
Preprocessing for Fast Refreshing Materialized Views in
DB2

Wugang Xu1, Calisto Zuzarte2, Dimitri Theodoratos1, and Wenbin Ma2

1 New Jersey Institute of Technology
wx2@njit.edu, dth@cs.njit.edu

2 IBM Canada Ltd.
calisto, wenbinm@ca.ibm.com

Abstract. Materialized views (MVs) are used in databases and data warehouses
to greatly improve query performance. In this context, a great challenge is to
exploit commonalities among the views and to employ multi-query optimiza-
tion techniques in order to derive an efficient global evaluation plan for refresh-

ing the MVs concurrently. IBM DB2 R© Universal Database
TM

(DB2 UDB)
provides two query matching techniques, query stacking and query sharing, to
exploit commonalities among the MVs, and to construct an efficient global eval-
uation plan. When the number of MVs is large, memory and time restrictions
prevent us from using both query matching techniques in constructing efficient
global plans. We suggest an approach that applies the query stacking and query
sharing techniques in different steps. The query stacking technique is applied
first, and the outcome is exploited to define groups of MVs. The number of MVs
in each group is restricted. This allows the query sharing technique to be applied
only within groups in a second step. Finally, the query stacking technique is used
again to determine an efficient global evaluation plan. An experimental evalua-
tion shows that the execution time of the plan generated by our approach is very
close to that of the plan generated using both query matching techniques without
restriction. This result is valid no matter how big the database is.

1 Introduction

The advent of data warehouses and of large databases for decision support has triggered
interesting research in the database community. With decision support data warehouses
getting larger and decision support queries getting more complex, the traditional query
optimization techniques which compute answers from the base tables can not meet the
stringent response time requirements. The most frequent solution used for this problem
is to store a number of materialized views (MVs). Query answers are computed using
these materialized views instead of using the base tables exclusively. Materialized views
are manually or automatically selected based on the underlying schema and database
statistics so that the frequent and long running queries can benefit from them. These
queries are rewritten using the materialized views prior to their execution. Experience
with the TPC-D benchmark and several customer applications has shown that MVs can
often improve the response time of decision support queries by orders of magnitude
[9]. This performance advantage is so big that TPC-D [1] had ceased to be an effective
performance discriminator after the introduction of the systematic use of MVs [9].

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 55–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 W. Xu et al.

Although this technique brings a great performance improvement, it also brings some
new problems. The first one is the selection of a set of views to materialize in order to
minimize the execution time of the frequent queries while satisfying a number of con-
straints. This is a typical data warehouse design problem. In fact, different versions of
this problem have been addressed up to now. One can consider different optimization
goals (e.g. minimizing the combination of the query evaluation and view maintenance
cost) and different constraints (e.g. MV maintenance cost restrictions, MV space re-
strictions etc.). A general framework for addressing those problems is suggested in [7].
Nevertheless, polynomial time solutions are not expected for this type of problem. A
heuristic algorithm to select both MVs and indexes in a unified way has been suggested
in [10]. This algorithm has been implemented in the IBM DB2 design advisor [10].

The second problem is how to rewrite a query using a set of views. A good review
of this issue is provided in [3]. Deciding whether a query can be answered using MVs
is an NP-hard problem even for simple classes of queries. However, exact algorithms
for special cases and heuristic approaches allow us to cope with this problem. A novel
algorithm that rewrites a user query using one or more of the available MVs is pre-
sented in [9]. This algorithm exploits the graph representation for queries and views
(Query Graph Model - QGM) used internally in DB2. It can deal with complex queries
and views (e.g. queries involving grouping and aggregation and nesting) and has been
implemented in the IBM DB2 design advisor.

The third problem is related to the maintenance of the MVs [5]. The MVs often have
to be refreshed immediately after a bulk update of the underlying base tables, or peri-
odically by the administrator, to synchronize the data. Depending on the requirements
of the applications, it may not be necessary to have the data absolutely synchronized.
The MVs can be refreshed incrementally or recomputed from scratch. In this paper we
focus on the latter approach for simplicity. When one or more base tables are modi-
fied, several MVs may be affected. The technique of multi-query optimization [6] can
be used to detect common subexpressions [8] among the definitions of the MVs and
to rewrite the views using these common subexpressions. Using this technique one can
avoid computing complex expressions more than once.

An algorithm for refreshing multiple MVs in IBM DB2 is suggested in [4]. This
algorithm exploits a graph representation for multiple queries (called global QGM)
constructed using two query matching techniques: query stacking and query sharing.
Query stacking detects subsumption relationships between query or view definitions,
while query sharing artificially creates common subexpressions which can be exploited
by two or more queries or MVs. Oracle 10g also provides an algorithm for refreshing
a set of MVs based on the dependencies among MVs [2]. This algorithm considers re-
freshing one MV using another one which has already been refreshed. This method is
similar to the query stacking technique used in DB2. However, it does not consider us-
ing common subsumers for optimizing the refresh process (a technique that corresponds
to query sharing used in DB2). This means they may miss the optimal evaluation plan.

When there are only few MVs to be refreshed, we can apply the method proposed
in [4] to refresh all MVs together. This method considers both query stacking and query
sharing techniques, and a globally optimized refresh plan is generated. However when the
number of MVs gets larger, a number of problems prevent us from applying this method.

Preprocessing for Fast Refreshing Materialized Views in DB2 57

The first problem relates to the generation of a global plan. When there are many MVs
to be refreshed, too much memory is required for constructing a global QGM using both
query sharing and query stacking techniques. Further, it may take a lot of time to find an
optimal global plan from the global QGM. The second problem relates to the execution
of the refresh plan. There are several system issues here. The process of refreshing MVs
usually takes a long time, since during this period, MVs are locked. User queries which
use some MVs either have to wait for all MVs to be refreshed, or routed to the base
tables. Either solution will increase the execution time. Another system issue relates to
the limited size of the statement heap which is used to compile a given database statement.
When a statement is too complex and involves a very large number of referenced base
tables or MVs considered for matching, there may not be enough memory to compile and
optimize the statement. One more system issue relates to transaction control. When many
MVs are refreshed at the same time (with a single statement), usually a large transaction
log is required. This is not always feasible. Further if something goes wrong during the
refreshing, the whole process has to start over.

To deal with the problems above, we propose the following approach. When too
many MVs need to be refreshed and the construction of a global QGM based on query
stacking and query sharing together is not feasible, we partition the MV set into smaller
groups based on query stacking alone. Then, we apply query sharing to each group
independently. Consequently, we separate the execution plan into smaller ones, each
involving fewer MVs. Intuitively, by partitioning MVs into smaller groups, we apply
query sharing only within groups and query stacking between groups such that MVs
from the lower groups are potentially exploited by the groups above. An implementation
and experimental evaluation of our approach shows that our method has comparable
performance to the approach that uses a globally optimized evaluation plan while at the
same time avoiding the aforementioned problems.

In the next section, we present the QGM model and the two query matching tech-
niques. Section 3 introduces our MV partition strategy. Section 4 presents our experi-
mental setting and results. We conclude and suggest future work in Section 5.

2 Query Graph Model and Query Matching

In this section, we introduce the concept of QGM model which is used in DB2 to graph-
ically represent queries. We first introduce the QGM model for a single query. Then we
extend it to a global QGM model for multiple queries. This extension requires the con-
cept of query matching using both query stacking and query sharing techniques.

2.1 Query Graph Model

The QGM model is the internal graph representation for queries in the DB2 database
management system. It is used in all steps of query optimization in DB2: parsing and se-
mantic checking, query rewriting transformation and plan optimization. Here, we show
with an example how queries are represented in the QGM model. A query in the QGM
model is represented by a set of boxes (called Query Table Boxes – QTBs) and arcs
between them. A QTB represents a view or a base table. Typical QTBs are select QTBs
and group-by QTBs. Other kinds of QTBs include the union and the outer-join QTBs.

58 W. Xu et al.

Below, we give a query with select and group-by operations in SQL. Figure 1 shows
a simplified QGM representation for this query.
select c.c3, d.d3, sum(f.f3) as sum
from c, d, fact f
where c.c1 =f.f1 and d.d1 = f.f2 and

c.c2 = ’Mon’ and d.d2 > 10
group by c.c3,d.d3
having sum > 100

2.2 Query Matching

To refresh multiple MVs concurrently, a global QGM for all of the MVs is generated
using the definitions tied together loosely at the top. All QTBs are grouped into different
levels with the base tables belonging to the bottom level. Then, from bottom to top, each
QTB is compared with another QTB to examine whether one can be rewritten using the
other. If this is the case, we say that the latter QTB subsumes the former QTB. The lat-
ter QTB is called the subsumer QTB while the former is called the subsumee QTB. A
rewriting of the subsumee QTB using the subsumer QTB may also be generated at the
time of matching, and this aditional work is called compensation. The comparison con-
tinues with the parent QTBs of both the sumsumer and subsumee QTBs. This process
continues until no more matches can be made.

If the top QTB of one MV subsumes some QTB of another MV, then the former
MV subsumes the latter MV. This kind of matching is called query stacking because it
ultimately determines that one MV can be rewritten using the other and the subsumee
MV can be “stacked” on the subsumer MV.

In some cases, it is possible that we may not find a strict subsumption relationship
between two MVs even if they are quite close to having one. For instance, a difference
in the projected attributes of two otherwise equivalent MVs will make the matching
fail. The matching technique of DB2 is extended in [4] to deal with this case. In some
cases when there is no subsumption relationship between two MVs, an artificially built
common subexpression (called common subsumer) can be constructed such that both

Fig. 1. QGM graph for query Q1

Preprocessing for Fast Refreshing Materialized Views in DB2 59

MVs can be rewritten using this common subsumer. Because this common subsumer
is “shared” by both MVs, this matching technique is called query sharing. With query
sharing, matching techniques can be applied to a wider class of MVs.

In Figure 2, we show examples of query matching techniques. In Figure 2(a), we
show the matching using query stacking only. In this example, we have three queries
m0, m1, m2. For each query pair, we match their QTBs from bottom to top until the
top QTB of the subsumer query is reached. Since there is a successful matching of the
top QTB of query m1 with some QTB of query m2, there is a subsumption relationship
from m1 to m2 (m1 subsumes m2). This is not the case with queries m0 and m1. The
matching process defines a query subsumption DAG shown in Figure 2(a). In this DAG,
each node is a query. Since query m1 subsumes query m2, we draw a directed line
from m1 to m2. In Figure 2(a), we show the subsumption DAG for queries m0, m1 and
m2. There is one subsumption edge from m1 to m2 while query m0 is a disconnected
component. This subsumption DAG can be used to optimize the concurrent execution
of the three queries. For example, we can compute the results of m0 and m1 from base
tables. Then, we can compute query m2 using m1 based on the rewriting of m2 using
m1, instead of computing it using exclusively base tables. Query m2 is “stacked” on
m1 since it has to be computed after m1.

In this example, we also observe that although m2 can be rewritten using m1, we
cannot rewrite m0 using m2 or vise versa. We cannot even find a successful match
of the bottom QTBs of m0 and m2 based on query stacking. This is quite common in
practice. When we try to answer m0 and m2 together, and we cannot find a subsumption
relationship between them, we can try to create a new query, say t1, which can be used
to answer both queries m0 and m2. This newly constructed query is called common
subsumer of the two queries m0 and m2 because it is constructed in a way so that both
queries m0 and m2 can be rewritten using it. Although the common subsumer is not a
user query to be answered, we can find its answer and then use it to compute the answers
of both queries m0 and m2. As a “common part” between m0 and m2, t1 is computed
only once, and therefore, its computation might bring some benefit in the concurrent
execution of m0 and m2. In the example of Figure 2(b), there is no subsumption edge
between m0 and m2. However, after adding a common subsumer t1 of m0 and m2, we
have two subsumption edges: one from t1 to m0 and one from t1 to m2.

(a) Query stacking (b) Query sharing

Fig. 2. Query matching

60 W. Xu et al.

The subsumption relationship graph is a DAG because there is no cycle in it. In most
cases, if one MV subsumes another one, the latter one cannot subsume the former one.
Nevertheless in some cases, two or more MVs may subsume each other, thus gener-
ating a subsumption cycle. The DB2 matching techniques will ignore one subsump-
tion relationship randomly, when this happens, to break any cycles. This will guarantee
the result subsumption graph to be a real DAG. In drawing a subsumption DAG, if
m1 → m2, and m2 → m3, we don’t show in the DAG the transitive subsumption
edge m1 → m3. However, this subsumption relationship can be directly derived from
the DAG, and it is of the same importance as the other subsumption relationships in
optimizing the computation of the queries.

3 Group Partition Strategy

If there are too many MVs to be refreshed then, as we described above, we may not be able
to construct the global QGM using both query stacking and query sharing techniques.
Our goal is to partition the given MV set into groups that are small enough so that both
query matching techniques can be applied, and we do not face the problems mentioned
in the introduction. Our approach first creates a subsumption DAG using query stacking
only which is a much less memory and time consuming process. This subsumption DAG
is used for generating an optimal global evaluation plan. The different levels of this plan
determine groups of materialized views on which query sharing is applied.

3.1 Building an Optimal Plan Using Query Stacking

Given a set of MVs to be refreshed, we construct a global QGM using only query
stacking and then create a subsumption DAG as described in Section 2.2. Then, we
have the query optimizer choose an optimal plan for computing each MV using either
exclusively base relations or using other MVs in addition to base tables as appropriate.
The compensations stored in the global QGM of a MV using other MVs are used to
support this task. The optimizer decides whether using a MV to compute another MV

(a) Subsumption DAG (b) Optimal global logical plan

Fig. 3. Query stacking based refreshing

Preprocessing for Fast Refreshing Materialized Views in DB2 61

is beneficial when compared to computing it from the base relations. These optimal
“local” plans define an optimal global plan for refreshing all the queries. Figure 3(a)
shows an example of a subsumption DAG for ten MVs. Transitive edges are ignored for
clarity of presentation. Figure 3(b) shows an optimal global evaluation plan.

Groups are defined by the views in the optimal plan. If one group is still too big
for the query sharing technique to be applied, we can divide it into suitable subgroups
heuristically based on some common objects and operations within the group or possi-
bly randomly.

3.2 Adding also Query Sharing

By considering the query stacking technique only, we may miss some commonalities
between queries which can be beneficial to the refreshing process. Therefore, we enable
both query matching techniques within each group to capture most of those common-
alities. We outline this process below.

1. We apply query stacking and query sharing techniques to the MVs of each group.
Even though no subsumption edges will be added between MVs in the group, some
common subsumers may be identified and new subsumption edges will be added
from those common subsumers to MVs in the group.

2. We apply the query stacking technique to the common subsumers of one group and
the MVs of lower groups. Lower groups are those that comprise MVs from lower
levels of the optimal global plan. This step might add some new subsumption edges
from MVs to common subsumers in the subsumption DAG.

3. Using a common subsumer induces additional view materialization cost. However, if
this cost is lower than the gain we obtained in computing the MVs that use this com-
mon subsumer, it is beneficial to materialize this common subsumer. We call such
a common subsumer candidate common subsumer. The use of a candidate common
subsumer may prevent the use of other candidate common subsumers. We heuristi-
cally retain those candidate common subsumers such that no one of them prevents
the use of the others and together yield the highest benefit. This process is applied
from the bottom level to the top level in the subsumption DAG.

4. We have the optimizer create a new optimal global plan using the retained candidate
common subsumers. Compared to the optimal global plan constructed using only
query stacking, this optimal global plan contains also some new MVs, in the form of
the retained candidate common subsumers.

During the refreshing of the MVs, a common subsumer is first materialized when it
is used for refreshing another MV and it is discarded when the last MV that uses it has
been refreshed.

In Figure 4, we show the construction of an optimal global plan taking also query
sharing into account. Figure 4(a) shows the subsumption DAG of Figure 4(b) along
with some common subsumers. Dotted directed edges indicate subsumption edges in-
volving common subsumers. Among the candidate common subsumers, some of them
are retained in the optimal global plan. Such an optimal global plan is shown in Fig-
ure 4(b). This optimal global plan will have a better performance than the one of
Figure 3(b).

62 W. Xu et al.

(a) Subsumption DAG (b) Optimal global logical plan

Fig. 4. Query sharing based refreshing

4 Performance Test

For the experimental evaluation we consider a database with a star schema. We also con-
sider a number of MVs to be refreshed (16 in our test). We keep the number of MVs
small enough so that, in finding an optimal global evaluation plan, both the query stack-
ing and query sharing techniques can be applied without restrictions. The performance
comparison test is not feasible when we have too many MVs. The goal is to compare the
performance of different approaches. We compare the performance of four kinds of MV
refreshing approaches for different sizes of databases. These approaches are as follows:
1. Naive Refreshing(NR): Refresh each MV one by one by computing its new state using

the base tables referrenced in the MV definition exclusively. This approach disallows
any multi-query optimization technique or other already refreshed MV exploitation.

2. Stacking-Based Refreshing(STR): Refresh each MV one by one in the topological or-
der induced by the optimal global plan constructed using the query stacking technique
only. (for example, the optimal global plan of Figure 3(b)) in our example. This ap-
proach disallows query sharing. With this approach some MVs are refreshed using
the base relations exclusively. Some other MVs are refreshed using other MVs if they
have a rewriting using those MVs that are in lower groups in the optimal global plan.

3. Group-Sharing-Based Refreshing(SHR): Refresh each MV in the topological order
induced by the optimal global evaluation plan constructed using query stacking first
and then query sharing only within groups (for example, the optimal global plan of
Figure 4(b)).

4. Unrestricted-Sharing-Based Refreshing(USR): Refresh all MVs based on an optimal
global plan constructed using, without restrictions, both query matching techniques.
Our test schema consists of one fact table and three dimension tables. Each dimen-

sion table has 10,000 tuples, while the number of tuples of the fact table varies from
100,000 to 10,000,000. We refresh the set of MVs with each one of the four refreshing
approaches mentioned above, and we measure the overall refreshing time. We run our
performance test on a machine with the following configuration.

Model OS Memory CPUs rPerf Database
P640-B80 AIX 5.2 ML06 8 GB 4 3.59 DB2 V91

Preprocessing for Fast Refreshing Materialized Views in DB2 63

Fig. 5. Performance test result for different refreshing method

Figure 5 shows our experimental results. The unrestricted-sharing-based approach al-
ways has the best performance since it allows unrestricted application of both query stack-
ing and query sharing techniques. The group-sharing-based approach has the second best
performance because, even though it exploits both query matching techniques, they are
considered separately in different steps and query sharing is restricted only within groups.
The stacking-based approach is the next in performance because it cannot take advantage
of the query sharing technique. Finally, far behind in performance is the naive approach
which does not profit of any query matching technique. As we can see in Figure 5 the
group-sharing based approach is very close to the unrestricted sharing approach. This re-
mark is valid for all database sizes and the difference in those two approaches remains
insignificant. In contrast, the difference between the naive and the pure stacked approach
compared to other two grows significantly as the size of the database increases. In a real
data warehouse, it is often the case that MVs have indexes defined on them. The group-
sharing-based refresh may outdo the unrestricted approach if there is occasion to exploit
the indexes of MVs when used by the refreshing of the higher group MVs.

5 Conclusion and Future Work

We have addressed the problem of refreshing concurrently multiple MVs. In this con-
text, two query matching techniques, query stacking and query sharing, are used in DB2
to exploit commonalities among the MVs, and to construct an efficient global evalua-
tion plan. When the number of MVs is large, memory and time restrictions prevent us
from using both query matching techniques in constructing efficient global plans. We
have suggested an approach that applies the two techniques in different steps. The query
stacking technique is applied first, and the generated subsumption DAG is used to de-
fine groups of MVs. The number of MVs in each group is smaller than the total number
of MVs. This will allow the query sharing technique to be applied only within groups in
a second step. Finally, the query stacking technique is used again to determine an effi-
cient global evaluation plan. An experimental evaluation shows that the execution time
of the optimal global plan generated by our approach is very close to that of the optimal
global plan generated using, without restriction, both query matching techniques. This
result is valid no matter how big the database is.

64 W. Xu et al.

Our approach can be further fine-tuned to deal with the case where the groups of
MVs turn out to be too small. In this case, merging smaller groups into bigger ones
may further enhance the potential for applying the query sharing technique. Although
we assume complete repopulation of all MVs in our approach for simplicity, we can ac-
tually apply our approach to incremental refreshing of MVs. In a typical data warehouse
application, there usually exist indexes on MVs. Our approach can be extended to adapt
to this scenario. Actually, because the existence of indexes increases the complexity of
the global QGM, our approach may achieve better performance.

References

1. TPC (Transaction Processing Performance Council) Web Site: http://www.tpc.org.
2. Nathan Folkert, Abhinav Gupta, Andrew Witkowski, Sankar Subramanian, Srikanth Bel-

lamkonda, Shrikanth Shankar, Tolga Bozkaya, and Lei Sheng. Optimizing Refresh of a Set
of Materialized Views. In Proceedings of the 31st International Conference on Very Large
Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 1043–1054, 2005.

3. Alon Y. Halevy. Answering Queries Using Views: A survey. VLDB J., 10(4):270–294, 2001.
4. Wolfgang Lehner, Roberta Cochrane, Hamid Pirahesh, and Markos Zaharioudakis. fAST Re-

fresh Using Mass Query Optimization. In Proceedings of the 17th International Conference
on Data Engineering, April 2-6, 2001, Heidelberg, Germany, pages 391–398, 2001.

5. Wolfgang Lehner, Richard Sidle, Hamid Pirahesh, and Roberta Cochrane. Maintenance of au-
tomatic summary tables. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, 2000, Dallas, Texas, USA., pages 512–513, 2000.

6. Timos K. Sellis. Multiple-Query Optimization. ACM Trans. Database Syst., 13(1):23–52,
1988.

7. Dimitri Theodoratos and Mokrane Bouzeghoub. A General Framework for the View Selec-
tion Problem for Data Warehouse Design and Evolution. In DOLAP 2000, ACM Seventh
International Workshop on Data Warehousing and OLAP, Washington, DC, USA, November
10, 2000, Proceedings,
pages 1–8, 2000.

8. Dimitri Theodoratos and Wugang Xu. Constructing Search Spaces for Materialized View
Selection. In DOLAP 2004, ACM Seventh International Workshop on Data Warehousing and
OLAP, Washington, DC, USA, November 12-13, 2004, Proceedings, pages 112–121, 2004.

9. Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and Monica
Urata. Answering complex sql queries using automatic summary tables. In Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18,
2000, Dallas, Texas, USA., pages 105–116, 2000.

10. Daniel C. Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma, Guy M. Lohman, Roberta
Cochrane, Hamid Pirahesh, Latha S. Colby, Jarek Gryz, Eric Alton, Dongming Liang, and
Gary Valentin. Recommending Materialized Views and Indexes with IBM DB2 Design Ad-
visor. In 1st International Conference on Autonomic Computing (ICAC 2004), 17-19 May
2004, New York, NY, USA, pages 180–188, 2004.

Trademarks

IBM, DB2, and DB2 Universal Database, are trademarks or registered trademarks of In-
ternational Business Machines Corporation in the United States, other countries, or both.

	Introduction
	Query Graph Model and Query Matching
	Query Graph Model
	Query Matching

	Group Partition Strategy
	Building an Optimal Plan Using Query Stacking
	Adding also Query Sharing

	Performance Test
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

