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Abstract. Comprehensive data analysis has become indispensable in a
variety of environments. Standard OLAP (On-Line Analytical Process-
ing) systems, designed for satisfying the reporting needs of the business,
tend to perform poorly or even fail when applied in non-business domains
such as medicine, science, or government. The underlying multidimen-
sional data model is restricted to aggregating only over summarizable
data, i.e. where each dimensional hierarchy is a balanced tree. This lim-
itation, obviously too rigid for a number of applications, has to be over-
come in order to provide adequate OLAP support for novel domains.

We present a framework for querying complex multidimensional data,
with the major effort at the conceptual level as to transform irregular
hierarchies to make them navigable in a uniform manner. We provide a
classification of various behaviors in dimensional hierarchies, followed by
our two-phase modeling method that proceeds by eliminating irregulari-
ties in the data with subsequent transformation of a complex hierarchical
schema into a set of well-behaved sub-dimensions.

Mapping of the data to a visual OLAP browser relies solely on meta-
data which captures the properties of facts and dimensions as well as
the relationships across dimensional levels. Visual navigation is schema-
based, i.e., users interact with dimensional levels and the data instances
are displayed on-demand. The power of our approach is exemplified using
a real-world study from the domain of academic administration.

1 Introduction

Data warehouse technology, initially introduced in the early 90s to support data
analysis in business environments, has recently become popular in a variety of
novel applications like medicine, education, research, government etc. End-users
interact with the data using advanced visual interfaces that enable intuitive
navigation to the desired data subset and granularity as well as its expressive
presentation using a wide spectrum of visualization techniques.

Data warehouse systems adopt a multidimensional data model tackling the
challenges of the On-Line Analytical Processing (OLAP) [2] via efficient execu-
tion of queries that aggregate over large data volumes. Analytical values within
this model are referred to as measures, uniquely determined by descriptive val-
ues drawn from a set of dimensions. The values within a dimension are typically
organized in a containment type hierarchy to support multiple granularities.
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Standard OLAP ensures correct aggregation by enforcing summarizability in
all dimensional hierarchies. The concept of summarizability, first introduced in
[10] and further explored in [5] and [3], requires distributive aggregate functions
and dimension hierarchy values, or informally, it requires that 1) facts map
directly to the lowest-level dimension values and to only one value per dimension,
and 2) dimensional hierarchies are balanced trees [5].

At the level of visual interfaces, summarizability is also crucial for generating
a proper navigational hierarchy. Data browsers present each hierarchical dimen-
sion as recursively nested folders allowing users to browse either directly in the
dimensional data, in which case each hierarchical entity can be expanded to see
its child values, or in the dimensional attributes, where each hierarchical level
is mapped to a sub-folder of its parent level’s folder. Simple OLAP tools, e.g.,
Cognos PowerPlay [1], tend to provide only the data-based navigation whereas
advanced interfaces, such as Tableau Software [13] and SAP NetWeaver BI [11],
combine schema navigation with data display. Figure 1 shows the difference be-
tween data- and schema-based browsing for a hierarchical dimension Period.

(a) dimensional data (b) dimensional categories with on-demand data display

Fig. 1. Browsing in dimensional hierarchies: data vs. schema navigation

Analysts are frequently confronted with non-summarizable data which can-
not be adequately supported by standard models and systems. To meet the
challenges of novel applications, OLAP tools are to be extended at virtually
all levels of the system architecture, from conceptual, logical and physical data
transformation to adequately interfacing the data for visual querying and pro-
viding appropriate visualization techniques for comprehensive analysis.

This paper presents an OLAP framework capable of handling a wide spec-
trum of irregular dimensional hierarchies in a uniform and intuitive manner. All
introduced extensions are supported by enriching the meta-data and providing
algorithms for interfacing the data and mapping user interaction back to OLAP
queries. The remainder of the paper is structured as follows: Section 2 sets the
stage by describing related work and a motivating real-world case study from
the area of academic administration. A classification of supported hierarchical
patterns and re-modelling techniques for heterogeneous hierarchies are presented
in Section 3, followed by the methods for data transformation and translating
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the multidimensional schema into a navigational framework in Section 4. We
summarize our contribution and identify future research directions in Section 5.

2 Motivation and Related Work

2.1 Related Work on Multidimensional Data Modelling

A number of researchers have recognized the deficiencies of the traditional OLAP
data model [15] and suggested a series of extensions at the conceptual level.

A powerful approach to modeling dimension hierarchies along with SQL query
language extensions called SQL(H) was presented in [4]. SQL(H) does not re-
quire data hierarchies to be balanced or homogeneous. Niemi et al. [6] analyzed
unbalanced and ragged data trees and demonstrated how dependency informa-
tion can assist in designing summarizable hierarchies. Hurtado et al. [3] propose
a framework for testing summarizability in heterogeneous dimensions.

Pedersen et al. have formulated further requirements an extended multidi-
mensional data model should satisfy and evaluated 14 state-of-the-art models
from both the research community and commercial systems in [9]. Since none
of the existing models was even close to meeting most of the defined require-
ments, the authors proposed an extended model for capturing and querying
complex multidimensional data. This model, supporting non-summarizable hi-
erarchies, many-to-many relationships between facts and dimensions, handling
temporal changes and imprecision, is by far the most powerful multidimensional
data model of the current state of the art. A prototypical implementation of an
OLAP engine called the Tree Scape System, which handles irregular hierarchies
by normalizing them into summarizable ones, is described in [8].

To our best knowledge most of the extensions formalized by the above mod-
els have not been incorporated into any visual OLAP interface. In our previ-
ous work [14] we presented some insights into visual querying of heterogeneous
and mixed-granularity dimensions. Our current contribution is an attempt to
further reduce the gap between powerful concepts and deficient practices by de-
signing a comprehensive framework for visual analytical querying of complex
data.

2.2 Motivating Case Study

Our presented case study is concerned with the accumulated data on the ex-
penditures within a university. Academic management wishes the data to be
organized into an OLAP cube where the fact table Expenditures contains single
orders with the measure attribute amount and dimensional characteristics date,
cost class, project, purchaser, and funding. The values of each dimension are fur-
ther arranged into hierarchies by defining the desired granularity levels, as illus-
trated by a diagram in ME/R notation (Multidimensional Entity/Relationship,
introduced in [12]) shown in Figure 2.

We proceed by specifying various relationships within the dimensions of our
case study and the requirements for their modeling.
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Fig. 2. University expenditures case study as ME/R Diagram

1. Non-hierarchy : A dimension with a single granularity, i.e. not involved in
any incoming or outgoing rolls-up relationship, as is the case with funding.

2. Strict hierarchy : A dimension with only one outgoing rolls-up relationship
per entity, i.e. with a many-to-one relationship towards each upper level of
aggregation, for instance, chair → department → faculty → section.

3. Non-strict hierarchy : A dimension allows many-to-many relationships be-
tween its levels. In our example, the relationship between project and project
group allows a single project to be associated with multiple project groups.

4. Multiple hierarchies: A single dimension may have several aggregation paths,
as in period, where day may be grouped by month → quarter → semi-annual →
calendar year, or by week → calendar year, or by month → semester → academic
year. The former two paths are called alternative since they aggregate to the
same top level.

5. Heterogeneous hierarchy : Consider the purchaser entity which is a super-class
of educational division, administrative division, and staff member. Each sub-
class has its own attributes and aggregation levels resulting in heterogeneous
subtrees in the data hierarchy. Another example is staff member with sub-
division into administrative staff and teaching staff.

6. Non-covering hierarchy : Strict hierarchy whose data tree is ragged due to
allowing the links between data nodes to “skip” one or more levels. In terms
of the ME/R diagram, such behavior occurs whenever the outgoing rolls-up
relationship has more than one destinations level, as in cost class.

7. Non-onto hierarchy : Strict hierarchy that allows childless non-bottom nodes.
For example, in the rolls-up relationship administrative staff → administrative
division a division may appear to have no staff in purchaser role.

8. Mixed-granularity hierarchy : The data tree is unbalanced due to mixed gran-
ularity, as in the case of educational division whose sub-classes are, on the
one hand, the end-instances of purchaser dimension, but, on the other hand,
serve as aggregation levels in the hierarchy chair → department → faculty.
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3 Extending the Multidimensional Data Model

In our work we rely on the terminology and formalization introduced by Petersen
et al. in [9] since their model is the most powerful w.r.t. handling complex dimen-
sional patterns like the ones identified in the previous section. However, we have
also adopted some elements of the SQL(H) model [4] to enable heterogeneous
hierarchies.

3.1 Basic Definitions

Intuitively, data hierarchy is a tree with each node being a tuple over a set of
attributes. A dimensional hierarchy is based on a hierarchical attribute (the one
directly referenced in the fact table), propagated to all levels of the tree.

Definition 3.1. A hierarchical domain is a non-empty set VH with the only
defined predicates = (identity), � (child/parent relationship), and �∗ (tran-
sitive closure, or descendant/ancestor relationship) such that the graph G�
over the nodes {ei} of VH is a tree. Attribute A of VH is called a hierarchical
attribute.

A hierarchy H is non-strict whenever ∃(e1, e2, e3 ∈ VH)∧e1 � e2∧e1 � e3 ∧e2 �=
e3, or, informally, if any node is allowed to have more than one parent.

Definition 3.2. A hierarchy schema H is a four-tuple (C, �H, �H, ⊥H), where
C = {Cj , j = 1, . . . , k} are category types of H, �H is a partial order on the Cj ’s,
and �H and ⊥H are the top and bottom levels of the ordering, respectively.

Cj is said to be a category type in H , denoted Cj ∈ H, if Cj ∈ C. Predicates
� and �∗ are used to define child/parent and descendant/ancestor relationship,
respectively, between the category types in C.

Definition 3.3. A hierarchy (instance) H associated with hierarchy schema
H is a two-tuple (C, �), where C = {Cj} is a set of categories such that
Type(Cj) = Cj and � is a partial order on ∪jCj , the union of all dimensional
values in the individual categories.

A category Cj is a set of dimensional values e such that Type(e) = Cj ; |Cj |
returns the number of values in set Cj . Hierarchy’s data is stored in collec-
tion of tables with at most one table per schema node. Unlike in the orig-
inal model of Jagadish et al. [4], we do not disallow tables with straddling
levels in order to enable modeling of non-covering and mixed-granularity
hierarchies.

We are now ready to formalize the notion of a homogeneous dimension.

Definition 3.4. A homogeneous dimension Ḋ is defined by its hierarchy
schema H = (C, �H, �H, ⊥H) and the respective hierarchy instance H =
(C, �).
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⊥H is the type of Ḋ’s bottom category, i.e. the one containing the values of the
finest granularity; �H corresponds to an abstract root node with a single value
�, also referred to as ALL.

A heterogeneous dimension is defined as consisting of multiple sub-dimensions,
unified into a single hierarchy by means of super-classing:

Definition 3.5. A heterogeneous dimension D̈ is a pair (D,�D) where D =
{Di} is a set of sub-dimensions and �D is an abstract super-class root node.
Each sub-dimension Di is of type Ḋ or D̈.

Figure 3 shows the resulting dimensional fact schema of our case study.
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Fig. 3. University expenditures cube as 5-dimensional fact schema

3.2 Modeling Heterogeneous Hierarchies

At the conceptual level, heterogeneity corresponds to an is a relationship, i.e.
where the instances of a super-class are divided into sub-classes, each with its
own attributes and aggregation levels. Logically, a super-class corresponds to an
upper aggregation level w.r.t. its sub-class categories, but in the M/ER model
super-classing is used for “homogenizing” heterogeneous entities and thus, a
super-class ends up being a child of its sub-classes. Back to Figure 3, notice that
super-classes purchaser, educational division, and staff member had to be placed
underneath their respective sub-classes in the hierarchical schema.

From the logic of aggregation, the position of super-class entities is an obvious
misplacement provoked by the requirement to have a single bottom granularity
per dimension, so that it can be referenced by one foreign key in the fact table.

In Figure 4 we show the dimensional hierarchy of purchaser obtained by follow-
ing the logic of dis-aggregation1. Notice how the heterogeneity of the dimensional

1 Attached to each category node is the number of dimensional bottom-level values
covered by that catergory. Unlike standard hierarchical categories, a sub-class of an
is a relationship contains just a fraction of its parent’s values.
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Fig. 4. Reshaping heterogeneous dimensions using abstract nodes

data has become obvious even at the bottom level. Using a straightforward in-
tuition about hierarchically decomposing an aggregate, we can now derive a rule
for modeling a heterogeneous hierarchy :

� the most general super-class serves as the root category �D whereas any
further super-classes are normal categories;

� sub-classes are multiple child categories of their super-class category;
� sub-class category is of abstract type �Di

since it plays the role of an abstract
root node for sub-dimension Di;

� sub-class entity is used repeatedly as a non-abstract bottom category ⊥Di
if

it corresponds to the finest granularity of Di.

3.3 Modeling Mixed-Granularity Hierarchies

A special case of heterogeneity is a mixed-granularity hierarchy in which sub-
classes of an is a relationship are also used as hierarchy levels, as observed in
educational institution where faculty and department are purchasers in their own
right and also serve as aggregation categories for chair.

Our approach to modeling mixed-granularity is a straightforward mapping of
the two-fold nature of its categories by means of sub-classing: mixed-granularity
category is viewed as a heterogeneous dimension sub-divided into a non-
hierarchical and a hierarchical sub-dimension, corresponding to its respective
two roles. Further, the general rule of heterogeneous dimension modeling is ap-
plied. The resulting schema for educational division is shown in Figure 4.

4 Schema-Based Navigational Framework

Analysts interact with OLAP data in a predominantly “drill-down” fashion,
starting with highly aggregated values and descending step-wise to the desired
dimensionality and level of detail. The analyst’s task can be thus reduced to a)
selecting the measure and the aggregation function, b) browsing to the desired
granularity in dimensional hierarchies, and c) filtering data to define the subset
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to display. The visual OLAP interface is divided into two major areas of inter-
action: a navigation panel for browsing through dimensional data and the main
window for displaying query results. Selection of measures, functions, dimen-
sional levels and values is done using the mouse, by clicking, marking, dragging
and so on.

Fig. 5. Fact table
navigation

A fact table is represented by a top-level folder (cube icon)
with sub-divisions DIMENSIONS and MEASURES. Each hi-
erarchical dimension is a folder containing its schema cate-
gories as nested subfolders, from the root category � at the
top-level to the bottom category ⊥, the latter represented
by a page icon. Non-abstract categories are supplied with a
button for displaying their actual data. Figure 5 shows the
navigational structure of our case study’s OLAP cube.

In the remaining subsections we present the techniques
for mapping all types of dimensional hierarchies described
in section 2 to a schema-based navigational hierarchy.

4.1 Hierarchy Normalization Techniques

Schema-based navigation works correctly, if each data instance strictly adheres
to the schema of its respective hierarchy, or, formally, if for any two categories
Cj , Ci such that Ci � Cj the following summarizability conditions hold:

1. The mapping is covering : ∀e1 ∈ Ci : ∃e2 ∈ Cj ∧ e1 � e2,
2. The mapping is onto2: ∀e2 ∈ Cj : (∃e1 ∈ Ci∨(∃e1 ∈ Ck∧Ck � Cj))∧e1 � e2,
3. The mapping is strict : ∀e1 ∈ Ci : e2, e3 ∈ Cj ∧ e1 � e2 ∧ e1 � e3 ⇒ e2 = e1.

Handling of non-summarizable data depends largely on the semantics behind
that data. If irregularity is caused by missing or imprecisely captured values and
it is crucial to produce imprecision-aware queries and results (e.g., in clinical
diagnosing or risk assessment), the approach of Pedersen et al. [9], in which the
original data remains un-normalized and imprecision is made explicit to the user
by providing a set of alternative queries, may be an appropriate solution.

However, if the data hierarchy is intrinsically irregular, as is project dimension,
where a project may be assigned to multiple groups or not assigned to any, such
data should be normalized to become navigable in a uniform way.

We adopt and modify the dimension transformation technique proposed by
Pedersen et al. in [7]. The original algorithm normalizes irregular hierarchies
by enforcing the summarizability conditions in the above order. The whole 3-
step transformation process, exemplified by normalizing the project dimension is
shown in Figure 6. In the second step, we provide options b) and c) in addition
to the original option a). Onto is enforced in the last step and can be omitted
altogether since missing bottom-level values are not relevant for navigability.

2 By considering another child Ck we account for contingent heterogeneity of Cj .
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Fig. 6. 3-step normalization of the irregular dimension project

4.2 Schema Transformation Techniques

The navigational structure of a dimension is a recursive nesting of sub-
dimensional nodes, where each node is used for drilling down to the respective
granularity. The results of a drill-down are the sub-aggregates computed for each
dimensional value. With respect to its underlying data hierarchy, the behavior
of a sub-dimensional schema node can be reduced to the following types:

� Non-hierarchical, i.e bottom level, displayed as a non-expandable page icon;
� Single-hierarchy node is a folder containing a single subfolder of its child;
� Multiple hierarchy contains a subfolder for each of the alternative paths.

These paths are mutually exclusive, so that once the user has selected one
path, all others should be disabled for further interaction;

� Super-class is a folder containing all sub-class categories as subfolders. Since
the super-class has no data of its own, there is no data display option. How-
ever, drill-down is possible and produces the aggregates of the sub-class
categories. Sub-class folders are visually linked to each other, to be distin-
guished from the multiple hierarchy case since the former are not exclusive
and, therefore, can be further explored in parallel;
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� Abstract Root, node is a top-level folder with no data, used purely as a
“wrapper” for the entire dimensional schema nested therein. Notice that
abstract root is superfluous in case of a non-hierarchical (nothing to “wrap”)
or heterogeneous (abstract root already available) dimension.

� Mixed-granularity is a complex hierarchical node subdivided into a hierar-
chical and a bottom-level sub-dimensions.

Fig. 7. Schema navigation hierarchy
for a mixed-granularity fragment

Mixed-granularity deserves special atten-
tion due to its complexity. Figure 7 shows
the resulting navigation for the fragment
section → faculty → department → chair.
Its structure is derived from the schema de-
picted in Figure 4, with the exception that
the artificial sub-classes, such as �faculty and
�department are merged into a common super-
class nodeFaculty&Departments. This node
is abstract and thus behaves as expected,
i.e., its drill-down displays each of the two

sub-class aggregates. The resulting navigation structure is rather complex, but
it enables retrieval of a wide spectrum of aggregates with mere “drag-and-drop”
interactions.

We have implemented the presented schema-based exploration approach for
complex OLAP data as a Java application which connects to a specified database
and allows user to navigate in OLAP cubes presenting the results as a pivot table,
chart or a decomposition tree. At this stage, performance and scalability issues
were left out of consideration.

5 Conclusion and Future Work

Inspired by the growing demand for OLAP applications in novel domains, con-
fronted with irregular multidimensional data, we have presented a framework
for modeling complex hierarchical dimensions and their seamless mapping to a
schema-based navigational structure of a visual OLAP interface. Using a case
study from the area of academic administration, we have provided a classifica-
tion of dimensional behaviors, leading to non-summarizable hierarchies, such as
ragged, unbalanced or non-strict data trees, as well as heterogeneous or mixed-
granularity dimensional schema.

Our approach in based on a two-phase transformation of irregular dimen-
sions: 1) enforcing summarizability within single homogeneous data hierarchies,
and 2) reshaping complex hierarchical schemata into a set of well-behaved sub-
dimensions. Our model does not introduce any query language extensions; it
rather relies on the meta-data (e.g., dimension type, hierarchy schema, cate-
gory type) for mapping OLAP data to a visual browser and translating user
interaction back to the database operations.
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Among our future research directions are to provide explicit handling of tem-
poral and spatial aspects in modeling and querying OLAP data, to investi-
gate the applicability of schema-based browsing for semi-structured and high-
dimensional data, and to search for novel visualization and interaction techniques
capable of presenting large volumes of complex data for explorative analysis.
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