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Abstract. One of the major challenges facing a data warehouse is to
improve the query response time while keeping the maintenance cost to a
minimum. Recent solutions to tackle this problem suggest to selectively
materialize certain views and compute the remaining views on-the-fly, so
that the cost is optimized. Unfortunately, in case of a spatial data ware-
house, both the view materialization cost and the on-the-fly computation
cost are often extremely high. This is due to the fact that spatial data
are larger in size and spatial operations are more complex and expensive
than the traditional relational operations. In this paper, we propose a
new notion, called preview, for which both the materialization and on-
the-fly costs are significantly smaller than those of the traditional views.
Essentially, to achieve these cost savings, a preview pre-processes the
non-spatial part of the query, and maintains pointers to the spatial data.
In addition, it exploits the hierarchical relationships among the different
views by maintaining a universal composite lattice, and mapping each
view onto it. We optimally decompose a spatial query into three com-
ponents, the preview part, the materialized view part and the on-the-fly
computation part, so that the total cost is minimized. We demonstrate
the cost savings with realistic query scenarios.

1 Introduction

One of the major challenges facing a data warehouse is to improve the query
response time while keeping the maintenance cost to a minimum. Recently, se-
lectively materializing certain views over source relations has become the philos-
ophy in designing a data warehouse. While materialized views incur the space
cost and view maintenance cost, views that are not materialized incur on-the-fly
computation cost. One has to balance both these costs in order to materialize
the optimal views that incur minimum cost. This problem is exasperated when
we consider a spatial data warehouse (SDW). This is because, spatial data are
typically large in size (e.g., point, line, region, raster and vector images), and the
operations on spatial data are more expensive (e.g., region merge, spatial overlay
and spatial range selection). As a result, often, both on-the-fly computation cost
and the view materialization cost are prohibitively expensive.
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In this paper, we take a novel approach to resolve this issue. In particular, we
introduce an intermediary view, called preview, for which both the materializa-
tion and on-the-fly costs are significantly smaller than those of the traditional
views. Essentially, the idea of a preview is to pre-process the non-spatial part of
the query and materialize this part based on certain cost conditions, but leave
the spatial part for the on-the-fly and maintain pointers to the spatial data on
which the spatial operation should be performed. In addition, a preview exploits
the hierarchical relationships among different views. Obviously, storing previews
in a data warehouse introduces overhead because it requires additional stor-
age and process efforts to maintain the data sets during updates. However, we
demonstrate that, the performance gain achieved through preview more than
offsets this storage and maintenance overhead. Our ultimate goal is to optimize
the total cost of a spatial data warehouse, which is the sum of the space cost of
materialized views, the online computation cost of queries if not materialized,
and the online computation and space cost of previews, if any.

This rest of the paper is organized as follows. We present the motivating
example in Section 1. We present some preliminaries in Section 2. We introduce
the Universal Composite Lattice in section 3. We define preview in Section 4.
We discuss the related work in Section 5. We conclude our work in Section 6.

1.1 Motivating Example

In this section, we present an example that demonstrates that, for certain spatial
queries, our approach to maintaining previews results in lower cost than opti-
mally choosing a combination of on-the-fly and view materialization. Assume
the spatial data warehouse comprising of a set of maps with their alphanumeric
counterparts such as the area, the population amount and the temperature de-
gree, as well as three basic metadata: location, time, and resolution. Assume that
these maps specify different subjects of interest such as weather, precipitation,
vegetation, population, soil, oil, or administrative region.

Now consider the following query that shows interests on a specific region:
find the administrative boundary change of NJ area over last 10 years at 1m
resolution level, and shows the vegetation patterns and population distribu-
tions within the same area, time frame and resolution level, and finally overlay
the population maps and vegetation maps to deduce any relationships between
them. The relation to store these data is called Map. An SQL-like query to
specify this is as follows: select boundary(M.admin map), M.vegetation map,
M.population map, overlay(M.vegetation map, M.populationa map) from Map
where Map.resolution = 1m AND Map.location = NJ AND 1994 < Map.year
< 2005. For the purposes of execution, this query p can be visualized as having
four parts, q1, q2, q3 and q4:

1. q1: a spatial selection that retrieves boundaries of NJ administrative maps
for last ten years on 1 m resolution.

2. q2: a spatial selection that retrieves vegetation maps in NJ area for last ten
years on 1m resolution.
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3. q3: a spatial selection that retrieves population maps in NJ area for last ten
years on 1m resolution.

4. q4 : a spatial join that overlays the results of q2 and q3 . Hence q2 and q3 are
intermediate views for q4.

The on-the-fly computation cost for each operation (q1, q2, q3, q4) is 4, 2, 2, 10
(s/image), and the space costs for admin map boundary, vegetation map and
population map are 5.0, 7.2, 6.0 (MB) respectively. Given a query q, we assume
S(q) denotes the space cost, C(q) denotes the on-the-fly computation cost, and
T (q) = S(q) + C(q) denotes the total cost. For the sake of this example, we
assume S(q) is measured in Mega Bytes, and C(q) in seconds. When computing
T (q), we assume 1MB translates into 1 cost unit and 1sec translates into 1 cost
unit. Now let us consider the cost of the above query in the following four cases:

1. The entire query p is materialized. In other words, we materialize the result of
q1 and q4. T (p) = S(q1)+S(q4) = 5.0×10+(7.2+6.0)×10 = 50+132 = 182.

2. The entire query p is computed on-the-fly. T (p) = C(q1) + C(q2) + C(q3) +
C(q4) = (4×10)+(2×10)+(2×10)+(10×10) = 40+20+20+100 = 180.

3. Materialize q1 and perform on-the-fly computation of q4. Then T (p) =
S(q1) + C(q4) = 50 + (20 + 20 + 100) = 190.

4. Materialize q4 and perform on-the-fly computation of q1. Then T (p) =
S(q4) + C(q1) = 132 + 40 = 172.

Obviously one can choose the one among the alternatives that provides the high-
est cost savings. Now let us examine how using previews can reduce the view
materialization cost. Let us assume we store the preview of q1 and materialize
q4. Specifically, for q1, we materialize the non-spatial part because its cost is be-
low our pre-set threshold, therefore we store the metadata(NJ, 1995-2004, 1m)
and pointers to the New Jersey administrative maps from year 1995 to 2004 and
leave the spatial operation textitoverlay on-the-fly. Compared to materializing
10 years boundaries of administrative maps, the space and maintenance cost of
storing preview is much cheaper than storing the spatial view itself. Compared
to perform on-the-fly computation of retrieving 10 years boundaries of admin-
istrative maps, the query response time will be reduced by adding pointers. In
another word, we reduce some on-the-fly computation cost of q1 by paying price
of storing its preview, so that the overall cost is optimized. For q4, we still mate-
rialize it due to the very expensive overlay operation. The total cost of building
a preview is the space cost of storing the preview the on-the-fly computation
cost starting from the preview. In this real example, the space of using one row
to store the preview is 0.01MB and the online boundary retrieval takes 2 second
for each map. We use PC(q) to denote the preview cost of query q, therefore:

1. PC(q1) = S(q1) + C(q1) = (0.01 × 10) + (2 × 10) = 0.1 + 20 = 20.1
2. S(q4) = 132
3. T (p) = PC(q1) + S(q4) = 20.1 + 132 = 152.1

Compared to the costs of previous methods, the total cost of query p is further
optimized by constructing previews of q1. In the next sections, we will present
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the definition of preview, and how we select appropriate set of queries for preview
to optimize the total cost of an SDW.

2 Spatial Queries

In this section, we briefly present several important concepts. First, we define
the basic algebra expression that is needed for constructing a spatial query. We
then define an atomic spatial query, which serves as the smallest cost unit by
decomposing a spatial query. We finally introduce a process denoted as spatial
projection, which will be used to generate a preview.

The hybrid algebra, including hybrid relations R, hybrid operators op and
hybrid operands X , constitutes the basis for defining a spatial query in a spatial
data warehouse. Within an SDW, a base relation is a hybrid relation that includes
attributes and tuples from both alphanumeric relations and spatial relations. For
spatial relations, we adopt the definitions from the standard specifications of
Open Geospatial Consortium (OGC). The spatial data types supported by this
standard are from Geometry Object Model (GOM), where the geometry class
serves as the base class with sub-classes for Point, Curve (line) and Surface
(Polygon), as well as a parallel class of geometry collection designed to handle
geometries of a collection of points, lines and polygons. Conceptually, spatial
entities are stored as relations with geometry valued attributes as columns, and
their instances as rows. The hybrid operators op combine a complete set of
relational operators rop (σ, π, ∪, −, ×), comparison operators cop (=, <, ≤, ≥, >
, �=), aggregate operators aop (distributive functions, algebraic functions, holistic
functions) and spatial operators sop defined by OGC (Spatial Basic Operators,
Spatial Topological Operators, Spatial Analysis Operators), or op ∈ (rop∪ cop∪
aop ∪ sop). A hybrid algebra operand is a distinct attribute of a hybrid relation,
which could be either spatial operand or non-spatial operand. Now we define a
spatial query based on the hybrid algebra.

Definition 1 Spatial Query. A spatial query is a hybrid algebra expression F ,
which is defined as: (i) a single formula f , can be either unary (op(X1)), binary
(op(X1, X2)), or n-nary (op(X1, . . . , Xn)), where op is a hybrid algebra operator
and each Xi is a hybrid operand, (ii) if F1 is a hybrid algebra expression, then
F = op(X1, . . . , Xm, F1) is a hybrid algebra expression, and (iii) if F1 and F2
are two hybrid algebra expressions, then F1 ∧ F2, F1 ∨ F2, ¬F1 and (F1) are
hybrid algebra expressions.

In our motivating example, the spatial query is to retrieve the boundaries of
administrative maps and overlaid results of vegetation maps and population
maps under certain conditions from the hybrid relation Map. Each spatial query
is composed of one or more atomic spatial queries, or p = {q1, . . . , qn}, which is
defined as follows:

Definition 2 Atomic Spatial Query. Given a spatial query p, an atomic spatial
query q is a component query within p, which is a hybrid algebra expression aF
such that it contains only a single spatial operator sop.
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An atomic spatial query essentially is nothing but an atomic formula that serves
as the smallest unit for the spatial operation cost measurement purpose. In
addition, an atomic spatial query q can be composed of two parts, the spatial
part and the non-spatial part. The spatial part includes a single well-defined
spatial operator, and the non-spatial part could include the traditional selection-
projection-join operations, comparison operations and aggregate operations. For
each q, if we want to construct a preview for it, we need to perform spatial
projection defined as follows:

Definition 3 Spatial Projection. Let q be an atomic spatial query. The spatial
projection of q, denoted as qs, has only spatial operators.

Essentially, a spatial projection of an atomic spatial query is computed by simply
removing all non-spatial operations as well as all the operands associated with
these operators. It comprises of only one spatial operation since by definition,
the preview contains one spatial operation to begin with.

3 The Universal Composite Lattice

In this section, we define the Universal Composite Lattice (UCL), which captures
the hierarchical relationships among all the possible queries in a given spatial
data warehouse. UCL is essentially constructed by composing all its dimension
hierarchies together. We first introduce a single dimension hierarchy.

3.1 The Single Dimension Hierarchy

For any given data warehouse, each attribute or dimension may vary from more
general to more specific; the relationships thus mapped are called the dimension
hierarchies or attribute concept hierarchies. Now we formally define the single
dimension hierarchy, following the lines in [1].

Definition 4 Single Dimension Hierarchy. Given an attribute d, we say there
exists an edge from node hi to node hj, hi → hj, in the dimension hierarchy H
of d, if hi is a more general concept than hj, denoted as hi > hj.

Here hi and hj are two nodes in the dimension hierarchy of d. Generally an
attribute could have as many nodes as the user specified to capture the rela-
tionships among the different levels of the generalization of the dimension. The
resultant dimension hierarchy may be a partial order. In figure 1, we present this
single dimension hierarchy for each metadata. The concept hierarchy provides
a basic framework for the query dependency relationship. Given two nodes hi

and hj in H , we say there exists a dependency relationship between hi and hj

if there exists hi → hj . The dependency relationship indicates that the query
represented at node hi can be built by that represented at hj . In other words,
if one materializes the view at hj , the query at hi can be answered by simply
generalizing the view at hj. For example, we could generate a map of a coun-
try by combining maps of each state in that country, hence we say the query
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on the country depends on the query on the states. In this way, we can use
the lower level query result to answer higher level queries instead of computing
from scratch, which has been demonstrated to be an efficient query optimization
technique [1].

Day

Month

Year

County

State

Country

1m

30m

1000m

(a) Time (b) Region (c) Resolution

Week

Fig. 1. The single dimension hierarchy

3.2 The Universal Composite Lattice

The Universal Composite Lattice (UCL) is built by integrating all the dimension
concept hierarchies from a set of attribute domains D = {d1, . . . , dk}. Therefore,
we can use the UCL to represent the hierarchical relationships for all the queries
in this data warehouse, and any input query can be mapped into this composite
lattice and be evaluated based on its sub-queries. Suppose Ni be the set of nodes
in the dimension hierarchy of di. Assuming a spatial data warehouse comprises of
dimensions D = {d1, . . . , dk} of the spatial measures, then the UCL could at most
have (N1 × . . . × Nk) nodes. We define a universal composite lattice as follows.

Definition 5 Universal Composite Lattice. Let D = {d1, . . . , dk} be the set of
dimensions in SDW. Each node u in UCL is of the form u = (n1, . . . , nk) such
that n1 ∈ N1 or null , n2 ∈ N2 or null, . . ., nk ∈ Nk or null. There exists an
edge ui → uj, iff every nik > njk.

Essentially, a universal composite lattice (UCL) is a directed graph that describes
the query dependency relationships for a given spatial data warehouse. Every
node in UCL is comprised of at least one node from the each dimension hierarchy
or a null. The edge in UCL, as in the single dimension hierarchy represents
that the higher level view represented by that node can be constructed from
lower level views. Figure 2 shows the UCL constructed by combining the three
dimension hierarchies of in figure 1. For the sake of simplicity, we have used the
total order for the Time dimension. Generally, for any data warehouse, one can
construct such a lattice to indicate the dependency relationships among different
queries. The big advantage of this lattice is that every atomic spatial query can be
mapped to some node on UCL. We call such mapping process UCL instantiation.
We will introduce our notion of previews and how UCL instantiation help us to
exploit the existing views when computing certain queries on-the-fly.
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Fig. 2. A sample universal composite lattice

4 The Preview

Essentially, the preview of an atomic query comprises of the view of the prepro-
cessed non-spatial part of the query, and the information necessary to compute
the spatial part on-the-fly. As such it maintains pointers to the spatial objects
on which the spatial operation should be performed. In addition, a preview also
exploits the dependency relationships among different previews. A preview is
formally defined as follows:

Definition 6 Preview. Let q be an atomic spatial query. The preview of q, de-
noted as pre(q), is a 4-tuple 〈M, sop, O, V 〉, where: (1) M is non-spatial parts
of q, (2) sop is the spatial operator, (3) O is a set of pointers to spatial objects,
and (4) V is a set of pointers to all the sub-views that q depends on.

By constructing a preview, we need to first do spatial projection of an atomic
spatial query by separating spatial and non-spatial parts. Then we decide if
we need to materialize non-spatial operations of q based on some pre-set cost
threshold r to get M . Or, if the cost is greater than r, we materialize it otherwise
we leave it on the fly. We also keep O, the set of pointers to the spatial objects.
Then we extract spatial operator sop, which will be computed on the fly when
q is executed. Finally we construct the pointer set V which points to all views
or previews at the lower dependent level by instantiating the given UCL.

For example, in the motivating example, we perform the traditional selection
and projection on q1 and store 〈((1995-2004), New Jersey, 1m), (boundary),
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(ptr1-ptr10)〉 as its preview pre(q1), where the non-spatial part M = 〈1995-2004,
New Jersey, 1m 〉 is materialized by SPJ operations, the pointers (ptr1 − ptr10)
to maps are projected out based on certain conditions. Since there is one spatial
operator involved, we put boundary in the operator position for the on-the-fly
computation. V could include one or more pointers depending on how many
sub-views are available. This preview is stored as a tuple in the data warehouse
for further query evaluations.

Now we show how a preview can be mapped onto a UCL, and the pointer
set pointing to the sub-views can be constructed accordingly. Generally, for any
atomic spatial query, it will be either materialized, computed on-the-fly or built
for a preview. UCL instantiation includes not only mapping the previews but
also mapping the materialized views or the views computed on-the-fly. For sim-
plicity, we only show mapping a preview onto UCL, and other mappings of a
materialized view or a view computed on-the-fly can be conducted similarly with
straightforward extensions.

As we introduced before, an SDW comprises of a dimension set (d1, . . . , dk) with
dimension hierarchies set (N1, . . . , Nk) for each dimension. Each specific node u =
(n1, . . . , nk)(ni ∈ Ni, i = 1, . . . , k) has corresponding actual values stored in the
base tables of the data warehouse, which is denoted as V Li. For example, Year is
one hierarchy in dimension Time, and its corresponding actual value in the data
warehouse is a complete set or subset of (1980-2005). Generally, we denote u =
V Li(i = 1, . . . , k) iff V Li is the set of actual values associated to u. For example,
in the figure 2, 〈Year, State, resolution 〉 = 〈(1995-2004), New Jersey, 1m 〉. Given
a UCL, a simple linear search algorithm can map a preview of an atomic spatial
query q, denoted as pre(q), onto a given UCL (omitted due to space limit).

This algorithm basically performs linear search from the lowest level node to
the highest level node in the UCL, and see if the M of a pre(q) includes the
actual hierarchy values of certain node. If we find this match, we add a pointer
from that node to the pre(q). Therefore we map a preview to an actual node
in the UCL. In addition to the previews, we assume the materialized views and
views that computed on-the-fly are also mapped onto the UCL, which instantiate
the UCL for a spatial data warehouse. Hence if there are any materialized views
or previews mapped there, we add a pointer from pre(q1) to those lower level
views, or sub-views. Basically, V = (t1, . . . , tn) where (ti, i ∈ (1, n)) is a pointer
to one sub-view of pre(q1).

5 Related Work

A lot of work has been done in the area of optimizing cost of a data warehouse.
Most of their work deal with selective materialization to reduce the total cost.
In the initial research done on the view selection problem, Harinarayan et al.
in [2] present algorithms for the view-selection problem in data cubes under a
disk-space constraint. Gupta et al. extend their work to include indexes in [3].
Stefanovic et al. in [4] introduce the spatial data warehouse concept and object
based selective materialization techniques for construction of spatial data cubes.
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Karlo et al. [5] show that the variation of the view-selection problem where the
goal is to optimize the query cost is inapproximable for general partial orders.
Furthermore, Chirkova et al. in [6,7] show that the number of views involved in
an optimal solution for the view-selection problem may be exponential in the
size of the database schema, when the query optimizer has good estimates of the
sizes of the views. Besides the theoretical research, there has been a substantial
amount of effort on developing heuristics for the view-selection problem that may
work well in practice. Kalnis et al. in [8] show that randomized search methods
provide near-optimal solutions and can easily be adapted to various versions of
the problem, including existence of size and time constraints. Recently, certain
works have been done on how to materialize views for some specific systems
or to answer queries more efficiently. Specifically, Karenos et al in [9] propose
view materialization techniques to deal with mobile computing services, Liu
et al in [10] compare two view materialization approaches for medical data to
improve query efficiency, Theodoratos et al [11,12,13] build a search space for
view selections to deal with evolving data warehousing systems, and Wu et al in
[14] work on Web data to rewrite queries using materialized views.

However, all of their methods fall into two categories, i.e. either materialize a
view or compute it on the fly. Our work presented in this paper differs from the
above works in that given the specialty of spatial operations involved in a query,
we design a third technique, preview, between view materialization and on-the-
fly computation, which delivers a provably good solution with cost minimization
for a spatial query and eventually a whole spatial data warehouse.

6 Conclusions

A spatial data warehouse integrates alphanumeric data and spatial data from
multiple distributed information sources. Compared to traditional cases, a spa-
tial data warehouse has a distinguished feature in that both the view material-
ization cost and the on-the-fly cost are extremely high, which is due to the fact
that spatial data are larger in size and spatial operations are more expensive to
process. Therefore, the traditional way of selectively materializing certain views
while computing others on the fly does not solve the problem of spatial views.

In this paper we have dealt with the issue of minimizing the total cost of a spa-
tial data warehouse while at the same time improve the query response time by
considering their inter-dependent relationships. We first use a motivation example
in realistic query scenarios to demonstrate the cost savings of building a preview.
We then formally define preview, for which both the materialization and on-the-fly
costs are significantly reduced. Specifically, a previewpre-processes the non-spatial
part of the query, leaves the spatial operation on the fly, and maintains pointers to
the spatial data. In addition, we show that a preview exploits the hierarchical rela-
tionships among the different views by maintaining a Universal Composite Lattice
built on dimension hierarchies, and mapping each view onto it. We optimally de-
compose a spatial query into three components, the preview part, the materialized
view part and the on-the-fly part, so that the total cost is minimized.
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