
AISS: An Index for Non-timestamped Set
Subsequence Queries

Witold Andrzejewski and Tadeusz Morzy

Institute of Computing Science
Poznan University of Technology

Piotrowo 2, 60-965 Poznan, Poland
{wandrzejewski, tmorzy}@cs.put.poznan.pl

Abstract. In many recent applications of database management sys-
tems data may be stored in user defined complex data types (such as
sequences). However, efficient querying of such data is not supported by
commercially available database management systems and therefore ef-
ficient indexing schemes for complex data types need to be developed.
In this paper we focus primarily on the indexing of non-timestamped
sequences of sets of categorical data, specifically indexing for set subse-
quence queries. We address both: logical structure and implementation
issues of such indexes. Our main contributions are threefold. First, we
specify the logical structure of the index and we propose algorithms for
set subsequence query execution, which utilize the index structure. Sec-
ond, we provide the proposition for the implementation of such index,
which uses means available in all of the “of the shelf” database man-
agement systems. Finally, we experimentally evaluate the performance
of the index.

1 Introduction

Many of todays commercially available database management systems allow
users to define complex datatypes, such as sets, sequences or strings. One of the
most important complex datatypes is the sequence. Sequences are very convie-
nient in modelling such objects as protein sequences, DNA chains (sequences of
atomic values of a small alphabet), time series (composed of real values), and
Web server logs (composed of events). Purchases made by customers in stores
are also sequential. Here, sequences are composed of sets of products bought
by the customer, which are ordered by the date of purchase. The problem of
indexing and querying sequences has recently received a lot of attention [7,12].

Although modern database management systems provide users with the
means to create sequences, they do not support efficient querying of this data
type. To illustrate the problem, let us consider the following example. We are
given the database of four sequences of sets (for example database of sequences
of purchases) shown on Table 1 and the sequence Q = 〈{2}, {1}〉. The problem
is to find all sequences from the database such that they contain the sequence
Q. By sequence containment we mean that the sequence Q is contained within

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 503–512, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



504 W. Andrzejewski and T. Morzy

Table 1. Running example database

Id Sequence
1 S1 = 〈{1, 2}, {1, 2}, {1, 6}〉
2 S2 = 〈{2, 7}, {1, 3}, {1, 5}〉
3 S3 = 〈{2, 8}, {1, 3}, {1, 4}〉
4 S4 = 〈{1, 3}, {3, 9}, {1, 6}〉

the sequence S IFF it may be obtained by removing of some of the items from
the sequence S. Here, sequence Q is contained within sequences S1, S2 and
S3, but not in S4. Such queries are very common in many database application
domains, such as: market basket sequence mining, web log mining and mining
results analysis. As can be easily seen the problem is difficult. If there is no in-
dexing structure for the database, then, in order to answer the query, we need to
read all sequences from database one by one, and for each such sequence check
whether it contains the given sequence Q. Unfortunately, for large databases,
brute force solution may be very costly.

Concluding, there is evidently a need to research efficient, possibly general,
indexing schemes for sequences. Several indexing schemes for sequences have
been proposed so far. Most of them were designed either for time series [1,4] or
sequences of atomic values [14,9]. Almost nothing has been done with regard
to indexing sequences of sets. According to out knowledge, the only index for
sequences of sets developed so far was proposed by us in [3]. However, this index
was designed for sequences of timestamped sets and its main task was to support
a very special case of set subsequence queries, where sets were also timestamped.

The original contribution of this paper is the proposal of a new indexing
scheme capable of efficient retrieval of sequences of non-timestamped sets. More-
over, the index also supports retrieval of multisets. We present the physical struc-
ture of the index and we develop algorithms for query processing. We also present
algorithms for incremental set/sequence insertion, deletion and update in the in-
dex. The index has a very simple structure and may be easily implemented over
existing database management systems.

The rest of the paper is organized as follows. Section 2 contains an overview
of the related work. In Section 3 we introduce basic definitions used throughout
the paper. We present our index in Section 4. Experimental evaluation of the
index is presented in Section 5. Finally, the paper concludes in Section 6 with a
summary and a future work agenda.

2 Related Work

Most of research on indexing of sequential data is focused on three distinct types
of sequences: time series, strings, and web logs.

Indexes proposed for time series support searching for similar or exact sub-
sequences by exploiting the fact, that the elements of the indexed sequences
are numbers. This is reflected both in index structure and in similarity metrics.



AISS: An Index for Non-timestamped Set Subsequence Queries 505

Popular similarity metrics include Minkowski distance [16], compression-based
metrics [6], and dynamic time warping metrics [13]. Often, a technique for re-
duction of the dimensionality of the problem is employed [1].

String indexes usually support searching for subsequences based on identity
or similarity to a given query sequence. Most common distance measure for
similarity queries is the Levenshtein distance [8], and index structures are built
on suffix tree [15] or suffix array [10].

Indexing of web logs is often based on indexing of sequences of timestamped
categorical data. Among the proposed solutions, one may mention: SEQ family of
indexes which use transformation of the original problem into the well-researched
problem of indexing of sets [11], ISO-Depth index [14] which is based on a trie
structure and SEQ-Join index [9] which uses a set of relational tables and a set
of B+-tree indexes.

Recently, works on sequences of categorical data were extended to sequences of
sets. The Generalized ISO-Depth Index proposed in [3] supports timestamped
set subsequence queries and timestamped set subsequence similarity queries.
Construction of the index involves storing all of the sequences in a trie structure
and numbering the nodes in depth first search order. Final index is obtained
from such trie structure.

3 Basic Definitions and Problem Formulation

Let I = {i1, i2, . . . , in} denote the set of items. A non-empty set of items is
called an itemset. We define a sequence as an ordered list of itemsets and denote
it: S = 〈s1, s2, . . . , sn〉, where si, i ∈ 〈1, n〉 are itemsets. Each itemset in the
sequence is called an element of a sequence. Each element si of a sequence S
is denoted as {x1, x2, . . . , xn}, where xi, i ∈ 〈1, n〉 are items. Given the item i
and a sequence S we say that the item i is contained within the sequence S,
denoted i � S, if there exists any element in the sequence such that it contains
the given item. Given a sequence S and an item i, we define n(i,S) as a num-
ber of elements in a sequence S containing the item i. Given sequences S and
T , the sequence T is a subsequence of S, denoted T � S, if the sequence T
may be obtained from sequence S by removal of some of items from the ele-
ments and removal of any empty elements which may appear. Conversely, we
say that the sequence S contains the sequence T and that S is a supersequence
of T .

In order to present the structure of the proposed index, additional notions and
definitions are needed. A multiset is an itemset where items may appear more
then once. We denote multisets as SM = {(x1 : n1), (x2 : n2), . . . , (xm : nm)},
where xi, i ∈ 〈1,m〉 are items, and ni are counters which denote how many times
the items xi appear in the multiset. We omit such items, that their counters are
equal to zero (i.e. they do not appear in the multiset). Given the SM and TM

multisets, the TM multiset is a subset of the multiset SM , denoted TM ⊆ SM if
the multiset TM may be obtained from multiset SM by removal of some of the
items.



506 W. Andrzejewski and T. Morzy

Fig. 1. Basic Inverted File Index structure

We define a database, denoted DB, as a set of either sequences or multisets,
called database entries. Each database entry in the database has a unique iden-
tifier. Without the loss of generality we assume those identifiers to be consecu-
tive, positive integers. A database sequence identified by the number i is denoted
Si, whereas a database multiset is denoted Si

M . Given the query sequence Q,
the set subsequence query retrieves a set of identifiers of all sequences from the
database, such that they contain the query sequence, i.e. {i : Si ∈ DB∧Q � Si}.
Given the query multiset QM , the subset query retrieves a set of identifiers of
all multisets from the database such, that the multiset QM is their subset, i.e.
{i : Si

M ∈ DB ∧ QM ⊆ Si
M}.

4 The AISS Index

Now, we will proceed to the presentation of our index for sequences of non-
timestamped sets. The idea of the index is based on the well known Inverted
File Index [5]. The new structure allows to search for supersequences of sequences
of sets and supersets of multisets.

The general idea for the index is as follows. We transform sequences from
database to multisets by discarding data about which items belong to which
itemsets and about the order of the itemsets. Next, we store these multisets in
the structure based on the idea of the Inverted File Index. To perform a query,
we transform the query sequence to a multiset, and retrieve all the supersets of
such multiset from the index. Because we discard some of the data, additional
verification phase is needed to prune false positives.

Basic Inverted File structure, which is used for indexing itemsets, is composed
of two parts: dictionary and appearance lists. The dictionary is the list of all the
items that appear at least once in the database. Each item has an appearance
list associated with it. Given the item i, the appearance list associated with item
i lists identifiers of all the sets from database, that contain that item. Structure
of the basic Inverted File Index is shown on Figure 1.

In order to be able to store multisets in the above presented structure we
propose a straightforward modification. We alter appearance lists, so that they
store counters which show how many times the item appears in the set as well
as identifiers. Notice, that such modification allows us to store full informa-
tion about multisets. In order to be able to store sequences of sets in such
index, we use a sequence to multiset transformation which is introduced by the
Definition 1.



AISS: An Index for Non-timestamped Set Subsequence Queries 507

Algorithm 1. AISS index creation.
1. Build a dictionary by scanning a database and retrieving all distinct items stored

in the database.
2. For each of the sequences Sj ∈ DB or for each of the multisets Sj

M ∈ DB perform
the following steps:
(a) if DB is a database of sequences, perform the following transformation: Sj

M =
T (Sj).

(b) For each of the pairs (xi : ni) ∈ Sj
M create an entry (j, ni) in the appearance

list associated with the item xi.

Fig. 2. AISS Index for exemplary database

Definition 1. Sequence to multiset transformation.
Sequence is transformed to a multiset by creating a multiset, that contains all

the items from the sequence. Formally,

T (S) = {(xi : ni) : xi � S ∧ ni = n(xi,S)} (1)

Example 1. We want to transform the sequence S1 = 〈{1, 2}, {1, 2}, {1, 6}〉 from
the running example database to a multiset. In this sequence, item 1 occurs
three times, item 2 occurs two times, and item 6 occurs one time. Therefore the
multiset should contain three items 1, two items 2 and a single item 6.

S1
M = T (S1) = T (〈{1, 2}, {1, 2}, {1, 6}〉) = {(1 : 3), (2 : 2), (6 : 1)}

The steps for AISS index creation, which utilizes a sequence to multiset trans-
formation, are shown by algorithm 1. It is easy to notice that both steps of
the algorithm 1 can be performed during a single database scan. The process
of building the AISS index for the running example database is presented on
Figure 2.

Basic steps for procesing subset queries are given by algorithm 2. It is easy to
notice, that the basic algorithm would run faster, if the items in the query mul-
tiset were ordered by their frequency of appearance in the database. Therefore,
before executing the query, we should calculate, for each item of the multiset,
how many multisets in the database contain this item. This of course needs to be
done only once, and can be easily updated incrementally after database updates.



508 W. Andrzejewski and T. Morzy

Algorithm 2. Subset query algorithm utilizing the AISS index.
Parameter: query multiset QM = {(x1 : n1), (x2 : n2), . . . , (xl : nl)}

– For each entry (j1, m1) from the appearance list of item x1, if n1 < m1, do:
1. level ← 2
2. While level <= l do:

(a) Find entry (jlevel, mlevel) on appearance list for item xlevel, such that
jlevel = j1. If such entry does not exist, break the while loop.

(b) If (nlevel < mlevel) then level ← level + 1 else break the while loop.
3. If level = l + 1 then the set j1 contains the query set.

Algorithm 3. Incremental updating of the AISS Index.
1. For each such item, that it appears both in the new and old version of the multiset,

correct the counters on the respective appearance lists.
2. For each such item, that it appears only in the new version of the multiset, create

appropriate entry on the respective appearance lists, creating an appearance list
if necessary. Increase frequency counters of such items by one.

3. For each such item, that it appears only in the old version of the multiset, delete
appropriate entry from the respective appearance lists, deleting appearance lists if
they become empty. Decrease frequency counters of such items by one.

After that we need to execute the steps of the algorithm 2 starting with the least
frequent items.

In order to perform set subsequence queries, two steps need to be added. First,
before we start processing the query, we must transform the query sequence to
a multiset using a sequence to multiset transformation. Because such transfor-
mation loses information about the order of items in the sequence, a verification
phase needs to be added, to prune the false positives. In order for verification
phase to work efficiently, we must make an assumption that each of the sequences
in the database is placed at a single location on disk and may be easily accessed
by rowid. During the verification phase, we access all of the sequences that were
returned from index and check whether they fulfill the query conditions or not.

Algorithms for incremental updates are also very simple. Due to the lack of
space we will present only the algorithm for updates. Algorithms for insertions
and deletions may be easily derived from it. In order to update index after mod-
ification of the multiset, perform the steps shown by algorithm 3. For databases
of sequences of sets update algorithms are almost the same. The only difference
is the necessity of transformation of the updated sequence (both old and new
version) to the multiset before proceeding.

The performance of the index depends mainly on its physical implementation.
In this paper we propose a way of implementing the AISS index, which uses func-
tionality offered by any commercially available database management system.
Both, the dictionary and appearance lists may be represented by a B+-tree or a



AISS: An Index for Non-timestamped Set Subsequence Queries 509

Table 2. Synthetic data and experiment parameters

Parameter Exp.1 Exp.2 Exp.3
size of the domain [items] 150000 150000 150000

item distribution zipfian and uniform
minimal set size [items] 1 1 5 – 95
maximal set size [items] 30 30 15 – 105

minimal set number [sets] 1 5 – 95 5
maximal set number [sets] 10 15 – 105 15

number of sequences 10000 – 100000 10000 10000
page/node size [bytes] 4096B 4096B 4096B

B∗-tree structure. These structures allow very fast mapping of key values to some
values associated with them. Let us consider the following key-value pair. Let
the key be a pair (item, id), where item is some item from the dictionary and id
is the multisets unique identifier, and let the value be a number of appearances
of the item in the multiset identified by the id. If we assume lexicographic order
imposed on key pairs, then the groups of consecutive entries in leaves of the
B+-tree will form appearance lists. To read an appearance list of the item xi we
just need to locate the first leaf entry, which corresponds to the item xi, and
read consecutive entries, until we find the first entry for the next appearance
list. If we need to locate an entry corresponding to the multiset j on the ap-
pearance list of the item xi, we can easily locate it, because the (xi, j) forms a
key. Notice, that such implementation has other advantages: very easy insertion,
deletion and modification of entries, as well as “automatic” removal, or insertion
of appearance lists (each list only exists, if there is at least one entry from it
stored in the tree).

An additional structure, which maps multiset/sequence id to rowid, is needed
to locate multisets or sequences on disk. This is especially important for se-
quences, for which there is additional phase of verification. Such mapping could
be easily performed by the second B+-tree. Frequency counters for items should
be stored in memory when database is up, and therefore they do not any need
special structures to store.

5 Performance Tests

We have performed three experiments testing the impact of the number of se-
quences of sets in the database, average number of sets in the sequence, average
size of sets in the sequence and average length of the query sequence on the index
performance. Performance of index was measured as an average time of query
execution, including the time of verification phase. Due to lack of competitors,
we compare query processing times when using index only to the brute force
solution of scanning the whole database. Table 2 summarizes the parameters in
experiments.

The first experiment tested the impact of the number of sequences stored in
database on the index performance. Figure 3 presents the performance of the



510 W. Andrzejewski and T. Morzy

Fig. 3. Average size of sets Fig. 4. Average size of sets (no index)

AISS index for zipfian and uniform distributions. Figure 4 presents the same
experiments without the index. Analysing Figure 3 one may notice few things.
First, query execution time for databases with uniform distribution grows lin-
early with respect to the number of sequences. Second, for databases with zipfian
distribution of items, the trend of growth is also linear, however the query pro-
cessing times are not “stable”. This is caused by random generation of queries.
When a short query with frequent items is generated, there is a large set of pos-
sible results which need to be verified, and therefore query processing times grow
considerably. For example, the peak obtained during querying database of 80000
sequences appeared during processing of a query sequence that contained only
a single item. Partial solution to this problem may be based on an observation
that when the query sequence contains only a single item, no verification is nec-
essary, as the results obtained from index will be accurate. Queries for databases
with uniform distribution of items are more “stable” because there are no such
items, that appear in a very large number of sequences, which could be the cause
of a long verification phase. When we compare query processing times to those
presented on Figure 4 we may notice, that they are three orders of magnitude
smaller.

The second experiment tested the impact of the average number of sets in
the sequence on the index performance. Figure 5 presents the performance of
the AISS index for zipfian and uniform distributions. Figure 6 presents the same
experiments without the index. Once again, when analysing Figure 5 one may
notice linear dependency of query processing time on average number of el-
ements in the sequence. One may also notice divergence of query processing
times for zipfian and uniform distributions. Better performance of the AISS
index for zipfian distribution is caused by the optimization described in Sec-
tion 4, in which we start processing the query with the least frequent item of the
query multiset. Once again, when we compare query processing times to those
presented on Figure 6 we may notice, that they are three orders of magnitude
smaller.

The third experiment tested the impact of the average sizes of sets in the
sequences on the index performance. Figure 7 presents the performance of the
AISS index for zipfian and uniform distributions. Figure 8 presents the same
experiments without the index. Once again we may notice linear dependency of



AISS: An Index for Non-timestamped Set Subsequence Queries 511

Fig. 5. Average number of sets Fig. 6. Average number of sets (no index)

Fig. 7. Average size of sets Fig. 8. Average size of sets (no index)

query processing time on average size of sets in the sequence and three orders of
magnitude improvent over full scan of database.

During the experiments, the verification phase took from 5% to 50% of the
query processing time with the exception of the observed peaks, when it took
about 95% of the query processing time.

Let us notice, that theoretically we could create other solutions for indexing
sequences of sets based on other solutions for indexing sets. However, as we have
experimentally shown in [2] Inverted File Index outperforms all other solutions
in subset queries and therefore we know in advance, that other solutions, will
not be as good as the one presented in this paper.

6 Conclusions

To the best of authors’ knowledge, the AISS index presented in this paper is
the only index for sequences of sets supporting set subsequence queries without
timestamps. We have presented both: logical and physical structure as well as
algorithms for set subsequence query execution and incremental updates. Ex-
periments show that the ratio of speed-up for set subsequence queries is three
to four orders of magnitude when compared to brute-force approach.

In the future we plan to perform additional extensive experiments to deter-
mine weak points of our index. We also plan to design a new index, which is able
to answer set subsequence queries without verification and apply such index to
improve speed of sequential pattern mining algorithms.



512 W. Andrzejewski and T. Morzy

References

1. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence
databases. In Proceedings of the 4th International Conference on Foundations of
Data Organization and Algorithms, pages 69–84. Springer-Verlag, 1993.

2. W. Andrzejewski, Z. Królikowski, and M. Morzy. Performance evaluation of hi-
erarchical bitmap index supporting processing of queries on setvalued attributes
(polish). Archiwum Informatyki Teoretycznej i Stosowanej, 17(4):273–288, 2005.

3. W. Andrzejewski, T. Morzy, and M. Morzy. Indexing of sequences of sets for
efficient exact and similar subsequence matching. In Proceedings of the 20th In-
ternational Symposium on Computer and Information Sciences, pages 864–873.
Springer-Verlag, 2005.

4. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching
in time-series databases. In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, pages 419–429. ACM Press, 1994.

5. S. Helmer and G. Moerkotte. A study of four index structures for set-valued
attributes of low cardinality, 1999.

6. E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data
mining. In KDD ’04: Proceedings of the 2004 ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 206–215. ACM Press, 2004.

7. A. Lerner and D. Shasha. Aquery: Query language for ordered data, optimization
techniques, and experiments. In VLDB, pages 345–356, 2003.

8. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Doklady Akademia Nauk SSSR, 163(4):845–848, 1965.

9. N. Mamoulis and M. L. Yiu. Non-contiguous sequence pattern queries. In Pro-
ceedings of the 9th International Conference on Extending Database Technology,
2004.

10. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
pages 319–327. Society for Industrial and Applied Mathematics, 1990.

11. A. Nanopoulos, Y. Manolopoulos, M. Zakrzewicz, and T. Morzy. Indexing web
access-logs for pattern queries. In WIDM ’02: Proceedings of the 4th international
workshop on Web information and data management, pages 63–68. ACM Press,
2002.

12. R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. Optimization of sequence queries
in database systems. In Symposium on Principles of Database Systems, 2001.

13. M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-
dimensional time-series with support for multiple distance measures. In ACM
KDD, 2003.

14. H. Wang, C.-S. Perng, W. Fan, S. Park, and P. S. Yu. Indexing weighted-sequences
in large databases. In Proceedings of International Conference on Data Engineer-
ing, 2003.

15. P. Weiner. Linear pattern matching algorithms. In Proceedings 14th IEEE Annual
Symposium on Switching and Automata Theory, pages 1–11, 1973.

16. B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In
Proceedings of the 26th International Conference on Very Large Data Bases, pages
385–394. Morgan Kaufmann Publishers Inc., 2000.


	Introduction
	Related Work
	Basic Definitions and Problem Formulation
	The AISS Index
	Performance Tests
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




