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Abstract. Mining group differences is useful in many applications, such as 
medical research, social network analysis and link discovery. The differences 
between groups can be measured from either statistical or data mining pers-
pective. In this paper, we propose an empirical likelihood (EL) based strategy 
of building confidence intervals for the mean and distribution differences 
between two contrasting groups.  In our approach we take into account the 
structure (semi-parametric) of groups, and experimentally evaluate the proposed 
approach using both simulated and real-world data. The results demonstrate that 
our approach is effective in building confidence intervals for group differences 
such as mean and distribution function. 

1   Introduction 

In intelligent data analysis, identifying the mean and distribution differences between 
two groups is useful in predicting the properties of a group using one another. In 
medical research, it is interesting to compare the mean value of prolonging patient’s 
life between a group using a new product (medicine) and a group with another 
product; In research of children’s growth, the height below/over the standard are 
important, since the median height (near the standard) is associated with normal 
growth status, it may be meaningful with children’s growth to compare two groups on 
the basis of both below the standard or over the standard of height. In this paper we 
are interested in constructing confidence intervals for mean and distribution 
differences between two data groups.  

Work in [2, 3, 4, 17] focus on mining contrast sets: conjunctions of attributes and 
values that differ meaningfully in their distribution across groups. This allows us to 
answer queries of the form, “How are History and Computer Science students 
different?” or “What has changed from 1993 through 1998?” 

Another kind of related work is change mining in [7, 12, 16]. In the change mining 
problem, there are an old classifier, representing some previous knowledge about 
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classification, and a new data set that has a changed class distribution. The goal of 
change mining is to find the changes of classification characteristics in the new data 
set. Change mining has been applied to identifying customer buying behavior [6], 
association rules [1], items over continuous append-only and dynamic data streams 
[18], and predicting source code changes [10]. 

The work of [8] uses the bootstrap approach to measure the uncertainty in link 
discovery (LD), while most current LD algorithms do not characterize the 
probabilistic properties of the hypothesis derived from the sample of data. The authors 
adopt the bootstrap resampling to estimate group membership and their associated 
confidence intervals, because it makes no assumptions about the underlying sampling 
distribution and is ideal for estimating statistical parameters.  

Different from the above work, our approach takes into account the structure of a 
group: parametric, semi-parametric, or nonparametric; the imputation method when 
contrasting groups are with missing data; and confidence intervals for the mean and 
distribution differences between two groups. Use F and G to denote the distribution 
functions of groups x and y, respectively. We construct confidence intervals for the 
mean and distribution differences between contrasting groups x and y using an 
empirical likelihood (EL) model. 

The rest of this paper is organized as follows. Section 2 presents the semi-
parametric model, data structure and imputation method. In Section 3, the empirical 
likelihood ratio statistic and the empirical likelihood (EL) based confidence intervals 
(CIs) for the mean and distribution function differences are constructed.  In Section 4, 
we give the experimental results both on the simulation data and a real medical 
dataset. Conclusion and future work are given in Section 5. 

2   Semi-parametric Model, Data Structure and Imputation 
Method 

We use ( )F x  and ( )
0

G yθ  to denote the distribution functions of groups x and y, 

respectively, where G is known, F and 0θ are unknown. This is regarded as Semi-

parametric model. We are interested in constructing confidence intervals for some 
differences of x and y such as the differences of the means and the distribution 
functions of two groups. In general, either F or G is unknown, or both. So 
nonparametric methods are developed to address this situation. In the case of 
complete observations, related work can be found in [9]. 

For any difference, denoted by Δ , the following information is available: 

( , , ) 00E xω θ Δ =  (1) 

Where ω  is a function in a known form. Some examples that fit (2.1) are given in the 
following.  

Difference of means: Denote ( ), ( ) ( )1 2 0E x E yμ μ μ θ= = = and 2 1μ μΔ= − , Let  

( , , ) ( )0 0x xω θ μ θΔ = − +Δ  (2) 
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Difference of distribution functions: For fixed 0x , denote ( ),1 0p F x=  

( ) ( )2 0 00
p G x p θθ= =  and 2 1p pΔ= − . Let  

( , , ) ( ) ( )0 0 0x I x x pω θ θΔ = ≤ − + Δ  (3) 

Where I(.) is the indicator function. Note that we can assume that F follows 
exponential or normal distribution in order to construct the model (denote as 
exponential and normal distribution model respectively).  

We use a simple method to represent the data. Consider the following simple 
random samples of data associated with groups x and y, we denoted them as 
( , )x xδ and y respectively, 

( , ) , 1 , , ;     , 1 , , .x i m y j ni x ji
δ = =L L  

Where 

0 ,
.

1 , ,

     ⎧⎪= ⎨
    ⎪⎩

i f x i s m i s s i n g
i

x o t h e r w i s ei
δ  

(4) 

 
We assume that x and y are missing completely at random (MCAR) [11],  

i.e. ( 1 ) 1P x Pxδ = =  (constant) throughout this paper. We also assume that ( , )x xδ  and 

y  are independent. Next, an example from real life application is given below in order 
to illustrate the goal of this paper. 

In the medical analysis of a kind of disease, the breast cancer for example, some 
data are obtained from the patients (see Table 1). 

Table 1.  Breast Cancer data 

Patient ID Radius Smoothness Perimeter Diagnosis 

1 13.5 0.09779 78.04 benign 
2 21.16 0.1109 94.74 malignant 
3 12.5 0.0806 62.11 benign 
4 14.64 0.01078 97.83 benign 

… … … … … 

There are two problems that we concerned most. One, what is the difference of the 
benign and malignant patients with regard to a specified feature? The other is, how 
reliable the difference is, when we calculated it from the sample data of the benign 
and malignant patients?  

One can compute the difference of a specified feature of two groups by using 
simple statistical methods or other more sophisticated data mining techniques [2, 3, 4, 
17]. While for the second problem, we use the empirical likelihood (EL) method to 
construct the confidence intervals, under a significance level α , for the difference Δ  
of two groups with missing data. 
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A common method for handling incomplete data is to impute a value for each 
missing value and then apply standard statistical methods to the complete data as if they 
were true observations. Commonly used imputation methods include deterministic 
imputation and random imputation [15]. We refer to the reader to [11] for examples and 
excellent account of parametric statistical inferences with missing data. 

Let ,1
mr m m rix x xxi

δ∑=   = − .  = Denote the sets of respondents and nonrespon-

dents with respect to x as rxs  and rys , respectively. We use random hot deck 

imputation method to impute the missing values. We do not use the deterministic 
imputation as it is improper in making inference for distribution functions [15]. 
Let *xi  be the imputed values for the missing data with respect to x. Random hot 

deck imputation selects a simple random sample of size mx  with replacement 

from srx , and then uses the associated x-values as donors, that is, *x xi j=  for 

some j srx∈ . Let 
*

(1 ),x x xI i x i x ii i
δ δ= + − represent the ‘complete’ data after 

imputation, where 1, , , 1, , ,i m j n=  =L L . 
We will investigate the asymptotic properties of the empirical likelihood ratio 

statistic for Δ  based on , 1, , y , j 1, ,, , jx i m nI i I = ;   =L L . The results are used to construct 

asymptotic confidence intervals for Δ . 

3   Building CI for Δ  Based on Empirical Likelihood 

At first, the empirical likelihood ratio statistic is constructed. It is interesting to notice 
that the empirical likelihood ratio statistic under imputation is asymptotically 
distributed as a weighted chi-square variable 2

1χ [13, 14], which is used to construct 

the EL based confidence interval for Δ . The reason for this deviation from the 
standard 2

1χ  is that the complete data after imputation are dependent. 

Let tα  satisfy 2( ) 11P tχ αα≤ = − , we can construct an EL based confidence interval 

on Δ  with coverage probability 1 α− , that is { : 2 log ( ( , )) },R tm nω θ αΔ − Δ ≤ , 

where ω  is the weight [13, 14].  

This result can directly apply to test the hypotheses on Δ . For instance, if the 
hypothesis is : , :0 0 1 0H HΔ = Δ Δ ≠ Δ , we first construct the confidence interval on Δ . 

Then check if 0Δ  is in the interval. If 0Δ  is in the interval, we accept the hypothesis 

0H  and reject 1H ; otherwise, 0H should be rejected and 1H  is accepted. 

We also want to notice that the result can apply to the data without missing values. 
In complete data situation, we can see that the asymptotic distribution of the EL 
statistic is found to be a standard 2

1χ  distribution. The EL based confidence interval 

for Δ  in complete data case is thus constructed as { : 2 log ( ( , )) },R tm nθ αΔ − Δ ≤ . 
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4   Experiments 

Extensive experiments were conducted on a DELL Workstation PWS650 with 2G 
main memory and 2.6GHz CPU, the operating system is WINDOWS 2000.  

4.1   Simulations Models 

We conducted a simulation study on the finite sample performance of EL based 
confidence intervals on the mean difference ( ) ( )1 E y E xΔ = − , and the distribution function 

difference ( ) ( )2 0 00
G x F xθΔ = − for fixed 0x . For the purpose of simulating the real world 

data distributions as closely as possible, we generated two groups of x si and y si from 

the exponential distributions ( exp(1) and exp( 2 ) ) and the normal distributions 
( (2,2)N and (3,2)N ) respectively, because these two data distributions are the most 
popular and common distributions in real world applications. And then the exponential 
and normal distribution models are running on these different distributed datasets. The 
following two cases of response probabilities were used under the MCAR assumption 

(in which the response rates is denoted as P ): Case 1: P =0.6 ;        Case 2: P =0.9.1 1  The 

response rates in Case 2 were higher than those in case 1, which were chosen to 
compare the performance of EL confidence intervals under different response 
rates. 

Sample sizes were chosen as (m, n) = (100, 100), and (m, n) = (200, 150) for the 
purpose to compare the performance of EL confidence intervals under different 
sample sizes. For each of the cases of different response rates and sample sizes, we 

generated 1,000 random samples of incomplete data ( , ), 1, ,  ;   , 1, , .x i m y j ni x ji
δ

⎧ ⎫⎪ ⎪
⎨ = = ⎬
⎪ ⎪⎩ ⎭

L L For 

nominal confidence level 1 α− =0.95, using the simulated samples, we evaluated the 
coverage probability (CP), the average left endpoint (LE), the average right endpoint 
(RE) and the average length of the interval (AL) of the empirical likelihood based 
(EL) intervals. 

Tables 2-9 present the performance of proposed method for finding CIs of the 
mean difference and distribution function with different models on different 
distributed datasets. More detailed experimental settings can be seen in the table 
titles. 

Table 2. CIs of the mean difference for the exponential distribution model (with exponential 
distributed data, true difference 0x =1) 

Case (m,n) CP(%) LE RE AL 
1 (100,100) 100 0.374348 1.664007 1.289659 
1 (200,150) 99.69 0.381603 1.552474 1.170871 
2 (100,100) 99.78 0.498466 1.548741 1.050275 
2 (200,150) 98.77 0.518341 1.454267 0.935926 
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Table 3. CIs of the mean difference for the normal distribution model   (with exponential 
distributed data, true difference 1Δ =1) 

Case (m,n) CP(%) LE RE AL 

1 (100,100) 96.78 0.259185 1.233423 0.974238 

1 (200,150) 92.46 0.401004 1.204256 0.803252 

2 (100,100) 88.15 0.556322 1.168804 0.612482 
2 (200,150) 88.82 0.572257 1.176884 0.604627 

Table 4. CIs of the distribution function difference for the exponential distribution model (with 
exponential distributed data, fixed 0x =2, true difference 2Δ =-0.2325) 

Case (m,n) CP(%) LE RE AL 

1 (100,100) 90.98 -0.259507 -0.10194 0.158 

1 (200,150) 89.50 -0.253168 -0.126162 0.127 

2 (100,100) 85.64 -0.224214 -0.134105 0.091 
2 (200,150) 82.86 -0.227793 -0.158197 0.079 

Table 5. CIs of the distribution function difference for the normal distribution model (with 
exponential distributed data, fixed 0x =2, true difference 2Δ  =–0.1915) 

Case (m,n) CP(%) LE RE AL 

1 (100,100) 92.21 -0.415641 -0.193948 0.222 

1 (200,150) 87.62 -0.403683 -0.218695 0.185 

2 (100,100) 83.50 -0.401349 -0.266323 0.135 

2 (200,150) 84.62 -0.399944 -0.264595 0.135 

Table 6. CIs of the mean difference for the exponential distribution model (with normal 
distributed data, true difference 1Δ =1) 

Case (m,n) CP(%) LE RE AL 

1 (100,100) 100 0.304478 2.04389 1.739411 

1 (200,150) 99.67 0.28442 1.98484 1.70043 
2 (100,100) 100 0.42359 1.8026 1.379 

2 (200,150) 98.68 0.38113 1.7308 0.979761 

Table 7. CIs of the mean difference for the normal distribution model (with normal distributed 
data, true difference 1Δ =1) 

Case (m,n) CP(%) LE RE AL 

1 (100,100) 98.76 0.362515 1.561752 1.199237 

1 (200,150) 99.01 0.453377 1.408632 0.955255 

2 (100,100) 98.37 0.475443 1.373007 0.897564 

2 (200,150) 94.12 0.599176 1.306111 0.706935 
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Table 8. CIs of the distribution function difference for the exponential distribution model (with 
normal distributed data, fixed 0x =2, true difference 2Δ =–0.2325) 

Case (m,n) CP(%) LE RE AL 

1 (100,100) 93.64 -0.216152 0.139717 0.355869 

1 (200,150) 90.52 -0.175146 0.13745 0.312596 

2 (100,100) 88.10 -0.162031 0.111836 0.273867 

2 (200,150) 87.58 -0.130788 0.104844 0.261068 

Table 9. CIs on the distribution function difference for the normal distribution model (fixed 

0x =2, true difference 2Δ =–0.1915) 

Case (m,n) CP(%) LE RE AL 

1 (100,100) 91.42 -0.419944 -0.202104 0.2178 

1 (200,150) 90.48 -0.39838 -0.228987 0.169 

2 (100,100) 88.75 -0.377728 -0.238151 0.13958 

2 (200,150) 89.68 -0.379188 -0.270484 0.10870 

Tables 2-9 reveal the following results: 
For every response rate and sample size, the coverage probabilities (CPs) of all EL-

based confidence intervals for mean are close to the theoretical confidence level 95%. 
In almost all situations, the lengths of CIs also become smaller as the sample size 
increases. The same trends occur when considering different response rates. While the 
ALs for distribution function difference fluctuate slightly with respect to different 
sample size and response rates.  

Another interesting phenomenon is that the CIs built by using normal distribution 
model for mean difference are shorter than those by exponential distribution model, 
without much loss of coverage accuracy. That is to say, we can use the normal 
distribution model to construct CIs in real applications when we have no prior 
knowledge about the distribution of the data.  

We can see from above results that the length of CIs will be shorter when the 
amount of sample data increases, because the information that is useful for building 
the CIs also increases. So under the same significance level α , the shorter CIs will 
give the same confidence of the difference. Note that higher response rate means that 
there are more data available when building CIs than those under lower response rate. 

4.2   Experiments on UCI Dataset 

We also conducted extensive experiments on real world dataset, due to the fact that the 
real world data do not fit the ideal statistical distributions exactly. What’s more, there 
may be noises in real world data, which will distort the distribution of the real world data. 

We used the medical dataset, Wisconsin Diagnostic Breast Cancer (WDBC), which 
is downloaded from [5]. It contains 569 instances in total and 32 features for each 
instance. Each instance, represented a patient, has been classified as benign and 
malignant according to these features. The WDBC dataset contains 357 benign 
instances and 212 malignant instances. For interesting of space, we only report the 
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experimental results of attribute 4 and 27. We give some statistical information of 
these two features in Table 10, more detailed information about these features can be 
seen in [19]. In order to verify the effectiveness of our method, we randomly divide 
WDBC into two parts. One (contains 2/3 instances, denoted as BS) is used to 
construct the CI, the other (contains 1/3 instances, denoted as VS) is used to verify the 
coverage probability (CP) of the CI. We then divide the BS into two groups, that is, 
the Benign and Malignant groups. Let the values of attribute A from Benign group be 
the group x, and those from Malignant be group y. Then CI is built based on group x 
and y using the techniques described in Section 3. In the verification process of CP, 
we divide the VS into two groups (Benign and Malignant) and compute the difference 

Δ̂  of them with respect to attribute A. Thus we can easily see whether Δ̂  falls into the 
range of the constructed CI.  

Table 10. Statistics for attribute 4 and 27 of Wisconsin Diagnostic breast Cancer 

Mean Distribution function  

A4 A27 A4 (x0=15) A27 (x0=0.1)
Malignant 21.6 0.1448 0.0189 0.0094 

Benign 17.91 0.1249 0.2437 0.1092 

Difference Δ  3.69 0.0198 -0.2248 -0.0998 

(A4: Mean texture, A27: Worst smoothness) 

Figures 2, 3, and 4 compare the CIs for mean on the complete and imputed dataset 
WDBC under different missing rates. We give the experimental results of CIs for mean 
difference of attribute 4 and 27 in Figures 2 and 3. In Figure 2, we can see that the 
length of CIs built from imputed data (case-1) is much larger than those built from 
original data (without missing). While the length of CIs built from imputed data (case-2) 
is very close to the original data’s CIs. This means that with a lower missing rate, the 
length of CIs are shorter. The same phenomenon can be seen in CIs of DF for attribute 4 
(see Figure 4). As for attribute 27, the lengths of CIs built from case-1, case-2 and the 

  
Fig. 2. CIs for attribute 4 Fig. 3. CIs for attribute 27 
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original data are very close, which 
almost give the same coverage pro-
babilities. However, we don’t pre-
sent the CIs of DF for attribute 27, 
due to lack of space.  

The average left, right endpoint 
(LE, RE), length and CP are listed 
in table 11. An interesting observa-
tion is that the value of CP is 
decreesing from 70% to 60% when 
the response rate P (note that miss-
ing rate=1-P) is increasing from 
(0.6, 0.7) to (1, 1). Note that the 
original data has the response rate 
(P1=1, P2=1). On the other hand, 

the average length AL is also decreasing when the response rate is increasing, that is, 
the AL is longer when the groups contain more missing data, which are imputed by 
random imputation. By combining these two facts, we know that the length of CIs will 
be shorter when using lower missing rate data, but the CP will be lower. On the 
contrary, the length of CIs will be longer when using higher missing rate data, resulting 
in a higher CP.  

For group with small range of values, attribute 27 for example, the LE, RE, AL and 
CP of CIs are comparatively stable under different response rates.  

Table 11. Average intervals, ALs and CP for mean 

 LE RE AL Average CP (%) 

2.789261 4.198938 1.409677 60 

2.560288 4.617375 2.057087 75 

A.4 (Original) 

Case 1(0.6, 1) 

Case 2(0.9, 1) 2.781663 4.362656 1.580993 

4.124679 

65 

-0.19973 0.237031 0.436765 100 

-0.19981 0.237 0.43681 100 

A.27 (Original) 

Case 1(0.6, 1) 

Case 2(0.9, 1) -0.19961 0.237172 0.436782 

0.022297 

100 

5   Conclusions 

In this paper we have proposed a new method based on empirical likelihood (EL) for 
identifying confidence intervals for the mean and distribution differences between 
two contrasting groups. The mean and distribution differences between two contrast-
ing groups assist in predicting the properties of a group using one another. To extend 
the applied range, our method takes into account the situation of two contrasting 
groups, one group is known well, and the other is unknown (for example, having no 
information about the form of distribution and parameters). In comparing of the 
differences of two contrasting groups with missing data, we have shown that the EL-
based confidence intervals works well in making inference for various differences 
 

 

 
Fig. 4. CIs for distribution function of attribute 4 
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between the two groups, especially for the mean and distribution function differences. 
We have also shown that this result can directly be used to test the hypotheses on the 
differences, and that the result can apply to the complete data settings.  
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