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Abstract. To avoid obtaining an unmanageable highly sized association
rule sets– compounded with their low precision– that often make the pe-
rusal of knowledge ineffective, the extraction and exploitation of compact
and informative generic basis of association rules is a becoming a must.
Moreover, they provide a powerful verification technique for hampering
gene mis-annotating or badly clustering in the Unigene library. However,
extracted generic basis is still oversized and their exploitation is imprac-
tical. Thus, providing critical nuggets of extra-valued knowledge is a
compellingly addressable issue. To tackle such a drawback, we propose
in this paper a novel approach, called EGEA (Evolutionary Gene Extrac-
tion Approach). Such approach aims to considerably reduce the quantity
of knowledge, extracted from a gene expression dataset, presented to an
expert. Thus, we use a genetic algorithm to select the more predictive
set of genes related to patient situations. Once, the relevant attributes
(genes) have been selected, they serve as an input for a second approach
stage, i.e., extracting generic association rules from this reduced set of
genes. The notably decrease of the generic association rule cardinality,
extracted from the selected gene set, permits to improve the quality of
knowledge exploitation. Carried out experiments on a benchmark dataset
pointed out that among this set, there are genes which are previously un-
known prognosis-associated genes. This may serve as molecular targets
for new therapeutic strategies to repress the relapse of pediatric acute
myeloid leukemia (AML).

Keywords: Generic association rules, Genetic Algorithms, Neural net-
works, Frequent Closed itemset algorithms, Bioinformatics.

1 Introduction

High-throughput sequencing and functional genomic technologies provided to
the scientific community a human genome sequence and have enabled large-
scale genotyping and gene expression profiling of human populations [1]. Bio-
logical databases contain heterogeneous information such as annotated genomic
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sequence information, results of microarray experiments, molecular structures
and properties of proteins, etc. In addition, an increasing number of databases
from the medical domain, containing medical records and valuable information
on diseases and phenotypes, become available. Data Mining techniques and/or
tools, aiming to go further beyond the top of the Iceberg, delve and efficiently dis-
cover valuable, non-obvious information from large microarray databases (e.g.,
information about diseases and their relation to sub-cellular processes). Microar-
rays provide a prolific, ”exciting” and challenging contexts for the application
of data mining techniques. For recent overviews, please refer to recently edited
books respectively by Wang et al. [1] and Chen [2].

In this respect, extracting generic basis of association rules seems to be an
efficient approach for providing extra-added value knowledge for biologists. In
this case, we expect that a biologist may not only discover synexpression groups
but may also identify correlations between a group of genes and a particular
cell type. However, the unmanageably large association rule sets, even though
generic association rule set size is known to be compact, compounded with their
low precision often make the perusal of knowledge ineffective, their exploitation
time-consuming, and frustrating for the user.

In this paper, and aiming to tackle this highly important topic, we propose
a novel approach towards reducing ”shrewdly” and informatively the amount of
knowledge to be presented to a user, we propose an hybrid approach showing
the potential benefits from the synergy of genetic algorithms and association rule
extraction. Thus, we used a genetic algorithm to select the more predictive set of
genes related to the patient situation. Then, we extract generic association rules
from this reduced set of genes. The notably decrease of the generic association
rules, extracted from the selected genes, permits to ameliorate the quality of
knowledge exploitation.

Experiments were carried out on a dataset of the affimetrix GeneChip

Human Genome U95Av2 oligonucleotide microarray (Affymetrix, Santa Clara,
CA) that contains 12 566 probe sets. This dataset contains Analysis of mononu-
clear cells from 54 chemotherapy treated patients less than 15 years of age with
acute myeloid leukemia (AML). Mononuclear cells taken from peripheral blood
or bone marrow. Treatment results describing patient situation associated with
complete remission and relapse with resistant disease are also reported. After the
chemotherapy treatment, most patients with Acute Myeloid Leukemia (AML)
enter complete remission. However, some of them enter relapse with a resistant
disease. Obtained results showed that Also, among this set, there are genes which
are previously unknown prognosis-associated genes. This may serve as molecular
targets for new therapeutic strategies to repress the relapse of pediatric AML.

The remainder of the paper is organized as follows. Section 2 details the
proposed hybrid approach. The genetic algorithm applied for the selection of
most predictive attributes is described. Section 3 presents the obtained results
from the carried out experiments on the benchmark dataset. Section 4 concludes
this paper and points out future perspectives.
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2 Dimensionality Reduction: Selection of a Predictor Set
of Genes

Applying classical association rule extraction framework to dense microarrays
leads to an unmanageably highly sized association rule sets– compounded with
their low precision– that often make the perusal of knowledge ineffective, their
exploitation time-consuming, and frustrating for the user. Even though extract-
ing and exploiting compact and informative generic basis of association rules can
be an advisable remedy, a glance to their size can be nightmarish to the user (c.f,
reported statistics in Experiments section). Another avenue to tackle the high
dimensionality problem in gene expression datasets, is to assess and select one
of the more discriminatory set of genes to the target. In fact, feature selection
refers to the problem of selecting the more predictive and valuable attributes, in
terms classification and class separability, correlated with a given output. Nu-
merous studies have focused on the selection of relevant features, by discarding
misleading and noisy ones [3]. Such studies, involving different techniques can
be viewed under two families: wrappers and filters. Wrappers evaluate attributes
by using accuracy estimates provided by the actual target learning algorithm.
Alternatively, filters use general characteristics of the data to evaluate attributes
and operate independently of any learning algorithm [4]. Indeed, an exhaustive
search within the large set of feature combination is very consuming in term
of computational time, since the search space of possible combination increases
exponentially with the number of genes. An exhaustive search of all possible
combinations of attributes is impractical, especially when the evaluation proce-
dure for the generated solutions involves a learning algorithm. In this respect,
the use of AI global search techniques, such as genetic algorithms (GA) seems
to be very promising, since they have proven to be valuable in the exploration
of large and/or complex problem spaces [5]. GA attempt to apply evolutionary
techniques to the field of the problem solving notably in combinatorial optimiza-
tion [6,7]. In fact, GA may be used to select the more predictive set of genes
related to the target class (patient situation). Our genetic algorithm evolves a
set of feasible solutions evaluated with an artificial neural network as a wrapper.
Subsets of variables are assessed within the evaluation procedure according to
their generalization accuracy in classification.

Believing that combining classifiers and boosting methods can lead to im-
provements in performance, in this paper, we propose, a new hybrid model whose
the driving idea is the go towards assessing potential benefits form a synergy of
two data mining techniques, namely feature selection by Artificial neural net-
works and GA and association rule extraction.

Figure 1 graphically sketches the model and shows that it is composed of
two steps. On, the first stage selects the best set of inputs having a predictive
relationship with the target class. Whereas, the second step consists in the gen-
eration of a compact set of generic association rules using the selected genes. It
is noteworthy that the whole process, i.e., sequentially applying feature selection
and rule extraction, is performed in an iterative process. From an iteration to
another one, and acting towards a more reduced and guided search space, the
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Fig. 1. The proposed hybrid model

system can be fed by biological apriori knowledge or given by experts or pointed
out by generic association rules.

2.1 Preprocessing Stage: Dimensionality Reduction

In this section we look to the problem of building a representative set of rele-
vant features. In fact Data reduction techniques was successfully applied in in
numerous gene expression data analysis using as well wrapper as filters [8,9,10].
Narayanan et al. [11] have applied different data mining techniques, mainly based
on neural network classifiers, to mine knowledge enfolded in microarrays data
using also neural networks as a wrapper to tackle the high dimensional data.

Believing that feature selection methods, to use as well in the definition of
a compact pattern representation as in mining knowledge with robust and in-
terpretable methods, depends mainly both on wrapper accuracy -quality of the
evaluation procedure- and on the search procedure applied. We decide to opt
for a stochastic global search procedure to explore the search space of feasible
subsets of relevant non-redundant features: Genetic algorithms. In addition, the
wrapper consists of an artificial neural networks trained with the backpropagation
learning algorithm [12]. The genetic algorithm, presented here, will be applied to
select a subset of genes involved in the prediction of patient situation: complete
remission or relapse. Each set of candidate solutions are evolved through a fixed
number of generations. The pseudo-code for localizing compact predictive set of
genes is provided by Algorithm 1. GA process is roughly summarized in what
follows:
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– Representation: Each generation consists of a set of candidate solutions rep-
resented using a binary encoding. Any possible solution to the problem is
encoded as binary string of 12625 genes, where the code 1 means that the
gene is selected to build an ANN and 0 when it is discarded (c.f., Figure 2).

Fig. 2. Chromosome representation

– Initialization: An initial set of solutions is randomly generated. For each indi-
vidual a number of genes are randomly selected by setting the corresponding
bits equal to 1. Once the initial set is generated, the evaluation process starts.
A fitness value is assigned to each chromosome. The first generation of solu-
tions is derived by applying a tournament selection to the evaluated set.

– Evaluation: Two steps are required to evaluate each chromosome. First a
neural network, with the selected genes in the chromosome as input, is built
and partially trained. Next, the trained network is evaluated using the test
set. The test set presents to the network a new data which is not trained
with it. The chromosome evaluation assesses the predictive generalization
ability of the neural network and consequently of the set of involved genes
. Our fitness involves two evaluation criteria: the proportion of incorrectly
classified instances and the mean square error on the test set.

fitness = (ICI + TMSE)/2 (1)

Where ICI andTMSE denotes respectively the proportion of incorrectly clas-
sified instances in the data set and the mean square error found on the test set.

2.2 Generic Association Rule Extraction

An association rule R : X ⇒ Y − X is a relation between two frequent item-
sets X ⊂ Y . X and (Y − X) are called, respectively, premise and conclu-
sion of the rule R. An association rule is valid whenever its strength metric,
confidence(R)= support(Y )

support(X) , is greater than or equal to the minimal threshold of
confidence minconf.

However, in practice, the number of valid association rules is very high. Indeed,
this number was estimated to be equal to 22×l, where l is the length of the longest
frequent itemset [13].

Consequently, the user can not interpret and exploit efficiently a such amount
of knowledge. To palliate this problem, a solution consists in extracting a re-
duced subset of association rules, called generic basis. On the demand of the
user, we have to be able to derive all the remaining association rules (i.e.., generic
basis extraction should be done without information loss). For this reason,
generic basis extraction have to fulfill the following requirements: [14]
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Algorithm 1. Feature selection: Localizing compact set of genes
Input:
S: set of genes
Ni: initial population size
N: population size
t: tournament size
pmut: mutation probability
pcross: Crossover probability
it: number of training iterations
Maxgen: number of generations
h: number of hidden nodes
η: learning rate
m: momentum value
Output: S1: Best subset of gene predictors
Begin1

Population P0, P,Ptmp2

P0=P=Ptmp= ∅;3

P0=GenerateInitialPopulation(Ni)4

Evaluate (P0, η, m, h, it)5

P=Select(P0, N, t) //Applying a tournament to select N chromosomes from6

P0

i=07

While i < Maxgen do8

Ptmp=Select (P, N, t)9

Crossover(Ptmp, pcross)10

Mutate(Ptmp, pmut)11

Evaluate(Ptmp, η, m, h, it)12

Replace(Ptmp, P) //replacing solutions from P by newest ones from Ptmp13

using reverse tournament
i=i+114

S1=P.bestChromosome().extractGenes() // extracting selected chromosome15

genes
Return(S1)16

End17

– “Derivability”: An inference mechanism should be provided (e.g., an ax-
iomatic system). The axiomatic system has to be valid (i.e., should forbid
derivation of non valid rules) and complete (i.e., should enable derivation of
all valid rules).

– “Informativeness”: The generic basis of association rules allows to retrieve
exactly the supportandconfidenceof thederived(redundant)associationrules.

To extract a reliable number of association rules, we use the IGB (Informative
Generic Basis) basis [14]. This choice is justified by:

1. Conveying maximum of useful knowledge: Association rules of the
IGB basis convey the maximum of useful knowledge. Indeed, IGB is defined
as follows:
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Definition 1. Let FCIK be the set of frequent closed itemsets 1 extracted
from an extraction context K. For each entry f in FCIK, let MGf be the
set of its minimal generators 2. The IGB generic basis is given by: IGB =
{R : gs ⇒ (f-gs) | f ∈ FCIK ∧ f �= ∅ ∧ gs ∈ MGf1 , f1 ∈ FCIK ∧ f1
⊆ f ∧ confidence(R) ≥ minconf ∧ � g / g ⊂ gs ∧ confidence(g ⇒ f-g)≥
minconf}.
Thus, a generic association rule of IGB is based on the extraction of fre-
quent closed itemsets from whose we generate minimal generic association
rules, i.e., with minimal premise part and maximal conclusion part. It was
shown that this type of association rules conveys the maximum of useful
knowledge [15];

2. Information lossless: It was pointed out that the IGB basis is extracted
without information loss [14];

3. Compactness: In [14] and by comparing obtained set cardinalities, we
showed that IGB is by far more compact than the following:
– The Non-Redundant association Rules NRR basis, defined by Zaki

et al. [16,17];
– The Generic Basis of Exact rules and the Transitive reduction of

Generic Basis of Approximative rules (GBE , T GBA), defined by Bastide
et al. [18].

Algorithm 2. Evaluate procedure
Input:
P: population
h: number of hidden nodes
it: number of training iterations
η: learning rate
m: momentum value
Output: P: Population evaluated
Begin1

Foreach Chromosome ch ∈ P do2

I=extractGeneIndexes(ch)3

TestSet=GenerateTestSet(I)4

TrainSet=GenerateTrainSet(I)5

N=new Network(I, h, 1) // building an ANN with the I selected genes6

N.train(Trainset, it, η, m) //Training N for it epochs with Trainset7

Eval(N, TestSet, TMSE , ICI) //Evaluating ANN generalization ability8

ch.fitness=(TMSE + ICI)/2 // computing ch fitness value9

Return(P)10

End11

1 A closed frequent itemset is a the largest set of items sharing the same transactions
(objects).

2 A minimal generator is a the smallest set of items sharing the same transactions
(objects).
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3 Experiments

3.1 Feature Selection Settings

Modeling tools based on a ANN can not be trained or assessed by a raw dataset.
In our case, fortunately all the variable values have a numerical representation,
and thus data have to be normalized. ANN algorithms require data to range
within the unit interval. The chosen method for data normalization is the linear
transform scaling [19]:

νn =
νi − min{ν1..νn}

max{ν1..νn} − min{ν1..νn} (2)

Where νn and νi respectively represent the normalized and the actual values.
This expression takes values and maps them them into corresponding values
in the unit interval [0, 1]. The main advantage of the linear scaling is that it
introduces no distortion to the variable distributions.

During carried out experiments, we have tested different values for each pa-
rameter. Table 1 summarizes neural network and genetic algorithm parameters,
that permitted to obtain the best results.

Table 1. GA and ANN parameter settings

GA parameters ANN parameters
Parameter Value Parameter Value

Number of generations 200 Number of iterations 250
Crossover probability(pcross) 80% learning rate (η) 0.25
Mutation probability (pmut) 20% Number of hidden nodes 10

Initial population size 30 Weights initialization range [−0.1..0.1]
population size 20 Architecture Feed forward fully-connected

Table 2. The 45 selected genes

Code Probe set ID average level Code Probe set ID average level Code Probe set ID average level
1 31469-s-at 43.54 2 32004-s-at 390.79 3 33647-s-at 432.65
4 34589-f-at 190.60 5 34600-s-at 411.39 6 36399-at 65.98
7 36411-s-at 538.70 8 32352-at 987.98 9 33495-at 70.75
10 33981-at 15.60 11 34037-at 13.90 12 34495-r-at 614.79
13 36770-at 11.76 14 37159-at 54.96 15 37483-at 146.19
16 39672-at 881.20 17 31853-at 111.69 18 31891-at 213.32
19 32672-at 42.20 20 33237-at 242.10 21 33334-at 110.69
22 34189-at 129.69 23 34664-at 91.65 24 36044-at 220.39
25 36927-at 17.32 26 39783-at 354.10 27 40449-at 22.81
29 40451-at 170.80 30 40485-at 201.10 31 40870-g-at 254.10
32 33344-at 40.20 33 34825-at 200.89 34 35775-at 14.90
35 37383-f-at 16806.40 36 39118-at 983.20 37 39494-at 432.87
38 39848-at 114.40 39 39922-at 57.70 40 40532-at 84.50
41 40958-at 132.45 42 32583-at 951.20 43 33144-at 53.87
44 942-at 65.21 45 323-at 98.43



EGEA: A New Hybrid Approach 499

Starting with the previously defined parameters, we obtained a highly com-
pact set genes whose size is by far lower than the initial number of genes, i.e.,
more than twelve thousands. Table 2 sketches the 45 genes retained from among
more than twelve thousands. Even though, more compact gene sets were ob-
tained, the retained gene set achieves high generalization performance on test
set: around 93% of accuracy.

3.2 Generic Association Rule Extraction

Table 3 illustrates cardinalities of the different generic basis extracted from the
discretized ”54×12 566” matrix for an absolute minsup value equal to 1 patient.
Indeed, extraction context matrix has been translated into a boolean context by
considering that a gene is over-expressed in a patient whenever his expression
value level is greater than or equal to its expression level average at the different
patients for the same gene.

Table 3. Extraction of generic association rules from the initial context

minconf IGB (GBE , T GBA) IGB
(GBE,T GBA)

0.05 1058829 6511866 0.162
0.3 5887121 6420922 0.916
0.5 5920969 6381928 0.927
0.7 6348233 6374305 0.995
1 999848 999848 999848

Table 3 shows important profits in terms of compactness of the IGB basis.
Indeed, the third column of Table 3 shows that the ratio between the cardinality
of IGB and that of (GBE , T GBA) ranges between 0.162 and 1.

Table 3 points out that the unmanageably highly sized association rule sets
makes the perusal of knowledge ineffective. To palliate such drawback, we applied
a feature selection process we retrieved only 45 ”interesting” genes. From the
selected genes, we constructed a binary K′ context composed of 47 columns (45
genes, complete remission and relapse) and 54 rows (patients). Table 4 illustrates
the cardinalities of the different generic basis. From Table 3 and Table 4, we can

Table 4. Extraction of generic association rules from filred context

minconf IGB (GBE , T GBA) NRR IGB
(GBE,T GBA)

IGB
NRR

0.05 852 3683 1974 0.231 0.431
0.3 3063 3432 1803 0.892 1.698
0.5 2398 2928 1422 0.818 1.686
0.7 1187 1336 605 0.888 1.961
1 850 850 24 1 35.416

conclude that the number of the generic association rules considerably decreased
and this may permit to ameliorate the quality of the knowledge exploitation.
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From the extracted generic rules of IGB, we selected those whose conclu-
sion part at least contains complete remission / relapse. Indeed thanks to the
”Augmentation” axiom defined in [14], it is possible to straightforwardly derive
”classification rules”, i.e., rules whose the conclusion part refers to the class at-
tribute. For example, from the post- feature selection process extracted generic
rules– whose a sample is sketched by Figure 3– one may remark the following rule
”22/129.69, 33/200.89 ⇒ 26/354.10, Complete Remission”. From such rule, we
can derive the following classification rule: ”22/129.69, 33/200.89,26/354.10 ⇒
Complete Remission”. This may permit to easily identify prognosis-associated
genes. In order to facilitate the interpretation of the generic rules, we colored
the patient situation (the green color corresponds to the complete remission,
whereas the red one corresponds to the relapse). Also, it is important to men-
tion that under an explicit request from experts, we decorated genes within the
extracted rules by statistical information. This information represents the aver-
age of minimal expression level for each gene. Such information was considered
of paramount importance by biologists since they were interested in checking the
presence or absence of a given gene in conjunction with a significant signature
appearance level.

Fig. 3. The extracted rules

4 Conclusion

Under some number of hypothesis, generic association rules can constitute a
gene annotation framework based on a strong correlation clustering. However,
and even though they are compact, their high size can hamper their exploitation
by experts.
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In this paper, we proposed a novel approach towards filtering the most ”pre-
dictive” compact set of genes. This approach, firstly uses genetic algorithms to
filter out significant set of genes. Second, using this compact, we extracted rea-
sonably sized generic association rules. Carried out experiments on a benchmark
dataset showed the potential benefits of such approach. Indeed from more twelve
thousands genes (possibly from which we may extract millions of generic rules
and one imagine the number of all extractable association rules), we selected
only 45 gene. From such reduced set of gene, it was possible to straightforwardly
extract classification rules by means of associated derivation axioms.
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