
A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 65 – 74, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Multiversion-Based Multidimensional Model

Franck Ravat, Olivier Teste, and Gilles Zurfluh

IRIT (UMR 5505)
118, Route de Narbonne

F-31062 Toulouse cedex 04 (France)
{ravat, teste, zurfluh}@irit.fr

Abstract. This paper addresses the problem of how to specify changes in
multidimensional databases. These changes may be motivated by evolutions of
user requirements as well as changes of operational sources. The multiversion-
based multidimensional model we provide supports both data and structure
changes. The approach consists in storing star versions according to relevant
structure changes whereas data changes are recorded through dimension
instances and fact instances in a star version. The model is able to integrate
mapping functions to populate multiversion-based multidimensional databases.

1 Introduction

On-Line Analytical Processing (OLAP) has emerged to support multidimensional
data analysis by providing manipulations through aggregations of data drawn from
various transactional databases. This approach is often based on a Multidimensional
DataBase (MDB). A MDB schema [1] is composed of a fact (subject of analysis) and
dimensions (axes of analysis). A fact contains indicators or measures. A measure is
the data item of interest. As mentioned in [2], fact data reflect the dynamic aspect
whereas dimension data represent more static information. However, sources
(transactional databases) may evolve and these changes have an impact on structures
and contents of the MDB built on them. In the same way, user requirement evolutions
may induce schema changes; eg. to create a new dimension or a new “dimension
member” [3], to add a new measure,… Changes occur on dimensions as well as facts.

This paper addresses the problem of how to specify changes in a MDB. The
changes may be related to contents as well as schema structures. Our work is not
limited to represent the mapping data into the most recent version of the schema. We
intend to keep trace of changes of multidimensional structures.

1.1 Related Works and Discussion

As mentioned in [3, 4], the approaches to manage changes in a MDB can be classified
into two categories.

The first one, also called "updating model" in [1], provides a pragmatic way of
handling changes of schema and data. The approaches in this first category support
only the most recent MDB version of the schema and its instances. However, working
with the latest version of a MDB hides the existence of changes [3]. This category
regroups the following works [5, 6, 7].

66 F. Ravat, O. Teste, and G. Zurfluh

In the approaches from the second category called "tracking history approaches",
changes to a MDB schema are time-stamped in order to create temporal versions. [3]
provides an approach for tracking history and comparing data mapped into versions.
Their conceptual model builds a multiversion fact table and structural change
operators. The proposed mechanism uses one central fact table for storing all
permanent time-stamped versions of data. As a consequence, the set of schema
changes is limited, and only changes to dimension structure and “dimension instance
structure” named hierarchy are supported [4]. The authors detail the related works of
“tracking history approaches” and they focus on a model supporting multiversions;
e.g. each version represents a MDB state at a time period and it is composed of a
schema version and its instances [8]. Their approach is not based on a formal
representation of versions and their model supports one single subject of analysis. The
provided model also does not integrate extracting functions allowing the population of
data warehouse version from time-variant transactional sources.

1.2 Paper Contributions and Paper Outline

We intend to represent multidimensional data in a temporally consistent mode of
presentation. Our model has the following features.

- The paper deals with the management of constellation changes. A
constellation extends star schemata [1]. A constellation regroups several facts
and dimensions. Our model supports complex dimensions, which are
organised through one or several hierarchies. A constellation may integrate
versions, which represents structural changes.

- Our model must support overlapping versions of MDB parts. Each version
representing a subject of analysis (fact) and its axes of analysis (dimensions) is
time stamped.

- Our model must integrate mapping functions to populate versions.

The remainder of the paper is organized as follows. Section 2 formally defines our
conceptual multiversion model dedicated to MDB. Section 3 presents the mapping
functions. Section 4 focuses on the prototype implementation.

2 Multidimensional Database Modelling

The conceptual model we define supports temporal changes using multi-versions. The
temporal model is based on discrete and linear temporal model. An instant is a time
point on the time line whereas an interval represents the time between two instants.
We consider in the model valid-time and transaction-time [9]. The valid-time
represents time when the information is valid in the real world whereas transaction-
time represents time when the information is recording in the MDB. Note that they
are various transaction-times at source level and MDB level. At the MDB level, each
extraction provides a transaction time point.

 A Multiversion-Based Multidimensional Model 67

2.1 Constellation and Star Version

The model is a conceptual model near user point of views. A MDB is modelled
through a constellation, which is composed of star versions modelling schema
changes. Each star version is a snapshot of one fact and its dimensions at an
extraction time point.

Definition. A constellation C is defined by a set of star versions {VS1,…, VSU}.

Definition. A star version ∀i∈[1..u], VSi is defined by (VF, {VD1,…, VDV}, T)

- VF is a fact version,
- ∀k∈[1..v], VDk is a dimension version, which is associated to the fact version,
- T = [TStart, TEnd] is a temporal interval during the star schema version is valid.

Example. The following figure depicts an example of constellation evolutions. At T1
the constellation is composed of two star versions (VS1.1 and VS2.1). Between times T1
and T3, the constellation have one new dimension version noted VD2.1 , which is
associated to a new fact version, noted VF1.2. A new dimension version, noted VD3.2
is deduced from VD3.1. According to the model we provided, this constellation is
defined by a set of four star versions {VS1.1, VS2.1, VS1.2, VS2.2}.

- VS1.1 = (VF1.1, {VD1.1, VD3.1}, [T1,T3])
- VS2.1 = (VF2.1, {VD3.1, VD4.1}, [T1,T3])
- VS1.2 = (VF1.2, {VD1.1, VD2.1, VD3.2}, [T3,TNow])
- VS2.2 = (VF2.1, {VD3.2, VD4.1}, [T3,TNow])

Fig. 1. Example of constellation changes

Note that the model is a multiversion based model because several star versions
can be used at a same instant. If source data changes do not require structural change,
the current star version is refreshed; e.g. new dimension instances and/or fact
instances are calculated [10]. If source data changes require structural changes (for
example, a hierarchy may be transformed according to new source data), a new star
version is defined.

68 F. Ravat, O. Teste, and G. Zurfluh

2.2 Star Version Components

Each star version is composed of one fact version and several dimension versions.
Each fact version is composed of measures. Each dimension version is composed of
properties, which are organised according to one or several hierarchies.

Definition. A fact version VF is defined by (NVF, IntVF, ExtVF, MapVF)

- NVF is the fact name
- IntVF = {f1(m1),…, fp(mp)} is the fact intention, which is defined by a set of

measures (or indicators) associated to aggregate functions,
- ExtVF = {iVF

1,…, iVF
x} is the fact extension, which is composed of instances.

Each fact instance is defined by ∀k∈[1..x], iVF
k = [m1:v1,…, mp:vp,

idVD1:id1,…, idVDv:idv, TStart:vt, TEnd:vt'] where m1:v1,…, mp:vp are the measure
values, idVD1:id1,…, idVDv:idv are the linked dimension identifiers and TStart:vt,
TEnd:vt' are transaction-time values,

- MapVF is a mapping function, which populates the fact version.

All fact versions having the same fact name (NVF) depict one fact; eg. Each fact
version represents a state occurring during its lifetime cycle.

Example. The case study is taken from commercial domain. Let us consider the
following fact versions:

- VF1.1 = (ORDER, {SUM(Quantity)}, ExtVF11, MapVF11)
- VF1.2 = (ORDER, {SUM(Quantity), SUM(Amount)}, ExtVF12, MapVF12)
- VF2.1 = (DELIVER, {SUM(Quantity)}, ExtVF21, MapVF21)

VF1.1 and VF1.2 are two versions of the same fact named ORDER whereas VF2.1 is one
version of the fact called DELIVER. The following tables show examples of fact
instances.

Table 1. Fact instances of ExtVF12

measures linked dimension identifiers transaction-time values

SUM(Quantity) SUM(Amount) IDP IDT IDC TStart TEnd
200 1500.00 p1 2006/01/01 c1 T1 T2

250 1800.00 p1 2006/01/01 c1 T2 Tnow

150 900.00 p2 2006/01/01 c1 T1 Tnow

Remarks. ∀i∈[1..u], VSi,=(VFi, {VDi
1,…, VDi

V}, [TStart
i, TEnd

i]), ∀k∈[1..x],
iVF

k∈ExtVFi, then TStart
i ≤ TStart

VFi
k ∧ TEnd

VFi
k ≤ TEnd

i ∧ TStart
VFi

k ≤ TEnd
VFi

k. In the same
way, the transaction time of fact versions or dimension versions may be calculated.

Note that a new fact version is defined when new measures are created or old
measures are removed. In the previous example, one new measure, noted
SUM(Amount), is created between VF1.1 and VF1.2 versions.

 A Multiversion-Based Multidimensional Model 69

Definition. A dimension version VD is defined by (NVD, IntVD, ExtVD, MapVD)

- NVD is the dimension name,
- IntVD = (AVD, HVD) is the dimension intention composed of attributes, AVD =

{a1,…, aq}∪{idVD, All}, which are organised through hierarchies, HVD =
{HVD

1,…, HVD
W},

- ExtVD = {iVD
1,…, iVD

Y} is the dimension extension, which is composed of
instances. Each dimension instance is defined by ∀k∈[1..Y], iVD

k = [a1:v1,…,
aq:vq, TStart:vt, TEnd:vt'] where a1:v1,…, aq:vq are dimension attribute values and
TStart:vt, TEnd:vt' are transaction-time values,

- MapVD is a mapping function defining. It defines the ETL process, which
populates the dimension (see section 3 for more details).

Definition. A hierarchy HVD
i is defined by (NVD

i, P
VD

i, WAVD
i)

- NVD
i is the hierarchy name,

- PVD
i = <p1,…,ps> is an ordered set of dimension attributes, called parameters,

∀k∈[1..s], pk∈ AVD, p1 = idVD is the root parameter, ps = All is the extremity
parameter,

- WAVD
i : P

VD
i → 2AVD is a function associating each parameter to a set of weak

attributes, which add information to the parameter.

A dimension is depicted by several dimension versions having the same name. Note
that a new dimension version is defined when its structure changes; eg. when
dimension attributes are creating or deleting, hierarchies are adding, deleting or
modifying [11].

Example. The facts named ORDER and DELIVER can be analysed according to
products. We define two versions of the dimension, named PRODUCT:

- VD3.1 = (PRODUCT, ({IDP, Category_Name, Sector_Name, All}, {HVD31
1})

ExtVD31, MapVD31),
- VD3.2 = (PRODUCT, ({IDP, Product_Desc, Brand_Desc, Category_Name,

Sector_Name, All}, {HVD32
1, H

VD32
2}), ExtVD32, MapVD32).

These two dimension versions are composed of three hierarchies, which are defined
as follows.

- HVD31
1 = (HSector, <IDP, Category_Name, Sector_Name, All>, {})

- HVD32
1 = (HSector, <IDP, Category_Name, Sector_Name, All>, {(IDP,

Product_Desc)})
- HVD32

2 = (HBrand, <IDP, Brand_Desc, All>, {(IDP, Product_Desc)})

The following tables show examples of dimension instances. In ExtVD31, we find
two products, denoted p1 and p2; two dimension instances represent p1 because its
category name changed at t2.

70 F. Ravat, O. Teste, and G. Zurfluh

Table 2. Dimension instances of ExtVD31

IDP Category_Name Sector_Name All TStart TEnd
p1 Tv video all T1 T2
p1 Television video all T2 T3
p2 Dvd video all T1 T3

Table 3. Dimension instances of ExtVD32

IDP Product_Desc Category_Name Sector_Name Brand_Desc All TStart TEnd
p1 14PF7846 television video Philips all T3 T4

p1 Flat TV

14PF7846

television video Philips all T3 Tnow

p2 DVP3010 dvd video Philips all T3 Tnow

Transaction-time is an interval associated to the fact instances and dimension
instances. Note that the valid time is modelled by temporal dimension in the MDB.

3 Mapping Function

The approach we present is based on decisional systems, which are composed of three
levels: (1) operational data sources, (2) data warehouse and (3) multiversion-based
multidimensional data marts, noted MDB. In this context, the data warehouse aims to
store relevant decisional data and it supports historical data [12]. Usually a data
warehouse is implemented in relational database management systems.

This paper focuses on MDB level, which is modeled through constellations. A
constellation is composed of fact versions and dimension versions. These versions are
populated from data warehouse tables. The mapping functions of these versions
(MAP) model the data extraction. We use the relational algebra for defining the
extraction process of relational data warehouse data.

Example. The next figure depicts a relational data warehouse schema. This schema is
used for populating star versions.

Fig. 2. Example of relational data warehouse schema

 A Multiversion-Based Multidimensional Model 71

From this data warehouse, figure Fig. 3 depicts a constellation schema at T3 time.
This constellation is composed of two star versions

- VS1.2 = (VF1.2, {VD1.1, VD2.1, VD3.2}, [T3,TNow]), and
- VS2.2 = (VF2.1, {VD3.2, VD4.1}, [T3,TNow]).

Each star version regroups one fact version and its linked dimension versions. The
textual definitions of these versions are:

- VF1.2 = (ORDER, {SUM(Quantity), SUM(Amount)}, ExtVF12, MapVF12),
- VF2.1 = (DELIVER, {SUM(Quantity)}, ExtVF21, MapVF21),
- VD1.1 = (TIME, ({IDD, Month_Name, Month_Number, Year, All}, {HVD11

1}),
ExtVD11, MapVD11),

- VD2.1 = (CUSTOMER, ({IDC, Firstname, Lastname, City, Country, All},
{HVD21

1}), ExtVD21, MapVD21),
- VD3.2 = (PRODUCT, ({IDP, Product_Desc, Brand_Desc, Category_Name,

Sector_Name, All}, {HVD32
1, H

VD32
2}), ExtVD32, MapVD32),

- VD4.1 = (COMPAGNY, ({IDCP, CName, CCountry All}, {HVD41
1}), ExtVD41,

MapVD41).

Fig. 3. Graphical representation of a constellation

The extensions of the fact version and its dimension versions of VS1.2 are
populated from the following map functions.

- MapVD32 = π(⋈(PRODUCT; CATEGORY; CA_ID=CA_ID); {P_ID AS IDP,
CA_NAME AS Category_Name, CA_SECTOR AS Sector_Name, P_BRAND AS
Brand_Desc})

- MapVD11 = π(ORDER; {Date AS IDC, TO_CHAR(Date, ’mm’) AS
Month_Number}, TO_CHAR(Date, ’month’) AS Month_Name, TO_CHAR(Date,
’yyyy’) AS Year})

- MapVD21 = π(⋈(CUSTOMER; TOWN; T_ID= T_ID); {CU_ID AS IDC,
CU_FirstName AS Firstname, CU_LastName AS Lastname, T_Name AS City,
T_Country AS Country})

72 F. Ravat, O. Teste, and G. Zurfluh

- MapVF12 = SUM(⋈(⋈(⋈(ORDER; PRODUCT; P_ID=P_ID); PRICES; P_ID=P_ID);
PRODUCT; P_ID=P_ID); ORDER.P_ID, ORDER.Date, ORDER.CU_ID;
ORDER.Quantity AS Quantity, PRICES.PricexORDER.Quantity AS Amount)

As illustrating in the following figure, some instances can be calculated from data
warehouse data, but others instances may be “derived” from instances of MDB (note
that MDB components such as facts and dimensions are viewed as relations). MAP1
and MAP4 are mapping functions defining instances (iv1 and iv4) from data warehouse
data whereas MAP2 and MAP3 are mapping functions defining instances (iv2 and iv3)
from instances of the MDB. This mechanism may be interesting for limiting the
extraction process; e.g. iv1 is calculated from data warehouse data, but iv2, which is an
alternative instance at the same time instant, is calculated from iv1.

Fig. 4. Mechanism for calculating extensions

4 Implementation

In order to validate the model, we have implemented a prototype, called Graphic
OLAPSQL. This tool is developed using Java 1.5 (and additional packages called
JavaCC and Oracle JDBC) over Oracle10g Application Server. In [13] we presented
the prototype and associated languages and interfaces. The MDB schema is displayed
as a graph where nodes represent facts and dimensions while links represent the
associations between facts and dimensions (see Fig. 3). These notations are based on
notations introduced by [14].

We are extending this prototype for managing versions. Users can display a
constellation at one time instant. If several versions (deriving versions) are defined at
this time instant, the user chooses its working version, which is displayed. Users
express their queries by manipulating the graphical representation of the choosing
constellation. The query result is represented through a dimensional-table.

The management of multiversion MDB is based on a metabase. Its schema is
represented as follows. A constellation is composed of several star schemata. Each
star schema is composed of one fact version and several dimension versions. A
dimension version regroups hierarchies which organize attributes of the dimension. A
fact version is composed of measures. A same fact version (or dimension version)
may be integrated in different star schema. Each fact version (or dimension version) is

 A Multiversion-Based Multidimensional Model 73

Fig. 5. Metaschema for managing multiversion-based MDB

characterized by a mapping function, its extension (classes Dim_ext or Fact_ext) and
its intention.

5 Concluding Remarks

In this paper, we provide solutions for managing data changes of a MDB. The
multidimensional model intends to manage several subjects of analysis studied
through several axes of analysis. The solution we present is a constellation based on
several facts related to dimensions composed of multi-hierarchies.

For supporting changes, a constellation is defined as a set of star versions. A star
version is associated to a temporal interval and it is composed of dimension versions
(one version per dimension which is composed of a schema and its instances)
associated to a fact version (defined by a schema and its instances). A fact version or
a dimension version is defined through a mapping function. This function is
formalised with a relational algebraic expression on relational data warehouse data to
populate the versions. In order to validate our specifications, we are implementing a
prototype supporting a multiversion-based constellation.

Our future works consist in specifying a logical model of a multiversion
constellation in a relational context [4]. This R-OLAP model must limit data
redundancies in order to accelerate OLAP analysis. Moreover, we intend to specify
and to implement a query language [15]. In our context, this language must allow the
querying of the current star version, or a set of star versions or a specific version. In
this paper the mapping functions are based on a single relational data warehouse. We
plan to integrate more complex process such as ETL processes [16].

74 F. Ravat, O. Teste, and G. Zurfluh

References

1. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional
Data Warehouses. John Wiley & Sons, Inc, New York, USA, 1996.

2. Vaisman, A.A., Mendelzon, A.O.: A temporal query language for OLAP: Implementation
and a case study. 8th Biennial Workshop on Data Bases and Programming Languages -
DBPL 2001, Rome, Italy, September 2001.

3. Body, M., Miquel, M., Bédard, Y., Tchounikine, A.: A multidimensional and multiversion
structure for OLAP Applications. 5th International Workshop on Data Warehousing and
OLAP - DOLAP'02, USA, Nov. 2002.

4. Wrembel, R., Morzy, T.: Multiversion Data Warehouses: Challenges and Solutions. IEEE
Conference on Computational Cybernetics - ICCC'05, Mauritius, 2005.

5. Blaska, M., Sapia, C., Hoflin, G.: On schema evolution in multidimensional databases. 1st
International Conference on Data Warehousing and Knowledge Discovery - DaWaK'99,
pp 153-164, Florence (Italy), August 30–Sept. 1, 1999.

6. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining Data cubes under
dimension updates. 15th International Conference on Data Engineering - ICDE'99, pp 346-
355, Sydney (Australia), March 23-26, 1999.

7. Vaisman, A.A., Mendelzon, A.O., Ruaro, W., Cymerman, S.G.: Supporting dimension
updates in an OLAP Server. CAISE'02, Canada, 2002.

8. Bebel, B., Eder, J., Koncilia, C., Morzy, T., Wrembel, R.: Creation and Management of
Versions in Multiversion Data Warehouse. ACM Symposium on Applied Computing, pp.
717-723, Nicosia (Cyprus), March 14-17, 2004.

9. Bertino, E., Ferrari, E., Guerrini, G.: A formal temporal object-oriented data model. 5th
International Conference on Extending Database Technology - EDBT’96, pp342-356,
Avignon (France), March 25-29, 1996.

10. Eder J., Koncilia C., Mitsche D., « Automatic Detection of Structural Changes in Data
Warehouses”, 5th International Conference on Data Warehousing and Knowledge
Discovery – DAWAK’03, LNCS 2737, pp. 119-128, Czech Republic, 2003.

11. Eder, J., Koncilia, C.: Cahnges of Dimension Data in Temporal Data Warehouses. 3rd Int.
Conf. on Data Warehousing and Knowledge Discovery – DAWAK’01,LNCS 2114,
Munich (Germany), 2001.

12. Ravat, F., Teste, O., Zurfluh, G.: Towards the Data Warehouse Design. 8th Int. Conf. On
Information Knowledge Managment- CIKM'99, Kansas City (USA), 1999.

13. Ravat, F., Teste, O. et Zurfluh, G.: Constraint-Based Multi-Dimensional Databases
Chapter XI of "Database Modeling for Industrial Data Management", Zongmin Ma, IDEA
Group (ed.), pp.323-368.

14. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from E/R
schemes. 31st Hawaii International Conference on System Sciences, 1998.

15. Morzy, T., Wrembel, R.: On Querying Versions of Multiversion Data Warehouse. 7th
International Workshop on Data Warehousing and OLAP - DOLAP’04, pp.92-101,
Washington DC (USA), Nov. 12-13 2004.

16. Simitsis, A., Vassiliadis, P., Terrovitis, M., Skiadopoulos, S.: Graph-Based Modeling of
ETL Activities with Multi-level Transformations and Updates. 7th International
Conference on Data Warehousing and Knowledge Discovery – DaWak’05, LNCS 3589,
pp43-52, 2005.

	Introduction
	Related Works and Discussion
	Paper Contributions and Paper Outline

	Multidimensional Database Modelling
	Constellation and Star Version
	Star Version Components

	Mapping Function
	Implementation
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

