
K. Bauknecht et al. (Eds.): EC-Web 2006, LNCS 4082, pp. 92 – 101, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing Volatile Functionality in E-Commerce
Web Applications

Gustavo Rossi*, Andres Nieto, Luciano Mengoni, and Liliana Nuño Silva

LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{gustavo, anieto, lmengoni, lilica}@sol.info.unlp.edu.ar

Abstract. In this paper we present a flexible design approach and a software
framework for integrating dynamic and volatile functionality in Web applica-
tions, particularly in e-commerce software. We first motivate our work with
some examples. We briefly describe our base design platform (the OOHDM de-
sign framework). Next, we show how to deal with services that only apply to a
particular set of application objects by clearly decoupling these services from
the base conceptual and navigation design and by defining the concept of ser-
vice affinity. We describe an implementation environment that seamlessly ex-
tends Apache Struts with the notion of services and service’s affinities. Finally,
we compare our approach with others’ work and present some further research
we are pursuing.

1 Introduction

Complex E-Commerce Web applications are hard to build and harder to maintain.
While they initially comprise a myriad of diverse functionality, which makes devel-
opment a nightmare, their evolution tend to follow difficult to characterize patterns;
quite often, new services are added and tested with the application’s users community
to determine whether they will be consolidated as core application services or not.
Moreover, there are services which are known to be temporary, i.e. they are incorpo-
rated into the application during some time and later discarded, or they are only acti-
vated in specific periods of time. In this paper we are interested in the design and
implementation of those, so called volatile requirements and the impact they have on
the design model and on the application’s architecture. We present an original ap-
proach to deal with these requirements modularly; by clearly decoupling the design of
these application’s modules we simplify evolution.

There are many alternatives to deal with this kind of volatile requirements. One
possibility is to clutter design models with new extensions. The main problem with
this approach is that it involves intrusive editing and therefore it may introduce mis-
takes as new functionality is added or edited. A second possibility is to consider that
volatile functionality does not deserve to be designed (as it is usually temporary) and
deal with these changes only at the implementation level. This approach not only is
error prone but it also de-synchronizes design documents with the running system,
therefore introducing further problems.

* Also CONICET.

 Designing Volatile Functionality in E-Commerce Web Applications 93

Volatile requirements pose a new challenge: how to design and implement them in
order to keep the previously described models and the implementation manageable
[15,16]. For example suppose we want to support donations (e.g. as in Amazon after
South Asian Tsunami in 2004); this functionality arose suddenly, and implied adding
some new (fortunately simple) pages and links from the home page. This kind of
additions are usually handled in an ad-hoc way (e.g. at the code level), making design
documents obsolete.

Keeping design models up to date is not straightforward: Should we clutter the de-
sign models with these new navigation units and then undo the additions when the
requirement “expires”? How do we deal with those requirements that are not only
volatile but moreover they apply only to some specific objects (e.g. not to the com-
plete set of one class’s instances)? Should we modify some specific classes? Add new
classes in a hierarchy? Add some new behaviors to existing classes? The main risk of
not having a good answer to these questions is that the solution will be to patch run-
ning code, making further maintenance even harder.

In this paper we describe our model-based approach for dealing with volatile func-
tionality. We describe a simple approach which can be easily incorporated into the
design armory of existing methods. It comprises the definition of a Service layer,
describing volatile services both in the conceptual and navigational models, and uses
the concept of service’s affinities as defined in IUHM [8] to bind new services with
application objects. Services are more than just plain behaviors, but may encompass
complete (conceptual or navigation) models. We also describe an implementation
architecture to show the feasibility of our approach and an extension to Apache Struts
that supports the architecture. To make the discussion concrete, we describe our ideas
in the context of the Object-Oriented Hypermedia Design Method (OOHDM).

The main contributions of this paper are the following:

• We present a design approach for clearly separating volatile functionality, par-
ticularly when it involves the definition of new nodes and links in the Web ap-
plication.

• We show how to integrate this functionality by using the concept of service af-
finity.

• Finally, we describe an implementation architecture and framework supporting
our ideas.

The rest of the paper is organized as follows: In Section 2 we present some simple
motivating examples. In Section 3 we describe the core of our approach by discussing
services and affinities. In Section 4 we briefly describe and implementation approach.
In Section 5 we compare our work with other related approaches and finally in Sec-
tion 6 we present some concluding remarks and further work on this area.

2 Motivating Examples

In order to show what kind of volatile application functionality we aim to deal with,
we next show some examples in the context of the Amazon Web application.

In Figure 1 we show part of the page of the last Harry Potter’s book. Below the
book information and the editorial reviews, there is an excerpt of an interview with

94 G. Rossi et al.

the author, and a link to the full interview which is only accessible from this book and
not from others of the series (and certainly it does not make sense in other authors’
books). The interview is an aggregation of questions and answers with hypertext links
to other books and authors. One can assume that as time passes, this interview (now, a
novelty) will be eliminated. We face two problems when designing this simple func-
tionality: how to indicate that it is available from some specific pages, and being vola-
tile, how to keep it separated from the rest of the design.

In Figure 2 we see the page of Rolling Stone’s “A bigger Band” CD; in the end of
the page (also shown in the Figure) we can see a link to a site for buying tickets for
Stones’ next concert in Argentina. The same link appears in all Stones’ disks. It is
reasonable to think that this functionality will be eliminated after the concert is over.

Fig. 1. Interviewing a book’s author concert

Similar examples such as the functionality for full search inside a book, the Mozart

store (celebrating his 250 anniversary), etc. share the same characteristics: they are
known to be volatile and in some cases the new services only apply to some specific
pages in the system. A naive approach for solving these problems would be to pollute
the design model, by adding the intended information, links or behaviors to the corre-
sponding conceptual and navigational classes. This approach fails because of two
main reasons:

• It neglects the fact that certain functionality does not apply to a complete class
(e.g., not every book is linked to an interview with the author, not every CD in-
cludes a pointer to a ticket selling service)

• It implies that the design models have to be often edited intrusively (e.g. chang-
ing attributes and behaviors of a class)

We next elaborate our approach for tackling these problems.

 Designing Volatile Functionality in E-Commerce Web Applications 95

Fig. 2. Selling tickets for a group’s concert

3 Our Approach in a Nutshell

The rationale behind our approach is that even the simplest volatile functionality (e.g.
the links added to the page in Figure 2) must be modeled and design using good engi-
neering techniques. We think that by surpassing the need to design volatile functional-
ity, we not only compromise the relationships among design models and the actual
application but also loose reuse opportunities, as many times a new (volatile) feature
might arise once and again in different contexts. A model-based approach, instead,
allows increasing the level of abstraction in which we reason with these features,
improving comprehension and further evolution. We next present the basic elements
of our approach.

3.1 A Brief Description of the OOHDM Model

OOHDM as other development approaches such as OOWS [9], UWE [6] partitions
the development space into five activities: requirements gathering, conceptual design,
navigation design, abstract interface design and implementation. Though OOHDM
does not prescribe a particular strategy for implementing a hypermedia or Web appli-
cation, its approach can be naturally mapped to object-oriented languages and archi-
tectural styles, such as the Model-View-Controller. Some MDA [7] tools already exist
for OOHDM [2]; in this paper we describe a semi-automatic approach for generating
running implementations which exhibit volatile services.

Usually, new behaviors (or services) are added to corresponding classes, and new
node and link classes are incorporated to the existing navigational schema, therefore
extending the base navigation topology. As previously indicated, there are two prob-
lems with this approach; first it is based on intrusive editing of design models; be-
sides, and as exemplified, there is no easy way to characterize which objects should
be the host of new links or services, when they are not defined in the class level. We
next describe how we extended the methodology to cope with volatile functionality.

96 G. Rossi et al.

3.2 Modeling Volatile Functionality in OOHDM

Our approach is based on four basic principles:

• We decouple volatile from core functionality: We define two design models; a
core model and a model for volatile features (called VService Layer).

• New behaviors, i.e. those which belong to the volatile functionality layer are
modeled as first class objects, e.g. following the Command [4] pattern.

• To achieve obliviousness, we use inversion of control, i.e. instead of making
core classes aware of their new features, we invert the knowledge relationship.
New behaviors know the base classes on top of which they are built.

• We use a separate integration layer to bind core and volatile functionality. In
this way, we achieve reusability of core and volatile features and manage ir-
regular extensions.

3.3 The Volatile Services Layer

The introduction of the VService Layer was inspired in part in the IUHM model in
which services are described as first class objects. We considered services as a com-
bination and generalization of Commands and Decorators [3]. A service is a kind of
command because it embodies an application behavior in one class, instead of a
method. It can be considered also as a decorator because it allows adding new features
(properties and behaviors) to an application in a non intrusive way. Services may be
plain behaviors that are triggered as a consequence of some user action or might in-
volve a navigational presence, i.e. a set of pages with information or operations corre-
sponding to the service (as in Figure 1). We are particularly interested in this last kind
of volatile services. Given a new (volatile) requirement we first model its conceptual
and navigational features in a separate layer using the OOHDM approach. A second
step is to indicate the relationships among services and existing conceptual and navi-
gational classes; Figure 3 shows a preliminary specification of this connection. In the
left we show the base model containing core (stable) application abstractions and in
the right we present the specification of the service.

Fig. 3. Separating Volatile services from the base model

 Designing Volatile Functionality in E-Commerce Web Applications 97

Notice the knowledge relationship among the Tour object and the performer’s CD
which inverts the “naive” solution in which Artists know the tour (thus coupling both
classes), and the absence of link between the node CD and the Tour node. While the
former is characteristic of Decorators, i.e. we are wrapping the model with a new
service, the latter gives us the flexibility to specify different navigation strategies; for
example we can either link the new functionality from the application (Figure 2) or
insert it in the base node (Figure 1).

3.4 Integrating Volatile Services into the Core Design

VServices are connected to the application level using an integration specification,
which is decoupled both from services and base classes. This specification indicates
the nodes that will be enhanced with the volatile service, and the way in which the
navigation model will be extended (e.g. adding a link, inserting new information in a
node, etc). Notice that in the previous examples we aimed at extending only some
specific instances of the CD (respectively Book) nodes. For example we might
want to link some Rolling Stone’s CD’s to the ticket selling services for a concert in
Argentina.

We define the affinity of a service as the set of nodes (respectively objects) in the
design model which will be affected by the services, i.e. those nodes from which we
will have access to the service. According to [8] we specify the affinity of a service in
terms of objects’ properties. Affinities are specified using a query language similar to
the one that OOHDM itself uses for nodes specification [12] which was inspired in
[4]. Those nodes which match the query are affected by the service. A query has the
form: FROM C1…Ci WHERE predicate in which the Cj indicate node classes and the predi-
cate is defined in terms of properties of the model. Queries can be nested and a ge-
neric specifier (*) can be used to indicate that all nodes can be queried. As in
OOHDM, the qualifier subject allows to refer to conceptual model objects. A query
indicates the kind of integration between application nodes and services which can be
extension or linkage. An extension indicates that the application node is “extended” to
contain the service information (an operations) while, in a linkage the node “just”
allow navigation to the service. For example:
Affinity Concert
From CDView where (performer = TourView.subject.artist.name)
Integration: Linkage (TourView.name)

The affinity named Concert (corresponding to the example in Figure 2) indicates that
all instances of a CD node will have a link to those instances of TourView such that
the performers are the same. The link is enriched with the name of the tour. Service
might of course have more than one instance; for example in the case of the second
motivating volatile functionality, many artists may be on tours. Each tour ticket sell-
ing functionality has its own data and the most important remark, may have its own
integration style into core nodes. Thus, we may have to specify an affinity for each
service instance, which is called an Instance Affinity to differentiate it from a Class
Affinity. The functionality in Figure 2 has the following integration rule:

Instance Affinity Concert
Where (artist=U2 and TourView.subject.location= “Argentina”)
Integration: Extension (TourView)

98 G. Rossi et al.

An affinity specifies a temporal relationship between a service and the model which
can be evaluated either during the compilation of the model, thus requiring re-
compilation each time the affinity changes, or can be evaluated dynamically during
page generation, as will be explained in section 4. Notice that model objects (concep-
tual and navigational) are oblivious with respect to services and their affinities and
then they can evolve independently of their volatile nature.

3.5 Further Issues

We treat services as first class objects in our model. In consequence we can define
services which apply to a service also using affinities, and therefore composing ser-
vices in a seamless way, without a need to couple services with each other. A nice
example is the following: Suppose that we want to offer a travel service in our e-store;
the service may be a general one, i.e. accessible as a landmark (See for example
www.amazon.com) or it must be accessible only when certain offers arise. For exam-
ple, we could offer those people who buy tickets to a concert our travel service when
the service takes place in a particular city. In this case we will specify an affinity
between the travel service and the ticket service as for example:
Affinity TravelService
From TourView where (Subject.concert.place= “Paris”)
Integration: Linkage (TicketView)

Once again we obtain a clear separation between services and their target objects
(being them base application nodes or services). The Travel service can be used in
multiple other situations just by specifying corresponding affinities. A Service can be
used for example in the context of a business process activity, e.g. as defined in [11],
just by indicating the affinity and the target node (e.g. an activity node in the check-
out process).We have also defined the concept of service specialization (a kind of
inheritance in the realm of services) but for the sake of conciseness we omit to discuss
this here.

4 Architectural Design and Implementation

We have implemented a framework on top of Apache Struts which supports semi-
automatic translation of OOHDM models, including the instantiation of Web pages,
from the OOHDM navigational schema and their integration with volatile services.
The framework also provides a set of custom tags to simplify user’s interface devel-
opment according to the guidelines of OOHDM’s abstract interface specification. A
high-level description of the framework’s architecture is depicted in Figure 4.

Our light-weight framework aims to:

• Allow the specification, and the straightforward implementation, of a web appli-
cation navigational model, which contains nodes and links primitives such as
those defined in OOHDM.

• Provide support for dynamic integration of volatile functionality.

 Designing Volatile Functionality in E-Commerce Web Applications 99

Fig. 4. Architecture of a framework for volatile services

The OOHDM module provides tools to represent a navigational layer between ap-
plication domain objects and the user interface. We use the standard Struts controller
objects to act as navigation controllers and to perform the interaction with conceptual
objects. In this module the developer defines actions and links which allow represent-
ing the concepts in a navigation schema. This module offers support for defining
nodes which contain the information which will be displayed in a page and profits
from Struts custom tags for defining interface issues. Nodes contain Struts actions to
manage navigation logic which is completely delegated to the Struts basic engine. The
OOHDM module receives the navigational model in the form of a configuration file
(NavConfig.xml) in which the designer specifies nodes, links and other navigation
primitives. The information is processed and transformed into navigational objects
which constitute the navigation layer of the application.

The volatile service module supports the integration of volatile functionality in a
non-intrusive way; i.e. by releasing the developer from re-factoring existing classes or
configuration files. This module is in charge of administrating and gluing volatile
services in the target application, and uses the OOHDM module as a collaborator,
delegating controller and navigation tasks to it. As mentioned before, a service is
composed of a set of navigational nodes and conceptual objects that comply with a
specific requirement. Nodes affinities are computing according to the actual state of
the node’s context which is defined as the set of direct and indirect relationships with
other nodes and conceptual objects. The developer also provides all service informa-
tion through a configuration file.

5 Related Work

Volatile requirements have been recently dealt by the requirements engineering com-
munity; particularly in [10] the authors propose to use aspectual constructs to isolate
volatile requirements, mainly when they cross-cut “core” application behavior. Our
approach also aims at separating these concerns, but without using aspects.

100 G. Rossi et al.

Web Engineering Methods have already faced the problems of e-commerce applica-
tions. Particularly, OOHDM [11] and UWE [5] have enriched their modeling armory
for representing business processes. These methods have also defined means to per-
sonalize general application behavior and specifically business processes. OOWS [9]
has also exemplified many of their features for specifying complex functionality using
e-commerce software as a target. None of these methods have already explicitly dealt
with volatile functionality. However, OOWS has been recently extended to incorporate
external services in the context of business processes using a model-driven approach
[13]. In [1], the authors present an aspect-oriented approach for dealing with adaptiv-
ity. In both cases, the concept of affinity could be easily introduced to mediate in the
context of service integration in OOWS or adaptive aspects weaving in UWE.

6 Concluding Remarks and Further Work

In this paper we have presented an approach for dealing with volatile functionality in
Web applications, i.e. for integrating those services which arise during evolution and
are either known to be temporary or are being tested for acceptance. Incorporating
this functionality in the conceptual and navigational model of a Web application
might cause maintenance problems due to the need of editing classes which work
properly or to clutter the existing model with possible spurious classes. We propose to
add a separate layer for specifying volatile functionality. We have exemplified our
approach with some simple examples and presented a way to integrate the VService
Layer into the core application schemata, by using the concept of affinity. Affinities,
which are expressed as queries, allow connecting services into those application
objects which fulfill the desired properties. We have briefly described an implementa-
tion architecture that supports the evaluation of affinities and the injection of compo-
nents defined in the VService layer into the core application objects.

We are studying the implication of service inheritance and composition and ana-
lyzing the integration of external services (e.g. Web Services). We are currently test-
ing the described framework with demanding applications (e.g. those in which heavy
queries must be executed). We are also studying the process of service integration via
re-factoring of model classes.

References

1. H. Baumeister, A. Knapp, N. Koch and G. Zhang. Modelling Adaptivity with Aspects. 5th
International Conference on Web Engineering (ICWE'05). Springer Verlag, Lecture Notes
in Computer Science.

2. M. Douglas, D. Schwabe, G. Rossi, “A software arquitecture for structuring complex Web
Applications” Journal of Web Engineering, Rinton Press, September 2002.

3. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Elements of reusable ob-
ject-oriented software, Addison Wesley 1995.

4. W. Kim, "Advanced Database systems", ACM Press, 1994.
5. N. Koch, A. Kraus, C. Cachero, S. Meliá: Modeling Web Business Processes with OO-H

and UWE. 3rd International Workshop on Web Oriented Software Technology
(IWWOST03), Oviedo, Spain, 2003.

 Designing Volatile Functionality in E-Commerce Web Applications 101

6. Koch, N., Kraus, A., and Hennicker R.: The Authoring Process of UML-based Web Engi-
neering Approach. In Proceedings of the 1st International Workshop on Web-Oriented
Software Construction (IWWOST 02), Valencia, Spain (2001) 105-119

7. OMG Model-Driven-Architecture. In http://www.omg.org/mda/
8. M. Nanard, J. Nanard, P. King: IUHM: A Hypermedia-based Model for Integrating Open

Services, Data and Metadata. Proceedings of Hypertext 2003; ACM Press, pp 128-137.
9. O. Pastor, S. Abrahão, J. Fons: An Object-Oriented Approach to Automate Web Applica-

tions Development. Proceedings of EC-Web 2001: 16-28
10. A Rashid, P Sawyer, AMD Moreira, J Araujo Early Aspects: A Model for Aspect-Oriented

Requirements Engineering. Proceedings of RE, 2002, pp 199-202.
11. H. Schmid, G. Rossi: Modeling and Designing Processes in E-Commerce Applications.

IEEE Internet Computing, January/February 2004.
12. D. Schwabe, G. Rossi: An object-oriented approach to web-based application design. The-

ory and Practice of Object Systems (TAPOS), Special Issue on the Internet, v. 4#4, Octo-
ber, 1998, 207-225.

13. V. Torres, V. Pelechano, M. Ruiz, P. Valderas: “A Model Driven Approach for the Inte-
gration of External Functionality in Web Applications” Proceedings of MDWE 2005.
ICWE 2005 Workshop on Model-Based Web Engineering.

14. The UML home page: www.omg.org/uml/
15. A. Van Lamsweerde: Goal-Oriented Requirements Engineering: A Guided Tour Fifth

IEEE International Symposium on Requirements Engineering (RE'01) p. 0249
16. D. Zowghi, A Logical Framework for Modeling and Reasoning About the Evolution of

Requirements Proceedings of the 4th Pacific Rim International Conference on Artificial
Intelligence, Cairns, Australia, 1996.

	Introduction
	Motivating Examples
	Our Approach in a Nutshell
	A Brief Description of the OOHDM Model
	Modeling Volatile Functionality in OOHDM
	The Volatile Services Layer
	Integrating Volatile Services into the Core Design
	Further Issues

	Architectural Design and Implementation
	Related Work
	Concluding Remarks and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

