
A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 165 – 174, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Computation of
Maximal-Correlated Cuboids Cells

Ronnie Alves∗ and Orlando Belo

Department of Informatics, School of Engineering, University of Minho
Campus de Gualtar, 4710-057 Braga, Portugal
{ronnie, obelo}@di.uminho.pt

Abstract. The main idea of iceberg data cubing methods relies on optimization
techniques for computing only the cuboids cells above certain minimum
support threshold. Even using such approach the curse of dimensionality
remains, given the large number of cuboids to compute, which produces, as we
know, huge outputs. However, more recently, some efforts have been done on
computing only closed cuboids. Nevertheless, for some of the dense databases,
which are considered in this paper, even the set of all closed cuboids will be too
large. An alternative would be to compute only the maximal cuboids. However,
a pure maximal approaching implies loosing some information, this is one can
generate the complete set of cuboids cells from its maximal but without their
respective aggregation value. To play with some “loss of information” we need
to add an interesting measure, that we call the correlated value of a cuboid cell.
In this paper, we propose a new notion for reducing cuboids aggregation by
means of computing only the maximal-correlated cuboids cells, and present the
M3C-Cubing algorithm that brings out those cuboids. Our evaluation study
shows that the method followed is a promising candidate for scalable data
cubing, reducing the number of cuboids by at least an order of magnitude or
more in comparison with that of closed ones.

1 Introduction

Efficient computation of data cubes has been one of the focusing points in research
since the introduction of data warehousing, OLAP, and the data cube operator [8].
Data cube computation can be formulated as a process that takes a set of tuples as
input, computes with or without some auxiliary data structure, and materializes the
aggregated results for all cells in all cuboids. Its size is usually much larger than the

input database, since a table with n dimensions results in 2
n

cuboids. Thus, most work
is dedicated to reduce either the computation time or the final cube size, such as
efficient cube computation [3, 14, 9], or cube compression [11, 15]. These cost
reduction processes are all without loss of any information, while some others, like
the approximation [1] or the iceberg-cube [5, 3, 14, 9] ones, reduce the costs by
skipping trivial information.

∗ Supported by a Ph.D. Scholarship from FCT-Foundation of Science and Technology, Ministry

of Science of Portugal.

166 R. Alves and O. Belo

The ideas of compressing cuboids cells in terms of classes of cells, or closed cells,
seem to be an interesting approach to reduce size complexity, and also to explore
optimally the semantics from the cube lattice. Nevertheless, for some of the dense
databases we consider in this paper, even the set of all closed cuboids cells would
grow to be too large. The only recourse may be to mine the maximal cuboids cells in
such domains. However, a pure maximal approaching implies loosing some
information - one can generate the complete set of cuboids cells from its maximal but
without their respective aggregation value. To play with some loss of information we
propose a new measure, that we called the correlated value of a cuboid cell. This
measure is inspired on all_confidence measure [12], which has been successfully
adopted for judging interesting patterns in association rule mining, and further
exploited with confidence closed correlated pattern [10]. This measure must disclose
true correlation (also dependence) relationship among cuboids cells and needs to hold
the null-invariance property. Furthermore, real world databases tend to be correlated,
i.e., dimensions values are usually dependent on each other. The main motivation of
the proposed method emerged from the observation that real databases tend to be
correlated, i.e., dimensions values are usually dependent on each other. For example,
Store “Wallgreens” always sells Product “Nappy” or Store “Starbucks” always makes
Product “Coffee”. In addition, the result of correlated cells on the corresponding data
cube is to generate a large number of cells with same aggregation values. The Range
CUBE method was the first approach to explore correlation among dimensions values
by using a range trie [6]. Although it does not compress the cube optimally and may
not disclose true correlation relationship among cuboids cells holding the null-
invariance property [12, 16, 10]. Inspired on the previous issues we raise a few
questions to drive this work:

1. Can we develop an algorithm which captures maximal correlated cuboids cells
on dense/sparse databases?
2. How much such an approach can reduce the complete set of cuboids in
comparison with the other approaches (i.e., pure maximal to closed ones)?
3. How about the data cubing costs?

In this paper, we propose a new iceberg cube mining method for reducing cuboids
aggregation by means of computing only the maximal-correlated cuboids cells, and
present the M3C-Cubing algorithm that brings out those cuboids.

2 Maximal-Correlated Cuboids Cells

A cuboid is a multi-dimensional summarization of a subset of dimensions and
contains a set of cells. A data cube can be viewed as a lattice of cuboids, which also
integrates a set of cells.

Definition 1 – Cuboid Cell – In an n-dimension data cube, a cell c = (i1,i2,…,in : m)
(where m is a measure) is called a k-dimensional cuboid cell (i.e., a cell in a k-
dimensional cuboid), if and only if there are exactly k (k ≤ n) values among
{i1,i2,…,in} which are not * (i.e., all). We further denote M(c) = m and V(c) =
(ij,i2,…,in). In this paper, we assume that the measure m is count.

 On the Computation of Maximal-Correlated Cuboids Cells 167

A cell is called iceberg cell if it satisfies a threshold constraint on the measure. For
example, an iceberg constraint on measure count is M(c) ≥ min_supp (where
min_supp is a user-given threshold). Given two cells c = (i1,i2,…,in : m) and c’ =
(i'1,i'2,…,i'n : m’), we denote V(c) ≤ V(c’) if for each ij (j = 1,…,n) which is not *, i'j =
ij. A cell c is said to be covered by another cell c' if for each c'' such that V(c) ≤ V(c'')
≤ V(c'), M(c'') = M(c'). A cell is called a closed cuboid cell if it is not covered by any
other cells. A cell is called a maximal cuboid cell if it is closed and has no other cell c
which is superset of it (we have an exception just in case when its correlated value is
higher than a minimum threshold).

Definition 2 – The Correlated Value of a Cuboid Cell – Given a cell c, the correlated
value 3CV of a V(c) is defined as,

maxM(c) = max {M(ci)|for each ci ∈ V(c)} Eq.(1)
3CV(c) = M(c) / maxM(c) Eq.(2)

Definition 3 – Maximal Correlated Cuboid Cell – A cell c is a maximal-correlated
cuboid cell (M3C) if it is covered by a maximal cuboid cell, its M(c) value is higher
than min_supp and its 3CV(c) value is higher than min_3CV (where min_3CV is a
user-given threshold for correlation)

From the last definition we allow a correlated exception for its supersets, where it is
true when cell c is covered by another cell c' and 3CV(c') is higher than min_3CV.

Given the above definitions, the problem of computing the maximal-correlated
cuboids cells is to compute all maximal cuboids cells which satisfy iceberg
constraints and its correlated exception cells. An example of the maximal-correlated
cuboids cells is given in Example 1.

Table 1. Example of Maximal Correlated Cuboids Cells

A B C D
a1 b1 c1 d1
a1 b2 c2 d2
a1 b1 c1 d3
a1 b1 c1 d1
a2 b2 c2 d4

Example 1 - Maximal Correlated Cuboids Cells. Table 1 shows a table (with four
attributes) in a relational database. Let the measure be count, the iceberg be count ≥ 2
and the correlated value 3CV ≥ 0.85. Then c1 = (a1,b1,c1,* : 3) and c2 = (a1,*,*,* :
4) are closed cells; c1 is a maximal cell; c3 = (a1,b1,*,* : 3) and c4 = (*,b1,c1,* : 3)
are covered by c1; but c4 has a correlated exception (3CV=1); c5 = (a2,b2,c2,d4 : 1)
does not satisfy the iceberg constraint. Therefore, c1 and c4 are maximal correlated
cuboids’ cells. The iceberg condition is count ≥ min_sup and the correlated exception
value ≥ min_3CV.

168 R. Alves and O. Belo

3 M3C-Cubing

The proposed method for extraction of the Maximal-Correlated Cuboids Cells follows
the BUC data cubing ideas [3] – we call it as M3C-Cubing. The computation starts
from the smallest cuboids of the lattice, and works its way towards the larger, less
aggregated cuboids. Our method does not share the computation of aggregates
between parent and child cuboids, only the partitioning cost. Besides, as was verified
by BUC experimental results, partitioning is the major expense, not the aggregation
one.

We begin by defining the necessary terminology for describing the M3C-Cubing
algorithm. We consider a base relation cell to be a mapping K(c)→ M(c), where K is
a composite key built from the grouping attributes values in V(c) and M(c) is also a
composite key with the value to be aggregated. From the base relation cell we can
extract several partitions; each partition has a subset of cells to aggregate. The
partition of a base relation cell is defined as P(c)→ {K(c)→M(c)}, where P(c) is the
partition key.

In order to get the correlated value of a cuboid cell (3CV) we need to keep the
aggregation value for each 1-D cuboid. This is denoted as a mapping from 1-D(c)→
M(c). We should note that the maximum value will occur when the subset K(c)
consists of a single grouping attribute (see Definition 2).

M3C-Cubing is guided by an SE-tree framework, first introduced by Rymon [13],
and adopted later by Mafia [4] and Max-miner[2]. In this work, we call as M3C-tree.
The M3C-tree is traversed by using a pure depth-first (DFS) order. Each node of the
M3C-tree provides n-D cuboids which will be further partitioned, aggregated and
checked if it is maximal or not (see Definition 1). In general, superset pruning works
better with DFS order since many least aggregated cuboids may already have been
discovered.

The strategies for pruning non-maximal correlated cuboids cells (nonM3C)
basically attempt to: test out iceberg condition, check if it is maximal and when is not,
check if it is a correlation exception (see Definition 3). They are just discarded in case
its 3CV value is lower than a minimum threshold (min_3CV). Consequently, we
provide the complete set of interesting cuboids which are maximal-correlated cuboids.

M3C-Cubing also keeps the current cuboids aggregated and the previous one for
further pruning out of nonM3C cells. To speed up this process, we cannot remove an
entire branch of the M3C-tree, since we have to aggregate its related partitions in
order to validate the pruning conditions mentioned before. In this sense, we are just
able to prune out nonM3C cells by the time we expand the M3C-tree level-by-level.

Algorithm 3.1. M3C-Cubing: Computing maximal-correlated cuboids cells

Input: a table relation trel; min_supp; min_3CV.
Output : the set of maximal-correlated cuboids cells.
Method :
1. Let brel be the base relation of trel.
2. Build the M3C-tree concerning the grouping attributes in brel.
3. Call M3C-Cubing (min_supp, min_3CV, brel, M3C-tree).

 On the Computation of Maximal-Correlated Cuboids Cells 169

Procedure M3C-Cubing (min_supp, min_3CV, brel, M3C-tree)
 1: get 1-D cuboids from M3C-tree
 2: for each j in 1-D cuboids do
 3: get its partition from brel on dimensions [n], and

 set part ←{K(c)→M(c)}
 4: aggregate part and set agg ← {V(c)→M(c)} when M(c)>=min_supp
 5: set allCbs ← {agg}; set 3cv-1d ← {allCbs}
 6: end for
 7: get n-D cuboids in DFS order from M3C-tree
 8: for each k in n-D cuboids do
 9: get its partition from brel on dimensions [n-D],
 and set part ←{K(c)→M(c)}
10: aggregate part and set agg ← {V(c)→M(c)} when M(c)>=min_supp
11: set allCbs ← allCbs ∪ {agg}; set currCbs ← {agg}
12: set 3cv-nd ← 3cv-nd ∪ {call 3cv-nd(3cv-1d, agg)}
13: set maxCbs ← maxCbs ∪
 {call maxCorr (allCbs, currCbs, 3cv-nd, min_3CV)}
14: end for
Procedure maxCorr(allCbs, currCbs, 3cv-nd, min_3CV)
 1: set nonM3C ←{ }
 2: for each j in currCbs do
 2: for each k in allCbs do
 3: if dom(allCbs) is superset of dom(currCbs),
 nonM3C ← nonM3C ∪ {dom(currCbs)}
 4: end for
 5: end for
 6: remove any nonM3C in allCbs where 3cv-nd(nonM3C)< min_3CV
 7: return allCbs

Procedure 3cv-nd(3cv-1d, agg)
 1: for each j in agg do
 2: splits into 1-D cells; maxValue=0;
 3: for each k in 1-D cells do
 4: get its aggValue(3cv-1d)
 5: if aggValue>=maxValue, maxValue=aggValue
 6: end for
 7: set 3cv=SI{agg}/ maxValue; set 3cv-nd ← {dom(agg) → 3cv}
 8: end for; return 3cv-nd

With the aim of evaluating how M3C-Cubing reduces the final set of cuboids, we
have to do a few modifications to the main method to support both pure maximal
cuboids and closed ones. Those modifications are available as two new procedures:
One for pure maximal and other for closed cuboids. We omit here those procedures,
but one can also follows the definitions on section 2.

To bring out the pure maximal we just need to re-write the line 6 in maxCorr
Procedure. Thus, the conditional test on 3CV value of the ancestor cuboids is set
apart. Needless to say, that we cannot make any use of 3CV-nd procedure either to get
pure maximal or closed cuboids. To get just the closed cuboids we must verify the
closedness property [15] among the cuboids, consequently we just have to check if its
not covered by other cells.

3.1 Cover Equivalence in M3C-Cubing

The idea of grouping cover partitions cells into classes can also be explored by M3C-
Cubing in order to shrink even more the final data cube. By definition 1, it is possible
to group a set of cuboids cells by verifying those cells which are cover equivalent

170 R. Alves and O. Belo

ones [11]. Thus, these cells essentially have the same value for any aggregate on any
measure but with different degrees of correlation. For instance, in Example 1 the cells
(a1,b1,c1,*) and (*,b1,c1,*) are cover equivalent cells. Next, we present a few
concepts for guiding the grouping cover partition process with M3C-Cubing.

Cover partitions – The partition induced by cover equivalence is convex. Cover
partitions can be grouped into a M3C class (ji..jn) (Figure 1). Each class in a cover
partition has a unique maximal upper bound, and a unique lower bound (Table 2).

Upper bound cell – The upper bound for a particular class is the maximal cuboid
cell contained in this class. Such as, in Example 1, the cell (a1,b1,c1,*) is the upper
bound cell.

Lower bound cell – The lower bound cell for a particular class is the maximal 3CV
value achieved by the correlated value of the cuboid cell (see Definition 2). Since
M3C cubing allows catching all correlated exception cuboids, the lower bound cell
will be that one with the highest 3CV value. E.g., in Example 1, the lower bound cell
for class j1 is given by (*,b1,c1,*).

To explore maximal correlation over those classes we have to define the local_3CV
value for each class. The local_3CV value of a class is the maximum local value
given by the lower bound cell of each class (Table 2).

Fig. 1. The lattice formed by the cover partitions of the Example 1

Table 2. The set of classes from Example1

ClassID UpBound LoBound Local_3CV Lat_child Agg
j0 (*,*,*,*) (*,*,*,*) 0 -1 5
j1 (a1,b1,c1,*) (*,b1,c1,*) 1 j0 3
j2 (a1,b1,c1,d1) (*,b1,*,d1) 2/3 j0 2
j3 (*,b2,c2,*) (*,b2,c2,*) 1 j0 2

4 Evaluation Study

In this section, we report our experimental results on the shrinking and performance
aspects of each method (M3C=Maximal-Correlated, Max = pure Maximal and

 On the Computation of Maximal-Correlated Cuboids Cells 171

Closed). The results are quite the same concerning to the performance point of view.
This is true because those methods were developed having the basis on our main
method (M3C). So, we can take those results only as an example of how much these
modifications affect the whole time processing of the M3C-Cubing. On the other
hand, reducing aspects of M3C-Cubing shows its viability by providing an interesting
tradeoff between a pure maximal approaches to a closed one.

All the experiments were performed on a 3GHz Pentium IV with 1Gb of RAM
memory, running Windows XP Professional. M3C-Cubing was coded with Java 1.5,
and they were performed over eight synthetic datasets (Table 3). The values for
columns min_3CV% and min_supp are provided for the tests when fixing one value
and varying the other. The density column shows the degree(%)1 of
density/sparseness of each dataset. All datasets have a normal distribution.

Table 3. The overall information of each dataset

Dset Tuples Dims Card. Density Min_3CV% Min_Supp%
d1 100 3 3 27% 40% 2%
d2 250 5 3 97% 27% 0.80%
d3 500 3 5 25% 10% 0.60%
d4 750 4 5 83% 15% 0.67%
d5 1000 5 3 24% 17% 0.40%
d6 1250 4 6 100% 9% 0.16%
d7 3000 7 3 73% 35% 0.10%
d8 5000 6 4 82% 50% 0.04%

We first show that the complete set of maximal-correlated cuboids cells (M3C) is
much smaller in comparison with both that of pure maximal (Max) and that of close
ones (Closed). Figure 2 shows the number of cuboids generated by each approach
from all datasets. The number of cuboids is plotted on a log scale. Figure 2(a)
presents the number of cuboids generated when min_3CV is fixed and min_supp

Fig. 2. Number of cuboids generated from all datasets

1 The density degree of a dataset is calculated by the division: the product of each dimension

(its cardinality value) by the number of tuples within the related dataset. The dataset is more
dense when density degree is close to 100%.

min_3CV=25%

1

10

100

1000

10000

100000

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

(a) m in_supp(%)

n
u

m
b

er
 o

f
cu

b
o

id
s M3C Max Closed

min_supp=2

1

10

100

1000

10000

100000

0% 10% 20% 30% 40% 50% 60%

(b) m in_3CV(%)

n
u

m
b

er
 o

f
cu

b
o

id
s

M3C Max Closed

172 R. Alves and O. Belo

varies, while figure 2(b) shows those cuboids the other way around, fixing min_supp
and varying min_3CV. These figures show that the M3C generates much smaller
cuboids under lower min_supp or lower min_3CV. They also illustrate how much
bigger the closed cuboids are in comparison with the other two methods. These results
also indicate that under higher density datasets the chances of reducing cuboids by
M3C-Cubing is more effective. Furthermore, the distance between Max and M3C
reveals the gap of cuboids which are discarded (higher correlated ones) when using a
pure maximal approach.

The next two figures (figure 3(a) and figure 3(b)) show the performance aspects of
M3C-Cubing from all datasets. These figures follow the same configuration
properties from previous two (figure 2(a) and figure 2(b)). Figure 3(a) illustrate that
under a fixed min_supp, the maximal-correlated cuboids are useful only with lower
3CV thresholds. This is confirmed by the downward property [12] of 3CV_value of a
cuboid cell. By the time the data cubing process is getting closer to the least
aggregated cuboids, the 3CV_value also decreases, so the computation time is pretty
close, because 3CV is decreasing. Figure 3(b) points out the effectiveness of M3C-
Cubing under lower min_supp, giving more likelihood to identify correlated-cuboids,
increasing a little-bit the processing time to prune out nonM3C cells.

Fig. 3. The execution time from all datasets

Now, we are going to present a few examples concerning the reduction costs of
computing the complete cube instead of a “partial” data cubing process. Figures
ranging from figure 4(a) to figure 4(d) illustrate those results. Figure 4(a) and figure
4(b) shows the number of cuboids generated when min_supp varies and min_3CV is
fixed, while figures 4(c), 4(d) present those when min_3CV varies and min_supp is
fixed. Under any circumstances the final cube is quite closer to the closed one, which
points out that even using such closed-reduction the cuboids size remains even bigger.
It is also demonstrates how much M3C-Cubing can save in comparison with the other
methods.

In summary, the experimental results show that the number of maximal-correlated
cuboids is quite smaller in comparison with that of the closed ones. Even, with a few
modifications to the main features of M3C-Cubing, it still performs competitively
with the other ones. Moreover, we provide the set of all maximal-correlated cuboids.

m in_3CV=25%

1

10

100

1000

10000

100000

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

(a) m in_supp(%)

ru
n

ti
m

e

M3C

Max

Closed

min_supp=2

1

10

100

1000

10000

100000

1000000

10000000

0% 10% 20% 30% 40% 50% 60%

(b) m in_3CV(%)

ru
n

ti
m

e

M3C

Max

Closed

 On the Computation of Maximal-Correlated Cuboids Cells 173

Fig. 4. Reductions cost of cubing over all datasets

5 Final Remarks

The motivation behind iceberg cube mining is tightly related to reducing the search
space for computing aggregates. The classical methods either offer ways for sharing
the computation among cuboids or for exploring the partition costs in order to reduce
the large output size.

We have presented M3C-Cubing that effectively reduces the complete set of
cuboids cells introducing a new notion called maximal-correlated cuboids cells.
Through this cubing method we can find the maximal combinations among the
grouping attributes and also keep its exceptional correlated cuboids, which can also
indicates interesting changes on the cuboids during the cubing process.

We also have plans to investigate other aspects not addressed in this work such as:
the application of 3CV measure over other aggregate functions (average, min, max…)
and the issues related to recover an aggregation value of subcells of an M3C cell.

For efficient mining of those cuboids we have devised M3C-Cubing which is
guided by an M3C-tree with a pure DFS traversal order. In order to improve pruning,
we must investigate the tail information of each node in the M3C-tree such as
designed in [7, 17].

Finally, our evaluation study shows that maximal-correlated cuboids computation
reduces the number of cuboids by at least an order of magnitude or more in
comparison with the traditional approaches.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

d1 d2 d3 d4 d5 d6 d7 d8

(a) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

Cube M3C

Max Closed

0

2000

4000

6000

8000

10000

12000

14000

d1 d2 d3 d4 d5 d6 d7 d8

(b) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

M3C

Closed

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

d1 d2 d3 d4 d5 d6 d7 d8

(c) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

Cube M3C

Max Closed

0

2000

4000

6000

8000

10000

12000

14000

16000

d1 d2 d3 d4 d5 d6 d7 d8

(d) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

M3C

Closed

174 R. Alves and O. Belo

References

1. Barbara, D., Sullivan, M.: Quasi-cubes: Exploiting Approximations in Multidimensional
Databases. In Proc. Int. Conference on Management of Data (SIGMOD), 1997.

2. Bayardo, R.: Efficiently Mining Long Patterns from Databases. In Proc. Int. Conference
on Management of Data (SIGMOD), 1998.

3. Beyer, K., Ramakrishnan, R.: Bottom-up Computation of Sparse and Iceberg Cubes. In
Proc. Int. Conference on Management of Data (SIGMOD), 1999.

4. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset Algorithm
for Transactional Databases. In Proc. Int. Conference on Data Engineering (ICDE),
pp.443-452, 2001.

5. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J., D.: Computing
Iceberg Queries Efficiently. In Proc. Int. Conference on Very Large Databases (VLDB),
1998.

6. Feng, Y., Agrawal, D., Abbadi, A.-E., Metwally, A.: Range Cube: Efficient Cube
Computation by Exploiting Data Correlation. In Proc. Int. Conference on Data
Engineering (ICDE), 2004.

7. Gouda, K., Zaki, J.: GenMax : An Efficient Algorithm for Mining Maximal Frequent
Itemsets. Data Mining and Knowledge Discovery, 11:1-20, 2005.

8. Gray, J., Bosworth, A., Layman, A., Pirahesh, A.: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In Proc. Int. Conference on
Data Engineering (ICDE), 1996.

9. Han, J., Pei, J., Dong, G., Wank, K.: Efficient Computation of Iceberg Cubes with
Complex Measures. In Proc. Int. Conference on Management of Data (SIGMOD), 2001.

10. Kim, W.-Y., Lee, Y.-K., Han, J.: CCMine: Efficient Mining of Confidence-Closed
Correlated Patterns. In Proc. Int. Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), 2004.

11. Lakshmanan, V.S., Pei, J., Han, J.: Quotient Cube: How to Summarize the Semantics of a
Data Cube. In Proc. Int. Conference on Very Large Databases (VLDB), 2002.

12. Omiecinski. Alternative Interest Measures for Mining Associations. IEEE Trans.
Knowledge and Data Engineering, 15:57-69, 2003.

13. Rymon, R.: Search through Systematic Set Enumeration. In Proc. Int. Conference on
Principles of Knowledge Representation and Reasoning (KR), 539-550, 1992.

14. Shao, Z., Han, J., Xin, D.: MM-Cubing: Computing Iceberg Cubes by Factorizing the
Lattice Space. In Proc. Int. Conference on Scientific and Statistical Database Management
(SSDBM), 2004.

15. Xin, D., Han, J., Shao, Z., Liu, H.: C-Cubing: Efficient Computation of Closed Cubes by
Aggregation-Based Checking. In Proc. Int. Conference on Data Engineering (ICDE),
2006.

16. Xiong, H., Tan, P.-N., Kumar, V. Mining Strong Affinity Associations Patterns in Data
Sets with Skewed Support Distribution. In Proc. Int. Conference on Data Mining (ICDM),
2003.

17. Zou, Q., Chu, W.-W., Lu, B.: SmartMiner: A Depth First Algorithm Guided by Tail
Information for Mining Maximal Frequent Itemsets. In Proc. Int. Conference on Data
Mining (ICDM), 2002.

	Introduction
	Maximal-Correlated Cuboids Cells
	M3C-Cubing
	Cover Equivalence in M3C-Cubing

	Evaluation Study
	Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

