from this
optimization in the experimental section.

Sorting Algorithm (Tsort). The TCAM-based sorting algorithm is logically
similar to the software-based insertion sort technique. An insertion sort over
an input set of n numbers runs for n-1 iterations. At the beginning of the ith

iteration, the set of all the inputs read till that iteration are already sorted and
the ith input is inserted into its proper position in the already sorted list of
numbers. At the end of the nth iteration, the input set is sorted. The inner loop
of the insertion sort has a linear complexity in the size of the input set thus
resulting in an overall complexity of O(n2).

The TCAM-based insertion sort [9], which we refer to as Tsort, replaces the
expensive O(n)-complexity inner loop of the insertion sort with a constant time

394 N. Bandi, D. Agrawal, and A.E. Abbadi

TCAM operation. This is achieved by exploiting the ability to store ranges and
the constant time look-up capability of the TCAM. At any stage in the execution
of Tsort, the set of input numbers which are already processed are sorted and
stored inside the TCAM. The processed data is stored inside TCAM as a set of
ranges. For each new input, the range which the input value falls into is split
to create two new ranges. Once the insertion of the inputs into the TCAM is
done, the sorted list needs to be retrieved from the TCAM. This can be easily
done by storing pointer information along with each range to the next range. For
example, if we suppose that before every insert, the pointer information from the
lowest range to highest range can be traversed using pointer information, then
we maintain this sorted order while inserting the new value. This is explained in
the pseudo-code of the TSort algorithm given in Algorithm 1. For each TCAM
entry, the associatedData basically stores the index of the particular entry in the
actual sorted output. This data structure is used in the Non-equi join algorithm
described later .For each input, an old range is deleted and two new ranges are
inserted. Since each range requires two TCAM entries, the algorithm requires
two free TCAM entries for each input which implies an overall space complexity
of O(n). Further for each input, the algorithm requires finding the 0-ELCP or
the 1-ELCP, this incurs O(log b) search complexity. Therefore the overall search
complexity is O(n log b). Although in practice, the log b complexity typically
results in 1 or 2 binary searches when the MHBS optimization is used, thereby
resulting in linear complexity for the Tsort.

Algorithm 1. Tsort (set S of numbers)
for each input x in the input set S do

match = searchForMatchingRange(input[i]);
/* Now split this range say (x-y) into two new ranges. First insert (x -
input[i]) replacing the original range of (x, y) at match. */
InsertNewRange (@match, [x, input[i]], nextFreeTcamSpace);
/* Insert the new range (input [i], y) into the next free tcam address. */
InsertNewRange (@nextFreeTcamSpace, [input[i], y], nextInfo);

end for
/* Retrieval Phase */
nextPointer = searchForMatchingRange (0);
counter = 0
while counter != n do

associatedData [nextPointer] = counter
sortData [counter++] = higherBoundOfRangeAt (nextPointer));
nextPointer = searchForMatchingRange (nextPointer);

end while

3.2 Non-equi Joins (NTjoin)

We now describe an efficient run-time CAM-based non-equi join technique based
on the Tsort technique describe above. The TCAM based non-equi join, which

Fast Computation of Database Operations Using CAM 395

we refer to as the NTjoin, is logically similar to the indexing-based nested loop
join which we refer to as NIJoin. In the case of NIJoin, an index is constructed
over the inner relation and the outer relation iterates over this index to return
the tuples which satisfy the given condition.

Algorithm 2. NTjoin (inner relation R, outer relation S)
Tsort (R) in blocks that fit into TCAM
for each block of R do

for each tuple s in S do
matchAddress = searchForMatchingRange (x);
/* Now get the index of the matched range in the sorted list */
index = associatedData [matchAddres];
/* Depending on the conditional and using this index, perform a linear
traversal of the sorted array generated during the Tsort */

end for
end for

The NTjoin (described in Algorithm 2) consists of two phases : the indexing
phase and the join phase. In the indexing phase, the inner relation of the non-equi
join is sorted and indexed inside the TCAM. The Tsort technique described in
the previous section is used to build a sorted version of the inner relation inside
the TCAM. If the inner relation does not fit into the TCAM, it can be partitioned
into blocks that can fit into the TCAM and the outer relation loops in a nested
loop fashion for each block. During the retrieval stage of the Tsort, when the
sorted data is retrieved and stored inside the main memory, we associate with
each TCAM entry its corresponding index in the sorted list. Now when a new
entry is looked up in the TCAM, it not only finds the matching range but also
the index of the look-up key in the sorted list.

In the joinphase,we loop through theouter relation inanested loop fashion, issu-
ing the search queries on the index of the inner relationwhich is built in the indexing
phase. For example when the conditional is ≤, all the entries from the beginning
of the sorted list till the index returned by the TCAM-lookupfor the predicate key
in the outer relation can be returned. Similarly for the in-between queries, lookups
for both ends of the in-between range can be executed to return the indexes of both
the ends in the sorted list and thereby the result tuples. Thus the TCAM functions
as both an efficient linear-time sorter but also as a high speed index for retrieving
the index of any key in the sorted list. In the join phase of the algorithm, the outer
relation of the non-equi join is iterated in a nested loop fashion over the TCAM-
based index of the inner relation to return the result tuples. At this point we would
like to point out that the NTjoin solution can be used to address the problem of
multi-matches in the case of equi-join.

We now discuss the complexity analysis of the NTjoin technique. In the in-
dexing phase, the algorithm uses Tsort which implies a cost of O(n log b) for
building the sorted list inside the TCAM. During the join phase, each iteration

396 N. Bandi, D. Agrawal, and A.E. Abbadi

accounts for a TCAM range-match followed by a retrieval of all matching tuples.
This implies that the cost of the join phase is O(n log b). This is the cost in addi-
tion to the unavoidable cost of retrieving all the tuples. A detailed experimental
evaluation of this technique is given in the next section.

4 Performance Evaluation

In this section, we present an evaluation of the TCAM-based database join opera-
tions. We conducted the experiments on a single CPU Intel Pentium IV 2.4GHz
PC. The system bus speed is 533MHz. The CAM-Cache prototype interfaces
with the CPU through a 32-bit 33MHz PCI interface. The PC has a 16-KB L1-I
and a 16-KB L1-D cache (both are non-blocking). For the purpose of accessing
the CAM-Cache prototype, drivers were developed on the Linux platform. All
the techniques (the Tsort, the CJ and the NTjoins) are implemented in C and
compiled using the GNU C compiler. The experiments are evaluated on the pro-
totype described in Section 2. In all the cases, the actual performance as returned
by the current prototype is reported. In order to evaluate the performance of
the NTjoin algorithm against its software-based counterpart, we integrated them
into a commercial database [8] which enables comparing the performance of our
techniques against very efficient software-based approaches such as buffer-based
Nested Loop, Nested Index, and Sort-Merge techniques. We first evaluate the
performance of the Tsort technique with and without the multi-hit optimization
followed by the evaluation of NTjoin.

The data sets used in all the experiments are randomly generated in the
following manner: Each record consists of a join attribute (1 word) and (record-
width−1) words of random data to simulate cache pollution. The join attribute
is a uniformly distributed random number in a range that determines the join
selectivity, i.e. how many tuples on the average have the same value. All exper-
iments are performed over two tables that have the same number of entries.

4.1 Tsort

We now present the evaluation of the Tsort algorithm with and without the
multi-hit based binary search optimization (MHBS) as described in the Sec-
tion 3.1. Figure 2 shows the number of TCAM searches executed by both these
techniques for datasets of sizes ranging from 1000 to 100000. The dotted curve
in Figure 2 shows the results for the Tsort as described by Panigrahy et al [9].
It shows a linear increase in the number of searches with the size of the dataset
which supports the expected O(n) behavior of the algorithm. The difference in
the total number of TCAM searches for both techniques shows that the MHBS
optimization reduces the total number of TCAM searches required by Tsort by
as much as 40% in most cases.

4.2 NTjoin

We now present an evaluation of the NTjoin using the CAM-Cache architecture.
We compare the performance of the NTjoin with the Nested Loop, Nested Index

Fast Computation of Database Operations Using CAM 397

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 20000 40000 60000 80000 100000
T

C
A

M
 S

ea
rc

he
s

Size of dataset

"TCAM Searches Panigrahy"
"TCAM Searches MHBS"

Fig. 2. Number of TCAM searches

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000

E
la

ps
ed

 T
im

e
(i

n
se

co
nd

s)

Size of Outer Relation

"NTjoin"
"Sort-Merge join"

"Nested Index join"
"Nested Loop join"

Fig. 3. NTjoin with Query set size =
10000

 0

 50

 100

 150

 200

 250

 300

 0 20000 40000

E
la

ps
ed

 T
im

e
(i

n
se

co
nd

s)

Size of Outer Relation

"NTjoin"
"Sort-Merge join"

"Nested Index join"
"Nested Loop join"

Fig. 4. NTjoin with Query set size =
20000

and the Sort-Merge join techniques. In the first set of experiments, we present
the evaluation of the NTjoin with a non-equi join condition of “≤”. We then
present an evaluation of how this technique performs in comparison with equi-
join techniques at higher join factors.

Figures 3 and 4 shows the results of all the above join techniques for a non-equi
join with “≤” as the join condition. In the first experiment (Figure 3), a dataset
of 10000 tuples is joined with datasets of sizes varying from 5000 to 40000 while
in the second experiment, a dataset of 20000 tuples is used as the joining dataset
(Figure 4). The results show that all the techniques exhibit an expected linear
increase in the elapsed time with the size of the outer relation. It can be seen that
the Nested Loop join performs as well as any other technique. This is because,
when the size of the result set is large which is usually the case for non-equi joins,
the pointer-based retrieval phase of the Nested Index join and the merging phase
of the sort-merge joins, which generate the query result, become inefficient when
compared to the simple block-based comparison technique invloved in the simple
Nested Loop join. These results show that the TCAM-based NTjoin outperforms
all the software-based techniques by a significant margin (average of 10 times)
in all the cases. More importantly, it should be noted that the elapsed time of
the NTjoin is the actual time required by the current prototype and does not
exclude the PCI overhead incurred. This signifies the potential of a TCAM for
functioning not only as a sorter but also as a very efficient range-matching engine
which together form the core of the NTjoin.

398 N. Bandi, D. Agrawal, and A.E. Abbadi

5 Conclusion and Future Work

In this paper, we continue our endeavor to address the problem of “Where does
the time go in a DBMS?” [1] by proposing changes at both hardware and soft-
ware levels. We propose to exploit the TCAM technology, used widely in network
router architectures, in order to alleviate the bottlenecks in current processor
architectures. Building upon our proposed CAM-Cache architecture, which in-
tegrates a TCAM into the caching hierarchy of a conventional processor, we
presented several techniques such as an efficient linear-complexity sorting tech-
nique and a fast non-equi database join. Through our performance analysis, we
showed that despite the various overheads of the current prototype, this archi-
tecture has the potential for providing efficient alternative solutions for existing
problems. Especially promising is the fact that TCAM-based algorithms pro-
vide a very-efficient mechanism for conditional joins, which represent a major
challenge for software-based solutions.

References

1. A.G.Ailamaki, D.J.DeWitt, M.D.Hill, D.A.Wood: DBMSs On a Modern Processor:
Where Does Time Go? In: VLDB. (1999) 266–277

2. P.Boncz, S.Manegold, M.L.Kersten: Database Architecture Optimized for the New
Bottleneck: Memory Access. In: VLDB. (1999) 266–277

3. Shatdal, A., Kant, C., Naughton, J.: Cache Conscious Algorithms for Relational
Query Processing. In: VLDB. (1994) 510–512

4. Chen, S., Ailamaki, A., Gibbons, P.B., Mowry, T.C.: Improving Hash Join Perfor-
mance through Prefetching. In: ICDE. (2004)

5. Narlikar, G.J., Basu, A., Zane, F.: Coolcams: Power-efficient tcams for forwarding
engines. In: INFOCOM. (2003)

6. Fang Yu, R.H.K.: Efficient Multi-Match Packet Classification with TCAM. In:
IEEE Hot Interconnects 2004. (2004)

7. DeFiore.C.F, Berra.P.B.: ’A Data Management System Utilizing an Associative
Memory’. In: AFIPS NCC Vol. 42. (1973)

8. Bandi, N., Schneider, S., Agrawal, D., Abbadi, A.E.: Hardware Acceleration of Data-
base Operations using Content Addressable Memories. In: ACM, Data Management
on New Hardware (DaMoN). (2005)

9. Panigrahy, R., Sharma, S.: Sorting and Searching using Ternary CAMs. In: IEEE
Micro. (2003)

CLEAR: An Efficient Context and
Location-Based Dynamic Replication Scheme for

Mobile-P2P Networks

Anirban Mondal1, Sanjay Kumar Madria2, and Masaru Kitsuregawa1

1 Institute of Industrial Science,University of Tokyo, Japan
{anirban, kitsure}@tkl.iis.u-tokyo.ac.jp

2 Department of Computer Science, University of Missouri-Rolla, USA
madrias@umr.edu

Abstract. We propose CLEAR (Context and Location-based Efficient
Allocation of Replicas), a dynamic replica allocation scheme for improv-
ing data availability in mobile ad-hoc peer-to-peer (M-P2P) networks.
To manage replica allocation efficiently, CLEAR exploits user mobility
patterns and deploys a super-peer architecture, which avoids both broad-
cast storm during replica allocation as well as broadcast-based query-
ing. CLEAR considers different levels of replica consistency and load as
replica allocation criteria. Our performance study indicates CLEAR’s
overall effectiveness in improving data availability in M-P2P networks.

1 Introduction

In a mobile ad-hoc peer-to-peer (M-P2P) network, mobile hosts (MHs) inter-
act with each other in a peer-to-peer (P2P) fashion. Rapid advances in wireless
communication technology coupled with the ever-increasing popularity of mobile
devices (e.g., laptops, PDAs, mobile phones) motivate M-P2P network applica-
tions. However, data availability in M-P2P networks is lower than in traditional
stationary networks because of frequent network partitioning due to user move-
ment and/or users switching ‘on’ or ‘off’ their mobile devices. Notably, data
availability is less than 20% even in a wired environment [16]. Hence, dynamic
replica allocation becomes a necessity to support M-P2P network applications
such as disaster-recovery and sales applications. Suppose a group of doctors, each
of whom has a schedule, are moving in an earthquake-devastated region, where
communication infrastructures (e.g., base stations) do not exist. They need to
share data (e.g., number of injured people, number of empty stretchers, number
of fatalities) with each other on-the-fly using mobile devices. Similarly, moving
salespersons, who generally have a schedule, need to share total sales profits by
means of mobile devices. Incidentally, absolute consistency is not a requirement
in such applications [13]. For simplicity, this work considers only numerical data.

Traditional mobile replication techniques[12,18], which assume stationary net-
works, do not address frequent network partitioning issues. P2P replication ser-
vices are not ‘mobile-ready’ [5,15] as current P2P systems have mostly ignored

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 399–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

400 A. Mondal, S.K. Madria, and M. Kitsuregawa

data transformation, relationships and network characteristics. Understandably,
changes in data with location and time create new research problems [3]. Repli-
cation in M-P2P networks requires fundamentally different solutions [1,9] than
in [10,12,14] due to free movement of MHs and wireless constraints. Interestingly,
the techniques in [6,7,8] consider frequent network partitioning w.r.t. replication
in mobile ad-hoc networks (MANETs), but they do not exploit MH mobility
patterns for replication. Hence, they may unnecessarily replicate at MHs which
would soon leave the region, while being unable to exploit MHs that would soon
enter the region. In [6,7,8], since none of the MHs has a global view, the reallo-
cation period needs to be determined in an ad-hoc manner, hence reallocation
period may not match MH mobility patterns, thereby decreasing data availabil-
ity. Moreover, the techniques in [6,7,8] incur high traffic due to possible broadcast
storm as MHs exchange replica allocation-related messages with each other.

We propose CLEAR (Context and Location-based Efficient Allocation of
Replicas), a dynamic replica allocation scheme for improving data availability
in M-P2P networks. CLEAR deploys a super-peer architecture, the super-peer
(SP) being an MH, which generally does not move outside the region and which
has maximum remaining battery power and processing capacity. Since the M-
P2P network covers a relatively small area, the total number of MHs can be
expected to be low, thereby avoiding scalability problems. As we shall see later,
this architecture avoids broadcast storm during replica allocation, eliminates
broadcast-based querying since each MH knows about data and replicas stored
at other MHs, and preserves P2P autonomy as queries need not pass via SP.

SP knows the schedule of every MH comprising the MH’s mobility pattern
and the data items that the MH is likely to access at different times. This makes
it possible for CLEAR to replicate at MHs that would soon enter the region,
while avoiding replication at MHs that would soon leave the region, thereby
facilitating better resource utilization, likely better query response times and
increased data availability. SP is able to determine a near-optimal reallocation
period based on global information of MH schedules, hence it can better manage
replica allocation. Finally, unlike existing works [6,7,8], CLEAR considers load,
different levels of replica consistency and unequal-sized data items. Our perfor-
mance study indicates that CLEAR indeed improves data availability in M-P2P
networks with significant reduction in query response times and communication
traffic as compared to some recent existing schemes.

2 Related Work

The work in [10] proposes a suite of replication protocols for maintaining data
consistency and transactional semantics of centralized systems. The protocols
in [9] exploit the rich semantics of group communication primitives and the re-
laxed isolation guarantees provided by most databases. The work in [4] discusses
replication issues in MANETs. The proposal in [12] discusses replication in dis-
tributed environments, where connectivity is partial, weak, and variant as in
mobile information systems. Existing systems in this area include ROAM [14],

CLEAR: An Efficient Context and Location-Based Dynamic Replication 401

Clique [15] and Rumor [5], while a scalable P2P framework for distributed data
management applications and query routing has been presented in [11]. An up-
date strategy, based on a hybrid push/pull Rumor spreading algorithm, for truly
decentralized and self-organizing systems (e.g., pure P2P systems) has been ex-
amined in [3], the aim being to provide probabilistic guarantees as opposed to
strict consistency. The work in [1] investigates replication strategies for designing
highly available storage systems on highly unavailable P2P hosts.

The proposals in [6,7,8] present three replica allocation methods with periodic
and aperiodic updates, which consider limited memory space in MHs for storing
replicas, data item access frequencies and network topology, to improve data ac-
cessibility in MANETs. Among these, E-DCG+ [8] is the most influential replica
allocation approach. E-DCG+ creates groups of MHs that are biconnected com-
ponents in a network, and shares replicas in larger groups of MHs to provide
high stability. In E-DCG+, the summation of RWR (read-write ratio) values of
each data item in each group is calculated. In the order of the RWR values of the
group, replicas of data items are allocated until memory space of all MHs in that
group becomes full. Each replica is allocated at an MH whose RWR value for
the data item is the highest among MHs that have free memory space. However,
the architecture considered in [6,7,8] does not consider user mobility patterns,
load sharing and tolerance to weaker consistency for data replication.

3 Context of the Problem

In CLEAR’s super-peer architecture, each MH maintains recent read-write logs
(including timestamps) of the data items that it owns, for hotspot detection
purposes. Each data item d is owned by only one MH, which can update d au-
tonomously anytime; other MHs cannot update d. To delete infrequently accessed
replicas, each MH keeps track of replicas stored at itself. Memory space at each
MH, bandwidth and data item sizes may vary. We assume location-dependent
data access [17] i.e., an MH in region X will access data only from MHs in X .
SP backs up information using the Internet as an interface to handle failures
and we assume that some of the MHs have access to the Internet for backup
purposes. If SP fails or network partitioning occurs, these MHs can connect to
the Internet to obtain information, thereby enabling them to act as SP.

In practice, MH owners do not move randomly since they have some schedule.
An MH M ’s schedule contains information concerning M ’s location during any
given time period T and the data items required by M during T . Each MH
owner initially sends his schedule to SP and if later on, his schedule changes
significantly, he will keep SP updated about these changes by piggybacking such
information onto replica allocation-related messages to SP. Thus, SP is able to
exploit MH schedules for replica allocation purposes.

We define the load LM of an MH M as follows:

LM =
Nd∑
i=1

(ndi / sdi) / ηi (1)

402 A. Mondal, S.K. Madria, and M. Kitsuregawa

where Nd is the total number of data items in M ’s job queue, ndi is data item
di’s recent access frequency and sdi denotes di’s size. We use ηi to normalize load
w.r.t. bandwidth. We compute ηi as (BMi ÷ Bmin), where BMi is M ’s band-
width. A straightforward way of determining Bmin is to select a low bandwidth
as Bmin e.g., we have used 28 Kbps as the value of Bmin.

To estimate the effect of updates on the ease of maintaining replica consistency
for any data item d, we compute a measure NQDC for each replica of d as
follows:

NQDC = NQ× C if C ≥ DC

= 0 otherwise (2)

where NQ indicates the number of queries recently answered by the replica, DC
represents the value of desired consistency and C is the consistency with which
queries were answered by the replica. We use three different levels of replica
consistency, namely high, medium and low. SP maintains a table Tε,C , which
contains the following entries: (x%, high), (y%, medium), (z%, low), where x,
y, z are error-bounds, whose values are application-dependent and pre-specified
by the system at design time. We assign the values of C for high, medium and
low consistency as 1, 0.5 and 0.25 respectively. Similarly, the value of DC can
be high, medium or low i.e., 1, 0.5 and 0.25 respectively, depending upon the
application under consideration.

4 CLEAR: A Context and Location-Based Dynamic
Replica Allocation Scheme for M-P2P Networks

This section discusses the CLEAR scheme. Periodically every TP time units, each
MH sends a message containing the read-write log D MH (including timestamps)
of its own data items, the read log R MH with timestamps for replicas residing
at itself for the previous period, its available memory and load status to SP. SP
combines the information in all these D MHs and R MHs to create D SP and
R SP (both sorted in descending order of access frequency) respectively. Then
SP executes the replica allocation algorithm depicted in Figure 1.

In Line 1 of Figure 1, ψ = TAcc / Tnum, where TAcc is the sum of access
frequencies of all data items in D SP and Tnum is the total number of data
items in D SP. In Line 2, SP computes the total NQDC value for any data
item d by using the table Tε,C and R MH to compute the NQDC value for each
of d’s replicas and then summing up all these NQDC values. Any data item d
with low total NQDC value is not considered for replica allocation because low
NQDC value implies that d is frequently updated, which makes it more difficult
to maintain replica consistency. Line 3 indicates that CLEAR performs replica
allocation on-the-fly only when necessary and not during every TP time units.

As Lines 5-7 of Figure 1 indicate, CLEAR tries to replicate a data item d
at the MH MHmax, which had the highest access frequency for d, or at one
of MHmax’s k-hop neighbours. (A preliminary performance study revealed that

CLEAR: An Efficient Context and Location-Based Dynamic Replication 403

k=3 provides good performance for CLEAR.) Even though MHmax accesses d
the maximum number of times, a number of other MHs in the vicinity of MHmax

may also be interested in accessing d. Moreover, MHmax may be overloaded or
it may not have adequate memory space for storing d’s replica. Hence, SP checks
the schedules of all the MHs, and considers MHmax and the MHs that would be
in the close vicinity of MHmax in the near future as constituting the potential
candidate set DEST of MHs, where d may be replicated. In Line 10 of Figure 1,
Decd is ‘TRUE’ if (Bd − Cd ≥ TH), where Bd is benefit, Cd is cost and
TH is a pre-defined application-dependent threshold parameter. SP consults its
D SP to find out nd and td, where nd is the number of times d was accessed
during the last period and td is the time taken for each of those accesses. Then
SP computes Bd as (td × nd). Cd involves transmitting d from source MH src
(i.e., d’s owner) to destination MH dest (which will store d’s replica) and is
computed as (

∑nhop

k=1 (sd/Bk)), where sd is d’s size and Bk refers to transfer
rates of connections between src and dest that d must ‘hop’ through to reach
dest and nhop is the number of hops required by d to reach dest. Finally, observe
how CLEAR considers MH load and memory space, while allocating replicas.

Algorithm CLEAR REPLICA ALLOCATION

D SP: Sorted list maintained by SP concerning access information of data items of all MHs

1) Select from D SP data items, whose access frequency exceeds threshold ψ, into list Rep

2) Traverse Rep once to delete data items with low total NQDC values
3) if Rep is non-empty
4) for each data item d in Rep

5) Determine from D SP the MH MHmax which made maximum number of accesses to d

6) Check MH schedules to create a list of MHmax’s k-hop neighbours
7) Create a set DEST consisting of MHmax and its k-hop neighbours
8) Delete MHs with low available memory space from DEST

9) Delete MHs, which have low load difference with d’s owner, from DEST

10) for each MH M in DEST { if (Decd != ‘TRUE’) Delete M from DEST }
11) Select the least loaded MH from DEST as destination MH for storing d’s replica
end

Fig. 1. Algorithm for CLEAR replica allocation scheme executed by SP

After performing replica allocation, SP sends a message to each MH informing
them about replicas that have been allocated, data items and replicas at each
MH, NQDC values of replicas at each MH and load of each MH. When an MH
misses SP’s message (e.g., due to it having been switched ‘off’ or due to it newly
joining the network), it contacts its neighbours to obtain the latest information of
SP. When a query Q arrives at any MH M , M answers Q if it stores the queried
data item d or its replica. Otherwise, M identifies the set DirQ of MHs, which
store d’s replica. M deletes (from DirQ) overloaded MHs, whose load exceeds
the average system load since our aim is to replicate only at underloaded MHs.
M sorts the remaining MHs in DirQ to select the least loaded MH m into a set
S. MHs, whose load difference with m is low, are also added to set S. From S,
M selects the MH, which had the highest NQDC value for d’s replica during the

404 A. Mondal, S.K. Madria, and M. Kitsuregawa

last period, for redirecting Q, any ties being resolved arbitrarily. Observe the
inherent P2P autonomy in CLEAR’s architecture in that queries need not pass
via SP since any MH has adequate information to redirect queries. Given a total
of N MHs, our approach incurs during a given period at most O(N) messages (1
message from each MH to SP and 1 message from SP to each MH if SP decides
to perform replica allocation). In contrast, for a distributed architecture without
an SP, each MH would have to broadcast its list of data items and replicas to
every MH periodically to avoid flooding broadcast-based query retrieval, thereby
resulting in O(N2) messages for a given period.

5 Performance Evaluation

The MHs move according to the Random waypoint model [2] with speeds varying
from 1 metre/s to 10 metres/s within a 1000 metre ×1000 metre area. Commu-
nication range of MHs (except SP) is a circle of 100 metre radius. MH memory
space varies from 1 MB to 1.5 MB and each MH owns 4 data items, whose sizes
vary from 50 Kb to 350 Kb. Each query requests one data item. Bandwidth be-
tween MHs varies from 28 Kbps to 100 Kbps, while probability of availability of
an MH varies from 50% to 85%. Message header size is 220 bytes. Network topol-
ogy does not change significantly during replica allocation since it requires only
a few seconds [8]. 10 queries are issued in the network every second, the number
of queries to be directed to each MH being determined by the Zipf distribution.
TH is set to 10 seconds.

Table 1. Parameters used in Performance Study

Parameter Significance Default value Variations

NMH Number of MHs 50 10, 20, 30, 40

δ MH deviation (%) from expected mobility pattern 10

ZF Zipf factor 0.9 0.1, 0.3, 0.5, 0.7

TP Time interval (102 s) at which each MH sends message to SP 1

WP Write probability (%) 20 10,30,40

DC Desired consistency level medium low, high

Performance metrics are average response time (ART) of a query, percentage
success ratio (SR) and traffic (i.e., total hop-count) during replica allocation.
ART is (

∑NQ

i=1(tc−ta))/NQ, where tc is query completion time, ta is query arrival
time and NQ is the total number of queries. SR is (QDC/QT)*100, where QDC

and QT denote number of queries answered with the desired consistency level
and total number of queries respectively. As reference, we adapt the E-DCG+
approach [8] discussed in Section 2 to our scenario. As a baseline, we also com-
pare CLEAR with an approach NoRep, which does not perform replication.
Table 1 summarizes our performance study parameters. In Table 1, δ represents
the percentage of time for which an MH fails to adhere to its expected mobility

40

80

120

160

1 2 3 4 5

A
R

T
 (

s
)

No. of queries (103)

CLEAR
E-DCG+

NoRep

(a) ART

20

60

100

1 2 3 4 5

S
R

No. of queries (103)

CLEAR
E-DCG+

NoRep

(b) SR

1

2

3

4

1 2 3 4 5

T
ra

ff
ic

 (
1

0
4
)

No. of queries (103)

CLEAR
E-DCG+

NoRep

(c) Allocation Traffic

Fig. 2. Performance of CLEAR

40

80

120

160

0.1 0.5 0.9

A
R

T
 (

s
)

No. of queries (103)

CLEAR
E-DCG+

NoRep

(a) ART

20

60

100

0.1 0.5 0.9

S
R

Zipf factor

CLEAR
E-DCG+

NoRep

(b) SR

1

2

3

4

0.1 0.5 0.9

T
r
a
f
f
ic

 (
1
0

4
)

Zipf factor

CLEAR
E-DCG+

NoRep

(c) Traffic

Fig. 3. Effect of variations in the workload skew

20

60

100

10 20 30 40

S
R

WP

CLEAR
E-DCG+

NoRep

(a) DC=Low

20

60

100

10 20 30 40

S
R

WP

CLEAR
E-DCG+

NoRep

(b) DC=Medium

20

60

100

10 20 30 40

S
R

WP

CLEAR
E-DCG+

NoRep

(c) DC=High

Fig. 4. Effect of variations in write probability

CLEAR: An Efficient Context and Location-Based Dynamic Replication 405

40

80

120

160

10 30 50

A
R

T
 (

s
)

NMH

CLEAR
E-DCG+

NoRep

(a) ART

20

60

100

10 30 50
S

R
NMH

CLEAR
E-DCG+

NoRep

(b) SR

1

2

3

4

10 30 50

T
r
a
f
f
ic

 (
1
0

4
)

NMH

CLEAR
E-DCG+

NoRep

(c) Traffic

Fig. 5. Effect of variations in the number of MHs

pattern (e.g., due to the MH owner running late or due to unexpected circum-
stances). Furthermore, recall from Section 4 that TP is the time interval at
which each MH sends its information to SP, based on which SP decides whether
to allocate replicas, hence TP is not necessarily CLEAR’s reallocation period.
However, TP is E-DCG+’s reallocation period.

Performance of CLEAR

Figure 2 depicts the ART for a given number of queries for default values of the
parameters in Table 1. As replica allocation is done every 100 seconds (i.e., after
every 1000 queries since 10 queries are issued per second), Figure 2a indicates
comparable ART for all three approaches for the first 1000 queries. Subsequently,
the difference in ART between CLEAR and E-DCG+ keeps on increasing due
to two reasons. First, unlike E-DCG+, CLEAR considers MH mobility patterns,
hence it is capable of allocating replicas at MHs that would soon enter the region,
while avoiding MHs which would soon depart from the region. Second, CLEAR
allocates replicas to relatively underloaded MHs and redirects queries to replicas
stored at underloaded MHs. However, since E-DCG+ does not consider load, it
may allocate replicas to overloaded MHs, thereby incurring higher ART due to
large job queues. Since NoRep does not perform replication, load imbalance is
even more pronounced in case of NoRep than for E-DCG+. Experimental log
files revealed that CLEAR outperformed E-DCG+ and NoRep by upto 46% and
64% respectively in terms of ART.

In Figure 2b, CLEAR provides higher SR than E-DCG+ due to two reasons.
First, unlike E-DCG+, CLEAR considers consistency issues while directing a
query (since it uses NQDC values). Second, updates to replicas are likely to be
faster for CLEAR than for E-DCG+ since CLEAR allocates replicas to under-
loaded MHs, while E-DCG+ may allocate replicas to overloaded MHs with large
job queues. For both CLEAR and E-DCG+, SR changes only very slightly after
the first replica allocation period because most of the required replica alloca-
tions had already been performed in the first period. For NoRep, SR remains

406 A. Mondal, S.K. Madria, and M. Kitsuregawa

CLEAR: An Efficient Context and Location-Based Dynamic Replication 407

relatively constant since it depends only upon the probability of availability of
the MHs. Both CLEAR and E-DCG+ provide better SR than NoRep because
they perform replication, which increases data availability. Incidentally, during
replica allocation, E-DCG+ requires every MH to broadcast its RWR values to
every MH, thereby incurring O(N2

MH) messages, while CLEAR requires each
MH to send only one message to SP and SP to send a message to each MH, thus
incurring O(NMH) messages, which explains the results in Figure 2c.

Effect of Variations in the Workload Skew

Figure 3 depicts the results when the zipf factor (ZF) is varied. For high ZF values
(e.g., 0.9) involving high skew, CLEAR outperforms E-DCG+ in terms of ART
and SR due to the reasons explained for Figure 2. As skew decreases, CLEAR’s
load-based replica allocation becomes less pronounced, hence performance gap
between CLEAR and E-DCG+ decreases. Figure 3c’s explanation is same as
that of Figure 2c.

Effect of Variations in Percentage Write Probability (WP)

We varied WP to examine the impact on SR. Figure 4 depicts the results. In
Figure 4a, as WP increases, SR decreases for both CLEAR and E-DCG+ pri-
marily due to more replicas becoming inconsistent with increasing WP. But,
CLEAR and E-DCG+ did not provide lower SR than NoRep due to DC being
‘low’. As DC increases to ‘medium’ and ‘high’, stricter replica consistency is re-
quired, hence as WP increases, larger number of replicas become inconsistent.
This explains why CLEAR and E-DCG+ provided lower SR than NoRep in the
results in Figures 4b and 4c. However, we believe that this is a small price to
pay as compared to the large ART gains achieved by CLEAR.

Effect of Variations in the Number of MHs

To test CLEAR’s scalability within our application scenario, we varied the num-
ber NMH of MHs, keeping the number of queries proportional to NMH . The
number of possible replica allocation periods was set at 5 for each case. Figure 5
depicts the results. At high values of NMH , CLEAR outperforms E-DCG+ in
terms of ART and SR, the explanation being same as that of Figure 2. However,
as NMH decreases, performance gap between the approaches keeps decreasing
due to limited opportunities for replica allocation. Replica allocation traffic for
E-DCG+ dramatically decreases with decreasing NMH due to reduced broadcast
traffic.

6 Conclusion

We have proposed the CLEAR dynamic replica allocation scheme for improving
data availability in M-P2P networks. CLEAR exploits user mobility patterns
and deploys a super-peer architecture that facilitates replica allocation, while

408 A. Mondal, S.K. Madria, and M. Kitsuregawa

maintaining P2P autonomy. CLEAR avoids both broadcast storm during replica
allocation as well as broadcast-based querying. CLEAR considers different levels
of replica consistency and load as replica allocation criteria. Our performance
study indicates that CLEAR indeed improves M-P2P data availability.

References

1. R. Bhagwan, D. Moore, S. Savage, and G. M. Voelker. Replication strategies
for highly available peer-to-peer storage. Proc. Future Directions in Distributed
Computing, 2003.

2. J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J. Jetcheva. A performance
comparison of multi-hop wireless ad hoc network routing protocol. Proc. MOBI-
COM, pages 159–164, 1998.

3. A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable replicated
peer-to-peer systems. Proc. ICDCS, 2003.

4. L.D. Fife and L. Gruenwald. Research issues for data communication in mobile
ad-hoc network database systems. Proc. SIGMOD Record, 32(2):22–47, 2003.

5. R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek. Rumor: Mobile
data access through optimistic peer-to-peer replication. Proc. ER Workshops, 1998.

6. T. Hara. Effective replica allocation in ad hoc networks for improving data acces-
sibility. Proc. IEEE INFOCOM, 2001.

7. T. Hara. Replica allocation in ad hoc networks with periodic data update. Proc.
MDM, 2002.

8. T. Hara and S. K. Madria. Dynamic data replication using aperiodic updates in
mobile ad-hoc networks. Proc. DASFAA, 2004.

9. B. Kemme. Implementing database replication based on group communication.
Proc. Future Directions in Distributed Computing, 2002.

10. B. Kemme and G. Alonso. A new approach to developing and implementing eager
database replication protocols. Proc. ACM TODS, 25(3), 2000.

11. V. Papadimos, D. Maier, and K. Tufte. Distributed query processing and catalogs
for peer-to-peer systems. Proc. CIDR, 2003.

12. E. Pitoura. A replication scheme to support weak connectivity in mobile informa-
tion systems. Proc. DEXA, 1996.

13. E. Pitoura and B. Bhargava. Maintaining consistency of data in mobile distributed
environments. Proc. ICDCS, 1995.

14. D. Ratner, P.L. Reiher, G.J. Popek, and G.H. Kuenning. Replication requirements
in mobile environments. Proc. Mobile Networks and Applications, 6(6), 2001.

15. B. Richard, D. Nioclais, and D. Chalon. Clique: A transparent, peer-to-peer repli-
cated file system. Proc. MDM, 2003.

16. S. Saroiu, P.K. Gummadi, and S.D. Gribbler. A measurement study of peer-to-peer
file sharing systems. Proc. MMCN, 2002.

17. G. Tsuchida, T. Okino, T. Mizuno, and S. Ishihara. Evaluation of a replication
method for data associated with location in mobile ad hoc networks. Proc. ICMU,
2005.

18. O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm.
Proc. ACM TODS, 22(4):255–314, June 1997.

Lossless Reduction of Datacubes

Alain Casali, Rosine Cicchetti, Lotfi Lakhal, and Noël Novelli

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS UMR 6166, Université de la Méditerranée

Case 901, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
lastname@lif.univ-mrs.fr

Abstract. Datacubes are specially useful for answering efficiently quer-
ies on data warehouses. Nevertheless the amount of generated aggregated
data is incomparably more voluminous than the initial data which is
itself very large. Recently, research work has addressed the issue of a
concise representation of datacubes in order to reduce their size. The
approach presented in this paper fits in a similar trend. We propose a
concise representation, called Partition Cube, based on the concept of
partition and define an algorithm to compute it. Various experiments
are performed in order to compare our approach with methods fitting in
the same trend. This comparison relates to the efficiency of algorithms
computing the representations, the main memory requirements, and the
storage space which is necessary.

1 Introduction and Motivations

In order to efficiently answer Olap queries [3], a widely adopted solution is
to compute and materialize datacubes [6,15,1,8]. Due to the large amounts of
processed data, such a computation needs costly execution time and large main
memory space. Furthermore, it yields huge volume of results, and their storage
requires enormous space on disk.

The approaches addressing the issues of datacube computation and storage
attempt to reduce one of the quoted drawbacks. For instance the algorithms
Buc [1] and Hcubing [8] argue that Olap users are interested in general
trends. Therefore they enforce anti-monotone constraints and partially compute
datacubes (iceberg cubes). Other methods take benefit of the statistic struc-
ture of data for computing density distributions and answering Olap queries
in an approximate way [17,16,5]. “Information lossless” approaches aim to find
the best compromise between Olap query efficiency and storage requirements
without discarding any possible query (even unfrequent). Their main idea is to
pre-compute and store aggregates frequently used while preserving all the data
(possibly at various aggregation levels) necessary to compute on line the result of
a not foreseen query. Research work on view materialization exemplifies this kind
of approaches [9,7]. Finally, also fitting in the information lossless trend, three
methods1: the Condensed Cube [18], the Quotient Cube [10] and the Closed
1 Apart from approaches based on physical techniques.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 409–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

410 A. Casali et al.

Cube [2] favour the optimization of storage space while preserving the capability
to answer what ever query. The two latter compute the two smallest represen-
tations of a datacube and thus are the most efficient for both saving storage
space and answering queries like “Is this behavior frequent or not?”. Moreover,
the two proposed representations make it possible to compute the exact data of
a whole datacube. But such a computation is performed on line and results in
an additional and significant response time for decision makers.

In this paper we investigate another way of tackling the problem: we propose a
new representation which fully and exactly captures all the information enclosed
in a datacube. Thus any query can be answered without additional execution
time. Moreover, our representation provides a simple mechanism which reduce
significantly the size of aggregates to be stored. More precisely, our contributions
are the following:

(i) we propose a concise representation of datacubes: the Partition Cube, based
on simple concepts extending the partitional model [11]. The concept of
concise representation has been firstly introduced in [13] for frequent item-
sets and it is used in this paper as a lossless representation of datacubes;

(ii) we introduce a depth-first search algorithm called Pcube in order to built
up the Partition Cube. It enumerates the aggregates to be computed ac-
cording to the lectic order [4]. The reason behind such a choice is to mini-
mize main memory requirements (and avoid swaps);

(iii) finally, though various experiments, we compare our approach with the
representations by Quotient Cube and Closed Cube. The comparison con-
cerns two points: on one hand the efficiency of computation algorithms and
main memory requirements, and on the other hand the necessary storage
space. Our representation provides an important reduction of storage when
compared to the datacube. But, as expected, the Quotient Cube and the
Closed Cube are smaller than the Partition Cube (even if, in theory and
for extreme cases, the two latter can require the double of or be equal to
the size of datacube itself which is never the case for the Partition Cube).
Concerning the efficiency of the concise representation computations, our
algorithm is the most efficient and not main memory greedy. Finally, let
us underline that, once the Partition Cube is stored, any query can be
answered on line with no additional computation time.

The remainder of the article is as follows. Our proposal is detailed in sec-
tion 2. We define the concepts of our representation, the algorithm Pcube and a
relational implementation of our representation. We also relate results of exper-
iments in section 3. In conclusion, we resume the strengths of our contribution.

2 Partition Cubes

The approach proposed in this paper proposes a concise representation of dat-
acubes: the Partition Cube. Firstly, we present the concepts of our approach,
then an algorithm intended to compute such a representation is defined. We also

Lossless Reduction of Datacubes 411

proposed a relational implementation in order to represent our solution in the
environment presently the most used for managing data warehouses.

2.1 Basis Concepts

In this section, we introduce a new characterization of datacube which is based
on simple concepts. Inspired from the notions of the partitional model [11], we
introduce the fundamental concepts of our approach.

Definition 1 [DM-Classe]. Let r be a categorical database relation and X a
set of dimension attributes. The dimension-measure class, called DM-Classe for
simplicity, of a tuple t according to X , denoted by [t]X , is constituted by the
set of couples (identifier(u), measure(u)) of all the tuples u which are agree with
t [13,12] according to a set of attribute X (i.e. the set of tuples u having the
same values than t for X). Thus, we have: [t]X = {(u[RowId], u[M]) | u[X] =
t[X], ∀u ∈ r}.

Example 1. Let us consider the relation Travel (cf. table 1) which contains the
attributes Continent (C1), Country (C2), City (C3) and Number (N) yielding
the number of travels sold for a given destination.

Table 1. Relation Travel

RowId Continent Country City Number

1 Europe France Marseille 1
2 Europe Italia Torino 3
3 America France Pointe-à-Pitre 15
4 America Brazil Rio de Janeiro 12

The DM-Class associated to the first tuple according to the attribute C2
(Country) groups all the couples (identifier, measure) of tuples related to the
country ‘France’: [t1]C2

= {(1, 1), (3, 15)}.

All the DM-Classes for an attribute set X are gathered within a single set: the
Dimension-Measure Partition 2.

Definition 2 [DM-Partition]. Let r be a categorical database relation and X
a set of dimension attributes, the DM-Partition of r according to X , denoted by
ΠX(r), is defined as follows: ΠX(r) = {[t]X , ∀ t ∈ r}.

Example 2. In our examples, for a better readability, the DM-Classes are de-
limited by < and > when writing the DM-Partitions. With our example, the
DM-Partition associated to the attribute C2 is: ΠC2

(r) = {< (1, 1), (3, 15) >, <
(2, 3) >, < (4, 12) >}.
2 DM-Partition in short.

412 A. Casali et al.

Let us consider two DM-Partitions computed according to the attribute sets
X and Y . Their product yields the DM-Partition according to X ∪ Y . Such a
product is performed by intersecting DM-classes of the two DM-Partitions and
preserving only non empty classes (cardinality greater than or equal to 1).

Lemma 2 (Product of DM-Partitions). Let r be a categorical database rela-
tion, X and Y two sets of dimension attributes, ΠX(r) and ΠY (r) their respec-
tive DM-Partition. The product of the DM-partitions ΠX(r) and ΠY (r), noted
by ΠX(r) •p ΠY (r), returns the DM-Partition over X ∪ Y and is obtained as
follows: ΠX(r) •p ΠY (r) = ΠX∪Y (r) = {[t]Z = [t]X ∩ [t]Y : [t]Z �= ∅, [t]X ∈
ΠX(r) and [t]Y ∈ ΠY (r)}.

Example 3. With our relation, the DM-Partitions related to the attributes C1
(Continent) and C2 are the following: ΠC1

(r) = {< (1, 1), (2, 3) >, < (3, 15), (4,
12) >} and ΠC2

(r) = {< (1, 1), (3, 15) >, < (2, 3) >, < (4, 12) >}. Thus
ΠC1C2

(r)=ΠC1
(r)•p ΠC2

(r)={< (1, 1) >, < (2, 3) >, < (3, 15) >, < (4, 12) > }.

Once the DM-Partitions are computed, the cuboids of the datacube can be easily
obtained. Any DM-Class originates a tuple of a cuboid and the measure value
is achieved by applying the aggregative function on the set of measure values of
the DM-Class.

Example 4. As a consequence, we have ΠC1C2
(r) = { < (1, 1) > , < (2, 3) > ,

< (3, 15) >, < (4, 12) >}, thus the cuboid according to C1C2 is composed of
four tuples: (E, F, ALL), (E, I, ALL), (A, F, ALL) and (A, B, ALL). Moreover,
we have ΠC1

(r) = {< (1, 1), (2, 3) >, < (3, 15), (4, 12) >}, thus the cuboid
according to C1 encompasses two tuples: (E, ALL, ALL) and (A, ALL, ALL).
For the latter cuboid, the value of the aggregative function Sum, applied on
each DM-Class, is 4 (1+3) and 27 (15+12) respectively.

Each DM-Class is represented by a couple of numbers: the former is one of the
identifiers of the original tuples gathered within the considered class, and the
latter is the computed measure. All the so built couples are grouped within a
set: the Partition Cuboid.

Definition 3 [Partition Cuboid]. Let ΠX(r) be a DM-Partition of r and f an
aggregative fonction. For each DM-Classe, [t]X .M is the value of the measure
attribute. The Partition Cuboid according to the attribute set X , denoted by
CuboidX(r), is defined as follows: CuboidX(r)= {(t[RowId], f([t]X .M)), ∀ [t]X ∈
ΠX(r)}.

Example 5. As a consequence, the cuboid according to C1 is the following:

Lossless Reduction of Datacubes 413

Table 2. Cuboid according to Continent for the aggregative function Sum

C1 C2 C3 Sum(V)

E ALL ALL 4
A ALL ALL 27

Our representation of the datacube can be defined as the whole set of Partition
Cuboids according to any dimension combination.

Definition 4 [Partition Cube]. Let r be a categorical database relation. The
Partition Cube associated to r, denoted Partition_Cube(r), is specified as fol-
lows: Partition_Cube(r) = {CuboidX(r), ∀ X ∈ P(D)}, where P stands for the
powerset lattice.

Example 6. The Partition Cube for the aggregative function Sum is given in
table 3. It encompasses 23 = 8 cuboids (because there are 3 dimensions), each of
which corresponding to a dimension combination (used as an index to identify
cuboids).

Table 3. Partition Cube for the aggregative function Sum

Cuboid∅ = {(1, 31)}
CuboidC1

= {(1, 4), (3, 27)}
CuboidC2

= {(1, 16), (2, 3), (4, 12)}
CuboidC3

= {(1, 1), (2, 3), (3, 15), (4, 12)}
CuboidC1C2

= {(1, 1), (2, 3), (3, 15), (4, 12)}
CuboidC1C3

= {(1, 1), (2, 3), (3, 15), (4, 12)}
CuboidC2C3

= {(1, 1), (2, 3), (3, 15), (4, 12)}
CuboidC1C2C3

= {(1, 1), (2, 3), (3, 15), (4, 12)}

2.2 The Pcube Algorithm

In this section, we describe the principles of our algorithmic solution. In a first
time, we recall the definition of the lectic order (inverse lexicographical order)
[4] which is a strict linear order over the set of all subsets of a set. Then, we
propose a new recursive algorithm for enumerating, according to the the lectic
order, the subsets of P(D).

Definition 5 [Lectic Order]. Let (D, <D) be a finite set totally ordered. We
assume, by simplicity, that D can be defined as follows: D = {A1, A2, . . . An}. D
is provided with the following operator:

Max : P(D) → D
X �→ the last element of X according to <D.

414 A. Casali et al.

The lectic order, denoted by <l, is defined as follows: ∀ X , Y ∈ P(D), X <l

Y ⇔Max(X\ Y) < Max(Y \ X).

Proposition 1 [4]. ∀ X, Y ∈ P(D), X ⊂ Y ⇒ X <l Y .

Recursive algorithmic schema for enumerating the subsets in lectic
order
The new algorithm Ls (Lectic Subsets) gives the general algorithmic schema used
by Pcube. It is provided with two dimensional attribute subsets X and Y . The
algorithm is based on a twofold recursion and the recursive calls form a binary
balanced tree in which each execution branch returns a dimensional subset. The
general strategy for enumerating dimensional attribute combinations consists in
considering firstly all the subsets not encompassing a dimensional attribute, and
then all the subsets which encompass it. More precisely, the maximal attribute,
according to the lectic order, is discarded from Y and appended to X in the
variable Z. The algorithm is recursively applied with (i) X and a new subset Y
(from which the maximal attribute is pruned), then (ii) Z and Y . The first call
of Ls is provided with two parameters X = ∅ and Y = D.

Algorithm 1. Algorithm Ls
Input: X and Y two sets of dimensions
Output: P(Y)
1: if Y = ∅ then Return X
2: A := max(Y)
3: Y := Y \{A}
4: LS(X, Y)
5: Z := X ∪ {A}
6: LS(Z, Y)

Lemma 5 . The correctness of the algorithm Ls is based on proposition 1 and
because of the distributive property of the lattice of the dimension attributes,
we have: ∀ A ∈ D, ∀ X ⊆ D,P(X ∪A) ∩ P(D\(X ∪A)) = ∅. Thus, each subset
of dimension attributes is enumerated exactly once.

We propose an algorithm, called Pcube, for computing datacubes. It fits in the
theoretical framework previously presented. A pre-processing step in required in
order to build DM-Partitions according to each single attribute from the input
relation. While performing this initial step, the computation of the cuboid ac-
cording to the empty set is operated and its result is yielded. If the original parti-
tions (∪A∈DΠA(r)) cannot fit in main memory, then the fragmentation strategy
proposed in [15] and used in [1] is applied. It divides the input relation in frag-
ments according to an attribute until the original associated DM-partitions can
be loaded. Pcube adopts the general algorithm schema of Ls but it is intended
to compute all desired aggregates and thus it yields the condensed representation
of all possible cuboids. Pcube deals with DM-partitions and enforces product

Lossless Reduction of Datacubes 415

of DM-partitions. Like Ls, its input parameters are the subsets X and Y . The
DM-Partition associated to Z is computed by applying the product over the two
partitions in memory: ΠX(r) and ΠA(r). The second recursive call is performed
only if the DM-Partition according to Z is not empty. The pseudo-code of the
algorithm Pcube is given below.

Algorithm 2. Algorithm Pcube
Input: Set of DM-Partitions {ΠA, A ∈ D}, X and Y two set of dimension attributes
Output: Partition Cube
1: if Y = ∅ then
2: WRITE_CUBOID(X)
3: else
4: Y := Y \max

<D
(Y)

5: Pcube(r, X, Y)
6: Z := X ∪ max

<D
(Y)

7: ΠZ(r) := ΠX(r) •p Πmax
<D

(Y)(r)

8: if ΠZ(r) �= ∅ then Pcube(r, Z, Y) End If
9: end if

2.3 Relational Representation

When the Olap application is managed by a relational system, the Partition
Cube can be stored through a relation (called Cube) in which each tuple describes
a DM-Class of a cuboid according to X . More precisely, for each DM-Class, are
known the identifier of its representing element, the measure value and the di-
mension combinaison (DimId). Like in the other approaches computing cubes,
real values of dimensions are encoded with integers [15,1,8]. We propose the fol-
lowing schema for managing our representation:

r(RowId,D,M)
Dimension(DimId,D)
Cube(RowId, DimId, f(M))

The relation Dimension is intended for storing all the dimension combina-
tions. Its values are binary and for any attribute A, A has the value 0 if it does
not belong to the considered combination, else its value is 1. Finally the original
relation makes it possible to retrieve the real values of dimensions for various
representing elements of the DM-Classes.

3 Experimental Evaluations

We choose to compare our approach with the two most concise representations
not loosing information. Through these experiments, our aim is to compare the
representation computation times, the underlying main memory requirements

416 A. Casali et al.

and the size of the datacube to be stored. In order to compute the Quotient Cube
and Closed Cube, we use the algorithm Close [14], proved to be very efficient
for mining frequent closed patterns, because we have its sources. The computer
has a Pentium 4 to 3 GHz with 1 Gb of RAM and runs under Windows XP.
Implementations are performed in C++ and compiled with c++ (GCC) 3.3.3
(cygwin).

Table 4 gives the datasets used for experiments. In the last column, the size
in bytes of the dataset is reported (each dimension or attribute is encoded as an
integer requiring 4 bytes for any value). Remark: The two datasets Mushroom and
Joint_Objects_Tombs require too much main memory (> 4Go) when computing
the Quotient Cube and the Closed Cube with a minimum threshold equal to 1
(all the possible patterns), thus we have to state a minimum threshold to 5%
and 1%.

Table 4. Datasets

Tables # Attributes # Tuples Size
mushroom 23 8 124 747 408
death 5 389 7 780
TombNecropolis 7 1 846 51 688
TombObjects 12 8 278 397 344
Joint_Objects_Tombs 17 7 643 519 724

Table 5. Results of Close executions

Close
Tables Time (s) Max Memory (Mb)

mushroom 5% 110 (1m50s) 354,1
death 2,9 8,1
TombNecropolis 8,7 12,8
TombObjects 508,3 (8m30s) 721,0
Joint_Objects_Tombs 1% 24,5 36,3

Table 6. Results of Pcube executions

Pcube
Tables Time (s) Max Memory (Mb)

mushroom 4 173 (1h9m33s) 4,8
mushroom 5% 786 (13m6s) 4,7
death <1ms 2,5
TombNecropolis 0,16 2,6
TombObjects 2,60 3,7
Joint_Objects_Tombs 83 (1m23s) 4,1
Joint_Objects_Tombs 1% 12,8 4,0

Lossless Reduction of Datacubes 417

Tables 5 and 6 present the results obtained for the algorithms Close and
Pcube for the various datasets. The column Time indicates in seconds the execu-
tion times and the column Max Memory shows in Mb the maximal used memory.

Pcube is specially efficient and its memory requirements are incomparably
lower than the ones of Close. Concerning the size of datacube representations,
the best results are obtained for the Closed Cube and then the Quotient Cube.
Although more voluminous, the Partition Cube reduces significantly the size of
stored data. For instance, the Partition Cube computed for the dataset Mushroom
only needs 12% of the space necessary to store the datacube. In the worst case
(few attributes) the gain is about 50%.

The counterpart of storage saving for the Quotient and Closed Cubes is an
efficiency deterioration when evaluating Olap queries. Actually, with these two
representations, only a cover of a datacube is preserved and additional compu-
tations are necessary to answer Olap queries.

– Pcube computes a concise representation of the data cube which is based on
its characterization (DM-Classes, DM-Partitions and their product). In such a
representation, a row of the cube encompasses three elements: RowId, DimId
and f(M). Moreover, DimId can be encoded as a bit field to avoid the join
operation with the relation Dimension when evaluating Olap queries. In a
similar way, the link with the original relation (through RowId) does not re-
quire a join operation but a direct index. When the number of dimensions is
less than 32, each attribute value needs 4 bytes and thus each row 12 bytes.
The representation includes the original relation. Thus its size is equal to:
NbRows× 12 + RelationSize.

– For the Quotient and the Closed Cubes, the size of any row is obtained by
the product of the number of dimensions and the measure in the original
relation by 4 bytes (dimensions are encoded as integers). The obtained size
is: NbRows× (|Dim|+ 1)× 4.

Table 7 illustrates the size of the three studied representations for the various
datasets.

Table 7. Size of the datacubes

Size of the datacube (byte)
“Classical” Partition Closed Quotient

TombNecropolis 3 639 072 1 416 340 189 728 543 232
TombObjects 903 611 124 208 922 988 8 032 648 25 806 404
Joint_Objects_Tombs (1%) 58 848 264 10 327 768 4 485 168 9 720 576
Death 220 152 117 856 24 984 73 656
Mushroom (5%) 436 823 808 55 350 384 1 233 984 3 265 344

4 Conclusion

When addressing the issue of datacube computation and storage, we are in-
terested in the two approaches proposing the most concise representations: the

418 A. Casali et al.

Quotient Cube and Closed Cube. We propose an alternative method also pro-
viding a storage reduction but less important. Nevertheless, since all the data
is stored, Olap queries can be answered very efficiently (simple selections in a
table) while other approaches require additional computations for yielding re-
sults. Let us underline that in the worst cases, when data is very sparse, the size
of the Quotient Cube can be double of the datacube size and the Closed Cube
can be as voluminous as the datacube. In contrast, when there are more than
two dimensions, the Partition Cube is always smaller than the data cube. So
our approach is a compromise between datacube storage reduction and efficient
execution of Olap queries.

References

1. K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg
CUBEs. In Proceedings of the International Conference on Management of Data,
SIGMOD, pages 359–370, 1999.

2. A. Casali, R. Cicchetti, and L. Lakhal. Extracting semantics from datacubes using
cube transversals and closures. In Proc. of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD, pages 69–78, 2003.

3. S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Tech-
nology. In SIGMOD Record, volume 26(1), pages 65–74, 1997.

4. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1999.

5. A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing Wavelets on
Streams : One-Pass Summaries for Approximate Queries. In Proceedings of 27th
International Conference on Very Large Data Bases, VLDB, pages 79–88, 2001.

6. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. In Data Mining and Knowledge Discovery,
volume 1(1), pages 29–53, 1997.

7. H. Gupta and I. Mumick. Selection of Views to Materialize in a Data Warehouse.
In IEEE Transactions on Knowledge and Data Engineering, TKDE, volume 17
(1/2005), pages 24–43, 2005.

8. J. Han, J. Pei, G. Dong, and K. Wang. Efficient Computation of Iceberg Cubes with
Complex Measures. In Proceedings of the International Conference on Management
of Data, SIGMOD, pages 441–448, 2001.

9. V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently.
In Proceedings of the International Conference on Management of Data, SIGMOD,
pages 205–216, 1996.

10. L. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to summarize the seman-
tics of a data cube. In Proceedings of the 28th International Conference on Very
Large Databases, VLDB, pages 778–789, 2002.

11. D. Laurent and N. Spyratos. Partition semantics for incomplete information in re-
lational databases. In Proceedings of the International Conference on Management
of Data, SIGMOD, pages 66–73, 1988.

12. S. Lopes, J. M. Petit, and L. Lakhal. Functional and Approximate Dependency Min-
ing: Databases and FCA points of View. In Experimental and Theoretical Artificial
Intelligence (JETAI): Special Issue on Concept Lattice-based theory, methods and
tools for Knowledge Discovery in Databases, volume 14(2-3), pages 93–114, 2002.

Lossless Reduction of Datacubes 419

13. H. Mannila and H. Toivonen. Multiple Uses of Frequent Sets and Condensed Repre-
sentations: Extended Abstract. In Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining, KDD, pages 189–194, 1996.

14. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of the 7th International Conference
on Database Theory, ICDT, pages 398–416, 1999.

15. K. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In Proceedings
of the 23rd International Conference on Very Large Databases, VLDB, pages 116–
125, 1997.

16. J. Shanmugasundaram, U. Fayyad, and P. Bradley. Compressed Data Cubes for
OLAP Aggregate Query Approximation on Continuous Dimensions. In Proceedings
of the 5th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD, pages 223–232, 1999.

17. J. Vitter and M. Wang. Approximate Computation of Multidimensional Aggregates
of Sparse Data Using Wavelets . In Proceedings ACM SIGMOD International
Conference on Management of Data, SIGMOD, pages 193–204, 1999.

18. W. Wang, H. Lu, J. Feng, and J. Yu. Condensed Cube: An Effective Approach to
Reducing Data Cube Size. In Proceedings of the 18th International Conference on
Data Engineering, ICDE, pages 213–222, 2002.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 420 – 429, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multivariate Stream Data Classification Using Simple
Text Classifiers

Sungbo Seo1,*, Jaewoo Kang2,3, Dongwon Lee4, and Keun Ho Ryu1

1 Dept. of Computer Science, Chungbuk National University, Chungbuk, Korea
{sbseo, khryu}@dblab.chungbuk.ac.kr

2 Dept. of Computer Science and Engineering, Korea University, Seoul, Korea
3 Dept. of Computer Science, North Carolina State University, Raleigh, NC, USA

kang@csc.ncsu.edu
4 College of Information Sciences and Technology, Penn State University, PA, USA

dongwon@psu.edu

Abstract. We introduce a classification framework for continuous multivariate
stream data. The proposed approach works in two steps. In the preprocessing
step, it takes as input a sliding window of multivariate stream data and discre-
tizes the data in the window into a string of symbols that characterize the signal
changes. In the classification step, it uses a simple text classification algorithm
to classify the discretized data in the window. We evaluated both supervised
and unsupervised classification algorithms. For supervised, we tested Naïve
Bayes Model and SVM, and for unsupervised, we tested Jaccard, TFIDF, Jaro
and JaroWinkler. In our experiments, SVM and TFIDF outperformed the other
classification methods. In particular, we observed that classification accuracy is
improved when the correlation of attributes is also considered along with the
n-gram tokens of symbols.

1 Introduction

Different sensor network applications generate different types of data and have differ-
ent requirements for data processing (e.g., long term monitoring of sea level change
vs. real-time intrusion detection). Different data processing strategies need to be
considered for the different types of applications. Even in the same application, the
characteristics of data generated in the network sometimes changes over time. For
example, in a network monitoring application, users may want to receive only 5%
samples of original data when network operates normally, while they might want to
receive full data for further analysis when an interesting pattern (e.g., similar to a
predefined intrusion pattern) is detected. The ability of handling sensor data adap-
tively by detecting changing characteristics of data becomes important in many data-
centric sensor applications.

In order to address this problem, we propose a scalable framework for multivariate
stream data classification that allows using simple, well-understood text classifiers to
classify multivariate streams, instead of building custom classification algorithms for

* Work performed while the author visited North Carolina State University.

 Multivariate Stream Data Classification Using Simple Text Classifiers 421

different sensor applications. The proposed method works in two steps as follows. It
first discretizes the stream data into a string of symbols that characterize the signal
changes, and then applies classification algorithms to classify the transformed data.
This transformation simplifies the classification task significantly.

The classification model is learned from a user-labeled data. Users assign a de-
scriptive label to each window in the training set. For example, if the sensor data in a
window contains an intrusion pattern, the user labels the window as “intrusion”. Simi-
larly, if a window contains normal signals, it can be labeled as “normal”. Once the
classification model is built, the classifier can start taking new windows of data and
predict the labels for the windows. For the classification step, we evaluated both su-
pervised and unsupervised methods. For supervised, we tested Naïve Bayes Model
and SVM, and for unsupervised, we tested Jaccard, TFIDF, Jaro and JaroWinkler.

We identify the contributions of our work as follows:

1. In order for fast pattern matching, we discretized the continuous sensor streams
into a string of symbols characterizing signal changes. In order to allow partial
matches and to retain temporal locality of patterns, we chunked the symbol strings
into various lengths of n-grams. This representation gives rise to a large number of
widely used string and vector-space classifiers.

2. The proposed framework and the classification model can be utilized for the sensor
network querying and monitoring in general. It enables the real-time monitoring of
continuous sensor data. Moreover, it can also be used for the analysis of historical
data accumulated in a server. Using the method, we can serve ad-hoc queries such
as finding windows that have similar data to the input pattern.

The rest of the paper is organized as follows. Section 2 introduces related work.
Section 3 describes our multivariate stream data classification methods. Section 4
presents experimental results and Section 5 presents concluding remarks.

2 Related Work

In our problem context, sensor data is an unbounded multivariate time series data.
Multivariate time series data classification methods were studied in [4, 5, 6, 7, 8],
including On-demand Classifier [4], HMM (Hidden Markov Models) [5], RNN (Re-
current Neural Network), Dynamic Time Warping [5], weighted ensemble classifier
[6] and SAX [7]. These methods involve large numbers of parameters and complex
preprocessing step that need to be tuned. Due to the dynamic nature of sensor network
environment and the diverse types of applications, the applicability and effectiveness
of these specialized solutions is not immediately clear for the sensor network applica-
tions.

On the other hand, there exist many popular general purpose classifiers that work
for string and vector-space models, including Bayesian classifiers [11], Support Vec-
tor Machines (SVM) [12] and string-distance based methods [14]. In our proposed
approach, we discretize the multivariate continuous time series data into a series of
symbols. This transformation allows sensor data to be viewed as a sequence of words
consisting of the symbols, giving rise to such general purpose classifiers.

422 S. Seo et al.

3 Multivariate Stream Data Classification

3.1 Problem Definition

In a hierarchically organized sensor network as shown in Fig. 1, a sensor node repre-
sents a collection of heterogeneous sensors collocated in the same geographical loca-
tion. Each of these sensors monitors or detects different target objects or events. The
sensor data generated from such a sensor node collectively forms a multivariate data
stream. Each sensor node temporarily accumulates the sensor data and periodically
sends it to the parent node in the upper layer. The parent node then collects data
transmitted from children nodes and either relays it up to the chain (e.g., from sensor
node to base station), or stores them in the repository or feeds them to the application
for further processing (server node).

The problem we attempt to address in this paper can be formulated as follows. As
illustrated in Fig.1, let ti = [s1i, s2i, …,smi] be an m-dimensional tuple, representing
sensor readings from m different sensors (s1 to sm) at time point i. Let Wj = [tj*p+1,
tj*p+2, …, t(j+1)*p] be a j-th window of size p, containing p tuples from tj*p+1 to t(j+1)*p.
Finally, let T = [W1, W2, …, W∞] be an unbounded stream of windows. Suppose the

Fig. 1. Overview of real-time data analysis in wireless sensor networks

 Multivariate Stream Data Classification Using Simple Text Classifiers 423

first k windows (W1 to Wk) are pre-labeled by the user. Each user labeled window has
a class label chosen from n labels, C1 to Cn. Then, the problem is to build a classifier
to predict the labels for all subsequent windows (Wk+1 to W∞) based on the labeled
windows.

3.2 Preprocessing Step

Fig. 2 shows the preprocessing step for our approach. In this step, the continuous
sensor stream is transformed into the combinations of discrete symbols which repre-
sent signal changes in each sensor stream, such as upward (U for steep inclination and
u for moderate inclination), downward (D for deep and d for moderate) or stable (S)
for a given time interval [ti, ti+k] where k being a constant between 1 and the window
size p. This transformation greatly reduces the complexity of the raw data while re-
taining the structure of the time series data. For fast trend analysis and pattern match-
ing, we use a hierarchical piecewise linear representation [9] and n-gram model [11]
which together can represent various different types of multivariate stream data. In
this paper, we used the five symbols (U, u, D, d, and S) as shown in Fig. 2(a). All the
attributes in a window can be represented as in Fig. 2(b) using this representation.

We extended the original hierarchical piecewise linear representation, which splits
the original patterns into a set of disjoint sub-patterns, with n-gram based pattern
chunking in order to support partial matches and to preserve the orderings between the

()D()U ()u ()d ()S

1t 2t 3t nt… 1nt −

1a

2a

1ma −

ma

… …

2a UDUuDd=

UDU uDd

UD
DU

uU

…
Dd

U D U u D d

(a) Unit of sensing data (b) Hierarchical piecewise linear representation

Sound
Light

Temperature

(d) Correlation of multivariate attributes

()D()U ()u ()d ()S

1t 2t 3t nt… 1nt −

1a

2a

1ma −

ma

…

()D()U ()u ()d ()S

1t 2t 3t nt… 1nt −

1a

2a

1ma −

ma

… …

2a UDUuDd=

UDU uDd

UD
DU

uU

…
Dd

U D U u D d

…

2a UDUuDd=

UDU uDd

UD
DU

uU

…
Dd

U D U u D d

(a) Unit of sensing data (b) Hierarchical piecewise linear representation

Sound
Light

Temperature

Sound
Light

Temperature

(d) Correlation of multivariate attributes

Fig. 2. The preprocessing step in multivariate data classification

424 S. Seo et al.

sub-patterns. Fig. 2(c) shows an example of n-gram based chunking. Moreover, in
order to improve the classification accuracy, we exploit the inter-dependency structure
that exists among the sensors (e.g., light and temperature), as illustrated in Fig 2(d).

We added the symbols representing the pairings of sensors that have a strong cor-
relation (we used 0.6 as a threshold) into the list of original n-gram symbols as shown
in the last row of Fig. 2(c). For example, if sensor a1 and a2 are correlated, we add a
word, “a1a2”, to the list. Once the data is transformed, we can simply treat them as a
string of words and apply simple text classification algorithms to classify the data. In
what follows, we will describe the details of the classification algorithms that we
considered in our framework.

3.3 Supervised Methods

NBM (Naïve Bayes Model): Bayesian classifiers are statistical classifiers and have
exhibited high accuracy and speed when applied to a large database [11]. This tech-
nique chooses the highest posterior probability class using the prior probability com-
puted from the training data set. For example, in the training phase, it learns the prior
probability distribution such as, P(uD|class=intrusion) and P(a1a2|class=normal),
from the training data. In the test step, for each unlabeled window, a posterior prob-
ability is evaluated for each class Ci, as shown in (1). The test data is then assigned to
class Ci for which P(Ci|X) is the maximum.

i i
i

P(X |C)P(C)
P(C | X)

P(X)
= , where

1

n

i k i
k

P(X | C) P(x |C)
=

= ∏ for 1 i, j m, i j≤ ≤ ≠ (1)

SVM (Support Vector Machine): This method is one of the most popular supervised
classification methods. SVM is basically two-class classifier and can be extended for
the multi-class classification (e.g., combining multiple one-versus-the-rest two-class
classifiers). In our model, each window is mapped to a point in a high dimensional
space, each dimension of which corresponds to an n-gram word or a correlation pair.
For example, if a sliding window, Wi is {uD=2, UUd=10, UDDD=5, aiai+1=0.8},
feature vector lists are {uD, UUd, UDDD, aiai+1} and values according to the fre-
quency factor are {0.2, 0.8, 0.6, 0.8}. The coordinates of the point are the frequencies
of the n-gram words or coefficients of the correlation pairs in the corresponding di-
mensions. SVM learns, in the training step, the maximum-margin hyper-planes sepa-
rating each class.

In testing step, it classifies a new window by mapping it to a point in the same
high-dimensional space divided by the hyper-plane learned in the training step. For
experiments, we used the Radial Basis Function (RBF) kernel [12],

()2 0i ix y
i iK(x ,y) e ,γ γ− −= > . The soft margin allows errors during training. We set 0.1 for

the two-norm soft margin value.

3.4 Unsupervised Methods

String-based Distance: This scheme measures the distance between two strings in
order to measure the similarity. We can obtain the best matching class by comparing
the feature vectors (standard vector space representations of documents) of each

 Multivariate Stream Data Classification Using Simple Text Classifiers 425

known class with that of input data. Among many possible distance measures, we
used two token-based string distance (Jaccard and TFIDF) and two edit-distance-
based metrics (Jaro and Jaro-Winkler) that were reported to give a good performance
for the general name matching problem in [14]. We briefly describe the metrics be-
low. For details of each metric, refer to [13]. Using the terms of Table 1, the four
metrics (2-5) can be defined as follows.

Table 1. Terms for string-based distance

Name Descriptions Name Descriptions
x , y n-grams and correlations

for each sensor attribute.
x ,yCC All characters in x common with

y

xC All characters of x . xT All n-gram and correlation terms
for x .

x ,yX # of transpositions of char in x relative to y

Jaccard (x , y) = x y

x y

T T

T T

∩

∪
 (2)

TFIDF (x , y) = () ()
x y

x yw T T
V w,T V w,T

∈ ∩
× , where

() () ()
() ()()

1
1

y

'
y

w
x w,T

w,T ww

log IDF
V w,T log TF

log TF log IDF
= + ×

+ ×
(symmetrical for ()yV w,T),

xw,TTF is the frequency of w in xT , and wIDF is the inverse of the fraction of

names in a corpus containing w .

(3)

Jaro (x , y) = 1

3 2
x ,y y ,xx ,y CC ,CCx,y y ,x

x y x ,y

CC XCC CC

C C CC

−
× + + (4)

Jaro-Winkler (x , y) = () () ()()4
1

10

max L ,
Jaro x, y Jaro x, y+ × − , where L is the

longest common prefix of x and y
(5)

Vector-based Cosine Distance: This approach uses vector based distances to meas-
ure the similarity of the symbols. We model the n-gram symbols and correlation lists
as vectors in the vector space. Each dimension of a vector corresponds to a unique
term (i.e., an n-gram or an attribute pair for correlation) whose value consists of either
a frequency of the term in the given window (if an n-gram) or the correlation coeffi-
cient of the two attributes (if an attribute pair). In order to measure the similarity of
two vectors, we use a cosine distance, which is an angle between the two vectors,

defined as: 1 2

1 2

W W
Cos

W W
θ •

=
•

[11].

426 S. Seo et al.

4 Experimental Results

In our experiment, we used two types of multivariate time series data obtained from
[16]. Fig. 3(a) shows an example of the first data set containing six different classes of
control patterns (Normal (a), Cyclic (b), Increasing trend (c), Decreasing trend (d),
Upward shift (e), Downward shift (f)). Fig. 3(b) shows a fragment of the second data
set which is robot traces containing force and torque measurements on a robot moving
an object from one location to another. Each movement is characterized by 15
force/torque samples collected at regular time intervals starting immediately after
failure detection. The trace data consists of 5 datasets, each of them defining a differ-
ent learning problem labeled from LP1 to LP5 [16]. For experiments, we prepared a
training data set that includes six different classes of control patterns and robot behav-
ior classes such as normal, collision, and obstruction.

(a)

(b)

(c)

(d)

(e)

(f)

(a)

(b)

(c)

(d)

(e)

(f)

(a) Six different time series data

Collision in part & part lost

100

-100

25

50

75

-25

-50

-75

2 4 6 8 10 12 14Time

Value

Front collision & part lost

100

25

50

75

-25

-50

-75

-100

2 4 6 8 10 12 14 Time

Value

Collision in part & part lost

100

-100

25

50

75

-25

-50

-75

2 4 6 8 10 12 14Time

Value

Front collision & part lost

100

25

50

75

-25

-50

-75

-100

2 4 6 8 10 12 14 Time

Value

(b) Examples of typical robot traces

Fig. 3. Data set: SCCTS and robot execution data

We performed k-fold cross-validation in order to evaluate the accuracy of each
classification method. For the k-fold cross-validation, an input data set (S) is ran-
domly partitioned into k mutually exclusive subsets (S = {S1,S2,…,Sk}) of equal size.
Training and testing is performed k times. In iteration i, the subset Si is reserved as the
test set, and the remaining subsets are collectively used to train the classifier. The
accuracy of the classifier is then the overall number of correct classifications from the
k iterations, divided by the total number of trials.

The result of experiments is shown in Fig 4. Fig 4(a) shows the accuracy of the six
classifiers discussed in Section 3 using only the n-gram tokens and not considering
the correlation tokens (see Fig 2(c).) Fig 4(b) shows the result using the both types of
tokens. Different lengths of n-gram tokens are compared. For example, “3-gram” in
the x-axis represents the classifications using only tokens up to length three (i.e., 1-3
grams).

As expected, the accuracy was gradually improved as longer tokens were taken
into consideration. The longer tokens are likely to capture more temporal locality of
patterns. The accuracy was generally higher when the correlation tokens were used
along with the n-gram tokens. Noticeable improvements were observed in 3 and 4-
gram experiments as shown in Fig. 4.

 Multivariate Stream Data Classification Using Simple Text Classifiers 427

As expected, supervised methods (NBM and SVM) were more accurate than unsu-
pervised methods. SVM showed the best performance among the tested methods.
Among the unsupervised methods, classifiers using token-based string distance met-
rics were more accurate than the ones using edit-distance metrics. For this experi-
ment, we used the classification library and package obtained from [17, 18].

Fig. 4. Accuracy comparison (number of shapes and correlations between attributes)

Naïve Bayesian classifier in Fig. 4(a) assumes that the effect of an attribute on a
given class is independent of the values of the other attributes. This assumption is
called class conditional independence. However, attribute values of multivariate stream
data collected from WSN may not be entirely independent from each others. For ex-
ample, it is likely that the sensor readings of light and temperature would be correlated.
In order to address this problem, in our experiment, we considered a set of extended
Bayesian classifiers known to work well with correlated data, including TAN (Tree
Augmented Naïve Bayes), FAN (Forest Augmented Naïve Bayes), STAN(Selective

428 S. Seo et al.

Tree Augmented Naïve Bayes), and SFAN(Selective Tree Augmented Naïve Bayes)
[15, 19]. Experimental results show that TAN and STAN method are better than the
other methods as shown in Fig. 4(c). The result shows that the dependencies among
attributes affect the classification accuracy for multivariate stream data.

5 Conclusion

In this paper, we proposed a scalable framework for multivariate stream data classifi-
cation for continuous stream data. For classification, we employed the hierarchical
piecewise linear representation to transform the continuous sensor streams into a
discrete symbolic representation, which allows us to choose a classifier from a large
pool of well-studied classification methods. We considered supervised methods in-
cluding Naïve or extended Bayesian Model and SVM, and unsupervised methods
including Jaccard, TFIDF, Jaro and Jaro-Winkler. In experimental results, SVM and
TFIDF outperformed the other classification methods, and classification accuracy is
higher when the correlations of attributes are also considered along with the n-gram
token list.

Acknowledgement. This work was partially supported by the RRC Program of
MOCIE and ITEP, and by ETRI (Telematics & USN Research Division) in Korea.

References

1. A. Mainwaring and J. Polastre, et al.: Wireless Sensor Networks for habitat monitoring. In
WSNA (2002), pp.88-97

2. B. Xu and O. Wolfson.: Time-Series Prediction with Applications to Traffic and Moving
Objects Databases. In MobiDE (2003), pp.56-60

3. R. C. Oliver and K. Smettem, et al.: Field Testing a Wireless Sensor Network for Reactive
Environmental Monitoring. In ISSNIP (2004), pp.7-12

4. C. C. Aggrawal, J. Han, and P. S. Yu.: On Demand Classification of Data Streams. In
KDD (2004), pp.503-508

5. M. W. Kadous and C. Sammut.: Classification of multivariate time series and structured
data using constructive induction. Machine Learning Journal (2005), pp.176-216

6. H. Wang, W. Fan, P. S. Yu, and J. Han.: Mining Concept-Drifting Data Streams Using
Ensemble Classifiers. In SIGKDD (2003), pp.226-235

7. J. Lin, E. Keogh, S. Lonardi, and B. Chiu.: A Symbolic Representation of Time Series
with Implications for Streaming Algorithms. In DMKD (2003), pp.2-11

8. P. Geurts.: Pattern Extraction for Time Series Classification. PKDD (2001), pp.115-127
9. G. Xianping.: Pattern Matching in Financial Time Series Data. In Final Project Report for

ICS 278 UC Irvine (1998)
10. R. Agrawal, G. Psaila, E. L. Wimmers, and Mohamed Zait.: Querying Shapes of Histories.

In VLBD (1995), pp.502-514
11. J. Han and M. Kamber.: Data Mining Concepts and Techniques. Morgan Kaufmann Pub-

lishers (2000)
12. N. Cristianini and J. Shawe-Taylor.: An Introduction to Support Vector Machines. Cam-

bridge University Press (2000)
13. W. W.Cohen, P. Ravikumar, and S. Fienberg.: A Comparison of String Distance Metrics

for Naming-matching tasks. In IIWEB (2003)

 Multivariate Stream Data Classification Using Simple Text Classifiers 429

14. B.W. On, D.W. Lee, J. W. Kang, and P. Mitra.: Comparative Study of Name Disambigua-
tion Problem using a Scalable Blocking-based Framework. In JCDL (2005), pp.344-353

15. J. Chen and R. Greiner.: Comparing Bayesian Network Classifiers. In Proc. of UAI-
99(1999), pp.101-108

16. S. Hettich and S. D. Bay.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA:
University of California, Department of Information and Computer Science

17. A Library for Support Vector Machines: http://www.csie.ntu.edu.tw/~cjlin/libsvm
18. SecondString (Jave-based Package of Approximate String-Matching): http://secondstring.

sourceforge.net
19. Java Bayesian Network Classifier Toolkit: http://jbnc.sourceforge.net.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 430 – 438, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Location-Based Service with Context Data for a
Restaurant Recommendation

Bae-Hee Lee1, Heung-Nam Kim1, Jin-Guk Jung1, and Geun-Sik Jo2

1 Intelligent E-Commerce Systems Laboratory,
Department of Computer Science & Information Engineering, Inha University

{coinone, nami, gj4024}@eslab.inha.ac.kr
2 School of Computer Science & Engineering, Inha University,

253 Yonghyun-dong, Incheon, Korea 402-751
gsjo@inha.ac.kr

Abstract. Utilizing Global Positioning System (GPS) technology, it is possible
to find and recommend restaurants for users operating mobile devices. For rec-
ommending restaurants, Personal Digital Assistants or cellular phones only
consider the location of restaurants. However, a user's background and envi-
ronment information is assumed to be directly related to recommendation qual-
ity. In this paper, therefore, a recommender system using context information
and a decision tree model for efficient recommendation is presented. This sys-
tem considers location context, personal context, environment context, and user
preference. Restaurant lists are obtained from location context, personal con-
text, and environment context using the decision tree model. In addition, a
weight value is used for reflecting user preferences. Finally, the system recom-
mends appropriate restaurants to the mobile user. For this experiment, perform-
ance was verified using measurements such as k-fold cross-validation and Mean
Absolute Error. As a result, the proposed system obtained an improvement in
recommendation performance.

1 Introduction

Using modern techniques, movement route and time in terms of destination can be
tracked by mobile devices such as the PDA or cellular phone. In addition, mobile
devices recommend restaurants in any area. Using GPS technology, these recom-
mender systems display restaurants lists ordered by distance [6]. However, the user
generally desires restaurants, which correlate with personal background information
[5] or utilize both physical location and current environment information [4]. In other
words, the recommender system is required to collect user information and consider
user preferences in advance [1].

In this paper, a recommender system using context information and decision tree
model for efficient recommendation is proposed. This system collects three types of
context information, location, personal, and environment context, and also considers a
weight in terms of user preferences. Location context represents the current user loca-
tion using GPS technology, and displays restaurants according to distance from the
current location. Personal context such as age, sex, and salary can be gathered and

 Location-Based Service with Context Data for a Restaurant Recommendation 431

stored in the mobile device user profile. The decision tree model is used to analyze
relationships with these demographical variables [5] and restaurant choices. In envi-
ronment context information, season, weather, temperature and time are obtained,
when accessing a web site, and user feelings are collected by analyzing mobile device
input. Prior to a user recommendation request, environment context and personal
context are required for analysis using the C4.5 algorithm with training data. As a
result, a weight value in location context, personal context and environment context is
used for reflecting user preferences. The outline of the paper is as follows. Section 2
concentrates on research, the recommendation system theory, and the context and data
mining method. Section 3 describes a recommender system using context information
and a decision tree model. Section 4 presents the experimental result. In Section 5,
this study is concluded and future work is discussed.

2 Background and Related Work

Traditional recommendation system has used user profile to analysis and find similar
user. The systems recommend restaurants to users from result of analysis [5]. How-
ever, these systems are lack of consideration of user mobility and environment. Other
recommendation system provides service finding restaurant and providing informa-
tion of restaurant by web site [1]. This system is closed to search system but not rec-
ommendation system. Recently research relating with context information is using
user location to serve advertise, sale, and event information. This system analysis user
preference though user profile and find restaurant satisfying user preference and clos-
ing user location [4]. In the rest of this part recent recommendation system theory,
context and data mining technique are discussed.

2.1 Recommender System

Recommender systems, regarded as a component of personalization technology, are
used mainly in personal information systems and E-Commerce to recommend appro-
priate products to customers. The trends in existing studies of recommending
techniques can be generally divided into Demographic-based Recommendation, Con-
tent-based Recommendation and Collaborative Filtering. Demographic-based Rec-
ommendation uses demographic factors such as a user's sex, age, occupation, and so
on, these factors are used to analyze the user's characteristic patterns and recommend
products [7]. This system, one of the traditional recommending techniques, is widely
used in strategic target marketing, using simple methods of information filtering.
Content-based Recommendation is a method of filtering a user's request, including
using entire product information or textual product information [8]. The advantages of
these methods make it easy to reflect previous purchases and recommended results
through a user's profile. The Collaborative Filtering method is based on user's product
appraisal and other user's ratings, similar in terms of taste [9]. The process of recom-
mending a product is divided into measuring similarity between users and predicting
user preferences.

432 B.-H. Lee et al.

2.2 Context

Context can be defined as a description of aspects of a situation. In this way, context
can seem similar to cases in case-base reasoning. Context as an internal representation
in the computer should be a structure for information units and data. It is also natural
to refer to context that is more or less similar to others contexts. Context information
can be used to facilitate communication in human-computer interaction. The use of
context is becoming important in interactive computing. Recently, there has been
much discussion about the meaning and definition of context and context-awareness
[15]. The concept of context has often been interwoven and used in many different
fields. When information has to be conveyed from one element to another, the receiv-
ing element is required to know the reference of discussion. Dey and Abowd defined
it as a piece of information that can be used to characterize the situation of a partici-
pant in an interaction [13]. Similarly, Chen and Kotz define context as the set of envi-
ronmental states and rules that either determine application behavior or describe
where the event occurs [14].

2.3 Decision Tree Algorithm

A decision tree is a flowchart-like structure in which each node denotes a test on an
attribute. Each branch represents an outcome of the test and the leaf nodes represent
classes or class distributions. Unknown samples can be classified by testing attributes
against the tree. The path traced from root to leaf holds the class prediction for that
sample. The basic algorithm for inducing a decision tree from the learning or training
sample set is as follows [10]:

• Initially the decision tree is a single node representing the entire training set.
• If all samples are in the same class, this node becomes a leaf and is labeled

with that class label.
• Otherwise, an entropy-based measure, information gain, is used as a heuristic

for selecting the attribute that will best separate the samples into individual
classes (the "decision" attribute).

• A branch is created for each value of the test attribute and samples are parti-
tioned accordingly.

• The algorithm advances recursively to form the decision tree for the sub-
sample set at each partition. Once an attribute has been used, it is not consid-
ered in descendent nodes.

• The algorithm stops when all samples for a given node belong to the same
class or when there are no remaining attributes (or some other stopping condi-
tion).

The attribute selected at each decision tree level is the one with the highest informa-
tion gain.

3 Location-Based Services with Context Data

The recommender system proposed in this paper for restaurant recommendation con-
sists of two steps. First step, Context-based Data Mining, is to find relationship rules

 Location-Based Service with Context Data for a Restaurant Recommendation 433

between restaurant choice and context information such as location context, personal
context, and environment context. The system analyzes training data sets using a
decision tree model. Next step, context factors, collects user’s context information
when a user requests a recommendation. In the third step the system generates three
recommendation lists by analyzing user’s context information with a decision tree
model and, then recommendation lists integrates these lists giving proper weight val-
ues to each list reflecting user preference. The recommender system model based on
context data mining is depicted in Fig. 1.

Context-Aware
Recommendation

User Profie
Context

Information

Context-based Data Mining

Decision Tree Construction

Decision Tree
with user profile

Decision Tree
with Context

Weightness

Context factors

Location

weather

temperature

time

...
.

Top N Restaurant List

sex

age

salary

job

...
.

User Profile

Fig. 1. System Overview for Location-based Mobile Services with Context data

In this paper, user context data is divided into three parts: location, personal, and
environment context. These important factors are necessary for efficient recommen-
dation. The recommender system is able to obtain current user location context using
a GPS service. In addition, the distance between the user and particular restaurants is
measured. User personal context is recorded in the user profile. The system also ob-
tains preference factors that represent user interests. The weather information service
of the Meteorological Agency serves current environment context to the recom-
mender system. User feeling information, one of environment context, is found in the
user profile.

3.1 Context-Based Data Mining

Let S be a set consisting of s data samples. Suppose the class label attribute has m
distinct values defining m distinct classes, Ci (for i=1, …, m). Let si be the number of
samples of S in class Ci. The expected information required to classify a given sample
is given by

=

−=
m

i
iim ppsssI

1
221)(log),...,,((1)

where pi is the probability that an arbitrary sample belongs to class Ci and is estimated
by si/s.

434 B.-H. Lee et al.

Let attribute A contain v distinct values, {a1, a2, …, av}. Attribute A can be used to
partition S into v subsets, {S1, S2, …, Sv}, where Sj contains those samples in S that have
value aj of A. Let sij be the number of samples of class Ci in a subset Sj. The entropy, or
expected information based on the partitioning into subsets by A, is given by

),...,(
...

)(1
1

1
jmj

v

j

mjj ssI
s

ss
AE

=

++
= (2)

The lower the entropy value, the greater the purity of the subset partitions. Note
that for a given subset Sj,

=

−=
m

i
ijijmjjj ppsssI

1
221)(log),...,,((3)

where pij = sij /|Sj|, representing the probability that a sample in Sj belongs to class Ci.
The encoding information that would be gained by branching on A is

)(),...,,()(21 AEsssIAGain m −= (4)

In other words, Gain(A) is the expected reduction in entropy caused by knowing
the value of attribute A. The attribute having the largest Information Gain creates root
node [10].

Five demographic factors such as age, sex, salary, marital status, and occupation
are considered for analyzing the relationship between personal context and restaurant
selection. The decision tree model using the C4.5 algorithm represents an analysis
result as shown in Fig. 2. Environment context such as season, weather, temperature,
time and user feeling are analyzed in order to find relationships for effective restau-
rant choice generation. The decision tree model identical to personal context analysis
presents relationship rules as shown in Fig. 3.

Fig. 2. Decision Tree with Personal Context

 Location-Based Service with Context Data for a Restaurant Recommendation 435

Fig. 3. Decision Tree with Environment Context

3.2 Recommendation with Feedback of User Preference

First of all, the recommender system generates three kinds of restaurant recommenda-
tion lists. Restaurant lists based on distance, personal context, and environment context
with data mining are created by the system. Restaurants of each list obtain point values
as a result of data mining. The three lists obtain weight values for reflecting user pref-
erence. Finally a recommender system presents an optimal restaurant list to the user.

Table 1. An example for Context factors

Initial List Point for each factor

Num Restaurant Distance Location
context

Personal
context

Environment
context

1 McDonald 2 km 7 2 3
2 Sushi 5 km 6 6 7
3 Bulgogi 7 km 5 5 5
4 Dim Sum 8 km 4 7 6
5 Kimbob 12 km 3 4 2
6 Sandwich 14 km 2 1 1
7 Outback 15 km 1 3 4

Table 2. An example for recommender system

Recommendation List
Num Restaurant Distance

Point for weight

1 Sushi 5 km 6 + 6*2 + 7 = 25
2 Dim Sum 8 km 4 + 7*2 + 6 = 24
3 Bulgogi 7 km 5 + 5*2 + 5 = 20
4 McDonald 2 km 7 + 2*2 + 3 = 14
5 Kimbob 12 km 3 + 4*2 + 2 = 13
6 Outback 15 km 1 + 3*2 + 4 = 11
7 Sandwich 14 km 2 + 1*2 + 1 = 5

436 B.-H. Lee et al.

For example, if a user (age=28, sex=male, salary=2000$, marriage status=yes,
occupation=student, season=summer, weather=fine, temperature=8, time=7pm, feel-
ing=5, preference factor=personal context) issues a request to the restaurant recom-
mendation service, the system will make recommendation list based on distance as
shown in table 1. Restaurants obtain points in accordance with the data mining result
described in Fig. 2, and Fig. 3. Three lists obtain weight values as user preferences
and the system presents optimal restaurant list for the requestor as shown in table 2.

4 Experiment

In this section, performance of the recommender system is analyzed using "k-fold
cross-validation," and Mean Absolute Error (MAE). Accuracy of the recommender
system is calculated considering location, personal, and environment context. Then,
the proposed system is compared with a general system using only location context
and other systems. Experiments were carried out on a Pentium 2.8 GHz with 512MB
RAM, running MS-Windows XP. The recommender system is implemented using
JBuilder 9.0 and IIS 5.0. In the experiment 500 survey data sets were used for sug-
gesting recommendations. The data sets contain personal and environment context.
User preference and feeling can be extracted using personal context. Location context
is gathered using GPS technology in the mobile device PDA.

4.1 Performance Measure

For performance measurement k-fold cross-validation is employed widely in estimat-
ing classifier accuracy. In k-fold cross-validation, the initial information is randomly
partitioned into k mutually exclusive subsets or folds, S1, S2, ..., Sk, each of approxi-
mately equal size. Training and testing is performed k times. In the iteration i, the
subset Si is reserved as the test set, and the remaining subsets are used collectively to
train a decision tree [10].

Statistical recommendation accuracy measures the closeness between the numeri-
cal recommendations provided by the system and the numerical ratings entered by the
user for the same items. MAE is a measure of the deviation of recommendations from
their true user-specified values. If { r1, r2, ..., rn } are all the real values in the target
set, and { p1, p2, ..., pn } are the predicted values for the same ratings, and E = { e1, e2,
..., en } = { p1 - r1, ..., pn - rn } are the errors, then the mean absolute error is

N

e
E

N

i i== 1
||

|| (5)

The lower the MAE, the more accurately the recommendation engine predicts user
ratings [11].

4.2 Experimental Results

"k-fold cross-validation" and “MAE” are used in the experiment for validating the
performance of the recommender system.

 Location-Based Service with Context Data for a Restaurant Recommendation 437

Table 3. Recommender system models

Model Remark
LS System considering Location

LPS System considering Location + Personal Context
LES System considering Location + Environment Context

LPES System considering Location + Personal + Environment Context

Table 4. Comparison of Mean Absolute Error

Model LS LPS LES LPES
MAE 0.923 0.887 0.875 0.826

Fig. 4. Mean absolute error comparison (k=10)

In k-fold cross-validation, the experiment was repeated 10 times, with k set to 10.
System considering Location + Personal + Environment Context (LPES) is compared
to various recommender systems such as LS, LPS, and LES in Table 3 and Fig.4. The
results demonstrate the superiority of the recommender system over a general system,
based on location context and other systems. Table 4 shows a small, but statistically
significant improvement in accuracy.

5 Conclusion and Future Work

Taking into account demands continuously growing environments, the personalized
recommender system for Location-based mobile services is proposed. The proposed
system presents two major improvements. First, user personal context and environ-
ment context is considered. These assist users in making more effective decisions.
Second, user preference is reflected which lead different recommendation results. An
experimental result confirms the effectiveness of use of context factor in personalized
recommendation due to the proposed system obtained an improvement in recommen-
dation performance.

438 B.-H. Lee et al.

Directions for future research include not only the factors considered in this paper,
but also other factors related to the recommendations. For example, the driving direction
of a user would also affect restaurant choice. Therefore, we will future study the impact
of using other factors to form an optimal solution for context-aware mobile services.

Acknowledgement

This research was supported by the MIC(Ministry of Information and Communica-
tion), Korea, under the ITRC(Information Technology Research Center) support pro-
gram supervised by the IITA(Institute of Information Technology Assessment).

References

1. Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., Riedl, J.:
Getting to Know you: Learning New User Preferences in Recommender Systems. In Proc.
of the 7th Int. Conf. on Intelligent User Interfaces (2002) 127–134

2. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a Context-
aware Electronic Tourist Guide: Some Issues and Experiences. In Proc. of the CHI 2000
Conf. on Human Factors in Computing System, ACM, April (2000)17-24

3. Schopp, B., Ropnack, A., Markus, G.: The Need for Topological Time and Location in
Mobile E-Business Applications. In Proc. of the 9th Euromicro Workshop on Parallel and
Distributed Processing (2001)

4. Tang, H., Soo, V.: A Personalized Restaurant Recommender Agent for Mobile E-Service.
In Proc. of the Conf. on E-Technology, E-Commerce and E-Service, IEEE, March (2004)
259 – 262

5. Park, K., Lee, H.: Study on Family Restaurant Recommendation for Customers based on
Benefit Sought and Demographical Variables. In Proc. on The Korea Academic Society of
Tourism and Leisure (2003)

6. Van Diggelen., F.: Indoor GPS Theory and Implementation. IEEE Position, Location &
Navigation Symposium (2002)

7. Pazzani, M. J.: A Framework for Collaborative, Content-Based and Demographic Filter-
ing. Artificial Intelligent Review (1999)

8. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sarti, M.: Combining
Contents-Based and Collaborative Filters in an Online Newspaper. ACM SIGIR Work-
shop on Recommender Systems, Berkeley, CA (1999)

9. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering Recom-
mendation Algorithms. In Proc. of the Tenth International World Wide Web Conference
on World Wide Web (2001)

10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman (2001)
11. Good, N., Schafer, B., Konstan, J., Borchers, A. Sarwar, B., Herlocker, J., Riedle, J.: Com-

bining Collaborative Filtering with Personal Agents for Better Recommendation. In Proc.
of the AAAI conference (1999) 439-446

12. Shardanand, U., Maes., P.: Social Information Filtering: Algorithms for Automating “Word
of Mouth” In Proc. of the SIGCHI Conf. on Human Factors in Computing Systems (1995)

13. Dey, A.K., Abowd, G.D.: Towards a better understanding of Context and Context-
Awareness. GVU Technical Report GITGVU-99-22, College of Computing, Georgia In-
stitute of Technolgy. 2, 2-14 (1999).

14. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research. Dartmouth
Computer Science Technical Report TR2000-381 (2000).

15. Sachin S., Pravin V., Yugyung L.: Context-aware Data Mining using Ontologies. LNCS
2813, 405–418 (2003).

Cascaded Star: A Hyper-Dimensional Model
for a Data Warehouse�

Songmei Yu, Vijayalakshmi Atluri, and Nabil Adam

MSIS Department and CIMIC
Rutgers University, NJ, USA

{songmei, atluri, adam}@cimic.rutgers.edu

Abstract. A data warehouse is defined as subject-oriented, integrated,
time-variant and nonvolatile collection of data. Often, the data represent-
ing different subjects is multi-dimensional in nature, where each dimen-
sion of each subject could again be multi-dimensional. We refer to this
as hyper-dimensional nature of data. Traditional multi-dimensional data
models (e.g., the star schema) cannot adequately model these data. This
is because, a star schema models one single multi-dimensional subject,
hence a complex query crossing different subjects at different dimensional
levels has to be specified as multiple queries and the results of each query
must be composed together manually. In this paper, we present a novel
data model, called the cascaded star model, to model hyper-dimensional
data, and propose the cascaded OLAP (COLAP) operations that enable
ad-hoc specification of queries that encompass multiple stars. Specifi-
cally, our COALP operations include cascaded-roll-up, cascaded-drill-
down, cascaded-slice, cascaded-dice and MCUBE. We show that COLAP
can be represented by the relational algebra to demonstrate that the cas-
caded star can be built on top of the traditional star schema framework.

1 Introduction

Data modelling is a fundamental research issue in a data warehouse. A tradi-
tional data warehouse normally uses one of the multidimensional data models
such as the star schema, fact constellation schema or snowflake schema. This
simple multidimensional data model is adequate to represent data pertaining to
a single subject, and the associated OLAP operations can be executed along the
dimension hierarchies accordingly.

However, in a decision-making process, we often encounter a situation where
a subject is multidimensional and each dimension of this subject could be mul-
tidimensional by itself again. We refer to this as hyper-dimensional nature of
data. Consider an example of a company manufacturing several brands of cars.
The data warehouse stores the product portfolios to compare the performance
of sales by time, by dealers, by car brands, in order to fine-tune the produc-
tion and sales strategies and to conduct an analysis of customer buying pat-
terns and their financial conditions. In this case, the central subject “Sales”
� The work is supported in part by the New Jersey Meadowlands Commission under

the project Meadowlands Environmental Research Institute.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 439–448, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

440 S. Yu, V. Atluri, and N. Adam

has several attributes that have considerable influence on it, including “Time”,
“Dealer”, “Brands” and “Customer”. For each dimension, there could be other
sub-dimensions associated with it. For example, within the dimension Customer,
we believe that the customer’s buying pattern is affected by several other factors
such as the customer’s salary, payment method and the home location, so the
dimension again has three sub-dimensions. When a dimension becomes an at-
tribute that has no sub-dimensions, we call it a single dimension. Since Sales has
multiple dimensions and each of its dimensions in turn are multi-dimensional,
the dimension Sales is hyper-dimensional, thus the data warehouse comprising
of these dimensions is a hyper-dimensional data warehouse (HDW).

HDW poses challenging requirements with respect to the design of the data
model, as well as specification of queries. The existing multidimensional data
models are not adequate to model it because firstly, a single multidimensional
data model by definition is only pertained to one subject with associated dimen-
sions as single dimensions, which cannot model the multidimensional nature of
each dimension and their inter-related relationships. Secondly, the queries posed
to this data warehouse are more complex than traditional ones, which usually
cross several dimensions at different sub-dimension levels. Traditional OLAP
operations on traditional data warehouse models are not capable to allow such
complex queries.

For instance, it is intuitive to build a star model for each dimension in the
earlier mentioned example. However, consider a more complex query: find out
the average salary of male customers with down-payment is 0, and bought HON-
DAPLX4WD Plate XYZ with the red color, through Manager ABC in dealer
DEF. In order to answer this query, we need to issue the following sub-queries:

– Sub-query 1: Retrieve the customers who bought the specified auto model
through Manager ABC and Dealer DEF from the datase in figure 1(a).

– Sub-query 2: Retrieve the average salary of customers who are males and
whose the down payments are 0, and bought the specified auto model from
the dataset in figure 1(b).

– Sub-query 3: Retrieve the dealers who sell the specified auto model in Red
from the dataset in figure (1(c).

– Sub-query 4: Join sub-query 1 and sub-query 2 to get result R, and then join
R with sub-query 3 to get the final answer.

Obviously, a user has to write several queries separately to perform Selection-
Projection-Join (SPJ) operations, first within each single star, and then compose
the results of each query to obtain the final result. This is time consuming, labor
intensive, and moreover, cannot support ad-hoc queries. The entire process again
has to be done manually. Moreover, there could be no way to join results from
each single star if there are no primary-foreign key restrictions. Our goal is to
have a more effective data model that allows users to issue one single query, and
to automatically execute the query more efficiently without users’ intervention.

This paper is organized as follows. We present the cascaded star cube in
section 2. In section 3, we introduce the cascaded OLAP (COLAP) operations

Cascaded Star: A Hyper-Dimensional Model for a Data Warehouse 441

(c) Brand

Manager
Employee
Address

Name
AutoModel

Price

Manager
ID

Gender
Age

Name
Salary

Customer

Employee
SS#

Gender
Age

Name
Salary

ManagerID

Address
Street
City
State

Country

(a) Dealer

Wheel
Engine

Window
Model
Color

Weight
Year

Dealer

 Wheel
Manufacturer

Size
ABS

StressDetection

Engine
Manufacturer
Combustion
Compression

Spark
Exhaust
Coolant

FinancialStatus
Payment
Address

SS#
Name

MaritalStatus
DOB

Gender
CarModel

 FinancialStatus
AnnualSalary

Employer
Title

Payment
Downpay

InterestRate
Period

MonthlyPay

 (b) Customer

Address
Town

County
State

Window
Manufacturer

Color
AntiDust

Power

Fig. 1. Using a star model for a data warehouse

built for a cascaded star model. We present the related work in section 4. This
paper is summarized in section 5.

2 A Cascaded Star Cube

Before we introduce the cascaded star model, we first define a single star cube
that serves as the fundamentals for the star model.

Definition 1. Single Star Cube. A single star cube S1 = (D, T), where:
1. D is the set of dimension tables where each dimension table Di ∈ D is [Ai,

PKi] such that Ai is the set of attributes of Di and PKi is the primary key
of Di,and

2. T = [V, PKD] is the fact table such that V is the set of measures and PKD =
{PKi} where PKi the primary key of {Di | Di ∈ D}.

More specifically, a single star cube, is composed of central measures and several
related dimensions. The central measures are represented in a central fact table
T . The dimensions are represented in dimension tables, a set D, each of which
consists of a primary key and several pre-defined attributes. Now we define a

442 S. Yu, V. Atluri, and N. Adam

cascaded star cube by extending the single star cube. Figure 2 depicts an exam-
ple, where a is a single dimension where each attribute within this dimension
is a simple value, b, c, d, e and f represent different dimensions of A, and g
represents one dimension of d. We refer to that b, c, d, e and f as sub-stars of A
and A as a parent-star of b, c, d, e and f . Different from a single star cube, the
primary key of a sub-star within a cascaded star cube is not derived directly by
composing the primary keys of its sub-dimensions, but is the star key.

A (M = 0)

f(M = 1)

e(M=1)

b(M = 1)

d(M = 1)

g(M = 2)

a

c(M = 1)

Fig. 2. A cascaded star model

A star key is essentially a primary key of a data cube that either serves as one
dimension of its parent star, or has one or more sub-stars as its dimensions.
It can be automatically generated by concatenating the primary keys from its
sub-stars/dimensions so that the key is unique. A star key is necessary since it
guarantees the simplicity and efficiency of join operation, especially when a star
has multiple sub-stars and serves as a dimension as its parent-star. There is no
need to propagate all the primary keys from the sub-stars to the parent-star.

Definition 2. Star Key. A star key SKi of a star Si, is defined as SKi =
g(PKD) serving as the primary key of Si, where:

1. PKD = {PK1, . . . , PKn} is the set of primary keys for the sub-stars {S1,
. . ., Sk} and single dimensions of Si, and

2. g is a concatenation function to generate SKi from PKD such that SKi is
unique.

Definition 3. Cascaded Star Cube. A cascaded star cube SC = (SS, DC , T C),
where:

1. SS is the set of star cubes such that each Si ∈ SS is either a single star cube
S1 or a cascaded star cube SC , and

2. Dc is the set of dimension tables of SC , where each dimension table Di ∈ DC

is [Ai, PKi] such that Ai is the set of attributes of Di and PKi is the primary
key of Di, and

Cascaded Star: A Hyper-Dimensional Model for a Data Warehouse 443

3. T C = [V, SKD, PKD] is the cascaded fact table such that V is the set of
central measures, SKD = {SKi} is the star key of {Si | Si ∈ SS}, and
PKD = {PKi} is the primary key of {Di | Di ∈ DC}.

Given a cascaded star cube SC = (SS, DC , T C), we refer to each Si ∈ SS as
a sub-star of SC . Each sub-star Si consists of a star key SKi as its primary
key, a set of primary keys from its sub-dimensions, and its own measures Vi.
By recursively defining the sub-stars, we reach the lowest level of dimensions
that are single stars (S1). We note that a single star cube is a special case of a
cascaded star cube by set the value of SS to null.

Furthermore, given a cascaded star cube SC , we refer to each Si ∈ SS as a
sub-star of SC at distance 1. Let Scentral be the central star cube. We use M ,
the value of the star level, to indicate the distance of a sub-star from the central
star. In particular, we denote the star level of an SC by M(SC) as the distance
of SC from Scentral. Therefore, M(Scentral) = 0. In addition, we use m(SC) to
denote the maximum star level of a cascaded star SC . In other words, m(SC)
indicates the star level of the farthest sub-star of SC .

Brand
Wheel
Engine

Window
Model
Color

Weight
Year

 Wheel
Manufacturer

Size
ABS

StressDetection

Engine
Manufacturer
Combustion
Compression

Spark
Exhaust
Coolant

Window
Manufacturer

Color
AntiDust

Power

Brand
Dealer
Date

Customer
Count
Sales

Date
Day

Month
Year

Dealer
Manager
Employee
Address

Name
AutoModel
SalePrice

Manager
Gender

Age
Name
Salary
Group

Employee
Gender

Age
Name
Salary

Manager Address
Street
City
State

Country

Customer
FinancialStatus

Payment
Address

SS#
Name

MaritalStatus
DOB

Gender
CarModel

 FinancialStatus
AnnualSalary

Employer
Title

Payment
Downpay

InterestRate
Period

MonthlyPay

Address
Town

County
State

Fig. 3. A cascaded star model for an HDW

444 S. Yu, V. Atluri, and N. Adam

Now we revise the motivation example in figure 3. Then the query posed to
figure 1 can be expressed in one single SQL-like statement and executed more
efficiently by the system automatically as follows: “select avg(F.AnnualSalary)
from Customer C, Dealer D, Manager M, Brand B, FinancialStatus F, Pay-
ment P, Sales S where C.Gender = Male and C.CarModel = HONDAPLX4WD
Plate XYZ and P.downpay = 0 and D.Name = DEF and D.M.Name = ABC
and B.color =Red and C.Customer = S.Customer and B.Brand = S.Brand and
D.Dealer = S.Dealer and M.Manager = D.Manager and C.FinancialStatus =
F.FiancialStatus”.

3 Cascaded OLAP Operations

Typical OLAP operations include roll-up, drill-down, slice, dice, pivot and CUBE
[1]. Since theOLAPoperations constitute the basic and frequentlyused operations,
we extend them in this paper so that they are applicable to an HDW and work on
the cascaded star model. Specifically, our proposed cascaded OLAP (COLAP) op-
erations include cascaded-roll-up, cascaded-drill-down, cascaded-slice, cascaded-
dice and MCUBE. As pivot does not really involve aggregation and computation
of measures, we will not discuss it further in this paper.

3.1 COLAP Operations

We first propose three new primitive COLAP operators, traverse, decompose
and jump, which help us subsequently define the COLAP operations. Note here
that the result from each primitive operator is also a relation by executing the
relational algebra operators. Due to space limit, we will not give examples for
each operator, which can be found in [2].

(1)Traverse. allows basic OLAP operations on single dimensions within an
S1 at some star level M = k with k > 0 (for example, sub-stars b, c, g, e
and f in figure 2, but not A and d since they have sub-stars as their dimen-
sions). Generally, it consists of the relational operations (SPJ operations) on
simple attributes within an S1, where the operation process can be performed
on the interested measures by rolling-up, drilling-down, slice or dice on the sim-
ple dimension hierarchies. The result is another smaller single star cube sliced
and diced from S1. This process can be expressed in the relational algebra as:
traverse(S) = πRS (σ(d=C)(S �	 D)), where S is a single star cube S1, D is a
set of single dimension tables with d is the set of attributes within D, C is a
set of selection conditions need to be satisfied, RS is a set of attributes being
projected within S.

(2)Decompose. treats a sub-star as a dimension for operations on measures of
a parent-star. For example, in figure 2, we can either traverse star g to perform
operations on d, or traverse stars b, c, e and f to perform operations on A. The
challenging issue is that one of the dimensions being traversed in SC is a sub-
star S1 by itself. We cannot build a concept hierarchy on a star S1 directly

Cascaded Star: A Hyper-Dimensional Model for a Data Warehouse 445

since it is not feasible to build a dimension hierarchy on a composite dimension.
In such a case, we need to perform decomposition on the cascaded star until
a single star with the highest M value is reached where all sub-dimensions are
single dimensions. This process can be expressed in the relational algebra as:
decompose(P, Q) = πRp(σd=C(P �	 traverse(Q)), where Q is a S1 serving as
one dimension of P which is a cascaded star SC , d is the set of dimensions of Q,
C is the set of selection conditions need to be satisfied, Rp is a set of attributes
being projected within P .

(3)Jump. is to perform operations on source and destination stars with different
M values. For example, in figure 2, one can request a jump from star b to star c, or
from star c to star g. When a jump is requested, a join is made between the source
star and the destination star. These two stars need not necessarily be on the
same star level. In other words, these two stars may form sub-stars of their own
parent-stars. However, we do not consider a jump from a sub-star to its parent-
star since this can be accomplished by decompose. Note here that decompose is
not a special case of jump because decompose only works on the parent-star and
sub-star and jump does not request this kind of relationship. This process can
be expressed in the relational algebra as: jump(Si, Sj) = πRi,j (traverse(Si) �	
traverse(Sj)), where Si and Sj are the source and destination stars, and Ri,j is
the set of attributes of relations being projected from Si or Sj .

Now we introduce cascaded-roll-up, cascaded-drill-down, cascaded-slice and
cascaded-dice based on the primitive operators we developed above.

(a) Cascaded-roll-up. involves traversing by going to the lower star level of
one or more than one sub-stars, or removing one or more than one sub-stars,
and performing operations on the corresponding measures of parent-stars. We
first do basic traverse on an S1 with M = k. Then we reach its parent sub-star
at M = (k − 1), which itself is an Sc. A decomposition is needed here, which
could be iterated until we reach M = 0. The algebra expression is as follows:
cascaded-roll-up(S1, SC) = decompose(SC , traverse(S1)).

(b)Cascaded-drill-down. is the opposite of cascaded-roll-up, where we start
from an Sc at M = k then drill down along one of its sub-star dimensions
until reach the desired cascaded level at M = n, where n > k. Cascaded-drill-
down allows navigation from less detailed to more detailed information by either
stepping down the star levels or introducing additional sub-stars or dimensions.
We do decomposition until we reach a single sub-star with M = n and per-
form the basic traverse process accordingly. The algebra expression is as follows:
cascaded-drill-down(SC, S1) = traverse(decompose(SC, S1).

(b)Cascaded-slice and Cascaded-dice. operations generate a sub-cube by
specifying certain criteria on one (in case of cascaded-slice) or more than one (in
case of cascaded-dice) sub-stars, resulting in a cascaded sub-star cube. Cascaded-
slice first traverses a single star cube at M = k to meet a certain selection
requirement, then moves up one level to perform decomposition at that level.
Basically, it is a two level operation, a parent-star and a sub-star, where we

446 S. Yu, V. Atluri, and N. Adam

compute the interested measurements in the parent-star by specifying a selection
criterion at the sub-star. A cascaded-dice operation is more complicated than
cascaded-slice because it makes selections on more than one sub-star, and hence
a jump operation is needed. This is also a two level operation. Note that here
we assume a selection is made on only two sub-stars and it is easy to extend it
to multiple sub-stars. The algebra expressions are as follows: cascaded-slice(SC,
S1) = decompose(SC , S1), where S1(M = k) is a sub-star of SC(M = k −
1); cascaded-dice(SC, S1, S2) = decompose(SC , jump(S1, S2)), where S1 and
S2(M = k) are sub-stars of SC(M = k − 1).

3.2 MCUBE

To perform a CUBE computation on a cascaded star model, one needs to com-
pute the cube by considering all the multiple levels. Evidently, the traditional
CUBE operation is not adequate to serve the multi-dimensional queries because
CUBE works only with a single star and cannot handle operations across mul-
tiple dimensions as sub-stars of a cascaded star SC .

Definition of MCUBE. MCUBE, stands for multiple cubes, computes multiple
CUBE operations on relations such as base tables and materialized views. We
represent MCUBE in the algebra expression as follows: MCUBE(SC) = op(V,
cascaded-roll-up(Si, S

C)), where op is a relational aggregate operator such as
sum, V is the set of central measures of SC , Si is a set of sub-stars of SC which
can be either SC or S1. This expression indicates that MCUBE is essentially
the aggregation process from multiple cascaded-roll-ups, hence cascaded-roll-up
provides the basis for computing MCUBE.

The traditional CUBE function can be typically computed using the 2N -
algorithm[1], which has been implemented in the Microsoft SQL Server. We can
extend it for the cascaded star cube (the extension is omitted for the space limit).

Steps in Processing MCUBE. Essentially, we first issue the SQL-like query
using MCUBE. This query adopts the standard SQL format with MCUBE in-
cluded. The query is processed by decomposing it and starting from the m = 0
level, and performing aggregate operations at each level.

Step 1: Aggregation on a single star cube. When m = 0, we are at a single star
cube. MCUBE represents CUBE operations at this level, and the computation
basically generates the power set of the aggregation columns. Basically, (1) it first
aggregates over all 〈 select list 〉 attributes in the CUBE clause as in a standard
Group By. (2) Then it performs aggregate computation on the result from the
sub-star by substituting ALL for the aggregation columns. If the cardinality
of the N attributes are C1, . . . , CN , then the cardinality of the resulting cube
relation is

∏
(Ci + 1)(C1 × . . . , CN). The extra value in each domain is ALL.

(3)If we only want a roll-up or drill-down, then the full CUBE is not necessary.
Generally, performing CUBE on a single star involves computing views of an
aggregation of interest on the relations.

Cascaded Star: A Hyper-Dimensional Model for a Data Warehouse 447

Step 2: Aggregation on a cascaded star cube. When m ≥ 1, we require aggregation
on a star Sc with one or more of dimensions as sub-stars. This is where the
MCUBE computation differs from that of the cube. For example, in figure 3,
after performing MCUBE (m = 0) on Customer, we can aggregate the sales
generated from step 1 on central star in order to view the total sales amount.

4 Related Work

Significant research in the area of data model of a data warehouses is due to
[3,4,5,6,7,8,9]. For example, Jensen et al. in [6] construct multidimensional data
model for location based services, where each dimension has partial containment
relationship and can be transformed into simple dimension hierarchies accord-
ingly. Timko et al. in [9] propose a data model to capture the complexities of
location-based data in the static and dynamic contents. Generally, all of the
above work addresses issues in data warehouses based on the star model. Specif-
ically, they use the star schema to represent only one category of interested mea-
sures. Since they do not support the cascaded dimensions in their warehouses,
the hyper-dimensional nature of data cannot be modelled, and users can only
query on the limited measures within one subject domain and cannot effectively
analyze the inter-relationships by submitting a single query.

Therefore, our work is to build a comprehensive data warehouse that is capa-
ble of storing different subject information where each of which is recorded for
different purposes but all serve as the major dimensions to monitor the central
subject, and hence is multi-dimensional in itself. The preliminary concepts of
the cascaded star model are presented in [10], and additional challenges involved
in processing the queries on an HDW have been identified in [11]. In this pa-
per, we formalize the notions of the cascaded star model, which serve as the
basis for cascaded OLAP operations that enable specification of complex anal-
ysis queries on this model. Based on the best of our knowledge, our proposed
model and methods are currently the only work for the hyper-dimensional data
warehouses, which analyze the inter-relationships among multiple subjects and
generate associated OLAP results in an efficient way.

5 Conclusions and Future Research

In this paper we propose a new data modeling framework, cascaded star model,
for a data warehouse by considering hyper-dimensional nature of data and the
complexity of queries crossing different dimensions. First we showed a motivation
example, which demands for a new data model to organize the data in a more
effective way and answer complex queries more efficiently. Then we define the
cascaded star cube. We revised the motivation example to show that a cascaded
star model is better suited for complex query analysis for a data warehouse than
a simple multidimensional data model. We then introduce the cascaded OLAP
operations that enable data analysis on a cascaded star model.

448 S. Yu, V. Atluri, and N. Adam

Basically we made two important contributions in this paper. The first one is
to extend a single star schema to a cascaded star schema by combining several
stars, one of which could be a cascaded star by itself. Then we develop cascaded
OLAP operators, including cascaded-roll-up, cascaded-drill-down, cascaded-slice
cascaded-dice and MCUBE, to address complex operations on a cascaded star.
Our future work will focus on incorporating COLAP into data mining functions
such as classification and prediction to enhance interactive mining of knowledge
at multiple levels of abstraction for Web Logs (Blogs) data.

References

1. Gray, J., Chaudhuri, S.: Data cube: A relational aggregation operator generating
group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery 1
(1997)

2. Yu, S., Atluri, V., Adam, N.: Cascaded star and cascaded olap for spatial data
warehouses. Technical Report (2005)

3. Gupta, H., Mumick, I.: Selection of views to materialize in a data warehouse.
Transactions of Knowledge and Data Engineering (TKDE) 17 (2005) 24–43

4. Han, J., Kamber, M. In: Data Mining: Concepts and Techniques. 1 edn. Morgan
Kaufman Publishers (2001)

5. Han, J., Stefanovic, N., Koperski, K.: Selective materialization: An efficient method
for spatial data cube construction. In: Proc. of 1998 Pacific-Asia Conf. on Knowl-
edge Discovery and Data Mining. Lecture Notes in Computer Science, Springer
(1998)

6. Jensen, C., Kligys, A., Pedersen, T., Timko, I.: Multidimensional data modeling
for location-based services. Very Large Data Base Journal 13 (2004) 1–21

7. Shekhar, S., Lu, C., Tan, X., Chawla, S.: Map Cube: A Visualization Tool for
Spatial Data Warehouses. In: Geographic Data Mining and Knowledge Discovery.
1 edn. Taylor and Francis (2001) 74–110

8. Stefanovic, N., Jan, J., Koperski, K.: Object-based selective materialization for
efficient implementation of spatial data cubes. IEEE Transactions on Knowledge
and Data Engineering(TKDE) 12 (2000) 938–958

9. Timoko, I., Pedersen, T.: Capturing complex multidimensional data in location-
based warehouses. In: Proc. of ACM GIS. Lecture Notes in Computer Science,
Springer (2004)

10. Adam, N., Atluri, V., Yu, S., Yesha, Y.: Efficient storage and management of
environmental information. In Kobler, B., Hariharan, P., eds.: Proc. of the 19th
IEEE Symposium on Mass Storage Systems, NASA (2002) 165–181

11. Adam, N., Atluri, V., Guo, D., Yu, S.: Chapter 18: Challenges in Environmental
Data Warehousing and Mining. In: Data Mining: Next Generation Challenges and
Future Directions. 1 edn. AAAI Press (2004) 315–335

Using JDOSecure to Introduce Role-Based
Permissions to Java Data Objects-Based

Applications

Matthias Merz and Markus Aleksy

University of Mannheim
Department of Information Systems III
L 5,5, D-68131 Mannheim, Germany
{merz, aleksy}@uni-mannheim.de

Abstract. The Java Data Objects specification is designed as lightweight
persistence approach. Thus, JDO neither supports user authentication
nor role-based authorization. Consequently, users are able to query the
entire data store as well as to delete persistent objects without any
restriction. The novel security approach JDOSecure was developed at
the University of Mannheim to prevent unauthorized access to the data
store while using the JDO API. Based on the dynamic proxy approach,
JDOSecure introduces role-based permissions to JDO-based applications.
In this paper we focuses on how JDOSecure enables Java Data Objects-
based applications to deal with role-based permissions.

1 The Java Data Objects Specification

The Java Data Objects (JDO) industry standard appears to provide a promising
framework for persisting Java objects in an efficient way. It was developed by an
initiative of Sun Microsystems under the auspices of the Java Community Pro-
cess [Jav04]. JDO enables application developers to deal with persistent objects
in a transparent fashion and, in addition, enables the use of various data store
types from different vendors. It also provides a Java oriented query language
JDO Query Language (JDOQL), that acquires access to persistent instances
from different data store types (e.g. relational or objectoriented databases).

To provide application programmers a common, transparent, and Java-centric
data access technique on the one hand, and to achieve data store independency on
the other, the JDO specification defines two types of interfaces. First, the JDO Ap-
plication Programming Interface (API), which is of primary interest to application
developers and allows to access and manage the JDO instance life cycle. And sec-
ond, the JDOService Providers Interface (SPI), which is of primary interest to con-
tainer providers and JDO vendors. The JDO SPI specifies the contracts between
suppliers of persistence-capable classes and the runtime environment [Jav04].

Every instance that should be managed by a JDO implementation has to
implement the PersistenceCapable interface. As part of the JDO SPI, this
interface has not to be implemented explicitly by an application developer.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 449–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

450 M. Merz and M. Aleksy

Instead, the JDO specification prefers a post-processor tool (JDO-Enhancer)
that automatically implements the PersistenceCapable interface. It transforms
regular Java classes into persistent classes by adding the code to handle persis-
tence. A XML-based persistence descriptor has to be configured previously. The
JDO-Enhancer evaluates this information and modifies the Java bytecode of
these classes adequately. The JDO specification assures the compatibility of the
generated bytecode for the use within different JDO implementations.

The interfaces and classes of the JDO API are located in the packagejavax.jdo.
The construction of a PersistenceManagerFactory instance is usually done by
calling the static getPersistenceManagerFactory(Propertiesprops)method
of the JDOHelper class. Using this method enables an later replacement of the
currently preferred JDO implementation without source code modification. The
PersistenceManager serves as primary application interface and provides meth-
ods to control the life cycle of persistent objects.

Although JDO provides a standardized, transparent and data store inde-
pendent persistence solution including tremendous benefits to Java application
developers, the JDO specification has been discussed critically in the Java com-
munity. For example, the substantial overlaps between Enterprise JavaBeans
[Jav03] and JDO has been discussed in [KM03]. Beside of technical details like the
JDO enhancement process [The03], the conceptual design as a lightweight per-
sistence approach has been criticized sometimes. Some experts even suggest, to
shift JDO to a more comprehensive approach including distributed access func-
tions to the persistent objects and multi-address-space communication [The01].
As a result of it’s lightweight nature, JDO does not provide a role-based security
architecture, e.g. to restrict the access of individual users to the data store. With
aid of a PersistenceManager instance, every user is able to query the entire data
store as well as to delete any persistent object without further restriction.

To understand the benefits of JDOSecure and it’s architecture in detail, the
next section recalls the design of the Java 2 Security Architecture.

2 The Java 2 Security Architecture

The Java security architecture is based on three components: Bytecode verifier,
class loader and security manager (cf. [Sun05] and [Gon02]). The bytecode ver-
ifier checks the correctness of the bytecode and prevents stack overflows. The
class loader locates and loads classes into the Java Virtual Machine (JVM) and
defines a unique namespace for each class. The security manager or, more accu-
rately, the AccessController instance checks the invocation of security relevant
operations e.g. local file system access, the setup of system properties or the use
of network sockets.

The code-centric authorization architecture in Java 1.x allows to restrict the
access to system resources depending on the source and the author/signer of
the bytecode. It was intended to ensure that a malicious Java program could
not damage the user’s system. With introduction of the Java Authentication
and Authorization Service (JAAS) in Java 1.4 it gets also possible to restrict

Using JDOSecure to Introduce Role-Based Permissions 451

the access to resources depending on the currently logged on user (user-centric
authorization). During the authentication process a user is identified by the
system e.g. with the help of user identification and password (cf. figure 1).

Authentication

 User

Authentication Service

Determines the identity
of a user

Name, Pass word

Fig. 1. Authentication Service

Authorization

Operation
Resource

Authorization Service
Determines whether or not

a user can access a resource
 User

Fig. 2. Authorization Service

If the user identity is authenticated successfully, the system is able to validate
the user permissions before granting access to security relevant resources (see
figure 2). In Java this mechanism is implemented by the SecurityManagerwhich
delegates access-requests to the AccessController. This instance validates the
permissions and allows or disallows the access to the resources.

3 Security Deficits of the JDO Specification

As already outlined in section 1, the JDO architecture is designed as a lightweight
persistence approach without role-based security. Consequently, the JDO persis-
tence layer does not provide any methods for user authentication or authorization.
Every user has full access privileges to store, query, update, and delete persis-
tent objects without further restriction. For example using the getObjectById()
method allows to receive any persistent object whereas the deletePersistent()
method enables a user to delete every object from the data store. Only the meta-
data access to PersistenceCapable instances is restricted by JDOPermissions.

At first glance, a slight improvement could be achieved by setting up indi-
vidual user identifications at the level of the data store. This would allow the
construction of different and user dependent PersistenceManagerFactory in-
stances. If, however, all users should have access to a common database, indi-
vidual user identifications and appropriate permissions have to be defined inside
the data store. However, configuring user permissions to restrict the access to
certain objects is quite complex. For example, when using a relational database,
the permissions would have to be configured based on the object-relational map-
ping scheme and the structure of the tables. Thus, it leads to the disadvantage
of causing a strong dependency between the user application on the one hand
and the specific data store on the other. In addition, a later replacement of the
currently preferred data store leads to a time consuming and expensive migra-
tion. It is obvious that the strong binding of security permissions to a specific
data store would contradict the intention of JDO, which is to provide application
programmers a data store independent persistence abstraction layer.

452 M. Merz and M. Aleksy

As outlined in the next section, JDOSecure considers an alternative approach
and introduces data store independent and user specific permissions to JDO.

4 The Novel Security Approach JDOSecure

JDOSecure allows to control the access to store, query, update and delete persis-
tent objects when using the JDO API. It introduces a fine grained access control
mechanism to the JDO persistence layer and allows the definition of role-based
permissions. Based on the dynamic proxy approach, JDOSecure is able to col-
laborate with any JDO implementation without source code modification or
recompilation [Mer06].

4.1 Design Goals

Before we present the JDOSecure system architecture, the basic design goals
will be outlined. As already mentioned, we did not aim at a complete redesign of
JDO, but instead, we tried to provide the existing specification with additional
functionality. Therefore, we put emphasis on the following aspects:

• Standard Compliance
Introducing role-based access control functionality to JDO applications had
to be realized without the need to modify or extend the JDO specification.
The main reason for this design goal was to be able to keep standard compli-
ance and portability of existing applications, so that they can be continued
to operate. The functional enhancements were developed on the basis of
“add-ons” of the standard in a way that they can be used comfortably by
newly developed clients.
• Portability

This is an important criterion, because JDOSecure-based applications should
be able to run on a multitude of different JDO implementations. As a conse-
quence, in order to guarantee portability, we have to refrain from using JDO
implementation and data store specific features.
• Use of Existing Java Specifications

By using existing Java specifications the developers can remain in the “Java
world.” This decision might shorten initial period and development time and
thus can reduce development costs. Furthermore this aspect helps to improve
the portability.

4.2 JDOSecure Authentication

As described in section 1, a PersistenceManagerFactory instance can be re-
ceived by calling the static getPersistenceManagerFactory(Propertiesprops)
method of the JDOHelper class. In contrast to JDO vendor specific classes, using
JDOHelper ensures an later replacement of the currently preferred JDO imple-
mentation without source code modification.

JDOSecure extends this concept in order to facilitate the collaboration be-
tween JDOSecure and any JDO implementation. Hence, JDOSecure provides a

Using JDOSecure to Introduce Role-Based Permissions 453

JDOSecureHelper class which is derived from JDOHelper and serves as entry-
point for JDO applications. The JDOSecureHelper class overrides the getPersi-
stenceManagerFactory(Properties props) method.

The Properties object passed to the JDOHelper class contains amongst oth-
ers user identification and password to access a JDO resource. As mentioned in
section 3, the JDO architecture does not distinguish between different users and
shifts this burden to the JDO resource. The JDOSecureHelper class is designed to
close this gap. It analyzes the passed Properties object to authenticate a user at
the JDO persistence layer when invoking the getPersistenceManagerFactory
(Properties props) method.

JDOSecureHelper

LoginContextCreate JDOLoginModule

Login

JDOCallback-
Handler

Create

Get Properties

Get Username

Get Password

SucceededReturn
LoginContext

Check User
and Password

Fig. 3. UML Sequence Diagram to Outline the Authentication Process

As illustrated in Figure 3, the JDOSecureHelper class constructs a LoginCon-
text instance. This instance forwards the authentication-request to the JDOLog-
inModule. A JDOCallbackHandlerwill be created and requests the Properties
object that was previously be passed to the JDOSecureHelper instance. The
JDOLoginModule gets the ConnectionUserName and the ConnectionPassword
from the JDOCallbackHandler to authenticate the user. If this process is com-
pleted without throwing a FailedLoginException the LoginContext will re-
turned to the JDOSecureHelper instance.

454 M. Merz and M. Aleksy

Once, a user has authenticated successfully, the JDOSecureHelper class con-
structs a new PersistenceManagerFactory instance (or more accurately a proxy
object of this instance, cf. section 4.3). The basic idea in this context is to replace
username and password in the Properties object, before the JDOSecureHelper
class invokes the getPersistenceManagerFactory(Properties props)method
of the original JDOHelper class. The intention of this replacement is to prevent a
direct connection between user and JDO resource by using the JDOHelper class
instead of the JDOSecureHelper class as a “workaround”. The replaced password
is unknown to the user and has to be configured by a security-administrator for
the JDOSecure implementation and the JDO resource previously.

4.3 The JDOSecure Architecture

In an attempt to meet the JDOSecure design goals (cf. 4.1), the JDOSecure
architecture implements the dynamic proxy pattern [Blo00]. A proxy instance
implements the interfaces of a specific object and allows to control the access to it
[GHJV95]. Whereas a static proxy has to be defined at compile time, the dynamic
proxy concept allows the construction of a proxy instance at runtime [Blo00].
An dynamic proxy instance is always associated with an InvocationHandler.
Any method invocation directed to proxy instance will be redirected to the
InvocationHandler.invoke() method. The invoke() method allows to inter-
cept method calls before they are forwarded to the original object.

Class
JDOSecureHelper

Class
PMFProxy

Class
PMFInvocation

Handler

Class
PMInvocation

Handler

Interface
PersistenceM agerFactory

Class
JDOHelper creates

creates

forwards

Class
JDOMakePersistent

Permission

Class
JDOQuery

Permission

Class
JDODeletePersistence

Permission

Class
PMProxy

0..*

0..*

Interface
PersistenceManager

0..*

0..*

forwards

Class
JDOUserhas

1

Interface
Permission checks

is

Class
JDOSecurity

Action
run

11

1

1

manages

manages

Fig. 4. Context between JAAS-Authorization and JDOSecure

The JDOSecure architecture implements the dynamic proxy concept as shown
in figure 4. The basic idea is to interpose a proxy between PersistenceManager
and a JDO-based application. This would allow to validate specific user permis-
sions at the PMInvocationHandler instance, before a method call is forwarded
to the PersistenceManager. If for example a user does not have the sufficient

Using JDOSecure to Introduce Role-Based Permissions 455

privilege to delete a PersistenceCapable object (JDODeletePermission, see
section 4.4), a Java AccessControlException is thrown when invoking the
deletePersistent() method and the forwarding to the PersistenceManager
is avoided.

As mentioned above, the JDOSecure architecture avoids a direct user interac-
tion with the original PersistenceManagerFactory-instance. This allows to ma-
nipulate method calls which are directed to the PersistenceManagerFactory.
Invoking the getPersistenceManager() method, the PMFInvocationHandler
does not return a PersistenceManager instance but another proxy object
(PMProxy). JDOSecure uses the associated InvocationHandler instance (PM-
InvocationHandler) to manipulate method calls directed to the Persistence-
Manager. Thus, the PMInvocationHandler represents the entry-point to
implement the authorization function and allows to determine whether or not a
user is allowed to invoke a PersistenceManager method.

4.4 JDOSecure Authorization

JDOSecure enables the set-up of user specific permissions to allow or disallow
the invocation of PersistenceManager methods. After completing the authen-
tication phase and by invoking the getPersistenceManager()method, the user
receives a proxy of a PersistenceManager instance (PMProxy). Thus, JDOSe-
cure is able to use the assigned PMInvocationHandler to validate, if an already
authenticated JDOUser has the permission to make a specific method invocation.

The permissions are located in a separate policy-file and can be defined in-
dividually for any user. In the recent version, JDOSecure distinguishes between
different permissions as represented in Table 1. JDOSecure enables also the lim-
itation of user permissions to a certain package or a specific class.

Table 1. JDOSecure Permissions

Methods of a PersistenceManager, that Necessary permission to invoke the
require specific permissions to be according method for a specific
executed in the context of JDOSecure: class or package:
makePersistent() JDOMakePersistent-
makePersistentAll() Permission < Class >
deletePersistent() JDODeletePersistent-
deletePersistentAll() Permission < Class >
getExtent() JDOQueryPermission < Class >
Query.execute()
– JDOUpdatePermission < Class >

With regard to the user permission defined in the policy-file the PMInvocation-
Handler is able to validate if a specific PersistenceManagermethod invocation
is allowed. Thus, a JDOSecurityAction instance will be constructed and passed
to the static doAs(subject,action)method of the Subject class. Consequently,

456 M. Merz and M. Aleksy

the validation of the permissions is delegated to the AccessController as part of
the Java 2 Security Architecture. If a user has the permission to make a method
call with regard to a particular PersistentCapable object, the method call is
forwarded to the original PersistenceManager instance. In the other case, a Java
AccessControlException is thrown.

It becomes apparent that the presented approach is quite complex. Even worse,
many details like the mechanism to control the update of object attributes by in-
terposing a further proxy between a StateManager and a PersistenceCapable
instance are disregarded in this context because of space limitations (for a more
technical exposition on JDOSecure, we refer to [Mer06]). Nevertheless, JDOSe-
cure is enable to restrict updates of object attributes, even though JDO does not
provide a specific update-method as a result of JDO’s transparent persistence
concept.

5 Using JDOSecure in Context of a JDO Based
Application

Having illustrated the basic architecture of JDOSecure in the last section, we are
now focussing on how to use JDOSecure in context of a JDO-based application
and present some interesting Java code snippets.

Initially, JDOSecure needs to be configured by setting up different user ac-
counts and passwords. Therefore, JDOSecure provides two user configuration
files. The users which are generally allowed to access the persistent instances
of the data store by using JDO and JDOSecure have to be defined in the
JDOSecure-user-accounts.propertiesfile. When invoking the getPersisten-
ceManagerFactory(Properties props) method of the JDOSecureHelper class,
JDOSecure uses the information of this configuration file to authenticate a user.
As mentioned in section 4.2, after a successful authentication, the username
and password will be replaced before the JDOSecureHelper class invokes the
getPersistenceManagerFactory(Properties props) method of the original
JDOHelper class. Therefore, JDOSecure needs to know the user account and
password to access the underlying database. This information has to be set up
in the JDOSecure.properties file.

Beside the information to authenticate a user and enable JDOSecure to ac-
cess the data store, a security-administrator has also to configure authorization
settings. The set-up of user/role permissions have to be configured in the JAAS
policy-file.

In a scenario where a “guest” should be allowed to query all instances of
a package sample, the permission can be defined for this principal in a JAAS
policy-file as follows. In this context, the security-administrator has the choice
to treat the guest as a single user (JDOUser) or a general role (JDORole).

grant Principal JDOUser ‘‘guest"{
permission JDOQueryPermission ‘‘sample.*";

}

Using JDOSecure to Introduce Role-Based Permissions 457

As JDOSecure is based on JAAS, the Java SecurityManager has to activated
to participate of the security benefits. One possibility is to use Java Virtual
Machine command-line switches when invoking the JDO-based application, like
outlined in the following code snippet:

-Djava.security.manager
-Djava.security.policy=JDOAccessControl.policy
-Djava.security.auth.login.config=JDOSecure_jaas.config

The first switch is responsible to activate the Java SecurityManager. The
second line defines the source, where the user permissions are located, e.g. in-
cluding a JDOQueryPermission for a principal guest as described above. And
finally, the last line refers to a config file, which defines the JDOLoginModule to
authenticate a user:

JDOAccessControl{
JDOLoginModule required debug=false;

};

To interpose JDOSecure between a JDO-based application and a JDO im-
plementation, only one modification in the Java source code has to be made.
The JDOSecureHelper class has to be used instead of the JDOHelper to re-
ceive an instance of a PersistenceManagerFactory. Beside this slight modi-
fication only user account and password to access JDOSecure has to be con-
figured adequately. However, an application should be extended by adding try
and catch(AccessControlException ace) blocks to handle possible security
exceptions at run-time.

It becomes apparent, that a user does not even be aware of the interception.
Moreover, within these slight modifications it gets possible to introduce role-
based permissions in every JDO-based application.

6 Conclusion and Further Work

In this article the novel security approach JDOSecure is introduced and the main
advantages are highlighted. JDOSecure introduces a fine grained access control
mechanism to the JDO persistence layer and allows the definition of role-based
permissions. In the current version the permissions can be defined individually
for every user/role with regards to certain operations (create, delete, update
or query) and a specific class/package. Based on the dynamic proxy approach,
JDOSecure is able to collaborate with any JDO implementation without source
code modification or recompilation.

However, as it turns out in the last section, defining appropriate permissions
in simple text-files becomes more and more complex with an increasing num-
ber of different users and roles. To simplify the process of introduce role-based
permissions to Java Data Objects-based applications, we will develop a users,
roles, and permissions management system for the use within an upcoming ver-
sion of JDOSecure. This management system will allow to store the necessary

458 M. Merz and M. Aleksy

authentication and authorization information in any arbitrary JDO resource.
Furthermore, a Java-based administration utility with a graphical user interface
will simplifies the maintenance of security privileges and permissions.

References

[Blo00] Jeremy Blosser. Explore the Dynamic Proxy API. http://java.sun.com/
developer/ technicalArticles/DataTypes/proxy/, 2000.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

[Gon02] Li Gong. Java 2 Platform Security Architecture. http://java.sun.com/j2se/
1.4.2/docs/guide/security/spec/security-spec.doc.html, 2002.

[Jav03] Java Community Process. JSR-153: Enterprise JavaBeans 2.1, 2003.
[Jav04] Java Community Process. JSR-012: Java Data Objects (JDO) Specifica-

tion, Maintenance Draft Review, 2004.
[KM03] Axel Korthaus and Matthias Merz. A Critical Analysis of JDO in the Con-

text of J2EE. In Al-Ani Ban, H. R. Arabnia, and Mun Youngsong, editors,
Proceedings of the 2003 International Conference on Software Engineer-
ing Research and Practice (SERP ’03), volume I, pages p. 34–40. CSREA
Press, 2003.

[Mer06] Matthias Merz. Using the Dynamic Proxy Approach to Introduce Role-
Based Security to Java Data Objects. Eighteenth International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE’06), San
Francisco, USA, 5-7. July, 2006.

[Sun05] Sun Microsystems. The Java Language Specification. Addison-Wesley Pro-
fessional, 3rd edition, 2005.

[The01] TheServerSide.COM. Craig Russell Responds to Roger Sessions’ Critique
of JDO. http://www.theserverside.com/articles/article.tss?l= Russelvs-
Sessions, 2001.

[The03] TheServerSide.COM. A Criticism of Java Data Objects (JDO). http://
www.theserverside.com/news/thread.tss?thread id=8571, 2003.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 459 – 466, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Forced Transplant Algorithm for Dynamic R-tree
Implementation

Mingbo Zhang1,2, Feng Lu1, and Changxiu Cheng1

1 State Key Laboratory of Resources and Environmental Information System,
Institute of Geographic Sciences and Natural Resources Research,

Chinese Academy of Sciences, Beijing, 100101, P.R. China
2 Department of Architecture Engineering, Shandong University of Technology,

Zibo, 255049, P.R. China
{zhangmb, luf, chengcx}@lreis.ac.cn

Abstract. Spatial access methods play a crucial role in spatial database man-
agement and manipulation. The R-tree and its variations have been widely ac-
cepted as some of the most efficient spatial indexing structures in recent years.
However, neither considers storage utilization and the global optimization of a
R-tree structure. Presented in this paper is a new optimization technique named
forced transplant algorithm, which can improve the node storage utilization and
optimize the R-tree overall structures at the same time. Our experiments show
that the R-tree with our new optimization technique achieves almost 100% stor-
age utilization and excellent query performance for all types of data.

1 Introduction

In order to handle spatial data in a large database efficiently, numerous spatial index-
ing structures have been proposed, such as grid file, buddy tree, K-D-B tree, hB tree
and LSD tree for point dataset, R-tree, cell-tree and linear quad-tree for line, and
polygon datasets (Gaede & Gunther, 1998). Among them, R-tree (Guttman, 1984) and
its variations have been widely used in many spatial database related applications. A
R-tree is a height-balanced tree and a natural extension of B-tree in k-dimensions
space. Implemented with a heuristic optimization, the optimization parameters of R-
tree include coverage, margin, dead-area, overlap, storage utilization, and distribution
among other parameters (Theodoridis & Sellis, 1994). The known optimization pa-
rameters affect each other in such a complex way that it becomes impossible to get
one without influencing the others, which may cause the deterioration of R-tree per-
formance. Most R-tree variations, such as R+-tree (Sellis et al., 1987), R*-tree
(Beckmann et al., 1990) and Hilbert R-tree (Kamel & Faloutsos, 1994), improved
search performance with different optimization techniques.

However, none of the current R-tree implementation techniques considers both
storage utilization and the global optimization of R-tree structure. In this paper, a new
technique named forced transplant algorithm is proposed, which can improve the
node storage utilization and optimize the R-tree overall structures simultaneously.

460 M. Zhang, F. Lu, and C. Cheng

The remainder of this paper is organized as follows. Section 2 reviews and analyzes
the available optimization techniques of R-tree. Section 3 presents the forced transplant
technique. Several experiments are conducted with real data sets, and the results are
discussed and analyzed in section 4. Finally, a conclusion is drawn in section 5.

2 Optimization Techniques for R-tree

When different heuristic optimization approaches are adopted, various R-trees with
differing structures can be constructed for the same datasets. In the course of con-
struction, although no periodic reorganization is required, the directory rectangle
formed by early data records will no longer be appropriate and the search perform-
ance of R-tree would deteriorate gradually along with the insertion of new data
records. The traditional 1-to-2 node splitting algorithms with local dynamic reorgani-
zation have almost no effect on the optimization of global R-tree structures. Conse-
quently, some optimization techniques for R-tree have been proposed to promote the
reasonable flow of data records between index nodes, to optimize the overall structure
of R-tree and to improve the node storage utilization.

The forced reinsertion was proposed by Beckmann. For an overflowed node, split-
ting is not executed at once, but first a set number of records are deleted from the
overflowed node and then they are reinserted into the tree using the algorithm of
‘ChooseLeaf’ so that records have a chance of being reallocated into different nodes.
The forced reinsertion significantly improves the search performance due to the re-
duction of overlapping between nodes and the decrease in the occurrence of node
splitting. However, the forced reinsertion is time-consuming because all records in the
overflowed node must be sorted first by distances between their centers and the center
of the overflowed node, plus frequent calls to the insertion algorithm.

SHIFT insert algorithm (Garcia, et al., 1998), similar to the forced insertion, per-
mits the early inserted records to choose more appropriate nodes so as to improve the
data reorganization between sibling nodes and to optimize the global R-tree structure.
Unlike forced reinsertion, SHIFT algorithm only creates a new node if no siblings can
be found to absorb one of the subsets created by a split. So, SHIFT can improve stor-
age utilization at the expense of additional node splitting and insert costs.

Node restructuring algorithm (Garcia, et al., 1999) performs post-optimization for
existing R-trees. This algorithm calls recursions in the tree branches that need restruc-
turing from bottom to the root. All of the overlapped sibling nodes must first be
allocated to the node needing restructuring, and then split if the node becomes over-
flowed. The disadvantage of node restructuring algorithm is that no rules are used to
decide the sequence of the overlapped nodes that would influence the global tree
structure after restructuring.

Schreck & Chen (2000) proposed a branch grafting method aimed at getting more
desirable results and reducing the number of nodes created in R-trees. The redistribu-
tion of entries is limited to the sibling nodes overlapped with the overflowed node,
which makes the branch grafting method weak in the global optimization of R-trees.

The compact R-tree presented by Huang et al. (2001) mainly optimizes storage
utilization. In this method, an entry may be removed from the overflowed node into
an under-full sibling node. Splitting occurs only when all sibling nodes are full, so
almost 100% storage utilization is achieved and the occurrence of the splitting is

 A Forced Transplant Algorithm for Dynamic R-tree Implementation 461

decreased. However, no efficient control is considered on the overall R-tree structure
between sibling nodes that makes the search performance only at the same level of the
R-tree generated by the quadratic splitting method.

As stated above, traditional 1-to-2 node splitting is essentially a type of local opti-
mization algorithm since it does not consider other nodes when a split occurs, while
the forced reinsertion, SHIFT, node restructuring and branch grafting method that can
optimize the global tree structures belong to global optimization techniques. How-
ever, none of these algorithms can control node storage utilization effectively while
optimizing the global structure of R-tree.

3 Forced Transplant Algorithm

Node storage utilization plays the same important role in R-tree structures as in global
structure optimization. Therefore, we quantitatively control the node storage utiliza-
tion according to static R-tree standard while optimizing the global structure of R-
tree. Presented here is our optimization technique named forced transplant algorithm.
It can be regarded as an improvement of storage utilization under global optimization,
or global structure optimization upon a compact R-tree.

3.1 Basic Idea

The basic idea of forced transplant algorithm is shown in figure 1. If entry e is inserted
into the full node A (the node capacity M=4), node A will overflow. Using the forced
transplant, entry A4 will be moved into sibling node B. Then, if node B is also full en-
try B4 will be moved into sibling node C. Now, if node C is under-full the insertion
finishes and node splitting is avoided. The final situation of nodes is shown in figure 2.

Fig. 1. Example of forced transplant Fig. 2. Result of forced transplant

3.2 Algorithm Implementation

In the course of node insertion, if node N with M+1 entries overflows, an entry in
node N will be moved into the most appropriate sibling node Es according to the

462 M. Zhang, F. Lu, and C. Cheng

criteria of least enlargement of MBR. The insertion will finish once node Es has avail-
able space, otherwise, the same operation will be applied to the overflowed node Es.
If all siblings have been tried and node overflow still occurs, the final overflowed
node will split and a new node will be created, and such splits will propagate up the
tree. Therefore, splitting only occurs when all siblings have no available space so that
high storage utilization can be achieved while keeping global structure optimization
of R-tree.

The detailed procedure is as follows:

TransPlant(node N, entry E)
//Insert entry E into the full node N
{
 IF N is root
 split(node N, entry E), return
 ENDIF
 mark N as dirty
 WHILE
 {
 IF all siblings of node N are dirty
 split(node N, entry E), return
 ELSE
 call FindSibling(node N, entry E),find a
 clean sibling Ns and an entry En in node N
 IF Ns has available space
 insert entry En, return
 ELSE
 Ns overflows, mark Ns as dirty, let
 N=Ns, E=En
 ENDIF
 ENDIF
 } //end of WHILE
} //end of TransPlant

Algorithm FindSibling(node N, entry E)
FS1:For each entry En in node N
 find a clean sibling Ns, and let
 (area(N’ Ns’) - area(N Ns)) = Min.
 N’ and Ns’are corresponding nodes after entry
 En is transferred into node Ns
FS2:For all pairs (Ns, En)
 select the pair with the minimum area enlargement

In the algorithm FindSibling, the CPU costs of finding the most appropriate pair of
entry and sibling node are quadratic in the number of node capacity M, because for
each entry the area enlargement with all siblings of the node has to be calculated.
However, in order to reduce the CPU costs, we can reduce the number of entries and
siblings for which the calculation is done. Thus, two improvement methods are pro-
posed as follows:

• For overflowed node N, only p1 entries farthest to the centre of node N are selected
• For overflowed node N, only p2 siblings nearest to the centre of node N are

selected

 A Forced Transplant Algorithm for Dynamic R-tree Implementation 463

Fig. 3. Improvement of forced transplant procedure

In Figure 3, according to the improved procedure, only the farthest entries such as e1,
e2, e3 and e4 and the nearest nodes such as N1, N2, N3 and N4 to the center of node N8
are selected to find the pair of entry and node that has the minimum area enlargement.

3.3 Comparison with Other Optimization Methods

Compared with other global optimization methods such as forced reinsertion, SHIFT,
node restructuring and branch grafting, forced transplant algorithm can achieve al-
most 100% storage utilization. Compared with the compact R-tree, forced transplant
algorithm can obtain an R-tree with global optimization.

In the example shown in figure 1, when using global optimization such as branch
grafting, the full node A will split because no overlapped sibling nodes with node A can
be found, which results in low storage utilization. When using the compact R-tree, the
entry A3 will be moved into sibling node C, which results in larger overlapping area.

4 Experiments

The forced transplant algorithm can be integrated with any R-tree splitting algorithm.
Since R*-tree is widely regarded as one of the best variations of R-tree, we implemented
an R-tree variant called Trans R*-tree with the integration of forced transplant algorithm
and R*-tree. A large number of experiments were conducted with Trans R*-tree, R*-
tree, NLS R-tree implemented with the new linear split algorithm (Ang & Tan, 2001),
and the built-in GIST R-tree in PostgreSQL DBMS, to compare their performances on
storage utilization and query performance. The experiment environment is as follows:

Hardware: a PC with one Intel Pentium 4 CPU, 2.0 GHz and 256M memory
Software: Redhat 7.4 Linux, PostgreSQL 7.4.2 DBMS (with PostGIS 0.8.2)
Datasets:

• Tpoint. Point data, 643582 records, skewed
• Tline. Line data, 899072 records, mildly skewed
• Tpoly. Polygon data, 122522 records, uniformly distributed

464 M. Zhang, F. Lu, and C. Cheng

4.1 Storage Utilization

Figure 4 shows that the Trans R*-tree achieves almost 100% storage utilization for all
of the three real data sets, while the other three R-trees only achieve 65% or less. The
high performance of Trans R*-tree is due to the improved condition of node splitting
in Trans R*-tree that makes records flow between the sibling nodes to avoid node
splitting.

4.2 Query Performance

It is a common practice to compare spatial access methods in terms of page access
(Disk I/O) for range queries. Figures 5, 6 and 7 show the number of disk access for
various range query sizes on the three data sets. These figures clearly reflect that the
Trans R*-tree outperforms the other three R-tree variants, especially for large extent
querying.

0

2

4

6

1% 10% 20% 30%

102

Query size

D
is

k
I/

O

Trans
R*
NLS
GIST

Fig. 4. Storage utilization for different R-trees Fig. 5. Range query on Polygon dataset

0

1

2

3

1% 10% 20% 30%

10
3

Query size

D
is

k
I/

O

0

1

2

3

1% 10% 20% 30%

103

Query size

D
is

k
I/

O

Fig. 6. Range query on Line dataset Fig. 7. Range query on Point dataset

 A Forced Transplant Algorithm for Dynamic R-tree Implementation 465

5 Conclusion

This study presents a new optimization technique, named forced transplant algorithm,
that is implemented on a PostgreSQL DBMS platform. The main merit of forced
transplant algorithm is that it considers both R-tree global structure optimization and
storage utilization optimization. Our experimental results clearly indicate that the
Trans R*-tree, implemented with the integration of forced transplant algorithm and
R*-tree, achieves almost 100% storage utilization and a better range search perform-
ance for all types of data than the other R-tree variations.

Our Trans R*-tree can be incorporated with some packed R-tree such as Hilbert
packed R-tree (Kamel & Faloutsos, 1993), STR R-tree (Leutenegger et al., 1997) and
TGS R-tree (Garcia et al., 1998) to manage massive spatial data more efficiently.
Packed R-tree can be used to load data quickly and the Trans R*-tree can be used to
maintain the global tree structure dynamically so as to guarantee that the query per-
formance of R-tree will not degrade gradually during constant dynamic data updating.

Acknowledgments

This research was supported by the National Natural Science Foundation of China
under grant No. 40401047 and Knowledge Innovation Project of CAS under grant
No. CXIOG-D04-02.

References

1. Ang, C. H., Tan, T. C. New Linear Node Splitting Algorithm for R-trees. In: Proceedings
of 5th SSD, Berlin, Germany, 1997, 339-349

2. Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B. The R*-Tree: An Efficient and
Robust Access Method for Points and Rectangles. In: Proceedings of SIGMOD, Atlantic
City, New Jersey, 1990, 322-331

3. Gaede, V., Gunther, O. Multidimensional Access Methods. ACM Computing Surveys.
1998, 30(2): 170-231

4. Garcia, Y., Lopez, M., Leutenegger, S. A Greedy Algorithm for Bulk Loading R-trees. In:
Proceedings of 6th ACM-GIS, Washington, DC, 1998, 163-164

5. Garcia, Y., Lopez, M., Leutenegger, S. On Optimal Node Splitting for R-trees. In: Pro-
ceedings of 24th VLDB, New York, NY, 1998, 334-344

6. Garcia, Y., Lopez, M., Leutenegger, S. Post-optimization and Incremental Refinement of
R-trees. In: Proceedings of ACM GIS’99, Kansas City, USA, 1999, 91-96

7. Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching. In: Proceedings of
ACM SIGMOD, Boston, MA, 1984, 47-57

8. Huang, P.W., Lin, P.L., Lin, H.Y. Optimizing Storage Utilization in R-tree Dynamic Index
Structure for Spatial Databases. Journal of Systems and Software, 2001, 55:291-299

9. Kamel, I., Faloutsos, C. Hilbert R-tree: an Improved R-tree Using Fractals. In: Proceed-
ings of 20th VLDB, Santiago, Chile, 1994, 500-509

10. Kamel, I., Faloutsos, C. On Packing R-trees. In: Proceedings of CIKM, Washington, DC,
USA 1993, 490-499

11. Leutenegger, S., Edgington, J. M., Lopez, M. A. STR: a Simple and Efficient Algorithm for
R-tree Packing. In: Proceedings of 13th IEEE ICDE, Birmingham, England, 1997, 497-506

466 M. Zhang, F. Lu, and C. Cheng

12. Schreck, T., Chen, Z. Branch Grafting Method for R-tree Implementation. Journal of Sys-
tems and Software, 2000, 53: 83-93

13. Sellis, T., Roussopoulos, N., Faloutsos, C. The R+-Tree: A Dynamic Index for Multi-
Dimensional Objects. In: Proceedings of 13th VLDB, Brighton, England, 1987, 507-518

14. Theodoridis, Y., Sellis, T. Optimization Issues in R-tree Construction. In: Proceedings of
IGIS. 1994, 270-273

An Approach for a Personal Information
Management System for Photos of a Lifetime

by Exploiting Semantics

Khalid Latif, Khabib Mustofa, and A. Min Tjoa

Institute of Software Technology & Interactive Systems
Vienna University of Technology,

Favoritenstrasse 9-11/188,
A-1040 Vienna, Austria

{klatif, khabib, amin}@ifs.tuwien.ac.at

Abstract. Photo collections are one of the promising sources to tell
story of life in this digital era. In this paper we present our work on
organizing photos of a lifetime by exploiting semantic annotations. The
complexity in using semantic technology is managed by introducing an
annotation template corresponding to who, when, where, and what. Se-
mantics of each dimension are semi-automatically annotated following
the ontology for personal information. The story telling is done by ex-
ploiting these semantics to form trails of the photos. The notion of land-
marks is used for this purpose which also ensures effective navigation in
the lifetime photo-space.

1 Introduction

The size of personal photo collections has grown a great deal with the increas-
ing use of digital cameras. On the other hand ever increasing storage capacity
inspires the vision to accumulate information without the need to delete old pho-
tos. Organizing such a large number of photo collections requires effective use
of the photo metadata. This metadata can be separated into two categories: the
general photo characteristics and the photo contents. The later, although can be
automated for low level feature description, is manually annotated to lower the
“semantic gap” [4] [13]. Currently available personal photo management tools
mostly exploit first type of metadata with support for free text comments [7] [15].
In contrast the semantic photo annotation tools are mostly developed for anno-
tating digital photo archives such as for artwork [9]. There remains a need to
bring together both worlds without flooding the user with the complexity of
underlying semantic technology.

The primary goal of this research is to build a personal information man-
agement system for photos of a lifetime by exploiting their semantics. This is
done through semi-automatically annotating photos about persons (who), time
(when) or event, location (where), and other objects and actions of persons
(what) using already available ontologies. Additionally user preferred photos

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 467–477, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

468 K. Latif, K. Mustofa, and A.M. Tjoa

are declared landmarks, which serves two purposes. Firstly, while viewing an
individual photo the landmarks being near to the photo in context are sug-
gested as related photos. Secondly, the landmark photos are magnified when
viewing whole photo collections. Thus the user is guided in navigating large
photo space.

First we will briefly discuss existing approaches for personal photo manage-
ment and semantic photo annotations. In the subsequent sections we will discuss
the proposed annotation model, the use of landmarks for navigating lifetime
photo collections and the user interaction for photo annotations. Finally we
summarize the status of our work and an outlook of open issues.

2 Related Work

Photo collections, as one of promising sources to tell story of life in this digital
era, has attracted many researchers to spend time for exploring its usage and
proving its usefulness. Some solutions focus on personal photo organization while
others bring together semantic annotations to photo collections in general. Due
to the varying intentions of these tools we present them in different sections
below:

2.1 Semantic Photo Annotation

Flickr1 is an online application which allows to creating collections by dragging
and dropping photos from timeline display. Annotations in Flickr are supported
by tags. We have extended such tagging with ontologies and by connecting these
tags with appropriate predicates from the ontology such as Person playing Foot-
ball.

PhotoStuff [8] allows manual semantic annotation to images either on the
web or local. It allows loading RDF-based ontologies for later annotating images
with it. The taxonomy browser in SemanticLIFE is similar to their ontology
tree view. Instead of exposing arbitrary property-value forms for encoding RDF
annoations, our approach is based on the annotation template. The template
based annoations gurantee sufficient metadata for describing images and the
eas-of-use. Additionally instead of first drawing a region and then looking for
the appropriate concept from the ontology for annotations we allow the user to
select a concept and then draw a region for it.

Developed by Mindswap, SMORE [10] focuses more on semantic mark-up and
ontology editing. It offers an extension for annotating text and images. Using
these tools user can create metadata based on the loaded ontology. Further-
more, user can also define new concepts (class or property), to be added in the
ontology.

Another promising multimedia annotation tool is M-Ontomat-Annotizer [4].
It supports metadata creation for an image or its selected region by associating
it with a concept in the ontology.
1 http://www.flickr.com

Managing Photos of a Lifetime by Exploiting Semantics 469

2.2 Personal Photo Organization

Among large number of other commercial photo management tools, Picassa2 pro-
vides very good visualizations. It supports photo labelling and the photos having
same label are considered one collection. Creation date is also used to automati-
cally classify photos. Picassa provides good visualization for the timeline view of
all collections. Similar to other commercial tools slideshow for collection is also
supported.

PhotoFinder [11] supports visualization of collections in several ways. Drag-n-
Drop is supported throughout the application for different tasks. It also supports
limited annotation for persons. We have extended their annotation strategy in
two dimensions: (1) using image region for annotation and labelling and (2)
annotating events and other photo contents using semantic web technologies.
In addition the person information is reused and linked to the existing per-
sonal address book and contacts. This allows more semantic queries to be ful-
filled from the photo collections such as searching for “photos of all friends in
Salzburg”.

Girgensohn and colleagues investigated the performance issues in organizing
large photo collections [7]. The tool support practically is not much different
from the other commercial tools but comes with improved performance. Worth
mentioning is a calendar view supported in their tool. In our prototype imple-
mentation we provide sorting and filtering based on time and date both for a
particular collection and in lifetime view. We also provide sorting and filtering
based on the concept taxonomy.

A different approach is presented in [3] for organizing large photo collections.
It combines information from map data (GPS) with metadata of photos, by
which a story of a trip will be more meaningfully constructed. Later on photos
can be viewed on the location map and also based on the timeline. Additionally
MyLifeBits provides an integrated view of the lifelong information items ranging
from photos, documents, phone calls, emails, to web pages [6]. Our approach po-
tentially differs from MyLifeBits as we exploit ontologies for managing semantics
of these information items.

3 SemanticLIFE

The SemanticLIFE project is an attempt to realize the Vannevar Bush’s vision
of the Memex “a device in which an individual stores all his books, records,
and communications. . . an enlarged intimate supplement to his memory”; and
associations of thoughts “The human mind. . . operates by associations. With
one item in its grasp, it snaps instantly to the next that is suggested by the
association of thoughts, in accordance with some intricate web of trails.” [5] The
architecture of SemanticLIFE system is presented elsewhere [1]. The range of
data sources starts from communication data (emails, phone calls, and chat
sessions) to personal documents, photos, web-browsing sessions and calendar

2 http://picasa.google.com

470 K. Latif, K. Mustofa, and A.M. Tjoa

data. SemanticLIFE realizes the associations of items in personal digital diary
by annotating contents of these information items with ontologies. In this paper
we specifically focus on organizing and annotating photo collections by exploiting
their semantics.

Fig. 1. Overview of photo annotation in SemanticLIFE

4 Annotation Model

The information of the photos can be separated into two categories: the general
photo characteristics and the photo contents. The first category provides infor-
mation about photo resolution, format, size, etc. Such information is present
in the EXIF header of digital photos and is easily extracted. The second cate-
gory describes what is depicted by the photo. The contents of personal digital
photo vary largely, and may include a wide range of domains such as sports,
entertainment, and sightseeing.

Utility of semantic annotations for describing such diverse photo contents is
well established [4] [13]. But, comprehensability in such an annotated lifetime
photo space and usability of Semantic Web technologies from the user interac-
tion point of view is still an open issue. Common users mostly want easy access
to their photo collections for viewing, using in their homepage, creating pre-
sentations, or sharing with other people. It is difficult to provide a unified way
for annotating personal photos with arbitrary RDF. Even simple and otherwise
trivial annotations are complex and hard to grasp for non-experts, regardless of
any simplification in the visualization. On the other hand a simplified annotation
model can lead to pragmatic interfaces.

Managing Photos of a Lifetime by Exploiting Semantics 471

In our recent work [12] we presented a study of the LATCH3 model for orga-
nizing personal information items. The proposed annotation model corresponds
to who, when, where, and what. The hypothesis is that such a structuring of
annotation template on one hand provides adequate semantics to organize per-
sonal photo collections and on the other hand is easily comprehended by the user.
The values for slots in the template are filled by creating semantic labels based
on concepts in existing ontologies. Compared to keyword search such seman-
tic annotations allow concept searching where users can specialize or generalize
a query based on the concept hierarchy. The detail of the model is presented
below:

Who: This axis describes the persons and other agents/actors depicted in the
photo. For annotating persons the already available address book is presented
to the user. Person names are also extracted from recently visited web pages
and other user documents. The user is also suggested with these names during
annotations. The detail of how we determine if a name should be suggested for
a specific picture is explained in section 6.1. Digital photos are categorized as
personal, professional photos, and art work [13]. Personal photo collections may
include a photo of an art object. Such photos have a special actor, the creator,
annotated as the original author of the object depicted in the photo. One such
example is a painting depicted in a photo being annoated with its artist (where
artist isa creator).

When & Where: These dimensions describe the time and location of the
photos and the collections. Locations include concepts such as country, city,
a region, and street address. For individual photos the time value describes the
time the photo is taken which is extracted from the photo metadata in EXIF
header. These dimensions can also be annotated with the scheduled events from
existing calendar management applications like MS Outlook. An example case
is explained in section 6.1. The time value is represented as an interval.

What: This axis has two dimensions: (1) what actions agents are doing such as
a person eating sushi, playing football, and (2) what objects (other than agents
described in who) are depicted in the photo such as palm tree, or a painting. The
later can also be annotated in turn with context metadata, such as a painting
within a photo maybe be annotated with the artist (who) information.

5 Photos as Landmarks

Humans make use of variety of practices for recollection. Use of mnemonics is
one example of such practices. Originated with the ancient Greeks the idea is to
associate parts of the information to well-known landmarks. In hypertext systems
the opening web page is considered a landmark and every other web page in that
3 LATCH originally stands for Location, Alphabets, Time, Category, and
Hierarchy [17]. We suggested replacing Alphabets with Agent/Actor for using it
as organizing principle instead of ordering principle [12].

472 K. Latif, K. Mustofa, and A.M. Tjoa

particular web application is linked with it [16]. Use of landmark events is also
investigated for personal information space [14]. Traditionally personal photos
are sorted into family album (the preferred ones) and “shoe-boxes”. We argue
that, while keeping the distinction, the connection of the photos in family album
with those in shoe-boxes could be established in digital archives. This is done by
declaring important photos as landmarks within a collection. All other photos
in the same collection are automatically associated with the landmark photos.
Some personal photo management applications make use of ranking, such as a
count from zero to ten in PhotoFinder, to weight importance of a photo. While
declaring a photo as important is one aspect, more important is to associate
other relevant photos with it and suggesting them to the user. Thus retrieval of
photos is made efficient by forming trails of associations and the user is guided
in exploring the large photo-space.

For declaring a photo a landmark users assign a numeric weight (10 ≥ w > 0)
to the photo. This weight is later used in determining the size of thumbnail
in collection view and also in search results view. The landmark weight also
contributes in determining the nearness of one landmark with the other. We
have implemented different set of rules based on the weights using Semantic Web
Rule Language (SWRL). For example a landmark photo LPx having weight x
will be considered near a photo P0 if any of the following holds:

o LPx and P0 are in the same photo collection
o LPx and P0 are directly connected (through manual linking)
o Both LPx and P0 are annotated with the same concept C from the ontology.
o LPx has an annotation of concept type C1; P0 has an annotation of concept

type C2, and SemanticDistance(C1, C2) < x. The semantic distance is
computed in several ways such as the manual associations, property-entity
associations [2], topic similarity, and hierarchical concept distance. More
detail of calculating semantic distance in nearness discovery of landmarks is
presented in our prior work [12].

The photo viewer uses these rules to find landmark photos near the currently
selected photo. User can set a threshold value (default to 4) for the number of
relevant photos to show in the photo viewer. The priority is given to the photos
with higher landmark weight. While viewing one photo from a collection the
user is provided with photos which are semantically near the photo in context.
Thus the whole photo collection turned out to be a web of trails.

6 User Interaction

Other than the taxonomy browser (classification view) which is an integral part
of SemanticLIFE, three views are provided to the user for navigation and anno-
tation of photos: (1) lifetime photos view, (2) collection view, and (3) the photo
view. In the lifetime view representative thumbnails of all categories are displayed
along with their titles and event information. The thumbnails are generated from
combination of the landmark photos in the collection similar to “My Photos”

Managing Photos of a Lifetime by Exploiting Semantics 473

Fig. 2. Photos arranged on a map by the user. Magnification of a photo thumbnail
depends on its landmark weight.

view in Windows XP in which first four photos are used to generate thumbnail
of a folder. The collections in this view are sorted based on the timeline.

The collection view by default uses date/time for sorting the photos. Photos
can also be sorted and filtered based on the concepts in the taxonomy hierarchy.
A scattered plot mode with a background location map is also supported (see
figure 2). Users can freely place the photos on a background map. The settings
are preserved and could be seen anytime by selecting the location map mode in
the collection view toolbar. Lastly the application is developed as an Eclipse rich
client platform (RCP) which allows the user to arrange the views at the position
of their choice.

6.1 Connecting Life Items

SemanticLIFE’s repository is fed with different desktop information such as cal-
endar entries/appointments, web browsing cache, emails, and address book. The
photo annotation is an integral part of the system, so it utilizes and reuses the
existing information by far. Most of the personal photos come from planned
events, such as birthday party or a conference. Information about such events
(if present) is fed by Outlook and Sunbird adaptors, and is stored in the repos-
itory after appropriate transformation to RDF (c.f. figure 3 showing scheduled
event in Sunbird, the event website as visited by the user, and photo taken in
that event.) Such existing items are an added help to the user in photo anno-
tations. Items in the same date/time range are suggested to the user for their
possible reuse during photo annotation. We also apply ANNIE4 to the recently
4 http://www.gate.ac.uk/annie/

474 K. Latif, K. Mustofa, and A.M. Tjoa

Fig. 3. (A) Part of the website showing program of the event, (B) scheduled event in
Mozilla Sunbird, and (C) a picture taken in that event

fed life-items (such as web pages, emails, and documents) for extracting named-
entitites such as person names. Clicking the context help icon in photo view (c.f.
figure 1) displays a list of relevant entities being extracted by ANNIE. Any of
these items/entities could be dragged and dropped on the photo or whole col-
lection. Depending on the item type and its meta-data the appropriate slot is
filled, thus users do not have to re-type.

6.2 Annotation of Individual Photo

Other than entering the metadata by hand, we support two strategies for photos
annotations: (1) Existing information items such as persons in address book,
event entries in calendar, and ontology contents from a vocabulary are dragged
and dropped on the photo. This associates the prevalent concept to the whole
photo. (2) A specific region of the photo could be annotated by first selecting the
target concept from existing vocabulary (such as Gondola taken from WordNet).
The taxonomy browser loads the ontology vocabularies in a tree structure for
this purpose. The annotation marker on the photo view tool bar is then selected
and a rectangle is drawn on the photo. This annotates the image region with
currently selected concept in classification view. An RDF listing of the annoation
is presented in figure 5. The rectangular region is hidden in the photo view unless
the target concept is selected from the photo information which highlights the
region (cf. figure 4).

Managing Photos of a Lifetime by Exploiting Semantics 475

Fig. 4. The photo viewer with concept and region highlighting support. The selection
of concept Gondola has highlighted the associated region.

<rdf:RDF xml:base="http://www.ifs.tuwien.ac.at/slife-core.owl"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:reg="http://www.w3.org/2004/02/image-regions#">

<foaf:Image rdf:ID="slph_1004285">
<reg:hasRegion>

<reg:Rectangle rdf:ID="slph_1004285_r01">
<reg:coords>...</imreg:coords>
<reg:regionDepicts rdf:resource=".../wordnet/1.6/Gondola-1"/>

</reg:Rectangle>
<reg:hasRegion>

</foaf:Image>
</rdf:RDF>

Fig. 5. Abridged RDF listing of an annotation showing a rectangle within a photo
which depicts a concept Gondola from WordNet

6.3 Annotating Collections

Collections can be created either (1) manually by dragging and dropping the
selecting photos or (2) suggested by the system for un-sorted photos. The later
task examines the EXIF header for possible match in date/time and other avail-
able characteristics. Similar to photo annotations, whole collections can also be
tagged with ontology concepts or linked to other personal information items such

476 K. Latif, K. Mustofa, and A.M. Tjoa

as an event from the calendar data. Associating the metadata with the collection
replicates the semantics to all member photos. Moreover a collection can become
a part of another collection.

7 Conclusion and Future Work

We have presented our work on managing personal photo collections using se-
mantic annotations. The proposed annotation model and use of landmarks have
made the large photo collections a web of connected photos in which user can
navigate from one collection to photos belonging to specific concepts and then to
other semantically related photos. This way we tried to close the gaps in bringing
together semantic photo annotations and personal photo management.

In near future we intend to extend our work for semantic relation discovery
by exploiting more the semantics of the ontology concepts compared to the syn-
tactical concept distance. Additionally we are working on semi-automatically
developing a unified view of the concept hierarchies which otherwise belong to
different domain ontologies. In DynamOnt project we are investigating an ap-
proach for dynamically building ontologies by reusing existing concept hierar-
chies through their mapping with the foundational ontology. We hope to enhance
the work presented in this paper by benefiting from the findings of that project.

Acknowledgement

This work as part of the SemanticLIFE project is generously supported by
ASEA-UNINET (ASEAN-EU Academic University Network) and HEC (Higher
Education Commission of Pakistan). This research is also supported by the Dy-
namOnt project which is funded by the Austrian Governments FIT-IT Research
Initiative on Semantic Web.

References

1. Ahmad, M., Hoang, H.H., Karim, S., Khusro, S., Lanzenberger, M., Latif, K.,
Michlmayr, E., Mustofa, K., Nguyen, H.T., Rauber, A., Schatten, A., Tho, M.N.,
Tjoa, A.M.: Semanticlife - a framework for managing information of a human life-
time. In: Proceedings of 6th International Conference on Information Integration
and Web-based Applications & Services, Jakarta, Indonesia, OCG Press (2004)

2. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, B., Ramakrishnan, C., Sheth,
A.: Ranking complex relationships on the semantic web. IEEE Internet Computing
9(3) (2005) 37–44

3. Aris, A., Gemmell, J., , Lueder, R.: Exploiting location and time for photo search
and storytelling in mylifebits. Technical Report MSR-TR-2004-102, Microsoft Re-
search (2004)

4. Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y.,
Handschuh, S., Kompatsiaris, Y., Staab, S., Strintzis, M.: Semantic annotation
of images and videos for multimedia analysis. In: Proceedings of 2nd European
Semantic Web Conference, Heraklion, Greece, Springer Verlag (2005)

Managing Photos of a Lifetime by Exploiting Semantics 477

5. Bush, V.: As we may think. The Atlantic Monthly (1945)
6. Gemmell, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: Mylifebits: Fulfilling the

memex vision. In: Proceedings of ACM Multimedia. (2002)
7. Girgensohn, A., Adcock, J., Cooper, M., Foote, J., Wilcox, L.: Simplifying the

management of large photo collections. In: Proceedings of Human-Computer In-
teraction, IOS Press (2003)

8. Halaschek-Wiener, C., Schain, A., Golbeck, J., Grove, M., Parsia, B., Hendler, J.: A
flexible approach for managing digital images on the semantic web. In: Proceedings
of 5th International Workshop on Knowledge Markup and Semantic Annotation,
Galway, Ireland (2005)

9. Hollink, L., Schreiber, G., Wielemaker, J., Wielinga, B.: Semantic annotation
of image collections. In: Proceedings of Workshop on Knowledge Markup and
Semantic Annotation. (2003)

10. Kalyanpur, A., Hendler, J., Parsia, B., Golbeck, J.: (Smore semantic markup,
ontology, and rdf editor) http://citeseer.ist.psu.edu/555327.html.

11. Kang, H., Shneiderman, B.: Visualization methods for personal photo collections:
Browsing and searching in the photofinder. In: Proceedings of IEEE International
Conference on Multimedia and Expo. (2000) 1539–1542

12. Latif, K., Tjoa, A.M.: Combining context ontology and landmarks for personal
information management. In: Proceedings of IEEE International Conference on
Computing & Informatics, Kuala Lumpur, Malaysia (2006)

13. van Ossenbruggen, J., Troncy, R., Stamou, G., Pan, J.: Image annotation on the
semantic web. Technical report, W3C Semantic Web Best Practices Working Group
(2006) http://www.w3.org/2001/sw/BestPractices/MM/image annotation.html.

14. Ringel, M., Cutrell, E., Dumais, S., Horvitz, E.: Milestones in time: The value of
landmarks in retrieving information from personal stores. In: Proceedings of 9th
International Conference on Human-Computer Interaction, Zurich (2003)

15. Schneiderman, B., Kang, H.: Direct annotation: A drag-and-drop strategy for label-
ing photos. In: Proceedings International Conference on Information Visualisation,
London, England (2000)

16. Sorrows, M.E.: Recall of Landmarks in Information Space. Phd dissertation, School
of Information Sciences, University of Pittsburgh (2004)

17. Wurman, R.S., Sume, D., Leifer, L.: Information Anxiety 2. Que (2000)

Topic Distillation in Desktop Search

Alex Penev, Matthew Gebski, and Raymond K. Wong

1 National ICT Australia, Sydney, NSW 2052, Australia
2 School of Computer Science and Engineering

The University of New South Wales, Sydney, NSW 2052, Australia
{alexpenev, francg, wong}@cse.unsw.edu.au

Abstract. Desktop Search, the search across local storage such as a per-
sonal computer, is a common practice among computer users. There has
been much activity in Web-related Information Retrieval, but Desktop
Search has only recently increased in popularity. As the structure and
accessibility of data in a local environment is different to the Web, new
algorithmic possibilities arise for Desktop Search.

We apply a connectivity analysis approach to the local environment—
a filesystem. We describe how it can be used in parallel with existing
tools to provide “more useful” ranked results. Our evaluation reveals
that such an approach has promise, and we conclude that exploiting the
organization of a filesystem is beneficial for Desktop Search.

1 Introduction

Desktop Search (DS) refers to searching of local, contained data stores, as op-
posed to searching a foreign and overwhelming repository such as the Internet.
There are often many (and unfamiliar) documents that satisfy an Internet query,
but users generally seek specific (and familiar) files on a desktop.

DS tools place emphasis on using an inverted file to facilitate near-real-time
retrieval, by indexing the content and metadata of various known filetypes. One
of the first such tools, Lotus Magellan (late 1980s), created a master index of
different filetypes and allowed searching and viewing of files without the need
to launch the associated viewer application. Such functionality is emulated by
today’s DS tools.

The field received more research attention following the prototype work of [1].
AskJeeves, Google, Microsoft and Yahoo have all since released DS tools, and
there are currently more than twenty available1. By applying the inverted file
index to local data, DS tools produce sub-second searches.

Inverted files substantially improve conventional disk-scanning methods, but
only address the problem of speed. Discerning the relevance of results requires
analyzing their content. Fortunately, simple content analysis is inexpensive when
inverted files are involved, and the recent wave of DS tools has been welcomed by
many. The tools mainly differ in their presentation, index size overhead, extent
of filetype coverage, and brand power.
1 http://www.goebelgroup.com/desktopmatrix.htm, visited Dec 2005.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 478–488, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Topic Distillation in Desktop Search 479

“Topic distillation” refers to educing high-quality documents that are most-
representative of a given query topic[2]. Our motivation for this work lies in
distilling such high-quality files to improve ranked DS results. For this, we adopt
and adapt a connectivity analysis approach.

The remainder of this paper is organized as follows: §2 provides background
on DS and connectivity analysis. §3 explains our approach and methodology,
while §4 details our evaluation and observations. §5 highlights related work, and
we draw conclusions in §6.

2 Background

2.1 Ranking in Desktop Search

Today’s DS tools provide options to sort the results by metadata, such as lex-
ically, chronologically, by filesize, or clustered by format. One problem with
searching for local data is that the result set can still be large. Without knowing
the metadata, sorting by these attributes is unlikely to be useful; the user will
need to sequentially scan the result list (n

2 inspections on average).
We believe that a ranked list is useful to the user, as they may not always

remember metadata (or even know it in the first place, if looking through files
not authored by them). A choice to sort by relevance or by metadata will allow
the user to pick a strategy they think will result in the fewest inspections. Several
of today’s DS tools provide such a choice, which supports our view.

Our goal is to improve ranked lists, by placing files that are most-representative
of the query topic on top. On the assumption that the user’s query adequately
specifies their target, finding such representative files is coaxial to the problem of
topic distillation. Originating in bibliometrics, connectivity analysis approaches
have proven useful in solving this problem for Web IR[3,4].

2.2 Content and Connectivity Analyses

Content Analysis measures how well-representative a document is of a query.
Approaches such as the Vector Space Model are popular.

Connectivity Analysis measures how well-connected a node is in a graph. The
World Wide Web, a large directed graph, is regularly subjected to such analysis
to elicit the popular pages. Two celebrated algorithms in Web-IR are PageRank
and Hypertext-Induced Topic Selection (HITS).

PageRank[3] calculates the probability distribution of random walks, using
the random surfer model on a query-independent global graph. Using the in-
degree, PageRank deems a page as popular if it has many in-links (and even
more popular, if the links come from already-popular pages).

HITS[5] argues that every document serves two purposes: to be an authority
or to be a hub. An authority is a page with topic-relevant content, while a hub
simply links to authorities (its content may be irrelevant). Like PageRank, HITS
uses in-links for calculating authoritativeness. But it uses out-links for hubness.
Depending on the situation, hubs can be more-useful search results.

480 A. Penev, M. Gebski, and R.K. Wong

Both of these algorithms are iterative, and “shake” the graph to distribute
weight along the hyperlink-edges until an equilibrium is reached.

We chose to adopt HITS due to its classification of nodes as authorities and/or
hubs, which maps intuitively to a filesystem (§3.1). PageRank lacks this classi-
fication, considering nodes as equals. Moreover, HITS uses a query-specific sub-
graph for its root set and subsequent calculations, allowing us to easily build on
top of the retrieved results of an existing DS tool (§4.2).

2.3 HITS

HITS[5] gathers documents from the Web and nominates the best hubs and au-
thorities among them. [6] notes that “a large amount of latent human judgment
is encoded within hyperlinks, with links to another page offering some measure
of conferred authority”. This conferral of authority is used to distill reputable
documents. Hubs and authorities exhibit a mutually-reinforcing, bipartite re-
lationship, whereby a good hub should link to good authorities, and a good
authority should be linked to by good hubs.

The algorithm begins by retrieving a small root set of pages via a search
engine, i.e. a query-specific subgraph. Nodes in this set may be highly discon-
nected, and a base set is formed by augmenting the immediate neighborhood of
documents that are 1 hop away. The augmented documents add structure to the
graph, and may also include relevant pages that did not match the keywords but
were frequently cited in the root set2.

The base set induces a directed graph G = (V, E), with vertices V and edges
E representing pages and hyperlinks, respectively. All v ∈ V are assigned both
a hub and authority score, and HITS updates the new scores from the old using
two alternating summations until the scores converge:

HITS. in: link-graph vertices V , directed edges E. out : hub/auth score vectors h/a.
1. ∀v ∈ V , initialize h0[v] and a0[v] to 1.
2. for iteration k until convergence:
3. ∀v ∈ V, hk[v] :=

∑
o:(v→o)∈E ak−1[o]

4. ∀v ∈ V, ak[v] :=
∑

i:(i→v)∈E hk−1[i]
5. normalize hk and ak.
6. return h and a

Algebraically, HITS computes the dominant eigenvectors of the MT M co-citation
and MMT coupling matrices, where M is the |V | × |V | non-negative adjacency
matrix of the focused subgraph. The algorithm, as well as positively-weighted ver-
sions of it, has been shown to converge[5,7] under Perron-Frobenius.

Because HITS considers only the structure (in- and out-links), it is occasionally
prone to undesirable behaviors, such as mutually reinforcing relationships between
hosts (alleviatedby reducing theweight of in-links fromthe samehost[7]), and topic
drift (alleviated by using content analysis to maintain focus on the query[7,8,5]).
2 A classic example is that search engines are linked to by pages talking about “search

engines”, but rarely include those two keywords on their page.

Topic Distillation in Desktop Search 481

3 Approach

While parts of HITS can be adopted to suit a filesystem, other parts need to be
adapted. The most important is the concept of connectivity.

3.1 Filesystem Connectivity

On the Web or in research literature, connections/links are created by human
judgment. It is evident that Web authors arrange information into directed
graphs that link related content together. Unfortunately, a filesystem lacks this
concept of conferral of authority. In a filesystem, the organization hierarchy in-
volves human judgment, but the implicit links between files/dirs are not created
on an individual basis. However, it has been noted[9] that users generally:

– organize files into subdirectories
– group related files together
– group related directories nearby

Therefore, while we lack the luxury of conferred links, we can exploit the orga-
nization of the filesystem hierarchy to determine “relevant neighborhoods” that
contain relevant directories. We will retrieve relevant files (in a content analysis
sense), but would prefer relevant files found in relevant directories. Since links are
largely artificial3, our notion of a relevant directory is not only one that contains
relevant files, but also one that resides in a relevant neighborhood. The remainder
of this section outlines the ways in which we construe HITS to suit this goal.

The concept of hubs and authorities conveniently map to directories and files,
and by applying the mutually-reinforcing, bipartite relationship that they exhibit
on the Web, we draw the analogy that a good directory should contain good files,
and a good file should be contained in a good directory. The hub and authority
scores tell us exactly this.

3.2 Root and Base Sets

The root set, the query-specific subgraph, can be built using the indexing and
searching functionality of a current DS tool. We retrieve the top 250 results
using Lucene[10]. To expand this set F of results into the base set, we use the
filesystem hierarchy to add the missing structure into our graph: we create a
directory set D that forms a spanning tree on F . No new files are added, but
the simple injection4 of directories—which dually serve as hubs—provide paths.
Our base set, D∪F , induces a strongly-connected link graph, where every node
has a route to every other. We refer to the length of the (shortest) path between
two nodes as their degree-of-separation, or δ.

This δ is the equivalent of Marchiori’s “how many clicks”[11] an end-user
needs to perform to get from one page to another, by using only atomic actions.
3 Placing a new directory anywhere in the filesystem automatically causes unintentional

paths (of some length) to many other node in the hierarchy.
4 E.g. /home/me/a.txt will have a.txt in F , and /home/me, /home and the filesystem

root / in D.

482 A. Penev, M. Gebski, and R.K. Wong

The δ for two directories α and β can be directly calculated from their paths, by
finding their lowest common ancestor-or-self directory λ: δ(α, β) = (|α| − |λ|) +
(|β| − |λ|), where |n| is depth of n. For files, the immediate parent directory is
used. Therefore, by construction, δ is 0 between a directory and itself, a file and
itself, or a file and its immediate parent directory.

Similar to [11,12], we use δ as a fading factor to decay the influence of nodes
upon each other as they get farther apart. We fade proportional to 1

δ2 , a non-
linear penalizing curve that is harsh on distance but lenient on proximity. Other
functions may be used5.

3.3 Algorithm

Our hitsFS algorithm adapts HITS to our filesystem reinterpretation of what
constitutes a link and a relevant hub.

hitsFS. in: dirs D, files F . out : hub scores h for D, authority scores a for F .
1. ∀d ∈ D and ∀f ∈ F , initialize h0[d] and a0[f] to 1.
2. for iteration k from 1 to K:

3. ∀d ∈ D, hk[d] :=
∑

f∈F :δ(d,f)=0

ak−1[f] +
∑

d′∈D

hk−1[d′]
(1 + δ(d, d′))2

4. ∀f ∈ F, ak[f] := ca(f) ×
∑
d∈D

hk−1[d]
(1 + δ(d, f))2

5. normalize hk and ak.
6. return h and a.

Intermediate results for the output vectors h and a during the k-th iteration
are labeled as hk and ak. Line 3 updates the hub score for each d, by summing
the weights of base set files that are in d. We then augment the surrounding
neighborhood influence from other hubs (decayed by distance). Line 4 updates
the authority scores, whereby a file f is influenced by its content analysis score
(ca(f), in [0,1] as returned by Lucene). HITS models an authority’s score as the
sum of hubs that point to it, which we achieve by summing the influence of other
hubs on f (decayed by distance).

In our experiments, we set the number of iterations, K, to 20. We have noticed,
however, that about 10 iterations are enough to stabilize the top-most scores—an
observation supported by the literature.

4 Evaluation

4.1 Corpus

Unfortunately, existing work uses unsuitable corpora for our task. Link analysts
have often focused on the Web, downloading large portions of online domains.
5 Experimental results were remarkably similar with 2−δ ; however, we prefer the

inverse-square-law, as it has physical interpretations, describing many natural force-
distance relationships.

Topic Distillation in Desktop Search 483

Such corpora are non-static and difficult to procure. As we are only interested
in hierarchy and content (not hyperlinks), we used the JDK 1.5.0, a familiar
corpus6 that is widely variant in structure.

This corpus contains Java library code, which we tokenize7 to remove syntax
problems. In the modified corpus, there are 9267 files in 674 directories. There
is an average of 13.8 files per dir (max 321, median 5), and 927 tokens per file
(max 37812, median 463). The mean directory depth is 4.52 (max 9, median 4).

We index this modified corpus with several DS tools, described in the next
section. Although Java classes generally reference other Java classes, we do not
use these connections as “links” in any way.

4.2 Competition

We test our prototypes against three of the best[13] DS tools: Copernic Desktop
Search, Google Desktop Search v2, and Microsoft’s Windows Desktop Search8.
We refer to these as CDS, GDS, and MDS. Our prototype, DirH, retrieves the
top 250 results from Lucene v1.9 [10], and applies hitsFS.

We chose Lucene since it reports content analysis scores (VSM) that hitsFS
needs, although any listing of documents with their similarity score suffices.
As hitsFS seeks a single numerical representation for the top documents, the
underlying metric may be a black-box.

We provide two versions of our prototype—DirH0 and DirH1—which have
Lucene and a modified-Lucene as backend. We include both Lucenes in our
evaluation (Luc, Lucmod). The modifications are:

– stemming is enabled.
– document length norm is changed to 1 (nwords−0.5 often penalizes longer

files on length more than shorter files are penalized for lower TF).
– keywords-matched ratio is squared. Disjunctive matching and stemming sig-

nificantly increase the number of matches, yet we still only use the top 250
as root set. We wish to doubly-penalize files that match only a few keywords,
to promote better hubs by having more files represent them in the top 250.

These tools are summarized in Table 1.

4.3 Queries

Our experiment focused on ranking highly-representative file(s) at the top, for
a given query topic. To promote objectivity in our results, the queries and their
6 http://java.sun.com; specifically, the j2se/src/share/classes tree, without compiling

natives.
7 We delete non-java files, and use javadoc to generate documentation. This step

removes the code/implementation, but semantic meaning is retained since com-
ments account for much of the generated documentation. We then remove javadoc-
introduced package/tree navigation pages. The extant files are API documentation
versions of the original classes, which we strip clean of markup (html2text), tokenize
and case-fold to plain-text.

8 http://www.copernic.com, http://desktop.google.com, http://desktop.msn.com

484 A. Penev, M. Gebski, and R.K. Wong

target answers (Table 2) were taken from reputable Java FAQs[14,15]. However,
since users tend to search using 3 terms or less[16,17], we have condensed the
queries to at most 3 terms.

Table 1. Summary of DS tools trialled. Our prototypes are in bold.

DS Tool Ranking? Stemming? Grouping? Stopwords? Path match?

CDS No Weak AND Index Yes

GDS Yes No AND Index Yes

MDS Yes Weak AND Index Yes

Luc Yes No OR Ignore No

DirH0 Yes No OR Ignore No

Lucmod Yes Porter OR Ignore No

DirH1 Yes Porter OR Ignore No

Table 2. DS tools were subjected to the above queries

Id Query Targets
q1 connect remote server java.net.{Socket, URLConnection}
q2 select file javax.swing.JFileChooser

q3 call garbage collector java.lang.System

q4 execute external program java.lang.Runtime

q5 schedule thread java.util.{Timer, TimerTask}
q6 make beep sound java.awt.Toolkit

q7 linked list java.util.{LinkedList, Vector, ArrayList}
q8 convert strings numbers java.lang.{Integer, Double, Long, Short, Byte, Float}
q9 write object stream java.io.Serializable

q10 play sound java.applet.AudioClip

q11 list supported fonts java.awt.Toolkit

q12 read data file java.io.{FileInputStream, FileReader, BufferedReader,

DataInputStream}
q13 write data file java.io.{FileOutputStream, PrintWriter, PrintStream}
q14 append data file java.io.{FileOutputStream, RandomAccessFile,

DataOutputStream}
q15 format numbers java.text.{NumberFormat, DecimalFormat}
q16 convert ip address java.net.InetAddress

q17 generate random integer java.util.Random

q18 display image javax.swing.ImageIcon, java.awt.Image

4.4 Results

Each tool answered each query, but only the top 50 results were acknowledged.
We report two metrics (Table 3): MRR and a Mean normalized Reciprocal Rank.

Since very few results are accepted as correct, a hit-and-miss tool can still
be moderately competitive under MRR’s steep 1

r curve9. In Fig. 1, we provide

9 Softer curves (e.g. 1√
r
, 1

1+log r
or n+1−r

n
) place DirH1 in the lead for both metrics.

Topic Distillation in Desktop Search 485

Table 3. MRR and Mean normalized Reciprocal Rank results

Score CDS DirH0 DirH1 GDS Luc Lucmod MDS Avg.
MRR 0.089 0.440 0.416 0.224 0.358 0.305 0.314 0.307

MnormRR 0.087 0.323 0.425 0.224 0.272 0.292 0.254 0.268

Fig. 1. Mean normalized Reciprocal Rank observations for Table 2 queries. MnormRR
vector-normalizes the per-query RR scores to share the weight according to a tool’s
relative performance to the others. This graph shows that most tools are roughly equal
and close to the mean, but both of our prototypes performed better on average.

a normalized RR metric, which shares the scores relative to the performance of
the other tools. The interpretation of the graph is that our approach generally
ranks a target higher than its competitors, when using the top 50 results.

The behavior for some queries was not unexpected. Luc often penalized targets
on length, so Lucmod ranked them higher. DirH1 used Lucmod’s higher content
analysis placement to maintain a good ranking for the target.

Q6 was the only query which conjunctive tools failed on, since no file matched
all words. Luc matched one term, ranking the target at 183rd. Lucmod matched
a second term via stemming, and since it had no length penalty, placed the target
in 3rd. DirH1 pushed it down to 5th, since its hub was only ranked 8th.

Several queries had very common terms. DirH1 deemed java.lang the best hub
for q8, reporting all but one target (despite 92% of the corpus being matched).
DirH0 listed 4 (15% match due to no stemming). Other tools did not report a
target in their top 50. Stemming was unnecessary for q9, and all disjunctive tools
matched 93% of the corpus. The “noise” from the numerous content-relevant files
resulted in only GDS, DirH1 and MDS reporting the target.

DirH1 suffered from polysemy in some queries. It reported all targets for q7,
but its top 25 positions were dominated by the sun.tools.doclets.formats.html

486 A. Penev, M. Gebski, and R.K. Wong

package (classes refer to link and list in an HTML context). With stemming off,
DirH0 avoided this problem.

For q7 and q10, the existence of better hubs caused our approach to lower the
rank of Luc/Lucmod’s content analysis suggested positions of the target. But for
the other queries where either tool reported a target in the top 50, our approach
placed a target in an equal or better rank.

In terms of performance, total processing time averaged to 2.01s on a 3.2MHz
P4 with standard load. Most of this time was used for disk IO in the building
of auxiliary data structures, which would normally be bootstrapped only once
by a background-process DS tool. Computation of 20 iterations under hitsFS
averaged to 0.064s, which does not grow with the size of the result set since we
use a maximum root set size of 250.

5 Related Work

PageRank and HITS (§2.2, [3,5]) are popular connectivity analysis algorithms,
and have had many suggested improvements (for a more-extensive survey, we re-
fer to [6]). Our work builds on HITS by adapting the concepts of what constitutes
a hub, an authority, a link, and relevance in a filesystem environment.

ARC[18] used a distance-2 HITS to compile authority lists comparable to
human-powered taxonomies. A key idea was inspecting the small text-window
surrounding anchors to judge the weight of a link, but this does not map to a
filesystem. However, we do consider paths longer than HITS’s distance-1.

[7,8] suggested pure connectivity analysis adjustments to improve HITS’ ac-
curacy by over 45%. However, ideas focused on treatment of nodes with skewed
in/out-degree ratios, which lack an intuitive interpretation in a filesystem. But
[8] defends our use of Lucene’s VSM, by empirically arguing that there is little
difference between VSM, CDR, TLS and Okapi.

[19] use HITS for companion and co-citation identification of related pages,
improving on Netscape’s “What’s related” service. A key idea was to exploit the
order of links on the page, but a filesystem’s listing order of paths is determined
by the operating system (e.g. ascii sort), and not human judgment.

[20] suggested using paths of arbitrary length to abate rare counter-intuitive
results of HITS in weakly-connected graphs. We also consider arbitrary path
lengths, but our strongly-connected graph has weighted path-lengths which we
construct without their expensive matrix exponentiation method.

Using feedback to bias weights [21,20] merits further investigation for a filesys-
tem, where more recently (or frequently) accessed (or modified) nodes could be
given artificial boosts, since they appear to interest the user.

The methodology of our work is similar to [22,12], both of which modify
PageRank and apply it to a new domain (labeled graph databases, and hyper-
linked XML; their semantic links came from schemas and idrefs/xlinks). Our
work differs in its applied environment, algorithm and interpretations.

Topic Distillation in Desktop Search 487

6 Conclusion

We have adopted and adapted a connectivity analysis approach to improve
ranked lists in local filesystem search. In a DS context, we hypothesized that
favoring relevant files in relevant directories could yield better results.

We provided anecdotal evidence that this may be the case, using a real-world
hierarchical corpus with real-world queries. Under MRR, we recognized Lucene
as having better ranked results than the other commercial tools. Yet, our two
prototypes—running on top of Lucene and a modified-Lucene—improved the
MRR of their respective backend by 23% and 36%. Under a per-query normal-
ized metric that shared scores according to relative performance, our prototypes
improved the Mean normalized RR of their backends by 19% and 46%.

We conclude that traditional content analysis combined with some connectiv-
ity analysis is useful for relevance-ranked results in Desktop Search.

References

1. Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., Robbins, D.: Stuff I’ve
Seen: a system for personal information retrieval and re-use. In: SIGIR. (2003)

2. Chakrabarti, S., Dom, B., Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins,
A.: Experiments in topic distillation. SIGIR workshop on Hypertext IR (1998)

3. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Stanford Digital Library Technologies Project (1998)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7) (1998)

5. Kleinberg, J.: Authoritative sources in a hyperlinked environment. JACM 46(5)
(1999)

6. Marendy, P.: A review of world wide web searching techniques focusing on HITS
and related algorithms that utilize the link topology of the world wide web to
provide the basis for a structure based search technology (2001)

7. Bharat, K., Henzinger, M.R.: Improved algorithms for topic distillation in a hy-
perlinked environment. In: SIGIR. (1998)

8. Li, L., Shang, Y., Zhang, W.: Improvement of HITS-based algorithms on web
documents. In: WWW. (2002)

9. Ravasio, P., Schär, S.G., Krueger, H.: In Pursuit of Desktop Evolution: User Prob-
lems and Practices With Modern Desktop Systems. TOCHI 11(2) (2004)

10. The Apache Lucene Project: (2006) http://lucene.apache.org.
11. Marchiori, M.: The quest for correct information on the Web: Hyper search engines.

Computer Networks and ISDN Systems 29(8–13) (1997)
12. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword

search over XML documents. In: SIGMOD. (2003)
13. Noda, T., Helwig, S.: Benchmark Study of Desktop Search Tools. University of

Wisconsin-Madison E-Business Consortium (2005)
14. The Java Tutorial: (1995–2005) http://java.sun.com/docs/books/tutorial.
15. Harold, E.: The comp.lang.java FAQ List (1995–1997) http://www.ibiblio.org/

java/javafaq.html.
16. Anick, P.: Adapting a full-text information retrieval system to the computer trou-

bleshooting domain. In: SIGIR. (1994)

488 A. Penev, M. Gebski, and R.K. Wong

17. Jansen, B., Spink, A., Bateman, J., Saracevic, T.: Real life information retrieval:
a study of user queries on the Web. SIGIR Forum (1998)

18. Chakrabarti, S., Dom, B., Gibson, D., Kleinberg, J., Raghavan, P., Rajagopalan,
S.: Automatic resource list compilation by analyzing hyperlink structure and as-
sociated text. In: WWW. (1998)

19. Dean, J., Henzinger, M.R.: Finding related pages in the world wide web. Computer
Networks 31(11–16) (1999)

20. Miller, J., Rae, G., Schaefer, F., Ward, L., LoFaro, T., Farahat, A.: Modifications
of Kleinberg’s HITS algorithm using matrix exponentiation and web log records.
In: SIGIR. (2001)

21. Chang, H., Cohn, D., McCallum, A.: Creating Customized Authority Lists. In:
ICML. (2000)

22. Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-based
keyword search in databases. In: VLDB. (2004)

Interactions Between Document Representation and
Feature Selection in Text Categorization�

Miloš Radovanović and Mirjana Ivanović

University of Novi Sad
Faculty of Science, Department of Mathematics and Informatics

Trg D. Obradovića 4, 21000 Novi Sad
Serbia and Montenegro

{radacha, mira}@im.ns.ac.yu

Abstract. Many studies in automated Text Categorization focus on the perfor-
mance of classifiers, with or without considering feature selection methods, but
almost as a rule taking into account just one document representation. Only
relatively recently did detailed studies on the impact of various document repre-
sentations step into the spotlight, showing that there may be statistically
significant differences in classifier performance even among variations of the
classical bag-of-words model. This paper examines the relationship between the
idf transform and several widely used feature selection methods, in the context of
Naı̈ve Bayes and Support Vector Machines classifiers, on datasets extracted from
the dmoz ontology of Web-page descriptions. The described experimental study
shows that the idf transform considerably effects the distribution of classifica-
tion performance over feature selection reduction rates, and offers an evaluation
method which permits the discovery of relationships between different document
representations and feature selection methods which is independent of absolute
differences in classification performance.

1 Introduction

Automated Text Categorization (TC) differentiated as an independent field during the
1990s, and has since then provided a benchmark for practically every known Machine
Learning technique [1]. Its applicability has also been widely acknowledged by Data
Mining (ie. Text and Web Mining), Semantic Web, Digital Libraries, Information Re-
trieval and Natural Language Processing communities. The biggest appeal of TC, from
a researcher’s point of view, is in the high number of features of textual data (high
dimensionality), even when documents are represented as a simple bag-of-words. For
these reasons, the majority of Text Categorization research was concentrated at com-
paring how various Machine Learning techniques fare in such conditions, and devising
methods for reducing the number of features without compromising classification per-
formance, using feature selection or extraction.

Recently, several detailed studies appeared which investigate the impact of docu-
ment representations – variations of the bag-of-words model – on classification perfor-
mance. Leopold and Kindermann [2] experimented with the Support Vector Machines
� This work was supported by project Abstract Methods and Applications in Computer Science

(no. 144017A), of the Serbian Ministry of Science and Environmental Protection.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 489–498, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

490 M. Radovanović and M. Ivanović

(SVM) classifier using different kernels, term frequency transformations and lemmati-
zation of German. They found that lemmatization usually degraded classification per-
formance, and had the additional downside of great computational complexity, making
SVM capable of avoiding it altogether. Similar results were reported for Neural Net-
works on French [3]. Another study on the impact of document representation on
one-class SVM [4] showed that, with a careful choice of representation, classification
performance can reach 95% of the performance of SVM trained on both positive and
negative examples. Kibriya et al. [5] compared the performance of SVM and a variant
of the Naı̈ve Bayes classifier called Complement Naı̈ve Bayes (CNB) [6], emphasizing
the importance of term frequency (tf) and inverse document frequency (idf) transfor-
mations for CNB. Debole and Sebastiani [7] investigated supervised learning of feature
weights, and found that their replacement of the idf transform can in some cases lead to
significant improvement of classification performance.

Our own study [8] demonstrated that there can be statistically significant differ-
ences between document representations for every considered classifier1 with at least
one of the standard performance measures: accuracy, precision, recall, F1 and F2 (see
Section 2). The emphasis of the study was on determining the relationships between
different transformations of the bag-of-words representation, including stemming, nor-
malization of weights, tf, idf and logtf (the logarithm of 1+ tf), ie. on determining their
behavior when used in meaningful combinations. Performance of each classifier with
different document representations was measured, and representations were compared,
counting the number of statistically significant wins and losses of every representation
for each classifier. In this scheme, the subtracted value of wins–losses expresses the
“strength” of a particular representation when compared to others, in the context of a
particular classifier. Figure 1, reproduced from [8], depicts the experimentally measured
effect of the idf transform, when included in the document representation. The charts
were obtained by adding up the wins–losses values of representations which include idf,
and subtracting from that the wins–losses values of all representations not containing
the idf transform. All values were additionally summed up over 11 datasets extracted
from the dmoz Open Directory taxonomy of Web-page descriptions.

Figure 1a depicts the wins–losses differences without any kind of dimensionality
reduction, while Fig. 1b2 shows the values when only around 1000 most frequent fea-
tures are retained (from a total of 3500–4500, depending on the dataset). There is a
clear discrepancy between the effects of idf on CNB and SMO: while it degrades the
performance of CNB and improves SMO without dimensionality reduction, with di-
mensionality reduction the result was completely opposite! This struck us as coun-
terintuitive – discarding least frequent features meant discarding features with a high
idf score, which should either have improved or degraded classification performance,
but not both. Improvement would have happened in case the less frequent features
were not discriminative (correlated with the class feature) and idf was giving them

1 CNB, Platt’s Sequential Minimal Optimization (SMO) method for SVM training, the Voted-
Perceptron by Freund and Schapire, Aha, Kibler and Albert’s Instance-Based variant of k-
Nearest Neighbor, and revision 8 of Quinlan’s C4.5, all implemented in WEKA.

2 The IBk classifier is missing from the chart because it was completely broken by dimension-
ality reduction, for reasons similar to the breakdown of RF in Section 3.

Interactions Between Document Representation and Feature Selection 491

Fig. 1. Effects of idf applied to tf before (a) and after dimensionality reduction (b)

unrealistically high weight, while degradation would have taken place if such features
were highly discriminative (this depending on the actual datasets). Thus an interesting
question was raised: do CNB and SMO function at such different levels that they were
able to capture completely different notions of feature frequencies and weights?

Motivated by the above dilemma, this paper presents a follow-up experimental study
which concentrates on the effect that the idf transform exhibits on several commonly
used feature selection (FS) methods, and considers a wider array of reduction rates.
Since the datasets used in our previous study were rather small in order to avoid issues
of dimensionality reduction, this study uses bigger, more realistic datasets also extracted
from the dmoz taxonomy.

The reason for using dmoz instead of some other more commonly employed TC
corpora (like Reuters and OHSUMED) lies in the initial motivation for determining
the best combination of document representation, FS method and classifier for building
CatS [9]: a meta-search engine which sorts search results by automatically classify-
ing them into topics derived from the dmoz taxonomy. CatS is currently available at
http://stribog.im.ns.ac.yu/cats/.

The rest of the paper is organized as follows. The next section introduces the ex-
perimental setup: used datasets, document representations, feature selection methods
and classifiers. Section 3 describes the most interesting findings about the interactions
between document representations, feature selection methods, and reduction rates. The
last section gives some concluding remarks and guidelines for possible future work.

2 The Experimental Setup

The WEKA Machine Learning environment [10] was used as the platform for perform-
ing all experiments described in this paper. Classification performance was measured by
the standard metrics, which may be described in terms of possible outcomes of binary
classification summarized in Table 1. Accuracy is the ratio of correctly classified exam-
ples into both classes: (TP + TN)/(TP + TN + FP + FN); precision expresses the
ratio of truly positive examples among all examples classified into the positive class:
TP /(TP + FP); recall describes the coverage of truly positive examples by the set
of all examples classified into the positive class: TP /(TP + FN); F1 is the harmonic
mean of precision and recall: 2 ·pr · re /(pr + re); and F2 is a mean which favors recall

492 M. Radovanović and M. Ivanović

over precision: 5 ·pr · re /(4 ·pr + re). For the sake of brevity only F1 will be reported,
since, on one hand, it is the most widely used evaluation measure in TC literature and,
on the other, it is sufficient to illustrate all main points of the study.

Table 1. Outcomes of binary classification

Predicted class
yes no

Actual yes True Positive True Negative
class no False Positive False Negative

Datasets. The dmoz Open Directory is a large human-annotated collection of Web-page
descriptions available at http://dmoz.org, and also used by Google. Its contents can be
downloaded in RDF format, and are constantly evolving; the version from July 2, 2005
was used in our research. It has found its way into much Text and Web Mining applica-
tions [11,12,13,9], being the only freely available resource of its kind.

Initially, we restricted the domain of experimentation to 11 top level categories of
dmoz which were considered suitable for the task of sorting search results [8,9], namely
Arts, Business, Computers, Games, Health, Home, Recreation, Science, Shopping, So-
ciety and Sports. For the purposes of this study, six two-class datasets, summarized in
Table 2, were extracted from the dmoz data. The table shows the number of features
(not including the class feature) of each dataset, the total number of examples (docu-
ments), and the number of positive and negative ones. Every dataset corresponds to one
dmoz topic from which positive examples are taken, while the negative ones are chosen
in a stratified fashion from all other topics at the same level of the hierarchy, within a
common parent topic. Thus, for each of the chosen first-level categories (Arts, Comput-
ers, Sports) the negative examples are extracted from all leftover dmoz data, while for
the second-level topics (Music, Roleplaying, Physics) negative examples are restricted
to their first-level parents (Arts, Games, and Science, respectively). All texts were pre-
processed by eliminating stopwords using the standard stopword list from [14]. Since
best document representations that were determined in [8] all included stemming, the
Porter stemmer [15] was applied to every dataset.

Table 2. Extracted datasets

Dataset Features Examples
Total Pos. Neg.

Arts 14144 6261 3002 3259
Computers 15152 7064 3390 3674
Sports 14784 7694 3881 3813
Arts/Music 13968 8038 4069 3969
Games/Roleplaying 12530 8948 4574 4374
Science/Physics 10558 4973 2519 2454

Document Representations. Let W be the dictionary – the set of all terms (or features,
in this case words) that occur at least once in a set of documents D. The bag-of-words

Interactions Between Document Representation and Feature Selection 493

representation of document dj is a vector of weights wj = (w1j , . . . , w|W |j). If wij

is taken to be the frequency of the ith term in the jth document, the representation is
referred to as the term frequency (tf) representation. Normalization can be employed
to scale the term frequencies to values between 0 and 1, accounting for differences in
the lengths of documents. The logtf transform can be applied to term frequencies, re-
placing the weights with log(1 + wij). The inverse document frequency (idf) transform
is expressed as: log(|D|/docfreq(D, i)), where docfreq(D, i) is the number of docu-
ments from D the ith term occurs in. It can be used by itself, or be multiplied with term
frequency to yield the popular tfidf representation.

For each dataset, two different variations of the bag-of-words representation were
generated, one just with term frequencies (tf), and the other using the tfidf represen-
tation. Normalization with regards to document length was performed in both cases,
since it was shown in [8] to be beneficial to performance of the classifiers that will be
considered in this paper.

Feature Selection. The examined feature selection methods are more-less well known
and widely used in TC: chi-square (CHI), information gain (IG), gain ratio (GR), Re-
liefF (RF) and symmetrical uncertainty (SU) [16,17,18,10]. All these methods assign a
score to every text feature based on its correlation with the class feature. CHI achieves
this using the well known χ2 measure from Statistics, while IG, GR and SU all come
from the same stream of equations originating in the notion of entropy from Informa-
tion Theory. RF is essentially different from all methods described above. It functions
at a more algorithmical level, by taking a random example from the dataset and using
its nearest neighbors (with regards to some vector distance metric) from each class to
update the relevance of every feature.

In our experiments, the performance of classification was measured on datasets con-
sisting of the top 100, 500, 1000, 3000, 5000, 7000 and 10000 features selected by each
method, and on datasets with all features. The simple feature selection method from our
previous study [8], which discards least frequent features, was not used. The reason was
simple – it was difficult to follow the same reduction rates on different datasets without
randomly discarding features with same frequencies of appearance, which would have
compromised the validity of any reached conclusion.

Classifiers. The two classifiers implemented in WEKA that were used in the study are
ComplementNaiveBayes (CNB) – a variant of the classic Naı̈ve Bayes algorithm opti-
mized for applications on text [6,5], and SMO – an implementation of Platt’s Sequential
Minimal Optimization method for training Support Vector Machines [19]. Both classi-
fiers were employed using their default parameters (with the exception of turning off
SMO’s option for normalization of data, since it was done beforehand), meaning that
SMO was used with the linear kernel, which is known to perform well on text [2].

Experiments were carried out on each dataset with a particular document represen-
tation, FS method and number of features, and classifier, in five runs of 4-fold cross-
validation. Values of evaluation measures were compared using the corrected resampled
t-test provided by WEKA, at p = 0.05, and averaged over runs and folds for further
reporting.

494 M. Radovanović and M. Ivanović

The experiments in [8] showed that tf was the best document representation for CNB,
but logtf was the winner for SMO. Despite that fact, this study uses tf as the baseline
representation for both classifiers, in order to accurately capture the relationships be-
tween feature selection and the idf transform, and enable a more exact comparison of
the behavior of the two classifiers.

3 Results

Figure 2 depicts the performance of CNB measured by F1 for all considered feature
selection algorithms and reduction rates, averaged over the six datasets, with the tf rep-
resentation (a) and tfidf (b). It can be seen that CHI, IG and SU feature selection meth-
ods behave practically the same, which is somewhat surprising since CHI is based on
rather different theoretical grounds. GR closely follows the three down to more radical
reduction rates of 500 and 100, where its performance drops. RF proved to be a com-
plete failure, in all probability not because of any shortcoming as a feature selection
algorithm, or unsuitability for use in textual domains. It was a consequence of WEKA’s
implementation using the Euclidian measure when calculating document vector dis-
tances for determining nearest neighbors. Not until the late phases of experimentation
did we realize that the Euclidian measure tends to deform with high numbers of fea-
tures [20]. Therefore, the bad performance of RF may be treated as an experimental
verification of this fact in the context of feature selection.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

CHI GR IG RF SU

0.65

0.7

0.75

0.8

0.85

0.9

0.95

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

CHI GR IG RF SU

(a) (b)

Fig. 2. Performance of CNB measured by F1, with tf (a) and tfidf representation (b)

The described trends in the performance of FS methods were consistent over all
evaluation measures with both classifiers (except for GR exhibiting a boost in recall for
CNB at low number of features), so the following comments will generally refer to the
CHI–IG–SU trio.

Noticeable differences in the behavior of CNB in the two charts of Fig. 2 are the
more obvious dent between 3000 and 10000 features for tfidf, and the fact that CNB
performance with tfidf is scaled down several percent from tf. But, when instead look-
ing at the summed-up statistically significant wins–losses values, shown in Fig. 3, the

Interactions Between Document Representation and Feature Selection 495

differences between reduction rates become more obvious3. What these charts depict
is independent of absolute classifier performance at given reduction rates – they rather
express how FS methods and reduction rates fare against one another within the realms
of a particular classifier and document representation. Peaks at 1000 selected features
and no feature selection are more clearly pronounced than in Fig. 2, as well as the dents
between 3000 and 10000.

-250

-200

-150

-100

-50

0

50

100

150

200

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

CHI GR IG RF SU

-250

-200

-150

-100

-50

0

50

100

150

200

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

CHI GR IG RF SU

(a) (b)

Fig. 3. Summed up wins–losses for F1 and CNB, with tf (a) and tfidf representation (b)

In order to express how the idf transform effects the behavior of the CNB classi-
fier in conjunction with feature selection, the chart in Fig. 4a shows the wins–losses
for tf (Fig. 3a) subtracted from the wins-losses for the tfidf representation (Fig. 3b).
It can be seen that idf degrades the performance of CNB at higher numbers of fea-
tures, while improving it in the 100–3000 range. Note that this is relative improve-
ment/degradation – the performance of a FS method at a particular reduction rate is
expressed only through comparison with its peers within the same document represen-
tation and classifier. Therefore, the 100–3000 range can only be viewed as the place
to expect improvement when introducing the idf transform to the document representa-
tion. Whether improvement will actually take place is up to the datasets and classifiers
– in our studies the tfidf representation proved inferior almost as a rule, but that may not
always be the case [5,2]. Using wins–losses instead of values of performance measures
effectively avoided the issue of scale when comparing feature selection methods on dif-
ferent document representations, sacrificing information about absolute performance to
express the relationships between document representations and feature selection.

Figure 4b shows the corresponding graph of wins–losses differences introduced by
idf for the SMO classifier. Contrary to the the chart for CNB, this chart points to two
possible areas of idf performance improvement: one at higher numbers of features, ap-
proximately above the 8000 mark, and one in the lower feature counts below 800. This
shows that the idf transform effects the two classifiers differently regarding FS reduc-
tion rates, and explains the discrepancy noticed in Section 1. With no feature selection

3 The wins–losses axes ranges from −210 to 210: this is six datasets times 35 – the maximum
number of wins (and losses) for a FS method at a particular number of features, out of a total
of 5 methods · 7 reduction rates + 1 = 36.

496 M. Radovanović and M. Ivanović

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 id
f d

iff
er

en
ce

CHI GR IG RF SU

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 id
f d

iff
er

en
ce

CHI GR IG RF SU

(a) (b)

Fig. 4. Effect of idf on F1 wins–losses for CNB (a) and SMO (b)

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

P
re

ci
si

o
n

 w
in

s-
lo

ss
es

 id
f d

iff
.

CHI GR IG RF SU

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
ec

al
l w

in
s-

lo
ss

es
 id

f d
iff

.
CHI GR IG RF SU

(a) (b)

Fig. 5. The effect of idf on precision (a) and recall wins–losses (b) for CNB

idf degrades CNB and improves SMO, while at 2000–3000 selected features4 the ef-
fect is opposite. What makes the correspondence with our previous study [8] even more
remarkable is the fact that different datasets, and even feature selection methods were
used, thus supporting the validity of the approach.

However, the general shape of the curves for CNB and SMO in Fig. 4 (regarding
the CHI–IG–SU trio) is quite similar, except for the drop of the CNB curve below the
500 feature mark. This may as well be followed by a corresponding drop for SMO at
a lower number of features which was not measured. These observations indicate that
the CNB and SMO classifiers may not behave in such opposing fashion with regards
to the idf transform as was suggested, since the curves are not exactly contrary to one
another.

As a side observation, we were struck by the fact that the wins–losses differences
charts for the F1 measure (Fig. 4) and accuracy (figure not shown) are practically iden-
tical. Accuracy is an old measure for evaluating Machine Learning techniques which
is considered to be very sound, but is seldom used in textual domains since it does not

4 This roughly corresponds to 1000 features from the previous batch of experiments since those
datasets had a considerably lower number of features.

Interactions Between Document Representation and Feature Selection 497

behave well in situations with highly imbalanced class distributions. On the other hand,
F1 is known to handle imbalanced class distributions well, and it has shown behav-
ior practically identical to that of accuracy on our datasets which do not exhibit class
imbalance. To appreciate the correlation between accuracy and F1 better, consider the
wins–losses differences charts for precision and recall (the two measures which com-
prise F1) on CNB in Fig. 5, and the CNB chart for F1, in Fig. 4a.

4 Conclusion

The intuition introduced in Section 1, that there may be significant interactions between
the idf transform in the bag-of-words document representation, and feature selection,
has been verified by the presented experimental study. The study concentrated on de-
scribing the interaction in the context of two commonly used classifiers for text: Naı̈ve
Bayes and Support Vector Machines. By examining wins–losses and their differences,
instead of absolute values given by the F1 evaluation measure, the experiments were
able to quantify this interaction, making comparisons between the behaviors of clas-
sifiers with regard to the interaction possible. Thus the study concluded that the two
examined classifiers behaved in different, but not entirely opposing ways.

Another possibility opened by the quantification of interaction between document
representation and feature selection is the comparison of the behavior of datasets. One
interesting direction of future work would certainly be to extend the experiments to cor-
pora more commonly used in TC research, like Reuters, OHSUMED, WebKB, 20News-
groups and the like, which would enable drawing some additional parallels with existing
experimental and theoretical results.

Other basic bag-of-words transforms beside idf, like stemming, normalization and
logtf, could also benefit from similar experimental treatment, although they appear
not to be so strongly correlated with feature selection as idf (according to the evi-
dence from [8]). But, it would be interesting to examine the behavior of supervised
feature weighing schemes introduced by Debole and Sebastiani [7], which, unlike idf,
do attempt to weigh text features in correspondence to the class feature. Intuitively,
such transforms should generate wins–losses difference charts that are much more
placid and closer to 0 than the ones in Fig. 4. Finally, the proposed method can be
used in the context of more advanced document representation schemes, including
n-grams [17], information derived from hyperlinks, and elements of document
structure [11].

With the rapid expanse of research and applications of classification algorithms in
the 1990s, the field of document representations was left somewhat under-studied. Re-
cent papers focusing on issues of document representation [2,3,4,5,7,8] showed that
some of the “old truths” (e.g. “tfidf is the best variant of the bag-of-words represen-
tation”) may not always hold for new and improved algorithms. Further understand-
ing of the relationships between document representation, feature selection, and clas-
sification algorithms can provide useful insights to both researchers and practitioners,
assisting them in choosing the right tools and methods for their classification-related
tasks.

498 M. Radovanović and M. Ivanović

References

1. Sebastiani, F.: Text categorization. In Zanasi, A., ed.: Text Mining and its Applications. WIT
Press, Southampton, UK (2005)

2. Leopold, E., Kindermann, J.: Text categorization with Support Vector Machines. How to
represent texts in input space? Machine Learning 46 (2002) 423–444

3. Stricker, M., Vichot, F., Dreyfus, G., Wolinski, F.: Vers la conception automatique de fil-
tres d’informations efficaces. In: Proceedings of RFIA2000, Reconnaissance des Formes et
Intelligence Artificielle. (2000) 129–137

4. Wu, X., Srihari, R., Zheng, Z.: Document representation for one-class SVM. In: Proceedings
of ECML04, 15th European Conference on Machine Learning. LNAI 3201, Pisa, Italy (2004)

5. Kibriya, A.M., Frank, E., Pfahringer, B., Holmes, G.: Multinomial naive bayes for text
categorization revisited. In: Proceedings of AI2004, 17th Australian Joint Conference on
Artificial Intelligence. LNAI 3339, Cairns, Australia (2004) 488–499

6. Rennie, J.D.M., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of naive
Bayes text classifiers. In: Proceedings of ICML03, 20th International Conference on Ma-
chine Learning. (2003)

7. Debole, F., Sebastiani, F.: Supervised term weighting for automated text categorization. In
Sirmakessis, S., ed.: Text Mining and its Applications. Studies in Fuzziness and Soft Com-
puting 138. Physica-Verlag, Heidelberg, Germany (2004) 81–98

8. Radovanović, M., Ivanović, M.: Document representations for classification of short Web-
page descriptions. In: Proceedings of DaWaK06, 8th International Conference on Data Ware-
housing and Knowledge Discovery. LNCS 4081, Krakow, Poland (2006)

9. Radovanović, M., Ivanović, M.: CatS: A classification-powered meta-search engine. In:
Advances in Web Intelligence and Data Mining. Studies in Computational Intelligence 23,
Springer-Verlag (2006)

10. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. 2nd
edn. Morgan Kaufmann Publishers (2005)

11. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann Publishers (2003)

12. Gabrilovich, E., Markovitch, S.: Text categorization with many redundant features: Using ag-
gressive feature selection to make SVMs competitive with C4.5. In: Proceedings of ICML04,
21st International Conference on Machine Learning, Baniff, Canada (2004)

13. Ferragina, P., Gulli, A.: A personalized search engine based on Web-snippet hierarchical
clustering. In: Proceedings of WWW05, 14th International World Wide Web Conference,
Chiba, Japan (2005) 801–810

14. Salton, G., ed.: The SMART Retrieval System: Experiments in Automatic Document
Processing. Prentice-Hall (1971)

15. Porter, M.F.: An algorithm for suffix stripping. Program 14(3) (1980) 130–137
16. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys

34(1) (2002) 1–47
17. Mladenić, D.: Machine Learning on non-homogenous, distributed text data. PhD thesis,

University of Ljubljana, Slovenia (1998)
18. Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In: Proceedings

of ECML97, 7th European Conference on Machine Learning. LNCS 1224, Prague, Czech
Republic (1997) 412–420

19. Platt, J.: Fast training of Support Vector Machines using Sequential Minimal Optimization.
In: Advances in Kernel Methods – Support Vector Learning. MIT Press (1999)

20. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics
in high dimensional spaces. In: Proceedings of ICDT01, 8th International Conference on
Database Theory. LNCS 1973, London, UK (2001)

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 499 – 508, 2006.
© Springer-Verlag Berlin Heidelberg 2006

WebDriving: Web Browsing Based on a Driving
Metaphor for Improved Children’s e-Learning

Mika Nakaoka, Taro Tezuka, and Katsumi Tanaka

Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo, Kyoto, 606-8501, Japan

{nakaoka, tezuka, tanaka}@dl.kuis.kyoto-u.ac.jp
http://www.dl.kuis.kyoto-u.ac.jp

Abstract. A novel approach to Web browsing called "WebDriving" is de-
scribed that automatically extracts information from the Web and places it in a
3D space, enabling children to easily view the information while “driving
through the 3D world”. The user can visualize not only the target Web page, but
also the "peripheral information" (that is, linked and other related pages) in the
same 3D world. This makes the user aware of other relevant Web pages while
browsing the target Web page. Our WebDriving browser is well suited for
theme-based “investigative learning”, which is now being promoted at many
elementary schools in Japan.

1 Introduction

Until recently, elementary schools in Japan have put so much weight on cram educa-
tion that nurturing the ability of students to learn proactively has been severely ne-
glected. Today, many elementary schools are starting to teach students to use the
World Wide Web to gather information and to use it to make their own judgments.
This is problematic with conventional Web information retrieval systems because they
require entry of carefully chosen keywords to retrieve useful information. Children in
particular have trouble identifying appropriate keywords due to their undeveloped
ability to generalize concepts and to clearly specify for what they would like to search.
They thus tend to receive a large number of irrelevant entries in their search results.

Today's technologies are changing the way children learn, and researchers working
on new technologies for them must strive to understand their unique needs. Our re-
search goal is to develop an easier way for children to access the World Wide Web
and retrieve information. This will make the theme-based "investigative learning"
approach currently being promoted at many Japanese elementary schools more
effective. We have thus developed a Web browsing system that enables the user to
visualize the information on a Web page in a way that fits the way a child seeks in-
formation; i.e. they are curious and look around restlessly.

In this paper, we first describe the current state of Web retrieval for children and the
problems from the viewpoint of developmental psychology. Our proposed “WebDriv-
ing” browser is described in Section 3, and its usage for investigative learning is ex-
plained in Section 4. Product requirements are explained in Section 5. We discuss related
work in Section 6 and end the paper with a short summary and a look at future work.

500 M. Nakaoka, T. Tezuka, and K. Tanaka

2 Current State of Web Retrieval for Children and Problems from
Viewpoint of Developmental psychology

2.1 Current State of Web Retrieval for Children

Our research goal is to develop an innovative tool to help elementary school students
search for Web page. In particular, we focused on searching Web pages with images,
since images are attractive content even for children who are haven’t learned to read
yet. We began by investigating how children today retrieve images from the Web.

With the help of their parents, children often begin by retrieving information from
digital picture books. A search engine is not used. Using a digital picture book, a child
starts at a high level and traces down to a target object and retrieves information about
it. For example, to gather information about "dog", the child might enter "mammal" as
the query, instead of "dog" or "doggie" or "puppy dog", as he or she normally would.
Thus, the child has to know some abstracted vocabulary. However, elementary school
children (12 years old and under) generally have poor abstraction and generalization
abilities.

Many elementary schools in Japan are promoting the use of Web information re-
trieval systems that support theme-based "investigative learning”. Rather than pas-
sively learning by simply listening to the teacher, students are being encouraged to
actively learn by searching for and collecting information related to their own pur-
poses, such as making presentation materials or exchanging opinions. A very popular
site is "Yahoo! Kids Japan". By using this search engine, students can obtain informa-
tion not yet included in their textbooks. This type of learning is effective because the
information retrieved is from the wide-ranging Web, even though the student may
have entered a query based on his or her prior experience of using a digital picture
book. Needless to say, a wealth of information can thereby be obtained more actively,
meaning that the search engine is useful for "investigative learning".

However, children cannot effectively use a directory-type search engine like Ya-
hoo! Kids Japan, before acquiring enough amount of vocabulary. In addition, when
children use a crawler type search engine, they can input only the words they com-
monly use as the query. Therefore, a large part of the retrieval results is of no value,
and the child is often unable to judge whether a retrieved result is useful or not. To
retrieve information more effectively, the user must be able to enter not only name
of the target object but also abstract or specific keywords that are related to the
object.

2.2 Problems from Viewpoint of Developmental Psychology

From the viewpoint of developmental or educational psychology, in Jean Piaget's
stage theory, man's knowledge acquisition starts with the intuitive thinking period (the
period when things are intuitively classified by appearance) and continues through the
pre-operation period (the period when things are understood by specific operation)
along with the skills to handle abstract concepts [1][2]. If children follow this process,
their initial information retrieval can be described as "We know what we want, but we
don’t know how to express it like an adult”. As they develop, their ability to express
what they want improves.

 WebDriving: Web Browsing Based on a Driving Metaphor 501

In conventional Web information retrieval, appropriate keywords are needed to re-
trieve the target information, and the abilities to express the target both abstractly and
specifically are needed. It is, however, too difficult for most children to identify ap-
propriate keywords due to their lack of ability to generalize or specify concepts de-
scribing the information for which they want to search. Therefore, when performing
information retrieval, children often encounter two problems in particular.

• A child can usually think of only one or two keywords, even if there are many
potential keywords.

• A child often has difficulty in filtering relevant information from a large number
of Web pages returned by a conventional Web search engine.

In addition, we should consider information retrieval by children in terms of the
digital divide. A significant correlation has been found between the development of a
child’s intelligence and the environment he or she was brought up in [3]. This does
not simply mean that a roomy house is necessary for a child’s intelligence to develop.
More important are a child’s daily experiences.

In short, a new method is needed to support browsing and retrieval, one that im-
proves the effectiveness of theme-based "investigative learning".

3 WebDriving

3.1 “Peripheral Information Space”

Browsing in a Web space includes movement between Web pages. When a user
moves in the real world, he or she can acquire information from around the periphery
of his or her present location by looking around. We call this “recognizing the periph-
eral space of the present location”. In contrast, when visiting a Web space, a user can
view only the visited page; information beyond the page is out of view. One way to
solve this problem is let the user view other Web pages in addition to the visited one.
We call such a space the "peripheral information space" of the visited Web page.

Our proposed Web navigation and browsing system enables the user to visualize
the peripheral information space. This space is a collection of Web contents that are
related in some way to the current target Web page; i.e. the target page has links to
them and/or their contents are similar to those of the target page. The Web navigation
and browsing is performed using two or more Web pages, which increases the likeli-
hood of finding interesting pages.

In many cases, retrieving information using a conventional Web browser is ineffec-
tive when only a small number of keywords are specified, since the size of the Web is
so large. Users will not have much luck using single- or double-word queries. The
problem is that a child has only a small set of vocabulary, and it is often difficult for
them to add more keywords to the query in order to get more specific results.

With our proposed browser, a single-word query is enhanced in an imperceptible
manner by using the peripheral information space. In this paper, the peripheral infor-
mation space includes all of the linked and other related pages, which extend around
the current target page like a net.

502 M. Nakaoka, T. Tezuka, and K. Tanaka

Fig. 1. Example of a driving course created by WebDriving

3.2 Features

Enabling the user to visualize the peripheral information space supports a beginner, i.e.
a child, browsing Web pages. WebDriving has several useful features in particular.

• “Driving game” browsing: Searching the Web for information using a general
search engine entails high initial costs: constructing an effective query and se-
lecting the most relevant page from the search result. WebDriving makes the act
of searching like a driving game, so only light motivation is necessary for chil-
dren to start using it. Because it works like a driving game, its operation is easy
and intuitive.

• Peripheral information space visualization: Most Web browsers uses Mosaic
type approach; that is, only one page is displayed at a time. Presentation of pe-
ripheral information is very thin. WebDriving shows related pages in addition to

Expression of
Related pages

Expression of
Linked pages

Expression of
current pages

Direction of
movement

Right
lane

Left
lane

Zone C

Zone B

Zone A

Information on
 Related pages

Signboard/Branch

Information on
Linked images

Signboard/Branch

Information on
Related pages

Signboard/Branch

Information on
non-linked images

 WebDriving: Web Browsing Based on a Driving Metaphor 503

the current page, all in the same view. WebDriving enables the user to navigate
through the Web space by presenting relevant and linked pages to the current
page.

• Browsing and attentive viewing of Web pages: In WebDriving, the user can
first skim through many Web pages, and then view interesting pages more atten-
tively. These two phases are performed in a seamless manner. The driving inter-
face is used for browsing, while a conventional Mosaic-type browser is used for
attentive viewing.

• Extracting significant parts independent from the author's intention: An
author of a Web page uses HTML tags to emphasize certain parts of the page
that he or she thinks to be important. However, these parts do not always match
with the parts that interest the viewers. WebDriving selects images and texts in a
Web page based on criteria independent from the original emphasis by HTML
tags placed by the author.

3.3 Semantics of WebDriving

WebDriving renders the linked and other related pages in the same 3D space as the
target page. The system performs it by representing the current page as the main road
and the images on the page as signboards along the road. WebDriving reads from the
top to the bottom of the page in terms of HTML, and if a linked or other related page
is found, it draws it as a branch road. Based on an analysis, the system draws the
images in the linked and other related pages as signboards either on the right or left
side of the road, each branch with corresponding green or orange blinking markers.
An example of a constructed course is shown in Fig.1.

4 Use of WebDriving for Investigative Learning

4.1 Operation

Our proposed Web browsing system, WebDriving, works in the following steps:

1. The user selects a starting point, which is a bookmarked URL chosen before-
hand by the teacher. This page is used as an original current page.

2. When the user stops the car, the current page is displayed on a conventional
Mosaic-type Web browser.

3. Some of the images contained in the current page are presented as the sur-
rounding terrain.

4. While the user drives the car, the system presents branching roads to linked
pages and similar pages.

5. The system searches hyperlinks within the current page. Images contained
within the anchor tags are presented as signboards appearing with a branch.

6. The system searches similar pages using Google's "related:" operator. Images
contained in the similar pages are presented as signboards appearing with a
branch.

7. When the user turns on a branch, the page indicated by the branch becomes
the current page. The process then returns to step 2.

504 M. Nakaoka, T. Tezuka, and K. Tanaka

4.3 Driving Scene

The driving course generated for the current page is displayed, and the user browses
the page contents as if driving a car. The page contents are displayed one after the
other as signboards (see Fig. 2).

Fig. 2. Images in anchor tags are presented as signboards

The character string at the current location comes from the HTML title tag. The
signboards and surrounding terrain are acquired from the images on the page. There is
a side road ahead, next to the signboard with a triangular marker (see Fig. 3). The
linked pages are displayed with orange markers, and the other related pages are dis-
played with green markers.

Fig. 3. A branch of the road indicated by signboards and markers

 WebDriving: Web Browsing Based on a Driving Metaphor 505

4.4 Mosaic-type View

When the user stops the car, the current page is displayed on a conventional Mosaic
type Web browser (see Fig. 4). When the user presses the accelerator button, it returns
to the driving mode. A similar and linked pages appear from the side as signboards.

Fig. 4. The current page displayed on a conventional Mosaic-type Web browser

4.5 Branching of the Road

Branches from the main road are generated based on hyperlinks contained in the cur-
rent Web page, and also by searching similar Web pages using Google Web API.

5 Product Requirements

Product requirements are as follows:

• Hardware requirements:
 PC: OpenGL (has the practically performance)
 Video Card: 3D Accelerator
 OpenGL Driver

• Software requirements:
 Operating system : Windows XP
 Runtime Environment: Java Runtime Environment 1.4.2
 Programming Language: Java 2 Standard Edition 1.4.2

6 Related Work

There is a limit to how much information a user can understand at one time. Therefore,
when presenting a huge amount of search results from the Web, its understanding can

506 M. Nakaoka, T. Tezuka, and K. Tanaka

be facilitated by showing only part of it at a time and letting the user decide which
further information is to be viewed sequentially. This is especially true in case of chil-
dren performing Web search.

In the ‘Fisheye view’ technique [4][5][6], only information about an object that
will promote the user's grasp of it is expanded and displayed. This information is
overlapped and displayed concisely; the peripheral information of the object, when a
user selects the one from what graphs etc. of sets of key words, in one window with-
out the loss of the position.

In the ‘Overview + detail / Focus + context’ technique [7], the peripheral informa-
tion is shown around the object and the window where detailed information on the
object is shown. The position of the object is recorded in the overview, enabling the
user to better understand the location of the object in the total context.

Janecek and Pu added a function for semantic searching (opportunistic searching)
to the interface. A fisheye view that presents the image while interactively guiding
information that was the most much meaning relation to the object at which the user
was gazing, and implemented the system which proposes information the purpose is
not clear [8][9][10].

In the field of Web information retrieval, many methods for using contents in the
periphery have been proposed for supplementing the attributes of the target page.
Because the key words are related to the Web contents, the links ahead tend to appear
around the link anchor [11], by using the text in the link anchor environment [12] and
by using the peripheral text around the document structure [13][14]. This has im-
proved the accuracy of Web page retrieval by keyword searching.

Moreover, in not only Web page retrieval but also in image retrieval, metadata is
extracted from the text of the image in the periphery to retrieve the images used on
the Web page [15], and a method of doing the retrieval result image in the ranking
based on the concept similar to the link approval rating has been proposed [16].

These approaches make it possible to use the contents in the periphery as contents on
the target page.

7 Conclusion

Our proposed "WebDriving" browser automatically extracts information from the
World Wide Web and places it in a 3D space, enabling children to easily view the
information while “drive through a 3D world”. The user not only can visualize a tar-
get Web page, but also its "peripheral information" (that is, similar Web pages and
link destination pages) in the same 3D world. By using this novel tool, children can
become aware, with only light motivation, of other relevant Web pages while brows-
ing a target Web page. One shortcoming of this approach is that children sometimes
focus too much on the act of driving and they sometimes forget their purpose of ob-
taining information.

We plan to enhance WebDriving by constructing an interface that will enable
teachers to easily collect Web pages beforehand, thus enabling them to screen out
inappropriate Web pages. To facilitate investigative learning, we will add a function
for sharing collected information with others when searching for information related
to school events, i.e. a class trip.

 WebDriving: Web Browsing Based on a Driving Metaphor 507

Acknowledgements

This work was supported in part by NEXT The 21st Century COE (Center of Excel-
lence) Program "Informatics Research Center for Development of Knowledge Society
Infrastructure" (Leader: Katsumi Tanaka, 2002-2006), NEXT Grant for "Develop-
ment of Fundamental Software Technologies for Digital Archives", Software Tech-
nologies for Search and Integration across Heterogeneous-Media Archives (Project
Leader: Katsumi Tanaka), NEXT Grant-in-Aid for Scientific Research on Priority
Areas: "Cyber Infrastructure for the Information-explosion Era", Planning Research:
"Contents Fusion and Seamless Search for Information Explosion" (Project Leader:
Katsumi Tanaka, A01-00-02, Grant#: 18049041).

References

1. Linton, M: Transformations of memory in everyday life, in U. Neisser (Ed), Memory ob-
served: Remembering in natural contexts. San Francisco: W.H. Freeman (1982).

2. Piaget, J.: The Child's Conception of the World (J. Tomlinson & A. Tomlinson, trans.).
Savage, MD: Littlefield Adams Quality Paperbacks (1951: Originally published in 1929).

3. Japanese sentence pattern education society: First Japanese dictionary, Hayashishirou su-
pervision, and Nippon Hoso Kyokai (NHK) Books (1995).

4. Utting, K. and Yankelovich, N.: Context and orientation in hypermedia networks, ACM
Transactions on Information Systems, Vol. 7, No. 1, pp. 58–84 (1989).

5. Sarkar, M. and Brown, M.: Graphical fisheye views, Comm. of the ACM, Vol. 37, No. 12,
pp. 73–83 (1994).

6. Furnas, G. W.: Generalized Fisheye View, Proceedings of ACM SIGCHI ’86 Conference
on Human Factors in Computing Systems, pp. 16–32 (1986).

7. Lamping, J., Rao, R. and Pirolli, P.: A Focus + Context Technique based on Hyperbolic
Geometry for Visualizing Large Hierarchies, Proceedings if ACM SIGCHI ’95 Confer-
ence on Human Factors in Computing Systems, pp. 401–408 (1995).

8. Janecek, P. and Pu, P.: Visual Interfaces for Opportunistic Information Seeking, in Pro-
ceedings of the 10th International Conference on Human-Computer Interaction (HCII’03),
pp. 1131–1135, Crete, Greece (2003).

9. Janecek, P. and Pu, P.: An Evaluation of Semantic Fisheye Views for Opportunistic Search
in an Annotated Image Collection, Int. Journal of Digital Libraries, Vol. 4, No. 4, Special
Issue on "Information Visualization Interfaces for Retrieval and Analysis" (2004).

10. Janecek, P. and Pu, P.: Opportunistic Search with Semantic Fisheye Views, Proceedings of
the 5th International Conference on Web Information Systems Engineering (WISE2004),
Brisbane, Australia (2004).

11. Chakrabarti, S., Dom, B., Gibson, D., Kleinberg, J., Raghavan, P., Rajagopalan, S.: Auto-
matic resource list compilation by analyzing hyperlink structure and associated text, Pro-
ceedings of the 7th International World Wide Web Conference (1998).

12. Glover, E. J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D. M. and Flake, G. W.: Using
Web Structure for Classifying and Describing Web Pages, Proceedings of the 11th Interna-
tional World Wide Web Conference, pp. 562–569 (2002).

13. Attardi, G., Gullì, A. and Sebastiani, F.: Automatic Web Page Categorization by Link and
Context Analysis, Proceedings of THAI-99, European Symposium on Telematics, Hyper-
media and Artificial Intelligence (Hutchison, C. and Lanzarone, G. (eds.)), Varese, IT, pp.
105–119 (1999).

508 M. Nakaoka, T. Tezuka, and K. Tanaka

14. Pant, G.: Deriving link-context from HTML tag tree, Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery, ACM
Press, pp. 49–55 (2003).

15. Harmandas, V., Sanderson, M. and Dunlop, M. D.: Image retrieval by hypertext links,
Proceedings of the ACM SIGIR ‘97 Conference on Research and Development in Infor-
mation Retrieval, pp. 296–303 (1997).

16. Lempel, R. and Soffer, A.: PicASHOW: pictorial authority search by hyperlinks on the
Web, Proceedings of the 10th International World Wide Web Conference, pp. 438–448
(2001).

Semantic Wikis for
Personal Knowledge Management�

Eyal Oren1, Max Völkel2, John G. Breslin1, and Stefan Decker1

1 DERI Galway, Ireland
firstname.lastname@deri.org

2 Forschungzentrum Informatik, Karlsruhe, Germany
voelkel@fzi.de

Abstract. Wikis are becoming popular knowledge management tools.
Analysing knowledge management requirements, we observe that wikis
do not fully support structured search and knowledge reuse. We show
how Semantic wikis address the requirements and present a general archi-
tecture. We introduce our SemperWiki prototype which offers advanced
information access and knowledge reuse.

1 Introduction

Wikis are collaborative hypertext environments, focused on open access, ease-
of-use, and modification [8]. Wiki syntax is simple and allows creation of links
and textual markup of lists and headings. Wikis commonly support binary data
attachments, versioning and change management, change notification, full-text
search, and access control.

Wikis are successful tools for collaborative information collection, as observed
in the relatively high quality of the Wikipedia encyclopedia [4]. Lately, wikis
are becoming popular for personal and organisational knowledge management
as well. Knowledge workers use them individually, organisations deploy them
internally, and project organisations collaborate through restricted-access wikis1.

Since managing and enabling knowledge is “key to success in our economy
and society” [16, p. 6], we analyse the requirements for knowledge management
and how wikis support these requirements. Because knowledge is fundamentally
created by individuals [9, p. 59], it is crucial to support these individuals in their
personal knowledge management. Considering the knowledge creation spiral [9,
p. 62–73], knowledge workers require support in:

1. authoring: codifying knowledge into information, enabling sharing
2. finding and reminding: finding and reminding of existing knowledge [17]
3. knowledge reuse: combining an existing body of knowledge [7]
4. collaboration: developing ideas through social interactions
� This material is based upon works supported by the Science Foundation Ireland

under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694 and by the European
Commission under the Nepomuk project FP6-027705.

1 Our institutes use wikis for managing projects, clusters, and external collaborations;
see http://twiki.org/cgi-bin/view/Main/TWikiStories for more anecdotes.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 509–518, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

510 E. Oren et al.

1.1 Personal Knowledge Management Tools

Current tools for personal knowledge management have limitations: analog ap-
proaches are not automated and cannot be searched, traditional digital ap-
proaches are restrictive and do not support ad hoc structures.

Traditional tools such as todo lists or paper piles are very common [6] and are
suitable for authoring, but they do not support finding, reminding, knowledge
reuse, or collaboration. Hierarchical filing (of emails and files) allows browsing
and (full-text) searching, but does not support authoring, knowledge reuse, re-
minding, and collaboration. Personal information management tools (e.g. MS
Outlook) manage email, calendar, and tasks and support finding and reminding,
but they do not support authoring, knowledge reuse, and collaboration.

1.2 Wikis for Knowledge Management

Wikis support authoring and collaboration to a high extent and are popular due to
their simplicity and easy collaborative access [2]. On the other hand, wikis do not
enable knowledge reuse and have only limited support for finding and reminding.

These limitations result from a lack of structure in the wiki content: al-
most all information is written in natural language, and has little machine-
understandable semantics. For example, a page about the author John Grisham
could contain a link to the page about his novel “The Pelican Brief”. The English
text would say that John Grisham wrote the Pelican Brief, but that informa-
tion is not machine-understandable, and can therefore not be used for querying,
navigating, translating, or aggregating any information.

More specifically, wikis do not allow structured access to data and do not
facilitate consistent knowledge reuse:

Structured Access. A wiki does not offer structured access for browsing or
searching information. One cannot currently query wiki systems, because the
information is unstructured. For example, users looking for “How old is John
Grisham?”, “Who wrote the Pelican Brief?”, or “Which European authors have
won the Nobel price for literature?” cannot ask these questions directly. Instead,
they have to navigate to the page that contains this information and read it
themselves. For more complicated queries that require some background knowl-
edge users need to manually combine the knowledge from several sources.

Another example of structured access to information can be found in page
navigation: wikis allow users to easily make links from one page to other pages,
and these links can then be used to navigate to related pages. But these explicit
links are actually the only means of navigation2. If no explicit connection is
made between two related pages, e.g. between two authors that have the same
publishing company, then no navigation will be possible between those pages.

Knowledge Reuse. Reusing information through reference and aggrega-
tion is common in the real world. Consider for example that books are generally
2 Except for back-references that appear on a page and show pages that reference it.

Semantic Wikis for Personal Knowledge Management 511

written by an author and published by the author’s publisher. The books au-
thored by John Grisham (on his page) should therefore also automatically appear
as books published by Random House (on their page). But creating such a view
is currently not possible in a wiki, and instead the information has to be copied
and maintained manually.

In current wikis it is either assumed that people will speak a common language
(usually English) or that translations to other languages will be provided. But
manually translating pages is a maintenance burden, since the wiki system does
not recognise the structured information inside the page text. For example, a
page about John Grisham contains structured information such as his birth date,
the books he authored, and his publisher. Updates to this information have to
be migrated manually to the translated versions of this page.

2 Semantic Wikis

A Semantic wiki allows users to make formal descriptions of resources by anno-
tating the pages that represent those resources. Where a regular wiki enables
users to describe resources in natural language, a Semantic wiki enables users to
additionally describe resources in a formal language. The authoring effort is rel-
atively low: the semantic annotations are very similar to the layout or structural
directives that are already in widespread use in ordinary wikis.

Using the formal annotations of resources, Semantic wikis offer additional
features over regular wikis. Users can query the annotations directly (“show me
all authors”) or create views from such queries. Also users can navigate the wiki
using the annotated relations (“go to other books by John Grisham”), and users
can introduce background knowledge to the system (“all poets are authors; show
me all authors”).

In designing a Semantic wiki system several architectural decisions need to be
taken. In this section, we explain the basic architecture and outline the design
choices and their consequences.

Fig. 1. Architecture of a Semantic wiki

2.1 Architecture Overview

A Semantic wiki consists (at least) of the following components: a user interface,
a parser, a page server, a data analyser, and a data store, as shown in Fig. 1.

512 E. Oren et al.

First we introduce each component, then we discuss the information access, the
annotation language, and the ontological representation of the wiki.

overview: The page server encapsulates the business logic of the wiki and ex-
poses its data in the neutral wiki interchange format WIF [15]. The user
interface lets the user browse and query the wiki pages. When a page is
edited, the WIF is converted to wiki syntax and the changed wiki syntax
is parsed back to WIF. The content store stores all data as RDF, allowing
querying with standard RDF query languages. The analyser interacts with
the page server and the content store and augments pages and RDF with
inferred relations; different types of analysers fit into the architecture, e. g.
based on formal reasoning or on statistics.

user interface: responsible for all user interaction. If the wiki is web-based (the
classical model), then the user interface is a web server. A desktop application
can also act as the user interface component. In this case, collaboration is
achieved by using a shared content store.
The user interface allows users to type text and annotations in a freely
intermixed fashion. The user interface shows terms from shared ontologies,
enabling users to browse for an appropriate term3.

page server: includes standard wiki functionality such as version management,
binary attachments, and access control.

parser: converts the text written by the user into objects: it parses the text for
semantic annotations, layout directives, and links. This is transmitted in the
wiki interchange format WIF.

content store: is responsible for storing and retrieving the semantic annota-
tions, and for exchanging data with other information systems (such as other
semantic wikis). An an off-the shelve RDF triple store can be used.

data analyser: is responsible for computing a set of related resources from
a given page. In a regular wiki, this means finding all back-references, i.e.
pages that link to the current one. In a Semantic wiki the relations between
resources are much richer: the data analyser can use the annotations about
the current and other pages to search for relevant relations in the content
store (such as “other books by current author” or “other people with these
parents”).

2.2 Annotation Language

For the user of a Semantic wiki, the most visible change compared to conventional
wikis is the modified annotation language. For Semantic wikis the annotation
language is not only responsible for change in text style and for creating links,
but also for the semantic annotation of wiki pages and for writing embedded
queries in a page.

3 Descriptions can be shared and understood if written in a common terminology, and
browsing ontologies helps finding an appropriate common term.

Semantic Wikis for Personal Knowledge Management 513

Annotation Primitives. As in conventional wikis, internal links are written
in CamelCase or by enclosing them in brackets; external links are written as full
absolute URIs, or are abbreviated using namespace abbreviations.

Table 1. Annotation syntax

syntax meaning
rdf:type foaf:Person page has rdf:type foaf:Person
dc:topic [http://google.com] page has dc:topic http://google.com
dc:topic TodoItem page has dc:topic http://wikinamespace/TodoItem
dc:topic ‘‘todo’’ page has dc:topic “todo”
?s dc:topic ?o embedded query for all pages and their topics
?s dc:topic TodoItem embedded query for all todo items

The additional syntax for semantic annotations is shown in table 1: annota-
tions are written on a separate line, and consist of a predicate followed by an
object. Predicates can only be resources (identifiable things), objects can be ei-
ther resources or literals. An example page is displayed in figure 2. It describes
John Grisham, an author published by Random House.

JohnGrisham
John Grisham is an author and retired lawyer.

rdf:type foaf:Person
dc:publisher RandomHouse

Fig. 2. Example page

Subject of Annotations. Wiki pages often refer to real-world resources. An-
notations can refer to a wiki page but also to the resource described on that
page. For example, the triple “W3C created-on 2006-01-01” can refer to the cre-
ation date of the organisation or to the creation date of the wiki page about that
organisation.

The question “what do URIs exactly identify” (of which the annotation sub-
ject is a subclass) is an intricate open issue on the Semantic Web4: a URI can
for example identify an object, a concept, or a web-document.

Our approach is to explicitly distinguish the “document” and the “real-world
concept” that it describes. Since we expect more annotations of the real-world
concepts than annotations of the page itself, we attribute annotations by default
to the real-world concept, and allow annotations about the page (such as its
creation date, version, or author) to be made by prepending annotations with
an exclamation mark.

For example, figure 3a shows a page that describes the World Wide Web
consortium. The page explains the W3C and the annotations state that the
4 See http://www.w3.org/DesignIssues/HTTP-URI.html .

514 E. Oren et al.

W3C
The World Wide Web Consortium (W3C) develops interoperable
technologies (specifications, guidelines, software, and
tools) to lead the Web to its full potential

semper:about urn://w3.org
rdf:type wordnet:Organization
swrc:head http://www.w3.org/People/Berners-Lee/card#i

Now we have an annotation about the page itself:
!dc:date "2006/01/01"

(a) example page

urn://w3.org

wordnet:
Organization

The World Wide Web Consortium (W3C) develops [...]

semper:about urn://w3.org
rdf:type wordnet:Organization
swrc:head http://w3.org/People/Berners-Lee/card#i
[...]

http://w3.org/People/
Berners-Lee/card#i

rdf:type

swrc:head

semper:content

2006/01/01

http://wikibase/W3C

se
m
pe
r:
ab
ou
t

dc:date

document concept

(b) RDF representation

Fig. 3. RDF representation of an example page

organisation is directed by Tim Berners-Lee. The last annotation, prepended
with an exclamation mark, refers to the page (document) instead of to the W3C
organisation: it states that the page was created on 2006-01-01. We use the
“semper:about” predicate to relate the page to the concept that it describes.

Embedded Queries. Users can embed queries on any wiki page. These embed-
ded queries are executed when a page is visited, and their results are included in
the displayed page5. They could for example show aggregations (such as all the
books written by John Grisham); embedding queries in page allows knowledge
reuse by persistently combining pieces from different sources.
5 Views resulting from embedded queries could be read-only or editable. Editable views

cause some maintenance issues (should the change be recorded in the version history
of the result page or of the page affected by the edit) similar to the view-update
problem in databases.

Semantic Wikis for Personal Knowledge Management 515

As shown earlier in Table 1, embedded queries are written using triple pat-
terns, sequences of subject, predicate, object, that can contain variables (names
that start with a question mark). A triple pattern is interpreted as a query: triples
matching the pattern are returned. Patterns can be combined to form joins.
Fig. 4 shows the earlier example page about John Grisham, including an em-
bedded query at the bottom of the page. The query returns all books written by
JohnGrisham; it creates a view on the data that is displayed below the page text.

JohnGrisham
John Grisham is an author and retired lawyer.

rdf:type foaf:Person
dc:publisher RandomHouse

this query shows all his books:
?book dc:creator JohnGrisham

TheFirm dc:creator JohnGrisham
TheJury dc:creator JohnGrisham
ThePelicanBrief dc:creator JohnGrisham

Fig. 4. Page showing embedded query

2.3 Information Access

Information can be accessed by structured navigation and querying facilities.

Navigation. Navigation in ordinary wikis is limited to explicit links entered by
users; it is not possible to navigate the information based on structural relations.
A Semantic wiki provides the metadata necessary to navigate the information
in a structured way. For example, knowing that John Grisham is an author, we
can show all other authors in the system, and offer navigation to them.

Our approach for structural navigation is based on faceted meta-data brows-
ing [18]. In faceted browsing, the information space is partitioned using orthog-
onal conceptual dimensions (facets) of the data, which can be used to constrain
the relevant elements in the information space. For example, a collection of art
works can consists of facets such as type of work, time periods, artist names,
geographical locations, etc.

Common faceted browsing approaches construct the facets manually for a spe-
cific data collection. But since in a Semantic wiki users are free to add arbitrary
metadata, manual facet generation does not suffice; instead, we have developed
a technique to automatically generate facets for arbitrary data [11].

Querying. We distinguish three kinds of querying functionality: keyword search,
queries, and views :

1. A keyword-based full-text search is useful for simple information retrieval,
and supported by all conventional wiki systems.

516 E. Oren et al.

2. Structured queries use the annotations to allow more advanced information
retrieval. The user can query the wiki for pages (or resources) that satisfy
certain properties. To retrieve for example all authors one can query for “?x
type author”. Triple patterns can be combined to form database-like joins:
“?x type author and ?x has-publisher ?y” retrieves all authors and their
publishing companies.

3. As discussed earlier, users can create persistent searches by embedding queries
in pages. A query included on a page is executed each time the page is visited
and continuously shows up-to-date query results.

3 Implementation

SemperWiki6 is our prototype implementation of a Semantic wiki. We give only
a brief overview of the implementation, see [10] for details. Figure 5 shows a
screenshot from the desktop version, displaying a page about Armin Haller. The
page freely intermixes natural language and simple semantic annotations stating
that he is a male person. On the right hand side related items are shown based
on the semantic annotations. Users are offered more intelligent navigation based
on the metadata, in addition to the explicit links between pages. On the bottom
of the page we see an embedded query, that shows a continuously up-to-date
view of all pages created by Eyal Oren.

Fig. 5. Navigating and Information reuse

6 http://semperwiki.org/

Semantic Wikis for Personal Knowledge Management 517

SemperWiki addresses the noted limitations of ordinary wikis. Concerning
structured access, users can find related information through associative brow-
sing: the wiki analyses the semantic relations in the data and provides nav-
igational links to related information. Users can search for information using
structured queries, in addition to simple full-text search.

Concerning information reuse, the semantic annotations allow better trans-
lation and maintenance; the annotations are language independent7 and can be
understood and reused without barriers. Users can also write embedded queries,
creating saved searches (database views). These views can be revisited and
reused, and provide a consistent picture of structured information. Furthermore
all information is represented in RDF using standard Semantic Web terminolo-
gies which allows information exchange.

4 Related Work

Several efforts consider using Wikis as collaborative ontology editors, such as On-
toWiki [5] or DynamOnt [3]. These efforts focus on ontology engineering rather
than improving Wiki systems; they for instance do not follow the free-text edit-
ing model of Wikis.

Souzis [12] describes an architecture for Semantic wikis but focuses on anno-
tating and representing page structure while we are concerned with page content,
and discusses specific implementation decisions rather than generic architecture
choices. Platypus [13] is a wiki with semantic annotations, but adding and using
annotations requires significantly more effort than normal text. Both WikSAR [1]
and Semantic Wikipedia [14] offer easy-to-use annotations, but neither allow reuse
of existing Semantic Web terminologies, and both only allow simple annotations
of the current page (thereby excluding blank nodes). Furthermore, none of the
above consider the representation distinction between documents and pages.

5 Conclusion

Wikis are successful for information collection, but do not fully satisfy the re-
quirements of personal knowledge management. We have shown how Semantic
wikis augment ordinary wikis: using metadata annotations they offer improved
information access (through structured navigation such as faceted browsing and
structured queries) and improved knowledge reuse (through embedded queries
and information exchange). We have implemented our architecture in a first
prototype and plan to validate its usability in a future user study.

References

1. D. Aumueller and S. Aurer. Towards a semantic wiki experience - desktop inte-
gration and interactivity in WikSAR. In Semantic Desktop (ISWC). 2005.

2. A. L. Burrow. Negotiating access within wiki: a system to construct and maintain
a taxonomy of access rules. In HyperText ‘04, pp. 77–86. 2004.

7 If ontologies contain translations of concept and property labels.

518 E. Oren et al.

3. E. Gahleitner, W. Behrendt, J. Palkoska, and E. Weippl. On cooperatively creating
dynamic ontologies. In HyperText, pp. 208–210. 2005.

4. J. Giles. Internet encyclopaedias go head to head. Nature, 438:900–901, 2005.
5. M. Hepp, D. Bachlechner, and K. Siorpaes. Ontowiki: Community-driven ontology

engineering and ontology usage based on wiki. In WikiSym. 2005.
6. S. R. Jones and P. J. Thomas. Empirical assessment of individuals’ ‘personal

information management systems’. Beh. & Inf. Techn., 16(3):158–160, 1997.
7. A. Kidd. The marks are on the knowledge worker. In CHI, pp. 186–191. 1994.
8. B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on the

Internet. Addison-Wesley, 2001.
9. I. Nonaka and H. Takeuchi. The Knowledge-Creating Company. Oxford University

Press, New York, 1995.
10. E. Oren. SemperWiki: a semantic personal Wiki. In Semantic Desktop (ISWC).

Nov. 2005.
11. E. Oren, et al. Annotation and navigation in semantic wikis. In SemWiki (ESWC).

Jun. 2006.
12. A. Souzis. Building a semantic wiki. IEEE Intelligent Systems, pp. 87–91, Sep.

2005.
13. R. Tazzoli, P. Castagna, and S. E. Campanini. Towards a semantic wiki wiki web.

In ISWC. 2004.
14. M. Völkel, M. Krötzsch, D. Vrandecic, and H. Haller. Semantic wikipedia. In

WWW. 2006.
15. M. Völkel and E. Oren. Towards a Wiki Interchange Format (WIF) – opening

semantic wiki content and metadata. In SemWiki (ESWC). Jun. 2006.
16. E. Wenger, R. McDermott, and W. M. Snyder. Cultivating Communities of Prac-

tice. Harvard Business School Press, 2002.
17. S. Whittaker and C. Sidner. Email overload: exploring personal information man-

agement of email. In CHI, pp. 276–283. 1996.
18. K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search

and browsing. In CHI, pp. 401–408. 2003.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 519 – 527, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Integration of Protein Data Sources Through PO

Amandeep S. Sidhu1, Tharam S. Dillon1, and Elizabeth Chang2

1 Faculty of Information Technology, University of Technology, Sydney, Australia
{asidhu, tharam}@it.uts.edu.au

2 School of Information Systems, Curtin University of Technical University, Perth, Australia
Elizabeth.Chang@cbs.curtin.edu.au

Abstract. Resolving heterogeneity among various protein data sources is a
crucial problem if we want to gain more information about proteomics process.
Information from multiple protein databases like PDB, SCOP, and UniProt need
to integrated to answer user queries. Issues of Semantic Heterogeneity haven’t
been addressed so far in Protein Informatics. This paper outlines protein data
source composition approach based on our existing work of Protein Ontology
(PO). The proposed approach enables semi-automatic interoperation among
heterogeneous protein data sources. The establishment of semantic interoperation
over conceptual framework of PO enables us to get a better insight on how
information can be integrated systematically and how queries can be composed.
The semantic interoperation between protein data sources is based on semantic
relationships between concepts of PO. No other such generalized semantic
protein data interoperation framework has been considered so far.

1 Introduction

In accelerating quest for disease biomarkers, the use of high-throughput technologies,
such as DNA microarrays and proteomics experiments, has produced vast datasets
identifying thousands of genes whose expression patterns differ in diseased versus
normal samples. Although many of these differences may reach statistical
significance, they are not biologically meaningful. For example, reports of mRNA or
protein changes of as little as two-fold are not uncommon, and although some
changes of this magnitude turn out to be important, most are attributes to disease-
independent differences between the samples. Evidence gleaned from other studies
linking genes to disease is helpful, but with such large datasets, a manual literature
review is often not practical. The power of these emerging technologies – the ability
to quickly generate large sets of data – has challenged current means of evaluating
and validating these data. Thus, one important example of a data rich but knowledge
poor area is biological sequence mining. In this area, there exist massive quantities of
data generated by the data acquisition technologies. The bioinformatics solutions
addressing these data are a major current challenge. However, domain specific
ontologies such as Gene Ontology [1], MeSH [2] and Protein Ontology (PO) [3, 4, 5,
and 6] exist to provide context to this complex real world data.

520 A.S. Sidhu, T.S. Dillon, and E. Chang

2 Protein Ontology Conceptual Framework

Advances in technology and the growth of life sciences are generating ever increasing
amounts of data. High-throughput techniques are regularly used to capture thousands
of data points in an experiment. The results of these experiments normally end up in
scientific databases and publications. Although there have been concerted efforts to
capture more scientific data in specialist databases, it is generally acknowledged that
only 20 per cent of biological knowledge and data is available in a structured format.
The remaining 80 per cent of biological information is hidden in the unstructured
scientific results and texts. Protein Ontology (PO) [3, 4, 5, and 6] provides a common
structured vocabulary for this structured and unstructured information and provides
researchers a medium to share knowledge in proteomics domain. It consists of
concepts, which are data descriptors for proteomics data and the relations among
these concepts. Protein Ontology has (1) a hierarchical classification of concepts
represented as classes, from general to specific; (2) a list of attributes related to each
concept, for each class; and (3) a set of relations between classes to link concepts in
ontology in more complicated ways then implied by the hierarchy, to promote reuse
of concepts in the ontology. Protein Ontology provides description for protein
domains that can be used to describe proteins in any organism. Protein Ontology
Framework describes: (1) Protein Sequence and Structure Information, (2) Protein
Folding Process, (3) Cellular Functions of Proteins, (4) Molecular Bindings internal
and external to Proteins and (5) Constraints affecting the Final Protein Conformation.
Protein Ontology uses all relevant protein data sources of information. The structure
of PO provides the concepts necessary to describe individual proteins, but does not
contain individual protein themselves. A database based on PO acts as instance store
for the PO. PO uses data sources include new proteome information resources like
PDB, SCOP, and RESID as well as classical sources of information where
information is maintained in a knowledge base of scientific text files like OMIM and
from various published scientific literature in various journals. PO Database is
represented using XML. PO Database at the moment contains data instances of
following protein families: (1) Prion Proteins, (2) B.Subtilis, (3) CLIC and (4) PTEN.
More protein data instances will be added as PO is more developed. The Complete
Class Hierarchy of Protein Ontology (PO) is shown in Figure 1. More details about
PO is available at the website: http://www.proteinontology.info/

Semantics in protein data is normally not interpreted by annotating systems, since
they are not aware of the specific structural, chemical and cellular interactions of
protein complexes. Protein Ontology Framework provides specific set of rules to
cover these application specific semantics. The rules use only the relationships whose
semantics are predefined to establish correspondence among terms in PO. The set of
relationships with predefined semantics is: {SubClassOf, PartOf, AttributeOf,
InstanceOf, and ValueOf}.

The PO conceptual modeling encourages the use of strictly typed relations with
precisely defined semantics. Some of these relationships (like SubClassOf,
InstanceOf) are somewhat similar to those in RDF Schema but the set of relationships
that have defined semantics in our conceptual PO model is small so as to maintain
simplicity of the system. The following is a description of the set of pre-defined
semantic relationships in our common PO conceptual model.

 Integration of Protein Data Sources Through PO 521

Fig. 1. Class Hierarchy of Protein Ontology

SubClassOf: The relationship is used to indicate that one concept is a subclass of
another concept, for instance: SourceCell SubClassOf FunctionalDomains. That is
any instance of SouceCell class is also instance of FunctionalDomains class. All

• ProteinOntology
o AtomicBind
o Atoms
o Bind
o Chains
o Family
o ProteinComplex

 ChemicalBonds
• CISPeptide
• DisulphideBond
• HydrogenBond
• ResidueLink
• SaltBridge

 Constraints
• GeneticDefects
• Hydrophobicity
• ModifiedResidue

 Entry
• Description
• Molecule
• Reference

 FunctionalDomains
• ActiveBindingSites
• BiologicalFunction

o PathologicalFunctions
o PhysiologicalFunctions

• SourceCell
 StructuralDomains

• Helices
o Helix

 HelixStructure
• OtherFolds

o Turn
 TurnStructure

• Sheets
o Sheet

 Strands
 Structure

• ATOMSequence
• UnitCell

o Residues
o SiteGroup

522 A.S. Sidhu, T.S. Dillon, and E. Chang

attributes of FunctionalDomains class (_FuncDomain_Family, _FuncDomain_Super-
Family) are also the attributes of SourceCell class. The relationship SubClassOf is
transitive.

AttrributeOf: This relationship indicates that a concept is an attribute of another
concept, for instance: _FuncDomain_Family AttributeOf Family. This relationship
also referred as PropertyOf, has same semantics as in object-relational databases.

PartOf: This relationship indicates that a concept is a part of another concept, for
instance: Chain PartOf ATOMSequence indicates that Chain describing various
residue sequences in a protein is a part of definition of ATOMSequence for that
protein.

InstanceOf: This relationship indicates that an object is an instance of the class, for
instance: ATOMSequenceInstance_10 InstanceOf ATOMSequence indicates that
ATOMSequenceInstance_10 is an instance of class ATOMSequence.

ValueOf: This relationship is used to indicate the value of an attribute of an object,
for instance: “Homo Sapiens” ValueOf OrganismScientific. The second concept, in
turn has an edge, OrganismScientific AttributeOf Molecule, from the object it
describes.

3 Comparing GO and PO

Gene Ontology (GO) [1] defines a structured controlled vocabulary in the domain of
biological functionality. GO initially consisted of a few thousand terms describing the
genetic workings of three organisms and was constructed for the express purpose of
database interoperability; it has since grown to a terminology of nearly 16,000 terms
and is becoming a de facto standard for describing functional aspects of biological
entities in all types of organisms. Furthermore, in addition to (and because of) its wide
use as a terminological source for database-entry annotation, GO has been used in a
wide variety of biomedical research, including analyses of experimental data [1] and
predictions of experimental results [7]. Characteristics of GO that we believe are most
responsible for its success: community involvement; clear goals; limited scope;
simple, intuitive structure; continuous evolution; active curation; and early use.

It is clear that organisms across the spectrum of life, to varying degrees, possess
large numbers of gene products with similar sequences and roles. Knowledge about a
given gene product (i.e., a biologically active molecule that is the deciphered end
product of the code stored in a gene) can often be determined experimentally or
inferred from its similarity to gene products in other organisms. Research into
different biological systems uses different organisms that are chosen because they are
amenable to advancing these investigations. For example, the rat is a good model for
the study of human heart disease, and the fly is a good model to study cellular
differentiation. For each of these model systems, there is a database employing
curators who collect and store the body of biological knowledge for that organism.
This enormous amount of data can potentially add insight to related molecules found
in other organisms. A reliable wet-lab biological experiment performed in one
organism can be used to deduce attributes of an analogous (or related) gene product in

 Integration of Protein Data Sources Through PO 523

another organism, thereby reducing the need to reproduce experiments in each
individual organism (which would be expensive, time-consuming, and, in many
organisms, technically impossible). Mining of Scientific Text and Literature is done
to generate list of keywords that is used as GO terms. However, querying
heterogeneous, independent databases in order to draw these inferences is difficult:
The different database projects may use different terms to refer to the same concept
and the same terms to refer to different concepts. Furthermore, these terms are
typically not formally linked with each other in any way. GO seeks to reveal these
underlying biological functionalities by providing a structured controlled vocabulary
that can be used to describe gene products, and shared between biological databases.
This facilitates querying for gene products that share biologically meaningful
attributes, whether from separate databases or within the same database.

Challenges faced while developing GO from unstructured and structured data
sources are addressed while developing PO. Protein Ontology is a conceptual model
that aim to support consistent and unambiguous knowledge sharing and that provide a
framework for protein data and knowledge integration. PO links concepts to their
interpretation, i.e. specifications of their meanings including concept definitions and
relationships to other concepts. Apart from semantic relationships defined in Section
2, PO also model relationships like Sequences. By itself semantic relationships
described in Section 2, does not impose order among the children of the node. In
applications using Protein Sequences, the ability of expressing the order is paramount.
Generally Protein Sequences are a collection of chains of sequence of residues, and
that is the format Protein Sequences have been represented unit now using various
data representations and data mining techniques for bioinformatics. When we are
defining sequences for semantic heterogeneity of protein data sources using PO we
are not only considering traditional representation of protein sequences but also link
Protein Sequences to Protein Structure, by linking chains of residue sequences to
atoms defining three-dimensional structure. In this section we will describe how we
used a special semantic relationship like Sequence(s) in Protein Ontology to describe
complex concepts defining Structure, Structural Folds and Domains and Chemical
Bonds describing Protein Complexes. PO defines these complex concepts as
Sequences of simpler generic concepts defined in PO. These simple concepts are
Sequences of object and data type properties defining them. A typical example of
Sequence is as follows. PO defines a complex concept of ATOMSequence describing
three dimensional structure of protein complex as a combination of simple concepts
of Chains, Residues, and Atoms as: ATOMSequence Sequence (Chains Sequence
(Residues Sequence (Atoms))). Simple concepts defining ATOMSequence are defined
as: Chains Sequence (ChainID, ChainName, ChainProperty); Residues Sequence
(ResidueID, ResidueName, ResidueProperty); and Atoms Sequence (AtomID, Atom,
ATOMResSeqNum, X, Y, Z, Occupancy, TempratureFactor, Element). Semantic
Interoperability Framework used in PO is depicted Figure 2.

Therefore, PO reflects the structure and relationships of Protein Data Sources. PO
removes the constraints of potential interpretations of terms in various data sources
and provides a structured vocabulary that unifies and integrates all data and
knowledge sources for proteomics domain (Figure 3). There are seven subclasses of
Protein Ontology (PO), called Generic Classes that are used to define complex
concepts in other PO Classes: Residues, Chains, Atoms, Family, AtomicBind, Bind,

524 A.S. Sidhu, T.S. Dillon, and E. Chang

Fig. 2. Semantic Interoperability Framework for PO

Fig. 3. Unification of Protein Data and Knowledge

 Integration of Protein Data Sources Through PO 525

and SiteGroup. Concepts from these generic classes are reused in various other PO
Classes for definition of Class Specific Concepts. Details and Properties of Residues
in a Protein Sequence are defined by instances of Residues Class. Instances of Chains
of Residues are defined in Chains Class. All the Three Dimensional Structure Data of
Protein Atoms is represented as instances of Atoms Class. Defining Chains, Residues
and Atoms as individual classes has the benefit that any special properties or changes
affecting a particular chain, residue and atom can be easily added. Protein Family
class represents Protein Super Family and Family Details of Proteins. Data about
binding atoms in Chemical Bonds like Hydrogen Bond, Residue Links, and Salt
Bridges is entered into ontology as an instance of AtomicBind Class. Similarly the
data about binding residues in Chemical Bonds like Disulphide Bonds and CIS
Peptides is entered into ontology as an instance of Bind Class. All data related to site
groups of the active binding sites of Proteins is defined as instances of SiteGroup
Class. In PO the notions classification, reasoning, and consistency are applied by
defining new concepts or classes from defined generic concepts or classes. The
concepts derived from generic concepts are placed precisely into class hierarchy of
Protein Ontology to completely represent information defining a protein complex.

As such PO can be used to support automatic semantic interpretation of data and
knowledge sources, thus providing a basis for sophisticated mining of information.

4 Mining Facilitated by Protein Ontology

The Protein Ontology Database is created as an instance store for various protein data
using the PO format. PO provides technical and scientific infrastructure to allow
evidence based description and analysis of relationships between proteins. PO uses
data sources like PDB, SCOP, OMIM and various published scientific literature to
gather protein data. PO Database is represented using XML. PO Database at the
moment contains data instances of following protein families: (1) Prion Proteins, (2)
B.Subtilis, (3) CLIC and (4) PTEN. More protein data instances will be added as PO
is more developed. The PO instance store at moment covers various species of
proteins from bacterial and plant proteins to human proteins. Such a generic
representation using PO shows the strength of PO format representation.

We used some standard hierarchical and tree mining algorithms [8] on the PO
Database. We compared MB3-Miner (MB3), X3-Miner (X3), VTreeMiner (VTM)
and PatternMatcher (PM) for mining embedded subtrees and IMB3-Miner (IMB3),
FREQT (FT) for mining induced subtrees of PO Data. In these experiments we are
mining Prion Proteins dataset described using Protein Ontology Framework,
represented in XML. For this dataset we map the XML tags to integer indexes. The
maximum height is 1. In this case all candidate subtrees generated by all algorithms
would be induced subtrees. Figure 4 shows the time performance of different
algorithms. Our original MB3 has the best time performance for this data.

Quite interestingly, with Prion dataset of PO the number of frequent candidate
subtrees generated is identical for all algorithms (Figure 5). Another observation is
that when support is less than 10, PM aborts and VTM performs poorly. The rationale
for this could be because the utilized join approach enumerates additional invalid
subtrees. Note that original MB3 is faster than IMB3 due to additional checks
performed to restrict the level of embedding.

526 A.S. Sidhu, T.S. Dillon, and E. Chang

132.532

27.0206

1

10

100

1000

s100 s50 s10 s2

Minimum Support

T
im

e
(s

ec
o

n
d

s)

MB3-T VTM-T
PM-T IMB3-T-d1
IMB3-T-NP-d1 FREQT-T

Fig. 4. Time Performance for Prion dataset of PO Data

0

200000

400000

600000

800000

1000000

1200000

s100 s50 s10 s2
Minimum Support

N
um

b
er

 o
f

F
re

q
ue

n
t

S
ub

tr
ee

s

MB3-F VTM-F
PM-F IMB3-F-d1
IMB3-F-NP-d1 FREQT-F

Fig. 5. Number of Frequent Subtrees for Prion dataset of PO Data

5 Conclusion

Protein Ontology (PO) provides a unified vocabulary for capturing declarative
knowledge about protein domain and to classify that knowledge to allow reasoning.

 Integration of Protein Data Sources Through PO 527

Information captured by PO is classified in a rich hierarchy of concepts and their
inter-relationships. PO is compositional and dynamic, relying on notions of
classification, reasoning, consistency, retrieval and querying. In PO the notions
classification, reasoning, and consistency are applied by defining new concepts or
classes from defined generic concepts or classes. The concepts derived from generic
concepts are placed precisely into class hierarchy of Protein Ontology to completely
represent information defining a protein complex. As the Web Ontology Language
(OWL) representation used in Protein Ontology is an XML-Abbrev based
(Abbreviated XML Notation), it can be easily transformed to the corresponding RDF
and XML formats without much effort using the available converters. Our Protein
Ontology (PO) is the first ever work to integrate protein data based on data semantics
describing various phases of protein structure. PO helps to understand structure,
cellular function and the constraints that affect protein in a cellular environment. The
attribute values in the PO are not defined as text strings or as set of keywords. Most of
the Values are entered as instances of Concepts defined in Generic Classes. PO
Database at the moment contains data instances of following protein families: (1)
Prion Proteins, (2) B.Subtilis, (3) CLIC and (4) PTEN. More protein data instances
will be added as PO is more developed. The PO instance store at moment covers
various species of proteins from bacterial and plant proteins to human proteins. Such
a generic representation using PO shows the strength of PO format representation.

References

[1] GO Consortium (2001). "Creating the Gene Ontology Resource: Design and
Implementation." Genome Research 11: 1425-1433.

[2] Nelson, Stuart J.; Schopen, Michael; et al. (2004).The MeSH Translation Maintenance
System: Structure, Interface Design, and Implementation. In: Fieschi, M. et al., editors.
Proceedings of the 11th World Congress on Medical Informatics; 2004 Sep 7-11; San
Francisco, CA. Amsterdam: IOS Press; pp. 67-69.

[3] Sidhu, A. S., T. S. Dillon, et al. (2006). Ontology for Data Integration in Protein
Informatics. In: Database Modeling in Biology: Practices and Challenges. Z. Ma and J. Y.
Chen. New York, NY, Springer Science, Inc.: In Press.

[4] Sidhu, A. S., T. S. Dillon, et al. (2006). Protein Ontology Project: 2006 Updates (Invited
Paper). Data Mining and Information Engineering 2006. A. Zanasi, C. A. Brebbia and N.
F. F. Ebecken. Prague, Czech Republic, WIT Press.

[5] Sidhu, A. S., T. S. Dillon, et al. (2005). Ontological Foundation for Protein Data Models.
First IFIP WG 2.12 & WG 12.4 International Workshop on Web Semantics (SWWS 2005).
In conjunction with On The Move Federated Conferences (OTM 2005). Agia Napa,
Cyprus, Springer-Verlag. Lecture Notes in Computer Science (LNCS).

[6] Sidhu, A. S., T. S. Dillon, et al. (2005). Protein Ontology: Vocabulary for Protein Data. 3rd
IEEE International Conference on Information Technology and Applications (IEEE ICITA
2005). Sydney, IEEE CS Press. Volume 1: 465-469.

[7] GO Consortium and S. E. Lewis (2004). "Gene Ontology: looking backwards and
forwards." Genome Biology 6(1): 103.1-103.4.

[8] Tan, H., T.S. Dillon, et. al. (2006). IMB3-Miner: Mining Induced/Embedded Subtrees by
Constraining the Level of Embedding. Accepted for Proceedings of PAKDD 2006.

3D Protein Structure Matching by Patch
Signatures

Zi Huang1,2, Xiaofang Zhou1,2, Heng Tao Shen1, and Dawei Song3

1 School of ITEE, The University of Queensland, Australia
{huang, zxf, shenht}@itee.uq.edu.au

2 Australian Research Council Centre in Bioinformatics, Australia
3 Knowledge Media Institute & Centre for Research in Computing

The Open University, United Kingdom
d.song@open.ac.uk

Abstract. For determining functionality dependencies between two pro-
teins, both represented as 3D structures, it is an essential condition that
they have one or more matching structural regions called patches. As 3D
structures for proteins are large, complex and constantly evolving, it is
computationally expensive and very time-consuming to identify possible
locations and sizes of patches for a given protein against a large protein
database. In this paper, we address a vector space based representation
for protein structures, where a patch is formed by the vectors within
the region. Based on our previews work, a compact representation of
the patch named patch signature is applied here. A similarity measure
of two patches is then derived based on their signatures. To achieve fast
patch matching in large protein databases, a match-and-expand strat-
egy is proposed. Given a query patch, a set of small k-sized matching
patches, called candidate patches, is generated in match stage. The can-
didate patches are further filtered by enlarging k in expand stage. Our
extensive experimental results demonstrate encouraging performances
with respect to this biologically critical but previously computationally
prohibitive problem.

1 Introduction

The structure of a protein can be represented as a collection of points (atoms)
or vectors (from one atom to another) in a three dimensional space. Certain
structural regions of a protein often perform some specific functions. Analyzing
the three-dimensional structure of a protein therefore provides a basis for un-
derstanding its biological functionality. Having one or more matching (similar)
regions in structures has been considered as an essential condition for the ex-
istence of potential interaction between two proteins (e.g., for a designed drug
to be effective on a protein). As 3D structures for proteins are large, complex
and constantly evolving, it is very time-consuming to identify possible locations
and sizes of such matching structural regions for a given protein against a large
protein database.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 528–537, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

3D Protein Structure Matching by Patch Signatures 529

This problem has been studied in computational geometry. Geometric tech-
niques have been used in many structure comparison methods. The most pop-
ular one is geometric hashing [6], which was developed in computer vision and
now used in protein structure comparison. Geometric hashing defines a set of ref-
erence frames for a structure. The coordinates of all points in the structure are
re-calculated in a reference frame, forming a reference frame system. Geometric
features of the structure are calculated based on the reference frame systems and
stored in a hash table. For any two structures, a model and a query, all possible
reference frame systems will be generated respectively. Given a model reference
frame system and a query one, the approach is to ‘place the query on top of the
model’ and consider how many points coincide. Unfortunately, it is a fully compar-
ison method for finding maximal coincidence points set between two structures.
Thus, the computational cost is pretty expensive. The algorithm finds the best
congruence between two 2D structures with m points each under translation and
rotation invariance in O(m8) time[5]. The cost should be even higher for 3D case.

To alleviate this problem, solutions to the following issues are must: 1) com-
pact representations of structural regions and 2) fast searching on the compact
representations. The first issue enables efficient similarity matching which has
been discussed in our previews work[3]. On the other hand, the second issue
avoids redundant comparisons on non-similar regions. The most commonly used
structure representation is the inter-atom distance matrix [4]. As the complexity
of this representation is quadratic to the number of atoms, it is very expensive
for processing a large number of proteins.

In this paper, we address a vector space based representation for protein
structures, where a structural region is defined as a patch formed by the vectors
within the region. We use a compact representation model called patch signa-
ture which we developed in the preview work[3]. Given a k-sized patch, patch
signature characterizes the spatial relationship among the vectors via (7k − 10)
inter-atom distances. patch signature is compact and linear to the number of
atoms. The similarity between two patches can then be measured by comparing
their patch signatures efficiently. The significance of patch signature lies in its
linear complexity and results in fast similarity measure.

To search similar patches among a large database, a match-and-expand strat-
egy is proposed to operationalize a scalable model. In the match stage, the
matching sub-patches in a smaller size k are identified. A filter-and-refine ap-
proach is used to quickly prune away unmatched results in this stage. The expand
stage extends the k-sized matches to larger sizes. The motivation is that if any
pair of k sized sub-patches can not match, then the patches containing them
can not match either. Our initial experimental results demonstrate an promising
performance which proves the novelty and effectiveness of our methods.

The rest of the paper is organized as follows. Section 2 gives a brief introduc-
tion to 3D protein structure representations and its similarity measure. Patch
database generation is introduced in Section 3, followed by detailed match-and-
expand strategy in Section 4. Section 5 reports the experimental results and
Section 6 concludes the paper.

530 Z. Huang et al.

2 Preliminaries

This paper essentially deals with the identification of matching structural re-
gions, called “patches”, between two proteins. Since proteins can be represented
as geometric objects, the structure of the geometric space has a direct influence
on the patch matching problem. In this section, a vector representation of pro-
teins is introduced. The structural representation model called patch signature
is then presented, followed by its similarity measure.

2.1 Protein, Bowtie and Patches

A protein (or more precisely, a snapshot of a protein, as the shape of a protein
can change over time) can be defined as a set P of three dimensional vectors:

P = {vi|1 ≤ i ≤ n|n = |P |} (1)

Each vi denotes a vector of
−−−→
CαCβ for residue i. The number of vectors in a

protein can vary between 10 to 10,000. The length of a vector (i.e., the distance
between its α-end and β-end) is fixed at 1.5 Å (angstrom).

Any pair of vectors of a protein construct a bowtie (Fig.1(a)). A patch is
defined as a spherical region of protein P , whose diameter is ε (ie. a distance
cut-off) (Fig.1)(b). More formally, M = {v1, v2, ..., vm} ⊆ P (m > 2) is a patch
if and only if (∀vi, vj ∈M, di,j

αα ≤ ε) ∧ (∀vk ∈M, ∀vl �∈M, dk,l
αα > ε).

Vi Vj

(a) (c) (b)

Fig. 1. (a)Spatial relationship between two vectors. Four internal distances are denoted
as dαα, dββ, dαβ, and dβα. (b) An example of patch. Each vector represents an amino
acid. The diameter is ε. (c) A patch signature.

2.2 Patches Signature Based Similarity Measure

Given a patch M , any subset of M is called a sub-patch, which is extendable in
size to |M |. A k-sized sub-patch is an unordered collection of k vectors and it
has k! representations. Ordering the vectors is necessary for generating a unique
representation of the sub-patch.

To generate an ordering of the vectors, a basevector vib
needs to be selected as

a starting point, based on which an ordering function φib
: q → q′|q, q′ = 1..k is

defined. An detailed ordering algorithm will be given later in Section 3. Now con-
sider an ordered k-sized sub-patches, S� = (vi1 , vi2 , ..., vik

). According to [3], S�
can be represented by 7k − 10 distances: < di1,i2

αα , di1,i3
αα , ..., di1,ik

αα , di2,i3
αα , ..., di2,ik

αα ,
di1,i2

ββ , , ..., di1,ik

ββ , di2,i3
ββ , ..., di2,ik

ββ , di1,i2
αβ , di1,i3

αβ , ..., di1,ik

αβ , di1,i2
βα , di1,i3

βα , ..., di1,ik

βα >

3D Protein Structure Matching by Patch Signatures 531

Definition 1 (Matching Function ψ). Given two ordered k-sized sub-patches,
S� = (vi1 , vi2 , ..., vik

) and S′
� = (ui1 , ui2 , ..., uik

). They are similar (denoted as
S� ≈δ S′

� or in short S� ≈ S′
�) if there exists a one-to-one matching function

from S� onto S′
� (i.e. ψ : S� → S′

�) such that ∀ip, iq = 1..k, ∀ρ, � = α, β:
vip , viq ∈ S�, uψ(ip), uψ(iq) ∈ S′

�|d
ip,iq
ρ	 ≈ d

ψ(ip),ψ(iq)
ρ	

To compare two k-sized sub-patches S=(vi1 , vi2 , ..., vik
) and S′=(ui1 , ui2 , ..., uik

),
we can first obtain an ordered k-sized sub-patch S� by fixing a base vector. Each
ordered k-sized sub-patch S′

� ∈ S′ should be be compared with S�. S ≈ S′ if
∃S′

� ∈ S′ such that S� ≈ S′
�.

Two patches M and M′ are similar (denoted as M ≈δ,γ M ′ or in short M ≈
M ′) if there exist sub-patch S ⊆ M , sub-patch S′ ⊆ M ′ and S is similar to S′

under condition of |S′| = |S′| ≥ γ. γ is a parameter determining the minimum
size of sub-patches. Normally it is set to be within the range of 5-20.

3 Seed-Patch Database Generation

In this section we will investigate the generation of seed-patches, based on which
a match-and-expand strategy is introduced for patch matching (i.e., finding max-
imal matching sub-patches) in the next section. First let us look at how an
unordered sub-patch can be ordered.

Definition 2 (Ordering Function). Given a k-sized sub-patch S ={vi1 , vi2 , ...,
vik
}. For any basevector vib

, b = 1..k, an ordering function is defined as φib
:

q → q′|q, q′ = 1..k such that:

1.φib
(ib) = 1

2.if φib
(ip) < φib

(iq), then d
ib,ip
αα < d

ib,iq
αα (p, q = 1..k)

Definition 3 (Distance Sequence). A distance sequence Dib

S is defined as:

Dib

S =< dib,ib
αα , d

ib,φ−1

ib
(2)

αα , ..., d
ib,φ−1

ib
(k)

αα >.

We use the notation Dib

S [p] for the pth element of Dib

S which is d
ib,φ−1

ib
(p)

αα . The
ordered k-sized sub-patch based on φib

are denoted as Sib
� = (vφ−1

ib
(1), ..., vφ−1

ib
(k)).

Definition 4 (Basebowtie). Given a k-sized sub-patch S = {vi1 , vi2 , ..., vik
},

Bvim ,vin
is the basebowtie of S, if the following conditions hold:

1.if Bvip ,viq
�= Bvim ,vin

, then d
vim ,vin
αα ≤ d

vip ,viq
αα

2.if Bvip ,viq
�= Bvim ,vin

and d
vim ,vin
αα = d

vip ,viq
αα ,

then im < ip (p, q = 1..k)

Given a k-sized sub-patch S = {vi1 , vi2 , ..., vik
}. Suppose the basebowtie of S is

Bvib
,vij

, then Sib
� = (vφ−1

ib
(1), ..., vφ−1

ib
(k)) is called a seed-patch. A set of k-sized

seed-patches is denoted as SEEDk.

532 Z. Huang et al.

Algorithm 1 [To determine the k-sized seed-patch of k-
sized sub-patch S = {vi1 , vi2 , ..., vik}.]

/* find the basebowtie and the basevector vb */
1. mindαα = maxinum;
2. mindαβ = maxinum;
3. for (p = 1; p <= k; p++)
4. for (q = 1; q <= k; q++){
5. if (p�=q) {
6. if d

ip,iq
αα <mindαα{

7. mindαα = d
ip,iq
αα ; vb = ip;

8. mindαβ = d
ip,iq

αβ ; }
9. elseif (d

ip,iq
αα ==mindαα) and

(ip < vb){
10. mindαα = d

ip,iq
αα ; vb = ip;

11. mindαβ = d
ip,iq

αβ ; }}}
/* re-order the vectors */
12. for (p = 1; p <= k; p++) φ−1(p) = ip
13. for (p = 1; p < k; p++)
14. for(q = p+1; q <= k; q++){
15. if d

ib,ip
αα >d

ib,iq
αα {

16. swap(d
ib,ip
αα ,d

ib,iq
αα);

17. swap(φ−1(p),φ−1(q));}}
18. Output(φ);

Fig. 2. Algorithm1: Seed-patch creation

The seed-patch can be generated by Algorithm 1 (in Figure 2). Each seed-
patch is described by its patch signature. Each seed-patch in SEEDk will then
be inserted into seed-patch database with protein entry, ordered vector ids and
patch signature.

After a seed patch database has been built, next we present an efficient query
processing strategy for a scalable solution for large patch databases.

4 The Match-and-Expand Strategy

In this section, we introduce a match-and-expand strategy for fast protein struc-
ture matching.

If two patches M and M ′ have a maximal matching sub-patch of K vectors,
they must also have matching sub-patches of 1, 2, · · · , K − 1 vectors. The
match-and-expand strategy, similar to philosophy of BLAST [2], matches the
sub-patches of same size, then expand the size of matched sub-patch to further
reduce the number of candidates. A set of all patches of size k(k ≤ K) is pre-
computed for all proteins in the database. In order to check if M and M ′ have

3D Protein Structure Matching by Patch Signatures 533

a matching sub-patch (of size no smaller than K), the k-sized sub-patches of M
and M ′ are checked first. If no k-sized matching sub-patches are found, M and
M ′ will not have any matching sub-patches. Otherwise, M and M ′ will be further
checked, starting from their matching k-sized sub-patch, until finding maximal
sized matching sub-patches. The k-sized sub-patches thus serve as seeds, from
which larger sized patches can be generated and compared with much lower
computational cost.

The choice of k is important. If it is too small, then the filter step may generate
too many false hits; if it is too large, then the cost of materializing all k-sized
patches can be very high. The experimental result of choosing k will be discussed
later in Section 6.

Therefore, we can first transform a protein P of n vectors into a group SEEDk

of k-sized seeds. Note that |SEEDk| << Ck
n as a sub-patch in SEEDk is not

an arbitrary combination of k vectors in P . Instead, the Cα-Cα distances be-
tween any two vectors in the patch must be within a distance cutoff ε = 8Å.
Nonetheless, |SEEDk| can still be a very large number when n is large.

Given a query protein Q containing a set of patches M. Each patch M in M

can be split into Ck
|M| k-sized sub-patches.

For each k-sized query sub-patch, Sq = {vi1 , ..., vik
}, a set of ordered query

sub-patches is defined as S�q = {Siq
� |q = 1..k}. All these ordered sub-patches are

used to search the seed-patches in the database.
To find all maximal matching patches between proteins P and Q. The match-

and-expand strategy using k-sized seed patches consists of the following two
stages:

1. Match stage: to find a set of matching k-sized sub-patches C = {(S, S′)|S ∈
SEEDk, S′ ∈ S�q, S ≈ S′}.

2. Expand stage: for each (S, S′) ∈ C, check if there exist SK ⊆ P and S′K ⊆ Q,
such that S ⊆ SK , S′ ⊆ S′K , SK ≈ S′K for K > k.

Operationally the expand stage can be accomplished by incrementally ex-
panding k-sized sub-patches S and S′ by one vector each time until maximum
matching patches are reached.

As illustrated in section 2.2, matching two sub-patches is too time consuming.
When they are two ordered sub-patches, however, we can solve the problem in
a heuristic way via a match-and-expand approach.

4.1 Match

In the match stage, we apply the filter-and-refine approach to speed up the
matching processing for initial sized patches. Filter step derives a set of candidate
matchings by applying heuristic rules, based on the orders on Cα-Cα distances.
And refine step performs matching based on all the (7k-10) distances.

Filter. Several rules will be introduced in this section to derive the candidate
matching functions ψc : vip → ujq on two ordered sub-patches S� = (vi1 , ..., vik

)
and S′

� = (uj1 , ..., ujk
) in a heuristic way. Note that vi1 and uj1 are basevectors of

534 Z. Huang et al.

these two ordered sub-patches respectively. Candidate deriving can be considered
as a filtering strategy of sub-patch matching.

Proposition 1. Given two k-sized ordered sub-patches
Si1

� = (vi1 , ..., vik
) and S′j1

� = (uj1 , ..., ujk
). If Si1

� ≈ S′j1
� and ψ(vi1) = uj1 , then

DS [p] ≈ DS′ [p] (i.e. d
i1,ip
αα ≈ d′j1,jp

αα), for any p = 2..k

We can know from Proposition 1 that given two k-sized ordered sub-patches
Si1

� and S′j1
� , for any p = 1..k, if DS[p] �≈ DS′ [p], then there does not exist a

matching function ψ with ψ(vi1) = uj1 to make Si1
� ≈ S′j1

� . It can be used to
prune a large number of unnecessary comparisons. The matching function ψ can
be derived from following rules.

Rule 1. ψ(vip) = ujp , if DS [p] ≈ DS′ [p], ∀p = 1..k

Rule 1 conducts a linear comparison between DS [p] and DS′ [p]. However, it does
not consider possible cross-position mappings between vip and uiq for p �= q. The
next rules address this problem.

Rule 2. A new candidate matching function ψ′ can be obtained from ψ by partial
modification: ψ(vif

) = ujg , ψ(vig) = ujf
, if DS [p] ≈ DS′ [p], DS [f] ≈ DS′ [g] and

DS [g] ≈ DS′ [f], f, g, p = 2..k

Proposition 2. Given two k-sized ordered sub-patches Si1
� = (vi1 , ..., vik

) and
S′j1

� = (uj1 , ..., ujk
) satisfying DS [p] ≈ DS′ [p]|p = 2..k. If there exist 2 ≤ f, g ≤

k, f �=g such that DS [f] ≈ DS′ [g] and DS [g] ≈ DS′ [f], then |DS′ [f]−DS′[g]|≤2δ

Rule 3. A new candidate matching function ψ′ can be obtained from ψ by partial
modification: ψ(vif

) = ujg , ψ(vig) = ujf
, if DS [p] ≈ DS′ [p], and |DS′ [f] −

DS′ [g]| < 2δ, 2 ≤ f, g ≤ k,∀p = 2..k

Due to the space limitation, the proofs of the propositions and rules are omitted.
Rule 3 is derived from Proposition 2 and Rule 2, as a generalization of Rule 2.
The resultant set of candidate matching functions from Rule 3 is a superset of
that of Rule 2. As a consequence, Rule 3 may result in more false hits. When
searching a database of n sub-patches against a query sub-patch, on the other
hand, Rule 3 requires less computations than Rule 2. C2

k × n inter sub-patch
cross-position comparisons for DS [g] ≈ DS′ [f] are needed in Rule 2, while Rule
3 requires only C2

k internal cross-position comparisons once for DS′ [g] ≈ DS′ [f].
Therefore, we use Rule 3 in our experiments instead of Rule 2.

Refine. A collection of candidate k-sized matching functions is then generated
through the filter stage. They are further pruned by comparing all corresponding
(7k-10) distances between two sub-patches. After the refine process, a collection
of correct k-sized matching functions is obtained.

4.2 Expand

Given two patches M = {v1, ..., vm} and M ′ = {u1, ..., um′}, and two matching
k-sized sub-patches S� = (vi1 , ..., vik

) ⊆ M and S′
� = (uj1 , ..., ujk

) ⊆ M ′ deter-
mined by a matching function ψ : iq → jq|q = 1..k, a collection of (k + 1)-sized

3D Protein Structure Matching by Patch Signatures 535

matching sub-patches are derived by involving a new proper vector. The match-
ing expansion continues until the maximal sized sub-patch is reached. Due to
space limitation, the detailed algorithm is omitted here.

5 Experiments

In this section, we set up the experiments and report the results of an extensive
performance study conducted to evaluate the proposed representation model and
the match-and-expand strategy on protein data.

5.1 Experimental Setup

Test Data. A total number of 881 sample proteins are selected for our initial
experiments according to the PDB LIST 20040601 (R-factor<0.2 and Resolu-
tion<1.9) in the WHATIF relational database. The PDB structures stored in
the WHAT IF relational database are a representative set of sequence-unique
(a sequence identity percentage cutoff of 30%) structures generated from the
X-ray protein PDB files available at a certain moment[1]. After pre-processing,
254,491 patches are generated from a total number of 881 proteins.

We also investigate the number of different sized sub-patches for the test data.
It can be observed that the number of sub-patches reaches the peak when k is
increased to 3 and then falls down as k increases. As a result, we mainly test
the effect of k for values of 3 to 6 in the experiment.

Ten different sized proteins are selected as queries. All the experimental results
reported later will be averaged over the 10 query proteins. The average number
of vectors per query is 81.

Parameter Settings. There are several parameters need to be set for our model
and search method, two of which are fixed in our experiments: distance cutoff ε
is 8Å and minimal size of sub-patches to output γ is 5. Two other parameters are
variables. We will test how the different settings of them affect the performance.

- Similarity tolerance δ: 0.1Å, 0.3Å, 0.5Å, 0.7Å and 1Å
- Size of seed patches k: 4, 5, 6

Performance Indicators. Our programs are written in C++ and running on
Pentium 4 CPU (2.8GHZ) with 1G RAM. The major performance indicator we
used is the CPU time to complete a query.

The complexities of the structure representation in existing works, such as dis-
tance matrix [4], are quadratic to the number of atoms in the protein. However,
the number of distances in our patch signature model is linear to the number of
vectors. Different level of complexities in representation leads to different level of
computational cost. Obviously, existing works are not expected to be compara-
ble with the patch signature approach. To choose a baseline for comparison with
our match-and-expand method, we perform pairwise comparison of all distances
between two patches for matching. Its performance is listed in Table 3(a). δ has

536 Z. Huang et al.

no effect on the CPU time. Because the number of sub-patches becomes less and
less as k changes from 4 to 6, its time plunges as k increases.

5.2 Experimental Results

Here we present the performance of the match-and-expand method. In match
stage, different candidate deriving rules are combined and compared.

Effectiveness of Match Stage. For Rule 1 and Rule 1+Rule 3, their CPU
time used for k-sized sub-patch matching are summarized in Fig.4 respectively,
with respect to different k and δ. As we can see from Fig.4(a), for the same
k, the CPU time goes up as δ increases since more sub-patches are compared.
On the contrary, for the same δ, the CPU time drops as k increases since less
sub-patches are larger sized. When Rule 3 is also considered, the constraint
is relaxed and more sub-patches are compared so that all correctly matching
sub-patches are returned. As shown in Fig.4(b), the performance of Rule 1+Rule
3, which returns correct results, is worse than that of Rule 1 only. Since Rule 1
does not guarantee to include all matching results, its recall, which is defined as
the percentage of correctly matching sub-patches being returned as candidates,
should be measured. Table 1 indicates its recall for different k and δ. As observed,

size\ δ δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1
k=4 15800 15800 15800 15800 15800
k=5 3960 3960 3960 3960 3960
k=6 121 121 121 121 121

(a) pairwise comparison

size\δ δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1
k=4 12 37 95 170 310
k=5 <1 <1 <1 2 5
k=6 <1 <1 <1 3 7

(b) matching larger sized sub-patches

Fig. 3. CPU time(seconds) for computing matching k-sized sub-patches using pairwise
comparison / matching larger sized sub-patches

size\ δ δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1
k=4 188 296 520 744 1040
k=5 24 25 65 73 75
k=6 <1 <1 <1 <1 <1

(a) Rule 1

size\δ δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1
k=4 363 671 984 1411 9123
k=5 25 106 186 376 811
k=6 <1 3 4 17 53

(b) Rule 1+Rule 3

Fig. 4. CPU time(seconds) for computing matching k-sized sub-patches using Rule 1
/ Rule 1+Rule 3

Table 1. Recall of Rule 1

size\δ δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1
k=4 0.7 0.72 0.76 0.79 0.82
k=5 0.73 0.75 0.79 0.82 0.86
k=6 0.78 0.79 0.8 0.83 0.88

3D Protein Structure Matching by Patch Signatures 537

Rule 1 achieves best performance with satisfactory recall of about 80%. So it is
a good choice when CPU time is a critical requirement.

Effectiveness of Expand Stage. Next, we test the expanding time based on
the candidates returned from matching stage by Rule 1 and Rule 3. Fig.3(b)
shows the average CPU time for expanding k-sized sub-patches to find max-
imal matching sub-patches. We can observe that the expansion process is ac-
complished much more quickly than the matching stage as shown in Fig.4(b).
This is because the number of candidate sub-patches are much small after the
match stage. However, re-look at Fig.3(a), we can see that our match-and-expand
method outperforms baseline by more than an order of magnitude.

6 Conclusions and Future Work

In this paper, a match-and-expand strategy is proposed to achieve fast retrieval
for matching patches based on their signatures. A rule-based heuristic algorithm,
functioning as the filter-and-refine approach, is developed in match stage to
derive a very small portion of patch signatures for comparison. The resultant set
is further reduced in expand stage. Our extensive experiment results prove the
significance of our model. We plan to design effective indexing methods for the
compact patch signature representation to further improve the performance of
patch matching in out future work.

Acknowledgements

The work reported in this paper has been funded in part by the Australian Re-
search Council (GrantNo. DP0663272) and the Co-operativeCentre forEnterprise
Distributed Systems Technology (DSTC) through the Australian Federal Govern-
ment’s CRC Programme (Department of Education, Science and Training).

References

1. Whatif relational database. http://www.cmbi.kun.nl/gv/whatif/select/.
2. S.F. Altschul, W Gish, W Miller, E.W. Myers, and D.J. Lipman. Basic local align-

ment search tool. J Mol Biol, 215(3):403–10, 1990.
3. Z. Huang, X. Zhou, D. Song, and P. Bruza. Dimensionality reduction in patch-

signature based protein structure matching. In Seventeenth Australiasian Database
Conference, pages 89–98, 2006.

4. I.N. Shindyalov and Bourne P.E. Protein structure alignment by incremental com-
binatorial extension (ce) of the optimal path. Protein Engineering, 11:739–47, 1998.

5. Hans-Peter Kriegel Stefan Berchtold, Daniel A. Keim. Using extended feature ob-
jects for partial similarity retrieval. The VLDB Journal, 6:333–348, 1997.

6. H. Wolfson. Geometric hashing: an overview. IEEE Comp. Science and Eng.,
October-December:10–21, 1997.

Segmented Document Classification:
Problem and Solution

Hang Guo and Lizhu Zhou

Computer Science & Technology Department
100084, Tsinghua University, Beijing, China

guohang@mails.tsinghua.edu.cn,
dcszlz@mail.tsinghua.edu.cn

Abstract. In recent years, structured text documents like XML files
are playing an important role in the Web-based applications. Among
them, there are some documents that are segmented into different sec-
tions like “title”,“body”, etc. We call them “segmented documents”. To
classify segmented documents, we can treat them as bags of words and
use well-developed text classification models. However different sections
in a segmented document may have different impact on the classification
result. It is better to treat them differently in the classification process.
Following this idea, two algorithms: IN MIX and OUT MIX are designed
to label segmented documents by a trained classifier. We perform our
algorithms using four frequently used models: SVM, NaiveBayes, Re-
gression and Instance-based Classifiers. According to the experiment on
Reuters-21578, the performance of different classification models is im-
proved comparing to the conventional bag of words method.

1 Introduction

Text Categorization problem is one of the most important problems in AI.
In recent years, Machine Learning technologies have been well developed and
are widely used to solve this problem[1]. Many automatic classifiers, such as
NaiveBayes[2], Decision Tree, Rule-Based classifier, Instance-based classifier[3],
Support Vector Machines[6][4], etc., have been proved to be effective on plain
text documents. All of these classifiers treat a document as a bag of words.

As a result of the booming Internet resources, structured documents, like
XML files, are playing a very important role on WWW. Among them, many
documents only have simple structure that can help to segment documents into
sections. For example, a document about a paper can be segmented into Title,
Abstract, Introduction and Body. The content of each segment is a plain text.
In this paper, we call this kind of documents segmented documents. Segmented
documents are widely used in many web sites as the descriptive metadata of
on-line resources like news, services, products, books, etc. For example, RSS1

format is the standard of news exchange for many news sites. And we have the
1 http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 538–548, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Segmented Document Classification: Problem and Solution 539

on-line segmented documents for all papers on CiteSeer2. Like CiteSeer, many
websites have pre-defined templates for their resources. Their segmented doc-
uments are generated according to these templates. For many other websites,
they do not provide on-line segmented documents. But their webpages are au-
tomatically generated. In this case, we can use data extraction technique to
automatically generate segmented documents [5].

Though segmented documents are XML files, their structure is quite simple.
Usually all the documents on one website are of the same structure. So XML-
based tree miners like XRules[8], TreeMiner[9] are not applicable to classify
segmented documents.

We can treat segmented documents as plain texts and use conventional models
to classify them by ignoring their structural information on segmentation. But
the method does not consider the important fact that in a document some text
should have more weight on classification. For example, in most cases the text
in the title of a paper are more important. Sometimes one skilled expert can
categorize a paper only by its title. Therefore such structural information can
be used to improve the performance of the classifier.

Since the plain text classification models have been well designed to deal
with text categorization problem, we use these models as components to design
new algorithms for segmented documents categorization. Our basic strategy is
divide-and-conquer. It is easy to divide one segmented document into different
parts since it is already segmented. The problem is how to emphasize the more
important part. Our idea is that we can re-evaluate each segment as follows:

Solution 1. Before being classified, we put more weight on the words in the
more important segments and then generate a new text document. It stands
for the whole segmented documents in classification process.

Solution 2. We classify each segment first and then put more weight on the
results of more important segments. The final result will be the combination
of these partial predications.

Additionally, we don’t want to train the classifiers on segmented documents.
Usually human experts label the training set. And it might be expensive to label
a new training set especially on segmented documents. Moreover if the resource
holders don’t have too much resources, there will not be enough segmented docu-
ments to train a classifier. Therefore a better alternative is to label the segmented
documents by a trained text classifier. This classifier may be an encapsulated
commercial product or be trained by labeled plain texts.

Generally speaking, in this paper we want to solve the problem: how to make
good use of the structural information of segmented documents to increase the
classification precision and recall without additional effort on training a new
classifier. To accomplish that task, two important problems should be solved:

Problem 1. For Solution 1, how to generate a new document on different
segments? The basic idea is to “emphasize” the words in more important

2 http://citeseer.ist.psu.edu/oai.html

540 H. Guo and L. Zhou

segments, like title. The documents should be indexed as vectors before be-
ing labeled. We can merge those vectors in the indexing phrase.

Problem 2. For Solution 2, how to make a final decision based on partial clas-
sification predications? The basic idea is to use the voting mechanism. Each
segment votes on which category it belongs to. If a category gets over half
of the “tickets”, it will be associated to the whole document. Statistically, if
the false rate of each predication is less than 1/2, the false rate of the final
decision will be lower than any predications. [10] illustrates this problem.

We have designed two algorithms called IN MIX and OUT MIX. The former
is based on the idea of Solution 1 and the latter is based on Solution 2. The
two algorithms are tested on four frequently used models: SVM, NaiveBayes,
Instance-based classifier and Regression. Both have been proved to be effective
on at least two models. The time cost of the former is almost the same as the
plain text classification algorithm. For OUT MIX, the upper bound of time cost
is n times of the plain text classification algorithm, here n represents the number
of segments used in classification.

This paper is organized as follows: In Section 2 we formally define the struc-
tural text categorization problem and introduce our algorithms. We discuss our
experiments in Section 3. Section 4 glances at the related work. Finally, the
paper will be concluded in Section 5.

2 Our Approach

2.1 Problem Description

A segmented document set D is associated with a predefined template S, which
is composed of named attributes s1, s2, . . . , sn. Suppose T is the set of texts,
there is a value function θ : D × S → T . If θ(d, si) = ti, d ∈ D, it means the
value of attribute si of document d is ti. ti is one of the segments of d. The
“importance” of different attributes is measured by attribute weight function
WET: S → [0, 1]. Usually S is defined by the content provider. And WET is an
empirical function, which can be modified according to different S. However, in
our experiment the value of WET slightly affects the classification results. It is
discussed in section 3.3.

Given the set of categories C, the task of segmented text categorization(STC)
is to approximate the unknown target function Φ : D × C → {T, F}. Here T
stands for true and F stands for false. For plain text categorization problem,
the target function is φ : T × C → {T, F}. Before the training and the testing
phrase, a document is usually indexed as a feature vector. The index function σ
is defined as T → V , V is set of feature vectors. The classification function λ is
defined as V × C → {T, F}. Here we define φ = σ • λ.

The primary difference between STC and TC is the definition of document
set. We assume that:

– segment ti is a plain text. In other words, documents with nested structure
are not considered in this paper.

Segmented Document Classification: Problem and Solution 541

– ti has certain impact on the classification result. Because for most structured
text documents on the Internet there are usually some unused attributes
in classification. For example, suppose we have a paper defined as (Title,
Abstract, Author, Body, Publisher, Reference), only Title, Abstract and Body
are useful. Other attributes should be removed before classification.

– if (i �= j) then ti and tj are semantically different segments. That means the
impact of ti and tj should be different.

2.2 Our Approach

In this section we will introduce our solutions on how to classify segmented
documents by given plain text classifiers. We have designed two algorithms:
IN MIX and OUT MIX. The inputs of the algorithms are:

Fig. 1. IN MIX Fig. 2. OUT MIX

– segmented document set D, the associated template S, the attribute weight
function WET, and the value function θ.

– document feature vector V. In this paper we use the term vector with TFIDF.
– a trained plain text classifier. The output of the classifier is vector P = (p1,

p2, . . . , p|C|). Here pi ∈ [0, 1] is the “possibility” of document d in category
Ci. If inputs of the classifier are term vectors, function CLSλ stands for the
classification process. And if the input are texts, we use the function CLSφ.

The outputs of the algorithms are the classification predications of each seg-
mented document.

542 H. Guo and L. Zhou

IN MIX. As shown in Fig 1, the idea is to merge the attribute values as the
input of the classifier. Intuitively we can “repeat” the important words. But the
problem is they can only be “repeated” integral number of times. Therefore we
merge the term vectors instead.

First, the TFIDF vectors for all ti are calculated. Then we initialize the at-
tribute weight function WET. The basic rule is that if si is more important than
sj , WET (si) > WET (sj). We have tried different functions in our experiment.
And the influence of WET on the performance is shown on Table 4. After this,
we merge the TFIDF vectors according to WET. The algorithm used is called
MERGE V:

Input: (s1, v1), (s2, v2), . . . , (s|S|, v|S|); WET: S → [0, 1]; S /*the size of vi is the
same as that of document feature vector V*/
Output: v: vector of float number /* TFIDF vector*/
BEGIN
FOR all si in S

IF (min value>WET(si)) /* find the least important attribute*/
min=i
min value=WET(si)

END IF
END FOR
FOR all vi

vi = vi × (WET (Si)/WET (Smin)) /* re-evaluate the TFIDF vector*/
v=v+vi /* v and vi are of the same size, v(j) = v(j) + vi(j)*/

END FOR
output v
END

The output of MERGE V is used as the term vector for a segmented document.
It is labeled by a trained plain text classifier.

Comparing to the conventional classification algorithm, the additional cost
is MERGE V. Its time complexity is O(|S|). For most popular classification
algorithms, the complexity is at least O(|V | ∗ |C|). Here V is the document fea-
ture vector, in most cases it is much larger than S. So the cost of MERGE V
can be ignored. It means the cost of IN MIX is almost the same as the con-
ventional classification algorithm. Our experiment result in Table 5 has proved
that.

OUT MIX. As shown in Fig 2, the idea is to merge the classification predi-
cations of different attributes. The advantage is that it only uses the output of
the plain text classifier and cares nothing about the document indexing and di-
mensionality reduction process. Therefore it can be used on the “encapsulated”
classifiers. We design an algorithm MERGE P to unite the partial classification
predications. The basic idea of MERGE P is voting. If a segment of the doc-
ument is classified into a category, this category will get one “ticket”. If one
category get over half of the tickets, the whole document will be associated with
that category. If we cannot make the decision yet we will calculate the “confi-
dence” of each prediction and then choose the highest one. Here the “confidence”
is measured by the product of :

Segmented Document Classification: Problem and Solution 543

– the quotient of A and 1-A. Here A stands for the possibility of the document
associate with this category. The higher this quotient is, the more believable
this prediction would be.

– the weight of this attribute.

MERGE P is described as follows:

Input: (S1, P1), (S2, P2), . . . , (S|S|, P|S|); WET: S → [0, 1]
Output: P vector of float number; /* |P | = |Pi| = |C|, here |P | means the size of P*/
BEGIN
VAR other,max: vector of float number; isI=0, notI=0, index=0: int;
VAR P :vector of float number;
FOR all i < |P |

FOR all Pj

IF Pj(i) is the largest one in Pj

isI=isI+1 /* attribute j vote for category i */
ELSE

notI=notI+1 /* attribute j do not vote for category i */
END IF

IF isI > notI
P(i)=1 /* category i is associated with the whole document*/

ELSE
FOR all Pj

weight=Pj (i)/(1 − Pj(i)) × WET (si) /*compute the confidence*/
IF weight>max

max=weight
index=j

END IF
P(i)=Pindex(i)
END FOR

END IF
END FOR

END FOR
normalize(P) /* P (i) = P(i)

|P |
k=1

P (k)

*/

output P
END

In terms of time cost, OUT MIX exceeds IN MIX. Because for one segmented
document it has |S| segments to be labeled independently. Though each segment
is shorter than the whole document, the overall cost is much higher. The com-
plexity of MERGE P is O(|S| ∗ |C|). Like MERGE V, the cost of MERGE P can
be ignored comparing to the classification cost. The upper bound of the cost of
OUT MIX is |S| times that of classifying the whole document by a plain text
classifier. Our results in Table 5 have proved that.

3 Experiment

3.1 Test Environment and Database

We select Reuters-215783 as our training and testing set. It is one of the most
widely used news collection. Every document has two attributes:Title and Body.
We use ModApte Split to determine the training set and testing set. Since we

3 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

544 H. Guo and L. Zhou

need both Title and Body, the documents missing Titles are abandoned. That
makes our collection smaller than the standard ModApte Split.

Like many other studies, we are more interested in the top 10 most com-
mon categories. These categories are listed in Table 1. In our experiment, 5449
training documents and 2145 testing documents in these categories are used. We
perform the experiment on a 1.5GHz workstation with 512M memory.

We choose four text categorization models to test both algorithms. They are
all frequently used models. As shown in Table 2, one implementation is chosen
for each model. These classifiers are implemented by weka4 and judge5. They
are both open source classification toolkits written in Java.

A small portion of documents in Reuters-21578 is associated with multiple cat-
egories. Therefore we train one classifier for each category to determine whether
the document is associated with this category or not.

3.2 Experiment Process

For all the documents in the training set, we concatenate their titles and bodies
as the training documents of the classifiers. Then the input texts are indexed as
TFIDF doc-term matrix. We use the information gain algorithm (implemented
by weka) to select 2500 keywords from Body and Title. After that, we have the
feature vector V and TFIDF matrix. The former is the input of IN MIX and the
latter is the input of the classifier.

Firstly, we classify each document only by its title or body. The result is used
as the input of OUT MIX. Then the title and body are concatenated and labeled
by the classifier for comparison. We choose F1 value to evaluate the performance
of the classifiers since it is easier to calculate. Suppose π stands for precision and
ρ for recall, F1 = 2 ∗ π ∗ ρ/(π + ρ). The result is shown in Table 3. To evaluate
the influence of the attribute weight function WET, nine WET functions are
used in IN MIX and OUT MIX. The result is listed in Table 4. The time cost
of IN MIX and OUT MIX is shown in Table 5.

3.3 Result Analysis and Discussion

Table 3 shows that IN MIX performs well in SMO and IBk, while OUT MIX is
good for NaiveBayes Multinomial and Logistic. A possible reason is that Naive-
Bayes and Logistic are both based on statistics. The slight fluctuation of the
input will not significantly affect the output. In OUT MIX we can use the vot-
ing mechanism to increase the precision statistically. SMO and IBk are good for
high-dimensional classification[4] but texts in the Title are too short to be prop-
erly labeled. That makes the predication based on Title really bad. So OUT MIX
works badly for them. SMO has achieved the best performance in this collec-
tion and IN MIX can slightly increase its precision and recall in most categories.
When choosing from these two algorithms for other classification models, we can
use both of them and select the better one.
4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://www3.dfki.uni-kl.de/judge/

Segmented Document Classification: Problem and Solution 545

Table 1. The Largest 10 Categories in
Reuters-21578 ModApte

Category Name Testing Training Total
earn 1044 2709 3753
acq 643 1488 2131

money-fx 141 460 601
crude 161 389 550
grain 134 349 483
trade 113 337 450

interest 100 289 389
ship 85 191 276

wheat 66 198 264
corn 48 160 208

Table 2. Classifiers Used

Classifier Type Classifier Name
SVM SMO [6]

NaiveBayes Multinomial [2]
Regression Logistic [7]

Instance Based IBk [3]

Table 3. Results For Top 10 Categories

Performance Measured by F1 for Top 10 Categories

classifiers earn acq money-fx crude grain trade interest ship wheat corn Total
SVM All* .8924 .7849 .5403 .6795 .6980 .6554 .6977 .6486 .5957 .4898 .7953

IN .8961 .7862 .5411 .7109 .6797 .6629 .7011 .6575 .6136 .4800 .8005
OUT .7496 .4411 .3333 .4044 .3404 .3048 .5588 .0732 .2667 .4888 .6177

Naive All .8504 .8798 .6879 .6593 .6262 .5469 .7753 .6207 .5286 .3167 .7674
Bayes IN .8120 .8606 .6620 .6493 .6027 .4940 .6017 .6182 .4713 .2667 .7370

OUT .8488 .8746 .7287 .7278 .7186 .6026 .6700 .7310 .5882 .3902 .7974
Regression All .8640 .5797 .2928 .3520 .4754 .5728 .2749 .5654 .1986 .1463 .5964

IN .8647 .5809 .2685 .3431 .4677 .5728 .2764 .5455 .1972 .1401 .5952
OUT .8652 .5824 .3238 .3976 .5116 .6525 .2727 .6357 .1992 .2909 .6345

Instance All .7507 .5601 .3111 .2360 .2892 .1379 .4640 .1647 .1379 .0909 .6292
based IN .7831 .6125 .3436 .3676 .4404 .2316 .4932 .2222 .4638 .3333 .6590

OUT .7373 .3575 .1849 .2065 .3182 .1149 .2963 .2174 .2667 0 .5777

*Here All means labeling Title+Body with plain text classifiers, IN stands for IN MIX
and OUT stands for OUT MIX. The bold numbers are the best results.

**In this table, WET(Title)=0.6667, WET(Body)=0.3333

As shown in Table 4, the function WET might slightly affect the result.
The possible reasons are: In IN MIX, the words in Title is much less than
those in Body. If the weight of Title is too high, they may be removed as
noise. In OUT MIX, Pj(i)/(1 − Pj(i)) is usually much bigger or smaller than
WET(i). The final predication is largely dependent on Pj(i)/(1 − Pj(i)). Thus
in our experiments, the value of WET is too small to affect the result
evidently.

In terms of the time cost, Table 5 shows that the cost of IN MIX is almost
the same as conventional algorithms. The cost of OUT MIX is higher because
the document is labeled twice. Despite this, the total cost of OUT MIX is less
than twice the cost of conventional classifiers. It is because we only use part of
a document each time.

546 H. Guo and L. Zhou

Table 4. The Influence of WET Function on F1

WET(Title)/WET(Body) 5 4 3 2 1* 1/2 1/3 1/4 1/5
OUT NaiveBayes .7995 .7992 .7982 .7973 .7940 .7218 .7219 7219 .7219
MIX Regression .6352 .6350 .6353 .6345 .6318 .5519 .5519 .5519 .5519
IN Instance based .6573 .6590 .6642 .6590 .6592 .6612 .6523 .6484 .6480
MIX SVM .8000 .8000 .8005 .8005 .7953 .7935 .7923 .7925 .7919

* This means that “Title” and “Body” are treated the same. In other words, it is the
result of categorizing Title+Body.

Table 5. The total time cost of label 10 categories

Total Classification Time Cost of IN MIX and OUT MIX in Millisecond

CLassifiers IN MIX OUT MIX Title+Body IN MIX / (Title + Body) OUT MIX / (Title + Body)
Logistic 156527 296577 153094 1.022 1.937

IBk 940051 1557070 934286 1.006 1.668
NaiveBayes 105658 201930 103330 1.022 1.954

SMO 112751 218104 112503 1.002 1.939

The documents in Reuters-21578 only contain two attributes and the text in
Title segment is quite short. It might affect the result. We will test the algorithms
on new datasets with more attributes and longer texts.

4 Related Work

Conventional automated documents categorization models can be divided into
two classes: content-based models and structure-based models.

The former utilizes the textual information of the documents. So they are
used for plain text categorization. [1] has introduced many frequently used
models[2][6][4][3]. We can use ensemble methods to enhance the performance
by combining the results of different classifiers [10]. The condition for the en-
semble of classifiers to be more accurate than any of its individual members is
studied in [13]. [11][12] compare the performance of different ensemble methods.

The latter focuses on the structure of the documents. They are applicable to
more complicated documents like XML files. The first step of structure-based
classification is structure pattern recognition. Many algorithms are designed to
find frequent subtrees in XML collections[9][14][15]. Those subtrees are associ-
ated with certain categories in the training phrase. In the testing phrase this
information can be used to label the documents according to the subtrees they
have. [16] uses an associate based classifier on XML data. [8] introduces a rule-
based classifier using the tree mining algorithm in [15].

As described in Section 1, these models are not applicable to segmented docu-
ments classification. That is because the plain text classifiers only treat the docu-
ment as a bag ofwords.And we cannot use the XML classifiers to associate subtrees
with the categories for all the segmented documents have the same structure.

Segmented Document Classification: Problem and Solution 547

5 Conclusion and Future Work

This paper introduces a kind of widely used document — segmented document
and its classification problem. Current classification models are not applica-
ble to these documents. We design two algorithms, IN MIX and OUT MIX,
by which we can label segmented documents with a trained plain text clas-
sifier. These algorithms have been tested on Reuters-21578 and they can im-
prove the performance of SVM, Instance Based classifier, NaiveBayes and
Logistic.

Now we are trying to enhance the performance of IN MIX and OUT MIX and
use them on other models and datasets. We are also interested in exploring the
question of “optimal segment size”.

Acknowledgement. This work is supported by National Nature Science Foun-
dation of China under Grant No.60520130299.

References

[1] Fabrizio.S.:Machine Learing in Automated Text Categorization. ACM Computing
Surveys, Vol34,(2002).

[2] Andrew M., Kamal N.:A Comparison of Event Models for Naive Bayes Text Clas-
sification, AAAI-98 Workshop on Learning for Text Categorization(1998).

[3] H Brighton, C Mellish: Advances in Instance Selection for Instance-Based Learn-
ing Algorithms, Conference on Data Mining and Knowledge Discovery, (2002)

[4] Joachims, T.: Text Categorization with Support Vector Machines: Learning with
Many Relevant Features.10th European Conference on Machine Learning.(1998)

[5] Qi G., Zhiqiang Z., Lizhu Z., Jianhua F.: A Highly Adaptable Web Information
Extractor Using Graph Data Model. The Forth Asia Pacific Web Conference
(APWeb’02).Springer(2002).

[6] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, :Improvements to
Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation, 13(3),
pp 637-649, (2001).

[7] le Cessie, S. and van Houwelingen, J.C: Ridge Estimators in Logistic Regression.
Applied Statistics, Vol. 41, No. 1, pp. 191-201.(1992)

[8] Mohammed J.,Charu C.:XRules: An Effective Structural Classifier for XML Data.
SIGKDD’03.(2003).

[9] Mohammed J.:Efficiently Mining Frequent Trees in a Forest : Algorithms and
Applications. vol 17. (2005)

[10] TG Dietterich.:Ensemble Metholds in Machine Learnging. First International
Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science
(pp. 1-15). New York: Springer Verlag.(2000)

[11] Bauner E.,Kohavi.R: A empirical comparison of voting classificaiton algorithms:
Bagging, boosting, and variants. Machine Learning,36,105-139.(1999)

[12] Dietterich,T.G: An experimental comparison of three method for constructing
ensembles of decision trees: Bagging, Boosting, Radomization. Machine Learing.
(2000)

548 H. Guo and L. Zhou

[13] Hansen L., Salamon P. Neural network ensembles. IEEE trans. Pattern Analysis
and Machine Volume 12,Issue 10,Oct. 1990 Page(s):993 - 1001.(1990)

[14] Wang K., Liu H.: Discover Structural Association of Semistructured Data.
Intell.12,993-1001(1999)

[15] T.Asai,et al.Efficient subtree discovery from large semi-structured data. Interna-
tional Conference on Data Mining (ICDM’02).Springer(2002)

[16] B.Liu, W. Hsu, Y.Ma. Integrating Classification and Association Rule Mining.
SIGKDD’98.(1998)

User Preference Modeling Based on Interest and
Impressions for News Portal Site Systems

Yukiko Kawai1, Tadahiko Kumamoto2, and Katsumi Tanaka3

1 Undergraduate School of Science, Kyoto Sangyo University
Motoyama, Kamigamo, Kita-Ku, Kyoto-City 603-8555 Japan

Tel.: +81-75-705-2958; Fax: +81-75-705-1495
kawai@cc.kyoto-su.ac.jp

2 National Institute of Information and Communications Technology
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289 Japan

Tel.: +81-774-98-6876; Fax: +81-774-98-6990
kuma@nict.go.jp

3 Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501 Japan

Tel.: +81-75-753-5969; Fax: +81-75-753-4957
ktanaka@i.kyoto-u.ac.jp

Abstract. We have developed an application called My Portal Viewer
(MPV)[1] that effectively integrates many articles collected from multi-
ple news sites and presents these integrations through a familiar interface
such as a page the user has often visited. MPV dynamically determines
keywords of interest that a user might potentially be interested in based
on the history of the articles the user has read and creates categories
based on these interest words. MPV and many other similar integration
systems, however, cause problems where users cannot find only their
interest articles in each category because they are only ranked by fre-
quency and the cooccurrence of keywords. We propose a new method of
selecting further articles from each category using a user’s impressions
of articles. The improved MPV, called MPV Plus, selects and recom-
mends more desirable articles using the method we propose. This paper
presents the design concept and process flow of MPV Plus and reports
on its effectiveness as evaluated in experiments.

1 Introduction

As the amount of Web content continues to increase, demand by users for applica-
tions that provide better quality content is becoming more urgent. In particular,
applications that select and integrate information from the Web based on user
preferences are needed to efficiently retrieve content. There is also need for a sys-
tem that can effectively integrate high-quality content gathered from the Web
according to a user’s requirements. In news articles, how the articles are catego-
rized in terms of integration is important. There are two basic criteria for article
classification, the first is the frequency at which terms occur in each article[1][2],
and the second is the structure of links and directories between pages[3][4]. Both

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 549–559, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

550 Y. Kawai, T. Kumamoto, and K. Tanaka

criteria involve various algorithms and systems. Frequency, as a general trend,
is defined as the rate of term occurrence in all collected or selected article pages.

We have developed an application called My Portal Viewer (MPV) that in-
tegrates a newspaper by gathering numerous articles from news sites based on
user’s preferences [1][5]. MPV collects and stores articles by crawling through
Web sites and provides an MPV page that integrates the stored pages. This
involves two concepts. The first is the user’s access history based on his or her
interests and knowledge, and the second is the “look and feel” of the MPV page
that simulates his or her favorite news page. The MPV layout utilizes the users’
favorite news page, with parts of the original content from the favorite page
being replaced by the integrated content. Using the layout for the user’s favorite
news page enables him or her to easily locate the information they want from
the content gathered. Replaced content such as categories, top news, and the
articles in each category, on the other hand, is created by the frequency of term
occurrence based on the history of articles that the user has read up to that
time. Category names are identified by keywords, called “interest keywords”,
that a user is potentially interested in based on the history of articles that he
or she has read. For instance, categories such as “Iraq”, “Koizumi” and “Mat-
sui” will have been named based on the user’s history of operations. By using
interest keywords as category names, the user can easily understand the content
of articles in each category. The categories, however, cannot always classify and
recommend favorite articles using only the occurrence frequency of terms such
as interest keywords. For instance, if the category name is “Iraq”, the previous
MPV offers the possibility of different content articles such as “suicide bombing
in Iraq” or “released hostage in Iraq”.

We will now introduce a novel algorithm for “article impression” and a model
that reflects the user’s interests and impressions of articles. The improved MPV
developed with the proposed model is called “MPV Plus” and it recommends
articles that the user may have a greater affinity for.

2 Overview of MPV Plus

MPV Plus is an improved MPV with a method of selection based on a user’s
impressions of and interest in articles. The previous MPV has three unique
technologies.

– The gathered articles are categorized by interest keywords and cooccurrence
keywords that are extracted from the user’s browsing history.

– The extracted interest keywords are category names.
– The layout for the original news portal page, which is specified by the user,

is used for the interface of the integrated portal page, and only part of the
content is replaced by gathered and categorized content, i.e. category names
are replaced by interest keywords.

MPV Plus retains these techniques and introduces a new technique of selecting
articles using user impressions of the articles. With the new technology, MPV

User Preference Modeling Based on Interest and Impressions 551

(1)A user inputs the URL of his/her favorite News portal page

MPV toolbar
i) URL and user profile are sent to MPV Plus

(4)Original article

MPV Plus Site

ii) MPV Plus is sent

(3)User selects a title

(2)MPV Plus

Changed content

The integrated page based on
user’s interests and impressions

Original
news
sites

USA
Today

Time

Interest keyword
Impression vector

Extraction Creation

User profile page
(article)

browsed
page

categorization, fusion

Gathering
and

storing

Fig. 1. Concept behind MPV Plus system

Plus can model a user’s preferences, and the constructed preference model can
adapt to other applications such as recommendation systems.

The unique characteristic of the modeling method is that it detects fluctu-
ations in impressions of articles browsed by the user in each category. If there
are small fluctuations in some impressions of an interest keyword, which is the
category name, that means the user is interested in those impressions, however
if there are large fluctuations the user is uninterested. In this paper, impressions
are defined by an impression vector that has four elements, which are the value
of impressions measure1 such as “happy⇔ unhappy”, “acceptance⇔ rejection”,
“relaxation ⇔ strain” and “fear ⇔ anger”. Each element in the vector is a real
number from 0 to 1. For instance, if the value of the vector’s element such as
“bright ⇔ dark” of an article about a topic is 0.1, the user’s impression of the
article was strongly bright. MPV Plus detects the vector for each article in each
category, extracting each element of each vector. It then calculates an average
value and a standard deviation using the extracted elements. The calculated four
standard deviations for each element are fluctuations in the user’s interest in the
keyword. If the standard deviation of an element is above a certain threshold,
MPV Plus assumes that the user is not interested in the interest keyword based
on that impression, and the value of the vector’s element is defined as a “don’t
care-term”. If the standard deviation of an element is smaller than the threshold,
the value of the vector’s element is the average value. As described above, the
impression vector of the interest keyword has four elements which have a “don’t
care-term” or “average value”, and each element is determined by the standard

1 This measure is based the concept of Plutchik[6] which has 8 impressions such as
joy, acceptance, fear, surprise, sadness, disgust, anger, anticipation.

552 Y. Kawai, T. Kumamoto, and K. Tanaka

deviation. The impression vector detected by the interest keyword and the key-
word itself are defined as the user’s preferences. MPV Plus categorizes articles
by interest keyword, and selects and recommends articles in each category using
this impression vector.

An overview of MPV Plus is shown in Fig.1. The user specifies his or her
favorite news portal page as the integration interface, and MPV Plus downloads
the HTML document, detects the category names, and replaces these names
with interest keywords on user preferences based on his or her browsing history.
The articles gathered from various news sites are categorized using the interest
keywords and the selected articles in each category are ranked by cooccurrence
keywords and the cosine similarity of the impression vector. When a user reads
an article, this changes his or her browsing history prompting the system to
update his or her preferences. Preferences are updated as interest keywords and
impression vectors are re-calculated. Furthermore, if different categories have
articles that are the same, MPV Plus integrates those categories. When cate-
gories are integrated, the vectors are retained and calculated based on interest
keywords.

3 User’s Preferences for News Articles

3.1 Extracting Interest Keywords

The following process is used to extract interest keywords.

1. MPV Plus extracts and stores meta-data such as title, description, and URL
after it downloads pages P1 ∼ Pn from different news sites.

2. The description and title are analyzed with morphological analysis process-
ing, which extracts proper and general nouns.

3. The weight of each word is calculated using the term frequency and weight
of the three parts of speech as in the following equation: wij = tf · idf =
(log(Fj + 1)/log(Fall)) (cdotlog(N/Nj)), where Fj is the frequency of the
appearance of word j in page Pi, and Fj is the frequency of appearance of
all words in Pi. N is the number of all pages gathered, and Nj is the number
of pages with appearance of a word j.

4. When a user reads articles on pages M , the weight Wj of the word j in pages
M is the summation of wij , using the next equation: Wj =

∑M
i=1 wij .

5. If the value of Wj is larger than a certain threshold, word j is detected as
an interest keyword.

The interest keywords detected by weight Wj are replaced with the original cat-
egory names. MPV Plus does not replace all detected interest keywords because
the number of categories on the original news portal page are limited. Inter-
est keywords that were not replaced with the original category are stored in
a category called “other” after the “other” category has been created and re-
placed. The user selects the “other” category and obtains the remaining interest
keywords from the other created page.

User Preference Modeling Based on Interest and Impressions 553

Table 1. Impression scales designed for MPV Plus

Impression Scale Impression Words
1. Bright – Dark Akarui (bright, encouraging), Ureshii (glad), Tanoshii (happy)

Kurai (dark), Kanashii (sad), Kurushii (painful)
2. Acceptance – Rejection Shonin (approval), Shonin-suru (approve), Aikou (love), Aikou-suru

(love), Suki-da (like), Kyohi (rejection), Kyohi-suru (reject)
Ken’o (aversion), Ken’o-suru (take an aversion), Kirai-da, (dislike)

3. Easing – Tension Yuttari (comfortable), Yuttari-suru (feel easy), Nonbiri (peaceful)
Nonbiri-suru (feel relieved), Yukkuri (slowly), Yukkuri-suru (take one’s time)
Kincho (tension), Kincho-suru (become tense), Kinkyuu (emergency)

4. Anger – Fear Okoru (get angry), Dogou (roar), Osoreru (dread), Kowai (scary), Kyofu (fear)

Table 2. Examples of entries in impression dictionary

Entry word No. 1 No. 2 No. 3 No. 4 Entry word No. 1 No. 2 No. 3 No. 4
Sosei (revival) 0.91 0.521 0.429 0.000 Shototsu-suru (collide) 0.344 0.353 0.315 0.529

0.464 0.582 0.732 0.328 1.004 1.016 1.099 0.948
Shukkoku 0.596 0.209 0.762 0.201 Kenen-suru (worry) 0.373 0.319 0.246 0.293
(departure from a country) 0.975 1.049 1.065 0.701 1.447 1.440 1.521 1.275
Shibou (death) 0.28 0.358 0.260 0.364 Hofu-da (rich) 0.597 0.676 0.761 0.466

1.132 1.272 1.306 1.112 1.416 1.352 1.299 1.109
Dassen (derailment) 0.31 0.546 0.403 0.291 Saiteki-da (optimum) 0.622 0.671 0.743 0.192

0.514 0.603 0.737 0.549 1.185 1.164 1.145 0.899
Dekakeru (go out) 0.639 0.754 0.887 0.590 Konnan-da (difficult) 0.318 0.305 0.307 0.317

1.430 1.394 1.304 1.114 1.451 1.526 1.528 1.274
Chosen-suru (challenge) 0.618 0.687 0.752 0.500 Fumei-da (unknown) 0.359 0.367 0.336 0.359

1.399 1.330 1.251 1.090 1.241 1.337 1.364 1.18

3.2 Generating Impression Vectors from News Articles

An impression vector is generated by the following procedure.

1. Words classified as action nouns, adjectives, or verbs are extracted from the
information obtained from the Web page Pi in procedure 1 for interest word
extraction.

2. Scale value Sje and weight Mje in impression scale e(e = 1, · · · , 4) of each
word j are obtained by consulting our impression dictionary as described
below.

3. Scale value Oie in impression scale e of Pi is calculated by

O =
j∑

Sje × |2Sje − 1| ×Mje

/
j∑
|2Sje − 1| ×Mje (1)

where the |2S − 1| term denotes an inclined distribution depending on scale
value S. When scale value S is 0.5, the |2S − 1| term is 0. When scale
value S is 0 or 1, the |2S − 1| term is 1. Many of the words that appear
in the articles seem to be independent of the impressions of the articles.
The inclined distribution described here was been introduced to remove the
adverse effect that such general words cause in calculations.

4. An impression vector of Pi is generated in the form of “(Oi1, Oi2, Oi3, Oi4)”.

554 Y. Kawai, T. Kumamoto, and K. Tanaka

The impression dictionary used in procedure 2 was automatically constructed
by analyzing the Nikkei Newspaper Full Text Database2 [7] using an extended
version of the method mentioned in Ref. [8]. The original method created an
impression scale from a pair of impression words, but our extended version cre-
ated an impression scale from multiple impression words. That is, we calculated
which of two groups of impression words composing an impression scale of the
words extracted from an input article would co-occur more frequently.

The groups of impression words used in constructing our impression dictionary
are listed in Table 1, and part of the impression dictionary is in Table 2. The
upper lines of each entry denote scale values, and the lower lines denote the
weights in Table 2.

3.3 Impression Vector for Interest Keywords

In this section, we explain the method of detecting the impression vector for
each interest keyword. The impression vector for each article has already been
calculated using the method described above. The impression vector for each
interest keyword is calculated using those article’s vectors. The interest impres-
sion vectors are detected based on the articles read by a user and are modified
based on a user’s browsing history. If the user has bright impressions of articles
on a topic he or she often reads about, the impression vector of the interest of
the topic has a high value of e1 element. The following process shows how the
detection of the impression vector of an interest keyword is detected.

1. R1, R2, · · · , Rm are article pages read by the user, and these pages have
interest keyword j.

2. The impression vector for article page Ri is defined by vi = (vi1, vi2, vi3, vi4).
3. μje is the average for each element e(e = 1, 2, 3, 4) of the vector and σje is

the standard deviation for each element of the vector.

μje =
m∑

i=1

vie

/
m, σje =

√√√√ m∑
i=1

(vie − μje)2
/

(m− 1) (2)

4. When the σje is less than the threshold, the fluctuations in the element of
the vector are small, and the value for that element for interest keyword j is
defined as μje. When σje is more than the threshold, the fluctuations in the
element of the vector are large, and the value of that element of j’s vector
is defined by a “don’t-care-term”.

4 Selection and Ranking Based on User Preferences

MPV Plus selects articles from pages gathered using interest keywords and ranks
the selected articles using cooccurrence keywords and impression vectors of the
interest keyword.
2 This database has over 2 million articles accumulated over the 12-year period from

1990 to 2001. Each edition consists of about 170,000 articles (200 MB).

User Preference Modeling Based on Interest and Impressions 555

1. Cooccurrence keyword k is extracted from the pages that have interest key-
word j.

2. Value cjk of cooccurrence is calculated by cjk = {(the number of cooccur-
rence of j and k) + 1 }/{(the frequency of j) + (the frequency of k)}

3. Article page Pi, which includes the interest keyword j, is selected from ac-
cessed articles m by the user.

4. Cosine similarity is detected by the distance between Pi and cjk based on
interest keyword j.

5. If the Pi is more than the threshold, the Pi is selected
6. The cosine similarity of impression Di is detected by the distance between

vector vi = (vi1, vi2, vi3, vi4) of Pi and the vj = (vj1, vj2, vj3, vj4) vector of
interest keyword j, which was calculated in Section 3.3, and equation Di is
calculated as

Di =
4∑

e=1

(vie × vje)
/√√√√ 4∑

e=1

v2
ie ×

4∑
e=1

v2
je (3)

However, if vje is over the threshold, the calculation of vje is excluded because
vje is a “don’t care term”.

7. Pi is displayed if Di is bigger.

5 Integration of Categories

The categories for interest keywords are integrated by MPV Plus if different
categories have many of the same articles. Each article is compared by the system
based on whether other categories have the same article or not, and a new
categories are created by merging categories with high rates of article overlap.

1. Product set I ∩K and the union of sets I ∪K are detected by the article
set I of interest keyword i and the article set K of interest keyword k.

2. The number of elements is extracted by 1, and |I∩K| and |I∪K| are defined
by the number that are extracted.

3. If |I∩K|/|I∪K| is more than the threshold, categories i and k are integrated,
and a new category is created. If |I ∩K|/|I ∪K| is less than the threshold,
the created category is separated as i and k.

The name of the new category combines the original category names. For
instance, if the original category names are i and k, the new category’s name
is ‘‘i/k”. The user can easily surmise the content of the new category after
integration, because of the appearance of the original interest keywords.

6 Experimentation and Evaluation

We developed a prototype MPV Plus on Windows OS. The MPV Plus server has
been constructed on a laptop PC that had a processor Pentium M 1.7 GB and a

556 Y. Kawai, T. Kumamoto, and K. Tanaka

main memory of 2 GB, and developed by Perl and Microsoft Visual Studio .Net
C#, and the morphological analysis was Mecab[9]. This section presents the ex-
perimental results obtained with the prototype system and discusses impression
vector changes in interest keywords utilizing the user’s browsing history. The
system collected and stored meta-data on article pages from six news sites. The
articles were collected on April 28, 2005 between 9:00-9:30 am and there was a
total of 255 articles with meta-data. The MPV site categorized and integrated
the meta-data based on the user preferences. The extraction threshold for key-
words of interest was established as 0.06 because at least an interest keyword
must be extracted from each article, and the extraction threshold for words such
as proper nouns and general nouns in each article was established as 0.1 because
at least 11 words must be extracted from each article.

6.1 Category Integration

Figure 2 shows another MPV Plus page created using the top page of another
news site when the same user specified that page after he or she read the article.
The original top page is on the left, and the MPV Plus page on the right.
The content of the three areas of this Plus page has changed because the user’s
preferences have been modified by his or her browsing. First, the original category
keyword area was mapped onto the user’s interest keywords, and then the top
news article with an image was selected based on interest keywords and displayed
as an unread title. Then, the titles of each article in each category were replaced
with articles containing interest keywords and higher impression vectors.

Figure 3 shows the integrated categories. The left side shows the original
category such as “society”, “sports”, “business” etc., and the right side shows
the category as replaced by our system. For example, “society ” was replaced
with “China”. Furthermore, some replaced categories are integrated based on the
ratio of the same articles they contain. For example, the categories named “Ichiro
(baseball player)” and “Rangers (baseball team)” were integrated because many
articles were shared by those categories.

Original News Portal Page My Portal Viewer Plus

Category and Top story

Articles in a category

Changed Contents based on
the created user’s preferences
(interests and impressions)

Fig. 2. MPV Plus page showing results

User Preference Modeling Based on Interest and Impressions 557

Original Categories
New Categories (interest keywords)

Integrated category (Ichiro and Rengers)

Integrated category

Fig. 3. Each category is integrated by MPV Plus

From those results, the user can easily access interesting news articles based
on his or her preferences such as interests and impressions and does not need
to access different news sites to look for target articles from various categories
defined by the original news sites.

6.2 Impression Vector

To evaluate the article selection method based on impressions we have to con-
sider three user browsing situations: (1) the user continuously selects a specific
topic such as Iraq, (2) the user selects specific randomly repeated topics such as
Iraq, Matsui, or Bush, and (3) the user selects topics that are not repeated. The
impression vector can only be evaluated in situation (1) because each impres-
sion vector is calculated by each topic. We measured the average and standard
deviation values of the impression vectors in situation (1) and considered how
each value is changed by the user’s browsing history.

Figure 4 shows the changes in the average and standard deviation values.
Both graphs have values from e1 to e4 , and each value represents four elements
of impression vectors. In this case, a user selects an article about “topic of
acountry” which expresses an opinion the user agrees with or opposes. The
user first selected the article at random and then gradually selected an article
expressing an opinion he or she disagreed with. The standard deviation value

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

st
an

da
rd

 d
ev

ia
tio

n

the number of read articles

e1
e2
e3
e4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14

av
er

ag
e

of
 v

ec
to

r
el

em
en

t

the number of read articles

e1
e2
e3
e4

Fig. 4. Changes in average and standard deviation of impression vector based on user’s
browsing history (keyword of interest is a country name): Changes in standard deviation
value (left), Changes in average value (right)

558 Y. Kawai, T. Kumamoto, and K. Tanaka

about e1 of “happy ⇔ unhappy” and e3 of “relaxation ⇔ strain” was a little
high in the start (Fig.4 (left)). However, that value of e1 and e3 gradually
decreased because the user’s selection because he or she often selected articles
expressing opinions in opposition to his or her own. So, the average value of
e1 was smaller than 0.5 (Fig.4 (right)), and this value shows that articles with
unhappy impressions were selected by the user, and the impression is modeled
correctly. Other average values of e2 , e3 and e4 also showed that the selected
articles had impressions of ”rejection, strain, and anger”. As in the above, we
showed that MPV Plus can select and recommend articles to users based not
only on interests but also on impressions.

7 Related Work

There has been considerable investigation of portal site technology for gathering,
categorizing, personalizing, and integrating information.

MSN NewsPot[2] uses not only collection and classification technology but
also personalization technology. A user’s preferred articles are selected using
personalized information based on his browsing history. However, the method
of article selection is not good enough because the system only adapts to user
interest, and the selected articles are not categorized.

Methods of extracting information about writers from movie reviews, book
reviews, and production evaluation questionnaires also have been studied. Tur-
ney [10] proposed a method of classifying various genres of reviews into “rec-
ommended” or “not recommended”. His method extracts specific patterns of
phrases from input text, calculates mutual information, and takes the difference,
where the two reference words were heuristically determined by him. However,
using this method it is difficult to satisfy multiple impressions because the two
reference words were designed only for a specific impression scale; “recommended
– not recommended”. We hit on the idea of classifying input documents into two
or more impression classifications using a text classification method.

Many researchers have previously tackled the problem of creating more accu-
rate classifiers using less accurate answer data [11,12]. However, they were not
successful because their methods required a large amount of correct answer data.
Our method, by contrast, can classify documents using only a little correct data,
which can be reused as correct answer data, and which may contribute to the
creation of classifiers that are sufficiently accurate.

8 Conclusions

We have proposed an algorithm of “interests and impressions of articles” and a
modeling method of user preferences for the articles. The algorithm dynamically
determines interest keywords and impression vectors which a user might poten-
tially prefer based on a history of the articles that the user has read up to that
time. Using the proposed modeling, we have developed a novel application called

User Preference Modeling Based on Interest and Impressions 559

“MPV Plus”, which effectively integrates many articles collected from multiple
news sites and recommends articles the user may have more affinity for.

We have developed a prototype that showed that users could easily access and
read news articles of interest and with particular impressions from the collected
articles. Based on this experimentation, which evaluated changes such as average
and standard deviation value of impression vectors, we showed that MPV Plus
can select and recommend articles for users using their interests and impressions.
In the future, we plan to evaluate MPV Plus by monitoring many people, and
will adapt the technology of user preference modeling to other types of Web sites
such as shopping sites.

References

1. Yukiko Kawai, Daisuke Kanjo, and Katsumi Tanaka. My portal viewer: Integration
system based on user preferences for news web sites. In 16th International Con-
ference on Database and Expert Systems Applications (DEXA2005), pp. 156–165,
August 2005.

2. Newsbot. http://uk.newsbot.msn.com.
3. GoogleNews. http://news.google.co.jp.
4. Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting content struc-

ture for web pages based on visual representation. In APWeb, Vol. 2642, pp.
406–417, Xian, China, 2003. Springer, Lecture Notes in Computer Science.

5. Yukiko Kawai, Daisuke Kanjo, and Katsumi Tanaka. Personal viewer for news
content integration based on user’s behavior. In IPSJ Transactions on Databases,
June 2005.

6. Robert Plutchik and Henry Kellerman (eds). Emotion: Theory, Research, and
Experience, Vol. 1 of Academic Press Inc., pp. 3–33. 1980.

7. Inc. Nihon Keizai Shimbun. Nikkei newspaper full text database dvd-rom, 1990 to
1995 editions, 1996 to 2000 editions, 2001 edition.

8. Tadahiko Kumamoto and Katsumi Tanaka. Proposal of impression mining from
news articles. In Proceedings of International Conference on Knowledge-Based
Intelligent & Engineering Systems, Melbourne, Australia (2005), 2005.

9. MeCab (2004). http://chasen.org/ taku/software/mecab/.
10. Peter D. Turney. Thumbs up or thumbs down? semantic orientation applied to

unsupervised classification of reviews. In Proc. Conference on Association for
Computational Linguistics, 2002.

11. Nagata M and Taira H. Text classification — Trade fair of learning theories. In
IPSJ Magazine, series 42, 2001.

12. Tsukamoto K and Sassano M. Text categorization using active learning with Ad-
aBoost. In IPSJ SIG Notes, NL126-13, 2001.

Cleaning Web Pages for Effective Web
Content Mining�

Jing Li and C.I. Ezeife

School of Computer Science, University of Windsor,
Windsor, Ontario, Canada N9B 3P4

cezeife@uwindsor.ca
http://www.cs.uwindsor.ca/∼cezeife

Abstract. Classifying and mining noise-free web pages will improve on
accuracy of search results as well as search speed, and may benefit web-
page organization applications (e.g., keyword-based search engines and
taxonomic web page categorization applications). Noise on web pages are
irrelevant to the main content on the web pages being mined, and include
advertisements, navigation bar, and copyright notices. The few existing
work on web page cleaning detect noise blocks with exact matching con-
tents but are weak at detecting near duplicate blocks, characterized by
items like navigation bars.

This paper proposes a system, WebPageCleaner, for eliminating noise
blocks from web pages for purposes of improving the accuracy and effi-
ciency of web content mining. A vision-based technique is employed for
extracting blocks from web pages. Then, relevant web page blocks are
identified as those with high importance level by analyzing such physi-
cal features of the blocks as the block location, percentage of web links
on the block, and level of similarity of block contents to other blocks.
Important blocks are exported to be used for web content mining using
Naive Bayes text classification. Experiments show that WebPageCleaner
leads to a more accurate and efficient web page classification results than
comparable existing approaches.

Keywords: Web Page Cleaning, Noise Block, Web Content Mining,
Classification, Near-Duplicate, Text Similarity.

1 Introduction

This paper states that noise on web pages have negative impact on web min-
ing results, and should be cleaned before applying mining tasks to web pages.
This paper proposes a preprocessing system, WebPageCleaner, which cleans web
pages before mining their contents, for more effective and accurate mining re-
sults. Looking at a web page, it can be observed that it consists of many blocks.

� This research was supported by the Natural Science and Engineering Research Coun-
cil (NSERC) of Canada under an Operating grant (OGP-0194134) and a University
of Windsor grant.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 560–571, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cleaning Web Pages for Effective Web Content Mining 561

A block is a semantic part of a web page, which has its own text content, style
and functionality. A web page usually contains main content blocks and noise
blocks. Only the main content blocks represent the informative part that most
users are interested in. Although other blocks are helpful in enriching function-
ality and guiding browsing, they negatively affect such web mining tasks as web
page clustering and classification by reducing the accuracy of mined results as
well as speed of processing. Thus, these blocks are called noise blocks in this con-
text. For example, a CNN web page, has in the center of the page a sports news
report, which is the main content of this page. In addition, there are advertise-
ments, navigation bars, and others, positioned around the main content, which
are regarded as noise blocks. Noise blocks negatively affect web content mining
results because contents contained in noise blocks are irrelevant to the main con-
tent of the web page. As one of the approaches in web content mining, web page
classification [Shen et al., 2004] is used to demonstrate the negative impact of
noise blocks during web page mining. Web page classification is an application
that is commonly seen in taxonomic web page categories used in web search,
such as Yahoo directory (http://dir.yahoo.com). Thus, cleaning web pages be-
fore text classification techniques are applied to web pages during classification
leads to more accurate results and is beneficial.

The basic idea of the web page cleaning system being proposed, WebPage-
Cleaner, is first to segment web pages into a set of blocks using a vision-based
page segmentation (VIPS) algorithm [Cai et al., 2003]. The VIPs algorithm seg-
ments web pages using Document object model (DOM) tree with a combination
of human visual cues like tag cue, color cue, size cue etc. Then, WebPageCleaner
identifies noise blocks using the following four features of noise blocks as ob-
served on web pages: (1) the collection of web pages belonging to an enterprise
web site share common contents and look and feel; (2) each of the site’s web
pages contains some noisy blocks that contain re-occurring common contents;
(3) these noise blocks are usually located at the edges of the web page; and (4)
noise blocks usually contain many links in their contents.

This paper contributes to the web page cleaning problem by applying an
efficient web segmentation technique to web cleaning using appropriate para-
meters so as to improve on results of web content mining. Section 2 presents
related work. The proposed WebPageCleaner system is illustrated with an ex-
ample cleaning of a set of web pages in section 3. In section 4, the experimental
results are shown, section 5 presents conclusions and future work.

2 Related Work

In [Lin & Ho, 2002], a system, InfoDiscoverer, is proposed to discover informa-
tive content blocks from web documents. It first partitions a web page into several
content blocks according to HTML tag <TABLE>. A limitation of this work is
that it is restricted to tabular (with <TABLE> tags) web pages. A style tree
structure is proposed in [Yi, Liu & Li, 2003] to capture the layout and contents
of pages in a given web site. Bar-Yossef et al. [Bar-Yossef & Rajagopalan, 2002]

562 J. Li and C.I. Ezeife

propose a template detection algorithm. Based on the number of links an HTML
element has, it partitions each web page into several pagelets, which are units
with well defined topic or functionality. Templates are then detected by identify-
ing duplicate pagelets, but it does not work well when detecting near duplicate
pagelets. A VIsion-based Page Segmentation (VIPS) algorithm is proposed in
[Cai et al., 2003], that segments web pages using DOM tree with a combination
of human visual cues, including tag cue, color cue, size cue, and others. The VIPS
algorithm has been applied to information retrieval, information extraction, and
learning block importance on a single page [Song et al., 2004]. It has not been
used on web page cleaning on a set of web pages for the purposes of web page
classification. This work is also related to approaches in data cleaning for data
warehousing [Ezeife & Ohanekwu, 2005], [Hernandez & Stolfo, 1995] but applies
to web page cleaning, for detecting noise blocks in web pages.

3 The Proposed WebPageCleaner System

The goal of WebPageCleaner is to improve web content mining (e.g., web page
classification) results. The target sets of web pages are those belonging to orga-
nizations because the presentation style in one enterprise web site is similar and
easy to capture across its numerous web pages. Then, cleaned files from each
individual web site consisting of record descriptions of highly important blocks
of the web sites, can simply be merged into a big dataset for mining.

Algorithm 1. (WebPageCleaner:Eliminates Noise Blocks from Web Pages)

Algorithm WebPageCleaner()
Input: a set of web pages (W) from a given web site, maximum number of

blocks for outputting in each web page (N).
Output: a set of plain text documents with noisy items removed from input web pages.
begin

(1) Apply VIPS algorithm to segment set of web pages, W into blocks,
and extract block features and store as database records (Section 3.1).
(2) Compute block importance based on the level of block content similarity,
block position, and linkage percentage (Section 3.1).
(3) Generate cleaned files records by selecting N blocks with high
importance from each web page.

end

Fig. 1. The Main WebPageCleaner Algorithm

3.1 Steps in WebPageCleaner System

Given a set of web pages from a web site, the whole cleaning system follows the
three steps below in cleaning. Step 1: Block Extraction module first segments
each web page into blocks, and extracts the contents and other features of blocks
as database records. Step 2: Block Importance Retrieval module computes each
block importance based on the similarity of the block contents, its position in

Cleaning Web Pages for Effective Web Content Mining 563

the web page, and percentage of contained link texts; Step 3: Cleaned Files
Generation module for grouping block records with high importance degrees in
each web page into files for web content mining. Each module is described next.
Algorithm for the main steps in the system is summarized in Figure 1.

Step 1: Block Extraction
Given a web page, WebPageCleaner, first extracts blocks using the VIPS
page partition algorithm [Cai et al., 2003], which represents a web page as a
semantic content tree by combining web page DOM tree and its visual cues
(e.g., background color, font size, block location, etc) and presented as an
XML file. Then, each block in the leaf nodes, and their features including ids,
contents, positions, and percentage of linkages are extracted from the tree. A set
of features for every block is stored in database relationships as: Blocks(PageID,
BlockID, BlockText, Fingerprint, PosLevel, LinkPer, SimilarLevel, ImLevel),
in which PageID denotes the web page being processed. BlockID represents
the distinct block extracted from that page. BlockText is the text content in
the block with punctuations removed and capitalization ignored. By doing
this, the contents consist of a sequence of words separated by white spaces.
Fingerprints are short tags for identifying large objects. In this paper, they
are integer values for identifying long text documents calculated with Rabin’s
fingerprint formula [Rabin, 1981]. Fingerprint is used for quickly identifying
duplicate blocks in the database. PosLevel indicates the location of block on
the web page and the closer the PosLevel is to 1, the less important the block
is. To compute the PosLevel, we first extract four features from the VIPS
content tree, including PageRectWidth, PageRectHeight, ObjectRectLeft, and
ObjectRectTop. PageRectWidth and PageRectHeight denote the width and
the height of the web page respectively. ObjectRectLeft denotes the distance
from blocks left edge to pages left edge. ObjectRectTop is the distance between
blocks top edge and pages top edge. Based on these features, block’s horizontal
(Px) and vertical (Py) positions in the whole page using the top left corner as
the origin are captured.

Px =
ObjectRectLeft

PageRectWidth
; Py =

ObjectRectT op

PageRectHeight

Px and Py range from 0 to 1. The closer they are either to 0 or 1, the closer the
block is to the edge of the page, and higher the likelihood of the block being a
noise block. To make position value consistent with other level metrics, which
the closer it is to 0, the less important a block is, we introduce PosLevelx and
PosLevely as follows:

PosLevelx =
{

2Px if 0 ≤ Px ≤ 0.5
2(1− Px) if 0.5 < Px ≤ 1 (1)

PosLevely is defined in a similar way by substituting Py for Px. We further
introduce PosLevel, which combines PosLevelx and PosLevely to represent the
position importance using a single parameter:

564 J. Li and C.I. Ezeife

PosLevel = 1− PosLevelx + PosLevely
2

(0 ≤ PosLevel ≤ 1) (2)

According to formulars (1) and (2), we can get the PosLevel directly from Px

and Py as follows:

PosLevel =

⎧⎪⎪⎨
⎪⎪⎩

1− Px − Py if 0 ≤ Px ≤ 0.5 and 0 ≤ Py ≤ 0.5
Py − Px if 0 ≤ Px ≤ 0.5 and 0.5 < Py ≤ 1
Px − Py if 0.5 < Px ≤ 1 and 0 ≤ Py ≤ 0.5
Px + Py − 1 if 0.5 < Px ≤ 1 and 0.5 < Py ≤ 1

This way, a single position measurement PosLevel of a block is obtained, and
closer the PosLevel is to 1, the less important a block is. LinkPer denotes the
percentage of links in a block, which is obtained by dividing the length of link
texts (in terms of number of characters) by the length of all texts in a block:
LinkPer = LinkTextLen/TextLen, where LinkTextLen and TextLen can be
extracted from the VIPS content tree. If the LinkPer is close to 1, a large
percentage of contents are links in this block, then, it is more likely a noise
block. SimilarLevel denotes how similar two block contents are. The initial value
is set to 0 (indicating not similar). ImLevel denotes the overall importance of
a block. The initial value of ImLevel is set to 1 (indicating important). After
extracting block features from VIPs content tree, the similarity and importance
levels of the blocks are not yet known, but each block at this stage is assumed
unique and important. Both SimilarLevel and ImLevel are assigned new values
in the second module after comparison with other block records. The result of
this first stage of cleaning is a collection of blocks described with attributes of
database table, Blocks.

Example Block Extraction from Sample Web Pages
Figure 2 shows fragments of two web pages P1 and P2 grabbed from Future Shop
(http://www.futureshop.ca) web site. To segment these web pages into blocks,
entails applying the VIPS [Cai et al., 2003] algorithm to P1 and P2 with Pre-
defined Degree of Coherence value (PDoC) set to 6. PDoC is normally between 1
and 10, where higher PDoC (of around 10) partitions a web page into more blocks
than lower PDoC (of around 1) does. The partition results are shown in Figure 2
(enclosed within rectangles). For page P1, page features are obtained from the
content tree, where for example, PageRectWidth = 780, PageRectHeight =
2001. After extracting each block in the leaf nodes of the content tree, three
blocks are extracted from each web page. The BlockText is then processed by
transforming all letters to lower case and removing punctuations. BlockText is
obtained as “entire site advance search”. Fingerprint is then calculated for this
text, assume the value is 12178. Similarly, all of these attributes are computed
for every block and the same process applied to page P2. A Blocks table (the
first six columns) as shown in Table 1 is the result of this phase of cleaning
since initially SimilarLevel is set to 0 and ImLevel set to 1 for all records and
their actual values determined in the second phase for final noisy block record
elimination. Noisy blocks have relatively larger PosLevel and LinkPer values and
also share same or similar contents as shown in the next section.

Cleaning Web Pages for Effective Web Content Mining 565

Fig. 2. Fragments of Two Web Pages with Their VIPS Partition Results

Table 1. Blocks Table after Block Extraction and Block Importance Retrieval

Page Block BlockText Fingerprint PosLevel LinkPer Similar ImLevel
ID ID Level
1 1 entire site advance

search
12178 0.944 0.556 0 out

1 2-1 home tv video 40 and
projection television
more 40 and projection
televisions

34098 0.724 0.903 0.2 0.478

1 2-2 toshiba 52hm84 52 digi-
tal widescreen dlp tv

18902 0.706 0 0 0.882

2 1 entire site advance
search

12178 0.93 0.556 0.2 out

2 2-1 home computer desktop
computer more desktop
computer

23412 0.71 0.859 0.2 0.481

2 2-2 hp pavilion a810 athlon
64 3300 2.4ghz computer

27681 0.696 0 0 0.884

Step 2: Block Importance Retrieval
Three phenomena for the block content exist: exactly same, approximately same,
and different. Examples of exactly same contents include the heading of the web
site, copyright notice, etc. They are noise blocks that should be removed first.
The challenge is on how to recognize blocks with approximately same contents.
Once we figure this out, the rest of the blocks with different contents are the
distinguishable parts of a page that will be viewed as outputs in our prob-
lem or clean content. To delete blocks with same contents, WebPageCleaner,
first goes through the Blocks table to delete all blocks with the same finger-
print values (same contents). Then, it calculates SimilarLevel for the rest of
the blocks. SimilarLevel is defined as the number of common tokens over the
number of all unique tokens in two blocks. It is obtained by sorting the Blocks

566 J. Li and C.I. Ezeife

table in ascending order according to BlockText attribute. This brings similar
contents closely. Then, it calculates for each pair of neighboring blocks the sim-
ilarity level as SimilarLevel. For example, after sorting Table 1 according to
BlockText attribute, block 2–1 of page 2 is neighbor to block 2–1 of page 1.
By counting the number of same and total unique words, SimilarLevel value
of the two records is 2/10 = 0.2. SimilarLevel value is set for both records
being compared. As we slide down the window to compare new records, we
probably get a new SimilarLevel for newly compared blocks. The rule is that
if the new SimilarLevel is greater than the old SimilarLevel, then update the
SimilarLevel value with the new one, otherwise, keep the old one. Thus, each
block gets SimilarLevel with the most similar block that is neighboring to it.
Finally, the block importance level ImLevel is obtained after getting values
of PosLevel, LinkPer, and SimilarLevel for each block. ImLevel is defined as:
ImLevel = 1 − (1/2 SimilarLevel + 1/3 LinkPer + 1/6 PosLevel), where
0 ≤ ImLevel ≤ 1. In this formula, we take the SimilarLevel as the most impor-
tant measurement, then, LinkPer and PosLevel. The reason is that the content
is the most distinct feature that differentiates one block from the other. The per-
centage of links and block positions can be used as auxiliary measurements for
deciding the block importance. The closer the ImLevel is to 1, the more impor-
tant a block is. By applying block importance retrieval module to Table 1, the
result is shown in the last two columns of Table 1 where records already removed
due to Fingerprints are marked as ’out’ and the SimilarLevel and ImLevel are
now used for final record elimination.

Step 3: Cleaned Files Generation
In this module, up to N block records with the highest ImLevel value in each web
page are exported to be integrated into cleaned records for mining. N typically
represents the average number of informative blocks in each web page (e.g.,
although the example web page has 3 blocks, only one is informative) and N
information can be obtained by observing VIPs partitioning results of various
web pages, or from experience or fixed at a reasonable level of 3 as done by other
techniques. For example, if we define N equal to 1 for this example, the output
of Table 1 will be blocks 2-2 of page 1 and 2. Contents in BlockText attribute
that belong to one web page are extracted to generate a plain text document,
which contains the most relevant information of this web page. Mapping this
result to the original web pages in Figure 2, we can see that the bottom right
blocks of each page are final output blocks. After processing web pages with the
above three modules, the problem of web page classification is transformed to
a pure text classification problem without losing any representative information
of the page.

4 Experiments and Performance Analysis

Experiments contain two parts: web page cleaning and classification on cleaning
results of records. For experiments on web page cleaning, the execution speed

Cleaning Web Pages for Effective Web Content Mining 567

between template detection method [Bar-Yossef & Rajagopalan, 2002] (TPL)
and WebPageCleaner (WPC) is compared. Naive Bayes text classification has
shown very good performance in many approaches [McCallum & Nigam, 1998].
By training a set of pre-labeled documents, the Naive Bayes classifier achieves
the probability of words in given classes. The training models are then applied
on testing documents to get the probability of classes given a document. For
experiments on classification, Naive Bayes text classification is performed on (1)
non-cleaned web pages with HTML tags removed(NC), (2) web pages cleaned
using template detection method [Bar-Yossef & Rajagopalan, 2002] (TPL), and
(3) web pages cleaned using the proposed WebPageCleaner (WPC), respectively.
The classification accuracy and speed are compared for these three methods.
Experiments on web page cleaning are performed on a PC with 2.39 GHz
AMD CPU, 1.00 GB of RAM, running on Windows XP Operating System.
Naive Bayes text classification is performed using the statistical text process-
ing package, Rainbow toolkit [McCallum, 1996]. Classification accuracy is mea-
sured by the percentage of the number of correctly labeled documents divided
by the total number of testing documents. Accuracy = total number of
correct classifications/total number of classifications× 100%. Standard Er-
ror (SE) measures the variance that occurs between the sample means when
a number of different samples are drawn from the same population to build
the classifier for several trials. The smaller the standard error is, the more
stable the classification done for each trial. SE =

√
∂2
1 + ∂2

2 + · · ·+ ∂2
n/n Ef-

ficiency is measured by the number of unique words in Naive Bayes classi-
fier and the running speed (in seconds) of classification. Since word is the ba-
sic unit for generating Naive Bayes model and doing classification, using doc-
uments that have fewer number of words can result in better efficient
classification.

Experiments on Web Page Cleaning. We downloaded 2500 web
pages from 4 commercial product web sites, including Future Shop
(http://www.futureshop.ca), Best Buy (http://www.bestbuy.com), CNet
(http://www.cnet.com), and Amazon (http://www.amazon.com). These web
pages contain products from 5 categories, including computer, TV, phone, soft-
ware, and MP3. Details of distributions of pages are shown in Table 2. Execution
time is compared between template detection method (TPL) with partition gran-
ularity, k of 3 and WebPageCleaner (WPC) with PDoC of 6. While the k and
PDoc values used for the separate algorithms are not directly comparable, they
are both selected through experience running the algorithms on a test data with
varying values and selecting the k and PDoC values provide the best semantic
grouping of page contents and best mining results. The number of cleaned blocks
to select, N value is set to 3, which outputs up to three blocks with the highest
importance level, the execution times achieved by algorithms TPL and WPC
are shown in Table 3.

568 J. Li and C.I. Ezeife

Table 2. Distribution of Experimental Web Pages in Their Web Site and Categories

Web Sites Computer MP3 Phone Software TV Total in Site
S1 Future Shop 173 62 140 243 134 752
S2 Best Buy 134 87 157 111 96 585
S3 CNet 161 107 197 74 299 838
S4 Amazon 70 98 47 18 92 325

Table 3. Execution times for TPL and WPC cleaning methods

Web Sites Number of Pages Execution Time (Second)
TPL WPC

Best Buy 585 107 61
CNet 838 230 150
Future Shop 752 143 92
Amazon 325 100 54

4.1 Experiments on Web Page Classification

In this experiment, Naive Bayes text classification is applied on the three differ-
ent data sets, cleaned using the three approaches of not cleaned (NC), Template
(TPL) and WebPageCleaner (WPC). Classification accuracy and efficiency are
compared on these three datasets. To run Naive Bayes text classification on the
dataset, all experimental documents are divided into training data and testing
data. Documents in training set have known their class labels, and are used
for training classifiers. Testing documents are used to test the accuracy of the
trained classifiers. To investigate the way that noisy contents affect classification
results, we set two cases for experiments based on whether training data are
selected evenly from each class of each web site or not. Case 1: training data
is selected automatically and evenly. In experimental case 1, a small number of
documents (less than 20%) are used for training. Six sub cases are set which use
25, 50, 75, 100, 250, 500 documents automatically selected from the whole data
sets for training, and use the remaining documents for testing, respectively. The
average percentage accuracy and standard error are shown in Table 4. The effi-
ciency of classification on datasets obtained with different methods in experiment
shown in Table 4 are measured with number of unique words and the running
times from the three datasets as NC (58994 unique words, 10.06 sec time), TPL
(53417, 4.56 sec) and WPC (32434, 3.35 sec). Running times present the average
speed of classification on 10 trials of six sub cases for each dataset. Case 2:
training data is selected unevenly. In this experiment, the dataset with 2500
documents is divided into four folds, which are 625 documents in each fold. To
balance the effect by unevenly selected training sets, a four-fold cross validation
is implemented on this experimental case. Four sub cases are set by using three
folds for training, and one fold for testing each time. The classification accuracy
and efficiency on each case of four-fold cross validation are shown in Table 5.

Cleaning Web Pages for Effective Web Content Mining 569

Table 4. Average accuracy on 10 trials with different number of training documents

Case Train Test Methods Average Accuracy (%) Standard Error
1-1 25 2475 NC 79.41 2.13

(5 per class) TPL 88.63 1.41
WPC 91.10 0.69

1-2 50 2450 NC 90.52 1.01
(10 per class) TPL 92.42 0.96

WPC 95.44 0.40
1-3 75 2425 NC 95.44 0.42

(15 per class) TPL 94.19 0.70
WPC 97.05 0.22

1-4 100 2400 NC 94.89 0.43
(20 per class) TPL 94.45 0.33

WPC 97.11 0.20
1-5 250 2250 NC 97.40 0.37

(50 per class) TPL 97.33 0.21
WPC 98.64 0.12

1-6 500 2000 NC 97.97 0.27
(100 per class) TPL 98.09 0.09

WPC 99.00 0.06

Table 5. Classification performance on each case of four-fold cross validation

Case Methods Accuracy Number of Unique Words in Training Set Time (Second)
2-1 NC 81.28 49974 8.0

TPL 93.43 45753 4.94
WPC 97.92 29540 4.23

2-2 NC 89.44 52138 6.69
TPL 98.88 49537 3.24
WPC 99.04 24289 2.23

2-3 NC 81.28 46005 6.48
TPL 94.39 37939 2.98
WPC 97.44 29502 2.29

2-4 NC 66.72 55362 6.62
TPL 98.24 49550 3.2
WPC 98.08 30040 2.36

The average classification accuracy and standard error on four-fold cross vali-
dation are for method NC (79.68, 4.07), for method TPL (96.23, 1.18) and for
method WPC (98.12, 0.29). When noisy elements are removed from web pages
using TPL or WPC methods, Naive Bayes classifier collects useful information
on categories not affected by noise at web sites, so classification results are much
better. Although TPL gets good accuracy, WPC still performs better than TPL
does. On one hand, documents cleaned by TPL contain more noisy items, which
decrease both classification accuracy and efficiency. On the other hand, the exe-
cution time for TPL is much longer than WPC, which can be seen from Table 3.

570 J. Li and C.I. Ezeife

From results above, we can also see that WPC still gets the best classification
accuracy and less standard error.

5 Conclusions and Future Work

The proposed WebPageCleaner system consists of three modules: block extrac-
tion, block importance retrieval, and cleaned files generation. The first module
aims at getting the semantic content blocks from web pages. In the second mod-
ule, blocks are sorted according to their contents to bring blocks with similar
contents closely, and then the similarity level is computed for each neighboring
pair of blocks. According to the similar level, percentage of links, and block po-
sition, the importance level for each block is calculated. Finally, a set of cleaned
files are generated, which consist of up to N relevant blocks records with the
highest importance levels in each page that can be fed to web content classifica-
tion techniques. Although template-based approach can remove standard noisy
template of a web site, it is hard to figure a site’s template if one does not exist.
Large sites, may have several templates for its many categories and if these are
not all available in the test data set, the template approach may fail to detech
duplicate blocks, while the WebPageCleaner can judge duplicate blocks from
high text similarity, high text linkage percentage and others.

Future work should explore a schema that makes the Blocks table as a tem-
plate datasets for a web site. Then, new web pages from that site can be mapped
to the template datasets in order to clean new pages online. Such cleaned tem-
plates may also be made applicable in portable devices, such as cell phones and
PDA since these devices have small browsers and only the most informative
contents appropriate are displayed. More parameters like the number of images
and video clips on the page blocks can also be used in judging the importance
of page blocks. Work can also be extended to develop noisy templates that are
easily identifiable and cleaned. Scaling technique on large web crawls of over ten
million web pages may entail partitioning, cleaning and mergin of results and
other methods for scalability remain open issues.

References

[Bar-Yossef & Rajagopalan, 2002] Bar-Yossef, Z. and Rajagopalan, S. 2002. Template
detection via data mining and its applications. In Proceedings of the 11th Interna-
tional Conference on World Wide Web, Honolulu, Hawaii, USA, pages 580–591.

[Cai et al., 2003] Cai, D., Yu, S., Wen., J.-R. and Ma, W.-Y. 2003. Extracting content
structure for web pages based on visual representation. In Proceedings of the 5th
Asia Pacific Web Conference, Xi’an, China, pages 406–417.

[Ezeife & Ohanekwu, 2005] Ezeife, C.I. and Ohanekwu, T.E. 2005. Use of smart tokens
in cleaning integrated warehouse data. The International Journal of Data Ware-
housing and Mining (IJDW), Ideas Group Publishers, April–June 2005, Vol. 1,
No. 2, pages 1–22.

[Hernandez & Stolfo, 1995] Hernandez, M. and Stolfo, S. 1995. The merge/purge prob-
lem for large databases. In Proceedings of the ACM SIGMOD, San Jose, CA, May
1995, pages 127–138.

Cleaning Web Pages for Effective Web Content Mining 571

[Lin & Ho, 2002] Lin, S.-H. and Ho, J.-M. 2002. Discovering informative content blocks
from web documents. In Proceedings of the 8th ACM SIGKDD Knowledge Dis-
covery and Data Mining, Edmonton, Canada , pages 588–593.

[McCallum, 1996] McCallum, A. 1996. Bow: A toolkit for statistical language model-
ing, text retrieval, http://www-2.cs.cmu.edu/ mccallum/bow/rainbow .

[McCallum & Nigam, 1998] McCallum, A. and Nigam, K. 1998. A comparison of event
models for Naive Bayes text classification. In Proceedings of AAAI–98 Workshop
on Learning for Text Categorization. AAAI Press , pages 41–48.

[Rabin, 1981] Rabin, M.O. 1999. Fingerprinting by random polynomials. Technical Re-
port TR-15-81, Harvard University.

[Shen et al., 2004] Shen, D., Chen, Z., Zeng, H.-J., Zhang, B., Yang, Q., Ma, W.-Y.
and Lu, Y. 2004. Web-page classification through summarization. In Proceedings
of the 27th Annual International ACM SIGIR Conference (SIGIR’2004) on
Research and Development in Information Retrieval, Sheffield, United Kingdom,
pages 242–249.

[Song et al., 2004] Song, R., Liu, H., Wen, J.-R. and Ma, W.-Y. 2004 Learning block
importance models for Web pages. In Proceedings of the 13th International
Conference on World Wide Web, New York, NY, USA, pages 203–211.

[Yi, Liu & Li, 2003] Yi, L., Liu, B. and Li, X. 2003 Eliminating noisy information
in Web pages for data mining. In Proceedings of the 9th ACM SIGKDD on
Knowledge Discovery and Data Mining, Washington, D.C, pages 296–305.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 572 – 581, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Applied Optimization Framework for Distributed Air
Transportation Environments*

Thomas Castelli, Joshua Lee, and Waseem Naqvi

Raytheon Company, Network Centric Systems
1001 Boston Post Road

Marlborough, MA 01752 USA
{Thomas_J_Castelli, leejm, Waseem_Naqvi}@raytheon.com

Abstract. In a large-scale dynamic system with multiple distributed entities,
each with their own set of interests, there is a need to find a globally acceptable
and optimal solution state. This solution state is, by definition, efficient to all
entities with respect to their own individual goals and to the system as a whole. In
these dynamic environments, this solution state can be achieved by utilizing
software techniques from the field of game theory in order to make optimal
decisions. We present an application built upon a generalized optimization
framework that can be applied to a number of domains, such as cargo or network
traffic algorithms. In this research, we used a market-based approach to air traffic
flow management through a modeling and simulation environment. The aim is
to allow individual aircraft a certain degree of local autonomy, much like cars on
a highway. Our system is able to cope in real time with failures such as node loss
and adjust system parameters accordingly to optimize results based on the goals
of the involved agents. We describe tradeoffs between different agent interaction
frameworks with respect to their performance in market mechanism auctions. We
also discuss lessons learned while implementing this application. This research
has built upon our previously reported work [20, 21] on route optimizations and
airspace sector design in an air traffic control network, by adding in the goals of
interested entities, e.g. airlines, aircraft, and airports, maximizing the “payoff” to
each player (agent). It is intended that the results of our work will be directly used
in this domain. In addition, we envision our work being leveraged for other
optimization tasks such as data traffic on a network, first responder / disaster
relief efforts, and other tasks where rapid solving of large-scale optimization
problems is essential.

1 Introduction

We have developed a generalized optimization framework and a prototype simulation
that employs this framework in the air traffic management domain. Our optimization
framework, Global Optimizer and Local Strategizer (GOALS), can be applied to any
number of domains where real-time optimization involving dynamic information is
desired, for example, first responder communication networks, or data packet routing
algorithms.

* Approved for public release through Raytheon Export Control, #TD-06-0017.

 An Applied Optimization Framework 573

In the air traffic management domain, the current state of modernization is focused
on allowing aircraft a higher degree of autonomy. Efforts in the field are moving
toward a concept of “free flight,” which relaxes strict controls on routing and allows
longer direct segments to be flown. In the United States, this modernization effort is
evident in the Next Generation Air Transportation System (NGATS) program [15]. In
Europe, the Single European Sky Air Traffic Management Research (SESAR) program
[19] is working toward a less segmented air traffic management system. Given that the
future of air transportation requires distributed optimization, we have investigated
applying our framework in this domain with a prototype. This prototype is discussed in
further detail in section 4 of this paper.

The GOALS framework consists of interested agents, which have certain local
goals. A local goal is formulated by the agent without having knowledge of other
agents or access to the complete state of the environment in which the agent resides.
These local goals are expressed in terms of graph theory, specifically in the form of
shortest path or maximum flow problems. In the future, other types of local goals may
be implemented within the framework. We chose a graph representation because many
of our products need the capability to solve optimization problems that can easily be
represented in terms of a graph, even if the associated data changes quickly.

Each agent solves its goals locally, employing Dijkstra’s algorithm for shortest path
optimizations, and/or the Ford-Fulkerson method for maximum flow optimizations [4].
Once a locally optimal solution has been found, the resources needed to implement this
solution are determined. The goals of some agents may be at odds with the goals of
other agents. Therefore, to have each agent attempt to obtain the resources necessary
for its own locally optimal solution without coordination would result in chaos.
Maintaining order requires a negotiation method that allows conflicts between agents to
be resolved in a manner that is beneficial to all. Rosenschein and Zlotkin [18] suggest
using game theoretical methods for such negotiation, as computers are completely
rational and emotionless. Our agents negotiate in the global space for a solution that
may not be locally optimal for the agent, but is instead globally optimal for all agents.

The local agent attempts to obtain the needed resources in a marketplace, using
methods such as market mechanism auctions [7]. If the resources necessary for a local
agent’s optimal solution are not available, the agent will try for the next best suboptimal
solution, and so on until the necessary resources have been acquired. The resulting
solution is globally optimal even if it is not locally optimal. Within a marketplace, each
agent exercises its own strategies. The marketplace must allow for rapid processing in
a large-scale, dynamic environment.

Our proof of concept air traffic management application uses an English auction
(highest bid wins) methodology. The GOALS framework makes it easy to substitute
another type of distributed market system for the English auction, and allows for
parallel markets to operate simultaneously. We require market schema that operate in
real time, are fault-tolerant, and can be distributed.

2 Overview of Principles

The GOALS framework is general enough to allow any type of market to be
implemented and easily interfaced with our agents. Figure 1 shows a UML model of

574 T. Castelli, J. Lee, and W. Naqvi

our market architecture. Any type of market inherits from the Market class. A market
is effectively a forum where collector agents (“buyers”) negotiate with distributor
agents (“sellers”) for available resources. In our application, we have modeled aircraft
as collector agents, and centers (controllers) as distributor agents.

Fig. 1. UML Model of the Market package

One problem with using a standard English auction mechanism for markets is that it
is possible in such a market for overly wealthy agents to starve out other agents,
denying needed resources. A potential solution to this problem is the use of
Vickrey-Clarke-Groves (VCG) auctions [16], which ensure fairness and honesty in the
marketplace.

One implementation of VCG auction mechanisms which we considered was a
Marbles system [7]. The main issue with the pure Marbles implementation is that
Marbles strategies have a concept of an agent who gives up in bidding for a resource
(“altruistically commit suicide by permanently withdrawing [7]”) in order to serve the
greater global good. For some applications of our framework, most notably in air
traffic management applications, giving up is simply not an option. Our resources in
this particular domain represent routes to fly. An aircraft in flight cannot give up on
obtaining a path and hover in its current position. In such a case, aircraft and center

 An Applied Optimization Framework 575

agents (controllers) can negotiate amongst each other rather than each having a
self-centered bidding strategy.

Each agent models its problem space as a graph. We model any airport, navigational
fix, intersection, or navigational aid as a node. Airway sections can then be represented
as edges between these nodes. Edge weights depend on the particular local goal
desired. For example, if an aircraft’s local goal is to minimize fuel usage, edge weights
could represent the estimated amount of fuel used by traversing that edge.

It is anticipated that our agents will have some combination of goals, therefore a
formula for edge weights must be determined which considers each goal. Either
weights are determined using a single goal or by combining multiple goals, thus taking
into account the importance of each local goal to the agent. Once this has been
accomplished, we find the optimal solution with these weights in place. Each agent
ranks the importance of its local goals. This ranking leads to a clear definition of the
utility of a particular solution within the domain space. Therefore, the agent can create
a function by which it determines the weights involved in its own local graph
representation of the operating environment. This function will also reflect the
dynamic nature of the situation; weather, for example, can affect the time in flight for
an airway segment, and will change in time.

The ability to optimize multiple local goals simultaneously becomes important if an
agent cannot acquire resources for an optimal solution and must fall back to a
suboptimal solution. Any combination of local goals may be selected during the
market phase. Weights might also be determined in relation to global efficiency so that
greedy agents will find a globally optimal solution by performing their normal local
optimization tasks [8]. This, however, may not be possible in a very large environment.

Within the GOALS framework, we allow parallel markets. In addition, there may be
thousands of agents in the domain. It is therefore not practical nor desirable for any one
agent to know everything about the state of the world. An agent representing an aircraft
flying from Boston to Chicago need not know about air traffic conditions near Los
Angeles, for example. However, these conditions may indirectly affect the global state
and prevent a locally optimal solution from being globally optimal.

3 Types of Agents

The idea of using intelligent autonomous agents in an air traffic management system is
not new. Ljungberg and Lucas [14] used Belief-Desire-Intention (BDI) agents [17] in
their prior work on the OASIS air traffic management system in Australia. Two other
intelligent agent approaches we considered include Partially Observable Markov
Decision Processes (POMDPs) [12] and Distributed Constraint Optimization
(DCO)[13]. The following subsections briefly describe these types of agent behaviors,
which lend themselves well to situations in which the state of the entire domain cannot
be completely known to any one agent.

3.1 BDI Agents

A BDI agent has certain “mental attitudes” guiding its behavior. These are beliefs,
desires, and intentions. Beliefs represent the information that the agent has about its

576 T. Castelli, J. Lee, and W. Naqvi

current environment. Desires represent the goals that an agent has, such as what would
constitute an optimal solution. Intentions represent the methods by which the agent,
acting based upon its beliefs about its environment, attempts to achieve its desires [17].

3.2 POMDPs

An agent using a POMDP models its environment using a Markov Decision Process
(MDP). MDPs consist of a set of states of the world and a set of actions. There is a state
transition function describing the state achieved from any specific state given a certain
action is taken. There is also a reward function, which describes the expected
immediate reward given for taking a certain action in a certain state. Actual rewards
affect future decision-making activities. The agent acts in order to maximize the
expected value of the long-term reward received.

“Partial Observability” refers to the fact that the agent is unable to determine its
current state with complete reliability. Randomness is therefore added to the agent’s
behavior in order to compensate for the uncertainty of state. A POMDP consists of an
MDP, a set of possible observations that the agent can make of its world, and an
observation function, which yields a probability distribution of possible observations.
This is further discussed in [12].

3.3 Distributed Constraint Optimization

Distributed Constraint Optimization (DCO) is similar to the approach we chose for our
agents. Each agent is given a different overlapping sub problem. Agents using DCO
first find a locally optimal solution to their assigned sub problem. Then, they must
interact with other agents to find a globally optimal solution.

Liu and Sycara [13] used DCO to come up with solutions to the job shop-scheduling
problem (which is NP-complete). The distributed optimization they propose involves
agents exchanging local views with each other. Additional constraints are imposed by
the local agent in an attempt to force its locally optimal solution. If the locally optimal
solution cannot be accommodated, the local agent falls back to a suboptimal solution.

In our implementation, we do not exchange local views between agents, nor impose
additional constraints. Our agents do not directly interact with each other. Should the
required resources not be available within the marketplace, however, the local agent
falls back to a locally suboptimal solution.

We chose this method for our agents because we needed an agent that would be able
to learn optimal strategies in the marketplace, and to allow agents to have a level of
local autonomy. The global solutions found would therefore become better with time
and practice. In future work, we plan to combine DCO with BDI behaviors, so that
agents would learn optimal marketplace strategies over time.

3.4 Existing Baseline Agent Frameworks

Several standard agent frameworks currently exist which would allow our GOALS
framework to interoperate with other systems. The Foundation for Intelligent Physical
Agents (FIPA) [6] has published a standard by which agents from different frameworks
can communicate with each other. Among the agent frameworks we have investigated
are IBM’s Agent Building and Learning Environment (ABLE) [2], the Java Agent

 An Applied Optimization Framework 577

Development Framework (JADE) [1], Cougaar [9], and Cybele. ABLE, JADE, and
Cougaar are all available in the public domain.

Cybele is used as a basis for Raytheon’s Airspace Concepts Evaluation System
(ACES). We plan to interface our optimization framework and air traffic management
application into ACES for further evaluation on larger data sets. GOALS is
independent of the underlying agent infrastructure, hence we plan to implement agents
in both ABLE and Cybele.

We selected Cybele because of its use in ACES. Additionally, we chose ABLE as a
second agent type because it is FIPA-compliant, available as a Java library, and lends
itself to quick implementation. JADE is also FIPA-compliant, and we may decide to
implement an adapter for JADE in the future. The U.S. Defense Advanced Research
Projects Agency (DARPA) has used Cougaar in the past; however, it is not
FIPA-compliant, so compatibility with systems using other types of agents cannot be
guaranteed. Therefore, we chose not to pursue implementation of Cougaar agents.

4 Implementation

For our prototype simulation, we address the problem of air traffic flow. Here, aircraft
seek to fly enroute from airport to airport, through various categories of controlled
airspace. There may be many impediments to their being granted optimal routes, such
as weather, ground stops, controller jurisdiction capacities, or airline priorities (e.g.
delays, connections, or fuel). These resources and interests are gamed to provide an
optimal flow from coast to coast.

We have implemented a layered architecture for our GOALS system that includes
the market mechanism as shown in figure 1. Both the air traffic management simulation
and optimization framework are Java applications. The internal representation for
GOALS is graph based. Rather than developing a graphing capability, we selected the
jGraphT libraries [11], which are available in the public domain. jGraphT was selected
mainly because it allowed for rapid implementation, since most graph structures we
needed were already implemented, including an implementation of Dijkstra’s
Algorithm for shortest paths. Others, such as the Ford-Fulkerson Method for maximum
flow problems, we implemented, as it was not included in the libraries.

The various actors (e.g. aircraft, sectors, airports, weather, airlines, etc) within the
system are represented as agents. These agents are annotated with a goal or interest
(e.g. save fuel, minimize delays, avoid ground stops, make connections, etc). Once the
locally optimal solution is determined, and required resources are assessed, “bidding”
on these resources within a marketplace can commence. Centers are considered
distributor agents (“sellers”), which make paths available in the market. Collector
agents (“buyers”) represent aircraft, and bid on the resources being offered by the
distributor.

Some agents can be both collectors and distributors, for example, if a resource is
won by an aircraft agent that later decides the resource is not needed. This
determination may come about because the need for the resource may depend on
winning other resources – if an auction is not won, the aircraft may be “stuck” with a
resource it does not need and have to obtain the resources for an alternate solution.
Figure 2 illustrates this situation.

578 T. Castelli, J. Lee, and W. Naqvi

Fig. 2. An aircraft agent interacts with the market in an attempt to obtain all the resources needed
for its optimal solution, but may win useless resources dependent on resources it does not win. In
the upper graph, an aircraft agent flying from Boston (BOS) to Chicago (ORD) first discovers its
shortest path to be through Philadelphia (PHL) and Cleveland (CLE). In the middle graph, it
does not win the resource representing the path from Philadelphia (PHL) to Cleveland (CLE), so
it tries for a new routing through Pittsburgh (PIT). In the bottom graph, the resource from
Cleveland (CLE) to Chicago (ORD) is no longer needed, so the aircraft agent must find some
way to dispense with it.

Upon completion of negotiations, the market notifies the participating agents of the
results of negotiation, including what resources were transferred and at what cost. The
temporal nature of resources becomes important here, both in terms of cost and
resource gain. For our air traffic management application, we define a resource as the
right to fly on a given segment of airway starting at a given time. In the situation
described by Figure 2, the aircraft agent may become a distributor agent. It distributes
the resource corresponding to the right to fly from Cleveland to Chicago at the
designated time.

 An Applied Optimization Framework 579

In any case, if an agent fails to acquire a resource that is needed for its optimal local
solution, it becomes necessary to fall back onto a suboptimal local solution. This is
accomplished simply by creating a new local goal for the agent, using the same graph
but different weights, and finding the optimal solution corresponding to the new graph.
Any solution in the new graph is also a feasible solution in the old graph. In fact, the
optimal solutions to many local goals are determined simultaneously during the local
optimization phase. This way, no additional computation time is wasted during the
market phase if the agent must select a suboptimal solution.

Our prototype simulation has demonstrated that the GOALS framework is feasible
for use in multi-agent distributed optimization problems where local autonomy is
desired in the presence of an overarching mission goal. Individual agents attempt to
obtain the most optimal solution to their local problems. The resources required to
obtain this solution are governed by global, hierarchical marketplaces. In this manner,
the global mission goal is satisfied, and each local agent is guaranteed the closest
solution to its optimal that still satisfies the mission goal.

5 Analysis, Conclusions, and Future Work

We have developed and introduced a general framework for agent-based distributed
optimization that is very flexible. The software developer can use our framework to
quickly experiment with different types of markets, different types of agents and agent
behaviors, and different types of agent goals. Agent goals do not have to be formulated
as graph theoretic problems.

As a proof of concept for our optimization framework, we implemented a small air
traffic management simulation. Nodes in the local goal graph represented either
airports or transition points between center control. Aircraft agents were simulated,
with goals of going from each airport to each of the other airports. Edge weights
represented the physical distance between nodes (which was determined arbitrarily for
this example). Each airport node was given a capacity, so that center agents could solve
their maximum flow goals.

We analyzed the performance, in terms of finding the globally optimal solution, of
the prototype application with several small test cases. These test cases had the
desirable property of having hand-calculable solutions, but were therefore not very
complicated or computing-intensive. We plan to integrate concepts from our prototype
into ACES, which is a simulator capable of dealing with an entire average day’s worth
of air traffic in the United States. This will allow us to analyze the performance of the
GOALS approach over many different criteria.

The air traffic management simulation we have developed is intended as a proof of
concept only. Time and budgetary constraints did not permit us to develop this
application fully. Future work will include expanding this application, and testing
different agent behaviors and markets. We would also like to apply this framework to
other domains, such as packet routing in a network, or the deployment of first
responders in a disaster situation.

Further, we plan to add machine-learning techniques to our system, most notably in
bidding strategies. Collector agents will learn what bids are optimal, and in which
situations a resource is likely to be won. In addition, collectors may learn how to adjust

580 T. Castelli, J. Lee, and W. Naqvi

weights in local goal graphs to arrive at feasible suboptimal solutions. This will likely
include the incorporation of BDI agents and graph weighting schemes as described in
prior sections. We aim to investigate agents that learn by using biologically inspired
techniques such as genetic algorithms [5]. Other work in this area [3, 10, 22] indicates
that machine-learning techniques can be incorporated in negotiation mechanisms.

References

1. Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G. “JADE: A White Paper.” In exp.
Volume 3, No. 3. September, 2003. Pp. 6–19. http://exp.telecomitalialab.com

2. Bigus, J. P., Schlosnagle, D. A., Pilgrim, J. R., Millis, W. N. III, and Diao, Y. “ABLE: A
Toolkit for Building Multiagent Autonomic Systems.” In IBM Systems Journal, Volume 41,
No. 3. September, 2002. Pp. 350–371.

3. Carmel, D. “Model-based Learning of Interaction Strategies in Multi-agent Systems.” Ph.D.
Thesis, Technion – Israel Institute of Technology. November 1997.

4. Cormen, T., Leiserson, C., and Rivest, R. Introduction to Algorithms. Cambridge, MA: MIT
Press. 1998. Section VI.

5. Cliff, D. “Evolution of Market Mechanism Through a Continuous Space of Auction-Types
II: Two-Sided Auction Mechanisms Evolve in Response to Market Shocks.”
Hewlett-Packard Techincal Report #HPL-2002-128. Bristol, England. May 8, 2002.

6. Foundation for Intelligent Physical Agents website. http://www.fipa.org
7. Frank, M., Bugacov, A., Chen, J., Dakin, G., Szekely, P., and Neches, B. “The Marbles

Manifesto: A Definition and Comparison of Cooperative Negotiation Schemes for
Distributed Resource Allocation.” In Proceedings of the AAAI Symposium on Negotiation
Methods for Autonomous Cooperative Systems, AAAI, 2001.

8. Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., and Stentz, A.
“Market-Based Multi-Robot Planning in a Distributed Layered Architecture.” In
Multi-Robot Systems: From Swarms to Intelligent Automata: Proceedings from the 2003
International Workshop on Multi-Robot Systems, Volume 2. Kluwer Academic Publishers.
2003. Pp. 27–38.

9. Helsinger, A., Thome, M., and Wright, T. “Cougaar: A Scalable, Distributed Multi-Agent
Architecture.” In Proceedings of the 2004 IEEE Conference on Systems, Man, and
Cybernetics. The Hague, The Netherlands. October, 2004.

10. Huang, P. and Sycara, K. “Multi-agent Learning in Extensive Games with Complete
Information.” In Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems. Pp. 701–708. Melbourne, Australia. 2003.

11. jGraphT library. http://jgrapht.sourceforge.net
12. Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. “Planning and Acting in Partially

Observable Stochastic Domains.” Technical Report, Brown University. January, 1997.
13. Liu, J., and Sycara, K. “Exploiting Problem Structure for Distributed Constraint

Optimization.” In Proceedings of the First International Conference on Multi-Agent
Systems. Pp. 246–253. San Francisco, 1995.

14. Ljungberg, M. and Lucas, A. “The OASIS Air Traffic Management System.” In
Proceedings of the Second Pacific Rim International Conference on Artificial Intelligence.
Seoul, Korea. 1992.

15. Next Generation Air Transportation System website. http://www.jpdo.aero

 An Applied Optimization Framework 581

16. Parkes, D. C., and Shneidman, J. “Distributed Implementations of Vickrey-Clarke-Groves
Mechanisms.” In Proceedings of the 2004 International Conference on Autonomous Agents
and Multi-Agent Systems. New York. July 2004.

17. Rao, A. S., and Georgeff, M. P. “BDI Agents: From Theory to Practice.” In Proceedings of
the First International Conference on Multi-Agent Systems. San Francisco. July, 1995.

18. Rosenschein, J. S., and Zlotkin, G. Rules of Encounter. Cambridge, MA: MIT Press. 1994.
19. Single European Air Traffic Management Research website. http://www.eurocontrol.int/

sesar
20. Trott, G., Naqvi, W., and Wood, R. “Negotiating Rights of Passage.” Presented at

Raytheon’s 3rd Systems/Software Engineering Symposium. March 2004.
21. Trott, G., and Naqvi, W. “Flow Management Resolution Advisor using Intelligent

Interoperable Agents.” 2003 End-Year Report for Raytheon IDEA Grant. Unpublished
work.

22. Zeng, D. and Sycara, K. “Bayesian Learning in Negotiation.” In Adaptation, Coevolution
and Learning in Multiagent Systems: Papers from the 1996 AAAI Spring Symposium, pages
99–104, Menlo Park,CA, March 1996. AAAI Press. AAAI Technical Report #SS-96-01.

On the Completion of Workflows�

Tai Xin1, Indrakshi Ray1, Parvathi Chundi2, and Sopak Chaichana1

1 Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873
{xin, iray, chaichan}@cs.colostate.edu

2 Computer Science Department
University of Nebraska at Omaha

Omaha, NE 68182-0500
pchundi@mail.unomaha.edu

Abstract. Workflow Management Systems (WFMS) coordinate execution of
logically related multiple tasks in an organization. A workflow schema is defined
using a set of tasks that are coordinated using dependencies. Workflows instan-
tiated from the same schema may differ with respect to the tasks executed. An
important issue that must be addressed while designing a workflow is to decide
what tasks are needed for the workflow to complete – we refer to this set as the
completion set. Since different tasks are executed in different workflow instances,
a workflow schema may be associated with multiple completion sets. Incorrect
specification of completion sets may prohibit some workflow from completing.
Manually generating these sets for large workflow schemas can be an error-prone
and tedious process. Our goal is to automate this process. We investigate the fac-
tors that affect the completion of a workflow. Specifically, we study the impact
of control-flow dependencies on completion sets and show how this knowledge
can be used for automatically generating these sets. Finally, we provide an algo-
rithm that can be used by application developers to generate the completion sets
associated with a workflow schema.

1 Introduction

Workflow management systems (WFMS) recently have gained a lot of attention. They
are responsible for coordinating the execution of multiple tasks performed by differ-
ent entities within an organization. A group of such tasks that forms a logical unit of
work constitutes a workflow. To ensure the proper coordination of these tasks, various
kinds of dependencies are specified between the tasks of a workflow. The execution
of a workflow must preserve the dependencies and eventually complete. Although a
large body of work appears in the area of workflows [1,2,3,6,7,8,9,10,11,12,13], very
few researchers have addressed the issue of workflow completion. In almost all of these
works, the researchers assume that the application developer specifies what is needed
for the workflow to complete. However, manually evaluating the conditions needed for
workflow completion may be tedious and error-prone. In this paper, we aim to automate
this process.

� This work was partially supported by NSF under Award No. IIS 0242258.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 582–591, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Completion of Workflows 583

A workflow is an instance of some workflow schema. A workflow schema formally
specifies the tasks in a workflow and the dependencies between the tasks. Not all tasks
specified in a workflow schema may be executed in a workflow instance. We refer to the
set of tasks that are needed to complete a workflow instance as the completion set. The
set of tasks needed to complete different workflows generated from the same schema
may vary because not all instances execute the same set of tasks. Thus, a workflow
schema may be associated with multiple completion sets.

Improper specification of completion sets in a workflow may result in deadlock and
availability problems. If a completion set violates some dependency constraints, the
states required for the workflow to complete can never be reached, and the workflow
will be in the execution state infinitely. It will hold resources forever, and cause dead-
lock and/or unavailability problems. Let us illustrate one such problem with a simple
example. Consider a workflow Ww that has a large number of tasks and dependencies.
Specifically, there is an exclusion dependency existing between tasks Twm and Twk,
which requires that Twk must abort if Twm commits. In other words, it is not possible
for both these tasks to commit in the same instance. This implies that Twm and Twk can
never be placed in the same completion set. Now, suppose an application developer, who
is specifying completion sets for this workflow, overlooks this dependency and places
both Twm and Twk in the same completion set CTt . The consequence is that this workflow
will never complete and the resource availability of the system will be compromised.

Due to the large number of tasks and dependencies that can exist in a complex work-
flow, correctly calculating all the completion sets manually can be a time-consuming
and error-prone work. To solve this problem, we need an approach that generates all the
possible completion sets automatically from a given workflow schema. In this paper, we
propose one such approach. We begin by identifying the impact of dependencies on the
completion set of a workflow. We then show how the knowledge of the dependencies
can be exploited to generate the completion sets. Every completion set produced by our
approach will satisfy the dependency constraints and it will be feasible to execute all the
tasks in a given completion set. This, in turn, will ensure that the workflow completes.

The rest of the paper is organized as follows. Section 2 defines our workflow process-
ing model and describes the different kinds of dependencies that may be associated with
it. Section 3 presents the details of the algorithm and shows how to generate all the pos-
sible completion sets correctly. Section 4 concludes the paper with pointers to future
directions.

2 Our Model for Workflows

We begin by giving some definitions.

Definition 1. [Workflow Schema] A workflow schema Ww is a triple < S, D, C >,
where, S is a set of tasks, D is the set of dependencies used to coordinate the execution
of the tasks in S, and C is the set of completion sets in Ww, which defines the conditions
for complete execution of Ww.

Definition 2. [Task] A task Twi is the smallest logical unit of work in an workflow. It
consists of a set of data operations (read and write) and task primitives (begin, abort
and commit).

584 T. Xin et al.

The begin, abort and commit primitives of task Twi are denoted by bwi, awi and cwi

respectively. The execution of these primitives is often referred to as an event. Thus, we
can have begin, commit or abort events.

Definition 3. [Completion Set] Each completion set Ct ∈C is specified by (CTt ,�t),
where CTt is the set of tasks that must be committed and�t is the order in which they
must be committed. Formally, CTt ⊆ S is the set of tasks which must be committed for
this workflow to complete, and �t is the ordering relation that specifies the commit
order of tasks in CTt .

In order to properly coordinate the different tasks in a workflow, control-flow dependen-
cies are specified on the task primitives, which control the occurrence and/or ordering
of the begin, commit, and abort events of different tasks.

Definition 4. [Control-flow Dependency] A control-flow dependency specified be-
tween a pair of tasks Ti j and Tik expresses how the execution of a primitive (begin,
commit, and abort) of Ti j causes (or relates to) the execution of the primitives (begin,
commit and abort) of another task Tik.

A comprehensive list of transaction dependency definitions can be found in [2,4,5]. We
describe the fifteen commonly used dependencies. In the following descriptions Ti j and
Tik refer to the tasks and bi j, ci j, ai j refer to the events of Ti j that are present in some
history H, and the notation ei j ≺ eik denotes that event ei j precedes event eik in the
history H.

[Commit dependency] (Ti j →c Tik): If both Ti j and Tik commit then the commitment
of Ti j precedes the commitment of Tik. Formally, ci j⇒ (cik⇒ (ci j ≺ cik)).

[Strong commit dependency] (Ti j →sc Tik): If Ti j commits then Tik also commits.
Formally, ci j ⇒ cik.

[Abort dependency] (Ti j→a Tik): If Ti j aborts then Tik aborts. Formally, ai j⇒ aik.
[Weak abort dependency] (Ti j→wa Tik): If Ti j aborts and Tik has not been committed

then Tik aborts. Formally, ai j⇒ (⇁ (cik ≺ ai j⇒ aik).
[Termination dependency] (Ti j →t Tik): Task Tik cannot commit or abort until Ti j

either commits or aborts. Formally, eik ⇒ ei j ≺ eik, where ei j ∈ {ci j,ai j}, eik ∈
{cik,aik}.

[Exclusion dependency] (Ti j →ex Tik): If Ti j commits and Tik has begun executing,
then Tik aborts. Formally, (ci j⇒ (bik⇒ aik) .

[Force-commit-on-abort dependency] (Ti j→ f ca Tik): If Ti j aborts, Tik commits. For-
mally, ai j⇒ cik.

[Force-begin-on-commit/abort/begin/termination dependency] (Ti j→f bc/f ba/f bb/f bt
Tik): Task Tik must begin if Ti j commits(aborts/begins/terminates). Formally, ci j (ai j

/ bi j/ Ti j)⇒ bik.
[Begin dependency] (Ti j→b Tik): Task Tik cannot begin execution until Ti j has begun.

Formally, bik⇒ (bi j ≺ bik).
[Serial dependency] (Ti j→s Tik): Task Tik cannot begin execution until Ti j either com-

mits or aborts. Formally, bik⇒ (ei j ≺ bik) where ei j ∈ {ci j,ai j}.
[Begin-on-commit dependency] (Ti j →bc Tik): Task Tik cannot begin until Ti j com-

mits. Formally, bik⇒ (ci j ≺ bik).

On the Completion of Workflows 585

ex

bc

bc

T

T

T

T11

12

13

14

a

Fig. 1. Dependencies in the Example Workflow

[Begin-on-abort dependency] (Ti j →ba Tik): Task Tik cannot begin until Ti j aborts.
Formally, bik⇒ (ai j ≺ bik).

A workflow Ww can be represented in the form of a graph Gw =< V,E > which we
term as the dependency graph. The task Tw1,Tw2, . . . ,Twn defined in S correspond to
the different nodes of the graph. Each dependency between transactions Twi and Tw j is
indicated by a directed edge (Twi,Tw j) that is labeled with the name of the dependency.
Let W1 =< S,D,C > be a workflow where S = {T11, T12, T13, T14}, D = {T11 →bc

T12,T11 →bc T13,T12 →ex T13,T12 →a T14}, and C = {({T11,T12,T14},{T11 � T12}),
({T11,T13}, {T11� T13})}. The labels on each edge corresponds to the dependencies
that exist between the tasks. L(T11,T12) = {bc}, L(T11,T13) = {bc}, L(T12,T13) = {ex},
L(T12,T14) = {a}. This transaction has two completion sets: ({T11,T12,T14},{T11 �
T12}) and ({T11,T13}, {T11 � T13}). This transaction can be represented graphically
as shown in Figure 1. A real world example of such a transaction may be a workflow
associated with making travel arrangements. The tasks perform the following tasks. (i)
Task T11 – Reserve a ticket on Airlines A, (ii) Task T12 – Purchase the Airlines A ticket,
(iii) Task T13 – Cancels the reservation, and (iv) Task T14 – Reserves a room in Resort
C. There is a begin-on-commit dependency between T11 and T12 and also between T11

and T13. This means that neither T12 nor T13 can start before T11 has committed. This
ensures that the airlines ticket cannot be purchased or canceled before a reservation has
been made. The exclusion dependency between T12 and T13 ensures that either T12 can
commit or T13 can commit but not both. In other words, either the airlines ticket must
be purchased or the airlines reservation canceled, but not both. Finally, there is an abort
dependency between T14 and T12. This means that if T12 aborts then T14 must abort. In
other words, if the resort room cannot be reserved, then the airlines ticket should not be
purchased.

3 Generate the Completion Sets Automatically

Impact of Dependencies on Completion Sets: Different control-flow dependencies
have different impacts on deciding the completion set. For instance, with a begin-on-
abort dependency Twi →ba Tw j, Tw j cannot begin and hence it cannot commit without
the abort event of Twi in the history. Therefore, if one wants to have Tw j in a completion
set CTt , Twi cannot be in the same completion set – Tw j ∈CTt ⇒ Twi /∈CTt . The control-
flow dependencies that impact a completion set CTt are listed in Table 1.

586 T. Xin et al.

Table 1. Impacts of Dependencies on Deciding Completion Sets

Dependency Impact
Twi→sc Tw j Twi ∈CTt ⇒ Tw j ∈CTt

Twi→a Tw j Tw j ∈CTt ⇒ Twi ∈CTt ∧Tw j ≺ Twi

Twi→ex Tw j Twi ∈CTt ⇒ Tw j /∈CTt

Twi→ f ca Tw j Twi ∈CTt ⇒ Tw j ∈CTt ∧Tw j ≺ Twi

Twi→c Tw j Twi ∈CTt ∧Tw j ∈CTt ⇒ Twi ≺ Tw j

Twi→t Tw j Twi ∈CTt ∧Tw j ∈CTt ⇒ Twi ≺ Tw j

Twi→s Tw j Twi ∈CTt ∧Tw j ∈CTt ⇒ Twi ≺ Tw j

Twi→bc Tw j Tw j ∈CTt ⇒ Twi ∈CTt ∧Twi ≺ Tw j

Twi→ba Tw j Tw j ∈CTt ⇒ Twi /∈CTt

Strategies for Generating Completion Sets: The algorithm for generating completion
sets automatically will use the graph representing the workflow. The dependency graph
will include both the directly given dependencies and the implicit dependencies. Im-
plicit dependencies [11] arise because of the interaction of the given dependencies. For
instance, the Twi→sc Twk and Twk→ex Twm dependencies will imply an implicit depen-
dency Twi →ex Twm. An example of the dependency graph is shown in Figure 2. The
steps for generating completion set for this workflow are shown in Figure 3.

a

ex

sc

T

T

T

T

T
1

T2

3

4

5

6

fca

bc

c

Fig. 2. An Example of Workflow and its Dependency Graph

We assume that every dependency graph has a start node which is the one that has no
incoming edges. For instance, in Figure 2, the task T1 is the start node. We assume that
the start node represents the first task to be executed in a workflow and is present in all
completion sets. When generating completion sets for the workflow, we construct a tree
structure. Each node of this tree is associated with a set of tasks. This set represents the
prefix of a completion set which we obtained by traversing the graph so far. The root
of this tree contains the start node of the graph. Each leaf node represents a completion
set. The strategy for computing completion sets is described below.

(i) We insert the start node into the root of the tree as shown in Figure 3.
(ii) We consider one dependency Twm→d Twn at a time, and insert new child node(s)

into the tree. We add the task Twm or Twn into the completion set of the child
node(s), if it does not violate the dependency constraints. We use Table 1 for this
purpose.

On the Completion of Workflows 587

(T1<<T3,T5<<T3)}
{T1,T3,T5,

(T1<<T3)}
{T1,T3,

(T1<<T3,T5<<T3)}
{T1,T3,T5,

(T1<<T3)}
{T1,T3,T4,

(T1<<T3)}
{T1,T3,

(T1<<T3)}
{T1,T3,

(T1<<T3)}
{T1,T3,

{T1,T2, (T1<<T2)}

fca

{T1}

sc

a

c

bc
{T1}

(T1<<T3)}

{T1,T2,T4,T6
(T1<<T2,T4<<t2)}

(T1<<T2,T4<<t2)}

{T1,T2,T4

(T1<<T2,T4<<t2)}
{T1,T2,T4

{T1,T4}{T1}
{T1,T3,T4,T5,T6

(T1<<T3,T5<<T3)}

(T1<<T3,T5<<T3)}
{T1,T3,T4,T5

{T1,T3,T4,

(T1<<T3)}

,

{T1,T4}

{T1,T4}

{T1}
{T1,T2, (T1<<T2)}

{T1,T2,T3,(T1<<T2,T1<<T3)}

ex

DEAD

{T1}

{T1}

{T1,T3,T4,T6

Fig. 3. Generate Completion Sets for Workflow in Figure 2

1. If it is a strong commit or a force-commit-on-abort dependency and the com-
pletion set contains Twm, then we only generate one child node, where we
insert Twn into the existing completion set. For the force-commit-on-abort de-
pendency, we also have to add the Twn ≺ Twm in its new completion set.

2. If it is an exclusion dependency and the completion set contains Twm, we only
generate one child since we cannot insert Twn. The child node has the same
completion set as the parent node. However, if we already have both Twm and
Twn in the completion set, we have to remove this node from the tree since it
now contains an incorrect completion. This is shown in the rightmost node in
Figure 3.

3. For commit, begin-on-commit, termination, serial dependencies, if the com-
pletion set contains Twm, we generate two nodes – one that contains Twn and
one that does not. With the child that contains Twn, the ordering requirement
Twm ≺ Twn is inserted into the completion set.

4. If it is an abort dependency, and the completion set of this node contains Twn,
then we only generate one child node, where Twm is inserted into the completion
set, and also has Twn ≺ Twm in the new completion set.

5. If it is a begin-on-abort dependency, and the completion set of this node con-
tains Twn, we only generate one child node since we cannot insert Twm into the
existing completion set. However, if we already have both Twm and Twn in the
completion set, we have to remove this node from the tree.

6. For all other dependencies (like force-begin-on-begin dependency), if the com-
pletion set of this node contains Twm, we will generate two child nodes. One
node contains Tmn and one does not, because these dependencies have no im-
pact on completion sets.

(iii) The operations in step (ii) continue until all the dependencies are considered in
the dependency graph. Finally we have the complete tree where every leaf node
contains one completion set.

588 T. Xin et al.

Algorithms to Compute Completion Sets Automatically: We next give the algorithm
for building all possible completion sets. The algorithm is organized in two steps - (i)
build the derived dependency set and (ii) compute all possible completion sets based on
the derived dependency set.

In the first step, the specification of the workflow is used to build the initial depen-
dency set (IDS), which records every dependency Twi →dx Tw j as an edge of the form
(Twi,Tw j,dx), where Twi, Tw j, and dx represent the source node, the destination node, and
the dependency respectively. Then the IDS is used to build the derived dependency set
(DDS). This procedure has several rounds of iterations. In each iteration, the algorithm
scans all the dependencies currently in the DDS and check whether new edges could be
implied by the existing edges. The process is repeated until no more new edges can be
derived.

Algorithm 1
Input: the workflow specification ATt =< S,D,C >
Output: a derived dependency set (DDS) of the workflow
Procedure GenerateDDS(ATt)
begin

//Build the initial dependency set, according to the specification
IDS = {}; // set of edges
for every dependency (Twi→dx Tw j) ∈ ATt(D)

generate an edge (Twi,Tw j,dx); //dependency of type x from Twi to Tw j

IDS = IDS + (Twi,Tw j,dx);
// initiate the derived dependency set
done == false;
DDS == IDS;
mark every edge in DDS as unchecked
while (done = false)
begin

for each edge (Twi,Tw j,dx) ∈ DDS
begin

// If this dependency implies a relationship, insert the implicit edge
if this edge is unchecked

if dx = sc
generate an edge (Tw j,Twi,c);

else if dx = a
generate an edge (Twi,Tw j,c);

else if dx = f ca
generate an edge (Tw j ,Twi,bc);

// insert the implied edges based on interaction of dependencies
for each edge (Tw j,Twk,dp) ∈ DDS that is unchecked

if (Twi,Tw j,dx) and (Tw j,Twk,dp) imply an implicit dependency dt

generate an edge (Twi,Twk,dt);
for each edge (Twi,Twk,dq) ∈ DDS that is unchecked

if (Twi,Tw j,dx) and (Twi,Twk,dq) imply an implicit dependency ds

generate an edge (Tw j,Twk,ds);

On the Completion of Workflows 589

end
// mark existing edges as checked;
for every edge ∈ DDS

set edge as checked
// insert newly generated edges, make them as unchecked;
for every newly generated edge enew in this round

set edge enew as unchecked
DDS = DDS + enew

if there is no new edge inserted in this round
done = true;

end
end

Following, we compute all the possible completion sets based on the DDS obtained
above. A queue is used to simulate the breadth-first traversal of the tree. The queue
maintains the part of completion sets we have obtained so far. We first consider the start
node, generate a completion set containing only this task and insert it into the queue.
Then we take one dependency at a time, and compute the new set of completion sets
that can be obtained by applying this dependency with the existing completion sets in
the queue. The rules for computing new set of completion sets are based on Table 1.
The newly obtained set will replace all the old completion sets in the queue and the
process is repeated until all the dependencies are considered.

Algorithm 2
Input: a derived dependency set (DDS) of the workflow
Output: a set containing all possible completion set for this workflow
Procedure GenerateCompletionSet
begin

create two queues, one completion sets queue, and one temp queue
generate a completion set (CTt ,�t) where CTt={Tws},�t={}, Tws = start node
insert this initial completion set into the completion set queue
for every edge (Twi,Tw j ,dx) in the DDS

/* consider this dependency with every completion set in the queue */
for every completion set CTt in the completion set queue

if Twi /∈CTt AND Tw j /∈CTt

/* this dependency is not relevant with this completion set */
continue; /* do nothing here */

else if Twi ∈CTt /* this completion set contains Twi */
if dx = sc

CTt = CTt ∪{Tw j}
insert (CTt ,�t) to the temp queue

if dx = f ca
CTt = CTt ∪{Tw j}
�t=�t ∪({Tw j� Twi)
insert (CTt ,�t) to the temp queue

if dx = ex

590 T. Xin et al.

if Twi ∈CTt ∧Tw j ∈CTt

remove (CTt �t), this set is infeasible
else /* cannot have Tw j in the new set */

insert (CTt ,�t) to the temp queue
if dx = c OR dx = bc OR dx = t OR dx = s

/* generate two new sets, one contains Tw j and one not */
insert (CTt , llt) to the temp queue
CTs = CTt ∪{Tw j}
�s=�t ∪{Twi� Tw j}
insert (CTs,�s) to the temp queue

if dx = ba
if Tw j ∈CTt /* have both Twi,Tw j */

remove (CTt ,�t), this set is infeasible
else /* for all other dependencies */

/* generate two new sets, one contains Tw j and one not */
insert (CTt ,�t) to the temp queue
CTs = CTt ∪{Tw j}
insert (CTs,�t) to the temp queue

else if Tw j ∈CTt /* this completion set contains Tw j */
if dx = a

CTt = CTt ∪{Twi}
�t=�t ∪{Tw j� Twi}
insert (CTt ,�t) to the temp queue

if dx = ba
insert (CTt ,�t) to the temp queue /* cannot have Twi in the new set */

end for
/* let temp queue be the new completion set queue, clean up the temp queue */
let completion set queue equals to the temp queue
reset the temp queue to be empty

end for
return the completion set queue

end

4 Conclusion

An workflow is composed of a number of cooperating tasks that are coordinated by
dependencies. The dependencies make the workflow more flexible and powerful. Com-
pletion sets are also specified in the workflow to identify complete executions. However,
incorrect specification of completion sets can lead to deadlock and unavailability prob-
lems. The completion sets must conform to the dependencies in the workflows. In this
paper, we looked at how the dependencies can impact the completion set, and gave an
algorithm to generate all possible completion sets automatically. A lot of work remains
to be done. We need to give proof of formal correctness. We also need to evaluate the
complexity of the algorithm used in computing the completion sets. In future, we plan
to provide more efficient algorithms.

On the Completion of Workflows 591

References

1. G. Alonso, D. Agrawal, A. Abbadi, M. Kamath, R. G., and C. Mohan. Advanced Transaction
Models in Workflow Contexts. In Proceedings of the Twelfth International Conference on
Data Engineering, pages 574–581, February 1996.

2. V. Atluri, W-K. Huang, and E. Bertino. An Execution Model for Multilevel Secure Work-
flows. In Proceedings of the Eleventh IFIP WG11.3 Working Conference on Database Secu-
rity, pages 151–165, August 1997.

3. P. C. Attie, M. P. Singh, A. P. Sheth, and M. Rusinkiewicz. Specifying and Enforcing In-
tertask Dependencies. In Proceedings of the Nineteenth International Conference on Very
Large Data Bases, pages 134–145, Dublin, Ireland, August 1993. Morgan Kaufmann.

4. A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and K. Ramamritham. ASSET: A System for
Supporting Extended Transactions. In Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, May 1994.

5. P. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about Extended Transac-
tions Models. Ph.D. Thesis, September 1991.

6. D. Hollingsworth. Workflow Reference Model. Technical report, Workflow Management
Coalition, Brussels, Belgium, 1994.

7. I. Ray, T. Xin, and Y. Zhu. Ensuring Task Dependencies During Workflow Recovery. In
Proceedings of the Fifteenth International Conference on Database and Expert Systems,
Zaragoza, Spain, August 2004.

8. M. Rusinkiewicz and A. P. Sheth. Specification and Execution of Transactional Workflows.
In Modern Database Systems, pages 592–620, 1995.

9. M. P. Singh. Semantical Considerations on Workflows: An Algebra for Intertask Depen-
dencies. In Proceedings of the Fifth International Workshop on Database Programming
Languages, Electronic Workshops in Computing. Springer, 1995.

10. W.M.P. van der Aalst, K. M. van Hee, and G.J. Houben. Modelling Workflow Management
Systems with High-Level Petri Nets. In Proceedings of the Second Workshop on Computer-
Supported Cooperative Work, Petri Nets and Related Formalisms, October 1994.

11. T. Xin and I. Ray. Detecting Dependency Conflicts in Advanced Transaction Models. In
Proceedings of the Ninth International Database Applications and Engineering Symposium,
Montreal, Canada, July 2005.

12. T. Xin, Y. Zhu, and I. Ray. Reliable Scheduling of Advanced Transactions. In Proceedings of
the Nineteenth IFIP WG11.3 Working Conference on Data and Applications Security, Storrs,
Connecticut, August 2005.

13. Y. Zhu, T. Xin, and I. Ray. Recovering from Malicious Attacks in Workflow Systems. In
Proceedings of the Sixteenth International Conference on Database and Expert Systems,
Copenhagen, Denmark, August 2005.

Concurrency Management in Transactional
Web Services Coordination

Adnene Guabtni1, François Charoy2, and Claude Godart3

1 guabtni@loria.fr
2 charoy@loria.fr
3 godart@loria.fr

University Henri Poincaré Nancy 1
INRIA - LORIA laboratory, BP 239, F-54506

Vandouvre-lès-Nancy Cedex, France

Abstract. The Business Process Execution Language BPEL4WS has
emerged to introduce process dimension in Web Services coordination.
At the same time, a lot of needs related to business process manage-
ment appeared. In this article we focus on transactional management
in Web Services platforms. WS-Transaction specification had a big im-
pact on usage of Web Services in critical situations such as financial
services. This usage of transactions in web services coordination also
introduced concurrency problems similar to those encountered in trans-
actional databases world due to hard transactional constraints especially
for isolation mechanisms. Today, WS-Transactions provide flexible atom-
icity in Web Services coordination (WS-BusinessActivity) but isolation
flexibility is not provided. Isolation mechanisms used today are not re-
ally adapted to Service Oriented environments and we aim to make them
more ‘process friendly’. In this paper, we focus on this important part of
concurrency problems and propose a new view of WS-Transactions based
on Behavioural Spheres approach. This contribution suggests a reorgan-
isation of the WS-Coordination framework adding WS-IsolationSphere
for isolation management and the WS-Sphere coordination type for gen-
eralising any behaviour management in Web Services coordination.

1 Introduction

Companies are migrating their applications towards a Service oriented Archi-
tecture and Web Services represent an adapted way to perform interoperability
between different platforms. In such environment, distributed and composed
e-services were very useful and specifications like BPEL4WS [6] have been de-
fined to build business processes in Web Services environments. Web Services
Orchestration introduced workflow concepts in this context and revealed some
transactional needs such as atomicity and isolation to ensure correct execution.
These needs were usually performed by traditional transaction protocol such as
the two phase commit (2PC). WS-Transactions were introduced to relax isola-
tion in composed Web Services by releasing locks on transaction resources before

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 592–601, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Concurrency Management in Transactional Web Services Coordination 593

their completion in order to permit other transactions to access them concur-
rently. Implementations of WS-Transaction specification are currently emerging
in order to ensure this flexibility in existing platforms but problems related to
undesired phenomena caused by this flexibility are not yet resolved. Suppose
that a transaction T1 uses a resource R1 on which it specified a lock. Suppose
also that, due to flexibility reasons, T1 releases the lock on R1 before its comple-
tion and a transaction T2 uses the resource R1 while T1 has not yet finished its
execution. If T1 fails, all changes made on the resource R1 should be cancelled
(this process is called compensation). Also transactions that depend on data up-
dated by T1 should be aborted to ensure some coherence of the data/execution.
This kind of problem may represent a strategic issue for processes that need a
high level of correctness such as financial services.

In this article we propose a point of view that considers isolation as a property
that concerns not only activities but also processes. Isolation will be related to
sets of business activities allowing adaptation of concurrency during the business
process execution. That will enhance concurrency management in Web Services
coordination and make it possible to maintain a high degree of flexibility while
cascade cancellation and similar undesired phenomena can be reduced consid-
erably. This approach is inspired from sphere of control of C. T. Davies [7] and
Isolation spheres that we started to define in [3] and this carries out us to in-
troduce the concept of WS-IsolationSphere. We propose also to reorganise the
WS-Coordination framework introducing WS-Sphere coordination type for gen-
eralising any behaviour management in Web Services coordination.

We start our paper by presenting what has been done in Web Service Transac-
tions support and what are the different problems related to it. Then we propose
our approach based on Isolation Spheres to ensure a process-friendly isolation.
Finally we explore the implementation of such approach in the WS-Coordination
framework and extensions to other behaviour.

2 Related Work: WS-Technologies

Business process specification for Web Services BPEL4WS started in the last
five years with an expansion of multiple specifications (XLANG, BPML, WSFL,
BPSS, WSCL, WSCI, WS-Choreography and BPEL4WS). These specifications
were defined based on numerous business process challenges such as coordinating
communication between services, correlating message exchanges between parties,
implementing parallel processing of activities, transforming data between part-
ner interactions, supporting long running business transaction and providing
consistent exception handling.

Our research focuses on Web Services orchestration/choreography but some
clarification needs to be done about the signification of the terms orchestration
and choreography. We mean by a Web Services orchestration the execution of
a business process under control of a single endpoint (inside organisation, com-
monly workflow) while choreography represents the observable public exchange
of messages, rules and agreements between different business process endpoints

594 A. Guabtni, F. Charoy, and C. Godart

(between organisations). Contrary to orchestration, choreography does not in-
clude concurrency management because concurrent data access is usually limited
to the same endpoint.

As shown in figure 1, BPEL4WS and CDL4WS (Choreography Definition Lan-
guage for Web Services) represent the Business Process management both inside
and between organisations. Other protocols like WS-Reliability, WS-Security,
WS-Coordination and WS-Transactions ensure the Quality of Service part of
the entire Web Services Business Process environment.

Fig. 1. Standards used with BPEL

In this article we focus on the WS-Coordination and WS-Transaction levels
and this will not include WS-Choreography. The challenge of our work is to
express flexible isolation requirements in business process environment. First
we detail what is already done in WS-Coordination [4] and WS-Transaction
specifications [5].

WS-Coordination / WS-Transactions

WS-Coordination specification provides standard mechanisms to create and reg-
ister services, using separately defined protocols to coordinate the execution of
distributed operations in a Web Services environment. It defines a coordination
framework supporting the following services:

– Activation Service to create a new coordination activity and to specify the
coordination protocols available for the activity.

– Registration Service to register participants and to select a coordination
protocol for the activity.

– Coordination Service for activity completion processing using the selected
coordination protocol.

WS-Coordination specification proposes customisable coordination types and
protocols. WS-Transaction specification represents the specification of two WS-
Coordination types that are WS-AtomicTransaction and WS-BusinessActivity
as follows:

Concurrency Management in Transactional Web Services Coordination 595

– WS-AtomicTransaction represents the coordination of activities that express
the ’all or nothing’ behaviour. Two protocols are possible:
• Completion protocol: usually, the coordination initiator uses this proto-

col to tell the coordinator to try a commitment or a rollback.
• Two phase commit (2PC): A participant registers to the 2PC protocol

in order to initiate a two Phase Commitment with other participants
that registered also to the same protocol. Two types of this protocol are
available: Volatile 2PC (used for volatile resources such as cache) and
Durable 2PC (used for durable resources such as database).

– WS-BusinessActivity handle long lived activities by allowing partial com-
mitment of participants. Business activities support two coordination types
• AtomicOutcome coordination type must direct all participants to close

or all participants to compensate.
• MixedOutcome coordination type may direct each individual participant

to close or compensate.
In both coordination types, registered participants can choose between two
protocols possible with WS-BusinessActivity. These two protocols introduce
the notion of completion decision maker as follows:
• BusinessAgreementWithParticipantCompletion: When a participant

registers for this protocol with its coordinator, it must know when it
has completed all work for the business activity. The participant must
notify its coordinator when its work is done.
• BusinessAgreementWithCoordinatorCompletion: When a participant

registers for this protocol with its coordinator, it relies on its coordi-
nator to tell it when it has received all requests to perform work within
the business activity.

3 Motivation

Transactional behaviour supported by the WS-Transaction specification ensures
correct and flexible atomicity in Web Services platforms but do not provide
such flexibility for isolation constraints. This is due to the fact that isolation
in business processes is managed most of the time by the underlying database
system and this thanks to locking strategies on data. Some of these strategies
provide more flexibility like the SQL isolation levels but they are adapted only to
database systems. They also do not take sufficiently into account process aspects
because accesses to data are usually considered as independent accesses without
particular relations between them.

In such context, we need to provide a ‘process friendly’ isolation strategy that
provides the missing flexibility in transactional Web Services coordination. We
propose isolation spheres for Web Services as a solution to the problem and we
propose a perspective for similar solutions based on behaviour spheres. In the
next section we expose the isolation spheres approach.

596 A. Guabtni, F. Charoy, and C. Godart

4 Isolation Spheres Approach

Isolation Spheres are inspired from the spheres of control [7]. An isolation sphere
is defined by a set of activities inside a process. For these activities we want
to ensure some properties regarding data accessed by the activities (Cohesion
property of a sphere) and data produced by the activities (Coherence property
of a sphere).

Cohesion property is based on the notion of cohesive view on data. This means
that all activities of the sphere have the same view on the data they access which
ensures that data values used by the sphere’s participants have been set (created
or updated) by:

– Activities participant to the sphere (any internal data manipulation per-
formed by a participant is visible by the other participants to the sphere).
We call such data values ‘Sphere-Produced Values’ (SPV).

– Activities non-participant to the sphere but their manipulation of the data
has been performed before any sphere’s participant started. We call such data
values ‘Pre-Sphere Values’ (PSV).

We introduce in this paper the notions SPC and PSV to clarify the means
of cohesion in such context. These two notions are applicable to data values
and not data item itself. This means that a data can have a value that is PSV
and after a participant update, it have a new value that is SPV. That’s why
SPV and PSV data values are disjoint due to the disjunction of participants
and non participants to the sphere. Updates done by activities outside of the
sphere during the execution of the sphere’s participants need to be avoided. This
cohesive view represents the basis of cohesion in a group of activities. Cohesion
is expressed through different cohesion levels [3] that are Read Uncommitted,
Read Committed, Repeatable Read and Serialisable.

These levels define the way the common view of the sphere on data is managed
and depend on the nature of used data values. We say that a data value is an
‘uncommitted’ one if it is the result of a manipulation performed by an activity
not yet completed (usually such data values represent uncompleted or temporary
values). If such activity is completed, the data value is called ‘committed’.

– Read Uncommitted level allows the participants to the sphere to use
uncommitted data during their execution (both for SPV and PSV).

– Read Committed level allow the participants to the sphere only reading
committed values during their execution (both for SPV and PSV).

– Repeatable Read level allows the participants to the sphere to read values
of data (both for SPV and PSV) with the certainty that during their use of
the data, they will not change.

– Serialisable level emulates an execution in series of the activities participat-
ing to the sphere. Such execution concerns only the sphere’s participants and
prevents concurrency inconvenience between them. The execution is similar,
from data changes point of view (both for SPV and PSV), to a serial ex-
ecution of activities of the sphere. External activities do not suffer of such

Concurrency Management in Transactional Web Services Coordination 597

hard constraint except if they access to data used by the sphere’s partici-
pants. In this latter case, they are constrained to be serialised with sphere’s
participant’s activities.

Coherence of a sphere represents how activities of the sphere share their data
outside of the sphere. In order to control the coherence between data used by
activities of the sphere and those by the rest of the processes including concur-
rent isolation spheres, it is essential to define a level of coherence of the sphere.
Isolation spheres ensure some cohesion inside the group and also some coher-
ence of the activities external to the sphere using the same data. The levels of
coherence are the following:

– Cooperative coherence: All values of data written by the activities par-
ticipating to the sphere are visible outside of the sphere as soon as they are
produced.

– Activity coherence: Only values written by the terminated activities par-
ticipating to the sphere are visible outside of the sphere.

– Sphere coherence: The sphere acts as a transaction. The values written by
activities participating to the sphere are visible at the end of the execution
of all activities of the sphere (that we call also the end of the sphere).

The control of the two dimensions (cohesion + coherence) makes it possible to
define in finer way isolation requirements for groups of activities. The choice of
cohesion and coherence levels allows estimating the degree of divergence between
activities of the sphere and those external to the sphere and the degree of data
exchange flexibility between the activities of the sphere and those outside.

5 Isolation Spheres / Behavioural Spheres as Web
Services Challenges

We consider Web Services platforms as very interesting area for isolation sphere
application. The WS-Coordination is able to accommodate the isolation sphere
approach. WS-Coordination allows grouping several Web Services that can join
or leave the coordination service. This behaviour express what isolation spheres
aim to perform: grouping services together over a coordination service and en-
suring flexible isolation constraints on their execution.

Although isolation spheres goal concerns transactional behaviour, we think
that we need to separate atomicity needs and isolation ones. We propose to in-
clude a WS-IsolationSphere specification to the WS-Coordination types family
without including it to the WS-Transaction one. To make possible this separa-
tion, we propose to reorganise the existing WS-Coordination types. We propose
to consider WS-Coordination types as parts of one of the multiple Behavioural
Spheres (Atomicity sphere, Isolation Sphere, Compensation Sphere, Multiple In-
stantiation Sphere, ...).

Behaviour Spheres propose to make separation of concerns between process
design and behaviour properties specification. Properties concerned by this ap-
proach were related to transactional behaviour and spheres introduced a lot of

598 A. Guabtni, F. Charoy, and C. Godart

flexibility and expressiveness in this topic such as Atomicity Spheres [9][1][10]
and Compensation Spheres [8]. We also identified other applications such as
instantiation management with multiple instantiation [2]. In this work, we fo-
cus on the case of isolation management. Behavioural Spheres consider some
properties (atomicity, isolation, compensation, security, and so on) as applied to
groups of activities or sub processes. To clarify which situation is adapted to the
Behavioural Sphere approach we provides three main principles to respect:

– Principle 1: Separation of concerns between process design and behavioural
properties specification.

– Principle 2: Behaviour supported by a sphere and applied to the entire
sphere’s activities do not produce the same effects when applied to each
activity of the sphere separately.

– Principle 3: The use of Behaviour Spheres introduces flexibility and in-
creases expressiveness compared to non-sphere approaches.

We identified a set of Behavioural Spheres adapted to Web Services en-
vironment and we propose to use WS-Coordination to provide a framework
for Behavioural Spheres specifications that we call WS-Sphere. We propose
a non exhaustive family of WS-Sphere coordination types composed of WS-
AtomicitySphere, WS-IsolationSphere, WS-JointCompensationSphere and WS-
MultipleInstantiationSphere. These four types that we have identified are those
we guess compatible with the Behavioural Sphere approach.

The existing WS-Transaction family can be considered as part of the Atom-
icity Sphere type. Figure 2 illustrates the global organisation of the WS-Sphere
integration with WS-Coordination.

Fig. 2. WS-Sphere integration to WS-Coordination

Our main contribution aims to reorganise the WS-Transaction specification
and to propose a solution to isolation management in Web Services coordination.

Concurrency Management in Transactional Web Services Coordination 599

5.1 WS-IsolationSphere Proposal

Our approach based on isolation spheres consider two isolation dimensions: co-
hesion and coherence. It consists in a process-driven point of view and can also
be specified over WS-Coordination and provide a new type of WS-Sphere that
we call WS-IsolationSphere.

A WS-IsolationSphere represents a new type of coordination focused on isola-
tion management. It inherits WS-Coordination properties (Activation and Reg-
istration) and it is initiated over the choice of a cohesion and a coherence
level (Cohesion/Coherence Agreement) when a participant registers to a WS-
IsolationSphere. The requirements ensured by the coordination framework de-
pend on these two levels. During the registration process, the participant and
the coordinator exchange the coordination context that already implements ex-
tensibility elements. We propose to use this standard way to communicate the
cohesion and coherence levels to the coordinator registration service similar to
the following context:

The implementation of software capabilities in web services platforms depends
on the used information system. We suggest a solution based on middlewares
between the Web Service Execution Engine and the DataBase System. It is
important to note that isolation management is limited to the same endpoint.
Usually, different endpoints do not use the same database and are not located
on a same Web Services Execution Engine compliant with WS-IsolationSpheres.

5.2 Nested Spheres and Registration/Exit Services

Contrary to WS-Transaction, the registration service for a WS-IsolationSphere is
able to decide to redirect a registration to another WS-IsolationSphere. Once an
isolation sphere coordinator is initiated by an initiator that determines the coor-
dinator cohesion and coherence levels during the first registration, participants

600 A. Guabtni, F. Charoy, and C. Godart

can register and select both cohesion and coherence levels. Differences between
the choice of these levels and those of the coordinator can occur. Also differences
from one participant to another can occur. This is a natural phenomenon due
to the difference of participant requirements. We propose a procedure executed
for each registration to an Isolation Sphere coordinator as follows:

Using the isolation sphere registration procedure, nested spheres are possible.
The implementation of such registration procedure enhance the flexibility of
isolation management: participants are not obliged to use only coordinator levels
but they can propose different levels that coexist with the coordinator’s ones.

Isolation spheres can then imbricate and isolation behaviour is enriched. A
Sphere can contain other sub spheres that have different isolation needs. A sub
sphere defines its own levels for cohesion and coherence but can also benefit from
the impact of isolation levels of the upper sphere. Such registration procedure
induces an Exit procedure that redirect also to other sub spheres as follows:

6 Conclusion

In this work, we proposed to introduce isolation sphere approach, and more
generally behavioural sphere approach in WS-Coordination framework. We in-
tegrated WS-Sphere encapsulating WS-AtomicitySphere (including the existing

Concurrency Management in Transactional Web Services Coordination 601

WS-Transaction), WS-IsolationSphere and other proposals such as WS-
ComensationSphere and WS-MultipleInstantiationSphere. We focused on WS-
IsolationSphere to introduce flexible isolation management in Web Services
coordination using the duality cohesion/coherence levels. We provided registra-
tion procedure allowing nested spheres and redirected registration to respond to
web services requirements.

More research need to be performed in the following areas. Firstly, we intend
to consider compatibility of Behaviour Spheres of different nature and especially
atomicity and isolation ones. Additionally we plan to investigate how such het-
erogeneous Behaviour Spheres can imbricate or even intersect. Finally we intend
to implement a full-operational Web Service Execution Engine allowing such
WS-Spheres and we aim to implement lower level capabilities to ensure cohesion
and coherence levels respect.

References

1. Wijnand Derks, Juliane Dehnert, Paul Grefen, and Willem Jonker. Customized
atomicity specification for transactional workflow. In Proceedings of the Third
International Symposium on Cooperative Database Systems for Advanced Applica-
tions (CODAS’01), pages 140–147. IEEE Computer Society, 2001.

2. Adnene Guabtni and François Charoy. Multiple instantiation in a dynamic work-
flow environment. In Anne Persson and Janis Stirna, editors, Advanced Information
Systems Engineering, 16th International Conference, CAiSE 2004, Riga, Lavtia,
volume 3084 of Lectures Notes in Computer Science, pages 175–188. Springer, Jun
2004.

3. Adnene Guabtni, François Charoy, and Claude Godart. Spheres of isolation: adap-
tation of isolation levels to transactional workflow. In Wil M.P. van der Aalst et al.,
editor, Business Process Management, 3rd International Conference, BPM 2005,
Nancy, France, volume 3649 of Lectures Notes in Computer Science, pages 458–463.
Springer, September 2005.

4. IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA, ftp://www6.software.ibm.
com/software/developer/library/WS-Coordination.pdf. Web Services Coordina-
tion, August 2005.

5. IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA, http://www-128.ibm.com/
developerworks/library/specification/ws-tx/. Web Services Transaction, Aug 16
2005.

6. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, http://www-128.ibm.
com/developerworks/library/specification/ws-bpel/. Business Process Execution
Language for Web Services, version 1.1 edition, Feb 01 2005.

7. Charles T. Davies Jr. Data processing spheres of control. IBM Systems Journal
17(2): 179-198, 1978.

8. Frank Leymann. Supporting business transactions via partial backward recovery
in workflow management systems. In BTW, pages 51–70, 1995.

9. Frank Leymann and Dieter Roller. Production Workflow, chapter Chapter 7 :
Workflows and Transactions. Ed. Prentice Hall, Inc., Upper Saddle River, New
Jersey, second edition edition, 2000.

10. Willem-Jan van den Heuvel and Sergei Artyshchev. Developing a three-dimensional
transaction model for supporting atomicity spheres. International Workshop on
Web Services Research, Standardization, and Deployment, 2002.

Acquisition of Process Descriptions
from Surgical Interventions

Thomas Neumuth1, Gero Strauß1,2, Jürgen Meixensberger1,3,
Heinz U. Lemke1,4, and Oliver Burgert1

1 Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig
Philipp-Rosenthal-Str. 55, 04103 Leipzig

firstname.lastname@medizin.uni-leipzig.de
2 Department of ENT-surgery, University Hospital Leipzig
3 Department of Neurosurgery, University Hospital Leipzig

4 Department of Radiology, University of Southern California

Abstract. The recording and analysis of process descriptions from run-
ning surgical interventions is a very new and promising field named Surgi-
cal Workflows. Surgical Workflows fulfill two major objectives: they form
the base of scientific evaluation and rapid prototyping of surgical assist
systems, and they pave the road for the entering of workflow manage-
ment systems into the operating room for intraoperative support of the
surgeon. In this paper we describe how process descriptions from surgical
interventions can be obtained for Surgical Process Modelling (SPM) as
a specific domain of Business Process Modelling (BPM). After the intro-
duction into the field of Surgical Workflows and the motivation of the
research efforts, we deal with theoretical considerations about surgical
interventions and the identification of classifications. Based on that, we
propose the extendable structure for computational data acquisition sup-
port and conclude with use cases. The presented approach was applied
to more than 200 surgical interventions of 10 different intervention types
from otorhinolaryngology, neurosurgery, heart surgery, eye surgery, and
interventional radiology, and it represents an ongoing project.

1 Introduction

The development of surgical assist systems (SAS) is often driven by emerging
technologies and not by the needs of the end user - the surgeons. The systems
do not adopt to the surgical routine and therefore are often not accepted by
the surgeons. This motivates the methodical and scientific analysis of surgical
interventions [1,2] for the development of SAS which solve clinical problems in a
feasible way. The analysis is based on Surgical Workflows. In medical engineering
the term Surgical Workflows refers to the general methodological concept of the
acquisition of process descriptions from surgical interventions, the clinical and
technical analysis of them, and the automated processing into workflow schemes
that are able to drive a workflow management system as a meta process control
for the operating room of the future. To be able to use Surgical Workflows

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 602–611, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Acquisition of Process Descriptions from Surgical Interventions 603

for analysis purposes or the derivation of research needs for SAS systems, one
needs a technical description of the surgical intervention [3,4,5]. Today, a surgical
intervention is treated more as an art rather than a well-defined activity which
can be entered into a formal model, the Surgical Process Model. Therefore, there
is a need for describing the intraoperative surgical reality. To obtain reliable data
for carrying out research on process descriptions of surgical interventions, it is
important to find a way to describe the surgical steps and their contents to set
up a proper data acquisition process. The first step is the conceptual separation
of entities participating in the intervention.

The particular features of abstraction, significance, and presentation, which
characterize general model theory [6], can be applied to the field of Surgical
Workflows. The Surgical Process Model is an abstraction of a surgical inter-
vention. Only such characteristics of the original that are of interest for the
model-user, e.g. the surgeon or the medical engineer, are recorded. The signifi-
cance demands a limitation of the data manifold that can be acquired. It is, on
the one hand, oriented towards surgical questions, e.g. “Is there a qualitative im-
provement or advancement in the patient outcome when a specific surgical tool
is used?” On the other hand it has to be useful to build the base for technical
developments. A technical question could be: “Which information is consumed
or produced in which surgical work steps?”

Only a few approaches deal with the description of surgical interventions.
These approaches have some limitations we want to adjust with our work. As
requirements we set: vertically hierarchical decomposition and horizontal classi-
fication of entities (cf. Sect. 2), both on a sufficient level of detail; a formal or
semiformal structure with an ontology or recording scheme; the application in
multiple surgical disciplines and computational support for data acquisition and
further processing. MacKenzie et al. [7] present a hierarchical decomposition,
but no horizontal classification and further no (semi-)formal representation of
their recording structure. In [8] these requirements are fulfilled, but the hori-
zontal classification is done only implicitly and the application towards multiple
surgical disciplines has not been shown. Furthermore, this work is focused on
interventions with multimodal image-guidance restricting the application field.
Münchenberg’s approach [9], due to its focus on robot assistance, was only shown
on a real specific application case. The EN 1828 [10] aims at decomposing the
terminological phrases of surgical statements according to a reference concept
system. It is a top-down approach and applicable to multiple surgical disciplines,
but it does not deal with data acquisition. A medical approach in [11] was set
up without computational support or any formalization, but it shows a proper
use case. Contributions from the BPM domain such as BPMI [12] or the work
of the WfMC [13] generally do not reach by their intention a sufficient level of
detail for carrying out research on Surgical Workflows.

In Sect. 2 we deal with considerations about vertically hierarchical and explic-
itly horizontal classifications, and we propose a recording structure. In Sect. 3 we
show the applicability towards intervention types of several surgical disciplines
and adequate software support for data acquisition.

604 T. Neumuth et al.

2 Methods

2.1 Structuring Surgical Interventions

During the recording of the surgical intervention course, the key issue is coping
with information overload. A simple question such as: “Who does what and
when?” can result in a massive amount of data. The first step for structuring is
a classification along structural axes that have to be identified. For structuring
surgeries, two general axes can be formulated: a horizontal axis with different
kinds of entities that can be recorded and a vertical axis with different levels of
granularity.

These granularity levels determine in which detail the process is recorded
and later analyzed. To illustrate this we take an intervention whose surgical core
activity is a cutting of tissue and assume that this cutting raises hemorrhage. The
protruding blood has to be suctioned off simultaneously to the cutting process.
This single work step can be examined on the vertical axis under various levels
of granularity (see Fig. 1):

(i) a cumulative step “cutting” can be defined as the smallest possible partial
work step for the surgeon, which comprises the partial work steps of cutting
and suctioning,

(ii) partial work steps can be defined for “cutting” and “suctioning”, which can
occur independently from one another,

(iii) partial work steps can be defined which subdivide the suctioning process
into actions such as “surgeon uses aspirator for suctioning” or “surgeon
discontinues suctioning”, e.g for some time to gain a better prospect of the
surgical field, but resumes suctioning after a very short period of time.

The higher the vertical resolution, the more information can be obtained, e.g.
about the used body parts of the surgeon. The granulation level in concordance
with (ii) allows for a definition of body parts such as “left hand of the surgeon”
and“right hand of the surgeon”. If a process description requires additionally the
activities of the scrub nurse and an assistant on the same level of granularity,
level (ii) will result in six concurrent and simultaneous strands along the time
line, which furthermore can have various causal relations.

Horizontal classifications aim at the separation of entities regarding their ca-
pacities. For the classification of abstract entities that can be framed, we applied
the factual perspectives function, behaviour, organization, information, and op-
eration [14] on Surgical Workflows [15]. One of the major advantages of this
classification is its orthogonality: the several classes represent different com-
plementary perspectives. The organization perspective shows which participant
(e.g. surgeon, assistant, etc.) performs a work step as an organizational unit. In
Fig. 1 (i) is executed by the surgeon, whereas he is seen as an abstract atomic
entity, and (ii) + (iii) additionally refer to the used hands. The function per-
spective describes function-oriented work units that are executed. As functional
units in intervention descriptions, the activities in conjunction with the treated
structure can be recognized. The information perspective deals with consumed or

Acquisition of Process Descriptions from Surgical Interventions 605

produced data. For the acquisition of surgeries information like the completion of
precedent work steps, computational data (images, signals), technical parameter,
but also interparticipant communication are relevant. The operation perspective
reflects the surgical instruments and tools that are used to execute a work unit.
The behavior perspective focuses on the control flow elements. In a rough classi-
fication, we simply divide it into temporal, logical and causal behavior. Temporal
behaviour means that work units are oriented along a timeline and therefore to
each other. Logical behavior focuses on behavioral units such as AND-constructs,
parallel executions of work steps as well as synchronisations and loops. Causal
behavior states causal dependencies of work units on other work units.

Fig. 1. Examples of Granularity Levels

2.2 A Data Structure for Surgical Process Descriptions

We defined a data structure capable of containing relevant data about surgical
interventions - the recording scheme. It is presented in Fig. 2 as a simplified UML
class diagram. The central object is Rec_workflow. It reflects the record of a
Surgical Workflow of one surgical case. Generally, it consists of three categories
of data: header data, body data, and relational data.

Header data are intended to provide a facility to consider contextual informa-
tion of the recorded surgical intervention, the main classes are:

– Patient related information containing data such as the patients age or sex,
– the surgical Discipline with the child elements Diagnosis and Therapy,
– Participant with the elements Position (e.g. surgeon) and Actor (e.g.

right hand),
– Rec_Date, the date of recording,
– Rec_Location, the place of recording for indicating institutions or special-

ized operating rooms,
– Rec_by for the recording person.

The purpose of the header data is to express on a general level where and when
the intervention takes places, to whom it happens, and who is acting. The header
can be extended easily for including information of the similar category, such
as patient related radiological images used during the intervention or surgical
experience with the intervention type.

606 T. Neumuth et al.

The body data are subdivided into Activity, Event, and State. Activity is
intended to represent a surgical work step. Each Activity consists of:

– Starttime and Stoptime,
– one or more Actuator that have the same position as stated in the Partic-

ipant element. The actuator additionally indicates various Usedbodyparts,
derived from Actor,

– ActivityData that specify the goal of the work step by sampling the surgical
deed as Action in form of a verb, UsedInstrument for supporting the deed,
and TreatedStructure as referential localization inside the patient’s body.

The sequential occurrence of activities symbolizes the acquired workflow for each
actuator and explains on a detailed level what is done, where, whereby, and when.
Case dependent extensions are informational units, such as the generation of an
image after X-Ray use as output of an activity, blood pressure check as input,
or detailed spatial data, e.g. for navigation use.

The concept of State is used to present differentiated subsystems. As an
example, the gaze direction of the surgeon is considered in the system states
of “surgeons eyes on monitor”, “surgeons eyes on situs” or “other direction” [7],
assuming that no other gaze directions are of interest. Similarly, computational
states can be included in the SPM. The temporal information related with State
is the time when a state transition occurs. Every subsystem is considered of being
in a default state at the beginning of the data acquisition and the points in time
for edges between the states are acquired.

Event is a related concept. They are predefined to exist at a point of time. The
difference to states is that Event is not restricted to a subsystem and can exist
unbounded. Events consider dedicated aspects of the surgery, such as communi-
cation between participants, announced cognitive decisions of the participants,
or the explicit capturing of computational events like error messages of mecha-
tronic support systems etc.

The use of the proposed concepts, namely activities, states and events raises
another question: the causal relations between them. Using only the concepts
mentioned above, a process description exists, but contents are only related
by temporal information. To acquire an appropriate process description, the
recorded components have to be linked causally. Relation consists of Input,
Output and type. Input and Output are references to instances of Activity,
Event, and State. Types can be defined by natural language expressions, such as
consists-of, caused, etc. Thereby expressions such as“message A - caused - activ-
ity B” or “activity C - belongs to - interventional phase D” can be sampled. This
concept offers the opportunity to preaggregate the Surgical Procedure Model
into surgical phases if the process is recorded on a detailed level of granularity
and contains a lot of activities. For the example, a subsystem “phases” consist-
ing of the states, e.g. preparational phase (default), surgical core activities, and
completion phase is set up. By using a relation such as belongs to, activities can
be allocated to these phases and therefore extend the already existing temporal
relation by causal aspects.

Acquisition of Process Descriptions from Surgical Interventions 607

Rec_Workflow

 workflowID

Activity

+id
+discipline

1

*

ActivityTime

Actuator

Actor Participant

Action

Event

+id
+label
+discipline
+type
+eventtime

EventData

State

+id

Value

+time

Relation

+id
+type

Input OutputActivityRef

+idref

EventRef

+idref

StateRef

+idref

Rec_By

Rec_Location

Rec_Date

Patient
Discipline

+discipline

DiagnosisTherapy

1

*

1

*

1

*

1

1..*

1 *1

*

1

*

1* 1

*

1

*

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1..*

1

*

1

*

Position

11..*

1

1..*

1

1

Name

Position

UsedBodypart

Starttime Stoptime

1

1

1

1

11 1

1

1

1

1

1

11

UsedInstrument TreatedStructure

ActivityData

*

Fig. 2. Simplified Recording Scheme for Surgical Procedure Models as UML class
diagram

3 Results

The approach presented an opportunity for computer supported acquisition of
process instances from surgical interventions. The recording is done with com-
putational support by trained medical students. An editor is used to facilitate
the recording of the surgical work steps ergonomically and to deal with the chal-
lenges mentioned so far. The purpose of the editor is to support the person
recording the data in dealing with the complex relationships and concurrencies.
The values of UsedInstrument, Action, and TreatedStructure are loaded from
register files according to Therapy selected in the header data. This provides sev-
eral advantages:

– the contents are provided according to the intervention type, e.g. for an in-
tervention on the vocal chords only the relevant anatomic structures on the
procedure path to and around the vocal chords have to be considered. Fur-
thermore, surgeons from different disciplines sometimes use different names
for the same surgical instruments;

– by using predefined selectable contents, the recording persons are obliged to
use appropriate terminology, which builds the base for a detailed compara-
bility;

– the contents can be provided by remote server applications if a spatial sep-
aration of the editor and the register files is sensible, e.g. for multicenter
studies where all centers have to use the same glossary database.

The contents of the register files containing a list of instruments or actions are
provided for the editor from a glossary database. A general glossary for Surgical

608 T. Neumuth et al.

Workflow recording should come from specifications like Functional Model of
Anatomy5 or GALEN6.

The output protocol contains the recorded aspects of the surgical intervention
and serves as a starting point for further processing. As output format, XML was
chosen for flexibility. A direct storage of the protocol into a database was not
implemented, because of the irreconcilability of backing up alterable recording
schema caused by the work in progress and the relatively static character of
database models.

In Fig. 3 an example result of post-processing of the resulting XML is shown.
The image presents the graphical progress of a microlaryngoscopy, an interven-
tion type from otorhinolaryngology, with detected sequential and parallel activi-
ties and one revealed loop. The graphical presentation was generated in Scalable
Vector Graphics by applying some simple algorithms on the protocol. The shapes
represent the activities of the surgeon and the scrub nurse; the alignment inside
the surgeons’ column is oriented along the used hand for execution.

Up until May 2006, the entities of the presented approach was used to record
and analyze more than 200 surgical interventions from otorhinolaryngology
(functional endoscopic sinus surgery, microlaryngoscopy, panendoscopy), neu-
rosurgery (craniotomy, discectomy, hypophysisadenoma), heart surgery (mitral
valve reconstruction), eye surgery (cataract interventions), and interventional
radiology (nerve blocks, facet blocks). The records were taken at the Univer-
sity Hospital Leipzig, the Heart Center Leipzig and the Georgetown University
Medical Center, Washington D.C.

4 Conclusion

The acquisition and analysis of process descriptions from running surgical in-
terventions is a very new and promising field in medical engineering. The first
results we have achieved show that the protocols can be used for the detailed
description of surgical interventions for Surgical Process Modelling.

We identified horizontal and vertical classifications regarding orthogonal per-
spectives and different levels of granularity that have been considered during the
data acquisition. The awareness of these granularity levels raises a number of
considerations: there is an increasing complexity and amount of data along with
a finer granulation, a problem of a clear definition of activities, and it is more
difficult to analyze and post-process if an increasing amount of information needs
to be considered. Regarding the recording scheme, our approach allows records
on several levels of granularity and provides an opportunity to analyze surgical
interventions in detail.

Our approach could be improved by some methodical changes: It would be
useful to formalize the recorded entities with a domain specific extension of a
foundational top-level ontology like the GFO framework [17], such as presented
5 http://sig.biostr.washington.edu/projects/fm/
6 Generalized Architecture for Languages, Encyclopedia and Nomenclatures in medi-

cine; http://www.opengalen.org/index.html

Acquisition of Process Descriptions from Surgical Interventions 609

position
teeth protection

upper jaw

surgeon

position
laryngoscope

larynx

suction
aspirator

glottis

position
laryngoscope

larynx

fasten
laryngoscope

position
microscope

hold
forceps

edema on plicae vocales
cut

sickle knife
edema on plicae vocales

suction
aspirator

plicae vocales

remove
microscope

fasten
fiber cable

remove
laryngoscope

remove
teeth protection

take photo
AIDA

edema on plicae vocales

take photo
AIDA

plicae vocales

nurse
left hand right hand

1x

Fig. 3. Graphical Representation of a Microlaryngoscopy Case

in [18] to leave the formal model open for later enhancements or to map this for-
malization into technical process descriptions such as Petri nets, Event Driven
Process Chains, or other established descriptions in Business Process Modelling.
Furthermore, the manual capacity of human recorders has its limitations. This
can be advanced in three methodical directions: At first, the records should be
objectified by video support. Secondly, it would be useful to have tracking sup-
port for data acquisition because the manual recording is not feasible in the
long term. As an optimal solution, a complete and automated tracking would
be useful, but it is not reliable due to the present state of the general technical
progress. Additionally, there is also an economic question. Finally, an online con-
nection to ontological knowledge-modelling applications such as Protégé7 should
be established. This could decrease the recording stress or prevent erroneous
recording, e.g. by suggesting surgical instruments depending on a chosen action

7 http://protege.stanford.edu

610 T. Neumuth et al.

or nearby anatomic structures depending on a spatial position. In the future, the
latter enhancement can be further facilitated by reasoning support. Reversely,
the recording results can contribute to the construction of self-extending domain
specific surgical knowledge-frameworks.

As application domains that can profit by these approaches, MacKenzie et al.
[7] named the evaluation of operating room layouts; improvements of physical,
animal, augmented or virtual surgical training and simulation systems; the evalu-
ation of surgical performance with skills levels and learning curves or customized
preoperative procedure planning. Jannin et al. [8] mentioned the generation of
detailed structured interventional reports; the surgical planning support; a pre-
diction based on the query of similar cases; interdisciplinary analyses of surgical
procedures and the contribution of a large world wide intervention database for
quality improvement.

Moreover, many methods from the Business Process Domain such as Business
Process Analysis and Optimization as well as quality management methods or
risk management can be applied. In the long term, the automated derivation
of workflow schemes from the models and their use for workflow management
systems or process control systems for surgical support, the driving of virtual
surgical training systems by what-if-scenarios or surgical education systems are
enabled by these basic works.

The data acquisition methodology and tools presented in this paper form a
sound basis for further work in the research field of Surgical Workflows. Based
on that, the Surgical Process Models and Surgical Workflow software systems
can yield to various new Surgical Assist Systems.

Acknowledgements

The Innovation Center Computer Assisted Surgery (ICCAS) at the Faculty of
Medicine at the University of Leipzig is funded by the German Federal Ministry
for Education and Research (BMBF) and the Saxon Ministry of Science and the
Fine Arts (SMWK) in the scope of the initiative Unternehmen Region with the
grant numbers 03 ZIK 031 and 03 ZIK 032.

References

1. Lemke, H.U.: Surgical Workflow and Surgical Picture Archiving and Communica-
tion Systems. Lecture at the UCLA Seminars on Imaging and Informatics, Arrow-
head (2004)

2. Cleary, K., Kinsella, A., Mun, S.K.: OR2020 workshop report: operating room
of the future. in Lemke, H.U., Inamura, K., Doi, K., Vannier, M.W., Farman,
A.G.(eds.): Proceedings of the 19th CARS 2005, Elsevier ICS Vol. 1281, Elsevier,
Amsterdam (2005) 832-838

3. Burgert, O., Neumuth, T., Fischer, M., Falk, V., Strauß, G., Trantakis, C., Jacobs,
S., Dietz, A., Meixensberger, J., Mohr, F.W., Korb, W., Lemke, H.U.: Surgical
Workflow Modeling. MMVR 2006

Acquisition of Process Descriptions from Surgical Interventions 611

4. Burgert, O., Neumuth, T., Strauß, G., Trantakis, C., Falk, V., Lemke, H.U.:
Workflow-analysis of Surgical Interventions in ENT and Neurosurgery. in Weber,
S., Langlotz, F., Bier, J., Lueth, T.C. (eds.): CAS-H - 3rd International Symposium
Proceedings, VDI Verlag, Düsseldorf (2005) 85 - 86

5. Neumuth, T., Durstewitz, N., Fischer, M., Strauß, G., Dietz, A., Meixensberger, J.,
Jannin, P., Cleary, K., Lemke, H.U., Burgert, O.: Structured Recording of Intra-
operative Surgical Workflows, in Horii, S.C., Ratib, O.M. (eds.): Medical Imaging
2006 − PACS and Imaging Informatics, Progress in Biomedical Optics and Imaging
Vol. 7(31), SPIE, Bellingham, WA (2006) CID 61450A

6. Stachowiak, H.: Allgemeine Modelltheorie, Springer, Wien (1973)
7. MacKenzie, C.L., Ibbotson, J.A., Cao, C.G.L., Lomax, A.J.: Hierarchical decom-

position of laparoscopic surgery: a human factors approach to investigating the
operating room environment. Min Invas Ther Allied Techn, 10(3), (2001) 121-127

8. Jannin, P., Raimbault, M., Morandi, X., Riffaud L., Gibaud, B.: Models of Surgical
Procedures for Multimodal Image-Guided Neurosurgery. J Comp Aid Surg, 8(2),
(2003) 98-106

9. Münchenberg, J.E.: Rechnergestützte Operationsplanung in der Mund-Kiefer-
Gesichts-Chirurgie. PhD Thesis, University of Karlsruhe (2001)

10. CEN: Health Informatics - Categorial structure for classifications and coding sys-
tems of surgical procedures. EN 1828:2002, CEN/TC 251 (2002)

11. Fischer, M., Strauß, G., Burgert, O., Dietz, A., Trantakis, C., Meixensberger, J.,
Lemke, H.U.: ENT-surgical workflow as an instrument to assess the efficiency of
technological developments in medicine. in Lemke, H.U., Inamura, K., Doi, K.,
Vannier, M.W., Farman, A.G.(eds.): Proceedings of the 19th CARS 2005, Elsevier
ICS Vol. 1281, Elsevier, Amsterdam (2005) 851-855

12. Object Management Group: Business Process Modelling Notation Specification −
final adopted specification. dtc/06-02-01, OMG/BPMI, Needham, MA (2006)

13. Workflow Management Coalition: Workflow Process Definition Interchange - XML
Process definition Language. Document Number WfMC-TC-1025, version 1.0,
WfMC, Lighthouse Point, FL (2002)

14. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture
and Implementation. Thomson Learning, Thomson (1996)

15. Neumuth, T., Schumann, S., Strauß, G., Jannin, P., Meixensberger, J., Dietz, A.,
Lemke, H.U., Burgert, O.: Visualization Options for Surgical Workflows. accepted
for Computer Assisted Radiology and Surgery (2006)

16. Neumuth, T., Pretschner, A., Trantakis, C., Fischer, M., Lemke, H.U., Burgert,
O.: An Approach to XML-based Description of Intraoperative Surgical Workflows.
Eckstein, R., Tolksdorf, R.: Tagungsband Berliner XML-Tage 2005, Humboldt Uni-
versity Berlin, Berlin, (2005) 147-152

17. Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., Michalek, H.: Gen-
eral Formal Ontology (GFO) − a foundational ontology integrating objects and
processes. Onto-Med Report Nr. 8, Research Group Ontologies in Medicine (Onto-
Med), University of Leipzig, Leipzig (2006)

18. Burgert, O., Neumuth, T., Lempp, F., Mudunuri, R., Meixensberger, J., StrauSS,
G., Dietz, A., Jannin, P., Lemke, H.U.: Linking Top-level Ontologies and Surgical
Workflows. accepted for Computer Assisted Radiology and Surgery (2006)

Adaptive Policies in Information Lifecycle
Management

Rohit M. Lotlikar1 and Mukesh Mohania2

1 IBM India Research Lab-Bangalore,
IBM, EGL-D Block, Domlur Inner Ring Rd, Bangalore, 560071, India

rohitmlo@in.ibm.com
2 IBM India Research Lab-Delhi,

Block 1, IIT, Hauz Khas, New Delhi, 110016, India
mkmukesh@in.ibm.com

Abstract. Adaptive policies contain parameters and take into consider-
ation performance feedback to modify values of these parameters adap-
tively. We propose a method (applicable to the domain of Information
Lifecycle Management) to automatically adapt these parameters. Design
issues such as selection of sensors, desired ranges for sensors and effects
of parameter sensitivity such as over-correction and under-correction are
discussed.

1 Introduction

Policies are commonly used in systems to automate system behavior while re-
ducing (preferably eliminating) the amount of human involvement/intervention
needed. Policies are meant to be modifiable, so that the policy can be changed to
suit changed requirements or operating conditions. A Policy has been described
as [1] “a set of considerations designed to guide decisions of courses of action.”

In Information Lifecycle Management, policies are used to automate various
tasks such as backup, archival, restore, deletion and migration of data [2]. The
typical considerations in formulating these policies include business requirements
and regulations, IT infrastructure, and expected operating conditions. However,
if subsequently, operating conditions diverge beyond what the policies were in-
tended to handle, the system may not exhibit the desired behavior, and per-
formance indicators may degrade, which is clearly undesirable. Unchecked, this
may lead to violations of service level objectives (SLO’s). In such a situation,
the administrator needs to identify the policies which need modification and
determine the proper modification for each of these policies.

Typically, the modification involves simply adjustments to policy parameter
values rather than a change to the nature of the task performed by the policy,
and we refer to such a modification as “tuning”. If this tuning is performed
automatically in response to state feedback, the policy is termed as adaptive.
Adaptive policies have been used for, as an example, in load balancing [3] and
well as for caching web pages [4]. Adapting policy parameters typically requires
knowledge of the behaviour of the system and the solution techniques required
are necessarily domain dependent. The contribution of our paper is a new algo-
rithm for adapation of policy parameters applicable to the domain of Information

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 612–621, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptive Policies in Information Lifecycle Management 613

Lifecycle Management and a study of the issues involved. This adaptation algo-
rithm borrows ideas from control theory.

The organization of this paper proceeds as follows. In section 2, we describe
related work in this area. In section 3, we describe the role that adaptive policies
can play in Information Lifecycle Management and illustrate how the need for
policy tuning arises. In section 4, we describe our model for automatically tuning
the parameters of these adaptive policies. We perform experiments based on the
scenario presented in section 3 to assess our model, these experiments and the
results are described in section 5. Section 6 concludes with a discussion of the
pros and cons of the proposed approach.

2 Preliminaries

2.1 Policy Structure

We use the standard ECA model in which policies consist of three components
- an Event, a Condition and an Action, as explained below.

– Event Policies are invoked/evaluated either by an external event (such as
network initialization, violations of thresholds) or by time based events (e.g.
“every Sunday at 1:00 am”).

– Condition This specifies the “if clause” under which the decision component
of an invoked policy will be executed out.

– Action This specifies the “then clause”, for example, “archive orders placed
more than 365 days ago”.

The condition of the policy is defined on certain state variables which typically
are indicators of the state or health of the managed system. When the policy is
invoked, the condition is evaluated, and if this condition is true, the Action part
of the policy is executed. The ECA model applies to both static and adaptive
policies.

2.2 Adaptive Policies

For a policy to be considered adaptive, the policy must contain one or more
parameters which are automatically tuned. These parameters could be part of
the event, part of the condition or part of the action. Static policies may also
contain parameters, however the parameters are not automatically updated. An
example of a static policy without parameters is “If temperate exceeds 85 F turn
air-conditioner ON”. An example of a policy with parameters is “if temperate in
the room exceeds 85 F turn air-conditioner to setting X” where X is a parameter
and may be OFF, LOW, MEDIUM or HIGH. If the room temperate is used to
determine the value of X, then the policy is adaptive.

2.3 Illustrative Scenario for Policy Adaptation

We consider a database of a department store. The store consist of three de-
partments - clothing, hardware and sports. There are 3 corresponding orders

614 R.M. Lotlikar and M. Mohania

tables - clothing table, hardware table and the sports table which store informa-
tion about the orders placed with each department. Each order is in the form
of a record containing orderDate and other fields. Once an order is placed, its
record will remain in the table until it is archived or deleted by a policy.

We consider the following 5 policies (the first 4 of which involve archival or
deletion of data) on the managed resource. The purpose of these policies is to
prevent the size of the database and individual tables from growing too large,
as this causes degradation in database performance.

Of the 5 policies, Pclothing and Phardware are adaptive, the other 3 are static.
Pclothing contains an adaptive parameter nc and Phardware contains an adaptive
parameter nh. nc is part of the Action while nh is part of the Event. nh affects
the frequency of evaluation of Phardware, for example if nh = 2, then Phardware

will be evaluated every alternate week.

– Overall policy Poverall : Every other Sunday at 3 am, delete records cor-
responding to orders older than 28 days from clothing, hardware and sports
tables.

– Policy for clothing department Pclothing : Every other Monday at 3 am,
if the size of the clothing orders table exceeds 2000 records, archive records
corresponding to orders older than nc days from it.

– Policy for hardware department Phardware : Every nth
h Thursday at 3

am, if the size of the hardware orders table exceeds 2000 records, archive
records corresponding to orders older than 14 days from it.

– Policy for sports department Psports : Every other Wednesday at 3 am,
if the size of the sports orders table exceeds 2000 records, archive records
corresponding to orders older than 14 days from it.

– DBA Alert policy Palert : Every Wed at 1 pm, if the size of the database
exceeds 10000 records, send an alert message to the DBA.

From performance considerations, the administrator determines that perfor-
mance begins to progressively degrade for table sizes in excess of table sizes in
excess of 2500. Accesses are infrequent after the first 7 days of order placement,
rare after 14 days and practically nil after 21 days. The appropriate value for nc

would have to lie in the range of 7 to 21,
When archival takes place, there is a large drop in the sizes of tables on which

archival is performed. The table size is at a local maximum just before archival
begins. Large variations in table sizes are clearly undesirable because there would
be a corresponding variation in database performance as well. Hence, increasing
the frequency of evaluation of Phardware decreases the variation in the size of
the hardware table.

To understand how the proposed model is useful, we study a few scenarios
(or alternatively, use cases) and compare the kind of feedback we would like to
get (i.e ground truth) with the feedback provided by the model.

3 Model for Adaptation of Policy Parameters

In this sectionwe describe our proposedmodel for adaptation of policyparameters.

Adaptive Policies in Information Lifecycle Management 615

3.1 Learning Policy Parameters

Our technique borrows concepts from Control theory [5], which has been has
been found to be applicable for management of performance of IT systems [6].

Given a policy parameter to be tuned, the first step is to identify the facet
of system behavior that is influenced by this parameter and associate it with a
measurable quantity which we call a sensor. For example, the parameter nc of
Pclothing controls the size of the clothing table at the completion of the execution
of its action. In our model, each sensor is associated with a “desired range” of
values. The administrator specifies two values - the upper-bound and lower bound
to define the desired range. The objective is to vary (adapt) policy parameters
so as to maintain the sensor values between their respective lower-bound and
upper-bound.

Assumptions Made. The following are the assumptions made in our model.

– Each parameter is numeric (integral or decimal) and is allowed to take on
one of 3 values - denoted as LOW, MEDIUM and HIGH (the parameter set).

– Other factors remaining constant, the influence of a parameter on the corre-
sponding sensor is assumed to be monotonic, i.e. the increasing the parameter
value will either always increase the sensor value or will always decrease it.
This influence is represented by a sensor-parameter matrix as depicted in
Figure 4. The impact column describes whether incrementing the policy pa-
rameter has either the effect of increasing (excitatory influence) or decreasing
the sensor values (inhibitory influence).

– Each parameter influences one and only one sensor.

Our model does not support the association of multiple parameters with a
sensor, nor does it support the association of a parameter with multiple sensors.
Multiple parameters are allowed within a policy, each of these must be associated
with a unique independent sensor.

Learning Rule. The deviation of the sensor value from the desired-range is
discretized into 3 categories as “within desired range”, “exceeds upper bound”
and ”below lower bound”. To translate this error signal into changes to para-
meter values, we make use of what we call adaptation rules. Each parameter
is associated with an adaptation rule. The adaptation rule is analogous to the
“controller module” in control theory.

The Adaptation rule for a parameter is framed based on the manner in which
the parameter affects the sensor. The adaptation rule is depicted in Figure 1.

sensor value action to take on parameter
above upper bound decrement if excitatory, increment if inhibitory
below lower bound increment if excitatory, decrement if inhibitory
within desired range no action

Fig. 1. The adaptation rule (for some one parameter)

616 R.M. Lotlikar and M. Mohania

The overall adaptation mechanism is graphically depicted in Figure 2.

Fig. 2. Graphical Depiction of the Model for Adaptation of Policy Parameters

3.2 Design Issues

Defining Appropriate Sensors. For each parameter, the associated sensor
should represent a quantity which is most directly and strongly influenced by
the parameter. If this is not the case, the ability of the adaptation algorithm to
maintain the sensor values within desired ranges will be undermined.

Parameter Sensitivity. Invocation of the adaptation rule and parameter up-
date may take place anytime, however the effect of the parameter update is
manifested only at the subsequent execution of the policy containing that para-
meter. This effect can be categorized as

– The sensor value is drawn into the desired range
– The sensor value is “over-corrects” i.e. the sensor value overshoots (transi-

tions across) the desired range to other side of the desired range.
– The sensor value is “under-corrected” the sensor value does not transition

into or across the desired range.

“Over-correction” is more likely when the sensor value is relatively sensitive to
the parameter or if the desired range is relatively narrow. In this case, stability
of the system is compromised, because parameter and sensor values can oscillate
due to repeated updates.

“Under-correction” happens because of the relative insensitivity of a sensor
value to a parameter update or because the sensor value is outside of the desired
range by a large margin.

Adaptive Policies in Information Lifecycle Management 617

If such over-correction or under-correction takes place, the policy administra-
tor needs to be alerted to take appropriate action, which may include adjusting
the upper and lower bounds or the values corresponding to LOW, MEDIUM and
HIGH of the parameter. We do not consider automatic adjustment of parameter
values to handle such over-correction or under-correction because this would re-
quire making restrictive assumptions on the behavior of the system limiting its
practical utility.

In our model, an oscillation is identified by a “round-tripping” of a parame-
ter values in which the parameter value is not maintained constant for more
than two evaluations. For example, if the sequence of parameter values at con-
secutive policy evaluations are MEDIUM-LOW-MEDIUM, or MEDIUM-LOW-
LOW-MEDIUM, both these are treated as oscillations. However the sequence
MEDIUM-LOW-LOW-LOW-MEDIUM is not considered as an oscillation since
the parameter value remains constant at LOW for more than 2 firings.

4 Experimental Testbed and Validation

In this section we present an experimental setup to test the proposed models.
We work with the example policies stated in section 2.

4.1 Experimental Setup

Orders are placed 24 × 7, at an average rate rw that varies with the hour of
the day and with the day of the week. We capture the placement of orders by
inserts which occur randomly at an average rate rw which varies with the time
of the day and day of the week. For the experiment, we assume that 1 second of
simulation time corresponds to 1 hour of simulated time; thus 200 days of data
is being captured in 80 minutes of simulation.

The workload as well as policies are started at time t = 0. Initially the data-
base is assumed to be empty (containing no data). Consequently, in the initial
stages, none of the archival policies fire. After a few minutes (of simulation time),
the size of the database and individual tables cross threshold sizes for which re-
spective policy conditions evaluate to TRUE.

We test our model under a workload profile for which at intermediate time
points the rate of order placement is modified to simulate changing operating

Sensor Definition lower bound upper bound
sc Clothing table size 1500 2500

at end of execution
of Pclothing

sh Hardware table size 2000 3000
at evaluation
of Phardware

Fig. 3. Sensor Design for the experimental setup

618 R.M. Lotlikar and M. Mohania

Policy policy sensor impact parameter set
parameter impacted

Pclothing nc sc inhibitory LOW = 7,
MEDIUM = 14
HIGH = 21

Phardware nh sh inhibitory LOW = 1
MEDIUM = 2
HIGH = 4

Fig. 4. The sensor-parameter Table for the experimental setup

Scenario Parameter parameter observation
under set
consideration

1 nc 7, 14, 21 effect on sc

2 nc 4, 14, 21 over-correction of sc

3 nh 1, 2, 4 effect on sh

Fig. 5. The different scenarios

conditions. At the start of week 8 (56 days), the rate of orders is suddenly dou-
bled. At the start of week 16 (108 days) it is brought back down to its original
value.

To study the effect of the adaptive learning of policy parameters, we com-
pare the values of sensors sc and sh under different scenarios with and without
adaptation of policy parameters. The sensors defined are shown in Figure 3. The
parameter choices are shown in Figure 4. The scenarios we consider are depicted
in Figure 5.

4.2 Operational Scenarios

Scenario 1 tests how our model responds to wide swings in workload. Scenario
2 illustrates how over-correction and oscillation can set in due to poor choice
of the parameter value set. In Scenario’s 1 and 2, the parameter nc is adapted
while Scenario 3, the parameter nh is adapted. In all scenario’s the initial values
of nc or nh are NORMAL.

4.3 Simulation Results

– Scenario 1:
• Without adaptation : From Figure6 (left), it is seen that when the rate

of orders is doubled, the clothing table size at completion of policy exe-
cution (corresponds to the bottom of valleys of table size and is captured
by sensor sc) exceeds the upper-bound of 2500 and reaches around 3800.
• With adaptive policies : From Figure6 (right) At t = 72 days, the upper

bound on sc is exceeded causing nc of Pclothing to be updated from

Adaptive Policies in Information Lifecycle Management 619

NORMAL to LOW (based on the adaptation rule). This causes sc to
reduce to around 2000 (for subsequent policy firings), which is within
the desired range. At t = 108 days when the rate of incoming orders is
brought back to normal, sc crosses the lower bound of 1500. The value
of nc is then adapted from LOW to NORMAL, and subsequently from
t = 142, sc returns to the desired range.

Fig. 6. Impact of adaptation of Pclothing on clothing table size. Left: without adapta-
tion, Right: with adaptation.

– Scenario 2 :
• Figure 7 corresponds to Scenario 2. Doubling of the workload starting

t = 56 results in the upper bound being exceeded at t = 72, and the
adaptation rule updates nc from NORMAL to LOW. In this case LOW
= 4, and at the next execution of the clothing policy (at t = 86), all
orders older than 4 days are deleted from the clothing table, and the
value of the clothing table size recorded by sensor ss at the end of policy
execution is 1267 meaning that the sensor value has overshot the lower
bound of 1500. Since the sensor value is now below the lower bound, the
adaptation rule updates nc from LOW to NORMAL. This is treated as
an oscillation, and is caused by poor choices of values in the parame-
ter set. Another oscillation cycle of NORMAL-LOW-NORMAL follows.
These oscillations cease subsequently only because the workload returns
to its initial value. Due to oscillation, the fluctuation of Table size is
worse than without adaptation (compare with Figure 6 (left)).

– Scenario 3 :
• Figure 8 corresponds to Scenario 3. Without adaptation, Phardware al-

ways executes every alternate week. Doubling of the workload at t = 56
causes sh to exceed 3000, which is outside the desired range. With adap-
ation, the evaluation frequency of the policy is increased to weekly after
t = 68, and the peak value remains within the desired range. When the
workload falls off to its initial value at t = 108, the evaluation frequency
returns to every alternate week. The benefit of adapation is that the
variation (max minus min) in table size has reduced.

620 R.M. Lotlikar and M. Mohania

Fig. 7. Scenarios 2: Illustration of over-correction of clothing table size on account of
poor choice for parameter nc

Fig. 8. Scenario 3: Note the impact of adaptation of Phardware (its evaluation fre-
quency) on hardware table size. Left: without adaptation, Right: With adaptation.

5 Conclusions

The main contribution of this paper was in showing how adaptive policies can
be useful for Information Lifecycle Management and presenting a method for
performing the adaptation. Generally, the policy parameters which are made
adaptive would influence certain operational variables (sensors) whose values we
desire to control. In out framework, each parameter is associated with a sensor.
The adaptation algorithm adapts these parameters so that the actual sensor
values are maintained within the desired bounds.

The primary design criteria involved in using our method are selection of
sensors, the selection of the desired range for each sensor and the value set for
each parameter. Provided that these are properly chosen, we demonstrated that
our method is robust to wide swings in operating conditions.

There undesirable consequences of improper selection of these design criteria,
this includes over-correction and under-correction of sensor values. Both these
conditions are easily detected when they occur, and alarms raised so the damage
is limited. Automated correction of these situations is not practicable because it
requires a model of system behavior.

Adaptive Policies in Information Lifecycle Management 621

References

1. Masullo, M.J., Calo, S.B.: Policy management: An architecture and approach. In:
Proceedings of the IEEE First International Workshop on Systems Management,
New York, NY, USA, ACM Press (1993) 13–26

2. Ashton, L.L., Baker, E.A., Bariska, A.J., Dawson, E.M., Ferziger, R.L., Kissinger,
S.M., Menendez, T.A., Shyam, S., Strickland, J.P., Thompson, D.K., Wilcock, G.R.,
Wood, M.W.: Two decades of policy-based storage management for the ibm main-
frame computer. IBM Syst. J. 42(2) (2003) 302–321

3. Zhang, Y., Hakozaki, K., Kameda, H., Shimizu, K.: A performance comparison of
adaptive and static load balancing in heterogeneous distributed systems. In: 28th
Annual Simulation Symposium, IEEE Press (1995) 332

4. Podlipnig, S., Boszormenyi, L.: A survey of web cache replacement strategies. ACM
Comput. Surv. 35(4) (2003) 374–398

5. Ogata, K. In: Modern Control Engineering, Prentice Hall Professional Technical
Reference (2001)

6. Diao, Y., Hellerstein, J., Parekh, S.: Using fuzzy control to maximize profits in
service level management. IBM Syst. J. 41(3) (2002) 403–420

Implementation and Experimentation of the
Logic Language NP Datalog

S. Greco, C. Molinaro, and I. Trubitsyna

DEIS, Univ. della Calabria, 87030 Rende, Italy
{greco, cmolinaro, irina}@deis.unical.it

Abstract. This paper presents a system prototype implementing
NP Datalog, a Datalog-like language for expressing NP search and opti-
mization problems. NP Datalog extends DATALOG¬s (DATALOG with strat-
ified negation) with intuitive and efficient constructs, i.e. constraints and
a restricted form of (exclusive) disjunction used to define (nondeter-
ministically) subsets (or partitions) of relations. The system translates
NP Datalog queries into OPL programs, then solves them by using the
ILOG Solver [16]. Thus, it combines an easy formulation of problems,
expressed by means of a declarative logic language, and an efficient ex-
ecution of the ILOG Solver. Several experiments show the effectiveness
of this approach.

1 Introduction

It is well-known that NP search and optimization problems can be formulated as
DATALOG¬ (Datalog with unstratified negation) queries under nondeterministic
stable model semantics so that each stable model corresponds to a possible solu-
tion [11,14,19]. Although the use of (declarative) logic languages facilitates the
process of writing complex applications, the use of unstratified negation allows
programs to be written which in some case are neither intuitive nor efficiently
valuable. This paper presents the implementation and experimentation of the
logic language NP Datalog, a restricted version of DATALOG¬ which admits only
controlled forms of negation, such as stratified negation, exclusive disjunction
and constraints. NP Datalog has the same expressive power as DATALOG¬, en-
ables a simpler and intuitive formulation for search and optimization problems
and can be easily translated into other formalisms. The example below shows
how the Vertex Cover problem can be expressed in NP Datalog.

Example 1. Given an undirected graph G = 〈N, E〉, a subset of the vertexes
V ⊆ N is a vertex cover of G if every edge of G has at least one end in V . The
problem can be formulated in terms of the NP Datalog query 〈P1, v(X)〉 with
P1 defined as follows:

v(X) ⊆ node(X)
edge(X, Y) ⇒ v(X) ∨ v(Y)

where ⊆ denotes the subset relation and ⇒ is used to define constraint. The
first rule guesses a subset of node, while the latter constraint verifies the vertex

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 622–633, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Implementation and Experimentation of the Logic Language NP Datalog 623

cover condition. The optimization problem computing a cover with minimum
cardinality can be simply expressed by means of the query 〈P1, min|v(X)|〉. �

The evaluation of logic programs with stable model semantics can be carried out
by means of current ASP (Answer Set Programming) systems which compute
the semantics of DATALOG¬ programs [5,24]. An alternative solution consists in
reducing problems expressed by means of logic formalisms (usually extensions of
Datalog) into equivalent SAT problems and evaluating the target problems by
means of SAT solvers [20]. In this paper a different solution, based on the rewrit-
ing of logic programs into constraint programming, is proposed. More specifi-
cally, the paper presents a prototype of the system NP Datalog/ILOG, obtained
by first translating NP Datalog queries into OPL (Optimization Programming
Language) [26], a constraint language well-suited for solving both search and
optimization problems, and then executing the target OPL code by means of
the ILOG OPL Studio platform [16].

Example 2. The optimization query of Example 1 is translated into the OPL
code:

var bool v[node];
minimize sum (x in node) v[x]
subject to{

forall (〈x, y〉 in edge) { 1 ⇒ (v[x] + v[y] > 0); };
};

where the second statement expresses the optimization condition (minimizes the
cardinality of v), while the last one corresponds to the vertex cover condition. �

In order to verify the effectiveness of the system prototype, several experiments
were performed. The efficiency of NP Datalog/ILOG is compared with respect
to those of logic programming systems based on stable models, such as DLV,
smodels and ASSAT [5,24,2] and constraint logic programming systems, such as
SICStus Prolog and ECLiPSe [23,8].

The paper is organized as follows: Section 2 presents the NP Datalog
language; Section 3 describes the system prototype implementation; Section 4
illustrates the performance of the system; finally, in Section 5 conclusions are
drawn.

2 NP Datalog

Familiarity is assumed with disjunctive logic programs, disjunctive deductive
databases, (disjunctive) stable model semantics and computational complexity
[1,12,18]. In this section the language NP Datalog is presented1. This language
restricts the use of unstratified negation of DATALOG¬ without loss of its ex-
pressive power and can be executed more efficiently or easily translated into
1 Syntax, semantics, expressiveness and implementation of the language are presented

in [30] and [15] more formally.

624 S. Greco, C. Molinaro, and I. Trubitsyna

other formalisms. NP Datalog extends DATALOG¬s with two simple forms of
unstratified negation embedded into built-in constructs: exclusive disjunction,
used in partition rules, and constraint rules. A NP Datalog partition rule is a
disjunctive rule of the form p1(X) ⊕ · · · ⊕ pk(X) ← Body(X,Y) or of the form
p0(X, c1)⊕· · ·⊕p0(X, ck)← Body(X,Y), where (i) p0, p1, ..., pk are distinct IDB
predicates not defined elsewhere in the program, (ii) c1, ..., ck are distinct con-
stants, (iii) Body(X,Y) is a conjunction of literals not depending on predicates
defined by disjunctive rules, and (iv) X and Y are vectors of range restricted
variables. The intuitive meaning of these rules is that the projection of the body
relation on X is partitioned nondeterministically into k relations or k distinct
sets of the same relation. A generalized partition rule is a (generalized) disjunc-
tive rule of the form ⊕L p(X, L) ← Body(X,Y), d(L), where d is a database
domain predicate, specifying the domain of the variable L. The intuitive mean-
ing of such a rule is that the projection of the relation defined by Body(X,Y)
on X is partitioned into a number of subsets equals to the cardinality of the
relation d. The existence of subset rules is also assumed, i.e. rules of the form
s(X) ⊆ Body(X,Y), where s is an IDB predicate symbol not defined elsewhere
in the program (subset predicate symbol) and Body(X,Y) is a conjunction of lit-
erals not depending on predicates defined by partition or subset rules. Observe
that a subset rule of the above form corresponds to the generalized partition
rule with d = {0, 1}; while every generalized partition rule can be rewritten into
a subset rule and constraints. A constraint (rule) is of the form ⇐ Body(X),
where (i) Body(X) is a conjunction of literals, and (ii) X is a vector of range
restricted variables. A constraint rule of the above form is satisfied if the con-
junction Body(X) is false. We shall often write constraints using rules of the
form A1 ∨ ...∨Ak ⇐ B1, ..., Bm (or B1, ..., Bm ⇒ A1 ∨ ...∨Ak) to denote a con-
straint of the form ⇐ B1, ..., Bm,¬A1, ...,¬Ak (i.e. negative literals are moved
from the body to the head).

Definition 1. An NP Datalog program consists of three distinct sets of rules:

1. partition and subset rules defining guess (IDB) predicates,
2. standard stratified datalog rules defining standard (IDB) predicates, and
3. constraints rules.

where (i) every guess predicate is defined by a unique subset or partition rule
and does not depend on other guess predicates; (ii) every recursive predicate
does not depend on guess predicates. �

Definition 2. An NP Datalog search query over a database schema DS is a
pair Q = 〈P , g(t)〉, where P is a NP Datalog program and g(t) is an IDB
atom denoting the output relation. An NP Datalog optimization query is a pair
opt(Q) = 〈P , opt|g(t)|〉, where opt ∈ {min, max}2. �

NP Datalog queries, expressing the vertex cover search and optimization prob-
lems, were presented in Example 1. The following example shows graph coloring
problems, expressed by means of NP Datalog queries.
2 In this paper optimization queries compute the maximum or minimum cardinality

of the output relation, but, in general, any polynomial function can be used.

Implementation and Experimentation of the Logic Language NP Datalog 625

Example 3. A k-coloring of a graph G is an assignment of one of k possible colors
to each node of G such that no two adjacent nodes have the same color. The
problem can be expressed as 〈P3, col(X, C)〉 where P3 consists of:

⊕C col(X, C) ← node(X), color(C).
⇐ edge(X, Y), col(X, C), col(Y, C).

and the base relation color contains exactly k colors. The first rule guesses a
k-coloring for the graph, while the second one is a constraints stating that two
joined nodes do not have the same color. The query modelling the Min Coloring
problem is obtained from the the k-coloring example by adding a rule storing
the used colors used color(C) ← col(X, C) and replacing the query goal with
min|used color(C)|.

3 Implementation

Several languages for hard search and optimization problems have been designed
and implemented. These include logic languages based on stable models (e.g.
DLV [9], smodels [25]), constraint logic programming languages (e.g. SICStus
Prolog [23], ECLiPSe [29], Mozart [28]) and constraint programming languages
(e.g. ILOG OPL [26,27], Lingo [10]). The advantage of using logic languages
based on stable model semantics with respect to constraint programming is
their ability to express complex NP problems in a declarative way. On the
other hand constraint programming languages are very efficient in the solution
of optimization problems.

As NP Datalog is a language to express NP problems, the implementation
of the language can be carried out by translating queries into target languages
specialized in optimization problems such as constraint programming. Thus, the
implementation of NP Datalog is carried out by means of a system prototype
translating NP Datalog queries into OPL programs. OPL is a constraint lan-
guage well-suited for solving both search and optimization problems. OPL pro-
grams are computed by means of the ILOG OPL Studio system [16].

This section informally shows how NP Datalog queries are translated into
OPL programs. Without loss of generality, for the sake of simplicity of presen-
tation, it is assumed that our programs satisfy the following conditions:

– guess predicates are defined by either generalized partition rules or subset
rules;

– standard predicates are defined by a unique extended rule of the form A ←
body1 ∨ · · · ∨ bodym, where bodyi is a conjunction of literals;

– constraint rules are of the form A⇐ B, where A is a disjunction of atoms and
B is a conjunction of atoms;

– constants appear only in atoms of the form x θ y, θ ∈ {>, <,≤,≥, =, �=}.

NP Datalog programs have associated a database schema specifying the used
database domains and for each base predicate the domains associated with each

626 S. Greco, C. Molinaro, and I. Trubitsyna

attribute. Starting from the database schema, the schema of every derived pred-
icate is deducted and new domains, obtained from the database domains, are
introduced. For instance, the database schema associated with the graph used in
the k-coloring problem of Example 3 is DOMAINS = {node, color}; PREDICATES=
{edge(node, node)}; whereas the schema associated with the derived predicate
col is col(node, color).

Thus, given a database D and a query Q = 〈P , G〉, an OPL program equiva-
lent to the application of the query Q to the database D is generated. It is first
shown how databases are translated and next the compilation of queries and the
optimization of the target code are presented.

Database Translation. Base unary relations are translated into enumerated ty-
pes. The translation of a base relation with arity greater than 1 consists of two
steps: declaring a new record type and declaring a set of records of such type. For
instance, the translation of the database containing the facts node(a), node(b),
node(c), node(d), edge(a, b), edge(a, c), edge(b, c) and edge(c, d), consists of
the following OPL declarations:

enum node {a, b, c, d};
struct edge type {node s; node t; };
{ edge type } edge = {〈a, b〉, 〈a, c〉, 〈b, c〉, 〈c, d〉};

Query Translation. Firstly, as IDB predicates are associated with boolean arrays,
the following predefined type bool is declared: range bool 0..1. Then, for
each IDB predicate p with arity k, a k-dimensional boolean array of variables is
introduced as follows var bool p[D1, ..., Dk], where D1, ..., Dk denote the domains
on which the predicate p is defined. For instance, for the binary predicate col
of Example 3 the declaration var bool col[node, color] is introduced. A search
(resp. optimization)NP Datalog query Q is translated into an OPL search (resp.
optimization) program by translating each rule of Q into corresponding OPL
statements. A subset rule of the form s(X1, ..., Xk) ⊆ body(X1, ..., Xk, Y1, ..., Yn) is
translated into an OPL statement specifying that if s(X1, ..., Xk) is true, then
body(X1, ..., Xk, Y1, ..., Yn) must be true too, for some values of Y1, ..., Yn. For
instance, the subset rule e(x, y) ⊆ edge(x, y) is translated into the OPL following
statement:

forall (x in node, y in node)
{ e[x, y] ⇒ ((sum(〈x, y〉 in edge) 1 > 0) > 0); };

The constraint ensures that the subset is defined on the existing edges.
A generalized partition rule ⊕Ls(X1, ..., Xk, L)←body(X1, ..., Xk, Y1, ..., Yn), d(L),

defining the guess predicate s, is translated into OPL instructions stating that
(i) if the body is true, then s(X1, ..., Xk, L) must be true too, for a unique value of
L in the base relation d; (ii) if s(X1, ..., Xk, L) is true, then the body must be true
too, for some values of Y1, ..., Yn. For instance, the partition rule of the Example 3
is translated as follows:

forall (x in node) { 1 ⇒ (sum(c in color) col[x, c] = 1); };
forall (x in node, c in color) { col[x, c] ⇒ 1; };

Implementation and Experimentation of the Logic Language NP Datalog 627

Here the first constraint guarantees for each node x the assignment of exactly
one color c; while the second one ensures that the coloring is defined on the
existing nodes. Note that this code can be optimized (e.g. the second constraint
can be omitted as it is always satisfied); for more details see the next paragraph.

A standard rule of the form p(X1, ..., Xk)← Body1(X1, ..., Xk, Y11, ..., Y
1
n1) ∨ · · · ∨

Bodym(X1, ..., Xk, Ym1, ..., Y
m
nm) is translated into OPL instructions stating that the

rule head is true iff the rule body is true. For instance, the standard rule of the
Example 3 is translated into the OPL code:

forall(c in color) { used color[c] ⇔ (sum(x in node) col[x, c] > 0); };
The above constraint guarantees that a color c is used iff there exists a node x
colored with c.

A constraint of the form A⇐ B is translated into an OPL statement declaring
that if B is true, then A must be true too. For instance, the constraint of the
Example 3 is translated into the following statement:

forall (x in node, y in node, c in color)
{ (((sum(〈x,y〉 in edge) 1 > 0) ∗ col[x, c] ∗ col[y, c]) > 0) ⇒ 0; };

The constraints ensures that no two joined nodes x and y are colored with the
same color c.

Code Optimization. The number of (ground) constraints can be strongly reduced
by applying simple optimizations to the OPL code. A very simple optimization
consists in deleting the OPL constraints whose head is always true (e.g. the head
consists of the constant 1) as they are always satisfied. An additional simple
optimization can be performed by moving conditions defined inside an OPL
constraint into the associated forall or sum instruction.

A further optimization can be carried out by reducing the size of the arrays
of variables corresponding to guess predicates. In particular, given a guess pred-
icate s with arity k defined by a generalized partition rule, instead of declaring
a k-dimensional array of boolean variables, it is possible to introduce a (k-1)-
dimensional array of variables of type dom, a domain which extends the database
domain dom, associated with the generalized partition rule, with the new con-
stant null. Clearly, to make consistent the OPL program, every instance of
s[X1, ..., Xk−1, C] must be substituted with (s[X1, ..., Xk−1] = C) and in each forall
or sum statement the condition C <> null must be verified.

Observe that, if the body of the partition rule only contains unary base predi-
cates (i.e. database domains) and all head variables appear once, the head atom
is true for all possible values of its variables. Therefore, it is possible to use the
original domain dom and it is not necessary to introduce the additional condition
stating that the value of the variable cannot be null.

Another optimization regards the deletion of unnecessary variables. Often the
OPL code contains constructs of the form:

forall(X1 in D1, ..., Xn in Dn) (sum(〈X1, ..., Xk〉 in T) 1>0) [∗ 〈Condition〉] 〈Statement〉
(the squared parentheses denote an optional component). In such a case the sum
construct can be deleted so that the constraint can be rewritten as:

628 S. Greco, C. Molinaro, and I. Trubitsyna

forall(〈X1, ..., Xk〉 in T, Xk+1 in Dk+1, ..., Xn in Dn) 1 [∗ 〈Condition〉] 〈Statement〉

The following example shows the version of the min coloring program, ob-
tained by applying the above optimizations.

Example 4. Min Coloring (optimized version).

var color col[node]; var bool used color[color];

minimize sum(c in color) used color[c]

subject to {
forall (c in color)

{ used color[c] ⇔ (sum(x in node) (col[x] = c) > 0); };
forall (〈x, y〉 in edge)

{ ((col[x] = col[y]) > 0) ⇒ 0; };
};

Architecture. A system prototype was carried out by implementing modules
translating NP Datalog queries into OPL programs and using the OPL ILOG
system to execute the target code. The system architecture, depicted in Fig. 1,
consists of five main modules whose functionalities are next briefly discussed.

– User Interface – This module receives in input a pair of strings identifying
the file containing the source database and the file containing the query.
The module, verifies that both the database and query have been already
translated and, then, asks the module ILOG Solver to execute the query. If
the database (resp. query) has not been translated it sends to the module
Database compiler (resp. Query compiler) the name of the file containing
the source database (resp. query) to be translated. Moreover, this module is
in charge of visualizing the answer to the input query.

– Database compiler – This module translates the source database into an OPL
database; both the source and output databases are contained into text files.

DB Compiler Query Compiler

ILOG Solver

Optimizer

OPL

database

storage OPL

model

storage

NP Datalog

database

storage

NP Datalog

query

storage

User Interface

DB Query (+ Schema)

Fig. 1. System Architecture

Implementation and Experimentation of the Logic Language NP Datalog 629

– Query compiler – This module receives in input an NP Datalog query con-
tained in a text file and gives in output a text containing the corresponding
OPL code. In order to check the correctness of the query and to generate the
target code the module uses the information on the schema of the predicates.

– Optimizer – This module rewrites the OPL code received from the module
Query compiler and gives in output a file (with extension “mod”) containing
the target OPL code.

– Query executor – This module consists of the ILOG OPL Studio which
executes the query, stored by the module Optimizer into the OLP model
storage, over a database stored into the OPL database storage. The module
Query executor interacts with the module User Interface by providing to it
the obtained result.

4 Experiments

Several experiments comparing the performance obtained by implementing
NP Datalog over the ILOG OPL Studio against constraint logic programming
and answer-set logic languages were performed. The experiments show the ad-
vantages of combining declarative logic languages with constraint programming
solvers. More specifically, NP Datalog/ILOG was compared with SICStus
Prolog, ECLiPSe, DLV , smodels and ASSAT [23,8,5,24,2]. For SICStus Pro-
log and ECLiPSe, which are not based on stable model semantics, the problems
were rewritten so that their execution by means of systems using top-down eval-
uation strategies proves to be efficient. All experiments were carried out on a
PC with Pentium 4, 2.8 GHz, 1 GB of RAM under the operating system Linux.
Performances of the different systems were evaluated by estimating the time
necessary to answer the query.

Results. In order to provide a flavor of the feasibility of this approach in the
following some experimental results are provided. In particular, the performance
obtained for the 3-Coloring and the Min-Coloring problems will be reported.
Three different sets of undirected graphs were used:

– structured graphs such as the ones depicted in Fig. 2(i) and Fig. 2(ii),
– random graphs generated by means of Culberson’s graph generator [4],
– benchmarks graphs used to test other systems [3].

Considering structured graphs, instances with base = height were used. Here
base denotes the number of nodes in the same row, height the number of nodes
in the same column. The global number of nodes in the graph is base× height.
Considering random graphs, two different sets of instances were generated. They
were obtained by first generating an initial random graph with 10000 (resp. 1000)
nodes and then deleting, at each step, 1000 (resp. 100) nodes, randomly selected,
from the graph obtained at the previous step. Clearly, by deleting a node x, the
arcs ending to or starting from x are also deleted. All graphs randomly generated
are 3-colorable.

630 S. Greco, C. Molinaro, and I. Trubitsyna

3 Coloring. The 3-Coloring query was evaluated with different types of graphs.
The results of the experiments, on structured graphs of the form in Fig. 2(i)
(resp. Fig. 2(ii)), are reported in Fig. 3(i) (resp. Fig. 3(ii)) and show the execu-
tion times as the size of the graph changes. The x-axis reports the number of
nodes in the same layer (i.e the value of base) while the y-axis shows the time
taken to evaluate the query (in seconds). Observe that the scale of the y-axis
is logarithmic, thus the improvement obtained by using NP Datalog/ILOG is
extremely high. Concerning benchmark domains used to test other systems,

(h-1)*b

2b-12b-2b+1b

b-1b-210

h*b-1

2b-12b-2b+1b

b-1b-210

(h-1)*b h*b-1

(i) (ii)

Fig. 2. Graph structures

0,01

0,1

1

10

100

1000

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Base

E
x

e
c

u
ti

o
n

ti
m

e
[s

e
c

]

NP DATALOG /ILOG ASSAT smodels DLV ECLiPSe SICStus Prolog

0,01

0,1

1

10

100

1000

10 20 30 40 50 60 70 80 90

Base

E
x
e
c
u

ti
o

n
ti

m
e

[s
e
c
]

NP DATALOG /ILOG ASSAT smodels DLV SICStus Prolog

(i) (ii)

Fig. 3. Execution time for the 3-coloring problem on structured graphs

instance graphs were considered which were used by the ASSAT developers to
compare its performance with smodels and DLV [3]. The results of our experi-
ments are reported in Fig. 4. They confirm the results presented in the ASSAT’s
web site, where the system ASSAT is compared with DLV and smodels. The
figure shows that, for large graphs, the system ASSAT is about one order of
magnitude faster than smodels, while NP Datalog/ILOG is about one order of
magnitude faster than ASSAT.

Finally, considering random graphs, for small graphs (with a few hundred
nodes as in Fig. 5) smodels outperforms ASSAT, while for large graph (with

Implementation and Experimentation of the Logic Language NP Datalog 631

1

10

100

1000

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

Number of edges

E
x
e
c
u

ti
o

n
ti

m
e

[s
e
c
]

NP DATALOG/ILOG ASSAT smodels

Fig. 4. 3-coloring problem on bench-
marks graphs

0,01

0,1

1

10

100

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Number of nodes

E
x
e
c
u

ti
o

n
ti

m
e

[s
e
c
]

NP DATALOG/ILOG ASSAT smodels DLV

Fig. 5. 3-coloring problem on random
graphs

0,01

0,1

1

10

100

1000

9 10 11 12 13 14 15 16 17 18 19 20 21 22

Base

E
x

e
c

u
ti

o
n

ti
m

e
[s

e
c

]

NP DATALOG /ILOG DLV SICStus Prolog

0,01

0,1

1

10

100

1000

10 20 30 40 50 60 70 80 90

Base

E
x
e
c
u

ti
o

n
ti

m
e

[s
e
c
]

NP DATALOG /ILOG DLV SICStus Prolog

(i) (ii)

Fig. 6. Execution time for the Min-Coloring problem on structured graphs

several thousand nodes) ASSAT outperforms smodels. Also in this case, for all
types of graph, the system NP Datalog/ILOG is faster than the other systems.
Note that for random graphs, for each number of nodes, five different graphs
were considered. Thus, the values in Fig. 5 are obtained by evaluating five times
the query (over the different graphs) and computing the mean values.

Min Coloring. The last experiment, here reported, considered the min coloring
optimization problem. The results in Fig. 6 were obtained by executing the query
on structured graphs. Instances having the structure reported in Fig. 2(i) need at
least three colors to be colored, whereas instances having the structure reported
in Fig. 2(ii) need at least four colors to be colored. The number of colors available
in the database was fixed for the two structures, respectively, to four and five
(one color more than necessary to color the graph). It can be noted that for large,
3-colorable graphs DLV is faster than SICStus Prolog, but for small 3-colorable
graphs and graphs not 3-colorableSICStus Prolog is faster than DLV. For all types
of graphs NP Datalog/ILOG outperforms both the system here considered. For
large, random, 3-colorable graphs, similar results showing that SICStus Prolog
runs out of time and that NP Datalog/ILOG outperforms DLV, were obtained.

632 S. Greco, C. Molinaro, and I. Trubitsyna

More results showing the effectiveness of NP Datalog/ILOG can be found on the
web site http://wwwinfo.deis.unical.it/∼irina/NPDatalog/NPDatalog.htm.

5 Conclusions

NP search and optimization problems can be formulated as DATALOG¬ queries
under nondeterministic stable model semantics. In order to enable a simpler and
more intuitive formulation of such problems, recently, the NP Datalog language,
allowing search and optimization queries to be expressed using only simple forms
of unstratified negations, has been proposed. This paper has presented the im-
plementation and experimentation of the language. In particular, the prototype
was carried out by implementing a compiler translating NP Datalog queries into
OPL programs, and evaluating the OPL programs by means of the ILOG OPL
Studio. Several experiments comparing the computation of queries by different
systems have showed the validity of this approach, which combines an easy for-
mulation of problems and an efficient execution.

References

1. Abiteboul, S., Hull, R., and Vianu, V., Foundations of Databases. Addison-Wesley,
1994.

2. ASSAT. http://assat.cs.ust.hk/.
3. ASSAT experimental data on the Graph Coloring Domain.

http://assat.cs.ust.hk/Assat-2.0/coloring-2.0.html.
4. Culberson’s graph generator.

http://web.cs.ualberta.ca/∼joe/Coloring/Generators/generate.html.
5. DLV. http://www.dbai.tuwien.ac.at/proj/dlv/.
6. East, D., and Truszczynski, M., DATALOG with Constraints - An Answer-Set

Programming System. AAAI/IAAI, 163-168, 2000.
7. East, D., and Truszczynski, M., Predicate-calculus based logics for modeling and

solving search problems ACM Transaction on Computational Logic (to appear),
2005.

8. ECLiPSe. http://www.clps.de/eclipse.html.
9. Eiter, T., Leone, N., Mateis, C., Pfeifer G., and Scarcello, F., A Deductive System

for Non-monotonic Reasoning. LPNMR, 363–374, 1997.
10. Finkel, R. A., Marek, V. W., and Truszczynski, M., Constraint Lingo: towards high-

level constraint programming. Software Practice and Experience, 34(15), 1481-1504,
2004.

11. Gelfond, M., and Lifschitz, V., The Stable Model Semantics for Logic Program-
ming. Proc. 5th Int. Conf. on Logic Programming, 1070–1080, 1988.

12. Gelfond M. and Lifschitz V. Classical negation in logic programs and disjunctive
databases. New generation Computing, 9(3/4), pages 365–385, 1991.

13. Greco, S., Saccà, D., and Zaniolo C., Datalog with Stratified Negation and Choice:
from P to DP . Proc. Int. Conf. on Database Theory, 574–589, 1995.

14. Greco, S., and Saccà, D., NP-Optimization Problems in Datalog. ILPS, 181–195,
1997.

Implementation and Experimentation of the Logic Language NP Datalog 633

15. Greco, S., Molinaro, C., Trubitsyna, I., and Zumpano, E., Implementing NP Data-
log. Technical report – University of Calabria, submitted to an International Jour-
nal.

16. ILOG OPL Development Studio. http://www.ilog.com/products/oplstudio/.
17. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R., The CLP(R) Language and System.

ACM Transaction on Programming Languages and Systems 14(3), 339-395, 1992.
18. Johnson, D. S., A Catalog of Complexity Classes. In Handbook of Theoretical Com-

puter Science, Vol. 1, J. van Leewen (ed.), North-Holland, 67– 161, 1990.
19. Kolaitis, P. G., and Thakur, M. N., Logical Definability of NP Optimization Prob-

lems. Information and Computation, No. 115, 321–353, 1994.
20. Lin, F., and Zhao, Y., ASSAT: computing answer sets of a logic program by SAT

solvers. Artificial Intelligene 157(1-2), 115–137, 2004.
21. Marriott, K., Stuckey, P. J., Programming with Constraints: an Introduction, MIT,

1998.
22. Niemela, I., Simons, P., Soininen, T., Stable Model Semantics of Weight Constraint

Rules. In Proc. Int. Conf. on Logic Progr. and Nonmon. Reas., 317-331, 1999.
23. SICStus Prolog. http://www.sics.se/isl/sicstuswww/site/index.html.
24. Smodels. http://www.tcs.hut.fi/Software/smodels/.
25. Syrjanen, T., and Niemela, I., The Smodels System. LPNMR, 434-438, 2001.
26. Van Hentenryck, P., The OPL Optimization Programming Language, Mit Press,

1999.
27. Van Hentenryck, P., Michel, L., Perron, L., Regin, J. C., Constraint Programming

in OPL, Proc. Int. Conf. on Principles and Practice of Decl. Progr., 98–116, 1999.
28. Var Roy P., Logic Programming in Oz with Mozart, ICLP, 38–51, 1999.
29. Wallace, M., Schimpf, J., ECLiPSe: Declarative Specification and Scaleable Imple-

mentation. Proc. Int. Work. on Practical Aspects of Decl. Langu., 365-366, 1999.
30. Zumpano, E., Greco, S., Trubitsyna, I., and Veltri, P., On the semantics and ex-

pressive power of Datalog-like languages for NP search and optimization problems.
Proc. ACM Symp. on Applied Computing, 692-697, 2004.

Converting a Naive Bayes Models with
Multi-valued Domains into Sets of Rules

Bart�lomiej Śnieżyński

AGH University of Science and Technology, Department of Computer Science,
Krakow, Poland

sniezyn@agh.edu.pl

Abstract. Nowadays, several knowledge representation methods are be-
ing used in knowledge based systems, machine learning, and data mining.
Among them are decision rules and Bayesian networks. Both methods
have specific advantages and disadvantages. A conversion method would
allow to exploit advantages of both techniques. In this paper an algorithm
that converts Naive Bayes models with multi-valued attribute domains
into sets of rules is proposed. Experimental results show that it is possi-
ble to generate rule-based classifiers, which have relatively high accuracy
and are simpler than original models.

1 Introduction

Nowadays, several knowledge representation methods are popular in knowledge
based systems, machine learning, and data mining. Among them are decision
rules and Bayesian networks. Both methods have specific advantages and disad-
vantages.

Bayesian models provide very well founded uncertainty representation. If a
knowledge base is created manually, Bayesian networks seem to represent uncer-
tainty and dependency better than rules [1,2]. Tuning a set of rules takes a lot
of time (see e.g. [3]). However, if a knowledge base is generated automatically
from data, it is not a problem. Another issue is the accuracy of the models.
Probabilistic classifiers may be better than rule based ones, but the difference is
usually small.

In many application domains, such as security systems, medical diagnosis, etc.
very important issue is understanding of the knowledge, especially if it is gen-
erated automatically. In such domains, before the knowledge is used, it should
be verified by a human expert. It is difficult to verify a knowledge that in in a
form difficult to grasp. Next, generated classifiers are often used with a super-
vision of a human. To verify a system’s decision, the supervisor should have a
possibility to check and understand the justification of the answer. What is also
very important, using machine learning one can discover a new domain knowl-
edge. This can not be done without feedback from a human expert. To make it
possible, the knowledge generated has to have a form that is easy to interpret
for humans. Generally, rules seem to correspond to human way of thinking very
well [4], much more than probabilistic models.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 634–643, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Converting a Naive Bayes Models with Multi-valued Domains 635

To exploit advantages of both knowledge representation techniques, it would
be good to have tools, which are able to transform knowledge between these
formalisms. In this paper a method of converting a simple probabilistic model
– Naive Bayes (NB) into a set of decision rules is presented. Such a conversion
can be used for a knowledge visualization purposes and also to generate knowl-
edge bases for diagnostic systems. It can be also considered as a method of NB
pruning, which decreases its complexity.

This paper is a continuation of the work published in [5], where a method
for two-valued attribute domains was described and tested. In this paper multi-
valued domains are considered.

In the next section the method is described, next we show preliminary experi-
mental results, and related research. Conclusions and plans of the future research
conclude the paper.

2 Conversion Algorithm

2.1 Bayesian Networks and Naive Bayes

Naive Bayes (NB) is a simple probabilistic classifier, which is a special case
of a Bayesian network. Generally, a Bayesian network is a pair (G, P), where
G is a structure graph, which in this case is very simple (see Fig. 1) and P
is a set of local, conditional probability distributions between variables and its
parents. Variables X1, X2, ..., Xn correspond to attributes, variable Y represents
a class. A consequence of the NB structure is an assumption about conditional
independence of variables X1, X2, ..., Xn.

Domains of the variables are denoted by DY , DX1
, DX2

, . . . , DXn . In this
paper we assume that all domains are discrete and finite.

For the NB inference and learning algorithms are straightforward. Probability
distribution of a class variable for example e = (X1 = e1, X2 = e2, ..., Xn = en)
is calculated using the following formula:

P (class(e) = yj) =
P (Y = yj)

∏n
i=1 P (Xi = ei|Y = yj)∏n

i=1 P (Xi = ei)
(1)

What is surprising, in spite of unnatural assumptions about conditional inde-
pendency between attributes, Naive Bayes classifiers perform very well [6].

Fig. 1. Structure of naive Bayes

636 B. Śnieżyński

2.2 Simple Conversion

NB can be transformed into a set of rules by generating |DY | rules for every
value of every Xi variable. Rules would have the following form:

Xi = xi
j → Y = yk, (2)

where xi
j ∈ DXi , yk ∈ DY are variable values. Because such rules have various

strength, we need also a way to represent it. It can be done by labelling rules.
Choosing appropriate labels is very important, because it has a strong influ-

ence on the rule-based classifier performance. The choice can be formalized by
defining a label algebra and a function transforming conditional probabilities
into labels.

Label algebra can be defined as the following pair:

L = (L, �), (3)

where L is a set of labels with linear order (to choose the highest value during
classification of examples), and � : L2 → L is an aggregation operator, which is
also used during the classification, if two (or more) rules match the example. In
such a case, rules are aggregated. � should be associative and commutative to
make the result of rule application independent from the order, therefore � can
be extended to operate on a set of labels.

Labelled rule is a pair
r : l, (4)

where r is a rule defined above, and l ∈ L. Rule labels are calculated using
transformation function f : [0, 1] → L. Rule Xi = xi

j → Y = yk has a label
l = f(P (Xi = xi

j | Y = yk))
Having a set of labelled rules, which form a knowledge base KB, we can classify

an example e = (X1 = e1, X2 = e2, . . . Xn = en):

class(e) = arg max
yk

�{l| Xi = ei → Y = yk : l ∈ KB}. (5)

If attribute value is missing in the example, we assume that no rule matches
this attribute.

In the experiments (presented in Section 3) two label algebras are used: con-
tinuous: ([0, 1], �) and discrete: ({0, 1}, �), where � is a classical multiplication.
As a consequence, two transformation functions are defined: f1(p) = p (iden-
tity), and f2(p) = round(p). The use of other algebras is also possible. One of
the solutions is to rescale probability values into the range [−1, 1] and apply
Certainty Factors style of aggregation [7].

2.3 Pruning

The conversion described above has a serious drawback – it does not decrease
model’s complexity. To overcome this shortcoming, we introduce pruning to elim-
inate rules with low significance.

Converting a Naive Bayes Models with Multi-valued Domains 637

A method of pruning in the case of |DXi | = 2 is presented in [5]. In such a
case, probabilities P (Xi = xi

j |Y = yk) close to 0.5 have lower influence on the
hypothesis than ones with value close to 1 or 0. Therefore we can create rules for
these probabilities, which have distance from 0.5 greater than a given threshold.

If |DXi | > 2 we can use Entropy measure. It can be defined for a bunch of
rules. The bunch of rules Bik is a set of rules with the same variables in the
premise and the same value in the consequence:

Bik = {Xi = xi
j → Y = yk : l}j=1,2,...,|DXi

|. (6)

Entropy E is defined as follows:

E(Bik) =
|DXi

|∑
j=1

−P (Xi = xi
j |Y = yi) log2 P (Xi = xi

j |Y = yi). (7)

If P (Xi = xi
j |Y = yi) = 0 we assume that P (Xi = xi

j |Y = yi) log2 P (Xi =
xi

j |Y = yi) = 0. To have normalized values, the normalized Entropy En(Bik) is
defined:

En(Bik) = En(Bik)/Emax(|DXi |), (8)

where Emax(n) is a maximal Entropy for a domain of size n.
High values of the normalized Entropy mean a high disorder and low informa-

tion, therefore rules that belong to a bunch with such values of En are pruned.
In order to have similar meaning of the threshold value t as in [5], i.e. to repre-
sent a low pruning by values close to 0 and a strong pruning by values close to
1, rule from Bik is pruned iff En(Bik) > (1 − t).

2.4 Defaults

The transformation defined above does not include probability distribution of a
class variable Y , which is a class distribution. It can be taken into account by
completing the set of rules with |DY | default rules of the form

→ yi : li, (9)

where yi ∈ DY , and li = P (Y = yi). These rules have an empty premise part
and they always match examples during classification. In such a case � operator
domain should be extended to cover the [0, 1] range.

2.5 Full Algorithm

Full algorithm for conversion of NB models into a set rules is presented in Fig. 2.
Input data consists of a NB to convert, a threshold t, which is used to eliminate
rules with low significance, and a boolean value defaults, which is used to specify
if defaults should be added. Output consists of a set of rules R.

If f(p) = round(p), set of rules can be presented in a more user friendly form.
Rules with the same consequent and the same label can be merged into one
decision rule by connecting premises with ”OR” connective (see examples in
Fig. 4).

638 B. Śnieżyński

Data: {P (Xi = xi
j | Y = yk), P (Y = yk)} – NB conditional probabilities,

t – probability threshold, defaults – should defaults be added
Result: R – Set of rules
begin

R := ∅;
foreach Variable Xi do

foreach Value yk ∈ DY do
if En(Bik) ≤ (1 − t) then

foreach Value xi
j ∈ DXi do

p := P (Xi = xi
j | Y = yk);

R := R ∪ {Xi = xi
j → Y = yk : f(p)};

end
end

end
end
if defaults=true then

foreach Value yk ∈ DY do
R := R ∪ {→ Y = yk : P (Y = yk)};

end
end
return R

end

Fig. 2. Algorithm for conversion of NB models into sets of rules

3 Experimental Results

The following data sets were used to test the conversion algorithm: Iris, Wis-
consin Breast Cancer (WBC), Soybean, Audiology, and Congressional Voting
Records. They were obtained from the UCI Machine Learning Repository [8].
The first one is well known data with three classes representing species of iris.
Second one contains patient data with two classes representing benign and ma-
lign types of cancer. Third one contains data with 19 types of soya diseases.
Fourth one (donated to UCI by Prof. Jergen, Baylor College of Medicine) con-
tains 24 classes of audiology problems. In this data set Bser attribute was re-
moved because it was known for four examples only. In the last data set attributes
represent vote records of United States Congressmen, the class represents theirs
party. Summary of these sets is presented in Tab. 1.

Table 1. Data sets

Data set #classes #attr. #nominal attr. #numeric attr. missing val. #instances
Iris 3 4 0 4 none 150
WBC 2 9 0 9 several 699
Soybean 19 35 35 0 several 683
Audiology 24 69 69 0 several 226
Voting 2 16 16 0 many 435

Converting a Naive Bayes Models with Multi-valued Domains 639

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

iris2

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦

+
+ + +

+ + +

+ + + +

� � � � � � � � �

� �

×
× × ×

× × ×
× ×

× × 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

iris4

♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦

♦ ♦

+ + + +

+ + + + + + +
� � � �

�

� � � �

� �

× × × ×
×

× × × ×

× ×

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

wbc2

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦

+ + + + + + + + +

+ +�
� � � �

� � � � �

�

× ×

× × ×

× × × × ×

× 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

wbc4

♦ ♦ ♦
♦ ♦

♦ ♦ ♦ ♦
♦ ♦

+ + +
+ +

+ + + +
+ +� � �

� � � � � � �

�

× × ×

× ×

× × × × ×

×

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

wbc

♦ ♦ ♦

♦
♦

♦ ♦
♦ ♦ ♦

♦

+ +

+
+ + + +

+ + +
+� � �

�

� � � � � �

�

× ×

× ×

× × × × × ×

× 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

votes

♦
♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦

+ + + + + + +

+ + + +�
� � � � � �

� � �

�

× × × × × × ×

× × ×

×

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

soybean

♦ ♦ ♦
♦

♦
♦

♦ ♦ ♦ ♦
♦

+
+ + + + + + +

+ +
+

� � � �
�

�
� � � � �

× × × ×
× × × × × × ×

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

audiology

♦ ♦ ♦ ♦ ♦
♦

♦
♦ ♦ ♦ ♦

+ + + + +
+ + + + + +

� � � � �
�

�
� � � �

× × × × ×
× × × × × ×

Fig. 3. Dependency of the accuracy of rule based classifiers generated form Naive Bayes
models from the threshold; bars (�) represent the relative number of rules (number
of rules after pruning divided by the original number), diamonds (♦) discrete label
algebra with defaults, boxes (�) discrete without defaults, pluses (+) continuous label
algebra with defaults, exes (×) continuous without defaults

640 B. Śnieżyński

Table 2. Number of rules (without defaults)

t Iris2 Iris4 WBC2 WBC4 WBC Votes Soybean Audiology
0.0 24 48 36 72 178 64 1881 3648
0.1 18 48 22 48 148 44 1439 3563
0.2 18 44 20 44 108 42 1364 3514
0.3 14 36 20 40 88 34 1286 3477
0.4 12 16 20 40 79 28 1134 3393
0.5 12 8 18 32 69 14 1066 3326
0.6 12 8 18 32 69 10 977 3225
0.7 10 8 18 32 39 6 948 3139
0.8 10 8 16 32 9 4 919 3080
0.9 0 0 2 4 9 2 907 3035
1.0 0 0 0 0 0 0 857 3018

To check how numer of attributes influences the performance, the Iris and
WBC data sets were discretized using equal width method. Domains with 2
and 4 values were created. Corresponding data sets are denoted by Iris2, Iris4,
WBC2, WBC4. WBC is a set without discretization.

NB classifiers were generated for this data sets using Genie tool [9]. Accuracy
of generated classifiers on the training data is 78.67% for the Iris2, 91.33% for
Iris4, 95.85% for the WBC2, 96.71% for WBC4, 96.13% for WBC, 90.34% for
the Voting, 95.02% for Soybean, and 97.34% for Audiology.

From these classifiers rule sets were generated using threshold from 0 to 1, with
continuous (f(p) = p)) and discrete (f(p) = round(p)) labels, with and without
default rules. Classifiers were tested on the training data. These experiments
were performed using software developed by the author.

If there are no default rules and no rule is chosen during classification, it counts
as a wrong answer. Accuracy measures for generated rule sets are presented in
Fig. 3. Numbers of rules for different thresholds are presented in Tab. 2.

As we can see, accuracy of the rule-based classifiers is quite high. In sim-
ple domains (Voting, WBC, Iris) it is still high even when 80% of rules are
eliminated.

Increasing the number of ranges in a discretization decreases slightly the ac-
curacy after pruning. It is easily noticeable in the WBC.

Adding defaults increases the accuracy for high threshold values, when the
number of rules is decreased significantly. Stronger influence on the accuracy
has the type of the label algebra (and the transformation function). Accuracy
of classifiers with continuous labels decreases when more rules are pruned; how-
ever there is often a local maximum for a threshold value about 0.6. Accuracy
of classifiers with discrete algebra usually increases (when nonsignificant rules
with label values rounded to 0, which strongly decrease class probability, are
eliminated), and accuracy of the classifier becomes higher. If too many rules are
removed, accuracy drops down.

Converting a Naive Bayes Models with Multi-valued Domains 641

This result suggests that other aggregation methods may improve classifier’s
performance for low values of the threshold; however for the purpose of knowl-
edge visualization it is not a vital issue, because performance for a reduced
number of rules is more important.

Number of rules is reduced significantly in most data sets. Even in WBD data
set, where attribute domains have 10 values, the number of rules was reduced to
less than 10%. For sets such as Soybean and (especially) Audiology rule reduction
is not so successful. It is a result of the presence of many conditional probabilities
equal to 1.0 or 0.0.

To present results of the conversion, merged rules with discrete labels for
threshold t = 0.9 for WBC and t = 0.6 for Voting are presented in Fig. 4.
These sets of 2 and 4 rules are more easy to interpret for human beings that NB
classifiers that are described by 72 (for WBC) and 64 (for Voting) conditional
probabilities represented by real numbers. In Voting data set the number of rules
can be decreased more, because generated rules form complementary pairs.

mitoses = 1 -> benign : 1

mitoses = 2 OR mitoses = 3 OR mitoses = 4 OR mitoses = 5 OR
mitoses = 6 OR mitoses = 7 OR mitoses = 8 OR mitoses = 10
-> benign : 0

(a)

physician_fee_freeze = n OR
export_administration_act_south_africa = y -> democrat: 1

physician_fee_freeze = y OR
export_administration_act_south_africa = n -> democrat: 0

physician_fee_freeze = y OR el_salvador_aid = y
OR crime = y OR duty_free_exports = n -> republican: 1

physician_fee_freeze = n OR el_salvador_aid = n OR crime = n OR
duty_free_exports = y -> republican: 0

(b)

Fig. 4. Rules (without default) generated for the WBC, t = 0.9 (a), and Voting, t = 0.6
(b) data sets; labels are discrete

4 Related Research

The most related paper to this research is [10], where possibility of using Cer-
tainty Factor model to represent Bayesian networks is analyzed. Methods for
Noisy-OR, Noisy-AND, Noisy-MIN, Noisy-MAX and propagation of evidence are

642 B. Śnieżyński

presented. It appears that many solutions used in practical applications of prob-
abilistic models correspond to methods invented by Buchanan and Shortliffe.

Another interesting work is [11], where conversion of Bayesian networks into
probabilistic horn abduction language is proposed. However, this formalism is
more complicated than decision rules and resulting knowledge bases are not so
easy to interpret.

Knowledge conversion methods in the opposite direction (from rule-based sys-
tems into probabilistic models) were investigated in a number of publications
(e.g. [12,13,14]). There are also several works that aim at exploring problems that
appear in probabilistic interpretation of Certainty Factor model (e.g. [1,15]).

Some transformation methods between other knowledge representation tech-
niques are also considered in the literature. Probably the most commonly used is
a conversion of decision trees into decision rules that is implemented in C4.5 [16].
A conversion in the opposite direction is also developed. AQDT method gener-
ates decision trees from sets of attributional rules [17]. Interesting transformation
of a frame-based representation with uncertainty into a Bayesian model is de-
scribed in [18].

5 Conclusion and Further Research

Transforming probabilistic models learned from data into decision rules can be
very useful for visualization purposes. It allows to extract strong patterns ap-
pearing in a probabilistic models and present it in a user friendly way.

The idea of intended application is to use a fast Naive Bayes model learning
algorithm to generate a classifier from a big data set. Such a classifier can be
next converted into a set of rules. These rules can be examined by users or used
for classification.

Experimental results show that rule sets generated from Naive Bayes models
are clear and accuracy of such classifiers is relatively high, comparing to the
accuracy of original models. However, in some domains the number of rules is
too high for human interpretation.

In the near future, we would like to make more experiments on a number of
problem domains. Next, we would like to test several other label algebras. We
are also planning to investigate possibilities of generalizing the method for more
complex Bayesian networks and to develop a complete tool for such conversion.

References

1. Heckerman, D. In: Probabilistic interpretation for MYCIN’s uncertainty factors.
North-Holland (1986) 167–196

2. Heckerman, D.: An empirical comparison of three inference methods. In: Proceed-
ings of the Fourth Workshop on Uncertainty in Artificial Intelligence, Association
for Uncertainty in Artificial Intelligence, Mountain View, CA (1988) 158–169

3. Lucas, P., Janssens, A.: Development and validation of hepar, an expert system
for the diagnosis of disorders of the liver and biliary tract. Medical Informatics 16
(1991) 259–270

Converting a Naive Bayes Models with Multi-valued Domains 643

4. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall (1972)
5. Sniezynski, B.: Converting a naive bayes model into a set of rules. In K�lopotek M.

et al., ed.: Intelligent Information Processing and Web Mining. Advances in Soft
Computing, Springer (2006) Accepted for publication.

6. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29 (1997) 131–163

7. Buchanan, B., Shortliffe, H.: Rule-based expert systems: The MYCIN experiments
of the Stanford heuristic programming project. Addison-Wesley (1984)

8. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases (1998)

9. Druzdzel, M.: A development environment for graphical decision-analytic models.
In: Proc. of the 1999 Annual Symposium of the American Medical Informatics
Association (AMIA-1999), Washington, D.C. (1999) 1206

10. Lucas, P.: Certainty-factor-like structures in bayesian belief networks. Knowl.-
Based Syst 14 (2001) 327–335

11. Poole, D.: Probabilistic horn abduction and bayesian networks. Artificial Intelli-
gence 64 (1993) 81–129

12. Korver, M., Lucas, P.: Converting a rule-based expert system into a belief network.
Medical Informatics 18 (1993) 219–241

13. Shwe, M., Middleton, B., Heckerman, D.E., Henrion, M., Horvitz, E.J., Lehmann,
H., Cooper, G.F.: Probabilistic diagnosis using a reformulation of the INTERNIST-
1/QMR knowledge base i: Probabilistic model and inference algorithms. Methods
of Information in Medicine 30 (1991) 241–255

14. Middleton, B., Shwe, M., Heckerman, E., M.H.D., Horvitz, E.J., Lehmann, H.,
Cooper, G.F.: Probabilistic diagnosis using a reformulation of the INTERNIST-
1/QMR knowledge base ii: Evaluation of diagnostic performance. Methods of
Information in Medicine 30 (1991) 256–267

15. van der Gaag, L.: Probability-based models for plausible reasoning. PhD thesis,
University of Amsterdam (1990)

16. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
17. Michalski, R.S., Imam, I.: Learning problem-oriented decision structures from

decision rules: The aqdt-2 system. In: Methodology for Intelligent Systems of the
8th International Symposium on Methodology for Intelligent Systems (ISMIS-94).
Volume 869 of Lecture Notes in Artificial Intelligence., Springer (1994) 416–426

18. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proc. of 15th National
Conference on Artificial Intelligence AAAI-98. (1998) 580–587

Hypersphere Indexer

Navneet Panda, Edward Y. Chang, and Arun Qamra

University of California, Santa Barbara, CA

Abstract. Indexing high-dimensional data for efficient nearest-neighbor sear-
ches poses interesting research challenges. It is well known that when data di-
mension is high, the search time can exceed the time required for performing a
linear scan on the entire dataset. To alleviate this dimensionality curse, index-
ing schemes such as locality sensitive hashing (LSH) and M-trees were proposed
to perform approximate searches. In this paper, we propose a hypersphere in-
dexer, named Hydex, to perform such searches. Hydex partitions the data space
using concentric hyperspheres. By exploiting geometric properties, Hydex can
perform effective pruning. Our empirical study shows that Hydex enjoys three
advantages over competing schemes for achieving the same level of search accu-
racy. First, Hydex requires fewer seek operations. Second, Hydex can maintain
sequential disk accesses most of the time. And third, it requires fewer distance
computations.

1 Introduction

Nearest neighbor search has generated substantial interest because of a wide range of
applications such as text, image/video, and bio-data retrieval. These applications rep-
resent objects (text documents, images, or bio-data) as feature vectors in very high-
dimensional spaces. A user submits a query to a search engine, which returns objects
that are similar to the query. The similarity between two objects is measured by some
distance function (e.g., Euclidean) over their feature vectors. The search returns the
objects that are nearest to the query object in the high-dimensional vector space.

The prohibitive nature of exact nearest-neighbor search has led to the interest in
approximate nearest-neighbor (A-NN) search that returns instances (objects) approxi-
mately similar to the query instance [1,10]. The first justification behind approximate
search is that a feature vector is often an approximate characterization of an object,
so we are already dealing with approximations [13]. Second, an approximate set of
answers suffices if the answers are relatively close to the query concept. Of late, two
approximate indexing schemes, locality sensitive hashing (LSH) [11] and M-trees [8]
have been popular. These approximate indexing schemes speed up similarity search
significantly (over a sequential scan) by slightly lowering the bar for accuracy.

In this paper, we propose a hypersphere indexer, named Hydex, to perform ap-
proximate nearest-neighbor searches. First, the indexer finds a roughly central instance
among a given set of instances. Next, the instances are partitioned based on their dis-
tances from the central instance. Hydex builds an intra-partition indexer (or local in-
dexer) within each partition to efficiently retrieve relevant instances. It also builds an
inter-partition indexer to help a query identify a good starting location in a neighbor-
ing partition to search for nearest neighbors. A search is conducted by first finding the

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 644–654, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hypersphere Indexer 645

partition to which the query instance belongs. Hydex then searches in this and the neigh-
boring partitions to locate nearest neighbors of the query. Through empirical studies on
two large, high-dimensional datasets, we show that Hydex significantly outperforms
both LSH and M-trees in both IO and CPU time.

The rest of the paper is organized as follows. In Section 2, we discuss related work.
Section 3 describes Hydex’s operations. Section 4 presents experimental results. We
offer our closing remarks in Section 5.

2 Related Work

Existing indexers can be divided into two categories: coordinate-based and distance-
based. The coordinate-based methods work on data instances residing in a vector space
by partitioning the space into minimum bounding regions (MBRs). A top-k nearest-
neighbor query can be treated as a range query, and ideally, the best matches can be
found after examining only a small number of MBRs. Examples of coordinate-based
methods are the X-tree [4], the R∗-tree [3], the TV-tree [14] and the SR-tree [12], to
name a few. A big disadvantage of these tree-structures is the exponential decay in
performance that accompanies an increase in the dimensionality of data instances [19].
This phenomenon has been reported for the R∗-tree, the X-tree, and the SR-tree, among
others. The decay in performance can be attributed to the almost exponential number
of rectangular MBRs (in the cases of the X-tree and the R∗-tree) or spherical MBRs
(in the cases of the SR-tree, the TV-tree, and the M-tree)1 that must be examined for
finding nearest neighbors. In contrast to these tree-structures, each partition of Hydex
has only two neighboring partitions, independent of data dimension.

The distance-based methods do not require an explicit vector space, but rely only on
the existence of a pairwise distance metric. The M-tree [9] is a representative scheme
that uses the distances between instances to build an indexing structure. (Some other
distance-based methods are the multi-vantage-point trees [5], geometric near-neighbor
access trees [6], and spatial approximation trees [16].) Given a query point, it prunes out
instances based on distance. The M-tree performs IOs to retrieve relevant data blocks
into memory for processing; however, the disk accesses cannot be sequential since the
data blocks can be randomly scattered on disks. In contrast to the M-tree, our proposed
indexer, Hydex, can largely maintain contiguous layout of neighboring partitions on
disks, so its IOs can be sequential and hence more efficient.

When data dimension is very high, the cost of supporting exact queries can be higher
than that of a linear scan. The work of [11] proposes an approximate indexing strategy
using locality sensitive hashing (LSH). This approach attempts to hash nearest-neighbor
instances into the same bucket, with high probability. A top-k approximate query is sup-
ported by retrieving the bucket into which the query point has been hashed. To improve
search accuracy, multiple hash functions must be used. Theoretically, the number of
hash functions to be used is given by (n

B)ρ, where n is the number of instances in the
dataset, B is the number of instances that can be accommodated in a single bucket, and

1 To ensure retrieval of the exact set of top-k nearest neighbors, a search needs to examine all 3d

neighboring MBRs [13]. For the tree-structures using spherical MBRs, [19] reports that their
performance decays almost as rapidly as the tree-structures using rectangular MBRs.

646 N. Panda, E.Y. Chang, and A. Qamra

ρ a tunable parameter. As we will show in Section 4, Hydex outperforms LSH in two
aspects. First, Hydex requires fewer IOs compared to LSH to achieve the same level of
search accuracy. Second, when a dataset is relatively static (without a large number of
insertions), Hydex can largely maintain its IOs in sequential order, whereas LSH cannot.

3 Algorithm SphereDex

Our proposed Hydex aims to improve the performance of nearest-neighbor searches us-
ing a three-pronged approach. First, we attempt to reduce the number of IOs. Second,
when multiple disk blocks must be retrieved, we make the IO sequential as much as pos-
sible. Third, when data is finally staged in main memory for processing, we minimize
the amount of data to be examined to obtain the top-k approximate nearest neighbors.

3.1 Create—Building the Index

The indexer is created in four steps.

– 1. Finding the instance xc that is approximately centrally located in the data space,
– 2. Separating the instances into partitions based on their distances from xc,
– 3. Constructing an intra-partition indexer in each partition, and
– 4. Creating an inter-partition index.

Choosing the center instance
Input: Dataset instances: {x1 · · ·xn}. Output: Approximate center instance xc.

Definition 1. The center instance is the instance at the smallest distance from the cen-
troid of the data instances.

This is done to ensure that the instances are “roughly” uniformly distributed in all di-
rections around the reference point. The centroid of the available instances can be com-
puted in O(n d) time, and finding the instance at the smallest distance from the centroid
takes O(n d) time. Therefore, overall this step can be accomplished in O(n d) time and
O(d) space. As reported in http : //www .cs .ucsb.edu/ ∼ panda/dexa06 long.pdf
the choice of a random instance as center instance leads to a small degradation in per-
formance only.

Partitioning the Instances
Input :{x1 · · ·xn}, xc, # of instances per partition: g. Output: # of partitions: np,

Partitions: P [1] · · ·P [np].

Once the center instance has been determined, our next step is to partition the instances
in the dataset based on their sorted distances from the center instance. This step requires
O(n log n + n d) time and O(n) space. The created partitions (alongwith associated in-
dex structures developed below) are then placed on the disk. Our placement policy aims
to achieve two goals. First, we would like to place adjacent partitions contiguously on the
disk to achieve sequential disk accesses. Second, we need to reserve space within parti-
tions to accomodate insertions of new data instances. Details of the insertion and place-
ment policy may be found at http : //www .cs .ucsb.edu/ ∼ panda/dexa06 long.pdf

Hypersphere Indexer 647

Intra-partition Index

Input : P [1] · · ·P [np], g. Output: Local indices: S[1] · · ·S[np].

An intra-partition index (or local index) is created for each partition and stored on disk
along with the instances in the partition. For each instance, this local index stores a
sorted list of instances ranked according to their distances from this instance to allow
the algorithm to quickly converge on the instances closest to the query. Maintaining
this data structure for all pairs would take up O(g2) space. Instead, in Section 3.2, we
detail an approach storing two reduced sets of information for each instance reducing
the space requirement to O(g log g) for each partition. Operations on this local index
are explained in Section 3.2 when we discuss query-processing.

Inter-partition Index

Input : np, P [1] · · ·P [np], g. Output: Inter-partition indices: I .

We also maintain a data structure which contains neighborhood information across ad-
jacent partitions. This index gives Hydex a good location to search for k-NNs when
a search transitions from one partition to the next. Intuitively, a good starting point to
continue searching is an instance that is very close to the current set of top-k results.
This index stores, for each instance in a partition, its nearest neighbor(s) in the adja-
cent partition(s). Building this index requires O(n g d) time. The storage required to
maintain this index is of the order O(n).

3.2 Search—Querying the Index

Given a query instance, query processing begins by finding the approximate nearest
neighbors of the query in the partition to which it belongs. Thereafter, adjacent parti-
tions are retrieved and searched for better nearest neighbors. The set of nearest neigh-
bors improves as we continue to retrieve and process adjacent partitions. Hydex termi-
nates its search for top-k when the constituents of the top-k set do not change over the
evaluation of multiple partitions, or when the query time expires.

Identification of Starting Partition

Input : Query instance: xq , xc, Delim. Output: Partition number: α.

First, we identify the partition to which the query instance xq belongs. Instead of main-
taining the distances of all the instances from the center, we keep another sorted list,
Delim, of the distances of only the starting instance of each partition which is searched
for the distance between xq and xc. The cost of this binary search is O(log np) (np

denotes the number of partitions).

Intra-Partition Search

Input : xq , P [α], S[α], I[α]. Output: Approximate k-NNs of xq .

648 N. Panda, E.Y. Chang, and A. Qamra

Once the starting partition P [α] has been identified, we retrieve the instances in that
partition and the associated local index S[α] from the disk (if not yet cached in main
memory). We then look for the nearest neighbor of xq among the instances in P [α].
From that one single nearest neighbor, we can use the intra-partition index S[α] to
harvest the approximate k-NNs of xq . We start by selecting an arbitrary instance x0 in
P [α], and then iteratively find instances closer to xq (than x0).

Figure 1 depicts an example partition P [α]. The local index of x0 contains nine data
instances: x0 · · ·x8. The query instance xq is located at the top of the figure. We use
x0 as an anchor to find instances closer to xq . Pictorially, Figure 1 shows that a better
nearest neighbor than x0 lies within a radius of a from xq . Let the distance between x0
and xq be a. Starting at x0, we seek to find an instance as close to xq as possible. The
intra-partition index of x0 contains an ordered list of instances based on their distances
from x0. For the example in Figure 1, the neighboring points of x0 appear in the order
of x3, x1, x4, x5, x2, x6, x7, and x8 on its sorted list. To find an instance closer than
x0 to xq , we search this list for instances at a distance of about a from x0. To do so, the
instance performs a binary search for a and picks up the first instance xn in its sorted
list closer to xq than itself (in this case, x1 is chosen after rejecting x4 and x5). The
next iteration then commences with the new anchor xn.

 4

 5

 6

 1

8

3

 2

*

7

X

X

X

X

X

X

X

X

Xq

X C
0

a

Fig. 1. Arrangement of instances

Xq

X

Xc

2

1

a

u

r

r

Fig. 2. Processing other partitions

The iterations continue till no nearer instance than the current anchor can be found.
The approximate top-k instances nearest to xq are the k nearest neighbors on the current
anchor’s intra-partition sorted list. To evaluate the performance of our intra-partition
search algorithm, we present the number of distance computations (between instances
in the dataset and xq) in http : //www .cs .ucsb.edu/ ∼ panda/dexa06 long.pdf .

Size of the Local Index. Instead of storing the distances of all the instances from xi in
the local index of xi, if we stored just the distances of log g items, the probability of not
finding an instance closer to the query point after evaluating all these instances would
be 1

2logg , which is essentially 1
g . In our local index for every instance we store two sets

of information.

– 1. The distances of only O(log g) instances for every instance xi in the partition.
Let L = (l1, l2, l3, · · · , lg) be the ordering of all instances in the partition based on
their distances from xi. Let L1 = (l1, l2, · · · , l g

2

) and L2 = (l g
2
+1, l g

2
+2), · · · , lg

be two equal halves of L. In our local index we store the distances of 4 × log g
2

instances with log g
2 distances from each end of L1 and L2, thus selecting

Hypersphere Indexer 649

l1, l2, l4, · · · , l
2

�log
g
2

� , l g
2

, l g
2

−1
, l g

2
−3

, · · · , l
g
2

−2
�log

g
2

�
+1

,

l g
2

+1
, l g

2
+2

, l g
2

+4
, · · · , l

g
2
+2

�log
g
2

�
+1

, lg, lg−1, lg−3, · · · , l
g−2

�log
g
2

�
+1

.

The 4× log g
2 instances are chosen to accommodate instances spread out over the

entire spectrum of distances of instances in the partition.
– 2. The distances of the r closest instances for every xi. As we get closer to the

query instance, the number of instances on the list that are examined becomes small
(because distance a to the query instance comes down), and the possibility of not
finding an instance closer to the query instance becomes more likely. This situation
is addressed by adding the instances closest to xi in the partition to our index. That
is, we add the distances of the instances, l1, l2, · · · , lt, to our index for xi.

Combining the above two sets, the local index of Hydex uses O(g log g + t g) space
per partition. With values of t close to O(log g), the total space required for the local
index would therefore be O(g log g) per partition and O(n log g) overall. Constructing
this local index for all partitions requires O(n g log g + n g d) time.

Our empirical studies show that a typical g is in the order of thousands, and t is
about 30. For g = 1000, the probability of not finding an instance closer to the query
instance, after evaluating all the instances in the local index of xi, is less than 10−10

(≤ 2−log(g
2
)4 = 1

(g
2
)4). With t ≈ 30, this probability, even when the anchor is close to

the query instance, is given by 1
230 (≈ 10−9). Therefore, the number of distances stored

in the local index of instance xi is bounded by 4× log g
2 + 30. (However, since some of

the chosen positions overlap, the number of instances chosen is lower than this number.)
For g = 1000, the number of instances stored is about 60 (≤ 4 log(1000/2) + 30).

Search in Adjacent Partition As the algorithm proceeds, starting from the partition to
which the query instance belongs, we advance to adjacent partitions. Having identified
the instance x in a partition close to the query instance, we use the inter-partition index
to select a good starting instance in the adjacent partition. Since the inter-partition index
contains the instance from the adjacent partition closest to the instance x, there is a high
probability that the inter-partition index will give an instance very close to the query in-
stance. This has the effect of lowering the number of iterations needed to converge to the
approximate best instance in the adjacent partition. Figure 2 presents the scenario when
searching adjacent partitions and details of computations necessary are presented in the
appendix of the online version at http://www.cs.ucsb.edu/∼panda/dexa06 long.pdf.

4 Experiments

In this section, we present an evaluation of our indexing approach and make compar-
isons with existing techniques to demonstrate its effectiveness. We were interested in
the following key questions:

– Using random IOs, how does Hydex compare with LSH and M-tree? (Section 4.2)
– When Hydex maintains sequential IOs, what is the additional gain? (Section 4.2)

Answers to other questions like “How do insertions affect sequential access?”, “What
is the maximum space reservation possible without a decay in performance?”, “What

650 N. Panda, E.Y. Chang, and A. Qamra

is the percentage of data Hydex processes compared to competing schemes?”, “What is
the impact of a poor center instance?” are presented in the online version of the paper at
http : //www .cs .ucsb.edu/ ∼ panda/dexa06 long.pdf because of space limitations.

4.1 Setup

It would be impossible to compare our method with every published indexing scheme
so we chose to compare Hydex with two representative schemes: LSH and the M-tree.
LSH was chosen because it outperforms many traditional schemes, and it has been used
in real applications [18,7]. An approximate version of the algorithm was presented in
[8]. For a fair comparison, we chose the algorithm presented in [8] and used the code
provided by M. Patella. The code is available on request, but it is not part of the basic
download available at [17].

Datasets. We used two datasets for conducting our experiments. The first dataset [15]
is the same as the largest dataset used by LSH. It contains 275, 465 feature vectors.
Each of these was a 60-dimensional vector representing texture information of blocks
of large aerial photographs. The second dataset contained 314, 499 feature vectors. Each
of these was a 144-dimensional vector representing color and texture information for
each image.

In our experiments on each dataset, we chose 2, 000 instances randomly from the
dataset and created an index using the rest of the dataset. As in [11] our experiments
aimed at finding the performance for a top-10 approximate NN search. The results are
averaged over all the approximate 10-NN searches.

Comparison metric. The objective of our experiment was to ascertain how quickly the
approximate results could be obtained using the index. Following [2] the effective error
for the 1-nearest neighbor search problem is defined as

E =
1
|Q|

∑
queryxq∈Q

(
dindex

d∗
− 1),

where dindex denotes the distance from a query point xq to a point found by the index-
ing approach, d∗ is the distance from xq to the closest point, and the sum is taken over
all queries. For the approximate k-nearest neighbor problem, as in [11], we measure the
distance ratios between the closest point to the nearest neighbor, the 2nd closest one to
the 2nd nearest neighbor and so on, finally averaging the ratios. In the case of LSH, the
sum is calculated over all queries returning more than k results. Under LSH, queries
returning less than k results are defined as misses.

We compare methods based on the number of disk accesses performed. Our measure
of disk accesses takes into account both the seek time and the data transfer time as
outlined below. To correctly gauge the impact of data transfer time we compute the
disk transfer time in units of the seek time. The number of disk accesses is then the
total number of seeks performed (both the actual seeks and the seeks to account for the
data transfer). To understand the relationship between seek time and data transfer time,
we look at the time the disk takes to transfer 1 MB of data. Current disk technology
can maintain a sustained throughput in the range of 50-70MB/s. Therefore, transferring

Hypersphere Indexer 651

1MB of data takes roughly 14-20ms. Average seek times are usually in the range of
10ms. Thus, the ratio of transfer time to seek time ranges from 1.4 to 2. Since the exact
time varies from disk to disk, we use the ratio of the times in our calculations and select
a higher value of the ratio (2) to allow the competing index structures the maximum
benefit. Further, since the other index structures transfer only small chunks of data in
each access to the disk, the time they require to transfer data has been assumed to be 0.
We also present graphs with different ratios between seek and transfer time for the sake
of completeness.

4.2 Performance with Disk IOs

We compared the performance of the two approaches in cases when the index needs to
be accessed from the disk. In such cases, the cost of distance computations becomes
insignificant when compared to the cost of disk access. We count only the total number
of seeks performed by LSH. The number of seeks performed by LSH is controlled
by parameter l. The space used by our indexing structure is O(log g) per instance, g
being the number of instances assigned to a partition. As explained in Section 3.2, when
g = 1000, we store approximately 60 distances for each instance. If we limit ourselves
to 2 bytes for each distance, we can get 4 digits of precision. Also, since there are 1000
instances in the partition, to maintain unique identifiers for them we need only 10 bits.
The total space required to store the index associated with one instance is therefore
60× (2 + 10

8) bytes, which is equal to 60× 3.25 bytes.
The results are presented in Figures 3,4. The x-axis represents the percentage of error,

and the y-axis the number of disk accesses. The second y-axis, when used, represents
the number of partitions. Many of the curves pertaining to Hydex overlap.

Performance under random access. In the case of the first dataset, LSH used l ≈ 70
hash functions to achieve acceptable error rates. Hence the total time taken by LSH
would be given by tLSH = l × (tseek + trot) = 70× (tseek + trot). Here, tseek is the
average seek time and trot is the average rotation latency. Compared to this, our method
has to retrieve whole partitions. Thus, we need to compute the space required to store
the partitions. In the case of the first dataset, where each instance has 60 features, each
partition takes up space g × d + g × β × log g.

But, as explained above, β × log g is equal to 60 × 3.25 when g = 1000. Hence,
the total space consumed is equal to 1000 × 60 + 1000 × 60 × 3.25, where, as
in LSH, each dimension can be stored in 1 byte. Therefore, the total space required to
store a partition is 0.255MB. The total time consumed is therefore given by

r × tseek + r × trot + r × 0.255× ttr,

where, ttr is the time taken to transfer 1MB of data from the disk and r is the number
of partitions transferred. The rotation latency, trot, is about half the seek time, tseek .
Since ttr takes less than twice the average seek time, the equation simplifies to r ×
tseek(1 + 0.5 + 0.51). (We also present data for other ratios between seek time and
transfer time in the graphs shown in Figure 3. In the graph legend the first value after
Hydex is the average seek time in milliseconds and the second value is the data transfer
rate in MB/s). Taking the ratio of the times taken by LSH and our method we get

652 N. Panda, E.Y. Chang, and A. Qamra

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

D
is

k
ac

ce
ss

es

Error percentage

LSH
Hydex 12 40
Hydex 10 50
Hydex 9 60
Hydex 8 70

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

D
is

k
ac

ce
ss

es

N
um

be
r

of
pa

rt
iti

on
s

Error percentage

LSH
Hydex 12 40
Hydex 10 50
Hydex 9 60
Hydex 8 70

(a) vs. LSH: random access (b) vs. LSH: sequential access

Fig. 3. Hydex vs. LSH: first dataset

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

D
is

k
ac

ce
ss

es

Error percentage

LSH
Hydex 12 40
Hydex 10 50
Hydex 9 60
Hydex 8 70

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

200

D
is

k
ac

ce
ss

es

N
um

be
r

of
pa

rt
iti

on
s

Error percentage

LSH
Hydex 12 40
Hydex 10 50
Hydex 9 60
Hydex 8 70

(a) vs. LSH: random access (b) vs. LSH: sequential access

Fig. 4. Hydex vs. LSH: second dataset

Speedup =
70× (tseek + 0.5× tseek)
r × tseek(1 + 0.5 + 0.51)

=
70× 1.5

r × (2.01)
.

Therefore, if our approach is able to retrieve the approximate set of instances in less
than 70×1.5

2.01 partitions, then we have speedup. This value is roughly equal to 52. We
found (Figure 3(c)) that the average number of partitions that had to be evaluated before
achieving the same level of error was 12. The speedup is ≈ 4 times.

Similar analysis for the second dataset can be done as follows. The space required
for each partition of the second dataset is given by 1000 × (144 + 3.25 × 60) bytes
(0.339MB). For the second dataset, LSH required l > 130 to achieve 15% error rate.
Therefore, Speedup = 130×(tseek+trot)

r×tseek(1+0.5+2×0.339) = 130×1.5
r×(2.178) . To achieve parity with the

time taken by LSH we would need to evaluate r = 89 partitions. We show in Figure 4(c)
that in this case the average value of r is 21. The speedup is approximately 4.

Performance under sequential access. In this case, we would need at most two seek
operations and the rest of the time would be spent in transferring the partitions. Here,
we assume that space has been reserved for another g instances in each partition to
accommodate insertions. The total time consumed for the first dataset is therefore given
by 2 × tseek + 2 × trot + 2r × 0.255 × ttr. Since ttr is less than twice the average
seek time and trot is about half of the average seek time, the equation simplifies to

Hypersphere Indexer 653

2 × tseek(1.5 + 2r × 0.255). (We also present data for other ratios between seek time
and transfer time in the graphs shown in Figure 4. In the graph legend the first value
after Hydex is the average seek time in milliseconds and the second value is the data
transfer rate in MB/s). Taking the ratio of the times taken by LSH and our method,

Speedup =
70× (tseek + trot)

2tseek(1.5 + 2r × 0.255)
=

35× 1.5
1.5 + 0.51r

.

Therefore, if our approach can retrieve the approximate set of instances in fewer than
34×1.5
0.51 partitions, then we achieve speedup. This value is roughly equal to 100. Since

the average number of partitions required to be evaluated before achieving the same
level of error is 12, the speedup is on the order of 8 times.

Similar analysis for the second dataset can be done as follows.

Speedup =
130× (tseek + trot)

2tseek(1.5 + 2r × 0.339)
=

65× 1.5
1.5 + 0.678r

.

To achieve parity with the time taken by LSH we would need to evaluate r = 141
partitions. The average value of r is 21 for 15% error. Hence, the speedup is approxi-
mately 6.5 times. We do not present the graph in this case because of space limitations.
Our experiments with M-tree show that the number of IO operations performed by the
index are much higher on both the data sets. This makes using M-trees for searching
prohibitively expensive.

5 Conclusion

We have presented a new approach to efficiently index high-dimensional vector spaces.
This approach minimizes IOs to reduce the seek overheads. Strategies were presented
to minimize the number of distance computations performed. We studied the tradeoff
between sequential access using space reservation and random placement of partitions.
Experimental comparison with LSH and M-tree showed the good performance of our
approach.

References

1. S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for ap-
proximate nearest neighbor searching in fixed dimensions. In Proceedings of the 5th SODA,
pages 573–82, 1994.

2. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. JACM, 45(6), 1998.

3. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R∗ tree: An efficient and robust
access method for points and rectangles. In ACM SIGMOD Intl. Conf. on Mgmt. of Data,
pages 322–331, 1990.

4. S. Berchtold, D. Keim, and H. Kriegel. The X-tree: An index structure for high-dimensional
data. In 22nd Conference on Very Large Databases, pages 28–39, 1996.

5. T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search queries.
ACM Trans. on Database Systems, 24(3):361–404, 1999.

654 N. Panda, E.Y. Chang, and A. Qamra

6. S. Brin. Near neighbor search in large metric spaces. In The VLDB Journal, 1995.
7. J. Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing. In Bioin-

formatics, volume 17, pages 419–428, 2001.
8. P. Ciaccia and M. Patella. Pac nearest neighbor queries: Approximate and controlled search

in high-dimensional and metric spaces. In In Proceedings of International Conference on
Data Engineering, pages 244–255, 2000.

9. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search
in metric spaces. Proc. 23rd Int. Conf. on Very Large Databases, pages 426–435, 1997.

10. K. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the 10th
SCG, pages 160–164, 1994.

11. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In
The VLDB Journal, pages 518–529, 1999.

12. N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional nearest
neighbor queries. In ACM SIGMOD Int. Conf. on Mgmt. of Data, pages 369–380, 1997.

13. C. Li, E. Chang, H. Garcia-Molina, and G. Wilderhold. Clindex: Approximate similarity
queries in high-dimensional spaces. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 14(4):792–808, July 2002.

14. K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree: An index structure for high-
dimensional data. VLDB Journal: Very Large Data Bases, 3(4):517–542, 1994.

15. B. S. Manjunath. Airphoto dataset. http://vision.ece.ucsb.edu/download.html.
16. G. Navarro. Searching in metric spaces by spatial approximation. In SPIRE/CRIWG, pages

141–148, 1999.
17. M. Patella. M-tree website. http://www-db.deis.unibo.it/Mtree/download.html.
18. A. Qamra, Y. Meng, and E. Y. Chang. Enhanced perceptual distance functions and index-

ing for image replica recognition. In IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), volume 27, 2005.

19. R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In Proc. 24th Int. Conf. Very Large
Data Bases, VLDB, pages 194–205, 24–27 1998.

Distributed Continuous Range Query Processing on
Moving Objects�

Haojun Wang, Roger Zimmermann, and Wei-Shinn Ku

University of Southern California, Computer Science Department,
Los Angeles, CA, USA

{haojunwa, rzimmerm, wku}@usc.edu

Abstract. Recent work on continuous queries has focused on processing queries
in very large, mobile environments. In this paper, we propose a system leveraging
the computing capacities of mobile devices for continuous range query process-
ing. In our design, continuous range queries are mainly processed on the mobile
device side, which is able to achieve real-time updates with minimum server load.
Our work distinguish itself from previous work with several important contribu-
tions. First, we introduce a distributed server infrastructure to partition the entire
service region into a set of service zones and cooperatively handle requests of
continuous range queries. This feature improves the robustness and flexibility of
the system by adapting to a time-varying set of servers. Second, we propose a
novel query indexing structure, which records the difference of the query distrib-
ution on a grid model. This approach significantly reduce the size and complexity
of the index so that in-memory indexing can be achieved on mobile objects with
constrained memory size. We report on the rigorous evaluation of our design,
which shows substantial improvement in the efficiency of continuous range query
processing in mobile environments.

1 Introduction

With the growing popularity of GPS-enabled mobile devices and the advances in wire-
less technology, the efficient processing of continuous range queries, which is defined
as retrieving the information of moving objects inside a user-defined region and contin-
uously monitoring the change of query results in this region over a certain time period,
has been of increasing interest. Continuous range query processing is very important
due to its broad application base. For instance, the Department of Transportation may
want to monitor the traffic change on a freeway section to develop a traffic control
plan. In a natural disaster, it is highly desirable to locate all fire engines within a cer-
tain area for emergency response. Continuous range queries pose new challenges to
the research community because the movement of objects causes the query results to
change correspondingly. Applying a central server processing solution where moving
objects periodically update their locations is obviously not scalable. On the other hand,
the growing computing capabilities of mobile devices has enabled approaches such as

� This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC), CMS-
0219463 (ITR), IIS-0534761 and equipment gifts from the Intel Corporation, Hewlett-Packard,
Sun Microsystems and Raptor Networks Technology.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 655–665, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

656 H. Wang, R. Zimmermann, and W.-S. Ku

MobiEyes [2] and MQM [1] that use mobile devices to answer continuous range
queries, where a centralized server acts as a mediator. However, these solutions suffer
from some limitations. First, a centralized server is not robust enough under certain sit-
uations. In the mentioned example of natural disasters, some servers might be down or
only provide limited computational capacity. Therefore, it is highly desirable to have a
fault resilient infrastructure. Second, the communication between the server and mov-
ing objects should be minimized in order to manage data in large mobile environments.
Finally, the memory and computing capabilities of mobile devices are limited so that
the implementation of in-memory processing on moving objects needs to be carefully
considered.

In this paper, we address the problem of processing real-time continuous range
queries by proposing a robust and scalable infrastructure. The goal is to build a system
that supports a large number of moving objects with limited server and communication
resources. In our design, continuous range queries are mainly processed by mobile de-
vices. Our work distinguishes itself from previous work with two contributions. First,
we propose a distributed server infrastructure. We introduce the feature of service zones.
A service zone is a subspace being recursively binary partitioned from the entire service
region. Each server controls a service zone. Our system is able to adaptively allocate
and merge service zones as servers join or leave. In addition, we propose a novel grid
index on continuous range queries. Instead of recording the distribution of queries, our
design of grid index preserves the change of the query distribution and is more com-
pact than other grid index structures. Our experimental results show that our design is
very efficient to support numerous continuous range queries with a very large number
of moving objects under the mobile environments.

The rest of this paper is organized as follows. The related work is described in Sec-
tion 2. In Section 3 we introduce the design of service zones, grid index, and the support
of continuous range query processing. The experimental validation of our design is pre-
sented in Section 4. Finally, we discuss the conclusions and future work in Section 5.

2 Related Work

A number of studies have addressed continuous spatial queries. Related work, such as
presented in [10], [11], and [14], addressed the processing of continuous spatial queries
on the server. For the efficient processing of a large number of continuous queries at the
same time, Prabhakar et al. [7] addressed the issue of stationary continuous queries in
a centralized environment. In addition, Mokbel et al. [5] proposed SINA that supports
moving queries over moving objects in server-based processing. By contrast, MQM [1],
and MobiEyes [2] assume a distributed environment, where the mobile hosts have the
computing capability to process continuous queries. A centralized server is introduced
by both approaches to work as a mediator coordinating the query processing. In MQM,
the concept of resident domain is introduced as a subspace surrounding the moving
object to process continuous queries. Continuous queries are partitioned into a set of
monitor regions, where only the monitor regions covered by the resident domain will
be sent to the moving object. However, partitioning continuous queries is inefficient
because it increases the number of queries in the system.

Distributed Continuous Range Query Processing on Moving Objects 657

On the issue of moving object indexing, the TPR-Tree [9] and its variants have been
proposed to index moving objects with trajectories. However, the support of continuous
queries by these methods is very inefficient. Kalashnikov et al. [4] evaluated the effi-
ciency of indexing moving objects and concluded that using a grid approach for query
indexing results in the best performance. Other methods to process continuous queries
without a specific index can be found such as the usage of validity regions [11], safe
regions [3], safe periods [5], and No-Action regions [13]. These approaches have in
common that they return a valid time or region of the answer. Once the result becomes
invalid, the client submits the query for reevaluation.

Our work distinguishes itself from the above approaches, by specifically addressing
the scalability and robustness of the system. We adaptively organize servers to cooper-
atively work in the entire service space. Furthermore, we propose a grid index that is
able to be implemented as an in-memory data structure on mobile devices. There is no
restriction on the movement of objects and the system is extremely efficient to support
continuous range queries with a very large number of moving objects.

3 System Design and Components

3.1 System Infrastructure and Assumptions

Figure 1 illustrates the system infrastructure of our design. We are considering mobile
hosts with abundant power capacity, such as vehicles, that are equipped with a Global
Positioning System (GPS) for obtaining continuous position information. We assume
that the mobile host has some memory and computing capacity to store the queries and
process range query operations. In our paper, we use the term moving objects to refer
to these mobile hosts participated in the query processing. On the base-station side,
our design has two assumptions. First, the servers and moving objects communicate
via cellular-based wireless network. Moreover, protocols such as GeoCast [6] can be
adopted for sending messages within a certain region. Second, the servers with spatial
databases are connected via the wired Internet infrastructure. Each server is able to
receive query requests from any user and forward them to the appropriate servers.

In our design, moving objects are represented as points and range queries are denoted
as rectangular regions. Given a set of moving objects and continuous range queries, the
challenge is to calculate which objects lie within which query regions at a certain time.

Fig. 1. The system infrastructure

658 H. Wang, R. Zimmermann, and W.-S. Ku

In this paper, we focus on range queries, which are widely used in spatial applica-
tions and can be used as preprocessing tools for other queries, such as nearest neighbor
queries. For simplicity, we use the term queries to refer to continuous range queries in
the following sections.

3.2 Server Design

In this section, we describe our design of the server infrastructure. First, we describe
how the system adaptively manages the service region by adapting to a time-varying set
of servers through the concept of the service zone. Next, we present another important
feature, the grid index. By using the grid index, our system avoids excessive query
retrieval from the server and significantly reduces the communication overhead.

A
01

E
00

C
10

D
111

B
11000

F
1101

G
11001

0

10

0

00

1

1

1

1

Server E Server A Server C

Server D

Server F
0 1

Server B Server G
(a) (b)

Fig. 2. An example of the system with 7 servers and their service zone identifier (SID) tree

Service Zones. We leverages the design of Content Addressable Network (CAN) [8]
to dynamically partition the entire service region into a set of subspaces. Each subspace
is controlled by a server. We define the term service zone as the subspace controlled
by a server. Each service zone is addressed with a service zone identifier (SID), which
is calculated from the location of the service zone. Figure 2a shows an example of the
entire service region partitioned into 7 service zones. The service zone partitioning is
a binary partition approach that always equally divides a larger service zone into two
smaller child service zones. Hence the corresponding SID address for service zones
can be represented with a binary tree structure as shown in Figure 2b. Each server
maintains a routing table with tuples 〈SID, address〉 storing the routing information
of its neighbor servers. By using the same routing mechanism as CAN, our system
is able to allocate any service zone with complexity of O(nlogn) in a system of n
servers.

When a new query q is submitted, the system first forwards it to all servers covered
by its query region through the M-CAN multicast algorithm from the design of CAN.
When a server receives the query, it is inserted into the query repository. Consequently,
the grid index on the server is updated. We will describe the details of the grid index in
the next section. Finally, the server broadcasts a message GridIndexUpdate(GIndex)
to all moving objects associated with it, where GIndex is the updated grid index.

When a query q is about to be deleted, the server searches through its repository to
delete the corresponding entry. Consequently, the server updates the grid index.

Distributed Continuous Range Query Processing on Moving Objects 659

When a new server joins the system, several steps must be taken to allocate a service
zone for it. First, the new server must find a bootstrap server, which is already a member
of the system. Second, the bootstrap server broadcasts a message that a new server is
about to join the system. Other servers in the system reply back with the information of
its current system load and service zone. Our goal is the balance the system load among
servers. Hence the server with the highest system load (for instance, average used disk
space, average memory usage, or other user identified resources) will be performed
a partition to divide the corresponding service zone into halves. Next, the bootstrap
server sends a message to the partitioned server to forward queries overlapping the new
server’s service zone. The partitioned server also broadcasts the updated service zone
information to moving objects associated with it. Moving objects register with the new
server if their current locations are controlled by the new server. After the new server
receives queries forwarded from the partitioned server, it creates and maintains the grid
index correspondingly. Finally, the neighbors of the partitioned server will be notified
to update their routing tables.

When a server leaves the system, we need to ensure that the corresponding service
zone is taken over by the remaining servers. The departing server explicitly hands over
its repository of moving objects and queries to one of its neighbors whose service zone
can be merged with the departing servers zone to produce a valid single service zone.

Grid Index. The memory capacity of moving objects is limited. On the other hand, it is
highly desirable to have an index structure that helps moving objects to retrieve queries
from the server only when they are very close to the queries. Therefore, the index also
needs to be compact in terms of the size to be used on moving objects. Here we present
a grid index structure fulfilling these requirements.

Previous work of grid-based indexing on continuous queries, such as [4] and [2],
aims at random data access by recording the distribution of queries. However, objects
move continuously along a trajectory in mobile environments, therefore queries in large
parts of the service region can be pruned and no random access is needed. Based on this
observation, our grid index preserves the difference of the query distribution that can be
efficiently used for continuous query processing.

The basis of our grid index is a set of cells. Each cell is a region of space obtained
by partitioning the entire service region using a uniform order. Figure 3a demonstrates
a system with 7 servers. Figure 3b shows the entire service region divided into 64 grid
cells. Figure 3c shows how these grid cells are distributed on the example servers. By

(a) A 7 service zone example (b) A 64 grid cell example (c) Service zones and grid
cells overlapping

Fig. 3. Service zones and grid cells

660 H. Wang, R. Zimmermann, and W.-S. Ku

C1

Q1

Q2

Grid Index Examples:

C1: {{+Q2}, {-Q1}}

C2

C3

C2: { , }

C3: {{-Q3}, {-Q1}}

Q3

o

C1

{-Q1}

{+Q2}{+Q3}

(a) (b)

Fig. 4. The grid index

using a uniform grid order to partition the service region into grid cells, given the coor-
dinates of an object, it is easy to calculate the cell in which the object resides.

The server maintains the grid index in its service zone. For each cell, the grid index
structure consists of two lists identified as right, and lower that record the change of the
query distribution from the right and lower neighbor cells, respectively. In the example
shown in Figure 4a, a service zone is divided into 16 grid cells. Cell C1, C2, and C3
are partially covered by a query Q1. There are queries Q2 and Q3 covering the right
and left neighbor cells of C1, repectively. As shown in Figure 4a, the grid index for cell
C1, C2, and C3 is {{+Q2}, {−Q1}}, { ∅, ∅ }, and {{−Q3}, {−Q1}}, respectively.

Once a moving object is associated with a server, the

c

c - x x

x

q

Set0

Set1

Set1

Set2

Fig. 5. Number of Grid Index
Entries Analysis

server will forward the grid index of its service zone to
the moving object. By using the grid index stored in its
local memory the moving object is able to forecast the
query locations with a refined granularity. As an exam-
ple shown in Figure 4b, if there is a moving object o in
the cell C1 is about to move across the right edge of C1,
the right list of C1 is {+Q2}. Hence the object submits
a request to retrieve the query Q2 from the server. If the
object is about to cross the lower edge of C1, since the
lower list of C1 is {−Q1}. The object could either to re-
tain the information of query Q1 if there is enough mem-
ory or remove Q1 if more memory is needed for query
processing. If the object is about to move across the up-

per edge of C1, the lower list of the upper neighbor cell will be retrieved and the values
in the list will be inversed. In this example, the object retrieves the lower list of C2 and
calculate the inverse value, which is ∅. This indicates that there is no query that needs
to be retrieved from the server. When the object is about to move across the left edge of
C1, a similar process will be performed on the right list of the left neighbor cell (i.e.,
C3). In this example, the inverse value of the list is {−Q3}. Therefore, the moving
object submits a request to retrieve the query Q3 from the server.

To study the impact of our design on the index size, let us assume the shape of queries
and grid cells are square and the length of each side of a query Q is q. Let c denote the
side of each grid cell with q > c. Then q can be represented as i×c+x, where x ⊂ [0, c)
and i is an integer. Without loss of generality let us consider the case where the top-left

Distributed Continuous Range Query Processing on Moving Objects 661

corner of query q is located somewhere within the top-left grid cell of the system as
shown in Fig 5. It can be verified that if the top-left corner of Q is inside Set0 it will
result in 4(i+1) index entries. For Set1 the number of index entries is 2(i+1)+2(i+2),
and for Set2 it is 4(i + 2). Assuming uniform distribution of queries, on the average
Q results in 4(q + c)/c index entries. On the other hand, recording the distribution of
queries requires (q+c)2/c2 index entries on each Q [12]. For all q/c ≥ 3, our approach
requires less index entries than recording the distribution of queries on the grid.

3.3 Query Processing on Moving Objects

In this section, we describe the functionality of the moving objects. In our design, the
following information is stored in the memory of moving objects for query processing:

– OID: the unique identifier of the moving object.
– currentPos: the current location of the moving object.
– GIndex: the grid index of the current service zone covering the moving object.
– Queries: the list of queries received from the server.

Table 1. Message types in query processing

Notation Definition

RegisterObject(OID) The message to register a moving object on a server.
UnregisterObject(OID) The message to delete a moving object on a server.

UpdateResult(OID,QID, F lag) The message to update a query result.
RequestQueries(OID,QList) The message to retrieve a set of queries.
GridIndexUpdate(GIndex) Updating the grid index broadcasted by the server.

In order to implement the query processing mechanism on the mobile object, a set of
messages is defined as shown in Table 1.

A moving object is associated with a server at all times. When a moving object turns
its power on, it broadcasts a message RegisterObject(OID). The server monitoring
the location of the object inserts it into the object repository and replies back with a
GridIndexUpdate(GIndex) message. The server also sends the set of queries covering
the current grid cell of the moving object.

When a moving object is about to leave its current service zone, it sends a message
UnregisterObject(OID) to the server. The server deletes the moving object from
its repository and sends back a set of tuples〈SID, address〉 from its routing table
identifying adjacent service zones. The moving object sends a RegisterObject(OID)
message to the server controlling the zone it is entering.

When a moving object is about to move into a new grid cell, it consults the grid
index as described in the previous section. If there are queries in the grid index needing
to be retrieved, the moving object sends a message RequestQueries(OID, QList) to
the server, where QList is a list of queries with query identifier QID. Once the server
receives the message, it will send the corresponding queries to the moving object.

At all times, the moving object checks its current location currentPos against the
queries in the Queries list. If the object moves into or moves out of a query, it sends

662 H. Wang, R. Zimmermann, and W.-S. Ku

a message UpdateResult(OID, QID, F lag) to the server, where QID is the query
identifier and Flag indicates whether the object resides in the query region.

Query processing on moving objects enables real time updates to the query result
while reducing the cost of server processing substantially. We study the impact of our
techniques in experiments and show that the results match our analytical expectation.

4 Experimental Evaluation

In this section we describe the experimental verification of our design. There are three
metrics of interest extensively studied in our simulations. First, the number of grid index
entries is measured as the average number of index entries generated on a server and
forwarded to moving objects associated with it. This measure indicates the efficiency of
our grid index design and whether the grid index can be used for in-memory processing
on moving objects. Second, the server communication cost is measured as the average
number of messages transmitted from servers to the moving objects. More specifically,
the server communication cost consists of the registration messages, which are gener-
ated when a moving object enters or leaves a service zone, and the query retrieval mes-
sages, which are generated when a server receives a RequestQueries message from
a moving object. This metric implies whether the server may become a bottleneck in
the system. Finally, the mobile communication cost is measured as the total number of
messages transmitted from moving objects to servers. The mobile communication cost
also consists of registration messages and query retrieval messages. Additionally, query
update messages are generated by moving objects when they enter or leave a query re-
gion. This measure reflects the prime query processing cost and hence is important to
demonstrate the scalability of our system.

4.1 Simulator Implementation

We implemented a prototype simulator that is structured into three main components:
the service zone generator, the object and query loader, and the performance monitor.

The service zone generator creates a virtual square space with a 100km× 100km di-
mension. In the experiments, we partition the space into 64 service zones. Each service
zone is identified by a SID representing a server.

In the next step, the object and query loader generates moving objects and imports
continuous range queries into the system. We use the random walk model to simulate
the movement of objects. Initially 10,000 objects are uniformly distributed in the space.
Each of them moves with a constant velocity, which is randomly selected in the range
from 10m to 20m per second, for a duration that is exponentially distributed with mean
value equal to 100 seconds. We also generated two sets of rectangular regions as con-
tinuous range queries that are uniformly distributed in the space with an average area
size of 1% and 10% of the plane size, respectively.

After the objects and queries are loaded into the system, the performance monitor
generates the grid index for each server with 256 grid cells partitioning the entire ser-
vice space. Each simulation runs for 5,000 seconds and the performance monitor reports
the number of grid index entries, the server communication cost, and the mobile com-
munication cost. Currently, our simulation is focused on the system performance in the

Distributed Continuous Range Query Processing on Moving Objects 663

steady state, i.e., we do not add any more queries when the objects start to move. We
plan to implement a dynamic simulation environment in the future.

4.2 Simulation Results

We were first interested in the efficiency of our grid index in terms of the size. Figure 6a
plots the total number of grid index entries in the system as a function of the number
of queries. The results clearly show that the total number of grid index entries increases
linearly with the number of queries. Additionally, our grid index structure performs
more efficiently with a larger average query size. With an average query size equal to
10% of the entire space, our grid index only doubles the number of entries compared
with the case when the average query size equals 1% of the space. This behavior cor-
roborates our analytical results described in Section 3. Furthurmore, the absolute size of
the grid index is very small. If we use 16 bytes to identify a query, it only takes 3.35 MB
to represent 10,000 queries with an average size of 10% of the space. Figure 6b shows
the benefit of using a distributed infrastructure on the server side that further reduces
the size of the grid index on each server. In the case of 10,000 queries with an average
size of 10% of the space, on average the size of index entries is 54 KB on each server.
This substantially reduces the requirement of memory on moving objects.

Figures 7a illustrates the average communication cost on each server with the set of
queries with an average area size of 10% of the plane. As a general trend, the number

2000 4000 6000 8000 10000
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000

2000 4000 6000 8000 10000
0

400

800

1200

1600

2000

2400

2800

3200

3600

(a) The total number index entries in the
system

(b) The average number of index entries
on each server

Fig. 6. The number of grid index entries as a function of the number of queries

2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2000 4000 6000 8000 10000

0.002

0.004

0.006

0.008

0.1
0.2
0.3
0.4
0.5
0.6
0.7

(a) The server communication cost (b) The mobile communication cost

Fig. 7. The server and mobile communication cost as functions of the number of queries

664 H. Wang, R. Zimmermann, and W.-S. Ku

of query retrieval messages increases with the number of queries. Intuitively, with a
larger number of queries, the possibility for objects to retrieve query information from
the server is larger. More importantly, the server communication cost is small in our
simulation results. With 10,000 queries and 10,000 objects in the system, the server
communication cost is about 1 message per second, which demonstrates that our server
infrastructure is very scalable and suitable for mobile environments. Figure 7b demon-
strates the mobile communication cost with respect to the number of queries. It shows
that the query update messages are the primary cost of mobile communication cost.
However, with 10,000 queries, the object query update message count on each object is
about 0.7 per second. Assuming the size of query update message is 32 byte, the aver-
age message size transmitted from each object is about 22 bytes/second. Therefore, our
design on the mobile object side is very scalable.

5 Conclusions and Future Directions

Continuous range queries have generated intense interest in the research community
because the advances in GPS devices is enabling new applications. We have presented
a novel system that utilizes the computing capability of moving objects for continuous
range query processing. Our design of service zones and a grid index is able to provide
accurate real time query results for a very large number of moving objects and queries.

In the future, we intend to study the communication costs so that the size of the
grid can be optimized with regard to the query distribution. Moreover, a dynamic grid
index retrieval from the server with respect to the memory capacity on moving objects
is worth exploring.

References

1. Y. Cai, K. Hua, and G. Cao. Processing Range-Monitoring Queries on Heterogeneous Mobile
Objects. In International Conference on Mobile Data Management, pages 27–38, 2004.

2. B. Gedik and L. Liu. MobiEyes: Distributed Processing of Continuously Moving Queries on
Moving Objects in a Mobile System. In International Conference on Extending Database
Technology, pages 67–87, 2004.

3. H. Hu, J. Xu, and D. L. Lee. A Generic Framework for Monitoring Continuous Spatial
Queries over Moving Objects. In SIGMOD, pages 479–490, 2005.

4. D. V. Kalashnikov, S. Prabhakar, S. E. Hambrusch, and W. G. Aref. Efficient Evaluation of
Continuous Range Queries on Moving Objects. In International Conference on Database
and Expert Systems Applications, pages 731–740, 2002.

5. M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Processing of Con-
tinuous Queries in Spatio-temporal Databases. In SIGMOD, pages 479–490, 2004.

6. J. C. Navas and T. Imielinski. GeoCast - Geographic Addressing and Routing. In Interna-
tional Conference on Mobile Computing and Networking, pages 66–76, 1997.

7. S. Prabhakar, Y. Xia, D. Kalashnikov, W. G. Aref, and S. Hambrusch. Query Indexing and
Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Ob-
jects. In IEEE Transaction on Computers, 2002.

8. S. Ratnasamy. A Scalable Content-Addressable Network. In Ph.D. Dissertation University
of California Berkeley, 2002.

Distributed Continuous Range Query Processing on Moving Objects 665

9. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of
Continuously Moving Objects. In SIGMOD, pages 331–342, 2000.

10. Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for Moving Query Point. In
SSTD, pages 79–96, 2001.

11. Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. In VLDB, pages
287–298, 2002.

12. H. Wang, R. Zimmermann, and W.-S. Ku. ASPEN: An Adaptive Spatial Peer-to-Peer Net-
work. In ACM GIS, pages 230–239, 2005.

13. X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Scalable Spatio-
temporal Continuous Query Processing for Location-aware services. In International Con-
ference on Scientific and Statistical Database Management, page 317, 2004.

14. J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based Spatial Queries. In
SIGMOD, pages 443–454, 2003.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 666 – 675, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optimal Route Determination Technology Based on
Trajectory Querying Moving Object Database

Kyoung-Wook Min, Ju-Wan Kim, and Jong-Hyun Park

LBS Research Team, Telematics Research Group, Telematics&USN Research Division,
ETRI, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350 Korea

{kwmin92, juwan, jhp}@etri.re.kr

Abstract. Recently, the LBS (Location-based services), which make use of lo-
cation information of moving objects, have obtained increasingly high attention.
We can store and manage the trajectories of moving objects such as vehicles by
querying moving object database management system. Therefore, it may be
used to deliver better services to users by past trajectory information. In this pa-
per, we describe a novel method that determines an optimal route by querying
the trajectory of moving objects stored in moving object database system. In
general, the route determination algorithms are not proper in real world because
these make use of only static properties of road segments. However, our
approach can determine the optimal route using dynamic attributes such as
passing time and real speed of road segments extracted from the trajectories of
moving objects. So we can provide more optimal route than results of conven-
tional route determination methods without traffic information gathering
devices.

1 Introduction

The characteristic of the real-world objects is that their state in space changes over
time. As a computing power and technology grows, new advanced applications are
entering the stage to manage space-time varying objects, such as land parcel, rivers,
roads, taxis, buses and cellular phone users, etc. Recent advances in wireless net-
works, the location determination technology and the mobile applications have led to
the emergence of the LBS [1, 2, 3]. Nowadays, the navigation system, the most popu-
lar application in LBS and telematics fields, can be expanded into integration GPS
receiver and other technology to provide seamless location information in an urban
area where a GPS signal is locally unavailable, such as in a tunnel, near a building,
and so on [4]. Therefore we can track the location of moving object in everywhere
and to provide the services efficiently, the reliable system is required that could ac-
quire, store, and query the large number of locations. The time-evolving locations of
moving objects can’t be managed by existing commercial Database Management
System (DBMS) as well as Geographic Information System (GIS). The reason is that
there is a critical set of capabilities that are needed by moving object database appli-
cations [5], such as LBS, and are lacking in existing DBMS and GIS. So, to provide

 Optimal Route Determination Technology 667

more reliable LBS, the Moving Object Database Management System (MODBMS)
must be supported and therefore, we can retrieve space-time varying object by query-
ing. The one of MODBMS queries, the trajectory query is retrieving data which are
sequential moving point of some object in the past [6]. By this trajectory querying, we
can extract the route that someone had being moved through in the past. About route
determination problem, there have been so many researches. Specially, the shortest
paths problem in networks has been the subject of extensive research for many years
resulting in the publication of a large number of scientific papers [7, 8, 9]. But the
entire route determination algorithm is dependent on the static information of road
network. The route which has the minimum cost of travelling through by comparing
the static properties of the road segment such the limited speed and length is chosen
as a result. Therefore the estimation value of the pass time through this route is com-
puted using values of the speed and the length properties of the road segment of
which result route consists. However this estimation information is not proper in the
real world because the pass time is changing dynamically.

The ultimate goal of this research is developing optimal route determination
methodology by analyzing the result of trajectory querying MODBMS in order to
provide more reliable route information. The rest of this paper is organized as fol-
lows. The problem on existing route determination algorithms is discussed in sec-
tion 2 and the overall system architecture is introduced in section 3. In section 4, the
scheme of the method of optimal route determination by trajectory querying
MODBMS is presented in greater detail and finally, the summary and future work is
given in section 5.

2 Problem Statement

The shortest path algorithm and the other similar route determination algorithm are
dependent on static property values of road network data. For example, in Fig.1, if the
function GetRoute is retrieving the route from S point to E point then the result can be
like below.

ROUTE route = GetRoute(S, E, RoadNetwork);

The route consists of two segments, S J, J E, and route.Distance is 7 km,
route.PassTime is 7 minutes. This result of the function GetRoute must be selected by
taking into account the values of properties of each road segment such as the limit
speed, the length and so on. In general, however, we know that speed of vehicle
seems to be reduced in the curved section of the road as well as at the signal lamp of
the junction. Therefore, the estimation pass time, 7 minutes, may be not probable and
we can guess that liable the pass time is longer than one of result route. If we have the
past trajectory of some vehicle of passing from S to E, the result information is possi-
ble to be in table 1. We can easily know that the time period of passing through the
route is different as time frame is varying. If we can have the past moving time
through some trajectory shown in table 1, it is much helpful to determine the route
and provide more accurate information for traveling.

668 K.-W. Min, J.-W. Kim, and J.-H. Park

Speed reduction for curve

S
E

Speed reduction for curve

Speed reduction
 for signal lamp

From S To J

60 km/hr

Estimate Time:

J

From J To E

Speed:

Distance:

30 km/hr

6 km 1 km

6 min 1min

Fig. 1. The cost estimation of route from S to E. The route is consists of two road segments,
S J and J E. We can estimate the pass time by computing the values of speed and distance of
each road segment.

Table 1. The cost of route[S, E] in real world. The time_stamp is the time instance value when
the car passes through the point.

CarID Stime_stamp Etime_stamp Pass Time[S, E]
A001 08:00 08:15 15 min
A003 14:13 14:25 12 min
B001 15:59 16:09 10 min
C001 18:20 18:33 13 min
C002 21:09 21:18 9 min

3 System Architecture

In this section, we describe the logical system architecture to explain the contribution
of our paper that can be applicable to determining the optimal route as analyzing past
trajectories resulted by querying MODBMS. Overall system architecture is shown in
Fig. 2. The system consists of 3 layers that are the database layer, the route analysis
layer and the application layer. In the database layer, to determine route by static
algorithm like shortest path algorithm, the road network data are managed in the spa-
tial DBMS. And to retrieving the past trajectories, the moving object data are man-
aged in the MODBMS. In the route analysis layer, the result route is selected by
comparing route by deterministic algorithm with past trajectories by querying
MODBMS using some special analysis factors. In the application layer, the client
application requests the route information and in case of the mobile device, must
report its position acquired by a GPS receiver to MODBMS.

3.1 Data Model

In the above architecture, the road network and the moving object are very important
basic data which we can determine optimal route by analyzing. Some analysis factors
are needed to compare the static route with trajectories and will be shown in detail in
section 4.3.

 Optimal Route Determination Technology 669

Buffer for
Trajectory

Optimal Routing Analyzer

MODBMS

TrajectoryRoad Network

Spatial
DBMS

Application
layer

Route Analysis
Layer

Database
Layer

Buffer for
Route

Quering Trajectory Quering Route

Request Optimal Route for Navigation

Reporting
Location

Hand Terminal (Navigation)

Fig. 2. The system architecture to determine optimal route by trajectory querying MODBMS

Road Network
The representation of a road network is given by a two-tuple RN = (S, N), where S is
set of segment and N is a set of connection node.
Segment
We define a road segment as (ns, ne, list of intermediate point, properties). More
specifically, ns is start node, ne is end node, where ns ne. The geographic informa-
tion of segment is composed of ns, ne, and list of intermediate point. The properties
are length, max speed and min speed.
Node
We define a node as (p, prop). Specifically, p = (x, y), prop is a set of connected link.
Moving Object
The representation of a moving object is given by (p, time, velocity, and segment).
The p is coordinates as position and the time when and segment on which it had been.
Trajectory
The representation of a trajectory is given by (MBRT, list of moving object). The
MBRT is minimum bounding rectangle and time period covered all list of moving
object, given by (x1, y1, x2, y2, from, to)

3.2 The MODBMS (Moving Object Database Management System)

The MODBMS can be interfacing external client with the MOQL (Moving Object
Query Language) [10] – SQL like format. And there are several components: query
processing, buffer management, location index, storage. In this paper, we exclude
detailed structure and function of moving object database. We can query trajectory
that has list of consecutive moving object to MODBMS. The MODBMS supports
several API by interfacing MOQL; the example query statements are in Fig. 3. The
examples are meaning – finding some car which had been in some area and at some
time; the time stamp in first, the time slice in second.

670 K.-W. Min, J.-W. Kim, and J.-H. Park

 Find car which were within 1km from point (x,y) at time t.

SELECT ID
FROM FLEETTABLE
WHERE WITHINS(SNAPSHOT(location,t), BUFFER(MPOINT(x, y), 1000)) = TRUE;

Find car which were within 1km from point (x,y) between time t1 and t2.

SELECT ID
FROM FLEETTABLE
WHERE WITHINS(SLICE(location,t1,t2), BUFFER(MPOINT(x, y), 1000)) = TRUE;

Fig. 3. The Examples of moving object query statements. The first query is the snapshot query
and the second query is the time slice query.

4 The Proposed Method to Determine Optimal Route

In this section, we explain the method of determining optimal route in detail. In the first
place, we describe the process of acquiring position from of GPS device and reporting it
in the client side and consequently, updating it to MODBMS in the server side.

4.1 The Process of Reporting and Updating Position

Client Side Process Scenario
The mobile handset client with the GPS device must be able to acquire its current
position and report it to MODBMS. A series of client side process is like below.

The client side program code that is acquiring its position and reporting to server side

Pbefore Ø
do
 Pgps GetGPS()
 Pcurrent CoordinateTransformation(Pgps, CoordType)
 P.segment GetSegment(Pcurrent, RN)
 if Pcurrent.segment Pbefore.segment then
 report(Pcurrent)
 Pbefore Pcurrent
while sleep()

The case of reporting position to server is that the acquiring position is on the new
segment which the position of before time is not, like Fig. 4.

After getting the GPS position, it is reported to MODB

After getting the GPS position, it is not reported to MODB

Segment 001 Segment 002

Fig. 4. The case of reporting position to the server. If the moving object is on the new segment,
then reports its position to the server.

 Optimal Route Determination Technology 671

Server Side Process Scenario
After reporting the position to the server, it is stored to a MODBMS by executing
following query statement:

INSERT INTO table (position.ID, position.x, position.y,
position.time, position.velocity, position.segment);

4.2 The Extract the Road Segments from the Trajectory

The real moving distance of the past trajectory cannot be computed which is the query
result of MODBMS. As the trajectory consists of list of discrete moving points, that is
to say, the distance of the trajectory is the Euclidean distance. In order to extract the
real continuous moving distance, the road segments must be picked out which the
moving object had moved on. After extracting the road segments, we can calculate the
real moving distance as summing up the length values of each road segment. Fig.5.
shows the trajectory distance and road segments distance.

S1

The Trajectory View, Euclidean distance

The Segment View, Road network distance

S2

S3

S4

Fig. 5. The trajectory view vs segment view. We can calculate the real moving distance as
extracting the road segments which trajectory was on.

We can calculate the actual moving distance and the pass time of the moving object
from the trajectory like a following process:

distance Ø, passTime Ø
for each mo trajectory do
 segment GetSegment(mo.segment, RN)
 distance += segment.length
passTime.from trajectory.MBRT.from
passTime.to trajectory.MBRT.to

4.3 The Analysis of Determining Optimal Route

The source and destination location must be predefined to determine the route for
navigation. In the static route determination algorithm, the result route consists of
geometrical polyline and other information that is the total distance and the estimated
pass time through the polyline. To choose more accurate route information, we select
the past trajectories that are compared with static route. We can extract trajectories as
querying MODBMS and these trajectories had to pass through same source and desti-
nation location of the static route. Fig. 6 Shows a trajectory query statements. In the
second query statement, the time slice parameter is added to before one.

672 K.-W. Min, J.-W. Kim, and J.-H. Park

 Find car which passed through from the region A to B

SELECT ID, POSITION
FROM FLEETTABLE
WHERE PASSES(POSITION, POLYGON(region A)) = TRUE AND

PASSES(POSITION, POLYGON(region B)) = TRUE;
Find car which passed through from the region A to B between

time t1 and t2
SELECT ID, POSITION
FROM FLEETTABLE
WHERE PASSES(POSITION, MPOLYGON(t1, t2, region A)) = TRUE AND

PASSES(POSITION, MPOLYGON(t1, t2, region B)) = TRUE;

Fig. 6. The trajectory query statements. In the second statement, the time slice parameter is
added to the first statement.

Table 2. The Optimal Route Determination Analysis Factor (ORDF)

Factor Description Weight
Distance (fd) road network distance wd
Pass Time (ft) pass time of consecutive segment wt
Time Frame (ff) special time frame like rush hour wf
Day of week (fw) special day of week like a festive day ww
Speed (fs) keeping speed of consecutive segment ws
 sum(w0~n)=1

The query result trajectories are the candidate routes which are compared with the
static route which is the result of static algorithm such as shortest path [6]. We can
consider some factors to compare the static route with the trajectories. The ORDF
(Optimal Route Determination Factors) are very important element to determine realis-
tic route. For example, the business man who was a stranger in this city is going to
move from A to B and it was 08:30. He executed route determination algorithm in
navigation device and the result route information were geographical, visual route,
10km distance and 10 minutes estimated time. But if he did not know it was rush hour,
the incorrectness information of route messed up his plan. If he had known someone’s
experience going from A to B in similar time frame, he should not trust that result.
Also, if he knew the other route information based on experience that takes less pass
time but longer distance than before one, he had made a choice of this one unhesitat-
ingly. If the experiential and statistical route information can be supported, these are
very helpful to determine an optimal route. We can extract this assistant information by
querying MODBMS and choose optimal route by analyzing with ORDF.

We can predefine the some factors to compare static route with trajectories for de-
termining optimal route. Table 2 shows some optimal route determination factors. We
define 5 factors and each factor is assigned the weight, and we can calculate route
cost with mixing some factors of ORDF. The route which has minimum cost can be
chosen as an optimal route. We define some variable to explain the usage of ORDF in
order to determine optimal route.

The OR is an optimal Route, SR is a static route, Ti is ith trajectory resulted by
querying MODBMS, and NT is a number of trajectories, and the function Cost(Ti) is a
route cost of ith trajectory, w(fi) is weight of ith ORDF. Sum of weight of each factor
must be 1 like (1).

 Optimal Route Determination Technology 673

ORDFf ,1)w(f },f ~,,{ff set

n

0i

in0set ⊂==
=

(1)

The route cost is calculated as formula (2) and we must normalize the value of each
factor of trajectory chosen from ORDF for analyzing. For example, in case of distance
factor fd, ordering value of each distance of all trajectories can be considered normal-
ized value and in case of time frame, ordering the difference value between departure
time and trajectory.from can be also normalized value.

).(*)(
0

ik

n

i

ik fTionNormalizatwTCost
=

=

(2)

Finally, the optimal route is determined which has the minimum value of each
route cost of trajectories.

≠
=

SR

0N if ,))(),...,(min(
 OR

T0 nTCostTCost

(3)

30 minPass time

10:00Departure time

30 kmDistance

ValueFactor

Static Algorithm Result

a. route of static algorithm result

30 minPass time

10:00Departure time

30 kmDistance

ValueFactor

Static Algorithm Result

30 minPass time

10:00Departure time

30 kmDistance

ValueFactor

Static Algorithm Result

a. route of static algorithm result

45 minPass time

10:00Time frame

30 kmDistance

ValueFactor

Trajectory Result 1

b. trajectory result 1

45 minPass time

10:00Time frame

30 kmDistance

ValueFactor

Trajectory Result 1

45 minPass time

10:00Time frame

30 kmDistance

ValueFactor

Trajectory Result 1

b. trajectory result 1

25 minPass time

10:10Time frame

40 kmDistance

ValueFactor

Trajectory Result 2

c. trajectory result 2

25 minPass time

10:10Time frame

40 kmDistance

ValueFactor

Trajectory Result 2

c. trajectory result 2

29 minPass time

15:10Time frame

32 kmDistance

ValueFactor

Trajectory Result 3

d. trajectory result 3

29 minPass time

15:10Time frame

32 kmDistance

ValueFactor

Trajectory Result 3

d. trajectory result 3

Fig. 7. The example of selecting optimal route. There are three trajectories resulted by
querying MODBMS. The ORDF consists of fd, ft, ff.

674 K.-W. Min, J.-W. Kim, and J.-H. Park

Fig. 7 shows the example of selecting optimal route as analyzing static route and
three trajectories with ORDF, {fd, ft, ff}

In fig.7, we define factor f0 is distance, f1 is pass time, f2 is time frame and assign
weight to each factor, w(f0) = 0.1, w(f1) = 0.4, w(f2) = 0.5. In this case, we consider
f3 time frame as most important factor. The result route cost of each trajectory is
Cost(T1)=1.8, Cost(T1)=1.7, Cost(T1)=6.8 in case of defining the normalized value
of each factor as ordering value of distance, pass time, difference value between de-
parture time and time frame of trajectory. The static route and first trajectory have
same distance and similar time frame but pass time is longer than 30 minutes in expe-
riential real environment. And the time frame factor can be considered as important
factor because the information of distance and pass time of route is more reliable in
the similar time frame state. In this paper, we define normalized function as simply
but normalized function must be more complicated in order to enhance reliability and
provide more accuracy to determine optimal route.

5 Summary and Future Works

The route information from the static algorithm is not reliable frequently in real envi-
ronment, since that information is dependent on static properties of road segment such
as speed, length and so on. In real world, this static route information cannot guaran-
tee the reliability and correctness of route information. In this paper, we suggest the
methodology of determining optimal route using past moving information based on
experience, statistics. The trajectory is the past sequential moving point of vehicles
and can be retrieved by querying MODBMS. To extract more liable route informa-
tion, we can use some analysis factors such as distance, pass time, time frame and so
on. We define these factors as ORDF. As analyzing static route and trajectories with
ORDF, we can calculate the cost of each trajectory and the trajectory which has a
minimum cost can be considered as more liable route information. Next time, we will
elaborate this methodology and implement system to be applicable in real telematics
and LBS fields. As acquiring the large volume of historical location of real vehicles,
we will estimate system performance and reliability of result route.

References

1. Erwig, M., Guiting, R. H., Schneider, M., and Vazirgiannis, M., “Spatio-Temporal Data
Types: An Approach to Modeling and Querying Moving Object in Databases,” GeoIn-
fomatica, Vol.3, No.3, pp.269-296, 1999

2. Sh, S.L. and Wa, D., “Handling Disaggregate Spatiotemporal Travel Data in GIS,” GeoIn-
formatica Vol.4, No.2, pp.161-178, 2000

3. Wolfson, O., Chamberlain, B. X. S., Sistla, P., Xu, B., and Zhou, X., “DOMINO: Database
fOr MovINg Objects tracking,” ACM International Conference on SIGMOD, pp.547-549,
1999

4. Seong-Baek Kim, Kyung-Ho Choi, Seung-Yong Lee, Ji-Hoon Choi, Tae-Hyun Hwang,
Byung-Tae Jang, and Jong-Hun Lee, “A Bimodal Approach for Land Vehicle Localiza-
tion,” ETRI Journal, vol. 26, no. 5, Oct. 2004, pp.497-500

5. Wolfson, O., Xu, B., Chamberlain, S., and Jiang, L., SSDBM 1998, pp. 111-122

 Optimal Route Determination Technology 675

6. Pfoser, D., Jensen, C. S. and Theodoridis, Y., “Novel Approaches to the Indexing of Mov-
ing Object Trajectories,” Proc. Of the 26th Conference on VLDB, Cairo, Egypt, 2000.

7. Stefano Pallottino, Maria Grazia Scutella, “Shortest Path Algorithms in Transportation
Models: Classical and Innovative Aspects,” Technical Report, Univ. of Pisa, 1998.

8. Chang Wook Ahn, R. S. Ramakrishna, “A Generic Algorithm for Shortest Path Routing
Problem and the Sizing of Populations,” IEEE Transaction on Evolutionary Computation,
pp. 566-579, Vol. 6, No. 6, 2002

9. Stephan Winter, “Weighting the Path Continuation in Route Planning,” In Proceedings of
9th ACM International Symposium on Advances in Geographic information System, pp.
173-176, 2001

10. 10.Jaiho Lee, Kyoungwan An, and Jonghyun Park, “Design of Query Language for Loca-
tion-Based Services,” W2GIS 2005, LNCS 3833, pp.11-18, 2005.

Efficient Temporal Coalescing Query Support
in Relational Database Systems

Xin Zhou1, Fusheng Wang2, and Carlo Zaniolo1

1 Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095, USA
{xinzhou, zaniolo}@cs.ucla.edu

2 Integrated Data Systems Department
Siemens Corporate Research
Princeton, NJ 08540, USA

fusheng.wang@siemens.com

Abstract. The interest in, and user demand for, temporal databases have only
increased with time; unfortunately, DBMS vendors and standard groups have
not moved aggressively to extend their systems with support for transaction-time
or valid-time. This can be partially attributed to the expected major R&D costs
to add temporal support to RDBMS by directly extending the database engine.
The newly introduced SQL:2003 standards have actually significantly enhanced
our ability to support temporal applications in commercial database systems. The
long recognized problem of coalescing, which is difficult to support in the frame-
work of SQL:1992, can now be effectively supported in RDBMS. In this paper,
we investigate alternatives of temporal coalescing queries under temporal data
models in RDBMS. We provide an SQL:2003-based query algorithm and a na-
tive relational user defined aggregates (UDA) approach – both approaches only
require a single scan of the database. We conclude that temporal queries can be
best supported by OLAP functions supported in the current SQL:2003 standards.
These new findings demonstrate that the current RDBMS are mature enough to
directly support efficient temporal queries, and provide a new paradigm for tem-
poral database research and implementation.

1 Introduction

In this paper, we seek to support historical information management and temporal
queries without extending current standards. Our insistence on using only current stan-
dards is inspired by the lessons learned from the very history of temporal databases,
where past proposals failed to gain much acceptance in the commercial arena, in spite
of great depth, breadth [1,2] and technical elegance [3,4]. An in-depth review of the
technical (and often non-technical) reasons that doomed temporal extensions proposed
in the past would provide an opportunity for a very interesting and possibly emotional
discussion; but such a discussion is outside the scope of this paper. Here, we simply
accept the fact that temporal extensions to existing standards are very difficult to sell,
in spite of the growing pull by temporal applications; then, we move on from there by

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 676–686, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Temporal Coalescing Query Support in Relational Database Systems 677

exploring solutions that do not require extending current standards. This low-road ap-
proach is hardly as glamorous as the “new temporal standards” approach pursued in the
past, but it is not without interesting research challenges and opportunities, as we will
show in this paper. In particular, with the introduction of SQL:2003, new opportunities
are offered by recent developments that have taken information systems well beyond
SQL:1992, and provide new approaches to support temporal query models with current
DBMS engines [5].

Supporting temporal database models and temporal queries at the logical level is
only one facet of the problem; the other is their efficient implementation. In particular,
classical queries, such as temporal coalescing that are known to be difficult to support,
provide a natural acid test for the efficiency of an implementation. Temporal coalescing
is a key challenge for temporal databases, both at the logical and physical level and
much research work has been motivated by this problem.

In this paper, we show how to support temporal coalescing and aggregates efficiently
using SQL:2003 OLAP functions and UDAs—that are currently supported in many
commercial RDBMS and require only a single scan of relations. We show that temporal
queries can be nicely expressed, and efficiently supported, and conclude that RDBMS
plus SQL:2003/UDA provides a promising new paradigm for temporal database re-
search and implementation.

2 Temporal Coalescing: The Pain of Temporal Databases

Coalescing is a data restructuring operation that plays a key role in temporal databases,
insofar as it can be as similar to duplicate elimination in conventional databases. Co-
alescing merges tuples that have identical attribute values and overlapping or adjacent
timestamps [6]. For instance, consider the snapshot of a temporal relation in Table 1
that records information about employees working in a company. In this table, a new
timestamped tuple is generated whenever there is a change in any of the attribute val-
ues. The well-known problem with this representation is that coalescing is needed when
some of the attributes are projected out [7], and much previous research has focused on
this problem. For instance, the solution proposed by TSQL2 [3] consists in assuming
that coalescing is performed automatically, rather than having to be specified in the
query—in analogy to duplicate elimination in relational databases.

Table 1. The table EMPLOYEE HISTORY

EMPNO SALARY TITLE DEPTNO TSTART TEND
1001 60000 Engineer d01 1995-01-01 1995-05-31
1001 70000 Engineer d01 1995-06-01 1995-09-30
1001 70000 Sr Engineer d02 1995-10-01 1996-01-31
1001 70000 Tech Leader d02 1996-02-01 1996-12-31

For instance,if the manager of the organization is interested in the history of the
salary of employee “1001”, then the following The TSQL2 statement will be used:

678 X. Zhou, F. Wang, and C. Zaniolo

QUERY 1. TSQL2’s expression to query the history of the salary of employee 1001:

SELECT EMPNO, SALARY
FROM EMPLOYEE_HISTORY (EMPNO, SALARY)
WHERE EMPNO = 1001

While this TSQL2 query contains no explicit coalescing statement, it produces the
result shown in Table 2, below, where coalescing has been applied to EMPNO and
SALARY attributes (EMPNO is the primary key of the temporal relation and SALARY is
the time-varying attribute of the user interest). Indeed, since the timestamps of the three
tuples with a salary of 70000 are adjacent, these tuples are coalesced into a single tuple
as shown in Table 2. The TSTART value of the new timestamp is the TSTART value of
the first tuple, where the TEND value is the TEND value of the last tuple.

Table 2. The result of Query 1

EMPNO SALARY TSTART TEND
1001 60000 1995-01-01 1995-05-31
1001 70000 1995-06-01 1996-12-31

While TSQL2 [3] eliminates the need to explicitly specify coalescing, and also
supports a rich set of features and predicates to manipulate temporal databases, it re-
quires many extensions to current standards and leaves many questions about efficient
implementations unanswered. Currently, TSQL2 has not implemented in commercial
RDBMS, nor it has been incorporated into the SQL:2003 standards.

A second interesting approach that avoids the need to perform coalescing after pro-
jection is the point-based temporal model [8].

Bohlen et al. [6] proposed that coalescing can be achieved through (i) a SQL imple-
mentation, (ii) a main memory implementation, or (iii) a DBMS implementation. The
DBMS implementation approach requires modifying the underlying DBMS internals,
which is difficult and expensive. The main memory implementation approach works
by loading a relation into main memory, coalescing it, and then storing it back to the
database. This approach suffers from two main problems. First, in many cases, it is im-
possible to load the whole relation into main memory. Second, it is an expensive task
to periodically move a relation from the database to the running application and then
store it back to the database. The SQL implementation approach aims at expressing co-
alescing operation as a set of SQL commands that run on the database and generate a
coalesced relation. However, the expression of such coalescing query itself is very com-
plex. Moreover, the query often requires several database scans as well as self-join(s) on
the entire temporal relation table, which can be very expensive. Alternative algorithms
for implementing coalescing queries are briefly reviewed in Section 3.

In this paper, we introduce the novel idea of using SQL:2003 analytic functions to
support temporal coalescing. The paper is organized as follows. After a careful review
of current coalescing query support with pure SQL:1992 standard in Section 3, we
introduce our novel algorithm SSC in Section 4; our algorithm only needs one scan
of incoming tuples to realize coalescing. We further show that this algorithm can be

Efficient Temporal Coalescing Query Support in Relational Database Systems 679

well supported under SQL:2003 framework, without any external programming exten-
sion. Section 5 tackles the problem using a different approach: we employ user-defined-
aggregates (UDA)—a native SQL extension that can be utilized to handle the coalescing
queries. The performance study in Section 6 shows that the SQL:2003 method is much
more efficient and scalable than the pure SQL:1992 approaches discussed in Section 3.
Section 7 concludes our discussion.

3 Support Coalescing with Pure SQL:1992 Queries

There are several alternatives to implement coalescing queries using SQL:1992, either
through SQL/PSM, cursors, or entire SQL [9]. The first two require either external pro-
gramming modules or in-memory cursors, which are inefficient due to the high I/O
manipulation cost. However, implementing coalescing entirely in SQL always has the
problem that the coalescing query is considerably very complex and often has mul-
tiple nested “NOT EXISTS” clauses [7], as well as self-join(s). Query 2 is the pure
SQL:1992 expression of the query corresponding to Query 1. Note that this query re-
quires 6 database scans, as well as several self-joins to the entire temporal relation.

QUERY 2. Pure SQL:1992 implementation of coalescing Query 1:

WITH Temp(Salary, TSTART, END) AS
(SELECT SALARY, TSTART, END
FROM EMPLOYEE_HISTORY
WHERE EMPNO = 1001)

SELECT DISTINCT F.Salary, F.TSTART, F.TEND
FROM Temp AS F, Temp AS L
WHERE F.TSTART < L.TEND AND F.Salary = L.Salary
AND NOT EXISTS
(SELECT * FROM Temp AS M
WHERE M.Salary = F.Salary
AND F.TSTART < M. TSTART AND M.TSTART < L.TEND
AND NOT EXISTS
(SELECT * FROM Temp AS T1

WHERE T1.Salary = F.Salary
AND T1. TSTART < M. TSTART AND M.TSTART <= T1.TEND)

)
AND NOT EXISTS
(SELECT * FROM Temp AS T2
WHERE T2.Salary = F.Salary
AND

((T2. TSTART < F. TSTART AND F.TSTART <= T2.TEND)
OR
(T2.TSTART < L.TEND AND L.TEND < T2.TEND))

)

Other alternatives to implement coalescing entirely in traditional SQL include: i)
using COUNT aggregate instead of NOT EXISTS clauses [9], and ii) using recursive
SQL queries [10]. Although the coalescing queries in these alternatives are relatively
shorter than Query 2 and require fewer accesses to the entire temporal relation, they
require heavier joins.

680 X. Zhou, F. Wang, and C. Zaniolo

In summary, pure SQL:1992 support for temporal coalescing queries requires multi-
ple table accesses as well as heavy join operations among the tables, which is far from
satisfactory to support temporal database model under current SQL framework.

4 Support Coalescing with SQL:2003 OLAP Functions

SQL:2003 provides advanced support for analytics on moving windows, with new con-
structs such as OVER, PARTITION BY, PRECEDING, FOLLOWING, etc. Indeed,
coalescing operations can be conveniently supported using SQL:2003 standards with-
out any extension to current SQL framework. In this section, we first show a novel
Single Scan Coalescing algorithm (SSC) to support coalescing with one single scan of
the input tuples without join, then we propose the SQL:2003 statements to implement
this algorithm.

4.1 SSC: A Single Scan Coalescing Algorithm

Without loss of generality, suppose we want to coalesce four tuples with the same time-
varying attribute value and different time periods, as in Figure 1 (a).

First, we detect all distinct timestamps from the input tuples. Thus in this example,
we have eight distinct timestamps, as in Figure 1 (b). Notice that timestamp t4 appears
twice.

Next, for each timestamp, we need to keep information of whether it is a TSTART,
or an TEND timestamp. We maintain two values to keep the count of TSTART and
TEND timestamps which have occurred respectively, with initial value (s,0)/(e,0), and
update these two values upon every new timestamp, as in Figure 1 (c). For instance,
for timestamp t1, since it is a TSTART timestamp, we get (s,1)/(e,0). For t2, another
TSTART timestamp, we increase the count of TSTART timestamps, and get (s,2)/(e,0).

Fig. 1. SSC: Single Scan Coalescing Algorithm

Efficient Temporal Coalescing Query Support in Relational Database Systems 681

At timestamp t4 where both TSTART and TEND occurred, we increase the count by one
for both the TSTART timestamp and the TEND timestamp.

Last, we can output all coalesced periods, which are from timestamp ti to tj , where
ti−1 has (s,m)/(e,m), and tj has (s,n)/(e,n). As in Figure 1 (d), there are two coalesced
periods: t1 to t5, and t6 to t7. Intuitively, at timestamp ti, all previous periods have been
output as one coalesced period, and a new coalescable period begins from ti. At time
tj , we have seen an equal number of TSTART and TEND timestamps; thus, a coalesced
period ends at time tj , and tj is the TEND value of our coalesced output.

We observe that if all the timestamps are ordered in the input, we can output all
the coalesced periods with a single scan of all the input tuples. And in the reality of
transaction time databases, all the timestamps are indeed already ordered by the passage
of transaction time, which guarantees the efficiency of SSC algorithm.

4.2 SQL:2003 Implementation of SSC

With the introduction of SQL:2003 analytic functions, the SSC algorithm can be sup-
ported directly with pure SQL, as shown in the following example.

QUERY 3. SQL:2003 implementation of coalescing Query 1:

WITH T1 (Start_ts, End_ts, ts, salary) AS (
SELECT 1, 0, TSTART, SALARY
FROM EMPLOYEE_HISTORY
WHERE EMPNO = 1001
UNION ALL
SELECT 0, 1, TEND, SALARY
FROM EMPLOYEE_HISTORY
WHERE EMPNO = 1001

),

T2 (Crt_Total_ts, Prv_Total_ts, ts, Salary) AS (
SELECT

sum (Start_ts) - sum(End_ts)
OVER (PARTITION BY Salary

ORDER BY ts, End_ts ROWS UNBOUNDED PRECEDING),
sum (Start_ts) - sum(End_ts)
OVER (PARTITION BY Salary

ORDER BY ts, End_ts
ROWS BETWEEN 1 PRECEDING AND UNBOUNDED PRECEDING),

ts,
Salary

FROM T1
WHERE Crt_Total_ts = 0 OR Prv_Total_ts = 0

)

SELECT
Salary,
max(ts) OVER (PARTITION BY Salary ORDER BY ts ROWS 1 PRECEDING),
ts

FROM T2 WHERE Crt_Total_ts = 0;

In this implementation, the first temporary table T1 extracts all TSTART or TEND
timestamps from the input tuples, where “1” in Start ts (or End ts) column denotes a

682 X. Zhou, F. Wang, and C. Zaniolo

TSTART (or TEND) timestamp. For a certain timestamp value ti, table T2 keeps the
difference between the total count of TSTART and the total count of TEND timestamps
until ti (stored as Crt Total ts). Similarly, it keeps the difference between the total count
of TSTART and the total count of TEND timestamps until ti−1 (stored as Prv Total ts).
Thus, Crt Total ts= 0 means that there are equal number of TSTART and TEND times-
tamps at ti, and ti should be a TEND timestamp in one of the coalesced periods. If
Prv Total ts is 0, there is an equal number of TSTART and TEND timestamps before
ti, so ti should be a TSTART timestamp for one of the coalesced periods. The final
SELECT clause pairs all the result timestamps and output them.

Such an SQL statement can be predefined as a built-in coalescing function, which
are transparent to the users. The beauty of this SQL statement is that, it only requires a
single scan of the input tuples, since all the timestamps are already ordered. With this
approach, we can implement all kinds of coalescing functionalities under the current re-
lational database framework, without any complex extension for temporal applications.

4.3 Generalized SQL:2003 Implementation for Coalescing

The basic SQL:2003 implementation for salary coalescing query on employee “1001”
can be very easily extended to handle all kinds of complex coalescing queries on differ-
ent attributes.

– Coalescing on a single attribute.
If we remove the condition EMPNO= 1001, the SQL:2003 query in Section 4.2
requires a single attribute (SALARY) coalescing. For another example, say that we
want to return the history information with valid periods for each DEPTNO; then
in the original query we need to (1) remove the WHERE condition in T1, and (2)
replace Salary with DEPTNO for every sub query.

– Coalescing on multiple attributes.
If we want to return the salary history for every employee, instead of a single em-
ployee “1001”, the query becomes a coalescing query on the two attributes EMPNO
and SALARY. In this case, we need to modify the original query by (1) removing
the WHERE condition in T1, (2) adding EMPNO attribute in the return clause of
T1, and (3) using “PARTITION BY EMPNO, SALARY” to replace “PARTITION
BY SALARY” in every sub query.

5 Support Coalescing with User-Defined Aggregates

After using SQL:2003 to support temporal queries in current relational DBMS, we will
now explore an alternative approach based on user defined aggregates (UDA). UDA
represent a powerful DBMS extension which is efficiently supported in many commer-
cial systems, such as Oracle [11]. UDA natively written in SQL, along with window
constructs, are available in the UCLA the Stream Mill system [12], which was used to
support windows, time-series queries, and data mining queries.

As a result, we can implement a single-scan algorithm to SSC, directly using SQL-
compatible UDAs, and integrate it as system predefined aggregates for users to invoke.
Due to space limitation, we only list the pseudo-code as in Algorithm 1.

Efficient Temporal Coalescing Query Support in Relational Database Systems 683

Algorithm 1. UDA Pseudo-code for coalescing query with a single scan
1: Define table Temp (TSTART, TEND) to store the current coalesced period, initially empty;
2: Insert the first tuple’s TSTART and TEND value into Temp;
3: for every new input tuple T do
4: if T.TSTART <= Temp.TEND then
5: //new tuple coalescable with current period
6: Update Temp.TEND with T.TEND;
7: else
8: //current coalesced period ends, a new coalescing period begins
9: Output the tuple in Temp, then update Temp with T.TSTART and T.TEND;

10: end if
11: end for
12: Output the tuple in Temp;

Such a UDA can be correctly evaluated with the input tuples ordered by the TSTART
values, which is realistic in transaction databases. The first (TSTART, TEND) input
tuple is stored in Temp table (line 1-2). If the incoming tuple intersects with the current
period in Temp table, the TEND value in the table will be updated to reflect the new
TEND value (line 4-6). If the input tuple does not intersect, we get one result in the
Temp table, which needs to be output, and deleted from Temp table, and the new input
tuple will be stored into Temp table (line 7-9). We also return the final coalesced period
after the last input tuple (line 12).

We will show in next section that this UDA approach beats the traditional pure SQL
coalescing queries in performance, although it is not as efficient as the SQL:2003 SSC
implementation. Nevertheless, UDA provides a native SQL support for many advanced
queries, such as the classical temporal coalescing query, which otherwise needs external
programming language to solve SQL’s query limitation. Indeed, other complex tempo-
ral aggregates, for instance, “return all employees’ average salaries along the history”,
can be efficiently supported with native UDA, which only requires one single scan of
the input tuples. Due to the space limitation, we omit the details here.

6 Performance Study

We study the performance of coalescing queries with the three approaches: i) SSC ap-
proach with SQL:2003, ii) user defined aggregates approach, iii) SQL:1992 approach
with “NOT EXIST” clause and iv) traditional SQL approach with recursive queries.
We choose Oracle 10g Release 1 as our database server. We executed all of our queries
on a personal computer equipped with an AMD Athlon XP 1500+ processor at 1.3
GHz and 512 MB of memory. The operating system we use is Fedora Core Version
3 Linux OS. The Oracle database server support SQL:2003, recursive SQL, and UDA
features.

We choose a simulated employee history database as our test data. The data set mod-
els the history of employees over 17 years, and simulates the increases of salaries,
changes of titles, and changes of departments. The data schema follows that in Fig-
ure 1. The total transaction database size is 120MB.

684 X. Zhou, F. Wang, and C. Zaniolo

Coalescing
Query on Title

Coalescing
Query on
Deptno

Recursive SQL

SQL with "Not Exist"

UDA

SQL:2003

Fig. 2. Query Performance on Single Attribute

Coalescing
Query on Empno

and Title

Coalescing
Query on Empno

and Deptno

Recursive SQL

SQL with "Not Exist"

UDA

SQL:2003

Fig. 3. Query Performance on Two Attributes

We first test the performance of single-attribute coalescing. We run two queries, co-
alescing on DEPTNO and coalescing on TITLE, respectively. The execution time is
shown in Figure 2.

The result shows that the performance from our SSC SQL:2003 implementation
beats all other approaches. The UDA approach comes close to SSC approach, with
an overhead of pre-compilation and initialization time. If we run the experiments mul-
tiple times, the overhead can actually be omitted, and the UDA approach then has very
close execution time with SSC approach. This proves that UDA approach is another
choice for efficient coalescing. The traditional SQL:1992 implementations, using re-
cursive SQL or SQL with “NOT EXIST”, are much slower than the two we proposed.

When it comes to two-attribute coalescing, for example, coalescing on EMPNO and
TITLE, or on EMPNO and DEPTNO, the traditional SQL:1992 algorithm takes ex-
tremely long time to get the result. We have to test the four queries, on one third of the
original transaction database size, and the result is shown in Figure 3. The difference
ratio is similar to that in Figure 2, except that every query takes longer execution time,
due to more returned tuples.

Scalability of SSC Algorithm. We further test the scalability of our SSC SQL:2003
query, with two-attribute coalescing, on a faction of the original data set: 1/4, 1/2, and

Efficient Temporal Coalescing Query Support in Relational Database Systems 685

SSC Coalescing Query on Empno and Deptno

0

11.3

24

36.2

50.6

0

10

20

30

40

50

60

0 25% 50% 75% 100%

Data Size

T
im

e
(S

)

Fig. 4. Query Scalability of SQL:2003 Implementation of SSC

3/4, respectively. Figure 4 shows that our algorithm is linear scalable in term of database
size, which conforms to its single scan feature.

7 Conclusion

In this paper, we aim at directly supporting efficient temporal coalescing queries within
existing commercial RDBMS, without any extension to current systems. We propose
two approaches: the first is based on SQL:2003 OLAP functions, and the second on
user-defined aggregates. Both approaches only require a single scan of the database for
the query execution and use minimal joins; this makes it possible to provide efficient
temporal coalescing. The performance study shows that both the SQL:2003 OLAP ap-
proach and UDA approaches achieve good performance, and the first approach is par-
ticularly efficient. Moreover, for both approaches, their single-scan property guarantees
their scalability.

The results of our study demonstrate that current commercial RDBMS can provide
efficient support for complex temporal queries. This positive outcome outlines a promis-
ing direction for future developments in commercial databases, and database research.

References

1. G. Ozsoyoglu and R.T. Snodgrass. Temporal and Real-Time Databases: A Survey. TKDE,
7(4):513–532, 1995.

2. F. Grandi. An Annotated Bibliography on Temporal and Evolution Aspects in the World
Wide Web. In TimeCenter Technique Report, 2003.

3. R. T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer, 1995.
4. Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen, and Andreas Steiner. Tran-

sitioning Temporal Support in TSQL2 to SQL3. Lecture Notes in Computer Science,
1399:150–194, 1998.

5. F. Wang, C. Zaniolo, and X. Zhou. Temporal XML? SQL Strikes Back! Time, 2005.
6. M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Temporal Databases. In VLDB,

1996.

686 X. Zhou, F. Wang, and C. Zaniolo

7. C. Zaniolo, S. Ceri, C.Faloutsos, R.T. Snodgrass, V.S. Subrahmanian, and R. Zicari. Ad-
vanced Database Systems. Morgan Kaufmann Publishers, 1997.

8. D. Toman. Point-based Temporal Extensions of SQL. In DOOD, pages 103–121, 1997.
9. R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan Kauf-

mann, 1999.
10. T.Y. Leung and H. Pirahesh. Querying Historical Data in IBM DB2 C/S DBMS Using

Recursive SQL. In Recent Advances in Temporal Databases, 1995.
11. SQL 2003 Standard Support in Oracle Database 10g, otn.oracle.com/products/database/ ap-

plication development/pdf/SQL 2003 TWP.pdf.
12. C. Zaniolo, R. Luo, H. Wang, et al. Stream Mill: Bringing Power and Generality to

Data Stream Management Systems. World Wide Web, http://wis.cs.ucla.edu/
http://wis.cs.ucla.edu/.

Efficient Evaluation of Partially-Dimensional
Range Queries Using Adaptive R*-tree

Yaokai Feng1 and Akifumi Makinouchi2

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University, Japan
fengyk@is.kyushu-u.ac.jp

2 Department of Information Network Engineering,
Kurume Institute of Technology, Japan

akifumi@cc.kurume-it.ac.jp

Abstract. This paper is about how to efficiently evaluate partially-
dimensional range queries, which are often used in many actual applica-
tions. If the existing multidimensional indices are employed to evaluate
partially-dimensional range queries, then a great deal of information that
is irrelevant to the queries also has to be read from disk. A modification
of R*-tree is described in this paper to ameliorate such a situation. Dis-
cussions and experiments indicate that the proposed modification can
clearly improve the performance of partially-dimensional range queries,
especially for large datasets.

1 Introduction

Multidimensional range queries are necessary in many applications, including
relational datasets [1,2], XML datasets [16], and GIS systems. In order to improve
the search performance, multidimensional indices are very helpful[1,2,16].

Let us make clear the difference of the two terms index dimensions (attributes)
and query dimensions (attributes). The dimensions (attributes) that are used to
build the index are called index dimensions (attributes) and the dimensions
that are used to form the query range for a range query are called query dimen-
sions. An n-dimensional index is often used for evaluating n-dimensional queries.
However in many applications using range queries, the query dimensions of each
range query are likely of only part (rather than all) of the index dimensions
[15,16]. Such range queries are referred to herein as partially-dimensional (PD)
range queries. That is, although the index is built in an n-dimensional space,
the actual range queries may only use d dimensions in the n dimensions (d < n).
For example, the range query with d1 and d2 as query dimensions is a PD range
query for the four-dimensional index built with d1, d2, d3, and d4 as index di-
mensions. Of course, the existing multidimensional indices can also be used in
the cases of PD range queries. The problem is “efficiency”. We will show that,
if the existing multidimensional indices are used for PD range queries, a great
deal of information that is irrelevant to the queries also has to be loaded from
disk. This paper shows that PD range queries can be efficiently evaluated using

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 687–696, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

688 Y. Feng and A. Makinouchi

Adaptive R*-tree (denoted herein as AR*-tree), which is based on R*-tree [3].
R*-tree is a well-known and widely-used variant of the R-tree family. R*-tree is
also used in some commercial database products [8].

Since there are probably many possible combinations of attributes that are
used in PD range queries, it is not always feasible in applications with large
datasets for one index to be built for each possible combination of query at-
tributes, because (1) numerous indices have to be constructed and managed, (2)
many attributes are repeatedly included in different indices, which is too space-
consuming for large datasets and results in a large update cost, and (3) the
combinations of query attributes that can possibly be used in the user-provided
PD queries are often unpredictable. Note that, there are a total of (2n − 1)
possible combinations for n index attributes.

In the remainder of this paper, following the related works in Section 2 are two
naive methods for PD range queries in Section 3. Then, AR*-tree is described in
Section 4. AR*-tree can efficiently handle PD range queries with any combina-
tions of query dimensions. The experimental results are presented in Section 5.
Finally, Section 6 concludes this paper.

2 Related Work

Many index structures have been proposed in the recent decades. Examples
include R*-tree [3], X-tree [4], and A-tree [5]. V. Gaede and O. Gunther con-
ducted a survey on multidimensional indices [6] and a more recent survey has
been presented by Y. Cui [7]. Some of these index structures (e.g., R*-tree)
have been popularly used in research and several commercial database prod-
ucts. Multidimensional indices such as Octrees and Target Tree are also used in
computer-assisted surgery (CAS), in which two-dimensional images are used to
guide surgical procedures. Recently, the use of multidimensional indices has been
introduced to the field of relational data [1,2]. However, all these existing mul-
tidimensional indices are directed to “all-dimensional range queries” (referred
to herein as AD range queries, in which a query range is given in each of in-
dex dimensions). If these indices are employed to PD range queries, then the
information in the irrelevant dimensions also has to be read from disk.

UB-tree is another approach to indexing multidimensional data. UB-tree uses
a space-filling curve to map a multidimensional universe to one-dimensional
space with the goal of sorting multidimensional data. However, the neighboring
relationships that exist in the original space cannot be maintained in the mapped
data. For each range query, the space-filling curve may be cut into many inter-
vals by the query range. In order to obtain the correct results of range queries,
the algorithm has to check all of the intervals included in the query ranges and
the number of these intervals may be enormous in multi-dimensional spaces. In
addition, the above-mentioned problems still exist when UB-tree is used for PD
range queries.

In the study [12] by S. Berchtold, et al., a higher-dimensional index is divided
into several lower-dimensional indices. The lower-dimensional indices are used

Efficient Evaluation of PD Range Queries Using Adaptive R*-tree 689

in stead of the higher-dimensional index and their intermediate search results
are intersected to obtain the final search result. They attempted to alleviate
the “dimensionality curse” problem to some extent. Their approach cannot effi-
ciently deal with PD range queries because the query dimensions and the num-
ber of query dimensions are very flexible and cannot be fixed and determined in
advance.

The term of partial-record accesses was used in the paper [13], in which a
buffer pool and storage management architecture is proposed that decouples the
memory page layout from the non-volatile storage data organization. However,
that proposal implements the partial-record accesses by a data placement strat-
egy among the different levels of the memory hierarchy. That paper is on how to
physically organize the original relational data. A multi-dimensional clustering
method is also proposed [14]. However, it is also on the physical organization of
the original relational data. In addition, there has been significant recent interest
in column-oriented databases (or say “column-store”), in which the attributes
are stored separately, such that successive values of that attribute are stored
consecutively on disk. This is in contrast to most common database systems
that store relations in rows (“row stores”) where values of different attributes
from the same record are stored consecutively. Our study is different from all of
the methods mentioned here in that the present study is on multi-dimensional
indexing and does not touch upon the physical organization of the original rela-
tional data. For example, unlike column-stores, we do not obtain the record-data
through different “mini-pages”.

3 Two Naive Methods for PD Range Queries

3.1 All-Dimensional Index

As mentioned above, the existing multidimensional indices are designed to eval-
uate AD queries. This is because all of the objects are clustered in the leaf nodes
according to their information in all index dimensions and every node contains
information of its entries in all of the index dimensions. Actually, they also can
be applied to evaluate PD range queries. Using one n-dimensional index in the
entire n-dimensional index space, one PD range query with d (d < n) query
dimensions can be evaluated by simply extending the query range in each of the
(n− d) irrelevant index dimensions to the entire data domain.

3.2 Multi-Btree

Another approach to handling PD range queries is called Multi-Btree in this
paper. In this approach, one B-tree (or a variant thereof) is constructed in each
index dimension, using the projections of the objects (tuples for relational data).
For PD range queries, the corresponding B-trees are used individually and their
results are intersected to obtain the final query result. In total, n B-trees should
be constructed in advance for an n-dimensional index space.

690 Y. Feng and A. Makinouchi

d1

d2

A

B

C

D

Fig. 1. An PD range query using
multi-Btree

Figure 1 is an example of a two-
dimensional PD range query evaluated using
multi-Btree, where the two dimensions (d1
and d2) are used as query dimensions. In this
case, the two B-trees constructed on d1 and
d2 are used.

In Fig.1, the thick shadow region is the
given query range. Two range queries are
firstly evaluated on the two corresponding B-
trees, respectively. All of the objects located
in the vertical shadow region and the hori-
zontal shadow region are reported as intermediate results, R1 and R2, then the
final result of this PD range query is given by R1 ∩R2.

4 AR*-tree

AR*-tree is described in this section, including its structure, an search algorithm
for PD range queries and a discussion on search performance.

4.1 Structure

The key concept of AR*-tree is to divide each of the n-dimensional R*-tree nodes
into n one-dimensional nodes (these n one-dimensional nodes form a node-group),
each of which holds the information in one dimension, while each node of R*-tree
holds the information in all of the index dimensions. The general structure of
AR*-tree is depicted in Fig.2.

node-group

Fig. 2. General structure

Whereas every entry in R*-tree nodes includes the MBR information in all
of the dimensions, each entry in the nodes of AR*-tree includes only one-
dimensional information. In each node-group, each set of entries having the same
index (location) and distributed in different nodes forms an entry of node-group,
which corresponds to a complete MBR. Each entry of every node in one node-
group corresponds to an edge of the MBR, while each of the entries in the index
nodes of R*-tree corresponds to a complete MBR.

Efficient Evaluation of PD Range Queries Using Adaptive R*-tree 691

The question then arises as to whether the total number of nodes in AR*-tree
becomes n times that in R*-tree since each node of R*-tree has been divided into
n nodes. However, this is not the case because the maximum number of entries
in each node of AR*-tree increases greatly, because the dimensionality of each
node in AR*-tree decreases from n to 1.

The structure of AR*-tree guarantees that it can be applied to PD range
queries with any combinations of query dimensions and that only the relevant
one-dimensional nodes are visited.

4.2 Algorithms of AR*-tree

The insert and delete algorithms of AR*-tree is naive extensions of the counter-
parts of R*-tree. An algorithm for range queries is shown in Table 1.

Table 1. Algorithm for range queries on AR*-tree

Procedure RangeQuery (rect, node-group)
Input: rect: query range

node-group: initial node-group of the query
Output: result: all the tuples in rect
Begin
For each entry e ∗) in node-group Do

If e INTERSECT rect in all the query dimensions ∗∗) Then
If (node-group is not at leaf) Then

RangeQuery (rect, e.child); //e.child means the child node-group of e
Else result ← e

EndFor
End

* An entry includes all parts with the same index in the nodes of this node-group.
** In the visited node-groups, not all nodes of the query dimensions are necessary to

be checked.

Staring with the root node-group, each entry of the current node-group needs
to be checked as to whether its MBR intersects the query range. If its MBR
intersects the query range, and the current node-group is not at the leaf level,
then this algorithm is invoked recursively with the corresponding child node-
group. Note that, when each entry e of the current node-group is checked, (1)
not all of the nodes in this node-group have to be accessed (such irrelevant nodes
are skipped), and (2) even, not all of the nodes in the relevant dimensions (query
dimensions) have to be visited, because further checks are not necessary after the
current entry is found not to intersect the query range in the current dimension.

4.3 Discussion on Search Performance

A disadvantage of R*-tree exists in that each node contains n-dimensional infor-
mation, but only d-dimensional information is necessary for one PD range query

692 Y. Feng and A. Makinouchi

having d (d < n) query dimensions. This means that a great deal of unnec-
essary information, i.e., the information in the irrelevant dimensions, also has
to be read from disk, which certainly degrades the search performance, espe-
cially for large datasets. The main advantage of AR*-tree over R*-tree is that,
for PD range queries, only the information in the relevant dimensions needs be
visited.

The main advantages of AR*-tree over multi-Btree are as follows. (1) When
an entry of a node-group is checked to determine whether it intersects the query
range, AR*-tree can make a decision according to information in all of the query
dimensions, i.e., mutual reference is possible. As a result, the regions A, B,
C, and D in Fig.1 can be skipped. However, mutual reference is impossible in
queries using multi-Btree because each B-tree contains only one-dimensional
information and these B-trees are used independently. That is, during searching
on each B-tree, the algorithm cannot realize the query ranges in the other query
dimensions. Thus, many unnecessary investigations are thus performed, and a
great deal of irrelevant information is read from disk. (2) In AR*-tree, only one
index is needed, while multiple B-trees are necessary in multi-Btree. Both the
management/update of such B-trees incur additional costs. (3) In multi-Btree,
too many intermediate results may be reported and the intersection operation
on the intermediate results may be very time-consuming. Considering a dataset
having 1,000,000 data points uniformly distributed in a six-dimensional space.
Assume that the given PD range query has four query dimensions and that the
query range in each of the four query dimensions is 1/10 of the entire data domain
in each respective dimension. In this case, the final result has only 106/104 = 100.
However, the query result on each B-tree has 105 objects! and the total number
of intermediate results is 4× 105!

Table 2. Symbols and their descriptions

n number of index dimensions
d number of query dimensions
S volume of the entire index space
Sq volume of the query range (the ranges in the irrelevant

dimensions are extended to the whole data ranges)
Mr capacity of each R*-tree leaf node
Mg capacity of each leaf node-group in AR*-tree
Nl number of R*-tree leaf nodes
Ng number of AR*-tree leaf node-groups

Here is a simple mathmatical comparison between AR*-tree and R*-tree.
The objects are assumed to be distributed uniformly in the index space. The
necessary symbols are shown in Table 2.

For R*-tree, the average number of leaf-node accesses, Rl, can roughly be
given by

Rl = Sq

S ×Nl.

Efficient Evaluation of PD Range Queries Using Adaptive R*-tree 693

If AR*-tree is used, then the average number of leaf node groups intersecting
the query range, ARg, can roughly be given by

ARg = Sq

S ×Ng.

It is easy to understand that the maximum number of entries in each leaf
node of AR*-tree is roughly n times that in each leaf node of R*-tree. We have

Ng

Nl
≈ Mr

Mg
≈ 1

n .

In each accessed node-group of AR*-tree, at most d nodes (see Table 1) are
visited for each d-dimensional PD range query. Thus, the number of leaf nodes
(not the node-groups) that must be visited, ARl , can be given by

ARl ≤ ARg × d ≈ Sq

S ×Ng × d ≈ Sq

S ×
1
n ×Nl × d = d

n ×Rl < Rl.

The above equation indicates that, for PD range queries with d < n, the num-
ber of accessed leaf nodes in the case of AR*-tree is less than that in the case of
R*-tree. If d = n, then the number of accessed leaf nodes may be approximately
the same and it is also possible that ARl < Rl. More importantly, for a fixed n,
the lower the number of query dimensions, the bigger the advantage of AR*-tree
compared to R*-tree.

The above equation can be explained as follows. Because the capacity of each
leaf node-group in AR*-tree is roughly n times that of each leaf node in R*-tree,
the number of accessed leaf node-groups in AR*-tree is approximately 1/n times
that of the accessed leaf nodes in R*-tree. However, in each of the accessed leaf
node-groups of AR*-tree, at most d nodes must be visited.

Next, let us see AR*-tree and R*-tree for AD range queries. Although all of
the nodes in the visited node-groups intuitively have to be accessed for AD range
queries, it is actually not true.

For one n-dimensional AD range query in an n-dimensional index space
{d1, d2, ..., dn}, if all the entries in the current node-group do not intersect the
query range in the k-dimensional space {d1, d2, ..., dk} (k < n), then the nodes
of this node-group in dimensions dk+1, ..., dn can be skipped. This means that,
in the visited node-groups, the information in one or more dimensions possibly
need not be read from secondary storage even for all-dimensional range queries.
On the contrary, in R*-tree, the information corresponding to all of the dimen-
sions in the visited nodes have to be read from disk. Thus, even for AD range
queries, the AR*-tree also possibly has better search performance. Note that, for
the higher-dimensional spaces, because the MBRs (entries) in each node-group
become sparser, it generally becomes possible to skip more nodes in the visited
node-groups. A more detailed explaination can be found in [15].

5 Experiments

A six-dimensional dataset with Zipf distribution (constant is 1.5 like [10,11]),
having 200,000 objects, is used to examine the behavior of AR*-tree.

694 Y. Feng and A. Makinouchi

Although the size of main memory in many systems has increased greatly
in recent years, indices for large datasets still tend to be stored in secondary
storage, especially their leaf nodes. That is, the I/O cost is still the performance
bottleneck for many systems with large datasets. In our experiment, the node size
is set to be 4096 bytes. Search performance is measured in terms of the number
of leaf node accesses and the number of total node accesses. Only the former is
presented because of the limitation of pages and because that (1) the leaf nodes
constitute the overwhelming majority of the total nodes and tend to be stored
in secondary storage [9], (2) AR*-tree may be lower than R*-tree because each
node-group can hold more entries than one R*-tree node. Thus, comparison in
the number of leaf node accesses is fairer, and (3) no new observations for the
number of all of the node accesses.

PD range queries are tested with different numbers of query dimensions, rang-
ing from 1 to 6. B+-tree is used in multi-Btree. Without loss of generality, the
query ranges in all of the query dimensions are set to be equal. These ranges
are varied from 10% to 100% in increments of 10%. The query for the range of
the same size is repeated 100 times with random locations, and the averages are
presented. The parameters of the indices are shown in the following table.

Adaptive R*-tree R*-tree Multi-Btree
Capacity of each leaf node 340 77 340

Height 3 4 3
Total number of leaf nodes 4848 (808 groups) 4439 6777 (six B+-trees)

The experimental results are depicted in Fig. 3 (a) ∼ (f), where the X-axis
represents the side length of the query range in each dimension and the Y-axis
represents the number of leaf node accesses. In these figures, the number of leaf
node accesses in the case of multi-Btree indicates the total number of the leaf
node accesses on all of the relevant B+-trees. The experiment result shows that

(1) For d = 1 (d is the number of query dimensions), the search performance
of AR*-tree is slightly worse than multi-Btree, but it is far better than R*-tree.

(2) From d=2, the search performance of AR*-tree begins to outperform
that on multi-Btree and remains better than that on R*-tree. In addition, as
d increases, the performance advantage of AR*-tree over multi-Btree becomes
larger. However, the performance advantage of AR*-tree compared to R*-tree
becomes weaker as d increases.

(3) The search performance of R*-tree becomes better as d increases. This is
because the search region can be limited in more dimensions.

(4) As d increases, the search performance of AR*-tree varies in an interest-
ing way. The number of accessed node-groups decreases in the same reason as
(3). However, the number of accessed nodes in each accessed node-group may
increases. Under these two conflicting influences, as d increases, the search per-
formance of the AR*-tree does not change much when the query range size is less
than 40%. However, if the query range size exceeds 40%, the search performance
of AR*-tree degrades clearly as d grows.

Efficient Evaluation of PD Range Queries Using Adaptive R*-tree 695

0

1000

2000

3000

4000

5000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 le

af
 n

od
e

ac
ce

ss
es

Restriction in each query dimension (%)

AR*-tree
R*-tree

Multi-Btree

0

1000

2000

3000

4000

5000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 le

af
 n

od
e

ac
ce

ss
es

Restriction in each query dimension (%)

AR*-tree
R*-tree

Multi-Btree

(a) Number of query dimensions is 1 (b) Number of query dimensions is 2

0

1000

2000

3000

4000

5000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 le

af
 n

od
e

ac
ce

ss
es

Restriction in each query dimension (%)

AR*-tree
R*-tree

multi-Btree

0

1000

2000

3000

4000

5000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 le

af
 n

od
e

ac
ce

ss
es

Restriction in each query dimension (%)

AR*-tree
R*-tree

Multi-Btree

(c) Number of query dimensions is 3 (d) Number of query dimensions is 4

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 le

af
 n

od
e

ac
ce

ss
es

Restriction in each query dimension (%)

AR*-tree
R*-tree

Multi-Btree

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 le

af
 n

od
e

ac
ce

ss
es

Restriction in each query dimension (%)

AR*-tree
R*-tree

Multi-Btree

(e) Number of query dimensions is 5 (f) Number of query dimensions is 6

Fig. 3. Experimental result for range queries

6 Conclusions

In this paper, we firstly pointed out that the existing multidimensional indices
are not appropriate for partially-dimensional range queries (called PD range
queries). And then, we showed that partial-dimensional range queries can be
efficiently evaluated using a modification of R*-tree, called Adaptive R*-tree.
The discussions and the experiments indicated that the Adaptive R’*-tree has a
clearly better performance for PD range queries than the naive methods, R*-tree
and multi-Btree. Although R*-tree was used in this paper, the other hierarchical
MBR-based multidimensional indices can also be employed.

696 Y. Feng and A. Makinouchi

Acknowledgment

This research was supported in part by Japan Society for the Promotion of
Science through Grants-in-Aid for Scientific Research 17650031 and 16200005.

References

1. V. Markl, M.Zirkel, and R.Bayer: Processing Operations with Restrictions in Rela-
tional Database Management Systems without External Sorting. Proc. ICDE Intl.
Conf., pp. 562-571, 1999.

2. V.Markl, F.Ramsak, and R.Bayer: Improving OLAP Performance by Multidimen-
sional Hierarchical Clustering. Proc. IDEAS Intl. Symposium, pp165-177, 1999.

3. N. Beckmann, et. al.: The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles. Proc. ACM SIGMOD Intl. Conf., pp.322-331, 1990.

4. S.Berchtold, D.Keim, H.P.Kriegel: The X-tree: An Index Structure for High-
dimensional data. Proc. The 22nd VLDB Intl. Conf., pp.28-39, 1996.

5. Y. Sakurai, M. Yoshikawa, S. Uemura and H. Kojima: The A-tree: An Index Struc-
ture for High-Dimensional Spaces Using Relative Approximation. Proc. The 26th
VLDB Intl. Conf., pp.516-526, 2000.

6. V. Gaede and O. Gunther: Multidimensional Access Methods. ACM Computing
Surveys, Vol.30, No.2, pp.170-231, 1998.

7. Y. Cui: High-dimensional Indexing. Lecture Notes in Computer Science (LNCS),
Vol. 2341 (Monograph), 2003.

8. Informix Spatial DataBlade Module. IBM
(ww306.ibm.com/software/data/Informix/blades/spatial/rtree.html), 2004.

9. G.R.l Hjaltason and H. Samet: Distance Browsing in Spatial Database. ACM
Transactions on Database Systems, Vol.24, No.2, pp. 265 318, 1999.

10. S. Hong, B. Song and S. Lee: Efficient Execution of Range-Aggregate Queries in
Data Warehouse Environments. Proc. 20th international Conference on CONCEP-
TUAL MODELING (ER 2001), pp.299-310, 2001.

11. C. Zhang, et.al.: On Supporting Containment Queries in Relational Database Man-
agement Systems. Proc. SIGMOD Intl. Conf., pp. 425-436, 2001.

12. S. Berchtold, et.al.: Optimal Multidimensional Query Processing Using Tree
Striping. Proc. 2nd intl. Conf. on Data Warehousing and Knowledge Discovery
(DaWak), pp. 244-257, 2000.

13. M. Shao, et al.: Clotho: Decoupling Memory Page Layout from Storage Organiza-
tion. Proc. VLDB Intl. Conf., pp. 696-707, 2004.

14. B. Bhattacharjee, et. al.: Efficient Query Processing for Multi-Dimensionally Clus-
tered Tables in DB2. Proc. VLDB Intl. Conf. 2003.

15. Y. Feng, and A. Makinouchi: Ag-Tree: A Novel Structure for Range Queries in
Data Warehouse Environments. Proc. 11th International Conference on Database
Systems for Advanced Applications (Dasfaa 2006), LNCS 3882, pp. 498-512, 2006.

16. T. Grust: Accelerating XPath Location Steps. Proc. ACM SIGMOD International
Conference, pages 109-120, 2002.

Parallelizing Progressive Computation for
Skyline Queries in Multi-disk Environment

Yunjun Gao, Gencai Chen, Ling Chen, and Chun Chen

College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
{gaoyj, chengc, lingchen, chenc}@cs.zju.edu.cn

Abstract. Given a set of d-dimensional points, skyline query returns
the points that are not dominated by any other point on all dimen-
sions. In this paper, we study an interesting scenario of skyline retrieval,
where multi-dimensional points are distributed among multiple disks.
Efficient algorithms for parallelizing progressive skyline computation are
developed, using the parallel R-trees. The core of our scheme is to visit
more entries from some disks simultaneously and enable effective prun-
ing strategies with dominance checking to prune away the non-qualifying
entries. Extensive experiments with synthetic data confirm that our pro-
posed algorithms are both efficient and scalable.

1 Introduction

Skyline query is one of important operations for several applications involving
multi-criteria decision making, and has received considerable attention in the
database community. Given a set of d-dimensional points, the skyline comprises
all the points that are not dominated by others in all dimensions. A point p
dominates another p′ if the coordinate of p on each dimension is smaller than or
equal to that of p′, and strictly smaller on at least one dimension. Consider, for
instance, Figure 1(a) where d = 2, and each point corresponds to a hotel record.
The room price of a hotel is represented the x-axis, and the y-axis specifies its
distance to the beach. Clearly, hotel a dominates hotels b, d and e, since the
former is closer to the beach and cheaper than the latter. Hotels a, g, i and n
form the skyline, for which there is no any other hotel in {a, b, . . . , m, n} that is
better on both dimensions.

Skyline computation has been extensively studied, and a large number of
skyline processing methods have been also proposed [1, 3, 4, 5, 6, 8, 10, 11, 12,
13, 14, 15, 17, 18, 19, 20]. These approaches can be divided into two categories.
Specifically, (i) non-index-structure-based schemes, which do not assume any
index structure on the underlying dataset, but they compute the skyline through
scanning the entire dataset at least once, leading to expensive CPU overhead;
(ii) index-structure-based solutions, which significantly reduce query cost by
performing the search on an appropriate index structure (e.g., R*-tree [2]). Our
work in this paper belongs to the latter.

Surprisingly, in spite of the numerous bibliographies for the skyline queries,
to our knowledge, there is little prior work on skyline retrieval in parallel en-
vironment (e.g., multi-disk architecture, etc.). Existing algorithms for skyline

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 697–706, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

698 Y. Gao et al.

1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x (Price)

y (Distance)

Skyline point

a
b

c

d
e

f

g

h

i

j
k

l
m

n

Dominating point

Skyline Search Region

 1 2 3 4 5 6 7 8 9 10
0

1
2
3
4
5
6
7
8
9

10

x

y

Skyline point

N1

N2

N3

N4

N5

N7

N6

a

b

c

d

e

f

g

h

i

j

k

l
m

n

Dominating point

Disk 1 Disk 2 Disk 3

N1

(d1)
N2

(d2)

N3

(d3)
N4

(d1)
N5

(d2)
N6

(d3)

a
(d2)

b
(d3)

c
(d1)

d
(d2)

e
(d3)

f
(d1)

g
(d2)

h
(d3)

i
(d1)

l
(d1)

m
(d2)

n
(d3)

N1 N2

N3 N5N4 N7

Root
Level 2

Level 1

Level 0

N7

(d1)

j
(d2)

k
(d3)

N6

(a) (b) (c)

Fig. 1. Example of the skyline and the corresponding parallel R-tree

computation can efficiently execute in the serial context that uses only a single
disk. However, they cannot be directly applied to the parallel setting, and their
performance degrades even after modification, because they do not exploit any
kind of parallelization.

Motivated by this problem, in this paper, we study an interesting scenario of
skyline retrieval, where multi-dimensional points are distributed over multiple
disks. On this multi-disk architecture (consisting of one processor with several
disks attached to it), two efficient algorithms for parallelizing progressive skyline
computation, termed Basic Parallel Skyline (BPS) and Improved Parallel Skyline
(IPS) algorithms, are developed using the parallel R-trees [9]. The core of our
solution is to access more entries from some disks simultaneously and enable
several effective dominance checking based pruning strategies to discard non-
qualifying entries. Finally, extensive experiments with synthetic data show that
the proposed algorithms are both efficient and scalable.

The rest of the paper is organized as follows. Section 2 discusses related work
on skyline queries. Section 3 describes BPS, providing an analysis of its efficiency.
Section 4 presents IPS, together with the pruning heuristics with dominance
checking and a proof of its optimality. Section 5 experimentally evaluates the
efficiency and scalability of BPS and IPS under a variety of settings. Section 6
concludes the paper with some directions for future work.

2 Related Work

In this section, we survey the related work on skyline queries. Borzsonyi et
al. [3] first introduce the skyline operator in the database context and develop
two skyline query algorithms, i.e., Block Nested Loop (BNL) and Divide-and-
Conquer (D&C). Chomicki et al. [5] present a Sort-First-Skyline (SFS) algorithm
as an improved version of BNL. Tan et al. [17] first propose progressive technique
that can return skyline points instantly, and develop two solutions, called Bitmap
and Index, respectively. Another two progressive skyline computation methods,
involving Nearest Neighbor (NN) and Branch-and-Bound Skyline (BBS), are
proposed by Kossmann et al. [10] and Papadias et al. [14], respectively, using
nearest neighbor search [16,7] on datasets indexed by R-trees.

Recently, Balke et al. [1] extend the skyline retrieval problem to the web
information systems, and two algorithms including Basic Distributed Skyline

Parallelizing Progressive Computation for Skyline Queries 699

(BDS) and Improved Distributed Skyline (IDS) that compute the skyline in
the distributed environment are proposed. Nevertheless, they return all skyline
points at the end rather than progressively. To settle this problem, Lo et al. [12]
devise a Progressive Distributed Skyline (PDS) algorithm. In addition, Lin et
al. [11] and Tao et al. [18] independently study continuous skyline monitoring on
data streams. Chan et al. [4] investigate skyline computation for partially-ordered
domains. Godfrey et al. [6] present an algorithm, termed Linear-Elimination-Sort
for Skyline (LESS), which has attractive worst-case asymptotical performance.
Pei et al. [15] and Yuan et al. [20] separately present the skyline cube consisting
of the skylines in all possible subspace. More recent, Tao et al. [19] study skyline
computation in subspace. Huang et al. [8] consider skyline retrieval in a mobile
and distributed environment. Morse et al. [13] examine continuous time-interval
skyline queries. Our work in this paper differs from the above skyline processing
approaches in that we aim at computing the skyline in the multi-disk setting, as
opposed to serial one.

3 Basic Parallel Skyline Algorithm

3.1 Algorithm Description

The key idea of the Basic Parallel Skyline (BPS) algorithm is to exploit suffi-
cient parallelism to visit all relevant entries in multiple disks at the same time.
BPS follows the best-first nearest neighbor search paradigm. It means that BPS
always processes the entry with the minimal mindist at a time. Initially, BPS
creates and initializes M heaps (representing H1, H2, . . . , HM) for M disks, sup-
pose that the number of disks is M . Then, it inserts all the entries enclosed
in the root node of parallel R-tree into respective heap sorted in ascending or-
der of their mindist. Next, BPS circularly computes the skyline until all heaps
become empty. Each circulation, the entry Emin with the smallest mindist in
all the non-empty heaps is found firstly. If Emin is dominated by some skyline
point discovered, then it is discarded, this circulation is done, and the algorithm
proceeds to repeat the next loop. Otherwise, BPS determines whether Emin is
a data point or not. If so, Emin must be a skyline point, and is en-heaped into a
list S that is used to keep the skyline accordingly. If not (i.e., Emin is an interme-
diate entry), BPS expands all the first non-leaf entries among all the non-empty
heaps by parallelism, after which their children that are not dominated by any
skyline point in S are inserted into the corresponding heap. Figure 2 shows the
pseudo-code of BPS. Note that Emin is checked for dominance thrice, and other
entries are done the operation twice, such that all the entries that are dominated
by some skyline point found do not need to be accessed. As depicted in Figure 2,
the operations in lines 12 through 21 are performed in parallel.

To summarize the description of BPS algorithm, we employ an illustrative
example to simulate its execution. As an example, we use the set of 2-dimensional
data points of Figure 1(a), organized in the parallel R-tree [9] of Figure 1(c) with
node capacity = 3. In Figure 1(c), nodes are numbered from N1 to N7, and the
symbols d1 through d3 in each entry specify disk 1 to disk 3, respectively. The

700 Y. Gao et al.

distances from the origin of data space are computed according to L1 norm
(i.e., Manhattan distance), that is, the mindist of a point equals the sum of its
coordinates (e.g., mindist(g) = 7) and the mindist of a MBR (i.e., intermediate
entry) equals the mindist of its bottom-left corner point (e.g., mindist(N5) = 5).
Figure 3 illustrates the executive steps of BPS, where MHS denotes the maximal
heap size. Also notice that skyline points found are bold and pruned entries are
shown with strikethrough fonts.

Algorithm BPS (parallel R-tree, M)
/* M denotes the number of disks; S specifies a list used to keep skyline points. */
1. Create and initialize M heaps (i.e., hp1, hp2, …, hpM) for M disks;
2. S = Ø;
3. Insert all entries of the root R into respective heap;
4. While existing non-empty heap(s) in {hp1, hp2, …, hpM} do
5. Find the entry Emin with the minimum mindist to origin in {hp1, hp2, …, hpM};
6. If Emin is dominated by some point in S then
7. Discard Emin;
8. Else // Emin is not dominated
9. If Emin is a data point then
10. Insert Emin into S;
11. Else // Emin is an intermediate entry
12. For i = 1 to M parallel do
13. If the i-th heap (i.e., hpi) is not empty then
14. Remove top entry Ei;
15. If Ei is dominated by some point in S then
16. Discard Ei;
17. Else // Ei is not dominated
18. If Ei is an intermediate entry then
19. For each child ei of Ei do
20. If ei is not dominated by some point in S then
21. Insert ei into corresponding heap;
22. Enddo
End BPS

Fig. 2. Pseudo-code of a BPS algorithm

Action Heap 1 Contents

Access root (N1, 7)

Expand N1, N2 (N7, 9), (N4, 13)

Expand N7, N5, N3 (i, 8), (c, 10), (l, 10), (N4, 13)

Heap 2 Contents

(N2, 4)

(N5, 5)

(g, 7), (a, 9), (m, 13)

Heap 3 Contents

Ø

(N3, 7), (N6, 11)

(h, 10), (n, 10), (b, 11), (N6, 11)

N2

N5

g

Emin

Ø

Ø

{g, i, a, n}

S

1

2

4

MHS

Fig. 3. Illustration of the execution of BPS

3.2 Analysis

This section analyzes the efficiency of BPS. The following lemmas ensure that
BPS can correctly compute the skyline, without reporting any false hits. Note
that we omit the proofs of them due to the limitation of space.

Lemma 1. BPS visits entries (involving intermediate and data point entries)
of a parallel R-tree in ascending order of their distance to the origin of the data
space.

Parallelizing Progressive Computation for Skyline Queries 701

Lemma 2. Skyline points are progressively returned by BPS during the execu-
tion of the algorithm.

Lemma 3. If either an intermediate or a data point entry is not examined, then
it must be dominated by some skyline point discovered.

As shown in our experiments, the heap size of BPS can be further reduced.
Continuing the running example, Figure 3 holds some redundant entries that do
not contribute to the final skyline (e.g., N4, N6, b, h, etc.). Thus, they should
not be inserted into the heaps. Based on this observation, an improved parallel
algorithm for skyline computation, called IPS, is proposed in Section 4.

4 Improved Parallel Skyline Algorithm

4.1 Pruning with Dominance Checking

All non-qualifying entries do not need to be inserted into the heaps for accessing
later. As we can achieve by careful dominance checking for each entry before it
is en-heaped there. Next, we discuss the pruning strategy that is inspired by the
analysis of the Dominance Region (DR) of per entry. For simplicity, we consider
only 2-dimensional (2D) data space in the following discussion. However, similar
conclusions also hold in d (d > 2) dimensions.

mx
0

my

x

y

P

Dominating
Region of P

Maximal Corner
of Data Space

px

py

mx
0

my

x

y

N1

Dominating
Region of N1

Lower-left point of N1

Maximal Corner
of Data Space

Upper-right
point of N1

ul

lrlly

llx

mx
0

my

x

y

P

N1

N2

Dominating Region of P

N3

Maximal Corner
of Data Space

Non-qualifying Point

Skyline Point

Non-qualifying MBR

Qualifying MBR
a

b
py

px

mx
0

my

x

y

N1

N2

N4

N8

N5

N7

Maximal Corner
of Data Space

Pruning Seeds of N1

N6

N3

Dominating Region of N1

Non-qualifying Point

Skyline Point

a

b

f

c
d e

Non-qualifying MBR

Qualifying MBR

lly

llx

(a) DR of P (b) DR of N1 (c) Pruning with P (d) Pruning with N1

Fig. 4. DRs of one point, one MBR, and their pruning ability

Let the coordinates of the maximal corner of data space be (mx, my), then
towards a point P with coordinates (Px, Py), its DR is the rectangle whose
diagonal is the line segment with P and the maximal corner of the data space
as coordinates. Figure 4(a) shows the DR of P (indicated the shaded rectangle).
Similarly, for an intermediate entry (i.e., MBR) N , the DR of N is determined
by its own boundaries and the boundaries of the data space. As an example,
Figure 4(b) shows this situation, and the DR of N1 is specified by the shaded
area. From the diagram, we can also see that the N1’s DR is the union of the
dominating regions of ul and lr, i.e., formally, DR (N1) = DR (ul)

⋃
DR (lr),

where ul and lr denote the upper-left vertex of N1 and the lower-right vertex of
N1, respectively. Thus, it implies that the N1’s ability to dominate other entries
can be done by dominance checking with ul and lr. For this reason, we call that
ul and lr the pruning seeds of N1. Evidently, any entry, including point and

702 Y. Gao et al.

MBR, that fully falls into the DR of point P (or MBR N) must be dominated
by P (or N), and be excluded from the skyline. In contrast, the entry has to
be visited further because it may potentially contain (or be) the skyline point.
For ease to presentation, we also use the two 2D illustrations as demonstrated
in Figures 4(c) and 4(d) in our discussion.

4.2 Algorithm Description

Like BPS, Improved Parallel Skyline (IPS) algorithm is based on best-first near-
est neighbor search paradigm, but (unlike BPS) it enables effective dominance
checking based pruning strategy (depicted in Section 4.1) to discard unnecessary
entries for the skyline in order to greatly decrease the memory space and speed
up its execution. Figure 5 shows the pseudo-code of IPS. Notice that Emin is
checked for dominance thrice, and other entries are done the operation twice.
Furthermore, IPS also implements pruning twice. Specifically, (i) line 20 filters
all the entries dominated by some skyline point found in the heaps, and (ii) line
23 prunes all entries dominating each other in an auxiliary heap (e.g., hp of Fig-
ure 5). After pruning, only the entries that act on the final skyline are inserted
into the heaps, such that the maximal heap size is reduced by factors, as well as
the query cost is decreased accordingly. Additionally, as shown in Figure 5, the
operations enclosed in lines 12 to 21 can be performed by parallelizing. As with
the settings of Figure 3, Figure 6 illustrates the executive steps of IPS. As shown
Figure 6, the MHS of IPS is smaller significantly than that of BPS, which is
also verified by the experiments in Section 5.

Algorithm IPS (parallel R-tree, M)
/* M denotes the number of disks; S specifies a list used to keep skyline points; hp is a temporary
heap used to filter non-qualifying entries visited that do not contribute to the final answer. */
1. Create and initialize M + 1 heaps (i.e., hp, hp1, hp2, …, hpM);
2. S = Ø;
3. Insert all entries of the root R into respective heap;
4. While existing non-empty heap(s) in {hp1, hp2, …, hpM} do
5. Find the entry Emin with the minimum mindist to origin in {hp1, hp2, …, hpM};
6. If Emin is dominated by some point in S then
7. Discard Emin;
8. Else // Emin is not dominated
9. If Emin is a data point then
10. Insert Emin into S;
11. Else // Emin is an intermediate entry
12. For i = 1 to M parallel do
13. If the i-th heap (i.e., hpi) is not empty then
14. Remove top entry Ei;
15. If Ei is dominated by some point in S then
16. Discard Ei;
17. Else // Ei is not dominated
18. If Ei is an intermediate entry then
19. For each child ei of e do
20. If ei is not dominated by some point in S then
21. Insert Ei into the heap hp; // hp should be further checked
 // Check whether all the entries in hp are qualifying ones or not. If not, discard them.
22. If hp is not empty then
23. Prune all the non-qualifying entries in hp;
24. While hp is not empty do
25. Remove top entry e;
26. Insert e into corresponding heap;
27. Enddo
28. Enddo
End IPS

Fig. 5. Pseudo-code of a IPS algorithm

Parallelizing Progressive Computation for Skyline Queries 703

Action Heap 1 Contents

Access root (N1, 7)

Expand N1, N2 (N7, 9)

Expand N7, N5, N3 (i, 8)

Heap 2 Contents

(N2, 4)

(N5, 5)

(g, 7), (a, 9)

Heap 3 Contents

Ø

(N3, 7)

(n, 10)

N2

N5

g

Emin

Ø

Ø

{g, i, a, n}

S

1

1

2

MHS

Fig. 6. Illustration of the execution of IPS

4.3 Discussion

Similar to BPS, IPS can correctly return the entire skyline, without lose any
valid one. In this section, we focus on the analysis of Skyline Search Region
(SSR), which is the part of the data space that may contain some skyline points.
Consider, for instance, Figure 1(a), the SSR is the shaded area defined by the
skyline (i.e., {a, g, i, n}) and the two axes. Then, we prove that IPS is optimal
in terms of I/O cost.

Lemma 4. IPS must visit all the entries (containing intermediate and data
point entries) of a parallel R-tree that fully fall into or intersect the SSR, instead
of accessing those entries lying in the exterior of the SSR during the processing
of skyline retrieval.

Theorem 1. The number of node accesses for IPS is optimal.

Proof. The Theorem 1 trivially holds, because Lemma 4 guarantees that the
heaps used by IPS store only the entries that may contain (or be) skyline points,
and those entries are en-heaped at most once, according to their mindist. �

5 Experimental Evaluation

In this section, we experimentally evaluate the efficiency and scalability of the
proposed algorithms under a variety of settings. Following the common method-
ology in the literature, we deployed the independent (uniform) and anti-correlated
datasets with dimensionality (d for short) varied from 2 to 5 and cardinality (N for
short) in the range [128k, 2M], respectively. Each dataset is indexed by a parallel
R-tree [9] distributed over multiple disks that are simulated on one 80 Giga disk
(whose type is “ST380011AS”) using several identifiers of disk (specified diskid),
and disk assignment straightforwardly follows the Round-Robin heuristic. The
node size of the parallel R-tree is fixed to 1024 bytes.

The experiments investigated several factors, including the number of disk
(disks for short), d, N , and progressive behavior, which affect the performance
of the algorithms. Notice that the query cost is calculated as the sum of the CPU
time and the I/O overhead computed by charging 10ms for each node access.
Both algorithms (involving BPS and IPS) were coded in C++ language. All
experiments were performed on a Pentium IV 3.0 GHz PC with 1024 MB RAM
running Microsoft Windows XP Professional. We utilized L1 norm to compute
the mindist from the origin of the data space in all experiments.

704 Y. Gao et al.

The effect of the number of disk. The first set of experiments studied the
influence of disks (varied between 2 and 10) on the performance of BPS and
IPS, using the datasets with d = 3D and N = 512k. Figure 7 plots the maximal
heap size (MHS for short), node accesses (NA for short), and query time (Secs)
as a function of disks, respectively. Clearly, in Figure 7, the MHS of IPS is
smaller than that of BPS, which explains that the memory consumption of BPS
can be reduced further, and our proposed pruning strategy with dominance
checking (discussed in Section 4.1) is efficient. As confirmed in the subsequent
experiments. In addition, as disks increases, the NA and query cost decrease,
which is caused by the growth of parallelism. However, the performance of IPS
again outperforms that of BPS in all cases.

The effect of dimensionality. To examine the impact of dimensionality d, we
employed the datasets with N = 512k and disks = 6 (which is the midvalue
used in Figure 7), altering d from 2D to 5D. Figure 8 shows these experimental
results. Similar to Figure 7, the efficiency of IPS is over that of BPS, especially

HS VS. disks (d = 3, N = 512k) on Independent dataset

0

30

60

90

120

2 4 6 8 10
Number of Disks

M
ax

im
u

m
 H

ea
p

 S
iz

e BPS IPS

HS VS. disks (d = 3, N = 512k) on Anti-correlated dataset

0

2000

4000

6000

8000

10000

2 4 6 8 10
Number of Disks

M
ax

im
um

 H
ea

p
S

iz
e

BPS IPS

NA VS. disks (d = 3, N = 512k) on Independent dataset

0

40

80
120

160

200

2 4 6 8 10
Number of Disks

N
o

d
e

A
c
ce

ss
es

BPS IPS

NA VS. disks (d = 3, N = 512k) on Anti-correlated dataset

1976
1238 1032 919 842

1977

1231
1000 890 806

0

500

1000
1500

2000

2500

2 4 6 8 10
Number of Disks

N
o

d
e
 A

c
c
e
ss

e
s

BPS IPS

Query cost VS. disks (d = 3, N = 512k) on Independent dataset

0

400

800
1200

1600

2000

2 4 6 8 10
Number of Disks

Q
u
e
ry

 T
im

e
 (

S
e
c
s) BPS IPS

Query cost VS. disks (d = 3, N = 512k) on Anti-correlated dataset

20275
12927 10898 9784 9045

20223

12841 10578 9572 8810
0

5000

10000
15000

20000

25000

2 4 6 8 10
Number of Disks

Q
u

er
y

 T
im

e
(S

ec
s) BPS IPS

Fig. 7. MHS, NA, Query time VS. varying disks (d = 3D, N = 512k)

HS VS. d (N = 512k, disks = 6) on Independent dataset

1E+0

1E+1

1E+2

1E+3

2D 3D 4D 5D
Dimensionality

M
ax

im
u

m
 H

ea
p

 S
iz

e BPS

IPS 61

64

236

236

NA VS. d (N = 512k, disks = 6) on Independent dataset

12

90

358

1316

8
74

352
1298

1E+0

1E+1

1E+2

1E+3

1E+4

2D 3D 4D 5D
Dimensionality

N
od

e
A

cc
es

se
s

BPS

IPS

Query cost VS. d (N = 512k, disks = 6) on Independent dataset

1E-2

1E-1

1E+0

1E+1

1E+2

2D 3D 4D 5D
Dimensionality

Q
ue

ry
 T

im
e

(S
ec

s)

BPS

IPS

0.12

0.08
0.74

0.916

3.551

3.627

13.261

13.442

Fig. 8. MHS, NA, Query time VS. varying d (N = 512k, disks = 6)

HS VS. N (d = 3, disks = 6) on Independent dataset

0
10
20
30
40
50
60

128k 256k 512k 1M 2M
Cardinality

M
ax

im
u

m
 H

ea
p

 S
iz

e BPS IPS

NA VS. N (d = 3, disks = 6) on Independent dataset

0
20
40
60
80

100
120

128k 256k 512k 1M 2M
Cardinality

N
o

d
e

A
cc

es
se

s

BPS IPS

Query cost VS. N (d = 3, disks = 6) on Independent dataset

0

0.2

0.4

0.6

0.8

1

1.2

128k 256k 512k 1M 2M
Cardinality

Q
u

er
y

T
im

e
(S

ec
s)

BPS IPS

Fig. 9. MHS, NA, Query time VS. varying N (d = 3D, disks = 6)

Parallelizing Progressive Computation for Skyline Queries 705

HS VS. NSP (d = 3, N = 512k, disks = 6) on Independent dataset

0

10

20

30

40

50

60

1 20 40 60 80 102
Number of Skyline Points

M
ax

im
um

 H
ea

p
S

iz
e

BPS

IPS

NA VS. NSP (d = 3, N = 512k, disks = 6) on Independent dataset

0

20

40

60

80

100

1 20 40 60 80 102
Number of Skyline Points

N
od

e
A

cc
es

se
s

BPS

IPS

Query cost VS. NSP (d = 3, N = 512k, disks = 6) on Independent dataset

0

0.2

0.4

0.6

0.8

1

1 20 40 60 80 102
Number of Skyline Points

Q
ue

ry
 T

im
e

(S
ec

s)

BPS

IPS

Fig. 10. MHS, NA, Query time VS. varying NSP (d = 3D, N = 512k, disks = 6)

in low dimensions (e.g., d = 2 or 3). Although the gain of IPS reduces in high
dimensions (e.g., d = 5), it is yet less than BPS, which is also pointed out by the
number at the side of each polyline in the diagrams. As expected the efficiency
of both algorithms degrades due to the growth of the number of skyline points
and the poor performance of parallel R-trees in high dimensions.

The effect of cardinality. Figure 9 illustrates MHS, NA, and query time
versus cardinality N for 3D (the parameter d = 3D is also the median value
used in Figure 8) datasets with N changed in the range [128k, 2M] and disks
= 6. Obviously, IPS consistently exceeds BPS. Specifically, the MHS of IPS is
several orders of magnitude smaller than that of BPS. Towards NA, IPS is less
than BPS. Also, IPS is faster than BPS for query cost.

Progressive behavior. Finally, we inspected the progressive behavior of the
algorithms for skyline computation on 3D datasets. Figure 10 compared MHS,
NA, and query cost as a function of the number of skyline points (NSP for
short) for datasets with d = 3D, N = 512k, and disks = 6. Notice that the
NSP in the final skyline is 102 for independent dataset. From the diagrams,
we see that IPS evidently exhibits smaller heap size than BPS (over orders of
magnitude) in most cases, because the non-qualifying entries are discarded by
IPS. Also notice that the heaps reach their maximal size at the beginning of
both algorithms, and stepwise decrease with the growth of NSP . The reason
of this case is these algorithms insert all the qualifying entries visited in the
heaps (due to no any skyline point found) before they discover the first skyline
point. For NA and query cost, BPS first outperforms IPS since the latter has
to expend some time to prune away the non-qualifying entries. However, the
difference gradually decreases as NSP increases, and then IPS is better than
BPS, which is due to some redundant entries storing in the heap of BPS.

6 Conclusion

This paper studies the problem of parallelizing progressive computation for sky-
line queries in the multi-disk environment. We propose two efficient parallel
algorithms for skyline queries, referred to as BPS and IPS, using the paral-
lel R-tree as the underlying structure. Furthermore, IPS captures optimal I/O
(i.e., the number of node accesses) and enables several effective pruning strate-
gies to discard the non-qualifying entries during the execution of the algorithm.

706 Y. Gao et al.

Finally, considerable experiments with synthetic datasets show that the pre-
sented algorithms are efficient and scalable, as well as IPS outperforms BPS. In
the future, we plan to explore the new parallel skyline computation methods in
a shared-nothing environment (i.e., multi-processor architecture).

References

1. Balke, W.-T., Guntzer, U., Zheng, J.X.: Efficient Distributed Skylining for Web
Information Systems. In: EDBT. (2004) 256-273

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: SIGMOD. (1990) 322-
331

3. Borzsony, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE. (2001)
421-430

4. Chan, C.-Y., Eng, P.-K., Tan. K.-L.: Stratified Computation of Skylines with
Partially-Ordered Domains. In: SIGMOD. (2005) 203-214

5. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE.
(2003) 717-719

6. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data
Sets. In: VLDB. (2005) 229-240

7. Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. ACM TODS
24 (1999) 265-318

8. Huang, Z., Jensen, C.S., Lu, H. Ooi, B.C.: Skyline Queries against Mobile Light-
weight Devices in MANETs. In: ICDE. (2006) 66

9. Kamel, I., Faloutsos, C.: Parallel R-trees. In: SIGMOD. (1992) 195-204
10. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algo-

rithm for Skyline Queries. In: VLDB. (2002) 275-286
11. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the Sky: Efficient Skyline Compu-

tation over Sliding Windows. In: ICDE. (2005) 502-513
12. Lo, E., Yip, K.Y., Lin, K.-I., Cheung, D.W.: Progressive Skylining over Web-

Accessible Databases. DKE. (to appear)
13. Morse, M., Patel, J., Grosky, W.: Efficient Continuous Skyline Computation. In:

ICDE. (2006) 108
14. Papadias, D., Tao, Y., Greg, F., Seeger, B.: Progressive Skyline Computation in

Database Systems. ACM TODS 30 (2005)41-82
15. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the Best Views of Skyline: A Semantic

Approach Based on Decisive Subspaces. In: VLDB. (2005) 253-264
16. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD.

(1995) 71-79
17. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In:

VLDB. (2001) 301-310
18. Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams.

TKDE 18 (2006) 377-391
19. Tao, Y., Xiao, X., Pei, J.: SUBSKY: Efficient Computation of Skylines in Sub-

spaces. In: ICDE. (2006) 65
20. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient Computation

of the Skyline Cube. In: VLDB. (2005) 241-252

Parameterizing a Genetic Optimizer

Victor Muntés-Mulero1, Marta Pérez-Casany2, Josep Aguilar-Saborit1,
Calisto Zuzarte3, and Josep-Ll. Larriba-Pey1

1 Computer Architecture Dept. Universitat Politècnica de Catalunya,
2 Applied Mathematics II Dept. Universitat Politècnica de Catalunya,

C/Jordi Girona 1-3, 08034 Barcelona, Spain
{vmuntes, jaguilar, larri}@ac.upc.edu, marta.perez@upc.edu

http://www.dama.upc.edu
3 IBM Canada Ltd, IBM Toronto Lab., 8200 Warden Ave.,

Markham, Ontario, Canada L6G1C7
calisto@ca.ibm.com

Abstract. Genetic programming has been proposed as a possible al-
though still intriguing approach for query optimization. There exist two
main aspects which are still unclear and need further investigation, name-
ly, the quality of the results and the speed to converge to an optimum
solution. In this paper we tackle the first aspect and present and validate
a statistical model that, for the first time in the literature, lets us state
that the average cost of the best query execution plan (QEP) obtained
by a genetic optimizer is predictable. Also, it allows us to analyze the
parameters that are most important in order to obtain the best possible
costed QEP. As a consequence of this analysis, we demonstrate that it is
possible to extract general rules in order to parameterize a genetic opti-
mizer independently from the random effects of the initial population.

1 Introduction

Deciding the optimal query execution plan (QEP) for very large join queries is a
well-known and important NP-hard problem of query optimization in relational
databases. Applications like SAP or those involving information integration often
need to combine a large set of tables to reconstruct complex business objects.
For instance, the SAP schema may contain more than 10,000 relations and may
join more than 20 of these in a single SQL query.

Several approaches aim at solving the large join query problem. Evolutionary
algorithms applied to query optimization have been presented as a possible so-
lution [1,7,10,11]. Whether evolutionary algorithms are a competitive approach
or not is still an intriguing question. One of the major obstacles for randomized
techniques is the difficulty to demonstrate if they are robust and predictable,
and whether it is possible to parameterize them in a sound way.

We present a statistical analysis, based on more than 72000 executions, that
allows us to understand that the behavior of a genetic optimizer depends on a
reduced set of parameters and that there exist configurations of these parameters
that are consistently better than others. Given the complexity of this problem, it

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 707–717, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

708 V. Muntés-Mulero et al.

is difficult to find an appropriate statistical model because this implies to carry
out a large number of executions. For this reason, a study of the whole space
of possible queries is out of the scope of this paper and, thus, we focus on the
specific case of star-join queries.

The rest of this paper is organized as follows. Section 2 briefly describes the
genetic optimizer used for this work. Section 3 presents our statistical model.
Section 4 presents a set of recommendation on how to parameterize a genetic
optimizer based on the model obatained. Section 5 references some related work.
Finally, Section 6 concludes this paper and proposes future work lines.

2 The Carquinyoli Genetic Optimizer

We use the Carquinyoli Genetic Optimizer (CGO) which is presented and vali-
dated for a real data workload comparing its results with a commercial optimizer
in [7]. The cost model used in CGO is based on that proposed in [9]. In order
to simplify the cost functions, this cost model only takes into account the I/O
accesses incurred by the QEP. It does, however, consider some advanced features
like the use of bit filters in the hash join operations and blocking techniques to
reduce disk utilization. A detailed description of the model is presented in [6].

2.1 Genetic Optimizer Behavior and Genetic Operations

In order to create a statistical model to predict the average cost for the ex-
ecution of the QEP obtained by CGO, we must determine the most influent
factors related to the genetic optimizer. A factor is considered to be a categor-
ical variable, i.e. a variable that gives the appropriate label of an observation
after allocation to one of several possible categories or values [2], that are called
levels in statistics.

Initially, the database and the query are fixed by the user and the system ob-
tains a query graph. These first steps are deterministic and cannot be altered by
the optimizer. CGO is based on genetic programming and it uses the same exe-
cution patterns of any evolutionary algorithm. The optimizer randomly chooses
N execution plans from the search space to create a first set of members to
begin with the evolution process. Although N is tunable, the process of select-
ing random QEPs from the search space and the creation of each population is
completely random and, consequently, it cannot be controlled by the user. Since
the size of the search space needed for very large join queries is enormous, the
quality of the small initial sample might be of major importance to determine
the effective approximation of the algorithm to a near-optimal solution. We call
P the initial population created for each execution. Two kinds of operations are
used to produce new members in the population: crossover operations, which
combine properties of the existing members in the population, and mutation
operations, which introduce new properties into the population (further infor-
mation about these operations can be found in [7]). In order to keep the size
of the population constant, a third operation, usually referred to as selection,

Parameterizing a Genetic Optimizer 709

is used to discard the worst fitted members, using the cost of the QEP. This
process generates a new population, also called generation, that includes both
the old and the new members that have survived to the selection operation. This
is repeated iteratively until a stop condition ends the execution. Once the stop
criterion is met, evolutionary algorithms take the best solution from the final
population. In our study we fix the number of generations, denoted by G, as
the stop criterion. For each generation we apply C crossover operations and M
mutation operations. C and M are studied in this paper. The appropriate value
of G is unknown and it is also one of the objects of our study.

There might be more parameters to take into consideration. However, as we
will see in the following section, the statistical model is accepted only considering
the variance produced by these parameters, namely N , G, C, M and P . This
implies that the effect of other parameters can be neglected.

3 Statistical Model

In this section we study the effect of different variables on the average cost of the
best QEP obtained after an execution of CGO by means of an statistical model.
The technique used to find this model is the Analysis of Variance which is the
equivalent to regression when we have categorical variables instead of continuous
variables. The Analysis of Variance (from here on ANOVA) is the statistical
technique that allows us to distinguish between the variability in the data due
to a specific cause, controlled by the experimenter, from the variability prompted
by other circumstances [5]. As a broad outline, ANOVA aims at decomposing the
total variability of a sample among different parts corresponding to the factors
that could potentially be the cause. Once the contribution of each level of each
factor in the result is estimated, by comparing variances using a Fisher test
we can decide if the differences caused by the different levels of a factor are
statistically significant or not. In our case, the ANOVA allows us to estimate the
contribution of each parameterizable value in the optimizer, in the cost of the
best QEP obtained after the optimization process. Therefore, we will be able
to see whether the contribution of each variable, alone or in combination with
others, is significant or not.

If the levels of a factor are fixed a priori, they are considered constants and
the factor is known as a fixed effects factor. If they have been randomly selected
from all possible values, then they are considered observations of a random
variable and the factor is considered a random effects factor. In order to define
an appropriate model to fit a set of data, it is very important to distinguish
between crossed factors and nested factors. Two factors A and B are crossed
when each level of A is observed for each level of B and vice versa. Given two
crossed factors it makes sense to ask for their interaction, i.e. the situation where
two explanatory variables do not act independently on the response variable.
More exactly, A and B interact when the effect of a given level of A depends
on the level of B with which is combined. In the next section, we will see that
ANOVA allows to determine which interactions are significant. We say that a

710 V. Muntés-Mulero et al.

factor A is nested in B, when the levels of A are sub-sampled in each level of B,
i.e. each level of A occurs at only one level of B.

In order to accept a specific model as a good model to fit a set of data, two
conditions must be met: (i) R2 must be close to one, where R2 ranges from 0
to 1 and it is defined as the proportion of the variability in the data explained
by the model and (ii) the residuals, a measure of the discrepancy between the
real values and the values predicted by the model, must be independent and
follow a normal distribution with mean zero and constant variance. We use the
Statistical Analysis System (SAS) Rel. 8.00 to create and analyze the models.

3.1 Variables in the Model

Given a star join query Q, we call R the number of relations accessed by that
query and S the selectivity of the query. More exactly S represents the proba-
bility of a tuple in a base relation to qualify and to be returned as a result.

Once a query is fixed, our statistical model aims at predicting the average
cost of the returned QEP depending on factors N , G, C, M and P mentioned
above. As a consequence, the average cost of the returned QEP is the dependant
variable or y variable. Factors N , G, C and M have been fixed to take just three
different levels each. Thus, they can be considered as fixed effect factors. We
consider the levels of C and M proportional to N and, for that reason, C and M
are nested in N . As mentioned before, the quality of the first initial population
P created from scratch can affect the quality of the obtained plan. As opposed
to the previous factors, P is a random effects factor.

3.2 Description of the Experiments

The decisions taken in this section are based on empirical considerations from
experiments done in previous ad-hoc tests, in order to use reasonable and realistic
values. Table 1 summarizes the levels used for the different fixed effects factors in
the experiment. Figure 1 depicts the design of our experiment. For both R = 20
and R = 50 we create 9 different queries, three for each value of S, S = 10−2,
S = 10−4 and S = 10−8. Given a query, we create 15 initial populations, 5 for
each level of N . Once we have created the populations, we run 270 executions.
This set of executions is divided into three subsets, corresponding to the three
levels in G. For every level of G, we subdivide the executions into 9 subsets

Table 1. Independent factor levels studied in the experiment

Independent
Variables Studied Levels

N (Number of members) 4R, 8R and 12R
G (Number of generations) 50, 100, and 200
C (Number of crossovers) N

8 , N
4 and N

2
M (Number of mutations) N

8 , N
4 and N

2

Parameterizing a Genetic Optimizer 711

10
−2

10
−4

10
−8

S

270 executions

200100

EXPERIMENT

72900 executions

5020R

N/8

N/4

N/2

4*R 12*R8*R

N

4050 executions

Random
Populations

Pop

90 executions

N/2N/4N/8

C

M

Execution

average for each
10 executions

We calculate the

Q4 Q5 Q6

Q1 Q2 Q3

Q7 Q8 Q9

36450 executions

50G

Fig. 1. Design for obtaining the results

corresponding to the crossing between C and M . Finally, for every possible
configuration of the levels of each factor we run 10 executions and obtain the
average best cost. The value of this average corresponds to the observations
of variable y. Therefore, since we have run 72900 independent executions, the
number of observations for the dependant variable is equal to 7290.

Database schema and Star Join Query Generation. We have randomly
generated two databases containing 20 and 50 relations respectively. Both schemas
contain a large fact table or central relation and 19 and 49 smaller dimension ta-
bles. The central relation contains a foreign key attribute to a primary key in each
dimension relation. Most of the dimensions have a significantly lower cardinal-
ity compared to the fact table and, a smaller set of dimensions have a cardinality
closer to the cardinality of this central relation, which typically corresponds to real
scenarios (similar to the TPC-H database schema). We define an index for every
primary key.

As explained before, once the databases are defined, we randomly define two
sets of 9 star-join queries Q20 and Q50, one for each database schema, and a
separate set of 6 queries QTest (3 for each database schema). The first two sets
will be used to define the statistical model. The third set has been created for
testing purposes and will only be used to validate the model.

3.3 Model Definition

The process of building a model that properly predicts the behavior of a random
variable in front of some factors is iterative. Following, we initially present a
simple example that allows us to understand how to build a statistical model
using the ANOVA technique. Let us suppose that we need to study the impact
of the number of processors and the memory available on the execution time of
a process. To that end, we study the case for 2, 4 and 8 processors (first factor)
and 512 MB and 1 GB memory cards (second factor). For any combination of

712 V. Muntés-Mulero et al.

a specific number of processors and a specific amount of memory, we run the
process ten times obtaining ten observations. This gives a 3× 2× 10 = 60 total
number of observations. The initial model to analyze the set of data obtained
would be the following:

yijk = μ + αi + βj + (αβ)ij + eijk

where, yijk is the kth observation of the response variable under the ith con-
dition of the number of processors (i has three possible levels, i.e. it can take
three possible values: i = 1 corresponds to 2 processors, i = 2 corresponds to
4 processors and i = 3 corresponds to 8 processors) and the j th condition of
the memory available (which has two possible levels: j = 1 corresponds to 512
MB and j = 2 corresponds to 1 GB). Parameter μ indicates the expected time
if the number of processors and the memory available is unknown. Its estima-
tion corresponds to the average of all the observations. Parameter αi is a real
number that indicates the variation from μ produced by the knowledge of the
number of processors corresponding to the ith level of A. Analogously βj is a
real number that indicates the variation from μ produced by the knowledge of
the available memory corresponding to the j th level of factor B. It has sense to
assume that α1 + α2 + α3 = 0 and β1 + β2 = 0. The term (αβ)ij corresponds
to the interaction of the two factors. Its value represents the contribution in
the execution time of the fact that the observation has been obtained under the
ith level of the number of processors and the j th level of the available memory.
This interaction will not be significant if the effect of the number of proces-
sors is the same for any amount of available memory. It has sense to assume
that ∀i (αβ)i1 + (αβ)i2 = 0 and ∀j (αβ)1j + (αβ)2j + (αβ)3j = 0. The ANOVA
technique allows us to estimate the value for each of these parameters and to
accept or refuse the following three hypothesis: α1 = α2 = α3, β1 = β2 and
∀i1, i2 ∈ {1, 2, 3}∀j1, j2 ∈ {1, 2} (αβ)i1j1 = (αβ)i2j2 . If any of these equalities
is accepted it means that the corresponding factor or interaction is statistically
not significant and can be removed from the model in order to simplify it. For
further details we refer the reader to [8].

Analogously, for our data, we depart from the model that contains all the
factors and the first-order interactions and then we eliminate the terms that are
not statistically significant. An important conclusion from this departure model
is that the interaction between the number of crossovers and the number of
mutations is not statistically significant, i.e. it does not seem to have any impact
on the variability in the average cost. The final model is the following:

yijklm=μ + δi + γj + αk(i) + λl(i) + φm(i)+(δγ)ij + (γα)jk(i) + (γλ)jl(i) + eijklm

where, yijklm is the average cost of the best fitted QEP found during the opti-
mization process, for 10 executions under the ith, j th, kth, lth, mth levels of
the corresponding factors; μ is the common expected value; δi, γj , αk(i), λl(i)
and φm(i) correspond to the main effects of N , G, C, M and P . Interaction
(δγ)ij corresponds to the interaction of the ith level of N with the j th level of
G. Analogously, (γα)jk(i) and (γλ)jl(i) correspond to the interactions of the j th

Parameterizing a Genetic Optimizer 713

Table 2. R2 values classified depending on the selectivity and the number of relations

R2 summary
S = 10−2 S = 10−4 S = 10−8

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
R = 20 0.868 0.894 0.812 0.838 0.826 0.799 0.798 0.409 0.601
R = 50 0.939 0.924 0.923 0.862 0.810 0.868 0.703 0.763 0.706

level of G and the lth level of M respectively with the kth level of C and are both
nested in N . Note that it is only possible to consider interactions between crossed
factors. Also, observe that the levels corresponding to nested factors must be al-
ways associated to the level of the factor in which they are nested, indicated by
the subscript (i). eijklm corresponds to the experimental error and contains the
information in the observations which is not explained by the considered factors.

Following, in order to confirm that our model is appropriate, we are going
to see that conditions i) and ii) mentioned at the beginning of this section are
satisfied. Table 2 wraps up the R2 obtained after fitting the data of each query
using our model. The model explains the variability in the real data set almost
perfectly for queries involving a large number of relations when the constraints
in the query are not very restrictive (S = 10−2) (it explains more than 90 %
of the variability). Independently of the number of relations, if S is larger than
10−8 the variability explained by the model is always larger or equal than 80
%. The model is still appropriate if S = 10−8 and R = 50, although the R2

values decrease a little bit and are around 70 %. For S = 10−8 and R = 20,
we have obtained two non-acceptable R2 values below 65%. We have studied
these last two cases in detail. Our conclusions are as follows: in the case of
S = 10−8 most of the potential tuple results are discarded because the selectivity
is too strict, resulting in a very low data flow cardinality in the QEP. Since the
join operations can be executed in memory and do not incur extra I/O, all the
implementations have a similar cost and most of the executions are likely to reach
a QEP with a near-optimal cost. Occasionally, for a small number of generations,
i.e. G = 50, the genetic optimizer does not reach a QEP with a cost similar to
the rest of executions. In general, we will always reach this low cost, except for
the cases where we limit the number of generations to a minimum. Therefore,
the conclusions extracted from the model can be always applied, except for the
scenario with S = 10−8 and R = 20, where we must apply even additional
simpler rules, namely, granting that G > 50.

In order to check condition ii) mentioned before, we work with the studen-
tized residuals which are defined as the difference between the observed and the
predicted values divided by the standard deviation of all those differences. In gen-
eral, we accept normal distributions of residuals for those queries with S = 10−4

and S = 10−2. Figure 2 shows the distribution of the studentized residuals for a
data set corresponding to a query with R = 50 and S = 10−2. For queries with
S = 10−8, residuals have a larger kurtosis [2] than the corresponding normal
distribution with the same mean and variance.

714 V. Muntés-Mulero et al.

Fig. 2. Residual distribution for a query
with R = 50 and S = 10−2

Effects of interaction N*G

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

3500000000

50 100 200

G

M
ea

n
 A

ve
ra

g
e

C
o

st

4R
8R
12R

Fig. 3. Polygonal plot corresponding to
the interaction between N and G for a
given query

In order to test the generality of the model and to be able to state that the
model is good for any query we use the 6 queries in QTest. After fitting the
model to these queries, five of the R2 are larger than 0.86 and the remaining
one is equal to 0.78.

3.4 Discussion of the Results

Our model satisfactorily predicts the real cost values. This means that we can
assure that the factors used in the model are the most significant ones and, also,
that they are sufficient to explain the variability of the quality of the results.
More specifically:

– All the factors, N , G, C, M and P , independently, explain a significant part
of the variability in the data set. From the ANOVA analysis we conclude
that N and G are, in general, the factors that have a larger impact on the
average cost, specifically larger than the impact of P . Although both, C and
M are statistically significant and, therefore, explain part of the variability,
their impact on the average cost is lower than the impact of the number
of members or the number of generations. The analysis also shows that the
number of crossover operations is, in general, more relevant than the number
of mutation operations. Specifically, for any level of N considered, we obtain,
on average, differences of over 30% in y between the cases using N/2 and
N/8 crossover operations. However, these differences range from 11% to 16%,
depending on N , when we vary the number of mutation operations.

– Even more important, although a genetic optimizer is subject to random
variability like any other random algorithm, we can explain the variability
in the data without considering the effect of the initial population on the
contribution of every other factor in the model. In that sense, we can extract
conclusions from the other factors, independently from the initial population,
which implies that a genetic optimizer can be parameterized using fixed
criteria.

Parameterizing a Genetic Optimizer 715

– Interaction (δγ)ij is significant for all data sets. This means that the impact
of a fixed level of G (i.e. number of generations) on the average cost depends
on the level of N (i.e. number of members in the population). Figure 3
shows a graphical representation of this interaction. While the effect of the
interaction is not very marked, it is significant. The plot also shows that
the level of N is very important. Specifically, we can observe that the real
quality improvement is found between 4R and 8R, whereas the latter and
12R cannot be considered significantly different. This effect shows up for all
the queries.

– Interaction (γα)jk(i) (corresponding to the interaction between levels of fac-
tors N and C) is considered significant in 14 out of the 16 data sets, meaning
that for a fixed number of members in the population (N), the importance
of the number of crossovers (C) depends on the number of generations.

– Finally, (γλ)jl(i) (corresponding to the interaction between levels of factors
N and M) is statistically relevant for queries with selectivity S = 10−2 while
it is not significant for queries with low values of S. This means that, for
very low selectivity, the contribution on the average cost of a given number
of mutations M is independent of the number of generations G.

4 Practical Recommendations to Tune a Genetic
Optimizer

In this section we present a set of practical recommendations that can help, both
a user or a self-tunable system, to decide appropriate values for parameterizing
a genetic optimizer for star-join queries:

N (Number of Members). The number of members in the population is the
most important factor. Thus, we must be very careful choosing the proper
value for this factor. In general, we recommend using populations containing
a number of members equal to 8 times the number of accessed relations,
knowing that 12R is not significantly different from 8R.

G (Number of generations). In general, the higher the number of genera-
tions, the higher the probability to achieve a near optimal plan. Nevertheless,
we must distinguish between two different scenarios. On the one hand, for
queries with very restrictive constraints, we must only guarantee a minimum
number of generations (G > 50) to get a near-optimal QEP. On the other
hand, for queries with light restrictions and heavy data flows, the number of
generations must be as large as possible and, in general, the limit depends on
the time we can afford waiting for the optimization process. However, gener-
ally speaking, 200 generations is an interesting value since, in our results, we
have observed that, in a lot of cases, it was enough to guarantee the conver-
gence of the algorithm to the cost which could well be a near-optimal taking
into account the characteristics of the queries used in the experiments.

C (Number of crossover operations). The number of genetic operations
executed in each generation is important, although its impact is lower than

716 V. Muntés-Mulero et al.

the previous factors. In general, we recommend to use N/2 crossover oper-
ations per generation. However, if the implementation of these operations
given a specific genetic optimizer is too time-consuming, we can afford to
reduce it to N/4, without losing much quality.

M (Number of mutation operations). Analogously to the recommendations
for C, executing a large number of mutation operations is not bad. Again, we
have a trade-off between quality and time. However, in this case, we can afford
reducing the number of mutation operations, even more than C.

5 Previous Work

State-of-the-art query optimizers, which typically employ dynamic programming
techniques [9], have difficulties handling large number of joins due to the expo-
nential explosion of the search space and resort to heuristic approaches. Greedy
algorithms, as well as any other type of heuristic algorithm [4,12,13], do not
consider the entire search space and thus may overlook the optimal plan.

Several variants of randomized algorithms have been proposed in [3,10]. Ran-
domized search techniques like Iterative Improvement or Simulated Annealing
iteratively explore the search space and converge to a nearly optimal solution.

The application of genetic algorithms to query optimization was first pro-
posed in [1]. The first genetic optimizer prototype was created for PostgreSQL,
but its search domain was reduced to left-deep trees and mutation operations
were deprecated, thus bounding the search to only those properties appearing
in the execution plans of the initial population. Steinbrunn et al. [10] present a
detailed depiction of a genetic algorithm for query optimizers and show that its
performance is always among the best when compared to competing algorithms.
Genetic programming was introduced in [11] proposing a methodology closer to
the nature of the problem. Muntés et al. [7] present the Carquinyoli Genetic Op-
timizer (CGO) which is validated for a real data workload comparing its results
with a commercial optimizer.

6 Conclusions and Future Work

We have presented a statistical model that allows us to understand some un-
known issues in genetic optimization. Our work lets us formulate a simple set
of rules to help with the parametrization of a genetic optimizer. In particular,
we have studied in depth the case for star-join queries. We have also shown that
the analysis method presented in this paper is a powerful tool to analyze an
optimizer and could be used to study other types of queries.

We have proven that, although the random effects of the initial population
in the genetic evolution has an impact on the average cost of the obtained best
plan, this does not prevent us from being able to extract general rules to tune
a genetic optimizer. Nevertheless, this brings us the need for exploring new
possibilities of reducing the randomness of evolutionary approaches, without
loosing the essentials of the genetic algorithms mechanics. The proposed set of

Parameterizing a Genetic Optimizer 717

rules brings us a step further in the field of autonomic computing, by clarifying
some aspects necessary to create a self-tuning genetic optimizer.

To summarize, our study shows that the randomness in evolutionary algo-
rithms applied to query optimization only has a partial impact on their robust-
ness, meaning that we can predict their general behavior and reinforce further
exploration around genetic approaches.

References

1. K. Bennett, M. C. Ferris, and Y. E. Ioannidis. A genetic algorithm for database
query optimization. In R. Belew and L. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 400–407, San Mateo, CA,
1991. Morgan Kaufman.

2. B. S. Everitt. The Cambridge Dictionary of Statistics. Cambridge Univ. Press,
Cambridge, UK, 1998.

3. Y. E. Ioannidis and E. Wong. Query optimization by simulated annealing. In
SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD international conference on
Management of data, pages 9–22, New York, NY, USA, 1987. ACM Press.

4. R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries.
In VLDB, pages 128–137, 1986.

5. D. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, New
York, 1991.

6. V. Muntes, J. Aguilar, C. Zuzarte, and J. L. Larriba. An io-based cost model for
the carquinyoli genetic optimizer. Technical Report UPC-DAC-RR-2005-69, Dept.
d’Arqu. de Comp. UPC (http://www.dama.upc.edu), 2005.

7. V. Muntés-Mulero, J. Aguilar-Saborit, C. Zuzarte, and J.-L. Larriba-Pey. Cgo:
a sound genetic optimizer for cyclic query graphs. In Proc. of ICCS 2006, pages
156–163, Reading, UK, May 2006. Springer-Verlag.

8. H. Scheff. The Analysis of Variance. John Wiley & Sons, Inc., New York, NY,
USA, 1959.

9. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings
of the 1979 ACM SIGMOD international conference on Management of data, pages
23–34. ACM Press, 1979.

10. M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized opti-
mization for the join ordering problem. VLDB Journal: Very Large Data Bases,
6(3):191–208, 1997.

11. M. Stillger and M. Spiliopoulou. Genetic programming in database query optimiza-
tion. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 388–393,
Stanford University, CA, USA, 28–31 July 1996. MIT Press.

12. A. Swami. Optimization of large join queries: combining heuristics and combina-
torial techniques. In SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD inter-
national conference on Management of data, pages 367–376. ACM Press, 1989.

13. Y. Tao, Q. Zhu, C. Zuzarte, and W. Lau. Optimizing large star-schema queries
with snowflakes via heuristic-based query rewriting. In CASCON ’03: Proceedings
of the 2003 conference of the Centre for Advanced Studies on Collaborative research,
pages 279–293. IBM Press, 2003.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 718 – 727, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Interpolating and Using Most Likely Trajectories
in Moving-Objects Databases

Byunggu Yu1 and Seon Ho Kim2

1 Computer Science Department, University of Wyoming,
Laramie, WY 82071, USA

yu@uwyo.edu
2 Computer Science Department, University of Denver,

Denver, CO 80208, USA
seonkim@cs.du.edu

Abstract. In recent years, many emerging database applications deal with large
sets of continuously moving data objects. Since no computer system can com-
mit continuously occurring infinitesimal changes to the database, related data
management techniques view a moving object’s trajectory as a sequence of dis-
cretely reported spatiotemporal points. For each pair of consecutive committed
trajectory points, a spatiotemporal uncertainty region representing all possible
in-between trajectory points is defined. To support trajectory queries with a
non-uniform probability distribution model, the query system needs to compute
(interpolate) the “most likely” trajectories in the uncertainty regions to deter-
mine the peak points of the probability distributions. This paper proposes a
generalized trajectory interpolation model using parametric trajectory represen-
tations. In addition, the paper expands and investigates three practical speciali-
zations of our proposed model using a moving object with momentum, i.e., a
vehicle, as the exemplar.

1 Introduction

With advances in GPS (Global Positioning System), RFID (Radio Frequency Identifi-
cation) technology, and sensor technology, emerging database applications begin to
deal with large sets of objects each of which can continuously move in a geographic
space and frequently report its current spatiotemporal attribute values, such as posi-
tion, velocity, and acceleration, to the database server. These applications include
mobile communication systems, location-based services, digital battlefields, transpor-
tations, air- or ground-traffic control systems, and sensor networks, to name a few. In
the future, more complex and larger applications that deal with higher dimensional
attributes (e.g., moving sensors capturing multiple stimuli) will become commonplace
– increasingly complex sensor devices will proliferate alongside potential applications
associated therewith.

To support such moving-objects database (MOD) applications, one requires an on-
line database server that can store, update, and retrieve large sets of moving objects.
Each moving object has both spatiotemporal properties representing the trajectory and
non-spatiotemporal properties such as identification, associated phone number, and

 Interpolating and Using Most Likely Trajectories in Moving-Objects Databases 719

owner’s name. Conventional database technology can efficiently manage the non-
spatiotemporal properties of moving objects and efficiently process queries referring
to only non-spatiotemporal properties of moving objects. To support the new applica-
tions, it is important to design and implement a MOD server that can also efficiently
process queries referring to the spatiotemporal trajectories.

A MOD server must be able to keep track of the trajectories of individual moving
objects to process queries referring to the trajectories. Existing techniques view a
trajectory as a sequence of connected segments in a 2-, 3-, or 4-dimensional space.
This is due to the fact that, although objects can continuously move or change, data-
base management systems cannot deal with continuously occurring infinitesimal
changes – this would effectively require infinite computational speed and sensor reso-
lution. Thus, each object’s combined attribute values (states) spanning multiple di-
mensions – location as the lowest order derivative in the spatiotemporal context, and
velocity and acceleration as higher order derivatives – can only be discretely updated.
In turn, each segment is associated with a certain degree of uncertainty that encloses
all possible unknown locations of the object for that segment.

This paper presents our study of trajectory representation models, specifically most
likely trajectory representation of moving objects with momentum. Representing the
trajectory of a moving object more accurately with a fewer number of reported points is
an important issue in designing MOD servers because the frequency of trajectory up-
dates is a significant factor in determining the performance of a real-time MOD server.

This paper also proposes a solution framework for the following issue: Since que-
ries referring to moving object trajectories are processed over the uncertainty regions,
each resulting object should be associated with the probability (or likelihood) that the
trajectory really satisfies the query predicate with respect to the reference object. To
support this, the probability distribution of all possible states must be defined for each
uncertainty region. Many practical applications require a non-uniform probability
model such as the skew-normal distribution. However, there is a marked lack of in-
vestigation on this problem – relevant MOD techniques define only the uncertainty
boundaries. To support probabilistic trajectory query processing with a non-uniform
distribution model, the query system needs to accurately estimate the “most likely”
states of the objects, given a time point, in order to determine the peak points of the
corresponding probability density surfaces of all possible states.

The rest of this paper is organized as follows. Section 2 presents related work and
proposes a framework for processing trajectory queries. Section 3 describes conven-
tional line-based trajectory models, and proposes a generalized parametric trajectory
model. In Section 4, we quantify our discussion by comparing real trajectory gathered
from a GPS device with analytical results from our trajectory models and from con-
ventional line-based models. Conclusions and future research directions are discussed
in Section 5.

2 Related Work and Proposed Application

A moving object’s trajectory stored in a database is a sequence of connected segments
in space-time, and each segment has two endpoints that are consecutively reported
(factual) states. Only reported states are stored in the database (due to the fact that a

720 B. Yu and S.H. Kim

database cannot be continuously updated) [13]. Given the theoretical possibility of an
infinite number of states between two reported states, a mathematical model and com-
putational approach is required to manage the in-between and future states. For these
reasons, a number of uncertainty models have been proposed.

One of the proposed models is as follows: at any point in time, the spatial state of
each object must be within a certain distance d, of its last reported state; if the object
moves further than d, it reports its new state and, if necessary, changes d for future
updates [12]. Another model, known as the network movement model [12], is a one-
dimensional model assuming that, at any point in time, the object is moving along one
of a set of predetermined straight lines. Another model in [5] assumes that an update
occurs whenever the object’s velocity (speed or direction) changes. Other models
assume that the object travels with known velocity along a straight line, but can devi-
ate from this path by a certain distance [8, 9].

A spatial model of uncertainty in the recorded trajectories is found in [4]. Assum-
ing the maximum velocity of an object (one of the properties of the object’s dynam-
ics) is known, all possible states of the object during the time interval between two
consecutive observations lie on a certain ellipse (called the error ellipse). With this
model, any update policy can be used to optimize the database system: Several update
policies (also known as the dead-reckoning policies), such as the fixed time-interval
update, plain dead-reckoning, and adaptive dead-reckoning, have been separately
investigated [11]. Although we can generalize this ellipse model to 3- or higher di-
mensional moving objects using the notion of hyper-ellipse, this model is inefficient
for spatiotemporal range queries: a 3-dimensional spatiotemporal query window
whose extent is 0.1 along every dimension occupies 0.13 in the original space-time but
0.12 (a much larger portion) in the projected space, resulting in an enlarged search
space. A spatiotemporal uncertainty model that produces 3-dimensional cylindrical
uncertainty regions representing the past uncertainties of trajectories is found in [10].

More recently developed uncertainty model reported in [14] formally defines both
past and future “spatiotemporal” uncertainties of trajectories of any dimensionality.
Figure 1 shows two examples of this trajectory uncertainty model, given the maxi-
mum velocity Mv. The uncertainty region of the object during ti-tj is defined to be the
overlap between the two cones whose tops are, respectively, P1 and P2. The snapshot
of the object at any time point tk that is between ti and tj is the uncertainty region’s
cross section produced by the cutting plane time = tk.

One can further improve this model (i.e., reduce the size of the spatiotemporal un-
certainty region) by taking into account more dynamics and derivatives related to
velocity, acceleration, and even higher derivatives (please contact the authors for
more details).

Because of this uncertainty, each result object of a query referring to the trajecto-
ries must be associated with the probability (or likelihood) that the item really satis-
fies the query predicate. This is more pronounced when the uncertainty regions are
very large. As an extreme case, let us suppose that the uncertainty regions are
bounded only by the boundaries of the data space (i.e., Mv =). In this case, given
any query point, or region, at a point t in time, every object has a non-zero probability
that it intersects the query point or region at t, except for the ones that have an exact
state at t. Therefore, in order to properly adopt existing trajectory query processing
algorithms (e.g., [2, 3]), one needs a probability distribution model that can represent
the probability distribution of all possible states of each snapshot.

 Interpolating and Using Most Likely Trajectories in Moving-Objects Databases 721

ti

tj

space

ti
m

e

P1

P2

)(ijv ttM −⋅)(ijv ttM −⋅

)(ijv ttM −⋅)(ijv ttM −⋅ ti

tj

tim
e

Data Space

P1

P2

(a) (b)

Fig. 1. Spatiotemporal uncertainty region representing a trajectory segment: (a) in a 2-
dimensional space-time; (b) in a 3-dimensional space-time

ti

tj

space

time

A

B

q

linear interpolation

higher degree interpolation

 (a) (b) (c)

Fig. 2. (a) shows a trajectory segment that can possibly intersect q, where q is a query region;
(b) and (c) show skew-normal probability distributions of a snapshot that overlaps q

As shown in Figures 2a and 2b, given a time point, the linear trajectory interpola-
tion model can be used to determine the peak of the skew-normal probability density
surface [1, 7] of all possible states. In this case, because the query range, q, reaches
the peak point, the linear model reports 50 % of the probability that the actual state is
covered by q (Figure 2b). However, considering a more skewed distribution of possi-
ble states (Figures 2a and 2c), the linear model reports too optimistic results because
the probability becomes much lower than 50%. Our proposed “most likely” trajectory
model will more accurately estimate the actual trajectory, resulting in a more accurate
estimation of the probability.

3 Most Likely Trajectory: A Parametric Approach

We propose a generalized, parametric trajectory interpolation model (Definition 1)
connecting any two consecutive reported states.

722 B. Yu and S.H. Kim

Definition 1. Given a pair <Pi Pj> of consecutive reported states, the most likely
trajectory segment of degree 2n+1 is defined as follows:

+

=
=

12

0

)0()(
n

k

k
kuauP , where 0 u 1 is a free-variable parameter, n 0 is the number of

derivatives written in each reported state P and the coefficients are derived by solving
the following constraints for a0, a1, …, a2n+1: for (l=0; l n; l++) {P(l)(u=0)=Pi

(l) and
P(l)(u=1)=Pj

(l)}, where P(l) is the lth derivative of a state P.

Given any pair <Pi Pj> of consecutive reported states, most MOD techniques, as sur-
veyed in [10, 13], uses the linear interpolation (i.e., a special case of Definition 1 with
n=0) assuming that the velocity of the object is fixed during the time period of the
segment. The first non-linear model investigated in [13] is a special case of Definition
1 with n=1 assuming that the acceleration changes linearly in only one direction dur-
ing the period. In contrast, the 5th degree trajectory (n=2), which is possible in our
model, can accommodate smoothly changing accelerations. Considering fast changing
objects that are affected by momentum, not only the locations but also some higher
order derivatives change without angle. Unlike fast changing objects, some slowly
changing objects (e.g., animals and humans) can change velocity more abruptly. Im-
portantly, the generalized trajectory interpolation model in Definition 1 provides a
basis for investigating optimization solutions that, given a proper description of a
moving-objects set, can adaptively choose the most efficient equation (i.e., n 1).

3.1 Specialization 1

Considering a discrete sequence of reported states each of which is a location-time <X,
Y, Z, T>, where X, Y, and Z are spatial coordinates and T is a time value, Definition 1
can be specialized to obtain a connected sequence of spatiotemporal linear trajectory
segments that passes through the joints (reported states) <P0

(0) P1
(0) P2

(0) … Pn
(0)>

where, for all k = 0,..,n, Pk
(0) is a location-time <Xk, Yk, Zk, Tk> in the data space-time.

To spatiotemporally connect consecutive reported states Pi
(0) and Pj

(0), where i =
0,..,n-1 and j = i+1, we use the following parametric linear function (a special case of
Definition 1 with n = 0): P(0)(u) = a0+a1u. To derive the coefficients, solve the follow-
ing constraints for a0 and a1: P

(0)(u=0)= Pi
(0) and P(0)(u=1)= Pj

(0). Substituting the de-
rived coefficients into the parametric linear function, we have the following function:

[]
−

=)0(

)0(
)0(

11

01
 1)(

j

i

P

P
uuP , (1)

where 0 ≤ u ≤ 1.

3.2 Specialization 2

Considering a sequence of reported trajectory states each of which consists of a loca-
tion-time <X, Y, Z, T> and a velocity <X’= X/ T, Y’= Y/ T, Z’= Z/ T>, one can
use a parametric cubic function P(0)(u) = a0+a1u+a2u

2+a3u
3 (a special case of Defini-

tion 1) to connect each pair of two consecutive joint-velocities <Pi
(0) Pi

(1)> and <Pj
(0)

Pj
(1)>, where Pi

(0) = <Xi, Yi, Zi, Ti>, Pj
(0) = <Xj, Yj, Zj, Tj>, Pi

(1) = <Xi’·(Tj-Ti), Yi’·(Tj-
Ti), Zi’·(Tj-Ti), Tj-Ti>, and Pj

(1) = <Xj’·(Tj-Ti), Yj’·(Tj-Ti), Zj’·(Tj-Ti), Tj-Ti>.

 Interpolating and Using Most Likely Trajectories in Moving-Objects Databases 723

One can derive the coefficients of P(0)(u) = a0+a1u+a2u
2+a3u

3 by solving the fol-
lowing constraints for a0, a1, a2, and a3: P

(0)(u=0) = Pi
(0); P(0)(u=1) = Pj

(0); P(1)(u=0) =
Pi

(1); P(1)(u=1) = Pj
(1). Substituting these coefficients into the polynomial equation, we

have the following function:

 ,

1122

1233

0100

0001

]1[)(

)1(

)1(

)0(

)0(

32)0(

−
−−−

=

j

i

j

i

P

P

P

P

uuuuP

(2)

where 0 ≤ u ≤ 1.

3.3 Specialization 3

Considering a sequence of reported states each of which consists of a location-time
<X, Y, Z, T>, a velocity <X’= X/ T, Y’= Y/ T, Z’= Z/ T>, and an acceleration
<X’’= X’/ T, Y’’= Y’/ T, Z’’= Z’/ T>, we can use a parametric function of
degree 5, P(0)(u) = a0+a1u+a2u

2+a3u
3+a4u

4+a5u
5 (a special case of Definition 1), to

connect each pair of two consecutive joint-velocity-accelerations <Pi
(0) Pi

(1) Pi
(2)> and

<Pj
(0) Pj

(1) Pj
(2)>, where Pi

(0) = <Xi, Yi, Zi, Ti>; Pj
(0) = <Xj, Yj, Zj, Tj>; Pi

(1) = <Xi’·(Tj-
Ti), Yi’·(Tj-Ti), Zi’·(Tj-Ti), Tj-Ti>; Pj

(1) = <Xj’·(Tj-Ti), Yj’·(Tj-Ti), Zj’·(Tj-Ti), Tj-Ti>;
Pi

(2) = <Xi’’·(Tj-Ti)
2, Yi’’·(Tj-Ti)

2, Zi’’·(Tj-Ti)
2, 0>; Pj

(2) = <Xj’’·(Tj-Ti)
2, Yj’’·(Tj-Ti)

2,
Zj’’·(Tj-Ti)

2, 0>.
One can derive the coefficients of P(0)(u) = a0+a1u+a2u

2+a3u
3+a4u

4+a5u
5 by solving

the following constraints for a0, a1, a2, a3, a4, and a5: P
(0)(u=0) = Pi

(0); P(0)(u=1) = Pj
(0);

P(1)(u=0) = Pi
(1); P(1)(u=1) = Pj

(1); P(2)(u=0) = Pi
(2); P(2)(u=1) = Pj

(2). Substituting these
coefficients into the parametric function, we have the following function:

 ,

5.05.03366

15.1781515

5.05.1461010

05.00000

000100

000001

]1[)(

)2(

)2(

)1(

)1(

)0(

)0(

5432)0(

−−−−
−−

−−−−
=

j

i

j

i

j

i

P

P

P

P

P

P

uuuuuuP

(3)

where 0 ≤ u ≤ 1.

4 Experiment

To compare the three specialized models of the most likely trajectory, we placed a
GPS device (Trimgle Navigation’s ProXRS Receiver with GPS logger) in a car and
drove from a location near the north boundary of Denver, Colorado, to Loveland,
Colorado, USA along Interstate highway 25. Every second, we logged a spatiotempo-
ral data from the GPS device. The acceleration vector of each logged state was calcu-
lated using the second degree approximation on the recorded velocities (for the first
and the last trajectory points, the first degree approximation was used). Then, we
divided the recorded trajectory states, each of which consists of a location-time

724 B. Yu and S.H. Kim

<longitude, latitude, altitude,
time>, a velocity <longi-
tude’, latitude’, altitude’>,
and a derived acceleration
<longitude’’, latitude’’,
altitude’’>, into two subsets:
Set1 consisted of 482 re-
corded states logged every
second; Set2 consisted of
742 recorded states logged
every second. Note that Set1
represents driving on a rela-
tively straight road and Set2
represents some winding
trajectory.

For each of Set1 and
Set2, we randomly selected
logged spatiotemporal re-
cords with various sampling
ratios. The three specialized
models (i.e., Equations 1, 2,
and 3) were used to connect
the selected samples (4-
dimensional spatiotemporal

trajectories were produced). Figure 4 gives a magnified view of the circled parts in
Figure 3 (the sampling ratio was about 5%; for illustration sake, we projected the
4-dimensional spatiotemporal trajectories onto the XY-plane).

For each of the three specialized models, we quantified the actual deviations be-
tween the non-sampled real location-times and the corresponding estimates. In all
tested cases, the higher degree models, Equations 2 and 3, produced significantly
smaller average deviations (up to more than 3 times smaller, Figure 5) and standard
error deviations (Figure 6) than the linear model Equation 1. For example, with 37
sampled out of 742 states in Set2, the average distance deviation of Equations 1, 2,
and 3 were 19, 21, and 62 meters, respectively. Their maximum deviations in this
section were 162, 231, and 683 meters, respectively. As shown in Figure 6, the stan-
dard deviations in this section were 35, 41, and 134 meters.

For all cases, we observed that the difference between the linear model and the
higher degree models was significant and became greater when the actual trajectory is
winding (Set2) (Figures 5 and 6). In most cases, the 5th degree model excelled the 3rd
degree model.

In our experiments using a Linux machine equipped with an Intel Pentium III
800MHz and 256MB main memory space, the linear model took 0.7 – 0.8 microsec-
onds of CPU time to interpolate a point in-between two consecutive joint states. The
cubic model and the 5th degree model required 4.3 – 4.6 microseconds and 10.8 – 11.1
microseconds, respectively.

40

40.05

40.1

40.15

40.2

40.25

40.3

40.35

40.4

40.45

40.5

-105.1

-105.05

-105

-104.95

-104.9

Set1

Set2

Fig. 3. A real trajectory states collected

 Interpolating and Using Most Likely Trajectories in Moving-Objects Databases 725

4474000

4474500

4475000

4475500

4476000

4476500

4477000

4477500

-1
01

32
50

0

-1
01

32
30

0

-1
01

32
10

0

-1
01

31
90

0

-1
01

31
70

0

-1
01

31
50

0

-1
01

31
30

0

Real Trajectory Cubic Function Linear Fifth

Sample Points

4468000

4468200

4468400

4468600

4468800

4469000

4469200

4469400

4469600

4469800

4470000

-1
01

31
35

0

-1
01

31
33

0

-1
01

31
31

0

-1
01

31
29

0

-1
01

31
27

0

-1
01

31
25

0

-1
01

31
23

0

-1
01

31
21

0

-1
01

31
19

0

-1
01

31
17

0

-1
01

31
15

0

Real Trajectory Cubic Function Linear Fifth

Sample Points

Fig. 4. Two parts of the trajectory projected onto XY-plane and elongated along X-axis for
better visual comparison: the X-axis is longitude in meters; the Y-axis is latitude in meters; the
sampling ratio was 37/742 (≈ 5%)

0

1

2

3

4

5

6

7

8

9

10

29/482 51/482 118/482 254/482

sampling ratio

av
er

ag
e

 d
e

vi
at

io
n

Linear Cubic Fifth

0

10

20

30

40

50

60

70

37/742 70/742 179/742 376/742

sampling ratio

av
er

ag
e

 d
e

vi
at

io
n

Linear Cubic Fifth

(a) (b)

Fig. 5. Average spatial deviations (in meters) with various sampling ratios on (a) Set1 and (b)
Set2

726 B. Yu and S.H. Kim

0

2

4

6

8

10

12

14

16

29/482 51/482 118/482 254/482

sampling ratio

st
a

n
d

ar
d

 d
e

vi
a

tio
n

Linear Cubic Fifth

0

20

40

60

80

100

120

140

37/742 70/742 179/742 376/742

sampling ratio

st
a

n
d

ar
d

 d
e

vi
a

tio
n

Linear Cubic Fifth

(a) (b)

Fig. 6. Standard error deviations (in meters): (a) Set1 and (b) Set2

5 Discussion

For the tested cases, both velocity and acceleration varied smoothly because of the
momentum gained while moving. However, the linear model assumes that the veloc-
ity of the object is fixed during the period of each segment and the 3rd degree model
assumes that the acceleration changes linearly in only one direction during the period.
The 5th degree model considers both varying velocity and acceleration so it can pre-
sent the most accurate trajectories with the same set of recorded states, which can be
used for a better estimation of the probabilistic trajectory queries.

Moreover, the performance of MOD can be significantly enhanced as follows: 1)
given a maximum allowed deviation between a point of a database trajectory and the
corresponding point of the real trajectory, a smaller number of trajectory update trans-
actions is required; 2) a reduced amount of secondary storage space is occupied by
trajectories, 3) the trajectory index structure size is reduced; 4) a smaller number of
disk I/Os are performed in processing trajectory update transactions and trajectory
queries. For example, given a maximum deviation threshold (e.g., 62 meters) for up-
date, the higher degree models reduce the number required updates by a factor of up to
5. In typical situations, this has more significant impacts on the system performance
and scalability than the CPU overhead. However, investigating the relevant issues in
developing an adaptive system that can automatically balance the CPU-I/O trade-offs
using various trajectory models will be practically viable for some application systems
that have a severely limited CPU power or extremely fast secondary storage.

By taking into account for how the environment may be variably constraining
movement and thus variably affecting the set of possible positions of the object, one
can contextualize (modify) the probability distribution as well as the most likely tra-
jectory state of each individual snapshot. A related preliminary study, contextualizing
the probability distribution of vehicle whereabouts with geographic road data sets, can
be found in [6]. If the contextualization of uncertainty regions can be properly per-
formed, the spatiotemporal regions requiring indexing can also be commensurately
limited and the query results will be associated with more probable likelihoods. We
reserve this as our future work.

 Interpolating and Using Most Likely Trajectories in Moving-Objects Databases 727

References

1. Azzalini and A. Capitanio, “Statistical applications of the multivariate skew-normal distri-
bution. Journal of the Royal Statistical Society,” B(61): 579—602, 1999.

2. R. Cheng, D.V. Kalashnikov, and S. Prabhakar, “Evaluating Probabilistic Queries over
Imprecise Data,” ACM SIGMOD, 551—562, 2003.

3. R. Cheng, D.V. Kalashnikov, and S. Prabhakar, “Querying Imprecise Data in Moving Ob-
ject Environments,” IEEE TKDE, 16:9, 1112—1126, 2004.

4. D. Pfoser and C.S. Jensen, “Capturing the Uncertainty of Moving-Objects Representa-
tions,” SSDBM 123—132, 1999.

5. D. Pfoser and C.S. Jensen, “Querying the Trajectories of On-Line Mobile Objects,” ACM
MobiDE, 66—73, 2001.

6. S.D. Prager, “Environmental Contextualization of Uncertainty for Moving Objects,” Geo-
Computation, Ann Arbor, Michigan, 2005.

7. Development Core Team R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2004.

8. A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, “Querying the Uncertain Position of
Moving Objects. Temporal Databases,” Research and Practice, no. 1399, 1998.

9. G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain, “The Geometry of Uncertainty
in Moving Object Databases,” Int’l Conf. on Extending Database Technology, 2002.

10. G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain, “Managing Uncertainty in
Moving Objects Databases”, ACM Transactions on Database Systems, Vol. 29, No. 3,
463-507, 2004.

11. O. Wolfson, L. Jiang, A.P. Sistla, S. Chamberlain, N. Rishe, and M. Deng, “Databases for
Tracking Mobile Units in Real Time,” ICDT International Conference on Database The-
ory, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg New York,
169—186, 1998.

12. O. Wolfson, A.P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and Querying Data-
bases that Track Mobile Units. Distributed and Parallel Databases,” 7:3, 257—387, 1999.

13. B. Yu, S.H. Kim, T. Bailey, and R. Gamboa, “Curve-Based Representation of Moving Ob-
ject Trajectories,” IEEE International Database Engineering and Applications Symposium,
419—425, 2004.

14. B. Yu, S.D. Prager, and T. Bailey, “The Isosceles-Triangle Uncertainty Model: A Spatio-
temporal Uncertainty Model for Continuously Changing Data,” In: C. Gold (Eds.), Work-
shop on Dynamic & Multi-dimensional GIS, International Society for Photogrammetry
and Remote Sensing, XXXVI:2/W29, ISPRS ICWG II/IV, Wales, UK, 179—183, 2005.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 728 – 737, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Relaxing Constraints on GeoPQL Operators to Improve
Query Answering

Arianna D’Ulizia1, Fernando Ferri1, Patrizia Grifoni1, and Maurizio Rafanelli2

1 IRPPS-CNR, via Nizza 128, 00198 Roma, Italy
{arianna.dulizia, fernando.ferri, patrizia.grifoni}

@irpps.cnr.it
2 IASI-CNR, viale Manzoni 30, 00185 Roma, Italy

rafanelli@iasi.cnr.it

Abstract. In this paper the problem of matching a query with imprecise or
missing data is analyzed for geographic information systems, and an approach
for the relaxation query constraints is proposed. This approach, similarly with
the 9-intersection matrix between two sets of points presented in [1] [2] [3],
proposes the representation of two symbolic graphical objects (SGO) in terms
of interior, boundary, and exterior points, applied to each of the configurations
between two objects. The paper distinguishes the different configurations con-
sidering the results obtained from the 9 intersections, not only by whether re-
sults are null or not null. This approach allows a more detailed similarity graph
to be defined. The aim of the proposed methodology is to relax geographical
query constraints, in order to obtain meaningful answers for imprecise or miss-
ing data. In this paper the polyline-polygon case is discussed in detail.

Keywords: Geographical query languages, relaxing constraints, spatial operators.

1 Introduction

Many authors have studied how to formulate queries using pictorial configurations.
This technique is particularly common when querying geographical databases. A
pictorial query on a geographical database allows the user to describe the configura-
tion of the geographical objects of interest, expressing his/her “mental model” of the
query [4]. When a query search condition does not match with those in the database,
users would rather receive approximate answers by relaxing some constraints than no
information at all. It would therefore be useful to obtain as answers not only configu-
rations exactly matching the sketch representing the pictorial query, but also similar
configurations obtained by relaxing some of the constraints in the pictorial query. The
most common approach for relaxing constraints is to measure the distance from the
drawn query using criteria defined for the specific domain. Criteria for constraint
selection generally involve the definition of weights assigned to the different types of
constraints and, within these, to the specific constraint expressed in the query.

In the case of pictorial queries on a geographical database, constraints can be
classified as three main types: spatial, structural, and semantic. In this paper spatial
constraints refer to the spatial relationships existing between geographical objects,
structural constraints refer to the internal characteristics of geographical objects and

 Relaxing Constraints on GeoPQL Operators to Improve Query Answering 729

semantic constraints refer to the concepts represented by the geographical objects.
These types of constraints and how to relax them have been discussed in various pa-
pers in literature.

With reference to the spatial constraints in [5], [6], in order to decide which con-
straints should be relaxed and which must be maintained a computational model must
be defined for the similarity of the spatial relations by which to transform the pictorial
query. This query, drawn by a sketch, can be represented as a semantic network of
objects and the binary relations among them. Each object corresponds to one node.
The oriented edges between two nodes correspond to the binary spatial relations. This
paper considers five types of spatial relations: base topological binary, detailed topo-
logical binary, metric refining, base cardinal directions, and detailed cardinal direc-
tions. A weight for the possible relaxation of each relation is considered. The similar-
ity between topological relations is described by the conceptual similarity graph,
which links the most similar relations, defining the weight of each relaxation. The
answers to queries made using a sketch are given assigning a total score calculated by
the computational model.

Structural constraints can be relaxed by evaluating the similarity between geo-
graphical objects. As they are described by a set of attributes, a measure of the struc-
tural similarity of two geographical objects can be obtained by considering the simi-
larity of their attributes, types and values [7]. This approach is frequently used to
measure the concept similarity starting from the attributes, which describe the concept
and similarity of XML documents, whose structure is described by a tree.

Finally, the semantic constraint can be relaxed. This means that even if a concept
expressed in the pictorial query is missing in the geographical database, it can be
substituted with a similar concept which is present.

In this paper we discuss the relaxation of spatial constraints. Various papers in
the last few years have studied problems regarding topological relations between
pairs of objects in a 2-dimensional space. Two models for binary topological rela-
tions - the 4-Intersection model and the 9-Intersection model - have been proposed
[1, 2, 3] and compared [8]. Two more models of conceptual similarity among topo-
logical relations between a line and a region were then developed from this start
point [9]. A further study of spatial similarity and a computational method to evalu-
ate the similarity of spatial scenes based on the ordering of spatial relations is dis-
cussed in [10].

More recently, two papers studied spatial neighborhoods between objects [11, 12].
In [11] the authors examined topological relations between two regions, comparing
two strategies to minimize topological constraints in a query expressed by a visual
example, and presenting search results in terms of number and similarity values. In
[12] the authors presented an idea on how results of qualitative spatial reasoning can
be exploited in reasoning about action and change. They investigated how its concep-
tual neighborhood structure can be applied in the situation calculus for qualitative
reasoning about relative positional information.

The paper is structured as follows: in Section 2 the GeoPQL operators are briefly
introduced and two query examples are given, Section 3 examines a computational
model for determining the most conceptually similar relations for each configuration
and studies the polyline-polygon relation and finally Section 4 concludes.

730 A. D’Ulizia et al.

2 GeoPQL Operators

The Geographical Pictorial Query Language (GeoPQL, [4] and its evolutions
[13][14]) allow the user to specify queries using symbolic graphical objects (SGO)
that have the appearance of the three classic types of shapes: point, polyline and poly-
gon. The user can assign each SGO with a semantic linked to the different kinds of
information (layers) in the geographical database. Constraints can be imposed on both
the attributes of the geographical data and their topological position and the query’s
target information (a specified layer or a set of layers) can be specified. Queries can
thus be formulated by simply drawing a spatial representation of the SGO without the
need to know a complex syntax or the database’s structure. The GeoPQL algebra
consists of 12 operators: Geo-union, Geo-difference, Geo-disjunction, Geo-touching,
Geo-inclusion, Geo-crossing, Geo-pass-through, Geo-overlapping, Geo-equality,
Geo-distance, Geo-any and Geo-alias. Geo-touching is equivalent to the meet opera-
tor, Geo-crossing refers to the crossing of two polylines, Geo-pass-through refers to a
polyline which passes through a polygon, Geo-alias allows the same SGO to be dupli-
cated in order to express the OR operator, and, finally, Geo-any permits any relation-
ship between a pair of SGO to be considered valid, i.e. there is no constraint between
the two SGO. This operator allows an unambiguous visual query to be obtained. For
example, Figure 1 shows two pictorial queries, Q1 and Q2, which represent sketches
of the mental models of the user’s queries:

Q1 “Find all the Provinces which are PASSED THROUGH by a River”
Q2 “Find all the Regions which are PASSED THROUGH by a River AND which
OVERLAP a Forest”.

Province

River

TARGET
River

Forest

Region
Target

 (a) (b)

Fig. 1. Query examples in GeoPQL

3 Constraint Relaxation for Polyline-Polygon Configurations

The real world in the geographic domain can be represented as a set of features, called
Symbolic Graphical Objects (SGO) [4]: Point, Polyline, and Polygon. This represen-
tation is used in GeoPQL to draw pictorial queries and obtain both the number of
SGO, which verify the query, and the objects selected in the geographical database,
which are the result of the query target.

 Relaxing Constraints on GeoPQL Operators to Improve Query Answering 731

To relax the constraints which produce a null value as the answer to a given query,
we need to define the conceptual similarity graph of the possible configurations between
a pair of SGO. Each configuration identifies a set of GeoPQL operators. A brief analysis
of the spatial configuration between a polygon and a polyline is given below.

First, we define a polyline, which is strictly connected to the concept of topological
curve, i.e. a geometrical one-dimensional and continuous object. Formally, a topo-
logical curve is defined as follows. Let I be an interval of real numbers (i.e. a non-
empty connected subset of). Then a curve is a continuous mapping ,
where X is a topological space. The curve is said to be simple if it is injective, i.e. if
for all x, y in I, we have . If I is a closed bounded interval ,
we also allow the possibility and we say that is closed. So by polyline,
we mean a topological curve that can also be closed.

This study considered a large number of different configurations between a poly-
line and a polygon.

In [1] the authors distinguish 19 different binary topological relationships using the
9-Intersection model, which defines binary topological relations between a polyline L
and a polygon P on the basis of the nine intersections of L’s interior (L°), boundary
(∂L) and exterior (L-) with the interior (P°), boundary (∂P) and exterior (P-) of P. The
following 3x3 matrix is used to represent these criteria:

The matrix values are empty (∅) or not-empty (¬∅), depending on the intersection

set (empty or not-empty).
We have drawn more than 19 configurations, so we have determined the corre-

spondence between our configurations and the 19 relations drawn in [1][2]. We
found that different configurations correspond to the same 9-Intersection matrix.
Figure 2 shows all the configurations we drew and their corresponding 9-Intersection
matrices.

Each configuration considered in Figure 2 identifies a set of GeoPQL operators.
For example, if we consider the configuration in the first row of Figure 2, we have the
following association between configuration and association:

A: Geo-disjunction; B: Geo-touching; C: Geo-touching; D: Geo-touching, Geo-
inclusion; E: Geo-touching, Geo-inclusion.

To distinguish configurations that correspond to the same 9-Intersection matrix,
the paper considers the number of contact points (touching or crossing) between the
two objects, i.e. the cardinality (number of points) of the intersection between the
polyline’s interior and the boundary of the polygon. For example, considering con-
figurations with the same 9-Intersection matrix, in Figure 3a the cardinality of
(L° ∩ ∂ P) is 2, while in Figure 3b the cardinality of (L° ∩ ∂ P) is 4.

These considerations led us to consider three matrices, the first to represent the point
cardinality of the intersection of the polyline’s interior, boundary and exterior with the
interior, boundary and exterior of the polygon, the second to represent the polyline car-

L° ∩ P° L° ∩ ∂ P L° ∩ P-
∂ L ∩ P° ∂ L ∩ ∂ P ∂ L ∩ P-
L- ∩ P° L- ∩ ∂ P L- ∩ P- ()

732 A. D’Ulizia et al.

dinality of the same intersection sets and the third to represent the polygon cardinality of
the same intersection sets. These are called zero-dimensional 9-Intersection matrix M0,
one-dimensional 9-Intersection matrix M1 and bi-dimensional 9-Intersection matrix M2.
Zero-dimensional matrix elements are represented by |L ∩ P|P to indicate the point
cardinality of the intersection. In the same way, one-dimensional matrix elements are
represented by |L ∩ P|L and bi-dimensional matrix elements by |L ∩ P|A.

A B C D E

Fig. 2. Configurations between a polyline and a polygon

¬∅ ∅ ∅
¬∅ ∅ ∅

¬∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅
¬∅ ∅ ¬∅
¬∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅
∅ ∅ ¬∅
¬∅ ¬∅ ¬∅

¬∅ ¬∅ ∅
¬∅ ¬∅ ∅
¬∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅
∅ ¬∅ ¬∅
¬∅ ¬∅ ¬∅

 ∅ ∅ ¬∅
 ∅ ∅ ¬∅
¬∅ ¬∅ ¬∅

 ∅ ∅ ¬∅
 ∅ ¬∅ ¬∅
¬∅ ¬∅ ¬∅

∅ ¬∅ ∅
∅ ¬∅ ∅
¬∅ ¬∅ ¬∅

¬∅ ∅ ∅
¬∅ ¬∅ ∅
¬∅ ¬∅ ¬∅

¬∅ ∅ ∅
 ∅ ¬∅ ∅

 ¬∅ ¬∅ ¬∅

¬∅ ¬∅ ∅
∅ ¬∅ ∅

¬∅ ¬∅ ¬∅

¬∅ ¬∅ ∅
¬∅ ∅ ∅
¬∅ ¬∅ ¬∅

∅ ∅ ¬∅
∅ ¬∅ ∅
¬∅ ¬∅ ¬∅

∅ ¬∅ ¬∅
∅ ¬∅ ¬∅
¬∅ ¬∅ ¬∅

∅ ¬∅ ¬∅
∅ ¬∅ ∅

¬∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅
∅ ¬∅ ∅
¬∅ ¬∅ ¬∅

∅ ¬∅ ¬∅
∅ ∅ ¬∅

¬∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅
¬∅ ¬∅ ∅
¬∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅
¬∅ ∅ ∅
¬∅ ¬∅ ¬∅

 Relaxing Constraints on GeoPQL Operators to Improve Query Answering 733

Fig. 3. Configurations with different cardinality for the intersection (L° ∩ ∂ P)

We modified the domain of Egenhofer and Herring’s 9-Intersection matrix from
{∅, ¬∅} to the set of natural numbers, to indicate the intersection cardinality.

We can distinguish an infinite number of configurations with this formalism. For
brevity, Figure 4 gives all the configurations drawn and their corresponding zero-
dimensional, one-dimensional and bi-dimensional 9-Intersection matrices.
As the aim of our work was to design a computational model to determine the most
conceptually similar relations for each configuration, we introduce a similarity graph.
This connects all configurations by the lowest topological distance. To calculate the
distance between two configurations, cA and cB, we calculate the differences of the
corresponding elements in each of the three matrices and then compute the sum.

 [] []jiMjiMD B
K

K i j

A
KCC BA

,,
2

0

2

0

2

0
, −=

= = =

 (1)

The following rules are used to execute the differences, to indicate the difference
between an empty intersection, an intersection with a finite number of elements
(points, polylines or polygons) and an intersection with an infinite number of elements:

+Ν∈∀====

=∞∞=∞=∞=∞=−∞

 mn, 0 m -n 1 n - 0 1 0 -n 0 0 - 0

0- 2-0 20- 1 -n 1n

a b

|L° ∩ P°|A |L° ∩ ∂ P|A |L° ∩ P-|A
|∂ L ∩ P°|A |∂ L ∩ ∂ P|A |∂ L ∩ P-|A
|L- ∩ P°|A |L- ∩ ∂ P|A |L- ∩ P-|A (

|L° ∩ P°|P |L° ∩ ∂ P|P |L° ∩ P-|P
|∂ L ∩ P°|P |∂ L ∩ ∂ P|P |∂ L ∩ P-|P
|L- ∩ P°|P |L- ∩ ∂ P|P |L- ∩ P-|P ()

M1 =
|L° ∩ P°|L |L° ∩ ∂ P|L |L° ∩ P-|L
|∂ L ∩ P°|L |∂ L ∩ ∂ P|L |∂ L ∩ P-|L
|L- ∩ P°|L |L- ∩ ∂ P|L |L- ∩ P-|L ()

)M2 =

M0 =

734 A. D’Ulizia et al.

Fig. 4. Configurations between a polyline and a polygon and 9-intersection matrices

0 0 ∞
0 0 2
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

0 0 1
0 0 0
 ∞ 1 ∞

0 0 ∞
0 1 1
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

0 0 1
0 0 0
 ∞ 1 ∞

0 ∞ 0
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

0 1 0
0 0 0
 ∞ 1 ∞

∞ 0 0
1 1 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

1 0 0
0 0 0
 ∞ 1 ∞

∞ 0 0
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 1

1 0 0
0 0 0
 ∞ 2 ∞

 ∞ 0 0
2 0 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

1 0 0
0 0 0
 ∞ 1 ∞

∞ 1 ∞
1 0 1
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

1 0 1
0 0 0
 ∞ 1 ∞

0 0 0
0 0 0
 2 0 1

1 0 2
0 0 0
 ∞ 2 ∞

∞ 2 ∞
0 0 2
 ∞ ∞ ∞

∞ 4 ∞
0 0 2
 ∞ ∞ ∞

0 0 0
0 0 0
 3 0 2

2 0 3
0 0 0
 ∞ 4 ∞

∞ ∞ ∞
0 0 2
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 1

1 1 2
0 0 0
 ∞ 2 ∞

∞ 1 0
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 3 0 1

2 0 0
0 0 0
 ∞ 3 ∞

∞ ∞ 0
1 1 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

1 1 0
0 0 0
 ∞ 1 ∞

∞ ∞ 0
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 1

1 1 0
0 0 0
 ∞ 2 ∞

1 1 1
0 0 0
 ∞ 1 ∞

∞ ∞ ∞
1 0 1
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

∞ 1 ∞
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0

 2 0 2

1 0 1
0 0 0
 ∞ 3 ∞

∞ 2 ∞
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 3 0 2

2 0 1
0 0 0
 ∞ 4 ∞

∞ ∞ ∞
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 2

1 1 1
0 0 0
 ∞ 3 ∞

0 1 ∞
0 0 2
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

0 0 2
0 0 0
 ∞ 1 ∞

0 ∞ ∞
0 0 2
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

0 1 2
0 0 0
 ∞ 1 ∞

∞ 1 ∞
1 1 0

 ∞ ∞ ∞

0 0 0
0 0 0

 1 0 2

1 0 1
0 0 0
 ∞ 2 ∞

∞ ∞ ∞
1 1 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 2

1 1 1
0 0 0
 ∞ 2 ∞

∞ 2 ∞
2 0 0
 ∞ ∞ ∞

0 0 0
0 0 0

 1 0 2

2 0 1
0 0 0
 ∞ 2 ∞

∞ ∞ ∞
2 0 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 2

2 1 1
0 0 0
 ∞ 2 ∞

∞ 1 ∞
0 1 1
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 1

1 0 1
0 0 0
 ∞ 2 ∞

∞ 3 ∞
0 1 1
 ∞ ∞ ∞

0 0 0
0 0 0
 3 0 2

2 0 2
0 0 0
 ∞ 4 ∞

∞ ∞ 0
1 1 0
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 1

2 1 0
0 0 0
 ∞ 2 ∞

∞ ∞ ∞
0 1 1
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 1

1 1 1
0 0 0
 ∞ 2 ∞

∞ ∞ 0
2 0 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

2 1 0
0 0 0
 ∞ 1 ∞

∞ 1 0
2 0 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

2 0 0
0 0 0
 ∞ 1 ∞

0 ∞ ∞
0 1 1
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 1

0 1 1
0 0 0
 ∞ 1 ∞

0 0 ∞
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 2

0 0 1
0 0 0
 ∞ 2 ∞

0 ∞ ∞
0 2 0
 ∞ ∞ ∞

0 0 0
0 0 0
 1 0 2

0 1 1
0 0 0
 ∞ 2 ∞

 Relaxing Constraints on GeoPQL Operators to Improve Query Answering 735

So we can develop a similarity graph in which each configuration is depicted as a
node and the topological distances are the links between the nodes. A set of GeoPQL
operators can be associated with each spatial configuration, as described for
Figure 2.

Fig. 5. The similarity graph for the considered configurations

Figure 5 shows the similarity graph for the configurations of Figure 2. Nodes
are configurations and edges represent topological distances between configura-
tions measured using the formula (1). Some configuration pairs may have 0
topological distance, however a more accurate measure of similarity can be con-
sidered and configurations with 0 topological distance can be sorted by increasing
cardinality.

For example, the two configurations shown in Figure 3 and again in the top right of
the graph in Figure 5 have 0 topological distance. The corresponding matrices M0, M1
and M2 differ for some elements, as shown in Figure 6.

To calculate the configuration’s total cardinality we sum the cardinalities of all in-
tersections with a finite number of elements, i.e. all the elements of M0, M1 and M2
that are different from 0 and ∞. In this example, configuration (a) has a total cardinal-
ity of 12, while configuration (b) has a total cardinality of 20.

0

1

0 2

2
1 2

1

3

1

0 1

2

3 2
1

2

2 1

1
2

2
1

1

1
1

3

1

2

3

3 3
0

1

3

1
1

3

3
1

1 1

2

736 A. D’Ulizia et al.

Fig. 6. Similarity of a pair of configurations with 0 topological distance

4 Discussion and Conclusion

In this paper we considered a large number of different configurations between a
polyline and a polygon, more than the 19 different binary topological relationships
presented in [1][2]. We determined the correspondence between our configurations
and these 19 relations. To distinguish the different configurations having the same 9-
Intersection matrix we considered the number of contact points (touching or crossing)
between the two objects, i.e. the cardinality (number of points) of the intersection
between the polyline’s interior and the boundary of the polygon.

This led us to consider three matrices, the first to represent the point cardinality of
the intersection of polyline’s interior, boundary and exterior with those of the poly-
gon, the second to represent the polyline cardinality of the same intersection sets and
the third to represent the polygon cardinality of the same intersection sets. We modi-
fied the domain of the 9-Intersection matrix in [1][2] from {∅, ¬∅} to the set of
natural numbers to indicate the intersection cardinality, thus distinguishing an infinite
number of configurations. In order to design a computational model to determine the
most conceptually similar relations for each configuration, we introduced a similarity
graph, which connects all configurations with the lowest topological distance. We
calculated this distance between any two configurations and developed a similarity
graph in which each configuration is depicted as a node and the topological distances
are the links between the nodes.

Studies in progress are examining the configurations “polyline-polyline” and
“polygon-polygon” (all configurations including a point are a sub-set of these).

References

1. M.J.Egenhofer, “Reasoning about binary topological relations” 2nd Symposium SSD’91,
LNCS n. 525, pp. 143-160, August 1991

2. M.J.Egenhofer, J.Sharma “Topological relations between regions in R2 and Z2* “ 3rd
Intern. Symposium on Large Spatial Databases – SSD93, LNCS n. 692, pp. 316-336, 1993

3. M.J.Egenhofer, R.D.Franzosa “Point-set topological spatial relations“ Intern. Journal of
Geographical Information Systems, Vol.5, N.2, pp. 161-174, 1991

4. F.Ferri, M.Rafanelli "GeoPQL: a Geographical Pictorial Query Language that resolves
ambiguities in query interpretation” Journal of Data Semantics, Springer-Verlag Publ.,
LNCS n. 3534, pp.50-80, 2005

∞ 2 ∞
0 0 2
 ∞ ∞ ∞

0 0 0
0 0 0
 2 0 1

1 0 2
0 0 0
 ∞ 2 ∞

∞ 4 ∞
0 0 2
 ∞ ∞ ∞

0 0 0
0 0 0
 3 0 2

2 0 3
0 0 0
 ∞ 4 ∞

a

b

 Relaxing Constraints on GeoPQL Operators to Improve Query Answering 737

5. M.A.Rodriguez, M.J.Egenhofer “Comparing Geospatial Entity Classes: an Asymmetric
and Content-Dependent Similarity Measure” International Journal of Geographical
Information Science 18(3), pp. 229-256, 2004

6. M.A.Rodriguez, M.J.Egenhofer “Determining Semantic Similarity among Entity Classes
from Different Ontologies” IEEE Transactions on Knowledge and Data Engineering,
Vol.15, n.2, pp. 442-456, 2003

7. F.Ferri, A.Formica, P.Grifoni , M.Rafanelli “Evaluating semantic similarity using GML in
Geographic Information Systems” OTM’05 Workshops, Agia Napa, Cyprus, LNCS
n.3762, Springer-Verlag Publ., pp. 1009-1019

8. M.J.Egenhofer, J.Sharma, D.M.Mark “A critical comparison of the 4-intersection and 9-
intersection models for spatial relations: formal analysis” Autocarto 11, R.McMaster &
M.Armstrong Ed.s, October 1993

9. M.J.Egenhofer, D.M.Mark “Modeling conceptual neighborhoods of topological line-
region relations” Intern. Journal of Geographical Information Systems, Vol.9, N.5, pp.
555-565, 1995.

10. H.T.Bruns, M.J.Egenhofer “Similarity of spatial scenes” 7th Int. Symp. On Spatial Data
Handling, pp.173-184, Delft, The Netherlands, 1996

11. M.A.Rodriguez, M.J.Egenhofer, A.D.Blaser “Query pre-processing of topological
constraints: comparing a composition-based with neighborhood-based approach”
SSTD’03, pp. 362-379, 2003

12. F.Dylia, R.Moratz “Exploiting qualitative spatial neighborhoods in the situation calculus”
Int. Conference on Spatial Cognition, LNCS n. 3343, pp. 304-322, 2005

13. F.Ferri, P.Grifoni, M.Rafanelli “XPQL: a pictorial language for querying geographic data”
15th , DEXA ’04, Zaragoza, Spagna, LNCS N. 3180, Springer-Verlag Publ., pp. 925-935,
2004

14. F.Ferri, P.Grifoni, M.Rafanelli “Querying by Sketch Geographical Databases and
Ambiguities”, DEXA ’05, Copenhagen, Denmark, LNCS N. 3588, Springer-Verlag Publ.,
pp. 925-935, 2005.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 738 – 750, 2006.
© Springer-Verlag Berlin Heidelberg 2006

High-Dimensional Similarity Search Using Data-Sensitive
Space Partitioning

Sachin Kulkarni1 and Ratko Orlandic2

1 Illinois Institute of Technology, Department of Computer Science,
Chicago 60616, USA
kulksac@iit.edu

2 University of Illinois at Springfield, Computer Science Department,
Springfield 62703, USA
rorla2@uis.edu

Abstract. Nearest neighbor search has a wide variety of applications. Unfortu-
nately, the majority of search methods do not scale well with dimensionality.
Recent efforts have been focused on finding better approximate solutions that
improve the locality of data using dimensionality reduction. However, it is pos-
sible to preserve the locality of data and find exact nearest neighbors in high
dimensions without dimensionality reduction. This paper introduces a novel
high-performance technique to find exact k-nearest neighbors in both low and
high dimensional spaces. It relies on a new method for data-sensitive space par-
titioning based on explicit data clustering, which is introduced in the paper for
the first time. This organization supports effective reduction of the search space
before accessing secondary storage. Costly Euclidean distance calculations are
reduced through efficient processing of a lightweight memory-based filter. The
algorithm outperforms sequential scan and the VA-File in high-dimensional
situations. Moreover, the results with dynamic loading of data show that the
technique works well on dynamic datasets as well.

1 Introduction

Many traditional access methods are ineffective in high-dimensional spaces [10, 19].
Moreover, real high-dimensional data are often correlated or clustered, and the data
tends to occupy only a small fraction of the space [5]. An appropriate similarity
search method must be aware of the locality of data in high dimensions. However,
most methods for finding the locality of data rely on dimensionality reduction. Unless
a multi-step approach is applied [16], this leads to approximate results.

The problem of similarity search can be stated as follows: Given a database with N
points and a query point q in some metric space, find k ≥ 1 points closest to q [6].
Effective solutions to this problem find applications in computational geometry, geo-
graphic information systems, multimedia databases, data mining, etc. Most of these
applications deal with Euclidean multi-dimensional spaces.

In order to tackle the “curse of dimensionality”, various approximate solutions
based on dimensionality reduction have been proposed [2, 6, 7]. Aggarwal [2] empha-
sized the need to distinguish between the localities in the data and introduced a con-
cept of locality sensitive subspace sampling. The concept of locality sensitive hashing

 High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning 739

(LSH) is developed in [7]. The emphasis in [2] and [7] is on finding the locality of the
data in a way that makes the process of dimensionality reduction more “data aware”.
The focus here is on local rather than global distribution of data.

Significant effort in finding the exact nearest neighbors has yielded limited suc-
cess. The SR-Tree [9] uses both a hyper-sphere and hyper-rectangle to represent a
region and improves search efficiency over the SS-tree and R-tree. However, as re-
ported in [4], the SR-Tree is at par with sequential scan when dimensionality is at
least 20. Blott and Weber [5] proposed the VA-File, which applies a filter to the se-
quential scan using the concept of vector approximations. The bit-encoded approxi-
mations provide bounds to guide the elimination of points during the search. The
solution is simple and tends to be efficient.

A-tree [15] and i-distance [19] are reported to work well in high dimensions. The
A-tree is an index structure that stores virtual bounding rectangles, which approxi-
mate minimum bounding rectangles. i-distance uses the concept of space partitioning
to separate the data into different regions. The data for each region are transformed
into a single-dimensional space in which the similarity is measured.

Our quest is for a solution with an efficient and scalable search, acceptable
data-loading time, and the ability to work on incremental loads of data. Despite con-
siderable work done in the area, this formulation of the problem of exact similarity
searching in high-dimensional spaces is still an intriguing one.

In this paper, we introduce a new way of arranging data on storage to facilitate
efficient search. A new space partitioning method is proposed along with a new algo-
rithm for exact similarity search in high-dimensional spaces. The basic idea is to
separate clusters in the dataset and eliminate searching over the empty space, thus
improving the retrieval performance. We adopt an explicit density-based clustering
using the efficient GARDENHD clustering technique [13], which is different than the
sampling-based approach proposed in [19]. We then apply a new space partitioning
technique, called DSGP (data-sensitive gamma partitioning), which operates on the
compact cluster representation of data produced by GARDENHD.

The paper also presents the results of comprehensive experiments showing that our
approach can efficiently find exact k nearest neighbors in high dimensions. Moreover,
it can work efficiently on dynamically growing data. The algorithm is compared to
the sequential scan, the VA-File, and the GammaSLK partitioning and indexing tech-
nique without explicit data clustering [12].

The rest of this paper is organized as follows. Section 2 gives the basic design
principle underlying the proposed approach and our clustering and partitioning
schemes. Section 3 presents the system architecture and briefly reviews the adopted Γ
partitioning and GARDENHD clustering. Section 4 introduces the data-sensitive space
partitioning. Section 5 introduces the proposed algorithm for similarity search. Sec-
tion 6 provides experimental evidence. Section 7 concludes the paper.

2 Design Principle

For generality, let us use the term storage cluster to denote the spatial region formed
by points in a storage unit, which we assume to be an index page. Then the design
principle underlying our approach can be stated as follows: multi-dimensional data

740 S. Kulkarni and R. Orlandic

must be grouped on storage in a way that minimizes the extensions of storage clusters
along all relevant dimensions and achieves high storage utilization.

The term "relevant dimensions'' refers to the fact that multi-dimensional region
queries may have "affinity'' for certain dimensions, consistently leaving other dimen-
sions unrestricted. However, since exact similarity searching must restrict the search
space in all dimensions, the clustering scheme used for storage organization must treat
all data dimensions as equally important. Assuming a multi-dimensional space de-
fined by relevant dimensions, the stated principle implies that the storage organization
must maximize the densities of storage clusters both by increasing the number of
points in the clusters and by reducing their volumes. To increase the densities of stor-
age clusters, the organization must reduce their internal empty space. For best results,
the database system should employ a genuine clustering algorithm for this purpose.

To understand the logic behind this principle, let us assume for the moment an ide-
alized system that, for any given query, accesses only those pages on secondary stor-
age containing data items that satisfy the query. Moreover, assume that N data items
are divided into M << N pages and that K << N items satisfying the query are ran-
domly distributed among the pages. Then, a well-known Cardenas expression A =
M⋅(1–(1–1/M)k) gives a good estimate of the number of accessed pages for the given
query. Note that the number of pages with useful data is at most min{K, M} and,
when K << M, the above expression can be approximated by A ≈ M⋅(1–(1–K/M)) = K.

Eliminating the assumption that data items are randomly distributed among the
pages, the number of accessed pages can be estimated by a more general expression,
valid for any K, M ≤ N: A = K/I, where I ≥ 1 is the average number of items that sat-
isfy the query in an accessed page. Since the goal of clustering data on storage is to
increase the number of useful items in any page accessed by a typical query, the pa-
rameter H = I/C ≤ 1, where C is the page capacity, is a good measure of the quality of
clustering with respect to the given query. Obviously, when C = 1 or H = I/C, clus-
tered storage organization has the same effect as the organization with randomly
distributed data. However, when C >> 1 and H is as close to 1 as possible, the per-
formance improvement can be significant—as much as C times fewer page accesses.
For this to happen, the storage utilization must also be high.

To develop an appropriate clustering strategy, let us now consider the problem of
supporting multi-dimensional region queries, which restrict the ranges of values in
one or more dimensions of a D-dimensional unit space [0,1]D. We use the term stor-
age cluster to denote a spatial region consisting of points in a storage unit, i.e. a page.

In this context, increasing H implies increasing the probability that each storage
cluster with useful data is completely covered by the query. However, since cluster-
ing must benefit not one but many different queries, the storage organization must be
such that, for every storage cluster S and any query Q, it decreases the probability P(S
∩ Q) that S overlaps Q (which would trigger access to the corresponding page), while
increasing the probability P(S ⊆ Q) that it is covered by Q. Assuming that S is repre-
sented by its minimum bounding hyper-rectangle, and that all possible positions of S
are equally likely, one can easily show that, for data dimensionality D:

∏ =
+=∩ D

i ii SQQSP
1

}1,min{)(and ∏ = −
−

=⊆ D

i
i

ii

S

SQ
QSP

1
}0,

1
max{)(,

where Si and Qi are the extensions (lengths) of S and Q, respectively, in an axis i.

 High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning 741

Since the extensions of any given query are fixed, the way to reduce P(S ∩ Q) and
increase P(S ⊆ Q) for an arbitrary query Q is to reduce the lengths Si of S along all
dimensions i restricted by Q (i.e., all i for which Qi < 1). This and the earlier observa-
tion about storage utilization lead to the design principles stated earlier.

We refer to the process of detecting dense areas (dense cells) in the space with
minimum amounts of empty space as data space reduction. In this context, data clus-
tering is a process of detecting the largest areas with this property, called data clus-
ters. The stated design principle can be achieved either by clustering or by data space
reduction only. However, a facility to do both is an advantage.

Explicit data clustering with effective data space reduction can facilitate various
kinds of retrieval, including similarity searching, by enabling a close-to-optimal as-
signment of data to pages and a significant reduction of the search space even before
the retrieval process hits persistent storage. For effective data space reduction, the
clustering method should operate directly in the given (externally defined) space with-
out dimensionality reduction, and it should not be governed by any expectation about
the number of clusters. To be useful for storage organization, it must also be very
efficient. This set of requirements motivates the design of the GARDENHD clustering
algorithm for high-dimensional datasets introduced in [12] and the DSGP data-
sensitive space partitioning technique introduced later in this paper.

3 System Architecture

Figure 1 gives the architecture of our system for efficient retrieval of data that scales
well with the increasing dimensionality. The process of data clustering produces a
compact cluster representation of data. Operating on this representation, the partition-
ing module produces a data-sensitive Γ space partition (see below). The derived space
partition is maintained by a light-weight in-memory structure, called the Γ filter.

Fig. 1. Key processes of the system

In the process of data loading, this memory structure acts like a filter that channels
the points of each region in the space partition into a separate KDB-tree index. To-
gether, these indices represent clustered data storage. With the facility for incremental
loading, the system can subsequently accept new data points through the existing

Data Clustering
“Data-Sensitive”

Gamma Partitioning

Data Loading

Region Search Similarity Search

Incremental Data
Loading

Data Retrieval

742 S. Kulkarni and R. Orlandic

space partition. The processes of data retrieval include both region and similarity-
search queries, which undergo two levels of filtering—one in the memory-resident
Γ filter and the other in the selected indices on disk.

The KDB-tree indexing technique is not necessarily optimal for this environment.
The R-tree would yield faster retrieval, but at the expense of slower insertions. In
environments with frequent insertions, the later cost is not insignificant.

3.1 Gamma Partitioning

Γ space partitioning was first introduced in [11]. A D-dimensional space is partitioned
by several nested hyper-rectangles whose low endpoints lie in the origin of the space.
The outermost hyper-rectangle is the space itself. We call these nested hyper-
rectangles partition generators, or just generators. The space inside one generator and
outside its immediately enclosed generator, if any, is called Γ subspace. Except for
the innermost subspace, each Γ subspace is further divided into at most D hyper-
rectangular regions, called Γ regions, by means of (D–1)-dimensional hyper-planes,
each of which lies on an upper boundary of the inner generator. Beginning with the
outermost generator, these Γ regions are carved out from the base region one by one
(see Figure 2c below). Each coordinate of the high endpoint of a generator gives the
position of the hyper-plane that separates a Γ region from the space in which the sub-
sequent Γ regions lie. Note that, if G is the number of generators and D the number of
dimensions, the total number of created regions is at most 1+(G–1)⋅D.

In our system, Γ space partition is compactly represented by the Γ filter. During the
insertions, for each Γ region, the Γ filter dynamically maintains its live region, i.e. the
minimum bounding hyper-rectangle enclosing the points in the Γ region.

3.2 GARDENHD Clustering

GARDENHD [13] is designed to provide a fast and accurate insight into data distribu-
tion in order to facilitate data mining or retrieval. This clustering method efficiently
and effectively separates disjoint areas with points, which is the primary reason we
selected it for this application. With an appropriately selected density threshold,
which is the only input parameter, GARDENHD runs in O(NlogN) time [13], where N
is the number of D-dimensional points in the dataset.

GARDENHD is a hybrid of cell- and density-based clustering that operates in two
phases. Employing a recursive space partition using a variant of Γ partitioning [13],
the first phase performs an efficient data space reduction, identifying rectangular cells
whose density is above the user-defined threshold. In the second phase, the adjacent
dense cells are merged into larger clusters. It is the application of Γ partitioning that
enables the algorithm to efficiently cluster data in high-dimensional spaces without
dimensionality reduction.

4 Data Sensitive Gamma Partitioning – DSGP

The partitioning method, called DSGP (Data-Sensitive Gamma Partitioning), uses the
cluster representation of data produced by GARDENHD and generates a space

 High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning 743

partition in which well-separated clusters appear in different regions of the space.
DSGP runs in time equivalent to O(L2) comparisons of D-dimensional points, where L
is the number of clusters detected by GARDENHD.

Each data cluster is approximated by its minimum bounding hyper-rectangle
(MBR), represented by the low and high endpoints. As in “data blind” Γ partitioning
into regions of equal volume [11], DSGP produces static Γ regions, but around spatial
clusters. The number of resulting regions depends on the number of clusters. The
objective is to store points of each disjoint cluster into a separate KDB-tree index.

Fig. 2. Steps of the DSGP space partitioning

Figure 2 illustrates the steps of the data-sensitive space partitioning strategy. Figure
2a shows four clusters detected by GARDENHD. The DSGP procedure starts by sort-
ing the clusters based on their high endpoints along each dimension. As a result, each
dimension is associated with a sorted list of cluster indices. The procedure detects the
gaps between clusters as follows: going from the higher to lower coordinates along
each dimension, the low endpoint of each cluster is compared with the high endpoint
of the next cluster until a gap is found. A partitioning hyper-plane is drawn in the
middle of a detected gap, perpendicular to the dimension with the minimum-
containment region above the gap. By the “minimum-containment region”, we mean
a Γ region with the smallest number of clusters. The resulting space partition is stored
in the Γ filter. The live regions bounding the points of each Γ region in the Γ filter are
determined dynamically during initial and incremental data loading.

In Figure 2a, Cluster 1 has been assigned to the first Γ region. Hence, it is elimi-
nated from further consideration. The same procedure is repeated, and Cluster 2 is
assigned to another partition along the same dimension (Figure 2b). In the next itera-
tion, a gap is found along the second dimension (Figure 2c). The last cluster is as-
signed to the remaining Γ region. During data loading, the constructed KBD-tree
indices perform implicit partitioning of the respective Γ regions into a collection of
index regions, each of which bounds the points in an index page (Figure 2d). Since no
point can fall outside the live region of the corresponding Γ region, the KDB-tree
index regions are effectively bounded by the corresponding live regions.

If multiple clusters appear in the same Γ region, the DSGP procedure performs
“slicing” of the Γ region, so that each slice of the Γ region contains only one cluster.

744 S. Kulkarni and R. Orlandic

The current slicing procedure requires a pair-wise comparison of the given cluster
MBRs. It is also possible that no gap can be found during an iteration of this algo-
rithm or during slicing of a Γ region. In such a case, DSGP performs a “data blind” Γ
partitioning [12] of the space (region) in which the overlapping cluster MBRs appear.

5 Similarity Search

Through the constructed Γ filter representing the partition produced by DSGP, data
points are inserted into appropriate KDB-tree indices. As points are inserted, live
regions of the Γ regions and their slices are dynamically formed. Each inserted
point either grows a live region or falls inside it. For a point lying inside a live re-
gion, its distance to the geometric center of the live region is calculated. This point
becomes a representative of the region if it is closer to the center of the live region
than the previous representative, if any. Note that the dynamic computation of rep-
resentatives takes place after the clustering and partitioning is performed on an
early data sample.

Fig. 3. k-nearest neighbor and region search

Figure 3 depicts the processes of nearest neighbor and region searching. The near-
est neighbour search in Figure 3a uses a query hyper-sphere with the query point at
the center and the distance to its closest region representative as the radius. In this
example, the hyper-sphere intersects two live regions and requires the region searches
only for the overlapping clipped portions of the live regions. Figure 3b is included to
emphasise that region search can be performed in a similar way. Figure 4 gives the
algorithm for nearest-neighbor searching, called GammaNN (the k-NN algorithm is a
simple variant of this). A similar procedure can be used for region search as well.

Once the live regions that overlap the query hyper-sphere or query rectangle (win-
dow) are determined, they are clipped against the hyper-sphere or the query window,
respectively. The KDB-tree corresponding to an overlapping live region is then que-
ried with the appropriate clip of the query window. In the case of k-nearest neighbor
searching, the query hyper-sphere dynamically shrinks as the new nearest neighbors

 High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning 745

are detected. The points returned by the interrogated KDB-tree indices are compared
with the query point to construct the resulting list of k-nearest neighbors. For a region
search, the points returned by the KDB-tree indices represent the result set.

Input:
 Q; // query point:
 NoRegions; // number of Gamma regions
 Regions; // list of Gamma regions

Output:
 Result.Point; // nearest neighbor
 Result.Distance; // distance to the nearest neighbor

Local:
 Slice; // a slice of a region (region can have one or more slices)
 Slice.LR; // live region of the given slice
 TempResult; // contains a temporary NN and the distance to it
 Distance ← , Dist; // temporary distance

 Qclip; // query window (clip) by which an index is searched

BEGIN GammaNN
 // find closest representative and “construct” the sphere
 for i=1 to NoRegions do

 if sphereIntersectsGammaRegion (Q, Distance, Region[i]) then
 if Region[i].Cardinality > 0 // in a data-blind partition, region can be empty
 for j=1 to Region[i].NoSlices do

if sphereIntersectsLiveRegion (Q, Distance, Region[i].Slice[j].LR)
 begin
 MarkSlice (Region[i].Slice[j]); // mark slice for later inspection
 if Dist ← calculateDistance (Slice[j].Repr, Q) < Distance then
 begin Slice ← Region[i].Slice[j]; Distance ←Dist; end
 end
 // examine points in the “closest” slice
Qclip ← constructSearchWindow (Q, Distance, Slice.LR); // construct query clip
Result ←searchIndex (i, Qclip); // search index and return the temporary NN
Distance ← Result.Distance;
 // examine points in other slices, shrinking the sphere
for each other Slice in the list of marked slices do
 if sphereIntersectsLiveRegion (Q, Distance, Slice.LR) then
 begin // since the sphere is shrinking, we had to test for overlap again
 Qclip ← constructSearchWindow (Q, Distance, Slice.LR);
 TempResult ←searchIndex (i, Qclip);
 if TempResult.Distance < Distance then
 begin Distance ← TempResult.Distance; Result ←TempResult; end
 end

END GammaNN

Fig. 4. GammaNN algorithm for nearest-neighbor searching

746 S. Kulkarni and R. Orlandic

6 Experimental Evidence

The experiments were performed on simulated and real data on a PC configuration
with a 3.6 GHz CPU, 3GB RAM, and 280GB disk. In all structures, the page size was
8K bytes. We assumed a normalized D-dimensional space [0,1]D. Each coordinate of a
point was packed in 2 bytes. The GammaNN implementations with and without ex-
plicit clustering are referred to here as ‘data aware’ and ‘data blind’ [12] algorithms,
respectively. The static Γ partitioning of the data blind GammaNN was obtained as-
suming 3 generators, decided based on a number of experiments. In the synthetic data
of up to 100 dimensions, the points are distributed across 11 clusters—one in the center
and 10 in random corners of the space. The real data is a 54-dimensional forest cover
type (“covtype”) set obtained from the UCI machine learning repository1.

Fig. 5. Preprocessing time including the time for data loading

Figure 5 gives the pre-processing time for two versions of GammaNN and the VA-
File. For the data-blind algorithm, this time includes the time of space partitioning,
I/O (reading the data), and the time for data loading (i.e., the construction of indices
plus insertion of data). The data-aware algorithm includes the clustering time in addi-
tion. Observe that the pre-processing time of this algorithm is heavily dominated by
the construction of KDB-tree indices, whereas GARDENHD clustering is fast.

For the VA-File technique, the pre-processing time includes the time to generate
the VA-File. Since this time is dominated by the calculation of approximation values
[17] and requires no insertion of points into any data structure, faster pre-processing
for VA-File is expected. However, since the pre-processing time is usually amortized
over a large number of queries, it is much less consequential than the search time.

Figure 6 shows the results on 100,000 synthetic data points as their dimensionality
increases from 10 to 100. The data-aware algorithm is more than eight times faster than
sequential scan and six times faster than the VA-File. The data-aware method and the
VA-File incur almost the same number of page accesses to the data. However, this is
because we counted only accesses to index or data pages, respectively. In other words,
no page access was counted for the processing of the Γ filter or the VA-File, which
favors the latter technique. If the VA-File were maintained on disk, the VA-File

1 http://kdd.ics.uci.edu/databases/covertype/covertype.data.html.

 High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning 747

Fig. 6. Synthetic data with query distribution same as data, 10 NN

Cumulative time for 100 queries
10 NN, real data

0

200

400

600

800

1000

1200

S. Scan Data Blind VA-File Data Aware

A
vg

 p
ag

e
ac

ce
ss

es

Fig. 7. Real data with 100 queries selected from the real data file, 10 NN

Ti
m

e
in

 s
ec

on
ds

Fig. 8. Progress as the number of nearest neighbors increases on real data

Fig. 9. Time and average page accesses for incremental load on real data

technique would incur many more page accesses, and the relative differences with
respect to GammaNN variants would be closer to those observed for processing times.

748 S. Kulkarni and R. Orlandic

Figure 7 shows that the data-aware algorithm is significantly faster than sequential
scan and the VA-File. For this experiment, 580,900 points were loaded into each
structure, and the remaining 100 points in the data set were used as query points. Also
noteworthy is that the data-aware algorithm accesses only about 3% of all data points.

Figure 8 shows the changes in performance of different methods with respect to the
increasing value of k in k-NN searching. Except for the data-blind algorithm, all meth-
ods have a stable performance as k grows up to 100.

Figure 9 shows the performance of the data-aware algorithm on incremental load-
ing of the real data set. The clustering and space partitioning were performed on the
first 100,000 points in the set, which were loaded into the structure. The results of 10-
NN queries were recorded after subsequent incremental loads of 100,000 points. No
re-clustering was performed after an incremental load. However, as described earlier,
the live regions and their respective representatives were dynamically modified dur-
ing the incremental loads. The equivalent results of the same algorithm but without
incremental loading (in Figure 9, referred to as “data aware, full load”), i.e. after clus-
tering the entire subset of the data, are used as benchmarks.

One can observe from Figure 9 that the data-aware GammaNN algorithm results in
almost the same number of page accesses and the query execution times with or with-
out incremental loading of data. This suggests that GammaNN reacts well to incre-
mental loads. As in this case, in many practical environments, it will require no
re-clustering of data even after many incremental loads. This is particularly important
for scientific applications, which regularly obtain data through incremental loads.

7 Discussion and Conclusions

In this paper, we proposed a new technique for exact similarity searching in high
dimensionalities, called GammaNN. The GammaNN technique employs explicit data
clustering using a new density-based clustering method and a new data-sensitive
space partitioning method in order to preserve the locality of data and reduce the
volumes of data clusters on storage. The application of a memory-based filter with
live regions further improves the performance of similarity searching.

The comparison of the data-sensitive and data-blind approach clearly highlights the
importance of clustering data on storage for efficient similarity search. Our approach
can support exact similarity search while accessing only a small fraction of data. The
algorithm is very efficient in high dimensionalities and performs better than sequen-
tial scan and the VA-File technique. The performance remains good even after incre-
mental loads of dynamically growing data sets without re-clustering.

The high performance of GammaNN similarity searching is mainly due to the
structure’s adherence to the design principle stated in Section 2. By detecting dense
areas in the space, the data clustering facility determines the spatial proximity of data.
The data-sensitive space partitioning enables a static pre-clustering of data on storage
according to their spatial proximity. Storing the points of every region into a separate
KDB-tree enables a dynamic sub-clustering of data into index pages corresponding to
relatively small and dense regions in the space, as required by our design principle.

The application of the memory-resident filter is important for several reasons. It
dynamically channels incoming data into appropriate indices. It dramatically reduces

 High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning 749

the number of costly distance computations. With the dynamically-maintained live
regions, it also reduces the amount of searching over empty space, enabling a poten-
tially significant reduction of search space before accessing the storage.

In our future work, we plan to incorporate R-trees into the system and provide a fa-
cility for handling data with missing values.

Acknowledgment

This material is based upon work supported by the National Science Foundation un-
der grant no. IIS-0312266.

References

1. Aggarwal, C.C.: On the effects of dimensionality reduction on high dimensional similarity
search, Proc. 20th PODS Conf., (2001) 256–266

2. Aggarwal, C.C.: Hierarchical subspace sampling: A unified framework for high dimen-
sional data reduction, selectivity estimation and nearest neighbor search, Proc. ACM
SIGMOD Conf., (2002) 452-463

3. Berchtold, S., Ertl, B., Keim, D., Kriegel, H.P., Seidl, T.: Fast nearest neighbor search in
high-dimensional space, Proc. 14th ICDE Int. Conf. on Data Engineering, (1998) 209-218.

4. Beyer, K.S., Goldstein, J., Ramakrishnan, R. and Shaft, U.: When is `nearest neighbor'
meaningful?, Proc. 7th Int. Conf. on Database Theory, (1999) 217-235

5. Blott, S., Weber, R., A simple Vector-Approximation file for similarity search in high-
dimensional vector spaces. Technical report, Esprit Project Hermes (no. 9141), (1997)

6. Fagin, R., Kumar, R., Shivakumar, D.: Efficient similarity search and classification via
rank aggregation, Proc. Proc. ACM SIGMOD Conf., (2003) 301-312

7. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimension via hashing, Proc.
25th VLDB Conf., (1999) 518-529

8. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is nearest neighbor in high dimensional
spaces?, Proc. 26th VLDB Conf., (2000) 506-515

9. Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional nearest
neighbor queries, SIGMOD Record 26(2): (1997) 369-380

10. MacQueen, J.: Some methods for classification and analysis of multivariate observations.
In Proc. 5th Berkeley Symp. Math. Statist, Prob. 1: (1967) 281–297

11. Orlandic, R., Lukaszuk, J., Swietlik, C.: The design of a retrieval technique for high-
dimensional data on tertiary storage, SIGMOD Record 31(2): (2002) 15–21

12. Orlandic, R., Lukaszuk, J.: Efficient high-dimensional indexing by superimposing space-
partitioning schemes, Proc. 8th International Database Engineering & Applications Sym-
posium IDEAS’04, (2004) 257-264

13. Orlandic, R., Lai, Y., Yee, W.G.: Clustering high-dimensional data using an efficient and
effective data space reduction, Proc. ACM Conference on Information and Knowledge
Management CIKM’05, (2005) 201-208

14. Robinson, J.T.: The K-D-B-Tree: A search structure for large multidimensional dynamic
Indexes, Proc. ACM SIGMOD Conf., (1981) 10-18

15. Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: The A-tree: An index structure for
high-dimensional spaces using relative approximation, Proc. 26th VLDB Conf., (2000)
516-526

750 S. Kulkarni and R. Orlandic

16. Seidl, T., Kriegel, H.P.: Optimal multi-Step k-nearest neighbor search. Proc. ACM
SIGMOD Conf., (1998) 154-165

17. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similar-
ity search methods in high-dimensional spaces, Proc. 24th VLDB Conf., (1998) 194-205

18. Weber, R., Zezula, P.: The theory and practice of similarity searches in high dimensional
data spaces (extended abstract), 4th DELOS Workshop, 1997

19. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V.: Indexing the distance: An efficient method to
KNN processing, Proc. 26th VLDB Conf., (2001) 421-430

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 751 – 760, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Truly Adaptive Optimization: The Basic Ideas

Giovanni Maria Sacco

Dipartimento di Informatica, Università di Torino, Corso Svizzera 185,
10149 Torino, Italy

sacco@di.unito.it

Abstract. A new approach to query optimization, truly adaptive optimization
(TAO), is presented. TAO is a general optimization strategy and is composed of
three elements:

1. a fast solution space search algorithm, derived from A*, which uses an in-
formed heuristic lookahead;

2. a relaxation technique which allows to specify a tolerance on the quality of
the resulting query execution plan;

3. a paradigm to prove the suboptimality of search subspaces. Non-procedural
pruning rules can be used to describe specific problem knowledge, and can
be easily added to the optimizer, as the specific problem becomes better un-
derstood.

The main contribution over previous research is the use of relaxation techniques
and that TAO provides a unifying framework for query optimization problems,
which models a complexity continuum going from fast heuristic searches to
exponential optimal searches while guaranteeing a selected plan quality. In ad-
dition, problem knowledge can be exploited to speed the search up. As a pre-
liminary example, the method is applied to query optimization for databases
distributed over a broadcast network. Simulation results are reported.

1 Introduction

Non-procedural query interfaces for relational database systems provide a high degree
of data independence and greatly simplify user interaction with the database. The
selection of efficient strategies to solve user queries is delegated to a system compo-
nent called the query optimizer. The query optimizer selects an execution plan on the
basis of the estimated costs of different plans that can be used to solve the query.

Research on query optimization [2] has polarized on two different, unreconciled
extremes. On the one hand, a number of works uses the exhaustive exploration of the
solution space to select the plan with the minimum estimated cost among all the pos-
sible plans that can be used to solve the query. As an example, a breadth-first exhaus-
tive search is used in the optimizer of System R [14], a centralized relational database
system, and in R* [17], its distributed counterpart. More recent approaches are itera-
tive dynamic programming [9], and the blackboard approach [8].

The main objection to this approach is that query optimization is known to be NP-
hard [3], so that the enumeration of all the possible plans requires significant resources
for complex queries on several relations. Another important and often overlooked

752 G.M. Sacco

objection is that estimates of execution costs are known to suffer from significant
errors. Pushing the optimization process to a point where discrimination among plans
falls inside the estimation error obviously produces no meaningful benefits.

On the other hand, many algorithms use a priori heuristics to derive efficient exe-
cution plans. Heuristic strategies require a relatively low amount of resources, de-
pending on the refinement of the strategy, but can be seriously suboptimal. Known
problems with heuristics are: a) the use of a priori strategies, usually tailored on intui-
tive “average” cases; b) the difficulty in optimizing weighted combinations of objec-
tive functions; c) no indication on plan quality, in terms of how far is the selected
solution from the theoretical optimum; and d) “one size fits all”: heuristics do not
account for the relative importance of queries. Thus, the selected plan for a given
query is always the same, regardless of its frequency of execution.

Alternative approaches to heuristic optimization are randomized algorithms [7],
that have constant space overhead but whose running time is usually unpredictable
because they are non-deterministic. Typically, randomized algorithms are slower than
heuristics and dynamic programming for simple queries and faster than both for very
large queries. The best known randomized algorithm for query optimization is 2PO
and is a combination of applying iterative improvement and simulated annealing [7].
In many situations, 2PO produces good plans. However, there are situations in which
2PO produces plans that are orders of magnitude more expensive than an optimal
plan.

The goal of our research is to provide a single, general and efficient optimization
framework that can bridge the gap between exhaustive methods and heuristic solu-
tions by allowing a tolerance on the quality of evaluation plans to be set. Such a toler-
ance is used to model a complexity continuum going from fast heuristic searches
(infinite tolerance) to exponential optimal searches (no tolerance). Thus, as in heuris-
tic strategies, we can speed up the search by providing approximate, suboptimal solu-
tions. Differently from heuristics, however, we are able to guarantee that the selected
solution does not exceed the admissible tolerance. In addition, the framework can
exploit problem knowledge in order to speed the search up: problem knowledge is at
the basis of heuristics, but is usually not exploited by exhaustive strategies.

The optimization framework proposed here is general and can be applied to any
optimization problem. In order to provide examples and initial performance measures,
it is applied to a simple distributed query optimization problem. The sample problem
is not interesting per se, but because it is NP-hard without unnecessary complexities,
and it allows the easy gathering of preliminary measures on our approach.

2 Background

Adaptive optimization [1] was the first method to apply results from Artificial Intelli-
gence, namely the A* search algorithm [10], to query optimization and to reconcile
these two antithetic approaches into a "middle-of-the-way" approach, called adaptive
optimization. In adaptive optimization, the optimization problem is solved through an
efficient search of the solution space, which is significantly faster than previous enu-
merative methods. In addition, the portion of the solution space to be searched can be
controlled by a parametric pruning criterion based on the cost of the solution space
node to which it is applied.

 Truly Adaptive Optimization: The Basic Ideas 753

The A* method [10], a well-known graph search technique, is used in adaptive op-
timization. A* expands at each stage the node n (not yet expanded) having the small-
est total expected cost f*(n) given by:

f*(n) = g(n) + h*(n) (1)

where g(n) is the total cost incurred in producing the database state represented by n,
and h*(n) is the estimated cost to reach a state at which the query is solved, from state
n. It can be proved [10], that if h*(n)<=h(n) for all n's, where h(n) is the actual future
cost to solve the query, A* is guaranteed to reach the optimum. This constraint is
called the admissibility constraint.

In adaptive optimization, the user (or more likely, the system administrator) can
choose h*(n)=0, for all n's, which satisfies the admissibility constraint but results in an
inefficient breadth-first search. Alternatively, the user can use the cost of a heuristic
solution from n (such as the Initial Feasible Solution in point-to-point networks [4]) as
h*(n). This estimate produces a more focused search but does not generally satisfy the
admissibility constraint, so that the optimum is not guaranteed. Finally, the amount of
resources spent in optimization can be reduced by specifying a parametric pruning
criterion, which operates on a list of successors of node n ordered by increasing total
cost. Let mtc designate the minimum estimated total cost node. The user can specify
that each successor node s such that f*(s)/f*(mtc)>1+T is to be pruned. That is nodes
whose total cost is beyond a specified deviation from the minimum are pruned. In
addition, the user can request that only the N lowest cost successors of n be retained.

This type of search allows implementing a number of strategies, from greedy
searches (if only one successor is retained for each expanded node) to exhaustive
searches (if no successor is pruned). The term adaptive is used to indicate that heuris-
tic pruning only depends on the cost of active nodes, rather than on a priori heuristics.
In addition, this strategy allows the user to specify tight pruning on one-shot queries
(for which very efficient plans are relatively unimportant), and loose pruning or no
pruning at all, for often repeated queries (for which even small savings are important
in a large scale economy).

Although adaptive optimization goes a long way towards low-cost high-quality
query optimization, it does have a number of problems: a) it is quite inefficient for
complex queries, so that tight pruning criteria must generally be used; b) it does not
give an indication of the quality of the plan unless when used to reach an optimal
solution (i.e. with h*(n)=0 and no pruning); and c) it is quite difficult to understand
the implications, in terms of space and time, of selected values of N and T.

3 Truly Adaptive Optimization

Truly adaptive optimization (TAO) improves over adaptive optimization in two main
ways. First, it concentrates on approximate solutions, since there is little interest in
reaching the theoretical optimum because of errors in cost estimates. Differently from
adaptive optimization that relaxes the search in order to reduce effort, but is unable to
give indications on the quality of the resulting plan, here we want to be able to guar-
antee that the resulting plan is within a specified tolerance from the optimal solution.
At the same time, we want to reduce the search effort as the tolerance on plan quality
increases.

754 G.M. Sacco

In order to meet these goals, algorithm A* with no parametric pruning is used as a
basis. Admissible h*(n) estimates are obtained by completely reduced plans. A com-
pletely reduced plan for n relations is a plan in which all relations are considered in
their completely reduced form (i.e. containing the minimum number of tuples and
attributes required to compute the result) and are processed by the least expensive
actions.

When a node n is selected for expansion, a feasible plan for n, FP(n), is computed
by heuristic lookahead. FP(n) is the result of a heuristic solution from n, obtained by
expanding depth-first the successors of n with minimum f* cost. Initially, the feasible
plan from the initial node I, FP(I), is computed. This feasible plan is updated when-
ever a better feasible plan is computed, so that the cost of FP(I) gives at each stage the
minimum cost of a feasible solution, HC(I). At the same time, the estimated cost of
the node n, f*(n) to be expanded gives an underestimate of the cost of an optimal
solution from I that includes n. Since the node n to expanded by A* is the node with
the minimum estimated cost, the search process can be stopped when

HC(I)/f*(n)<=1+T (2)

where T (T≥0) is the tolerance specified (relaxed search).
In this way, the optimization process can be seen as a refinement of the best heuris-

tic solution so far obtained. Such a refinement is only carried out as required by the
specified tolerance and stops when the heuristic solution is good enough. Thus, this
relaxation models a complexity continuum going from going from fast heuristic
searches (infinite tolerance) to exponential optimal searches (no tolerance). As in
heuristic strategies, we can speed up the search by providing approximate, suboptimal
solutions. Differently from heuristics, however, we are able to guarantee that the se-
lected solution does not exceed the admissible tolerance.

Relaxation plays a central role in TAO because it is the only mechanism used to
produce approximate solutions.. First of all, the higher the tolerance is, the lower the
search effort generally is. In the limit case of an infinite tolerance, the first heuristic
solution computed by TAO is acceptable, and the search is immediately terminated.
In this case, the complexity of a TAO search equals the complexity of a greedy heu-
ristic strategy: the minimum complexity for a meaningful optimization strategy. As
the tolerance decreases, more and more solutions will be tested. TAO can be then
practically applicable even to very complex problems by specifying relatively large
tolerances in order to decrease the amount of resources needed for the search. Sig-
nificant tolerances are required anyway because of compound errors in result
estimates.

The second improvement over adaptive optimization is a uniform way of exploit-
ing problem knowledge. Problem knowledge is the basis of heuristic strategies. Opti-
mal solution space search strategies do not account for it, except, as in A*, to improve
estimates of future costs and consequently the penetrance of the search. Estimates of
future costs are an important part of TAO and admissible estimates were discussed
above. In addition, a paradigm to accommodate non-procedural problem knowledge
in order to speed up the search is used.

Whereas heuristics use problem knowledge to specify which portions of the solu-
tion space are considered, the mechanism used in TAO, pruning rules, specifies
which portions of the solution space can be proved suboptimal and can therefore be

 Truly Adaptive Optimization: The Basic Ideas 755

pruned without losing optimal solutions. Pruning rules are based on the following
harmless pruning paradigm: given two nodes n and n', n’ can be harmlessly pruned
iff, assuming that an optimal solution is reachable from n’, it can be proved that an
optimal solution is also reachable from n. Pruning a node n means removing it and its
successors. Storage is released so that there is a decrease in the workspace require-
ments. A decrease in the time complexity of the search occurs if a pruned node n
would have eventually been considered for expansion.

As we will show in the following, there are a number of general pruning rules that
are applicable to any optimization problem, while other rules can be derived for spe-
cific problems. Among general rules, the duplicate state rule is especially important
for query optimization. This rule states that given two nodes n and n’ that represent
the same database state, only the node with the minimum total estimated cost needs to
be retained. Due to join commutativity, the same database state can be produced by a
combinatorial number of plans. Only the lowest cost plan to reach a database state
needs to be preserved. This action obviously preserves the optimum, and is especially
important to reduce the search effort.

In summary, truly adaptive optimization is composed of three main elements:

1. a fast search strategy based on the A* search algorithm
2. a mechanism to specify an acceptable tolerance on the quality of resulting plans
3. a mechanism to specify pruning rules: rules that account for general and problem

specific knowledge and can be used to prune portions of the solution space, while
retaining the optimum solution.

TAO is a general optimization framework and can be applied to any optimization
problem. However, for expediency, we will refer specifically to the application of
TAO to distributed query optimization in the following discussion.

4 Pruning Rules

A number of pruning rules can be applied to any optimization problem, and conse-
quently to problems different from query optimization. In addition, rules may be
defined at different levels of abstraction for query optimization in general, for distrib-
uted query optimization, and for specific problems (specific rules for distributed
query optimization in point-to-point tree networks are discussed in [13]). A few gen-
eral pruning rules are discussed in the following.

Higher cost rule: Any node n such that f*(n) ≥ HC(I) can be pruned.

Proof: By the admissibility of h*: f*(n) ≤ f(n). Consequently, HC(I) ≤ f(n), and if an
optimal solution is reachable from n, it is also reachable using the current heuristic
solution from HC(I). Therefore, nodes having an expected cost higher than the cost of
the current heuristic solution can be safely pruned.

Whenever a node n with minimum f* is selected by heuristic lookahead, the heuristic
can keep track of the minimum f*(n’) among the siblings n’ of n. We denote this
quantity by F*(n); it provides the total expected cost of the cheapest alternative to the
selected node. When HC(n) becomes available (i.e. when the heuristic backs up from

756 G.M. Sacco

its recursive descent), the following rule can be applied to immediately detect when
the siblings of a heuristically generated node are suboptimal, and consequently to
prune them before expansion:

Alternate cost rule: Let n’ be the son of n for which the heuristic solution was com-
puted. If g*(n) + HC(n) ≤ F*(n'), then n need not be expanded (and no siblings of n’
are consequently generated).

Proof: By contradiction. Let an optimal solution be reachable from a sibling of n’, n",
but not from n’. By the admissibility of h*: f(n”) ≥ F*(n’). Therefore, g(n) + HC(n) ≤
f(n"), against the hypothesis.

In most searches, a given database state can be represented by a set N of nodes. This
is mainly due to join commutativity: all the sequences derived by permutation from a
set of joins produce the same database state. Only the cheapest node for a given data-
base state needs to be preserved. The following rule applies:

Duplicate state rule: Given two nodes, n and n', both representing the same database
state, n can be pruned if f*(n) ≥ f*(n’).

Proof: Since n and n’ correspond to the same state, h*(n)=h*(n’). Consequently, f*(n)
≥ f*(n’) implies that if an optimal solution is reachable from n it is also reachable
from n’.

Hashing techniques can be used to efficiently detect state duplication. If a heuristic
solution from n has already been computed, and f*(n) = f*(n’), then n is to be re-
tained, and n’ pruned, in order to avoid the recomputation of the heuristic. If f*(n) >
f* (n’), the heuristic solution from n is absorbed by the new node n’. The duplicate
state rule significantly reduces the solution space to be searched.

Assume that an action α is being applied, and that it has a minimum cost, i.e. equal to
the cost in the completely reduced plan. This means that

1. action α must be performed to find a solution (otherwise its cost in the completely
reduced plan would be 0), and

2. that no other action can decrease its cost.

Action α is thus a locally optimal move and should be immediately performed.
Consequently, all the siblings of the node generated by α (i.e. alternate actions) need
not be considered.

Process ASAP rule: Let n1, ..., ni, …, nk be the set N of all the immediate successors
of node n. If a node nj exists, such that f*(n.) / f (n) = 1, then all the siblings of nj can
be pruned.

Proof: If the condition is met, the action, which generates nj from n, has the same cost
in the current plan and in the completely reduced plan, i.e. the minimum possible cost.
Remember that only necessary actions have a non-null cost in the completely reduced
plan. Consequently, no decrease in the cost of the action is obtained by postponing it,
and the action is a local optimal move. This rule is especially useful to avoid explor-
ing all the permutations of actions in a set of completely reduced relations.

 Truly Adaptive Optimization: The Basic Ideas 757

5 Experimental Data

Two different distributed query optimization problems were studied [12] in order to
investigate the most important properties of TAO. These problems are defined on
databases distributed over a broadcast network [11]. Here we studied two different
formulations: 1. only relation transmissions are considered; and 2. both relation and
attribute transmissions for semijoins are considered.

The experiments were conducted on samples of random queries generated by a
query synthesizer. For each random query, a random initial database state was gener-
ated by the synthesizer. Each sample consisted of 3500 queries, subdivided into 7 sets
from 3- to 9-relation queries.

The first experiment was designed to investigate whether TAO searches offer a sig-
nificant speedup over A* searches, and to compare plan quality and search effort of
TAO vs. a heuristic strategy. These experiments were conducted on optimization
experiment 1. The reference heuristic is strategy B-1 by Sacco [11], which iteratively
broadcasts the smallest relation not yet transmitted. In order to characterize the search
requirements, we used the total number of nodes created t, which gives a measure of
time complexity. Simulated strategies are:

1. a uninformed A* search (h*(n)=0, for all n’s)
2. an informed A* search with the elimination of duplicate states (h*(n) is estimated

by completely reduced plans)
3. a TAO search with generally applicable rules but no relaxation
4. the B-1 heuristic algorithm

T’s for the first three strategies are reported in figure 1. From these results, it can be
concluded that uninformed A* searches are not practical except for problems on few
variables. A case for considering informed searches and the elimination of duplicate
states is provided by strategy (2), whose space and time complexity appears practical
even for problems with many variables. TAO searches produce significant improve-
ments over strategy (2) both in time and in space. In particular, for 9-relation queries,
4.9 plans were inspected and 3 plans stored, on the average. This compares favoura-
bly with heuristic B-1, which stores approximately 2 plans.

Table 1 reports the observations on plan quality for the B-1 heuristic and the first
successful TAO heuristic lookahead. The heuristic used in TAO lookahead appears
consistently better than B-1, with an average deviation from the optimum not exceed-
ing 4% and a maximum observed deviation of 110%. In addition, over 63% of the
plans generated by the first TAO heuristic solution are optimal. These results provide
a good case for the use of informed heuristic strategies. However, the quality of heu-
ristic plans depends on the specific optimization problem: in fact, the heuristic looka-
head for problem 2 produced average deviations from optimum ranging from 6% to
21%, and a maximum observed deviation of 5921%. Therefore, heuristic strategies
can be acceptable for ad-hoc queries, but their worst case can be quite bad for heavy,
highly repeated queries, for which the slightly higher cost of a TAO search appears
well justified.

The second experiment addresses relaxed searches. Since TAO searches are very
efficient for problem 1, we used the more complex problem 2. Results are aggregated
by number of possible actions at the start node, that more closely models actual query

758 G.M. Sacco

Average t

number of relations

t

3 4 5 6 7 8 9

250

500

750

1000

1250

1500

1750

2000

uninformed A*
informed A* with duplicate states removal

TAO

Fig. 1. Average t for problem 1

Table 1. Comparison of costs of heuristic solutions

#rel B-1 TAO heuristic lookahead
 Mean

deviation
Max

deviation
Mean devia-

tion
Max

deviation
3 0.03 0.92 0.01 0.67
4 0.05 0.92 0.02 0.94
5 0.07 0.84 0.03 0.73
6 0.08 1.35 0.03 0.53
7 0.07 1.43 0.04 0.93
8 0.10 1.47 0.04 1.10
9 0.09 1.28 0.03 1.02

Average t for relaxed TAO

number of actions

t

0
5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

T=0.0
T=0.1
T=0.5

T=1.0

Fig. 2. Average t for optimal and relaxed TAO searches (problem 2)

complexity than the number of relations in the query. The results reported are relative
to a 10%, a 50% and a 100% tolerance. Because of estimation errors, we believe that
at least a 100% tolerance would be used in practice. Results are reported in figure 2,
and show that even minimal tolerances produce significant benefits. Although relaxed

 Truly Adaptive Optimization: The Basic Ideas 759

searches guarantee that no plan deviates from the optimum more than the allowed
tolerance, actual average deviations are very low and range from 1% (10% tolerance)
to 15% (100% tolerance). Consequently, even large tolerance produce very good
plans, on the average.

6 Conclusions

Our primary goal in the present research was to bridge the gap between exhaustive
and heuristic optimization, and produce a single, general and coherent framework that
can be easily adapted to any optimization problem and can be used to produce solu-
tions whose cost is within a predefined deviation from an optimal solution. With re-
spect to previous research, the “one size fit all” approach is finally overcome, and the
required quality of execution plans can account for their frequency, criticity, and
expected estimation errors. In practice, as we indicated previously, we expect relaxed
searches to be the norm, with admissible deviations as large as 100% from optimal
costs. The experiments conducted show that TAO searches are indeed close contend-
ers of heuristic searches, as far as search effort and resources are concerned. Even
moderate tolerances produce a significant search speedup, while selected plans are, on
the average, much better than the admissible deviation. Analytic measurements for
pruning rules are not reported here, but the results reported in [13] show that they can
produce a significant, additional decrease in the overall complexity of the search.

This paper is primarily based on an unpublished research corpus dating back from
the’80s. A number of important papers have appeared since, and new optimization
strategies proposed. However, the main motivations of the present research are still
valid [18]. The severe impact of estimation errors on plan optimality is now widely
recognized and analysed in literature [6]. The fact that heuristic strategies produce
plans whose uncontrolled quality may be abysmally low is now acknowledged [15].
There is a growing consensus on the fact that optimization costs must be reduced, or
at least controlled. For instance, Ilyas et al. [5] propose a strategy to reduce optimiza-
tion costs by using an acceptable upper bound on the estimated cost of optimization to
stop the optimization process before completion, if required. Although there is a
bound on optimization effort, there is no guarantee on the quality of the solution. In
relaxed TAO searches, on the contrary, the plan generated is guaranteed within a
predefined tolerance from the optimum, but no bound on the time required for optimi-
zation can be guaranteed. However, this approach can easily incorporated in TAO,
with the significant benefit that an upper bound on the resulting plan quality is avail-
able, if the TAO search is prematurely terminated.

Finally, we believe the results reported by Waas and Galindo-Legaria [16] to be
especially relevant here. Their work shows that with a relatively small sample from
the solution space, it is possible to find plans that are pretty close to the optimum. In
fact, the percentage of plans that are within twice the optimum cost is non-trivial.
These results confirm our evidence of the high efficiency of TAO, even on queries on
many relations.

760 G.M. Sacco

References

1. Balbo, G., Di Leva, A., Sacco, G. M., Adaptive query optimization in point-to-point
networks, in: "Distributed Data Sharing Systems", (F.A. Schreiber, ed.), North-Holland,
1984

2. Chaudhuri, S., An overview of query optimization in relational systems, Proceedings of
the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, 1998, 34 - 43

3. Hevner, A.R., The optimization of query processing in distributed database systems,
Ph.D. Thesis, Purdue University, W.Lafayette, IN, 1979

4. Hevner, R.A., Yao, S.B., Query processing in distributed database systems, IEEE Trans.
On Software Engineering, SE-5:3, 1979

5. Ilyas, I., et al. Estimating compilation time of a query optimizer, Proceedings of the 2003
ACM SIGMOD international conference on Management of data, 2003, 373 - 384

6. Ioannidis, Y. E., Christodoulakis, S., On the propagation of errors in the size of join re-
sults, Proceeding of the ACM SIGMOD Conf., 1991

7. Ioannidis,Y.E., Kang, Y. C. Randomized algorithms for optimizing large join queries. In
Proc. of the 1990 ACM SIGMOD Conf., 312–321, 1990

8. Kemper, A., et al. A blackboard architecture for query optimization in object bases. In
Proceedings of the Conference on Very Large Data Bases, 1993

9. Kossmann,D., Stocker, K. Iterative dynamic programming: A new class of query optimi-
zation algorithms. ACM Transactions on Database Systems 25, 1, 2000

10. Nilsson, N.J., Principles of artificial intelligence, Tioga Publishing Company, Palo Alto,
CA, 1980

11. Sacco, G.M., Distributed query evaluation in local area networks, Proceed. IEEE
Conf. on Data Engineering, 1984

12. Sacco, G. M., Truly adaptive query optimization , Dept. of Computer Science, Univ. of
Torino, Italy, TR 4/8/84, 1984

13. Sacco, G. M., Truly adaptive query optimization in point-to-point tree networks, Dept. of
Computer Sciences, University of Torino, Italy, TR 3/21/89, 1989

14. Selinger, P.G., et al, Access path selection in a relational database management system ,
Proceed. ACM SIGMOD Conference, 1979

15. Steinbrunn, M., Moerkotte, B., Kemper, A., Heuristic and randomized optimization for the
join ordering problem, The VLDB Journal, 6:3, 1997, 191 - 208

16. Waas, F., Galindo-Legaria, C., Counting, enumerating, and sampling of execution plans in
a cost-based query optimizer, Proceedings of the 2000 ACM SIGMOD Conference, 2000,
499 - 509

17. Williams, R. et al.. R*: An Overview of the Architecture. IBM Research, RJ3325, 1981
Reprinted in: M. Stonebraker (ed.), Readings in Database Systems, Morgan Kaufmann
Publishers, 1994, 515–536.

18. Winslett, M., David DeWitt speaks out, ACM SIGMOD Record, 31:2, 2002, 50 – 62.

Applying Cosine Series to XML Structural Join
Size Estimation

Cheng Luo, Zhewei Jiang, Wen-Chi Hou, Qiang Zhu, and Chih-Fang Wang

1 Computer Science Department in Southern Illinois University Carbondale,
Carbondale, IL 62901, U.S.A.

{cluo, zjiang, hou, wang}@cs.siu.edu
2 Computer and Information Science Department in University of Michigan,

Dearborn, MI, 48128, U.S.A.
qzhu@umich.edu

Abstract. As XML has become the de facto standard for data presenta-
tion and exchanging on the Web, XML query optimization has emerged
as an important research issue. It is widely accepted that structural joins,
which evaluate the containment (ancestor-descendant) relationships be-
tween XML elements, are important to the XML query processing. Esti-
mating structural join size accurately and quickly thus becomes crucial
to the success of XML query plan selection. In this paper, we propose
to apply Cosine transform to structural join size estimation. Our ap-
proach captures structural information of XML data using mathemat-
ical functions, which are then approximated by the Cosine series. We
derive a simple formula to estimate the structural join size using the
Cosine series. Theoretical analyses and extensive experiments have been
performed. The experimental results show that, compared with state-of-
the-art IM-DA-Est method, our method is several order faster, requires
less memory, and yields better or comparable estimates.

1 Introduction

Extensible Markup Language (XML) has recently become the de facto standard
for presenting, storing, and exchanging data on the Internet. Queries over XML
data are usually specified as pattern trees [12] or path expressions [3,5].

Existing approaches that estimate the XML query selectivity follow two trends.
One is to estimate the selectivity of path expressions or pattern trees [1,4,7,13].
Methods in this direction rely on some statistics to capture the structures of XML
documents. The other trend is to identify the key operations performed in the
query and estimate the selectivity of these operations. Since trees can be viewed
as collections of paths, and paths can be further interpreted as links between
pairs of XML nodes, structural joins that study the structural relationships
between pairs of XML nodes have been recognized as vital operations of XML
queries. A structural join between an ancestor set A and a descendant set D is
to find all pairs of x, y such that x ∈ A, y ∈ D and x contains y.

Due to the importance of structural join operations, a variety of methods have
been proposed. While most of them concentrate on efficient execution of struc-
tural join operations[9,17,2,11], few [16,15] address the issue of structural join

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 761–770, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

762 C. Luo et al.

size estimation, which is nevertheless crucial to the query optimization because
from which selectivity of the paths or trees can be derived easily.

Wu, et al. [16] proposed the PH histogram and Coverage histogram while
Wang, et al. [15] proposed the adaptive PL histogram, as well as two sampling
methods called IM-DA-Est and PM-Est. The PH histogram and Coverage his-
togram [16] represent the entire XML dataset as a two-dimensional feature space
and partition this space into predefined grid cells. Each grid cell is associated
with a count that indicates the number of nodes that fall in it. A structural join
is then estimated according to the spatial relationships between grid cells. The
PL histogram models the XML dataset as a one-dimensional feature space and
a structural join is computed as the sum of the average number of descendant
nodes contained in each bucket. IM-DA-Est and PM-Est [15] perform structural
joins on samples and then scale up the results proportionally to estimate the
structural join size. It has been shown [15] that Wang’s IM-DA-Est provides the
best estimation in all the methods discussed.

In this paper, we approximate the distribution of the nodes that satisfy a
predicate with a small number of Cosine coefficients, and then estimates the
join size by performing simple calculations on these coefficients. The experimen-
tal results show that, compared with state-of-the-art method IM-DA-Est, our
method can be more than 105 times faster, requires much less memory space,
and generates better or comparable results.

The rest of the paper is organized as follows. Section 2 briefly reviews related
research in XML structural join size estimation. Section 3 models the distribution
of XML nodes by mathematical functions and applies Cosine series to XML
structural join size estimation. Section 4 compares our method with the sampling
based method IM-DA-Est. Detailed theoretical analyses and experimental results
are presented. Finally, Section 5 concludes this paper.

2 Related Work

To facilitate structural join operations, Wu, et al. [16] proposed a region coding
scheme, which is similar to the one adopted in the Niagara [17] project. The coding
scheme assigns a pair of values, start and end, called the region codes, to each node
in the XML data tree. The region codes specify the nodes’ locations and coverage.
A structural join between an ancestor node a and a descendantnode d is essentially
to evaluate the logical expression of a.start ≤ d.start && d.end ≤ a.end.

Existing techniques addressing structural join includehistogram- and sampling-
based algorithms [15,16]. The PH histogram [16] maps XML nodes to points
in a two-dimensional space that is partitioned into predefined grid cells. The
structural join size is estimated by examining the spatial relationships between
the grid cells based on the assumption that XML nodes are uniformly distributed
in the two-dimensional space. However, such an assumption could lead to poor
estimation accuracy especially when the ancestor nodes are not self-nested. The
Coverage histogram [16] is thus proposed to remedy this problem by estimating
the fraction of coverage.

Applying Cosine Series to XML Structural Join Size Estimation 763

Wang, et al. [15] proposed the PL (Point-Line) histogram algorithm. It maps
ancestors to ranges and descendants to points in a one-dimensional space. It has
been shown [15] that in most situations, PL histogram generates more precise
estimates than PH and Coverage histograms. However, when the descendants
are sparse, PL histogram can have a very high inaccuracy in the estimates [15].

Wang, et al. [15] have also proposed two sampling-based methods, IM-DA-Est
and PM-Est. Both methods estimate structural join size by first computing the
structural join sizes over samples and then scaling up the results proportion-
ally. The estimation accuracy of the sampling methods generally relies on the
regularity of the structural relationships of the XML data. When the structural
relationship is irregular, the estimation accuracy could be poor. IM-DA-Est was
shown to yield better estimation than all other methods discussed [15]. How-
ever, compared with histogram methods that use only statistics, the sampling
approaches are generally very slow. To expedite structure join size estimation,
external index structures, such as XR tree [18] and T + tree [15], are used in
IM-DA-Est and PM-Est. Nevertheless, there is still much room for improvement
on the estimation speed.

3 Estimating XML Structural Join Size

This section presents the mathematical framework for applying the Cosine trans-
form to structural join size estimation.

3.1 Assumptions and Definitions

An XML document is generally represented by an XML data tree T . Without
loss of generality, we assume that the region coding assigns a pair of integer
values, namely (start, end), to each node in the XML data tree. The root node
has the region code (0, n), where n is the smallest integer number for the root
node to cover all of its descendants. The region [0, n] is also termed the coding
domain Dom.

A predicate is a selective condition based on the values and structures of the
XML data. For instance, a predicate like ”tag name=student” selects tags whose
names equal student. Evaluating a predicate against the XML data tree returns
the set of nodes that satisfy the predicate. For simplicity, hereafter we shall call
nodes that satisfy a predicate p the p nodes.

3.2 Modeling the Structural Join

We model the structural information of predicates by defining two types of distri-
bution functions, one describing the coverageof the predicates and the other show-
ing the predicates’ start positions, such that the structural join size can be easily
computed as their inner products. The functions are formally defined as follows.

Definition 1. The coverage function of a predicate p at position pos ∈ Dom,
denoted as Cp(pos), is the number of p nodes whose region codes cover pos.

764 C. Luo et al.

Definition 2. The start-position function of a predicate p at position pos ∈
Dom, denoted as Sp(pos), is the number of p nodes whose start region codes
equal pos.

Fig. 1. An XML Data Tree

Figure 1 shows an example of an XML data tree, in which two nodes, namely a1
and a2, satisfy the predicate A, and three other nodes, namely d1, d2 and d3,
satisfy the predicate D. Nodes that are of interest also have their region codes
labelled close by. For example, node d2 has region codes (5, 6).

Figures 2 through 3 show the corresponding distribution functions for the two
predicates. For example, CA(6) equals 2 because both A nodes, namely a1 and
a2, cover position 6.

The coverage function is intended for use when the predicate acts as the
ancestor in a structural join and the start-position function is used when the
predicate acts as the descendant. The value of Cp(pos) can be greater than 1
since the nodes satisfying p and covering pos might be nested; the value of
Sp(pos) can only be either 0 or 1 because no nodes can have two identical start
region codes.

Let us now illustrate the computation of the structural join size using the
distribution functions. Consider the structural join between A and D, in which
A is the ancestor predicate and D is the descendant predicate. Given a position
pos in the coding domain Dom, SD(pos) indicates whether there is a D node
that starts at pos, and CA(pos) is, by definition, the number of A nodes that
cover pos and consequently cover the D node starting at pos according to the
strictly nested property of XML data. Thus the product of CA(pos) × SD(pos)
denotes the number of pairs of A node and D node that have the containment
relationship at position pos. Note that each D node is only modeled once at its
start-position. Consequently, the structural join size is computed as the sum of
the products of CA(pos) × SD(pos) for all the positions in the coding domain
Dom, which is exactly the inner product of CA and SD, denoted as 〈CA,SD〉,
over the coding domain. For example, from Figures 2 and 3, 〈CA,SD〉 = 6, which
is precisely the structural join size between A and D.

Applying Cosine Series to XML Structural Join Size Estimation 765

Coverage Function for A Start-position Function for A

Fig. 2. Distribution Functions for A

Coverage Function for D Start-position Function for D

Fig. 3. Distribution Functions for D

Lemma 1. The structural join size between any pair of ancestor predicate A and
descendant predicate D is the inner product of CA(pos) and SD(pos), denoted as
〈CA,SD〉, over the coding domain, namely:∑

pos∈Dom
CA(pos)× SD(pos) (1)

The above reasoning can be easily extended to multi-structural join size calcu-
lation. Theorem 1 generalizes the multi-structural join size computation.

Theorem 1. The structural join size among any ancestor predicates A1, A2, · · ·,
An and a descendant predicate D, is the inner product of CA1

(pos), CA2(pos),
· · ·, Cpn(pos) and SD(pos), denoted as 〈CA1

, CA2
, · · · , CpAn,SD〉, over the coding

domain, namely:
∑

pos∈Dom CA1
(pos)× · · · × CAn(pos)× SD(pos).

It is worth noting that while Wang’s approach [15] uses tables and other data
structures to store the structural information, ours models the information as
mathematical functions. Consequently, to estimate the structural join size, their
methods require intensive search over some data structures, while our method
involves only computations of mathematical formulas. The distinction of how
the information is represented results in completely different methods.

3.3 Structural Join Size Estimation

we use the Cosine transform to derive approximate distribution functions that
need little storage space. The coding domain Dom, namely [0, n], is mapped to

766 C. Luo et al.

the region [0, 1] and each position pos in Dom is normalized by dividing n. For
example, 0z = 0 and nz = 1, where the superscript z stands for normalized.

We denote the coverage function CA on the new domain [0, 1] as C′A, such
that CA(pos) = C′A(posz). Likewise, the start-position function SD is redefined
on [0, 1] as S′D and SD(pos) = S′D(posz).

The two new distribution functions can now be expressed in Cosine series as:
C′A(posz) =

∑∞
k=0 akφk(posz) and S′D(posz) =

∑∞
k=0 bkφk(posz) respectively,

where ak = 〈C′A, φk〉 ,bk = 〈S′D, φk〉, φk(x) = 1 when k = 0; otherwise, φk(x) =√
2 cos kπx.
Now Equation 1 can be rewritten as:

〈C′A,S′D〉 (2)

By Parseval’s identity [8], the following equation holds:

〈C′A,S′D〉 =
∞∑

k=0

ak × bk (3)

From Equations 2 and 3, the structural join size is computed as:
∑∞

k=0 ak×bk.
The join size can be approximated by using only the first m coefficients of

each series as
∑m−1

k=0 ak × bk.

4 Experimental Results

In this section, we report the experimental results of our Cosine Series based
structural join size estimation method named CS-Est. Since Wang, et al [15], has
shown that their sampling based estimation method, IM-DA-Est, outperforms
other approaches such as the PH Histogram and Coverage Histogram [16], PL
Histogram and PM-Est [15], here we shall only compare with the IM-DA-Est
method.

We have implemented the IM-DA-Est and our CS-Est methods. We conducted
experiments on a PC with a Pentium 4 processor and 256M RAM.

The datasets we used include a synthetic XML benchmark dataset XMARK
[14] and a real XML database DBLP [6], which have also been used in [15,16].
For each dataset, we select pairs of predicates by the element tag name and
then perform a structural join between each pair. Detailed descriptions of the
datasets and selected queries can be found in the full version of this paper [10].

4.1 Storage Space

CS-Est estimates the structural join size by summing up the products of the Co-
sine coefficients of the coverage and start-position functions in question. There-
fore, the memory space our method requires is for the storage of the Cosine
coefficients.

As for the IM-DA-Est method, firstly, it needs to store the start-position table
for each descendent predicate, from which samples are drawn. The table size is

Applying Cosine Series to XML Structural Join Size Estimation 767

in the order of the number of descendent nodes in question. Secondly, it needs
to check the structural relationships between the sample descendant nodes and
the ancestor nodes by probing one of the external index structures, the XR-tree
[18] and T-tree [15], both of which have a B+ tree structure. An XR-tree (or a
T-tree) is built for each ancestor predicate and requires a space in the order of
the size of the ancestor nodes in question.

Let us use an example to illustrate the difference in memory usage. In the ex-
periments, besides the external index structure used for examining the ancestor
predicate, even the smallest table used for the descendant predicate annotation
has 21, 750 entries, which amounts to 4×21, 750 = 87, 000 bytes of memory con-
sumption for the IM-DA-Est method; while our CS-Est method consume only
200, 400 or 800 bytes memory for different settings. Even disregarding the ex-
ternal index structure, the memory consumption of IM-DA-Est is at least 100
times greater than ours. In short, our method requires much less memory space
than IM-DA-Est.

(a) Space Limit:200
Bytes

(b) Space Limit:400
Bytes

(c) Space Limit:800
Bytes

Fig. 4. Performance on XMARK

(a) Space Limit:200
Bytes

(b) Space Limit:400
Bytes

(c) Space Limit:800
Bytes

Fig. 5. Performance on DBLP

4.2 Estimation Error

The relative estimation error is used as the metric to determine the accuracy of
the estimates. It is defined as |x−x̂|

x × 100%, where x is the actual join size and
x̂ is the estimate.

The estimation accuracy depends on the number of samples drawn in the
IM-DA-Est method, and the number of coefficients used in the CS-Est method.
Here, we shall compare the accuracy based on the same number of samples and
coefficients. Since each sample or coefficient consumes 4-byte memory space, one

768 C. Luo et al.

can alternatively use memory constraints to specify the sample or coefficient
sizes, as adopted in [15]. It should be noted that the memory constraints shown
in the figures are only the sizes of the samples used by the IM-DA-Est for estima-
tion. They do not include the memory space for the external index structure and
the table as mentioned above. However, these memory constraints do indicate
all the memory space required by our method.

Figure 4 shows the performance on the XMARK dataset while figure 5 shows
the performance on the DBLP database. Each figure has three sub-figures that
correspond to the three memory space constraints respectively. The x axis de-
notes the queries executed and the y axis shows the absolute value of the relative
estimation error. Results from the IM-DA-Est method and the CS-Est method
are placed side by side for easy comparison.

The effectiveness of IM-DA-Est method relies on the regularity of the struc-
tural relationships between the ancestor and descendant nodes while the perfor-
mance of the CS-Est method depends on how well the distribution functions are
approximated. Figure 4 shows the performance on the XMARK dataset. Both
methods perform quite well. The good performance is due to the regularity ex-
hibited in the ancestor-descendant relationships for the IM-DA-Est method and
the smoothness of the coverage functions for the CS-Est method.

Figure 5 shows the performance on the DBLP dataset. Our method yields
below or near 10% errors for all queries and outperforms IM-DA-Est for most of
the queries.

Figure 6 shows how the estimation accuracy of IM-DA-Est responds to the
number of samples used and Figure 7 shows how CS-Est responds to the number
of coefficients used. The figures show that generally the relative errors reduce
with the increase of the number of samples and coefficients.

IM-DA-Est on XMARK IM-DA-Est on DBLP

Fig. 6. Estimation Accuracy versus Number of Samples

4.3 Estimation Time

Our method estimates the structural join size by summing up the products
of pairs of coefficients. On average, it takes less than 0.1 μs to compute the
product of a pair of coefficients. As for the IM-DA-Est method, it needs to
probe an external index tree for each sample to find out the number of covering
ancestor nodes, which may require several disk accesses[15]. Indeed, it may take,

Applying Cosine Series to XML Structural Join Size Estimation 769

for example, O(logF N + R) disk accesses on an XR-tree in the worst case [18],
where N is the number of indexed nodes, F is the fanout of the XR-Tree and R
is the output size. The modern hard disk access time is about 4 ms. Therefore,
even with only one disk access per sample, our method is still 105 times faster
than IM-DA-Est, assuming the same number of samples and coefficients are used.
As part of the query optimizer, the structural join size estimation is expected
to be performed quickly and frequently. Our method certainly demonstrates its
superiority also in this regard.

CS-Est on XMARK CS-Est on DBLP

Fig. 7. Estimation Accuracy versus Number of Coefficients

5 Conclusions and Future Work

In this paper, we propose to apply the Cosine transform to XML structural
join size estimation. We choose to represent the structural information of XML
data as functions, which opens the door for utilizing mathematical transforms
to summarize the structural information. We use the Cosine transform to ap-
proximate this information and derive a simple formula for XML structural join
size estimation.

Extensive theoretical analyses and experiments have been conducted. It is
shown that, compared with state-of-the-art method IM-DA-Est, our method is
faster, requires less space, and generates better or comparable results.

By modeling the structural information as functions, other existing well-
known techniques, such as wavelet and sketch, can now be applied to XML
structural join size estimation problem. In the future, we will try these tech-
niques out and report our findings.

References

1. Ashraf Aboulnaga, Alaa R. Alameldeen, Jeffrey F. Naughton: Estimating the se-
lectivity of XML path expressions for internet scale applications. Proceedings of
27th International Conference on Very Large Data Bases (2001) 591–600

2. Al-Khalifa, S., Jagadish, H. V., Koudas, N., Patel, J. M., Srivastava, D., Wu, Y.:
Structural joins: A primitive for efficient XML query pattern matching. ICDE
(2002) 141–152

770 C. Luo et al.

3. Chamberlin, D., Florescu, D., Robie, J., Simeon, J., Stefanescu, M.: XQuery 1.0:
An XML Query Language. W3C Working Draft http://www.w3.org/TR/xquery/
(2004)

4. Chen, Z., Jagadish, H. V., Korn, F., Koudas, N., Muthukrishnan, S., Ng, R. T., Sri-
vastava, D.: Couting twig matches in a tree. Proceedings of the 17th International
Conference on Data Engineering (2001) 595–604

5. Clark, J., DeRose, S.: XML Path Language (XPath). W3C Working Draft
http://www.w3.org/TR/xpath (1999)

6. DBLP data set http://www.informatik.uni-trier.de/ley/db/index.html
7. Freire, J., Haritsa, J. R., Ramanath, M., Roy, P., Siméon, J.: Statix: making XML

count. Proceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data (2002) 181–191

8. Issacson, E., Keller, H. B.: Analysis of Numerical Methods Theorem 3. Dover Pub-
lications (1994) 238

9. Li Q., Moon, B.: Indexing and querying XML data for regular path expressions.
VLDB (2001) 361-370

10. Luo, C., Jiang, Z., Hou, W-C., Zhu, Q., Wang, C-F.:Applying the Cosine Series to
XML Structural Join Size Estimation at http://www.cs.siu.edu/c̃luo/Estimate.pdf

11. McHugh, J., Widom, J.: Optimizing branching path expressions. VLDB (1999)
315–326

12. Paparizos, S., Al-Khalifa, S., Chapman, A., Jagadish, H. V., Lakshmanan, L. V.
S., Nierman, A., Patel, J. M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.:
TIMBER: A Native System for Querying XML. VLDB J, Vol. 11-4 (2002) 274–291

13. Polyzotis, N., Garofalakis, M. N.:Statistical synopses for graph-structured XML
databases. Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data (2002) 358–369

14. Schmidt, A., Waas, F., Kersten, M., Florescu, D.,Manolescu, L., Carey, M. J.,
Busse, R.: The XML benchmark project. Technical report CWI (2001)

15. Wang, W., Jiang, H., Lu, H., Yu, J. X.: Containment join size estimation: models
and methods. Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data (2003) 145–156

16. Wu, Y., Patel J. M., Jagadish, H. V.: Estimating answer sizes for xml queries. 8th
International Conference on Extending Database Technology (2002) 590–608

17. Zhang, C., Naughton, J. F., DeWitt, D. J., Luo Q.,Lohman, G. M.: On supporting
containment queries in relational database management systems. SIGMOD (2001)

18. Jiang, H.,Lu, H.,Wang, W.,Ooi, B.: XR-Tree: Indexing XML Data for Efficient
Structural Join. Proc. of ICDE, India, (2003) 253–264

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 771 – 780, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Query Evaluation in Document DBs*

Yangjun Chen

Department of Applied Computer Science
University of Winnipeg

Winnipeg, Manitoba, Canada R3B 2E9
ychen2@uwinnipeg.ca

Abstract. In this paper, we study the query evaluation in document databases.
First, we show that a query represented in an XML language can be generally
considered as a labeled tree, and the evaluation of such a query is in fact a tree em-
bedding problem. Then, we propose a strategy to solve this problem, based on dy-
namic programming. For the ordered tree embedding, the proposed algorithm
needs only O(|T|⋅|P|) time and O(|T|⋅|P|) space, where |T| and |P| stands for the
numbers of the nodes in the target tree T and the pattern tree P, respectively. This
computational complexity is better than any existing method on this issue. In addi-
tion, how to adapt this method to the general tree embedding is also discussed.

1 Introduction

In XML, data is represented as a tree; associated with each node of the tree is an ele-
ment type from a finite alphabet . The children of a node are ordered from left to right,
and represent the content (i.e., list of subelements) of that element. XML queries such as
XPath, XQuery, XML-QL and Quilt use tree patterns to extract relevant portions from
the input database. A tree pattern query (or called a query tree) that we consider in this
paper, denoted by TPQ from now on, is defined as follows. The nodes of a tree are la-
beled by element types from ∪ {*}, where * is a wild card, matching any element
type. The type for a node v is denoted τ(v). There are two kinds of edges: child edges (c-
edges) and descendant edges (d-edges). A c-edges from node v to node u is denoted by v
→ u in the text, and represented by a single arc; u is called a c-child of v. A d-edge is
denoted v u in the text, and represented by a double arc; u is called a d-child of v.

In any DAG (directed acyclic graph), a node u is said to be a descendant of a node
v if there exists a path (sequence of edges) from v to u. In the case of a TPQ, this path
could consist of any sequence of c-edges and/or d-edges.

An embedding of a TPQ P into an XML document T is a mapping f: P → T, from
the nodes of P to the nodes of T, which satisfies the following conditions:

1. Preserve node type: For each v ∈ P, v and f(v) are of the same type.
2. Preserve c/d-child relationships: If v → u in P, then f(u) is a child of f(v) in T; if v

 u in P, then f(u) is a descendant of f(v) in T.

Any document T, in which P can be embedded, is said to contain P and considered to
be an answer.

* The author is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering

Council of Canada).

772 Y. Chen

To handle all the possible XPath queries, we allow a node u in a TPQ P to be asso-
ciated with a set of predicates. We distinguish among three different kinds of predi-
cates: current node related predicates (called current-predicates), child node related
predicates (called c-predicates), and descendant related predicates (called d-
predicates). A current-predicate p is just a built-in predicate applied to the current
node; i.e., a node v in T, which matches u, must satisfy this predicate associated with
u. A c-predicate is a built-in predicate applied to the children of the current node. That
is, for each node v in T, which matches u, each of its children (or one of its children)
must satisfy this predicate. Similarly, a d-predicate must be satisfied by all the de-
scendants of the node (or one of its descendants), which matches u. Without loss of
generality, we assume that associated with u is a conjunctive-disjunctive normal form:

(p11 ∨ ... ∨) ∧ ... ∧ (pk1 ∨ ... ∨
kkip), where each pij is a predicate.

For example, the following XPath query:

 chapter[section[//paragraph[text() contains ‘informatics’]/following-sibling::*][posi-
tion() = 3]]/*[self::section or self::chapter-notes]

can be represented by a tree shown in Fig. 1.

Fig. 1. A sample TPQ

In the query tree shown in Fig. 1, each node is labeled with a type or *, and may or
may not be associated with a conjunctive-disjunctive normal form of predicates,
which are used to describe the conditions that the node (and/or its children) has to sat-
isfy, or the relationships of the node with some other nodes:

u0 - τ(u0) = chapter. It matches any node v in T if it is associated with type ‘chapter’.
u1 - τ(u1) = section; and associated with a current predicate position() = 3. It matches

any node v in T if it is a third child of its parent and associated with type ‘section’.
u2 - τ(u2) = *; and associated with a disjunction of current-predicates: τ(u2) = section

or τ(u2) = chapter-notes. It matches a node v in T if it is associated with type ‘sec-
tion’ or ‘chapter-notes’.

u3 - τ(u3) = paragraph; associated with a c-predicate: text() contains ‘informatics’. It
matches a node v in T if it is associated with type ‘paragraph’ and has a text child
that contains word ‘informatics’.

u4 - τ(u4) = *; associated with a current-predicate: following-sibling(v3), which indi-
cates that if u4 match a node in T, that node must directly follows any node that

paragraph
text() contains
‘informatics’

u4

*
τ(u3) = section or
τ(u3) = chapter-notes

section
position() = 3

chapter

u3

u2 u1

u0

*
following-sibling(u3)

 On the Query Evaluation in Document DBs 773

matches u3, i.e., any node with type ‘paragraph’ and having a text child node that
contains word ‘informatics’.

Accordingly, the embedding f of a TPQ P into a document T is modified as follows.

1. For each v ∈ P, v and f(v) are of the same type; and f(v) satisfies all the current-
predicates associated with v.

2. If v → u in P, then f(u) is a child of f(v) in T; and f(u) satisfies all the c-predicates
associated with v. If v u in P, then f(u) is a descendant of f(v) in T; and f(u) sat-
isfies all the d-predicates associated with v.

Recently, much research has been conducted on the evaluation of such XML queries
[1, 5, 6, 7, 8]. Here, we just mention some of them, which are very closely related to
the work to be discussed. The first one is based on Inversion on elements and words
[8], which needs O(nm) time in the worst case where n and m are the number of the
nodes in T and P, respectively. The second is based on Inversion on paths and words
[5], which improves the first one by introducing indexes on paths. The time complexity
of this method is still exponential and needs O((n⋅h)k) time in the worst case, where h is
the average height of a document tree and k is the number of joins conducted. The
main idea of the third method is to transform a tree embedding into a string matching
problem [6, 7]. The time complexity is O(n⋅m⋅h). This polynomial time complexity is
achieved by imposing an ordering on the siblings in a query tree. That is, the method
assumes that the order of siblings is significant. If the query tree is ordered differently
from the documents, a tree embedding may not be found even though it exists. In this
case, the query tree should be reordered and evaluated once again. Another problem of
[6] is that the results may be incorrect. That is, a document tree that does not contain
the query tree may be designated as one of the answers due the ambiguity caused by
identical sibling nodes. This problem is removed by the so-called forward prefix
checking discussed in [7]. Doing so, however, the theoretical time complexity is dra-
matically degraded to O(n2⋅m⋅h). The last one is to represent an XPath query as a parse
tree and evaluate such a parse tree bottom-up or top-down [1]. In [1], it is claimed that
the bottom-up strategy needs only O(n5⋅m2) time and O(n4⋅m2) space, so does its top-
down algorithm. But in another paper [2] of the same authors, the same problem is
claimed to be NP-complete. It seems to be controversial. In fact, the analysis made in
[1] assumes that the query tree is ordered while by the analysis conducted in [2] the
query tree is considered to be unordered, leading to different analysis results.

In this paper, we present a new algorithm based on the ordered tree embedding. Its
time complexity is bounded by O(n⋅m).

2 A Strategy Based on Ordered-Tree Embedding

In this section, we mainly discuss a strategy for the query evaluation based on the or-
dered tree embedding, by which the order between siblings is significant. The query
evaluation based on the unordered tree embedding is discussed in the next section.

In general, a tree pattern query P can be considered as a labeled tree if we extend
the meaning of label matching by including the predicate checking. That is, to check
whether a node v in a document T matches a node u in P, we not only compare their
types, but also check whether all the predicates associated with u can be satisfied.
Such an abstraction enables us to focus on the hard part of the problem.

774 Y. Chen

In the following, we first give the basic definitions over the ordered tree embed-
ding in 2.1. Then, we propose an algorithm for solving this problem in 2.2.

2.1 Basic Concepts

Technically, it is convenient to consider a slight generalization of trees, namely for-
ests. A forest is a finite ordered sequence of disjoint finite trees. A tree T consists of a
specially designated node root(T) called the root of the tree, and a forest <T1, ..., Tk>,
where k ≥ 0. The trees T1, ..., Tk are the subtrees of the root of T or the immediate sub-
trees of tree T, and k is the out-degree of the root of T. A tree with the root t and the
subtrees T1, ..., Tk is denoted by <t; T1, ..., Tk>. The roots of the trees T1, ..., Tk are the
children of t and siblings of each other. Also, we call T1, ..., Tk the sibling trees of each
other. In addition, T1, ..., Ti-1 are called the left sibling trees of Ti, and Ti-1 the direct
left sibling tree of Ti. The root is an ancestor of all the nodes in its subtrees, and the
nodes in the subtrees are descendants of the root. The set of descendants of a node v
(excluding v) is denoted by desc(v). A leaf is a node with an empty set of descendants.
The children of a node v is denoted by chidren(v).

Sometimes we treat a tree T as the forest <T>. We also denote the set of nodes in a
forest F by V(F). For example, if we speak of functions from a forest F to a forest G,
we mean functions mapping V(F) onto V(G). The size of a forest F, denoted by |F|, is
the number of the nodes in F. The restriction of a forest F to a node v with its descen-
dants is called a subtree of F rooted at v, denoted by F[v].

Let F = <T1, ..., Tk> be a forest. The preorder of a forest F is the order of the nodes
visited during a preorder traversal. A preorder traversal of a forest <T1, ..., Tk> is as
follows. Traverse the trees T1, ..., Tk in ascending order of the indices in preorder. To
traverse a tree in preorder, first visit the root and then traverse the forest of its subtrees
in preorder. The postorder is defined similarly, except that in a postorder traversal the
root is visited after traversing the forest of its subtrees in postorder. We denote the
preorder and postorder numbers of a node v by pre(v) and post(v), respectively.

Using preorder and postorder numbers, the ancestorship can be checked as follows.

Lemma 1. Let v and u be nodes in a forest F. Then, v is an ancestor of u if and only if
pre(v) < pre(u) and post(u) < post(v).

Proof. See Exercise 2.3.2-2 in [4].

Similarly, we check the left-to-right ordering as follows.

Lemma 2. Let v and u be nodes in a forest F. Then, v appears on the left side of u if
and only if pre(v) < pre(u) and post(v) < post(u).

Proof. The proof is trivial.

Now we give the definition of ordered tree embeddings. In this definition, we simply
use ‘label matching’ to refer to both type matching and predicate checking.

Definition 1. Let P and T be rooted labeled trees. We define an ordered embedding (f,
P, T) as an injective mapping f: V(P) → V(T) such that for all nodes v, u ∈ V(P),

i) label(v) = label(f(v)); (label preservation condition)
ii) if (v, u) is a c-edge, then f(v) is the parent of f(u); (child condition)

 On the Query Evaluation in Document DBs 775

iii) if (v, u) is a d-edge, then f(v) is an ancestor of f(u); (ancestor condition)
iv) v is to the left of u iff f(v) is to the left of f(u). (Sibling condition)

As an example, we show an ordered tree embedding in Fig. 2.

Fig. 2. An example of ordered tree embedding

In Fig. 2(a), the tree on the left can be embedded in the tree on the right because a
mapping as shown in Fig. 2(b) can be recognized, which satisfies all the conditions
specified in Definition 1. In addition, Fig. 2(b) shows a special kind of tree embed-
dings, which is very critic to the design of our algorithm and also quite useful to ex-
plain the main idea of our design.

Definition 2. Let P and T be trees. A root-preserving embedding of P in T is an em-
bedding f of P in T such that f(root(P)) = root(T). If there is a root-preserving embed-
ding of P in T, we say that the root of T is an occurrence of P.

For example, the tree embedding shown in Fig. 2(b) is a root preserving embedding.
Obviously, restricting to root-preserving embedding does not lose generality.

Finally, we use Lemma 2 to define an ordering of the nodes of a forest F given by

v v’ iff post(v) < post(v’) and pre(v) < pre(v’). Also, v v’ iff v v’ or v = v’. The left

relatives, lr(v), of a node v ∈ V(F) is the set of nodes that are to the left of v (i.e., all
those nodes that precede v both in preorder and postorder), and similarly the right
relatives, rr(v), is the set of nodes that are to the right of v (i.e., all those nodes that
follow v both in preorder and postorder).

Throughout the rest of the paper, we refer to the labeled trees simply as trees since
we do not discuss unlabeled trees at all.

2.2 Algorithm Description

The algorithm to be given is in fact a dynamic programming solution. During the pro-
cess, two m × n (m = |P|, n = |T|) matrices are maintained and computed to discover
tree embeddings. They are described as follows.

1. The nodes in both P and T are numbered in postorder, and the nodes are then re-
ferred to by their postorder numbers.

2. The first matrix is used to record subtree embeddings, in which each entry cij (i ∈
{1, ..., m}, j ∈ {1, ..., n}) has value 0 or 1. If cij = 1, it indicates that there is a root
preserving embedding of the subtree rooted at the node indexed by i (in P) in the
subtree rooted at the node indexed by j (in T). Otherwise, cij = 0. This matrix is de-
noted by c(P, T).

b

b e

d b b

a

b

a

b

b

b

a

b

a

d

e

b

776 Y. Chen

3. In the second matrix, each entry dij (i ∈ {1, ..., m}, j ∈ {0, ..., n - 1}) is defined as
follows:

dij = min({x ∈ rr(j) | cix = 1} ∪ {α}),
where α = n + 1. That is, dij contains the closest right relative x of node j such that
T[x] contains P[i], or n + 1, indicating that there exists no right relative x of node j
such that T[x] contains P[i]. This matrix is denoted by d(P, T).

In the above definitions of matrices, we should notice that the indexes of d(P, T) is
slightly different from those of c(P, T). That is, for d(P, T), j ∈ {0, ..., n - 1} (instead
of {1, ..., n}), and j = 0 is considered to be a virtual node to the left of any node in T.

The matrix c(P, T) is established by running the following algorithm, called or-
dered-tree-embedding while d(P, T) is employed to facilitate the computation. Ini-
tially, cij = 0, and dij = 0 for all i and j. In addition, each node v in T is associated with
a quadruple (α(v), β(v), χ(v), δ(v)), where α(v) is v’s preorder number, β(v) is v’s pos-
torder number, χ(v) is v’s level number, and δ(v) = min(desc(v)). By the level number
of v, we mean the number of ancestors of v, excluding v itself. For example, the root
of T has the level number 0, its children have the level number 1, and so on. Obvi-
ously, for two nodes v1 and v2, associated respectively with (α1, β1, χ1, δ1) and (α2, β2,
χ2, δ2), if χ2 = χ1 + 1, α1 < α2 and β1 > β2, we have v2 ∈ children(v1).

In the following algorithm, we assume that for T there exists a virtual node with
postorder number 0, which is to the left to any node in T. This is a modified version of
the algorithm described in [3], adapted to handling of different kinds of edges (c-
edges and d-edges).

Algorithm ordered-tree-embedding(T, P)
Input: tree T (with nodes 0, 1, ..., n) and tree P (with nodes 1, ..., m)
Output: c(P, T), which shows the tree embedding.
begin
1. for u := 1, ..., m do
2. {for v := 0, ..., n - 1 do {duv := n + 1;}
3. l := 0;
4. for v := 1, ..., n do
5. {if label(u) = label(v) then
6. let u1, ..., uk be the children of u;
7. j := δ(v) - 1;
8. i := 1;
9. while i ≤ k and j < v do

10. {j := jui
d , ;

11. if (u, ui) is a d-edge then
12. {if j ∈ desc(v) then i := i + 1;}
13. else /*(u, ui) is a c-edge.*/
14. {if j ∈ children(v) and j is a c-child then i := i + 1;}
15. }
16. if j = k then
17. {cuv := 1;
18. while l ∈ lr(v) do {dul ; = v; l := l + 1;}
19. }
20. }
end

 On the Query Evaluation in Document DBs 777

To know how the above algorithm works, we should first notice that both T and P are
postorder-numbered. Therefore, the algorithm proceeds in a bottom-up way (see line
1 and 4). For any node u in P and any node v in T, if label(u) = label(v), the children
of u will be checked one by one against some nodes in desc(v). The children of u is
indexed by i (see line 6); and the nodes in desc(v) is indexed by j (see line 10). As-
sume that the nodes in desc(v), which are checked during the execution of the while-
loop (see lines 9 - 15), are j1, ..., jh. Then, for each jg (1 ≤ g ≤ h), the following condi-
tions are satisfied (see line 10):

(i) δ(v) ≤ jg < v (i.e., jg ∈ desc(v)),

(ii) There exists ui such that jg =
1, −gi jud with j0 = δ(v) - 1.

Therefore, for any ja and jb ∈ {j1, ..., jh}, they must be on different paths according to
the definition of d(P, T). In addition, in the while-loop, if (u, ui) is a d-edge, the algo-
rithm checks whether j ∈ desc(v) (see line 12). If it is the case, ui has a matching
counterpart in desc(v) and i will be increased by 1. Thus, in a next step, the algorithm
will check the direct right sibling of ui against a node in the right relatives of j. If (u,
ui) is a c-edge, we will check whether j ∈ children(v) and j is c-child (see line 14). If i
= k (i.e., desc(v) contains all subtrees P[u1], ..., P[uk]), we will have a root-preserving
embedding of P[u] in T[v]. Therefore, cuv is set to 1 (see line 17). Also, for any node l
in the left relatives of v, dul is set to v (see line 18). It is because v must be the closest
right relative of any of such nodes in T such that the subtree rooted at it (i.e, T[v])
root-preservingly contains P[u].

Example 1. As an example, consider the trees shown in Fig. 3. The nodes in them are
postorder numbered.

Fig. 3. Labeled trees and postorder numbering

When we apply the algorithm to these two trees, c(P, T) and d(P, T) will be created
and changed in the way as illustrated in Fig. 4, in which each step corresponds to an
execution of the outmost for-loop.

In step 1, we show the values in c(P, T) and d(P, T) after node 1 in P is checked
against every node in T. Since node 1 in P matches node 2, 3 and 5 in T, c12, c13, and
c15 are all set to 1. Furthermore, d10 is set to 2 since the closest right relative of node 0
in T, which matches node 1 in P, is node 2 in T. The same analysis applies to d11.
Since the closest right relative of node 2, 3, 4 in T, which matches node 1 in P, is node
5 in T, d12, d13, and d14 are all set to 5. Finally, we notice that d14 is equal to 7, which
indicates that there exists no right relative of node 5 that matches node 1 in P.

6

5 4

3
1

3

1

b

b e

d b b

a

b

a

2

2

778 Y. Chen

Fig. 4. A sample trace

In step 2, the algorithm generates the matrix entries for node 2 in P, which is done
in the same way as for node 1 in P.

In step 3, node 3 in P will be checked against every node in T, but matches only
node 6 in T. Since it is an internal node (in fact, it is the root of P), its children will be
further checked. First, to check its first child, the algorithm will examine d10, which is
equal to 2, showing that node 2 in T is the closest right relative of node 0 that matches
node 1 in P. In a next step, the algorithm will check the second child of node 3 in P.
To do this, d22 is checked. d22’s value is 5, showing that the closest relative of node 2
in T, which matches node 2 in P, is node 5 in T. In addition, since the edge (3, 2) in P
is a c-edge, the algorithm will check whether node 5 in T is not only a child of node 6,
but also a c-child. Since it is the case, we have a root-preserving embedding of P[3] in
T[6]. Finally, we notice that when the second child of node 3 in P is checked, the al-
gorithm begins the checking from d22 rather than d20. In this way, a lot of useless
checkings is avoided.

Proposition 1. Algorithm ordered-tree-embedding(T, P) computes the values in
c(P, T) and d(P, T) correctly.

Proof. The proposition can proved by by induction on the sum of the heights of T
and P.

Proposition 2. Algorithm ordered-tree-embedding(T, P) requires O(n⋅m) time and
space, where n = |T| and m = |P|.

Proof. During the execution of the outermost for-loop, l may increases from 0 to n.
Therefore, the time spent on the execution of line 18 in the whole process is
bounded by O(n). An execution of the while-loop from line 9 to 15 needs O(du)
time, where du represents the outdegree of node u in P. So the total time is
bounded by

1
2
3

0 2 3 4 5 6

1 1 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

step 1:
c(P, T)

1
2
3

1 2 3 4 5 6

2 2 5 5 5 7
0 0 0 0 0 0
0 0 0 0 0 0

d(P, T)

1
2
3

1 2 3 4 5 6

0 1 1 0 1 0
0 1 1 0 1 0
0 0 0 0 0 0

step 2:
c(P, T)

1
2
3

3 2 3 4 5 6

2 2 5 5 5 7
2 2 5 5 5 7
0 0 0 0 0 0

d(P, T)

1
2
3

4 2 3 4 5 6

0 1 1 0 1 0
0 1 1 0 1 0
0 0 0 0 0 1

step 3
c(P, T)

1
2
3

2 2 3 4 5 6

2 2 5 5 5 7
2 2 5 5 5 7
6 7 7 7 7 7

d(P, T)

 On the Query Evaluation in Document DBs 779

O(n) + O(
= =

m

u

n

v
ud

1 1

) = O(n) + O(
= =

n

v

m

u
ud

1 1

)

 = O(n) + O(
=

n

v

m
1

) = O(n⋅m).

Obviously, to maintain c(P, T) and d(P, T), we need O(n⋅m) space.

3 On the Evaluation of General Tree Pattern Queries

In this section, we briefly discuss how to use the algorithm for ordered tree embed-
ding to evaluate general tree pattern queries. For this, we need to consider the follow-
ing problem:

The ordering of siblings in a pattern (query) tree may be different from that in a
target (document) tree.

In order to tackle this problem, we will change the sibling order in a query according
to DTD if it is available. If the corresponding DTD does not exist, we store the docu-
ment trees according to the lexicographical order of the names of the ele-
ments/attributes. Whenever a query arrives, the query tree will be constructed accord-
ing to the same order. However, in the case that a branch has multiple identical child
nodes, the tree isomorphism problem cannot be avoided by enforcing sibling order.
For example, a query of the form: /X[Y/Z/B]/Y/A can be represented as a tree shown
in Fig. 5(a) or a tree shown in Fig. 5(b).

Fig. 5. Tree pattern queries

In this case, a sibling order cannot be specified lexicographically or by DTD
schema. In order to find all matches, we have to check these two trees separately and
unify their results.

4 Conclusion

In this paper, a new strategy for evaluating XPath queries is discussed. The main idea
of the strategy is to handle an XPath query as tree embedding problem, by which the
label matching includes both the type matching the predicate satisfaction. A dynamic
programming method is proposed to check the ordered tree embedding, by the order-

X

B

A Z

Y Y

(a)

X

B

A Z

Y Y

(b)

780 Y. Chen

ing of siblings is important. The algorithm needs only O(|T|⋅|P|) time and O(|T|⋅|P|)
space, where |T| and |P| stands for the numbers of the nodes in the target tree T and
the pattern tree P, respectively. Finally, how to adapt this method to the unordered
tree embedding is briefly discussed.

References

[1] G. Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for Processing XPath Queries,
ACM Transaction on Database Systems, Vol. 30, No. 2, June 2005, pp. 444-491.

[2] G. Gottlob, C. Koch, and K.U. Schulz, Conjunctive Queries over Trees, in Proc. PODS
2004, June 2004, Paris, France, pp. 189-200.

[3] Pekka Kilpelainen and Heikki Mannila. Ordered and unordered tree inclusion. SIAM Jour-
nal of Computing, 24:340-356, 1995.

[4] D.E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading, MA,
1969.

[5] C. Seo, S. Lee, and H. Kim, An Efficient Index Technique for XML Documents Using
RDBMS, Information and Software Technology 45(2003) 11-22, Elsevier Science B.V.

[6] H. Wang, S. Park, W. Fan, and P.S. Yu, ViST: A Dynamic Index Method for Querying
XML Data by Tree Structures, SIGMOD Int. Conf. on Management of Data, San Diego,
CA., June 2003.

[7] H. Wang and X. Meng, On the Sequencing of Tree Structures for XML Indexing, in Proc.
Conf. Data Engineering, Tokyo, Japan, April, 2005, pp. 372-385.

[8] C. Zhang, J. Naughton, D. DeWitt, Q. Luo and G. Lohman, “On Supporting Containment
Queries in Relational Database Management Systems, in Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, California, USA, 2001.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 781 – 790, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Novel Incremental Maintenance Algorithm of SkyCube

Zhenhua Huang and Wei Wang

Fundan University, China
{weiwang1, 051021055}@fudan.edu.com

Abstract. Skyline query processing has recently received a lot of attention in
database community. And reference [1] considers the problem of efficiently
computing a SkyCube, Which consists of skylines of all possible non-empty
subsets of a given set of dimensions. However, the SkyCube is can not use further
as original data set is changed. In this paper, we propose a novel incremental
maintenance algorithm of SkyCube, called IMASCIR. IMASCIR splits the
maintenance work into two phases: identify and refresh. All the materialized
SkyCube views share two tables which stores the net change to the view due to
the change to the original data set. In the phase of identify, we identify and store
the source changes into these shared tables. Then in the phase of refresh, each
materialized view is refreshed individually by applying these two shared tables.
Furthermore, our experiment demonstrated that IMASCIR is both efficient and
effective.

1 Introduction

Recently, there has been a growing interest in so-called skyline queries[2,3]. The sky-
line of a set of points is defined as those points that are not dominated by any other
point. A point dominates another point if it is as good or better in all dimensions and
better in at least one dimension.

Numerous algorithms have been proposed for skyline retrieval. Borzsonyi et al.[2]
propose the methods based on divide-and-conquer(DC) and block nested loop(BNL).
Specifically, DC divides the dataset into several partitions that can fit in memory. The
skylines in all partitions are computed separately using a main-memory algorithm, and
then merged to produce the final skyline. BNL essentially compares each tuple in the
database with all the other records, and outputs the tuple only if it is memory. The sky-
lines in all partitions are computed separately using a main-memory algorithm, and then
merged to produce the final skyline. BNL essentially compares each tuple in the data-
base with all the other records, and outputs the tuple only if it is not dominated in any
case. The sort-first-skyline(SFS)[4] sorts the input data according to a preference func-
tion, after which the skyline can be found in another pass over the sorted list. Tan et
al.[3] propose a solution that deploys the highly CPU-efficient bit-operations by com-
puting the skyline from some bitmaps capturing the original dataset. The authors also
provide another method based on some clever observations on the relationships between
the skyline and the minimum coordinates of individual points. Kossmann et al.[5] pre-
sent an algorithm that finds the skyline with numerous nearest neighbor searches. An

782 Z. Huang and W. Wang

improved approach following this idea appears in[6]. Balke et al.[7] study skyline
computation in web information systems, applying the “threshold” algorithm of [8].

Furthermore, we are interested in a class of new applications of skyline queries
proposed in the reference [1] whose authors consider the problem of efficiently com-
puting a SkyCube, Which consists of skylines of all possible non-empty subsets of a
given set of dimensions. However, the SkyCube will expand exponentially if the data
set and the number of dimensions of tuples become more enormous. And unluckily, the
SkyCube is can not use further as original data set is changed. So, if usrs want to use
this SkyCube again, it will return the wrong result. The most direct method to solve this
problem is to try to compute the full SkyCube again. But it is impossible since it is of no
effect at all.

In this paper, we propose a novel incremental maintenance algorithm of SkyCube,
called IMASCIR(Incremental Maintenance Algorithm of SkyCube based on Identify
and Refresh). IMASCIR splits the maintenance work into two phases: propagate and
refresh. Each materialized SkyCube view has its own table which stores the net change
to the view due to the change to the original data set. In the phase of propagate, we
propagate the source changes to their tables. Then in the phase of refresh, each mate-
rialized SkyCube view is refreshed individually by applying its table.

2 Terminology and Notations

In this section, we give several concepts corresponding to Skyline and SkyCube.

Definition 1 (n-dominate). Let Ω is the set of n-dimensional tuples, and there are two
tuples: T(d1t, d2t,…, dnt), S(d1s,d2s,…,dns)∈Ω. We call T n-dominate S(and denoted as
P Q), if they satisfy as follows(1 i d):

1) ∀ i (dit=dis dit dis);
2) ∃ i (dit dis).

Definition 2 (Skyline Set). The skyline set of Ω is denoted as ∇(Ω), and it satisfy:

∇(Ω)={ P∈Ω|¬∃ Q(Q∈Ω Q P)}.

In order to discuss SkyCube conveniently, we must extend the domain of each dimen-
sion and two elements, i.e. “ ⊥ ” and “ALL”, are added in it. “ ⊥ ” corresponds to empty,
and the meaning of “ALL” is the same in the reference [9].

Definition 3 (n-dimensioanl Preference Function). Let Ω is the set of n-dimensional
tuples, and Ψ={Ο1(d1,d2,…,dn), Ο2(d1,d2,…,dn),…, Οk(d1,d2,…,dn)}⊆Ω. A function

Rf is called a n-dimensioanl preference function if it satisfies as follows:

1) Rf : d1×d2×…×dn
+R ;

2) ∀Οi,Οk(Οi Οt
Rf (Οi)<

Rf (Οt))

From definition 4, we see that a n-dimensioanl preference function makes the set of
tuples which is out of order into an orderly one. For instance, given

Rf (Ο1)<
Rf (Ο2)<…< Rf (Οk), then the object sequence corresponding to Rf is

Θ<Οk, Οk-1,…, Ο1>.

 A Novel Incremental Maintenance Algorithm of SkyCube 783

Definition 4 (∇ Filter Function). ∇ : 2d1×d2×…×dn d1×d2×…×dn is called ∇ filter
function over the power set of d1×d2×…×dn(to the set d1×d2×…×dn) if only if there
exists a function assist

∇ : (d1×d2×…×dn)×(d1×d2×…×dn)
 d1×d2×…×dn (called ∇ filter

assistant function) which satisfies:

∀ Γ∈2d1×d2×…×dn,Γ2⊆ Γ ∇ (Γ)= assist
∇ (∇ (Γ2), ∇ (Γ Γ2)).

Definition 5 (∇ AggregationFunction). ∇ aggregation function aggrξ = ∇ ⊕ Rf . It
combine n-dimensioanl preference function Rf with ∇ filter function ∇ . First, it
filters tuples on Ω using ∇ , then makes the remaining tuples orderly using Rf .

Definition 6 (SkyCube). A SkyCube is defined as a 7-tuple <ϖ,D,Dom,Ο,Ο_ Dom,ƒ,
aggrξ >, where

1) ϖ is an identifier of a SkyCube;
2) D={ d1,d2,…,dn}, called the set of identifiers of dimensions;
3) Dom=dom(d1)×dom(d2)×…×dom(dn), called the domain over n-dimensional

space;
4) O is object identifiers over n-dimensional space;
5) Ο_ Dom is the domain of objects over n-dimensional space;
6) ƒ Dom Ο_ Dom is partial mapping over Dom to Ο_ Dom;
7) aggrξ is a ∇ aggregation function over Dom.

3 SkyCube Maintenance Algorithm

The SkyCube maintenance problem is the problem of keeping the contents of the ma-
terialized SkyCube view consistent with the contents of the original data set as the
original data set is modified. Maintenance of a SkyCube view may involve several
steps, one of which brings the view table up-to-date. We call this step refresh. A Sky-
Cube view can be refreshed within the transaction that updates the original data set, or
the refresh can be delayed. The former case is referred as immediate SkyCube view
maintenance, while the latter is called deferred SkyCube view maintenance.

In this section, we employ the deferred mode, with the source changes received
during the day applied to the SkyCube views in a nightly batch window. The work
involves updating the original data set, and maintaining all the materialized SkyCube
views. During that time the original data set is unavailable to users. The main aim of
maintenance is to minimize the batch window.

Based on these points above, we propose a novel incremental maintenance algorithm
of SkyCube, called IMASCIR(Incremental Maintenance Algorithm of SkyCube based
on Identify and Refresh). IMASCIR splits the maintenance work into two phases:
identify and refresh. All the materialized SkyCube views share two tables, called δ
tables, which stores the net change to the view due to the change to the original data set.
In the phase of identify, we identify and store the source changes into δ tables. Then in
the phase of refresh, each materialized SkyCube view is refreshed individually by ap-
plying these towδ tables. Identify phase can take place without locking the material-
ized SkyCube views so that the original data set can continue to be made available for

784 Z. Huang and W. Wang

querying by users. Materialized SkyCube views are not locked until the refresh phase,
during which time the materialized SkyCube view is updated from the δ tables. So the
identify phase can occur outside the batch window.

3.1 Phase : Identify

Multiple SkyCube views can be arranged into a (partial) lattice. Figure 1 shows a lattice
wich corresponds to four dimensions A, B, C, D. And cube ABCD is the ancestor of all
other cubes. Obviously, for a set of N-dimensional tuples, there exists at most 2N -1
SkyCube views. Furthermore, the theorem 1 and the corollary 1 proposed in [1] show
that offspring SkyCube views can be computed by ancestor SkyCube views.

Fig. 1. Lattice Structure of a SkyCube

Theorem 1. Given a set S of data points on dimension set D, U and V are two sub
dimension sets (U,V ⊆ D), where U ⊂ V. On dimension set V, each skyline point q in
SkyCubeu(S) is

1) either dominated by another skyline point p in SkyCubeu(S);
2) or a skyline point in SkyCubev(S).

Corollary 1 (Distinct Value Condition). Given aset S of data points on dimension set
D. For any two data points p and q, if p(ai) q(ai) (∀ai∈D), then for two sub dimension
sets U and V, (U, V ⊆ D), where U⊂ V, SkyCubeu(S) ⊆ SkyCubev(S).

In this phase (i.e. identify phase), we use two tables which are shared by all the mate-
rialized SkyCube views to store the net change to the views due to the change to the
original data set. One of these two tables is called insertion δ table (denoted asδ ta-
ble), which is used for tuples added into the original data set. Another one is called
deletion δ table (denoted as δ table), which is used for tuples removed from the
original data set.

It is important to note that in the OLAP applications [10], in order to store the net
change, each materialized DataCube view must has its own tables, that is, it
needs ||2 MV× tables for all the materialized views. The main reason is that in the
OLAP applications, each materialized DataCube view has different net change when
the original data set is changed. However, in the SKYLINE query applications, when

 A Novel Incremental Maintenance Algorithm of SkyCube 785

the original data set is changed, all the materialized SkyCube views have the same net
change. Hence, we only need two shared tables in this phase.

3.2 Phase : Refresh

The phase of refresh can be processed as soon as the first phase finished.
Given a directed acyclic graph G(V,E), then there exists a sequence v1<v2<…<vt

which is topologically orderly, that is, vi precedes vi+1, where i∈[1,t-1]. On the other
hand, it is obvious that not only SkyCube views lattice but also δ -lattice are the di-
rected acyclic graphs. So, we can refresh offspring SkyCube views after it’s ancestor
SkyCube views. Our algorithm, i.e. IMASCIR, maintain the cube in topological order,
hence, we can guarantee that ancestor SkyCube views are “clean” and can be used in
the case of recomputation.

In the following part of this section, we’ll discuss how to refresh a single material-
ized view. The procedures to refresh theoriginal data set are rather easy and will not be
mentioned here.

For each materialized view, refresh procession includes two procedures as follows:

1) Ref_Insert: mainly modifying the SkyCube view with the δ table.
2) Ref_Delete: mainly modifying the SkyCube view with the δ table.

Ref_Insert procedure applies the changes represented in the δ table to the SkyCube
view. Firstly, Ref_Insert procedure compares tuples in the δ table and filters those
tuples which are dominated by the others which are in the δ table. Secondly,
Ref_Insert procedure uses the remaining tuples in the δ table to filter those tuples in
the SkyCube view which are dominated by the remaining tuples in the δ table. Fi-
nally, Ref_Insert procedure modifies the object sequence generated by the
n-dimensioanl preference function Rf of this SkyCube view. Ref_Insert procedure
describes as follows.

Ref_Insert procedure
Ζ := Skyline_Computing(δ table);
Chang from the object sequence Θ<Οk,Οk-1,…,Ο1> to the set
Φ {Ο1,Ο2,…,Οk} using the n-dimensioanl preference
function Rf of the SkCube view;
Η =Skyline_Computing(Φ Ζ);
Chang from the set Η {Ο1,Ο2,…,Οh} to the new object
sequence Θ’<Οh,Οh-1,…,Ο1> using the n-dimensioanl
preference function Rf of the SkCube view;

END

Skyline_Computing (similar to the one proposed in the
reference [4])
Input the set of N-dimensional tuples;
Output the set which are not dominated by the others which
are in the input set;

786 Z. Huang and W. Wang

Description:
1. list := Sort_set(Input) using the operator η =))((1 Oi

N
i π=Σ ;

2. Ζ := ∅;
3. t := 1;
4. Ζ := Ζ {list[0]};
5. list.delete(0);
6. While(list.count>0) do
7. f := false;
8. For j := 1 to t do
9. If (∀w∈[1,N],(w∂π (O)≥ w∂π (list[i])) then
10. f=true;
11. break;
12. If (f = false) then
13. Ζ := Ζ {list[0]};
14. t := t+1;
15. list.delete(0);
16. Return(Ζ).

Ref_Delete procedure applies the changes represented in the δ table to all the
SkyCube views. According to theorem 2, Ref_Delete recomputes the SkyCube views
with the topological order, i.e. v1<v2<…<vt (vt is the ancestor of all SkyCube views).
And it can guarantee all the SkyCube views are correct after processing Ref_Delete
procedure.

Theorem 2. Let G(V, E) is a directed acyclic graph, where V={all the SkyCube views}
and E={all the edges which are from the parent SkyCube view to the child SkyCube
view}. If a tuple is deleted from a child SkyCube view, when recomputing this Sky-
Cube view, we only need to use the tuples which are in it’s parent SkyCube view in-
stead of the whole original data set.

For a single SkyCube view ϒ, Ref_Delete procedure first compares the the δ table
with the SkyCube view, and return immediately if all the tuples which are in the δ
table are not in the SkyCube view. However, if a tuple O is deleted from the SkyCube
view, some tuples which are dominated by the tuple O originally may become new
skyline objects now. So, the part work of Ref_Delete procedure is to process these tu-
ples in it’s parent SkyCube view of ϒ according to theorem 2. Note that when we
compute the SkyCube view rootγ which is the root vertex in the SkyCube-lattice (that
is, rootγ is the ancestor of all other SkyCube views), Ref_Delete procedure must use
the original data set since rootγ does not have the parent SkyCube view.

Ref_Delete procedure describes as follows.

Ref_Delete procedure
1. Chang from the object sequence Θ<Οk,Οk-1,…,Ο1> to the set

φ{Ο1,Ο2,…,Οk} using the n-dimensioanl preference
function Rf of the SkCube view ϒ;

2. If ϒ = rootγ then
Φ := {the original data tuples};

 A Novel Incremental Maintenance Algorithm of SkyCube 787

3. Else
4. Search for the parent SkyCube view of ϒ denoted as Parentγ ;

 /* the cardinality of Parentγ is minimal among all the
parent SkyCube views of ϒ */

5. Chang from the object sequence Θ’<Pm,Pm-1,…,P1> to the
set Φ{P1,P2,…,Pm} using the n-dimensioanl preference
function Rf of the SkCube view Parentγ ;

6. For each tuple O in the δ table do
7. If O in the SkyCube view φ then
8. For each tuple T in Φ φ
9. If T is not dominated by O then
10. add t into φ;
11. φ := φ-δ ;
12. Chang from the set φ{Ο1,Ο2,…,Οh} to the new object sequence

Θ’<Οh,Οh-1,…,Ο1> using the n-dimensioanl preference
function Rf of the SkyCube view.

4 Experiments

In this section, we report the results of our experimental evaluation in terms of time for
maintaining the SkyCube views.

The databases used in all our experiments are generated in a similar way as de-
scribed in [2]. We compare our algorithm with the naïve method which processes
changes of all the SkyCube views by recomputing the original data set, and use tuples
of dimensions 2, 5, 8 and 10. For the sake of simplicity, the type of all the attributes of
tuples is integer. Moreover, we let the cardinality of δ table equals to the one of δ
table.

The first case: we fix the cardinality of the original data set (number of tuples=105),
and the number of refreshing data tuples changes from 5×103 to 3.0×104. Figure 2
shows the result of the experiment of this case. From Figure 2, we see that the runtime
of naïve method is much more than our algorithm, i.e. IMASCIR, in particular, the
number of dimensions increase to 10. When the number of dimensions of tuples equals
to 10, runtime of naïve method is over 13200 seconds since the naïve method processes
changes of all the SkyCube views(about 210-1) by recomputing the original data set.
Although the number of SkyCube views is also about 210-1 in our algorithm, recom-
puting of each SkyCube view only need the data set of its parent SkyCube view. So, our
algorithm saves fairly much time. In Figure 2(d), runtime of IMASCIR does not exceed
3000 seconds, and only about 22 percent of the naïve method. Futhermore, we observe
that the slope of curve produced by the naïve method equals to 0 since the naïve method
always recompute the original data set whose cardinality is a constant (i.e. 106) and

||δ = ||δ .
The second case: we fix the size of refreshing data (size=2×104), and the cardinality

of the original data set changes from 0.5×105 to 3×105. Figure 3 shows the result of the
experiment of this case. From Figure 3, we see that the runtime of naïve method is

788 Z. Huang and W. Wang

a) number of dimensions=2 b) number of dimensions=5

c) number of Dimensions=8 d) number of dimensions=10

Fig. 2. Runtime vs. the Cardinality of Refreshing Data

much more than our algorithm, i.e. IMASCIR.. And the superiority of our algorithm
in comparison with the naïve one is more distinct with the increase of the cardinality
of the original data set and the number of dimensions. For example, when the number
of dimensions of tuples is 10 and the cardinality of original data set is 3×105, the
runtime of naïve method is over 118800 seconds, however, IMASCIR does not ex-
ceed 21000 seconds, and only about 17 percent of the naïve method. Furthermore, we
observe that the slope of curve of IMASCIR is fairly more small than that of the
naïve method.

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Refreshing data(×1000)

R
un

ti
m

e(
s)

IMASCIR
naïve method

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Refreshing data(×1000)

IMASCIR
naïve method

0
2
4
6
8

10
12
14
16
18
20

0 5 10 15 20 25 30

Refreshing data(×1000)

IMASCIR
naïve method

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Refreshing data(×1000)

IMASCIR
naïve method

 A Novel Incremental Maintenance Algorithm of SkyCube 789

a) number of dimensions=2 b) number of dimensions=5

c) number of Dimensions=8 d) number of dimensions=10

Fig. 3. Runtime vs. the Cardinality of Original Data Set

5 Conclusions

In this paper, we are interested in a class of new applications of skyline queries, i.e.
SkyCube. It is obvious that the SkyCube will expand exponentially if the data set and
the number of dimensions of tuples become more enormous. And unluckily, the Sky-
Cube is can not use further as original data set is changed. So, if usrs want to use this
SkyCube again, it will return the wrong result. The most direct method to tackle this
problem is to try to compute the full SkyCube again. But it is impossible since it is of no
effect at all. Based on these considerations, we propose a novel incremental mainte-
nance algorithm of SkyCube, called IMASCIR. IMASCIR splits the maintenance work
into two phases: identify and refresh. All the materialized SkyCube views share two
tables which store the net change to the view due to the change to the original data set.
In the phase of identify, we identify and store the source changes to these two tables.

0

15

30

45

60

75

90

105

0 0.5 1 1.5 2 2.5 3

Cardinality(×E5)

R
un

tim
e(

s)
IMASCIR
naïve method

0

15

30

45

60

75

90

105

120

0 0.5 1 1.5 2 2.5 3

Cardinality(×E5)

R
un

ti
m

e(
×1

0s
)

IMASCIR

naïve method

0
2
4
6
8

10
12
14
16
18

0 0.5 1 1.5 2 2.5 3

IMASCIR
naïve method

0
10
20
30
40
50
60
70
80
90

100
110
120

0 0.5 1 1.5 2 2.5 3

IMASCIR
naïve method

790 Z. Huang and W. Wang

Then in the phase of refresh, each materialized SkyCube view is refreshed individually
by applying these two tables. And our experiment demonstrated that IMASCIR is both
efficient and effective.

References

[1] Yuan, Y., LIN, X., Liu, Q., Wang, W., Yu, J. X., Zhang, Q.: Efficient Computation of the
Skyline Cube. VLDB, 2005.

[2] Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline Operator, International Conference
on Data Engineering ICDE, 2001.

[3] Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. VLDB, 2001.
[4] Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline With Pre-sorting. International

Conference on Data Engineering ICDE, 2003.
[5] Kossmann, D., Ramsak, F., Preparata, F. P.: Shooting Stars In The Sky : An Online Al-

gorithm For Skyline Queries. VLDB, 2001.
[6] Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal And Progressive Algorithm For

Skyline Queries. SIGMOD, 2003.
[7] Balke, W-T., Guntzer, U., Zheng, J.X.: Efficient Distributed Skylining For Web Informa-

tion Systems, EDBT, 2004.
[8] Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms For Middleware. PODS,

2001.
[9] Gray, J., Chaudhuri, S., Bosworth, A.: Data Cube: a relational aggregation operator gen-

eralizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery,
1997.

[10] Mumick, D.Q., Mumick, B.: Maintenance of Data Cubes and Summary Tables in a
Warehouse. International Conference on Data Engineering ICDE, 1997.

Probabilistic Replication Based on Access
Frequencies in Unstructured Peer-to-Peer

Networks

Takahiro Hara, Yuki Kido, and Shojiro Nishio

Graduate School of Information Science and Tech., Osaka University
{hara, kido.yuki, nishio}@ist.osaka-u.ac.jp

Abstract. Recently, there has been increasing interest in research on
data sharing through peer-to-peer networks. In this paper, assuming a
data-sharing service, we propose a new replication strategy that achieves
not only load balancing but also improvement of search performance.
The proposed strategy creates replicas at each peer on the path along
which a query is successfully forwarded, depending on the peer’s rank of
access frequency to the data. Moreover, we verify the effectiveness of the
proposed strategy by simulation experiments.

1 Introduction

Recently, peer-to-peer (P2P) systems and applications have been becoming pop-
ular and a large number of research projects on P2P systems are ongoing. P2P
systems are distributed systems in which a node communicates with other nodes
and acts as both client and server in a context. Nodes in P2P systems are called
peers.

A decentralized P2P system has no central server; instead, peers form an ad
hoc network and send their queries to other peers. Some decentralized P2P sys-
tems are structured, whereby they have close coupling between the P2P network
topology and the location of the data. Typical examples are Chord[16], Content-
Addressable Network (CAN)[14], Pastry[15], Tapestry[17], and Kademlia[13].
These systems precisely determine the placement of data items based on Dis-
tributed Hash Tables (DHTs). The others are decentralized, whereby they have
neither a central server nor any precise control over the network topology or
data placement. Typical examples are Gnutella[7] and JXTA[8]. The network is
formed by peers based on some loose rules, and the placement of data items is
not based on any knowledge of the network topology. To find a required data
item, a peer issues queries to its neighbors. Flooding is typically used for this
aim, where the query is propagated to all neighbors within a certain hopcount,
which is called TTL (Time To Live).

Unstructured P2P systems have an advantage of being built easily and flexibly.
Because of this advantage, most P2P systems currently in service use unstruc-
tured networks for looking up data[6,7]. Thus, in this paper, we assume data
sharing in an unstructured P2P system. It is commonplace in an unstructured
P2P network that data items are replicated on multiple peers in the network for

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 791–800, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

792 T. Hara, Y. Kido, and S. Nishio

efficient data retrieval, improving data availability, and load balancing[3,4,5,12].
In [3], the authors discussed the optimal ratios of numbers of replicas allocated
in the network. As a conclusion, the square-root* allocation, in which the ratios
of numbers of replicas are proportional to the square-root of their query rates
(access frequencies), is the optimal policy in terms of query efficiency. The au-
thors also discussed that a simple replication algorithm, called path replication,
can nearly achieve the square-root* allocation. In path replication, when a query
is successful, the target data item is replicated at all peers along the path from
the query-issuing peer to the peer that responded to the query.

However, as described in Section 3, we found that replica allocation based
on path replication is not close enough to the square-root* allocation and can
be further improved. Therefore, in this paper, we propose a replication strategy
that almost achieves the square-root* allocation. In this strategy, similar to path
replication, the target data item of a query is replicated at peers along the path
from the query-issuing peer to the query-responding one. In doing so, at these
peers replicas are allocated with probabilities determined based on the rank of
the item’s query rate among all data items.

The remainder of the paper is organized as follows. In Section 2, we show
our assumed system model and in Section 3 describe the results of preliminary
experiments. In Section 4, we propose a replication strategy based on the ex-
perimental results. Section 5 contains the results of the performance evaluation.
Finally, in Section 6 we summarize this paper.

2 System Model

The system model assumes an unstructured peer-to-peer network in which peers
access and replicate data items held by others as the originals (primary copies).
When a peer requests a data item, it floods the network with a query message
that has a TTL. If more than one peer that holds the requested data item or
its replica is found by the query flood, the query-issuing peer accesses the data
item (replica) held by the peer with the shortest hopcount among them.

In [1], it is reported that real unstructured P2P networks have power-law
degree distributions. Here, it is defined that a network follows the power-law
when the degree of peer i, di, which is the number of i’s adjacent peers in the
P2P network, is expressed by di ∝ 1/rβ

i (β ≥ 0). Here, ri denotes the rank
of peer i, which is its index in the descending order of outdegree (number of
adjacent peers). Several recent works have concentrated on the properties of
these power-law networks[2,9,10].

Based on the above fact, in this paper, we assume that the network follows
the power-law. Specifically, the network is constructed by connecting peers at
random according to the power-law, which is called a PLRG (Power-law Random
Graph). For simplicity in discussion, we assume that each peer’s rank is equal to
the peer’s identifier, i.e., ri = i, without loosing generality. The degree of peer i
is expressed by the following equation:

di = +ω/iβ, (β ≥ 0), (1)

Probabilistic Replication Based on Access Frequencies 793

where, ω denotes the maximum number of adjacent peers and β denotes the
network parameter that determines the density of the network.

The access probability (query rate), qj , to data item j in the entire network
follows the Zipf distribution[18] and is expressed by the following equation:

qj =
j−α∑k

m=1 m−α
. (2)

Here, k denotes the total number of data items in the entire network, and α
denotes the Zipf coefficient, where a larger α represents a greater skew in the
query rate among data items. Equation 2 represents that data items with smaller
identifiers are requested more frequently, i.e., q1 ≥ q2 ≥ · · · ≥ qk. This is for
simplicity in discussion but we can arbitrarily change this order without losing
generality.

We assume that the system parameters, such as, β, ω, α and the rank of query
rates for all data items are known. Of course, we know that this assumption is
not always true in a real environment; specially in an unstructured P2P network,
it is unrealistic to obtain global information on the rank of query rates for all
data items. We adopted this assumption to examine the behavior and the char-
acteristics of our proposed replication strategy. Our approach can be applied,
however, in an environment without this assumption. For example, the rank of
query rates can be estimated by monitoring query messages exchanged among
peers. Though by this estimation each peer can obtain only the local informa-
tion on query rates around the itself, this is usually sufficient because a query
propagates only around the peer within a predetermined TTL. In addition, the
local information obtained by this estimation is sometimes better than the global
information if the locality exists in query rates of data items.

3 Preliminary Experiments

In this section, we show the results of our preliminary experiments to examine
how well path replication achieves the square-root* allocation and its impact on
the query success ratio. We also explain the motivation and idea of our approach.

3.1 Simulation Environment

The number of peers in the entire network is 3, 000. The number of types of
data items is 500 and each of them is held by a particular peer as the original.
For simplicity, all data items are of the same size and not updated, i.e., their
replicas do not become stale. Each peer has a memory space to replicate up to
five data items. Initially, replicas are allocated in the entire network according
to the square-root* allocation. Peers do not disappear from the P2P network
either intentionally or by a failure.

The probability that each peer issues a query to a data item at a unit of
simulation time is 0.1. For simplicity, all peers have the same access characteris-
tics and follow the query rates shown in Equation (2). Queries are processed by
flooding with TTL=10. Based on the above environment, we perform simulation
experiments for 4,000 units of time.

794 T. Hara, Y. Kido, and S. Nishio

 0.0001

 0.001

 0.01

 0.1

 1 10 100

R
ep

lic
at

io
n

R
at

io

Data ID

square-root
path

 0.0001

 0.001

 0.01

 0.1

 1 10 100

R
ep

lic
at

io
n

R
at

io

Data ID

square-root
formula (3)

(a) Path replication (b) Equation (3)

Fig. 1. Replica allocation by path replication

3.2 The Number of Replicas and Query Success Ratio

Figure 1(a) shows the distribution of replicas among peers when applying path
replication, denoted by “path,” where ω, β, and α, are set to 225, 0.8, and 1.0,
respectively. The horizontal axis indicates the data identifier (i.e., the rank of
query rate) and the vertical axis indicates the ratio of the number of replicas
to the total number of replicas in the entire network. For comparison, the ideal
distribution based on the square-root* allocation is also shown as “square-root.”

From this result, path replication allocates more replicas than those in the
ideal case for data items whose data identifiers are lower than 50. The smaller
the identifier, i.e., the higher the query rate, the larger the difference with the
ideal case. On the other hand, it allocates fewer replicas for data items with low
query rates. This shows that path replication allocates too many replicas of data
items with high query rates, and that replicas of data items with low query rates
are usually replaced with those with high query rates.

To solve this problem and approach to the square-root allocation, replication
of data items with high query rates should be restricted. Based on this fact,
in our approach each data item is replicated at peers along the path from the
query-issuing peer to the data holder with a certain probability determined by
the rank of the query rate of the data item. Here, path replication is a special
case for this approach where the probability is always set as 1.

In our approach, the key issue is how to determine the appropriate replication
probability, Rj , for each data item j. To solve this problem, we conducted a large
number of experiments and found that the following replication probability is
nearly optimal in this simulation environment.

Rj = 0.05 + 0.95× (
j

k
)

1

2 . (3)

Figure 1(b) shows the distribution of replicas among peers when applying
Equation (3) to determine the replication probabilities, denoted by “Equation
(3).” This result confirms that this approach is effective to almost achieve the
square-root* allocation.

Probabilistic Replication Based on Access Frequencies 795

Data ID

S
uc

ce
ss

 R
at

io

Data ID

S
uc

ce
ss

 R
at

io

(a) Path replication (b) Equation (3)

Fig. 2. Query success ratio

Figure 2 shows the query success ratios for data items when applying path
replication and data replication based on Equation (3). The success ratio of
each data item is defined as the ratio of successful queries to the total number
of queries issued for the item during the simulation time. These results show
that by approaching the square-root* allocation, the success ratios increases,
especially for those for data items with low query ratios.

4 Probabilistic Replication Based on Query Rates

Though replication based on Equation (3) achieves nearly optimal replica allo-
cation, it is specialized for the environment in the preliminary experiments in
Section 3. Therefore, in this section, we provide a general and formal method
that aims to achieve the square-root* allocation.

In our proposed method, similar to path replication, when a query is successful
the target data item is replicated at peers along the path from the query-issuing
peer to the peer that responded to the query. At each peer along the path,
based on the replication probability determined by the rank of query rate of the
target item, it is randomly decided whether the target item is replicated. The
replication probability of data item j, i.e., j-th rank, is given by the following
formula based on the results of the preliminary experiments:

Rj = a + (1.00− a)(
j

k
)c. (4)

Here, a and c are parameters varying from 0 to 1 and are used to adjust the
difference in replication probabilities between data items with high query rates
and those with low query rates. The optimal values for these two parameters
change according to changes in the system environment, i.e., α, ω, and β.

5 Performance Evaluation

In this section, we present the results of simulation experiments to evaluate
the performance of our proposed method. The simulation model is basically the

796 T. Hara, Y. Kido, and S. Nishio

same as that described in Section 3. Note that from our prior experiments, not
described here, it is shown that the initial allocation of replicas at the beginning
of the simulation does not affect the replica allocation in the steady state. Thus,
we chose the square-root* allocation as the initial allocation.

In this paper, we define the following metric to examine how the replica allo-
cation is close to the square-root* allocation:

V =
1
k

k∑
j=1

|ej − sj |
sj

. (5)

Here, both ej and sj denote the ratio of the number of replicas of data j to the
total number of replicas in the entire network, ej is the actual ratio resulting
from applying a replication method, and sj is the ideal ratio according to the
square-root* allocation. The smaller V is, the closer the replica allocation is to
the square-root* allocation.

5.1 Access Skew and Optimal a and c

We examine the values of a and c in Equation (4) that gives the smallest V when
varying α (parameter determining the access skew) by 0.1 in the range from 0.0
to 1.2. In the simulation experiments, both a and c are varied by 0.05 in the
range from 0.00 to 1.00; ω and β are fixed to 225 and 0.8, respectively. Table 1
shows the test results, and indicates that there is a correlation between α and
the optimal values of a and c. When α is small, large a and small c give a replica
allocation close to the square-root* allocation, and vice versa.

For comparison, Figure 3 shows the impact of α on V in path replication.
In this graph, the horizontal axis indicates α and the vertical axis indicates V .
The result shows that as α increases, V also grows, i.e., in path replication the
replica allocation is farther from the square-root* allocation. On the contrary,
our proposed method gives a much lower V independent of the value of α. This
shows that appropriate settings of a and c work well to restrict the excessive
replication of data items with high query rates.

5.2 Network Density and Optimal a and c

Next, we examine the values of a and c that give the smallest V when varying
ω and β (parameters determining the network density). In doing so, the total
number of links in the entire network is fixed to 6,000 and ω is set to a value

Table 1. Optimal a and c varying α

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
a 0.85 0.55 0.40 0.05 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.00 0.00
c 0.05 0.15 0.20 0.15 0.20 0.25 0.30 0.35 0.45 0.45 0.55 0.55 0.60
V 0.046 0.048 0.049 0.049 0.052 0.057 0.057 0.063 0.069 0.075 0.091 0.102 0.120

Probabilistic Replication Based on Access Frequencies 797

Fig. 3. V varying with α (path replication)

Table 2. Optimal a and c varying with β (TTL = ∞)

β 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a 0.40 0.40 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c 0.95 0.70 0.45 0.45 0.40 0.45 0.45 0.45 0.45 0.45 0.50
V 0.108 0.184 0.093 0.073 0.075 0.076 0.077 0.074 0.077 0.079 0.082

that gives 6,000 links when varying β. When β is small, all peers have a similar
number of links (nearly random network), whereas when β is large, few peers
have a large number of links and others have few links. Note that β strongly
affects the query success ratio, i.e., the larger the β, the higher the query success
ratio when TTL is fixed to a constant value. Thus, in this subsection we first
assume that TTL is infinite so that every query succeeds. By doing so, we can
examine the effect of β without considering the impact of the success ratio. Then,
we set TTL as 10, similar to the above experiments, and examine the effect of β.

TTL = ∞: Next, we examine the optimal values of a and c when varying β
by 0.1 in the range from 0.0 to 1.0. Both a and c are varied by 0.05 in the range
from 0.00 to 1.00; α is fixed to 1.0 and TTL is set as infinite. Table 2 shows
the results, which indicate that there is a correlation between β and the optimal
values of a and c. When β is small, large a and small c give a replica allocation
close to the square-root* allocation, and vice versa.

Figure 4 shows the average path lengths (hopcounts) for accessing data items
where β = 0.0 and β = 0.8. From these graphs, we see that the path lengths
get longer as the query rates decrease. The average path lengths vary from 40
to 800 where β = 0.0 and from 2 to 6 where β = 0.8. When β is very small, no
peer has a large number of links, thus the number of peers to which a message
can reach by one-hop transmission is very small. This makes the difference in
path lengths between data items with high query rates and those with low rates
very large. Since the path length of a data item with a low query rate becomes
very long, the replication probability for this item should be set to a low value

798 T. Hara, Y. Kido, and S. Nishio

(a) β = 0.0 (b) β = 0.8

Fig. 4. Average path length

Table 3. Optimal a and c varying with β (TTL = 10)

β 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00 0.00
c 1.00 1.00 1.00 0.90 0.85 0.75 0.80 0.60 0.55 0.45 0.45
V 0.280 0.272 0.270 0.265 0.257 0.233 0.146 0.098 0.091 0.080 0.080

Success ratio 0.30 0.30 0.33 0.47 0.61 0.78 0.90 0.98 0.99 1.00 1.00

in order to avoid excessive replication of this item. This is why the optimal value
of a is large where β is small as shown in Table 2.

TTL = 10: Next, we examine the optimal values of a and c in the same
environment as in the above experiment except that TTL is set to 10. Table 3
shows the results. “Success ratio” denotes the average query success ratio for all
data items. The results show that if β is equal to or larger than 0.7, V and the
optimal values of a and c are almost the same as those where TTL is infinite.
However, if β is equal to or smaller than 0.4, the optimal values of a and c are
about 0.0 and 1.0, respectively, and they are very different to those where TTL is
infinite. This is due to the drop in the query success ratio. When β is small, the
average success ratio becomes low as shown in Table 3, and this performance
drop is more serious for data items with low query rates. Thus, the optimal
values of a and c become those to restrict excessive replication of data items
with high query rates and promote the replication of data items with low ones.

6 Conclusion

In this paper, we proposed a replication strategy that almost achieves the square-
root* allocation. In this strategy, similar to path replication, the target data item
of a query is replicated at peers along the path from the query-issuing peer to

Probabilistic Replication Based on Access Frequencies 799

the query-responding peer. In doing so, at these peers replicas are allocated with
probabilities determined based on the rank of the item’s query rate.

We conducted simulation experiments to evaluate the performance of our pro-
posed strategy. The results revealed that our strategy achieves data replication
much closer with the square-root* allocation than does path replication. We also
showed that the optimal values of a and c, which are adjustable parameters in
our strategy, change according to changes in the system environment, such as in
access characteristics and network density. Specifically, when the query success
ratio becomes low due to low network density or TTL restriction, the optimal
values of a and c are those increasing the difference in replication probabilities
between data items with high query rates and those with low query rates.

Although in this paper we assumed that system parameters, such as β, ω, and
α, and rank in query rates of all data items, are known, this assumption is not
always true in a real environment as described in Section 2. Thus, as part of our
future work, we plan to extend our proposed strategy to estimate these parame-
ters and the query rates by monitoring query messages exchanged among peers.
We also plan to extend our method to adapt to various system environments
except for power-law networks and Zipf-based access characteristics.

Acknowledgments

This research was partially supported by The 21st Century Center of Excel-
lence Program “New Information Technologies for Building a Networked Sym-
biotic Environment” and Grant-in-Aid for Exploratory Research (17650029), for
Scientific Research on Priority Areas (18049050), and for Scientific Research
(A)(17200006) of the Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan.

References

1. L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search in
Power-Law Networks, Physical Review E, 64(4):46135-46143, 2001.

2. T. Bu and D. Towsley. On Distinguishing Between Internet Power Law Topology
Generators, In Proc. INFOCOM 2002, 2002.

3. E. Cohen, and S. Shenker. Replication Strategies in Unstructured Peer-to-Peer
Networks, In Proc. SIGCOMM’02, pages 177-190, 2002.

4. F. M. Cuenca-Acuna, R. P. Martin, T. D. Nguyen. Autonomous Replication for
High Availability in Unstructured P2P Systems, In Proc. SRDS 2003, pages 99-108,
2003.

5. A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated
Peer-to-Peer Systems, In Proc. ICDCS’03, pages 76-85, 2003.

6. FreeNet, http://freenet.sourceforge.net.
7. Gnutella, http://www.gnutella.com.
8. JXTA, http://www.jxta.org.
9. P. Keyani, B. Larson, and M. Senthil. Peer Pressure: Distributed Recovery from

Attacks in Peer-to-Peer Systems, In Proc. Networking Workshop 2002, pages 306-
320, 2002.

800 T. Hara, Y. Kido, and S. Nishio

10. J. Kleinberg. The Small-World Phenomenon: An Algorithm Perspective, In Proc.
STOC2000, pages 163-170, 2000.

11. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Un-
structured Peer-to-Peer Networks, In Proc. ICS’02, pages 84-95, 2002.

12. G. On, J. Schmitt, R. Steinmetz. The Effectiveness of Realistic Replication Strate-
gies on Quality of Availability for Peer-to-Peer Systems, In Proc. P2P’03, pages
57-65, 2003.

13. P. Maymounkov, and D. Mazieres. Kademlia: A Peer-to-Peer Information System
Based on the Xor Metric, In Proc. IPTPS’02, pages 53-65, 2002.

14. S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A Scalable Content-
Addressable Network, In Proc. SIGCOMM’01, pages 161-171, 2001.

15. A. Rowstron, and P. Druschel. Pastry: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-Peer Systems, In Proc. Middleware 2001, pages
329-350, 2001.

16. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications, In Proc. SIG-
COMM’01, pages 149-160, 2001.

17. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for Wide-
area Fault-tolerant Location and Routing, In Proc. SIGCOMM’01, pages 161-170,
2001.

18. G.K. Zipf: Human Behavior and the Principle of Least Effort, Addison-Wesley,
1949.

Role-Based Serializability
for Distributed Object Systems

Youhei Tanaka1, Tomoya Enokido2, and Makoto Takizawa1

1 Tokyo Denki University, Japan
{youhei, taki}@takilab.k.dendai.ac.jp

2 Rissho University, Japan
eno@ris.ac.jp

Abstract. In the role-based access control model, a role is a set of ac-
cess rights. A subject doing jobs is granted roles showing the jobs in an
enterprise. A transaction issued by a subject is associated with a subset
of roles granted to the subject, which is named purpose. A method with a
more significant purpose is performed before another method with a less
significant purpose. We discuss which purpose is more significant than
another purpose. We discuss two types of role-ordering (RO) schedulers
SRO and PRO where multiple conflicting transactions are serializable
in the significant order of subjects and purposes, respectively. We evalu-
ate the RO schedulers compared with the traditional two-phase locking
protocol in terms of throughput.

1 Introduction

In the role-based access control (RBAC) model [4,9,11], a role shows a job func-
tion in an enterprise. A role is a collection of access rights (or permission) which
a subject playing the role is allowed to issue for objects in an enterprise. Here, an
access right (or permission) is given a pair 〈o, op〉 of an object o and a method
op. Only a subject granted a role including an access right 〈o, op〉 can manipulate
the object o through the method op. In the discretionary approach [7,10], a sub-
ject granted a role can further grant the role to another subject. A transaction
is an atomic sequence of methods [1,5]. A collection of conflicting transactions
are required to be serializable to keep objects consistent. Locking protocols [1]
are based on a principle that only the first comer is a winner. In a timestamp
ordering scheduler [1], each transaction is assigned timestamp showing when the
transaction is initiated. Objects are manipulated by conflicting transactions in
the timestamp order and no deadlock occurs.

The authors [3] discuss the role-ordering (RO) scheduler where each transac-
tion is associated with only one role. However, each subject is rather granted
multiple roles. A collection of the roles assigned to a transaction T shows the
purpose of the subject to perform T . We discuss which purpose is more signifi-
cant than another in terms of significancy of roles in the purposes. In addition,
authorizers are more significant than authorizees. We define the significantly
precedent relation among subjects by using the significancy of purpose and the

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 801–811, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

802 Y. Tanaka, T. Enokido, and M. Takizawa

authorization relation. A transaction issued by a more significant subject is con-
sidered to be more significant from the subject point of view. On the other hand,
a transaction T with a more significant purpose is more significant than another
even if T is issued by a less significant subject from the purpose point of view.
We discuss two types of role-ordering (RO) schedulers, SRO and PRO based
on the significancy of subject and purpose, respectively, to serialize conflicting
transactions in the role-based ordering relation.

In section 2, we define dominant relations among roles. In section 3, we discuss
the role-ordered serializability. In section 4, we discuss SRO and PRO schedulers.
In section 5, we evaluate the RO schedulers in terms of throughput.

2 Significancy of Roles

An object is an encapsulation of data and methods [6]. A pair of methods op1 and
op2 conflict if and only if (iff) the result obtained by performing the methods
depends on the computation order. Otherwise, op1 and op2 are compatible. A
transaction is an atomic sequence of methods [1]. Multiple conflicting transac-
tions have to be serializable [1,5]. Let T be a set {T1, ..., Tn} of transactions. A
schedule H of T is a sequence of methods performed. A transaction Ti precedes
Tj in H (Ti →H Tj) iff for some pair of conflicting methods opi from Ti and opj

from Tj , opi is performed before opj . H is serializable iff →H is acyclic.
In access control models [1,8,9,11], a subject like a user issues methods to

objects like databases. A role is a collection of access rights in the RBAC [4,9].
If a subject s is first granted a role R including an access right 〈o, op〉, s can
invoke a method op on an object o. In an enterprise, a subject s plays some
roles and performs a task for some purpose in the roles. If a pair of tasks in
different jobs concurrently use an object, a more significant task should take the
object. Suppose there are roles president and secretary for a bank object B
and a pair of persons with roles president and secretary issue transactions T1
and T2, respectively, to check a current balance in B. Since president is more
significant than secretary, T1 should be processed prior to T2. Next, secretary
issues a transaction T3 to withdraw money from B for payment purpose and
the president issues T4 to check a current balance. Although president is more
significant than secretary, the payment purpose is more significant than the
check purpose. Therefore, T3 should be processed prior to T4 from the purpose
point of view. Let Sroles be a family {R1, ..., Rm} of roles granted to a subject
s. A transaction Ti issued by a subject s is associated with a purpose Prolei (⊆
Sroles). Let Subi denote a subject which initiates a transaction Ti. Thus, there
are a pair of points, subjects and purposes to be considered on the significancy
of transactions.

There are class and object types of methods. Class methods are ones for
creating and dropping an object. Object methods are ones for manipulating an
object. Object methods are furthermore classified into change and output types.
In an output method, data is derived from an object. In a change method,
an object is changed. A subject usually more carefully issues withdraw than

Role-Based Serializability for Distributed Object Systems 803

deposit. Thus, some methods are more significant than others in an application.
A method op1 semantically dominates op2 on an object o (op1 -- op2) iff an
application considers op1 to be more significant than op2. op1 is semantically
equivalent with op2 (op1 ∼= op2) if op1 -- op2 and op2 -- op1. op1 is more
semantically significant than op2 (op1 .. op2) if op1 -- op2 but op1 �∼= op2.
op1 and op2 are semantically uncomparable (op1 ‖ op2) iff neither op1 -- op2
nor op2 -- op1.

[Definition]. A method op1 is more significant than op2 on an object o (op1
. op2) iff 1) op1 is a class type and op2 is an object type, 2) op1 is a change type
and op2 is an output one, or 3) op1 and op2 are a same object type and op1 ..
op2. op1 is significantly equivalent with op2 (op1 ≡ op2) iff op1 and op2 are a
same type and op1 ∼= op2. op1 significantly dominates op2 (op1 - op2) iff op1
. op2 or op1 ≡ op2. op1 and op2 are significantly uncomparable (op1 ‖ op2) iff
neither op1 - op2 nor op2 - op1.

Suppose a bank object B supports methods create, drop, withdraw, deposit,
and check. The class method create is more significant than withdraw. withdraw
. deposit since withdraw -- deposit. Since create ∼= drop, create ≡ drop. In
Figure 1, α → β shows α ≺ β.

An object o1 is more significant than o2 (o1 . o2) iff o1 is more secure than
o2 [2]. o1 and o2 are significantly equivalent (o1 ≡ o2) iff o1 and o2 are classified
into a same security class. o1 significantly dominates o2 (o1 - o2) iff o1 . o2
or o1 ≡ o2. o1 ‖ o2 iff neither o1 - o2 nor o2 - o1.

[Definition]. Let α1 and α2 be access rights 〈o1, op1〉 and 〈o2, op2〉. α1 is more
significant than α2 (α1 . α2) iff 1) o1 . o2, 2) op1 . op2 and o1 ≡ o2, or 3)
α1 . α3 and α3 . α2 for some access right α3. α1 and α2 are significantly
equivalent (α1 ≡ α2) iff 1) op1 ≡ op2 and o1 = o2, or 2) o1 ≡ o2 and o1 �= o2.
α1 significantly dominates α2 (α1 - α2) iff α1 . α2 or α1 ≡ α2. α1 and α2
are significantly uncomparable (α1 ‖ α2) iff neither α1 - α2 nor α2 - α1.

Let A be a set of access rights. An access right β is maximally reachable
from α (β ↼ α) iff β - α and no access right γ such that γ - β in A.

[Definition]. A role R1 significantly dominates R2 (R1 - R2) iff 1) for some
role α in R2, there is β ∈ R1 - R2 such that β ↼ α in R1 ∪ R2 and 2) for every
β ∈ R1, there is no α ∈ R2 such that α ↼ β in R1 ∪ R2.

A role R1 is significantly equivalent with R2 (R1 ≡ R2) iff R1 - R2 and R2
- R1. R1 and R2 are significantly uncomparable (R1 ‖ R2) iff neither R1 -
R2 nor R2 - R1. A least upper bound R1 � R2 is a role R3 such that R3 - R1
and R3 - R2 and no role R4 such that R3 - R4 - R1 and R3 - R4 - R2. A
greatest lower bound R1 R2 is similarly defined. R1 ∪ R2 and R1 ∩ R2 show
the union and intersection of R1 and R2. R1 · · · Rm / Ri / R1 � · · · � Rm

holds but R1 ∩ · · · ∩ Rm / Ri / R1 ∪ · · · ∪ Rm may not hold.
For access rights d = 〈B, deposit〉, w = 〈B, withdraw〉, and c = 〈B, create〉,

d ≺ w ≺ c in the bank object B. For roles R1 = {d, c} and R2 = {w}, c is
maximally reachable from d and w in R1 ∪ R2 (c ↼ d, w). Hence, R1 - R2.

804 Y. Tanaka, T. Enokido, and M. Takizawa

Next, we consider roles R1 = {c, d} and R2 = {e, f} in Figure 2, where a, ..., f
are access rights and a directed edge α → β shows α / β. R1 ‖ R2. R1 ∪ R2 =
{c, d, e, f}. R1 ‖ (R1 ∪ R2) and R2 ‖ (R1 ∪ R2). R1 R2 = {d, f} and R1 �
R2 = {a, b}. R1 R2 / R1 / R1 � R2.

[Definition]. Let R1 and R2 be families of roles. R1 significantly dominates
R2 (R1 - R2) iff R∈R1

R - �R∈R2
R. R1 and R2 are significantly equivalent

(R1 ≡R2) iff R1 -R2 and R2 -R1. R1 and R2 are significantly uncomparable
(R1 ‖ R2) iff neither R1 - R2 nor R2 - R1.

create drop

withdraw

deposit

check

class type

change type

output type

Fig. 1. Method significancy

a b

c

d

e

f

R1 R2

R1 R2

R1 R2

Fig. 2. Roles

3 Role-Ordered Serializability

3.1 Significancy of Transactions

[Definition]. A subject si precedes sj on a role R (si ⇒R sj) iff si grants R to
sj or si ⇒R sk ⇒R sj for some subject sk. si and sj are independent on R (si

‖R sj) iff neither si ⇒R sj nor sj ⇒R si.
Suppose a subject s1 is granted roles Srole1 = {R1, R2, R3} and s2 is granted

Srole2 = {R2, R3, R4}. Suppose s1 ⇒R2
s2, s1 ⇒R3

s2, s1 ‖R1
s2, and s1 ‖R4

s2. Suppose Srole1 - Srole2, i.e. R2 R3 R4 - R1 � R2 � R3. However,
Srole1 is more significant than Srole2 from the authorization point of view.

[Definition]. A subject si S-dominates sj (si -S sj) iff 1) Srolei - Srolej and
2) si ⇒R sj for some role R ∈ Sroleij and sj �⇒R si for every R ∈ Sroleij if
Srolei ‖ Srolej .

In Figure 3, a directed edge Ri → Rj shows Ri / Rj . For subjects s1 and s2,
Srole1 = {R1, R2, R3} and Srole2 = {R3, R4}. Here, R1 R2 R3 = R3 and
R3 � R4 = R3. s1 -S s2 since R1 R2 R3 - R3 � R4, i.e. Srole1 - Srole2.
Next, suppose Srole3 = {R1, R4} and Srole4 = {R2, R4}. Neither R1 � R4 -
R2 R4 nor R2 � R4 - R1 R4, i.e. Srole3 ‖ Srole4. Srole3 ∩ Srole4 = {R4}.
Suppose s3 ⇒R4

s4. Here, s3 -S s4 from the rule 2).

[Definition]. For transactions Ti and Tj issued by subjects si and sj , si P -
dominates sj with respect to the purposes of Ti and Tj (si -P

ij sj) iff 1) Prolei

- Prolej and 2) si ⇒R sj for some role R ∈ Proleij and sj �⇒R si for every
role R ∈ Proleij if Prolei ‖ Prolej .

Role-Based Serializability for Distributed Object Systems 805

R1 R2

R3

R4

s2

s1
Ri Rj : Ri Rj

s3 s4

Fig. 3. Significancy of roles

H2

: legal

:illegal

H1

T1 T2

T3

T4

T6

T5

Fig. 4. Schedule H

In Figure 3, s3 issues a transaction T3 with a purpose Prole3 = {R4} and s4
issues T4 with Prole4 = {R2}. R2 - R4. Hence, s4 -P

34 s3 although s3 -S s4.

[Definition]. For a pair of conflicting transactions Ti and Tj ,

• Ti S-dominates Tj (Ti -S Tj) iff Subi -S Subj.
• Ti P -dominates Tj (Ti -P Tj) iff Subi -P

ij Subj.

[Definition]. Let -� show a dominant relation of transactions for a dominant
type � ∈ {S, P}. For a pair of conflicting transactions Ti and Tj , Ti -� Tj iff
Ti -S Tj or Ti -P Tj , Ti ≡� Tj iff Ti -� Tj and Tj -� Ti, and Ti ‖� Tj iff
neither Ti -� Tj nor Tj -� Ti.

Ti �� Tj is the least upper bound of Ti and Tj on -�. Ti � Tj is the greatest
lower bound of Ti and Tj on -�.

3.2 RO Partitions

A schedule H of a transaction set T is a partially ordered set 〈T,→H〉. H is
serializable iff →H is acyclic [1]. If T1 -� T2, “T1 →H T2” is legal in H . A
schedule H = 〈T,→H〉 is legal with respect to -� iff T1 →H T2 if T1 -� T2 for
every pair of T1 and T2 in T. In order to make a schedule legal, methods from
transactions are required to be buffered until all the transactions are initiated.
We introduce the RO-partition of the schedule to improve the performance.

[Definition]. A schedule H = 〈T,→H〉 is RO-partitioned into subschedules H1,
..., Hm where Hi = 〈Ti,→Hi〉 (i = 1, ..., m):

1. Ti ∩ Tj = φ for every pair of Hi and Hj and T1 ∪ · · · ∪ Tn = T.
2. T1 →Hi T2 if T1 -� T2 for every pair of transactions T1 and T2 in each Hi.
3. T1 →H T2 if T1 →Hi T2 for every pair of transactions T1 and T2 in each Hi.
4. For every pair of Hi and Hj , if Ti1 →H Tj1 for some pair of transactions Ti1

in Hi and Tj1 in Hj , there are no pair of transactions Ti2 in Hi and Tj2 in
Hj such that Tj2 →H Ti2.

In Figure 4, suppose T1 -� T2, T3 -� T2, T4 -� T5, T4 -� T6, T4 -� T2,
and T6 -� T3. Here, subschedules H1 with T1 = {T1, T2, T3} and H2 with T2
= {T4, T5, T6} are RO partitions of H . Transactions in H1 can be ordered in
-� without waiting for transactions in H2. Since T2 /� T4 and T3 /� T6, T4
and T6 cannot be performed as long as every transaction completes in H1.

806 Y. Tanaka, T. Enokido, and M. Takizawa

[Definition]. A schedule H of T is RO-serializable with respect to subschedules
H1, ..., Hn iff H is RO partitioned into the subschedules H1, ..., Hn.

[Theorem.] A history H is serializable if H is RO-serializable with respect to
some RO-partition H1, ..., Hn.

4 Role-Ordering (RO) Schedulers

We discuss types of role-ordering (RO) schedulers to make transactions RO-
serializable. Suppose objects o1, ..., ol (l ≥ 1) are distributed in servers and
multiple transactions T1, ..., Tm (m ≥ 1) are on clients c1 ..., cn (n ≥ 1). We
assume a network is reliable. Each transaction Tt first sends a begin request bt to
every target object. Then, Tt issues methods and lastly either a commit (cmt)
or abort (abt) request to the objects.

Each client cs manipulates a variable cfs where initially cfs = 1. cs peri-
odically sends a fence message k to make an RO-partition, which carries k.f
(= cfs). Each time sending a fence, cfs := cfs + 1 in cs. Each object oi has
a variable fi where initially fi = 1. If an object oi receives a fence whose cf
is fi from every client, requests received before the fences are included in an
RO-partition and are sorted in the relation -�. There are a set RQi of local
receipt queues RQi1, ..., RQin, a global receipt queue GRQi, and an auxiliary
global receipt queue AGRQi for each oi (i = 1, ..., l). A request r issued from a
transaction on a client cs to oi is stored in RQis (s = 1, ..., n). Begin and fence
requests are moved to AGRQi to make a partition. Transactions in a partition
are ordered in -�. Requests are moved to GRQi and are performed in -�. The
following procedures are used to manipulate a queue Q for a request r:

1. r := top(Q) : r is a top request in Q.
2. enqueue(r, Q) : r is enqueued into Q.
3. enqueue2(r, Q, e1, e2) : r is inserted between elements e1 and e2 in Q.
4. r := dequeue(Q) : r (= top(Q)) is dequeued from Q.
5. ROsort(Q, e1, e2) : requests between elements e1 and e2 in Q are sorted in

the significantly dominant relation -� of transactions.
6. r1 := next(r, Q) : r1 is a request which directly follows r in Q.
7. fence(r) : true if r is a fence, else false.
8. k := min fence(Q) : k is a fence where k.f is minimum in Q.

RQi (= {RQi1, ..., RQin}) is manipulated by the following procedures:

1. check fence(RQi) : true if every RQis includes such a fence message ks

that ks.f = fi, else false.
2. top check(RQi) : true if the top request in every RQis is a fence message

ks where ks.f = fi for every client cs (s = 1, ..., n), else false.

Role-Based Serializability for Distributed Object Systems 807

Variables Ei and TEi denote methods and transactions being currently per-
formed on an object oi, respectively.

1. Mcompatible(op, Ei) : true if Ei = φ or op does not conflict with every
method in Ei, else false.

2. Tcompatible(op, TEi) : true if TEi = φ or transactions conflicting with
and preceding a transaction Tr(op) in AGRQi are completed, else false.

3. check subschedule(k) : for every transaction Tt such that the begin bt

precedes a fence k in AGRQi, true if cmt or abt in GRQi, else false.
4. perform(op) : op is performed on an object oi.

The following conditions have to be satisfied to realize the RO-serializability:

[Role-based serializability (RBS) conditions]

1. Methods in every global receipt queue GRQi are sorted in the significantly
dominant relation -� of transactions (i = 1, ..., l).

2. For opt = top(GRQi), if opt precedes a conflicting method opu from Tu in
some GRQi, op′t from Tt precedes a conflicting method op′u in every GRQj .

We discuss how the RO scheduler handles requests. Here, a pair of variables
headi and taili are used to denote requests in AGRQi.
[Receiving procedure] On receipt of a request r from Tt on a client cs;

if (Tt is initiated on cs) { enqueue(r, RQis); RBS(); }

[RBS()]

while (check fence(RQi)) {
if top check(RQi) {

r := dequeue(RQi1); enqueue(r, GRQi); enqueue(r, AGRQi);
for (j = 2; j ≤ n; j++) dequeue(RQij); fi = fi + 1; }

else {
for (j = 1; j ≤ n; j++) {

while (not fence(r := top(RQij)) {
if (r = bt) { r := dequeue(RQij); enqueue(r, AGRQi); }
else { headi := top(AGRQi); taili := top(AGRQi); r1 := NULL;

while (r1 = NULL) {
if (taili = bTr(r)) { r1 := taili;

while (not fence(taili)) taili := next(taili, AGRQi);
} else if (fence(taili)) {

headi := taili; taili := next(taili, AGRQi);
} else taili := next(taili, AGRQi); }

r := dequeue(RQij); enqueue2(r, GRQi, headi, taili);
ROsort(GRQi, headi, taili); } } } }

808 Y. Tanaka, T. Enokido, and M. Takizawa

[Delivery()] Methods in GRQi are delivered as follows:

{ if (not fence(r := top(GRQi)) {
if (check subschedule(min fence(AGRQi))) {

if (Mcompatible(r, Ei) and Tcompatible(r, TEi))
{ if Tr(r) �∈ TEi, TEi := TEi ∪ {Tr(r)};

Ei := Ei ∪ {r}; r := dequeue(GRQi); perform(r);
} else return;
} else return;
} else { /* top of GRQi is a fence message. */

if (Ei = φ) dequeue(GRQi); } return; }

[Completion of a method] On completion of a method op,
{ Ei := Ei - {op};

if ((op = cmt) or (op = abt)) {
TEi := TEi - {Tt}; begin request bt is removed from AGRQi; }

} Delivery();

Suppose transactions T1 on a client c1 and T2 and T3 on c2 issue requests
to objects o1 and o2 as shown in Figure 5. Suppose T1 -� T2, T3 -� T1, and
T3 -� T2. Each transaction Tt first sends a begin request bt to o1 and o2, and
then issues methods (t = 1, 2, 3). oplt is a method and et shows a commit (cmt)
or abort (abt) issued by Tt. Each client cs sends a fence ks to o1 and o2 every
τ time units (s = 1, 2). Initially, cfs := 1 and fi := 1. cfs is incremented by
one each time cs sends a fence. oi waits until a fence ks where ks.f = fi is
received from every cs. If received, a partition is obtained by including requests
preceding ks in each RQis. Every request r preceding ks in each RQis is moved
to AGRQi or GRQi. If r is begin and method, r is enqueued into AGRQi and
GRQi, respectively. The requests in AGRQi and GRQi are ordered in -�. For
example, the begin b1 precedes b2 in AGRQi since T1 -� T2 in Figure 5. If a top
is a fence ks where ks.f = fi in RQis for every cs, ks is removed from RQis and
a new fence k where k.f = ks.f (= fi) is enqueued into AGRQi and GRQi.
Here, fi := fi + 1. If a method request r from Ts follows the fence ks in RQis,
r is enqueued into GRQi. Here, suppose the begin bt is between a pair of fences
k1 and k2 where k2.f = k1.f + 1 in AGRQi. The request r is stored in between
k1.f and k2.f in GRQi. In Figure 5, method requests from T2 on o1 are stored
between the top r1 and the fence k in GRQ1. Requests between r1 and k are
ordered in -� since b2 is stored between the top and the fence k in AGRQ1. In
addition, method requests from T1 on o2 are stored between the top r2 and the
fence k in GRQ2. Requests between r2 and k are ordered in -�. Here, b3 from
T3 is enqueued after the fence k in AGRQi. In addition, a method request from
T3 is stored between the fence k and the bottom of GRQi since b3 is stored
between k and the bottom of AGRQi.

In order to improve the throughput, the schedule H is RO-partitioned into
subschedules H1, ..., Hm. Since begin requests b1 from T1 and b2 from T2 precede
a fence k in AGRQi and GRQi includes commits e1 (= cmt1) of T1 and e2 of

Role-Based Serializability for Distributed Object Systems 809

object o1

object o

RQ11

T1

T2

: fence message

b1

b2b3
op

12

op
11

e1

e2
op

13

T3

c1

c2

RQ12

RQ21

b1

b2b3
op

22

op
21

e1

e2
op

23

RQ22

2

AGRQ1

GRQ1

b1b2b3

op
12

op
11

e1e2
op

13

b1b2
b3

op
22

op
21

e1e2
op

23

AGRQ2

GRQ

 H 1

 H 2

 H 1

 H 2

object o1

AGRQ1

GRQ1

b3

op
13

 H 2

object o2

AGRQ2

GRQ2

b3

op
23

 H 2

Fig. 5. State of local receipt queues

T2, the method requests of T1 and T2 are dequeued from GRQi and performed
on oi. That is, a subschedule H1 is started on oi. Here, bt of Tt is removed from
AGRQi when a commit or abort of Tt is completed on oi. In Figure 5, b1 and
b2 are removed from AGRQi when e1 and e2 complete on oi, respectively. If the
tops of AGRQi and GRQi are fences and all methods preceding the fences in
GRQi complete on oi, the fences are removed from GRQi and AGRQi. That
is, H1 is finished on oi. Then, H2 is started if cmt or abt of each Tt precedes
the next fence k′ in AGRQi in GRQi. In Figure 5, since there is neither a next
fence k′ in AGRQi nor cm3 and ab3 in GRQi, H2 cannot be started.

5 Evaluation

We evaluate two types of the RO schedulers, SRO for -S and PRO for -P in
terms of computation time of each method compared with the 2PL protocol.
We assume it takes a same time α to perform every method in a system. The
computation ratio τ is 1/α. The larger τ is, the higher throughput. If all the
transactions are serially performed, τ = 1. τ = 0 if no method is performed. If
a pair of conflicting methods are concurrently issued to an object, τ = 2/3 since
one method has to wait until the other method completes. There are five Bank
objects o1, ..., o5 and five subjects s1, ..., s5. Each object supports five types of
methods as shown in Figure 1. o1 ≡ · · · ≡ o5. check is compatible with itself.
Three roles R1, R2, and R3 are owned by s1, where R1 - R2 - R3. Here, s1 -Ri

s2, s1 -Ri s3, s1 -Ri s4, s1 -Ri s5 for every role Ri (i = 1, ..., 5). s2 -R3
s4 and s3

-R3
s5. Srole1 = {R1, R2, R3}, Srole2 = Srole3 = {R2, R3}, and Srole4=Srole5

= {R3}. Prole1 = Prole4 =Prole5 = {R3} and Prole2 = Prole3 = {R2, R3}.
We assume each subject si initiates a same number l of transactions on each

client. Each transaction issues five methods randomly selected from 25 methods
on the five objects. Figure 6 shows the computation ratio τ for the number of
5l transactions. For example, the computation ratio τ with SRO and PRO is
10 times larger than 2PL for 30 transactions. This means, the SRO and PRO
schedulers imply higher throughput than the 2PL protocol.

810 Y. Tanaka, T. Enokido, and M. Takizawa

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

C
om

pu
ta

ti
on

 r
at

io

Number of transactions (l)

Srole
Trole
2PL

Fig. 6. Computation ratio

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50

P
ro

ce
ss

in
g

ti
m

e
un

it
s

Number of transactions (l)

s
s

s
s

s1

2

3

4

5

Fig. 7. 2PL protocol

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50

P
ro

ce
ss

in
g

ti
m

e
un

it
s

Number of transactions (l)

s
s
s

s
s

1

2

3

4

5

Fig. 8. SRO : processing time

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 20 30 40 50

R
at

io
 o

f
pr

oc
es

si
ng

 t
im

e

Number of transactions (l)

s
s

s
s

s
1

2

3

4

5

Fig. 9. SRO : ratio of processing time

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50

P
ro

ce
ss

in
g

ti
m

e
un

it
s

Number of transactions (l)

s
s
s

s
s

1

2

3

4

5

Fig. 10. PRO : processing time

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 20 30 40 50

R
at

io
 o

f
pr

oc
es

si
ng

 t
im

e

Number of transactions (l)

s
s

s
s

s
1

2

3

4

5

Fig. 11. PRO : ratio of processing time

Figures 7, 8, and 10 show the average processing time of each transaction for
the total number l of transactions. “si” shows a transaction issued by a subject
si. Figure 7 shows the processing time of each 2PL transaction. Since trans-
actions are arbitrarily performed independently of the significancy of subjects
and roles, every transaction almost implies the same processing time. In the
SRO scheduler, the processing time of a transaction issued by s1 is the mini-
mum where s1 is more significant than the other subjects. Figure 9 shows the
ratio of the processing time of each transaction to s1. For l = 50, the second

Role-Based Serializability for Distributed Object Systems 811

significant transactions s2 and s3 take about 10% longer time than s1 and the
least significant transactions s4 and s5 take about 20% longer than s1. The more
significant a subject is, the shorter processing time a transaction issued by the
subject implies. In the PRO scheduler, the transactions s2 and s3 are the most
P -significant and the others s1, s4, and s5 are P -significantly equivalent from
purpose point of view. As shown in Figure 11, s2 and s3 are processed about
10% faster than the others.

6 Concluding Remarks

In this paper, a transaction with more significant roles is performed prior to an-
other transaction with less significant roles. Multiple conflicting transactions are
ordered according to the significantly dominant relation -�. A subject issues a
transaction with purpose, subset of the roles of the subject. Transactions are or-
dered in two ways, significancy of subjects issuing the transactions, and purposes
of the transactions. We discussed how to implement two types of RO schedulers,
SRO and PRO on multiple objects. We evaluated SRO and PRO compared with
2PL in terms of throughput. In the RO schedulers, the more significant trans-
actions are, the earlier performed. In addition, the higher throughput is implied
than 2PL.

References

1. P. A. Bernstein, V. Hadzilacos, N. Goodman.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, (1987).

2. D. E. Denning and P. J. Denning.: Cryptography and Data Security. Addison-
Wesley Publishing Company, (1982).

3. T. Enokido and M. Takizawa.: Concurrency Control Based-on Significancy on
Roles. Proc. of the IEEE 11th International Conference on Parallel and Distributed
Systems (ICPADS2005), (2005) 196–202.

4. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.: Role Based Access Control.
Artech House, (2005).

5. J. Gray.: Notes on Database Operating Systems. Lecture Notes in Computer
Science, Vol. 60 (1978) 393–481.

6. O. M. G. Inc.: The Common Object Request Broker : Architecture and Specifica-
tion. Rev. 2.1, (1997).

7. Oracle Corporation.: Oracle8i Concepts Vol. 1. Release 8.1.5., (1999).
8. R. S. Sandhu.: Lattice-Based Access Control Models. IEEE Computer, Vol. 26 No.

11 (1993) 9–19.
9. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.: Role-Based Access

Control Models. IEEE Computer, Vol. 29 No. 2 (1996) 38–47.
10. Sybase.: Sybase SQL Server. http://www.sybase.com/.
11. Z. Tari and S. W. Chan.: A Role-Based Access Control for Intranet Security. IEEE

Internet Computing, Vol. 1 (1997) 24–34.

MDSSF - A Federated Architecture for Product
Procurement

Jaspreet Singh Pahwa1, Pete Burnap1, W.A. Gray1, and John Miles2

1 School of Computer Science and
2 School of Engineering, Cardiff University, UK

{J.S.Pahwa, P.Burnap, W.A.Gray}@cs.cardiff.ac.uk, MilesJC@cardiff.ac.uk

Abstract. A new architecture of database federation called the MDSSF
(Multiple Database Search Service Federation) is presented to support
the procurement activities of the AEC (Architecture, Engineering and
Construction) industry projects. In order to make procurement decisions,
a contractor requires access to product information from several different
product suppliers when constructing artefacts such as a hospital, or an
office block. This product information is available from the online sys-
tems of product suppliers. However, this approach requires a contractor
to visit several websites in order to find the right product which is time
consuming and the product data available from different product sup-
pliers is heterogeneous. The MDSSF architecture provides an integrated
means of accessing product information from a large number of product
suppliers using a single system. It brings together autonomous product
suppliers to share product information with the federation users such
as contractors and potential buyers using a common data model. It also
creates an environment for product suppliers to compete with each other
in a virtual market place based on the product information they provide
to federation users. The MDSSF gives its users a Grid enabled database
search mechanism for searching a large number of supplier databases in
real time and protects product related sensitive data from exposure to
business competitors. We describe the architecture and distinctive fea-
tures of the MDSSF.

1 Introduction

Information access and its management is an important area of research for
creating new models of information retrieval and sharing for meeting information
needs of business organisations. Network technologies such as the Grid and Web
Services together with federated database architectures provide a new means
of collaboration and information exchange between the actors within a given
industry. One of the features of the Grid is that it provides middleware to enable
distributed computing in a particular domain to achieve high-end computational
capabilities and high-throughput computing [1]. Web Services is a paradigm
for enabling computing in distributed and heterogeneous environments [2] [3].
Research in the area of Engineering Federated Information Systems (EFIS) has

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 812–821, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MDSSF - A Federated Architecture for Product Procurement 813

recognised the GRID computing as an emerging area for building new models
of data exchange [4].

This paper describes an architecture of a new model of database federation
called the MDSSF (Multiple Database Search Service Federation) which sup-
ports members of consortia such as contractors, buyers, etc. in the AEC (Archi-
tecture, Engineering and Construction) industry. The architecture was developed
to support a need to provide product information to consortia for procurement
of products and supplies where such information is available from several differ-
ent systems. A consortium continually needs an up-to-date product information
from several different suppliers so that they can make informed decisions about
which product to use in construction projects. A new approach is needed if this
information is to be provided in an integrated way so that several different sup-
pliers can come together to share their product related data with contractors and
potential buyers using a common standard via a single system. The approach
must protect autonomy of product suppliers, allow competing products to be
searched, compared and judged on the basis of their specifications against the
project requirements. It must also protect confidential information of different
product suppliers.

The MDSSF data sharing architecture brings together autonomous contrac-
tors and suppliers. The architecture enables creation of a Virtual Distributed
Database (VDD) of product information where product information is supplied
by a large number of suppliers using a standard data representation. The VDD
can be queried by contractors in order to find needed product information. The
architecture of the MDSSF is created by utilising the features of federated data-
base architectures such as distribution of data and autonomy of local database
systems (DBS) and coupling them with Grid technology to provide scalability
support. The federation model adopts a service oriented architecture for its flex-
ibility in retrieving data from the databases of several suppliers and sharing it
with contractors. We describe the architecture of the MDSSF through its dis-
tinctive features. The paper is organised as follows. In section 2 we provide back-
ground information on product procurement in construction industry that un-
derpins the need for a new data sharing architecture. Section 3 identifies some of
the limitations of individual online systems for information sharing. We describe
the VDD of the MDSSF in section 4. The architecture of the MDSSF and its
distinctive features are presented in section 5. Related projects are briefly sum-
marised in section 6 and conclusions and further work are presented in section 7.

2 Background

In the construction industry supply chain, procurement plays a significant role.
An important function of the procurement phase is searching for desired products
over a wide range of available products from a large number of product suppliers.
In large projects a large quantity of various kinds of construction material is
required. For example a typical hospital has thousands of rooms. Each room
needs light fittings, a door, floor and ceiling, floor and ceiling coverings, furniture,

814 J.S. Pahwa et al.

power sockets, some form of ventilation such as windows, walls, wall coverings,
etc. Multiplying the requirements by a few thousand rooms gives us the scale
of purchases needed to build a hospital. These purchases are made from a wide
range of product suppliers.

Many companies/product suppliers do their business via web-based E-comm-
erce systems [5]. E-commerce systems enable sharing of product information with
contractors and potential buyers. Acquiring information from websites has be-
come vital for contractors as more and more procurement websites are available
on the internet [6]. By using an E-commerce system for construction materials,
different kinds of information pertaining to materials, suppliers, manufacturers,
buyers, agents, buying patters, buyer’s reviews on products and services, etc.
can be shared with its users [5].

From the perspective of suppliers, E-commerce systems act as a mechanism
for disseminating product information to a large number of potential buyers and
contractors. It is a medium for the suppliers to market their products. Suppli-
ers constantly look for new channels which enable them to quickly disseminate
product information to potential buyers as reduction in the time to market is a
competitive advantage [7].

3 Limitations of Accessing Information from Individual
E-commerce Systems

Procurement planning is a critical activity and is unique for each project [8].
For an efficient procurement strategy, it is important for a contractor to have
the knowledge of suppliers who can meet different requirements and deliver the
right products under given constraints. Since different projects have different
requirements, access to a large body of product information is required. Such
information is available via the E-commerce systems of several organisations.
This approach however, has certain limitations. Construction materials generally
have a large number of specification parameters. Entering the specifications into
web-based forms of several E-commerce sites to find the best product is a time-
consuming task for a contractor. A contractor has to: acquire and maintain a list
of several web addresses; interpret and understand the semantics and navigation
methods used in different sites; be aware of new sites coming into the market; and
do a manual evaluation of all the information acquired from different websites [5].
As time plays an important role in Engineering, Procurement and Construction
(EPC) projects [7], delays in procurement can have implications on the project’s
progress and costs.

Different E-commerce websites have their own material searching and display
patterns and use different attributes for storing construction material data [5].
There is heterogeneity in the management of similar types of information by
different suppliers. Two product suppliers selling the same or similar products
but storing it differently using different attributes make it difficult for a contrac-
tor to identify the similarities between the two. Construction material informa-
tion available in individual E-commerce systems is limited and the information

MDSSF - A Federated Architecture for Product Procurement 815

systems are isolated with no interaction with each other [5]. It is difficult for a
contractor to find all the information using one system and even more difficult to
do a comparison of the products supplied by different suppliers based on criteria
such as product specification, cost, availability and delivery time.

4 The MDSS – A Virtual Distributed Database (VDD)

Consideration of the above problems led us to design a federated database ar-
chitecture which uses a VDD to federate a large number of supplier databases
and allows access to them using a single system. Fig. 1 is a conceptual view of
the MDSSF. The VDD does not store any product information but uses a Grid
enabled Multiple Database Search Service (MDSS) which lies in the the heart
of the MDSSF to search a large number of product supplier databases. By us-
ing a single system, a contractor can retrieve product information from several
supplier databases without visiting different E-commerce sites.

Fig. 1. Conceptual View of the MDSS Federation

The MDSS aids in searching information about products where the product
information is provided by the DBS of product suppliers who participate in the
federation. Bringing together product information from different sources allows
it to be judged on the basis of the requirements of the project and provides
contractors with a mechanism to procure products from those product suppliers
that best match the project needs. In the federation a particular type of product
can be supplied by more than one supplier. This gives contractors a choice of
suppliers. So suppliers have to compete with each other, as it is likely that the
product supplier having the most competitive price may win orders. However
there can be other deciding factors also which may influence the decision of a
contractor to opt for a particular supplier, for its ability to meet other project

816 J.S. Pahwa et al.

constraints such as product availability, delivery time, bulk purchase options,
etc. In this respect the MDSSF allows product suppliers to compete with each
other in a virtual market place.

The VDD of the MDSSF is based on the concept of a homogeneous data
model so that product data available to its contractors from product suppliers
can be represented using a single, agreed format. Representation of data in a
standard format enables its usage in a standardised way. By using an agreed
data representation format for storing similar product information supplied by
different suppliers enables a buyer to gain access to the desired product infor-
mation quickly and efficiently as lack of standard representation schemas is an
obstacle to information sharing [5].

5 The MDSSF System Architecture

The key concepts of a federated database system (FDBS) are autonomy of com-
ponents and partial and controlled sharing of data [9]. The MDSSF presents a
new database federation model to support data retrieval operations from the
perspective of: federation users; its model of cooperation; its subscription based
approach and the use of Grid technology for performing a distributed search.

In the present paper we aim to describe the architecture of the MDSSF and its
use in a business model of procurement of products in the construction industry.
We believe that the architecture can also be used in other application areas where
product information is required fromproduct specifications andproduct dataman-
aged by several autonomous organisations. The authors in collaboration with an
industrial partner (ActivePlan Solutions Ltd., http://www.activeplan.co.uk)
have developed a prototype software system which is based on the architecture of
the MDSSF. In the present paper we provide a summary of the components of the
software system such as its homogeneous data model and the Grid enabled search
mechanism whilst describing the architectural features of the MDSSF. We do not
describe in detail these components which are beyond the scope of this paper. The
software system and its components are presented in greater detail in our earlier
publication [10].

5.1 Federation Users

There can be two types of users wishing to access data from a FDBS: users within
an organisation but belonging to its different sections/departments and users
outside the organisation. Data sharing approaches identified in [9], [11], [12], [14]
cater to the first type of users who belong to an organisation and the databases
that are federated also belong to the organisation itself. The Myriad System [15]
also uses FDBS technology but provides enterprise-wide information integration
only. As part of this research effort, we aim to create a federated architecture
where product information is shared with federation users (such as contractors)
who do not belong to the data sharing organisations (such as suppliers). This
is a complicated issue because in the first place, the users are external to the

MDSSF - A Federated Architecture for Product Procurement 817

data sharing organisations and secondly the data which is shared comes from
several product suppliers. Since there are several autonomous product suppliers
and contractors, the need for a federated database architecture was identified so
that data sharing could take place in a coherent fashion.

5.2 The Cooperation Model of the MDSSF

A FDBS is a collection of cooperating but autonomous DBSs that provide sup-
port to global applications built over it [9], [16]. The component DBSs take part
in a federation to serve data needs of federation users. Key characteristic of a
FDBS is ‘cooperation among independent systems’ for data sharing [9]. However
in the MDSSF we have adopted a different model of cooperation which enables
sharing of data with federation users and not between organisations who supply
product information to the federation. MDSSF does not allow cooperation be-
tween product suppliers as data sharing between them does not takes place. The
product suppliers are business organisations who do not wish to disclose their
product related sensitive data to their competitors who are also participating in
the federation. They only cooperate with the centralised MDSS so that appro-
priate information about their products are supplied and sent to the contractor
in a standard data structure of the VDD. Federated database architectures de-
scribed in [11], [12] propose data sharing techniques between the components of
the federation and therefore do not meet the architectural requirements of the
MDSS Federation.

5.3 Subscription of the MDSSF Data Model by Product Suppliers

The data model of the VDD can be described as the canonical or common data
model (CDM) [9] of the MDSSF. The MDSSF allows the CDM of the federation
to be subscribed by participating product suppliers. We have implemented a DBS
based on the CDM of the federation. The product information can be provided
by a supplier to potential buyers and contractors using two different methods. In
the first method, a product supplier subscribes to the DBS of the MDSSF. This
requires downloading and installing the DBS by a supplier into their local sys-
tem. By using database operations provided as part of the DBS, a supplier can
create product descriptions and store them locally in the relations and attributes
of the DBS. This approach is suitable for small and medium organisations who
do not use database systems for managing product data but provide product
information to buyers in text files or in document formats such as PDF. This
approach however, requires a supplier to manually input all the text based prod-
uct information into the subscribed DBS. By using the DBS of the federation
a supplier can not only organise its product information in a structured format
but also gain an opportunity to provide product information to potential buyers
to retrieve from its database when a search takes place. Hence by participat-
ing in the federation, product suppliers gain the opportunity to market their
products. The DBS of the MDSSF allows suppliers to create product descrip-
tions. In order to describe products in greater detail, the DBS, via its operations

818 J.S. Pahwa et al.

allows different kinds of specifications such as length, width, height, weight,
price, delivery time, etc. to be assigned to a product. The DBS also provides
the facility to handle complex product attributes such as sub-specifications and
allows the specifications to be represented in the form of lists, groups and tables.
It provides versioning support for suppliers to list new products into their DBS
with enhanced features and functionality. The DBS of the MDSSF is described
in greater detail as part of our earlier publication [10].

In the second approach, suppliers can provide their data to federation users
by mapping the schema of product data in their product database to the schema
objects of the CDM of the MDSSF. This approach is suitable for the suppliers
who already have their own database systems managing product information.
Establishing mappings by a product supplier is a difficult process as it requires
resolving different types of heterogeneities in order to transform queries and
results between the schemas of the CDM of the federation and a legacy database
application. It is a requirement of the MDSSF that all the data be provided
to federation users by using the CDM of the federation. A CDM provides a
mechanism to describe same or similar products supplied by different suppliers
using a standard data representation. The CDM also provides a mechanism for
describing data based on its semantics.

5.4 The Grid Enabled MDSS

The Grid enabled MDSS retrieves product information from a large number
of autonomous supplier databases. The MDSS is implemented using the Grid
middleware Globus Toolkit 3.0.2 (core) available from the Globus Alliance [13].
By using Grid technology as part of the MDSS, we provide a mechanism to access
and process large scale information in a separate process which is external to
the boundary of supplier databases. The MDSS searches for the desired products
based on criteria submitted by a contractor. Fig. 2 shows the conceptual view
of the MDSS in the MDSSF.

A search takes place in a cluster of machines in the Grid network where ma-
chines collaborate to perform the search. Important components of the MDSS
system are a Master Grid Service (MGS) and Database Search Services (DSS).
The search takes place in the Grid network so that a large number of product
supplier databases can be searched in real time in response to a contractor’s
request. The MGS distributes search jobs across a number of machines running
DSSs in a grid cluster which perform data retrieval operations. A DSS retrieves
product data by invoking the Web Service interface of supplier databases which
sends the information back in the form of XML documents. The XML docu-
ments provide product information in a format that preserves the semantics of
the CDM of the federation subscribed by product suppliers via its DBS. Similar
product data retrieved from the databases of several suppliers is aggregated in
the Grid environment and is sent to the requesting contractor. The web applica-
tion displays the results to the contractor by using its GUI features which allow
the contractor to make a comparison of products which are similar and retrieved
from a large number of supplier databases.

MDSSF - A Federated Architecture for Product Procurement 819

Fig. 2. The MDSS Federation

The distinguishing features of the MDSSF architecture with regards to other
federation models identified in [9], [11], [12], [17], [18] is its ability to serve as a
mechanism which brings together product suppliers and buyers by establishing
a standard criteria for information storage and exchange and its search model
which uses the Grid technology to provide a scalable support when searching
large number of supplier databases.

6 Related Projects

There are numerous projects in the area of information access such as the DBMS-
Aglet Framework [19], InfoSleuth [20], TSIMMIS [21], DISCO [22], COntext IN-
terchange (COIN) [23], Information Manifold [24], Multibase [25], WebFINDIT
[26], etc. which use various techniques for information retrieval from heteroge-
neous sources by incorporating concept such as agents, ontologies, information
brokering, mediators, wrappers, web query interfaces, coalitions, service links etc.
The techniques identified in these projects do not fully meet the architectural
requirements of the MDSSF. Additionally, the architecture of the MDSSF has
features of Federated Information Systems (FIS) but it does not fully conform
to the FIS types identified in [17].

This is because of the problem we are trying to address which is: creating
a federation in which more than one organisation participates by subscribing
to the data model of the VDD; and for the users who do not belong to the
participating organisations in order to enable data sharing between autonomous
product suppliers and contractors.

820 J.S. Pahwa et al.

7 Conclusions and Further Work

This paper described the architecture of the MDSSF which provides a novel data
sharing mechanism not supported by previous federated database architectures.
The MDSSF presents a database federation model for searching a large number
of supplier databases in the procurement phase in AEC industry projects. It pro-
vides a mechanism for bringing together autonomous product suppliers, buyers
and contractors by establishing a standard criteria for information exchange. We
described how the requirement of accessing product information provided by a
large number of product suppliers via a single integrated mechanism is achiev-
able by creating a federated database architecture which uses Grid technology
to provide scalability and Web Services to give flexibility in data sharing. By
using a subscription based approach the problem of heterogeneity that exists
because of the lack of standard mechanisms for storing product information by
product suppliers can be overcome. As part of further work we aim to improve
the overall design of the components of the federation and provide support for
partial and controlled sharing of data - a feature of FDBS architectures [9] so
that product suppliers reveal information about their products depending on
the needs of contractors. We also aim to implement a security infrastructure to
protect confidential information from being viewed by unauthorised party. This
is particularly important as product suppliers do not wish to reveal their data
to business rivals.

References

1. Foster, I., Kesselman, C.: Computational Grids, Chapter 2 of The Grid: Blueprint
for a New Computing Infrastructure. Morgan-Kaufman, 1999.

2. Foster, I., Kesselman, C., et al.: The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration. Open Grid Service Infrastructure
WG, Global Grid Forum, 2002.

3. Graham, S., Simeonov S., et al.: Building Web Services with Java: Making sense
of XML, SOAP, WSDL, and UDDI. Sams Publishing. (2002)

4. Wyss, C.M., James, A., et al.: Report on the Engineering Federated Information
Systems (EFIS 2003), ACM SIGSOFT Software Engineering Notes. 29(2) (2004)

5. Kong S.C.W., Li H., et al.: Enabling information sharing between E-commerce sys-
tems for construction material procurement. Automation in Construction. 13(2)
(2004) 261-276

6. Dzeng, R.-J., Chang, S.-Y.: Learning search keywords for construction procure-
ment. Automation in Construction 14(1) (2005) 45-58

7. Mahmoud-Jouini, S.B., Midleret, C., et al.: Time-to-market vs. time-to-delivery
Managing speed in Engineering, Procurement and Construction projects. Interna-
tional Journal of Project Management. 22(5) (2004) 359-367

8. Yeo, K.T., Ning, J.H.: Integrating supply chain and critical chain concepts in
engineer-procure-construct (EPC) projects. International Journal of Project Man-
agement. 20(4) (2002) 253-262

9. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys (CSUR).
22(3) (1990) 183-236

MDSSF - A Federated Architecture for Product Procurement 821

10. Pahwa, J.S., Burnap, P., et al.: Creating a Virtual Distributed Database - Data
Definition and Search Model for Collaborative Virtual Teams in the Construction
Industry. Proc. 21st Annual British National Conference on Databases. 2 (2004)
3-17

11. Heimbigner, D., McLeod, D.:A federated architecture for information management.
ACM Transactions on Information Systems (TOIS). 3(3) (1985) 253-278

12. Hsiao, D.K.:Federated databases and systems: part I - a tutorial on their data
sharing. The International Journal on Very Large Data Bases. 1(1) (1992) 127-
180

13. (2006) The Globus Alliance website. [Online]. Available http://www.globus.org/
14. Hsiao, D.K.: Federated Databases and Systems: Part II - A Tutorial on Their

Resource Consolidation. The International Journal on Very Large Data Bases 1(2)
(1992) 285-310

15. Hwang, S.-Y., Lim, E.-P., et al. The MYRIAD federated database prototype. Proc.
ACM SIGMOD International conference on Management of data. 23(2) (1994)

16. Conrad, S., Eaglestone, B., et al.: Research issues in federated database systems:
Report of EFDBS’97 workshop. ACM SIGMOD Record. 26(4) (1997) 54-56

17. Busse, S., Kutsche, R.-D., et al: Federated Information Systems: concepts, termi-
nology and architectures. Technical Report Nr. 99-9. TU Berlin. (1999)

18. Linn, C., Howarth, B.: A Proposed Globally Distributed Federated database: A
Practical Performance Evaluation. Proc. Third International Conference on Par-
allel and Distributed Information Systems. IEEE Computer Society Press. (1994)
203-212

19. Papastavrou, S., Samaras, G., et al.: Mobile agents for World Wide Web distributed
database access. IEEE Transaction on Knowledge and Data Engineering. 12(5)
(2000) 802-820

20. Bayardo Jr., R.J., Bohrer, W., et al.: Infosleuth: Agent-based semantic integration
of information in open and dynamic environments. ACM Intl. Conf. on Manage-
ment of Data (SIGMOD). (1997)

21. Garcia-Molina, H., Papakonstantinou, Y., et al.:The TSIMMIS Approach to Me-
diation: Data Models and Languages. Journal of Intelligent Information Systems.
8 (1997) 117-132

22. Tomasic, A., Raschid, L., et al.:Scaling access to heterogeneous data sources with
DISCO. IEEE Transactions on Knowledge and Data Engineering 10(5) (1998)
808-823

23. Bressan, S., Goh, C.H., et al.: The context interchange mediator prototype. Proc.
ACM SIGMOD international conference on Management of data. (1997) 525-527

24. Levy, A.Y., Rajaraman, A., et al.: Querying heterogeneous information sources
using source descriptions. Proc. Twenty-second International Conference on Very
Large Databases. (1996) 251-262

25. Huang, J.-W., MultiBase: a heterogeneous multidatabase management system.
Proc. Eighteenth Annual International Computer Software and Applications Con-
ference. COMPSAC 94. (1994) 332-339

26. Bouguettaya, A. Benatallah, B., et al.:Supporting dynamic interactions among
Web-based information sources. IEEE Transactions on Knowledge and Data Engi-
neering. 12(5) (2000) 779-801

Argumentation for Decision Support

Katie Atkinson1, Trevor Bench-Capon1, and Sanjay Modgil2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{katie, tbc}@csc.liv.ac.uk

2 Advanced Computation Lab, Cancer Research UK, Lincoln’s Inn Fields, London, UK
sm@acl.icnet.uk

Abstract. In this paper we describe an application based on a general approach
towards modelling practical reasoning through defeasible argumentation. The
purpose of the paper is to show how the incorporation of an argumentation com-
ponent can add value to a collection of existing information agents. The example
application is a system for reasoning about the medical treatment of a patient.
An agent, called the Drama agent, orchestrates a number of information sources
to supply a set of arguments on the basis of which the decision regarding treat-
ment can be taken. We describe the general approach and its instantiation for this
application, and illustrate the operation of the system with a running example.

1 Introduction

We describe an application based on a general approach towards modelling practical
reasoning through defeasible argumentation1 to show how an argumentation component
can add value to a collection of existing information resources. The example applica-
tion is a system for reasoning about the medical treatment of a patient. We assume that a
number of information sources, representing different areas of medical knowledge and
facts about individuals, and different policies and perspectives relevant to the problem
are available. The focus of this paper is the Drama (for Deliberative Reasoning with Ar-
guMents about Actions) agent which orchestrates these contributions in argumentation
terms, and comes to a decision based on an evaluation of the competing arguments. We
begin by describing our general approach to such deliberative reasoning. Section 2 will
give an overview of the application. Section 3 will describe how the general approach
is used in the particular application using a representative example of such deliberation,
and section 4 will discuss the potential advantages of the approach.

A general approach to persuasive and deliberative reasoning about action has been
presented in [1]. First a presumptive justification for a course of action is found. This
takes the form of an instantiation of the argument scheme AS1:

AS1 In the circumstances R
We should perform action A
Whose effects will result in state of affairs S
Which will realise a goal G
Which will promote some value V.

1 For a comprehensive survey of logical models of argument see [3].

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 822–831, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Argumentation for Decision Support 823

AS1 is an enrichment of the Sufficient Condition Scheme, one of the presumptive ar-
gument schemes for practical reasoning proposed by Walton [9]. This enrichment allows
us to additionally distinguish between: the consequences of the action (S); the desired
consequences of the action (G); the reason why those consequences are desired (V).

These distinctions have been found to be crucial in some applications, including
reasoning with legal cases and reasoning about political decisions [1]. The importance
of making these distinctions will be further shown in the example.

Next the presumptive justification must be subjected to a critique. Associated with
an argument scheme are a number of characteristic critical questions, which could lead
to the justification being defeated. This critique will also identify alternative actions for
consideration. In [1] sixteen critical questions associated with AS1 are identified. Two
sample critical questions are: are the current circumstances in fact R? and are there
alternative ways to achieve the goal G? Each critical question has associated with it
preconditions for making a counter argument. Thus an agent could question the truth
of the circumstances if it believed that they were other than R, or could suggest an
alternative action if it believed that it would also realise G. Preconditions in terms of
the beliefs and desires of an agent are given in [1]. For each critical question whose
preconditions are satisfied, one or more arguments attacking the original justification
can be produced. These arguments may in turn be subject to the same process of critical
questioning to generate counter arguments.

When the set of arguments and counter arguments have been produced, it is neces-
sary to consider which of them should be accepted. In order to do this the arguments
Args together with the binary Attack relation on Args are organised into an argumenta-
tion framework (Args, Attack), as introduced by Dung in [5]. In [5] an argument A1 is
always defeated by an attacker A2, unless A2 can itself be defeated. This is appropriate
to reasoning about beliefs, but when reasoning about actions we are, to a certain extent,
free to choose what we will attempt to bring about. Thus we may choose to reject an
attacker even if it cannot be defeated, provided we regard the purpose motivating the
attacked argument as more important. For example, an argument A2 that a particular
drug is expensive attacks an argument A1 for prescribing the drug. However, we may
none the less choose to prescribe it (accept the argument A1) if that would serve a pur-
pose (promote a value) we rate more highly than expense. To accommodate the notion
of the value promoted by the acceptance of an argument we use an extension of Dung’s
framework, value-based argumentation frameworks [2]. The idea is that we are given
an argumentation framework, a set of values V , a function val mapping each argument
to a value v ∈ V , and a set of audiences a (in the sense of [6]) to which the arguments
are addressed. Each audience is represented (as in [2]) by a strict partial ordering >a

on the values. Then, for a given audience >a, A2 defeats A1 iff A2 attacks A1 and
val(A2) �>a val(A1). Note that by this definition, if A2 attacks A1 and both promote
the same value then the attacks always succeeds as a defeat.

For a given audience and defined defeat relation, we can then determine which ar-
guments in Args are acceptable by determining the preferred extension. The preferred
extension is the maximal (under set inclusion) subset S of Args such that no two argu-
ments in S defeat each other, and all arguments A in S are acceptable with respect to S,
i.e., for any argument A in S, if A is defeated by an argument A′ that is not in S, then

824 K. Atkinson, T. Bench-Capon, and S. Modgil

there exists an argument in S that defeats A′. The preferred extension thus represents
the maximal consistent set of acceptable arguments with respect to the argumentation
framework and a given audience or value ordering. Cycles in the same value give rise
to multiple preferred extensions (e.g., A1 A2 attack each other and promote the same
value). In building the framework it is necessary to resolve cycles in a single value by
expressing a preference for one of the arguments in the cycle, based on considerations
other than the value: for example that the action is intrinsically preferred.

It has been shown in [2] that an efficient algorithm exists for the computation of the
preferred extension of such a framework for a given value ordering, once the cycles
have been resolved. We may therefore compute the preferred extensions corresponding
to the possible value orderings to discover the dialectical status of the arguments in the
framework. When evaluated the arguments may have a unique status, or their status
may be dependent on the value ordering. In this latter case the agent may either com-
mit to a particular value ordering, or determine the value ordering in the course of its
deliberation [4]. Thus the Drama agent will deliberate on a course of action by:

– obtaining a presumptive justification for some course of action,
– generating any counter arguments to the course of action by posing critical ques-

tions, where each such counter-argument is itself subject to counter-arguments
(posing of critical questions),

– selecting the course of action by organising the resulting arguments into an argu-
mentation framework, and calculating the preferred extension corresponding to its
ranking of values.

In the next section we will discuss the particular application which we will use to
exemplify our approach in this paper.

2 Deliberative Reasoning About Medical Treatment

Clinical guidelines promote best practice in clinical medicine by specifying the selec-
tion and sequencing of medical actions for achievement of medical goals. There is a
large body of research into computational support for authoring and enactment of clini-
cal guidelines [8]. Authoring tools support specification of a guideline in some suitable
knowledge representation formalism. This specification can then be executed in a spe-
cific clinical context so as to enforce compliance with the best practice encoded in the
guideline. The authored guidelines need to be specified at a level of abstraction that
enables enactment in any number of contexts. It is at execution time that the context
dependent choice of specific medical actions must be made.

For example, a guideline may indicate that treatment of a patient recovering from my-
ocardial infarct (heart attack) requires realisation of the treatment goals: treat pain; treat
sickness; prevent blood clotting. It is at execution time that one must take into account
the specific context in order to choose which precise action should be chosen for realising
each of these goals. Examples of contextual factors that influence the decision include:

– information about the specific patient being treated, e.g., administration of a partic-
ular drug for preventing blood clotting may for safety reasons be contraindicated
by a patient’s clinical history,

Argumentation for Decision Support 825

– concomitant treatments, e.g., the efficacy of a drug for preventing blood clotting
may be reduced by drugs being administered for a gastrointestinal condition,

– local resource constraints, e.g., budget constraints at the local hospital may indicate
a preference for one drug over another,

– local organisational policies, e.g., the local health authority may have evidence
based preferences for one drug over another.

We propose that it is through deliberative argumentation of the type described in
this paper that one can model how these contextual factors can be brought to bear on
the decision as to what is the most appropriate treatment action in a given situation. In
particular, by structuring a recommendation for action as an argument instantiating ar-
gument scheme AS1, one can effectively account for the influence of contextual factors
on the decision making process; i.e., by instantiating AS1’s critical questions. Further-
more, the complexity and diversity of the contextual knowledge and reasoning suggests
that the information required to be considered may best be distributed across a number
of information sources.

In the example below, the medical knowledge cited is for illustrative purposes only:
we make no claims for it either as a model of the medical domain, or as a representation
of the state of the art of medical systems. Our purpose is only to show how value can
be added by the addition of an argumentation agent capable of reasoning with multiple
perspectives and drawing on a range of sources.

3 Application to the Medical Domain

In our application we locate all argumentation knowledge inside the Drama agent, and
the other resources are conventional knowledge and database systems. In particular
these other resources are independent of values. The other resources that the Drama
agent will interact with in our example are shown in Table 1. Some will contain generic
medical knowledge, while others are specific to the organisation.

Table 1. Resources in the Drama System

Resource Type Scope

Treatment KB Knowledge Base Generic Medical Policy and Knowledge
Policy KB Knowledge Base Organisation Specific Knowledge
Safety KB Knowledge Base Generic Medical Knowledge
Patient DB Database Patient Specific Information
Cost KB Knowledge Base Organisation Specific Knowledge
Efficacy KB Knowledge Base Specific Medical Knowledge

Following the general approach, the Drama agent will use critical questions to iden-
tify the information required to generate arguments. In any particular application a char-
acteristic set of the critical questions will be pertinent (see [1]). In this application we
assume that all resources have a common vocabulary, and any information given can be

826 K. Atkinson, T. Bench-Capon, and S. Modgil

accepted as true. Given these assumptions there are five critical questions pertinent to
this particular application:

– CQ1: Are there alternative ways of realising the same effects?
– CQ2: Are there alternative ways of realising the same goal?
– CQ3: Are the assumptions on which the argument is based true?
– CQ4: Does performing the action have a side effect which demotes some other

value?
– CQ5: Will the action have the effects described?

The Drama agent now constructs an argumentation framework by instantiating AS1
and posing these critical questions. We will illustrate the operation of the system with a
running example of a patient whose health is threatened by blood clotting. The frame-
work begins with the null option - do nothing (EA0). The purpose of this is similar to
the assumption of the negation of the desired goal in refutation resolution: extensions
of the resulting argument frameworks will be acceptable only if they do not contain this
argument. The goal of preventing blood clotting is now issued to the Treatment KB.

The Treatment KB is one among a number of treatment knowledge bases, each of
which is specialised for recommending treatment actions for a medical speciality. In
our example, the Treatment KB is specialised to the cardiac domain. For the purposes
of this example we will suppose that the Treatment KB, and the other KBs, use simple
Prolog rules and are capable of solving a goal and returning a proof trace. The Treat-
ment KB might include (P denotes the patient in question):

prevent blood clotting(P):-
reduce platelet adhesion(P).

prevent blood clotting(P):-
increase blood clot dispersal agents(P).

reduce platelet adhesion(P):-
not contraindicated(aspirin,P),
prescribe(aspirin,P).

reduce platelet adhesion(P):-
not contraindicated(chlopidogrel,P),
prescribe(chlopidogrel,P).

increase blood clot dispersal agents(p):-
not contraindicated(streptokinase,P),
prescribe(streptokinase,P).

It will therefore be able to return the information that blood clotting can be prevented
by reducing platelet adhesion, which can, assuming aspirin is not contraindicated, be
achieved by prescribing aspirin. The Drama agent can use this information to instanti-
ate AS1, thus providing a justification for this action:

EA1. Assuming no contradictions, we should prescribe aspirin, which will reduce plate-
let adhesion, preventing blood clotting, and so is an efficacious course of action.

This argument has to be subjected to a critique to ensure that there are no better al-
ternatives. The Drama agent will go through its repertoire of critical questions. Posing

Argumentation for Decision Support 827

CQ1 will ask for alternative solutions to reduce platelet adhesion from the Treatment
Agent and elicit the information that chlopidogrel will also reduce platelet adhesion.
Asking CQ2 will seek further solutions from the Treatment Agent for preventing blood
clotting and will identify the alternative course of action of administering streptokinase,
which has the same goal of preventing blood clotting, but via a different effect of in-
creasing the blood’s production of agents that disperse clots. These are formed into two
arguments, EA2 and EA3:

EA2. Assuming no contradictions, we should prescribe chlopidogrel, which will reduce
platelet adhesion, preventing blood clotting, and so is an efficacious course of action.

EA3. Assuming no contradictions, we should prescribe streptokinase, which will in-
crease blood clot dispersal agents, preventing blood clotting, and so is an efficacious
course of action.

These three arguments all mutually attack one another, giving rise to the argumenta-
tion framework shown in Figure 1.

EA0

nothing
do

EA1

efficacy

EA2

efficacy

EA3

efficacy

Fig. 1. Initial Argumentation Framework

Any of EA1, EA2 or EA3 would serve to defeat EA0, ‘do nothing’. However, they are
in mutual conflict. As they all relate to the same value (which means that the preferred
extension is empty for all audiences), there is a free choice between them. They can be
chosen according to intrinsic preferences regarding the goal or the actions themselves.
The Drama agent therefore contacts the Policy KB to see what the preferences of the
organisation are.

The Policy KB contains organisation specific information to determine preferences
between goals, effects and actions. Any criteria could be used here. For the purposes
of the example we will assume that the Policy KB prefers the effect ‘reduce platelet
adhesion’ as a means by which the goal can be realised, since the effect of increasing
blood clot dispersal agents has potentially more undesirable side-effects. Hence, the
Policy KB will favour actions with the former effect over actions with the latter effect.
This, however, does not discriminate between aspirin and chlopidogrel. Again many
criteria are possible: it could depend on local stocks held, or a local preference for
generic drugs. Here we will assume that cost is the basis for preference and that aspirin
is cheaper than chlopidogrel.

828 K. Atkinson, T. Bench-Capon, and S. Modgil

We represent these preferences in our argumentation framework by removing the at-
tacks of the unfavoured actions, so that EA1 is no longer attacked, and EA3 no longer
attacks EA2 (see Figure 2, ignoring the dotted arrows indicating arguments submit-
ted later on). Now EA1 will form the preferred extension of this framework, and so
its action is currently the best candidate. There remain, however, some further critical
questions that can be asked of EA1.

EA1 assumed that aspirin was not contraindicated. CQ3 instructs us to test this as-
sumption. This is the role of the Safety KB. The Safety KB has knowledge of contraindi-
cations of the various drugs, and the reasons for the contraindication. The Safety KB
might contain:

contraindicated(D,P):-
risk of gastric ulceration(D,P).

risk of gastric ulceration(D,P):-
increased acidity(D),
history of gastritis(P),
not acid reducing therapy(P).

increased acidity(aspirin).

When contacted by the Drama agent it will use this knowledge, together with patient
specific information obtained from the Patient DB to inform the Drama agent that since
the patient has a history of gastritis, aspirin is contraindicated because its acidity may
result in gastric ulceration. The Drama agent will form this into an argument motivated
by the value of safety. Note that because each of the information sources represents a
particular perspective on the problem, the Drama agent may ascribe a motivating value
to the argument on the basis of its source.

EA4. Where there is a history of gastritis and no acid reducing therapy, we should not
prescribe aspirin, which would cause excess acidity, which would risk ulceration, and
so is unsafe.

When EA4 is added to the argumentation framework (arrow 1 in Figure 2), EA4
attacks EA1. Assuming that safety is preferred to efficacy, EA4 defeats EA1 and so
EA2 replaces EA1 in the preferred extension.

Assuming EA2 cannot be attacked by CQ3, the next critique follows from CQ4. Ef-
ficacy is not the only value: any action must be acceptable within the cost constraints of
the organisation. Answering this critical question is the province of the Cost KB. This
KB will have knowledge of the budgetary constraints on treatment, and will compare
the cost of the proposed treatment with these constraints. Suppose that chlopidogrel ex-
ceeds these limits. At the minimum this is simply a query as to whether the cost of the
treatment exceeds a given threshold, posed to a database of treatment costs. The Drama
agent can now form the argument EA5:

EA5. Where cost of chlopidogrel is £N, we should not prescribe chlopidogrel, which
would cost £N, exceeding our budget, which demotes the value of financial prudence.

Argumentation for Decision Support 829

Adding EA5 (arrow 2 in Figure 2) means that EA2 is defeated if cost is preferred to
efficacy. This now means that EA3 is in the preferred extension. Since it is unchallenged
there is an obligation to critique the proposal to prescribe streptokinase, by returning to
CQ3 and CQ4. Suppose that streptokinase is not contraindicated, and that it falls within
the cost constraints. There remains CQ5, and we must now investigate whether strep-
tokinase will be effective for the particular individual we are treating. The Efficacy KB
will contain specific data from clinical trials and past cases indicating the efficacy of
actions with respect to treatment goals for particular patient groups. Perhaps (and this
is simply an illustrative conjecture on our part) the efficacy of streptokinase has been
found to depend on age. The Efficacy KB may then contain rules such as:

effectiveness(P, streptokinase, prevent blood clotting, 90):-
age(P,A),A < 50.

effectiveness(P, streptokinase, prevent blood clotting, 30):-
age(P,A),A > 49.

acceptable(P, Treatment, prevent blood clotting):-
effectiveness(P, Treatment, prevent blood clotting, E),E > 75.

Together with particular patient data obtained from the Patient DB, the Efficacy KB
passes this information to the Drama agent which expresses it as EA6:

EA6. Where patient is aged 72, we should not prescribe streptokinase, as the likelihood
of success is 30%, which is below the required threshold, which demotes efficacy.

We add EA6 to the framework, as shown in Figure 2 (arrow 3). EA3 is attacked by
an argument with the same value and so is defeated. If safety is preferred to efficacy
then EA1 is defeated by EA4. If cost is preferred to efficacy then EA2 is defeated by
EA5. This would mean that EA0 would be included in the preferred extension as all its
attackers are defeated. However, as stated from the outset, this is unacceptable as the
patient’s health is then in jeopardy. There are two possibilities: either we must re-order
our values so that efficacy is preferred to one of safety or cost (respectively making EA1
or EA2 preferred), or else we must find an argument with which to defeat the attackers
of one of EA1–3 and so reinstate one of our actions.

Suppose we re-order the values so as to prefer efficacy to at least one of the other
values i.e., we must choose whether we disregard safety or cost. The choice will depend
on the particular circumstances: it may be that the Drama agent is allowed to exceed
budget if necessary, in which case efficacy will be preferred to cost and chlopidogrel
will be prescribed. But if the cost constraint is rigid, there may be no better option than
to disregard the contraindications and risk using aspirin, believing the complications to
be less threatening than the immediate danger.

These hard choices can, however, be avoided if we can succeed in defeating one of
the attacking arguments. We therefore run through our critical questions with respect to
the arguments currently in the preferred extension of the framework. CQ3 can be posed
with respect to EA4, as it is predicated on an assumption that there is no acid reducing
therapy prescribed to the patient. We may therefore return to another Treatment KB and
attempt to find such an acid reducing therapy. This will supply the knowledge that a

830 K. Atkinson, T. Bench-Capon, and S. Modgil

proton pump inhibitor (a particular type of acid reducing therapy) will have the desired
effect. We can form this into EA7:

EA7. Where there are no contraindications, prescribing a proton pump inhibitor, will
prevent excess acidity, removing risk of ulceration, promoting the value of safety.

The complete argumentation framework after the addition of EA7 is shown in Figure 2:

EA1

EA3

EA4
safety

EA0
do nothing

efficacy

efficacy
EA2

efficacy

1

EA5

cost

2

EA7
safety

EA6

efficacy
3

4

Fig. 2. Final Argumentation Framework showing all critiques

Of course, EA7 is now subject to critical questioning. Assuming, however, that there
are no alternatives, that it is not contraindicated, within budget and likely to be effec-
tive, the argument gathering stops here as we have now exhausted our critical questions.
We compute the preferred extension by first including the arguments with no attackers:
EA5, EA6 and EA7. EA7 defeats EA4 because they are motivated by the same value.
This means that EA1 can be included, as its only attacker is defeated. EA1 thus defeats
EA2 and EA3, again because they are motivated by the same value, and also excludes
EA0, as desired. Note that in this case we need express no value preferences: the pre-
ferred extension is the same irrespective of value order. From this we conclude that
aspirin is the preferred treatment, and should be recognised as such by any audience.

4 Discussion

The system for deliberative reasoning described above has a number of worthwhile
features:

– It models deliberation using a model of argument with presumptive justification
subject to critique, which has been developed to capture a number of features of
practical reasoning observed in the philosophical [7] and informal logic literature
[9]. These include the defeasible nature of putative solutions, the importance of
perspectives (values), and the potential for context dependent orderings on per-
spectives to accommodate different audiences.

– This model is effected inside a single agent: the other components in the system
can therefore be conventional knowledge and database systems, simplifying their
participation in other systems. If, however, more sophisticated resources, such as
autonomous agent systems, are available, these can be used by the Drama agent
without modification.

Argumentation for Decision Support 831

– The various perspectives which need to be considered when making a medical de-
cision are kept separate, and it is made explicit from which perspective the various
arguments derive. This means that the perspectives can be given their due weight,
but discounted if necessary.

– Each of the information sources used by the Drama agent is dedicated to the provi-
sion of particular information, has no need to consider every eventuality, and plays
no part in the evaluation. This simplifies their construction and facilitates their reuse
in other applications.

– Distinction can be made between information sources which are generic and those
which are particular to a specific organisation or individual.

– Critiques are made only as and when they can affect the dialectical status of argu-
ments already advanced. This means that all reasoning undertaken is of potential
relevance to the solution.

– Patient information is made available only as and when needed.

The combination of the use of a well motivated model of deliberation, use wherever
possible of conventional and generic components, and the ability to make flexible and
context dependent decisions, provides, we believe, an approach to reasoning about de-
cisions based on several information sources (such as is the case in medicine) that has
considerable potential.2

References

1. K. Atkinson. What Should We Do?: Computational Representation of Persuasive Argument in
Practical Reasoning. PhD thesis, Department of Computer Science, University of Liverpool,
Liverpool, UK, 2005.

2. T. Bench-Capon. Persuasion in practical argument using value based argumentation frame-
works. Journal of Logic and Computation, 13 3:429–48, 2003.

3. C. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument. ACM Computing
Surveys, 32(4):337–383, 2000.

4. S. Doutre, T. Bench-Capon, and P. E. Dunne. Explaining preferences with argument posi-
tion. In Proceedings of the Ninteenth International Joint Conference on Artificial Intelligence
(IJCAI 2005), pages 1560–1561, 2005.

5. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

6. C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on Argumentation. Uni-
versity of Notre Dame Press, Notre Dame, IN, USA, 1969.

7. J. R. Searle. Rationality in Action. MIT Press, Cambridge, MA, USA, 2001.
8. S. W. Tu and M. A. Musen. Representation formalisms and computational methods for mod-

eling guideline-based patient care. In M. Mussen M. Stefanelli B. Heller, M. Loffler, editor,
Proceedings of First European Workshop on Computer-based Support for Clinical Guidelines
and Protocols, Leipzig, Germany, 2000. IOS Press.

9. D. N. Walton. Argument Schemes for Presumptive Reasoning. Lawrence Erlbaum Associates,
Mahwah, NJ, USA, 1996.

2 Trevor Bench-Capon and Sanjay Modgil acknowledge partial support received from the Eu-
ropean Commission through Project ASPIC (IST-FP6-002307). We would like to thank the
anonymous reviewers for their comments and suggestions. We are also grateful to Peter
McBurney for his contributions to our work on argumentation and practical reasoning.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 832 – 841, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Personalized Detection of Fresh Content and Temporal
Annotation for Improved Page Revisiting

Adam Jatowt1, Yukiko Kawai2, and Katsumi Tanaka1

1 Kyoto University
Yoshida-Honmachi, Sakyo-ku, 606-8501

Kyoto, Japan
{adam, tanaka}@dl.kuis.kyoto-u.ac.jp

2 Kyoto Sangyo University
Motoyama, Kamigamo, Kita-Ku, 603-8555

Kyoto, Japan
kawai@cc.kyoto-su.ac.jp

Abstract. Page revisiting is a popular browsing activity in the Web. In this pa-
per we describe a method for improving page revisiting by detecting and high-
lighting the information on browsed Web pages that is fresh for a user. Content
freshness is determined based on comparison with the previously viewed ver-
sions of pages. Any new content for the user is marked, enabling the user to
quickly spot it. We also describe a mechanism for visually informing users
about the degree of freshness of linked pages. By indicating the freshness level
of content on linked pages, the system enables users to navigate the Web more
effectively. Finally, we propose and demonstrate the concept of determining
user-dependent, subjective age of page contents. Using this method, elements of
Web pages are annotated with dates indicating the first time the elements were
accessed by the user.

Keywords: page revisiting, fresh information retrieval, change detection.

1 Introduction

The Web is a very dynamic environment, with many changes occurring frequently.
Several studies have confirmed this by measuring the frequency of Web changes (e.g.
[2], [3] and [8]). This volatility makes the Web attractive and is one of the reasons for
its great popularity. Users have access to the freshest news and information at any
time. This is in contrast to traditional media like newspapers where readers have to
wait certain periods of time for each new edition. Many Web users have favorite
pages that they frequently revisit [4], [12]. Usually, such pages not only contain high
quality content, but are also frequently changing since otherwise they would soon
become uninteresting or even obsolete to users. This is because Web site administra-
tors not only want to attract new users to their pages but also to encourage return
visits. In general, the revisiting frequency is dependent on the page quality and the
overlap of the page content with users’ interests, but it is also related to the page-
updating frequency.

 Personalized Detection of Fresh Content and Temporal Annotation 833

However, revisiting pages can sometimes be costly or can be a waste of time. Users
coming to the page in search of new content may have problems noticing it especially
if the page is large and changes are not easily visible. Often, top pages of popular Web
sites (e.g. some news sites) introduce only short sentences containing links which lead
to the novel content being published on separate pages. Noticing all such changes in
the page may be troublesome and take time. Also, fresh information may be hidden in
lower levels of a Web site’s topology and thus be difficult to find. Users who wish to
obtain new content have to access them one by one to check for new information. Such
navigation is usually based on users’ intuition and guesswork whether linked pages are
worth revisiting, and may result in incurred costs and waste of time.

Sometimes users may even be misled to visit unchanged pages when expecting new
content. For example, a page might have a link labeled “new,” causing an average user
to think that new content has been added since his last visit. The user might thus access
this link only to find that the content is still old from his perspective. The “new” label
is actually aimed at first time or infrequent visitors. Frequent visitors are expected to
remember all the places they previously visited if they do not want to waste time view-
ing the same content twice. However, in contrast, some of the content on such a page
may actually be new from the revisitor’s perspective, but, having already visited the
page, he or she may not visit it again since he or she may believe that the page content
has not changed. In both cases, page viewing is ineffective, and the user can become
frustrated. In the first case, the user might revisit the page too often, thereby losing
time and incurring costs, while in the second case, he or she might miss content up-
dates. One solution is a personalized, freshness-oriented browsing style due to which
the user is clearly informed, without much effort, about the location and amount of
fresh for him or her content on visited pages or sites.

In this paper we propose an approach to support browsing by automatically detect-
ing the content that is fresh for the user. This user-dependent freshness determination
is made possible by storing and analyzing the pages previously viewed by the user.
We have built a browsing system that not only indicates the page elements that are
novel for the user but also calculates the freshness of links occurring on the page and
displays them in different colors based on their freshness values. The browser enables
users to easily find content that is new to them and the links worth visiting. It can be
especially helpful for users who have problems remembering previously seen versions
of pages and who cannot easily spot changes in the page content. In addition, such
browsing and navigation aid could be used for mobile browsing scenarios, where
screen limitations may not enable viewing the whole page and limited bandwidth may
not allow for unrestricted browsing of Web sites.

We also propose the concept of user-oriented temporal annotation of page content.
Using this method, a user can know when he or she viewed certain content on a page
for the first time and thus can determine how obsolete or how new it is for him or her.
It is possible to recall the time when a given part of the page has been seen for the
first time, hence putting a temporal constraint on it. If a part of the page content was
seen by the user for the first time at a certain time point ts, then during later visits to
the page the user can be informed that the content is at least not younger than ts. Thus
the user can treat the particular content differently based on the date it was first en-
countered. Additionally, considering the number of page revisits since ts, it is also
possible to approximately assess how much the content is already known to the user.

834 A. Jatowt, Y. Kawai, and K. Tanaka

In general, we provide a new kind of contextual information to users that is deter-
mined by considering their browsing histories, informing them on what they have not
yet viewed and on what and when they have seen. The enhanced browsing is provided
to reduce the cost and time spent revisiting pages without requiring much effort from
the user. The user-oriented temporal annotation of page content enables users to ob-
tain the information about the subjective age of page objects and allows one to better
understand and orient themselves in the present content of pages. The proposed con-
cepts are designed for users who do not have much time for browsing but frequently
visit favorite pages that are highly volatile.

After first discussing related research in Section 2, we will describe in Section 3
our proposals for the user-oriented freshness detection and temporal annotation of
page contents. In Section 4, we discuss their implementation. Finally, we conclude in
Section 5 with a summary of the key points.

2 Related Research

Browsing Web pages is one of the most popular activities on the Internet. Users
browse not only for relevant information but also, in many cases, for fresh content.
However, there has been little research so far, of which we are aware, into combining
change detection with browsing to facilitate fresh information retrieval. The exception
is WebGuide system [7], which enables users to compare differences between pages
with respect to two dates and to visualize changes in Web sites. Our approach is dif-
ferent in that we focus on integrating change detection with browsing. We propose a
novel visualization method of fresh content on pages by utilizing link color changes
and by displaying numerical values of freshness degrees of Web pages. This enhances
navigation in revisited pages with minimal user interaction. The user is also informed
about the overall freshness degree of the page content. Finally, we propose a new
time-based annotation method with the user-oriented dates of content viewing.

Improving browsing by utilizing a user’s browsing history has been already re-
searched before (e.g. [9]). The pages that a person has visited constitute an easy to use
set of data and are quite effective at measuring person’s interests. However, rather
than searching for content similar to previously viewed content that the user might be
attracted to, we try to detect the fresh content for the user. Additionally, we utilize the
browsing history for determining the user-oriented age of page objects. This differs
from previous proposals of browsing history visualization in that it maps the user
browsing activity directly onto the present content of the page.

So-called current awareness systems (e.g. [1], [6] and [11]) are tools for informing
users about page updates. A popular one, Rich Site Summary (RSS), is a Web feed
that provides summaries of the new content on Web sites. This enables users to track
updates to sites. Other systems detect content changes in some pre-determined sets of
resources and notify users about such changes. For example, a work by Qiang et al.
[11] contains several effective approaches into detecting changes and measuring
change importance in Web structures. Usually, current awareness systems require
users to specify beforehand pages of interest. However, users may have trouble listing
all such pages. Additionally, these systems may cause an information overload by
continuously sending information about new content appearing on the specified

 Personalized Detection of Fresh Content and Temporal Annotation 835

pages, especially in cases of highly volatile pages. While the user could theoretically
specify the exact types of content that he or she is interested in, in order to minimize
this overload, doing so would be difficult and impractical. Content filtering cannot be
done effectively as users are often interested in novel content, and which content will
be interesting for them is hard to predict. Furthermore, many users are accustomed to
actively viewing the Web, and they often actively revisit pages without waiting for an
alert from change detection systems. In our approach, we integrate change detection
with browsing, thus eliminating the burden of registration of interesting Web pages by
the user. Consequently, the proposed system detects browsing-derived changes ex-
tracted between consecutive visits of pages by the user.

3 System Overview

3.1 Freshness Degree

Let us suppose that a user has a favorite page, which he or she frequently revisits. For
each visit, we store a view V(ti) of the page which is a snapshot of the page, where ti
denotes the timestamp of the view. The snapshot reflects the state of the page as it
was perceived by the user and contains elements j (j ∈ V(ti)) that occur on the page
view V(ti). After several revisits of the page V(t1),…,V(tn), at time points t1,…,tn, three
attributes (τins(j), τdel(j), ω(j)) are assigned to each element j at each page view; τins(j)
is the time point when the user saw the particular element for the first time, τdel(j)
denotes the time point when the user saw it for the last time and ω(j) specifies the
element’s viewing frequency. Representing each element occurring in a certain view
V(ti) of the page by the triple (τins(j), τdel(j), ω(j)) enables the system to determine how
obsolete or well-known the element is for the user. The perception of the page con-
tents from the perspective of the user-oriented freshness is thus changing every time
he or she accesses the page.

The freshness degree of the page is computed as the ratio of the amount of fresh
content to the total amount of the page content. We represent it as a linear combina-
tion of freshness degrees of text and images:

TotalFreshness = * TextFreshness + (1-) * ImageFreshness . (1)

The amount of textual content is expressed as the number of words while the
amount of image content is estimated by the dimensions of images on the page.

In addition, we can try to estimate the level of surprise of the user upon not seeing
certain content on the page that is related to the long-term perception of the page
content:

()[]

()[]
=

−

=
−

−

−
=

N

j
insn

M

j
insn

jjtjsize

jjtjsize

Surprise

1
1

1
1

)(*)(*)(

)(*)(*)(

ωτ

ωτ
.

(2)

836 A. Jatowt, Y. Kawai, and K. Tanaka

The surprise is related to the expectation of the user that no change will happen on
the page. This can be expressed by using the time period that elapsed since the first
view of the page content and the number of times it has been viewed by the user.
Equation 2 is computed using the content of the current page version V(tn) and the
last-visited page version V(tn-1); size(j) is the size of an element j and N is the number
of distinct elements on V(tn-1), M is the number of elements that were deleted since the
last view of the page. The surprise level calculated in this way could be used to mod-
ify the total freshness degree of the page in order to represent more personalized,
subjective freshness degree of the page.

A reader should note that the relevance of content is not taken into consideration in
the proposed system. We assume that the content on frequently revisited or favorite
pages is most likely interesting to the user. However, a relevance-aware freshness
degree could be computed, for example, by considering the frequency of query words
in the novel content or its overlap with the model of user interest.

3.2 Fresh Content Detection and Indication

When the user revisits a page, the present version of the page is compared with the
recently visited one. Any added content is marked to draw the user’s attention. For
example, the background color of the text may be changed. Except for content com-
parison of the currently viewed Web page, there is a mechanism provided that esti-
mates the degree of freshness for each page to which the current page has links. Then
each link has assigned the degree of freshness which is shown next to the text in the
anchor tag of the link. Additionally, link color is changed to indicate its freshness
degree. Link-color changing has been used on the Web for some time. According to
some estimate [10], 74% of Web sites use a link-color changing mechanism. Its prime
aim is to inform users about the links that have been already visited by them. Hence,
its main objective is to assist users with Web navigation rather than to inform them
about the freshness of the content on the previously visited pages. Even if the contents
of a previously visited page have been changed since the last visit, the corresponding
link will still be displayed in the visited-link color. Therefore, this mechanism just
informs the user about the pages he or she has visited without providing any informa-
tion about changes to their contents. Thus, a user will not become aware of any
changes in the content for a page already visited if he or she deems the page not worth
revisiting by simply judging its freshness by the changed color of the link. Moreover,
the marking process is an either/or process, meaning that only two colors are used to
differentiate between visited and unvisited links. Our user-oriented freshness detec-
tion approach with link freshness visualization overcomes this problem. Below is the
summary of the whole algorithm.

1. The pages viewed by the user are stored in a cache or database during browsing.
2. The current version of the accessed page is compared with the latest version

viewed by the user.
3. Any added content is color-coded.
4. If any links on the current version of the accessed page have been already vis-

ited by the user then the current versions of the linked pages are compared
with the latest versions viewed by the user.

 Personalized Detection of Fresh Content and Temporal Annotation 837

5. For all linked pages that the user has viewed, the added contents are identified,
and the pages’ degrees of freshness are calculated. The links to these pages are
shown in different colors depending on their freshness degrees. Additionally,
freshness degrees and dates of their last visits may be displayed. The links for
pages that have not been viewed by the user are left unchanged.

Figure 1 illustrates the steps involved in freshness-based annotating of the content
and links. The links are shown in different colors depending on their corresponding
degrees of freshness. Additionally, the text boxes indicating values of the freshness
degrees are attached to the links. The user can spot which parts of the page are new to
him or her and also see which linked pages contain large amounts of new content. The
system thus facilitates the detection of fresh information in currently viewed pages
and, at the same time, directs the user to fresh content on the linked pages.

Fig. 1. Personalized, freshness-oriented annotation of page contents and links

The process can be fine tuned, for example, by setting a minimum time for consid-
ering the page content to have been viewed; similar to the process used in some mail
clients, such as for example Microsoft Outlook. A scrolling-aware mechanism can
also be implemented to categorize page parts into those seen and unseen by the user.
In addition, page content viewed more than a certain period of time ago can be con-
sidered as new or partially new again by assigning time-dependent weights to the
stored page versions. Finally, freshness degree can be propagated between pages and
thus the freshness rate of larger page structures can be determined. For example, we
may calculate the total freshness rate of the site or its part. In our implementation,
however, we limit the change detection down to one level.

A D

The latest page
versions seen
by the user

+-

-

-
Displayed page version

A D

B A
E

E S

Link freshness scale

Current page version

0% 50% 100%

30%

O R
C

O R
P

50%

F

S
E

E

838 A. Jatowt, Y. Kawai, and K. Tanaka

3.3 Detection and Visualization of Subjective Age of Page Content

Upon request the system visualizes the user-oriented, subjective age of different ob-
jects of page content. Elements on the current view of the page have dates τins(j) at-
tached denoting the timestamps of the particular page views when the user saw the
elements on the page for the first time. To compute these dates the system does a
search in the stored sequence of page views to find the earliest page view when par-
ticular elements first appeared. It compares the stored page views with the current
version of the page for detection of overlapping content. The timestamp of the oldest
page view containing a particular element is considered as the origin date, τins(j). Two
kinds of search algorithms can be used here: sequential and binary search. Sequential
search is more effective for relatively short browsing histories of pages with few past
page snapshots while the binary method works better for larger amounts of past data.

A special approach may be applied for processing links. Links can have two kinds
of user-oriented dates: one is the date of seeing the anchor text of the link for the first
time on the page while the other is the date when the linked page was actually ac-
cessed by the user.

By the user-oriented age visualization, the system makes it possible for a user to
re-order chronologically page content based on its viewing history. The user can
know how old the page content is from his or her point of view. Consequently, a kind
of temporal context is assigned to the current page content that can shed new light on
content elements.

4 System Implementation

We have built a prototype browser in C#. In addition to having all the standard compo-
nents of a traditional Web browser, it has a freshness mode and age display buttons.
The system stores the contents of page versions visited by the user in the local cache.
The dates of the page accesses are also recorded. When the freshness mode button is
on, the system takes the URL of the current page and compares it with the previously
viewed version of the page. We use the diff algorithm [5] to detect textual changes as it
is a commonly used and easy to implement change computation algorithm. The detec-
tion of new images is done by comparing their src and alt attributes inside image tags.
The fresh content on the current page is highlighted by a different background color
that can be specified by a user, and the total freshness rate of the page and the date of
its last access are shown in the bottom bar of the browser. The freshness mode is auto-
matically switched off when the page is accessed for the first time.

In addition to comparing the content between the current and previously viewed
versions, the system also fetches all the URL addresses of the links present on the
current page and determines whether the linked pages have been previously accessed.
No action is taken for those that have not been visited. For the previously accessed one,
the system compares the content of its current version with that of the one recently
visited. Depending on the amount of new content, a certain color is associated to the
link based on the defined color scale, and the freshness degree of the page and the date
of its last access are displayed in small font to the right of the link’s anchor text. We
have used the color scale that to some extent resembles the currently used link-color
changing style in the Web. According to this scale, a page with completely new con-
tent for the user will have a link in the standard blue color, while a page with

 Personalized Detection of Fresh Content and Temporal Annotation 839

completely known content (V(tn-1)= V(tn), where tn is the present moment) will have a
dark red color. Pages with other freshness degrees will have links displayed in colors
that are between blue and red depending on their amounts of new content (see Fig-
ure 1). Freshness degree was calculated using Equation 1.

If one of the links is clicked, the browser loads the requested page, indicates its
new content and displays the freshness degree of the page. If the user then returns to
the page from where the link was followed, the system displays the page with the
same markings as before. The only change is the update of the visited link markings.
The system does not re-compute the freshness of the page as the user may not have
finished viewing the fresh content and links from before and would likely have for-
gotten which ones they were. The user likely needs more time to view all of the fresh
content on the page and those on the linked pages before the page freshness is recom-
puted. Thus, in the current implementation, only when the user switches off and on
the freshness mode button is the page freshness recomputed and the fresh content
marked. When the freshness mode button is off, the system works as a traditional
browser. Figure 2 shows an example of an annotated page. The parts in yellow indi-
cate the fresh content for the user.

When the age display button is pressed then the age computation and visualization
process is triggered for the currently viewed Web page content. The system compares
previous views of the page with the current view to find the earliest page snapshots
containing content elements. The comparison sequence depends on whether sequen-
tial or binary searches are used. The former is used when the number of stored past
page snapshots is below a pre-defined threshold; otherwise the latter is utilized. The
system tries to group and embrace by visual frames the neighboring parts of the page
content that have the same dates. Each frame has a date added in the bottom-right
corner in a small font. This is done in order to minimize the amount of additional
content introduced into the page so that the original layout and outlook of the page are
changed as littler as possible. Figure 3 shows an example of an annotated page using
the user-oriented age determination. Upon pressing the button again the system comes
back to the original outlook of the page.

Highlighted
changes

Annotated
links

Fig. 2. Example of an annotated page with fresh content

840 A. Jatowt, Y. Kawai, and K. Tanaka

Fig. 3. Example of an annotated page with user-oriented, subjective age of the content

5 Conclusion

Incorporation of the mechanism for the personalized freshness detection into a
browser enables easy identification of content that has not yet been viewed by the
user. This improves the browsing experience by making the user aware of content that
is fresh from his or her viewpoint. It extends the already widely accepted mechanism
of link color changing to using an array of colors to indicate the degree of content
freshness of linked pages. This approach is proposed to facilitate browsing and navi-
gation by decreasing the cost and time needed to find fresh content.

In addition, the system is equipped with the mechanism for the user-oriented detec-
tion of the subjective age of page content. It displays the information about dates
when the user has seen certain content on the page for the first time and hence deter-
mines the age of the page content from the point of view of the user. This may help
the user to better understand the current content on the accessed pages and the distri-
bution of added changes in time.

Acknowledgements. This research was partially supported by the Japanese Ministry
of Education, Culture, Science and Technology Grant-in-Aid for Scientific Research
in Priority Areas entitled: Content Fusion and Seamless Search for Information Ex-
plosion (#18049041, Representative Katsumi Tanaka), and by the Informatics Re-
search Center for Development of Knowledge Society Infrastructure (COE program
by the Japanese Ministry of Education, Culture, Sports, Science and Technology) as
well as by the Japanese Ministry of Education, Culture, Science and Technology
Grant-in-Aid for Young Scientists B (#18700111).

References

1. Boyapati, V., Chevrier, K., Finkel, A., Glance, N., Pierce, T., Stockton, R., Whitmer, C.:
ChangeDetector™: A Site Level Monitoring Tool for WWW. In Proceedings of the 11th
International WWW Conference. Honolulu, Hawaii, USA (2002) 570-579

2. Brewington, B.E., Cybenko, G.: How Dynamic is the Web? In Proceedings of the 9th In-
ternational World Wide Web Conference. Amsterdam, The Netherlands (2000) 257-276

 Personalized Detection of Fresh Content and Temporal Annotation 841

3. Cho, J., Garcia-Molina, H.: The Evolution of the Web and Implications for an Incremental
Crawler. In Proceedings of the 26th International Conference on Very Large Databases
(VLDB). Cairo, Egypt (2000) 200-209

4. Cockburn, A., McKenzie, B.: What Do Web Users Do? An Empirical Analysis of Web
Use. International Journal of Human-Computer Studies 54(6) (2001) 903-922

5. Diff Algorithm: http://www.codeproject.com/cs/algorithms/diffengine.asp
6. Douglis, F., Ball, T., Chen, Y., Koutsofios, E.: AT&T Internet Difference Engine: Track-

ing and Viewing Changes on the Web. World Wide Web Journal 1(1) (1998) 27-44
7. Douglis, F., Ball, T., Chen, Y.-F., Koutsofios E.: WebGUIDE: Querying and Navigating

Changes in Web Repositories. In Proceedings of the 5th International World-Wide Web
Conference on Computer Networks and ISDN Systems. Amsterdam, The Netherlands
(1996) 1335-1344

8. Fetterly, D., Manasse, M., Najork, M., Wiener, J.L.: A Large-scale Study of the Evolution
of Web Pages. In Proceedings of the 12th International World Wide Web Conference. Bu-
dapest, Hungary (2003) 669-678

9. Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence. Montreal, Canada (1995) 924-929

10. Nielsen, J.: “Change the Color of Visited Links”. Jakob Nielsen’s Alertbox, (2004),
http://www.useit.com/alertbox/20040503.html

11. Qiang, M., Miyazaki, S., Tanaka, K.: WebSCAN: Discovering and Notifying Important
Changes of Web Sites. In Mayr, H.C., Lazansky, J., Quirchmayr, G., Vogel, P. (Eds.):
Proceedings of the 12th International Conference on Database and Expert Systems Appli-
cations. Lecture Notes in Computer Science, Vol. 2113. Springer-Verlag, Berlin Heidel-
berg New York (2001) 587-598

12. Herder, E., Weinreich, H., Obendorf, H., Mayer, M.: Much to Know about History. In
Proceedings of the Adaptive Hypermedia and Adaptive Web-based Systems Conference.
Dublin, Ireland (2006)

Clustering of Search Engine Keywords Using
Access Logs

Shingo Otsuka and Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

{otsuka, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. It the becomes possible that users can get kinds of informa-
tion by just inputting search keyword(s) representing the topic which
users are interested in. But it is not always true that users can hit
upon search keyword(s) properly. In this paper, by using Web access logs
(called panel logs), which are collected URL histories of Japanese users
(called panels) selected without static deviation similar to the survey on
TV audience rating, we study the methods of clustering search keywords.
Different from the existing systems where the related search keywords
are extracted based on the set of URLs viewed by the users after input
of their original search keyword(s), we propose two novel methods of
clustering the search words. One is based on the Web communities (set
of similar web pages); the other is based on the set of nouns obtained by
morphological analysis of Web pages. According to evaluation results,
our proposed methods can extract more related search keywords than
that based on URL.

1 Introduction

Users search information they are interested in by using search engines in cy-
berspace. Due to the improvement of searching accuracy with development of
technologies, it becomes possible that users can get various kinds of information
by just inputting keywords representing the topic which users are interested in.
However, it is not always true that users can hit upon search keywords properly.
In some search engines like Google, you can get some results and some spelling
suggestion even if you misspelled its search keywords. For example, ‘I want to
search one bank but forgot its name.’, ‘I forget the search keywords but it’s related
to bank.’ and so on. In this case, just submitting ‘bank ’ as a search keyword to
search engines will not produce satisfactory results since the search keyword is
too general. It is important to present some related words to hit on as search for
users who are unfamiliar to search engines.

On the other hand, it is possible to extract search keywords (inputted by
users) and URLs accessed after users checking the logs recorded by the search
engine sites. It is hard to collect this information because they are not open to
the public. Recently, similar to survey on TV audience rating, a new kind of
business appeared, which collects URL histories of Japanese users (called panel)

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 842–852, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Clustering of Search Engine Keywords Using Access Logs 843

who are selected without statistic deviation. By analyzing these logs (called panel
logs) which are merged from accessing history of panels, it becomes possible to
collect all the web pages (URLs) accessed as well as search keywords inputted
by users.

In this paper, we propose two novel methods of clustering of search engine
keywords by using access logs in order to find related search keywords associated
with the search keywords submitted by users. One is based on the web commu-
nities (set of similar web pages)1; the other is based on the set of nouns obtained
by morphological analysis of web pages. According to evaluation results, our pro-
posed methods can extract more related search keywords than previous methods
that based on URLs. Experiment results also show that the methods based on
web community as well as nouns have different characteristic while extracting
the related search keywords.

The rest of the paper is organized as follows. Section 2 will review related
works. In Section 3 we will explain technology which is necessary to understand
our proposed methods. Our proposed methods of clustering search keywords
using panel logs will be discussed in Section 4. Section 5 will show experimental
results and evaluation, while Section 6 will give the conclusion.

2 Related Works

Until now, many works have been done based on web access logs as follows[1, 2]:

– users’ behavior.[3, 4]
– the relationship between web pages.[5, 6]
– search engine sites.[7, 8, 9]
– access logs visualization.[10, 11]

Most of previous works are focused on user behavior by analyzing access logs
from a certain web server. [12] uses proxy logs which are similar to the panel
logs. To the best of our knowledge, we are the only research using the panel logs,
detailed research is not done in others[4].

Results of works related search keywords clustering are not opened to the
public because these results are directly connect to e-commerce business and it is
hard to get search keywords data. [9] describes extracting related information like
‘summer and vacation’ using search logs inputted in NTT2 DIRECTORY. The
purpose of this work is to extract synonyms based on search keywords frequency
and intervals of input search keywords during a certain fixed period. Lycos and
Microsoft publish search keywords research using access logs from search engine
sits[7, 8]. These works classify search keywords based on the set of URLs and
directories visited by the users after input of their original search keywords. Our
methods use contents analysis of web pages visited by the users and community
technique. Therefore these researches are also different from our methods.

1 In this paper, community means web community.
2 Nippon Telegraph and Telephone Corporation.

844 S. Otsuka and M. Kitsuregawa

3 Technology for Search Keyords Clustering

In this section, we describe concepts of panel logs, web community and web
pages archive, which is necessary to understand the proposed methods.

3.1 Panel Logs

We use web access logs provided by ‘Video Research Interactive Inc.’ in this
paper and we call these access logs ‘panel logs ’. This company is one of internet
rating company. Figure 1 is the outline of panel log collection.

– This company selects users based on RDD (Random Digit Dialing) and
requests to become panels.

– Panels reply to some questionnaires and are requested to install the software
in his (her) computer if they agree to become a panel.

– This software sends automatically panel’s perusal information on web pages
to the server of this company.

We do not use the questionnaire data and the panels profile data as in Figure 1
due to privacy reasons.

Fig. 1. Collection method of panel logs

Table 1. The details of the panel logs

An amount of data about 10(Giga byte)
A term of collecting data 45(weeks)
A number of access 55,415,473(access)
A number of session 1,148,093(session)
A number of panels about 10,000(persons)
A kind of URL 7,776,985(variety)
A kind of search keywords 334,232(variety)

Details of the data are shown in Table 1. The panel logs consist of panel ID,
access time of web pages, reference second of web pages, URLs of accessed web
page and so on. The data size of panel logs we used is 10GB and all used panels
are in Japanese. Panel ID is a unique ID which is assigned to each panel, and
it is specific to an individual panel. Notice that panel logs also include search
keywords submitted to search engines.

Clustering of Search Engine Keywords Using Access Logs 845

Usually, analysis of access logs uses the concept of session which is a sequence
of web accesses. A session is defined as a set of URLs visited by a panel during
a web browsing activity. We employed a well-known 30 minutes threshold for
the maximum interval[13], such that two continuous accesses within 30 minutes
interval are regarded as in a same session.

3.2 Web Community

In this paper, we define a web community as ‘a set of relating web pages which
are connected by hyperlinks ’. Most studies on web communities can be roughly
classified into two kinds. One study is extracting dense subgraphs[14] and the
other is extracting complete bipartite graphs[15]. The former one determines
the borderline between inside and outside of web community using the theorem
of “Maximum Flow Minimum Cut” based on network theory. The latter one
extracts complete bipartite graphs in web snapshot since hyperlinks between
web pages which convey the message of common interest topics represented by
complete bipartite graphs.

In our previous work, we created a web community chart[16] based on the
complete bipartite graphs, and extracted communities automatically from a large
amount of web pages.

3.3 Web Pages Archive

We periodically crawl web page written in Japanese. We crawled 4.5 million web
pages during the panel logs collection period and automatically created 17 hun-
dred thousand communities from one million selected pages. Since the time of the
web page crawling for the web communities is in between the duration of panel
logs collection, there are some web pages which are not covered by the crawling
due to the change and deletion of pages which were accessed by the panels.

Thus we define matching factor as follows to examine matching ratio between
the URLs belonging to web-communities and the URLs included in panel logs.

matching factor =

the matching number of URLs belong to communities
and included in panel logs

the number of URLs included in panel logs

We measured the matching factor and the result was only about 19%. If we
delete the directory (file) part in URLs, the matching factor increases about
40% and when we delete the ‘subdomain part’, the matching factor improves
further about 8%. By modifying URLs, about 65% of the URLs included in
panel logs are covered by the URLs in the web communities. The details are
mentioned in [4].

Our proposed methods require analyzing web pages are visited by various
panels and these pages are one million. Therefore we check our web pages archive
in order to examine whether the web page at the time of panel log collection
exist. As a result, about 68 hundred thousand web pages at the time of panel
log collection are saved in archive.

846 S. Otsuka and M. Kitsuregawa

4 Methods of Search Keywords Clustering with Panel
Logs

The search results in search engine sites (e.g. Yahoo!, Google, Lycos and so
on.) are usually present as the lists of URLs related with the search keywords
following page titles and abstracts of the pages. The users (who inputted search
keywords in search engine sites) click and view his (her) interest pages, after
reading page titles and abstracts. We consider that these clicked (viewed) pages
(we call clicked page sets) are high relevance to the search keywords. Therefore,
we extract many sets of a search keywords and clicked pages in panel logs, and
we cluster the search keywords using these sets.

We remove multiple search keywords 3 because most search keywords are one
word in panel logs as results of our preliminary experiment. We don’t discuss
about the methods of using multiple search keywords in this paper.

4.1 Definition of Feature Spaces

We newly define three feature spaces as noun space, community space and URL
space in order to cluster search keywords. The noun space is created using nouns
extracted from texts of clicked page sets. The community space is created using
web community technique as mentioned in Session 3.2. The URL space is using
previous works as mentioned in Session 2 and we define this feature space in
order to compare with the above two feature spaces.

4.2 Definition of Similarity

We define A as a universal set of all search keywords:

A = {a1, a2, . . . , ax, . . . , an}

(ax is any search keywords and n is the number of total search keywords.)

We also define Tx which is feature space of ax as follows.

Tx = {tx1, tx2, . . . , txm}

(tx is URL if feature space is the URL space, tx is community ID4 if feature
space is the community space and tx is the noun if feature space is noun. And

m is a number of total feature space.)

Similarity of any two search keywords ax, ay in A is defined as:

Kxy =
|Tx ∩ Ty|
|Tx ∪ Ty|

3 Actually, in our experiments, we remove multiple search keywords inputted in
Japanese. Therefore, the search keywords translated from Japanese to English may
become multiple search keywords. For example, a word ‘exchange rate’ is single word
in Japanese.

4 Consider each communities have unique ID.

Clustering of Search Engine Keywords Using Access Logs 847

Moreover, it is possible to get frequency of URLs visited by different users
by clicking information in panel logs. Therefore, we define similarity considering
the frequency. Let Tx and Ty be the feature space of ax and ay which are any
words and its’ intersection of set are Tz. Then we define frequency space Hz

considering the frequency as

Hz = {(hz1, hz2, . . . , hzj)}

(hz1 is the total number of frequency of Tx and Ty, and j is the number of the
feature space in the intersection of sets of Tx and Ty.)

Then there is similarity Kfxy considering the frequency as follows.

Kfxy =
The total number of Hz

The total number of frequency

We define high frequency elements as URLs, communities and nouns contained
in any clicked page sets. For example, high frequency elements of URLs are Ya-
hoo!, MSN, Google and so on, and high frequency elements of nouns are I, today,
news and so on. We define a similarity Kd as the results of calculation excluded
high frequency elements from feature space of Tx and Ty and a similarity Kfd
as the results of calculation excluded high frequency elements from frequency
space of Hz. Therefore, it is possible to say that similarity Kfd is the concept of
tf*idf taken in similarity space K.

5 Experiments

In this paper, we experiment for search keywords inputted 4 times or more in
panel logs since the small number of times of input is inaccurate. These search
keywords are 30,000 and a number of high frequency elements of noun space is
4,565 words, in case of URL space is 4 URLs and in case of community space is
9 communities.

In this paper, we used panel logs which are collected from Japanese people.
Therefore, all results have been translated from Japanese vocabulary items.

5.1 Search Keywords Cluster Viewer

We calculated similarity of 30,000 search keywords and make the search key-
words cluster viewer (SKCV) which displays search keywords related to search
keywords inputted by users (we call target keywords). The results of using the
SKCV are shown in Figure 2,3. It is possible to adjust slide bar in the lower
center of Figure 2,3. An edge will be connected to two words when relevance to
nodes (which is extracted related search keywords) is high. And we setup the
edges to become short when relevance to nodes is high.

Nodes with high relevance are displayed near each other although it is mean-
ingless in the position of each node. It is possible to understand results to be

848 S. Otsuka and M. Kitsuregawa

Banks

Economic Terms

Fig. 2. An example of expression using noun space

Regional Banks

Major Banks Economic Terms

Netbanks

Fig. 3. An example of expression using community space

Clustering of Search Engine Keywords Using Access Logs 849

Table 2. Character of evaluated search keywords

Search keywords A number
of input fre-
quency

Ranking of
input times

A number(variety) of veiwed by
the users after input search key-
words

URL Community Noun
Bank 330(times) 679 24(times) 24(times) 6,591(times)

94(sessions) 20(variety) 10(variety) 1,725(variety)
University 799(times) 168 31(times) 31(times) 5,255(times)

195(sessions) 8(variety) 5(variety) 483(variety)

Fig. 4. An example of search keywords ‘bank’ and ‘tax’ in the Yahoo! site

divided into a group of banks and economic terms from a result of Figure 2. And
in Figure 3, related search keywords are grouped as: Major banks group5 (lower
left side in the Figure 3), regional banks group (left side), internet banks (upper
side), and economic terms (right side).

5.2 Evaluation

We evaluate three feature spaces and four similarities (K, Kf, Kd and Kfd) on
three hundred thousand search keywords obtained in the experiment.

In the experiments, we test on two general words Bank and University. The
details of these search keywords are shown in Table 2. We extract related search
keywords related with Bank and University from three hundred thousand search
keywords using three feature spaces and four similarities, and we evaluate

5 Well known banks in Japan.

850 S. Otsuka and M. Kitsuregawa

relevance of search keywords and extracting related search keywords. We define
the judgment of relevance to extract related search keywords based on search
keywords (Bank and University) as follows.

Category1,2. We decide Category1 if the relation between related search key-
words and search keywords is high. And we regard Category2 if it is judged
that there was a certain relation although the relationship is not higher than
Category1.

Yahoo! judgment. In Yahoo! site, we can see the results with page titles and
brief abstracts as Figure 4 when users do search. We consider that the rele-
vance between target keywords and displayed keywords (in SKCV) is high if
both keywords exist simultaneously in the results of page titles or brief ab-
stracts. We judge true when page titles include target keywords and displayed
keywords simultaneously. Generally, brief abstracts consists of sentences in
various places in a web page and each sentence is divided with ‘...’. We judge
true in case of existing target keywords and displayed keywords appear in
the same single sentence as two or more topics on one page may be treated.
For example, we show a result search keywords ‘bank’ and ‘tax’ at the same
time in the Yahoo! sites in Figure 4. We judge true because the page title or
brief abstracts of the second result in Figure 4 includes ‘bank’ and ‘tax’ si-
multaneously. we judge false in the case of the first result in Figure 4 because
the title does not include both keywords and they don’t appear simultane-
ously in any of the single sentence of the brief abstract. We also judge false
in the case of the third and the fourth result in Figure 4 because these titles
and brief abstracts include only one side of keywords. Although Category1,2
are subjective because of our judgment, Yahoo! judgment is more objective
than Category1,2.

5.3 Similarity and Feature Spaces

First, we show the results in Figure 5 when the target keyword is Bank and the
number of displayed keywords is 10 and 100 . We define precision as ‘the number
of displayed keywords judged as Category1 or 2 divided by a total number.’ in
case of Category1,2 and as ‘a number of displayed keywords Yahoo! judgment
divided by a total number.’ in case Yahoo! judgment, respectively. The noun
space tends to extract Category2 more than other feature spaces. And we can
get good precisions using similarity Kfd regardless of feature space and a number
of extracted search keywords.

Next, we examine search keywords University and show the results in Fig-
ure 66. The similarity Kfd is as good as the results of Bank. Similarity Kfd is
the best precision unless the result of community space in case of target key-
words ‘bank’. And our proposed feature spaces (noun space and community
space) are better precision than existing feature space (URL space) in almost
all the cases.
6 We omit a result of Category1,2 because their results show the same tendency as

Yahoo! judgment.

Clustering of Search Engine Keywords Using Access Logs 851

Fig. 5. Precision of ‘bank’

Fig. 6. Precision of ‘university’

6 Conclusion

In this paper we proposed two novel feature spaces and the method of similarity
to cluster search keywords using panel logs based on web community and noun.
We also show our tool for viewing search keywords cluster and evaluate our
proposed methods.

As an application of this tool, it is possible to indicate related search keywords
like payoff and Workers’ asset-building savings using related search keywords ex-
tracting with noun space when the users do not remember search keywords related
to bank.

Acknowledgment

We would like to thank Jun Hirai from Systems Integration Technology Cen-
ter, Toshiba Solutions Corporation. And we also wish to thank Video Research
Interactive, Inc. for providing the panel logs.

References

[1] Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans-
actions on Internet Technology (ACM TIT) 3(1) (2003) 1–27

[2] Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Information and pattern
discovery on the world wide web. Proceedings of the 9th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’97) (1997)

852 S. Otsuka and M. Kitsuregawa

[3] Ungar, L., Foster, D.: Clustering methods for collaborative filtering. AAAI Work-
shop on Recommendation Systems (1998)

[4] Otsuka, S., Toyoda, M., Hirai, J., Kitsuregawa, M.: Extracting user behavior
by web communities technology on global web logs. Proc. of 15th International
Conference on Database and Expert Systems Applications (DEXA’2004) (2004)
957–968

[5] Su, Z., Yang, Q., Zhang, H., Xu, X., Hu, Y.: Correlation-based document clus-
tering using web logs. 34th Hawaii International Conference on System Sciences
(HICSS-34) (2001)

[6] Tan, P., Kumar, V.: Mining association patterns in web usage data. International
Conference on Advances in Infrastructure for e-Business, e-Education, e-Science,
and e-Medicine on the Internet (2002)

[7] Beeferman, D., Berger, A.: Agglomerative clustering of s earch engine query log.
The 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD2000) (2000)

[8] Wen, J., Nie, J., Zhang, H.: Query clustering using user logs. ACM Transactions
on Information Systems (ACM TOIS) 20(1) (2002) 59–81

[9] Ohkubo, M., Sugizaki, M., Inoue, T., Tanaka, K.: Extracting information demand
by analyzing a www search log. IPSJ Journal 39(7) (1998) 2250–2258

[10] Koutsoupias, N.: Exploring web access logs with correspondence analysis. Meth-
ods and Applications of Artificial Intelligence, Second Hellenic (2002)

[11] Prasetyo, B., Pramudiono, I., Takahashi, K., Kitsuregawa, M.: Naviz: Website
navigational behavior visualizer. Advances in Knowledge Discovery and Data
Mining 6th Pacific-Asia Conference (PAKDD2002) (2002)

[12] Zeng, H., Chen, Z., Ma, W.: A unified framework for clustering heterogeneous
web objects. The Third International Conference on Web Information Systems
Engineering (WISE2002) (2002)

[13] Catledge, L., Pitkow, J.: Characterizing browsing behaviors on the world-wide
web. Computer Networks and ISDN Systems (27(6)) (1995)

[14] Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identifi-
cation of web communities. IEEE Computer 35(3) (2002) 66–71

[15] Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for
emerging cyber-communities. Proc. of the 8th WWW conference (1999) 403–416

[16] Toyoda, M., Kitsuregawa, M.: Creating a web community chart for navigat-
ing related communities. In: Conference Proceedings of Hypertext 2001. (2001)
103–112

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 853 – 862, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Non-metric Similarity Ranking for Image Retrieval*

Guang-Ho Cha

Department of Computer Engineering, Seoul National University of Technology
Seoul 139-743, South Korea
ghcha@snut.ac.kr

Abstract. Over many years, almost all research work in the content-based im-
age retrieval has used Minkowski distance (or Lp-norm) to measure similarity
between images. However such functions cannot adequately capture the aspects
of the characteristics of the human visual system. In this paper, we present a
new similarity measure reflecting the nonlinearity of human perception. Based
on this measure, we develop a similarity ranking algorithm for effective image
retrieval. This algorithm exploits the inherent cluster structure revealed by an
image dataset. Our method yields encouraging experimental results on a real
image database and demonstrates its effectiveness.

1 Introduction

Similarity search is essential to media information retrieval systems. Users usually
choose an image to query k most similar images in query-by-example paradigm. To
facilitate content-based image retrieval, many heuristics were developed to faithfully
represent image contents in search engine designs. The central problems regarding the
retrieval task are concerned with interpreting the contents of the images in a collection
and ranking them according to the degree of relevance to the user query. Knowing
how to extract this information is not the only difficulty; another is knowing how to
use it to decide relevance. The decision of relevance characterizing user information
need is a complex problem. To be effective in satisfying user information need, a
retrieval system must view the retrieval problem on “human side” rather than on
“computational side”.

As a step towards perceptual retrieval on human side, many researchers have pro-
posed the use of relevance feedback to improve the retrieval effectiveness [3, 4, 6, 7,
8, 12, 15]. In relevance feedback, the user is given an opportunity to provide feedback
to the system regarding the set of retrievals computed. This feedback is used to com-
pute a next set of retrievals that better match the user’s expectation. Although rele-
vance feedback is an approach to improve the retrieval effectiveness, the power of
relevance feedback is still restricted by the similarity measure and the ranking method
employed by the retrieval system. Another problem with relevance feedback is that
after every round of user interaction, usually the top-k results with respect to the query
have to be recomputed using a modified similarity measure. This is time-consuming
and user must have patience to proceed multi-round feedback.

* This work was supported by grant No. B1220-0501-0233 from the University Fundamental

Research Program of the Ministry of Information & Communication in Republic of Korea.

854 G.–H. Cha

In order to measure perceptual similarity, recently, DynDex [1] proposed a non-
metric distance function, dynamic partial function (DPF) and proved its closer match
with the perceptual similarity than Minkowski metric. However, it is difficult to de-
termine the number of relevant features in DPF.

Therefore, we attempt to address the aforementioned problem by using a nonlinear
approach to simulate human perception. We adopt a Gaussian function as our basic
similarity model to nonlinearly transform traditional distances into a similarity in a
feature space. Compared to the Minkowski-like distance functions, this approach
offers a more accurate modeling of the notion of similarity from the user’s viewpoint.

Based on this similarity model, we propose a new similarity measure and a ranking
algorithm that exploit the inherent cluster structure of a dataset. Our similarity meas-
ure is consistent with the cluster assumption [16] that the points on the same cluster
structure are more similar to each other than to points outside the structure. This simi-
larity measure is the basis of our similarity ranking algorithm. In other words, we
consider the ranking problem as the cluster identification problem.

2 General Framework

2.1 Motivating Examples

Example 1. The user wants to select two images via query-by-example in the hand-
written digit image database. Fig. 1(a) is a query image and Figs. 1(b) and 1(c) may
be the query result if a human selects two images, and those are the actual result from
our similarity search experiment. When we use Minkowski distance metric, on the
other hand, Figs. 2(b) and 2(c) are the actual result of the traditional similarity search
experiment. This means that there may exist a discrepancy between human perception
and the Minkowski-like distance functions. Therefore, in content-based image re-
trieval, it is necessary to establish the link that bridges the gap between human per-
ception and distance calculation.

(a) (b) (c)

Fig. 1. Human perception based retrieval: (a) a query image; (b) and (c) similarity search results

(a) (b) (c)

Fig. 2. Euclidean distance based retrieval: (a) a query image; (b) and (c) the similarity search
results

 Non-metric Similarity Ranking for Image Retrieval 855

Example 2. Fig. 3 shows another example to explain our motivation. Assume that we
are given a set of points constructed with two clusters. A query point is represented by
+ and we want six points nearest to the query point +. If we search six nearest
neighbors (NNs) to the query by pairwise Euclidean distance metric, the six NNs
resulting from the search are the points within the circle whose center is the query
point + (see Fig. 3(a)). However, as described in Example 1, when we consider the
distribution of the given dataset, as shown in Fig. 3(b), the six points in cluster A may
be more relevant to the query point than the points in cluster B even though some of
them have longer Euclidean distance than some points in cluster B.

6-NN search
result

• •
• •

• • • • •
• • •

+
query

(a) k-NN search by Euclidean distance (b) k-NN search considering data distribution

• • a
• •

• • • • •
• • •

b+
query

cluster A

cluster B 6-NN
search
result

Fig. 3. k-NN search results based on two different models

From these motivating examples, we can assume that in image similarity ranking it
may be desirable that closer points have more similar rankings than the points far
away even though they are behind with respect to Euclidean distance based ranking.
If we base similarity ranking on this concept, in Fig. 3(b), the right-most point a in
cluster A should be ranked to be more relevant to the query point than the point b in
the left-most in cluster B. This agrees with the consistency assumption [16]: (1) points
in the same local high density region are more similar to each other than to points
outside this region (local consistency); (2) points in the same global structure are
more similar to each other than to points outside this structure (global consistency).

2.2 Nonlinear Similarity Model

Constructing an effective content-based image retrieval system requires accurate charac-
terization of visual information. Conventional models based on Minkowski distance
functions do not adequately capture all the aspects of the characteristics of the human
visual system. The visual section of the human brain is known to use a nonlinear proc-
essing system for tasks such as pattern recognition and classification [2]. We refer to the
systems that evaluate the degree of similarity between two images linearly proportion-
ally to the magnitude of their distances as the linear model-based retrieval methods.

In order to simulate human perception for similarity evaluation between images,
we first establish a nonlinear model. The assumption for the nonlinear approach is
that the same lengths of the distances do not always give the same degrees of similar-
ity when judged by humans [13]. In other words, the linear model is not competent for
the nonlinear nature of human perception and cannot cope with the complex decision
boundary. We therefore propose to use a nonlinear criterion in performing similarity
comparison.

856 G.–H. Cha

The nonlinear model is constructed by a mapping function f(x) that uses feature
values of input image x to evaluate the degree of similarity to a given query [4]. In its
most common form, the input-output mapping function should be smooth in the sense
that similar inputs correspond to similar outputs. We adopt a Gaussian function as our
basic similarity model for the input-output mapping function:

G(xi, xj) = exp(−d(xi, xj)
2

 / σ2) (1)

The activity of function G is to perform a Gaussian transformation of the distance
d(xi, xj), which describes the degree of similarity between xi and xj. The scaling pa-
rameter σ2 controls the smoothness of the distance between xi and xj and it is specified
by a user. Gaussian function possesses an excellent nonlinear approximation capabil-
ity [2, 10], and we utilize the Gaussian function to simulate the human perception.
The space containing the original data is called the input space. The Gaussian func-
tion creates a new space called the feature space that is a nonlinear transformation of
the input space. Throughout our work, we conduct the similarity comparison in the
induced feature space.

2.3 Similarity Measure

In order to apply the nonlinear similarity concept and the consistency assumption to
the content-based image retrieval, we consider the intrinsic structure and the distribu-
tion revealed by the dataset when we compute the similarity value of data objects. For
this purpose, we introduce the concept of similarity distribution. Our experimental
evaluation shows that improved results are obtained when similarity comparison is
done not by the computation of pairwise object distances but based on the distribution
of similarities that occur in a dataset.

Assume a set of points X = {x1, x2, …, xm}, with each point xi ∈ Rn. Let xq, q ∉ {1,
2, …, m}, be the query point, and the set X contains the points we would like to rank
according to their relevance to the query point xq. We define a vector si = [siq, si1, si2,
…, sim]T, where sij is the similarity value between two objects xi and xj. The similarity
value sij is computed by the Gaussian nonlinear similarity model defined by Eq. (1),
i.e., sij = exp(−d(xi, xj)

2 / σ2). We consider the vector si as the distribution of similari-
ties between the point xi and all other points in a given dataset including the query
point. The vector sq = [sqq, sq1, sq2, …, sqm]T represents the distribution of similarities
between the query point xq and all other points including the query point itself. Ac-
cording to Eq. (1), sqq is defined to be 1.0.

We define the similarity value of a point xi to the query point xq by the dot product
of the similarity distribution for xi and that for xq. A dot product is a similarity meas-
ure that is of particular mathematical appeal. The geometric interpretation of the dot
product is that it computes the cosine of the angle between two vectors, provided they
are normalized to length 1. Moreover, the distance between two vectors is computed
as the length of the difference vector. To summarize, our similarity measure is defined
by the dot product of two similarity distribution vectors in Gaussian feature space.
The similarity value siq of point xi to the query point xq is computed by

 Non-metric Similarity Ranking for Image Retrieval 857

qj

m

j
ijiqqj

m

j
ijqqiqq

T
iiq ssssssssss ⋅+=⋅+=⋅=

== 11

 (2)

In the above Eq. (2), si and sq are the similarity distribution vectors for points xi and
xq, respectively, and the similarity values sij and sqj are computed by Eq. (1). The
similarity measure given by Eq. (2) denotes the actual similarity value between the
query point and point xi plus the linear combination of the similarity values between
point xi and its neighbors, weighted by its neighbors’ similarity values to the query
point. Therefore, the similarity value of a point affects its neighbors’ similarity values,
and if two points are close, they are more influenced by each other because their re-
spective similarity values to query point are weighted by the similarity value between
two points. With this similarity metric based on the similarity distribution, the points
clustered near the query point are favored in similarity ranking.

Notice that the similarity measure given by Eq. (2) is recursively defined. The ini-
tial similarity value siq is computed by Eq. (1). In order to recursively accumulate the
propagation effect of the similarity values through the dataset, we continuously re-
plenish siq with the newly computed siq (siq is equal to sqi for all i) until it reaches a
stable value. This procedure is similar to the concept of the label propagation in semi-
supervised learning [16, 17] and the work on spreading activation networks [11]. In
summary, the similarity score of xi is iteratively computed at time t until it has a stable
value as follows:

siq(t+1) = si
T ⋅ sq([t), t = 1, 2, …, l (3)

Therefore, a point tends to have a high similarity value if its near neighbors have
high similarity values, and this effect increases gradually by the continuous replen-
ishment of its neighbors’ newly computed similarity values.

2.4 Similarity Ranking Algorithm

We provide a similarity ranking algorithm MultiRank for multipoint k-NN queries
based on our similarity measure.

Algorithm MultiRank
[Input] A set of points X = {x1, …, xq, xq+1, …, xm} ⊂ Rn, where x1, …, xq are query

points and the rest xq+1, …, xm are the data points we would like to rank ac-
cording to their relevance to q query points

[Output] The ranked list of data points

1. Construct a similarity matrix K ∈ Rm×m defined by
 Kij = exp(−d(xi, xj) / σ2) if i ≠ j, and Kii = 0

2. Construct a diagonal matrix D defined by

3. Form a normalized similarity matrix K′ = D−1K.
4. Create the initial similarity values sij(0) between a point xi and the query point xj,

1 ≤ j ≤ q, q+1 ≤ i ≤ m.

=

=
m

j
ijii KD

1

858 G.–H. Cha

1 for 1 ≤ i ≤ q, i.e., both xi and xj are query points.

 exp(−d(xi, xj) / σ2) for q +1 ≤ i ≤ m.

5. for t = 1, 2, 3, … do // iteration to achieve stable similarity values
6. for i = q+1 to m do // for each data point
7. for j = 1 to q do // for each query point
8.

9. end for
10. end for
11. Normalize sij by dividing it by max q+1 ≤ i ≤ m { sij }.
12. until sij(t) is stable (t = 10 ~ 20 is actually sufficient)
13. Let sij

* be the limit of the sequence {sij(t)}. Compute the similarity score si
* of xi to

q query points by si
* = max 1≤ j ≤ q { sij

*}.
14. Sort the set S = {sq+1

*, sq+2
*, …, sm

*} in nonincreasing order and return the top k
points as the result.

At first sight, this algorithm seems complex, but it has a simple explanation. The
algorithm is inspired by the work from spectral clustering [5], spreading activation
network [11], and more specifically semi-supervised learning of Zhu et al. [17] and
Zhou et al. [16].

In step 1, we construct the matrix K composed of object-object similarities, i.e., Kij,
i ≠ j, gives a similarity value between two points xi and xj. Kii is zero to avoid rein-
forcement of self-similarity value. Actually, this similarity matrix K is precomputed
before the search, and therefore it is not a burden during the search. Steps 2−3 and 11
provides a suitable normalization necessary for convergence of the algorithm. In step
11, we normalize the similarity values among query points by dividing the similarity
values by the maximum value for each query. Zhu et al. [17] proved that this kind of
label propagation algorithm converges to a simple solution. For most queries in our
experiments, in fact, the algorithm almost converges to a fixed point by around 10
iterations, and therefore t = 10 is sufficient for most cases. During steps 6 – 10, the
similarity value of each point to the query point is propagated to its neighbors until a
final stable state is obtained. By propagating similarity values through data regions, the
consistency assumption used in semi-supervised learning [17] is attained. It means that
the algorithm tends to rank data points with respect to the intrinsic cluster structure.

Example 3. To illustrate the effect of our algorithm, let us consider a toy dataset. We
use a dataset containing 74 2-dimensional points shown in Fig. 4. The dataset has two
cluster structures. Every point should be similar to the points in its neighborhood, and
furthermore, points in one cluster should be more similar to each other than to points
in the other cluster. The similarity ranking results are given in Figs. 4 and 5. Fig. 4
shows the ranking result when a single query point + is used, and Fig. 5 shows the
result for two query points + and ×. The number beside each point denotes the ranking
assigned to that point. As shown in Figs. 4 and 5, it is demonstrated that our ranking
algorithm exploits the global cluster structure of the dataset. These results are
obtained with the number t = 10 of iterations. We believe that for many real world
applications including image searches this kind of retrieval based on the global cluster

sij(0) =

)1()(
1

−′+′=
+=

tsKKts
m

qk
kjikijij

 Non-metric Similarity Ranking for Image Retrieval 859

Fig. 4. Ranking on single query point +

Fig. 5. Ranking on two query points × and +

structure is superior to the local methods that rank data by pairwise Euclidean dis-
tance as we illustrated in Examples 1 and 2.

3 Experiments

For experimental evaluation of our methods, we use the MNIST database that con-
tains 28 × 28 120,000 handwritten digit images. The MNIST database is the currently
used classifier benchmark in the AT&T and Bell Labs and many methods have been
tested with this database. The feature of each image is represented by a 784-
dimensional vector. In our experiments, we use only the first 6,000 images from the
MNIST database and perform a similarity search to return the k most similar images
for the given query images.

To obtain an objective measure of performance, we assume that a query concept is
an image category, i.e., one of the labels ‘0’, ‘1’, …, ‘9’ given to each digit category.

We evaluate precision for k-NN queries, where k is 10 − 100, and precision is
computed by the fraction of the returned k images that belong to the query image
category.

We perform 100 k-NN queries and average their performance. The query images
are randomly selected from the MNIST database. In order to provide the intuition for
our method, we show the k-NN search results in Figs. 6 – 9. Figs. 6 and 7 are the
results using single query image. The top-left image is the query image. Note that
there are many digits other than ‘9’ in Euclidean distance based ranking in Fig. 7.
Figs. 8 and 9 show the results when two images are used as a query. The top-left two
images are query images. The first query uses as the query images the images with
two similar digits ‘4’. The second query uses as query images the very different two
image for digits ‘0’ and ‘6’. For multi-point (or disjunctive) queries, we use the

860 G.–H. Cha

aggregate dissimilarity measure of Falcon [15] with the constant α = −3. As shown in
Figs. 8 and 9, there are many digits other than the query images when we use Falcon’s
aggregate dissimilarity measure. On the other hand, our method generates the uniform
result. This experimental result provides indirect proof of superiority of our method.

Fig. 10 compares the precision performance for k-NN queries among our search
method, Euclidean distance based method, and the SVMActive method [12]. In [12]
SVMActive shows better performance compared with other three query refinement
methods: (1) query reweighting methods such as MARS [7] (2) the query point
movement methods such as MARS [8, 6], MindReader [3], (3) the query expansion
methods such as Falcon [15]. Therefore, we compare our method with SVMActive.
SVMActive is a relevance feedback method based on active learning with support vector
machines (SVM) [14]. It retrieves top-k images after a few relevance feedback
rounds. In each round of relevance feedback, SVMActive determines the images as
“relevant” if they have the same label as the query image’s. In the experiment of
SVMActive, we conduct four relevance feedback rounds and use 100 training images
per round. Fig. 14 shows the average top-k precision for three different methods.
SVMActive shows the worst performance. The poor performance of SVMActive is caused
by the size and complexity of the 784-dimensional MNIST database. Our method
achieves at least 90% precision on the top-k results, whereas the Euclidean distance
based method cannot achieve our performance.

Fig. 6. Top 100 images by our similarity ranking, where the top-left image is the query image

Fig. 7. Top 100 images by Euclidean distance based ranking

Fig. 8. Top 100 images by our similarity ranking, where the top-left 2 images are the query
images

 Non-metric Similarity Ranking for Image Retrieval 861

Fig. 9. Top 100 images computed by Falcon’s aggregate similarity metric

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

Number of images returned (k)

A
cc

ur
ac

y
on

 r
et

ur
ne

d
im

ag
es

(%
)

Ours Euclidean SVM

Fig. 10. Single-point queries: average top-k
precision

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Number of images returned (k)

A
cc

ur
ac

y
on

 r
et

ur
ne

d
im

ag
es

 (
%

)

Ours SVM Falcon

Fig. 11. Multi-point queries: average top-k
precision

Fig. 11 shows the precision result for multi-point k-NN searches. Our method
achieves over than 80% precision in any cases, whereas SVMActive and Falcon cannot
achieve this performance.

4 Conclusions

We have presented a new similarity measure and ranking algorithm based on a
nonlinear similarity model for effective image retrieval. This similarity measure and
the ranking algorithm consider the intrinsic structure and the distribution revealed by
the dataset. Our ranking algorithm supports relevance feedback effectively since it
can easily support the multi-point similarity query. Our content-based image search
scheme has demonstrated its effectiveness and outperformed the existing image re-
trieval methods such as SVMActive, Falcon, and Euclidean distance based method. Our
scheme takes advantage of the intuition that the same portions of the distances given
by Minkowski function do not always give the same degrees of similarity when
judged by humans.

References

1. K.-S. Goh, B. Li, and E. Chang, “DynDex: A Dynamic and Non-metric Space Indexer,”
Proc. ACM Multimedia, 2002, 466-475.

2. S. Haykin, Neural Networks: A Comprehensive Foundation, NY: Maxmillan, 1994.

862 G.–H. Cha

3. Y. Ishikawa, R. Subramanya and C. Faloutsos, “MindReader: Querying databases through
multiple examples, Proc. VLDB Conf., 1998, 218-227.

4. P. Muneesawang and L. Guan, “An Interactive Approach for CBIR Using a Network of
Radial Basis Functions, IEEE Trans. on Multimedia, 6(5):703-716, 2004.

5. A.Y. Ng, M.I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and Algorithm,”
Advances in Neural Information Processing Systems, 14, Cambridge, Mass., 2002, MIT
Press.

6. K. Porkaew and K. Chakrabarti, “Query refinement for multimedia similarity retrieval in
MARS,” Proc. ACM Multimedia, 1999, 235-238.

7. Y. Rui et al., “Relevance feedback: A Power tool for interactive content-based image re-
trieval,” IEEE Trans. Circuits and Video Technology, 8(5), 1998, 644-644.

8. Y. Rui, T. Huang, and S. Mehrotra, “Content-based image retrieval with relevance feed-
back in MARS,” Proc. Int’l Conf. on Image Processing, 1997.

9. B. Schölkopf, A. Smola, and K. Müller, “Nonlinear Component Analysis as a Kernel Ei-
genvalue Problem,” Neural Computation, Vol. 10, pp. 1299-1319, 1998.

10. B. Schölkopf et al., “Comparing Support Vector Machines with Gaussian Kernels to Ra-
dial Basis Function Classifiers,” IEEE Trans. on Signal Processing, Vol. 45 (1997) 2758-
2765

11. J. Shrager, T. Hogg and B.A. Huberman, “Observation of phase transitions in spreading
activation networks,” Science, 236, 1987, 1092-1094.

12. S. Tong and E. Chang, “Support Vector Machine Active Learning for Image Retrieval,”
Proc. ACM Multimedia Conf., 2001, 107-118.

13. R.L.De Valois and K.K.De Valois, Spatial Vision, Oxford Science Publications, 1988.
14. V.N. Vapnik, Statistical Learning Theory, Wiley, NY, 1998
15. L. Wu, C. Faloutsos, K. Sycara and T.R. Payne, “FALCON: Feedback Adaptive Loop for

Content-Based Retrieval, Proc. of VLDB Conf., pp. 297-306, 2000.
16. D. Zhou et al., “Learning with Local and Global Consistency,” Advances in Neural Infor-

mation Processing Systems, 16, Cambridge, Mass., 2004, MIT Press.
17. X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with label propa-

gation,” Technical report CMU-CALD-02-107, CMU, 2002

An Effective Method for Approximating the
Euclidean Distance in High-Dimensional Space

Seungdo Jeong1, Sang-Wook Kim2, Kidong Kim3, and Byung-Uk Choi2

1 Department of Electrical and Computer Engineering, Hanyang University
17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 Korea

sdjeong@mlab.hanyang.ac.kr
2 College of Information and Communications, Hanyang University

17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 Korea
{wook, buchoi}@hanyang.ac.kr

3 Department of Industrial Engineering, Kangwon National University
192-1 Hyoja2-Dong, Chunchon, Kangwon-Do, 200-701 Korea

kdkim@kangwon.ac.kr

Abstract. It is crucial to compute the Euclidean distance between two
vectors efficiently in high-dimensional space for multimedia information
retrieval. We propose an effective method for approximating the Euclid-
ean distance between two high-dimensional vectors. For this approxima-
tion, a previous method, which simply employs norms of two vectors,
has been proposed. This method, however, ignores the angle between
two vectors in approximation, and thus suffers from large approximation
errors. Our method introduces an additional vector called a reference vec-
tor for estimating the angle between the two vectors, and approximates
the Euclidean distance accurately by using the estimated angle. This
makes the approximation errors reduced significantly compared with the
previous method. Also, we formally prove that the value approximated
by our method is always smaller than the actual Euclidean distance. This
implies that our method does not incur any false dismissal in multimedia
information retrieval. Finally, we verify the superiority of the proposed
method via performance evaluation with extensive experiments.

1 Introduction

Recently, multimedia data has been increasing rapidly owing to the populariza-
tion of information superhighway. One of the important research issues in the
multimedia area is to offer effective information retrieval that searches for data,
in which users are interested, accurately and efficiently.

In most previous studies on multimedia applications, a multimedia object is
represented as a feature vector, and accordingly a multimedia database is deemed
as a set of feature vectors in multi-dimensional space. Multimedia information
retrieval is defined as searching for such feature vectors matched to a given
query vector in multi-dimensional space. For effective multimedia information
retrieval, we should extract a large number of features from each object. Thus,
feature vectors are normally high-dimensional: i.e., from several tens to a few
hundreds of dimensions [3,6,7,8].

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 863–872, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

864 S. Jeong et al.

User queries can be classified into two types: range queries and k-nearest
neighbor(k-NN) queries. The range query is to retrieve feature vectors whose
dissimilarity to a query vector is within a tolerance ε. The k-NN query is to
retrieve k feature vectors that are most similar to a query vector [2,3,5]. Previ-
ous studies used the Euclidean distance as a measure for computing similarity
between two vectors [1,3,6].

In high-dimensional space, however, the time of computing the Euclidean
distance between two vectors occupies a quite large part of the total retrieval
time. If we can identify data vectors that do not belong to the final result, without
computing their actual Euclidean distance to a query vector, we can reduce the
total retrieval time significantly. For this reason, most previous methods perform
multimedia information retrieval in two steps: pre-processing step and post-
processing step. The former is to form a set of candidate vectors that have high
possibility to belong to a final result. The latter is to validate every candidate
vector [1]. We call this the two step searching. On the other hand, it is also
possible to examine every data vector by computing its actual Euclidean distance
to a query vector. We call this the exhaustive searching.

To find a set of all the correct answers in the two step searching, we have to
form a candidate set including all the correct answers in the pre-processing step.
A false dismissal is a data vector that is a correct answer, but is not included
in the final result set because of being excluded in the candidate set. A false
alarm is a data vector that is not a correct answer, but requires post-processing
needlessly because of being included in the candidate set [1]. Though a false
alarm is resolved through the post-processing, it makes the overall processing
time increase. For correctness and efficiency in multimedia information retrieval,
our goal is to guarantee no false dismissal and also to minimize the number of
false alarms.

In this paper, we address approximating the Euclidean distance effectively.
The Euclidean distance can be computed by using the norms of two vectors and
the angle between them. However, previous studies ignore the angle and thus
incur large approximation errors [4,5]. We propose a novel method that reduces
the number of false alarms significantly by taking the angle information into
account in approximating the Euclidean distance. Thus, our method reduces the
post-processing time considerably. Also, it guarantees no false dismissal since
the approximation function lower-bounds the Euclidean distance.

2 Related Work

2.1 Approximation by Using the Cauchy-Schwartz Inequality

< X, Y > =
n∑

i=1

xi · yi ≤ ‖X‖‖Y ‖ (1)

D(X, Y) =

√√√√ n∑
i=1

(xi − yi)2 =
√
‖X‖2 + ‖Y ‖2 − 2 < X, Y > (2)

An Effective Method for Approximating the Euclidean Distance 865

Dcs(X, Y) =
√
‖X‖2 + ‖Y ‖2 − 2‖X‖‖Y ‖ ≤ D(X, Y) (3)

Equation (1) is the Cauchy-Schwartz inequality that represents a relationship
between the inner product and norms of two vectors. It defines the upper bound
of their inner product. The Euclidean distance between two vectors, D(X, Y), is
defined as equation (2) by using the norms and the inner product of two vectors.
By substituting the inner product term by a multiplication of norms in equation
(1), we can define the lower bound of the Euclidean distance, Dcs(X, Y), as in
equation (3).

Applying this result to the multimedia information retrieval, we save norms
of all data vectors as abstract information. When a query vector is given, we
approximate the Euclidean distance by using the norm of the query vector and
the saved norm of every data vector, like the mid term of equation (3). In this
pre-processing step, data vectors having their approximated distance to a query
vector smaller than a given tolerance ε are included in a candidate set. Because
the mid term of equation (3) always returns the lower bound of the Euclidean
distance, the approximated distance is always less than or equal to the actual
Euclidean distance, thus the method does not incur false dismissal. Besides, the
computation time can be reduced remarkably compared with that for computing
the actual Euclidean distance because only norms instead of all the dimension
values are considered.

However, the method suffers from large errors because the approximation
is based on only one norm value. Especially, as the dimensionality of vectors
increases, the errors also increase, and thus make the number of false alarms
increased greatly. Consequently, this delays the post-processing time.

2.2 Magnitude Approximation

Magnitude approximation is a method proposed to overcome the large errors in
the method using the Cauchy-Schwartz inequality [4]. In this method, the inner
product is approximated by equation (4).

< X, Y >k≈ b1ψ1(X)ψ1(Y) + b2ψ2(X)ψ2(Y) + · · ·+ bkψk(X)ψk(Y) (4)

ψk(X) = xk
1 + xk

2 + . . . + xk
n (5)

In equation (4), ψk means the k squares of the k-th norm as equation (5), bi is
the optimal coefficient for each term in the approximation function. The optimal
coefficient is calculated by using the least square method [4]. The Euclidean
distance is estimated by substituting the approximation function for the inner
product in equation (2). The optimal coefficient, however, varies according to
data distribution and the value of k. Furthermore, the approximation function
is not guaranteed to be the lower bound of the Euclidean distance [4]. Thus, it
has a serious drawback of incurring false dismissal, and thus is applied to only
a very limited range of applications that allow false dismissal.

866 S. Jeong et al.

2.3 Shape Approximation

Equation (5) has a property of symmetry. In other words, all vectors with dif-
ferent combinations of dimension values show the same k-th norm. This is the
primary cause to incur approximation errors. Shape approximation is a method
proposed to reduce these errors [5]. By dividing one vector into several disjoint
subgroups and calculating their individual k-th norms, the shape information of
a vector is partially captured. This reduces the number of false alarms success-
fully. However, shape approximation also suffers from false dismissal because its
approximation function does not always produce the lower bound of the Euclid-
ean distance.

3 Proposed Method

3.1 Basic Concept

Computing of the Euclidean distance can be reformulated as in equation (6). The
approximation function using the Cauchy-Schwartz inequality does not consider
the cosine component between two vectors. We note that this is the main cause
of large approximation errors.

D(X, Y) =
√
‖X‖2 + ‖Y ‖2 − 2 < X, Y >

=
√
‖X‖2 + ‖Y ‖2 − 2‖X‖‖Y ‖cosθ (6)

In this paper, we propose a novel method for approximating the Euclidean
distance between two vectors more accurately by reflecting the cosine component
between two vectors. The Euclidean distance between given two vectors is com-
puted by using their norms and the cosine component between two vectors as in
equation (6). However, we cannot be aware of the angle θ between a query vector
and every data vector that is necessary to compute the cosine component until
a query vector is given. Of course, it is possible that we can compute the angle
between a query vector and every data vector in query processing. In this case,
however, the pre-processing step takes long time due to this costly computation.
The key idea of our method does reduce this time by storing some abstract
information to approximate the angle at the time of database construction.

Figure 1 shows the concept of angle approximation proposed in this paper. If
we know the angle θRXi between a reference vector R and the i-th data vector

Q

R

1X

1QXθ

QRθ

1RXθ
ii RXQRQX θθθ −≈

2QXθ

2X

2RXθ

Q

R

1X

1QXθ

QRθ

1RXθ
ii RXQRQX θθθ −≈

2QXθ

2X

2RXθ

Fig. 1. Angle approximation using a reference vector

An Effective Method for Approximating the Euclidean Distance 867

Xi, by merely computing the angle θQR between a query vector and a reference
vector, we can approximate the angle θQXi between a query vector and the i-
th data vector by a simple calculation given in equation (7). Thus, we select a
reference vector, then save angles between the reference vector and every data
vector as abstract information. These angles can be computed by using vector
norms and an inner product as in equation (8). We can compute the angle for
every vector without a query vector given because equation (8) has nothing to
do with a query vector. The function, which approximates the distance to be
compared with a tolerance in pre-processing, is given in equation (9).

θ̄QXi = |θQR − θRXi | (7)

θRXi = cos−1
(

< Xi, R >

‖Xi‖‖R‖

)
(8)

D̄(Q, Xi) =
√
‖Xi‖2 + ‖Q‖2 − 2‖Xi‖‖Q‖cosθ̄QXi (9)

3.2 Construction of Abstract Information

In constructing abstract information, we compute and save the information used
for approximation in query processing, from n-dimensional feature vectors of
multimedia data. First, we choose a reference vector. To minimize Euclidean
distance between data vectors and reference vector, we use first principal com-
ponent of PCA as a reference vector. We omit the details due to space limitations.

Then, we compute the norm and the angle for every n-dimensional data vec-
tor. The abstract information saved in a database consists of a set of entries,
each of which is composed of < ‖Xi‖, θRXi > per data vector, and a reference
vector.

3.3 Query Processing

Query processing finds out a set of correct answers whose distance to a query
vector is actually smaller than a tolerance given by a user. We can improve
efficiency by using the abstract information prepared in advance.

When a query vector is given, we first compute norms of a query vector and
a reference vector. Next, we calculate the angle θQR between a query vector and
a reference vector using equation (8). Then, we approximate the angle between
a query vector and every data vector using the abstract information. It is noted
that this approximation requires only a simple subtraction as shown in equation
(7), rather than a costly inner product operation. Then, we approximate the
Euclidean distance by using equation (9) with the approximated angle θ̄QXi .
A data vector is regarded as a candidate, if its approximated distance to a
query vector is less than a tolerance. In post-processing, we find correct answers
from a candidate set by computing their actual Euclidean distance to a query
vector.

868 S. Jeong et al.

3.4 Discussions

This section shows that the proposed method guarantees no false dismissal and
also reduces the number of false alarms significantly compared with the previous
method.

oxq

qox

roq

roq

rox

''

''

∠≡
∠≡
∠≡
∠≡
∠≡

θ
θ
β
β
α

q

o r

q′

x

'rα

β
θ

'β

'θ

Fig. 2. The relationship among a reference vector R, a query vector Q, and a data
vector X

Theorem 1. In Fig. 2, α is the angle between −→or and −→ox. β is the angle between
−→or and −→oq. θ is the angle between −→oq and −→ox. The sum of any two angles among
α, β, θ is always greater than or equal to the other angle.

Proof. Omitted due to space limitations. Refer to [10].

Corollary 1. The approximated angle between a query vector and a data vector
by equation (7) is always less than or equal to the original angle. That is, θ ≥
|α− β|.

Proof. Omitted due to space limitations. Refer to [10].

Corollary 2. The approximated distance obtained by the approximated angle is
always less than or equal to the actual Euclidean distance.

< X, Y >= ‖X‖‖Y ‖cosθ ≤ ‖X‖‖Y ‖cosθ′ (10)

Proof. Omitted due to space limitations. Refer to [10].

Corollary 2 is to show the proposed approximation function lower-bounds the
Euclidean distance, and thus implies our method does not incur false dismissal
in multimedia information retrieval.

The relationship among the actual Euclidean distance function D, the pro-
posed approximation function D̄, and the approximation function using the
Cauchy-Schwartz inequality Dcs is shown in equation (11).

D(X, Y) ≥ D̄(X, Y) ≥ Dcs(X, Y)
where, D(X, Y) =

√
‖X‖2 + ‖Y ‖2 − 2‖X‖‖Y ‖cosθ

D̄(X, Y) =
√
‖X‖2 + ‖Y ‖2 − 2‖X‖‖Y ‖cosθ̄

Dcs(X, Y) =
√
‖X‖2 + ‖Y ‖2 − 2‖X‖‖Y ‖

(11)

We observe that the proposed approximation function lower-bounds the Euclid-
ean distance function, and also upper-bounds the approximation function using

An Effective Method for Approximating the Euclidean Distance 869

the Cauchy-Schwartz inequality. Therefore, our method not only reduces the num-
ber of candidates, but also guarantees no false dismissal. In the worst case, our
method forms a set of candidates same as those from the method using the Cauchy-
Schwartz inequality. On the other hand, in the best case, our method forms a set
of candidates including only correct answers.

4 Performance Evaluation

4.1 Environment for Experiments

We used synthetic and real-life data sets for experiments. A synthetic data set is
composed of 10,000 data vectors and their values for each dimension are in the
range of [0, 1]. A data set consists of a number of clusters over multi-dimensional
space, each of which contains up to 100 data vectors. The real-life Corel image
data set consists of 68,040 images [9]. The feature vector extracted from each
image is a co-occurrence texture in 4 directions: horizontal, vertical, and two
diagonal directions. Co-occurrence is composed of the second angular moment,
contrast, inverse difference moment, and entropy for each direction. So, each
vector has 16 dimensions.

We compared our method with the one using the Cauchy-Schwartz inequality.
We excluded magnitude approximation and shape approximation mentioned in
Section 2 because they cause false dismissal. First, we compared the average
number of candidates obtained after the pre-processing step for 100 random
queries. This experiment runs repeatedly with a varying number of dimensions
of the feature vectors.

The number of candidates indicates the load of the post-processing step: i.e.,
the time spent in post-processing is proportional to the number of candidates.
However, the total retrieval time is also related to the time spent in the pre-
processing step. Thus, we also measured the overall query processing time, which
contains both the pre-processing time and the post-processing time. We sum-
mated total processing times for processing 100 random queries. In this experi-
ment, we stored all data vectors and the abstract information in main memory.
The hardware platform for the experiments is the PC equipped with 2.8G Pen-
tium IV CPU and 512 MB RAM. The software platform is MS Windows 2000
and Visual C++ 6.0.

4.2 Experimental Results

Figure 3 shows the number of candidates obtained from pre-processing of two
methods: our method and the one using the Cauchy-Schwartz inequality for
k-NN queries.

The approximation function using the Cauchy-Schwartz inequality lower-
bounds the actual Euclidean distance, but incurs a lot of false alarms since
it ignores the cosine component between a query vector and a data vector. The
proposed method uses the angle component additionally in approximation, thus,
reduces the number of false alarms significantly. In our experiment, the number

870 S. Jeong et al.

(a) 1-NN (b) 10-NN

Fig. 3. The number of candidates according to varying numbers of dimensions

(a) 1-NN (b) 10-NN

Fig. 4. The query processing time according to varying numbers of dimensions

of candidates is smallest in 16 dimensions and 1-NN queries. In this case, those
data vectors, whose actual distances to a query vector have been computed, were
only 0.62% of total data vectors. Even in the case of 256 dimensions and 10-NN
queries, those were only 2.6%. We see that the method removes 80∼90% can-
didates, which are false alarms, compared with that using the Cauchy-Schwartz
inequality according to the number of dimensions. Furthermore, our method
maintains a similar level in terms of the number of candidates even though
the number of dimensions increases. On the contrary, in the method using the
Cauchy-Schwartz inequality, the number of candidates increases rapidly as the
number of dimensions increases.

Figure 4 shows the query processing time for processing 100 random queries
with different numbers of dimensions. Here, we only display the result for 1-NN
and 10-NN queries in Fig. 4. However, we note that others are shown to have sim-
ilar tendencies in our experiments. In the case of the method using the Cauchy-
Schwartz inequality, the number of candidates increases rapidly as the number
of dimensions increases. This causes the heavy load in the post-processing step.
As a result, the total processing time gets larger. In our method, though more
time was spent in the pre-processing step because the approximation using the
angle is complex and thus requires a little more time, the post-processing time

An Effective Method for Approximating the Euclidean Distance 871

Fig. 5. The number of candidates accord-
ing to varying numbers of final results

Fig. 6. The query processing time accord-
ing to varying numbers of final results

reduces significantly because the number of candidates decreases remarkably. As
a result, the effect of the performance improvement of our method gets higher
as the number of dimensions increases.

Figure 5 and Fig. 6 show the experimental results for the real-life data set
containing the Corel images. Those show the number of candidates and the
query processing time with a changing tolerance, respectively. The experimental
results reveal the tendency similar to that of a synthetic data set. In the case
of 1-NN queries, only 1.56% of total data vectors are selected as candidates in
our method. However, the number of candidates becomes larger as a tolerance
gets larger. The result of the query processing time is also quite similar to that
of a synthetic data set. Also, we see that Fig. 5 and Fig. 6 show tendencies very
similar to each other in the result. Therefore, we confirmed that the number of
candidates is a dominant performance factor in query processing.

5 Conclusions

In multimedia information retrieval, the Euclidean distance is widely used as
a similarity measure. The time of computing the Euclidean distance between
query and data vectors occupies a large part of the total retrieval time in high-
dimensional space. Therefore, we can reduce the total query processing time
significantly by shortening the computation time of the Euclidean distance.

In this paper, we have proposed an effective method for approximating the
Euclidean distance between two high-dimensional vectors. Our method intro-
duces an additional vector called a reference vector for estimating the angle
between the two vectors, and approximates the Euclidean distance accurately
by reflecting the estimated angle. This makes the approximation errors reduced
significantly compared with the previous method. Also, we have formally proved
that the distance approximated by our method is always smaller than the ac-
tual Euclidean distance. This implies that our method does not incur any false
dismissals in multimedia information retrieval. Finally, we have verified the supe-
riority of the proposed method via performance evaluation with extensive exper-
iments. The results show that the proposed method 4.5 to 6.5 times outperforms

872 S. Jeong et al.

the previous method. Moreover, our method is shown to get more effective as
the number of dimensions increases and a tolerance gets smaller. This prop-
erty is quite desirable when we take the characteristics of real environment for
multimedia information retrieval into account.

Acknowledgement

This research was supported by the KRF(Korea Research Foundation) Grant
funded by the Korean Government (MOEHRD) (KRF-2004-041-D00566) and
also by the MIC(Ministry of Information and Communication) of Korea under
the ITRC(Information Technology Research Center) support program super-
vised by the IITA(Institute of Information Technology Assessment) (IITA-2005-
C1090-0502-0009).

References

1. R. Agrawal, C. Faloutsos, and A. Swami: Efficient Similarity Search in Sequence
Database. In Proc. of the 4th Int’l Conf. on Foundations of Data Organization and
Algorithms. (1993) 69–84

2. K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft: When Is Nearest Neigh-
bor Meaningful? In Proc. of the 7th Int’l Conf. on Database Theory. (1999) 217–235

3. C. Bohm, S. Berchtold, and D. A. Keim: Searching in High-Dimensional Spaces-
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys. Vol. 33, Issue 3 (2001) 322–373

4. O. Egecioglu and H. Ferhatosmanoglu: Dimensionality Reduction and Similarity
Computation by Inner Product Approximations. In Proc. of the 9th ACM Int’l
Conf. on Information and Knowledge Management. (2000) 219–226

5. U. Y. Ogras and H. Ferhatosmanoglu: Dimensionality Reduction Using Magnitude
and Shape Approximations. In Proc. of the 12th Int’l Conf. on Information and
Knowledge Management. (2003) 99–107

6. C. Faloutsos, R. Barber, M. Flickner, W. Niblack, D. Petkovic, and W. Equitz:
Efficient and Effective Querying By Image Content. In Journal of Intelligent Infor-
mation Systems. Vol. 3 No. 3/4 (1994) 231–262

7. T. Seidl and H.-P. Kriegel: Efficient User-Adaptable Similarity Search in Large
Multimedia Databases. In Proc. of 23rd Int’l Conf. on Very Large Data Bases.
(1997) 506–515

8. R. Weber, H. J. Schek, and S. Blott: A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In Proc. of 24th
Int’l Conf. on Very Large Data Bases. (1998) 194–205

9. http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html
10. S. Jeong, S.-W. Kim, K. Kim, and B.-U. Choi: An Effective Method for Approx-

imating the Euclidean Distance in High-Dimensional Space. (Unpublished manu-
script)

Dynamic Method Materialization: A Framework
for Optimizing Data Access Via Methods

Robert Wrembel, Mariusz Masewicz, and Krzysztof Jankiewicz

Poznań University of Technology, Institute of Computing Science
Poznań, Poland

{rwrembel, mmasewicz, kjankiewicz}@cs.put.poznan.pl

Abstract. This paper addresses the problem of selecting right methods
for materialization. In our approach, the selection of methods is based on
method execution statistics that are constantly gathered in our prototype
system. Based on the statistics, the prototype selects methods whose
materialization is profitable. The proposed mechanism was extensively
evaluated by experiments whose results are shown in this paper.

1 Introduction

Optimizing access to data returned by methods is an important research and
technological issue in various object systems, e.g. CAD, CAM, CASE, GIS, ob-
ject and object-relational databases, object-relational data warehouses (with ma-
terialized object views), multimedia data warehouses, spatial data warehouses, as
well as in distributed object environments. The fact that methods are expressed
in an object language, taking advantage of inheritance, overloading, and late
binding makes the optimization of method executions challenging. A promising
technique applied in this area is called method materialization (also known as
precomputation or caching).

Basically, method materialization consists in computing the result of a method
and storing it persistently on a disk. Then, every subsequent invocation of the
same method can be handled by reading the already materialized value. A draw-
back of this technique is that values of materialized methods become invalid when
objects used for computing them change. As a consequence, materialized results
have to be invalidated and recomputed.

While applying method materialization one has to address the two following
issues, namely (1) how to materialize methods and how to maintain material-
ized results, as well as (2) which methods to materialize. The first problem was
addressed in several research publications e.g., [1,2,9,15]. The second problem
is similar to materialized view selection that was extensively investigated in the
research literature, e.g. [4,16,17]. In our opinion, materialized method selection
is more difficult to handle than materialized view selection since method codes
and dependencies between them are much complex than dependencies between
materialized views. Materialized method selection, to the best of our knowledge,
has not been addressed so far. Moreover, a common limitation of the approaches

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 873–882, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

874 R. Wrembel, M. Masewicz, and K. Jankiewicz

to method materialization is that they do not consider dependencies between
methods where one method calls another one.

In our approach, further called the hierarchical materialization, we address
the two materialization issues mentioned above. The hierarchical materializa-
tion takes into account chains of method invocations and materializes method
results hierarchically, cf. Section 3. Materializing hierarchically method mi causes
that values of intermediate methods called from mi are also materialized. These
intermediate results are used for recomputing mi quicker after its invalidation.

In this paper we contribute the solution to the materialized method selec-
tion problem. The selection of methods for materialization is supported in our
approach by the so called dynamic materialization, cf. Section 4. In the dy-
namic materialization, only these methods are materialized whose computation
is costly and whose materialized results can be maintained at low costs. To this
end, method execution statistics (method execution time, the number of method
calls, the number of method invalidations) are collected by the system. Based
on the statistics, the system automatically selects appropriate methods for ma-
terialization. When the number of updates invalidating a materialized result
increases beyond a threshold, the system automatically dematerializes a given
method. The hierarchical and the dynamic materialization were implemented
in a prototype system and were evaluated experimentally. The experimental
results, discussed in this paper (cf. Section 5), show that an overall system’s
performance increases while using our materialization techniques. We observe
the system’s performance improvement for various method call graphs, as well
as for different method access patterns containing interchanged method reads
and updates (method invalidations).

2 Related Work

Several approaches to method materialization have been proposed in the liter-
ature. They can be characterized as persistent approaches, e.g. [1,8,9,12] and
temporal approaches, e.g. [2,15].

The analytical framework for estimating costs of caching complex objects
was presented in [8]. A procedural and an object identity based representations
were analyzed. In this approach, the maintenance of cached (materialized) values
was not taken into consideration. In the approach presented in [1], results of
materialized methods are stored in a B-tree based method-index. The application
of method materialization is limited to methods that: (1) do not have input
arguments, (2) compute values based on only atomic types, and (3) do not modify
values of objects. Otherwise, a method is left as a non-materialized one. The
concept presented in [9] allows to materialize methods that use input arguments.
Materialized results are persistently stored in a dedicated data structure. For
the purpose of method invalidations, the system maintains information about
attributes whose values are used for the materialization. Moreover, every object
has appended the set of those method identifiers that used it. In this approach
a system’s designer has to explicitly define in advance (during a system’s design

Dynamic Method Materialization 875

phase) data structures for storing materialized results for all methods, even if
the materialization may not be used at all.

A common limitation of these three approaches is that they do not take into
account dependencies between methods, where one method calls others.

In [12] the authors proposed to decompose complex methods into the graph of
component methods. The semantics of complex and component methods is then
analyzed in order to figure out which results to cache. The approach requires
huge secondary storage as method results are cached extensively. Moreover, the
maintenance of cached results is not supported. In the work presented in [2,15]
method results are cached in memory. When a program or query using a method
ends, cached results are removed. In [15] only methods with constant input values
are cached.

Two loosely coupled related concepts to method materialization concern a
cost model for method executions [3] and indexing methods along an inheri-
tance hierarchy [11]. The cost model developed in [3] includes the number of
O/I operations and CPU time, but it does not consider method materialization.
In [11], the authors proposed and evaluated R-tree based indexes for the opti-
mization of searching methods. This approach focuses on indexing metadata on
methods, rather than method values.

3 Hierarchical Method Materialization

This section outlines the hierarchical materialization, originally presented in [6],
and overviews storage structures.

Concept
Materializing hierarchically method mi results in storing persistently the result of
mi as well as the results of other, intermediate, methods called from mi. When
object oi, used for the materialization of mi, is updated or deleted, then the
value of mi has to be invalidated and recomputed. This recomputation can use
unaffected intermediate materialized results, thus reducing the recomputation
time overhead.

The hierarchical materialization differs from the approaches presented in
[1,8,9] as it supports also materialization of intermediate methods. It differs
from the caching technique proposed in [12] as in the hierarchical materializa-
tion cached results are kept up to date.

The hierarchical materialization can be used among others in: (1) object dis-
tributed environments (e.g. Corba) for synchronizing replica objects; (2) multi-
media databases and data warehouses [14] for computing parameters of images;
(3) object-relational data warehouses [5] as a technique for materializing views.

Storage Structures
Thehierarchicalmaterialization is supportedby severaldata structures, cf. [6]. The
most important ones include: the Materialized Method Results Structure (MMRS),
the Graph of Method Calls (GMC), and the Inverse References Index (IRI).

876 R. Wrembel, M. Masewicz, and K. Jankiewicz

The MMRS stores all materialized results of all methods, i.e.: (1) materialized
values of methods, (2) identifiers of objects used for computing the values, and
(3) arrays of input argument values passed to a materialized method. Calling
method mi for a given object and with a given array of input argument values
results in searching the MMRS. If the result is found, it is returned. Otherwise,
the result is computed, stored in the MMRS, and returned to a user. When
a base object of mi is updated or deleted, then a materialized value becomes
invalid and is removed from the MMRS.

A given value vi of materialized method mi executed with a given set of
input argument values {a1, a2, ..., an} for object oi can be shared by multiple
methods calling mi. The first method that calls mi materializes its result. Any
other method calling mi with {a1, a2, ..., an} for object oi accesses the already
materialized value in the MMRS.

The hierarchical materialization analyzes and maintains dependencies be-
tween methods where one method calls another one. These dependencies are
stored in the GMC. Its content is used by the procedure that stores and invali-
dates materialized results.

In order to invalidate values of dependent materialized methods, the system
must also be able to traverse a composition hierarchy in an inverse direction. To
this end, we use the so called inverse references. An inverse reference for object
oj is the reference from oj to other objects that are referencing oj . The references
are maintained in the IRI.

Method Code Modification
In order to support the hierarchical materialization, the code of materialized
method mi has to be extended with a section that verifies whether the value of
mi invoked for object oi with a given set of input values has already been stored
in the MMRS. Codes of methods are automatically augmented by our prototype
system. An augmented code is inserted between tags that have to be explicitly
placed in a method by a programmer.

4 Dynamic Method Materialization

Finding the right set of methods for materialization is difficult as for each method
mi one has to take into account: (1) its execution/response time, (2) the number of
reads of materialized mi, and (3) the number of invalidations of mi, i.e. the number
of updates of its base objects. Finding appropriate methods for materialization
is supported in our approach by the dynamic materialization. It is designed for
optimizing a system’s performance for a set of operations, including method mi

reads and its base object updates. Such a set will further be called a workload.
The dynamic materialization has two following features.

1. It allows to find the set M of methods whose materialization improves sys-
tem’s performance for a given workload. When the workload changes, then
the materialization of previously selected methods in M may no longer be

Dynamic Method Materialization 877

profitable. In this case the materialization is automatically turned off for
some or all methods in M .

2. It allows to change automatically the moment of rematerializing invalidated
results of methods. Method mi can be recomputed either (1) just before
reading its value (so called late or lazy rematerialization) or (2) immediately
after its base object was updated (so called early or immediate rematerial-
ization) [10].

The dynamic materialization is managed by a software module, called access
optimizer that is responsible for selecting appropriate methods for materializa-
tion. To this end, the module monitors methods access patterns and gathers
methods execution statistics. The statistics include CPU time and the number
of disk accesses for: (1) methods’ executions, (2) methods’ invalidations and re-
computations, and (3) reads of materialized values. The statistics also include
counters of base objects updates.

The materialization of method mi will reduce access time to data returned
by mi if the following rule holds for every reading operation in the workload, cf.
[13]: an overall time spent on reading materialized value v of mi requested by
the number r of reading operations plus an overall time spent on rematerializing
the value of mi caused by the number of u update operations is lower than an
overall time spent on computing the result of non-materialized mi.

5 Performance Evaluation

The described dynamic materialization combined with hierarchical materializa-
tion was evaluated by experiments on a PC with Pentium III (1.13GHz) and
256 MB of RAM, under Windows 2000. The goal of the experiments (making
the main paper contribution) was to measure an overall system’s response time
by applying the dynamic materialization technique, for a given workload. The
system’s response time was measured for: (1) different shapes of the GMC s
(cf. Section 3) that methods formed; (2) different number of base objects be-
ing updated, causing invalidations and rematerializations of different number of
previously materialized results.

Three different shapes of the GMC s were evaluated that differed with respect
to: the number of levels and the number of nodes in each level. These two pa-
rameters had impact on the size of our test database. A generic, parameterized
shape of our test GMC is shown in Figure 1. Root method m0 at level 0 calls
j methods at level 1. Each of these methods further calls j methods at a lower
level. The parameters of our test GMCs are presented in Table 1.

The experiments tested overall system’s response time for a given workload
including 1000 operations. The number of read (r) and update (u) operations
in the workload was parameterized from 0 to 1000, so that r + u remained
constant. Moreover, the number of intermediate results of methods invalidated
by base object updates was also parameterized and ranged from 20% to 80%
of total materialised results, i.e. from 20% to 80% of the GMC branches were

878 R. Wrembel, M. Masewicz, and K. Jankiewicz

m0

m1 m2

level 0

level 1

level m

..... mj

m1 mj m1 mj
.....

.....

calls

calls

calls

Fig. 1. A generic shape of the test GMC

Table 1. Parameters of the test GMC s

Number of Number of methods in Database
levels each level size

(where level number>0)
GMC1 7 10 105GB
GMC2 5 20 15GB
GMC3 3 100 980MB

Fig. 2. System response times for: non-materialized method m0, hierarchical material-
ization of m0 for early and late rematerialization strategies (GMC1; 60% of invalidated
intermediate materialised results)

invalidated. The obtained overall system’s response times were measured for root
method m0 (cf. Figure 1).

Figure 2 presents overall system’s response times for executing method m0
parameterized by the number of calls of m0. The percent of reading operations
to base objects updating operations in the workload was changing from 0% (only
updates) to 100% (only reads). The results were obtained for GMC1 and 60% of

Dynamic Method Materialization 879

invalidated intermediate materialized results. The “not Mat” curve represents
the execution time of a non-materialized method. In this case, the system’s
response time drastically increases when the number of method reads increases.
The “late Mat” curve represents the execution time of m0 after applying the

Fig. 3. System response times for: non-materialized method m0, hierarchical material-
ization of m0 for early and late rematerialization strategies (GMC2; 60% of invalidated
intermediate materialised results)

Fig. 4. System response times for: non-materialized method m0, hierarchical material-
ization of m0 for early and late rematerialization strategies (GMC3; 60% of invalidated
intermediate materialised results)

880 R. Wrembel, M. Masewicz, and K. Jankiewicz

hierarchical materialization and when method rematerialization was done just
before the method value was requested and read. “early Mat” represents the
execution time when the rematerialization of m0 was done immediately after
invalidating its result, i.e. immediately after its base object update occured.
An overall system’s response time after applying the dynamic materialization is
marked in the figures as the gray-bold-semitransparent curve.

As we can observe from Figure 2, the late rematerialization substantially
outperforms the early rematerialization when the percent of method reads in
the workload is lower that about 65%, cf. point A in the chart. After that point,
the early rematerialization gives slightly better performance than the late one.
For this reason, the access optimizer module automatically switches between the
late and early rematerialization strategies (cf. point A) depending on the percent
of m0 reads in the workload. Thus, it guarantees that the most efficient strategy
is used at a given moment and for a given workload.

Figures 3 and 4 present overall system’s response times for executing method
m0 in a function of the percent of reads of m0 in the test workload, for 60%
of invalidated branches, for GMC2 and and GMC3, respectively. The efficiency
characteristics show that also for other shapes of the GMCs the dynamic mate-
rialization improves a system’s performance (cf. the gray-bold-semitransparent
curve). For these two tested graphs our access optimizer module switches from
the late to the early rematerialization strategy when the number of read opera-
tions in the workload exceeds 60% (cf. threshold point A).

Fig. 5. Comparison of overall system response times for: (1) non-materialized method
m0 and (2) dynamically materialized m0 (GMC3; 20%, 40%, 60%, and 80% of invali-
dated intermediate materialised results)

Dynamic Method Materialization 881

Figure 5 summarizes overall system’s execution times for: (1) non-materialized
method m0 (the “not Mat” curve) and (2) dynamically materialized m0. These
characteristics were measured for GMC3 for 20% (marked as “20% Inv” on the
chart), 40% (“40% Inv”), 60% (“60% Inv”), and 80% (“80% Inv”) of invalidated
intermediate materialised results. As we can observe from the chart, methods
with fewer invalidated results perform better than those with a greater num-
ber of invalidated results. Moreover, even when 80% of intermediate mateiral-
ized results is invalidated, the system still performs slightly better than with-
out materialization applied, within the range between 0% and 55% of method
reads.

As our further experiments show, when the number of invalidated intermediate
materialized results exceeds 80% of total materialized results for a given method
mi, then the system performance deteriorates. In this case, the access optimizer
module automatically swithches off the materialization of this method (m0 in
our test environment). As a consequence, all materialized results of the method
are removed from the MMRS and the method is executed from scratch every
time it is called (cf. the “not Mat” curve).

We conducted several other experiments with different GMCs and different
percents of branches invalidated (not discussed here due to space limit). The
experiments show that our prototype system behaves in all those scenarios simi-
larly to the scenarios presented in this paper, i.e. we obtained an increase in the
system’s performance.

6 Summary

In this paper we addressed two important issues concerning method materializa-
tion, namely materialization technique and method selection for materialization.
We tackle the first issue by applying hierarchical materialization since it was
proved to be a promising and efficient technique for some types of systems (cf.
[6,7]), whereas the selection of methods for materialization and methods recom-
putation moment is based on the dynamic materialization. To the best of our
knowledge, it is the first approach to automatic optimization of method execu-
tions. The dynamic materialization can be applicable to every system that uses
methods.

As our experiments show, by using the dynamic materialization combined
with the hierarchical materialization, an overall system’s performance can be
improved: (1) even when the number of invalidated intermediate materialized re-
sults is great (up to 80% in our experiment); (2) regardless the shape of the Graph
of Method Calls; (3) for workloads composed of various numbers of method reads
and base object updates.

In future, we plan to analyze patterns of sequences of method reads and its
base object updates in workloads for the purpose of discovering frequent pat-
terns. Based on these frequent patterns, we plan to predict forthcoming patterns
for the purpose of selecting the most appropriate strategy of rematerializing
methods.

882 R. Wrembel, M. Masewicz, and K. Jankiewicz

References

1. Bertino E.: Method precomputation in object-oriented databases. SIGOS Bulletin,
12(2,3), 1991

2. Eder J., Frank H., Liebhart W.: Optimization of Object-Oriented Queries by In-
verse Methods. Proc. of East/West Database Workshop, 1994

3. Gardarin G., Sha F., Tang Z. H.: Calibrating the Query Optimizer Cost Model of
IRO-DB, an Object-Oriented Federated Database System. Proc. of VLDB, 1996

4. Gupta A., Mumick I.S. (eds.): Materialized Views: Techniques, Implementations,
and Applications. MIT Press, 1999

5. Huynh T.N., Mangisengi O., Tjoa A.M.: Metadata for Object-Relational Data
Warehouse. Proc. of DMDW, 2000

6. Jezierski J., Masewicz M., Wrembel R., Czejdo B.: Designing Storage Structures
for Management of Materialised Methods in Object-Oriented Databases. Proc. of
OOIS, 2003, LNCS 2817

7. Jezierski J., Masewicz M., Wrembel R.: On Optimising Data Access via Materi-
alised Methods in Object-Oriented Systems. Proc. of ADVIS, 2004, LNCS 3261

8. Jhingran A.: Precomputation in a Complex Object Environment. Proc. of ICDE,
1991

9. Kemper A., Kilger C., Moerkotte G.: Function Materialization in Object Bases:
Design, Realization, and Evaluation. IEEE TKDE, 6(4), 1994

10. Kemper A., Moerkotte G.: Object-Oriented Database Management: Applications
in Engineering and Computer Science. Prentice Hall, 2004

11. Kratky M., Stolfa S., Snasel V., Vondrak I.: Efficient Searching in Large Inheritance
Hierarchies. Proc. of DEXA, 2005, LNCS 3588

12. Liu Y. A., Stoller S. D., Teitelbaum T.: Static Caching for Incremental Computa-
tion. ACM Trans. on Programing Languages and Systems, 20(3), 1998

13. Masewicz M., Wrembel R., Jezierski J.: Optimising Performance of Object-
Oriented and Object-Relational Systems by Dynamic Method Materialisation.
Proc. of ADBIS (short papers), 2005

14. Ben Messaoud R., O. Boussaid O., Rabaséda S.: A New OLAP Aggregation Based
on the AHC Technique. Proc. of ACM DOLAP, 2004

15. Pugh W., Teitelbaum T.: Incremental Computation via Function Caching. Proc.
of ACM POPL, 1989

16. de Sousa M. F., Sampaio M. C.: Efficient Materialization and Use of Views in Data
Warehouses. SIGMOD Record, 28(1), 1999

17. Theodoratos D., Xu W.: Constructing Search Space for Materialized View Selec-
tion. Proc. of ACM DOLAP, 2004

Towards an Anti-inference (K, �)-Anonymity
Model with Value Association Rules

Zude Li, Guoqiang Zhan, and Xiaojun Ye

Institute of Information System and Engineering
School of Software, Tsinghua University, Beijing, 100084, China

{li-zd04, zhan-gq03}@mails.tsinghua.edu.cn, yexj@tsinghua.edu.cn

Abstract. As a privacy-preserving microdata publication model, K-
Anonymity has some application limits, such as (1) it cannot satisfy
the individual-defined k mechanism requirement, and (2) it is attached
with a certain extent potential privacy disclosure risk on published micro-
data, i.e. existing high-probability inference violations under some prior
knowledge on k-anonymized microdata that can surely result in personal
private information disclosure. We propose the (k, �)-anonymity model
with data generalization approach to support more flexible and anti-
inference k-anonymization on a tabular microdata, where k indicates
the anonymization level of an identifying attribute cluster and � refers to
the diversity level of a sensitive attribute cluster on a record. Within the
model, k and � are designed on each record and they can be defined sub-
jectively by the corresponding individual. Beside, the model can prevent
two kinds of inference attacks for microdata publication, (1) inferring
identifying attributes values when their value domains are known; (2)
inferring sensitive attributes values with respect to some value associ-
ations in the microdata. Further, we propose an algorithm to describe
the k-anonymization process in the model. Finally, we take a scenario to
illustrate its feasibility, flexibility, and generality.

1 Introduction

An individual represented as a record in a database might be re-identified by
joining the released data with another public database. To reduce the risk of
this attack type, k-anonymity is proposed as a privacy-preserving microdata
publication model against individual re-identification on published microdata
[15,19]. Many instances illustrating such attacks are listed in literature such
as [15,19,12,8,9,2,13], which are the motivations for most k-anonymity models
introduced in the past several years. In general, k-anonymity means that one
can only be certain that a value is associated with one of at least k values, or
in a dataset, each record is indistinguishable from at least k-1 other records on
identifying attributes [19,12].

For current k-anonymity models on microdata with relational table schema
consisting of identifying attributes and sensitive attributes, the k value is stat-
ically predefined before anonymization, and it is table-level as it is used to

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 883–893, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

884 Z. Li, G. Zhan, and X. Ye

anonymize all tuples of identifying attributes in the table to achieve the k-
anonymity objective: for any tuple of identifying attributes, there are at least
k-1 other tuples same to it. But such a statically predefined table-level k value
mechanism is not always suitable for some microdata publication applications.

Example 1. In a public Job-Hunting database, individual data are handled with
current k-anonymity technologies before publication for preventing individual re-
identification. As the application required, it is more reasonable for individuals to
define the re-identification levels (i.e. the k values) on their data. Lets take Table
1 (the original microdata) as an instance. Suppose < BirthDate, Sex, Zipcode >
is the identifying attribute set and Disease is the sensitive attribute indicating
individual disease history. Ideally, an individual with index 2 may set k to 1 since
she is always healthy (i.e. her Disease value is “No”) and she hopes anybody
know it, while another with index 7 may define k as large as possible since
he has AIDS history and he thinks it can influence his obtaining employment.
Unfortunately, current k-anonymity models cannot satisfy this requirement of
setting different k values as individuals required.

Table 1. A table of health data in the
Job-Hunting database

BirthDate Sex Zipcode Disease
1 11-12-39 F 13068 Flu
2 11-02-39 F 13068 No
3 08-24-57 F 14092 B. Cancer
4 08-02-57 M 13053 Stoke
5 08-02-42 M 13053 Stoke
6 11-22-42 M 13053 Flu
7 07-25-42 M 13053 AIDS

Table 2. The derived 2-anonymous, 2-
diverse table of Table 1

BirthDate Sex Zipcode Disease
1 11-∗-39 F 13068 Flu
2 11-∗-39 F 13068 No
3 08-∗-57 ∗ 1∗∗∗∗ B.Cancer
4 08-∗-57 ∗ 1∗∗∗∗ Stoke
5 ∗-∗-42 M 13053 Stoke
6 ∗-∗-42 M 13053 Flu
7 ∗-∗-42 M 13053 AIDS

Furthermore, privacy attacks may exist in a k -anonymized dataset when there
is little diversity for those sensitive attribute clusters [12], such as an extreme sit-
uation, k tuples of same identifying attributes values map to a sensitive attribute
cluster with just one value element, which indicates an individual who satisfies
the identifying attributes values can be guessed mapping to the exact sensitive
attribute value with 100% probability by attackers. The �-diversity mechanism
is proposed as an extended mechanism of k-anonymity to prevent such a situa-
tion through explicitly requiring each sensitive attribute cluster (i.e. q∗-block in
[12]) contains at least � well-represented value elements [12]. Whether a cluster
is �-diverse is judged as whether its entropy is enough large. The entropy on
a cluster just describes the difference degree of elements inside, but unable to
reflect the factual high-probability risk of inferring a value element in a cluster
caused by existed attribute or value associations in the table.

Example 2. By using 2-diversity on Table 1 while k is 2, we can get the de-
rived table for publication (Table 2). In the table, each tuple of <BirthDate,

Towards an Anti-inference (K, �)-Anonymity Model 885

Sex, Zipcode> maps to at least 2 Disease values. For instance, <08-∗-57, ∗,
1∗∗∗∗> maps to the 2-size cluster {B.Cancer, Stoke} (here ∗ denotes a sup-
pression value). Since it is well-known that the probability of Breast Cancer
(B.Cancer) on female is much higher than that on male, which can be seen as
a value association between Sex and Disease, it can be inferred from Table 2
with factual high probability that a female (male, respectively) born in August
of 1957 (i.e. satisfying 08-∗-57) had B.Cancer (Stoke, respectively).

Beside, in Table 2, if the value domain of BirthDate is known to the attacker,
the probability of inferring the exact value from 08-∗-57 is increased to 1

2 but
not 1

30 , since there are just 2 values in the domain satisfying 08-∗-57. As it is
unreasonable to suppose the attacker has no such prior knowledge, the problem
that how to prevent this kind of inference attacks is still open in current k-
anonymity research.

We propose the (k, �)-anonymity model to support the individual-defined (k,
�) mechanism for more flexible individual data anonymization, where k indicates
the anonymization level of an identifying attribute tuple and � indicates the
diversity level of a sensitive attribute cluster. As later observed, this model can
prevent the above inference violations caused by some prior knowledge.

Its main advantages include, (1) individual has rights to define the k and �
values for his/her personal data, i.e. for the ith record in the derived microdata,
there are ki tuples of same anonymized identifying attributes values mapping to
the sensitive attribute value cluster of �i size (�i ≤ ki); (2) value associations are
modelled in the anonymization process to remove the factual high-probability
inference violations; (3) the value domains of identifying attributes are supposed
known publicly, which make the inference prevention more robust than most cur-
rent models. Overall, the main contribution of this paper is the (k, �)-anonymity
model, together with the algorithm that describes the detail process of apply-
ing the model on an original microdata to derive the anonymized microdata for
publication.

The rest of this paper is organized as follows: Section 2 defines some concepts
and notations for discussion convenience later on. Section 3 and Section 4 pro-
pose our (k, �)-anonymity model and its implementation algorithm. Section 5
gives an application scenario describing how to take the algorithm on a table
for publishing without individual re-identification violations. Section 6 discusses
some related work on this topic. Finally, Section 7 gives a short conclusion for
the paper and proposes the focuses of our future work.

2 Concepts and Notations

Suppose individual data are recorded in a relational table with m attributes
and n records stored in database, mainly including identifying attributes and
sensitive attributes (here we ignore the unique identity attributes and others).
The schema of such a table in database refers to m-tuple <A1, A2, · · ·, Am>,
where Ai (1 ≤ i ≤ m) is an attribute, and the value domain of Ai is denoted
as Di including the values that may appear on Ai. An attribute is named as a

886 Z. Li, G. Zhan, and X. Ye

sensitive attribute whose value for any particular individual must be kept secret
from others. We take SI to denote the sensitive attribute set in the table. Beside,
a record in a table is a set of m-tuple <a1, a2, · · ·, am>, where ai ∈ Di. We
assume that each record refers to an individual, and a table instance is a set of
records and just a subset of a larger population Ω. For convenience, we use table
to stand for table instance in the paper.

Attribute association, Ai, Ai+1, · · · → Aj , Aj+1, · · · [p], indicates that any
value of attribute tuple <Aj, Aj+1, · · ·> can be correctly inferred with proba-
bility p by the value of attribute tuple <Ai, Ai+1, · · ·>. For example, the follow-
ing attribute association holds: BirthDate → Age [100%], since for anybody, the
age can be sure inferred when the birthdate (month-day-year) is known. Similar
to attribute association, value association indicates that some special values of
<Aj , Aj+1, · · ·> can be correctly inferred with p by some values of <Ai, Ai+1,
· · ·>. For example, the value association, Sex = M → Disease = B.Cancer [0%],
indicates a male has very small probability (about 0%) to have B.Cancer. In this
paper, we suppose attribute associations can be easily removed before anonymiz-
ing a table (through normalization). For instance, if BirthDate and Age coexist
in a table, we simply remove the Age attribute without any information loss in
effect, since it can be fully inferred by the BirthDate attribute.

Quasi-Identifier Attribute Set: In a table, a set of identifying attributes is
called a Quasi-Identifier attribute set (QI), if they can be joined with external
information to uniquely re-identify at least one individual in Ω (with sufficiently
high probability) [15,9,8].

Definition 1 (K-Anonymity). A table T satisfies k-anonymity if for every
record t (t ∈ T), there exist k − 1 other records ti1, · · ·, tik−1 ∈ T , such that
t [QIi] = ti1[QIi] = · · · = tik−1[QIi], where t[QIi] denotes the projection of t
onto the attributes in QIi, QIi ∈ QI (similar for tij [QIi], 1 ≤ j ≤ k − 1).

The above k is predefined on the scale of the whole table. As we analyzed above,
it is not always suitable for some applications. So we define the notion of k on a
record for the individual-defined anonymization feature on QI.

Definition 2 (K on Record). The ki value on the ith record in a table refers
to the size of the anonymized QI cluster mapping to the ith SI tuple.

Definition 3 (�-Diversity). A table satisfies �-diversity if any SI cluster map-
ping to a QI tuple includes at least � completely different elements on SI.

In this paper, we suppose SI in a table includes just one sensitive attribute.
With it, the above definition is same to that in [12]. Similarly, we can define the
notion of � on a record for the individual-defined diversity feature on SI.

Definition 4 (� on Record). The �i value on the ith record in a table refers to
the amount of different elements in the SI cluster mapping to the ith QI tuple.

For discussion convenience, we take KCluster and LCluster to denote the QI
tuple cluster mapping to a SI tuple and the SI tuple cluster mapping to a QI

Towards an Anti-inference (K, �)-Anonymity Model 887

tuple in an anonymized table. They on the ith record are denoted as KCluster i

and LCluster i, respectively. For example, in Table 2, LCluster1 = {Flu, No},
KCluster1 = {<11-∗-39, F, 13068>}.

In this paper, we take data generalization approach to implement the k-
anonymization process on an initial table, take ∗ to denote a suppression on the
data for hiding some specific information. As above discussed, each attribute in
a table has a value domain containing all values appeared in the table. Given a
domain, it is possible to construct a more “general” domain in a variety of ways,
such as the way in [15,18]. We use < to denote domain generalization relation. For
instance, on attribute Sex, the following domain generalization relation holds:
{F, M} <ν {∗}. Further, we use <ν and <+

ν to denote direct (explicit) and in-
direct (implicit) value generalization relation. The latter indicates a sequence of
several direct generalization relations. For examples, 11-02-39 <ν 11-∗-39 refers
to that 11-∗-39 is a direct generalization of 11-02-39; An indirect relation 11-02-
39 <+

ν ∗-∗-39 indicates 11-02-39 <ν 11-∗-39 and 11-∗-39 <ν ∗-∗-39.
We endow the attacker with considerable power, even suppose the attacker

can compute the value domain of each attribute and the corresponding value
generalization hierarchies. Under this assumption, some inference problems may
potentially exist. For example, it is meaningless to generalize 13053 to 1305∗
for Zipcode, since there is just one value in the domain on Table 1 satisfying
1305∗. An attacker can infer 13053 from 1305∗ if the value domain is known. In
another word, there is no specific information loss to the attacker on the above
generalization relation. It is different from most anonymization cost metrics,
since in them, generalization from 13053 to 1305∗ indicates the probability of
inferring 13053 from 1305∗ is 1

10 but not 1
1 under our assumption. Formally, we

define the notion of anonymization degree to express this idea.

Definition 5 (Anonymization Degree). Anonymization degree (AD) on a
value generalization relation (vi <ν vj) in value domain D (i.e. vi ∈ D) refers to
the amount of values in D satisfying vj , denoted as AD(vi <ν vj).

For instances, on Zipcode of Table 1, AD(13053 <ν 1305∗) = 1, AD(13053 <+
ν

130∗∗) = AD(13053 <+
ν 13∗∗∗) = 2, AD(13053 <+

ν 1∗∗∗∗) = 3. The anonymiza-
tion degree of a KCluster is the amount of QI tuples in the table satisfying the
cluster. For example, the AD value on KCluster {<08-∗-57, ∗, 1∗∗∗∗>} (in Table
2) is 2, since there are just 2 QI tuples in the Table 1 satisfying it: <08-24-57,
F, 14092> and <08-02-57, M, 13053>.

With this definition, it is easy to ascertain the exact inference probability on
a value generalization relation. For example, the exact probability of inferring
13053 from 1305∗ is 1

1 but not 1
10 . Formally, we take Pr(vi <ν vj) to denote the

probability of correctly inferring vi from vj , the following holds:

Pr(vi <ν vj) =
1

AD(vi <ν vj)
. (1)

Definition 6 (Diversity Degree). Diversity degree (DD) on a cluster is the
amount of different elements in the cluster.

888 Z. Li, G. Zhan, and X. Ye

AD and DD are defined as the base for the k-anonymous and the �-diverse
feature on the KCluster and the LCluster on a record for implementing the
following improved k-anonymity model, (k, �)-anonymity.

3 (K, �)-Anonymity Model

We propose (k, �)-anonymity to support the individual-defined (k, �) mechanism
for more flexible individual data publication, as well as to achieve the more
robust anti-inference ability on anonymized microdata.

In this model, (k, �) is designed on the record level, in which k is defined by
the individual as the anonymization level on QI of the record, � is defined by
the individual as the diversity level on SI of the record.

Definition 7. A table with n records satisfies (k, �)-anonymity, iff ∀i, (1 ≤ i ≤
n), ki × 2− 1 ≥ ADi ≥ ki and DDi ≥ �i hold, where ADi is the anonymization
degree on KCluster i, DDi is the diversity degree on LCluster i;

From the definition, it is obvious that the model is more flexible and has more
strong expression ability. It can work as general k-anonymity models when set-
ting all ki to a constant k and all �i to 1; It can work as �-diversity when setting
all �i and ki to a constant �.

As a standard for the optimal or the most-approximate-optimal anonymiza-
tion solution, a reasonable anonymization cost metric is indispensable. General
anonymization cost metrics are based on either the amount of suppression cells
or the generalization height or height ratio, such as the metrics in [1,13,18,2].
The former kind of metrics cannot really represent the precise anonymization
loss. For instance, with it, there is no difference between 08-02-57 <ν 08-∗-57 on
BirthDate and F <ν ∗ on Sex. In fact, the specific information loss on the latter
relation is more severe than that on the former, since all values in Sex domain
satisfy ∗ and just 2 BirthDate values satisfy 08-∗-57 in Table 1. Metrics on gener-
alization height or height ratio need generalization hierarchy structures on QI,
which cannot be satisfied for some attributes, such as attributes for partition
illustrated in [11,7,8]. In our model, the anonymization cost metric is based on
the notion of anonymization coverage ratio.

Definition 8 (Anonymization Coverage Ratio). Anonymization coverage
ratio (ACR) on a value generalization relation vi <ν vj in value domain D is
the ratio of its anonymization degree to the size of D, denoted as below:

ACR(vi <ν vj) =
AD(vi <ν vj)

|D| . (2)

The anonymization cost metric (Cost) on an anonymized table with n records
is the sum of that on each record (Cost(i)), which is computed as below:

Cost =
n∑

i=1

Cost(i) =
n∑

i=1

|QI|∑
j=1

ACRij × cj , ACRij =
ADij

|Dj |
, (3)

Towards an Anti-inference (K, �)-Anonymity Model 889

where ADij indicates the anonymization degree on the jth attribute in QI of
the ith record, Dj is the value domain of the jth attribute in QI, cj is a factor
indicating a weighted value on the jth attribute in QI.

Comparing to other metrics, Cost and Cost(i) (on the ith record) have two
advantages: (1) They represent the real anonymization loss even if the value
domains of QI are known; (2) They can express some anonymization biases
with the factor c on each attribute in QI, which is useable in special situations.

4 (K, �)-Anonymity Algorithm

To implement the (k, �)-anonymity model on an original table with the above
Cost metric, we propose the (k, �)-anonymity algorithm with graph representa-
tion. Firstly, we define some prerequisites for the algorithm as below (for the ith

record in the original table T with n records):
n∑

j=1

Count(j) ≥ ki ≥ �i > 1; |D′
SI | ≥ �i. (4)

Where Count(j) = 1, iff kj > 1, or Count(j) = 0; D′
SI is the set of SI tu-

ples satisfying kj > 1 (1 ≤ j ≤ n); ki = 1 indicates the record should not be
anonymized when publishing. �i = 1 is meaningless except when ki = 1, since it
results in an obvious inference attack.

The algorithm takes graph representation to compute Cost when anonymiz-
ing table T and achieve the optimal or the most-approximate-optimal derived
table T ′. The core handling process of the algorithm is described as follows:

(1) Creating clusters: For the ith record, build a minimal-cost ki-sizeKCluster i

with the Cost metric satisfying that the corresponding LCluster i is �i-diverse;
(2) Combining clusters: If exist a record is included in two or more KClusters,
combine them as a unified one;
(3) Decomposing clusters: Decompose a KCluster into two minimal-cost clus-
ters with the Cost metric if at least one of the following conditions holds:
– exist the ith and jth QI tuples in KCluster satisfy ki ≥ kj×2;
– exist the ith QI tuple in KCluster satisfies ki×2 ≤ |KCluster|.

In detail, for the first phase, KCluster i should be ki-size, which infers to the
anonymization degree on the ith record is at lease ki and the diversity degree on
the ith record is at least �i, which is the necessary condition for (k, �)-anonymity
on the ith record. Beside, to compute the anonymization degree and diversity de-
gree on a record should consider the influence by relative value associations since
the inference violations caused by them should be removed when publication.

Another, LCluster i contains at least �i different elements, which equals to
satisfying the simple kind of �-diversity requirement for the anonymization on
the record. Even, such a requirement can be replaced by the entropy �-diversity
requirement in [12] for more reasonable diversity measurement on LClusters.

The above algorithm is sound and complete for microdata publication on a
relational table. As the above analysis, the (k, �)-anonymity requirement can be

890 Z. Li, G. Zhan, and X. Ye

satisfied through the three phases. Furthermore, if there are n′ clusters created
by Phase (1), then Phase (2) will be finished in at most n′ times of combining
these clusters, and create n′′ new clusters. Finally Phase (3) will be ended within
at most n′′ × log2(n

n′′) times of decomposing these clusters.
Beside, its time complexity is O(n2), mainly on the first phase for computing

Cost among records and creating the minimal-cost KCluster for each record.

5 Application Scenario

As an illustration, we take the above algorithm to anonymize Table 1. Suppose
the k and � values for each record in Table 1 are predefined as below:

Record 1 2 3 4 5 6 7
k 2 1 3 2 2 2 3
� 2 1 2 2 3 2 3

Suppose the factor c for all attributes in QI are same to 1. We take the Cost
metric to create the initial clusters as presented in Phase (1) below. Based on
it, we execute the combining cluster procedure and get the temporary result
in Phase (2) below. Then we can achieve the result listed in Phase (3) below
through decomposing some clusters. Finally, the anonymized table (Table 3) for
publishing derived from Table 1 can be achieved as below.

Graph 1. The phases’ results by the algorithm on Table 1

Cluster k �

1 {1,4} 2 2
2 {2} 1 1
3 {1,3,4} 3 3
4 {4,6} 2 2
5 {5,6,7} 3 3
6 {5,6} 2 2
7 {5,6,7} 3 3

=⇒
Cluster k �

{1,3,4,5,6,7} 6 4
{2} 1 1

=⇒
Cluster k �

{1,3,4} 3 3(2)
{2} 1 1

{5,6,7} 3 3

Phase (1) Phase (2) Phase (3)

Table 3. The derived table with our (k, �)-anonymity model

BirthDate Sex Zipcode Disease
1 ∗-∗-∗ ∗ 1∗∗∗∗ Flu
2 11-02-39 F 13068 No
3 ∗-∗-∗ ∗ 1∗∗∗∗ B.Cancer
4 ∗-∗-∗ ∗ 1∗∗∗∗ Stoke
5 ∗-∗-42 M 13053 Stoke
6 ∗-∗-42 M 13053 Flu
7 ∗-∗-42 M 13053 AIDS

Towards an Anti-inference (K, �)-Anonymity Model 891

The Cost on Table 3 is approximately computed as 14. It should be noted that �
value on cluster {1, 3, 4} in Phase 3 is 2 but not 3 because of the value association
relation: Sex = M → Disease = B.Cancer [0%].

6 Related Work

As well as data suppression [15] and data swapping [3,4], data generalization is
a data preprocess approach for microdata publication, which involves replacing
(or recording) a value with a less specific but semantically consistent value [15].
Comparing to other technologies, it can release data while ensure individual
privacy information and maintaining data integrity to the extent [2].

K-anonymity is proposed as a privacy-preservingmicrodata publication model,
in which data generalization technology is used to anonymize data for supporting
more usage convenience as well as preventing privacy disclosure instead of sim-
ple data suppression [15,18]. It is proved that to make a table satisfy k-anonymity
is a NP-hard problem even when the attribute values are ternary [13,2]. As an
alternative approach, some approximation algorithms are proposed, such as an
algorithm in [2] can achieveO(k)-approximation. It is based on graph representa-
tion, consisting of two procedures: (1) producing a forest with trees of size at least
k, and (2) decomposing large components in the forest into smaller ones. Both two
procedures need the time complexity O(kn2).

Beside, anonymization cost metric mechanisms in current k-anonymity models
can be classified into four types [10]: (a) on generalization hierarchy height or
height ratio; (b) on the amount of suppression cells or distance among tuples;
(c) on partition, and (d) on entropy. In detail, Sweeney’s Prec calculation [18]
and Aggarwal’s Cost computation [2] are in type (a), which need generalization
hierarchy on each attribute in QI. Aggarwal’s Hamming distance computation
[1] and Meyerson’s Diameter calculation [13] are in type (b). Lyengar’s CM
formula [11], Bayardo’s DM, CM formulas [7], and Lefevre’s CAV G formula [8]
are in type (c). Sweeney’s Anonymity level with bin size [17], Machanavajjhala’s
Entropy calculation [12], and Fung’s Entropy formula [5] are in type (d).

Furthermore, to allow individual to define the protection level on the data
is a feature for many privacy protection models, including Fine-Grained Ac-
cess Control (FGAC) [14], Multi-Level Relational Data Model (MLR) [6,16],
Purpose-Based Access Control [21], etc. The Micro-View mechanism is to take
data generalization to balance the confidentiality and availability of privacy data
w.r.t. the predefined type and privacy level on them [20]. One common prob-
lem for these mechanisms is the high cost for managing such record-level or
element-level privacy labels.

7 Conclusion

In conclusion, we propose the requirement for individual-defined (k, �) mecha-
nism for more general and flexible k-anonymity application, and analyze some

892 Z. Li, G. Zhan, and X. Ye

privacy inference violations existed in current k-anonymity models. Motivated by
them, we define the (k, �)-anonymity model, which is an improved k-anonymity
model supporting the individual-defined (k, �) mechanism and preventing some
inference violations in the derived table caused by attribute or value associations
and the prior knowledge on value domains of identifying attributes. In future, we
will fully study the inference violations among multiple derived tables. Another,
we will continue focusing on anti-inference k-anonymity modelling.

References

1. Gagan Aggarwal, Tomas Feder, and etc. Anonymizing tables for privacy protection.
Available: http://theory.standford.edu/ rajeev/privacy.html, 2004.

2. Gagan Aggarwal, Tomas Feder, and etc. Approximation algorithms for k-
anonymity. Journal of Privacy Technology, Nov. 2005.

3. Tore Dalenius and Steven Reiss. Data swapping: A technique for disclosure control.
Journal of Statistical Planning and Inference, 6, 1982.

4. G.T. Duncan and S.E.Feinberg. Obtaining information while preserving privacy:
A markov perturbation method for tabular data. Joint Statistical Meetings, 1997.

5. Benjamin C.M. Fung, Ke Wang, and Philip S.Yu. Top-down specialization for
information and privacy protection. In Proc. of ICDE’06, 2006.

6. Sushil Jajodia and Ravi S. Sandhu. Toward a multilevel secure relational data
model. In Proc. of SIGMOD’91, pages 50–59, 1991.

7. Reberto J.Bayardo and Rakesh Agrawal. Data privacy through optimal k-
anonymization. In Proc. of ICDE’05, 2005.

8. Kristen LeFevre, David J.DeWitt, and Raghu Ramakrishnan. Multidimensional
k-anonymity. Technical Report, Available: www.cs.wisc.edu/techreports/2005/.

9. Kristen Lefevre, David J.DeWitt, and Raghu Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In Proc. of SIGMOD’05, 2005.

10. Zude Li, Guoqiang Zhan, and Xiaojun Ye. Towards a more reasonable generaliza-
tion cost metric. In Proc. of BNCOD’06, 2006.

11. Vijay S. Lyengar. Transforming data to satisfying privacy constraints. In Proc. of
SIGKDD’02, 2002.

12. Ashwin Machanavajjhala, Johannes Gehrke, and Daniel Kifer. �-diversity: Privacy
beyond k-anonymity. In Proc. of ICDE’06, 2006.

13. Adam Meyerson and Ryan Williams. On the complexity of optimal k-anonymity.
In Proc. of PODS’04, France, 2004.

14. Shariq Rizvi, Alberto Mendelzon, S.Sudarshan, and Prasan Roy. Extending query
rewriting techniques for fine-grained access control. SIDMOD’04, Jun., 2004.

15. Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing
information: K-anonymity and its enforcement through generalization and sup-
pression. Technical Report, SRI Computer Science Lab., 1998.

16. Ravi Sandhu and Fang Chen. The multilevel relational (mlr) data model. ACM
Transactions on Information and System Security, 1(1):93–132, 1998.

17. Latanya Sweeney. Guaranteeing anonymity when sharing medical data, the datafly
system. Journal of the American Medical Informatics Association, 1997.

18. Latanya Sweeney. Achieving k-anonymity privacy protection using generaliza-
tion and suppression. In International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):571–588, 2002.

Towards an Anti-inference (K, �)-Anonymity Model 893

19. Latanya Sweeney. K-anonymity: A model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570,
2002.

20. Ji won Byun and Elisa Bertino. Vison paper: Micro-views, or how to protect
privacy while enhancing data usability. SIGMOD Record, March, 2005.

21. Ji won Byun, Elisa Bertino, and Ninghui Li. Purpose-based access control of
complex data for privacy protection. In Proc. of SACMAT’05, Stockholm, Sweden,
Jun. 2005.

Analysis of the Power Consumption of Secure
Communication in Wireless Networks

Kihong Kim1, Jinkeun Hong2, and Jongin Lim3

1 National Security Research Institute,
161, Gajeong-dong, Yuseong-ku, Daejeon, 305-350, South Korea

hong0612@hanmir.com
2 Division of Information & Communication Engineering, Baekseok University,

115, Anseo-dong, Cheonan-si, Chungnam, 330-740, South Korea
jkhong@bu.ac.kr

3 Graduate School of Information Security /
Center for Information Security Technologies, Korea University,
1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, 136-701, South Korea

jilim@korea.ac.kr

Abstract. With the growth of the Internet, communication and net-
work security have been the focus of much attention. In addition, deploy-
ment of resource intensive security protocols in battery-powered mobile
devices has raised power consumption to a significant design basis of
network design. In this paper, we propose a power-efficient secure com-
munication restart mechanism for a wireless network and analyze the
power consumed while restarting a secure communication. An experi-
mental test bed was developed to inspect the proposed mechanism and
to evaluate it in terms of power consumption relative to that of conven-
tional secure communication restart mechanisms. Using our enhanced
mechanism, we were able to reduce the power consumed during a secure
communication restart by up to 60% compared with conventional restart
mechanisms.

1 Introduction

Secure communication over public wired and wireless networks demands end-
to-end secure connections to ensure data confidentiality, integrity, and authenti-
cation. That is, secure communication is achieved by employing security mech-
anisms at various layers of the network protocol such as a secure socket layer
(SSL) [1], Internet security protocol (IPSec) [2], transport layer security (TLS)
[3], and wireless transport layer security (WTLS) [4]. Security mechanisms used
to provide secure communication employ handshaking schemes for establishing
secure communication and secure data transfer schemes for secure data trans-
mission/reception.

Such security mechanisms consume power while establishing and perform-
ing the secure communication. Power consumed by secure communication on
battery-powered mobile devices is very important. In addition, deployment of
resource intensive security mechanisms in mobile computing and communication

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 894–903, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of the Power Consumption of Secure Communication 895

devices has raised power consumption characteristics to a significant design basis
of network design. There are two main sources of power consumption during a se-
cure communication: cryptographic loads and data transmission/reception. The
former is the cryptographic computations used to establish the secure communi-
cation and to support encryption and authentication during secure communica-
tion, while the latter is the handshaking message exchange during secure commu-
nication establishment and secure data transfer during secure communication [5].

There have been several important studies in the field of secure wired and wire-
less communication power consumption. A framework for analyzing the power
consumption of cryptographic and security protocols was set forth by N. R.
Potlapally et al. [6]. The study in [7] analyzed the various sources of power con-
sumption for WTLS and IPSec and proposed techniques to minimize the power
consumption. Meanwhile, mutual authentication protocols for a low-power net-
work environment were proposed in [8] [9]. Power management techniques for
mobile communication have been devised by R. Kravets and P. Krishnan [10].
H. Woesner et al. presented power saving mechanisms in emerging standards
for wireless LAN [11]. S. Singh and C. S. Raghavendra proposed a power aware
multi-access protocol with signaling for ad-hoc networks [12].

In terms of efficiency, the performance considerations for a secure wireless
environment, such as mobility, bandwidth, and bit error rate (BER), are very
significant. Of particular significance for a secure connection point is the power
efficiency of the secure communication restart for fast restart of secure communi-
cation. In this paper, a power-efficient secure communication restart mechanism
for application in a secure wireless network is presented and its power consump-
tion while restarting a secure communication is analyzed. Our work differs from
previous works in that it concentrates on power consumption characteristics
of a secure communication restart. An experimental test bed was developed to
inspect the proposed restart mechanism and to evaluate it against the power con-
sumption of conventional restart mechanisms. Using our enhanced mechanism,
we were able to reduce the power consumed during a secure communication
restart by up to 60% compared with conventional restart mechanisms.

The remainder of this paper is organized as follows. Section 2 describes the
handshaking process to establish secure communication using WTLS. Section 3
provides details of the conventional and proposed secure communication restart
mechanisms. Section 4 describes the experimental test bed used in this paper
to analyze power consumption while restarting a secure communication and
presents the results of power consumption according to each restart mechanism.
Finally, section 5 summarizes the results of this paper.

2 Handshaking Process Using WTLS

The wireless application protocol (WAP) shown in Fig. 1 is a protocol suite
created for mobile devices such as mobile phones and other mobile terminals
[4]. The WTLS protocol is the security layer of the WAP. It provides privacy,
authentication, and integrity in the WAP.

896 K. Kim, J. Hong, and J. Lim

Application Layer (WAE)

Session Layer (WSP)

Transport Layer (WDP)

Security Layer (WTLS)

Transaction Layer (WTP)

Any Wireless Data Network

Fig. 1. WAP architecture

The WTLS determines the session key handshaking mechanism for secure ser-
vices and transactions in secure wireless networks, and consists of the following
phases: the handshaking phase, the change cipher spec phase, and the record
protocol phase (RP) [13] [14]. In the handshaking phase, all the key techniques
and security parameters, such as protocol version, cryptographic algorithms,
and method of authentication, are established between the client and the server.
That is, the handshaking phase is used to negotiate the security parameters be-
tween the client and the server. After the key handshaking phase is complete,
the change cipher spec phase is initiated. The change cipher spec phase han-
dles the changing of the cipher. Through the change cipher spec phase, both
the client and the server send the finished message, which is protected by a
RP data unit that is applied by the negotiated security suites [15] [16]. The
RP phase is a layer protocol phase that accepts raw data to be transmitted
from the upper layer protocols. The RP compresses and encrypts the data to
ensure data integrity and authentication. It is also responsible for decrypting
and decompressing data it receives and verifying that the data has not been al-
tered. Fig. 2 summarizes the handshaking process used by the WTLS for secure
communication establishment.

3 Secure Communication Restart Mechanisms

3.1 Conventional Mechanisms to Restart Secure Communication

After completion of the handshaking process shown in Fig. 2, a secure com-
munication between the client and server is established. However, data frame
loss occurs because of bit slips, channel loss, reflection, and diffraction in the
communication channel. If a data frame is lost, the output of the decryptor
will be unintelligible for the receiver and restart of lost connections will be re-
quired. In order to restart secure communication after data frame loss in the
communication channel is detected, a restart mechanism is used. For the sake
of performance, the restart mechanism should be as fast as possible. The aim of
the secure communication restart is to ensure that the encryptor and decryptor

Analysis of the Power Consumption of Secure Communication 897

Client Hello

Change Cipher Spec & Finished

Change Cipher Spec & Finished

Certificate Verify

Client Key Exchange

Client Certificate

Server Hello Done

Client Certificate Request

Server Key Exchange

Server Certificate

Server Hello

Secure Data Tx/Rx

Client Server

Fig. 2. Handshaking message exchange during secure communication establishment

have the same new internal state at a certain time. An internal state that is
different from all previous communications has to be chosen so as to prevent the
reuse of session keys or IVs [17, 18, 19,20].

In order to overcome the problems caused by these data frame losses, restart
mechanisms for secure communication have been suggested. Such mechanisms
are based on one of two methods: 1) premaster secret regeneration and retrans-
mission, which results in a new master secret and new key blocks; or 2) random
value regeneration and retransmission, in which random value is only used to
change the key block in each secure communication restart.

Fig. 3 shows a restart mechanism using premaster secret regeneration and
retransmission. In this mechanism, a new premaster secret is generated and
sent in each secure communication restart, and thus it results in the generation
of a new master secret and new key block. Therefore, new session keys and
new IVs are generated for every communication restart. However, since a new
premaster secret is generated and sent in each secure communication restart,
this mechanism has disadvantages such as a large cryptographic computation
load and a considerable time delay including channel delay.

This mechanism is based on the following procedure. First, secure communi-
cation between the client and server is performed for a certain time Δt, and then
data frame loss occurs. After the server realizes the data frame loss, it requests
a new premaster secret for a secure communication restart. The client generates
a new premaster secret and sends EKUS [Premaster Secret] encrypted with the
server’s public key to the server. The client then generates a new master secret

898 K. Kim, J. Hong, and J. Lim

Secure Communication

Change Cipher Spec & Finished

Client Key Exchange = E (Premaster Secret)

Request Premaster Secret

Client Server

tΔ

dΔ

Data Loss

Secure Communication Restart

Fig. 3. Message exchange during restart mechanism using premaster secret

using the new premaster secret and the original random value cached in the
initial hello message stage, and generates a new key block using the new mas-
ter secret and original random value. The generated key block is hashed into
a sequence of secure bytes, which are assigned to the message authentication
code (MAC) keys, session keys, and IVs. Thus, new session keys and IVs are
generated.

New MS = PRF (New PS, ′′MS′′, Original CR + Original SR) (1)

New KB = PRF (New MS, ′′KE′′, Original CR + Original SR) (2)

Here, MS is the master secret, KB is the key block, PS is the premaster secret,
CR is the client random value, SR is the server random value, PRF is the
pseudo random function, and KE is the key expansion. The client then sends
the finished message to the server. The server generates a new master secret and
a new key block, and also sends the finished message to the client. After the
session restart time Δd, secure communication is restarted.

The restart mechanism using a random value is shown in Fig. 4. In this mech-
anism, a new random value is generated and sent in each communication restart,
which results in the generation of a new key block in each communication restart.
As with premaster secret regeneration and retransmission, this mechanism also
suffers from large cryptographic load and time delay.

Secure communication is performed for a certain time Δt, and then data
frame loss occurs. After realizing the data frame loss, the server requests a new
random value for communication restart. The client generates a new random
value and includes it in a hello message. After the server receives the hello
message, it sends its own hello message that includes its new random value. The
server also generates a new key block using the new random value and cached
original master secret, and then generates new session keys and new IVs. Thus, a
restarted secure communication will use the same master secret as the previous
one. Note that, although the same master secret is used, new random values

Analysis of the Power Consumption of Secure Communication 899

Secure Communication

Server Hello = {Cipher Suite, Random, Etc}

Client Hello = {Cipher Suite, Random, Etc}

Request Random Value

Client Server

tΔ

dΔ

Data Loss

Change Cipher Spec & Finished

Secure Communication Restart

Fig. 4. Message exchange during restart mechanism using random value

are exchanged in the secure communication restart. These new random values
are taken into account in the new key block generation, which means that each
secure connection starts up with different key materials: new session keys and
new IVs.

New KB = PRF (Original MS, ′′KE′′, New CR + New SR) (3)

Finally, the server sends the finished message to the client. The server gen-
erates a new key block, resulting in new session keys and new IVs, and it also
sends the finished message to the client. After the session restart time Δd, secure
communication is restarted.

3.2 Proposed Mechanism to Restart Secure Communication

In order to solve the problems inherent in conventional restart mechanisms and
to reinitiate secure communication such that it is much faster than in the conven-
tional mechanisms, we propose a power-efficient secure communication restart
mechanism that uses an IV count value.

Fig. 5 shows the proposed restart mechanism, in which a count value of IV is
sent to generate the new IVs in each each secure communication. After detect-
ing the data frame loss during secure communication, the server requests a new
count value of IV for communication restart. The client sends a new count value
IV and generates new IVs using the count value. That is, the count value is used
to generate new message protection materials, which means that each secure
communication starts up with different IVs. Therefore, a restarted communica-
tion will use the same session keys as the previous secure communication. Note
that, although the same session keys are used, new IVs are used in the secure
communication restart. The client sends the change cipher spec and finished
message to the server. The server generates new IVs using the received count

900 K. Kim, J. Hong, and J. Lim

Secure Communication

Change Cipher Spec & Finished

IV Count = E {Count Value of IV}

Request IV Count

Client Server

tΔ

dΔ

Data Loss

Secure Communication Restart

Fig. 5. Message exchange during restart mechanism using IV count

value, and then sends the change cipher spec and finished message to the client.
The client and server finally have the new IVs after communication restart time
Δd, as represented by Eq. (4).

IVC = IV0 + ν, 1 ≤ ν ≤ 2IV Size − 1 (4)

Here, IVC is the value of IV in each communication and IV0 represents the
value of the original IV. ν is a count value in each communication restart and is
increased by a value of one for every communication restart.

4 Performance Analysis

In this paper, in order to verify the performance of the proposed mechanism,
we compared and analyzed the power consumption by our proposed mechanism
with that of conventional mechanisms.

We computed the total power consumed during a secure communication
restart by each mechanism. The test bed system consists of a 32bits 80MHz
MPC860 microprocessor with a 16kbyte instruction cache and an 8kbyte data
cache, 4Mbyte flash ROM, 32Mbyte SDRAM, and 2Mbyte SRAM. We measure
the current drawn by the restart process executing on the test bed using a Tek-
tronix current probe and a Tektronix oscilloscope. Voltage was held constant at
3.3V, the nominal operating voltage of the test bed system. In order to ensure
consistency and accuracy of our results, we averaged each of the results over sev-
eral iterations for each mechanism. We assume that data transmission/reception
rates are identical at 14.4kbps. The power consumption values correspond to the
client.

Table 1 shows a comparison of the power consumption according to each
mechanism for secure communication restart. Here, T1 is the transmission bits
at each 1 iteration, TC1 is the transmission bits at each 1 iteration with 50%
redundancy channel coding, and TC3 is the transmission bits at 3 iterations
with 50% redundancy channel coding. When measuring the power consumption

Analysis of the Power Consumption of Secure Communication 901

Table 1. Power consumption to restart secure communication at 14.4kbps

Mechanism Power Consumption (mW)

T1 41mW
Premaster Secret TC1 84mW

TC3 252mW

T1 78mW
Random Value TC1 157mW

TC3 462mW

T1 30mW
Proposed TC1 50mW

TC3 186mW

�

���

���

���

���

���

� � �

�	
�������������	�����

�
�
�
�
��
�
�
	

�
�

��
�
	
��
�
�
�

�	�
���	����	�� �
��� �	������

�� ������

Fig. 6. Power consumption according to the transmission environment

in the TC3 environment, the power consumption in each mechanism is provided:
252mW in the mechanism using a premaster secret, 462mW in the mechanism
using a random value, and 186mW in the proposed mechanism. Thus, the pro-
posed mechanism reduces power consumption by more than 26% in comparison
with the mechanism using a premaster secret, and by about 60% when compared
with the mechanism using a random value.

Fig. 6 illustrates the power consumption outline in Table 1, demonstrating
that the power consumption from the proposed mechanism is smaller than that
from the conventional mechanisms.

902 K. Kim, J. Hong, and J. Lim

5 Conclusions

Wireless networks are inherently unreliable and discontinuous, resulting in fre-
quent data frame losses. If a data frame is lost, the output of the decryptor will be
unintelligible for the receiver and restart of lost connections will be required. In
order to restart secure communication after data frame loss in a communication
channel is detected, a restart mechanism is used. Therefore, secure communica-
tion restart and transfer recovery, together with fast secret materials generation,
are critical with respect to power efficiency of mobile devices.

In this paper, we presented a power-efficient secure communication restart
mechanism for application in a secure wireless network and evaluated it against
the power consumption of conventional restart mechanisms. An experimental
test bed was developed to inspect the conventional and proposed restart mech-
anisms and to analyze the power consumption required to restart a secure com-
munication for each mechanism. Using our enhanced mechanism, we were able
to reduce the power consumed during a secure communication restart by up to
60% compared with conventional restart mechanisms. Therefore, the proposed
mechanism provides a power-efficient restart of secure communication, while re-
ducing the consumed power in a WTLS protocol environment. This work can
be extended to many wired and wireless network protocols including TLS, SSL,
and an aeronautical mobile environment.

References

1. SSL 3.0 Specification. http://home.netscape.com/eng/ssl3/3-spec.htm.
2. IPSec Working Gruop. http://www.ietf.org/html.charters/ipsec-charter.html.
3. TLS Working Group. http://www.ietf.org/html.charters/tls-charter.html.
4. WAP Froum. Wireless Transport Layer Security Spec. http://www.wapforum.org.
5. R. Karri and P. Mishra. Optimizing the Energy Consumed by Secure Wireless

Sessions - Wireless Transport Layer Security. Mobile Networks and Applications,
Kluwer Academic Publishers, pp.177-185, 2003.

6. N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. A Study of the Energy
Consumption Characteristics of Cryptographic Algorithms and Security Protocols.
IEEE Transaction on Mobile Computing, Vol. 5, No. 2, pp.128-143, 2005.

7. R. Karri and P. Mishra. Minimizing Energy Consumption of Secure Wireless Ses-
sion with QoS Constraints. ICC’02, pp.2053-2057, 2002.

8. M. Jakobsson and D. Pointcheval. Mutual Authentication for Low-Powered Mobile
Devices. Financial Cryptogaphy, pp.178-195, 2001.

9. D. S. Wong and A. H. Chan. Mutual Authentication and Key Exchange for Low
Power Wireless Communications. MILCOM’02, pp.39-43, 2002.

10. R. Kravets and R. Krishnan. Power Management Techniques for Mobile Commu-
nication. MobiCom’99, 1999.

11. H. Woesner, J. P. Ebert, M. Schlager, and A. Wolisz. Power Saving Mechanisms
in Emerging Standards for Wireless LANs: The MAC-Level Prospective. IEEE
Personal Communication System, pp.40-48, 1998.

12. S. Singh and C. S. Raghavendra. PAMAS-Power Aware Multi-Access Protocol
with Signaling for Ad-hoc Networks. Computer Communications Review, 1998.

Analysis of the Power Consumption of Secure Communication 903

13. P. Mikal. WTLS : The Good and Bad of WAP Security. http://www.advisor.com/
Articles.nsf/aid/MIKP0001, 2001.

14. M. J. Saarinen. Attacks against the WAP WTLS Protocols. http://www.
freeprotocols.org/harmOfWap/wtls.pdf, 1999.

15. Mohmad Badra et al.. A New Secure Session Exchange Key Protocol for Wireless
Communication. IEEE PIMRC’03, 2003.

16. Mohammad Ghulam Rahman and Hideki Imai. Security in Wireless Communica-
tions. Wireless Personal Communications, No. 22, Kluwer Academic Publishers,
2002.

17. J. Daemen, R. Govaerts, and J. Vandewalle. Resynchronization Weakness in Syn-
chronous Stream Ciphers. EUROCRYPT’93, 1993.

18. R. K. Nichols and P. C. Lekks. Wireless Security - Models, Threats, and Solutions,
McGraw-Hill Telecom, 2002.

19. E. Amoroso. Fundamentals of Computer Security Technology, PTR Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

20. F. Armknecht, J. Lano, and B. Preneel. Extending the Resynchronization Attack.
SAC’04, 2004.

Implementing Authorization Delegations
Using Graph

Chun Ruan1 and Vijay Varadharajan1,2

1 School of Computing and Information Technology
University of Western Sydney, Penrith South DC, NSW 1797 Australia

{chun, vijay}@cit.uws.edu.au
2 Department of Computing

Macquarie University, North Ryde, NSW 2109 Australia
vijay@ics.mq.edu.au

Abstract. Graph-based approach to access control models have been
studied by researchers due to its visualization, flexible representation and
precise semantics. In this paper, we present a detailed graph-based algo-
rithm to evaluate authorization delegations and resolve conflicts based on
the shorter weighted path-take-precedence method. The approach makes
it possible for administrators to control their granting of authorizations
in a very flexible way. The correctness proof and time complexity of the
algorithm are provided. We then consider how the authorization state
can be changed, since in a dynamic environment an authorization state
is not static. The detailed algorithm of state transformation and its cor-
rectness proof are also given.

Keywords: authorization delegation, access control, weighted graph.

1 Introduction

The use of the graph-based framework to specify and evaluate the authorizations
has several advantages. Firstly, it provides the intuition through visualizing a
system’s access control policies. In a graph-based approach, nodes are usually
used to denote entities and edges to denote different relations between entities.
An administrator can see the subjects (roles, users), objects(files, records), ac-
cess rights granted to subjects over the objects, and possible constraints. It is
also possible to provide different subgraphs to different administrators based
on their special interests and privileges. Secondly, it provides the formal basis
for the precise semantics of the access control policies. Authorization states are
represented through graphs and the state changes upon the graph transforma-
tions. Thirdly, the existing graph theory results and approaches provide great
potential for their applications to the domain of authorization. The connection
between graphs and information security is increasingly recognized. Rich and
flexible graph representations and well-developed graph techniques can help to
achieve flexible access control models.

Different graph-based models have been proposed over the years [7]. The take-
grantmodel [3] is among the earliest applications of graph theory to access control.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 904–913, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Implementing Authorization Delegations Using Graph 905

It uses nodes to represent the subjects and objects, and the labelled arcs the au-
thorization. an arc labelled with one or more rights indicates that the source vertex
is authorized to perform the rights on the destination vertex. Two special rights
take and grant are introduced to transfer the rights from one subject to another
which are implemented through graph transformation. More recently, Jaeger and
Tidswell have used graphs to model constraints [1]. Nyanchama and Osborn have
discussed the conflict of interest policies in their role-graph model [4]. Also Koch
et al have used graph to specify the administration of RBAC systems [2].

Different from their work, we focus on using graph approach to representing
the positive and negative authorizations, tracing the administrative privilege
delegations, and solving conflicts caused by the multiple administrators of access
rights. We have presented a weighted graph based model (WGBM) [6] which
allows the grantors to assign a weight to their granting of authorizations. The
weight is a non-negative number, with a smaller number representing a higher
priority. A conflict resolution method based on the shorter weighted path-take-
precedence is proposed. The approach makes it possible for administrators to
control their granting of authorizations in a very flexible way. In fact, different
conflict resolution policies can be achieved through different weights assigned to
the authorizations. For example, if all the weights are 0, then all the grantors
have the same priority with respect to their granting of authorizations. On the
other hand, when all the weights are positive and equal, the predecessors will
have higher priority than the successors along the delegation paths. In this paper,
we present a detailed algorithm to implement the conflict resolution method. The
correctness proof and time complexity of the algorithm are also provided. We
further consider how the weighted authorization state can be changed, since in a
dynamic environment an authorization state is not static. The detailed algorithm
of state transformation and its correctness proof are also given.

The remainder of the paper is organized as follows. Section 2 gives a brief
review of WGBM. Section 3 presents the algorithm for evaluating the stable
graph, its correctness proof and time complexity. Section 4 describes how to
transform the graph when updating the authorization state. Section 5 concludes
the paper.

2 A Brief Review of WGBM

In this section we give a brief review of the weighted graph based model for
authorization and delegation. Please see [6] for the detailed description.

An Authorization is of the form (s, o, t, r, g) : w, where s,o,t,r,g denote subject,
object, grant type, access right and grantor, respectively. w is a non-negative
integer denoting the weight of the authorization. Intuitively, an authorization
(s, o, t, r, g) : w states that grantor g has granted subject s the access right r of
type t on object o with the weight w. Lesser the weight, the higher priority it
denotes. We consider three grant types: delegable, positive and negative, which
are denoted by ∗, + and − respectively. ∗ means that the subject has been
granted the right to grant r on o as well as r on o. + means that the subject has

906 C. Ruan and V. Varadharajan

been granted r on o, while − means that the subject has been denied r on o.
An authorization state, denoted by A, is the set of all authorizations at a given
time.

A weighted digraph is used to represent an authorization state. For every
object o and access right r, let Go,r represents all the authorizations on o and r
such that for each weighted authorization (s, o, t, r, g) : w, there is an arc of type
t from g to s in Go,r labelled with w. We use a solid arc to denote ∗, dotted arc
to +, and an arc with a number of small vertical lines to −.

We say that an authorization state A is delegation correct, if a subject s
can grant r on o to other subjects if and only if s is the owner; or s has been
granted r of delegatable type ∗ on o. Two authorizations (s, o, t, r, g) : w and
(s′, o′, t′, r′, g′) : w′ are contradictory if s = s′, o = o′, r = r′, g = g′, but t �= t′. It
means that a grantor gives the same subject two different types of authorizations
over the same object and access right. An authorization state A is not contra-
dictory if for any a and a′ in A, a and a′ are not contradictory. An authorization
state is consistent if it is delegation correct and not contradictory.

Due to the existence of multiple grantors, conflicts may occur in a consistent
state where a subject receives two different types of access right from different
grantors. More formally, two authorizations (s, o, t, r, g) : w and (s′, o′, t′, r′, g′) :
w′ are conflicting if s = s′, o = o′, r = r′, t �= t′ and g �= g′. Conflicts must be
resolved properly in a decentralized authorization model. In our model, we try
to find a shortest path from the root to a subject in Go,r which is able to keep
the resulting state delegation correct, since lower weight denotes higher priority.
A useful path is defined for this purpose. A useful path to any vertex s in Go,r

is a path: so, s1, ..., sk, s (k ≥ 0), where so, s1,...,sk is a delegation path as well
as a shortest path to sk when k > 0. To solve the conflicts, only the arcs on
useful paths can compete with each other, and the arc in the shortest useful
path will override the others. An authorization (s, o, t, r, g) : w is active if the
corresponding arc (g, s) in Go,r is in a shortest useful path to s (therefore will
not be overridden). Otherwise it is inactive. Please note that, an active path to
a vertex s is not necessarily the shortest path from so to s, but is definitely the
shortest useful path from so to s. Let A be a consistent authorization state, then
the subset of all of its active authorizations forms its effective authorization
state, denoted by Eff(A).

There may exist multiple active paths to a vertex s if they have the same
shortest length, as is the case of Sam in Figure 1. Therefore conflicts may still
exist in an effective state. In this case, we say the conflicts are incomparable. In-
comparable conflicts can be resolved based on the types of authorizations, such
as − > + > ∗ which favors security, or the other way around in favor of acces-
sibility. If an authorization state A is consistent, then the maximal consistent
and conflict-free subset of Eff(A) forms a stable authorization state of A,
denoted as stable(A).

Example 1. Suppose a Patient Bob delegates the Read right on his health file
(F) to his two doctors Alice and Tom with the same weight 1. Bob also denies

Implementing Authorization Delegations Using Graph 907

Sam

1

1 2

3

5

1

6

Bob

Alice

Tom

Jane

Fig. 1. GF,R

Sam

1

1 2

5

6

Bob

Alice

Tom

Jane

Fig. 2. Eff(GF,R)

the health researcher Sam to access his record with weight 6. Jane is a health
consultant. Alice further delegates the Read right to Jane with weight 3, but
Tom denies Jane to read with weight 2. Both Alice and Jane delegate the Read
right to Sam with weight 5 and 1 respectively. Thus we have following authoriza-
tions: (Alice, F, ∗, R, Bob) : 1, (Tom, F, ∗, R, Bob) : 1, (Jane, F,−, R, T om) : 2,
(Jane, F, ∗, R, Alice) : 3, (Sam, F, ∗, R, Jane) : 1, (Sam, F,−, R, Bob) : 6, (Sam,
F, ∗, R, Alice) : 5. The corresponding GF,R is shown in Figure 1.

The effective authorization state of Figure 1 is shown in Figure 2. As you can
see, there are two active paths to Sam: (Bob, Alice, Sam) and (Bob, Sam). Nei-
ther of them is the shortest path from Bob to Sam. In fact, (Bob, T om, Jane, Sam)
is the shortest path but not a useful path to Sam since (Tom, Jane) is not a del-
egation arc. (Bob, Alice, Jane, Sam) is also shorter but not a useful path to Sam
as well since (Alice, Jane) is overridden by (Tom, Jane).

There are two stable authorization states of Figure 2, with one removing
(Bob, Sam), and the other removing (Alice, Sam) from Figure 2. The former
favors accessibility, while the latter favors security.

3 Algorithm

Now we present the algorithm to compute the stable authorization state. A
weight function w matches each arc in Go,r to its weight. That is, w((g, s)) = w.
An arc type function t matches each arc to its type. That is, t((g, s)) = t. The
algorithm is based on Dijkstra’s distance algorithm [5].

908 C. Ruan and V. Varadharajan

Algorithm 1. Evaluate Stable Graph(Go,r)
Input: Go,r = (V, E, so, P, t, w) for some object o and access right r, with root
so, incomparable conflict resolution policy P, arc type function t, and weight
function w. Go,r is consistent.
Output: Stable(Go,r) = G′ = (V ′, E′, t′, w′)
Method: Label each vertex v with l(v), which is the length of a shortest useful
path from so to v that has been found at that instant.

begin
01 l(so) = 0;
02 for all v �= so set l(so) =∞;
03 T = V ; V ′ = ∅; E′ = ∅;
04 while T �= ∅
05 begin
06 Find v ∈ T with finite minimum label l(v);
07 if such a v does not exist then exit;
08 V ′ = V ′ ∪ {v};
09 if v �= so then
10 For every v′ ∈ p(v)
11 begin
12 E′ = E′ ∪ {(v′, v)};
13 t′((v′, v)) = t((v′, v));
14 w′((v′, v)) = w((v′, v));
15 end
16 if v = so or there exists v′ ∈ p(v) such that t((v′, v)) = ∗ then
17 begin
18 For every e = (v, x)
19 if l(x) > l(v) + w(e) then
20 begin
21 l(x) = l(v) + w(e);
22 p(x) = {v};
23 end
24 else
25 if l(x) = l(v) + w(e) then
26 if t(e) = t((y, x)), where y is in p(x)
27 then p(x) = p(x) ∪ {v}
28 else
29 begin
30 select one between v and y according to P;
31 if v is selected then p(x) = {v};
32 end
33 end
34 T = T − {v};
35 end
end

Implementing Authorization Delegations Using Graph 909

Example 2. We now apply the algorithm to the digraph of Figure 1, finding its
Stable(GF,R). Suppose P is defined as: − > + > ∗. The major steps performed
and the actions taken are as follows:

1-3. l(Bob) = 0, and l(v) =∞ for all other vertices, T = {Bob, Alice, T om,
Jane, Sam}, V ′ = ∅, E′ = ∅.

4. Since T is not empty, we continue.
6. Select Bob, since it has minimum label.
8. V ′ = {Bob}
16-33. We examine the arcs out of Bob and set l(Alice) = 1, l(Tom) =

1, l(Sam) = 6, p(Alice) = p(Tom) = p(Sam) = {Bob}
34. T = {Alice, T om, Jane, Sam}
6. Select Alice(or Tom), since it has minimum label.
8. V ′ = {Bob, Alice}
12. E′ = {(Bob, Alice)}
16-33. We examine the arcs out of Alice and set l(Jane) = 4, p(Jane) =

{Alice}, p(Sam) = {Bob}. Note that Alice cannot be added to p(Sam) according
to the incomparable conflict resolution policy P (− > + > ∗) at step 30.

34. T = {Tom, Jane, Sam}
6. Select Tom, since it has minimum label.
8. V ′ = {Bob, Alice, T om}
12. E′ = {(Bob, Alice), (Bob, T om)}
16-33. We examine the arcs out of Tom and set l(Jane) = 3, p(Jane) =

{Tom}
34. T = {Jane, Sam}
6. Select Jane, since it has minimum label.
8. V ′ = {Bob, Alice, T om, Jane}
12. E′ = {(Bob, Alice), (Bob, T om), (Tom, Jane)}
16-33. Since there exists no v′∈ p(Jane) such that t((v′, Jane))=∗(p(Jane)=

{Tom}, t((Tom, Jane)) = −), nothing changes.
34. T = {Sam}
6. Select Sam, since it has minimum label.
8. V ′ = {Bob, Alice, T om, Jane, Sam}
12. E′ = {(Bob, Alice), (Bob, T om), (Tom, Jane), (Bob, Sam)}
16-33. We examine the arcs out of Sam and nothing changes.
34. T = ∅, and the algorithm stops.

Theorem 1. Algorithm Evaluate Stable Graph(Go,r) is correct, and Stable
(Go,r) can be computed by Evaluate Stable Graph(Go,r) in O(N2) time, where
N is the number of vertices in Go,r.

Proof. We prove by induction on the order in which vertices are deleted from T
and entered V ′. Take as the induction hypothesis the following assertion: At the
kth iteration (1) the label of a vertex v in V ′ is the length of the shortest useful
path from so to this vertex, and (2) the label of a vertex not in V ′ is the length
of the shortest useful path from so to this vertex that contains only (besides the
vertex itself) vertices in V ′.

910 C. Ruan and V. Varadharajan

When k = 0, V ′ = {so}, so the length of the shortest useful path from so to
itself is 0 (here we are allowing a path to have no arcs in it), and the length of
the shortest useful path from so to a vertex other than so is ∞.

Assume that the inductive hypothesis holds for the kth iteration. Let v be
the vertex added to V ′ at the (k + 1)st iteration so that v is a vertex not in
V ′ at the end of the kth iteration with the smallest label (in case of ties, any
vertex with smallest label may be used). From the inductive hypothesis we see
that vertices in V ′ before the (k + 1)st iteration are labelled with the length of
the shortest useful path from so. Also v must be labelled with the length of the
shortest useful path to it from so. If this were not the case, at the end of the
kth iteration there would be a useful path of length less than lk(v) containing
a vertex not in V ′ (because lk(v) is the length of the shortest useful path from
so to v containing only vertices in V ′ after the kth iteration). Let u be the first
vertex not in V ′ in such a useful path. There is a useful path with length less
than lk(v) from so to u containing only vertices of V ′. This contradicts the choice
of v. Hence (1) holds at the end of the (k + 1)st iteration.

Let u be a vertex not in V ′ after k + 1 iterations. A shortest useful path from
so to u containing only elements of V ′ either contains v or it does not. If it does
not contain v, then by the inductive hypothesis its length is lk(u). If it does
contain v, then it must be made up of a useful path from so to v of shortest
possible length containing elements of V ′ other than v, where the in-arc of v is
of type ∗ when the length is greater than 0, followed by the arc from v to u. In
this case its length would be lk(v) + w(v, u). This shows that (2) is true, since
lk+1 = min{lk(u), lk(v) + w(v, u)}.

For each vertex v, it is not difficult to see that we have used p(v) to record all
parents of v that make its label l(v) (when l(v) is finite) and have highest priority
according to policy P if incomparable conflicts exist on v. We have entered the
corresponding in-arcs to E′ when v is selected. Thus we have entered all the
useful paths that make l(v) to E′ which are not overridden under policy P for
each vertex v, and this concludes the proof of the first part of the theorem.

We now determine the time complexity of the algorithm. Note that in line
6 the minimum label of T must be found. This can certainly be done through
|T | − 1 comparisons. Initially, T = V , and line 34 reduces T one vertex at a
time. Thus the process is repeated N times. The time required in line 6 is then
on the order of

∑N
i=1 i and therefore is O(N2). in Line 10, p(v) has at most N

elements. So the for loop requires at most O(N2). Line 18 uses each arc once
at most, so it requires at most O(|E|) = O(N2). The entire algorithm thus has
time complexity O(N2).

Suppose an access request (s, o, r) means that subject s wants to exercise access
right r on object o. The procedure of evaluating the request can be outlined as
follows:

1. If s is the root of Go,r, return yes;
2. Compute stable(Go,r).
3. If s is not in V ′, return undecided;
4. Let (g, s) be the in-arc of s in E′, if t′((g, s)) = ∗ or + return yes else return no.

Implementing Authorization Delegations Using Graph 911

4 Authorization State Transformation

4.1 Authorization Update

As mentioned earlier, in a dynamic environment, an authorization state is not
static since users may need to add, update, or revoke certain authorizations. In
this section, we consider how the authorization state can be changed.

Here we only consider addition and revocation, since update can be realized
through them. We need to guarantee that the state remain consistent after the
update. Recall that a state is consistent if it is not contradictory (a grantor
cannot grant the same subject two different types of the same access right) and
delegation correct (A grantor should have the right to grant).

In the case of addition, suppose U is a set of authorizations to be added to
the current state S. Then, obviously, U should not be contradictory as this will
cause the new state contradictory. A contradictory can still happen between a
new authorization in U and an old authorization in S. In this case, use the new
one to replace the old one. Although S is delegation correct, after U is added,
the delegation correctness may not hold any more. So we need to compute its
maximum delegation correct sub-state. Algorithm 2 is designed for this. The
procedure of processing addition of a set of authorizations can be outlined as
follows:

1. Check authorizations to be added. If there exists a contradictory, then re-
move them from the set.

2. Add authorizations to the corresponding Go,r. If this results two arcs between
two vertices, remove the old arc. The resulting state is then not contradictory.

3. Use Algorithm 2 to compute the maximum delegation correct sub-state. The
output will be the new consistent authorization state.

For revocation, on the other hand, it will not affect the property of ‘not
contradictory’ of the current state. However, it may cause the resulting state
delegation incorrect. So we also need to use Algorithm 2 to calculate the max-
imum delegation correct sub-state after the deletion. Further more, we need to
check if the requester of an authorization revocation is the grantor of it. That
is, an authorization a = (s, o, t, r, g) : w can be revoked only when the requester
is g. The procedure of processing revocation of a set of authorizations can be
outlined as follows:

1. Check authorizations to be revoked. If the requester is not the grantor of an
authorization, then remove them from the set.

2. Remove the authorizations from the corresponding Go,r.
3. Use Algorithm 2 to compute the maximum delegation correct sub-state. The

output will be the new consistent authorization state.

4.2 Algorithm

Now we present the algorithm to compute the maximum delegation correct sub-
set of a set of authorizations. Obviously we only need to guarantee that Go,r is

912 C. Ruan and V. Varadharajan

delegation correct for any object o and access right r. Let DeleCorrect(Go,r)
denote its maximum delegation correct subset.

Algorithm 2. Evaluate DeleCorrect Graph(Go,r)
Input: Go,r = (V, E, so, t, w) for some object o and access right r, with root so,
arc type function t, and weight function w. Go,r is consistent.
Output: DeleCorrect(Go,r) = G′ = (V ′, E′, t′, w′)

begin
01 l(so) = t;
02 for all v �= so set l(v) = f ;
03 T = V ; V ′ = ∅; E′ = ∅;
04 while T �= ∅
05 begin
06 Find v ∈ T with label l(v) = t;
07 if such a v does not exist then exit;
08 begin
09 V ′ = V ′ ∪ {v};
10 for all v′ such that (v, v′) ∈ E;
11 begin
12 E′ = E′ ∪ {(v, v′)};
12 V ′ = V ′ ∪ {v};
13 t′((v, v′)) = t((v, v′));
14 w′((v, v′)) = w((v, v′));
15 if t((v,v’))=∗ then l(v′)=t
16 end
17 end
18 T = T − {v};
19 end
end

Theorem 2. Algorithm Evaluate DeleCorrect Graph is correct, and
DeleCorrect(Go,r) can be computed by Evaluate DeleCorrect Graph(Go,r) in
O(N2) time, where N is the number of vertices in Go,r.

Proof. For the correctness, we need to prove two sides. On the side of dele-
gation correctness, we need to prove that for each arc (v, v′) in the output
G′ = (V ′, E′, t′, w′), there exists a delegation path (every arc on the path is
of ∗ type) from so to v; On the side of the maximum delegation set, we need to
prove that for each arc (w, w′) in Go,r, if there exists a delegation path from so

to w, then (w, w′) should also be in G′.
If (v, v′) is in G′, then based on the algorithm, l(v) = t, which means that

either v = so or there exist an arc (v′′, v) of type ∗ such that l(v′′) = t. This
means that there exists an delegation path from so to v.

On the other hand, suppose (w, w′) is in Go,r and there exists a delegation
path from so to w. To prove (w, w′) is also in G′, we only need to show l(w) = t
at some time. Suppose the delegation path is so, w1, w2, ...wn, w. We prove by

Implementing Authorization Delegations Using Graph 913

induction on the length of the path. When n = 0, it is obviously true. Assume
that the inductive hypothesis holds when n = k, which means l(wk) = t. Since
arc (wk, wk+1) is of ∗ type, l(wk+1) will be set to t when wk is selected from T .
Since T is a finite set, and the selected element whose label is t will be removed
from T , wk will eventually be selected.

For the time complexity, it is not difficult to see that it is O(N2), since the
algorithm only visits each arc in Go,r at most once to move it to the new graph.

5 Conclusion

Authorization delegation and negative authorizations are two significant issues
in a decentralized authorization model. In [6] we have proposed a weighted au-
thorization model to handle authorization delegation and conflict resolution. In
this paper, we developed the detailed algorithm to implement the model. The
correctness proof and complexity of the algorithm are also provided. Since in
a dynamic environment an authorization state is not static, we also considered
how an authorization state can be changed and developed the algorithm to deal
with the authorization state transformation.

References

1. T. Jaeger and J. E. Tidswell. Practical safety in flexible access control models. ACM
Trans. on Info. and System Security, 4(2):158-190, 2001.

2. M. Koch, L. V. Mancini and F. Parisi-Presicce. Administratice Scope in the Graph-
Based Framework. Proceedings of the ninth ACM Symposium on Access control Mod-
els and Technologies, pp 97-104, 2004.

3. R.J. Lipton and L. Snyder. A Linear Time Algorithm for Deciding Subject Security.
Journal of the ACM, 24(3):455-464, 1977.

4. M. Nyanchama and S.L Osborn. The Role Graph Model and Conflict of Interest.
ACM Trans. on Info. and System Security, 1(2):3-33, 1999.

5. K.H. Rosen, Discrete mathematics and its applications, McGraw-Hill Inc. Publishing
Company, 1991.

6. C. Ruan and V. Varadharajan, A weighted graph approach to authorization dele-
gation and conflict resolution. em Proceedings of the 9th Australasian Conference
on Information Security and Privacy, pp 402-413, 2004.

7. R. Sandhu, A perspective on graphs and access control models. ICGT pp 2-12, 2004.

Modeling and Inferring on Role-Based Access
Control Policies Using Data Dependencies

Romuald Thion and Stéphane Coulondre

LIRIS: Lyon Research Center for Images and Intelligent Information Systems,
Bâtiment Blaise Pascal, 20 av. Albert Einstein, 69621 Villeurbanne Cedex, France

firstname.surname@liris.cnrs.fr

Abstract. Role-Based Access Control (RBAC) models are becoming
a de facto standard, greatly simplifying management and administra-
tion tasks. Organizational constraints were introduced (e.g.: mutually
exclusive roles, cardinality, prerequisite roles) to reflect peculiarities of
organizations. Thus, the number of rules is increasing and policies are
becoming more and more complex: understanding and analyzing large
policies in which several security officers are involved can be a tough job.
There is a serious need for administration tools allowing analysis and in-
ference on access control policies. Such tools should help security officers
to avoid defining conflicting constraints and inconsistent policies.

This paper shows that theoretical tools from relational databases are
suitable for expressing and inferring on RBAC policies and their re-
lated constraints. We focused on using Constrained Tuple-Generating
Dependencies (CTGDs), a class of dependencies which includes tradi-
tional other ones. We show that their great expressive power is suitable
for all practical relevant aspects of RBAC. Moreover, proof procedures
have been developed for CTGDs: they permit to reason on policies. For
example, to check their consistency, to verify a new rule is not already
implied or to check satisfaction of security properties. A prototype of
RBAC policies management tool has been implemented, using CTGDs
dedicated proof procedures as the underlying inference engine.

1 Introduction

DataBases Management Systems (DBMS) are cornerstones of Information Sys-
tems (ISs): they provide mechanisms to store, modify, retrieve and query infor-
mation of an organization. In order to enhance security of data, Access Control
(AC) mechanisms have been developed to manage users’ rights over data stored
in the DBMS. In its broader sense, AC, denotes the fact of determining whether
a subject (process, computer . . .) is able to perform an operation (read, write
. . .) on an object (a tuple, a table, . . .). An operation right on an object is called
permission. AC policies define the subjects’ permissions.

Applications developed using DBMS can contain large amount of data with
highly differentiated access for different users, depending upon their function or
role within the organization [1]. Role-Based Access Control (RBAC) received
considerable attention as an alternative to traditional mandatory and discre-
tionary AC policies in databases.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 914–923, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling and Inferring on RBAC Policies Using Data Dependencies 915

The RBAC models constitute a family in which permissions are associated
with roles. A role is a job function or job title within the organization. Users
are made members of appropriate roles. Permissions are not directly assigned
to users (roles can be seen as collections of permissions) [2]. RBAC provides a
powerful mechanism for reducing the complexity, cost, and potential for error
in assigning permissions to users within the organization. RBAC was found to
be among the most attractive solutions for providing AC in e-commerce, e-
government or e-health [1,3].

Fig. 1. RBAC Model

Nevertheless the number of users in RBAC policies is increasing and rules
are more and more complex: diverse constraint1 types have been introduced to
reflect peculiarities of organizations. RBAC constraints specify conditions that
cannot be violated by the components of the system.

Policies engineering is considered to be of high practical importance [4]: a
large part of flaws in ISs are due to administration mistakes or security miscon-
ceptions. There is a need for tools facilitating design and maintenance of RBAC
policies. According to the authors of [5], such tools need to be able to capture AC
model mechanisms and peculiarities (e.g. RBAC constraints). These tools need
to be able to check consistency of policies and to answer queries for particular
permissions or relation holdings in the policies. Last requirement is a compre-
hensible inference mechanism, even by non-logicians. Our goal is to provide a
formal framework satisfying these requirements.

Thus our contribution is twofold:

– identification of a theoretical tool from the databases field suitable for ho-
mogenous modeling of RBAC principles and its related constraints right into
the relational model,

1 Constraint may be a confusing word in this paper: it may either designate relations
between variables (e.g., X ≤ Y, X ≥ 2 × Z + 1, 3 = T, 2 �= 3, etc.), restrictions on
RBAC model’s concepts (e.g. nobody is allowed to assume simultaneously roles r1
and r2) and even data dependencies (integrity constraints). In this paper we do not
use the term integrity constraints, constraints refers to semantic relations between
variables and RBAC constraints or organizational constraints refers to restriction
among elements in RBAC policies.

916 R. Thion and S. Coulondre

– use tools built (e.g. proof procedures) on top of the underlying theoretical
model to provide a set of tools facilitating design and management of RBAC
policies in order to detect and correct administration mistakes or miscon-
ceptions.

The class of dependencies we focused on is Constrained Tuple-Generating
Dependencies (CTGDs). CTGDs is among the widest class of dependencies [6].
We will show that a this framework is an appropriate formal tool for representing
and checking RBAC policies.

In the next section we will introduce CTGDs and proof procedure related
in. Section 3 will show how CTGDs can be used to model RBAC concepts,
constraints and assignments, of which implements will be shown in section 4.
Section 5 will summarize some papers related to this work. Finally, last section
will discuss our work and presents perspectives using databases dependencies for
security purposes.

2 Background

2.1 Constrained Tuple-Generating Dependencies

The authors of [6] expose a kind of data dependencies upon the most expressive
existing: CTGDs, generalizing traditional dependencies such as FDs, MVDs or
EGDs. CTGDs extend Tuple-Generating Dependencies (TGDs, which are also
known as Generalized Dependencies [7,8]) with a constraint domain (e.g. linear
arithmetic over integers, rationals or real). Constraints are quite interesting when
used jointly with existential quantifiers because they permit a more precise def-
inition of such partially known facts. CTGDs are interesting for DBMS storing
complex data such as spatial, audio, image, video or temporal data. CTGDs can
be represented formally in First-Order Logic (FOL) by formulae of the form [7]:
∀X p1(X1)∧ . . .∧pi(Xi)∧c(X)→ ∃Y q1(X∪Y1)∧ . . .∧pj(X∪Yj)∧c′(X∪Y)
where pi and qj are predicates symbols, X = X1 ∪ . . . ∪ Xi is the set of all

terms (no functions symbols) in the left hand side. Terms of X are universally
quantified. Y = Y1 ∪ . . .∪ Yj does not designate all terms in the right hand side,
but only those that are not bound by the universal quantifier on the left hand
side. Terms of Y are existentially quantified. Finally, c and c′ are conjunctions
of linear constraints (<, >,≤,≥, �=, =) over terms (terms of X for c and terms
of X ∪ Y for c′).

For example, the following dependency from [6] expresses that cpath(source,
destination, cost), which contains the cheapest path between any two points in
a directed graph with edge weights, is a transitive closed relation obeying the
triangle inequality: ∀S1, D1, C1, D2, C2 cpath(S1, D1, C1)∧ cpath(D1, D2, C2)→
∃C3 cpath(S1, D2, C3) ∧ C3 ≤ C1 + C2.

2.2 Dedicated Proof Procedures for CTGDs

The authors of [6] propose two bottom-up chase over CTGDs. Their paper ad-
dresses the implication problem, that is, given a collection of CTGDs F , and a

Modeling and Inferring on RBAC Policies Using Data Dependencies 917

single CTGD g, determine whether in every database state where F is satisfied,
it is also the case that g is satisfied. The chase proves if F logically implies g,
stated briefly as F � g.

The operational nature of these proof procedures is based on the concept of
tuple (a grounded atom, with no variables). Basic outline of such procedures
is based on [9] with the adjunction of constraints: hypothesize the existence of
some tuples in the relations such that the antecedent l of g is satisfied, treat F
as defining a closure operator generating tuples F (l). On each computation step
of F (l), the following condition is tested:

- if F (l) contains a copy of r, infer F � g,
- if F (l) contains an inconsistency produced by constraints, infer F � g vacu-

ously,
- if F (l) does not contain a copy of r, infer F � g.

The CTGDs implication problem is semi-decidable: the procedures may run
forever. As each basic step is producing new facts through implication, we can
practically bound up the number of successively applied CTGDs (e.g. to avoid
circular generating facts leading to infinite loop), but it is unsound and must be
reserved for implementation purpose. However, there exist decidability results
for specific subclasses of CTGDs. For example, the chase is decidable for Full-
TGDs, TGDs without existentially quantified variable [9].

3 A Framework for Expressing and Checking RBAC
Policies

According to the authors of [10] we use the following predicates to model core
concepts of RBAC policies:

- ura(User, Role), to define User Role Assignments,
- pra(Access, Object, Role), to define Permission Role Assignment
- permitted(User, Access, Object), to specify that user User is granted Access

access privilege on object Object.

3.1 Capturing Axiomatic Definition of RBAC Model

Once basic elements of the policies are defined, we need to model the “axiomatic
of RBAC”: the core of the AC model which settles how an access is granted
to a user through role assignment and how is defined hierarchy. We model an
RBAC axiomatic based on [10]. dSenior(SeniorRole, JuniorRole) to define di-
rect inheritance between roles and senior(SeniorRole, JuniorRole) to define
role hierarchy (the transitive closure of seniorDirect).

- role inheritance is transitive: senior(X, Y), dSenior(Y, Z)→ senior(X, Z),
- role inheritance is irreflexive: senior(X, X)→ ⊥,
- a user is access granted to an object if he is assigned to a role which is

assigned to this permission: ura(U, R), pra(A, O, R)→ permitted(U, A, O),
- eventually through inheritance ura(U, R1), senior(R1, R2), pra(A, O, R2)→

permitted(U, A, O).

918 R. Thion and S. Coulondre

3.2 Capturing Organizational Constraints

Constraints are an important aspect of RBAC and are a powerful mechanism
for laying out higher-level organizational policy [2]. The best known RBAC con-
straints are:

Mutually exclusive roles constraints settle that no user can be assigned two roles
which are in conflict with each other. In other words, it means that conflicting
roles cannot have common users. ssd(Role1, Role2), specificy that Role1 and
Role2 are in Static Separation of Duties (SSD): they are mutually exclusive.
Mutually exclusive roles can produce inconsistency. The authors of [11] describe
a set of properties that must hold in any RBAC policy. These properties are
described in the example of section 4.

Cardinality constraints settle that a number of assignments is limited. Car-
dinality constraints of n maximum users assigned to role r can be expressed
in CTGDs by ∧n+1

i=1 ura(U, Ni) {∀i ∈ [1..n] , ∀j ∈ [i + 1..n + 1]Ni �= Nj} → ⊥.
Mutually exclusion and cardinality constraints are not limited to role and can
be used on any element of the policy model (for example with access: no role can
be granted both read access and write access on an object o). Our approach can
be generalized for maximum number of roles assigned to users or to permissions.

More generally, Nullity Generating Dependencies of the form pi(X) ∧ c → ⊥
can be used to model RBAC constraints: an RBAC constraint define that if a
certain state (the left hand side of the CTGD) is reached, then the policy is
inconsistent (right hand side is ⊥).

Prerequisite constraints settle that if a particular relation holds, another holds
too. Variables appearing only within the terms of the tail in CTGDs are exis-
tentially quantified. Intuitively that does mean at least one element such as ...
exists. This semantic is used to take into account prerequisite RBAC constraints.
E.g. role r2 is required by role r1: for any user assigned to role r1, at least one
another user must be assigned to role r2, ura(U1, r1) → ura(U2, r2) U1 �= U2.
Other prerequisite constraints can be expressed using CTGDs, according to ad-
ministrator’s need. CTGDs can model other forms of prerequisite constraints on
any RBAC concept.

3.3 Inference on Policies

Depending on which stage of the RBAC specification one is working on, different
needs of verification may exist:

- during the stage of modeling axiomatic (the core policy model), we are likely
to check the expected behavior of the model and rules redundancies. E.g. how
authorizations are derived from user-role and permission-role assignment,

- during the stage of defining the role hierarchy, we are likely to check a set
of properties. E.g. there is no cycle in the hierarchy, or no role inherits the
administrator role,

- during the stage of defining user-role and permission-role assignment we are
likely query the policy and to check a set of properties. E.g there is no two
roles which have exactly the same permissions,

Modeling and Inferring on RBAC Policies Using Data Dependencies 919

Table 1. Reduction of security administration needs into CTGDs-dedicated tools

Security requirements Reduction into CTGDs
Security property that must hold Model the property to verify by a single
in all RBAC policy instances. CTGD and use proof procedure to check

implication from axiomatic of RBAC
no role can be senior to itself and organizational constraints
Check if a policy is consistent Try to derive ⊥ from the

policy by proof procedure
Security property that must hold Model the property to verify by a single
in a policy instance. CTGD and verify if it is satisfied
no role inherits the administrator role by the database instance
Policy management capabilities:
queries and data manipulation Process query over the database
which users are assigned to role student?

- during the stage of defining constraints it is interesting to check whether the
policy is consistent, in other words if we settled facts violating constraints.

The second termination case (vacuously) of algorithms from [6] is very useful
while checking AC policies, it denotes that the policies are inconsistent. This
semantic is interesting for security administrators when dealing with constrained
AC policies: if there are facts violating constraints, the policy is inconsistent.

4 Experimental Validation

This section illustrates how a RBAC policy can be modeled into CTGDs. The
sample code is separated into four parts: the first one models the core mecha-
nisms of the RBAC model and settles a set of properties that must holds in any
RBAC policy [11]. The second part is a sample role hierarchy used in a virtual
organization. Unfortunately we are limited to toy sample or randomly generated
policies, because organizations are not likely to share such sensitive information.
Next is a sample definition of User-Role Assignments and Permission-Role As-
signments. The last part defines a set of specific organizational constraints that
must hold in this particular policy.

%axiomatic definition of RBAC policies and generic constraints
%---
%senior is the transitive closure of dSenior
dSenior(SeniorRole,JuniorRole)->senior(SeniorRole,JuniorRole).
senior(SeniorRole,InterRole), dSenior(InterRole,JuniorRole)-> senior(SeniorRole,JuniorRole).
senior(Role,Role)->false.

%granting access to user through role assignments
ura(User,Role),pra(Access,Object,Role)->permitted(User,Access,Object).
ura(User,SeniorRole),senior(SeniorRole,JuniorRole),
pra(Access,Object,JuniorRole)->permitted(User,Access,Object).

%Property P1: any two roles assigned for a same user are not in separation of duties
ura(User,Role1),ura(User,Role2),ssd(Role1,Role2)->false.

920 R. Thion and S. Coulondre

%Property P2: no role is mutually exclusive with itself
ssd(Role,Role)-> false.

%Property P3: mutual exclusion is symetric
ssd(Role1,Role2)->ssd(Role2,Role1).

%Property P4: any two roles in ssd do not inherits one another
senior(Role1,Role2),ssd(Role1,Role2)->false.

%Property P5: there is no role inheriting to roles in ssd
ssd(Role1,Role2),senior(SeniorRole,Role1),senior(SeniorRole,Role2)->false.

%Property P6: If a role inherits another role and
%that role is in SSD with a third one, then the inheriting
%role is in SSD with the third one.
ssd(Role1,Role2),senior(SeniorRole,Role1)->ssd(SeniorRole,Role2).

%definition of role hierarchy
%----------------------------
%roles and hierarchy (with directly senior predicate) modeling
->role(student),role(researcher),role(teacher),role(phDStudent).
->role(postPhD),role(lecturer),role(seniorLecturer),role(professor).
->dSenior(phDStudent,student), dSenior(phDStudent,researcher).
->dSenior(postPhD,phDStudent), dSenior(postPhD,teacher).
->dSenior(lecturer,teacher), dSenior(lecturer,researcher).
->dSenior(professor,seniorLecturer), dSenior(seniorLecturer,lecturer).

%definition of assignments
%-------------------------
%Permission-Role Assignments
->pra(read,test,student),pra(write,test,teacher),pra(read,finalTest,professor).
->pra(read,smallPaper,lecturer),pra(write,bigPaper,professor).

%User-Role Assignments
->ura(alice,student),ura(bob,phDStudent),ura(charly,professor).

%definition of organizational constraints
%--
%prerequisite on permissions: if one can read and object, another one can write
pra(read,Object,Role1) -> pra(write,Object,Role2) {Role1=\=Role2}.

%uniqueness constraint on manager
ura(User1,manager),ura(User2, manager){User1=\=User2}->false.

%mutually exclusives roles: student and professor
->ssd(student,lecturer).

We have described chase procedures as algorithms proving that a set of CT-
GDs F implies a single CTGD g: F � g. The above ruleset is such an F collection,
and g is the security property to check. The table 1 describes how tools dedicated
to CTGDs can be used by administrators to design, verify and manage their poli-
cies. Six properties (P1 to P6) are settled in the sample policy, the authors of [11]
have manually demonstrated the following theorem: P2 ∧ P3 ∧ P6⇒ P4 ∧ P5.

Our first example illustrates how chase procedures for CTGDs can be used to
automatically proove the same theorem:

– let F be the collection of CTGDs modeling properties P2, P3 and P6,
– let be g1 the CTGD modeling properties P4,
– let be g2 the CTGD modeling properties P5.

The chase procedure prove that F � g1 and F � g2, we can conclude the prop-
erties P4 and P6 are redundant. Such functionalities are very interesting for

Modeling and Inferring on RBAC Policies Using Data Dependencies 921

security administrators: they can check that security properties (P4 and P6 in
this example) hold in all RBAC policy instances (that satisfy P2, P3 and P6 in
the example).

Another example is g ≡ ura(joe, student), ura(joe, seniorLecturer) →: “is
the policy consistent if joe is assigned to both student and seniorLecturer?”.
Clearly, with such assignments to user joe, the policy is inconsistent: roles
student and lecturer are in SSD, student and seniorLecturer are in SSD too
according to property P6. thus the policy is inconsistent using property P1. It
is very interesting for administrators to conduct such verifications before any
assignment: they can ensure the consistency of their policy in the presence of
updates.

We have implemented a toolkit, “TGDToolBox”, written in C++ to provide
a set of functions to deal with data dependencies (e.g. syntatic analysis, uni-
fication of atoms, variables renaming). We implemented the chase procedures
described in [6] using this library to run examples from this section. Actually,
the prototype is able to handle hundreds of CTGDs and to answer in interac-
tive time. We are currently using the toolkit to develop new proof procedures
for dependencies [8,12]. Using the proof procedures as an inference engine, we
have built a proof of concept Microsoft Visio 2003 Template dedicated to RBAC
policies design. This template provides an iconic interface for RBAC policy man-
agement. It is able to determine if a permission is granted to a user through his
role assignment, it can check if the set of policies is consistent and can answer
queries about the relations holding in the RBAC policy.

5 Related Works

Our work has been influenced by [10] which express RBAC models with Con-
straint Logic Programming and [13] which describes the “Flexible Authorization
Framework”, that can be analyzed using a variant of Datalog (typically either
safe stratified Datalog or Datalog with constraints).

The three main arguments we focused on are providing a framework which:

– is able to capture all relevant concepts of RBAC models,
– can benefit researches (e.g. evolutions, theoritical results, implementations)

from a well established community,
– can be easily linked with other components of ISs (e.g. databases).

The authors of [10] describe AC programs able to deal with RBAC mod-
els. This very complete work addresses many problems arising with the use of
closed policies (access denied as a default action, authorizations are only ever
positive), open policies (access granted as a default action) or hybrid policies
(authorizations and denial can be explicitly defined). However, logical programs
are not intuitive for non-specialits and the logic used do not integrate existen-
tial quantifiers. Moreover, RBAC policy are already widespread, a framework
base on databases makes integration of administration tools and security data
easier.

922 R. Thion and S. Coulondre

The autors of [4] argue“‘... extensive research activity has resulted in the
definition of a variety of AC . . . Thus, the need arises for developing tools for
reasoning about the characteristics of these models. These tools should support
users in the tasks of model specification, analysis of model properties, and au-
thorization management”. Their logical framework is based on the C-Datalog
language, whereas our is based on CTGDs, which is a able to deal with a wider
class of rules thanks to existential quantifiers and constraints within both head
and tail of dependencies.

The authors of [14] describe a fragment of FOL which tractable and sufficiently
expressive to capture policies for many applications. This work is really interest-
ing and points out tractability and complexity results on their logic. Constraints
in policies are necessary to capture peculiarities of organizations, but modeling
such restrictions is not develop in [14]. We do agree the authors statement about
the use of logic programming by non-logicians, but we disagree that a “filling
the blank on English sentences interface is sufficient for security administrators.
We think that administrators must have a computer-aided software engineering
(CASE) interface to design and check policies and such a CASE should provide
a comprehensible trace of reasoning.

6 Conclusions and Further Work

We are confident that CTGDs can be used to express other AC models such as
Task-BAC, Workflow-BAC, Mandatory-AC or Organization-BAC. Our fragment
of FOL is really closed to the ones used in [10] or [4], which are able to deal with
temporal aspects and at least mandatory and discretionary AC models.

For sake of clarity the example exposed in section 4 does not include sessions.
According to [10] sessions and dynamic constraints can be captured easily with
CLP. We are investigating the interest of chase procedure to check RBAC policies
involving sessions. For example, using chase procedure we might answer queries
like Are the policies consistent for all possible sessions?. Moreover, incorporating
the model for administration of roles exposed in [15] is promising for distributed
policies verification purposes.

Integrating of temporal aspects in RBAC models has been investigated in [16].
The authors of [10] use the Constraint Logic Programming framework. We can
use the same approach to model Temporal-RBAC models, and according to [17]
we extend the inequalities to geographical trigerring of assignments. Integrating
temporal or geographical concerns into CTGDs, is mainly related to the choice
of a right constraint domain [6]. For example, to define that a role is assigned to
a user only on [t1, t2] shift, (between the times t1 and t2): time(H){t1 ≤ H ≤
t2} → ura(user, role).

A promising opening to the use of CTGDs for AC modeling purpose is the
result exposed by the authors of [12]. They propose a new kind of dependencies
subsumming CTGDs : Disjunctive-CTGDs. Their enhanced expressivity can be
used to model new kinds of organizational constraints involving disjunctions,
classes of constraints which have not been studied in the AC literature yet.

Modeling and Inferring on RBAC Policies Using Data Dependencies 923

References

1. Ramaswamy, C., Sandhu, R.: Role-based access control features in commercial
database management systems. In: Proc. 21st NIST-NCSC National Information
Systems Security Conference. (1998) 503–511

2. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2) (1996) 38–47

3. CERT/CC, U.S.S., magazine, C.: E-crimewatch survey. Technical report,
http://www.cert.org/archive/pdf/ecrimesummary05.pdf (2005)

4. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. ACM Trans. Inf. Syst. Secur. 6(1) (2003) 71–127

5. Bonatti, P.A., Samarati, P.: Logics for authorization and security. In Chomicki,
J., van der Meyden, R., Saake, G., eds.: Logics for Emerging Applications of
Databases, Springer (2003) 277–323

6. Maher, M.J., Srivastava, D.: Chasing constrained tuple-generating dependencies.
In: PODS, ACM Press (1996) 128–138

7. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

8. Coulondre, S.: A top-down proof procedure for generalized data dependencies.
Acta Inf. 39(1) (2003) 1–29

9. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4)
(1984) 718–741

10. Barker, S., Stuckey, P.J.: Flexible access control policy specification with constraint
logic programming. ACM Trans. Inf. Syst. Secur. 6(4) (2003) 501–546

11. Gavrila, S.I., Barkley, J.F.: Formal specification for role based access control
user/role and role/role relationship management. In: ACM Workshop on Role-
Based Access Control. (1998) 81–90

12. Wang, J., Topor, R., Maher, M.: Reasoning with disjunctive constrained tuple-
generating dependencies. Lecture Notes in Computer Science 2113 (2001) 963–973

13. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2) (2001) 214–260

14. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In:
CSFW, IEEE Computer Society (2003) 187–201

15. Sandhu, R.S., Munawer, Q.: The arbac99 model for administration of roles. In:
ACSAC, IEEE Computer Society (1999) 229–240

16. Bertino, E., Bonatti, P.A., Ferrari, E.: Trbac: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur. 4(3) (2001) 191–233

17. Grumbach, S., Rigaux, P., Segoufin, L.: Spatio-temporal data handling with con-
straints. GeoInformatica 5(1) (2001) 95–115

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 924 – 934, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multi-dimensional Dynamic Bucket Index Based on
Mobile Agent System Architecture

Marcin Gorawski and Adam Dyga

Silesian University of Technology
Institute of Computer Science

Akademicka 16, 44-100 Gliwice, Poland
M.Gorawski@polsl.pl, A.Dyga@polsl.pl

Abstract. This paper describes the idea of a bucket index employed for proc-
essing of intensive reading streams coming from huge telemetry networks. This
data structure answers approximate spatio-temporal range queries concerning
utility usage in user selected region and time. The index structure continuously
adjusts to data distribution changes and, as opposed to traditional indexing
methods, is capable of processing of the updates on the fly. A stochastic predic-
tion model is also used to estimate utility usage in the near future. The pre-
sented indexing technique is implemented in a distributed system based on mo-
bile agents. The mobile architecture is used to control the workload of network
hosts.

1 Introduction

In recent years there has been an increase in the popularity of telemetry networks
which are very flexible and allow clients – water, gas and electricity consumers – to
freely choose a provider. Immense telemetric systems consisting of large number of
meters that report their states at short intervals are sources of data streams which re-
quire efficient processing.

A telemetry system consists of a central server, data collection nodes and meters.
The meters periodically send their states to the collection nodes which in turn transmit
the data to the central server using GPRS/GSM protocol.

The main purpose of the system is to provide the user with information regarding
utility usage within selected region and time. Such knowledge can be used for exam-
ple by a utility provider (e. g. power plant) to estimate and adjust the future produc-
tion rate to expected demand.

The problem of indexing of spatio-temporal telemetric data has been previously
described in [2] and [3]. The indexing technique utilized there is based on the aR-
Tree, which is built using data written by an ETL process in the data warehouse with
a cascaded star model. This work has the same purpose but the update operations are
processed continuously on the fly, passing by the data warehouse. Bucket index pre-
sented in this paper is based on the idea of adaptive multi-dimensional histogram
(AMH) proposed in [4] – a structure used for approximate processing of spatio-
temporal aggregate queries.

 Multi-dimensional Dynamic Bucket Index Based on Mobile Agent System 925

The main contribution of this work is the modification of AMH that facilitates
processing of regularly reported meter values and its application in a distributed mo-
bile agent system. The detailed description of the modified AMH has been presented
in [1], but in this paper, due to lack of space, it is presented in a shortened form. The
original (centralized) histogram ([4]) was used to index moving object positions. The
approach presented there assumed that every object (e.g. a car on the road) periodi-
cally issues updates concerning its position. That approach, however, is unrealistic in
the real world. The more likely situation is when the traffic rate is measured by a
static meter and reported to the central server at regular intervals. This paper presents
a practical method of processing and storing of report streams coming from a large
number of meters.

The data structure presented in [4] can’t be applied directly to meter reading proc-
essing due to a different nature of the information. The work of [4] indexes the current
number of cars within cell area and the buckets are created by grouping the square-
shaped cells with similar number of objects. Every location update contains old and
new position of a moving object. When an object issues an update, the number of ob-
jects in the cell covering the old (new) location is decreased (increased). This way
every cell contains current number of objects within its extent. Meter readings have
very different nature. A meter is a static object that periodically reports a value that is
continuously increased (e.g. energy usage meter state). Such updates consist of two
timestamps (times of collection of previous and current meter state) and the amount of
used utility during this period. The value that needs to be indexed is not simply a cur-
rent attribute of a cell, but information that also spans an undetermined time interval in
the past. Processing of this kind of information requires a special approach.

2 Bucket Index

2.1 Adaptive Multi-dimensional Histogram

Problem Definition. AMH (adaptive multi-dimensional histogram) covers a two-
dimensional space containing utility meters and a central server gathering information
(readings) coming from the telemetry system. Each reading contains the current meter
state, timestamp and identification number of the source meter. All meters report their
states periodically. The two-dimensional data space is partitioned into a regular cell
grid. The square-shaped cells track utility usage within their borders (see below).

A spatio-temporal range query q(qR, qT) retrieves the amount of utility used (e.g.
electricity, water, gas) within a rectangular region qR in the time span defined by qT =
(ts, te). If the query region covers a large number of meters, exhaustive examination of
all data sources or cells may be very costly. AMH (adaptive multi-dimensional histo-
gram) mitigates this problem by grouping neighboring cells with similar usage into
rectangular buckets. The bucket information is updated upon arrival of new updates
and the bucket regions (cell groups) continuously adapt to data distribution changes.
The adaptation process (reorganization) is performed incrementally when the CPU is
idle, i.e. there are no updates or queries to process.

Approximate Usage Tracking Based on Stepping Time Window Algorithm. A
cell of the grid can cover several meters reporting their states in an unsynchronized

926 M. Gorawski and A. Dyga

manner. To group a number of cells together, we need to compare the average utility
usage in their extents during similar time periods (equal in length).

Each cell tracks the utility usage during a fixed-length time period called the time
window. As new updates arrive, the time window is shifted in such a way that its end
is always aligned with the collection time of the most recent collected reading and the
approximate value is altered. Consider a cell containing four electricity meters L1 –
L4, which send subsequent readings separated by undetermined time intervals (Fig.
1). A reading from meter L1 comes in the first step. It reports that 10 kWh was used
between timestamp 1 and 6. This is the first update therefore the time window (whose
length equals 6 time units) is set to (0, 6). The time span of the reading is entirely en-
closed by the window W1, thus the whole usage associated with the reading is stored
in the cell (U1=10). In the next step, meter L2 sends its reading. This reading was col-
lected later than the first one therefore the time window is shifted to the right to posi-
tion W2=(1, 7). The window W2 covers the previous window in 5/6 thus such portion
of U1 is transferred to W2. Moreover, the usage associated with the reading L2 (12
kWh) is also added to W2 and, as a result, the approximate usage is calculated as

3

1
201210*

6

5
2 =+=U . Similar computations are performed for the subsequent readings.

0 10 15 20

step 1

step 2

step 3

step 4

L1 (1, 6) 10kWh

L2 (2, 7) 12kWh

L3 (4, 9) 8kWh

L4 (6, 12) 10kWh

reading time span
5

time window with
length = 6 time units

bucket
lifespan

Fig. 1. Cell and bucket update

Note that the stepping window size should be tuned to the expected state reporting
period (which is usually known). If the window size is too large, the approximate us-
age Ui will follow the actual value very slowly. On the other hand, if the window is
too small, Ui will strongly depend only on the most recent received reading.

Structure. Given a cell grid, AMH generates Bn ≤ rectangular buckets, where B is a
maximum allowed number of buckets. For each bucket bk (nk ≤≤1) we denote (i) as
nk the number of cells it covers, (ii) as fk the average usage computed based on cell
contents (∀=

kbkk cUnf in cell)/1(, where cU is the usage associated with cell c (see

previous section)) and (iii) as vk the variance −∀=
kbkk k

fcUnv in cell
2)()/1(. The

main aim of AMH is to minimize the weighted variance sum (WVS) of all buckets,

formally (after [4]):
=

⋅=
n

i
ii vnWVS

1

)(.

 Multi-dimensional Dynamic Bucket Index Based on Mobile Agent System 927

Each bucket stores the following information: R – coordinates of rectangular ex-
tent, L=(ls, le) – the lifespan and UL – the lifespan usage (amount of a utility used in
the lifespan L and region R). AMH maintains a binary partition tree (BPT), which
speeds up bucket search operations during processing of updates or queries. The tree
leaf corresponds to an existing bucket and intermediate node is associated with the
rectangular extent that encloses the extents of its children. Initially, there is only one
leaf node in the BPT which covers the entire data space. Subsequent buckets are cre-
ated through bucket splits but their number never exceeds system parameter B.

y5 1 1 3 3 5
y4 2 1 3 4 5

y3 1 1 9 11 5

y2 4 5 10 9 6

y1 5 6 1 1 1

x1 x2 x3 x4 x5

b11

b7 b10

b9
b1 b2 b5

b3 b4

b8 b6

(a) Usage in cells (c) Binary partition tree

Fig. 2. AMH [4]

Fig. 2a illustrates an example of a grid consisting of 25 cells. Figures 2b and c show
generated buckets and corresponding BPT. For instance, intermediate node b8 covers
the buckets b3 and b4. This means that those buckets were created by splitting b8.

Information Update. Each update is processed in two steps. First, the cell that con-
tains the source meter coordinates is updated according to the stepping time window
algorithm. Second, the bucket covering the source meter is located using BPT and its
information is updated. If the reading time span intersects the lifespan of the bucket,
UL is increased by the usage u that corresponds to the processed reading proportion-
ally to intersection ratio of the reading time span to the bucket lifespan.

Consider a sequence of updates as in Fig. 1, but this time processed in a bucket. In
the first step, the meter L1 sends its reading. This is the first reading therefore the
bucket b1 is created with lifespan (1, 6) which is equal to the reading time span. Next,
the meter L2 sends a reading with time span (2, 7). The time intervals (1, 6) and (2, 7)
intersect, so the usage in bucket b1 needs to be altered. As a result of the modification,

the usage
1LU is increased by kWh][

5

3
912*

5

4
kWh][12*

)6,1(

)7,2(== . Then the bucket b1 is

removed and stored in a past index and a new bucket b2 is spawned with the same ex-

tent but with altered lifespan L2=(6, 7) and lifespan usage
5

2
212*

5

1
2

==LU .

Bucket Split. Buckets splits are performed in regions where the variance is large and
has a negative effect on the accuracy of AMH. Bucket split improves the accuracy by
(i) reducing variance and (ii) decreasing the bucket extent. Towards this, the algo-
rithm selects a bucket with the highest split benefit (SBen) and splits it at the “best po-
sition”. Split benefit is computed as the difference between values of WVS before and
after the split. To find the highest split benefit of a bucket the algorithm examines all
possible split positions.

928 M. Gorawski and A. Dyga

Bucket Merge. A merge is performed when the number of buckets reaches the
maximum value B. In such a case, the algorithm searches BPT for the bucket with the
smallest merge penalty (MPen). MPen is defined as the increase of WVS being a con-
sequence of merging the bucket with its sibling. For instance, merging b3 with b4 (Fig.
2c) increases WVS by)(443388 vnvnvn +− , removes the buckets from BPT and

makes b8 a leaf. Fig. 3 presents a pseudo-code of the bucket merge algorithm.

Initial assumption: minMPen = ∞ .
1: if (bucket is a leaf)
2: compute its fb and vb using cell contents
3: else
4: invoke Bucket-merge for the left child
5: invoke Bucket-merge for the right child
6: compute fb and Mpenb based on children information
7: if (MPenb < minMPen)
8: minMPen = MPenb
9: end if

Fig. 3. Bucket merge algorithm

Normally, when the index is not being reorganized, the buckets do not store infor-
mation about the average usage or variance of covered cells. Because of this, these
values need to be computed before each merge. To find the bucket with the smallest
merge penalty, the algorithm processes all nodes of BPT using a single post-order tra-
versal, i.e. the children are processed before the parent.

Query Processing. A query result is found by processing all buckets whose extents
intersect the query region qR. Fig. 2b illustrates an example query q. The query proc-
essing algorithm traverses the nodes b11, b7 and reaches leaf b1. The query result is
computed as bucket lifespan usage UL multiplied by (i) coverage ratio of query region
to bucket extent and (ii) intersection ratio of query time span to bucket lifespan. For-

mally, the query answer is computed as LTRresult Uccq **= , where
R

q
c R

R = and

L

q
c T

T = where factors cR and cT have values in range [0.0; 1.0].

2.2 Past Index

The past index stores dead buckets, i.e. buckets removed from AMH. A bucket in AMH
dies when its extent changes due to split or merge or its information is updated. In each
case, the following information is stored in the past index: bucket lifespan L, enclosed
region R and lifespan usage UL recorded in the bucket. The implementation is based on
a packed B-Tree, in which each intermediate entry of the tree stores a lifespan that en-
closes lifespan of its all children and leaf nodes store information about the buckets.

2.3 Prediction Model

The prediction model forecasts a utility usage in the next time step based on previous
steps. This estimation is done using exponential smoothing – a well-known method in

 Multi-dimensional Dynamic Bucket Index Based on Mobile Agent System 929

time series analysis. According to this method, the value S’1 in the next time step is
computed as

n
n SSSSS −−− −++−+−+=)1(...)1()1(' 2

2
101 αααααα , where S0 is the

actual value at the current timestamp, S-i is the actual value at the past time step i, α
is the smoothing parameter in the range (0,1) and n is the number of steps (history
depth). In our case a time step corresponds to a fixed-length time interval, e.g. if me-
ters report their states approximately every 20 minutes, then a 30-minute interval can
be assumed as a time step.

3 Mobile Agent Based Distributed System

3.1 System Overview

In order to implement the presented indexing technique, we have created a distributed
system based on mobile agents. Mobile agent is a software entity consisting of code
and state that can move from one location (node) to another where it resumes its exe-
cution. The nodes in our system are stationary components called platforms. Fig. 4 il-
lustrates the system architecture we have developed and implemented in Java 1.5 en-
vironment using CORBA as a middleware technology.

Reading
stream

IA3

IA2

IA1
Routing

table

IAH3

IAH2

IAH1

IA – Indexing Agent IAH – Indexing Agent Handler

Coordinator

Fig. 4. Distributed system architecture Fig. 5. Coordinator structure

The meter readings come from the telemetry system and are passed to the coordi-
nator that is a stationary component which separates the external world from the dis-
tributed mobile system and its internal complexity. For security reasons the mobile
system is not be accessible from the outside world. To ensure rapid agent migrations,
the platforms are connected through a fast internal LAN network. The coordinator is
responsible for authentication and authorization of external requests, meter reading
forwarding and coordination of distributed index operations (e.g. forwarding of que-
ries and merging partial results). It also has the capability of buffering of index
updates which is required at the time when an indexing agent migrates from one plat-
form to another, because during this period the agent is not able to process any data.
Simplified coordinator structure is demonstrated in Fig. 5. The incoming readings are
routed through routing table that maps meter IDs to indexing agent handlers (IAH).

930 M. Gorawski and A. Dyga

The agent handlers work as separate threads that queue received readings and send
them to associated indexing agents.

The platforms provide basic functions for execution and migration of mobile
agents. There are two types of agents running in the system. The indexing agents
make up the distributed bucket index and store the telemetry data. The data partition-
ing is done on the level of single meters, i.e. upon registration each meter is assigned
exactly to one indexing agent (according to round-robin algorithm). Another type of
agent is the meta-agent that is responsible for workload balancing of network hosts
(see section 3.3). Finally, the Name Service (part of CORBA middleware) maintains a
hierarchical structure which stores remote references of objects working in the sys-
tem. The client application is a front-end GUI application that allows querying the in-
formation stored in the index and presenting it in graphical form.

3.2 Agent Migrations

One of the key operations in the system is the migration process of the indexing
agent. The agent, in order to migrate to another platform, has to move both its code
and state (data). When such a process is started (e.g. externally by the meta-agent –
see 3.3), the agent must perform the following steps: 1) block all external update op-
erations, 2) serialize all data either to the main memory (if available) or to the disk, 3)
invoke a remote method call to copy the code and the data to the destination platform
4) start up a new copy of the agent on the remote platform, 5) if previous steps suc-
ceed inform all external invokers (e.g. the coordinator) of blocked update operations
that the updates need to be send again but this time to the new agent copy and 6)
shutdown and remove itself from the source platform. The blocking in the first step is
required to prevent data modification attempts during steps two and three when the
updates cannot be processed. The whole system is implemented in Java, so the agent
code is usually small and is send as a JAR archive. Agent data, however, can be much
larger (even tens of MB), so the data transfer in step three is based on a remote itera-
tor that is passed in the method invocation to the remote platform and used to fetch
agent data iteratively in portions (e.g. 64kB). Such an approach does not require that
all agent data on the source platform is serialized to the memory and allows to avoid
creation of large buffers in the underlying CORBA middleware during the remote
method invocation. Due to this temporary agent unavailability, the coordinator must
be capable of buffering of the updates during the migration process.

3.3 Workload Balancing Algorithm

The meta-agent (whose idea is taken from [5]) uses an algorithm that periodically
checks the workload of all platforms (see Fig. 6). It computes the scaled variability

factor rv
x

s
V *' = , where s is the standard deviance and x is the average available

computing power in the mobile system (each platform tracks the CPU usage accord-
ing to the moving average algorithm). If the V’ is larger than a preset threshold V’T (a
system parameter), the meta-agent decides to perform an agent migration in order to

improve the workload distribution. The coefficient 3

maxx

x
vr = (where maxx is the

 Multi-dimensional Dynamic Bucket Index Based on Mobile Agent System 931

average of maximum computing powers of all hosts) has been introduced to reduce
the V’ value and prevent unnecessary agent migrations when the average workload of

all hosts is very high (note that
maxx

x
 is a value in range [0; 1]).

To perform a migration, all platforms are sorted in descending order of currently
available computing power. Then, the least active agent from the last platform on the
list is moved to the platform at the beginning of the list. If the destination platform’s
free memory capacity doesn’t allow to upload the agent, the algorithm tries to move it
to the next platform from the list. The same approach applies to source platforms – if
the source platform for some reason cannot release an agent (e.g. due to error or no
agents present) then the previous platform is selected from the list. What is important,
the algorithm must obey one rule: the available computing power of the source (desti-
nation) platform candidate has to be lower (higher) than the average available
power x . If this requirement cannot be fulfilled the migration does not take place.

Initial assumption: n – number of platforms
1. for each platform
2. retrieve its available and maximum computing power

3. compute x and V’
4. if (V’ > V’T)
5. create a list L of all platforms sorted in ascending order of available computing powers
6. source := L[0], dest := L[n-1]
7. loop
8. try to move the least active agent from platform source to platform dest
9. if (migration succeeded)
10. return SUCCESS
11. if (migration failed due to source platform)
12. source:= source + 1
13. if (migration failed due to dest platform)
14. dest := dest -1

15. if (L[source] > x or L[dest] < x)
16. return FAILURE
17. end loop

Fig. 6. Workload balancing algorithm

4 Experimental Evaluation

To evaluate the accuracy and performance of the distributed bucket index we have
conducted several experiments. The summary of parameters of the index we used in
our experiments is given in Table 1.

The platforms and the coordinator (along with a reading generator) run on 3GHz
Pentium 4 class machines connected via 100Mbit/s network.

4.1 Approximation and Prediction Accuracy

The approximation accuracy has been measured using a single (one agent version) in-
dex built on readings generated for 20 000 meters randomly distributed over the area

932 M. Gorawski and A. Dyga

of interest. In order to simulate fluctuation of the average utility usage over time,
randomly chosen values, by which the meter states are increased, are additionally
multiplied by the amplifier factor whose value is a function of simulation time.

Table 1. Index and Simulation Parameters

Parameter Symbol Value
Cell grid resolution w x h 100 x 100
Stepping time window size W 30 min
Past index node capacity Nc 1000
Number of meters 20 000
Usage between two subsequent meter readings Random in range 0.0 – 20.0
Time gap between two subsequent meter readings Random in range 10 – 20 min
Interval between index reorganizations RT 500 or 5000 updates
Simulation time 0:00 – 23.49
Prediction model time step length 30 min
Number of prediction model steps n 6
Smoothing factor α 0.3

Query region side length qL
Random in range

1–10% or 2-20% of region side length

The index is reorganized every 500 or 5000 processed updates (depending on the
experiment). This approach simulates a real world situation where the reorganization
process modifies the index occasionally only when the CPU is not busy processing
the updates or queries. Each reorganization is associated with several bucket splits
and at most one bucket merge.

0
5

10
15
20
25
30

0 200 400
B

0
5

10
15
20
25
30

0 200 400
B

0
5

10
15
20
25
30

0 200 400
B

 (a) RT=500 (b) RT=5000 (c) RT=5000
 qL=1..10% qL=1..10% qL=2..20%

Fig. 7. Approximation and prediction error vs. B

Having built the index based on the whole day readings (0:00–23:49) we measure
the error rate of the index caused by the approximation (i.e. grouping of cells) by
comparing the results of random historical queries uniformly distributed over the area
of interest with the actual usage generated by the generator. To perform the compari-
son we send 200 random forecasting queries concerning 30 minute time intervals
between 3:00 (to ensure the prediction model can use at least 6 previous steps) and
23:30 (to be able to compare the actual value with the predicted one in the period
23:30 – 24:00).The results are demonstrated in Fig. 7.

Update rate
[updates/s x 1000]

Approximation error [%]

Prediction error [%]

 Multi-dimensional Dynamic Bucket Index Based on Mobile Agent System 933

The error rate slightly decreases with B because the data distribution in the cell grid
is better modeled for larger values of B. The prediction error is always higher because
of the error caused by the prediction model. Fig. 7 also shows that the update rate
drops with B because for larger values of B the BPT is higher and the update algo-
rithm needs to traverse longer path from the root to the leaf every time an update is
received.

Fig. 7a and b show the results for different values of RT. As expected, if AMH is be-
ing reorganized more often (Fig. 7a) the bucket index achieves better accuracy; how-
ever, frequent reorganizations require more computing power. Interesting observation is
that for high values of B the error rate is similar both for RT =500 and 5000. This shows
that for high values of B the index accuracy is less influenced by the input stream rate.

Comparison of figures 7b and c shows that the query region size has also impact on
the error rate what is explained by the fact, that larger query regions do not require
high data granularity.

4.2 Speed-Up of the Distributed Version

The advantage of the distributed mobile version is measured in a system configuration
consisting of four platforms, one coordinator host and one host running a reading
generator. The simulation described in the previous section is repeated for a various
number of agents placed on platforms according to the round-robin algorithm.

For settings with one to four indexing agents the speed-up is almost linear (Fig. 8).
For larger number of agents the maximum update rate increases only slightly. This is
explained by the fact that the CPUs of platforms were almost fully loaded already at
the configuration with four agents, so adding more agents does not increase the maxi-
mum processing speed significantly. However the mobile agents, along with the meta-
agent watching over the system, can help to balance the workload of the platforms
what is demonstrated in the next section.

0

20000

40000

0 1 2 3 4 5 6 7 8 9

Number of indexing agents

Fig. 8. Update rate (updates/s) as a function
of number of agents

0

50

100

0 1 2 3 4 5 6
Time step

W
or

kl
oa

d
[%

]

P1 P2 P3 P4

Fig. 9. Workload balancing

4.3 Workload Balancing

To evaluate the proposed workload balancing algorithm we test a configuration with
one meta-agent and eight indexing agents. Five of them are initially placed on one of
the platforms while the remaining six are evenly placed on the other three. Then we
start the simulation at the maximal possible update rate and observe the CPU usage of
the platforms (Fig. 9). At the beginning, the workload of the platform P1 (which hosts

934 M. Gorawski and A. Dyga

five indexing agents) is almost 100% and the other platforms, hosting 2 agents each,
is about 25%. At the second time step the meta-agent decides to migrate an agent
from platform P1 to P2. After the migration the workload of P2 increases gradually
(the increase is not instant due to the moving average algorithm used to measure the
CPU usage). In the third step the meta-agent moves an agent from P1 to P3 whose
workload increases as well. Eventually, the workloads of all the platforms happen to
be similar. Note that the workloads of platforms do not reach the 100% level, because
for such amount of agents and platforms the coordinator host and the network become
the bottleneck on the data transfer path.

5 Conclusions

In this paper we have presented the idea of the adaptive multi-dimensional histogram
designed to index telemetric readings and applied in a mobile agent system. We have
shown that the cell grouping technique allows to process and store large amount of
data without using many system resources or storage space. Excellent index accuracy
is ensured by partial reorganizations performed during “idle CPU states.” This ap-
proach is different as opposed to traditional static index structures whose rebuild
process is very costly and always must be performed from the beginning.

Historic data stored in the index is used to forecast utility usage in the near future
according to exponential smoothing method. In our case, this method proved to be ef-
fective because the achieved prediction accuracy is satisfactory.

The idea of bucket index has been implemented in a distributed mobile agent sys-
tem based on mobile agents. A set of experiments proved that the mobile architecture
significantly improves the processing performance and helps to control the workload.

References

1. Gorawski M., Dyga A. Indexing of Spatio -Temporal Telemetric Data based on Distributed
Mobile Bucket Index. Parallel and Distributed Computing and Networks (PDCN), February
14-16, 2006, Innsbruck, Austria.

2. Gorawski, M., Malczok, R., Distributed Spatial Data Warehouse Indexed with Virtual
Memory Aggregation Tree. 5th Workshop on Spatial-Temporal DataBase Management
(STDBM_VLDB’04), Toronto, Canada 2004.

3. Gorawski, M., Malczok, R. On Efficient Storing and Processing of Long Aggregate Lists.
Proceedings of the 7th International Conference Data Warehousing and Knowledge Dis-
covery (DaWak2005, LNCS 3589), Copenhagen, Denmark 2005.

4. Sun, J., Papadias, D., Tao, Y., Liu, B. Querying about the Past, the Present and the Future
in Spatio-Temporal Databases. Proceedings of the 20th IEEE International Conference on
Data Engineering (ICDE), Boston, MA, 2004.

5. Dimarzo, G., Romanovsky, A. Designing Fault-Tolerant Mobile Systems. Revised Papers
from the International Workshop on Scientific Engineering for Distributed Java Applica-
tions (LNCS 2604), London, UK, 2002.

An Incremental Refining Spatial Join Algorithm
for Estimating Query Results in GIS

Wan D. Bae, Shayma Alkobaisi, and Scott T. Leutenegger

Department of Computer Science, University of Denver
2360 South Gaylord Street, Denver, CO 80206, U.S.A.

{wbae, salkobai, leut}@cs.du.edu

Abstract. Geographic information systems (GIS) must support large
georeferenced data sets. Due to the size of these data sets finding ex-
act answers to spatial queries can be very time consuming. We present
an incremental refining spatial join algorithm that can be used to re-
port query result estimates while simultaneously provide incrementally
refined confidence intervals for these estimates. Our approach allows for
more interactive data exploration. While similar work has been done in
relational databases, to the best of our knowledge this is the first work
using this approach in GIS. We investigate different sampling method-
ologies and evaluate them through extensive experimental performance
comparisons. Experiments on real and synthetic data show an order of
magnitude response time improvement relative to the exact answer ob-
tained when using the R-tree join.

1 Introduction

Geographic Information Systems (GIS) are used in many fields and applications
for exploring large data sets in order to obtain intuition and insight into the
stored information. GIS queries often compute exact numerical query answers.
However, computing the exact answers to queries in large databases can be time
consuming. Often an approximate answer is sufficient and can prevent wasted
computation time, thus allowing a more interactive exploration of the data. Our
goal is to speed up the exploratory process of GIS data while providing a statis-
tical confidence of preliminary results through an incremental refining process.
For example, instead of waiting a long time for an exact answer, we compute an
approximate answer, say bounded by 5% of the exact answer with 95% proba-
bility (confidence level), in 1

20 of the time needed for an exact answer. To make
the system more interactive, the user is given the ability to stop queries when-
ever the answer is “good enough”. This approach allows the user to quickly
obtain an idea of whether or not the query is useful and can therefore modify
it or stop it accordingly. While GIS and spatial databases offer many sophisti-
cated algorithms for computing exact query answers for spatial data, many of
these techniques are time prohibitive for the exploration of large spatial data
sets. Thus, many GIS applications can benefit from our approximate and fast
approach.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 935–944, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

936 W.D. Bae, S. Alkobaisi, and S.T. Leutenegger

In this paper we present the Incremental Refining Spatial Join (IRSJ) al-
gorithm. The IRSJ algorithm provides an order of magnitude improvement in
response time relative to a full R-tree join. The algorithm achieves its reduced
execution time by providing query estimates obtained from a subset of the full
join directed by random sampling. We experimentally compare two versions of
the IRSJ algorithm against each other as well as against the time needed to
obtain an exact answer using a full R-tree join algorithm.

2 Background

2.1 Overview of GIS and Motivation

GIS data are used to describe the geometry and location of various types of
geographic phenomena [12]. Geographic or spatial queries are performed on a
spatially indexed database in order to obtain answers that depend on spatial
relationships between data items [13]. Examples of spatial relationships include
intersection, containment, and adjacency. While our approach can be used for
any of these, in this paper we focus on finding an estimate of the number of
intersections. An example where our method would be useful is “How many
mineral plants intersect radiometric aged areas in the US?”, where this query
returns the number of areas that can be of interest to geologists to estimate the
earth’s age. Such a query would likely take a long time to find the exact number
of intersections. Our approach allows the time to be dramatically reduced if
the user is willing to accept an estimated value within a bounded confidence
interval.

2.2 Related Work

Our work follows the lead of online query processing work done at the Univer-
sity of California-Berkeley [1,3,4]. The authors proposed an interface for online
relational aggregation to provide the user with the ability to control the query
execution process. The goal was to minimize time by obtaining an approxi-
mate query answer instead of computing the exact answer. They proposed the
“ripple join” as part of this paradigm. We follow their general framework but
devise a new approximate sampling based join algorithm to work for spatial
data.

Spatial relations are usually indexed using R-trees [8]. An R-tree is a height
balanced tree structure adapted from the B-tree to support spatial data. An
R-tree stores the minimum bounding rectangles (MBRs) of objects. When per-
forming a query, all rectangles that intersect the query region are retrieved. This
is done in a recursive way starting from the root and following the paths down
to the leaf level. A spatial join computes the pairwise intersection of all data
objects in two spatial data sets. Many spatial join algorithms based on R-trees
have been proposed with perhaps two of the most common being found in [9,10].
Our algorithm follows a similar approach to that found in [10]. A data item from
one data set is joined with the other data set by executing a window query. For

An Incremental Refining Spatial Join Algorithm 937

example, if we join “cities” and “rivers”, then the MBR of a city provides the
query MBR to be executed against the river data set. Our work differs from the
past work in that we only execute intersection queries for a subset of the “outer”
data set through sampling. We incrementally refine the query answer until we
get the desired confidence interval accuracy.

Another approach for obtaining join selectivity estimates is to use histogram-
based methods [11]. Such methods offer the promise of even faster query esti-
mates than our method, but still have disadvantages. Although the experimental
results in [11] show low error, the method is not bounded whereas our method
provides error confidence intervals and the ability to incrementally tighten the
intervals. Also the histogram methods provide an estimate of the number of
joins, but they do not provide actual join results. Our method can be used to
produce a subset of the actual join results rather than just an estimate of the
number of tuples that will join.

3 The Incremental Refining Spatial Join in GIS

Our incremental refining spatial join algorithm consists of three steps: sampling,
spatial joining, and refining the estimation of the query result.

3.1 Random Data Sampling

Sampling chooses a subset of the data to obtain query estimates. Chosen samples
should accurately represent the entire data set, and a confidence interval is used
to reflect the accuracy of the estimated value [14,15]. We consider two common
database sampling methods: tuple-level and page-level [5]. In tuple-level sam-
pling, a number of tuples are chosen as samples, each with the same probability.
Tuple-level sampling obtains random samples regardless of data clustering, how-
ever, its performance is poor if no index is available. If an index is available, then
performance is improved since the sampling predicate is applied inside the in-
dex of leaf pages. In page-level sampling, pages are chosen as samples instead of
tuples. If a page is chosen at random, all tuples in that page are processed to cal-
culate the number of intersections for that page. Page-level sampling has better
performance than tuple-level in terms of I/Os [5]. However, aggregate estimate
accuracy can be worse when using page-level sampling due to the correlation of
data within a page. The query estimations and the confidence intervals are sta-
tistically meaningful only if samples are retrieved in random order. [6] presented
techniques for random sampling from various indices to produce meaningful con-
fidence intervals.

In our experiments we used one of the weighted random sampling methods,
Acceptance/Rejection in [6,7], in which the inclusion probability is proportional
to some parameter of the item sampled. We investigated tuple-level and page-
level sampling with varying data sets and buffer sizes. We do sampling incre-
mentally without replacement.

938 W.D. Bae, S. Alkobaisi, and S.T. Leutenegger

Algorithm 1. IRSJt(R, S, Cf , n)
1: C ← 0; CI ← 0 { count, confidence interval}
2: repeat
3: for i = 0 to k do
4: L ← Choose leaf from R at random
5: M ← MBR of a randomly chosen tuple within L
6: I ← number of intersections of a Window Query(M,S)
7: C ← C + I
8: end for
9: CI ← Compute confidence interval using C

10: EV ← Compute estimated value using C
11: until The desired confidence interval Cf is attained

3.2 The Incremental Refining Spatial Join Algorithm (IRSJ)

We have developed and compared two IRSJ versions: IRSJt and IRSJp for
tuple-based and page-based sampling, respectively. Assume we have two data
sets, denoted R and S, that we wish to join. Let R be the outer data set and S
be the inner data set. We assume R and S are both indexed by R-trees.

In IRSJt we select a page of R at random and choose one tuple within this
page at random. We use the MBR of this tuple as the MBR of an intersec-
tion query to query data set S using its R-tree. The number of intersections is
reported and used in calculating a running estimated value and a confidence in-
terval. Algorithm 1 describes IRSJt, where Cf is the desired confidence interval
and k (updating rate) is the number of tuples in each sampling step. A tradeoff
exists between the rate at which the confidence intervals are updated and the
time to which the interval length decreases at each update. In our experiments
we used k = 30. Since pages may contain a different number of tuples, especially
if R is indexed by an R-tree, it is necessary to choose pages with a probability
relative to the number of tuples within the page.

In IRSJp we sample a page of R at random for each update. The difference
between IRSJt and IRSJp is that in IRSJp we compute an intersection query
for each tuple within a sampled page, then use the obtained average as a single
sample. Due to likely correlation of tuples within a page, it is necessary to treat
the average of the page as a single value when calculating the confidence interval.

4 Confidence Interval Calculation

To provide bounds on the accuracy of our incremental result, we concurrently
calculate and return to the user the current estimated value and confidence in-
terval. We give an overview of the statistical method used in IRSJ and present
the confidence interval of a population proportion based on the Central Limit
Theorem (CLT) [2,14,15]. CLT states that the sampling distribution of the sam-
ple mean approximates a normal distribution for a specified number of samples
from any population. The approximation improves with more samples. For the

An Incremental Refining Spatial Join Algorithm 939

confidence interval we use the binomial probability distribution. The outcome
of each trial (join) is either “intersect” or “does not intersect”. The binomial
distribution is determined by the number of trials n and the probability p of
success in a single trial. The probability of a success remains the same from one
trial to the next. We assume that the normal curve is a good approximation to
the binomial distribution. Empirical studies have shown that these methods are
quite good when both np > 5 and nq > 5, where q = 1− p [15].

We describe the way to obtain the confidence intervals of a population propor-
tion. Let r be the number of successes out of n trials in a binomial experiment.
We take the sample proportion of successes p̂ = r/n as our point estimate for p,
the population proportion of successes, and point estimate for q is q̂ = 1− p̂. The
difference between the actual value of p and the estimate p̂ is called the error
estimate for using p̂ as a point estimate for p. For large samples the distribution
of p̂ is well approximated by a normal curve with mean μ = p and standard error
σ =

√
pq
n . Since the distribution of p̂ is approximately normal, we use features

of the standard normal distribution to find the difference p̂− p. An interval that
estimates a population parameter within a range of possible values at a specified
probability is called confidence level c. Let zc be the number such that an area
equal to c under the standard normal curve falls between −zc and zc. Then we
have P (−zc

√
pq
n < p̂− p < zc

√
pq
n) = c.

We call E the maximal error tolerance of the error of estimate |p̂ − p| for a
confidence level. To find the confidence interval for p, we have P (p̂−E < p < p̂+
E) = c. The difficulty is that we may not know the actual values of p or q in most
situations, so we use our point estimates p ≈ p̂ and q = 1−p ≈ 1− p̂ to estimate
E. These estimates are safe for most practical purposes since we are dealing with
large-sample theory. Then the confidence interval for p is p̂ − E < p < p̂ + E,

where p̂ = r
n : we have E = zc

√
p̂(1−p̂)

n = zc

√
p̂q̂
n , where zc= critical value for

confidence level c taken from a normal distribution.
In IRSJt, n = nt, the number of tuples processed and in IRSJp, n = np,

the number of pages processed. Note that np ≤ nt. Different sampling methods
generalize the standard CLT of confidence interval formulas [14]. We use the
following formula for the confidence interval of IRSJt:

E = zc

√
p̂(1−p̂)

n−1 ·
N−n

N

5 Experiments

In this section we present experimental results of the IRSJt and IRSJp algo-
rithms on both synthetic and real GIS data sets. We compare the algorithms to
each other as well as to obtain an exact answer using a full R-tree join algorithm
[9]. We show the estimated values and the corresponding confidence intervals re-
turned to the user with a 95% confidence level. We present the number of I/Os
with varied buffer sizes as well as the number of node (page) accesses. All code
is implemented in Java.

940 W.D. Bae, S. Alkobaisi, and S.T. Leutenegger

5.1 Datasets and Experimental Methodology

We consider both synthetic and real data sets in our studies. Our synthetic
data sets consist of (i) uniform (random) and (ii) skewed (hyper-exponential)
distributions. For the uniform data set, (x,y) locations are distributed uni-
formly and independently between 0 and 1. The (x,y) locations for the skewed
data sets are independently drawn from a hyper-exponential distribution with
mean 0.3 and variance 0.25. Let U and S denote uniform and skewed dis-
tributed data sets, respectively. We considered all join combinations: S �	 S,
U �	 S, S �	 U , U �	 U . We vary the number of tuples of each data set be-
tween 100,000 and 600,000 tuples. We only present the most illustrative sub-
set of our results due to space limitations. Results not shown also resulted
in up to an order of magnitude improvement in performance. Our real data
sets are from the U.S. Geological Survey in 2001 and 2005 [16]: (i) Mineral
Resources in the US (outer relation R): U.S. Geological Survey, 2005. (ii) Geo-
chemistry of unconsolidated sediments in the US (inner relation S): U.S. Geolog-
ical Survey, 2001. The two data sets have 300,434 and 199,850 tuples (MBRs),
respectively.

Our experiments are conducted using the following parameters: R-tree page
size of 4Kbytes with fan-out size of 100 for leaf and non-leaf nodes and minimum
capacity of 40. Since R-trees are disk-based index structures, the natural per-
formance metric is the number of page I/Os required for a given buffer size. We
assume an LRU buffer and vary buffer size between 300 and 1800 pages resulting
in the buffer holding between 3% and 60% of the inner R-tree.

5.2 Synthetic Data Results

We first present results for the synthetic data sets. In Figure 1 (a) and (c) we
plot the running estimated query result versus the numbers of tuples processed.
The smoother line is for IRSJt while the jagged line is for IRSJp. In Figure
1 (a) the outer data set is uniform while the inner data set is skewed, and in
Figure 1 (c) the outer data set is skewed while the inner data set is uniform.
In Figure 1 (b) and (d) we plot the confidence interval versus time measured
as the number of buffer misses. Figure (b) corresponds to (a) and figure (d) to
(c). The time to process a page of tuples in IRSJp is greater than the time to
process a tuple in IRSJt, thus, the most fair comparison is time which is directly
proportional to the number of buffer misses. The top curve is for IRSJp and
the lower curve is for IRSJt. The vertical line on the right is the execution time
needed for a full R-tree join algorithm. The estimate accuracy is significantly
worse under IRSJp than IRSJt. Put another way, the IRSJt algorithm takes
less time to obtain the same accuracy as IRSJp. Note that the time to obtain
an exact answer is more than an order of magnitude greater than that needed
to get an accuracy within 5% using IRSJt.

In Figure 2 we show experimental results when we vary the size of the data
sets and also vary buffer size to keep the buffer size fixed at 10% of the inner R-
tree size. As can be seen, the full R-tree join requires 4-16 times more disk access

An Incremental Refining Spatial Join Algorithm 941

0

30000

60000

90000

120000

150000

180000

210000

240000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pe rce ntage of data proce s s e d (Oute r re lation)

E
s

ti
m

a
te

d
 v

a
lu

e

tuple level

page level

(a) Estimated Value: U -600K �� S-400K

0%

2%

4%

6%

8%

10%

0 20000 40000 60000 80000 100000

time (I/Os)

c
o

n
fi
c

e
n

c
e

 i
n

te
rv

a
l

tuple

page

R join

(b) Confidence Interval: U -600K �� S-400K

0

30000

60000

90000

120000

150000

180000

210000

240000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P ercentage of da ta processed (Outer re la tion)

E
s

ti
m

a
te

d
 v

a
lu

e

 .

tuple level

page level

(c) Estimated Value: S-600K �� U -400K

c
o

n
fi
d

e
n

c
e

 i
n

te
rv

a
l

tuple

page

R join

(d) Confidence Interval: S-600K �� U -400K

Fig. 1. Estimated Value and Confidence Interval for synthetic datasets 600K �� 400K

than IRSJt with a 5% half confidence interval. As the data set size increases
the advantage of IRSJt over the full R-tree join increases. Thus, for larger data
sets, as expected in a real GIS, the benefit of our proposed approach will be
even greater. Figure 3 shows the results for an experiment where the size of data
sets is varied while buffer size is fixed at 1200 pages. Experiment results show
that IRSJt provides an I/O performance improvement of more than an order of
magnitude relative to the R-tree join.

5.3 GIS Real Data Result

We now present results for the U.S.G.S. data sets. Our query is to join min-
eral resources with geochemical unconsolidated sediments in the US. The query
returns the number of intersections of mineral resources and geochemical uncon-
solidated sediments. In Figure 4 we plot the accuracy and confidence intervals for
IRSJt and IRSJp. Again, the smoother line is for IRSJt while the jagged line
is for IRSJp. As can be seen, IRSJt takes less I/Os to get the same accuracy as
IRSJp. In Table 1 on page 943 we present the number of I/Os and the number of
node accesses with buffer size 5% and 10% of the inner R-tree. For a buffer size
of 10%, the R-tree join requires 74 times more I/Os than the IRSJt with a 5%
half confidence interval. In Figure 5 we present results of our experiments when
we vary buffer size from 300 to 1800 pages. The experiment results again show
that IRSJt provides a good estimation in very early query processing stages.

942 W.D. Bae, S. Alkobaisi, and S.T. Leutenegger

0

40000

80000

120000

160000

200000

100 200 300 400 500 600

Outer and inner relation s ize in K tuples

I/
O

s

10%

5%

3%

2%

1%

R join

(a) I/Os with 10% buffer

0

10

20

30

40

50

60

100 200 300 400 500 600

Outer and inner relation s ize in K tuples

I/
O

s
 r

a
ti
o

 t
o

 R
 j

o
in

 10%

5%

3%

2%

1%

(b) I/O Ratio to R-tree join

100 200 300 400 500 600

Outer and inner relation s ize in K tuples

N
o

d
e

 a
c

c
e

s
s

10%

5%

3%

2%

1%

R -join

(c) Node Accesses with 10% buffer

100 200 300 400 500 600

Outer and inner relation s ize in K tuples

N
o

d
e

 a
c

c
e

s
s

 r
a

ti
o

 t
o

 R
 j

o
in

10%

5%

3%

2%

1%

(d) Node Access Ratio to R-tree join

Fig. 2. I/Os and Node Accesses of IRSJt for varying size of synthetic datasets with
10% buffer size and Ratio to a full R-tree join: R(uniform) �� S(skewed)

0

50000

100000

150000

200000

250000

100 200 300 400 500 600

Outer and inner relation s ize in K tuples

I/
O

s

10%

5%

3%

2%

1%

R join

(a) I/Os

0

10

20

30

40

50

60

100 200 300 400 500 600

Outer and inner relation s ize in K tuples

I/
O

s
 r

a
ti
o

 t
o

 R
 j

o
in

10%

5%

3%

2%

1%

(b) I/O Ratio to R-tree join

Fig. 3. I/Os and Ratio of IRSJt to a full R-tree join for varying size of synthetic
datasets with a fixed buffer size 1200

6 Conclusions

In this paper we proposed the Incremental Refining Spatial Join (IRSJ) al-
gorithm to efficiently estimate the results to spatial queries. We implemented
two versions of IRSJ : one based on tuple-level sampling (IRSJt) and the other
based on page-level sampling (IRSJp). Our experiments show that the time

An Incremental Refining Spatial Join Algorithm 943

0

20000

40000

60000

80000

100000

120000

140000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P ercentage of data proces s ed (Outer relation)

E
s

ti
m

a
te

d
 v

a
lu

e

tuple level

page level

(a) Estimated Value

0%

2%

4%

6%

8%

10%

0 10000 20000 30000 40000

time (I/Os)

C
o

n
fi
d

e
n

c
e

 i
n

te
rv

a
l

R join

tuple

page

(b) Confidence Interval

Fig. 4. Estimated Value and Confidence Interval for the real datasets

Table 1. I/Os and Node Accesses of IRSJt and a full R-tree join for the real datasets:
H.C.I.=Half Confidence Interval, Buffer size=Percent of relation size

Buffer Size H.C.I.=10 H.C.I.=5 H.C.I.=3 H.C.I.=2 H.C.I.=1 R-join
I/Os 5% 233 403 770 1896 8159 27756

10% 182 333 752 1164 3795 24756
Node Accesses 5% 780 2591 6933 18299 87233 262200

10% 668 2136 9028 19671 85822 262200

0

100

200

300

2%4%6%8%10%12%

C onfidence interval

I/
O

 r
a

ti
o

 t
o

 R
 j

o
in

B uffer=300

B uffer=600

B uffer=900

B uffer=1200

B uffer=1500

B uffer=1800

(a) I/O ratio to R-tree join

0

400

800

1200

1600

2%4%6%8%10%12%

C onfidence interval

N
o

d
e

 a
c

c
e

s
s

 r
a

ti
o

B uffer=300

B uffer=600

B uffer=900

B uffer=1200

B uffer=1500

B uffer=1800

(b) Node Access ratio to R-tree join

Fig. 5. I/Os and Node Access Ratio to a full R-tree join for the real datasets

(I/Os) required to obtain a reasonably accurate estimate was order of magni-
tude smaller than the time needed for an exact answer obtained using a full
R-tree join algorithm using both real and synthetic data sets. We also observed
that as the size of data sets increases, the improvement of IRSJt over the full
R-tree join also increases. Thus, the benefit of our approach will be even greater
for larger GIS data sets. Perhaps surprisingly, our tuple-level sampling algo-
rithm performed better than our page-level sampling algorithm. This is a result
of only being able to use one datum in confidence interval calculation due to

944 W.D. Bae, S. Alkobaisi, and S.T. Leutenegger

data set clustering which violates the needed independence. In our future work
we plan to investigate different sampling methods to improve the performance
of IRSJ and develop a mathematical model to determine the optimal sampling
strategy. Further, we plan to explore the utility of IRSJ for answering multiway
joins.

Acknowledgments

The following people provided helpful suggestions during early stages of this
work: Mario Lopez, Sada Narayanappa, Brandon Haenlein, and Mohammed Al-
bow. Help in statistics was graciously provided by Prof. Ray Boersema and Prof.
Tom Obremski.

References

1. Hellerstein, J. M., Hass, P. J., Wang, H. J.: Online aggregation. In Proc. ACM
SIGMOD. (1997) 171–182

2. Hass, P. J.: Large-sample and deterministic confidence intervals for online aggre-
gation. In Proc. SSDM. (1997) 51–63

3. Hass, P. J., Hellerstein, J. M.: Ripple Joins for Online Aggregation. In Proc. ACM
SIGMOD. (1999) 287–298

4. Hellerstein, J. M., Avnur, R., Raman, V.: Informix under CONTROL: Online
Query Processing. Data Mining and Knowledge Discovery. Vol.12 (2000) 281–314

5. Seshadri, S.: Probabilistic methods in Query Processing. Ph.D. Dissertation. Uni-
versity of Wisconsin. (1992)

6. Olken, F.: Random Sampling from Databases. Ph.D. Dissertation. University of
California, Berkeley. (1993)

7. Rubinstein, R. Y.: Simulation and the Monte Carlo Method, John Wiley and Sons,
Inc. (1981)

8. Guttman, A.: R-trees: a Dynamic Index Structure for Spatial Searching. In Proc.
ACM SIGMOD. (1984) 45–57

9. Brinkhoff, T., Kriegel, H., Seeger, B.: Efficient Processing of Spatial Joins Using
R-trees. In Proc. ACM SIGMOD. (1993) 237–246

10. Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and Optimization of Mul-
tiway Spatial Joins Using R-trees. In Proc. ACM PODS. (1999) 44–55

11. An, N., Yang, Z., Sivasubramaniam, A.: Selectivity estimation for spatial joins. In
Proc. ICDE. (2001) 368–375

12. Medeiros, C. B., Pires, F.: Databases for GIS. ACM SIDMOD Record. Vol.23, No.1
(1994) 107–115

13. Larson, R. R.: Geographic Information Retrieval and Spatial Browsing. GIS and
Libraries. University of Illinois. (1996) 81–127

14. Scheaffer, R. L., Mendenhall, W., Ott, R.L.: Elementary Survey Sampling. 5th edn.
New York. Duxbury Press. (1995)

15. Serfling, R. J.: Basic Statistics for Business and Economics. McGraw-Hill. 4th edn.
New York. (2002)

16. USGS Mineral Resources On-Line Spatial Data : http://tin.er.usgs.gov/. (2001,
2005)

Extensions to Stream Processing Architecture
for Supporting Event Processing�

Vihang Garg, Raman Adaikkalavan, and Sharma Chakravarthy

IT Laboratory & Department of Computer Science and Engineering
The University of Texas at Arlington, Arlington, TX 76019

{adaikkal, sharma}@cse.uta.edu

Abstract. Both event and stream data processing models have been re-
searched independently and are utilized in diverse application domains.
Although they complement each other in terms of their functionality,
there is a critical need for their synergistic integration to serve newer
class of pervasive and sensor-based monitoring applications. For instance,
many advanced applications generate interesting simple events as a re-
sult of stream processing that need to be further composed and detected
for triggering appropriate actions. In this paper, we present EStream,
an approach for integrating event and stream processing for monitor-
ing changes on stream computations and for expressing and processing
complex events on continuous queries (CQs). We introduce masks for
reducing uninteresting events and for detecting events correctly and effi-
ciently. We discuss stream modifiers, a special class of stream operators
for computing changes over stream data. We also briefly discuss archi-
tecture and functional modules of EStream.

1 Introduction

Recently, Data Stream Management Systems (DSMSs) have received consider-
able attention. A number of issues have been addressed ranging from architec-
ture [1,2] to scheduling strategies [3,4] to Quality of Service(QoS) [5,6]. Similarly,
event processing [7,8,9,10,11] has received a lot of attention in the last decade.
Different computational models for event processing such as Petri nets [8], ex-
tended automata and event graphs [7,9] have been proposed and implemented.
Although both of these areas have been developed independently and are use-
ful for a variety of applications, neither of them is individually adequate for a
number of real-world applications. By integrating an expressive event process-
ing system with a stream processing system synergistically, the scope of events
can be expanded to arbitrary continuous queries which is not the case currently.
Hence the integration of the event and stream processing will provide an end-
to-end solution for a large class of applications.

In this paper, we briefly describe MavStream [12,13,14] and LED [10,11] as
examples of home-grown stream and event processing architectures, respectively.
� This research was supported in part by NSF Grants IIS-0326505, and EIA-0216500,

MRI 0421282, and IIS 0534611.

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 945–955, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

946 V. Garg, R. Adaikkalavan, and S. Chakravarthy

We have extended both the event and stream processing systems1. We propose
an integrated model and discuss its various stages. We introduce stream mod-
ifiers, a class of stream operators for computing changes over stream data. We
introduce masks for reducing uninteresting events generated from continuous
queries and for detecting events correctly and efficiently. Finally, we present the
functional modules of the integrated system and experiments demonstrating the
effectiveness of masks.

2 Background: MavStream and Local Event Detector

MavStream: [12,13,14] has been developed for processing continuous queries
(CQs) over streams and is modeled as a client-server architecture. Each CQ from
the user is converted into a plan object and is sent to the server. MavStream
server is responsible for converting the plan object into a query tree and pro-
cessing it to give the desired output. The instantiator traverses the plan object
in a bottom-up fashion and populates the operator instances with the predicates
(conditions) defined in the query plan object. The scheduler is responsible for
scheduling the operators of a CQ using a determined strategy. It schedules oper-
ators of a query based on its state and priority. The QoS optimization depends
upon the scheduling strategy selected by the scheduler. The scheduling strate-
gies [4,14] supported are: Round-Robin, Weighted round-robin, Path capacity
scheduling (for minimizing tuple latency), Segment scheduling and Simplified
segment scheduling (both for balancing memory usage and tuple latency).

Local Event Detector (LED): [10,11] is based on the event-condition-action
(or ECA) paradigm. ECA rules consist of events (occurrence of interest), condi-
tions (simple or a complex query) and actions (operations to be performed when
conditions evaluate to true). Simple events are predefined domain specific events.
Event Operators are used to construct composite events. Some of the event oper-
ators supported are: OR, AND, Sequence, NOT, Aperiodic, Periodic, Plus, and
Cumulative Aperiodic and Periodic. When a simple event is detected/raised, an
event object is created and is placed in a notify buffer. They are then prop-
agated to other composite events who subscribe to it in the Event Detection
Graph (EDG). LED supports four event consumption modes (recent, chronicle,
continuous and cumulative) for capturing meaningful application semantics and
to reduce the space and computation overhead for the detection of composite
events. Rule Priority can be assigned to each rule. Rules can be specified either
in the immediate or the deferred coupling mode.

3 Integrated Model

Four stage integrated model is shown in Figure 1. Each stage is briefly explained
below.
1 Due to space constraints we will explain some of the extensions to stream processing.

For more details refer [15,16].

Extensions to Stream Processing Architecture 947

Continuous Query Processing Stage: This stage represents the MavStream
stream processing system that accepts stream data as input and produces stream
data as output. CQs output data streams in the form of tuples. MavStream, in
addition to those discussed in Section 2, has a number of stream operators: Select,
Project, Join, Aggregates (sum, count, max, min, and average) and Group By.
Output from a CQ is propagated to the event processing stage through the event
generation and stream modifiers stage.

Event Processing Stage: This stage represents the LED event processing
architecture, where simple and composite events are defined and event detection
graphs corresponding to those events are constructed. LED consumes detected
simple events from the notify buffer via the LED thread and propagates it to the
composite event nodes (parent node) in the event graph. In the integrated model
simple events are raised by the event generation and stream modifiers stage.

E3

E
2

J
2

J1

S2 S
3

S1 S
4

Stage 3:
Event Processing

C Q
Processing

Stream 2 Stream 3

Stage 4: Rule Processing

St
ag

e
1:

 C
Q

Pr
oc

es
sin

g

Stream i - Incoming Streams
Sk - Select Operators
Jl - Join Operators
Rq - Rules

Ep - Event Nodes
EGr - Event Generator
LDET - LED Thread

Rule 1 Rule 2 Rule n... Rule 1 Rule 2 Rule n...

Stream 1 Stream 4

EG
1

EG2

LEDT

MaskBuffer Notify Buffer

Stage 2:
Event Generation
Stream Modifiers

E
1

Fig. 1. Four Stage Integrated Model

Rule Processing Stage: Rule processing is also a part of LED and it processes
rules that are associated with simple and composite events. When events are
detected, conditions (specified as methods) are evaluated and when they return
TRUE corresponding actions are performed. Rules can also be added at runtime.

Coupling Event and Stream Processing: This represents the stage 2 with
event generation and stream modifiers. In addition to the conceptual extensions
to both the models, stage 2 has been added to facilitate seamless integration
of the two systems. The seamless nature of our integrated model is due to the

948 V. Garg, R. Adaikkalavan, and S. Chakravarthy

compatibility of the chosen event processing model (i.e., data flow computation
using an event detection graph) with the model used for stream processing (data
flow computation using a network of queues).

Users can define simple events on named CQs with optional masks. Once
defined, there should be a mechanism for converting stream tuples into event
tuples. Several designs for generating events were considered and analyzed before
settling on the one described in this paper [15]. Event Generator Operator (EG)
is designed as the root node of a CQ. EG converts stream tuples from CQ
output into event objects, populates event attribute values and inserts event
objects into the notify buffer. In addition, EG node can also pass the output
directly to applications. In order to facilitate the conversion, EG contains the
mapping of events that need to be generated for CQs.

Masks are defined for simple events and they provide a mechanism for filtering
events based on one or more event attribute values. Mask processing, described
later, has been introduced to filter simple events using arbitrary conditions on
the attributes of the event. As event objects are generated from the CQs, masks
are pushed into the EG operator node and are evaluated. The event generator
operator can take any number of masks and for each mask, a different event
tuple/object is created and sent to the notify buffer. Masks reduce the load
on the event processor as unlike stream processing there are no queues to hold
events in the event processing stage. Masks can be added/modified dynamically
at runtime.

For the stream-side, we have introduced a new class of operators called Stream
Modifiers for computing the change in the values of attributes between two tuples
of the data stream. Stream modifiers are supported both in windowed and non-
windowed modes. The extensions identified and implemented in the form of
stream modifiers enable one to convert stream output into interesting changes
that are used as events for further monitoring.

Thus, when an event is defined on a CQ , an EG operator node is created. In
addition, stream modifiers can also be a part of the CQ before sending the output
to the EG node. When a stream tuple is output from the stream modifier or
from any other CQ node, it is propagated to the EG node. Since a conventional
stream processing system is likely to output a large number of tuples/events,
both stream modifiers and masks facilitate filtering of uninteresting events.

4 Stream-Side Extensions

4.1 Stream Modifiers

Operators currently supported in MavStream were derived from relational oper-
ators. In many scenarios, these operators are not adequate as it is necessary to
compute various changes on the output of stream processing as events. Stream
Modifiers are used to detect changes in the output to determine whether it is of
interest as an event or not.

A tuple is represented as: (A1, A2, · · · , An), where n is the total number
of attributes in the stream schema (e.g., (CarId, Speed, Direction, Lane) =

Extensions to Stream Processing Architecture 949

{1, 45, East, 3}). Let SubTuple Ti (A1, · · · , Am) represent the values of attributes
A1, · · · , Am for the ith state/tuple of data stream. If m = n then Ti represents
the complete stream tuple. For example, T1(CarId, Speed) for the data stream
can be represented as {1, 45}, assuming the tuple defined above is the first tuple
of the stream. Let State function Si(Aj) represent the value of the jth attribute
in ith tuple of the stream.

In the following definition, [] indicates optional parameters. A stream mod-
ifier is defined as a function to compute changes (i.e., relative change of an
attribute) between a two tuples/states (not necessarily consecutive) of its in-
put stream. It is denoted by M(< A1, A2, · · · , Am > [, P < pseudo >][, O|N]),
where M is called modifier function that computes a particular kind of change.
< A1, A2, · · · , Am > are the parameters required by the modifier function M on
which the change is to be computed, and m ≤ n. In the following P < pseudo >,
the parameter P defines a pseudo value for M function in order to prevent
runtime exceptions (i.e., underflow, division by zero). The O|N part is called
modifier profile, which determines whether the oldest values or the latest values
of the SubTuple shall be given as output. If O is specified, the oldest values are
output or the latest values are output if N is specified. The modifier profile is
optional and the default is O. Currently, we have implemented various stream
modifiers[15]; Adiff(), RDiff() and ASlope() with both modifier profiles and in
both windowed and non-windowed versions. Below we explain the Adiff() with
O modifier profile.

ADiff() is used to detect absolute changes over two states. It returns absolute
change of the values of attributes (A1, A2, · · · , Am), and SubTuple for the rest
of the attributes based on the modifier O|N profile. It is formally defined for
case O as follows:

ADiff((A1, A2, · · · , Am >)[O])

= (si+1(A1)−si(A1)
si(A1) · · · si+1(Am)−si(Am)

si(Am)) + Ti(Am+1, Am+2, · · · , An)

Windowed and Non-Windowed Stream Modifiers: Windowed stream modifiers
compute the changes between the first and the last tuple of the window. It is de-
noted by M(< A1, A2, · · · , Am > [, P < pseudo >][, O|N], windowSpecs), where
the windowSpecs define the begin and the end time of the window. The design
also supports overlapped windows and hence maintain a three tuple synopsis,
given by:

– First tuple synopsis: stores the first tuple of the current window.
– Last tuple synopsis: stores the last tuple of the current window.
– Overlap first tuple synopsis: stores the first tuple of the overlap window.

The algorithm for windowed stream modifiers based on the three tuple synop-
sis is shown in Algorithm 1. Non-Windowed modifiers do not support intervals
and directly produce the change between two consecutive tuples and are active
till the time events need to be generated. Synopsis of a single tuple is kept, which
is incrementally updated whenever an output is produced.

950 V. Garg, R. Adaikkalavan, and S. Chakravarthy

Algorithm 1. Windowed Stream modifier
while current tuple timestamp < end time of event generation do

if tuple timestamp is within current window bounds then
if first tuple then

update first tuple synopsis with current tuple
continue while loop

end if
update the last tuple synopsis with current tuple
if current tuple timestamp is greater than next begin window time then

update Overlap first tuple synopsis with current tuple
end if

else
compute change for current window using first tuple synopsis and last tuple
synopsis
update first tuple synopsis with Overlap first tuple synopsis

end if
end while
stop modifier

4.2 Handling Masks

This operation is incorporated into the event generator operator node. It can
evaluate any complex condition (as a mask) on the attributes of the event.
Mask is applied after stream modifiers are applied and before converting the
resulting tuples into an event object. The input to this operator is an attribute-
based condition (mask) and the list of attributes that need to be output. Mask
condition is defined on the attributes of an event. Masks provide a mechanism
by which attribute-based constraints can be applied to the generation of events
from the output of CQs for reducing uninteresting events and for reducing load
for event and rule processing. In EStream, as events are generated by a CQ, it is
possible to apply a mask that filters a generic event into different types of events.
Processing masks uses the FESI Ecma Condition Evaluator for evaluation of the
complex conditions. Mask processor maps the attributes over which the condition
is defined, to the position in input stream and evaluates complex conditions on
it. The tuple is output or filtered depending on whether the condition evaluator
evaluates tuple attributes to TRUE or not, based on the condition.

5 Functional Modules of EStream

EStream, as shown in Figure 2, is implemented by integrating the LED into the
MavStream server. Both systems are homegrown and are implemented in Java.
One of the design decisions was to put both into the same address space as other
alternatives would involve inter-process communication and additional switching
overhead. EStream server consists of an input processor (to accept the continuous
event query or CEQ), CQ instantiator (create operator nodes corresponding to

Extensions to Stream Processing Architecture 951

CQ Instantiator

Scheduler

User Input

Rule and Event
Instantiator

Run -Time Optimizer

User CQ
Output

S
1

S
2

Input Processor

Data Streams

LED Buffer

EStream Server

EG

Feeder
User CEQ

Output

Q
ue

ry
 P

ro
ce

ss
or

E
ve

nt
 a

nd
 R

ul
e

P
ro

ce
ss

or

Fig. 2. EStream Architecture

CQs and the EG interface), a rule and event instantiator (create the events
and rules of a CEQ), a scheduler (that schedules CQs at the operator level), a
runtime optimizer, a stream query processor, an event generator interface, and
an event and rule processor,

Input Processor accepts the CEQs from the user. CEQ consists of CQs, stream
modifiers, events, masks and rules. The CEQ is parsed to separate the informa-
tion pertaining to CQs, events, and rules. Below shown is a CEQ, but in a
separated form with CQ, event and rule definition. The CEQ named AUTO-
MATEDMONITOR is to monitor the speed of cars with CarId > 100 to be
within the speed limit in the residential area. If the speed of the car is above 30
mph then a ticket should be generated and mailed to the owner.

CREATE CEQ AUTOMATEDMONITOR AS
CREATE CQ CARIDGT100

SELECT * from CarLocStr
WHERE carId > 100

CREATE EVENT "ResidentialSpeedingTicket" on CARIDGT100
MASK (CARIDGT100.speed > 30 AND CARIDGT100.area = "Residential")

CREATE RULE "SpeedingTicket"
ON "ResidentialSpeedingTicket"
CONDITION TRUE
ACTION "GenerateTicket"

In the above, CARIDGT100 is a CQ with SELECT operator for monitoring
cars that have CarId > 100. Once the CQ generates the output, events are gen-
erated if the specified MASK is satisfied. Once the event is generated, associated

952 V. Garg, R. Adaikkalavan, and S. Chakravarthy

rule SpeedingTicket is raised and tickets are generated. This query is kept simple
for illustration purposes and hence does not include stream modifiers.

Although a CEQ consists of a one or more CQs, events, and rules, they have
to be processed and instantiated in a specific order. Events cannot be created
before stream queries, and rules cannot be associated unless event nodes are in
place. The ECA part of CEQ is given to the rule and event instantiator which
generates the event detection graph for the events. Event container temporar-
ily stores the information regarding events and rules until they can be created.
Once events are created, rules are defined on the event nodes specified in the
CEQ. Since both LED and MavStream are in the same address space, the APIs
of LED can be called for the creation of event nodes and associating rules on
the event nodes created. Rule and event processor is responsible for detect-
ing events and triggering appropriate actions when rule conditions evaluate to
TRUE.

The CQ part of CEQ is given to the CQ instantiator, that generates a query
plan using the query plan generator and instantiates the operator nodes. Each
operator definition is populated in a data structure called operatorData which
is wrapped in an operatorNode that has references to the parent and child op-
erators. The query scheduler schedules the query and is executed by the query
processor. Query processor has the implementation of all operators including
stream modifiers and the EG interface.

Stream modifiers are supported along the lines of aggregate operators (as
unary operators) beyond (typically) the aggregate operators. The event genera-
tion for each CQ is done by the event generator operator attached as the root
operator of each query after it is instantiated. Stream tuples are fed to the event
generator operator where they are filtered against available masks and then
converted into event objects. The mask filtering is combined with the event gen-
erator node which takes several arbitrary conditions (select-like) and generates
different event types based on the definition associated with an event specifica-
tion. Attributes of the stream tuples are inserted as event attributes and event
objects are inserted into the notify buffer. This is implemented by making ex-
tensions to the query processor and the instantiator by implementing the event
generator operator and associating it before every query is scheduled. At runtime
the event generator is responsible for raising events which are enqueued in the
notify buffer as event objects. The checking of masks before event generation
significantly reduces the number of events generated, thus reducing the load on
the event processing. If the selectivity of a mask is low (on a scale of 0 to 1),
it filters more events. Event objects are consumed from the LED buffer and are
propagated to the event detection graphs. For each detected event, associated
rules are triggered which in turn checks the associated condition and execute the
action if the condition evaluates to TRUE. The runtime optimizer monitors the
QoS of the CQ output and if the user defined performance metric is not met,
then it dynamically changes the scheduling strategy associated with the stream
computational model.

Extensions to Stream Processing Architecture 953

5.1 Experiments

The experiment and the results shown below demonstrates the effect of masks in
the EG interface. The query we have used is the CEQ AUTOMATEDMONITOR
defined previously. This experiment was run on a machine with a single Xeon
processor (2.4GHz, 1GB RAM) running Red Hat Linux 8.0 operating system.
The data set for performance evaluation is a modified version of the data set
used by the Stanford Stream project [17,18]. The scheduling strategy used is
the path capacity scheduling [4,14]. This experiment was completely executed in
main memory.

Events generated with and without masks

0

5000

10000

15000

20000

25000

30000

35000

2000 10000 30000

Size of data set

N
o

.
o

f
e

v
e

n
ts

 g
e

n
e

ra
te

d

Without Masks With Masks

(a) Events Generated With and
Without Masks

Average action execution latency

0

0.5

1

1.5

2

2000 10000 30000

Size of data set

T
im

e
 (

M
il
li
s
e
c
o

n
d

s
)

With Masks Without Masks

(b) Average Action Execution La-
tency

Fig. 3. Query Experiments With and Without Masks

From Figure 3(a) and Figure 3(b), it is evident that with the application of
masks, the number of events generated is significantly reduced, thus reducing
the traffic in the notify buffer and the event and rule processor. If masks are
not used, then we have to filter the speed and residential area constraints in the
condition portion of the rule i.e., after the event is detected and propagated.
This will add a significant computational overhead to the system. With the ap-
plication of masks in event generator node, only those events whose conditions
evaluate to true are generated. This results in a significant decrease of the av-
erage event execution latency for various data sets and can be seen from the
Figure 3(b).

6 Related Work

Our work is closely related to the two threads of work, event processing [7,9,8,11]
and stream processing [1,2,3,4,5,6,12]. To the best of our knowledge there is no
system that has integrated the two. Most of the stream processing systems (Au-
rora, STREAMS, Telegraph, etc.) use the data flow model. The event process-
ing systems, on the other hand have different computational models such as the
Event Detection Graph (EDG), Petri Nets and Finite Automaton.

954 V. Garg, R. Adaikkalavan, and S. Chakravarthy

HiFi generates simple events out of receptor data at its Edges [19] and pro-
vides the functionality of complex event processing on these Edges. It addresses
the issue of generating simple events by virtual devices that interact with the
heterogeneous sensors to produce application level simple events. Although this
system is a step in the right direction for the detection of events over sensor data,
it does not define and detect events over stream queries. The events detected
at Edges are simple events and cannot be defined over the result of the data
preprocessed by a Continuous Query. Tiny DB has Event Based Queries [20,21],
which is processing of events over stream queries. The events are initiated by
low-level lying operating system events.

Our work is a comprehensive one which examines the general purpose stream
and event processing systems for integration. We have taken an initial step in
combining the two systems with extensions that are critical for their effectiveness.
Further work is being addressed on broader issues on both stream and event
processing. For detailed related work please refer [15].

7 Conclusion

In this paper, we have given a summary of the design and implementation of
EStream, a system that addresses the need of advanced applications that re-
quire not only stream processing but also event processing. We have given an
integrated model that combines stream processing and event processing systems
that support: i) Events on arbitrary continuous queries, ii) Stream modifiers to
capture complicated changes over windows, and iii) Filtering of uninteresting
event generation using user-defined masks.

Future work includes attribute-based semantics for events, extending current
window concept to a more expressive semantic window, scheduling and QoS
aspects for event processing.

References

1. S. Madden and M. J. Franklin, “Fjording the Stream: An Architecture for Queries
over Streaming Sensor Data,” in Proc. of ICDE, 2002.

2. J. Chen et al., “NiagaraCQ: A Scalable Continuous Query System for Internet
Databases,” in Proc. of SIGMOD, 2000.

3. B. Babcok et al., “Operator scheduling in data stream systems,” The VLDB J.,
vol. 13, pp. 333–353, 2004.

4. Q. Jiang and S. Chakravarthy, “Scheduling Strategies for Processing Continuous
Queries over Streams,” in Proc. of BNCOD, Jul. 2004.

5. B. Babcock, M. Datar, and R. Motwani, “Load Shedding for Aggregation Queries
over Data Streams,” in Proc. of ICDE, Mar. 2004.

6. N. Tatbul et al., “Load Shedding in a Data Stream Manager,” in Proc. of VLDB,
Sep. 2003.

7. A. P. Buchmann et al., Rules in an Open System: The REACH Rule System. Rules
in Database Systems, 1993.

8. S. Gatziu and K. R. Dittrich, “Events in an Object-Oriented Database System,”
in Proceedings of Rules in Database Systems, Sep. 1993.

Extensions to Stream Processing Architecture 955

9. S. Chakravarthy and D. Mishra, “Snoop: An Expressive Event Specification Lan-
guage for Active Databases,” Data and Knowledge Engineering, vol. 14, no. 10, pp.
1–26, Oct. 1994.

10. S. Chakravarthy et al., “Design of Sentinel: An Object-Oriented DBMS with Event-
Based Rules,” Information and Software Technology, vol. 36, no. 9, pp. 559–568,
1994.

11. R. Adaikkalavan and S. Chakravarthy, “SnoopIB: Interval-Based Event
Specification and Detection for Active Databases (in press),” 2005. [Online].
Available: http://dx.doi.org/10.1016/j.datak.2005.07.009

12. Q. Jiang and S. Chakravarthy, “Data Stream Management System for MavHome,”
in Proc. of ACM SAC, Mar. 2004.

13. A. Gilani, S. Sonune, B. Kendai, and S. Chakravarthy, “The Anatomy of a Stream
Processing System,” in Proc. of BNCOD, Jul. 2006.

14. S. Chakravarthy and V. K. Pajjuri, “Scheduling Strategies and Their Evaluation
in a Data Stream Management System,” in Proc. of BNCOD, Jul. 2006.

15. V. Garg, “Estream: An integration of event and stream processing,”
Master’s thesis, The Univ. of Texas at Arlington, 2005. [Online]. Available:
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Gar05MS.pdf

16. Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “Towards an Integrated Model
for Event and Stream Processing,” TR CSE-2004-10, CSE Dept., Univ. of Texas
at Arlington, 2004.

17. A. Arasu et al., “Linear Road: A Stream Data Management Benchmark,” in Proc.
of VLDB, Sep. 2004.

18. R. Motwani et al., “Query Processing, Resource Management, and Approximation
in a Data Stream Management System,” in Proc. of CIDR, Jan. 2003.

19. S. Rizvi et al., “Events on the edge (demo),” in Proc. of SIGMOD, 2005.
20. S. R. Madden et al., “The Design of an Acquisitional Query Processor for Sensor

Networks,” in Proc. of SIGMOD, 2003.
21. S. R. Madden et al., “TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Net-

works,” In Proc. of OSDI, Dec. 2002.

Author Index

Abbadi, Amr El 389
Adaikkalavan, Raman 945
Adam, Nabil 439
Agrawal, Divyakant 389
Aguilar-Saborit, Josep 707
Aleksy, Markus 449
Alkobaisi, Shayma 935
Annoni, Estella 244
Apers, Peter M.G. 33
Atkinson, Katie 822
Atluri, Vijayalakshmi 439

Bae, Wan D. 935
Bandi, Nagender 389
Bench-Capon, Trevor 822
Bennacer, Nacéra 368
Benslimane, Djamal 266
Bhowmick, Sourav S. 149
Binder, Walter 317
Breslin, John G. 509
Bruno, Emmanuel 172
Burgert, Oliver 602
Burnap, Pete 812
Byun, Changwoo 276

Casali, Alain 409
Castelli, Thomas 572
Cha, Guang-Ho 853
Chaichana, Sopak 582
Chakravarthy, Sharma 945
Chang, Edward Y. 644
Chang, Elizabeth 519
Charoy, François 592
Chatvichienchai, Somchai 286
Cheang, Chan Wa 379
Chen, Chun 697
Chen, Gencai 697
Chen, Ling 697
Chen, Yangjun 771
Cheng, Changxiu 459
Cho, Kyungmin 114
Choi, Byung-Uk 863
Choi, Jae-Ho 358
Choi, Ryan H. 161

Chou, Pauline Lienhua 203
Chundi, Parvathi 582
Cicchetti, Rosine 409
Constantinescu, Ion 317
Coulondre, Stéphane 914
Crolotte, Alain 348
Cuevas-Vicentt́ın, Vı́ctor 44

Decker, Stefan 509
Delgado, Jaime 307
Dillon, Tharam S. 519
Do, Tai T. 254
D’Ulizia, Arianna 728
Durrigan, Cian 73
Dyga, Adam 924

Enokido, Tomoya 801
Ezeife, C.I. 560

Faltings, Boi 317
Fan, Wenfei 22
Feng, Ling 33
Feng, Yaokai 687
Ferri, Fernando 728

Gao, Yunjun 697
Garg, Vihang 945
Gebski, Matthew 478
Ghazal, Ahmad 348
Ghedira, Chirine 266
Godart, Claude 592
Gong, Zhiguo 379
Gorawski, Marcin 924
Gray, W.A. 812
Greco, Sergio 622
Grifoni, Patrizia 728
Groppe, Jinghua 93
Groppe, Sven 93
Guabtni, Adnene 592
Guo, Hang 538

Han, Zhongming 12
Hara, Takahiro 791
Hawarah, Lamis 193
Hong, Jinkeun 894

958 Author Index

Hou, Wen-Chi 182, 761
Hou U, Leong 379
Hsu, Wynne 138
Hua, Kien A. 254
Huang, Zhenhua 781
Huang, Zi 528

Ivanović, Mirjana 489
Iwaihara, Mizuho 286

Jang, Hyukjae 114
Jankiewicz, Krzysztof 873
Jatowt, Adam 832
Jeong, Seungdo 863
Jiang, Tao 223
Jiang, Zhewei 182, 761
Jin, Xiaoming 104
Jo, Geun-Sik 430
Jo, Sungjae 114
Jung, Jin-Guk 430

Kang, Jaewoo 420
Kataoka, Ryoji 327
Kawai, Yukiko 549, 832
Kido, Yuki 791
Kim, Heung-Nam 430
Kim, Ju-Wan 666
Kim, Kidong 863
Kim, Kihong 894
Kim, Sang-Wook 863
Kim, Seon Ho 718
Kim, Su Myeon 114
Kitagawa, Hiroyuki 327
Kitsuregawa, Masaru 399, 842
Klink, Stefan 234
Ku, Wei-Shinn 655
Kulkarni, Sachin 738
Kumamoto, Tadahiko 549
Kurashima, Takeshi 213

Lakhal, Lotfi 409
Larriba-Pey, Josep-Ll. 707
Latif, Khalid 467
Le, Jiajin 12
Lee, Bae-Hee 430
Lee, Dongwon 420
Lee, Joshua 572
Lee, Mong Li 138
Lee, SangKeun 358
Lee, Sang-Won 83

Lemke, Heinz U. 602
Leutenegger, Scott T. 935
Ley, Michael 234
Li, Jing 560
Li, Ling 138
Li, Zhuan 338
Li, Zude 883
Lim, Jongin 894
Ling, Tok Wang 1
Liu, Fuyu 254
Liu, Huanzhang 1
Lotlikar, Rohit M. 612
Lu, Feng 459
Luo, Cheng 182, 761

Ma, Lisha 22
Maamar, Zakaria 266
Madria, Sanjay Kumar 399
Makinouchi, Akifumi 687
Masewicz, Mariusz 873
Meixensberger, Jürgen 602
Merz, Matthias 449
Miles, John 812
Min, Kyoung-Wook 666
Modgil, Sanjay 822
Mohania, Mukesh 612
Molinaro, Cristian 622
Mondal, Anirban 399
Mrissa, Michael 266
Muntés-Mulero, Victor 707
Murisasco, Elisabeth 172
Mustofa, Khabib 467

Na, Gap-Joo 83
Nakaoka, Mika 499
Naqvi, Waseem 572
Neumuth, Thomas 602
Nishio, Shojiro 791
Noonan, Colm 73
Novelli, Noël 409

Oren, Eyal 509
Orlandic, Ratko 738
Otsuka, Shingo 842
Oyama, Satoshi 54

Pahwa, Jaspreet Singh 812
Panda, Navneet 644
Park, Jong-Hyun 666
Park, Sang-Hyun 358

Author Index 959

Park, Seog 276
Pastor, Óscar 64
Penev, Alex 478
Pérez-Casany, Marta 707
Poon, Chung Keung 297
Prakash, Sandeep 149

Qamra, Arun 644

Radovanović, Miloš 489
Rafanelli, Maurizio 728
Ravat, Franck 244
Ray, Indrakshi 582
Reuther, Patrick 234
Roantree, Mark 73
Ruan, Chun 904
Ryu, Keun Ho 420

Sacco, Giovanni Maria 751
Seid, Dawit 348
Seo, Sungbo 420
Shen, Beijin 12
Shen, Heng Tao 528
Sidhu, Amandeep S. 519
Simonet, Ana 193
Simonet, Michel 193
Śnieżyński, Bart�lomiej 634
Song, Dawei 528
Song, Junehwa 114
Strauß, Gero 602
Strickland, Adam 123

Tajima, Keishi 54
Takizawa, Makoto 801
Tan, Ah-Hwee 223
Tanaka, Katsumi 54, 213, 499,

549, 832
Tanaka, Youhei 801
Taylor, Phil 123
Teste, Olivier 244
Tezuka, Taro 54, 213, 499
Thion, Romuald 914
Tian, Chi 54
Tjoa, A. Min 467

Toda, Hiroyuki 327
Tous, Rubén 307
Trubitsyna, Irina 622

van Bunningen, Arthur H. 33
Varadharajan, Vijay 904
Vargas-Solar, Genoveva 44
Völkel, Max 509

Walter, Bernd 234
Wang, Bing 123
Wang, Chih-Fang 761
Wang, Fusheng 676
Wang, Haojun 655
Wang, Wei 161, 781
Wang, Xiang 104
Wang, Yuanzhen 338
Weber, Alexander 234
Whittington, Dick 123
Wong, Raymond K. 161, 478
Wrembel, Robert 873
Wu, Ji 1

Xin, Tai 582

Yan, Feng 182
Ye, Xiaojun 883
Yu, Byunggu 718
Yu, Songmei 439
Yu, Tian 1
Yuen, Leo 297

Zaniolo, Carlo 676
Zechinelli-Martini, José Luis 44
Zhan, Guoqiang 883
Zhang, Mingbo 459
Zhang, Xiuzhen 203
Zhou, Lizhu 538
Zhou, Xiaofang 528
Zhou, Xin 676
Zhu, Qiang 182, 761
Zimmermann, Roger 655
Zurfluh, Gilles 244
Zuzarte, Calisto 707

	Frontmatter
	XML I
	Efficient Processing of Multiple XML Twig Queries
	Effectively Scoring for XML IR Queries
	Selectively Storing XML Data in Relations

	Data and Information I
	A Context-Aware Preference Model for Database Querying in an Ambient Intelligent Environment
	{\sc Andromeda}: Building e-Science Data Integration Tools
	Improving Web Retrieval Precision Based on Semantic Relationships and Proximity of Query Keywords

	Invited Talk DEXA Conference
	From Extreme Programming to Extreme Non-programming: Is It the Right Time for Model Transformation Technologies?

	XML II
	Using an Oracle Repository to Accelerate XPath Queries
	A Relational Nested Interval Encoding Scheme for XML Data
	A Prototype of a Schema-Based XPath Satisfiability Tester

	Data and Information II
	Understanding and Enhancing the Folding-In Method in Latent Semantic Indexing
	DCF: An Efficient Data Stream Clustering Framework for Streaming Applications
	Analysis of BPEL and High-Level Web Service Orchestration: Bringing Benefits to the Problems of the Business

	XML III
	Rewriting Queries for XML Integration Systems
	A Tale of Two Approaches: Query Performance Study of XML Storage Strategies in Relational Databases
	Visual Specification and Optimization of XQuery Using VXQ

	Data and Information III
	MSXD: A Model and a Schema for Concurrent Structures Defined over the Same Textual Data
	Estimating Aggregate Join Queries over Data Streams Using Discrete Cosine Transform

	Datamining and Data Warehouses
	Evaluation of a Probabilistic Approach to Classify Incomplete Objects Using Decision Trees
	Multiway Pruning for Efficient Iceberg Cubing
	Mining and Visualizing Local Experiences from Blog Entries
	Mining RDF Metadata for Generalized Association Rules

	Database Applications I
	Analysing Social Networks Within Bibliographical Data
	Automating the Choice of Decision Support System Architecture
	Dynamic Range Query in Spatial Network Environments
	Context and Semantic Composition of Web Services

	XML IV
	An Efficient Yet Secure XML Access Control Enforcement by Safe and Correct Query Modification
	Detecting Information Leakage in Updating XML Documents of Fine-Grained Access Control
	Faster Twig Pattern Matching Using Extended Dewey ID

	Data and Information IV
	A Vector Space Model for Semantic Similarity Calculation and OWL Ontology Alignment
	Scalable Automated Service Composition Using a Compact Directory Digest
	Topic Structure Mining for Document Sets Using Graph-Based Analysis

	XML V
	An Approach for XML Inference Control Based on RDF
	Recursive SQL Query Optimization with k-Iteration Lookahead
	An Effective, Efficient XML Data Broadcasting Method in a Mobile Wireless Network

	Data and Information V
	Formalizing Mappings for OWL Spatiotemporal Ontologies
	Multi-term Web Query Expansion Using WordNet
	Fast Computation of Database Operations Using Content-Addressable Memories
	CLEAR: An Efficient Context and Location-Based Dynamic Replication Scheme for Mobile-P2P Networks

	Datamining and Data Warehouses
	Lossless Reduction of Datacubes
	Multivariate Stream Data Classification Using Simple Text Classifiers
	Location-Based Service with Context Data for a Restaurant Recommendation
	Cascaded Star: A Hyper-Dimensional Model for a Data Warehouse

	Database Applications II
	Using JDOSecure to Introduce Role-Based Permissions to Java Data Objects-Based Applications
	A Forced Transplant Algorithm for Dynamic R-tree Implementation
	An Approach for a Personal Information Management System for Photos of a Lifetime by Exploiting Semantics
	Topic Distillation in Desktop Search

	WWW I
	Interactions Between Document Representation and Feature Selection in Text Categorization
	WebDriving: Web Browsing Based on a Driving Metaphor for Improved Children's e-Learning
	Semantic Wikis for Personal Knowledge Management

	Bioinformatics
	Integration of Protein Data Sources Through PO
	3D Protein Structure Matching by Patch Signatures

	WWW II
	Segmented Document Classification: Problem and Solution
	User Preference Modeling Based on Interest and Impressions for News Portal Site Systems
	Cleaning Web Pages for Effective Web Content Mining

	Process Automation and Workflow
	An Applied Optimization Framework for Distributed Air Transportation Environments
	On the Completion of Workflows
	Concurrency Management in Transactional Web Services Coordination
	Acquisition of Process Descriptions from Surgical Interventions

	Knowledge Management and Expert Systems
	Adaptive Policies in Information Lifecycle Management
	Implementation and Experimentation of the Logic Language ${\cal N\!P\, D}atalog$
	Converting a Naive Bayes Models with Multi-valued Domains into Sets of Rules
	Hypersphere Indexer

	Database Theory I
	Distributed Continuous Range Query Processing on Moving Objects
	Optimal Route Determination Technology Based on Trajectory Querying Moving Object Database
	Efficient Temporal Coalescing Query Support in Relational Database Systems

	Query Processing I
	Efficient Evaluation of Partially-Dimensional Range Queries Using Adaptive R*-tree
	Parallelizing Progressive Computation for Skyline Queries in Multi-disk Environment
	Parameterizing a Genetic Optimizer

	Database Theory II
	Interpolating and Using Most Likely Trajectories in Moving-Objects Databases
	Relaxing Constraints on GeoPQL Operators to Improve Query Answering
	High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning

	Query Processing II
	Truly Adaptive Optimization: The Basic Ideas
	Applying Cosine Series to XML Structural Join Size Estimation
	On the Query Evaluation in Document DBs
	A Novel Incremental Maintenance Algorithm of SkyCube

	Database Theory III
	Probabilistic Replication Based on Access Frequencies in Unstructured Peer-to-Peer Networks
	Role-Based Serializability for Distributed Object Systems
	MDSSF -- A Federated Architecture for Product Procurement

	Knowledge Management and Expert Systems
	Argumentation for Decision Support
	Personalized Detection of Fresh Content and Temporal Annotation for Improved Page Revisiting
	Clustering of Search Engine Keywords Using Access Logs

	Database Theory IV
	Non-metric Similarity Ranking for Image Retrieval
	An Effective Method for Approximating the Euclidean Distance in High-Dimensional Space
	Dynamic Method Materialization: A Framework for Optimizing Data Access Via Methods

	Privacy and Security
	Towards an Anti-inference (K, ℓ)-Anonymity Model with Value Association Rules
	Analysis of the Power Consumption of Secure Communication in Wireless Networks
	Implementing Authorization Delegations Using Graph
	Modeling and Inferring on Role-Based Access Control Policies Using Data Dependencies

	Database Theory V
	Multi-dimensional Dynamic Bucket Index Based on Mobile Agent System Architecture
	An Incremental Refining Spatial Join Algorithm for Estimating Query Results in GIS
	Extensions to Stream Processing Architecture for Supporting Event Processing

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

