Providing Persistence for Sensor Data Streams
by Remote WAL

Hideyuki Kawashima, Michita Imai, and Yuichiro Anzai

Information and Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, JAPAN

Abstract. Rapidly changing environments such as robots, sensor networks, or
medical services are emerging. To deal with them, DBMS should persist sensor
data streams instantaneously. To achieve the purpose, data persisting process must
be accelerated. Though write ahead logging (WAL) acceleration is essential for
the purpose, only a few researches are conducted.

To accelerate data persisting process, this paper proposes remote WAL with
asynchronous checkpointing technique. Furthermore this paper designs and im-
plements it. To evaluate the technique, this paper conducts experiments on an
object relational DBMS called KRAFT.

The result of experiments shows that remote WAL overwhelms performance
disk based WAL. As for throughput evaluation, best policy shows about 12 times
better performance compared with disk based WAL. As for logging time, the
policy shows lower than 1000 micro seconds which is the period of motor data
acquisition on conventional robots.

1 Introduction

In the fields of sensor networks (SN) [1] or data stream management systems (DSMS)
[2]], immediate data persisting process is not considered at all. However, if it is realized,
the application domains of data warehouse can be expanded to real-time or ubiquitous
computing fields such as robots [3]].

To realize the vision, a new type of database management system (DBMS) should be
designed for managing sensor data streams. The DBMS should be able to (C1) manage
massive data, (C2) providing persistence for data certainly, (C3) manage variable length
tuple, and (C4) providing persistence for data instantaneously. Most of conventional
DBMS satisfy (C1), (C2), and (C3). However, only (C4) is not satisfied yet. Conse-
quently, we set the purpose of this paper as realizing a technique which accelerates
reliable data persisting processing on DBMS. To efficiently avoid data loss at system
crash, DBMS makes log records, writes them onto persistent storage, and then updates
durable storage [4]]. In this paper, the process to write log records onto persistent storage
is denoted as “persisting process”.

To accelerate persisting process, differential logging [S] and remote logging [6/7]]
are proposed. [5] is for main memory database system (MMDB). Since it prepares a
log file for each page, log files are divided and persisting process is accelerated. [6]] is
also for MMDB. It uses two remote memories as persistent storage with 2 phase commit
protocol. Since remote memory is faster than than local disk, it accelerates persisting

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 524-333] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Providing Persistence for Sensor Data Streams by Remote WAL 525

process. [7] also uses remote memories, and the application domain is focused on sensor
data. Inherently sensor data has continuous nature and thus it is considered that a few
data loss can be recovered by interpolation. Based on the concept, the paper proposes
imprecise remote logging.

Unfortunately, these techniques do not satisfy the above four conditions. Since differ-
ential logging [5]] is for MMDB and thus the number of log files are limited. Therefore
the technique is difficult to apply for our purpose. Since neighbor-WAL [6] does not
describe how to deal with remote memory overflow, this technique is difficult to apply
for our purpose. Since imprecise-WAL [7] is unreliable, this technique is difficult to
apply for our purpose.

To achieve the purpose, this paper proposes remote WAL with two level asyn-
chronous checkpointing technique, and realizes it on an object relational database
system KRAFT [S].

This paper is organized as follows. Section 2 summaries related work. Section 3 for-
mulates problems and describes basic architecture of object relational DBMS called
KRAFT for the preparation of the proposition. Section 4 presents the two level asyn-
chronous checkpointing technique. Section 5 describes experiments to evaluate the
proposition. Section 6 discusses with this work. Finally Section 7 describes conclusions
and future work.

2 Related Work

Differential Logging. P*TIME [5]] adopts “differential logging” technique to accelerate
WAL for MMDB. Differential logging adopts transient logging method and it reduces
the amount of log records compared with ARIES [9] method since transient logging re-
quires bit-level XOR difference of before image and after image while ARIES method
requires both of them. Although the differential logging technique shows great per-
formance, the maximum size of data which P*TIME can deal with is restricted to the
size of physical memory. Since the size of sensor data increases monotonically as time
goes, it is obvious that sensor data devours physical memories soon. Therefore differ-
ential logging technique is not proper for frequently sensor data insertion environment
unfortunately.

Neighbor-WAL. Neighbor-WAL [6] uses two remote computer’s memories (remote
memories) as a persistent storage instead of a disk. The transfer of log records is exe-
cuted on two phase commit protocol. Since the response time of remote memories is
faster than a local disk, neighbor-WAL achieves faster performance compared with tra-
ditional disk based WAL. The weak point of neighbor-WAL is memory overflow. Since
log records are stored on remote memories, the memories often overflow. Although this
is the most important problem, no approach is described in [6]].

Imprecise WAL. To accelerate sensor data insertion, imprecise WAL method is pro-
posed in [7]] as a modification of neighbor-WAL. This technique accelerates neighbor-
WAL by reducing network traffic cost. On the imprecise WAL, DBMS does not receive
any ACK of log record transfer from remote log servers. Although some log records
might be lost, the authors of [[7] consider that they can be interpolated since they are

526 H. Kawashima, M. Imai, and Y. Anzai

Table 1. Comparison of Related Work

Massive Data Precise Variable Length| Fast Data

Study Management (C1)|Persistence (C2)| Tuple (C3) |Insertion (C4)
Differential Logging [3] Never Good Good Good
Neighbor-WAL [6] Never Good Good Good
Imprecise WAL [7]] Good Never Never Good

Conventional DBMS Good Good Good Bad

DSMS [2] Never Never Good Never
Ideal Good Good Good Good

gradually changing sensor data. To achieve performance, the imprecise WAL method
loses certain persistence for each data. Since the target of this paper is providing persis-
tence for all of sensor data to realize predictor applications, the technique is not proper
for our purpose.

The summary of related work is shown in Table [Tl We present the technique from
the rest of this paper, and conducts the performance on our prototype DBMS called
KRAFT.

3 Preparation

This Section prepares for our proposition in Sectiond] The first subsection formulates
problems to achieve our purpose, and the second subsection describes basic architecture
the database system KRAFT in which we will built our proposition.

3.1 Problem Formulation

The purpose of this paper is realizing a technique which accelerates reliable data persist-
ing processing on DBMS. In other words, a technique to solve (C4) should be proposed,
and furthermore it should be realized on DBMS.

To evaluate the contribution of our proposition to (C4), we measure throughput
of transactions, logging time of for a transaction, and blocking time to deal with re-
mote memory overflow on KRAFT. Thus, we formulate the problems of this paper as
follows.

(P1) : Maximizing Throughput on DBMS
(P2) : Minimizing Logging Time on DBMS

3.2 Basic Architecture of KRAFT

The proposition of this paper is based on an object relational database system KRAFT
which we have developed. To clarify the novelty of the proposition, we describe basic
architecture of KRAFT here. The implementation was done by programming language
C on FreeBSD 5.3 Release. The number of lines is over 15000.

Overview. KRAFT is a database system that supports a variety of sensor data, and
provides the following features: (1) freshness for sensor data without losing persistence,
(2) abstract data type for sensor data, and (3) efficient periodic monitoring.

Providing Persistence for Sensor Data Streams by Remote WAL 527

Data Model. KRAFT provides object relational data model as shown in Figure[Il Each
tuple is constituted of RELATION part and SENSOR part and the format is dynamically
set by CREATE TABLE command. The types which a tuple can have are INT (fixed
length 4 byte), TEXT (variable length, however, the size should be lower than DBMS
buffer pool size), and SENSOR which is constructed by the set of sensor data objects. A
sensor object has four attributes: arrival time(16 byte), generate time (16 byte), sensor
data (8 byte), and meta data (64 byte).

Software Architecture. Figl2] shows basic software architecture of KRAFT. Since
KRAFT conducts remote logging for persisting process, it is constituted of DBMS
Server and Log Server. Although KRAFT has many modules, only RecoveryMan-
ager, LogReceiver, CheckPointer, BufferManager relate to the proposition of this

paper.

Logging threads
Concurrent m
execution
lMonitor manager H Log client E HLOE receiver I
Transaction manager l lParserl /W
lExeculor l IRecovery mana&l'/

[Lock manager H Storage manager l
Log S
DBMS Server J 08 derver

(Arrival Time, Generate Time, Value, Metadata)

|

RELATION ‘ || SENSOR ‘

Fig. 1. Data Model of KRAFT Fig. 2. KRAFT Architecture

Transaction Model and Operations. KRAFT supports INSERT, DELETE, and AP-
PEND operations. INSERT and DELETE are used to manipulate tuples, while AP-
PEND operation is used for inserting new sensor data objects to SENSOR area.

KRAFT recognizes one operation as one transaction. In other words, each opera-
tion is executed transactionally. Therefore, all of data on buffer pools are assured to be
finished the persisting process.

Buffer Pool. Buffer pool is managed by storage manager on DBMS Server. If all of
page are used, one page is selected as a victim. And the victim page is written to disk
(durable storage), and it is initialized for next requirement. Buffer pool is constituted
of N-th buffer pages. To optimize disk I/O, the size of each buffer page is set to the
multiplies of PAGESIZE variable which is dependent on hardware.

Basic Remote WAL Protocol. KRAFT conducts remote WAL for the persisting process.
The basic protocol of KRAFT’s remote logging protocol is shown in the Fig[3l This
figure omits error handling because of space limitation.

4 Approach to Problems

4.1 Two Level Asynchronous Checkpointing

To solve the problems which Section[3.T]described, blocking time should be decreased.
To decrease the blocking time, this paper proposes the two level asynchronous check-
pointing technique. The overview of the technique is shown in Fig[dl

528

H. Kawashima, M. Imai, and Y. Anzai

When a Logger detects the end of k-th LogPage, it immediately switches to k + 1-
th LogPage. The switching time is the blocking time which have to be decreased. As
Fig[shows, the technique is constituted of four threads, Redoer, Logger, LogWriter,
and LogTransfer. And, Fig/4] shows asynchronous buffer transfer (log server’s mem-
ory — log server’s disk) and asynchronous file transfer (remote disk — DBMS storage

area).
Ve
1: if (Send Log to LogSrv1 == timeout) {
2: Recover using LogSrv2; } > [LogTransfer j [Logger j
3: if (Send Log to LogSrv2 == timeout) { Chell::;mter) L:::::mm LogPage
4: Recover using LogSrvl; } whE COMPRESS ‘. um
5: if (ACK from LogSrv1 == timeout) { ! TRANSFER glﬁﬂ |:|
6: Recover using LogSrv2; } i;;:;’;zery WH'TE READ " 1 ogArea
7: if (ACK from LogSrv2 == timeout) { Manager)
8: Recover using LogSrvl; }
\\ / DBMS Server Log Server
Fig. 3. Remote WAL Protocol Fig. 4. Two Level Asynchronous Checkpointing
4 D
1: Set Current LogPage C' = 0; (Initialization);
2: while (TRUE) { ™~
3: Recvlogrecord L; 1: Dirty LogPage D = 0; (Initialization)
4: Lock entire LogArea & Lock C'; 2: while (TRUE) {
5: if (C'is full) { 3 if(C>D){
6: Unlock C & Switch C &Lock C; } 4 Get T7; (Current Time);
7: Unlock entire LogArea; 5: Make a log file of which name is T7;
8: Write L’s size to C’s header; 6: Transfer D to T5.
9: Write L onto C'; 7 Switch D; }
10: Unlock C; } 8: sleep(TIME_LW); }
_ N)
Fig. 5. Logger Algorithm Fig. 6. LogWriter Algorithm
a N
1: while (TRUE) {
2: Receive the size of T%;
3: Allocate space to extract 17
1: while (TRUE) { 4: Recv T; & Extract T,
2 while (log file T’; exists) { 5: ptr = header of the first log record;
3 Compress T; & send it to DBMS Srv; 6: while (ptr != NULL) {
4: Recv ACK from DBMS Srv; 7: REDO using a log indicated by ptr;
5 Delete T7;} 8: ptr = ptr->next; }
6: sleep(TIME_LT);} 9: Release allocated space; }
N /

Fig.7. LogTransfer Algorithm

Fig. 8. Redoer Algorithm

Providing Persistence for Sensor Data Streams by Remote WAL 529

4.2 Algorithm Descriptions

This subsection presents the description of algorithms to realize Redoer, Logger, Log-
Writer, and LogTransfer.

The algorithm of Logger is shown in Fig[5]Each log record has header area in which
the size of log record is stored. Without the headers, it is impossible to reorganize log
record from LogPage.

The algorithm of LogWriter is shown in Figl6l LogWriter chases the current page
C, but it never passes C. If LogWriter works slow, Logger soon finishes up all of
log pages and waits for LogWriter, and it incurs blocking phenomenon. To avoid it,
TIME_LW (Figlg) should be slow enough.

Figll] shows LogTransfer algorithm. As long as log files T; exists, LogTransfer
compresses T; and transfers it to Redoer. The compression reduces the amount of nec-
essary network resource. In our experiment, the compression enhanced the performance
of our system.

Fig[8l shows Redoer algorithm. Redoer receives compressed Tj, extracts it, con-
ducts REDO processing by calculating the address of each log record. If the address
is not written by storage manager, Redoer discards the log records because the access
must make old the state of the page, which is never permitted.

5 Evaluation

5.1 Experimental Environment

Hardware and System Parameters

Hardware. The specification of a machine for DBMS server and clients is Pentium
4 (3 GHz) CPU, 4GB RAM, and FreeBSD 5.3-Release OS.And, the specification of
machines for log servers are Pentium4 (2.4 GHz) CPU, 1GB RAM, and FreeBSD 5.3-
Release OS. For network, 100 Mbps Ethernet interfaces and Gigabit Switching Hub
FXG-08TE were used for the experiment.

System Parameters. Both TIME_LW (Figl) and TIME_LT (Fig[7) were adjusted as 1
micro second. The number of DBMS buffer pools was 32. FIFO was applied for page
replacement algorithm. The number of log buffer pages on each log server was 128, and
each size was 16 KB. To improve network response time, TCP_NODELAY option was
set not to use Nagle algorithm on TCP/IP. For each experiment, all of clients are generated
on a DBMS Server machine. The number of log servers is 2 for each experiment.

Comparison Methods. “DWAL (GC)” shows disk-based “Willing To Wait” policy
group commit implementation on KRAFT.

“RWAL (Simple)” shows RWAL without group commit. In other words, all of log
transfers are executed isolately. In this case, the number of Logger threads on each log
server is the same as the number of DBMS clients which means the number of sensor
data streams in this experiment. In this case, the size of log record is smaller than 1 KB.

“RWAL (GC)” shows RWAL-based “Willing To Wait” policy group commit imple-
mentation on KRAFT. The number of Logger threads on each log server is one since
log transfers are integrated for group commit. The size of WAL buffer on DBMS Server
is 16 KB.

530 H. Kawashima, M. Imai, and Y. Anzai

“PostgreSQL” shows PostgreSQL-7.3.6 which implements “Willing To Wait” policy
group commit.

Experiment Descriptions. We conduct three experiments. They are “throughput”,
“logging time” and “log insertion time on log server”. As for “throughput”, each client
generages 1000 operations. Clients are concurrently executed. Total execution time is
measured and then throughput is calculated. “Logging time” is the time for one WAL
execution. This is measured at the internal of DBMS Server. “Log insertion time on a
log server” is the time for LogPage modification on a log server. If memory overflow
incurs blocking, this values would show high.

5.2 Results

Throughput. Fig[9] shows average of throughput. It shows that RWAL overwhelms
DWAL. “RWAL (Simple)” shows 12 times better performance compared with “DWAL
(GC)” in the maximum case (4 concurrency). However, “DWAL (GC)” shows worse
performance than “PostgreSQL”. Though we do not clarity the precise reason, the dif-
ference of buffer management algorithm (FIFO vs. clock) or “Willing To Wait” opti-
mization might be related.

Fig[I0l shows standard deviation of throughput. Though “RWAL (Simple)” shows
unstable behavior, the reason is not clarified.

Logging Time. Fig[TT] shows the average of logging time. “RWAL (Simple)” shows
lower than 1000 micro seconds while concurrency is low, but the performance de-
grades in accordance with concurrency obtaining 4000 micro seconds at 500 concur-
rency. However, in all of concurrency, “RWAL (Simple)” shows better performance
than “RWAL (GC)”.

Fig[12] shows standard deviation of logging time. Though “RWAL (Simple)” shows
unstable behavior, the reason is not clarified.

Log Insertion Time on a Log Server. Fig[[3Ishows average of one log record insertion
time on a log server. In the worst case, “RWAL (Simple)” shows 7 micro seconds while
“RWAL (GC)” shows 25 micro seconds. From the results, it is considered that blocking
did not occur on log servers. the difference of 7 micro seconds and 25 micro seconds
would be related to the size of insertion size. For “RWAL (Simple)”, only one log record
is written while sets of log records are written for “RWAL (GC)”.

Fig[T4] shows standard deviation time of one log record insertion time on each log
server. All of values are smaller than 18 micro seconds, which are enoughly small.

Summary. As for performance “RWAL (Simple”) policy showed the best performance
in all of experiments. Since the policy overwhelms disk based WAL as for throughput,
it satisfies (P1) Maximing Throughput on DBMS. In addition, since the policy also
showed better performance than “RWAL (GC)”, it most appropriately satisfies (P2)
Minimizing Logging Time on DBMS. The reason why logging time was minimized,
was because of non-blocking on log servers, which was clarified in the experiments
with log insertion times.

Providing Persistence for Sensor Data Streams by Remote WAL

3500

3000 [

2500

Average of TPS

1000

2000 |

1500 [

RWAL (Simple) -

DWAL (GC) ——

RWAL (GC) -~
PostgreSQL &

200 300
Concurrency

Fig. 9. Average of Throughput

9000

8000

6000

5000

Average of Logging Time [Micro Sec]

2000

1000

7000

4000 -/

*
3000

RWAL (Simple) ——
RWAL (GC)

e

100 200 300

Concurrency

400 500

Fig. 11. Average of Logging Time

35

30 -

20 -

Average of Blocking Time [Micro Sec]

o
100

150

200 250 300

Concurrency

350

400 450 500

Fig. 13. Average of Log Insert Time

6 Discussion

500 T

Standard Deviation of TPS

DWAL (GC) ——

RWAL (Simple)
RWAL (GC) -

200 300
Concurrency

531

Fig. 10. Standard Deviation of Throughput

14000

12000

10000

8000

6000

4000

Standard Deviation of Logging Time [Micro Sec]

2000

RWAL (Simple) ——
RWAL (GC) ---x--- |

=
o

00 200 300
Concurrency

400 500

Standard Deviation of Blocking Time [Micro Sec]

RWAL (Simple) —+—
RWAL (GC) ---%---

2
100

150

200

250 300
Concurrency

350 400 450 500

12. Standard Deviation of Logging Time

Fig. 14. Standard Deviation of Log Insert Time

Persistence Strongness of Log Records by Remote WAL. If failure occurs on a host
which log server runs, all of log records stored in the log server are lost. To cope with
such a situation, our protocol shown in Fig[3] requires database server sending a log

532 H. Kawashima, M. Imai, and Y. Anzai

record to two log servers. Therefore, our remote WAL protocol does not lose log records
unless both of hosts failures at the same time, and we think the probability of the phe-
nomenon would not be high. We think this philosophy is the same as the ClustRa [6]
which is accepted for industry community. Therefore we consider remote WAL provide
enough strongness of persistence for log records.

Preciousness of Sensor Data Stream. Currently sensor data streams are not considered
to be enough to precious to persist in the field of sensor network community or data
stream community. However we consider it will be precious in this decade, because (1)
sensory/image communication is easier to understand compared with text based com-
munication, (2) the price of disk is rapidly decreasing, and (3) real-time applications
which use sensor data are emerging. Therefore we predict that data warehouses would
store fine-grained sensor data streams in the near future.

Having N disks. Having N disks on the DBMS server, the performance of DWAL may
be increased. However, the ratio would be low since (1) conventional group commit
technology [10] is highly established and (2) the management of multiple group commit
buffers requires cost.

SAN. By using SAN, the performance of DWAL would improve dramatically since
batteries are equipped on disk cache device and thus no need to write some data on
harddrive to persist the data. However, this paper focuses on low-end devices and thus
expensive SAN is out of range.

7 Conclusions and Future Work

The purpose of this paper was to propose a technique which accelerates reliable data
persisting processing on DBMS. To achieve the purpose, this paper proposed the two
level asynchronous checkpointing technique, and implemented the proposition on an
actual DBMS. And, this paper tackled the following three problems. (1) Maximizing
throughput. (2) Minimizing logging time.

The result of experiments showed that remote WAL provided better performance
than disk based WAL. As for throughput evaluation, the “RWAL (Simple)” policy
showed about 12 times better performance compared with disk based WAL in the max-
imum case. As for logging time, the policy showed lower than 1000 micro seconds
which is the period of motor data acquisition for conventionally used robots. Further-
more it also showed stable performance on log insertion time on log server. Therefore
we consider the “RWAL (Simple)” policy most appropriately solves problems formu-
lated in Section[3.11

Therefore the proposition in this paper satisfies (C4) in Table [[I Furthermore,
KRAFT already satisfies (C1), (C2), and (C3). Therefore new KRAFT reinforced by
this paper satisfies all of four conditions in Table[[l Hence we conclude that our work
achieved the purpose of this paper.

For further improvement, non volatile memories such as ram-disks should be used.
Even if non volatile memories are used, the two level check pointing technique we
proposed in this paper should be used because the available size of non volatile memo-
ries is still limited.

Providing Persistence for Sensor Data Streams by Remote WAL 533

References

10.

Madden, S. R., Franklin, M. J., Hellerstein, J. M. and Hong, W.: The Design of an Ac-
quisitional Query Processor for Sensor Networks, Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 491-502 (2003).

Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J.: Models and Issues in Data
Stream Systems, ACM Symposium on Principles of Database Systems (2002).

Imai, M. and Narumi, M.: Generating common quality of sense by directed interaction,
Proceedings of the 12th IEEE International Workshop on Robot and Human Interactive
Communication(RO-MAN 2003), pp. 199-204 (2003).

Gray, J. and Reuter, A.: Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann Publishers (1993).

Cha, S. K. and Song, C.: P*TIME: Highly Scalable OLTP DBMS for Managing Update-
Intensive Stream Workload, Proceedings of 30th International Conference on Very Large
Data Bases, pp. 1033-1044 (2004).

Hvasshovd, S.-O., Torbjgrnsen, @., Bratsberg, S. E. and Holager, P.: The ClustRa Telecom
Database: High Availability, High Throughput, and Real-Time Response, Proceedings of the
21th International Conference on Very Large Data Bases, pp. 469—477 (1995).

Kawashima, H., Toyama, M., Imai, M. and Anzai, Y.: Providing Persistence for Sensor
Streams with Light Neighbor WAL, Proceedings of Pacific Rim International Symposium
on Dependable Computing(PRDC2002), pp. 257-264 (2002).

Kawashima, H., Imai, M. and Anzai, Y.: Improving Freshness of Sensor Data on KRAFT
Sensor Database System, International Workshop on Multimedia Information Systems, pp.
1-8 (2004).

Mohan, C.: Repeating History Beyond ARIES, Proceedings of 25th International Confer-
ence on Very Large Data Bases, pp. 1-17 (1999).

Spiro, P. M., Joshi, A. M. and Rengarajan, T. K.: Designing an Optimized Transaction Com-
mit Protocol, Digital Technical Journal, Vol. 3, No. 1, pp. 1-16 (1991).

	Introduction
	Related Work
	Preparation
	Problem Formulation
	Basic Architecture of KRAFT

	Approach to Problems
	Two Level Asynchronous Checkpointing
	Algorithm Descriptions

	Evaluation
	Experimental Environment
	Results

	Discussion
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

