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Abstract. Time-stamped location information is regarded as spatio-temporal 
data and, by its nature, such data is highly sensitive from the perspective of pri-
vacy. In this paper, we propose a privacy preserving spatio-temporal clustering 
method for horizontally partitioned data which, to the best of our knowledge, 
was not done before. Our methods are based on building the dissimilarity ma-
trix through a series of secure multi-party trajectory comparisons managed by a 
third party. Our trajectory comparison protocol complies with most trajectory 
comparison functions and complexity analysis of our methods shows that our 
protocol does not introduce extra overhead when constructing dissimilarity ma-
trix, compared to the centralized approach. 

1   Introduction 

Advances in wireless communication technologies resulted in a rapid increase in 
usage of mobile devices. PDAs, mobile phones and various other devices equipped 
with GPS technology are now a part of our daily life. One direct consequence of this 
change is that, using such devices, locations of individuals can be tracked by wireless 
service providers. Individuals sometimes voluntarily pay for being tracked by means 
of Location Based Services (LBS) such as vehicle telematics that offer vehicle track-
ing and satellite navigation. Tracking is also enforced by law in some countries, as in 
the case of the Enhanced-911 mandate, passed by U.S. Federal Communications 
Commission in 1996. The mandate requires that any cellular phone calling 911, the 
U.S. nationwide emergency service number, be located within at least 50 to 100 
meters.  

Time-stamped location information is regarded as spatio-temporal data due to its 
time and space dimensions and, by its nature, is highly vulnerable to misuse. In fact, 
privacy issues related to collection, use and distribution of individuals’ location 
information is the main obstacle against extensive deployment of LBSs. Suppressing 
identifiers from the data does not suffice since trajectories can easily be re-bound to 
individuals using publicly available information such as home and work addresses. 
Therefore new privacy preserving knowledge discovery methods, designed specifically 
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to handle spatio-temporal data, are required. Existing privacy preserving data mining 
techniques are not suitable for this purpose since time-stamped location observations of 
an object are not plain, independent attributes of this object. 

In this work, we propose a privacy preserving clustering technique for horizontally 
partitioned spatio-temporal data where each horizontal partition contains trajectories 
of distinct moving objects collected by a separate site. Consider the following sce-
nario where the proposed techniques are applicable: In order to solve traffic conges-
tion, traffic control offices want to cluster trajectories of users. However, the required 
spatio-temporal data is not readily available but can be collected from GSM operators. 
GSM operators are not eager to share their data due to privacy concerns. The solution 
is running a privacy preserving spatio-temporal clustering algorithm for horizontally 
partitioned data. 

Our method is based on constructing the dissimilarity matrix of object trajectories 
in a privacy preserving manner which can then be input to any hierarchical clustering 
algorithm. Main contributions are introduction of a protocol for secure multi-party 
computation of trajectory distances and its application to privacy preserving cluster-
ing of spatio-temporal data. We also provide complexity and privacy analysis of the 
proposed method. 

In Section 2, we provide related work in the area and then formally define the 
problem in Section 3. Classification of trajectory comparison functions is provided in 
Section 4. Communication and computation phases of our method are explained in 
Sections 5 and 6 respectively. We provide complexity and privacy analysis in Section 
7 and finally conclude in Section 8. 

2   Related Work 

Privacy preserving data mining has become a popular research area in the past 5 
years. The aim of privacy preserving data mining is ensuring individual privacy while 
maintaining the efficacy of data mining techniques. Agrawal and Srikant initiated 
research on privacy preserving data mining with their seminal paper on constructing 
classification models while preserving privacy [7]. Saygin et al. propose methods for 
hiding sensitive association rules before releasing the data [14]. Privacy preserving 
data mining methods can be classified under two headings: data sanitization and se-
cure multi-party computation. Data sanitization approaches sacrifice accuracy for 
increased privacy, while secure multi-party computation approaches try to achieve 
both accuracy and privacy at the expense of high communication and computation 
costs. 

Researchers developed methods for privacy preserving clustering. Most of these 
methods are based on sanitizing the input and they address only centralized data.  
Merugu and Ghosh propose methods for constructing data mining models from the 
input data. These models are not considered private information. The overall cluster-
ing schema is constructed by merging these models coming from vertically or hori-
zontally distributed data sources [9]. Oliveira and Zaiane propose methods for pre-
serving privacy by reducing the dimensionality of the data [5]. Their method is not 
applicable to horizontally partitioned data and moreover, results in loss of accuracy. 
Vaidya and Clifton propose a secure multi-party computation protocol for k-means 
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clustering on vertically partitioned data [10]. Jha et al. [8] propose a privacy preserv-
ing, distributed k-means protocol on horizontally partitioned data through secure 
multi-party computation of cluster means. Inan et al. propose another privacy preserv-
ing clustering algorithm over horizontally partitioned data that can handle numeric, 
categorical and alphanumeric data [6].  

Privacy of spatio-temporal data is of utmost importance for individuals since such 
data is highly vulnerable to misuse. In this work, we focus on spatio-temporal data 
and propose a secure multi-party comparison protocol that is applicable to most tra-
jectory comparison functions. Previous work on ensuring individual privacy for spa-
tio-temporal data is limited to sanitization approaches and access control mechanisms. 
Gruteser and Hoh propose confusing paths to garble trajectories of individuals [11]. 
Beresord and Stajano introduce “mix zones”, in which identification of users is 
blocked and pseudonyms of incoming user trajectories are mixed up while leaving 
these mixed zones [12]. A detailed discussion on privacy mechanisms through access 
control and anonymization can be found in [13]. To the best of our knowledge, this 
work is the first to introduce a secure multi-party solution to privacy problems in 
spatio-temporal data without any loss of accuracy. 

3   Problem Formulation 

Spatio-temporal knowledge discovery deals with time-stamped location observa-
tions of moving objects. In some applications spatial component may interpreted in 
a different way. For example, in stock market analysis, trajectory of a stock is the 
one-dimensional vector of price fluctuations in time. In weather forecasting, obser-
vations are two dimensional measurements of atmospheric pressure and temperature 
at weather stations. In this paper, we primarily focus on moving objects and assume 
that location information is two dimensional as in the case of GPS, neglecting the 
altitude. 

Trajectory T of a moving object X is a set of location observations in the form O = 
(t, d) where t represents the time dimension and d represents the two dimensional 
location information. Number of observations for this trajectory is denoted as 
length(X) and ith element of TX is denoted by TX(i). Figure 1 depicts these notions for 
the sample one dimensional spatio-temporal data provided in Table 1. 

Table 1. Spatio-temporal data for trajectories X and Y 

Time X 
1 4 7 10 16

Location 2,3 4,5 6,7 3 2
Time Y 

2 4 6 8  
Location 4,3 3,6 7 3  
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Fig. 1. Trajectories X and Y. length(X) = 5 and length(Y) = 4 

Suppose that there are K data holders, such that K ≥ 2, which track locations of 
with unique object id’s. The number of objects in data holder k’s database is 
denoted as sizeK. Data holders want to cluster the trajectories of moving objects 
without publishing sensitive location information so that clustering results will be 
public to each data holder at the end of the protocol. There is a distinct third party, 
denoted as TP, who serves as a means of computation power and storage space. 
TP’s role in the protocol is: (1) managing the communication between data hold-
ers, (2) privately constructing the global dissimilarity matrix, (3) clustering the 
trajectories using the dissimilarity matrix, and (4) publishing the results to the data 
holders. 

Involved parties, including the third party, are assumed to be semi-honest which 
means that they follow the protocol as they are expected to, but may store any 
information that is available in order to infer private data in the future. Semi-
trusted behavior is also called honest-but-curious behavior. Another assumption is 
that, all parties are non-colluding, i.e. they do not share private information with 
each other. 

4   Trajectory Comparison Functions 

Clustering is the process of grouping similar objects together. In order to measure 
the similarity between object trajectories, robust comparison functions are needed. 
However, trajectory comparison is not an easy task since spatio-temporal data is 
usually collected through sensors and therefore is subject to diverse sources of 
noise. Under ideal circumstances, object trajectories would be of the same length 
and time-stamps of their corresponding elements would be equal. The distance 
between two trajectories satisfying these conditions could be computed using 
Euclidean distance, simply by summing the distance over all elements with equal 
time-stamps. In real world, on the other hand, non-overlapping observation inter-
vals, time shifts and different sampling rates are common. Although various trajec-
tory comparison functions have been proposed to cope with these difficulties, this 
topic is still an ongoing research area. 

Most trajectory comparison functions stem from four basic algorithms: (1) Euclid-
ean distance, (2) Longest Common Subsequence (LCSS), (3) Dynamic Time Warping 
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(DTW), and (4) Edit distance. We classify these algorithms into two groups with 
respect to penalties added per pair-wise element comparisons: real penalty functions 
and quantized penalty functions. Real penalty functions measure the distance in terms 
of the Euclidean distance between observations while quantized penalty functions 
increment the distance by values 0 or 1 at each step depending on spatial proximity of 
the compared observations. In the following subsections we explain crucial trajectory 
comparison functions briefly and provide the reasoning behind this classification. For 
a detailed discussion on characteristics of these algorithms, please refer to [1]. 

Significance of our privacy preserving trajectory comparison protocol is due to the 
fact that it is applicable to all comparison functions explained below. Furthermore, the 
protocol does not trade accuracy against privacy unlike previous work. 

4.1   Comparison Functions with Real Penalty 

Euclidean distance, Edit distance with Real Penalty (ERP) and DTW are the compari-
son functions with real penalty. Euclidean distance is a naïve method based on com-
paring the corresponding observations of trajectories with the same length. The algo-
rithm terminates in O(n) time, returning the sum of real penalties. Euclidean distance 
function is sensitive to time shifts and noise but the output is a metric value. 

ERP [4] measures the minimum cost of transforming the compared trajectory to the 
source trajectory using insertion, deletion and replacement operations. Cost of each 
operation is calculated using real spatial distance values. Cost of replacing observa-
tion i with observation j is dist(i, j), where dist is the Euclidean distance. However in 
case of insertion (or deletion), added cost is the distance between the inserted (or 
deleted) observation and the constant observation value g, defined by the user. ERP 
compares all pairs of elements in the trajectories, returning a metric value in O(n2) 
time. The algorithm is resistant to time shifts but not to noise. 

DTW was initially proposed for approximate sequence matching in speech recog-
nition but is generalized to similarity search in time series by authors of [3]. The algo-
rithm is very similar to Edit distance but instead of insertions and deletions, stutters 
are used. The ith stutter on x dimension, denoted as stutteri(x), repeats the ith element 
and shifts following elements to the right. Computation cost is O(n2) as expected and 
resultant distance value is non-metric. Allowing repetitions strengthens the algorithm 
against time shifts but does not help with noise.  

4.2   Comparison Functions with Quantized Penalty 

Trajectory comparison functions with quantized penalty are LCSS [2] and Edit dis-
tance on Real Sequence (EDR) [1]. Both algorithms try to match all pairs of elements 
in the compared trajectories and therefore have a computation cost of O(n2). A pair of 
observations is considered a match if they are close to each other in space by less then 
a threshold, ε. LCSS returns the length of the longest matched sequence of observa-
tions while EDR returns the minimum number of insertion, deletion or replacement 
operations required to transform one trajectory to the other. Although these algo-
rithms are resistant to time shifts and noise, distance values are not metric. 
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5   Communication Phase 

As explained before, the protocol for privacy preserving comparison of trajectories 
consists of two phases: communication phase and computation phase. In the commu-
nication phase, data holders exchange data among themselves and the third party 
(TP), who will carry out the computation phase and publish the clustering results. 

Prior to the communication phase we assume that every involved party, including 
the third party, has already generated pair-wise keys. These keys are used as seeds to 
pseudo-random number generators which disguise the exchanged messages. Diffie-
Hellman key exchange protocol is perfectly suitable for key generation [15]. 

Dissimilarity matrix is an object by object structure. In case of spatio-temporal data, 
an entry D[i][j] of the dissimilarity matrix D is the distance between trajectories of 
objects i and j calculated using any comparison function. In Section 6, we show that our 
privacy preserving comparison protocol is suitable for all comparison functions ex-
plained in Section 4. If trajectories of both i and j are held by the same site, this site can 
calculate their distance locally and send it to the third party. However, if trajectories of i 
and j are at separate sites, these sites should run the protocol explained below. Assuming 
K data holders, C(K,2) runs are required, one for each pair of data holders. 

Suppose that two data holders, DHA and DHB, with size(A) and size(B) trajectories 
respectively, want to compare their data. Assume that the protocol starts with DHA. 
For each trajectory T in DHA’s database, two pseudo-random number generators are 
initialized, rngAB and rngAT. The seed for rngAB is the key shared with DHB and the 
seed for rngAT is the key shared with TP. Then, for each dimension of spatial compo-
nent of T’s elements (i.e. x and y), DHA disguises its input as follows: if the pseudo-
random number generated by rngAB is odd, DHA negates its input and increments it by 
the pseudo-random number generated by rngAT. Finally, DHA sends the disguised 
values to DHB. 

Begin 
  For j=0 to size(DHA) 
    Initialize rngAB with the key KAB 
    Initialize rngAT with the key KAT 
    For m=0 to length(DHA[j])

 

      DHA[j][m].x =rngAT + DHA[j][m].x * -1
rngAB%2

 

      DHA[j][m].y =rngAT + DHA[j][m].y * -1
rngAB%2 

  Send DHA to DHB 
End 

Fig. 2. Pseudo code of trajectory comparison protocol at site DHA 

Upon receiving data from DHA, DHB initializes a matrix M of size size(B)×size(A), 
which will be DHB’s output. For each trajectory T in its database, DHB initializes a 
pseudo-random number generator rngAB with the key shared with DHA and negates its 
inputs in a similar fashion. This time negation is done when the generated number is 
even. DHB then starts filling values into M. An entry M[i][j][m][n] of M is DHA’s jth 
trajectory’s nth observation compared to DHB’s ith trajectories mth observation. DHB sim-
ply adds its input to the input received from DHA. At the end, M is sent to TP by DHB. 
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Begin 
  For i=0 to size(DHB) 
    For j=0 to size(DHA) 
      For n=0 to length(DHB[i]) 
        Initialize rngAB with the key KAB 
        For m=0 to length(DHA[j]) 
          M[i][j][n][m].x +=DHB[i][n].x * -1

(rng

AB

+1)%2 
          M[i][j][n][m].y +=DHB[i][n].y * -1

(rng

AB

+1)%2 
  Send M to TP 
End 

Fig. 3. Pseudo code of trajectory comparison protocol at site DHB 

TP subtracts the random numbers added by DHA using a pseudo-random number 
generator, rngAT, initialized with the key shared with DHA. Now, absolute value of any 
entry M[i][j][m][n] is | DHA[j][n] – DHB[i][m] |. These values are all that is needed 
by any comparison function to compute the distance between trajectories i and j. 

Pseudo codes for the roles described above are given in Figures 2, 3 and 4. Discus-
sion on the necessity of each pseudo-random number generator used in the protocol is 
provided in Section 7. 

Begin 
  For i=0 to size(DHB) 
    For j=0 to size(DHA) 
      For n=0 to length(DHB[i]) 
        Initialize rngAT with the key KAT 
        For m=0 to length(DHA[j]) 
          M[i][j][n][m].x = |M[i][j][n][m].x - rngAT| 
          M[i][j][n][m].y = |M[i][j][n][m].y - rngAT| 
End 

Fig. 4. Pseudo code of trajectory comparison protocol at site TP 

6   Computation/Aggregation Phase 

The third party can compute pair-wise trajectory distances for data holder sites A and 
B, once the comparison matrix M is built through the protocol in Section 5. If the 
comparison function measures distances using real penalty, then M[i][j][m][n] is the 
cost for A’s jth trajectory’s nth observation with respect to B’s ith trajectory’s mth obser-
vation. Otherwise, if a quantized penalty comparison function is to be employed, TP 
simply checks whether M[i][j][m][n] < ε to match these two observations. 

What remains is performing comparisons of the form M[i][j], where both i and j 
are trajectories of the same data holder site. In such cases, another privacy preserving 
protocol is not required to compute these values, since conveying local dissimilarity 
matrices to TP does not leak any private information, proven in [5]. 

In order to build the dissimilarity matrix, TP must ensure that every data holder site 
has sent its local dissimilarity matrix and run the pair-wise comparison protocol with 
every other data holder. Figure 5 is the pseudo-code for constructing local dissimilar-
ity matrices where distance denotes the comparison function. 
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Begin 
  For m=0 to size(DH) 
    For n=0 to m 
      D[m][n]= distance(DH[m], DH[n]) 
End 

Fig. 5. Pseudo code for local dissimilarity matrix construction 

After gathering comparison results for all pairs of trajectories, TP normalizes the 
values in the dissimilarity matrix. These normalized distances are the only required 
input for most clustering algorithms, such as k-medoids, hierarchical and density 
based clustering algorithms. Another key observation here is that using our protocol, 
TP may use any clustering algorithm depending on requirements of the data holders. 

At the end of the clustering process, the third party sends the clustering results to 
the data holders. The results are in the form of lists of objects identifiers, since pub-
lishing the dissimilarity matrix itself would cause private information leakage. The 
third party can also publish clustering quality parameters, if requested by the data 
holders. 

7   Complexity and Privacy Analysis 

In this section, we analyze the communication and computation costs of the pair-wise 
comparison protocol and local dissimilarity matrix construction. An analysis of the 
privacy offered by the protocol follows. 

Every data holder has to send its local dissimilarity matrix to the third party. Com-
putation cost of constructing the matrix is O(n2 * distance) where n is the number of 
trajectories and distance denotes the complexity of the comparison function. For 
Euclidean, the cost becomes O(n2*p) and for the other comparison functions it is 
O(n2*p2) where p is the maximum number of observations in a trajectory. 

The initiator of the comparison protocol, DHA in Section 5, has a computation cost 
of O(n*p). The follower, DHB, on the other hand makes O(n*m*p2) computations 
where m is the number of trajectories at site DHB. Communication costs are parallel to 
computation costs since every party sends the result of the computation without any 
further operation. 

There is an apparent imbalance in the computation and communication costs of the 
follower and initiator parties. TP can easily solve this problem by arranging the se-
quence that pair-wise comparison protocols are carried out such that every party will 
be the initiator at least ⎣ ⎦2/)1( −K  times in a setting of K data holders. 

Sharing dissimilarity matrices does not leak any private information according to 
[5], as long as the private data is kept secret. The proof of the theorem relies on the 
fact that given the distance between two data points, there are infinitely many pairs of 
points that are equally distant. Since we assume that involved parties do not collude 
with each other and honestly follow the protocol, TP can not collude with a data 
holder site to infer private information of another data holder. Therefore sharing local 
dissimilarity matrices does not harm privacy unless the comparison protocol intro-
duces inference channels that may leak private information. 
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In the comparison protocol, the message sent by the initiator is a matrix containing 
values of the form (n + r) or (-n + r) where n is initiator’s input and r is a random 
number. In either case, these values are completely random to the follower. On the 
other hand, follower sends TP a matrix of values of the form (n – m + r) or (m – n + 
r). Although TP knows r, (n – m) or (m – n) does not help inferring either n or m, 
since there are infinitely many pairs (m, n) whose distance is | m – n |. 

Purpose of the pseudo-random number generator shared between the initiator and 
the follower is preventing TP from inferring whose input is larger. Suppose that al-
ways the follower subtracts its input from the initiator’s input. If m > n, (n + r – m – r) 
= (n – m) would be negative, pointing out that follower’s input is greater. Shared 
pseudo-random number generator garbles the negation sequence and prevents such 
inferences. 

One possible attack against our comparison protocol could be statistical analysis. 
Notice that observations of every trajectory in initiator’s database with the same index 
is disguised using the same random number. This is due to the fact that the pseudo-
random number generator is re-initialized at each step. Given enough statistics on the 
data and assuming that the databases are large enough to contain many repetitions of 
spatial values, such an attack is realizable. But considering that the domain of spatial 
values is very large and such statistics is not publicly available, we regard these types 
of attacks as very unlikely to succeed. 

8   Conclusion 

In this paper, we proposed a protocol for privacy preserving comparison of trajecto-
ries and its application to clustering of horizontally partitioned spatio-temporal data. 
The main advantage of our protocol is its applicability to most trajectory comparison 
functions and different clustering methods such as hierarchical clustering. The data 
holder sites can decide the clustering algorithm of their choice and receive clustering 
quality parameters together with the results. Only a small share of existing privacy 
preserving clustering algorithms can handle horizontally partitioned data and these 
algorithms do not specifically address spatio-temporal attributes. 

We also provided complexity and privacy analysis of our protocol and observed 
that communication and computation costs are parallel to the computation costs for 
clustering local data. Privacy analysis shows that an attack using statistics of spatial 
components is possible but very unlikely to succeed. A proof-of-concept implementa-
tion of the clustering algorithm in C# language is available at [17]. We used real spa-
tio-temporal datasets from the R-Tree Portal [16] for debugging and verifying the 
software. 
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