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Abstract. In complex data warehouse applications, high dimensional
data cubes can become very big. The quotient cube is attractive in that
it not only summarizes the original cube but also it keeps the roll-up
and drill-down semantics between cube cells. In this paper we study the
problem of semantic summarization of iceberg cubes, which comprises
only cells that satisfy given aggregation constraints. We propose a novel
technique for identifying groups of cells based on bounding aggregates and
an efficient algorithm for computing iceberg quotient cubes for monotone
functions. Our experiments show that iceberg quotient cubes can reduce
data cube sizes and our iceberg quotient cubing algorithm can be over
10-fold more efficient than the current approach.

1 Introduction

Since the introduction of the Cube operator [3], interests on data cube re-
search has grown substantially. Several cube computation algorithms have been
proposed, including relational approaches PipeHash and PipeSort [1], Memo-
ryCube [7] and multiway array aggregation [13]. The number of cube cells grows
exponentially with the number of dimensions. Large data cubes are difficult for
storage and answering queries. Recent studies have focused on how to com-
pute compressed data cubes, including Condensed Cube [9], Dwarf [8], Quotient
Cube [5] and QC-Tree [6]. The quotient cube is especially attractive in that it
compresses the original cube as well as keeps the roll-up/drill-down semantic
among cells.

Iceberg cubes comprise cube cells whose aggregate value satisfies a given con-
straint. Many algorithms for iceberg cube computation have been proposed,
including BUC [2], H-Cubing [4] and Star-Cubing [11]. Since cells failing the
aggregation constraint are removed from the solution, there are “holes” in the
lattice structure for iceberg cubes (shown in Fig. 1). It is interesting to see, with
the presence of such “holes” of removed cells, whether semantic summarization
can compress the original iceberg cubes. It is also interesting to study if ice-
berg cubes can be efficiently summarized while keeping the semantics. A tricky
problem is how to incorporate effective pruning into summarization.
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In this paper, we propose the concept of iceberg quotient cube and study
its efficient computation. An iceberg quotient cube comprises classes of cells
that satisfy a given constraint, and in each partition cells are of equal aggre-
gate values and are connected by the roll-up/drill-down relationship. Obviously
computing the iceberg cube first and then summarizing the resulting cells is
a time-consuming approach. It is more efficient the iceberg quotient cubes are
computed from base tables and pruning is applied with aggregation.

1.1 Main Ideas

We apply a novel technique bounding [12] for identifying lattices (of cells) of
equal aggregates while pruning unqualified lattices.

In Table 1(a) Month, Product, SalesMan and City are dimensions, and Sale
is the measure. Similarly Table 1(b) is a 4-dimensional dataset. A data cube of
4 dimensions comprises the 16 group-bys (including the empty group-by) from
any subset of the 4 dimensions. With an aggregate function, each group-by in a
data cube generates aggregations of the multi-set of measure values for partitions
of tuples with the equal dimension-values, which we call cells. For example in
Table 1(a) Min and Count are aggregate functions, and (Jan, Toy, John, Perth)
is a cell with aggregations of Min(Sale) = 200 and Count(∗) = 5.

A data cube is a lattice with top and bottom cells respectively. The lattice
on the left of Fig. 1 is the cube lattice for the toy dataset in Table 1(b). Cells
are related by the super-cell/sub-cell relationship. Following the convention of
BUC [2], a sub-cell (with more dimensions) are above its super-cells. The top
cell for the lattice is False (not shown in Fig. 1), the empty cell that does not
aggregate any tuples. The bottom cell is (*, *, *, *), aggregating all tuples (*
matches any value). The bounds for a lattice are computed from the most specific
cells (MSCs) in the lattice under consideration. The MSCs can be viewed as the
basic units for computing data cubes as all other cells can be computed from
the MSCs. Table 1(a) shows a 4-dimensional dataset with 6 MSCs. Min(Sale)
decreases monotonically with super-cells. The lower bound for the data cube is
the minimum of Min(Sale) for all MSCs, which is 100. The upper bound for
the cube is the maximum among all MSCs, which is 200. As will be seen later,
a data cube can be decomposed into a set of sub-cubes and the bounding from
MSCs applies to sub-cubes as well.

The 3 MSCs with “Month=March” form a sub-lattice, with (Mar, ∗, ∗, ∗) at
the bottom and False at the top. What is special about this lattice is that
its upper and lower bounds are both 100 (bounds are calculated as described
before). So the lattice represents a class of cells with Min(Sale) = 100. If the
aggregate value satisfies a given constraint, then it becomes a temporary class
in the solution; otherwise the class is pruned. For monotone aggregate functions,
such temporary classes are efficiently merged to produce the maximal partition
of an iceberg data cube.
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Table 1. Two sample dimensional datasets

Month Product SalesMan City Min(Sale) Count(*)
Jan Toy John Perth 200 5
Mar TV Peter Perth 100 40
Mar TV John Perth 100 20
Mar TV John Sydney 100 10
Apr TV Peter Perth 100 8
Apr Toy Peter Sydney 100 5
(a) A sales dataset, partially aggregated

A B C D Sale
a1 b1 c1 d1 650
a1 b1 c2 d1 322
a1 b1 c2 d1 1087
(b) A toy dataset

1.2 Related Work

Our concept of iceberg quotient cube is motivated by the quotient cube [5].
We introduce semantic summarization into iceberg cubes. More importantly our
approach of bound-based pruning and computing of iceberg quotient classes is
different from the previous tuple-based approach [5]. A “jumping” method that
can identify an equivalence class of cells without examining all cells in the class
is essential for the efficiency of quotient cube computation. Based on BUC [2],
Lakshmanan et al. [5] proposed a jumping method that involves examining every
record in a partition of the underlying dataset. In contrast, our bound-based
jumping method identifies an equivalence class of cells by examining MSCs;
such an approach can improve the efficiency of quotient cube computation.

The QC-Tree is a data structure for storing quotient cubes. It is orthogonal
to and can complement our work on iceberg quotient cubes.

The Dwarf Cube [8] and Iceberg Dwarf Cube [10] compresses the cube cells
by exploiting shared prefixes and suffixes. The Condensed Cube [9] compresses a
data cube by condensing the cells aggregated from the same set of base relation
tuples into one cell. Nevertheless the focus of all these work are on compression
and the semantics of data cubes are lost in the process.

Bound-prune cubing was proposed in our previous work to compute iceberg
cubes [12]. In this work we apply bounding to summarization of data cubes.

2 Iceberg Quotient Cubes

The important roll-up and drill-down semantics on a data cube is the super-
cell/sub-cell relationship among cells. Lakshmanan et al. [5] proposed the basic
definitions for quotient cubes that preserve such semantics. Generally a data
cube is partitioned into convex classes of cells with equal aggregates and cells in
a class have the super-cell/sub-cell relationship.

Definition 1 Convex connected equivalence class. All cells in a connected
equivalence class are related by the super-cell(sub-cell) relationship and have equal
aggregate values. In a convex class P , if a cell g and a sub-cell g′ are in P , then
cells that are sub-cells of g and super-cells of g′ are also in P .
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Fig. 1. The quotient cube of the function Count(∗) for the dataset in Table 1(b)

Definition 2 Quotient Cube Lattice. A quotient cube lattice consists of con-
vex connected equivalence classes of cells. Classes in the quotient lattice are con-
nected by the super-class/sub-class relationship: a class C is super-class (sub-
class) of another class D if there exist cells c ∈ C and d ∈ D such that c is a
super-cell (sub-cell) of d. Each equivalence class is denoted as [B, T ], where B
and T are the set of cells at the bottom and top of the class respectively.

Example 1. Consider the 4-dimensional dataset in Table 1(b). The original
cube-lattice for Count(∗) has 24 cells, shown in Fig. 1. Cells can be summarized
into 3 classes, which are represented by the bottom and top cells. Class I is
[{(ALL)}, {(a1, b1, d1)}]. [{(c1)}, {(a1, b1, c1, d1)}] and [{(c2)}, {(a1, b1, c2,
d1)}] are Class II and Class III respectively. Class II is a sub-class of class I.
all cells in class II are sub-cells of some cells in Class I but not super-cells.

Definition 3 Optimal Quotient Cube Lattice. A quotient cube is optimal
if all of its classes are maximal. A class is maximal if it contains the largest set
of cells with equal aggregate values while satisfying connectivity and convexity.

The aggregate value of a monotone aggregate function increases or decreases
monotonically with respect to the super-cell relationship. For example, Count(∗)
values increase with super-cells, whereas Min values decrease with super-cells.
For monotone functions, there is a unique optimal quotient cube partition that
coincides with the partition induced by connected equivalence partitions. In
other words, if all connected cells with equal aggregate values are clustered in
one class, the result is the optimal quotient cube. For non-monotone functions,
a connected equivalence class is not necessarily convex, therefore, the optimal
quotient cube cannot be induced solely from connected equivalence partitions.

Having all the basic definitions from [5], we are now ready to introduce our
new definitions. The observation below emphasizes the following fact: For a given
constraint, given that all cells in a class have the same aggregate value, a class
is either pruned entirely or remains as a class, in other words, it is never split as
the result of pruning by the aggregation constraint.
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Observation 1. Given a constraint, all cells failing the constraint form classes
in the quotient cube. An iceberg cube consists of cells in the classes of the quo-
tient cube whose aggregate values pass the constraint. The roll-up and drill-down
semantics among the qualified classes are preserved.

Definition 4 Iceberg Quotient Cube. Let cells satisfying a given constraint
be called iceberg cells. All iceberg cells are partitioned into convex and connected
equivalence classes. The classes form an iceberg quotient cube.

Example 2. Continuing with Example 1, consider the constraint “Count(∗) ≥
2”. Class I and III in Fig. 1 remain while the entire Class II is pruned, as is
denoted by the cross in Fig. 1. The semantics between Class I and III is kept.

The crucial question to answer now is how to identify the equivalence classes of
cells while effectively prune unpromising cells to achieve efficient iceberg quotient
cubing. Our novel Bounding technique can solve both questions.

3 Computing Iceberg Quotient Cubes with Bounding

The naive approach of computing an iceberg cube first and then summarizing it
into a quotient is obviously not an efficient approach. A more efficient approach
of computing iceberg quotients is to compute iceberg quotients directly from in-
put datasets, where aggregation, pruning with constraints and summarization is
performed at the same time. Bounding can efficiently identify equivalence classes
in a cube lattice with little extra cost. For monotone aggregate functions, the
classes can then be easily merged to produce a set of maximal equivalence classes.
We also present an efficient iceberg quotient cubing algorithm that incorporate
all these ideas.

3.1 Bounding Aggregate Functions

Given a data cube on measure X and an aggregate function F , the tightest upper
bound and lower bound are respectively reached by the largest and smallest
aggregate values that can be produced by any set of MSCs of the data cube.
However exhaustively checking the power set of MSCs is not computationally
feasible. An aggregate function F is boundable [12] for a data cube if some upper
and lower bounds of F can be determined by an algorithm with a single scan of
some auxiliary aggregate values of MSCs of the data cube. We use an example
to explain the main ideas of bounding. Details are described in [12].

Example 3. Given measure X, Count(X) = Sum({Count(Xi) | i = 1..n}),
where X1, ..., Xn are MSCs. The number of tuples in a cell of a data cube
is no larger than the total number of tuples of all MSCs. Suppose g is a cube
cell, Count(g) ≤ Sum({Count(Xi) | i = 1..n}). So Sum({Count(Xi) | i = 1..n})
is an upper for Count(X) of the data cube. On the other hand, to compute the
lower bound, we also have Count(g) ≥ Min({Count(Xi) | i = 1..n}). As a result,
the lower bound is Min({Count(Xi) | i = 1..n}). Both bounds can be obtained by
one scan of MSCs and Count is boundable.
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Table 2. The bounds of SQL aggregate functions

F upper bound ; lower bound

Count Sum
i

Count(Xi); Min
i

Count(Xi)

Max Max
i

Max(Xi); Min
i

Max(Xi)

Min Max
i

Min(Xi); Min
i

Min(Xi)

Sum
Sum

Sum(Xi)>0
Sum(Xi) if (a)

Max
i

Sum(Xi) otherwise
;

Sum
Sum(Xi)<0

Sum(Xi) if (b)

Min
i

Sum(Xi) otherwise

Average Max
i

Avg(Xi); Min
i

Avg(Xi)

Given a dataset, X is the measure and X1, ..., Xn are the MSCs.
(a): there is i such that Sum(Xi) > 0. (b): there is i such that Sum(Xi) < 0.

All SQL aggregate functions Count, Min, Max, Sum and Average are bound-
able, and their bounding algorithms are listed in Table 2. Note that Count,
Max, Min, and Sum on non-negative (non-positive) measure values are mono-
tone functions whereas Sum on arbitrary values and Average are non-monotone
functions.

3.2 Identifying Equivalence Classes with Bounding

Observe that lattices are connected and convex. Bounding can be used to detect
if a cell-lattice is an equivalence class as stated in the following proposition.

Proposition 1. Given a lattice, all cells in the lattice have equal aggregate val-
ues if the upper and lower bounds of the lattice are equal.

Proof. Proof of the proposition follows directly from that the aggregate values
of cells in a lattice are bounded by the lower and upper bounds.

A data cube lattice can be partitioned into a set of sub-lattices each of which has
equal aggregates. For all monotone functions, such a partition is easily achieved
with single depth-first traversal of the G-tree (Section 3.3). If the bounds of a
sub-lattice are equal and pass the constraint, it can be identified as one single
class. The cells in the lattice do not need to be computed.

Although the temporary equivalence classes on a lattice is maximal with re-
spect to a sub-lattice, to obtain the global maximal equivalence classes the tem-
porary equivalence classes should be merged. Following Theorem 2 of [5], the
following remark for monotone functions allows the merging process to produce
maximal connected and convex equivalence classes based on the connectivity of
classes and equality of their aggregate values.

Remark 1. For monotone functions, the unique optimal iceberg quotient cube is
the partition induced by the connected equivalence classes.
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Fig. 2. The first G-tree Table 1(a) cube
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Fig. 3. The G-trees for Cube(ABCD)

The following observation states how merging is achieved. The main idea is
to derive more general and specific cells respectively from the bottom and top
cells of lattices to be merged.

Observation 2. For monotone functions, if two convex equivalence classes C1
and C2 are connected, the two classes can be merged into a coarser class C as
follows: The bottom cells of C are the minimal set for the bottom cells of C1 and
C2 with respect to the sub-cell relationship. The top cells of C are the maximal
set for the top cells of C1 and C2 with respect to the sub-cell relationship.

From Observation 2, to compute an iceberg quotient cube for a monotone func-
tion, two classes of equal aggregate values are merged as long as they have the
super-cell/sub-cell relationship.

Example 4. For simplicity * is omitted in cell notations. Consider merging
C1 = [{(a1, b1, c1)}, {(a1, b1, c1, d1)}]

and
C2 = [{(b1, c1), (b1, d1)}, {(a1, b1, c1), (a1, b1, d1)}].

The resulting class C is 〈{(b1, c1), (b1, d1)}, {(a1, b1, c1, d1)}〉. Among the bot-
tom cells of C1 and C2, {(a1, b1, c1), (b1, c1), (b1, d1)}, (b1, c1) is a super-cell of
(a1, b1, c1). So the minimal set is {(b1, c1), (b1, d1)} and becomes the bottom cells
of C. The top cells of C are similarly derived.

3.3 The G-Tree

The data structure for computing quotient cubes is the G-tree [12]. We use
the first G-tree for cubing the dataset in Table 1(a) as an example to ex-
plain, which is shown in Fig. 2. In each node are the aggregates Sum(Sale)
and Count(∗). The aggregates in each node are for the cell with dimension-
values on the path from the root to the node. For the leftmost path from the
root of the G-tree, in the node (Peter) there are 40 tuples with Sum(Sale) =
100 in the (March, TV, Peter, ∗) partition. The leaf nodes give the MSCs for
Cube (Month, Product, SalesMan, City).

To compute cells not represented on the first G-tree, sub-G-trees 3 are re-
cursively constructed by collapsing dimensions. Fig. 3 shows the G-trees for
3 Note that a sub-G-tree is not part of the original G-tree, but obtained from the

original G-tree by collapsing a dimension.
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Input: a) An N -dimensional dataset D with measure m.
b) Aggregation constraint C(F ), where the aggregate function F is monotone.

Output: the Iceberg quotient cube Q, assumed global.
(1) Build the G-tree T from D for F .
(2) Q = φ;
(3) BIQC(T , F , C);

Procedure BIQC (T , F , C)
(1) Let g be a conditional cell on T and Lg denote g’s lattice of cells
(2) Compute the bounds [B1, B2] for Lg;
(3) if (both B1, B2 violate C)
(4) Skip the processing of Lg;
(5) else if (B1 == B2)
(6) Merge the class from Lg to Q; //skip the processing of Lg, Section 3.2.
(7) else
(8) SL ← sub-lattices with equal bounds by depth-first traversal;// Section 3.1.
(9) Merge classes in SL to Q;
(10) for each dropping dimension D on T do
(11) Ts ← the sub G-tree from collapsing D from T ; //pruning, Section 3.4
(12) BIQC(Ts, F , C);

Fig. 4. The Bound Iceberg Quotient Cubing Algorithm

Cube(ABCD). Each node represents a G-tree. For the ABCD-tree at the top, the
corresponding group-bys are (A,B,C,D), (A,B,C), (A,B), (A) and (). The sub-
G-trees of the ABCD-tree, which are the (−A)BCD, A(−B)CD, and AB(−C)D trees,
are formed by collapsing on dimensions A, B, and C respectively. The dimen-
sions after “/” in each node denote common prefix dimensions for the tree at the
node and all its sub-trees. In the sub-G-tree construction process, we compute
the bounds based on prefix dimensions and use them for pruning [12].

3.4 The Bound Iceberg Quotient Cubing Algorithm

Our bound iceberg quotient cubing (BIQC) algorithm is shown in Fig. 4. Line 1 of
the algorithm denotes the following process of identifying temporary equivalence
lattices: Following the depth-first traversal of T , at the node of a prefix cell g,
a class C is formed and g is both the top and bottom cell of the class. If a
descendent node gd of g has equal aggregate value to that of g, then gd is added
as a top cell for G. Any sub-cell of gd as a top cell is replaced by gd. For any
descendent cell gd′ , if the aggregate value is different from that of C, a new class
C

′
with gd′ as the bottom cell is created. On returning from the recursion to the

bottom-cell of a class, the class is completed.
Merging classes is at lines 6 and 9. When a lattice under consideration is not an

equivalence class, it is partitioned into equivalence classes(Section 3.2). Pruning
is applied at line 4 and line 11 on lattices whose bounds fail the constraints.
Especially at line 11, all cells yet to be computed from the branches already
included in an equivalence class or failing the constraint are pruned.
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4 Experiments

We did experiments to study the compression effectiveness of iceberg quotient
cubes and the efficiency of BIQC for the constraint “Count(∗) ≥ α”. We com-
pare BIQC with BUC, the underlying iceberg cubing algorithm in [5]. To accu-
rately compare computation cost, timing does not include the time for writing
output.

Three datasets are used in our experiments. The US Census dataset 4 is dense
and skewed: 88,443 tuples, 12 dimensions, and a cardinality range of 7–48. The
TPC-R5 dataset is relatively dense and random: 1000,000 tuples, 10 dimensions,
and a cardinality range of 3–25. The Weather dataset 6 is extremely sparse:
100,000 tuples, 9 dimensions, and a cardinality range of 2–6505.

4.1 Compression Effectiveness of Iceberg Quotient Cubes

The compression ratio is the number of classes in a iceberg quotient as the pro-
portion of number of cells in the original iceberg cube. A quotient cube with
lower compression ratio is more effective in compressing the original data cube.
With the constraint “support(*) ≥ α” (support is the relative Count in percent-
age), the compression ratio for the three datasets remains almost constant for
α = 10%..80%. On the sparse weather dataset, the compression ratio is around
80%. In contrast on the dense and skewed census dataset it is around 20%. This
low ratio is in contrast to that of 70% on the random TPC-R dataset, It can be
seen that iceberg quotient cube can more effectively reduce iceberg cube size on
dense and skewed data.

4.2 Efficiency of Bound Iceberg Quotient Cubing

Fig. 5 shows the runtime of BIQC on computing the iceberg quotient cube with
constraint “Count(*) ≥ α” in comparison to BUC on computing the original
iceberg cube. BIQC is over 10-fold more efficient than BUC on Census and
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Fig. 5. Runtime comparison: BIQC vs. BUC with “Count(*) ≥ α”

4 ftp://ftp.ipums.org/ipums/data/ip19001.Z.
5 http://www.tpc.org/tpcr/.
6 http://cdiac.ornl.gov/ftp/ndp026b/SEP85L.DAT.Z.
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TPC-R for all Count thresholds. It is slower than BUC on the extremely sparse
Weather data. The likely reason can be that on sparse data there are much more
temporary equivalence classes while their sizes are smaller, which increase the
cost for merging. BIQC scales relatively well with lower Count thresholds.

5 Conclusions

We have proposed the iceberg quotient cube for semantic summarization of ice-
berg cubes. We apply a novel technique bounding for efficient computation. Our
experiments demonstrated that iceberg quotient cubes are effective for com-
pressing iceberg cubes and our algorithm is significantly more efficient than the
existing approach. Our future work will focus on the open problem of computing
iceberg quotient cubes for complex aggregate functions [5].
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