

Lecture Notes in Computer Science 4081
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

A Min Tjoa Juan Trujillo (Eds.)

DataWarehousing and
Knowledge Discovery

8th International Conference, DaWaK 2006
Krakow, Poland, September 4-8, 2006
Proceedings

13

Volume Editors

A Min Tjoa
Vienna University of Technology
Institute for Software Technology and Interactive Systems
Favoritenstrasse 9-11/188, 1040 Vienna, Austria
E-mail: amin@ifs.tuwien.ac.at

Juan Trujillo
University of Alicante, Department of Language and Information Systems
Apto. correos 99, 03690 Alicante, Spain
E-mail: jtrujillo@dlsi.ua.es

Library of Congress Control Number: 2006931061

CR Subject Classification (1998): H.2, H.3, H.4, C.2, H.5, I.2, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-37736-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37736-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11823728 06/3142 5 4 3 2 1 0

Preface

For more than a decade, data warehousing together with knowledge discovery
technology have made up the key technology for the decision-making process in
companies. Since 1999, due to the relevant role of these technologies in academia and
industry, the Data Warehousing and Knowledge Discovery (DaWaK) conference series
has become an international forum for both practitioners and researchers to share their
findings, publish their relevant results and debate in depth research issues and
experiences on data warehousing and knowledge discovery systems and applications.

The 8th International Conference on Data Warehousing and Knowledge Discovery
(DaWaK 2006) continued the series of successful conferences dedicated to these
topics. In this edition, DaWaK aimed at providing the right and logical balance
between data warehousing and knowledge discovery. In data warehousing the papers
cover different research problems, such as advanced techniques in OLAP visualiza-
tion and multidimensional modelling, innovation of ETL processes and integration
problems, materialized view optimization, very large data warehouse processing, data
warehouses and data mining applications integration, data warehousing for real-life
applications, e.g., medical applications and spatial applications. In data mining and
knowledge discovery, papers are focused on a variety of topics from data streams
analysis and mining, ontology-based mining techniques, mining frequent item sets,
clustering, association and classification, patterns and so on. These proceedings
contain the technical papers which were selected for presentation at the conference.

We received 198 abstracts, and finally received 146 papers from 36 countries. The
Program Committee selected 53 papers, making an acceptance rate of 36.3 % of
submitted papers.

We would like to express our gratitude to all Program Committee members and
external reviewers who reviewed the papers very profoundly and in a timely manner.
Due to the high number of submissions and the high quality of the submitted papers,
the reviewing, voting and discussion process was an extraordinary challenging task.
Special thanks must be given to Tho Manh Nguyen for all his support in the
organization of the PC tasks of DaWaK 2006. We would also like to thank to all the
authors who submitted their papers to DaWaK 2006 as their contributions formed the
basis of this year’s excellent technical program.

Many thank go to Ms. Gabriela Wagner for providing a great deal of assistance for
administering the DaWaK management issues as well as to Mr. Raimund Angleitner-
Flotzinger for the conference management software.

September, 2006 A Min Tjoa

Juan Trujillo

Program Committee

Conference Program Chairpersons

A Min Tjoa, Vienna University of Technology, Austria
Juan C. Trujillo, University of Alicante, Spain

Program Committee Members

Alberto Abello, Universitat Politecnica de Catalunya, Spain
Eugene Agichtein , Microsoft Research , USA
Paulo Azevedo, Universidade do Minho, Portugal
Jose Luis Balcazar, Politechnic University of Catalunya, Spain
Elena Baralis, Politecnico di Torino, Italy
Bettina Berendt, Humboldt University Berlin, Germany
Petr Berka, University of Economics, Prague, Czech Republic
Jorge Bernardino, Polytechnic Institute of Coimbra, Portugal
Elisa Bertino, Purdue University, USA
Sourav S Bhowmick , Nanyang Technological University, Singapore
Francesco Bonchi, ISTI - C.N.R., Italy
Henrik Boström, Stockholm University and Royal Institute of Technology, Sweden
Jean-Francois Boulicaut, INSA Lyon, France
Mokrane Bouzeghoub, University of Versailles, France
Stephane Bressan (SoC), National University of Singapore, Singapore
Peter Brezeny, University of Vienna, Austria
Robert Bruckner, Microsoft, USA
Luca Cabibbo, Università Roma Tre, Italy
Tru Hoang Cao, Ho Chi Minh City University of Technology, Vietnam
F. Amilcar Cardoso, Universidade de Coimbra, Portugal
Barbara Catania, DISI - University of Genoa, Italy
Jesús Cerquides, University of Barcelona, Spain
Chan Chee-Yong, National University of Singapore, Singapore
Arbee L.P. Chen, National Chengchi University, Taiwan, R.O.C.
Rada Chirkova, NC State University, USA
Sunil Choenni, University of Twente and Dutch Ministry of Justice, The Netherlands
Ezeife Christie, University of Windsor, Canada
Frans Coenen, The University of Liverpool, UK
Graham Cormode, Bell Labs, USA
Bruno Crémilleux, Université de Caen, France
Honghua Dai, Deakin University, Australia
Agnieszka Dardzinska, Bialystok Technical University, Poland

Program Committee VIII

Gautam Das, University of Texas at Arlington, USA
Karen C. Davis , University of Cincinnati, USA
Chabane Djeraba , University of Sciences and Technologies of Lille, France
Carlotta Domeniconi, George Mason University, USA
Guozhu Dong, Wright State University, USA
Johann Eder, University of Vienna, Austria
Tapio Elomaa, Tampere University of Technology, Finland
Roberto Esposito, Università di Torino, Italy
Vladimir Estivill-Castro, Griffith University, Australia
Wei Fan, IBM T.J.Watson Research Center, USA
Jianping Fan , University of North Carolina at Charlotte, USA
Ronen Feldman , Bar-Ilan University, Isarel
Ling Feng, University of Twente, The Netherlands
Eduardo Fernández-Medina, University of Castilla-La Mancha, Spain
Ada Fu, Chinese University of Hong Kong, Hong Kong
Johannes Fürnkranz, TU Darmstadt, Germany
Dragan Gamberger, Rudjer Boskovic Institute, Croatia
Jean-Gabriel Ganascia, LIP6 - University Paris VI, France
Chris Giannella, University of Maryland Baltimore County, USA
Bart Goethals, University of Antwerp, Belgium
Matteo Golfarelli , DEIS - University of Bologna, Italy
Gunter Grieser, Technical University Darmstadt, Germany
SK Gupta, Indian Institute of Technology, India
Mirsad Hadzikadic, College of Information Technology, UNC Charlotte, USA
Howard J. Hamilton, University of Regina, Canada
Eui-Hong (Sam) Han, iXmatch Inc., USA
Melanie Hilario, University of Geneva, Switzerland
Alexander Hinneburg, Martin Luther University Halle-Wittenberg, Germany
Jaakko Hollmen, Helsinki University of Technology, Finland
Se June Hong, IBM T.J. Watson Research Center, USA
Frank Höppner, University of Applied Sciences Braunschweig/Wolfenbuettel,

Germany
Andreas Hotho, University of Kassel, Germany
Xiaohua (Tony) Hu, Drexel University, USA
Jimmy Huang, York University, Canada
Eyke Hüllermeier, Otto-von-Guericke-Universität Magdeburg, Germany
Ryutaro Ichise, National Institute of Informatics, Japan
Hasan Jamil, Wayne State University, USA
Alípio Jorge, University of Porto, Portugal
Tamer Kahveci, University of Florida, USA
Panos Kalnis, National University of Singapore, Singapore
Murat Kantarcioglu, University of Texas at Dallas, USA
Mehmet Kaya, Firat University, Turkey
Eamonn Keogh, University of California - Riverside, USA

 Program Committee IX

Jörg Kindermann, Fraunhofer Institute for Autonomous Intelligent Systems AIS,
Germany

Arno Knobbe, Universiteit Utrecht, The Netherlands
Igor Kononenko, University of Ljubljana, Slovenia
Stefan Kramer , Technische Universität München, Germany
Michihiro Kuramochi, Google Inc., USA
Christine Largeron, EURISE Université Jean Monnet Saint-Etienne, France
Pedro Larrañaga, University of the Basque Country, Spain
Jens Lechtenbörger, University of Münster, Germany
Yue-Shi Lee, Ming Chuan University, Taiwan, R.O.C
Guanling Lee, National Dong Hwa University, Taiwan, R.O.C
Jinyan Li, Institute for Infocomm Research, Singapore
Xuemin Lin, UNSW, Australia
Beate List, Vienna University of Technology, Austria
Xiaohui Liu, Brunel University, UK
Donato Malerba, Università degli Studi di Bari, Italy
Nikos Mamoulis, University of Hong Kong, Hong Kong
Giuseppe Manco, ICAR-CNR, National Research Council, Italy
Sebban Marc, EURISE, University of Saint-Etienne, France
Michael May, Fraunhofer Institut für Autonome Intelligente Systeme, Germany
Rosa Meo, University of Torino, Italy
Mukesh Mohania, I.B.M. India Research Lab, India
Eduardo F. Morales, ITESM - Campus Cuernavaca, Mexico
Shinichi Morishita, University of Tokyo, Japan
Tadeusz Morzy, Poznan University of Technology, Poland
Alexandros Nanopoulos, Aristotle University of Thessaloniki, Greece
Wee Keong Ng , Nanyang Technological University, Singapore
Tho Manh Nguyen, Vienna University of Technology, Austria
Richard Nock, Université Antilles-Guyane, France
Andreas Nürnberger, University of Magdeburg, Germany
Arlindo L. Oliveira, IST/INESC-ID, Portugal
Georgios Paliouras, NCSR “Demokritos”, Greece
Themis Palpanas, IBM T.J. Watson Research Center, USA
Torben Bach Pedersen, Aalborg University, Denmark
Dino Pedreschi, University of Pisa, Italy
Jian Pei, Simon Fraser University, Canada
Jaakko Tapani Peltonen, Helsinki University of Technology, Finland
Clara Pizzuti, ICAR-CNR , Italy
Lubomir Popelinsky, Masaryk University in Brno, Czech Republic
David Powers, The Flinders University of South Australia, Australia
Jan Ramon, Katholieke Universiteit Leuven, Belgium
Zbigniew Ras, University of North Carolina,USA
Mirek Riedewald, Cornell University, USA
Christophe Rigotti, LIRIS Lyon France and ISTI Pisa, Italy
Gilbert Ritschard , University of Geneva, Switzerland

Program Committee X

Stefano Rizzi, University of Bologna, Italy
John Roddick, Flinders University, Australia
Henryk Rybinski, Warsaw University of Technology, Poland
Domenico Sacc à, Universita Della Calabria, Italy
Yucel Saygin, Sabanci University, Turkey
Monica Scannapieco, University of Rome, Italy
Josef Schiefer, Vienna University of Technology, Austria
Markus Schneider, University of Florida, USA
Michael Schrefl, University Linz, Austria
Timos Sellis, National Technical University of Athens, Greece
Giovanni Semeraro, University of Bari, Italy
Manuel Serrano, University of Castilla - La Mancha, Spain
Alkis Simitsis, National Technical University of Athens, Greece
Dan Simovici, University of Massachusetts at Boston, USA
Andrzej Skowron, Warsaw University Banacha 2, Poland
Carlos Soares, University of Porto, Portugal
Il-Yeol Song, Drexel University, Philadelphia, USA
Nicolas Spyratos, Universite Paris Sud, France
Jerzy Stefanowski, Poznan University of Technology, Poland
Olga Stepankova, Czech Technical University, Czech Republic
Reinhard Stolle, BMW Car IT, Germany
Jan Struyf, Katholieke Universiteit Leuven, Belgium
Gerd Stumme, University of Kassel, Germany
Domenico Talia, University of Calabria, Italy
Ah-Hwee Tan, Nanyang Technological University, Singapore
David Taniar, Monash University, Australia
Evimaria Terzi, University of Helsinki, Finland
Dimitri Theodoratos, New Jersey's Science & Technology University, USA
Riccardo Torlone, Roma Tre University, Italy
Jaideep Vaidya, Rutgers University, USA
Panos Vassiliadis, University of Ioannina, Greece
Wei Wang, University of North Carolina, USA
Marek Wojciechowski, Poznan University of Technology, Poland
Wolfram Wöß, Johannes Kepler University Linz, Autria
Mohammed J. Zaki, Rensselaer Polytechnic Institute, USA
Carlo Zaniolo, University of California, USA
Shichao Zhang, Sydney University of Technology, Australia
Djamel A. Zighed, University Lumière Lyon 2, France

External Reviewers

Helena Ahonen-Myka
Periklis Andritsos
Annalisa Appice

Ayca Azgin Hintoglu
Yijian Bai
Spiridon Bakiras

 Program Committee XI

S. Berger
Smriti Bhagat
Validmir Braverman
Yi Cai
Huiping Cao
Michelangelo Ceci
Raymond Chi-Wing Wong
Carmela Comito
Alfredo Cuzzocrea
Ibrahim Elsayed
Nuno Escudeiro
Daan Fierens
Gianluigi Folino
Elisa Fromont
Pedro Gabriel Ferreira
Arnaud Giacometti
Paulo Gomes
Andrea Gualtieri
Yanping Guo
Shuguo Han
Xuan Hong Dang
Ming Hua
Po-Wen Huang
Ali Inan
Laura Irina Rusu
Robert Jäschke
Tao Jiang
Xing Jiang
Antonio Jimeno
Hyun Jin Moon
Dimitrios Katsaros
Matjaž Kukar
Anne Laurent
Thorsten Liebig
Yi Luo
Maggie Man Ki Lau
Patrick Marcel
Elio Masciari
Massimiliano Mazzeo
Enza Messina
Pauli Miettinen
Fianny Mingfei Jiang
Pirjo Moen
Ailing Ni

George Papastefanatos
Julien Prados
Wenny Rahayu
R. Rajugan
Bernardete Ribeiro
François Rioult
Marko Robnik Šikonja
Luka Šajn
Jorge Sá-Silva
Christoph Schmitz
Jouni Seppänen
Cristina Sirangelo
Charalambos Spathis
Giandomenico Spezzano
Konrad Stark
Matthias Studer
Andrea Tagarelli
Rafik Taouil
Hetal Thakkar
Quan Thanh Tho
Christian Thomsen
Ivan Titov
Mihalis Tsoukalos
Nguyen Tuan Anh
Antonio Varlaro
Rifeng Wang
Karl Wiggisser
Alexander Woehrer
Adam Woznica
Robert Wrembel
Xiaoying Wu
Wugang Xu
Xuepeng Yin
Jia-Qing Ying
Xiaofang You
Hwanjo Yu
Yidong Yuan
Dingrong Yuan
Xinghuo Zeng
Ying Zhang
Jilian Zhang
Bin Zhou
Xin Zhou
Xiaofeng Zhu

Table of Contents

ETL Processing

ETLDiff: A Semi-automatic Framework for Regression Test
of ETL Software . 1

Christian Thomsen, Torben Bach Pedersen

Applying Transformations to Model Driven Data Warehouses 13
Jose-Norberto Mazón, Jesús Pardillo, Juan Trujillo

Bulk Loading a Linear Hash File . 23
Davood Rafiei, Cheng Hu

Materialized View

Dynamic View Selection for OLAP . 33
Michael Lawrence, Andrew Rau-Chaplin

Preview: Optimizing View Materialization Cost in Spatial
Data Warehouses . 45

Songmei Yu, Vijayalakshmi Atluri, Nabil Adam

Preprocessing for Fast Refreshing Materialized Views in DB2 55
Wugang Xu, Calisto Zuzarte, Dimitri Theodoratos, Wenbin Ma

Multidimensional Design

A Multiversion-Based Multidimensional Model . 65
Franck Ravat, Olivier Teste, Gilles Zurfluh

Towards Multidimensional Requirement Design . 75
Estella Annoni, Franck Ravat, Olivier Teste, Gilles Zurfluh

Multidimensional Design by Examples . 85
Oscar Romero, Alberto Abelló

OLAP and Multidimensional Model

Extending Visual OLAP for Handling Irregular
Dimensional Hierarchies . 95

Svetlana Mansmann, Marc H. Scholl

XIV Table of Contents

A Hierarchy-Driven Compression Technique for Advanced OLAP
Visualization of Multidimensional Data Cubes . 106

Alfredo Cuzzocrea, Domenico Saccà, Paolo Serafino

Analysing Multi-dimensional Data Across Autonomous
Data Warehouses . 120

Stefan Berger, Michael Schrefl

What Time Is It in the Data Warehouse? . 134
Stefano Rizzi, Matteo Golfarelli

Cubes Processing

Computing Iceberg Quotient Cubes with Bounding . 145
Xiuzhen Zhang, Pauline Lienhua Chou, Kotagiri Ramamohanarao

An Effective Algorithm to Extract Dense Sub-cubes from a Large
Sparse Cube . 155

Seok-Lyong Lee

On the Computation of Maximal-Correlated Cuboids Cells 165
Ronnie Alves, Orlando Belo

Data Warehouse Applications

Warehousing Dynamic XML Documents . 175
Laura Irina Rusu, Wenny Rahayu, David Taniar

Integrating Different Grain Levels in a Medical Data
Warehouse Federation . 185

Marko Banek, A Min Tjoa, Nevena Stolba

A Versioning Management Model for Ontology-Based
Data Warehouses . 195

Dung Nguyen Xuan, Ladjel Bellatreche, Guy Pierra

Data Warehouses in Grids with High QoS . 207
Rogério Lúıs de Carvalho Costa, Pedro Furtado

Mining Techniques (1)

Mining Direct Marketing Data by Ensembles of Weak Learners
and Rough Set Methods . 218

Jerzy B�laszczyński, Krzysztof Dembczyński, Wojciech Kot�lowski,
Mariusz Paw�lowski

Efficient Mining of Dissociation Rules . 228
Miko�laj Morzy

Table of Contents XV

Optimized Rule Mining Through a Unified Framework
for Interestingness Measures . 238

Céline Hébert, Bruno Crémilleux

An Information-Theoretic Framework for Process Structure
and Data Mining . 248

Antonio D. Chiaravalloti, Gianluigi Greco, Antonella Guzzo,
Luigi Pontieri

Mining Techniques (2)

Mixed Decision Trees: An Evolutionary Approach . 260
Marek Krȩtowski, Marek Grześ

ITER: An Algorithm for Predictive Regression Rule Extraction 270
Johan Huysmans, Bart Baesens, Jan Vanthienen

COBRA: Closed Sequential Pattern Mining Using Bi-phase
Reduction Approach . 280

Kuo-Yu Huang, Chia-Hui Chang, Jiun-Hung Tung, Cheng-Tao Ho

Frequent Itemsets

A Greedy Approach to Concurrent Processing of Frequent
Itemset Queries . 292

Pawel Boinski, Marek Wojciechowski, Maciej Zakrzewicz

Two New Techniques for Hiding Sensitive Itemsets and Their
Empirical Evaluation . 302

Ahmed HajYasien, Vladimir Estivill-Castro

EStream: Online Mining of Frequent Sets with Precise
Error Guarantee . 312

Xuan Hong Dang, Wee-Keong Ng, Kok-Leong Ong

Mining Data Streams

Granularity Adaptive Density Estimation and on Demand Clustering
of Concept-Drifting Data Streams . 322

Weiheng Zhu, Jian Pei, Jian Yin, Yihuang Xie

Classification of Hidden Network Streams . 332
Matthew Gebski, Alex Penev, Raymond K. Wong

Adaptive Load Shedding for Mining Frequent Patterns from
Data Streams . 342

Xuan Hong Dang, Wee-Keong Ng, Kok-Leong Ong

XVI Table of Contents

An Approximate Approach for Mining Recently Frequent Itemsets from
Data Streams . 352

Jia-Ling Koh, Shu-Ning Shin

Ontology-Based Mining

Learning Classifiers from Distributed, Ontology-Extended
Data Sources . 363

Doina Caragea, Jun Zhang, Jyotishman Pathak, Vasant Honavar

A Coherent Biomedical Literature Clustering and Summarization
Approach Through Ontology-Enriched Graphical Representations 374

Illhoi Yoo, Xiaohua Hu, Il-Yeol Song

Automatic Extraction for Creating a Lexical Repository
of Abbreviations in the Biomedical Literature . 384

Min Song, Il-Yeol Song, Ki Jung Lee

Clustering

Priority-Based k-Anonymity Accomplished by Weighted
Generalisation Structures . 394

Konrad Stark, Johann Eder, Kurt Zatloukal

Achieving k-Anonymity by Clustering in Attribute
Hierarchical Structures . 405

Jiuyong Li, Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Jian Pei

Calculation of Density-Based Clustering Parameters Supported
with Distributed Processing . 417

Marcin Gorawski, Rafal Malczok

Cluster-Based Sampling Approaches to Imbalanced
Data Distributions . 427

Show-Jane Yen, Yue-Shi Lee

Advanced Mining Techniques

Efficient Mining of Large Maximal Bicliques . 437
Guimei Liu, Kelvin S.H. Sim, Jinyan Li

Automatic Image Annotation by Mining the Web . 449
Zhiguo Gong, Qian Liu, Jingbai Zhang

Privacy Preserving Spatio-temporal Clustering on Horizontally
Partitioned Data . 459

Ali İnan, Yücel Saygın

Table of Contents XVII

Association Rules

Discovering Semantic Sibling Associations from Web Documents
with XTREEM-SP . 469

Marko Brunzel, Myra Spiliopoulou

Difference Detection Between Two Contrast Sets . 481
Hui-jing Huang, Yongsong Qin, Xiaofeng Zhu, Jilian Zhang,
Shichao Zhang

EGEA: A New Hybrid Approach Towards Extracting Reduced Generic
Association Rule Set (Application to AML Blood Cancer Therapy) 491

M.A. Esseghir, G. Gasmi, Sadok Ben Yahia, Y. Slimani

Miscellaneous Applications

AISS: An Index for Non-timestamped Set Subsequence Queries 503
Witold Andrzejewski, Tadeusz Morzy

A Method for Feature Selection on Microarray Data Using Support
Vector Machine . 513

Xiao Bing Huang, Jian Tang

Providing Persistence for Sensor Data Streams by Remote WAL 524
Hideyuki Kawashima, Michita Imai, Yuichiro Anzai

Classification

Support Vector Machine Approach for Fast Classification 534
Keivan Kianmehr, Reda Alhajj

Document Representations for Classification of Short Web-Page
Descriptions . 544

Miloš Radovanović, Mirjana Ivanović

GARC: A New Associative Classification Approach 554
Ines Bouzouita, Samir Elloumi, Sadok Ben Yahia

Conceptual Modeling for Classification Mining in Data Warehouses 566
Jose Zubcoff, Juan Trujillo

Author Index . 577

ETLDiff: A Semi-automatic Framework for Regression
Test of ETL Software

Christian Thomsen and Torben Bach Pedersen

Department of Computer Science, Aalborg University
{chr, tbp}@cs.aau.dk

Abstract. Modern software development methods such as Extreme Program-
ming (XP) favor the use of frequently repeated tests, so-called regression tests,
to catch new errors when software is updated or tuned, by checking that the soft-
ware still produces the right results for a reference input. Regression testing is
also very valuable for Extract–Transform–Load (ETL) software, as ETL soft-
ware tends to be very complex and error-prone. However, regression testing of
ETL software is currently cumbersome and requires large manual efforts. In this
paper, we describe a novel, easy–to–use, and efficient semi–automatic test frame-
work for regression test of ETL software. By automatically analyzing the schema,
the tool detects how tables are related, and uses this knowledge, along with op-
tional user specifications, to determine exactly what data warehouse (DW) data
should be identical across test ETL runs, leaving out change-prone values such
as surrogate keys. The framework also provides tools for quickly detecting and
displaying differences between the current ETL results and the reference results.
In summary, manual work for test setup is reduced to a minimum, while still
ensuring an efficient testing procedure.

1 Introduction

When software is changed, new errors may easily be introduced. To find introduced er-
rors or new behaviors, modern software development methods like Extreme Program-
ming (XP) [1] favor so-called regression tests which are repeated for every change.
After a change in the software, the tests can be used again and the actual results can be
compared to the expected results.

A unit-testing tool like JUnit [7] is well-suited to use as a framework for such tests.
In JUnit, the programmer can specify assertions that should be true at a specific point. If
an assertion does not hold, the programmer will be informed about the failed assertion.
In a framework like JUnit it is also very easy to re-run tests and automatically have the
actual results compared to the expected results.

As is well-known in the data warehouse (DW) community, Extract–Transform–Load
(ETL) software is both complex and error prone. For example, it is estimated that 80%
of the development time for a DW project is spent on ETL development [9]. Further,
ETL software may often be changed to increase performance, to handle changed or
added data sources, and/or to use new software products. For these reasons, regression
testing is essential to use. However, to the best of our knowledge, no prior work has
dealt with regression testing for ETL software.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 C. Thomsen and T.B. Pedersen

As a use case consider an enterprise with an ETL application that has been used for
some time but that does not scale well enough to handle the data anymore. The enter-
prise’s IT department therefore establishes a developer team to tune the ETL. The team
tries out many different ideas to select the best options. Thus many different test ver-
sions of the ETL application are being produced and tested. For each of these versions,
it is of course essential that it produces the same results in the DW as the old solution.
To test for this criterion, the team does regression testing such that each new test version
is being run and the results of the load are compared to the reference results produced
by the old ETL application.

A general framework like JUnit is not suited for regression testing of the entire ETL
process. Normally, JUnit and similar tools are used for small, well-defined parts or func-
tions in the code. Further, it is more or less explicitly assumed that there is functional
behavior, i.e., no side-effects, such that a function returns the same result each time it
is given the same arguments. On the contrary, what should be tested for ETL software
is the result of the entire ETL run or, in other words, the obtained side effects, not just
individual function values. Although it is possible to test for side effects in JUnit, it is
very difficult to specify the test cases since the database state, as argued in [2], should
be regarded as a part of the input and output space. But even when the data is fixed
in the input sources for the ETL, some things may change. For example, the order of
fetched data rows may vary in the relational model. Additionally, attributes obtained
from sequences may have different values in different runs. However, actual values for
surrogate keys assigned values from sequences are not interesting, whereas it indeed
is interesting how rows are “connected” with respect to primary key/foreign key pairs.
More concretely, it is not interesting if an ID attribute A has been assigned the value
1 or the value 25 from a sequence. What is important, is that any other attribute that is
supposed to reference A has the correct value. Further, the results to compare from an
ETL run have a highly complex structure as data in several tables has to be compared.
This makes it very hard to specify the test manually in JUnit.

In this paper, we present ETLDiff which is a semi-automatic framework for regres-
sion testing ETL software. This framework will, based on information obtained from
the schema, suggest what data to compare between ETL runs. Optionally the user may
also specify joins, tables, and columns to include/ignore in the comparison. ETLDiff
can then generate the so-called reference results, an off-line copy of the DW content.
Whenever the ETL software has been changed, the reference results can be compared
with the current results, called the test results, and any differences will be pointed out.
In the use case described above, the tuning team can thus use ETLDiff as a labor-saving
regression testing tool.

Consider the example in Figure 1 which will be used as a running example in the rest
of the paper. The schema is for a DW based on source data taken from TPC-H [15].

Here we have a fact table, LineItem, and four dimension tables, Date, Part, Supplier,
Customer, and an outrigger, Nation. The fact table has a degenerate dimension (Or-
derKey) and one measure. ETLDiff can automatically detect the six joins to perform
and which columns to disregard in the comparison. ETLDiff will here make a join for
each foreign key and then disregard the actual values of the columns involved in the
joins.

ETLDiff: A Semi-automatic Framework for Regression Test of ETL Software 3

Part
 PartKey: int (PK)

 Name: varchar(55)

 MFGR: char(25)

 Brand: char(10)

 Type: varchar(25)

 Size: int

 Container: char(10)

 RetailPrice: decimal

 Comment: varchar(23)

Supplier
 SuppKey: int (PK)

 Name: char(25)

 Address: varchar(40)

 NationKey: int

 Phone: char(15)

 AcctBal: decimal

 Comment: varchar(101)

Customer
 CustKey: int

 Name: varchar(25)

 Address: varchar(40)

 NationKey: int

 Phone: char(15)

 AcctBal: decimal

 MktSegment: char(10)

 Comment: vachar(117)

Nation
 NationKey: int

 Name: char(25)

 Comment: varchar(152)

 RegionKey: int

 RegionName: char(25)

 RegionComment: varchar(152)

LineItem
 DateKey: int (PK)

 PartKey: int (PK)

 SuppKey: int (PK)

 CustKey: int (PK)

 OrderKey: int (PK)

 Quantity: int

Date
 DateKey: int

 DayNr: int

 MonthNr: int

 Year: int

Fig. 1. An example schema

To use the framework the user only has to specify A1) how to start the ETL software
and A2) how to connect to the data warehouse, as shown in Figure 2. Apart from this,
the framework can do the rest. Thus, the user can start to do regression testing in 5
minutes. Setting this up manually would require much more time. For each schema, the
user would have to go through the following tasks: M1) write an SQL expression that
joins the relevant tables and selects the columns to compare, M2) verify that the query
is correct and includes everything needed in comparisons, M3) execute the query and
write the result to a file, M4) write an application that can compare results and point
out differences. Further, the user would have to go through the following tasks for each
ETL version: M5) Run the new ETL software, M6) run the query from M1 again, M7)
start the application from M4 to compare the results from M6 to the file from M3. Even
though much of this could be automated, it would take even more work to set this up.
Thus, to set up regression testing manually takes days instead of minutes.

etlcmd=’loaddw -f -x’
dbuser=’tiger’
dbdriver=’org.postgresql.Driver’
dburl=’jdbc:postgresql://localhost/tpch’

Fig. 2. Example configuration file for ETLDiff

The rest of this paper is structured as follows. Section 2 describes the design and im-
plementation of the ETLDiff framework. A performance study is presented in Section 3.
Section 4 presents related work. Section 5 concludes and points to future work.

2 The Test Framework

In this section we present, how ETLDiff is designed and implemented. There are two
basic parts of ETLDiff. A test designer and a test executer.

4 C. Thomsen and T.B. Pedersen

A test consists of all rows in the considered tables which are equi-joined accordingly
to foreign keys. Thus the fact table is joined to each of the dimension tables. However,
only some of the columns are used in the comparison. In the following it is explained
how to select the data to compare.

2.1 Process Overview

ETLDiff’s test designer makes a proposal about which data to include in a test. It does
so by exploring the DW schema and building a database model of the schema (task 1).
This model is used to build the so-called join tree (task 2a) which defines how to join
the DW tables used in the test. When this is done, special care has to be taken when
handling so-called bridge tables (task 2b). Since ETLDiff uses the tool RELAXML [11]
to export DW data to offline XML files, certain files that define this process have to be
generated as the last part of proposing a test (task 3). When executing a test, ETLDiff
exports test results to a file (task 4). This file, with the newest content from the DW,
is then compared to a file holding the reference results and differences are pointed out
(task 5). In the following subsections, these tasks are explained.

2.2 Task 1: Exploring the DW Schema and Building a Database Model

To find the data to compare, ETLDiff builds a database model of the database schema. A
database model represents tables and their columns, including foreign key relationships.
The model is simply built based on metadata obtained through JDBC. By default, all
tables and all their columns are included in the model. However, the user may specify a
table name or just a prefix or suffix of names not to include. The user may also specify
foreign keys that should be added to the model even though they are not declared in the
database schema or may conversely specify specific foreign keys declared in the schema
that should not be included in the model. For the DW example from Section 1, the built
model would be similar to the schema shown in Figure 1 unless the user specified
something else, e.g., to ignore the foreign key between LineItem and Date.

Next, ETLDiff has to find the columns to compare. In a DW, it is good practice to
use surrogate keys not carrying any operational meaning [9,10]. As previously argued,
it is not important whether a surrogate key has the value 1 or the value 25 as long as
attributes supposed to reference it have the correct value. For that reason, ETLDiff uses
a heuristic where all foreign keys and the referenced keys in the model are left out from
the data comparison unless the user has specified that they should be included. In the
example from Section 1, this would mean that OrderKey, PartKey, SuppKey, CustKey,
and NationKey would not be included in the comparison. The rest of the columns in the
example would be used in the comparison. Also columns the user has explicitly chosen
not to include will be disregarded. For example, it could be specified that RegionKey
should not be compared in the running example.

2.3 Task 2a: Building a Join Tree

Consider again the running example. Since both Supplier and Customer reference the
Nation outrigger, an instance of Nation should be joined to Customer and another in-
stance of Nation should be joined to Supplier.

ETLDiff: A Semi-automatic Framework for Regression Test of ETL Software 5

In more general terms, there must be an equi-join with an instance of a table for each
foreign key referencing the table in the database model. This means the database model
is converted into a tree, here called a join tree. Note that the database model already can
be seen as a directed graph where the nodes are the tables and the edges are the foreign
keys between tables.

In the join tree, nodes represent table instances and edges represent foreign keys
(technically, the edges are marked with the names of the key columns). For a star
schema, the root of the tree represents the fact table and the nodes at level 1 repre-
sent the dimension tables. Outriggers are represented at level 2 as children of the nodes
representing the referencing dimension tables. For a snowflake schema, the join tree
will have a level for each level in the dimension hierarchy. The join tree for the running
example is shown in Figure 3 (not showing the marks on the edges).

CustomerSupplier

LineItem

Date Part

Nation Nation

Fig. 3. A join tree for the running example

To convert the database model into a join tree, we use Algorithm 1., BuildJoinTree,
which is explained in the following. To avoid infinite recursion when AddTreeNodesDF
is called, we require that the database model does not contain any cycles, i.e., we require
that the database model when viewed as graph is a directed acyclic graph (DAG). This
is checked in l 1–2 of the algorithm. Note that this requirement holds for both star and
snow-flake schemas.

In l 3 the array visited is initialized. In l 4, the algorithm tries to guess the fact table
unless the user explicitly has specified the fact table. To do this, the algorithm considers
nodes in the database model with in-degree 0. Such nodes usually represent fact tables.
However, they may also represent the special case of bridge tables [9,10] which will
be explained later. To find the fact table, the algorithm looks among the found nodes
for the node with maximal out-degree. If there are more such nodes, the first of them
is chosen, and the user is warned about the ambiguity. Another heuristic would be to
consider the number of rows in the represented tables. The one with the largest number
of rows is more likely to be the fact table. We let f denote the node in the database
model that represents the fact table. In the join tree, the root is representing the fact
table (l 5). The recursive algorithm AddTreeNodesDF (not shown) visits nodes in a
depth-first order in the database model from the node representing the fact table (l 7–
8). When a node representing table t in the database model is visited from node n, a
new node representing t is added in the join tree as a child of the latest added node
representing n. This will also set visited[t] to true. Note that AddTreeNodesDF will
visit an adjacent node even though that node has been visited before. This for example
happens for Nation in the running example.

6 C. Thomsen and T.B. Pedersen

Algorithm 1. BuildJoinTree
1: if database model has cycles then
2: raise an error
3: set visited[t] = false for each node t in the database model
4: f ← GuessFactTable()
5: root ← TreeNode(f)
6: visited[f] ← true
7: for each node t adjacent to f in the database model do
8: AddTreeNodesDF (root, t)
9: // Find bridge tables and what is reachable from them

10: while changed do
11: changed ← false
12: for each table node t in the database model where visited[t] = false do
13: oldV isited ← visited
14: for each node s adjacent to t in the database model do
15: if oldV isited[s] then
16: // Before this part, t had not been visited, but s which is referenced
17: // by t had, so t should be included as if there were an edge (s, t)
18: for each join tree node x representing table s do
19: Remove edge (t, s) from database model // Don’t come back to s
20: AddTreeNodesDF (x, t) // Modifies visited
21: Add edge (t, s) to database model again
22: changed ← true

For the running example, the nodes in the database model are visited in the order
LineItem, Date, Part, Supplier, Nation, Customer, Nation. Only the already explained
part of the algorithm is needed for that. For some database models this part is, however,
not enough, as explained next.

2.4 Task 2b: Handling Bridge Tables

In the depth-first search only those nodes reachable from f will be found. In fact we
are only interested in finding the nodes that are connected to f when we ignore the
direction of edges. Other nodes that are unvisited after the algorithm terminates repre-
sent tables that hold data that is not related to the data in the fact table. However, nodes
may be connected to f when we ignore directions of edges but not when directions are
taken into consideration. Imagine that the example DW should be able to represent that
a supplier is located in many nations. To do this we would use a bridge table [9,10] as
shown in Figure 4. A bridge table and nodes reachable from the bridge table should also
be visited when the join tree is being built. Before terminating, the algorithm therefore
has to look for unvisited nodes that have an edge to a visited node (l 12 and 14–15).
If such an edge is found, it is “turned around” temporarily such that the depth-first
visit will go to the unvisited, but connected node. To do this, the edge is removed from
the database model (l 19), and a call to AddTreeNodesDF is then made (l 20) as if the
edge had the opposite direction. Since the edge is removed from the model, this call will

ETLDiff: A Semi-automatic Framework for Regression Test of ETL Software 7

Part
 PartKey: int (PK)

 Name: varchar(55)

 MFGR: char(25)

 Brand: char(10)

 Type: varchar(25)

 Size: int

 Container: char(10)

 RetailPrice: decimal

 Comment: varchar(23)

Supplier
 SuppKey: int (PK)

 Name: char(25)

 Address: varchar(40)

 Phone: char(15)

 AcctBal: decimal

 Comment: varchar(101)

Customer
 CustKey: int

 Name: varchar(25)

 Address: varchar(40)

 NationKey: int

 Phone: char(15)

 AcctBal: decimal

 MktSegment: char(10)

 Comment: vachar(117)

Nation
 NationKey: int

 Name: char(25)

 Comment: varchar(152)

 RegionKey: int

 RegionName: char(25)

 RegionComment: varchar(152)

LineItem
 DateKey: int (PK)

 PartKey: int (PK)

 SuppKey: int (PK)

 CustKey: int (PK)

 OrderKey: int (PK)

 Quantity: int

Date
 DateKey: int

 DayNr: int

 MonthNr: int

 Year: int

Bridge
 SuppKey: int (PK)

 NationKey: int (PK)

 Weight: float

Fig. 4. The example schema extended with a bridge table between Supplier and Nation

not come back to the already visited node. After the call, the edge is recreated (l 21).
Before the edge is turned around, it is necessary to make a copy of the visited ar-
ray. The reason is that the algorithm otherwise could risk to find an unvisited node u
where the visited node v and the unvisited node w are adjacent to u. The edge (u, v)
could then be turned around and the depth-first visit could visit u and w, before (u, v)
was recreated. But when w (which is adjacent to u) then was considered, it would be
visited and the edge (u,w) would be turned around and too many nodes would be
added. This situation does not occur when an unmodified copy (oldV isited) of visited
is used.

2.5 Task 3: Generating Data-Defining Files

ETLDiff uses RELAXML [11] for writing XML files. Proposing a test thus includes
generating a so-called concept which defines what data RELAXML should export and
a so-called structure definition which defines the structure of the XML. A concept can
inherit from other concepts.

When the join tree has been built, the data-defining concept can be built. In RELA-
XML a table can only be used once in a single concept. However, it might be necessary
to include data from a table several times as explained above. When this is the case,
ETLDiff can exploit RELAXML’s concept inheritance. A simple concept is made for
each node in the join tree. The concept simply selects all data in the table represented by
the node. An enclosing concept that inherits (i.e., “uses the data”) from all these simple
concepts is then defined. The results of the different concepts are joined as dictated by
the join tree. The enclosing concept will also disregard the columns that should not be
considered, e.g, dummy keys. In the running example, the final data corresponds to all
the columns except those participating in foreign key pairs. The raw data is computed
by the DBMS.

After the concepts have been created, a structure definition is created. ETLDiff uses
sorting and grouping such that similar XML elements are coalesced to make the result-
ing XML smaller (see [11]). If a supplier for example supplies many parts, it is enough
to list the information about supplier once and then below that list the information about
the different parts. Without grouping, the information on the supplier would be repeated

8 C. Thomsen and T.B. Pedersen

for each different part it supplies. The use of grouping and sorting means that the or-
der of the XML is known such that it is easy and efficient to compare the two XML
documents.

2.6 Task 4: Exporting DW Data to Files

The concepts and the structure definition are then used by RELAXML when it gen-
erates the files holding the reference results and the test results. Baed on the concept,
RELAXML generates SQL to extract data from the DW and based on the structure def-
inition, this data is written to an XML file. Since the data sets potentially can be very
large, it is possible to specify that the output should be compressed using gzip while it
is written.

2.7 Task 5: Comparing Data

When comparing data, there should be two data sets to consider. The desired result of
an ETL run (the reference results) and the current result (the test results). ETLDiff thus
performs two tasks when running a test: 1) Export data from the DW, and 2) compare
the test results to the reference results and point out any differences found. ETLDiff can
output information about differences to the console or to tables in a window as shown
in Figure 5. The window has two tabs. In the first tab there is a table showing all the
rows missing in the test results and in the second tab there is a table showing all the
extra rows in the test results.

Fig. 5. Window presenting differences between test results and reference results

When comparing test results to reference results, two data sets are read from two
XML files. These XML files are read using SAX [14]. Each of the SAX parsers is
running as a separate thread. Each thread reads XML and regenerates rows as they
were in the join result that was written to XML. In this way it is possible to compare
the files part by part with a very small main-memory usage. Only two rows from each

ETLDiff: A Semi-automatic Framework for Regression Test of ETL Software 9

of the join results have to be in memory at a given time (each thread may, however,
cache a number of rows). So for most use cases, the size of the data in main-memory
is measured in kilobytes. Since sorting is used before the XML is written, it is easy to
compare data from the XML files row by row.

3 Performance Results

A prototype1 of ETLDiff has been implemented in Java 5.0. Further, RELAXML has
been ported to Java 5.0, given new functionality, and performance-improved in a way
that has speeded up the XML writing significantly. In this section, we present a perfor-
mance study of the implemented prototype. The test machine is a 2.6 GHz Pentium 4
with 1GB RAM running openSuse 10.0, PostgreSQL 8.1, and Java 1.5.0 SE.

In the performance study, the DW from the running example has been used. ETL-
Diff has automatically proposed the test (this took 1.5 seconds). The data used origi-
nates from TPC-H’s dbgen tool. Data sets with different sizes (10MB, 25MB, 50MB,
75MB, 100MB) have been loaded and a data set (which either could be test results
or reference results) has been generated by ETLDiff. The resulting running times are
plotted in Figure 6(a). The shown numbers indicate the total amount of time spent, in-
cluding the time used by the DBMS to compute the join result. Notice that the data
sets generated by ETLDiff contain redundancy and thus are much bigger than the raw
data (10MB in the DW results in 129MB XML before compression and 10MB after
compression).

Further, the created test results have been compared to identical reference results.
This is the worst case for equally sized data sets since it requires all data to be compared.
The running times for the comparisons are plotted in Figure 6(b).

As is seen from the graphs, ETLDiff scales linearly in the size of the data, both when
generating and comparing results. When generating, 19.7 seconds are used for each
MB of base data and when comparing 9.5 seconds are used. This is efficient enough
to be used for regression tests. In typical uses, one would have a data set for testing
that is relatively small (i.e., often less than 100MB). The purpose of ETLDiff is to do
regression testing to find newly introduced errors, not to do performance testing where

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

MB in DW

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
)

MB in DW

(a) Generating data sets (b) Comparing data sets

Fig. 6. Running times

1 The source is publicly available from relaxml.com/etldiff/.

10 C. Thomsen and T.B. Pedersen

much larger data sets are used. When regression testing, it is typically the case, that a
single test case should be relatively fast to execute or that many test cases can be executed
during a night. Thus, a test case should be small enough to be easy to work with but
represent all special and normal cases that the ETL software should be able to handle.

4 Related Work

As previously mentioned, we believe that this work is the first framework for regression
testing ETL tools. Daou et al. [4] describe regression testing of Oracle applications
written in PL/SQL. The test cases to re-run are supposed to be automatically found
by the described solution. The method used may, however, omit test cases that could
reveal bugs [16]. In a recent paper [16], Willmor and Embury propose two new methods
for regression test selection. The regression test selection solutions [4,16] are closer
to traditional combined unit and regression testing where there exist many manually
specified tests that cover different parts of the code. In the present paper, the result of
the entire ETL run is being tested, but in a way that ignores values in surrogate keys
that can change between different runs without this indicates an error. Further, the test
is designed automatically.

JUnit [7] is the de-facto standard for unit testing and has inspired many other unit-
testing tools. In JUnit, it is assumed that the individual test cases are independent.
Christensen et al. [3] argue why this should not hold for software that stores data in
a database. They also propose a unit-test framework that allows and exploits structural
dependencies to reduce coding efforts and execution times. The work is taking side-
effects into consideration (such that a test can depend on the side-effect of another) but
is still considering the individual functions of the tested program, not the entire result
as the present paper does. The main difference is that the solution in the present paper
automatically designs the test and is specialized for DWs.

DbUnit [6] is an interesting test framework extending JUnit for database applica-
tions. DbUnit can put the database in a known start state before any test run. Further,
DbUnit can export database data to XML and import data from XML into the database.
With respect to that, DbUnit has some similarities with RELAXML [11] used to write
ETLDiff’s XML. DbUnit can also compare if two tables or XML data sets are identi-
cal, also if specific columns are ignored. In that, it is related to the core functionality of
ETLDiff. However, ETLDiff is automatic whereas DbUnit due to its unit test purposes
requires some programming. Like in JUnit, the programmer has to program the test
case and define the pass criterion for the test. This involves inheriting from a predefined
class and defining the test methods. When using ETLDiff, the test case is automatically
inferred. Another difference is that ETLDiff automatically will perform correct joins –
also when disregarding the join columns in the value comparisons. Columns to ignore
must be specified in DbUnit whereas in ETLDiff they are found automatically. A key
feature of ETLDiff is that it uses the DW semantic to automate the tests.

One paper [8] considers the problem of discovering dimensional DW schemas (fact
tables, measures, dimensions with hierarchies) in non-DW schemas. This is somewhat

ETLDiff: A Semi-automatic Framework for Regression Test of ETL Software 11

related to our problem of building a join tree, but as we can assume a DW schema and
do not want to find hierarchies or measures, but only join connections, the algorithm
in the present paper is much more efficient. Addtionally, the solution in [8] does not
handle bridge tables.

Industrial ETL tools like Informatica Powercenter, IBM Datastage, and Microsoft
SQL Server Integration Services (SSIS), SSIS offer nice facilities for debugging ETL
flows and allow ETL developers to use the testing facilities in Visual Studio, but have no
specific support for ETL regression testing, and do not generate the test automatically,
as we do.

In the implementation of ETLDiff, the data to compare is written to XML files in a
way that allows for memory-efficient and fast processing. This means that when ETL-
Diff is comparing data sets, it actually compares data read from XML documents. Much
work has been done in this area, see [5,13] for surveys. Since the XML structure allows
for a fast and memory-efficient comparison, ETLDiff uses its own comparison algo-
rithm to be more efficient than general purpose tools.

5 Conclusion

Motivated by the complexity of ETL software, this paper considered how to do regres-
sion testing of ETL software. It was proposed to consider the result of the entire ETL
run and not just the different functions of the ETL software. The semi-automatic frame-
work ETLDiff proposed in the paper can explore a data warehouse schema and detect
how tables are connected. Based on this, it proposes how to join tables and what data
to consider when comparing test results from a new ETL run to the reference results. It
only takes 5 minutes to start using ETLDiff. The user only has to specify how to start
the ETL and how to connect to the DW before he can start using ETLDiff. To setup
such regression testing manually is a cumbersome task to code and requires a lot of
time.

Performance studies of ETLDiff showed a good performance, both when extracting
data to compare from the DW and when performing the actual comparison between the
data in the DW and the so-called reference results. In typical uses, less than 100MB
data will be used for testing purposes, and this can be handled in less than an hour on a
typical desktop PC.

There are many interesting directions for future work. The structure definitions could
be optimized with respect to group by such that the resulting XML gets as small as
possible. The framework could also be extended to cover other test types, for example
audit tests where the source data sets and the loaded DW data set are compared.

Acknowledgements

This work was supported by the European Internet Accessibility Observatory (EIAO)
project, funded by the European Commission under Contract no. 004526.

12 C. Thomsen and T.B. Pedersen

References

1. K. Beck. “Extreme Programming Explained: Embrace Change”, Addison-Wesley Profes-
sional, 1999

2. D. Chays, S. Dan, P. Frankl, F.I. Vokolos, and E.J. Weyuker: “A Framework for Testing
Database Applications”. In Proceedings of ISSTA’00, pp. 147–157

3. C.A. Christensen, S. Gundersborg, K. de Linde, and K. Torp: “A Unit-Test Framework for
Database Applications”, TR-15, www.cs.aau.dk/DBTR

4. B. Daou, R.A. Haraty, and N. Mansour, “Regression Testing of Database Applications”. In
Proceedings of SAC 2001, pp. 285–290

5. G. Cobéna, T. Abdessalem, and Y. Hinnach: “A comparative study for XML
change detection”, TR, April, 2002, ftp://ftp.inria.fr/INRIA/Projects/
verso/VersoReport-221.pdf last accessed Jun. 9, 2006

6. dbunit.sourceforge.net, last accessed Jun. 9, 2006
7. junit.org, last accessed Jun. 9, 2006
8. M. R. Jensen, T. Holmgren, and T. B. Pedersen, “Discovering Multidimensional Structure in

Relational Data”. In Proceedings of DaWaK’04, pp. 138–148, 2004.
9. R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite: “The Data Warehouse Lifecycle

Toolkit”, Wiley, 1998
10. R. Kimball and M. Ross: “The Data Warehouse Toolkit”, 2nd Edition, Wiley, 2002
11. S.U. Knudsen, T.B. Pedersen, C. Thomsen, and K. Torp: “RELAXML: Bidirectional Transfer

between Relational and XML Data”. In Proceedings of IDEAS’05, pp. 151–162
12. Microsoft Corporation. SQL Server Integration Services. www.microsoft.com/sql/

technologies/integration/default.mspx, last accessed June 9, 2006.
13. L. Peters: “Change Detection in XML Trees: a Survey”, 3rd Twente Student Conference

on IT, 2005, referaat.ewi.utwente.nl/documents/2005 03 B-DATA AND
APPLICATION INTEGRATION/

14. www.saxproject.org, last accessed Jun. 9, 2006
15. tpc.org/tpch/, last accessed Jun. 9, 2006
16. D. Willmor and S. Embury: “A safe regression test selection technique for database-driven

applications”. In Proceedings of ICSM’05, pp. 421–430

Applying Transformations to Model Driven

Data Warehouses

Jose-Norberto Mazón, Jesús Pardillo, and Juan Trujillo

Dept. of Software and Computing Systems
University of Alicante, Spain

{jnmazon, jesuspv, jtrujillo}@dlsi.ua.es

Abstract. In the past few years, several conceptual approaches have
been proposed for the specification of the main multidimensional (MD)
properties of the data warehouse (DW) repository. However, these ap-
proaches often fail in providing mechanisms to univocally and automat-
ically derive a logical representation of the MD conceptual model. To
overcome this limitation, we present an approach to align the MD mod-
eling of the DW repository with the Model Driven Architecture (MDA)
by formally defining a set of Query/View/Transformation (QVT) trans-
formation rules which allow us to obtain a logical representation of the
MD conceptual model in an automatic way. Finally, we show how to
implement our approach in an MDA-compliant commercial tool.

1 Introduction

Data warehouse (DW) systems provide companies with many years of historical
information for the success of the decision-making process. Nowadays, it is widely
accepted that the basis for designing the DW repository is the multidimensional
(MD) modeling [1,2]. Various approaches for the conceptual design of the DW
repository have been proposed in the last few years [3,4,5,6]. These proposals
are twofold, on the one hand they try to represent the main MD properties at
the conceptual level by abstracting away details of the target database platform
where the DW will be implemented. On the other hand, they also define how
to derive a logical representation tailored to a specific database technology (re-
lational or multidimensional). However, these approaches are lacking in formal
mechanisms to univocally and automatically obtain the logical representation of
the conceptual model, and they only provide some informal guidelines to manu-
ally undertake this task, thus increasing the development time and cost to obtain
the final implementation of the DW repository.

In order to overcome this limitation, in a previous work [7], we have described
a model driven framework for the development of DWs, based on the Model
Driven Architecure (MDA) standard [8]. In this paper, we present how to ap-
ply the Query/View/Transformation (QVT) language [9] to the MD modeling
of the DW repository within our MDA framework. Therefore, we focus on (i)
defining the main MDA artifacts for the MD modeling of the DW repository, (ii)
formally establishing a set of QVT transformation rules to automatically obtain

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 13–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 J.-N. Mazón, J. Pardillo, and J. Trujillo

a logical representation tailored to a multidimensional database technology, and
(iii) applying the defined QVT transformation rules by using an MDA-compliant
tool (Borland Together Architect [10]), thus obtaining the final implementation
of the DW repository for a specific multidimensional tool (Oracle Express [11]).

The remainder of this paper is structured as follows. A brief overview of MDA
and QVT is given in section 2. Section 3 presents the related work. Section 4
describes our MDA approach for MD modeling of DWs. An example is provided
in section 5 to show how to apply MDA and QVT transformation rules by using
a commercial tool. Finally, section 6 points out our conclusions and future works.

2 Overview of MDA and QVT

Model Driven Architecture (MDA) is an Object Management Group (OMG)
standard [8] that addresses the complete life cycle of designing, deploying, in-
tegrating, and managing applications by using models in software development.
MDA separates the specification of system functionality from the specification
of the implementation of that functionality on a specific technology platform.
Thus, MDA encourages specifying a Platform Independent Model (PIM) which
contains no specific information of the platform or the technology that is used
to realize it. Then, this PIM can be transformed into a Platform Specific Model
(PSM) in order to include information about the specific technology that is used
in the realization of it on a specific platform. In fact, several PSMs can be derived
from one PIM according to different platforms. Later, each PSM is transformed
into code to be executed on each platform.

PIMs and PSMs can be specified by using any modeling language, but typi-
cally MOF-compliant languages, as the Unified Modeling Language (UML) [12],
are used since they are standard modeling languages for general purpose and, at
the same time, they can be extended to define specialized languages for certain
domains (i.e. metamodel extensibility or profiles).

Nowadays, the most crucial issue in MDA is the transformation between a
PIM and a PSM [8]. Thus, OMG defines QVT [9], an approach for expressing
these MDA transformations. This is a standard for defining transformation rules
between MOF-compliant models. This standard defines a hybrid specification for
transformations. On the one hand, there is a declarative part, which provides
mechanisms to define transformations as a set of relations (or transformation
rules) that must hold between the model elements of a set of candidate models
(i.e. source and target models). On the other hand, QVT also defines an im-
perative part which provides operational mappings between models. Within the
declarative part, there is a relations language which supports the specification
of relationships that must hold between MOF models. A set of these relations
defines a transformation between models. A relation contains:

– Two or more domains: each domain is a set of elements of a source
or a target model. The kind of relation between domains must be specified:
checkonly (C), i.e. it is only checked if the relation holds or not; and enforced
(E), i.e. the target model can be modified to satisfy the relation.

Applying Transformations to Model Driven Data Warehouses 15

– When clause: it specifies the conditions that must be satisfied to carry out
the relation (i.e. precondition).

– Where clause: it specifies the conditions that must be satisfied by all model
elements participating in the relation (i.e. postcondition).

Using QVT has several advantages: (i) it is a standard language, (ii) transfor-
mations are formally established and automatically performed, and (iii) trans-
formations can be easily integrated in an MDA approach.

3 Related Work

MDA has been successfully applied to several application domains, such as web
services [13] and applications [14], development of user interfaces [15], multi-
agent systems [16], and so on. However, to the best of our knowledge, there is
only one proposal that uses MDA for DW development, the Model Driven Data
Warehousing (MDDW) [17]. This approach is based on the Common Warehouse
Metamodel (CWM) [18], which is a metamodel definition for interchanging DW
specifications between different platforms and tools. Basically, CWM provides a
set of metamodels that are comprehensive enough to model an entire DW includ-
ing data sources, ETL processes, DW repository, and so on. These metamodels
are intended to be generic, external representations of shared metadata. The
proposed MDDW is based on modeling a complete DW by using elements from
various CWM packages. However according to [19], CWM metamodels are (i)
too generic to represent all peculiarities of MD modeling in a conceptual model
(i.e. PIM), and (ii) too complex to be handled by both final users and designers.
Therefore, we deeply believe that it is more reliable to design a PIM by using
an enriched conceptual modeling approach easy to be handled (e.g. [6]), and
then transform this PIM into a CWM-compliant PSM in order to assure the
interchange of DW metadata between different platforms and tools.

4 MDA for Multidimensional Modeling

In this section, the MD modeling of the DW repository is aligned with MDA.
We show how to define (i) the main MDA artifacts (i.e. models) for MD model-
ing, and (ii) a set of QVT transformation rules between these models. In Fig. 1,
we show a symbolic diagram of our approach: from the PIM (MD conceptual
model), several PSMs (logical representations) can be obtained by applying sev-
eral QVT transformations. Fig. 1 also represents that each PSM is related to one
specific technology: relational or multidimensional. While every relational tool
supports all relational elements (as tables, primary keys, and so on), there is no
standard to represent elements in multidimensional databases and proprietary
data structures are normally used in each tool. Thereby, different transforma-
tions must be defined in order to obtain the required PSM according to a specific
tool (e.g. Oracle Express, Hyperion Essbase, and so on).

16 J.-N. Mazón, J. Pardillo, and J. Trujillo

PIM

PSM2

RELATIONAL

PLATFORM

PSM3PSM1

ORACLE EXPRESS

(MULTIDIMENSIONAL

PLATFORM)

HYPERION ESSBASE

(MULTIDIMENSIONAL

PLATFORM)

…

…

PSMN

OTHER PLATFORM

QVT transformations

Fig. 1. Overview of our MDA approach for MD modeling of DW repository

The main advantage of our approach is that every PSM (logical representa-
tion) of the DW is automatically generated (by applying the corresponding QVT
transformations) once the PIM (conceptual model) is designed1. Therefore the
productivity is improved and development time and cost decrease. Furthermore,
since transformations represent repeatable design decisions, once a transforma-
tion is developed, we can use it in every PIM to generate different PSMs for
several projects. Therefore, we can include MD modeling best practices in MDA
transformations and reuse them in every project to assure high quality DWs.
Finally, if a new database technology or tool arises, we do not have to change
the PIM. Since it is platform-independent, it is still valid, and only the trans-
formations have to be updated in order to obtain the right PSM.

4.1 PIM for Multidimensional Modeling

A PIM describes the system hiding the necessary details related to a particular
platform. This point of view corresponds with a conceptual level. The major
aim at this level is to represent the main MD properties without taking into
account any specific technology detail, so the specification of the DW repository
is independent from the platform in which it will be implemented. This PIM for
the MD modeling of the DW repository is developed following our UML profile
presented in [6]. This profile contains the necessary stereotypes in order to carry
out the conceptual MD modeling successfully (see Fig. 2).

Our profile is formally defined and uses the Object Constraint Language
(OCL) [21] for expressing well-formed rules of the new defined elements, thereby
avoiding an arbitrary use of the profile. We refer reader to [6] for a further
explanation of this profile and its corresponding OCL constraints.

4.2 PSM for Multidimensional Modeling

A PSM represents the model of the same system specified by the PIM but it
also specifies how that system makes use of the chosen platform or technology.

1 How the PIM is constructed is out of the scope of this paper, but we refer reader
to [20] for a detailed explanation.

Applying Transformations to Model Driven Data Warehouses 17

+ownedAttribute+class

0..1 *

2..*

Class

Classifier

Generalization

Property

aggregation: AggregationKind
upper: UnlimetedNatural (from MultiplicityElement)

lower: Integer (from MultiplicityElement)

type: Type (from TypedElement)

Property

aggregation: AggregationKind
upper: UnlimetedNatural (from MultiplicityElement)

lower: Integer (from MultiplicityElement)

type: Type (from TypedElement)

Association
<<enumeration>>

AggregationKind

none
shared

composite

<<enumeration>>

AggregationKind

none
shared

composite

11

*

+general

+specific

+generalization

+memberEnd

+association

0..1

<<stereotype>>

Rolls-upTo

<<stereotype>>

Fact

<<stereotype>>

Dimension

<<stereotype>>

Base

<<stereotype>>

FactAttribute

<<stereotype>>

DimensionAttribute

<<stereotype>>

Descriptor

<<stereotype>>

DegenerateDimension

Fig. 2. UML profile for MD modeling

Relation

Classifier
(from Core)

Dimension

SimpleDimension

DimensionedObject
(from Multidimensional)

Dimension
(from Multidimensional)

dimension

referenceDimension

dataType

dimensionedObject

* *

*

1

Formula

expression:String

Variable

type:DataType

Fig. 3. Metamodel for Oracle Express

In MD modeling, platform specific means that the PSM is specially designed
for a kind of a specific database technology, namely relational technology (rela-
tional database to store MD data) or multidimensional technology (structures
the data directly in MD structures). Since, in a previous work, we have focused
on a relational database technology [7], in this paper we focus on a multidimen-
sional technology, in particular, Oracle Express [11].

In our approach, each PSM is modeled by using the Resource layer from
CWM [18], since it is a standard to represent the structure of data. CWM
metamodels can all be used as source or target for MDA transformations, since
they are MOF-compliant [18]. Specifically, in this paper we use the Multidimen-
sional metamodel, since it contains common data structures that represent every
MD property. However, multidimensional databases are not as standardized as
relational ones, since the former generally defines proprietary data structures.
Therefore, this Multidimensional metamodel only defines commonly used data
structures in order to be enough generic to support a vendor specific extension.
In this paper, we use the part of the Multidimensional metamodel shown in
Fig. 3 that corresponds to an Oracle Express extension defined in Volume 2,
Extensions, of the CWM Specification [22].

4.3 QVT Transformations for MD Modeling

Developing formal transformations, which can be automatically performed, be-
tween models (e.g. between PIM and PSM) is one of the strong points of MDA

18 J.-N. Mazón, J. Pardillo, and J. Trujillo

[23]. In this section, transformation rules are defined following the declarative
approach of QVT [9]. Therefore, according to the QVT relations language, we
have developed every relation to obtain a transformation between our PIM and
a PSM for a multidimensional platform (Oracle Express). Due to space con-
straints, only a subset of these relations is shown in Fig. 4-5, and only one of
them is described: Dimension2SimpleDimension (see Fig. 4). On the left hand
side of this relation we can see the source model and on the right side the target
model. The source model is the part of the PIM metamodel (see Fig. 2) that has
to match with the part of the PSM metamodel (see Fig. 3) which represents the
target model. In this case, a collection of elements that represents a Dimension
class together with the root Base class (i.e. terminal dimension level) of our
UML profile for MD modeling, matches with a SimpleDimension class from the
CWM multidimensional package. This element must have the same name that
the Dimension class of the source model and its type is obtained from a simple
function that turns a UML data type into an Oracle Express type (UML2OEType).

Dimension2SimpleDimension relation determines the transformation in the
following way: it is checked (C arrow) that the pattern on the left side (source
model) exists in the PIM, then the transformation enforces (E arrow) that a new
SimpleDimension class, according to the PSM metamodel, is created with its cor-
responding name and type. Once this relation holds, the following relations must
be carried out (according to the where clause): DimensionAttribute2Variable,
Base2SimpleDimension, and Fact2SimpleDimension.

d: Dimension

<<domain>>

C EC E

UMLMD CWM

Dimension2SimpleDimension

b : Base

wherewhere

DimensionAttribute2Variable(b,sd,n_d); Base2SimpleDimension(b,sd);

Fact2SimpleDimension(d,sd); OEType=UML2OEType(t_d);

name=n_d

sd: SimpleDimension

<<domain>>

name=n_d

datatype=OEType

: Descriptor

: Association

: Property

: Property

association

memberEnd

: Type

name=t_d

type

ownedAttribute

class

ownedAttribute

EC E

Base2SimpleDimension

wherewhere

DimensionAttribute2Variable(b2,sd,n_b2); Base2SimpleDimension(b2,sd);

OEType=UML2OEType(t_d); n_r=n_b2+’.’+n_sd;

sd: SimpleDimension

name=n_b2

datatype=OEType

: Relation

name=n_r

referenceDimension

dimensionedObject

b2: Base

name=n_b2

: Rolls-upTo

: Property

name=“R”

: Property

name=“D”

association

memberEnd

: Descriptor: Type

name=t_d

type

<<domain>>

b1 : Base

sd: SimpleDimension

<<domain>>

name=n_sd

UMLMD CWM

ownedAttribute

ownedAttribute

class

Fig. 4. QVT relations for Dimension and Base classes

5 Case Study

In this section, we provide an example to describe how to apply the defined
QVT transformations by using an MDA-compliant tool (Borland Together Ar-
chitect [10]), thus obtaining the final implementation of the DW repository for
a specific multidimensional tool (Oracle Express [11]).

Applying Transformations to Model Driven Data Warehouses 19

b: Base

<<domain>>

DimensionAttribute2Variable

: DimensionAttribute

name=n_da

wherewhere

OEType=UML2OEType(t_da);

n_v = if (prefix=‘’) then n_da else prefix + ‘_’ + n_da endif;

C EC E

prefix: String

<<domain>>

C

: Type

name=t_da

type

: SimpleDimension

<<domain>>

: Variable

name=n_v

type=OEType

dimensionedObject

ownedAttribute

UMLMD CWM

d: Dimension

name=n_d

wherewhere

FactAttribute2Variable(f,sd,n_f); DerivedFactAttribute2Formula(f,sd,n_f);

DegenerateDimension2SimpleDimension(f,sd,n_f);

<<domain>>

Fact2SimpleDimension

f: Fact

name=n_f

: Association

: Property

aggregation=“none”

: Property

aggregation=“shared”

sd : SimpleDimension

<<domain>>

C EC E

UMLMD CWM
ownedAttribute

association

memberEnd
class

Fig. 5. QVT relations for DimensionAttribute and Fact classes

Together Architect [10] is a tool designed by Borland to support develop-
ers in the design of software applications by using several MDA features. One
of the most valuable features of Borland Together Architect is the QVT lan-
guage in order to implement transformations between models. In fact, this tool
only implements the imperative part of the latest QVT specification [9]. There-
fore, we have developed the corresponding imperative transformation rules of
the declarative ones described in section 4.3, since it is easier to define declara-
tive transformations first (they are clearer and more understandable) instead of
developing imperative transformations from scratch.

We have implemented a case study about a hotel. We focus on the Booking
fact (customers that book a room). This fact (represented as) contains several
measures (fact attributes stereotyped with) to be analyzed (Price, Quantity,
Discount, and Total). Furthermore, we specify a number of invoice (invoiceN) as
a degenerate dimension (). On the other hand, we also consider the following
dimensions () as contexts to analyze measures: Customer, Check in date (i.e.
the date when the customer checks in), Check out date (i.e. the date when the
customer checks out), and Room. We focus on the Customer dimension, with
the following bases () or hierarchy levels: Customer data, City, and Country.
Each of these levels can have a descriptor () or dimension attributes ().

Check_out_date

Check_in_date

Room
Booking

Price : Currency

Quantity : Integer

Discount : Double

/ Total : Currency

invoiceN : String
Customer

Customer_data

ID : String

Name : String

DateBirth : Date

Country

Name : String

City

Name : String

+r +d<<Rolls-upTo>>+r +d<<Rolls-upTo>>

Fig. 6. PIM for hotel case study

20 J.-N. Mazón, J. Pardillo, and J. Trujillo

Booking_invoiceN:
SimpleDimension

Booking_Price:
Variable

Booking_Quantity:
Variable

Booking_Discount:
Variable

Booking_Total: Formula

expression=”Booking_Quantity”*”Booking_Price”-
”Booking_Discount”*”Booking_Price”/100

dimensionedObject dimensionedObject dimensionedObject

dimensionedObject

dimension

dimensionedObject dimensionedObject

dimensionedObject

Customer:
SimpleDimension

dimension

dimension

dimension dimension

dimension

dimensionedObject

City.Customer:
Relation

dimensionedObject

City:
SimpleDimension

referenceDimension

Country.City:
Relation

dimensionedObject

Country:
SimpleDimension

referenceDimension

Customer_Name:
Variable

Customer_DateBirth:
Variable

dimensionedObject

dimensionedObject

dimension

type=”Decimal” type=”Integer” type=”Decimal”

Text:
DataType

Text:
DataType

Text:
DataType

dataType

dataType

dataType

type=”Date”

type=”Text”

Text:
DataType

dataType

Fig. 7. PSM for hotel case study

From the defined PIM (see Fig. 6), we can use Borland Together Archi-
tect to apply the developed transformation rules in order to obtain the cor-
responding PSM for Oracle Express. In Fig. 8 we show an implementation of
the Dimension2SimpleDimension transformation rule in Borland Together Ar-
chitect. After applying every QVT transformation rule to the defined PIM (see
Fig. 6), the resulting PSM is shown in Fig. 7, and the final implementation in
Oracle Express is shown in Fig. 9.

6 Conclusion and Future Work

In this paper, we have presented an MDA approach for the MD modeling of
DWs. We have focused on defining a PIM for MD modeling, a PSM accord-
ing to a multidimensional database technology by using CWM, and a set of
QVT transformation rules in order to derive the PSM from the PIM. An ex-
ample of applying our approach has been given in order to show every of the
developed QVT transformation rules. This example has been developed in an
MDA-compliant tool: Borland Together Architect.

According to our MDA framework for the development of the DW [7], we
plan to develop transformations for each part of a DW system (ETL processes,
data mining, and so on) by using other CWM metamodels. Moreover, we plan
to enrich the presented transformations by adding metrics in order to be able to
obtain the highest quality PSM.

Applying Transformations to Model Driven Data Warehouses 21

Fig. 8. Dimension2SimpleDimension implemented in Borland Together Architect

Fig. 9. Oracle Express implementation for our case study

Acknowledgements

This work has been partially supported by the METASIGN (TIN2004-00779)
and the DSDM (TIN2005-25866-E) projects from the Spanish Ministry of Edu-
cation and Science, by the DADASMECA project (GV05/220) from the Valen-
cia Ministry of Enterprise, University and Science (Spain), and by the DADS
(PBC-05-012-2) project from the Castilla-La Mancha Ministry of Education and
Science (Spain). Jose-Norberto Mazón is funded by the Spanish Ministry of Ed-
ucation and Science under a FPU grant (AP2005-1360).

22 J.-N. Mazón, J. Pardillo, and J. Trujillo

References

1. Kimball, R., Ross, M.: The Data Warehouse Toolkit. John Wiley & Sons (2002)
2. Inmon, W.: Building the Data Warehouse. Wiley & Sons, New York (2002)
3. Abelló, A., Samos, J., Saltor, F.: A framework for the classification and description

of multidimensional data models. In: DEXA. Volume 2113 of Lecture Notes in
Computer Science., Springer (2001) 668–677

4. Golfarelli, M., Rizzi, S.: Methodological framework for data warehouse design. In:
DOLAP, ACM (1998) 3–9

5. Tryfona, N., Busborg, F., Christiansen, J.G.B.: starER: A conceptual model for
data warehouse design. In: DOLAP, ACM (1999) 3–8

6. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data & Knowledge Engineering (In Press)

7. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the devel-
opment of data warehouses. In: DOLAP, ACM (2005) 57–66

8. Object Management Group: MDA Guide 1.0.1.
http://www.omg.org/cgi-bin/doc?omg/03-06-01 . (Visited March 2006)

9. Object Management Group: MOF 2.0 Query/Views/Transformations.
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01. (Visited March 2006)

10. Borland Together: http://www.borland.com/together. (Visited March 2006)
11. Oracle: http://www.oracle.com. (Visited March 2006)
12. Object Management Group: Unified Modeling Language Specification 2.0.

http://www.omg.org/cgi-bin/doc?formal/05-07-04. (Visited March 2006)
13. Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach for

web service platform. In: EDOC, IEEE Computer Society (2004) 58–70
14. Meliá, S., Gómez, J., Koch, N.: Improving web design methods with architec-

ture modeling. In: EC-Web. Volume 3590 of Lecture Notes in Computer Science.,
Springer (2005) 53–64

15. Vanderdonckt, J.: A MDA-compliant environment for developing user interfaces
of information systems. In: CAiSE. Volume 3520 of Lecture Notes in Computer
Science., Springer (2005) 16–31

16. Maria, B.A.D., da Silva, V.T., de Lucena, C.J.P.: Developing multi-agent sys-
tems based on MDA. In: CAiSE Short Paper Proceedings. Volume 161 of CEUR
Workshop Proceedings., CEUR-WS.org (2005)

17. Poole, J.: Model Driven Data Warehousing (MDDW). http://www.cwmforum.org/
POOLEIntegrate2003.pdf. (March 2006)

18. Object Management Group: Common Warehouse Metamodel (CWM) Specifica-
tion 1.1. http://www.omg.org/cgi-bin/doc?formal/03-03-02. (March 2006)

19. Medina, E., Trujillo, J.: A standard for representing multidimensional properties:
The Common Warehouse Metamodel (CWM). In: ADBIS. Volume 2435 of Lecture
Notes in Computer Science., Springer (2002) 232–247

20. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing data warehouses:
from business requirement analysis to multidimensional modeling. In: REBNITA,
University of New South Wales Press (2005) 44–53

21. Object Management Group: Object Constraint Language (OCL) Specification 2.0.
http://www.omg.org/cgi-bin/doc?ptc/03-10-14 . (Visited March 2006)

22. Object Management Group: Common Warehouse Metamodel (CWM) Spec-
ification 1.1. Volume 2. Extensions. http://www.omg.org/cgi-bin/doc?ad/
2001-02-02. (Visited March 2006)

23. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Practice and Promise of
The Model Driven Architecture. Addison Wesley (2003)

Bulk Loading a Linear Hash File

Davood Rafiei and Cheng Hu

University of Alberta
{drafiei, chenghu}@cs.ualberta.ca

Abstract. We study the problem of bulk loading a linear hash file;
the problem is that a good hash function is able to distribute records
into random locations in the file; however, performing a random disk
access for each record can be costly and this cost increases with the
size of the file. We propose a bulk loading algorithm that can avoid
random disk accesses by reducing multiple accesses to the same location
into a single access and reordering the accesses such that the pages are
accessed sequentially. Our analysis shows that our algorithm is near-
optimal with a cost roughly equal to the cost of sorting the dataset, thus
the algorithm can scale up to very large datasets. Our experiments show
that our method can improve upon the Berkeley DB load utility, in terms
of running time, by two orders of magnitude and the improvements scale
up well with the size of the dataset.

1 Introduction

There are many scenarios in which data must be loaded into a database in large
volumes at once. This is the case, for instance, when building and maintaining
a data warehouse, replicating an existing data, building a mirror Internet site
or importing data to a new DBMS. There has been work on bulk loading tree-
based indexes (e.g. quadtree [6], R-tree [3] and UB-Tree [4]), loading into an
object-oriented database (e.g. [15,2]) and resuming a long-duration load [10].
However, we are not aware of a bulk loading algorithm for a linear hash file.
This may seem unnecessary, in particular, if both sequential and random disk
accesses are charged a constant time; but given that a random access costs a
seek time and half of a rotational delay more, a general rule of thumb is that
one can get 500 times more bandwidth by going to a sequential access [5]. This
seems to be consistent with our experimental findings.

There are a few complications with loading a linear hash file which need to be
resolved. First, the file is dynamic and both the hash functions and the record
locations change as more data is loaded. Second, the final structure of a hash
file depends on factors such as data distribution, the split policy and the arrival
order of the records. Third, without estimating a target hash layout, it is difficult
to order the input based on the ordering of the buckets in the hash file.
Overview of Linear Hashing: Linear hashing is a dynamic hashing scheme
that gracefully accommodates insertions and deletions by allowing the size of

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 23–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

24 D. Rafiei and C. Hu

the hash file to grow and shrink [11]. Given a hash file with initially N0 buckets
and a hash function h() that maps each key to a number, h0(key) = h(key) mod
N0 is called a base hash function and hi(key) = h(key) mod 2iN0 for i > 0
are called split functions where N0 is typically chosen to be 1. Buckets are split
when there is an overflow. Linear hashing does not necessarily split a bucket
that overflows, but always performs splits in a deterministic linear order. Thus
the records mapped to an overfilled bucket may be stored in an overflow bucket
that is linked to the primary area bucket.
Loading a Linear Hash: Consider loading a linear hash file with N0 = 1. the
hash file initially has a single bucket and grows in generations to 2, 4, . . ., 2n

buckets. In the 0th generation, the hash file grows from a single bucket to two
buckets. Every record of the old bucket with its least significant bit (referred to
here as bit 0) set is moved to the new bucket. In the ith generation, the hash has
2i buckets and grows into 2i+1 buckets in a linear order. For each record key,
the ith bit of its hash value is examined and it is decided if the record must be
moved to a newly-created bucket.
Paper Organization: Section 2 presents our bulk loading algorithm. In Sec-
tion 3, we compare and contrast our methods to caching, which can be seen as
an alternative to bulk loading. Section 4 presents and analyzes our experimental
results. Finally, Section 5 reviews the related work and Section 6 concludes the
paper and discusses possible extensions and future work.

2 Bulk Loading

Based on our analysis [13], the cost of loading can be reduced if we can reduce
or eliminate random page accesses and record movements.

2.1 Straightforward Solutions and Problems

To avoid random disk accesses in loading a hash file, a general solution is to sort
the records based on the addresses they are hashed to before loading. Unlike
static hashing where each record is mapped to a fixed location, the address of
a record in a linear hash file is not fixed and it changes as more records are
inserted or deleted. Sorting the records based on the hash values is not also an
option since there is not a single hash function.

An alternative is to estimate the number of generations a hash file is expected
to go through, say r, and sort the records based on the function h(key) mod 2r

of their key values. This solution can avoid random disk accesses if the hash file
(after all the data is loaded) is in a state right at the beginning or the end of a
generation, i.e. bucket 0 is the next bucket to split. Otherwise r, the number of
bits used for sorting, is not a natural number. Clearly one can solve the problem
using �r� bits for addressing, for the cost of an underutilized hash file. But this
can almost double the space that is really needed.

The design of a linear hash file (as discussed in the previous section) forces the
records within each bucket to have a few least significant bits of their hash values

Bulk Loading a Linear Hash File 25

the same. For instance, in the ith generation, the hash values of the records in
each bucket must all have their i least significant bits the same. It is clear that
there is not a unique final layout that satisfies this constraint. The final layout,
for instance, can vary with the order in which the records are inserted.

2.2 Input Ordering and Load Optimality

There are many different ways of ordering a given set of input records, and each
ordering may result into a different hash file configuration. To reduce the number
of possible hash layouts that we need to search for, we define some equivalent
classes of layouts.

Definition 1. Let R(b) denote the set of records that are stored in either the
primary bucket b or an overflow bucket linked to primary bucket b. Two linear
hash layouts l1 and l2 are equivalent if (1) for every primary-area bucket b1 in
l1, there is a primary-area bucket b2 in l2 such that R(b1) = R(b2), and (2) for
every primary-area bucket b2 in l2, there is a primary-area bucket b1 in l1 such
that R(b1) = R(b2).

For the purpose of loading, two different configurations may be treated the same
if both have the same space overheads and I/O costs. On the other hand, the
construction costs of two equivalent layouts can be quite different. We develop
a notion of optimality which to some degree characterizes these costs.

Definition 2. Suppose a target hash file is fixed and has N primary-area buck-
ets. An optimal ordering of the records is the one such that loading records in
that order into the hash file involves no bucket splits nor record movements and
no bucket is fetched after it is written.

This notion of optimality does not provide us with an actual load algorithm but
makes it clear that before a bucket is written, all records that belong to the
bucket must be somehow grouped together. Furthermore, to avoid bucket splits
and record movements, the final layout must be predicted before the data is
actually loaded. Our bulk loading algorithm is presented next.

2.3 Our Algorithm

Suppose a final hash layout is fixed and it satisfies the user’s expectation, for
instance, in terms of the average number of I/Os per probe. Thus, we know
the number of buckets in the hash file (the details of our estimation is discussed
elsewhere [13]). For each record, r least significant bits of its hash value gives the
address of the bucket where the record must be stored. As is shown in Alg. 1.,
before the split point is reached, r = �log2N� bits. At the split point, the number
of bits used for addressing is reduced by one. Since the input is sorted based on
b least significant bits of the hash values in a reversed order, all records with
the same r1, r2 ≤ b least significant bits are also grouped together. Hence the
correctness of the algorithm follows. Furthermore, the input ordering satisfies
our optimality criteria; after sorting, the algorithm does not perform any bucket
splits or record movements and no bucket is fetched after it is written.

26 D. Rafiei and C. Hu

Algorithm 1. Bulk Loading a hash file

Estimate the number of primary buckets in the hash file and denote it with N ;

r1 = �log2N�; r2 = �log2N�
Sort the records on b ∈ [r2, mb] least significant bits of their hash values in a reversed
order, where mb is the maximum length of a hash value in bits;

Let p = N − 2r1 denote the next bucket that will split
r = r2; b = 0; {current bucket that is being filled}
while there are more records do

Get the next record R with the hash value HR;
Let h be the r least significant bits of HR;
Reverse the order of the bits in h;
if h > b {the record belongs to the next bucket} then

Write bucket b to the hash file; b + +;
if b ≥ p {has reached the split point} then

r = r1;
end if

end if
if bucket b is not full then

Insert R into bucket b;
else

Write bucket b to the hash file if it is not written;
Insert R into an overflow bucket;

end if
end while

Lemma 1. The total cost of Alg. 1. in terms of the number of I/Os is roughly
the cost of sorting the input plus the cost of sequentially writing it.

Proof See [13].

3 Caching vs. Data Partitioning

Caching the buckets of a hash file can reduce the number of I/Os and may be
an alternative to bulk loading, if it can be done effectively. The effectiveness of
caching mainly depends on the replacement policy that is chosen and the size
of the available memory. When the memory size is limited, a “good” caching
scheme must predict the probe sequence of the records and keep the buckets
that are expected to be accessed in near future in memory. However, unless
the data is ordered to match the ordering of the buckets in the hash file, the
probe sequence is expected to be random and every bucket has pretty much the
same chance of being probed. Therefore, it is not clear if any replacement pol-
icy alone can improve the performance of the loading. If we assume the unit of
transfer between the disk and memory is a bucket, reducing the size of a bucket
can reduce unused data transfers, thus improving the cache performance at load

Bulk Loading a Linear Hash File 27

time (e.g. [1]). However, using a small bucket size can also increase the average
access time for searches [9].

An alternative which turns out to be more promising (see Section 4.1) is to
use the available memory for data reordering such that the probes to the same
or adjacent buckets are grouped together. As in caching, the data is scanned
once but partitioned into smaller chunks and each partition is buffered. Sorting
each partition in the buffer reorders the records so that the records in the same
partition which belong to the same or adjacent buckets are grouped together.

For testing and comparison, both caching and partitioning can be integrated
into Berkeley DB which supports linear hashing through its so-called extended
linear hash [14]. The database does use caching to boost its performance. When
a hash file is built from scratch, all buckets are kept in memory as long as there
is room. The size of the cache can be controlled manually. Berkeley DB provides
a utility, called db load, for loading but the utility does not do bulk loading.
Our partition-based approach can be implemented within db load (as shown in
Alg. 2.) by allocating a buffer for data reordering. Alg. 2. is not a replacement
for Alg. 1. but it is good for incremental updates, after an initial loading and
when the hash file is not empty.

Algorithm 2. Modified db load with data partitioning

Initialize the memory buffer
while there are more records do

Read a record R from the dataset and add it to the buffer
if the buffer is full then

Sort the records in the buffer based on their reversed hash values
Insert all the records in the buffer into the hash table
Clear the buffer

end if
end while

Obviously, the size of the buffer can directly affect the loading performance.
The larger the buffer, the more records will be grouped according to their posi-
tions in the hash table. If we assume the size of the available memory is limited,
then the space must be somehow divided between a cache and a sort buffer. Our
experiments in the next section shows that a sort buffer is more effective than a
cache of the same size.

4 Experiments

We conducted experiments comparing our bulk loading to both the loading in
Berkeley DB and our implementation of a naive loading. Our experiments were
conducted on a set of URLs, extracted from a set of crawled pages in the Inter-
net Archive [7]. Attached to each URL was a 64-bit unique fingerprint which was

28 D. Rafiei and C. Hu

produced using Rabin’s fingerprinting scheme [12]. We used as our keys the
ascii character encoding of each fingerprint; this gave us a 16-bytes key for each
record. Unless stated otherwise, we used a random 100-bytes charter string for
data values. We also tried using URLs as our keys but the result was pretty
much the same and were not reported. All our experiments were conducted on
a Pentium 4 machine running Red Hat 9, with a speed of 3.0GHz, a memory of
2GB, and a striped array of three 7200 RPM IDE disks. We used the version
4.2.52 of Berkeley DB, the latest at the time of running our experiments.

For our experiments with Alg. 1., we set b = mb, except for the experiments
reported at the end of Section 4.1; this made the sorting independent of the
layout estimation and had a few advantages: (1) external sorting could be used,
(2) the data read by our layout estimation could be piped to sorting, avoiding an
additional scan of the data. There was not also much improvement in running
time when the number of bits used for sorting was less. For instance, external
sorting 180 million 130-byte records based on 16 bits took 85 minutes whereas a
sort based on 64 bits took 87 minutes. Our timings reported for Alg. 1. include
the times for both sorting and layout estimation. For sorting, the Linux sort
command was used.

4.1 Performance Comparison to Loading in Berkeley DB

As a baseline comparison, we used the native db load utility in Berkeley DB and
compared its performance to that of our bulk loading. db load had a few param-
eters that could be set at load time including the fill factor (h ffactor) and the
number of records (h nelem). In particular, when h nelem was set, db load did a
layout estimation and built the entire empty hash table in advance. We played
with these parameters, trying to find the best possible settings. In our experi-
ments, however, we did not notice any performance improvements over default
settings, except in those cases where the input followed a specific ordering as dis-
cussed at the end of this Section. Otherwise, the performance even deteriorated
when the parameters were explicitly set. Therefore, unless stated otherwise, we
used the default settings of the db load utility.
Scalability with the size of the dataset. To test the scalability of our al-
gorithms and to compare caching (in Berkeley DB) with our partitioning, we
varied the size of the dataset from 1 million to 20 million records and measured
the running time for Alg. 1., Alg. 2. and the native db load. The size of the sort
buffer in Alg. 2 was set to 300MB (our next experiment shows how the buffer
size can affect the load performance). If we included the 1MB I/O cache which
was automatically allocated by Berkeley DB, the total memory allocated to Alg.
2 was 301MB. To make a fair comparison, we also set the I/O cache of the native
db load utility to 301MB. All other parameters were set to their default values
in Berkeley DB.

The result of the experiment is shown in Fig. 1-a. When the dataset is small
(less than 5 million records), all three methods perform very well and their
performances are comparable. This is because both the I/O cache of the native
db load and the sort buffer of Alg. 2 are large enough to hold a major fraction of

Bulk Loading a Linear Hash File 29

data. When the dataset size is 5 million records (i.e. 590MB), half of the input
data cannot fit in the sort buffer of Alg. 2 or the I/O cache of the native db load
utility, and Alg. 2 improves upon the native db load by a factor of 1.5. When the
dataset contains more than 10 million records, our experiment shows that Alg. 2
outperforms the native db load utility by at least a factor of 3. The performance
of our bulk loading algorithm is better than the other two approaches. It takes
only 10 minutes and 23 seconds to load the dataset with 20 million records while
native db load utility in Berkeley DB requires 1682 minutes and 1 seconds.

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

Number of records in millions

T
im

e
in

 m
in

ut
es

db_load with caching
db_load with partitioning (Alg.2)
our bulk loading (Alg.1)

0 100 200 300 400 500 600 700 800 900 1000
10

20

30

40

50

60

70

80

90

100

110

Buffer size (in MB)

Lo
ad

in
g

tim
e

(in
 m

in
ut

es
)

(a) (b)

Fig. 1. Running time varying (a) the number of records, (b) the buffer size

Buffer size. As discussed in the previous section, when the dataset cannot be
fully loaded into memory, the sort buffer is always more effective than an I/O
cache of the same size. In another experiment to measure the effect of the sort
buffer size on the performance, we fixed the size of the dataset to 10 million
records and varied the sort buffer size in Alg. 2 from 100MB to 1GB. Each
record contained a 16-bytes key and a 50-bytes data field. The default I/O cache
size of db load was 1MB. The result in Fig. 1-b shows that allocating a modest
size buffer for sorting (in this case less than 50MB) sharply reduces the running
time. Clearly allocating more buffer helps but we don’t see a significant drop in
running time. This is a good indication that our partitioning can be integrated
into other applications with only a small buffer overhead.
Sorting data in advance. In an attempt to measure the effect of input order-
ing alone (without a layout estimation), we sorted the records based on i least
significant bits of their hash values with i varied from 0 to 32, where 32 was the
length of a hash value in bits. As is shown in Fig. 2-a for 10 million records of
our URL dataset, the loading time was the worst when data was not sorted or
the sorting was done on the whole hash value. Increasing i from 0 toward 32
reduced the running time until i reached a point (here called an optimal point)
after which the running time started going up. The optimal point was not fixed;
it varied with both the size of the dataset and the distribution of the hash val-
ues. However, if we reversed the bit positions before sorting, increasing i from

30 D. Rafiei and C. Hu

0 toward 32 reduced the running time until i reached its optimal point after
which the running time almost stayed the same1. Clearly sorting improves the
performance when data is sorted either on the reversed hash values or on the
original order but using an optimal number of bits.

We could not do our layout estimation in Berkeley DB but could pass the
number of records and let Berkeley DB do the estimation. In another experiment
we sorted the data and also passed the number of records as a parameter to the
load utility. Fig. 2-b shows the loading time for the same 10 million record dataset
when the number of records is passed as a parameter and the number of bits
used for sorting, i, is varied from 1 to 32. A layout estimation alone (i.e. when
i = 0) did not improve the loading time; this was consistent with our experiments
reported earlier in this section. Comparing the two graphs in Fig. 2 leads to the
conclusion that the best performance is obtained when sorting is combined with
a layout estimation (here the layout estimation is done in Berkeley DB).

0 5 10 15 20 25 30 35
0

50

100

150

200

250

number of bits

ru
nn

in
g

tim
e

(m
in

ut
es

)

Original order
Reversed order

0 5 10 15 20 25 30 35
0

50

100

150

200

250

number of bits

ru
nn

in
g

tim
e

(m
in

ut
es

)

Original bit order
Reversed bit order

(a) (b)

Fig. 2. Loading sorted data using db load (a) without the number of records set, (b)
with the number of records set

4.2 Performance Comparison to Naive Loading

We could not run Berkeley DB for datasets larger than 20 million records as it
was either hanging up or taking too long 2. Therefore we decided to implement
our own loading, here called naive loading, which as in Berkeley DB inserted one
record at a time but did not have the Berkeley DB overheads due to the imple-
mentation of ACID properties. To compare the performance of this naive loading
to that of our bulk loading (Alg. 1.), we varied the size of the dataset from 1
million to 50 million records and measured the loading time. We couldn’t run
the naive loading for larger datasets; it was taking already more than 55 hours
to run it with 50 million records. The full result of the comparison could not be

1 Increasing i may slightly increase the time for sorting, but this increase (as discussed
at the beginning of this section) is negligible.

2 For instance, loading 20 million records took over 26 hours (see Fig. 1-a).

Bulk Loading a Linear Hash File 31

presented due to space limitations, but loading 10 million records, for instance,
using our bulk loading algorithm took 3 minutes and 16 seconds whereas it took
129 minutes and 55 seconds to load the same dataset using the naive algorithm.
For 50 million records, using our bulk loading algorithm took 27 minutes and 4
seconds whereas naive algorithm needed 3333 minutes and 18 seconds. Generally
speaking, our bulk loading algorithm outperforms the naive loading by two orders
of magnitude, and its performance even gets better for larger datasets.

5 Related Work

Closely related to our bulk loading is the incremental data organization of Ja-
gadish et al. [8] which delays the insertions into a hash file. They collect the
records in piles and merge them with the main hash only after enough records
are collected. Data in each pile is organized as a hash index and each bucket of
the index has a block in memory. This idea of lazy insert is similar to our Alg. 2..
A difference is that we use sorting, thus the records that are mapped to the same
location in the hash file are all adjacent. This may provide a slight benefit at
the load time. Our Alg. 1. is different and should be more efficient. The entire
data is sorted in advance using external sorting which is both fast and scalable
to large datasets; it is also shown that the total cost of the algorithm is roughly
equal to the cost of sorting. On a dataset with 20 million records, Alg. 1. is 50
times faster than our partition-based algorithm (Alg. 2.) which is comparable to
a lazy insertion of Jagadish et al. [8].

To the best of our knowledge, hash indexes are not currently supported in
DB2, Sybase and Informix; this may change as these databases provide more
support for text and other non-traditional data. Hash indexes are supported in
Microsoft SQL Server, Oracle (in the form of hash clusters), PostgreSQL and
Berkeley DB (as discussed earlier), but we are not aware of any bulk loading
algorithm for these indexes.

6 Conclusions

Hash-based indexes are quite attractive for searching large data collections, be-
cause of their low cost complexity, however the initial time for loading is a major
factor in the adoption of a hash-based index in the first place. Our work, mo-
tivated by our attempt to load a snapshot of the Web into a linear hash file,
presents a few algorithms for efficiently loading a large dataset into a linear
hash file. Our analysis of these algorithms and our experiments show that our
algorithms are near-optimal, can scale up for large datasets and can reduce the
loading time by two orders of magnitude.

Acknowledgments

The authors would like to thank Margo Seltzer and Keith Bostic for answering
many of our questions about Berkeley DB and comments on our earlier draft

32 D. Rafiei and C. Hu

and Paul Larson for the discussions. This work is supported by Natural Sciences
and Engineering Research Council of Canada.

References

1. Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving relations for cache
performance. In: Proceedings of the VLDB Conference, Rome, Italy (2001) 169–180

2. Amer-Yahia, S., Cluet, S.: A declarative approach to optimize bulk loading into
databases. ACM Transactions on Database Systems 29(2) (2004) 233–281

3. Böhm, C., Kriegel, H.: Efficient bulk loading of large high-dimensional indexes. In:
International Conference on Data Warehousing and Knowledge Discovery. (1999)
251–260

4. Fenk, R., Kawakami, A., Markl, V., Bayer, R., Osaki, S.: Bulk loading a data ware-
house built upon a ub-tree. In: Proceedings of of IDEAS Conference, Yokohoma,
Japan (2000) 179–187

5. Gray, J.: A conversation with Jim Gray. ACM Queue 1(4) (2003)
6. Hjaltason, G.R., Samet, H., Sussmann, Y.J.: Speeding up bulk-loading of

quadtrees. In: Proceedings of the International ACM Workshop on Advances in
Geographic Information Systems, Las Vegas (1997) 50–53

7. Internet Archive: (http://www.archive.org)
8. Jagadish, H.V., Narayan, P.P.S., Seshadri, S., Sudarshan, S., Kanneganti, R.: In-

cremental organization for data recording and warehousing. In: Proc. of the VLDB
Conference, Athens (1997) 16–25

9. Knuth, D.: The Art of Computer Programming: Vol III, Sorting and Searching.
Volume 3rd ed. Addison Wesley (1998)

10. Labio, W., Wiener, J.L., Garcia-Molina, H., Gorelik, V.: Efficient resumption of
interrupted warehouse loads. In: Proc. of the SIGMOD Conference, Dallas (2000)
46–57

11. Larson, P.: Dynamic hash tables. Communications of the ACM 31(4) (1988)
446–457

12. Rabin, M.O.: Fingerprinting by random polynomials. Technical Report TR-15-81,
Department of Computer Science, Harvard University (1981)

13. Rafiei, D., Hu, C.: Bulk loading a linear hash file: extended version. (under
preparation)

14. Seltzer, M., Yigit, O.: A new hashing package for unix. In: USENIX, Dallas (1991)
173–184

15. Wiener, J.L., Naughton, J.F.: OODB bulk loading revisited: The partitioned-list
approach. In: Proceedings of the VLDB Conference, Zurich, Switzerland (1995)
30–41

Dynamic View Selection for OLAP

Michael Lawrence and Andrew Rau-Chaplin

Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada

B3H 1W5
{michaell, arc}@cs.dal.ca

www.cgmLab.org

Abstract. Due to the increasing size of data warehouses it is often in-
feasible to materialize all possible aggregate views for Online Analytical
Processing. View selection, the task of selecting a subset of views to ma-
terialize based on knowledge of the incoming queries and updates, is an
important and challenging problem. In this paper we explore Dynamic
View Selection in which the distribution of queries changes over time,
and a subset of a materialized view set is updated to better serve the
incoming queries.

1 Introduction

In a data warehousing environment, users interactively pose queries whose an-
swers are used to support data-driven decision making. Such queries usually
make heavy use of aggregation, which may be realized using the GROUP-BY clause
in SQL. Since aggregate queries are so common and their results are typically
very expensive to compute, aggregate views of the data are often pre-computed
and stored in OLAP systems in order to speed up future query processing.
From the perspective of efficient query answering, ideally all views would be
pre-computed and made available for answering aggregate queries, however re-
alistically storage and computational constraints limit the number of views that
are usefully pre-materialized.

The problem of choosing a set of views for materialization is known as the
View Selection Problem. In the view selection problem one wishes to select a set
of views for materialization which minimizes one or more objectives, possibly
subject to one or more constraints. Many variants of the view selection problem
have been studied including minimizing the query cost of a materialized view
set subject to a storage size constraint [1,2,3,4], minimizing a linear combination
of query cost and maintenance cost of a materialized view set [5,6,7,8,9], and
minimizing query cost under a maintenance cost constraint [3,10,11,12,13]. Note
however that in most of these cases the problem considered is static in that:
1) Query frequencies are assumed to be static (i.e., not changing over time),
and 2) It is assumed that the pool of materialized views is to be selected and
computed from scratch rather than making use of a running OLAP system’s

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 33–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 M. Lawrence and A. Rau-Chaplin

pool of previously materialized views. While the static view selection problem
is important, it captures only the start-up phase of a OLAP system and does
not address what is arguably in practice the more important dynamic question:
how, given a running OLAP system with an existing pool of materialized views
and a new vector of query frequencies, should we identify views that should be
added to our materialized pool and views that should be removed in order to
best minimize query times subject to a storage size constraint?

The need for dynamic view management was forcefully made by Kotidis et al.
in their DynaMat system [14]. As they observe, “This static selection of views [...]
contradicts the dynamic nature of decision support analysis.” There are a num-
ber of ways to approach the dynamic view selection problem, which we review in
Section 2.2. In this paper we explore an alternative approach to Dynamic View
Selection. We consider an OLAP system with two phases of operation: Startup
and Online. In the Startup Phase an initial set of views must be selected based
on some estimated query probabilities. This is the classical (static) view selection
problem. In the Online Phase an “in use” OLAP system is considered, for which
a set of views M has already been selected and materialized. Since over time
the relative importance of each type of aggregate query may change due to the
changing demands of its users, the system may elect to select a new set of views,
M ′, which better serves the incoming queries. However, view materialization is
computationally expensive and the time window in which new views can be ma-
terialized may prohibit selection of an entirely new view set. Thus the problem
becomes selecting a new view set M ′ by discarding some views from M , and
adding new ones to be materialized. We refer to the problem of incrementally
updating a view set as the Online View Selection Problem (see Section 2). We be-
lieve that the online view selection problem is an important addition to the static
variant, as OLAP systems in practice are restarted from scratch only infrequently
and must be able to tune their performance to changing conditions on-the-fly.

Our approach to online view selection is to adapt methods that have proven to
be effective for the static variant. In this paper we develop online adaptations of
the greedy heuristic, BPUS, introduced by Harinarayan et al. [1] and three ran-
domized techniques (iterative improvement, simulated annealing and two-phase
optimization) initially proposed for static view selection by Kalnis et al. [3] (see
Sections 3 and 4). Our challenge is two-fold. For the static phase, the randomized
methods must be adapted so as to take into account maintenance cost in addi-
tion to the space constraint and for the online phase all of the methods must be
adapted to take into account the existing pool of previously materialized views.

2 Problem Definition and Related Work

2.1 Static View Selection

A typical data warehouse stores its information according to a star schema hav-
ing a central fact table with d feature attributes (dimensions), and some number
of measure attributes. Queries to the data warehouse request aggregated mea-
sures from the perspective of some subset of the dimensions in the fact and

Dynamic View Selection for OLAP 35

dimension tables, which can be specified using the GROUP-BY clause in SQL. The
aggregated table from which a query’s results are collected is called a view, and
is identified by the dimensions selected. Harinarayan et al. introduced the data
cube lattice in [1] expressing the relationship between views as a partial order.
There is a path from a view v1 to a view v2 in the lattice if queries on v2 can
be answered also using v1 (although likely at a higher cost). The total number
of views in the lattice is exponential in the number of dimensions.

The view selection problem can be formally defined as follows. For each view
v in the lattice L, we have some estimate of the number of records rv in v, and
the frequency of queries fv on v. As in most previous studies, we adopt the linear
cost model presented in [1], where the cost of answering a query on a view v is rv.
The cost q(v, M) of answering aggregate queries on view v using a materialized
view set M is equal to the number of records in the smallest view in M which
is an ancestor of v in the data cube lattice. The overall query time using M is a
weighted sum of these terms

Q(M) =
∑

v

fvq(v, M),

and the size S(M) of M is simply the sum of the sizes of each of the views in
M . The update or maintenance cost u(v, M) of a materialized view v in M is
modeled based on a maintenance cost which is assigned to every edge (v1, v2)
in the lattice. This represents the cost of maintaining v2 using updates from
v1, and the maintenance cost u(v, M) is the smallest maintenance cost over all
paths from materialized ancestors of v1 to v2. Each node v also has an update
frequency gv, and the total update cost for a set of materialized views M is

U(M) =
∑
v∈M

gvu(v, M).

Note that while Q(M) decreases when new views are added, U(M) does not
always increase, as the additional cost of maintaining a materialized view v
might be outweighed by the benefit that v has in propagating smaller batches of
updates to its children. Our goal for the static phase is as follows: to select a M
which has the minimum Q(M) + U(M) subject to the constraint S(M) < Smax

for some maximum size Smax.
Numerous solutions have been proposed to the (static) view selection problem

on data cubes. The first is a greedy algorithm presented by Harinarayan et al.
[1], which is proven to find a solution within 63% of optimal. In [5] the same
heuristic was extended to minimize sum of query and update cost. Shukla et
al. give a heuristic minimizing query cost in [2] which is asymptotically faster
than that of [1], but achieves the same solution only under certain conditions.
In [6] a greedy algorithm for minimizing the sum of query and update cost is
given, their update cost modeling is more accurate, however when choosing a
view v to select they only consider the update cost of v and not its impact on
the entire view set. Gupta gives the first solution to the view selection problem
minimizing query cost under an update cost constraint in [13], followed by two

36 M. Lawrence and A. Rau-Chaplin

algorithms of Liang et al. in [10], and genetic algorithm approaches in [12,11]
In [15] Agrawal et al. present a tool and algorithms for selecting a set of views
based on a cost metric involving query cost, update cost, index construction and
other factors. Nadeau and Teorey give a greedy algorithm minimizing query cost
under a space constraint which is polynomial in the number of dimensions [4], but
does not perform as well as other greedy heuristics. Kalnis et al. use randomized
algorithms to search the solution space of view sets in [3], minimizing query cost
and constrained by space or update cost.

2.2 Online View Selection

For the online phase we consider a data warehousing system which has a fixed-
sized time window to materialize new views which are not currently materialized,
but are perhaps more beneficial to the changing query patterns of the users. How-
ever because of the space constraint, a number of views may have to be discarded
as well. Based on the size of the available time window for computing new views,
the database administrator calculates how much of the materialized view set can
be replaced. We do not consider update costs in online view selection because
updates themselves are counter to the purpose of online view selection. Online
view selection is an act which is typically performed at regular maintenance in-
tervals, based on an observed or expected change in query probabilities. During
these intervals, updates are applied to the views and so we do not expect up-
dates to be applied between intervals, hence update cost is not our concern in
online view selection. Hence we can define the online view selection problem as
follows: Given a materialized view set M and new query frequencies f ′, find a
M ′ which minimizes Q(M ′) with respect to the new query frequencies, and such
that ∑

v∈M∩M ′
rv ≥ (1− h) · Smax,

for some h which represents a percentage of M (in terms of size) for which the
system has enough resources to materialize new views for. Our dynamic view
selection involves an initial startup phase consisting of a static selection of views
M1, and multiple online phases where M1 is updated to M2, M2 to M3 and
so on. The decision of when to select an Mi+1 by updating Mi can be made
in many ways, for example during a pre-allocated maintenance window, when
average query time degrades past an unacceptable level, or based on measuring
the difference between the current query distribution and the distribution at the
last online phase.

Our formulation of dynamic view selection is different from that of other
studies [9,8,14]. In [9,8], Theodoratos et al. consider what they call dynamic or
incremental data warehouse design. In the static phase, they are given a fixed set
of queries Q, and views must be selected from multiquery AND/OR-DAGs which
answer the queries with minimum cost. In the online phase, additional queries
are added to the set Q, and new materialized views are added so that the new
queries can be answered. In practice there may not be extra space available
for materializing new views, and some previously materialized views must be

Dynamic View Selection for OLAP 37

discarded based on the fact that some queries are no longer of interest. In the
dynamic view selection considered here, our materialized view set M is able to
answer any possible aggregate query, and its size never increases beyond Smax

over time. It may be the case that additional space is available for materialized
views over time, which can easily be handled by our implementation of the
algorithms.

In [14], Kotidis and Roussopoulos approach dynamic view selection by caching
fragments of views. A view fragment is a portion of a whole view which results
from a range selection on its dimensions. Their approach is fundamentally differ-
ent from ours in that it can only choose to store aggregate data which has been
requested from the user, where as pre-materializing a set of views is more flexible
in that any aggregate data which can be produced is considered for storage. Also,
their approach is in reaction to user’s queries, where as a materialized view set
approach aims to prepare the system for future queries. We believe ours to be a
more valuable approach to dynamic view selection for the following reasons:

1. As argued in [16], the ad-hoc nature of OLAP queries reduces the chance that
stored fragments will be able to fully answer future queries. Storing whole
views guarantees that any queries on the same or more highly aggregated
views can be answered.

2. Knowledge giving an expectation of future query loads (e.g. daily reports)
may be available, allowing advance preparations to be made by choosing an
appropriate pre-materialized view set.

3. Multiple unrelated and popular aggregate queries may have a common an-
cestor which can answer all of them at a slightly higher cost. In DynaMat,
this ancestor will never be considered for storage unless it is queried, where
as a good approach to view selection will store this ancestor instead of the
individual aggregates below it, resulting in significant space savings which
can be put to better use.

3 Randomized Algorithms for Dynamic View Selection

In order to apply randomized search to a problem, transitions between feasible
solutions are required. Each search process moves stochastically through the
graph of feasible solutions called the search space, which can be pictured as
a topographical space where elevation represents objective value and locality
represents connectivity of the solutions through the transitions defined. Since
we are minimizing, the “lower” solutions in this space are the ones we desire.
The effectiveness of a randomized search strategy depends on the shape of the
search space and in what manner the search moves through it.

For the static phase we define two transitions, based on those in [3]:

1. Add a random view which is not in the current solution and randomly remove
selected views as necessary to satisfy the space constraint.

2. Remove a randomly selected view.

38 M. Lawrence and A. Rau-Chaplin

The second transition is different from that of [3], which, after removing a view
fills the rest of the available space with views. This is because our algorithms
minimize both query and maintenance cost, as opposed to just maintenance cost.
Under these conditions it is no longer safe to assume that the optimal view set
is a “full” one, and the randomized algorithms must adapt to the tradeoff be-
tween query and maintenance cost. We similarly modify Kalnis et al.’s method of
generating a random solution, by repeatedly adding views to an initially empty
view set until the addition of some view v causes a decrease in overall cost, and
removing v. This method gave us better results in terms of generating solutions
nearer to the favourable ones than another technique of generating random so-
lutions, which was to randomly pick a size S0 from a uniform distribution on
[0, Smax], and creating a view set no larger than S0 by adding as many random
views as possible.

The three randomized search algorithms considered here are iterative im-
provement (II), simulated annealing (SA) and two-phase optimization (2PO), as
described in [3].

– II makes a number of transitions, only accepting ones which lead to a better
solution. When a number of unsuccessful transitions from a state are made
(local minimum), II starts again from a random initial state. The search
terminates after some maximum time or number of local minima.

– SA is an analogy to the process of cooling a physical system It works like II,
except that uphill transitions may be accepted with some probability that is
proportional to a “temperature” which decreases with time. The algorithm
halts when the temperature reaches a fixed “freezing point”, returning the
best solution found during the process.

– 2PO combines II with SA. II is first applied to find a good local minimum,
from which SA is applied with a small initial temperature to do a more
thorough search of the surrounding area.

II tends to work well if the problem has structure so that good solutions
are near each other in the search space. SA is more robust than II in that
it can overcome the problem that good solutions may be near each other in
search space, but separated by a small number of relatively worse solutions.
2PO attempts to combine the best of both II, which proceeds in a more direct
manner towards a solution, and SA, which is able to more thoroughly explore
an area.

We modify the transitions for online view selection as follows: If, while re-
moving views to satisfy the space constraint, transition 1 violates the online
constraint, then we add the previously removed view back to the solution, and
continue only removing views in M ′ −M from M ′ until the space constraint
is satisfied. If transition 2 violates the online constraint, the removed view is
re-added and a randomly selected view in M ′ −M is removed instead.

Dynamic View Selection for OLAP 39

4 Greedy Algorithm for Dynamic View Selection

For the static phase, the BPUS heuristic [1] begins with an initially empty view
set, and greedily adds views which maximize a benefit heuristic. If the currently
selected view set is M , then the benefit per unit space of adding an unselected
view v is defined as

(Q(M) + U(M))− (Q(M ∪ {v}) + U(M ∪ {v}))
rv

,

i.e., the reduction in overall cost achieved by adding v, scaled by size. The BPUS
algorithm adds the view v with maximum benefit per unit space until either
there is no more space for materialized views, or v has negative benefit (when
U(M ∪ {v}) − U(M) > Q(M) − Q(M ∪ {v})). To apply BPUS to online view
selection, the same heuristic is “reversed”, and the objective cost only considers
query time of the materialized view set. When deciding which views to remove
from M , we choose the view v which minimizes

Q(M − {v})−Q(M)
rv

,

the increase in average overall cost scaled to the size of v. Once a set of views
totalling no more than h · Smax in size has been removed from M , we apply the
BPUS heuristic (without update cost) to greedily select which views to replace
them with, arriving at our solution M ′.

5 Experimental Results

In our evaluation we use a variety of synthetic data sets which we can control the
properties of in terms of size, dimensionality, skew, etc. In particular we focus
on two classes of data sets: 1) uniform, where the cardinality of all dimensions
are equal, representing data cube lattices with highly uniform view sizes, and 2)
2pow, where the cardinality of the i-th dimension is 2i, representing data cube
lattices with highly skewed view sizes. In all cases the number of rows in the data
sets was set to 1 billion and Smax was set to be 10 times this number of rows. We
use two different types of query distributions: 1) uniform random, where query
probabilities are assigned from a uniform random distribution, and 2) hot regions
[17], where 90% of the queries are distributed amongst a set of views (the “hot
region”) selected from the bottom 1/3 of the lattice and containing 10% of the
total views. The remaining 10% of the queries are distributed uniformly amongst
the other views. We believe this to be a realistic but very challenging scenario,
due to the underlying semantics of the dimensions of the data warehouse in
which some combinations of dimensions may not provide useful information,
while others do, hence there may be a large number of views which are simply
not interesting at all.

We apply the randomized algorithms to view selection similarly as in [3],
although our parameter selection is slightly different due to the different nature

40 M. Lawrence and A. Rau-Chaplin

of the problem which now involves update costs. The selected parameters are
shown in Table 1. Readers are referred to [3] for a description of the meaning of
these parameters.

Table 1. Selected parameters for the randomized algorithms applied to both the static
and online phases of dynamic view selection

Static Online

cyclesII 50 · 2d−10 40 · h · 23(d−10)/4

min.dII 7d 3d
cyclesSA 2d/20 h/30% · 2d/20

TSA 107 103

ΔtSA 0.9 0.8
cycles2PO cyclesII/4 cyclesII/2
min.d2PO min.dII 2d

T2PO 105 102

Δt2PO 0.9 0.64

5.1 The Startup Phase: Static View Selection

In static view selection we are primarily concerned with 1) Quality: the solu-
tion values achieved by the randomized algorithms vs. that of BPUS, and 2)
Efficiency: the amount of time it takes to converge on a solution. To maintain
consistency with the literature [3] and since randomized algorithms are being
considered as an alternative to BPUS, we express their solution quality as a
factor of the solution quality of BPUS, called the scaled solution value.

Figure 1 shows the running time of BPUS, and the time to convergence for all
randomized algorithms as the number of dimensions is varied. As the plot shows,
the randomized algorithms converge much faster than the BPUS heuristic for
both uniform and highly skewed data, especially in larger dimensions.

Now we aim to establish scalability of the randomized techniques in terms of
solution quality. Figure 2 shows the scaled cost of the solutions found by the
randomized algorithms as the number of dimensions is increased. As the fig-
ure shows, the randomized algorithms perform competitively against the BPUS
heuristic, with their solutions falling typically within a few percent of it and be-
ing especially close with uniform data. Surprisingly, there are classes of problem
instances where some of the randomized algorithms outperform the heuristic by
as much as 15%. These problem instances are ones for which the update cost is
sufficiently prohibitive that the better solutions are ones which contain a small
number of views. BPUS finds a maximal solution with respect to size, in that
no more views can be added without increasing the overall cost. As a result the
randomized algorithms are able to find solutions with a much better update cost,
at the expense of a slightly higher query cost.

Although the results from Figure 2 may suggest the randomized algorithms
are more favourable for static view selection, we note that this performance is
only observed for such problem instances where the query and update cost are
relatively balanced. When query cost is the dominant factor, BPUS significantly

Dynamic View Selection for OLAP 41

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(a) Uniform Data/Uniform Queries

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(b) Skewed Data/Hot Regions

Fig. 1. Running time vs dimensionality for static view selection with 109 rows and
Smax = 1010. The mean of 20 independent trials is shown.

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 10 11 12 13 14 15

S
ca

le
d

S
ol

ut
io

n

d

II
SA

2PO

(a) Uniform Data/Uniform Queries

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 10 11 12 13 14 15

S
ca

le
d

S
ol

ut
io

n

d

II
SA

2PO

(b) Skewed Data/Hot Regions

Fig. 2. Scaled solution vs d for static view selection with 109 rows and Smax = 1010.
The mean of 20 independent trials is shown.

outperforms the randomized algorithms. This is because, when update cost is
not optimized as in [3], the randomized transitions can be designed knowing
that the optimal view set will be a “full” one. However with the addition of
update cost as an objective, the transitions must guide the randomized algo-
rithms to the region of search space having view sets of the best size, as well as
to a good choice of views in sets of that size. This adds another dimension of
difficulty to the problem. The poor performance of the randomized algorithms
when query cost is dominant is an indication that the randomized transitions
have difficulty in guiding the search towards more full view sets. It is suggested
that the randomized transitions of [3] be used if update cost is not expected to
be prohibitive.

5.2 The Online Phase: Online View Selection

In the following tests each algorithm begins with the same initial view set M ,
which is selected using BPUS. d = 12 dimensions are used, with the parameters
of the randomized algorithms summarized in Table 1. Unless otherwise indi-
cated, h = 30% was chosen for the tests. For the uniform query distribution, the

42 M. Lawrence and A. Rau-Chaplin

drift in query probabilities for a single iteration was achieved by scaling each
view’s probability by a random factor chosen uniformly between 0 and 1, and
re-normalizing them so that they sum to 1. Using this query drift model the
area between distribution curves on an iteration is generally in the range of 0.9
to 1.0 (with the maximum possible difference being 2). For the hot region query
distribution, query drift was achieved by selecting both a beginning and ending
hot region, and interpolating between the two over the iterations.

For performance on a single iteration, we are concerned with the improvement
in query time. We measure the percent improvement of an online iteration from
M to M ′ as

Imp(M, M ′) = 100
Q(M)−Q(M ′)

Q(M)
.

Note that the percent improvement not only depends on algorithm performance
but also the amount that query distribution shifts.

First we examine the scalability of the algorithms in terms of running time.
Figure 3 shows the results as we increase the dimensionality of the data sets. As
in the case of static view selection, the randomized techniques are significantly
faster than BPUS, especially with higher dimensions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(a) Uniform Data/Uniform Queries

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 10 11 12 13 14 15

T
im

e
(s

ec
)

d

BPUS
II

SA
2PO

(b) Skewed Data/Hot Regions

Fig. 3. Running time vs. dimensionality for online view selection with 109 rows, Smax =
1010 and h = 30%. The mean of 20 independent trials is shown.

One question which is pertinent to online view selection is how much can
we improve the current materialized view set given that we only have time to
replace h% of it, or how much of the view set must be replaced to achieve a
given improvement in query time. Figure 4 shows the relative improvement in
query time as h is increased. The relative improvement is the percent improve-
ment Imp(M, M ′) achieved relative to the percent improvement Imp(M, Mnew)
which can be achieved if an entirely new set of views Mnew were selected
with BPUS. 0% means that Q(M ′) = Q(M) (no improvement), 100% means
Q(M ′) = Q(Mnew), and < 0% means that Q(M ′) > Q(M) (negative improve-
ment). From the figure we can see that the online version of BPUS is a very
strong performer for both uniform and skewed data, able to make 95% of the
improvement of a newly chosen view set by replacing as little as 30% of it. A

Dynamic View Selection for OLAP 43

-150

-100

-50

 0

 50

 100

 0 10 20 30 40 50 60 70 80 90

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

h

BPUS
II

SA
2PO

(a) Uniform Data/Uniform Queries

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

h

BPUS
II

SA
2PO

(b) Skewed Data/Hot Regions

Fig. 4. Percent improvement (relative to that of a newly selected view set) as h is
increased. A 12-dimensional data cube is used. The mean of 20 independent trials is
shown.

larger improvement with smaller h is possible for the hot regions instance, since
replacing the views in the hot region is sufficient for considerable improvement.

6 Conclusions and Future Work

In this paper we have described a new approach to dynamic view selection which
recognizes that in practice OLAP systems are restarted from scratch only infre-
quently and must be able to tune their performance to changing conditions
on-the-fly. We have described a greedy and three randomized methods for dy-
namic view selection and implemented and evaluated them in the context of a
large-scale OLAP system. Overall, in terms of solution quality, our BPUS-online
adaptation appears to outperform the three randomized methods studied. How-
ever, as the number of dimensions grows the computational cost of BPUS-online
may become impractically large and in this case the randomized methods pre-
sented here offer an attractive alternative. One important area of future work is
to consider how best the dynamic view selection method proposed here can be
combined with established caching and batch query optimization approaches.

References

1. V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing data cubes effi-
ciently,” in proc. SIGMOD ’96, pp. 205–216, ACM, 1996.

2. A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized view selection for
multidimensional datasets,” in proc. VLDB ’98, pp. 488–499, Morgan Kaufmann,
1998.

3. P. Kalnis, N. Mamoulis, and D. Papadias, “View selection using randomized
search,” Data Knowl. Eng., vol. 42, no. 1, pp. 89–111, 2002.

4. T. P. Nadeau and T. J. Teorey, “Achieving scalability in OLAP materialized view
selection,” in proc. DOLAP ’02, pp. 28–34, ACM, 2002.

5. H. Gupta and I. S. Mumick, “Selection of views to materialize in a data warehouse,”
Data Knowl. Eng., vol. 17, pp. 24–43, Jan. 2005.

44 M. Lawrence and A. Rau-Chaplin

6. H. Uchiyama, K. Runapongsa, and T. J. Teorey, “A progressive view materializa-
tion algorithm,” in proc. DOLAP ’99, pp. 36–41, ACM, 1999.

7. E. Baralis, S. Paraboschi, and E. Teniente, “Materialized views selection in a multi-
dimensional database,” in proc. VLDB ’97, pp. 156–165, Morgan Kaufmann, 1997.

8. D. Theodoratos, T. Dalamagas, A. Simitsis, and M. Stavropoulos, “A randomized
approach for the incremental design of an evolving data warehouse,” in proc. ER
’01, pp. 325–338, Springer, 2001.

9. D. Theodoratos and T. Sellis, “Incremental design of a data warehouse,” J. Intell.
Inf. Syst., vol. 15, no. 1, pp. 7–27, 2000.

10. W. Liang, H. Wang, and M. E. Orlowska, “Materialized view selection under the
maintenance time constraint,” Data Knowl. Eng., vol. 37, no. 2, pp. 203–216, 2001.

11. J. X. Yu, X. Yao, C.-H. Choi, and G. Gou, “Materialized view selection as con-
strained evolutionary optimization,” in IEEE Trans. on Syst., Man and Cybernet-
ics, Part C, vol. 33, pp. 458–467, IEEE, Nov. 2003.

12. M. Lee and J. Hammer, “Speeding up materialized view selection in data ware-
houses using a randomized algorithm,” J. Coop. Info. Syst., vol. 10, no. 3, pp. 327–
353, 2001.

13. H. Gupta and I. S. Mumick, “Selection of views to materialize under a maintenance
cost constraint,” in proc. ICDT ’99, pp. 453–470, Springer, 1999.

14. Y. Kotidis and N. Roussopoulos, “A case for dynamic view management,” J. Trans.
Database Syst., vol. 26, no. 4, pp. 388–423, 2001.

15. S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection of material-
ized views and indexes in sql databases,” in proc. VLDB ’00, pp. 496–505, Morgan
Kaufmann, 2000.

16. T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias, “Active caching of on-line-
analytical-processing queries in www proxies,” in proc. ICPP ’01, pp. 419–426,
IEEE, 2001.

17. P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan, “An adaptive peer-
to-peer network for distributed caching of olap results,” in proc. SIGMOD ’02,
pp. 25–36, ACM, 2002.

Preview: Optimizing View Materialization Cost

in Spatial Data Warehouses �

Songmei Yu, Vijayalakshmi Atluri, and Nabil Adam

MSIS Department and CIMIC
Rutgers University, NJ, USA

{songmei, atluri, adam}@cimic.rutgers.edu

Abstract. One of the major challenges facing a data warehouse is to
improve the query response time while keeping the maintenance cost to a
minimum. Recent solutions to tackle this problem suggest to selectively
materialize certain views and compute the remaining views on-the-fly, so
that the cost is optimized. Unfortunately, in case of a spatial data ware-
house, both the view materialization cost and the on-the-fly computation
cost are often extremely high. This is due to the fact that spatial data
are larger in size and spatial operations are more complex and expensive
than the traditional relational operations. In this paper, we propose a
new notion, called preview, for which both the materialization and on-
the-fly costs are significantly smaller than those of the traditional views.
Essentially, to achieve these cost savings, a preview pre-processes the
non-spatial part of the query, and maintains pointers to the spatial data.
In addition, it exploits the hierarchical relationships among the different
views by maintaining a universal composite lattice, and mapping each
view onto it. We optimally decompose a spatial query into three com-
ponents, the preview part, the materialized view part and the on-the-fly
computation part, so that the total cost is minimized. We demonstrate
the cost savings with realistic query scenarios.

1 Introduction

One of the major challenges facing a data warehouse is to improve the query
response time while keeping the maintenance cost to a minimum. Recently, se-
lectively materializing certain views over source relations has become the philos-
ophy in designing a data warehouse. While materialized views incur the space
cost and view maintenance cost, views that are not materialized incur on-the-fly
computation cost. One has to balance both these costs in order to materialize
the optimal views that incur minimum cost. This problem is exasperated when
we consider a spatial data warehouse (SDW). This is because, spatial data are
typically large in size (e.g., point, line, region, raster and vector images), and the
operations on spatial data are more expensive (e.g., region merge, spatial overlay
and spatial range selection). As a result, often, both on-the-fly computation cost
and the view materialization cost are prohibitively expensive.
� The work is supported in part by the New Jersey Meadowlands Commission under

the project Meadowlands Environmental Research Institute.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 45–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

46 S. Yu, V. Atluri, and N. Adam

In this paper, we take a novel approach to resolve this issue. In particular, we
introduce an intermediary view, called preview, for which both the materializa-
tion and on-the-fly costs are significantly smaller than those of the traditional
views. Essentially, the idea of a preview is to pre-process the non-spatial part of
the query and materialize this part based on certain cost conditions, but leave
the spatial part for the on-the-fly and maintain pointers to the spatial data on
which the spatial operation should be performed. In addition, a preview exploits
the hierarchical relationships among different views. Obviously, storing previews
in a data warehouse introduces overhead because it requires additional stor-
age and process efforts to maintain the data sets during updates. However, we
demonstrate that, the performance gain achieved through preview more than
offsets this storage and maintenance overhead. Our ultimate goal is to optimize
the total cost of a spatial data warehouse, which is the sum of the space cost of
materialized views, the online computation cost of queries if not materialized,
and the online computation and space cost of previews, if any.

This rest of the paper is organized as follows. We present the motivating
example in Section 1. We present some preliminaries in Section 2. We introduce
the Universal Composite Lattice in section 3. We define preview in Section 4.
We discuss the related work in Section 5. We conclude our work in Section 6.

1.1 Motivating Example

In this section, we present an example that demonstrates that, for certain spatial
queries, our approach to maintaining previews results in lower cost than opti-
mally choosing a combination of on-the-fly and view materialization. Assume
the spatial data warehouse comprising of a set of maps with their alphanumeric
counterparts such as the area, the population amount and the temperature de-
gree, as well as three basic metadata: location, time, and resolution. Assume that
these maps specify different subjects of interest such as weather, precipitation,
vegetation, population, soil, oil, or administrative region.

Now consider the following query that shows interests on a specific region:
find the administrative boundary change of NJ area over last 10 years at 1m
resolution level, and shows the vegetation patterns and population distribu-
tions within the same area, time frame and resolution level, and finally overlay
the population maps and vegetation maps to deduce any relationships between
them. The relation to store these data is called Map. An SQL-like query to
specify this is as follows: select boundary(M.admin map), M.vegetation map,
M.population map, overlay(M.vegetation map, M.populationa map) from Map
where Map.resolution = 1m AND Map.location = NJ AND 1994 < Map.year
< 2005. For the purposes of execution, this query p can be visualized as having
four parts, q1, q2, q3 and q4:

1. q1: a spatial selection that retrieves boundaries of NJ administrative maps
for last ten years on 1 m resolution.

2. q2: a spatial selection that retrieves vegetation maps in NJ area for last ten
years on 1m resolution.

Preview: Optimizing View Materialization Cost in Spatial Data Warehouses 47

3. q3: a spatial selection that retrieves population maps in NJ area for last ten
years on 1m resolution.

4. q4 : a spatial join that overlays the results of q2 and q3 . Hence q2 and q3 are
intermediate views for q4.

The on-the-fly computation cost for each operation (q1, q2, q3, q4) is 4, 2, 2, 10
(s/image), and the space costs for admin map boundary, vegetation map and
population map are 5.0, 7.2, 6.0 (MB) respectively. Given a query q, we assume
S(q) denotes the space cost, C(q) denotes the on-the-fly computation cost, and
T (q) = S(q) + C(q) denotes the total cost. For the sake of this example, we
assume S(q) is measured in Mega Bytes, and C(q) in seconds. When computing
T (q), we assume 1MB translates into 1 cost unit and 1sec translates into 1 cost
unit. Now let us consider the cost of the above query in the following four cases:

1. The entire query p is materialized. In other words, we materialize the result of
q1 and q4. T (p) = S(q1)+S(q4) = 5.0×10+(7.2+6.0)×10 = 50+132 = 182.

2. The entire query p is computed on-the-fly. T (p) = C(q1) + C(q2) + C(q3) +
C(q4) = (4×10)+(2×10)+(2×10)+(10×10) = 40+20+20+100 = 180.

3. Materialize q1 and perform on-the-fly computation of q4. Then T (p) =
S(q1) + C(q4) = 50 + (20 + 20 + 100) = 190.

4. Materialize q4 and perform on-the-fly computation of q1. Then T (p) =
S(q4) + C(q1) = 132 + 40 = 172.

Obviously one can choose the one among the alternatives that provides the high-
est cost savings. Now let us examine how using previews can reduce the view
materialization cost. Let us assume we store the preview of q1 and materialize
q4. Specifically, for q1, we materialize the non-spatial part because its cost is be-
low our pre-set threshold, therefore we store the metadata(NJ, 1995-2004, 1m)
and pointers to the New Jersey administrative maps from year 1995 to 2004 and
leave the spatial operation textitoverlay on-the-fly. Compared to materializing
10 years boundaries of administrative maps, the space and maintenance cost of
storing preview is much cheaper than storing the spatial view itself. Compared
to perform on-the-fly computation of retrieving 10 years boundaries of admin-
istrative maps, the query response time will be reduced by adding pointers. In
another word, we reduce some on-the-fly computation cost of q1 by paying price
of storing its preview, so that the overall cost is optimized. For q4, we still mate-
rialize it due to the very expensive overlay operation. The total cost of building
a preview is the space cost of storing the preview the on-the-fly computation
cost starting from the preview. In this real example, the space of using one row
to store the preview is 0.01MB and the online boundary retrieval takes 2 second
for each map. We use PC(q) to denote the preview cost of query q, therefore:

1. PC(q1) = S(q1) + C(q1) = (0.01× 10) + (2× 10) = 0.1 + 20 = 20.1
2. S(q4) = 132
3. T (p) = PC(q1) + S(q4) = 20.1 + 132 = 152.1

Compared to the costs of previous methods, the total cost of query p is further
optimized by constructing previews of q1. In the next sections, we will present

48 S. Yu, V. Atluri, and N. Adam

the definition of preview, and how we select appropriate set of queries for preview
to optimize the total cost of an SDW.

2 Spatial Queries

In this section, we briefly present several important concepts. First, we define
the basic algebra expression that is needed for constructing a spatial query. We
then define an atomic spatial query, which serves as the smallest cost unit by
decomposing a spatial query. We finally introduce a process denoted as spatial
projection, which will be used to generate a preview.

The hybrid algebra, including hybrid relations R, hybrid operators op and
hybrid operands X , constitutes the basis for defining a spatial query in a spatial
data warehouse. Within an SDW, a base relation is a hybrid relation that includes
attributes and tuples from both alphanumeric relations and spatial relations. For
spatial relations, we adopt the definitions from the standard specifications of
Open Geospatial Consortium (OGC). The spatial data types supported by this
standard are from Geometry Object Model (GOM), where the geometry class
serves as the base class with sub-classes for Point, Curve (line) and Surface
(Polygon), as well as a parallel class of geometry collection designed to handle
geometries of a collection of points, lines and polygons. Conceptually, spatial
entities are stored as relations with geometry valued attributes as columns, and
their instances as rows. The hybrid operators op combine a complete set of
relational operators rop (σ, π,∪,−,×), comparison operators cop (=, <,≤,≥, >
, �=), aggregate operators aop (distributive functions, algebraic functions, holistic
functions) and spatial operators sop defined by OGC (Spatial Basic Operators,
Spatial Topological Operators, Spatial Analysis Operators), or op ∈ (rop∪ cop∪
aop ∪ sop). A hybrid algebra operand is a distinct attribute of a hybrid relation,
which could be either spatial operand or non-spatial operand. Now we define a
spatial query based on the hybrid algebra.

Definition 1 Spatial Query. A spatial query is a hybrid algebra expression F ,
which is defined as: (i) a single formula f , can be either unary (op(X1)), binary
(op(X1, X2)), or n-nary (op(X1, . . . , Xn)), where op is a hybrid algebra operator
and each Xi is a hybrid operand, (ii) if F1 is a hybrid algebra expression, then
F = op(X1, . . . , Xm, F1) is a hybrid algebra expression, and (iii) if F1 and F2
are two hybrid algebra expressions, then F1 ∧ F2, F1 ∨ F2, ¬F1 and (F1) are
hybrid algebra expressions.

In our motivating example, the spatial query is to retrieve the boundaries of
administrative maps and overlaid results of vegetation maps and population
maps under certain conditions from the hybrid relation Map. Each spatial query
is composed of one or more atomic spatial queries, or p = {q1, . . . , qn}, which is
defined as follows:

Definition 2 Atomic Spatial Query. Given a spatial query p, an atomic spatial
query q is a component query within p, which is a hybrid algebra expression aF
such that it contains only a single spatial operator sop.

Preview: Optimizing View Materialization Cost in Spatial Data Warehouses 49

An atomic spatial query essentially is nothing but an atomic formula that serves
as the smallest unit for the spatial operation cost measurement purpose. In
addition, an atomic spatial query q can be composed of two parts, the spatial
part and the non-spatial part. The spatial part includes a single well-defined
spatial operator, and the non-spatial part could include the traditional selection-
projection-join operations, comparison operations and aggregate operations. For
each q, if we want to construct a preview for it, we need to perform spatial
projection defined as follows:

Definition 3 Spatial Projection. Let q be an atomic spatial query. The spatial
projection of q, denoted as qs, has only spatial operators.

Essentially, a spatial projection of an atomic spatial query is computed by simply
removing all non-spatial operations as well as all the operands associated with
these operators. It comprises of only one spatial operation since by definition,
the preview contains one spatial operation to begin with.

3 The Universal Composite Lattice

In this section, we define the Universal Composite Lattice (UCL), which captures
the hierarchical relationships among all the possible queries in a given spatial
data warehouse. UCL is essentially constructed by composing all its dimension
hierarchies together. We first introduce a single dimension hierarchy.

3.1 The Single Dimension Hierarchy

For any given data warehouse, each attribute or dimension may vary from more
general to more specific; the relationships thus mapped are called the dimension
hierarchies or attribute concept hierarchies. Now we formally define the single
dimension hierarchy, following the lines in [1].

Definition 4 Single Dimension Hierarchy. Given an attribute d, we say there
exists an edge from node hi to node hj, hi → hj, in the dimension hierarchy H
of d, if hi is a more general concept than hj, denoted as hi > hj.

Here hi and hj are two nodes in the dimension hierarchy of d. Generally an
attribute could have as many nodes as the user specified to capture the rela-
tionships among the different levels of the generalization of the dimension. The
resultant dimension hierarchy may be a partial order. In figure 1, we present this
single dimension hierarchy for each metadata. The concept hierarchy provides
a basic framework for the query dependency relationship. Given two nodes hi

and hj in H , we say there exists a dependency relationship between hi and hj

if there exists hi → hj . The dependency relationship indicates that the query
represented at node hi can be built by that represented at hj . In other words,
if one materializes the view at hj , the query at hi can be answered by simply
generalizing the view at hj. For example, we could generate a map of a coun-
try by combining maps of each state in that country, hence we say the query

50 S. Yu, V. Atluri, and N. Adam

on the country depends on the query on the states. In this way, we can use
the lower level query result to answer higher level queries instead of computing
from scratch, which has been demonstrated to be an efficient query optimization
technique [1].

Day

Month

Year

County

State

Country

1m

30m

1000m

(a) Time (b) Region (c) Resolution

Week

Fig. 1. The single dimension hierarchy

3.2 The Universal Composite Lattice

The Universal Composite Lattice (UCL) is built by integrating all the dimension
concept hierarchies from a set of attribute domains D = {d1, . . . , dk}. Therefore,
we can use the UCL to represent the hierarchical relationships for all the queries
in this data warehouse, and any input query can be mapped into this composite
lattice and be evaluated based on its sub-queries. Suppose Ni be the set of nodes
in the dimension hierarchy of di. Assuming a spatial data warehouse comprises of
dimensions D = {d1, . . . , dk} of the spatial measures, then the UCL could at most
have (N1 × . . .×Nk) nodes. We define a universal composite lattice as follows.

Definition 5 Universal Composite Lattice. Let D = {d1, . . . , dk} be the set of
dimensions in SDW. Each node u in UCL is of the form u = (n1, . . . , nk) such
that n1 ∈ N1 or null , n2 ∈ N2 or null, . . ., nk ∈ Nk or null. There exists an
edge ui → uj, iff every nik > njk.

Essentially, a universal composite lattice (UCL) is a directed graph that describes
the query dependency relationships for a given spatial data warehouse. Every
node in UCL is comprised of at least one node from the each dimension hierarchy
or a null. The edge in UCL, as in the single dimension hierarchy represents
that the higher level view represented by that node can be constructed from
lower level views. Figure 2 shows the UCL constructed by combining the three
dimension hierarchies of in figure 1. For the sake of simplicity, we have used the
total order for the Time dimension. Generally, for any data warehouse, one can
construct such a lattice to indicate the dependency relationships among different
queries. The big advantage of this lattice is that every atomic spatial query can be
mapped to some node on UCL. We call such mapping process UCL instantiation.
We will introduce our notion of previews and how UCL instantiation help us to
exploit the existing views when computing certain queries on-the-fly.

Preview: Optimizing View Materialization Cost in Spatial Data Warehouses 51

 Year, Country, 1000m

Year
Country

30m

Year
State

1000m

Month
Country
1000m

Year
Country

1m

Year
State
30m

Year
County
1000m

Month
Country

30m

Month
State

1000m

Day
Country
1000m

Year
County

1m

Month
State
1m

Month
County

30m

Day
Country

1m

Day
State
30m

Day
County
1000m

Month
County

1m

Day
County

30m

Day
State
1m

Day, County, 1m

Year
State
1m

Year
County

30m

Month
Country

1m

Month
State
30m

Month
County
1000m

Day
Country

30m

Day
State

1000m

Fig. 2. A sample universal composite lattice

4 The Preview

Essentially, the preview of an atomic query comprises of the view of the prepro-
cessed non-spatial part of the query, and the information necessary to compute
the spatial part on-the-fly. As such it maintains pointers to the spatial objects
on which the spatial operation should be performed. In addition, a preview also
exploits the dependency relationships among different previews. A preview is
formally defined as follows:

Definition 6 Preview. Let q be an atomic spatial query. The preview of q, de-
noted as pre(q), is a 4-tuple 〈M, sop, O, V 〉, where: (1) M is non-spatial parts
of q, (2) sop is the spatial operator, (3) O is a set of pointers to spatial objects,
and (4) V is a set of pointers to all the sub-views that q depends on.

By constructing a preview, we need to first do spatial projection of an atomic
spatial query by separating spatial and non-spatial parts. Then we decide if
we need to materialize non-spatial operations of q based on some pre-set cost
threshold r to get M . Or, if the cost is greater than r, we materialize it otherwise
we leave it on the fly. We also keep O, the set of pointers to the spatial objects.
Then we extract spatial operator sop, which will be computed on the fly when
q is executed. Finally we construct the pointer set V which points to all views
or previews at the lower dependent level by instantiating the given UCL.

For example, in the motivating example, we perform the traditional selection
and projection on q1 and store 〈((1995-2004), New Jersey, 1m), (boundary),

52 S. Yu, V. Atluri, and N. Adam

(ptr1-ptr10)〉 as its preview pre(q1), where the non-spatial part M = 〈1995-2004,
New Jersey, 1m 〉 is materialized by SPJ operations, the pointers (ptr1 − ptr10)
to maps are projected out based on certain conditions. Since there is one spatial
operator involved, we put boundary in the operator position for the on-the-fly
computation. V could include one or more pointers depending on how many
sub-views are available. This preview is stored as a tuple in the data warehouse
for further query evaluations.

Now we show how a preview can be mapped onto a UCL, and the pointer
set pointing to the sub-views can be constructed accordingly. Generally, for any
atomic spatial query, it will be either materialized, computed on-the-fly or built
for a preview. UCL instantiation includes not only mapping the previews but
also mapping the materialized views or the views computed on-the-fly. For sim-
plicity, we only show mapping a preview onto UCL, and other mappings of a
materialized view or a view computed on-the-fly can be conducted similarly with
straightforward extensions.

As we introduced before, an SDW comprises of a dimension set (d1, . . . , dk) with
dimension hierarchies set (N1, . . . , Nk) for each dimension. Each specific node u =
(n1, . . . , nk)(ni ∈ Ni, i = 1, . . . , k) has corresponding actual values stored in the
base tables of the data warehouse, which is denoted as V Li. For example, Year is
one hierarchy in dimension Time, and its corresponding actual value in the data
warehouse is a complete set or subset of (1980-2005). Generally, we denote u =
V Li(i = 1, . . . , k) iff V Li is the set of actual values associated to u. For example,
in the figure 2, 〈Year, State, resolution 〉 = 〈(1995-2004), New Jersey, 1m 〉. Given
a UCL, a simple linear search algorithm can map a preview of an atomic spatial
query q, denoted as pre(q), onto a given UCL (omitted due to space limit).

This algorithm basically performs linear search from the lowest level node to
the highest level node in the UCL, and see if the M of a pre(q) includes the
actual hierarchy values of certain node. If we find this match, we add a pointer
from that node to the pre(q). Therefore we map a preview to an actual node
in the UCL. In addition to the previews, we assume the materialized views and
views that computed on-the-fly are also mapped onto the UCL, which instantiate
the UCL for a spatial data warehouse. Hence if there are any materialized views
or previews mapped there, we add a pointer from pre(q1) to those lower level
views, or sub-views. Basically, V = (t1, . . . , tn) where (ti, i ∈ (1, n)) is a pointer
to one sub-view of pre(q1).

5 Related Work

A lot of work has been done in the area of optimizing cost of a data warehouse.
Most of their work deal with selective materialization to reduce the total cost.
In the initial research done on the view selection problem, Harinarayan et al.
in [2] present algorithms for the view-selection problem in data cubes under a
disk-space constraint. Gupta et al. extend their work to include indexes in [3].
Stefanovic et al. in [4] introduce the spatial data warehouse concept and object
based selective materialization techniques for construction of spatial data cubes.

Preview: Optimizing View Materialization Cost in Spatial Data Warehouses 53

Karlo et al. [5] show that the variation of the view-selection problem where the
goal is to optimize the query cost is inapproximable for general partial orders.
Furthermore, Chirkova et al. in [6,7] show that the number of views involved in
an optimal solution for the view-selection problem may be exponential in the
size of the database schema, when the query optimizer has good estimates of the
sizes of the views. Besides the theoretical research, there has been a substantial
amount of effort on developing heuristics for the view-selection problem that may
work well in practice. Kalnis et al. in [8] show that randomized search methods
provide near-optimal solutions and can easily be adapted to various versions of
the problem, including existence of size and time constraints. Recently, certain
works have been done on how to materialize views for some specific systems
or to answer queries more efficiently. Specifically, Karenos et al in [9] propose
view materialization techniques to deal with mobile computing services, Liu
et al in [10] compare two view materialization approaches for medical data to
improve query efficiency, Theodoratos et al [11,12,13] build a search space for
view selections to deal with evolving data warehousing systems, and Wu et al in
[14] work on Web data to rewrite queries using materialized views.

However, all of their methods fall into two categories, i.e. either materialize a
view or compute it on the fly. Our work presented in this paper differs from the
above works in that given the specialty of spatial operations involved in a query,
we design a third technique, preview, between view materialization and on-the-
fly computation, which delivers a provably good solution with cost minimization
for a spatial query and eventually a whole spatial data warehouse.

6 Conclusions

A spatial data warehouse integrates alphanumeric data and spatial data from
multiple distributed information sources. Compared to traditional cases, a spa-
tial data warehouse has a distinguished feature in that both the view material-
ization cost and the on-the-fly cost are extremely high, which is due to the fact
that spatial data are larger in size and spatial operations are more expensive to
process. Therefore, the traditional way of selectively materializing certain views
while computing others on the fly does not solve the problem of spatial views.

In this paper we have dealt with the issue of minimizing the total cost of a spa-
tial data warehouse while at the same time improve the query response time by
considering their inter-dependent relationships. We first use a motivation example
in realistic query scenarios to demonstrate the cost savings of building a preview.
We then formally define preview, for which both the materialization and on-the-fly
costs are significantly reduced. Specifically, a previewpre-processes the non-spatial
part of the query, leaves the spatial operation on the fly, and maintains pointers to
the spatial data. In addition, we show that a preview exploits the hierarchical rela-
tionships among the different views by maintaining a Universal Composite Lattice
built on dimension hierarchies, and mapping each view onto it. We optimally de-
compose a spatial query into three components, the preview part, the materialized
view part and the on-the-fly part, so that the total cost is minimized.

54 S. Yu, V. Atluri, and N. Adam

References

1. Han, J., Kamber, M. In: Data Mining: Concepts and Techniques. 1 edn. Morgan
Kaufman Publishers (2001)

2. Harinarayan, V., Rajaraman, A., Ullman, J.: Implementing data cubes efficiently.
In: Proc. of SIGMOD. Lecture Notes in Computer Science, Springer (1996) 205–216

3. Gupta, H., Mumick, I.: Selection of views to materialize in a data warehouse.
Transactions of Knowledge and Data Engineering (TKDE) 17 (2005) 24–43

4. Stefanovic, N., Jan, J., Koperski, K.: Object-based selective materialization for
efficient implementation of spatial data cubes. IEEE Transactions on Knowledge
and Data Engineering(TKDE) 12 (2000) 938–958

5. Karlo, H., Mihail, M.: On the complexity of the view-selection problem. In: Proc.
of Principles of Databases. Lecture Notes in Computer Science, Springer (1999)

6. Chirkova, R.: The view selection problem has an exponential bound for conjunc-
tive queries and views. In: Proc. of ACM Symposium on Principles of Database
Systems. (2002)

7. Chirkova, R., Halevy, A., Suciu, D.: A formal perspective on the view selection
problem. In: Proc. of Internaltional Conference on Very Large Database Systems.
(2001)

8. Kalnis, P., Mamoulis, N., Papadias, D.: View selection using randomized search.
Data and Knowledge Engineering(DKE) 42 (2002)

9. Karenos, K., Samaras, G., Chrysanthis, P., Pitoura, E.: Mobile agent-based services
for view materialization. ACM SIGMOBILE Mobile Computing and Communica-
tions Review 8 (2004)

10. Liu, Z., Chrysanthis, P., Tsui, F.: A comparison of two view materialization ap-
proaches for disease surveillance system. In: Proc. of SAC. Lecture Notes in Com-
puter Science, Springer (2004)

11. Theodoratos, D., Ligoudistianos, S., Sellis, T.: View selection for designing the
global data warehouse. Data and Knowledge Engineering (DKE) 39 (2001)

12. Theodoratos, D., Sellis, T.: Dynamic data warehouse design. In: Proc. of
Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science,
Springer (1999)

13. Theodoratos, D., Xu, W.: Constructing search spaces for materialized view selec-
tion. In: Proc. of the 7th ACM International Workshop on Data Warehousing and
OLAP. Lecture Notes in Computer Science, Springer (2004)

14. Wu, W., Ozsoyoglu, Z.: Rewriting xpath queries using materialized views. In:
Proc. of the Intl. Conference on Very Large Database Systems. Lecture Notes in
Computer Science, Springer (2005)

Preprocessing for Fast Refreshing Materialized Views in
DB2

Wugang Xu1, Calisto Zuzarte2, Dimitri Theodoratos1, and Wenbin Ma2

1 New Jersey Institute of Technology
wx2@njit.edu, dth@cs.njit.edu

2 IBM Canada Ltd.
calisto, wenbinm@ca.ibm.com

Abstract. Materialized views (MVs) are used in databases and data warehouses
to greatly improve query performance. In this context, a great challenge is to
exploit commonalities among the views and to employ multi-query optimiza-
tion techniques in order to derive an efficient global evaluation plan for refresh-

ing the MVs concurrently. IBM DB2 R© Universal Database
TM

(DB2 UDB)
provides two query matching techniques, query stacking and query sharing, to
exploit commonalities among the MVs, and to construct an efficient global eval-
uation plan. When the number of MVs is large, memory and time restrictions
prevent us from using both query matching techniques in constructing efficient
global plans. We suggest an approach that applies the query stacking and query
sharing techniques in different steps. The query stacking technique is applied
first, and the outcome is exploited to define groups of MVs. The number of MVs
in each group is restricted. This allows the query sharing technique to be applied
only within groups in a second step. Finally, the query stacking technique is used
again to determine an efficient global evaluation plan. An experimental evalua-
tion shows that the execution time of the plan generated by our approach is very
close to that of the plan generated using both query matching techniques without
restriction. This result is valid no matter how big the database is.

1 Introduction

The advent of data warehouses and of large databases for decision support has triggered
interesting research in the database community. With decision support data warehouses
getting larger and decision support queries getting more complex, the traditional query
optimization techniques which compute answers from the base tables can not meet the
stringent response time requirements. The most frequent solution used for this problem
is to store a number of materialized views (MVs). Query answers are computed using
these materialized views instead of using the base tables exclusively. Materialized views
are manually or automatically selected based on the underlying schema and database
statistics so that the frequent and long running queries can benefit from them. These
queries are rewritten using the materialized views prior to their execution. Experience
with the TPC-D benchmark and several customer applications has shown that MVs can
often improve the response time of decision support queries by orders of magnitude
[9]. This performance advantage is so big that TPC-D [1] had ceased to be an effective
performance discriminator after the introduction of the systematic use of MVs [9].

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 55–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 W. Xu et al.

Although this technique brings a great performance improvement, it also brings some
new problems. The first one is the selection of a set of views to materialize in order to
minimize the execution time of the frequent queries while satisfying a number of con-
straints. This is a typical data warehouse design problem. In fact, different versions of
this problem have been addressed up to now. One can consider different optimization
goals (e.g. minimizing the combination of the query evaluation and view maintenance
cost) and different constraints (e.g. MV maintenance cost restrictions, MV space re-
strictions etc.). A general framework for addressing those problems is suggested in [7].
Nevertheless, polynomial time solutions are not expected for this type of problem. A
heuristic algorithm to select both MVs and indexes in a unified way has been suggested
in [10]. This algorithm has been implemented in the IBM DB2 design advisor [10].

The second problem is how to rewrite a query using a set of views. A good review
of this issue is provided in [3]. Deciding whether a query can be answered using MVs
is an NP-hard problem even for simple classes of queries. However, exact algorithms
for special cases and heuristic approaches allow us to cope with this problem. A novel
algorithm that rewrites a user query using one or more of the available MVs is pre-
sented in [9]. This algorithm exploits the graph representation for queries and views
(Query Graph Model - QGM) used internally in DB2. It can deal with complex queries
and views (e.g. queries involving grouping and aggregation and nesting) and has been
implemented in the IBM DB2 design advisor.

The third problem is related to the maintenance of the MVs [5]. The MVs often have
to be refreshed immediately after a bulk update of the underlying base tables, or peri-
odically by the administrator, to synchronize the data. Depending on the requirements
of the applications, it may not be necessary to have the data absolutely synchronized.
The MVs can be refreshed incrementally or recomputed from scratch. In this paper we
focus on the latter approach for simplicity. When one or more base tables are modi-
fied, several MVs may be affected. The technique of multi-query optimization [6] can
be used to detect common subexpressions [8] among the definitions of the MVs and
to rewrite the views using these common subexpressions. Using this technique one can
avoid computing complex expressions more than once.

An algorithm for refreshing multiple MVs in IBM DB2 is suggested in [4]. This
algorithm exploits a graph representation for multiple queries (called global QGM)
constructed using two query matching techniques: query stacking and query sharing.
Query stacking detects subsumption relationships between query or view definitions,
while query sharing artificially creates common subexpressions which can be exploited
by two or more queries or MVs. Oracle 10g also provides an algorithm for refreshing
a set of MVs based on the dependencies among MVs [2]. This algorithm considers re-
freshing one MV using another one which has already been refreshed. This method is
similar to the query stacking technique used in DB2. However, it does not consider us-
ing common subsumers for optimizing the refresh process (a technique that corresponds
to query sharing used in DB2). This means they may miss the optimal evaluation plan.

When there are only few MVs to be refreshed, we can apply the method proposed
in [4] to refresh all MVs together. This method considers both query stacking and query
sharing techniques, and a globally optimized refresh plan is generated. However when the
number of MVs gets larger, a number of problems prevent us from applying this method.

Preprocessing for Fast Refreshing Materialized Views in DB2 57

The first problem relates to the generation of a global plan. When there are many MVs
to be refreshed, too much memory is required for constructing a global QGM using both
query sharing and query stacking techniques. Further, it may take a lot of time to find an
optimal global plan from the global QGM. The second problem relates to the execution
of the refresh plan. There are several system issues here. The process of refreshing MVs
usually takes a long time, since during this period, MVs are locked. User queries which
use some MVs either have to wait for all MVs to be refreshed, or routed to the base
tables. Either solution will increase the execution time. Another system issue relates to
the limited size of the statement heap which is used to compile a given database statement.
When a statement is too complex and involves a very large number of referenced base
tables or MVs considered for matching, there may not be enough memory to compile and
optimize the statement. One more system issue relates to transaction control. When many
MVs are refreshed at the same time (with a single statement), usually a large transaction
log is required. This is not always feasible. Further if something goes wrong during the
refreshing, the whole process has to start over.

To deal with the problems above, we propose the following approach. When too
many MVs need to be refreshed and the construction of a global QGM based on query
stacking and query sharing together is not feasible, we partition the MV set into smaller
groups based on query stacking alone. Then, we apply query sharing to each group
independently. Consequently, we separate the execution plan into smaller ones, each
involving fewer MVs. Intuitively, by partitioning MVs into smaller groups, we apply
query sharing only within groups and query stacking between groups such that MVs
from the lower groups are potentially exploited by the groups above. An implementation
and experimental evaluation of our approach shows that our method has comparable
performance to the approach that uses a globally optimized evaluation plan while at the
same time avoiding the aforementioned problems.

In the next section, we present the QGM model and the two query matching tech-
niques. Section 3 introduces our MV partition strategy. Section 4 presents our experi-
mental setting and results. We conclude and suggest future work in Section 5.

2 Query Graph Model and Query Matching

In this section, we introduce the concept of QGM model which is used in DB2 to graph-
ically represent queries. We first introduce the QGM model for a single query. Then we
extend it to a global QGM model for multiple queries. This extension requires the con-
cept of query matching using both query stacking and query sharing techniques.

2.1 Query Graph Model

The QGM model is the internal graph representation for queries in the DB2 database
management system. It is used in all steps of query optimization in DB2: parsing and se-
mantic checking, query rewriting transformation and plan optimization. Here, we show
with an example how queries are represented in the QGM model. A query in the QGM
model is represented by a set of boxes (called Query Table Boxes – QTBs) and arcs
between them. A QTB represents a view or a base table. Typical QTBs are select QTBs
and group-by QTBs. Other kinds of QTBs include the union and the outer-join QTBs.

58 W. Xu et al.

Below, we give a query with select and group-by operations in SQL. Figure 1 shows
a simplified QGM representation for this query.
select c.c3, d.d3, sum(f.f3) as sum
from c, d, fact f
where c.c1 =f.f1 and d.d1 = f.f2 and

c.c2 = ’Mon’ and d.d2 > 10
group by c.c3,d.d3
having sum > 100

2.2 Query Matching

To refresh multiple MVs concurrently, a global QGM for all of the MVs is generated
using the definitions tied together loosely at the top. All QTBs are grouped into different
levels with the base tables belonging to the bottom level. Then, from bottom to top, each
QTB is compared with another QTB to examine whether one can be rewritten using the
other. If this is the case, we say that the latter QTB subsumes the former QTB. The lat-
ter QTB is called the subsumer QTB while the former is called the subsumee QTB. A
rewriting of the subsumee QTB using the subsumer QTB may also be generated at the
time of matching, and this aditional work is called compensation. The comparison con-
tinues with the parent QTBs of both the sumsumer and subsumee QTBs. This process
continues until no more matches can be made.

If the top QTB of one MV subsumes some QTB of another MV, then the former
MV subsumes the latter MV. This kind of matching is called query stacking because it
ultimately determines that one MV can be rewritten using the other and the subsumee
MV can be “stacked” on the subsumer MV.

In some cases, it is possible that we may not find a strict subsumption relationship
between two MVs even if they are quite close to having one. For instance, a difference
in the projected attributes of two otherwise equivalent MVs will make the matching
fail. The matching technique of DB2 is extended in [4] to deal with this case. In some
cases when there is no subsumption relationship between two MVs, an artificially built
common subexpression (called common subsumer) can be constructed such that both

Fig. 1. QGM graph for query Q1

Preprocessing for Fast Refreshing Materialized Views in DB2 59

MVs can be rewritten using this common subsumer. Because this common subsumer
is “shared” by both MVs, this matching technique is called query sharing. With query
sharing, matching techniques can be applied to a wider class of MVs.

In Figure 2, we show examples of query matching techniques. In Figure 2(a), we
show the matching using query stacking only. In this example, we have three queries
m0, m1, m2. For each query pair, we match their QTBs from bottom to top until the
top QTB of the subsumer query is reached. Since there is a successful matching of the
top QTB of query m1 with some QTB of query m2, there is a subsumption relationship
from m1 to m2 (m1 subsumes m2). This is not the case with queries m0 and m1. The
matching process defines a query subsumption DAG shown in Figure 2(a). In this DAG,
each node is a query. Since query m1 subsumes query m2, we draw a directed line
from m1 to m2. In Figure 2(a), we show the subsumption DAG for queries m0, m1 and
m2. There is one subsumption edge from m1 to m2 while query m0 is a disconnected
component. This subsumption DAG can be used to optimize the concurrent execution
of the three queries. For example, we can compute the results of m0 and m1 from base
tables. Then, we can compute query m2 using m1 based on the rewriting of m2 using
m1, instead of computing it using exclusively base tables. Query m2 is “stacked” on
m1 since it has to be computed after m1.

In this example, we also observe that although m2 can be rewritten using m1, we
cannot rewrite m0 using m2 or vise versa. We cannot even find a successful match
of the bottom QTBs of m0 and m2 based on query stacking. This is quite common in
practice. When we try to answer m0 and m2 together, and we cannot find a subsumption
relationship between them, we can try to create a new query, say t1, which can be used
to answer both queries m0 and m2. This newly constructed query is called common
subsumer of the two queries m0 and m2 because it is constructed in a way so that both
queries m0 and m2 can be rewritten using it. Although the common subsumer is not a
user query to be answered, we can find its answer and then use it to compute the answers
of both queries m0 and m2. As a “common part” between m0 and m2, t1 is computed
only once, and therefore, its computation might bring some benefit in the concurrent
execution of m0 and m2. In the example of Figure 2(b), there is no subsumption edge
between m0 and m2. However, after adding a common subsumer t1 of m0 and m2, we
have two subsumption edges: one from t1 to m0 and one from t1 to m2.

(a) Query stacking (b) Query sharing

Fig. 2. Query matching

60 W. Xu et al.

The subsumption relationship graph is a DAG because there is no cycle in it. In most
cases, if one MV subsumes another one, the latter one cannot subsume the former one.
Nevertheless in some cases, two or more MVs may subsume each other, thus gener-
ating a subsumption cycle. The DB2 matching techniques will ignore one subsump-
tion relationship randomly, when this happens, to break any cycles. This will guarantee
the result subsumption graph to be a real DAG. In drawing a subsumption DAG, if
m1 → m2, and m2 → m3, we don’t show in the DAG the transitive subsumption
edge m1 → m3. However, this subsumption relationship can be directly derived from
the DAG, and it is of the same importance as the other subsumption relationships in
optimizing the computation of the queries.

3 Group Partition Strategy

If there are too many MVs to be refreshed then, as we described above, we may not be able
to construct the global QGM using both query stacking and query sharing techniques.
Our goal is to partition the given MV set into groups that are small enough so that both
query matching techniques can be applied, and we do not face the problems mentioned
in the introduction. Our approach first creates a subsumption DAG using query stacking
only which is a much less memory and time consuming process. This subsumption DAG
is used for generating an optimal global evaluation plan. The different levels of this plan
determine groups of materialized views on which query sharing is applied.

3.1 Building an Optimal Plan Using Query Stacking

Given a set of MVs to be refreshed, we construct a global QGM using only query
stacking and then create a subsumption DAG as described in Section 2.2. Then, we
have the query optimizer choose an optimal plan for computing each MV using either
exclusively base relations or using other MVs in addition to base tables as appropriate.
The compensations stored in the global QGM of a MV using other MVs are used to
support this task. The optimizer decides whether using a MV to compute another MV

(a) Subsumption DAG (b) Optimal global logical plan

Fig. 3. Query stacking based refreshing

Preprocessing for Fast Refreshing Materialized Views in DB2 61

is beneficial when compared to computing it from the base relations. These optimal
“local” plans define an optimal global plan for refreshing all the queries. Figure 3(a)
shows an example of a subsumption DAG for ten MVs. Transitive edges are ignored for
clarity of presentation. Figure 3(b) shows an optimal global evaluation plan.

Groups are defined by the views in the optimal plan. If one group is still too big
for the query sharing technique to be applied, we can divide it into suitable subgroups
heuristically based on some common objects and operations within the group or possi-
bly randomly.

3.2 Adding also Query Sharing

By considering the query stacking technique only, we may miss some commonalities
between queries which can be beneficial to the refreshing process. Therefore, we enable
both query matching techniques within each group to capture most of those common-
alities. We outline this process below.

1. We apply query stacking and query sharing techniques to the MVs of each group.
Even though no subsumption edges will be added between MVs in the group, some
common subsumers may be identified and new subsumption edges will be added
from those common subsumers to MVs in the group.

2. We apply the query stacking technique to the common subsumers of one group and
the MVs of lower groups. Lower groups are those that comprise MVs from lower
levels of the optimal global plan. This step might add some new subsumption edges
from MVs to common subsumers in the subsumption DAG.

3. Using a common subsumer induces additional view materialization cost. However, if
this cost is lower than the gain we obtained in computing the MVs that use this com-
mon subsumer, it is beneficial to materialize this common subsumer. We call such
a common subsumer candidate common subsumer. The use of a candidate common
subsumer may prevent the use of other candidate common subsumers. We heuristi-
cally retain those candidate common subsumers such that no one of them prevents
the use of the others and together yield the highest benefit. This process is applied
from the bottom level to the top level in the subsumption DAG.

4. We have the optimizer create a new optimal global plan using the retained candidate
common subsumers. Compared to the optimal global plan constructed using only
query stacking, this optimal global plan contains also some new MVs, in the form of
the retained candidate common subsumers.

During the refreshing of the MVs, a common subsumer is first materialized when it
is used for refreshing another MV and it is discarded when the last MV that uses it has
been refreshed.

In Figure 4, we show the construction of an optimal global plan taking also query
sharing into account. Figure 4(a) shows the subsumption DAG of Figure 4(b) along
with some common subsumers. Dotted directed edges indicate subsumption edges in-
volving common subsumers. Among the candidate common subsumers, some of them
are retained in the optimal global plan. Such an optimal global plan is shown in Fig-
ure 4(b). This optimal global plan will have a better performance than the one of
Figure 3(b).

62 W. Xu et al.

(a) Subsumption DAG (b) Optimal global logical plan

Fig. 4. Query sharing based refreshing

4 Performance Test

For the experimental evaluation we consider a database with a star schema. We also con-
sider a number of MVs to be refreshed (16 in our test). We keep the number of MVs
small enough so that, in finding an optimal global evaluation plan, both the query stack-
ing and query sharing techniques can be applied without restrictions. The performance
comparison test is not feasible when we have too many MVs. The goal is to compare the
performance of different approaches. We compare the performance of four kinds of MV
refreshing approaches for different sizes of databases. These approaches are as follows:
1. Naive Refreshing(NR): Refresh each MV one by one by computing its new state using

the base tables referrenced in the MV definition exclusively. This approach disallows
any multi-query optimization technique or other already refreshed MV exploitation.

2. Stacking-Based Refreshing(STR): Refresh each MV one by one in the topological or-
der induced by the optimal global plan constructed using the query stacking technique
only. (for example, the optimal global plan of Figure 3(b)) in our example. This ap-
proach disallows query sharing. With this approach some MVs are refreshed using
the base relations exclusively. Some other MVs are refreshed using other MVs if they
have a rewriting using those MVs that are in lower groups in the optimal global plan.

3. Group-Sharing-Based Refreshing(SHR): Refresh each MV in the topological order
induced by the optimal global evaluation plan constructed using query stacking first
and then query sharing only within groups (for example, the optimal global plan of
Figure 4(b)).

4. Unrestricted-Sharing-Based Refreshing(USR): Refresh all MVs based on an optimal
global plan constructed using, without restrictions, both query matching techniques.
Our test schema consists of one fact table and three dimension tables. Each dimen-

sion table has 10,000 tuples, while the number of tuples of the fact table varies from
100,000 to 10,000,000. We refresh the set of MVs with each one of the four refreshing
approaches mentioned above, and we measure the overall refreshing time. We run our
performance test on a machine with the following configuration.

Model OS Memory CPUs rPerf Database
P640-B80 AIX 5.2 ML06 8 GB 4 3.59 DB2 V91

Preprocessing for Fast Refreshing Materialized Views in DB2 63

Fig. 5. Performance test result for different refreshing method

Figure 5 shows our experimental results. The unrestricted-sharing-based approach al-
ways has the best performance since it allows unrestricted application of both query stack-
ing and query sharing techniques. The group-sharing-based approach has the second best
performance because, even though it exploits both query matching techniques, they are
considered separately in different steps and query sharing is restricted only within groups.
The stacking-based approach is the next in performance because it cannot take advantage
of the query sharing technique. Finally, far behind in performance is the naive approach
which does not profit of any query matching technique. As we can see in Figure 5 the
group-sharing based approach is very close to the unrestricted sharing approach. This re-
mark is valid for all database sizes and the difference in those two approaches remains
insignificant. In contrast, the difference between the naive and the pure stacked approach
compared to other two grows significantly as the size of the database increases. In a real
data warehouse, it is often the case that MVs have indexes defined on them. The group-
sharing-based refresh may outdo the unrestricted approach if there is occasion to exploit
the indexes of MVs when used by the refreshing of the higher group MVs.

5 Conclusion and Future Work

We have addressed the problem of refreshing concurrently multiple MVs. In this con-
text, two query matching techniques, query stacking and query sharing, are used in DB2
to exploit commonalities among the MVs, and to construct an efficient global evalua-
tion plan. When the number of MVs is large, memory and time restrictions prevent us
from using both query matching techniques in constructing efficient global plans. We
have suggested an approach that applies the two techniques in different steps. The query
stacking technique is applied first, and the generated subsumption DAG is used to de-
fine groups of MVs. The number of MVs in each group is smaller than the total number
of MVs. This will allow the query sharing technique to be applied only within groups in
a second step. Finally, the query stacking technique is used again to determine an effi-
cient global evaluation plan. An experimental evaluation shows that the execution time
of the optimal global plan generated by our approach is very close to that of the optimal
global plan generated using, without restriction, both query matching techniques. This
result is valid no matter how big the database is.

64 W. Xu et al.

Our approach can be further fine-tuned to deal with the case where the groups of
MVs turn out to be too small. In this case, merging smaller groups into bigger ones
may further enhance the potential for applying the query sharing technique. Although
we assume complete repopulation of all MVs in our approach for simplicity, we can ac-
tually apply our approach to incremental refreshing of MVs. In a typical data warehouse
application, there usually exist indexes on MVs. Our approach can be extended to adapt
to this scenario. Actually, because the existence of indexes increases the complexity of
the global QGM, our approach may achieve better performance.

References

1. TPC (Transaction Processing Performance Council) Web Site: http://www.tpc.org.
2. Nathan Folkert, Abhinav Gupta, Andrew Witkowski, Sankar Subramanian, Srikanth Bel-

lamkonda, Shrikanth Shankar, Tolga Bozkaya, and Lei Sheng. Optimizing Refresh of a Set
of Materialized Views. In Proceedings of the 31st International Conference on Very Large
Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 1043–1054, 2005.

3. Alon Y. Halevy. Answering Queries Using Views: A survey. VLDB J., 10(4):270–294, 2001.
4. Wolfgang Lehner, Roberta Cochrane, Hamid Pirahesh, and Markos Zaharioudakis. fAST Re-

fresh Using Mass Query Optimization. In Proceedings of the 17th International Conference
on Data Engineering, April 2-6, 2001, Heidelberg, Germany, pages 391–398, 2001.

5. Wolfgang Lehner, Richard Sidle, Hamid Pirahesh, and Roberta Cochrane. Maintenance of au-
tomatic summary tables. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, 2000, Dallas, Texas, USA., pages 512–513, 2000.

6. Timos K. Sellis. Multiple-Query Optimization. ACM Trans. Database Syst., 13(1):23–52,
1988.

7. Dimitri Theodoratos and Mokrane Bouzeghoub. A General Framework for the View Selec-
tion Problem for Data Warehouse Design and Evolution. In DOLAP 2000, ACM Seventh
International Workshop on Data Warehousing and OLAP, Washington, DC, USA, November
10, 2000, Proceedings,
pages 1–8, 2000.

8. Dimitri Theodoratos and Wugang Xu. Constructing Search Spaces for Materialized View
Selection. In DOLAP 2004, ACM Seventh International Workshop on Data Warehousing and
OLAP, Washington, DC, USA, November 12-13, 2004, Proceedings, pages 112–121, 2004.

9. Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and Monica
Urata. Answering complex sql queries using automatic summary tables. In Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18,
2000, Dallas, Texas, USA., pages 105–116, 2000.

10. Daniel C. Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma, Guy M. Lohman, Roberta
Cochrane, Hamid Pirahesh, Latha S. Colby, Jarek Gryz, Eric Alton, Dongming Liang, and
Gary Valentin. Recommending Materialized Views and Indexes with IBM DB2 Design Ad-
visor. In 1st International Conference on Autonomic Computing (ICAC 2004), 17-19 May
2004, New York, NY, USA, pages 180–188, 2004.

Trademarks

IBM, DB2, and DB2 Universal Database, are trademarks or registered trademarks of In-
ternational Business Machines Corporation in the United States, other countries, or both.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 65 – 74, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Multiversion-Based Multidimensional Model

Franck Ravat, Olivier Teste, and Gilles Zurfluh

IRIT (UMR 5505)
118, Route de Narbonne

F-31062 Toulouse cedex 04 (France)
{ravat, teste, zurfluh}@irit.fr

Abstract. This paper addresses the problem of how to specify changes in
multidimensional databases. These changes may be motivated by evolutions of
user requirements as well as changes of operational sources. The multiversion-
based multidimensional model we provide supports both data and structure
changes. The approach consists in storing star versions according to relevant
structure changes whereas data changes are recorded through dimension
instances and fact instances in a star version. The model is able to integrate
mapping functions to populate multiversion-based multidimensional databases.

1 Introduction

On-Line Analytical Processing (OLAP) has emerged to support multidimensional
data analysis by providing manipulations through aggregations of data drawn from
various transactional databases. This approach is often based on a Multidimensional
DataBase (MDB). A MDB schema [1] is composed of a fact (subject of analysis) and
dimensions (axes of analysis). A fact contains indicators or measures. A measure is
the data item of interest. As mentioned in [2], fact data reflect the dynamic aspect
whereas dimension data represent more static information. However, sources
(transactional databases) may evolve and these changes have an impact on structures
and contents of the MDB built on them. In the same way, user requirement evolutions
may induce schema changes; eg. to create a new dimension or a new “dimension
member” [3], to add a new measure,… Changes occur on dimensions as well as facts.

This paper addresses the problem of how to specify changes in a MDB. The
changes may be related to contents as well as schema structures. Our work is not
limited to represent the mapping data into the most recent version of the schema. We
intend to keep trace of changes of multidimensional structures.

1.1 Related Works and Discussion

As mentioned in [3, 4], the approaches to manage changes in a MDB can be classified
into two categories.

The first one, also called "updating model" in [1], provides a pragmatic way of
handling changes of schema and data. The approaches in this first category support
only the most recent MDB version of the schema and its instances. However, working
with the latest version of a MDB hides the existence of changes [3]. This category
regroups the following works [5, 6, 7].

66 F. Ravat, O. Teste, and G. Zurfluh

In the approaches from the second category called "tracking history approaches",
changes to a MDB schema are time-stamped in order to create temporal versions. [3]
provides an approach for tracking history and comparing data mapped into versions.
Their conceptual model builds a multiversion fact table and structural change
operators. The proposed mechanism uses one central fact table for storing all
permanent time-stamped versions of data. As a consequence, the set of schema
changes is limited, and only changes to dimension structure and “dimension instance
structure” named hierarchy are supported [4]. The authors detail the related works of
“tracking history approaches” and they focus on a model supporting multiversions;
e.g. each version represents a MDB state at a time period and it is composed of a
schema version and its instances [8]. Their approach is not based on a formal
representation of versions and their model supports one single subject of analysis. The
provided model also does not integrate extracting functions allowing the population of
data warehouse version from time-variant transactional sources.

1.2 Paper Contributions and Paper Outline

We intend to represent multidimensional data in a temporally consistent mode of
presentation. Our model has the following features.

- The paper deals with the management of constellation changes. A
constellation extends star schemata [1]. A constellation regroups several facts
and dimensions. Our model supports complex dimensions, which are
organised through one or several hierarchies. A constellation may integrate
versions, which represents structural changes.

- Our model must support overlapping versions of MDB parts. Each version
representing a subject of analysis (fact) and its axes of analysis (dimensions) is
time stamped.

- Our model must integrate mapping functions to populate versions.

The remainder of the paper is organized as follows. Section 2 formally defines our
conceptual multiversion model dedicated to MDB. Section 3 presents the mapping
functions. Section 4 focuses on the prototype implementation.

2 Multidimensional Database Modelling

The conceptual model we define supports temporal changes using multi-versions. The
temporal model is based on discrete and linear temporal model. An instant is a time
point on the time line whereas an interval represents the time between two instants.
We consider in the model valid-time and transaction-time [9]. The valid-time
represents time when the information is valid in the real world whereas transaction-
time represents time when the information is recording in the MDB. Note that they
are various transaction-times at source level and MDB level. At the MDB level, each
extraction provides a transaction time point.

 A Multiversion-Based Multidimensional Model 67

2.1 Constellation and Star Version

The model is a conceptual model near user point of views. A MDB is modelled
through a constellation, which is composed of star versions modelling schema
changes. Each star version is a snapshot of one fact and its dimensions at an
extraction time point.

Definition. A constellation C is defined by a set of star versions {VS1,…, VSU}.

Definition. A star version ∀i∈[1..u], VSi is defined by (VF, {VD1,…, VDV}, T)

- VF is a fact version,
- ∀k∈[1..v], VDk is a dimension version, which is associated to the fact version,
- T = [TStart, TEnd] is a temporal interval during the star schema version is valid.

Example. The following figure depicts an example of constellation evolutions. At T1
the constellation is composed of two star versions (VS1.1 and VS2.1). Between times T1
and T3, the constellation have one new dimension version noted VD2.1 , which is
associated to a new fact version, noted VF1.2. A new dimension version, noted VD3.2
is deduced from VD3.1. According to the model we provided, this constellation is
defined by a set of four star versions {VS1.1, VS2.1, VS1.2, VS2.2}.

- VS1.1 = (VF1.1, {VD1.1, VD3.1}, [T1,T3])
- VS2.1 = (VF2.1, {VD3.1, VD4.1}, [T1,T3])
- VS1.2 = (VF1.2, {VD1.1, VD2.1, VD3.2}, [T3,TNow])
- VS2.2 = (VF2.1, {VD3.2, VD4.1}, [T3,TNow])

Fig. 1. Example of constellation changes

Note that the model is a multiversion based model because several star versions
can be used at a same instant. If source data changes do not require structural change,
the current star version is refreshed; e.g. new dimension instances and/or fact
instances are calculated [10]. If source data changes require structural changes (for
example, a hierarchy may be transformed according to new source data), a new star
version is defined.

68 F. Ravat, O. Teste, and G. Zurfluh

2.2 Star Version Components

Each star version is composed of one fact version and several dimension versions.
Each fact version is composed of measures. Each dimension version is composed of
properties, which are organised according to one or several hierarchies.

Definition. A fact version VF is defined by (NVF, IntVF, ExtVF, MapVF)

- NVF is the fact name
- IntVF = {f1(m1),…, fp(mp)} is the fact intention, which is defined by a set of

measures (or indicators) associated to aggregate functions,
- ExtVF = {iVF

1,…, iVF
x} is the fact extension, which is composed of instances.

Each fact instance is defined by ∀k∈[1..x], iVF
k = [m1:v1,…, mp:vp,

idVD1:id1,…, idVDv:idv, TStart:vt, TEnd:vt'] where m1:v1,…, mp:vp are the measure
values, idVD1:id1,…, idVDv:idv are the linked dimension identifiers and TStart:vt,
TEnd:vt' are transaction-time values,

- MapVF is a mapping function, which populates the fact version.

All fact versions having the same fact name (NVF) depict one fact; eg. Each fact
version represents a state occurring during its lifetime cycle.

Example. The case study is taken from commercial domain. Let us consider the
following fact versions:

- VF1.1 = (ORDER, {SUM(Quantity)}, ExtVF11, MapVF11)
- VF1.2 = (ORDER, {SUM(Quantity), SUM(Amount)}, ExtVF12, MapVF12)
- VF2.1 = (DELIVER, {SUM(Quantity)}, ExtVF21, MapVF21)

VF1.1 and VF1.2 are two versions of the same fact named ORDER whereas VF2.1 is one
version of the fact called DELIVER. The following tables show examples of fact
instances.

Table 1. Fact instances of ExtVF12

measures linked dimension identifiers transaction-time values

SUM(Quantity) SUM(Amount) IDP IDT IDC TStart TEnd
200 1500.00 p1 2006/01/01 c1 T1 T2

250 1800.00 p1 2006/01/01 c1 T2 Tnow

150 900.00 p2 2006/01/01 c1 T1 Tnow

Remarks. ∀i∈[1..u], VSi,=(VFi, {VDi
1,…, VDi

V}, [TStart
i, TEnd

i]), ∀k∈[1..x],
iVF

k∈ExtVFi, then TStart
i ≤ TStart

VFi
k ∧ TEnd

VFi
k ≤ TEnd

i ∧ TStart
VFi

k ≤ TEnd
VFi

k. In the same
way, the transaction time of fact versions or dimension versions may be calculated.

Note that a new fact version is defined when new measures are created or old
measures are removed. In the previous example, one new measure, noted
SUM(Amount), is created between VF1.1 and VF1.2 versions.

 A Multiversion-Based Multidimensional Model 69

Definition. A dimension version VD is defined by (NVD, IntVD, ExtVD, MapVD)

- NVD is the dimension name,
- IntVD = (AVD, HVD) is the dimension intention composed of attributes, AVD =

{a1,…, aq}∪{idVD, All}, which are organised through hierarchies, HVD =
{HVD

1,…, HVD
W},

- ExtVD = {iVD
1,…, iVD

Y} is the dimension extension, which is composed of
instances. Each dimension instance is defined by ∀k∈[1..Y], iVD

k = [a1:v1,…,
aq:vq, TStart:vt, TEnd:vt'] where a1:v1,…, aq:vq are dimension attribute values and
TStart:vt, TEnd:vt' are transaction-time values,

- MapVD is a mapping function defining. It defines the ETL process, which
populates the dimension (see section 3 for more details).

Definition. A hierarchy HVD
i is defined by (NVD

i, P
VD

i, WAVD
i)

- NVD
i is the hierarchy name,

- PVD
i = <p1,…,ps> is an ordered set of dimension attributes, called parameters,

∀k∈[1..s], pk∈ AVD, p1 = idVD is the root parameter, ps = All is the extremity
parameter,

- WAVD
i : P

VD
i → 2AVD is a function associating each parameter to a set of weak

attributes, which add information to the parameter.

A dimension is depicted by several dimension versions having the same name. Note
that a new dimension version is defined when its structure changes; eg. when
dimension attributes are creating or deleting, hierarchies are adding, deleting or
modifying [11].

Example. The facts named ORDER and DELIVER can be analysed according to
products. We define two versions of the dimension, named PRODUCT:

- VD3.1 = (PRODUCT, ({IDP, Category_Name, Sector_Name, All}, {HVD31
1})

ExtVD31, MapVD31),
- VD3.2 = (PRODUCT, ({IDP, Product_Desc, Brand_Desc, Category_Name,

Sector_Name, All}, {HVD32
1, H

VD32
2}), ExtVD32, MapVD32).

These two dimension versions are composed of three hierarchies, which are defined
as follows.

- HVD31
1 = (HSector, <IDP, Category_Name, Sector_Name, All>, {})

- HVD32
1 = (HSector, <IDP, Category_Name, Sector_Name, All>, {(IDP,

Product_Desc)})
- HVD32

2 = (HBrand, <IDP, Brand_Desc, All>, {(IDP, Product_Desc)})

The following tables show examples of dimension instances. In ExtVD31, we find
two products, denoted p1 and p2; two dimension instances represent p1 because its
category name changed at t2.

70 F. Ravat, O. Teste, and G. Zurfluh

Table 2. Dimension instances of ExtVD31

IDP Category_Name Sector_Name All TStart TEnd
p1 Tv video all T1 T2
p1 Television video all T2 T3
p2 Dvd video all T1 T3

Table 3. Dimension instances of ExtVD32

IDP Product_Desc Category_Name Sector_Name Brand_Desc All TStart TEnd
p1 14PF7846 television video Philips all T3 T4

p1 Flat TV
14PF7846

television video Philips all T3 Tnow

p2 DVP3010 dvd video Philips all T3 Tnow

Transaction-time is an interval associated to the fact instances and dimension
instances. Note that the valid time is modelled by temporal dimension in the MDB.

3 Mapping Function

The approach we present is based on decisional systems, which are composed of three
levels: (1) operational data sources, (2) data warehouse and (3) multiversion-based
multidimensional data marts, noted MDB. In this context, the data warehouse aims to
store relevant decisional data and it supports historical data [12]. Usually a data
warehouse is implemented in relational database management systems.

This paper focuses on MDB level, which is modeled through constellations. A
constellation is composed of fact versions and dimension versions. These versions are
populated from data warehouse tables. The mapping functions of these versions
(MAP) model the data extraction. We use the relational algebra for defining the
extraction process of relational data warehouse data.

Example. The next figure depicts a relational data warehouse schema. This schema is
used for populating star versions.

Fig. 2. Example of relational data warehouse schema

 A Multiversion-Based Multidimensional Model 71

From this data warehouse, figure Fig. 3 depicts a constellation schema at T3 time.
This constellation is composed of two star versions

- VS1.2 = (VF1.2, {VD1.1, VD2.1, VD3.2}, [T3,TNow]), and
- VS2.2 = (VF2.1, {VD3.2, VD4.1}, [T3,TNow]).

Each star version regroups one fact version and its linked dimension versions. The
textual definitions of these versions are:

- VF1.2 = (ORDER, {SUM(Quantity), SUM(Amount)}, ExtVF12, MapVF12),
- VF2.1 = (DELIVER, {SUM(Quantity)}, ExtVF21, MapVF21),
- VD1.1 = (TIME, ({IDD, Month_Name, Month_Number, Year, All}, {HVD11

1}),
ExtVD11, MapVD11),

- VD2.1 = (CUSTOMER, ({IDC, Firstname, Lastname, City, Country, All},
{HVD21

1}), ExtVD21, MapVD21),
- VD3.2 = (PRODUCT, ({IDP, Product_Desc, Brand_Desc, Category_Name,

Sector_Name, All}, {HVD32
1, H

VD32
2}), ExtVD32, MapVD32),

- VD4.1 = (COMPAGNY, ({IDCP, CName, CCountry All}, {HVD41
1}), ExtVD41,

MapVD41).

Fig. 3. Graphical representation of a constellation

The extensions of the fact version and its dimension versions of VS1.2 are
populated from the following map functions.

- MapVD32 = π((PRODUCT; CATEGORY; CA_ID=CA_ID); {P_ID AS IDP,
CA_NAME AS Category_Name, CA_SECTOR AS Sector_Name, P_BRAND AS
Brand_Desc})

- MapVD11 = π(ORDER; {Date AS IDC, TO_CHAR(Date, ’mm’) AS
Month_Number}, TO_CHAR(Date, ’month’) AS Month_Name, TO_CHAR(Date,
’yyyy’) AS Year})

- MapVD21 = π((CUSTOMER; TOWN; T_ID= T_ID); {CU_ID AS IDC,
CU_FirstName AS Firstname, CU_LastName AS Lastname, T_Name AS City,
T_Country AS Country})

72 F. Ravat, O. Teste, and G. Zurfluh

- MapVF12 = SUM((((ORDER; PRODUCT; P_ID=P_ID); PRICES; P_ID=P_ID);
PRODUCT; P_ID=P_ID); ORDER.P_ID, ORDER.Date, ORDER.CU_ID;
ORDER.Quantity AS Quantity, PRICES.PricexORDER.Quantity AS Amount)

As illustrating in the following figure, some instances can be calculated from data
warehouse data, but others instances may be “derived” from instances of MDB (note
that MDB components such as facts and dimensions are viewed as relations). MAP1
and MAP4 are mapping functions defining instances (iv1 and iv4) from data warehouse
data whereas MAP2 and MAP3 are mapping functions defining instances (iv2 and iv3)
from instances of the MDB. This mechanism may be interesting for limiting the
extraction process; e.g. iv1 is calculated from data warehouse data, but iv2, which is an
alternative instance at the same time instant, is calculated from iv1.

Fig. 4. Mechanism for calculating extensions

4 Implementation

In order to validate the model, we have implemented a prototype, called Graphic
OLAPSQL. This tool is developed using Java 1.5 (and additional packages called
JavaCC and Oracle JDBC) over Oracle10g Application Server. In [13] we presented
the prototype and associated languages and interfaces. The MDB schema is displayed
as a graph where nodes represent facts and dimensions while links represent the
associations between facts and dimensions (see Fig. 3). These notations are based on
notations introduced by [14].

We are extending this prototype for managing versions. Users can display a
constellation at one time instant. If several versions (deriving versions) are defined at
this time instant, the user chooses its working version, which is displayed. Users
express their queries by manipulating the graphical representation of the choosing
constellation. The query result is represented through a dimensional-table.

The management of multiversion MDB is based on a metabase. Its schema is
represented as follows. A constellation is composed of several star schemata. Each
star schema is composed of one fact version and several dimension versions. A
dimension version regroups hierarchies which organize attributes of the dimension. A
fact version is composed of measures. A same fact version (or dimension version)
may be integrated in different star schema. Each fact version (or dimension version) is

 A Multiversion-Based Multidimensional Model 73

Fig. 5. Metaschema for managing multiversion-based MDB

characterized by a mapping function, its extension (classes Dim_ext or Fact_ext) and
its intention.

5 Concluding Remarks

In this paper, we provide solutions for managing data changes of a MDB. The
multidimensional model intends to manage several subjects of analysis studied
through several axes of analysis. The solution we present is a constellation based on
several facts related to dimensions composed of multi-hierarchies.

For supporting changes, a constellation is defined as a set of star versions. A star
version is associated to a temporal interval and it is composed of dimension versions
(one version per dimension which is composed of a schema and its instances)
associated to a fact version (defined by a schema and its instances). A fact version or
a dimension version is defined through a mapping function. This function is
formalised with a relational algebraic expression on relational data warehouse data to
populate the versions. In order to validate our specifications, we are implementing a
prototype supporting a multiversion-based constellation.

Our future works consist in specifying a logical model of a multiversion
constellation in a relational context [4]. This R-OLAP model must limit data
redundancies in order to accelerate OLAP analysis. Moreover, we intend to specify
and to implement a query language [15]. In our context, this language must allow the
querying of the current star version, or a set of star versions or a specific version. In
this paper the mapping functions are based on a single relational data warehouse. We
plan to integrate more complex process such as ETL processes [16].

74 F. Ravat, O. Teste, and G. Zurfluh

References

1. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional
Data Warehouses. John Wiley & Sons, Inc, New York, USA, 1996.

2. Vaisman, A.A., Mendelzon, A.O.: A temporal query language for OLAP: Implementation
and a case study. 8th Biennial Workshop on Data Bases and Programming Languages -
DBPL 2001, Rome, Italy, September 2001.

3. Body, M., Miquel, M., Bédard, Y., Tchounikine, A.: A multidimensional and multiversion
structure for OLAP Applications. 5th International Workshop on Data Warehousing and
OLAP - DOLAP'02, USA, Nov. 2002.

4. Wrembel, R., Morzy, T.: Multiversion Data Warehouses: Challenges and Solutions. IEEE
Conference on Computational Cybernetics - ICCC'05, Mauritius, 2005.

5. Blaska, M., Sapia, C., Hoflin, G.: On schema evolution in multidimensional databases. 1st
International Conference on Data Warehousing and Knowledge Discovery - DaWaK'99,
pp 153-164, Florence (Italy), August 30–Sept. 1, 1999.

6. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining Data cubes under
dimension updates. 15th International Conference on Data Engineering - ICDE'99, pp 346-
355, Sydney (Australia), March 23-26, 1999.

7. Vaisman, A.A., Mendelzon, A.O., Ruaro, W., Cymerman, S.G.: Supporting dimension
updates in an OLAP Server. CAISE'02, Canada, 2002.

8. Bebel, B., Eder, J., Koncilia, C., Morzy, T., Wrembel, R.: Creation and Management of
Versions in Multiversion Data Warehouse. ACM Symposium on Applied Computing, pp.
717-723, Nicosia (Cyprus), March 14-17, 2004.

9. Bertino, E., Ferrari, E., Guerrini, G.: A formal temporal object-oriented data model. 5th
International Conference on Extending Database Technology - EDBT’96, pp342-356,
Avignon (France), March 25-29, 1996.

10. Eder J., Koncilia C., Mitsche D., « Automatic Detection of Structural Changes in Data
Warehouses”, 5th International Conference on Data Warehousing and Knowledge
Discovery – DAWAK’03, LNCS 2737, pp. 119-128, Czech Republic, 2003.

11. Eder, J., Koncilia, C.: Cahnges of Dimension Data in Temporal Data Warehouses. 3rd Int.
Conf. on Data Warehousing and Knowledge Discovery – DAWAK’01,LNCS 2114,
Munich (Germany), 2001.

12. Ravat, F., Teste, O., Zurfluh, G.: Towards the Data Warehouse Design. 8th Int. Conf. On
Information Knowledge Managment- CIKM'99, Kansas City (USA), 1999.

13. Ravat, F., Teste, O. et Zurfluh, G.: Constraint-Based Multi-Dimensional Databases
Chapter XI of "Database Modeling for Industrial Data Management", Zongmin Ma, IDEA
Group (ed.), pp.323-368.

14. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from E/R
schemes. 31st Hawaii International Conference on System Sciences, 1998.

15. Morzy, T., Wrembel, R.: On Querying Versions of Multiversion Data Warehouse. 7th
International Workshop on Data Warehousing and OLAP - DOLAP’04, pp.92-101,
Washington DC (USA), Nov. 12-13 2004.

16. Simitsis, A., Vassiliadis, P., Terrovitis, M., Skiadopoulos, S.: Graph-Based Modeling of
ETL Activities with Multi-level Transformations and Updates. 7th International
Conference on Data Warehousing and Knowledge Discovery – DaWak’05, LNCS 3589,
pp43-52, 2005.

Towards Multidimensional Requirement Design

Estella Annoni, Franck Ravat, Olivier Teste, and Gilles Zurfluh

IRIT-SIG Institute (UMR 5505, University of Paul Sabatier
118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9
{annoni, ravat, teste, zurfluh}@irit.fr

Abstract. Data warehouses (DW) main objective is to facilitating decision-
making. Thus their development has to take into account DW project actor
requirements. While much recent research has been focused on the design of mul-
tidimensional conceptual models, only few works were done to develop models
and tools to analyze them. Despite specificities (OLAP, historicization, ...) of these
requirements, most of the previous works used an E/R or UML schemas which
do not allow designers to represent these specific principles. A main property of
DW is that they are derived from existing data sources. Therefore, Extraction-
Transformation-Loading (ETL) processes from these sources to the DW are very
useful to define a reliable DW.

In this paper, we fill this gap by showing how to systematically derive a con-
ceptual schema of actors requirements using a rule-based mechanism. We provide
a conceptual model which tries to be close to user vision of data by extending an
object-oriented multidimensional model. Hence, in the early step of DW engi-
neering, designers can formalize actors requirements about information and ETL
processes at the same time to make easier understandability, confrontation and
validation by all DW actors.

1 Introduction

Building a data warehouse (DW) that satisfies tactical requirements with respect to
existing data sources is a very challenging and complex task since it affects DW in-
tegration in companies. In addition to tactical requirements in traditional information
systems, data warehouse development takes as input requirements existing source data-
ases called system requirements. Moreover, we distinguish strategic and tactical re-
quirements from tactical requirements. The strategic requirements correspond to key
performance indicators which make it possible to take decisions about high-level ob-
jectives; they are expressed by DW business group. On the other hand, tactical require-
ments represent functional objectives expressed by end-users group. These two latter
requirements are complementary of each other. Therefore, we split DW requirements
into three groups as in [1] to analyze separately each one according to their specificities.
Hence, the design must distinguish between tactical and strategic requirements and can
easily design and handle all DW inputs (tactical, strategic, system).

Previous works of DW design methods implies that the requirements are specified
by a classic E/R model. However, Kimball in [2] argues that this model cannot be used
as the basis for a company data warehouse. Other works use object-oriented modelling
because of the popularity of the UML model which results in reusing of models, tools

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 75–84, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

76 E. Annoni et al.

and so forth. But this model has the same drawback as argues Kimball for the E/R
model, which is the lack of ability for DBMS to navigate for DW project. Moreover,
these works do not exploit one of the great advantages of the object-oriented model
which is the definition of the operations.

In this paper, we focus on tactical and strategic requirement analysis step of our
method [3] in order to model a data warehouse system in precise, complete and user-
friendly manner. We provide a model to represent tactical and strategic requirements
close to decision-makers’ vision. This model represents both information and processes
related to these information. In DW development, they are defined before the design of
the multidimensional conceptual schema.

In the following sections, we present progressively our running example. The re-
mainder of this paper is organized as follows. Section 2 discusses related work. Section
3 presents our tactical requirement analysis. Section 4 describes our strategic require-
ment analysis. Finally, Section 5 points out the conclusion and future work.

2 Related Work

The DW requirement specificities imply proposition of several design methods different
from those of traditional information systems. (IS). However, as [1] argue DW require-
ment analysis process has not been supported by a formal requirement analysis method.
These authors define the three groups of actors, but they do not provide any model to
represent DW requirement specificities of these three levels.

Most of the previous propositions of DW design implies that this step is already
done. Main works do not use specific methods for this step as [4], [5], [6]. The authors
of [4] consider this issue by collecting and filtering the tactical requirements using a
natural-pseudo language. This expression is interesting because it is close to the nat-
ural language but it requires DW designer to handle informal and ambiguous tactical
requirements. Likewise the authors of [7], they only take into account information in
conceptual schema and processes associated are not analyzed. Moreover, [5] and [6]
use UML diagrams resulting in tactical requirement analysis process but they do not
specify explicitly how to analyze DW requirements and integrate their specificities. All
these works do not distinguish between tactical and strategic requirements and thus do
not handle their specificities.

Besides, some approaches of requirements gathering has been provided. [2] consid-
ers that the main task is the choice of the business process. According to his experience,
the author describes a modelling of the project from the functional requirements. Thus,
he considers only tactical requirements. The approach presented in [8] shares similari-
ties with ours, e.g the distinction between tactical and strategic requirements, but it does
not define requirement about ETL processes.

3 Tactical Requirement Analysis

3.1 Collection of Tactical Requirements

In order to avoid managing tactical requirements in an informal and ambiguous way, we
recommend to use a sample of representative analyses used by decision-makers shown

Towards Multidimensional Requirement Design 77

in table 1. These analyses are presented by multidimensional tables. With this tabular
representation, the fact of decision-making process is analyzed according to some points
of view related to the company. The fact with its measures can be analyzed according to
dimensions with several granularity levels. Requirements are represented as a point in a
multidimensional space. This representation is close to decision makers’ vision of data.

Table 1. Cost evolutions of Acts during the three last years

Acts. Time.Year
Cost 2003 2004 2005
Nature.Family Nature.Sub family
Nurse Bandage 1 147,43 3 445,14 4 624,12

Vaccine 3 601,85 5 319,81 7 420,95
Surgical Aesthetic 115 999,26 69 059,42 173 170,09

Dental 8 958,61 111 429,62 63 769,32

In addition, users may not have a tabular representation. Hence, we collect their
requirements by a natural-pseudo language. With this representation, one can define
the facts, dimensions with their measures and parameters respectively. Constraints and
restrictions on these elements can also be added using a query as follows:
ANALYZE ACTS
WHEN Costs >500
ACCORDING TO Nature.Family, Nature.Sub family, Medical Crew
FOR Time.Year IN (2003, 2004, 2005)

Transforming from a query written in a natural pseudo-language to a tabular repre-
sentation is easy and involves only user data. The query template’s major disadvantage
is that it is not user-friendly because restrictions on the elements must be expressed
in predicates. Basically, we favor tabular representation in the remainder of this paper.
Consider a simple example of a medical company that delivers medical acts and wants
to analyze the cost of these actsas presented in table 1.

During the analysis, from multidimensional tables we collect also the requirements
related to ETL processes such as historicization, archiving, calculation, consolidation
and refreshment. In fact, we consider the only functionality which concerns users (i.e
reporting) because the other functionalities (i.e loading and storage) concern source sys-
tems. In spite of this, these five processes are the most used through reporting manipu-
lations. In addition, many other interests in DW development were argued [9] and [10].
We use a Decisional Dictionary that we define as an extension of the classic data dictio-
nary with columns dedicated to ETL processes. From row headers and column headers,
designers formulate the inputs of the decisional dictionary. To fill line by line the other
columns (e.g field type, field constraints and calculation, consolidation, historicization,
archiving, and refreshment rules), designers must use cell values. Thus, from the mul-
tidimensional table 1, we obtain the Decisional Dictionary sketched in figure 1.

This dictionary provides a general view of tactical requirements about information
and processes on these information. But, this view is not close to user vision of data.
We will provide a model which is better adapted to decision-maker’s vision of data in
following sections.

78 E. Annoni et al.

Fig. 1. Decisional Dictionary of tactical requirements

3.2 Formalization of Tactical Requirements

From a sample of representative decision-making analyses and the Decisional Dictio-
nary, the DW designer can formalize the multidimensional tactical requirements with
our model called Decisional Diagram. In order to guide this task, we provide specific
transformation rules from tactical requirements to our model. We intend to achieve a
proposal model with the following properties:

– It is close to the way of thinking of data analyzers,
– It represents information and operations related to these information in early steps

of DW design,
– It handles separately information and processes in the same model.

Our model is inspired from the object-oriented multidimensional model of [11] which
verifies the principles of the star schema [2]. Facts and dimensions are represented by
a class of a stereotype. It takes into account ETL processes. To define these processes,
we need to associate a behavior to an attribute.

For this same problem, [12] represents attributes as first class modelling elements.
But, the authors argue that: ”an attribute class can contain neither attributes nor meth-
ods”. Thereby, it is possible to associate two attribute classes but it is impossible to
associate methods to an attribute as we expect. Hence, we propose to add the stereotype
”attribute” to the methods only applied on attributes but not applied on all the fact-class
or dimension-class. To define precisely on what attribute the method is applied, the at-
tribute is its first parameter. Our method has UML advantages and it offers models and
tools for DW problems presented in the following paragraphs.

Towards Multidimensional Requirement Design 79

The ETL processes are defined at class or attribute levels. For each ETL process, we
associate a concept called ”informativity concept” which is mentioned at attribute level.
Informativity concepts are placed with data visibility. We model informativity concepts
and the processes associated as follows:

– h : historicize(p, d, c): historicization process at a period p for a duration d with a
constraint c ,

– a: archive(p, d, c, fct): archiving process at a period p with a duration d, a constraint
c and an aggregate function fct,

– * : refresh(f, m): refreshment process with a frequency f and a refresh mode m,
– c : calculate({vi}+): calculation with parameters vi,
– s : consolidate(l): consolidation with the level l of consolidation chosen from [13]’s

four levels to get meaningful aggregations.

To transform an expression of tactical requirements into a Decisional Diagram, we
describe a three rule-based mechanism. It is composed of some structuring rules, well-
formedness rules and merge rules :

– the structuring rules enable designers to organize the project environment into one
or several Decisional Diagrams. They also make it possible to model facts and di-
mensions with their measures and parameters respectively into fact and dimension-
classes. Some rules help to define the above-mentioned processes from the Deci-
sional Dictionary,

– the well-formedness rules check whether the schema resulting from the analysis
of tactical requirements is well-formed. They make it possible to control schema
consistency,

– the merge rules indicate how to merge several Decisional Diagrams according to
project environment from object names . They take into account fact and dimension-
classes in common.

The complete rule-based mechanism is defined in the technical report [14]. Below,
we present its application to the table 1 of our running example. We start by applying
structuring rules, more precisely on the environment that lies in all multidimensional
tables of tactical requirements.

– Rule EI1: the project environment about tactical requirements is composed of one
Decisional Diagram because we have one multidimensional table.

Thus, for each multidimensional table we apply first the structuring rules related to
facts and its measures, then we apply dimensions and parameters ones. When we apply
structuring rules of facts and measures, we find out:

– Rule SI1: the fact ”Acts” is transformed into the fact-class ”Acts”,
– Rule SI2: the measure ”Cost” of fact ”Acts” is transformed into the attribute ”Cost”

of fact-class ”Acts”,
– Rule SI3: the measure ”Cost” is calculated, historicized, refreshed, archived, con-

solidate because it is calculated from the volume of acts and the unit price per act,
historicized every year for three years, refreshed every week according to the merge
operation and archived every year for ten years. Therefore, we add the property of
informativity ”c/h/*/a/s” to the attribute ”Cost” of the fact-class ”Acts”,

80 E. Annoni et al.

– Rule SP1: the ETL processes of facts and measures are defined from the properties
of informativity associated to each attribute. Thus, we define the operations from
the columns with the same names in Decisional Dictionary. If the constraints are
the same for all the attributes of a fact-class per process, the operation is defined
at class level. Otherwise, we define an operation per attribute which has its own
constraints. In our running example, all the operations of fact-class ”Acts” are at
class level, except Calculate operation which is specific to the measure ”Cost”.
Therefore, we define the followings :
• the operation Calculate(Cost, Volume, Unit price)<<attribute>> means the

attribute ”Cost” is calculated with the parameters Volume and unit price. The
computation is done by the end-user group. The operation is at attribute level,
• the operation Historicize(year, 3, NULL) means the attribute of fact-class ”Acts”

is historicized for the three previous years (because in the table 3 years is ana-
lyzed p=year and d=3) without constraints (c=NULL),
• the operation Refresh(week, merge) means the attribute of fact-class ”Acts” is

refreshed every week (f=week) according to the merge operation (m=merge),
• the operation Archive(year, 10 , NULL, sum) means the attribute of fact-class

”Acts” is archived for ten years (p=year and d=3) by summing (fct=sum) with-
out constraints (c=NULL),
• the operation Consolidate(1) means all the aggregate functions can be applied

on the attribute of fact-class ”Acts” (l=1).

When we apply structuring rules of dimensions and parameters, we find out:

– Rule AI1: the dimensions ”Nature” and ”Time” are transformed into dimension-
class ”Nature” and ”Time” respectively,

– Rule AI2: the parameters of dimension ”Nature” attributes (”Family” and
”Sub family”) are transformed into attributes of dimension-class ”Nature”. The at-
tributes of ”Time” dimension-class are the classic ”Year, ”Semester”, ”Quarter”,
”Month” and ”Day Date”,

– Rule AI3: the properties of informativity h/*/a are associated to attributes of
dimension-classes ”Time” and ”Nature” because they are historicized every year
for three years, refreshed every year according to the merge operation, archived
every year for ten years after historicization with sum aggregate function,

– Rule AP1: the ETL processes of dimensions and parameters are defined accord-
ing to the same criteria as that of the ETL processes of facts and measures. The
operations of dimension-classes ”Time” and ”Nature” are the same because the
constraints related to each process per dimension are the same. Moreover, the op-
erations are at class level because the constraints are the same for each parameter
per dimension and process. Hence, we define the following operations :
• the operation Historicize (year, 3, NULL) means the attributes are historicized

for the three previous years without constraint,
• the operation Archive (year, 10 , NULL, sum) means the attribute of fact-class

”Acts” is archived for ten years by summing without constraint,
• the operation Refresh(year, merge) means the attribute of dimension-classes

”Time” and ”Nature” are refreshed every year.

Towards Multidimensional Requirement Design 81

Fig. 2. Decisional Diagram of tactical requirements

We get to the Decisional Diagram as represented in figure 2. This simple diagram is
well-formed according to formedness rules. We have only one Decisional Diagram for
tactical requirements, therefore we do not need to apply the merge rules.

4 Strategic Requirement Analysis

4.1 Collection of Strategic Requirements

Decision-makers need a synthesis view of the data and their requirement are related to
key indicators of enterprise-wide management as shown in table 2. In the context of our
contract with I-D6 company which is specialized in decision-making, we notice that
strategic indicators composed tables which have only one dimension e.g Time dimen-
sion. The indicators are also present in other multidimensional tables expressing tactical
requirements. Hence, we consider these tables that we called strategic tables in order to
define the kernel of indicators of the future DW. Then, we collect strategic requirements
as tactical requirements.

4.2 Formalization of Strategic Requirements

As the strategic requirements are represented through measures which are only depend-
ing on the ”Time” dimension important to handle these tables with the structuring rules

Table 2. KPIs multidimensional table

Time.Month
January February

Cost 235025 355186
Day cost 7568 9135
Average cost per act 752 882

82 E. Annoni et al.

EI2. This rule declare any table as a not suitable table when it is not organized by a di-
mension in column and eventually a dimension in row and when its cells do not match
the fact measures.

Hence, DW designers transform the tables by taking into account that each indicator
is not a ”secondary measure”. We called ”secondary measures” the measures which can
be calculated from other measures called ”main measures”. In Decisional Diagrams of
strategic requirements, the secondary measures are not formalized in order to insure the
consistency of the diagrams and to assess the diagrams of the three types requirements.
To formalize strategic requirements, the DW designers also define a Decisional Dic-
tionary. The kernel of Decisional Diagrams can be defined from the multidimensional
tables of their requirements and the Decisional Dictionary.

In our running example, we must transform the multidimensional table 2 into a
multidimensional table with a dimension ”Time” and a fact ”Acts”. At the beginning,
this fact contains three measures. But among these measures, two of them can be cal-
culated from the other. The measure ”Day cost” and ”Average cost per act” can be
calculated from the measure ”Cost”. Therefore, the multidimensional table is struc-
tured with ”Time” dimension columns where the fact ”Acts” has one measure ”Cost”.
The Decisional Dictionary of strategic requirements contains the same rows of ”Time”
dimension and Acts fact as Decisional Dictionary of tactical requirements. The ker-
nel of Decisional Diagram is composed of the Decisional Diagram represented in
figure 3.

Fig. 3. Decisional Diagram of strategic requirements

In our running example, we have only a strategic table. Thus, we get to the Decisional
Diagrams. From the tactical Decisional Diagram and the strategic Decisional Diagram,
designer must merge the fact-classes, dimension-classes and attributes present in the
two diagrams by using merge rules (presented below). Designers apply these rules with
kernel Decisional Diagram as a reference in order to keep its multidimensional objects.
The merge rules are :

Towards Multidimensional Requirement Design 83

– FUS1: merge dimension and fact-classes by adding attributes and ETL operations.
It makes it possible to gather Decisional Diagrams with the same facts which have
common dimension-classes,

– FDS1: merge dimension-classes by adding attributes and ETL operations to define
a constellation. It makes it possible to gather Decisional Diagrams with different
facts which have common dimension-classes.

Then, after the confrontation of tactical and strategic requirements, designers can as-
sess result of the first confrontation with the result of system requirement analysis.
Before the design of the conceptual schema, designers can evaluate whether strategic
and tactical requirements can be satisfy since the first iteration of requirement anal-
ysis step. If there is inadequacy, this iteration of our DW design method is closed
and a new iteration begins in order to enclose the three types of requirements
together.

5 Conclusion

This paper presents our model called Decisional Diagram for tactical requirement
analysis process. We provide a method to derive a Decisional Diagram form tactical
requirements and strategic requirements. The method uses a three rule-based mecha-
nism which is composed of structuring, well-formedness and merge rules. These rules
enable data warehouse (DW) designers to get to a Decisional Diagram with respect to
tactical and strategic requirements about information and ETL processes.

Our proposal introduces a model between (tactical, strategic) requirements and the
conceptual schema to tackle all DW requirements in the early steps of data warehouse
design. It has the advantage of enabling DW designers to define ETL operation inter-
faces. Defining historicization, archiving, calculation, consolidation and refreshment
processes during the early step of the DW design may contribute in reducing the impor-
tant rate of ETL cost and time in a DW project.

As [9], [10] and [12] argue , few researches have been done to develop models and
tools for ETL process. Therefore, in the near future we intend to enhance the under-
standability and user-friendliness of data mappings. These mappings will be useful as
a document in DW project validation by its actors at conceptual and logical abstraction
levels. Moreover, we are working on the definition of hierarchies during requirements
analysis.

References

1. Bruckner, R., List, B., Schiefer, J.: Developping requirements for data warehouse systems
with use cases, AMCIS (1999)

2. Kimball, R.: The data warehouse toolkit: practical techniques for building dimensional data
warehouses. John Wiley & Sons, Inc., New York, NY, USA (1996)

3. Annoni, E., Ravat, F., Teste, O., Zurfluh, G.: Les systèmes d’informations décisionnels :
une approche d’analyse et de conception à base de patrons. revue RSTI srie ISI, Méthodes
Avancées de Développement des SI 10(6) (2005)

84 E. Annoni et al.

4. Golfarelli, M., Rizzi, S.: Methodological framework for data warehouse design. In: DOLAP
’98, ACM First International Workshop on Data Warehousing and OLAP, November 7, 1998,
Bethesda, Maryland, USA, Proceedings, ACM (1998) 3–9

5. Luján-Mora, S., Trujillo, J.: A comprehensive method for data warehouse design. In:
DMDW. (2003)

6. Abelló, A., Samos, J., Saltor, F.: Yam2 (yet another multidimensional model): An extension
of uml. In Nascimento, M.A., Özsu, M.T., Zaı̈ane, O.R., eds.: IDEAS, IEEE Computer
Society (2002) 172–181

7. Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data marts for
data warehouses. ACM Trans. Softw. Eng. Methodol. 10(4) (2001) 452–483

8. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data warehouse
design. In Song, I.Y., Trujillo, J., eds.: DOLAP, ACM (2005) 47–56

9. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for etl processes. In
Theodoratos, D., ed.: DOLAP, ACM (2002) 14–21

10. Bouzeghoub, M., Fabret, F., Matulovic-Broqué, M.: Modeling the data warehouse refresh-
ment process as a workflow application. In Gatziu, S., Jeusfeld, M.A., Staudt, M., Vassiliou,
Y., eds.: DMDW. Volume 19 of CEUR Workshop Proceedings., CEUR-WS.org (1999) 6

11. Luján-Mora, S., Trujillo, J., Song, I.Y.: Extending the uml for multidimensional modeling.
In Jézéquel, J.M., Hußmann, H., Cook, S., eds.: UML. Volume 2460 of Lecture Notes in
Computer Science., Springer (2002) 290–304

12. Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data mapping diagrams for data warehouse de-
sign with uml. In Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W., eds.: ER. Volume 3288
of Lecture Notes in Computer Science., Springer (2004) 191–204

13. Pedersen, T.B., Jensen, C.S.: Multidimensional data modeling for complex data. In: ICDE,
IEEE Computer Society (1999) 336–345

14. Annoni, E.: ebipad : Outil de developpement des systemes d’information decisionnels. Tech-
nical Report IRIT/RR-2006-12-FR (2006)

Multidimensional Design by Examples

Oscar Romero and Alberto Abelló

Universitat Politècnica de Catalunya, Jordi Girona 1-3, E-08034 Barcelona, Spain

Abstract. In this paper we present a method to validate user multidi-
mensional requirements expressed in terms of SQL queries. Furthermore,
our approach automatically generates and proposes the set of multidi-
mensional schemas satisfying the user requirements, from the organiza-
tional operational schemas. If no multidimensional schema is generated
for a query, we can state that requirement is not multidimensional.

Keywords: Multidimensional Design, Design by Examples, DW.

1 Introduction

In this paper we present a method to validate user multidimensional require-
ments expressed in terms of SQL queries over the organizational operational
sources. In our approach, the input query is decomposed to infer relevant im-
plicit and explicit potential multidimensional knowledge contained and accord-
ingly, it automatically proposes the set of multidimensional schemas satisfying
those requirements. Thus, facts, dimensions and dimension hierarchies are iden-
tified, giving support to the data warehouse design process. Conversely, if our
process has not been able to generate any multidimensional schema, we would
be able to state that the input query is not multidimensional.

Our main contribution is the automatization of identifying the multidimen-
sional concepts in the operational sources with regard to the end-user require-
ments. Demand-driven design approaches ([12]) focus on determining the user
requirements to later map them onto data sources. This process is typically car-
ried out by the DW expert and it is hardly automatized. Therefore, it is up to the
expert criterion to properly point out the multidimensional concepts giving rise
to the multidimensional schema. Conversely, in our approach we automatically
generate and propose a set of multidimensional schemas validating the input
requirements, giving support to the DW expert along the design process.

Notice we propose a method within a supply/demand-driven framework. Our
method starts analyzing the requirements stated by the user (in terms of SQL
queries), as typically performed in demand-driven approaches. However, it ana-
lyzes the operational relational data sources in parallel, as typically performed
in supply-driven approaches, to extract additional knowledge needed to validate
the user requirements as multidimensional.

We start with section 2 presenting the related work in the literature; section 3
presents the foundations our method is based on whereas section 4 introduces our
approach. For the sake of a better comprehension, section 5 presents a practical
application of our method and finally, section 6 concludes the paper.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 85–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

86 O. Romero and A. Abelló

2 Related Work

As presented in [12], the DW design process can be developed within a supply-
driven or a demand-driven approach. Several methodologies following both
paradigms have been presented in the literature. On one hand, demand-driven
approaches ([12], [5]) focus on determining the user multidimensional require-
ments (as typically performed in other information systems) to later map them
onto data sources. As far as we know, none of them automatize the process. On
the other hand, supply-driven approaches ([11], [3], [7], [6] and [2] among others)
start thoroughly analyzing the data sources to determine the multidimensional
concepts in a reengineering process. In that case, the approach presented in [6]
is the only one partially automatizing the process.

Asmentioned,ourapproachcombinesademand/supply -drivenapproachassug-
gested in [10]. Other works have already combined both approaches, like [5] and [4].
Main differencewith our approach is that the first one does not fully automatize the
process whereas the second one does not focus on modeling multidimensionality.

3 Framework

In this section we present the criteria our work is based on. That is, those used
to validate the input query as a valid multidimensional requirement:

[C1] Relational modeling of multidimensionality: Multidimensionality is
based on the fact/dimension dichotomy. Hence, we consider a Dimension to
contain a hierarchy of Levels representing different granularities (or levels of
detail) to study data, and a Level to contain Descriptors. On the other hand,
a Fact contains Cells which contain Measures. Like in [11], we consider a Fact
can contain not just one but several different materialized levels of granularity
of data. Therefore, one Cell represents those individual cells of the same gran-
ularity that show data regarding the same Fact (i.e. a Cell is a “Class” and
cells are its instances). Specifically, a Cell of data is related (in the relational
model, by means of FK’s) to one Level for each of its associated Dimension
of analysis. Finally, one Fact and several Dimensions to analyze it give rise
to a Star, to be implemented in the relational model through an “star” or an
“snow-flake” schemas as presented in [8].

[C2] The cube-query template: The standard SQL’92 template query to
retrieve a Cell of data from the RDBMS was first presented in [8]:
SELECT l1.ID, ..., ln.ID, [F(]c.Measure1[)], ...
FROM Cell c, Level1 l1, ..., Leveln ln
WHERE c.key1=l1.ID AND ... AND c.keyn=ln.ID [AND li.attr Op. K]
[GROUP BY l1.ID, ..., ln.ID]
[ORDER BY l1.ID, ..., ln.ID]

The FROM clause contains the “Cell table” and the “Level tables”. These
tables are properly linked in the WHERE clause, where we can also find logic
clauses restricting an specific Level attribute (i.e. a Descriptor) to a constant K
by means of a comparison operator. The GROUP BY clause shows the identifiers
of the Levels at which we want to aggregate data. Those columns in the grouping

Multidimensional Design by Examples 87

must also be in the SELECT clause in order to identify the values in the result.
Finally, the ORDER BY clause is intended to sort the output of the query.

[C3] The Base integrity constraint: Dimensions of analysis should be or-
thogonal. Despite it could be possible to find Dimensions determining others
in a multidimensional schema, it must be avoided among Dimensions arrang-
ing the multidimensional space in a cube-query, in order to guarantee cells are
fully functionally determined by Dimensions ([1]). Therefore, we call a Base
to those minimal set of Levels identifying unequivocally a Cell, similar to the
“primary key” concept in the relational model.

[C4] The correct data summarization integrity constraint: Data summa-
rization performed in multidimensionality must be correct, and we warrant this
by means of the three necessary conditions (intuitively also sufficient) introduced
in [9]: (1) Disjointness (Sets of cells at an specific Level to be aggregated must
be disjoint); (2) Completeness (Every cell at a certain Level must be aggre-
gated in a parent Level) and (3) Compatibility (Dimension, kind of measure
aggregated and the aggregation function must be compatible). Compatibility must
be satisfied since certain functions are incompatible with some Dimensions and
kind of measures. For instance, we can not aggregate Stock over Time Dimen-
sion by means of sum, as some repeated values would be counted. However, this
last condition can not be automatically checked unless additional information
would be provided, since it is not available neither in the requirements nor in
the source schemas.

Multidimensionality pays attention to two main aspects; placement of data
in a multidimensional space and summarizability of data. Therefore, if we can
verify that the SQL query given follows the cube-query template; it does not
cause summarizability problems and data retrieved is unequivocally identified in
the space, we would be able to assure it undoubtedly makes multidimensional
sense. Moreover, since it is well-known how to model multidimensionality in the
relational model, we can look for this pattern over the operational schemas to
identify the multidimensional concepts. Additionally, we introduce other optional
criteria to validate the query, to be used depending on the DW expert:

[C5] Selections: Multidimensional selections must be carried out by means
of logic clauses in the WHERE clause (i.e. field comparison operator constant).
However, we could allow to select data joining two relations through, at least, two
different conceptual relationships between them and therefore, not navigating
but selecting data equally retrieved by those joins.

[C6] Degenerate dimensions: Multidimensionality is typically modeled forc-
ing Cells to be related, by means of FK’s, to its analysis Dimensions (see [C1]).
However, in a non-multidimensional relational schema this may not happen, and
we could have a table attribute representing a Dimension not pointing to any
table (for instance, dates or control numbers). In the multidimensional model,
these rather unusual Dimensions were introduced in [8], and they are known
as “degenerate dimensions”.

88 O. Romero and A. Abelló

4 Our Method

Our approach aims to automatically validate a syntactically correct SQL query
representing user multidimensional requirements, as a valid (syntactically and
semantically) cube-query. An SQL query is a valid cube-query if we are able
to generate a non-empty set of multidimensional schemas validating that query.
Otherwise, the input query would not represent multidimensional requirements.
Multidimensional schemas proposed will be inferred from those implicit restric-
tions, presented in previous section, an SQL query needs to guarantee to make
multidimensional sense; playing the operational databases schemas a key role.
This process is divided into two main phases: first one creates what we call the
multidimensional graph; a graph concisely storing relevant multidimensional in-
formation about the query, that will facilitate the query validation along the
second phase. Such graph is composed of nodes, representing tables involved in
the query and edges, relating nodes (i.e. tables) joined in the query. Our aim is
to label each node as a Cell (factual data) or a Level (dimensional data). A
correct labeling of all the nodes gives rise to a multidimensional schema fitting
the input query. Along this section, due to lack of space, we introduce a detailed
algorithm in pseudo code to implement our method, followed by a brief expla-
nation of each one of its steps. For the sake of readability, comprehension of the
algorithm took priority over its performance:

1. For each table in the FROM clause do

(a) Create a node and Initialize node properties;
2. For each attribute in the GROUP BY clause do

(a) node = get_node(attribute);
(b) if (!defined_as_part_of_a_CK(attribute)) then Label node as Level;
(c) else if (!degenerate dimensions allowed) then

i. FK = get_F K(attribute); node_dest = node; attributes_F K = attribute;
ii. while chain_of_F Ks_follows(F K) and F K_in_W HERE_clause(F K) do

A. FK = get_next_chained_F K(F K); node_dest = get_node(get_table(F K));
attributes_F K = get_attributes(F K);

iii. /* We must also check #attributes selected matches #attributes at the end of the chain. */
iv. if (FK == NULL and #attrs(attribute) == #attrs(attributes_F K)) then

A. Label node_dest as Level;

3. For each attribute in the SELECT clause not in the GROUP BY clause do

(a) node = get_node(attribute); Label node as Cell with Measures selected;
4. For each comparison in the WHERE clause do

(a) node = get_node(attribute);
(b) if (!defined_as_part_of_a_CK(attribute)) then Label node as Level;
(c) else if (!degenerate dimensions allowed) then

i. attribute = get_attribute(comparison); FK = get_F K(attribute); node_dest =
get_node(attribute); attributes_F K = attribute;

ii. while chain_of_F Ks_follows(F K) and F K_in_W HERE_clause(F K) do

A. FK = get_next_chained_F K(F K); node_dest = get_node(get_table(F K));
attributes_F K = get_attributes(F K);

iii. if (FK == NULL and #attributes(attribute) == #attributes(attributes_F K)) then

A. Label node_dest as Level;

5. For each join in the WHERE clause do

(a) /* Notice a conceptual relationship between tables may be modeled by several joins in the WHERE */
(b) set_of_joins = look_for_related_joins(join);
(c) multiplicity = get_multiplicity(set_of_joins); relationships fitting = {};
(d) For each relationship in get_allowed_relationships(multiplicity) do

i. if (!contradiction_with_graph(relationship)) then

A. relationships fitting = relationships fitting + {relationship};
(e) if (!sizeof(relationshipsfitting)) then return notify_fail("Tables relationship not allowed");
(f) Create an edge(get_join_attributes(set_of_joins)); Label edge to relationships fitting;
(g) if (unequivocal_knowledge_inferred(relationships_fitting)) then propagate knowledge;

Multidimensional Design by Examples 89

Table 1. Valid multidimensional relationships in a relational schema

Multiplicity L - L C - C L - C C - L

1 - 1 � � � �
1 o- 1 � � × �
N - 1 � � × �

N o- 1 � � × �
N o-o 1 � � × ×
N -o 1 � � × ×
1 o-o 1 � � × ×

The algorithm starts analyzing each query clause according to [C2]:

Step 1: Each table in the FROM clause is represented as a node in the multi-
dimensional graph. Along the whole process we aim to label them and, if in
a certain moment, an already labeled node is demanded to be labeled with
a different tag, the process ends and raises the contradiction stated.

Step 2: The GROUP BY clause must fully functionally determine data
(see [C3]). Thus, fields on it represent dimensional data. However, we can not
label them directly as Levels since, because of [C1], Cells are related to Lev-
els by FK’s and dimensional data selected could be that in the Cell table.
Hence, we label it as a Level if that field is not defined as FK or it is but we
are able to follow a FK’s chain defined in the schema that is also present in
the WHERE. Then, the table where the FK’s chain ends plays a Level role.
If [C6] is assumed, we can not rely on FK’s to point out Levels.

Step 3: Those aggregated attributes in the SELECT not present in the GROUP
BY surely play a Measure role. Hence, each node is labeled as a Cell with
selected Measures. If the input query does not contain a GROUP BY clause,
we are not forced to aggregate Measures by means of aggregation functions
in the SELECT, and this step would not be able to point them out.

Step 4: Since a multidimensional Selection must be carried out over dimen-
sional data, this step labels nodes as Levels with the same criteria regarding
FK’s presented in step 2.

Step 5: Previous steps are aimed to create and label nodes whereas this step cre-
ates and labels edges. For each join between tables in the WHERE clause,
we first infer the relationship multiplicity with regard to the definition of the
join attributes in the schema (i.e. as FK’s, CK’s or Not Null). According to
the multiplicity, we look for those allowed multidimensional relationships de-
picted in table 1, not contradicting previous knowledge in the graph. If we find
any, we create an edge representing that join and label it with those allowed
relationships. Finally, if we are just considering one possible relationship, or
we can infer unequivocal knowledge (i.e. despite having some different alter-
natives, we can assure that origin/destination/both node(s) must be a Cell
or a Level), we update the graph labeling the nodes accordingly. If we update
one such node, we must propagate in cascade new knowledge inferred to those
edges and nodes directly related to those updated.

Next, we need to validate the graph as a whole. However, notice the graph
construction may have not labeled all the nodes. By means of backtracking, we
first look for all those non-contradictory labeling alternatives, to be validated
each one as follows:

90 O. Romero and A. Abelló

6. If !connected(graph) then return notify_fail("Aggregation problems because of cartesian product.");
7. For each subgraph of Levels in the multidimensional graph do

(a) if contains_cycles(subgraph) then

i. /* Alternative paths must be semantically equivalent and hence raising the same multiplicity. */
ii. if contradiction_about_paths_multiplicities(subgraph) then return notify_fail("Cycles

can not be used to select data.");
iii. else ask user for semantical validation;

(b) if exists_two_Levels_related_same_Cell(subgraph) then return notify_fail("Non-orthogonal
Analysis Levels");

(c) For each relationship in get_1_to_N_Level_Level_relationships(subgraph) do

i. if left_related_to_a_Cell_with_Measures(relationship) then return
notify_fail("Aggregation Problems.");

8. For each Cell pair in the multidimensional graph do

(a) For each 1_1_correspondence(Cellpair) do Create context edge between Cell pair;
(b) For each 1_N_correspondence(Cellpair) do Create directed context edge between Cell pair;
(c) If exists_other_correspondence(Cellpair) then return notify_fail("Invalid correspondence

between Cells.");
9. if contains_cycles(Cells path) then

(a) if contradiction_about_paths_multiplicities(Cells path) then return notify_fail("Cycles can
not be used to select data.");

(b) else ask user for semantical validation; Create context nodes(Cells path);
10. For each element in get_1_to_N_context_edges_and_nodes(Cells path) do

(a) If CM_at_left(element) then return notify_fail("Aggregation problems among Measures.");
11. If exists_two_1_to_N_alternative_branches(Cells path) then return notify_fail("Aggregation

problems among Cells.");

Step 6: The multidimensional graph must be connected to avoid the “Cartesian
Product” ([C6]). Moreover, it must be composed of valid edges giving rise
to a path among Cells (factual data) and connected subgraphs of Levels
(dimensional data) surrounding it.

Step 7: This step validates Levels subgraphs with regard to Cells placement:
According to [C3], two different Levels in a subgraph can not be related to
the same Cell (step 7b); to preserve [C4], Level - Level edges raising aggre-
gation problems on Cells with Measures selected must be forbidden (step
7c), and finally, if we do not consider [C5], every subgraph must represent
a valid Dimension hierarchy (i.e. not being used to select data). Thus, we
must be able to point out two nodes in the subgraph representing the top and
bottom Levels of the hierarchy, and if there are more than one alternative
path between those nodes, they must be semantically equivalent (7a).

Step 8: Cells determine multidimensional data and they must be related some-
how in the graph. Otherwise, they would not retrieve a single Cube of data.
For every two Cells in the graph, we aim to validate those paths between
them as a whole, inferring and validating the multiplicity raised as follows:
(1) if exists a one-to-one correspondence between two Cells, we replace all
relationships involved in that correspondence, by a one-to-one context edge
between both Cells (i.e. a context edge replaces that subgraph represent-
ing the one-to-one correspondence). As depicted in figure 1.1, it means that
there are a set of relationships linking, as a whole, a Cell CK, also linked
by one-to-one paths to a whole CK of the other Cell. (2) Otherwise, if both
CK’s are related by means of one-to-many paths or the first CK matches
the second one partially, we replace involved relationships by a one-to-many
directed context edge. Finally, many-to-many relationships between Cells
would invalidate the graph since they do not preserve disjointness.

Steps 9, 10 and 11: Previous step has validated the correspondences between
Cells whereas these steps validate the Cells path (multidimensional data
retrieved) as a whole: According to [C5], step 9 validates cycles in the path of
Cells to assure they are not used to select data, similar to the Levels cycles

Multidimensional Design by Examples 91

Fig. 1. Examples of Cells paths of context edges and nodes

validation. Once the cycle has been validated, Cells involved are clustered
in a context node labeled with the cycle multiplicity, as showed in figure 1.2.
Steps 10 and 11, according to [C4], look for potential aggregation problems.
First one looks for Cells with Measures selected at the left side of a one-to-
many context edge or node whereas second one looks for alternative branches
with one-to-many context edges or nodes each, raising a forbidden many-to-
many relationship between Cells involved (as depicted in figure 1.2).

5 A Practical Example

In this section, we present a practical example of the method introduced along
this paper. We consider figure 2 (where CK’s are underlined and FK’s dash-
underlined) to depict part of the operational schema of the organization. There-
fore, given the following requirement: "Retrieve benefits obtained with regard to
supplier ’ABC’, per month", it could be expressed in SQL as:
SELECT m.month, my.supplier, SUM(mp.profit)
FROM Month m, Monthly sales ms, Monthly supply my, Monthly profit mp, Supplier s, Prodtype pt, Product p
WHERE mp.month = ms.month AND mp.product = ms.product AND s.month = m.month AND ms.product = p.product AND my.month = m.month
AND my.supplier = s.supplier AND my.prodtype = pt.prodtype AND p.prodtype = pt.prodtype AND s.supplier = ’ABC’
GROUP BY m.month, my.supplier
ORDER BY m.month, my.supplier

We aim to decide if this query makes multidimensional sense. If it does, our
method will propose the set of multidimensional schemas satisfying our multi-
dimensional needs. First, we start constructing the multidimensional graph. In
our case, we do not consider degenerate dimensions (see [C6]):

Step 1: We first create a node for each table in the FROM clause. Initially,
they are labeled as unknown (?) nodes.

Step 2 and 3: For each attribute in the GROUP BY clause, we try to identify
the role played by those tables which they belong to:

– m.month: This attribute belongs to the Month table. Since it is not part of a
FK, we can directly label that node as a Level.

– my.supplier: This attribute belonging to the Monthly supply table is de-
fined as a FK pointing to the supplier attribute in the Supplier table.
This equality can be also found in the WHERE clause, and therefore, we
can follow the FK chain up to the Supplier node, where the FK chain ends.
Consequently, we label the Supplier node as a Level.

Finally, for each attribute in the SELECT not in the GROUP BY (i.e. mp.pro-
fit), we identify the node it belongs to as a Cell with Measures selected.

Step 4: In this step, we analyze the s.supplier = ’ABC’ comparison clause.
First, we extract the attribute compared (supplier) and identify the table it

92 O. Romero and A. Abelló

Prodtype(prodtype)
Supplier(supplier, name, city)
Product(product, prodtype (→prodtype.prodtype), discount)
Month(month, numdays, season)
Monthly profit(month (→month.month), product(→product.product), profit)
Monthly sales(month (→month.month), product(→product.product), sales)
Monthly supply(month(→month.month),prodtype(→prodtype.prodtype),supplier(→supplier.supplier))

Fig. 2. The organizational relational database schema

belongs to (Supplier). Since it is not part of a FK, this table must be labeled as
a Level. However, since it has been already labeled and there is no contradiction,
the algorithm goes on without modifying the graph.

Step 5: For each join in the WHERE clause, we firstly infer the relationship
multiplicity. For instance, mp.month = ms.month joins two attributes that are
part of two CK’s in their respective tables. Therefore, we first look if the whole
CK’s are linked. In this case, this is true since mp.product = ms.product also
appears in the WHERE clause. Consequently, we are joining two CK’s, raising
up a 1 o-o 1 relationship. Since this relationship asks to preserve the multidi-
mensional space due to zeros, at this moment, we should suggest to the user to
outer-join properly both tables.

Secondly, according to the multiplicity inferred, we look at table 1 looking
for those allowed multidimensional relationships between both nodes. That is,
C - C or L - L. However, last alternative raises a contradiction, since it asks to
label the Monthly profit node as a Level when it has been already labeled as
a Cell with Measures. Consequently, it is eluded. Since the set of relationships
allowed is not empty, we create an edge and we label it accordingly.

Finally, we propagate current knowledge. That is, according to that edge,
the Monthly sales table must also be a Cell, and therefore, it is labeled as a
Cell without selected Measures. After repeating this process for every join, we
would obtain, at the end of this step, the graph depicted in figure 3.

To validate the graph, first, we check if the graph is connected (in this case,
it is). Next, since some nodes have not been labeled, we find out all the valid
alternatives by means of backtracking. For instance, if the Product node was
labeled as a Level, according to the edge between Product and Prodtype, the
latter should be also labeled as a Level. Moreover, the Monthly supply node
may be labeled as a Cell or a Level. The backtracking algorithm ends retriev-
ing all those non-contradictory labeling alternatives depicted in table 2 (those
crossed out are eluded in this step since they raise up contradictions).

For each labeling retrieved by the backtracking algorithm, we try to validate
the graph. For instance, we will follow in detail the validation algorithm for the
first alternative, where all three unknown nodes are labeled as Cells:

– We validate each subgraph of Levels (namely those isolated Levels depicted
in figure 3) with regard to Cells. Since they do not contain cycles (alternative
paths) of Levels; there is neither two Levels in the same subgraph related
to the same Cell nor forbidden Level - Level relationships, both are correct.

– Next, we create the context edges between Cells. In this case, we are not
able to replace all the edges, since the Monthly supply and Monthly sales

Multidimensional Design by Examples 93

Fig. 3. The multidimensional graph deployed

unique correspondence (through the Month node) can not be replaced by a
context edge (they are only linked through their Month field; i.e. joining
two pieces of CK’s and raising a forbidden many-to-many context edge).

Since we have found a contradiction, we elude this labeling and try the next
one. Second labeling is forbidden because it raises a one-to-many Level - Level
relationship (i.e. Monthly supply - Month) where the one side is related to a
Cell with selected Measures (i.e. Monthly profit). Third alternative raises
the same problem than the first one whereas the fourth one relates two Levels
of the subgraph with the same Cell. Finally, the last alternative is valid, since
we are able to replace Monthly supply and Monthly sales correspondence by
a one-to-many directed context edge (in fact, they are related by joins raising
a many-to-many relationship, but the comparison over the supplier field in
the WHERE clause turns it into a one-to-many). Furthermore, the Cells path
do not conform a cycle; Cells at the left side of the one-to-many context edge
(i.e. Monthly supply) do not select Measures, and there are not alternative
branches with one-to-many context edges or nodes each either.

Summing up, the algorithm would conclude that requirement is multidimen-
sional and would propose the Monthly supply, Monthly profit and Monthly
sales as factual data whereas Supplier, Product and Prodtype, and Month
would conform the dimensional data.

6 Conclusions

Based on the criteria that an SQL query must enforce to make multidimensional
sense, we have presented a method to validate multidimensional requirements
expressed in terms of an SQL query. Our approach is divided into two main
phases: first one creates the multidimensional graph storing relevant multidi-
mensional information about the query, that will facilitate the query validation

Table 2. Labeling alternatives retrieved

Monthly supply Prodtype Product Remarks

C C C Illegal context edge
L L C Invalid subgraph of Levels
C L C Illegal context edge
L L L Non-orthogonal dimensions
C L L �
C C L ×
L C C ×
L C L ×

94 O. Romero and A. Abelló

along the second phase. Such graph represents tables involved in the query and
its relationships, and our aim is to label each table as factual data or dimensional
data. A correct labeling of all the tables gives rise to a multidimensional schema
fulfilling the requirements expressed in the input query. Thus, if we are not able
to generate any correct labeling, the input query would not represent multidi-
mensional requirements. As future work, we will focus on how to conciliate those
labeling proposed by our method for different multidimensional requirements.

Acknowledgments. This work has been partly supported by the Ministerio de
Educación y Ciencia under project TIN 2005-05406.

References

1. A. Abelló, J. Samos, and F. Saltor. YAM2 (Yet Another Multidimensional
Model): An extension of UML. Information Systems, 31(6):541–567, 2006.

2. M. Böhnlein and A. Ulbrich vom Ende. Deriving Initial Data Warehouse Struc-
tures from the Conceptual Data Models of the Underlying Operational Information
Systems. In Proc. of 2nd Int. Workshop on Data Warehousing and OLAP (DOLAP
1999), pages 15–21. ACM, 1999.

3. L. Cabibbo and R. Torlone. A Logical Approach to Multidimensional Databases.
In Proc. of 6th Int. Conf. on Extending Database Technology (EDBT 1998), volume
1377 of LNCS, pages 183–197. Springer, 1998.

4. D. Calvanese, L. Dragone, D. Nardi, R. Rosati, and S. Trisolini. Enterprise Mod-
eling and Data Warehousing in TELECOM ITALIA. Information Systems, 2006.

5. P. Giorgini, S. Rizzi, and M. Garzetti. Goal-oriented requirement analysis for data
warehouse design. In Proc. of 8th Int. Workshop on Data Warehousing and OLAP
(DOLAP 2005), pages 47–56. ACM Press, 2005.

6. M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional Fact Model: A Conceptual
Model for Data Warehouses. Int. Journals of Cooperative Information Systems
(IJCIS), 7(2-3):215–247, 1998.

7. B. Hüsemann, J. Lechtenbörger, and G. Vossen. Conceptual Data Warehouse
Modeling. In In Proc. of DMDW’00). CEUR-WS.org, 2000.

8. R. Kimball, L. Reeves, W. Thornthwaite, and M. Ross. The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data
Warehouses. John Wiley & Sons, Inc., 1998.

9. H.J. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Data Bases.
In Proc. of SSDBM’1997. IEEE, 1997.

10. S. Luján-Mora and J. Trujillo. A comprehensive method for data warehouse design.
In In Proc. of DMDW’2003, volume 77. CEUR-WS.org, 2003.

11. D.L. Moody and M.A. Kortink. From Enterprise Models to Dimensional Models: A
Methodology for Data Warehouse and Data Mart Design. In Proc. of DMDW’2000.
CEUR-WS.org, 2000.

12. R. Winter and B. Strauch. A Method for Demand-Driven Information Require-
ments Analysis in Data Warehousing Projects. In In Proc. of HICSS’03, pages
231–239. IEEE, 2003.

Extending Visual OLAP for Handling Irregular
Dimensional Hierarchies

Svetlana Mansmann and Marc H. Scholl

University of Konstanz, P.O. Box D188, 78457 Konstanz, Germany
{Svetlana.Mansmann, Marc.Scholl}@uni-konstanz.de

Abstract. Comprehensive data analysis has become indispensable in a
variety of environments. Standard OLAP (On-Line Analytical Process-
ing) systems, designed for satisfying the reporting needs of the business,
tend to perform poorly or even fail when applied in non-business domains
such as medicine, science, or government. The underlying multidimen-
sional data model is restricted to aggregating only over summarizable
data, i.e. where each dimensional hierarchy is a balanced tree. This lim-
itation, obviously too rigid for a number of applications, has to be over-
come in order to provide adequate OLAP support for novel domains.

We present a framework for querying complex multidimensional data,
with the major effort at the conceptual level as to transform irregular
hierarchies to make them navigable in a uniform manner. We provide a
classification of various behaviors in dimensional hierarchies, followed by
our two-phase modeling method that proceeds by eliminating irregulari-
ties in the data with subsequent transformation of a complex hierarchical
schema into a set of well-behaved sub-dimensions.

Mapping of the data to a visual OLAP browser relies solely on meta-
data which captures the properties of facts and dimensions as well as
the relationships across dimensional levels. Visual navigation is schema-
based, i.e., users interact with dimensional levels and the data instances
are displayed on-demand. The power of our approach is exemplified using
a real-world study from the domain of academic administration.

1 Introduction

Data warehouse technology, initially introduced in the early 90s to support data
analysis in business environments, has recently become popular in a variety of
novel applications like medicine, education, research, government etc. End-users
interact with the data using advanced visual interfaces that enable intuitive
navigation to the desired data subset and granularity as well as its expressive
presentation using a wide spectrum of visualization techniques.

Data warehouse systems adopt a multidimensional data model tackling the
challenges of the On-Line Analytical Processing (OLAP) [2] via efficient execu-
tion of queries that aggregate over large data volumes. Analytical values within
this model are referred to as measures, uniquely determined by descriptive val-
ues drawn from a set of dimensions. The values within a dimension are typically
organized in a containment type hierarchy to support multiple granularities.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 95–105, 2006.
© Springer-Verlag Berlin Heidelberg 2006

96 S. Mansmann and M.H. Scholl

Standard OLAP ensures correct aggregation by enforcing summarizability in
all dimensional hierarchies. The concept of summarizability, first introduced in
[10] and further explored in [5] and [3], requires distributive aggregate functions
and dimension hierarchy values, or informally, it requires that 1) facts map
directly to the lowest-level dimension values and to only one value per dimension,
and 2) dimensional hierarchies are balanced trees [5].

At the level of visual interfaces, summarizability is also crucial for generating
a proper navigational hierarchy. Data browsers present each hierarchical dimen-
sion as recursively nested folders allowing users to browse either directly in the
dimensional data, in which case each hierarchical entity can be expanded to see
its child values, or in the dimensional attributes, where each hierarchical level
is mapped to a sub-folder of its parent level’s folder. Simple OLAP tools, e.g.,
Cognos PowerPlay [1], tend to provide only the data-based navigation whereas
advanced interfaces, such as Tableau Software [13] and SAP NetWeaver BI [11],
combine schema navigation with data display. Figure 1 shows the difference be-
tween data- and schema-based browsing for a hierarchical dimension Period.

(a) dimensional data (b) dimensional categories with on-demand data display

Fig. 1. Browsing in dimensional hierarchies: data vs. schema navigation

Analysts are frequently confronted with non-summarizable data which can-
not be adequately supported by standard models and systems. To meet the
challenges of novel applications, OLAP tools are to be extended at virtually
all levels of the system architecture, from conceptual, logical and physical data
transformation to adequately interfacing the data for visual querying and pro-
viding appropriate visualization techniques for comprehensive analysis.

This paper presents an OLAP framework capable of handling a wide spec-
trum of irregular dimensional hierarchies in a uniform and intuitive manner. All
introduced extensions are supported by enriching the meta-data and providing
algorithms for interfacing the data and mapping user interaction back to OLAP
queries. The remainder of the paper is structured as follows: Section 2 sets the
stage by describing related work and a motivating real-world case study from
the area of academic administration. A classification of supported hierarchical
patterns and re-modelling techniques for heterogeneous hierarchies are presented
in Section 3, followed by the methods for data transformation and translating

Extending Visual OLAP for Handling Irregular Dimensional Hierarchies 97

the multidimensional schema into a navigational framework in Section 4. We
summarize our contribution and identify future research directions in Section 5.

2 Motivation and Related Work

2.1 Related Work on Multidimensional Data Modelling

A number of researchers have recognized the deficiencies of the traditional OLAP
data model [15] and suggested a series of extensions at the conceptual level.

A powerful approach to modeling dimension hierarchies along with SQL query
language extensions called SQL(H) was presented in [4]. SQL(H) does not re-
quire data hierarchies to be balanced or homogeneous. Niemi et al. [6] analyzed
unbalanced and ragged data trees and demonstrated how dependency informa-
tion can assist in designing summarizable hierarchies. Hurtado et al. [3] propose
a framework for testing summarizability in heterogeneous dimensions.

Pedersen et al. have formulated further requirements an extended multidi-
mensional data model should satisfy and evaluated 14 state-of-the-art models
from both the research community and commercial systems in [9]. Since none
of the existing models was even close to meeting most of the defined require-
ments, the authors proposed an extended model for capturing and querying
complex multidimensional data. This model, supporting non-summarizable hi-
erarchies, many-to-many relationships between facts and dimensions, handling
temporal changes and imprecision, is by far the most powerful multidimensional
data model of the current state of the art. A prototypical implementation of an
OLAP engine called the Tree Scape System, which handles irregular hierarchies
by normalizing them into summarizable ones, is described in [8].

To our best knowledge most of the extensions formalized by the above mod-
els have not been incorporated into any visual OLAP interface. In our previ-
ous work [14] we presented some insights into visual querying of heterogeneous
and mixed-granularity dimensions. Our current contribution is an attempt to
further reduce the gap between powerful concepts and deficient practices by de-
signing a comprehensive framework for visual analytical querying of complex
data.

2.2 Motivating Case Study

Our presented case study is concerned with the accumulated data on the ex-
penditures within a university. Academic management wishes the data to be
organized into an OLAP cube where the fact table Expenditures contains single
orders with the measure attribute amount and dimensional characteristics date,
cost class, project, purchaser, and funding. The values of each dimension are fur-
ther arranged into hierarchies by defining the desired granularity levels, as illus-
trated by a diagram in ME/R notation (Multidimensional Entity/Relationship,
introduced in [12]) shown in Figure 2.

We proceed by specifying various relationships within the dimensions of our
case study and the requirements for their modeling.

98 S. Mansmann and M.H. Scholl

cost
class

Dorder

amount

day month quarter

semester

semi-annual calendar
year

academic
year

week

purchaser

staff member

administrative
 division

educational
 division D

project project group

cost
 group

cost
 category

funding

fact

measure

M/ER notation

level
name

rolls-up
relationship set

fact relationship
set

dimension
level set

belongs to
(0,*) (1,*)

teaching
staff

administrative
 staff

D

chair

department

faculty

section

EER notation

D
“is a” relationship with
disjoint subclasses

Fig. 2. University expenditures case study as ME/R Diagram

1. Non-hierarchy : A dimension with a single granularity, i.e. not involved in
any incoming or outgoing rolls-up relationship, as is the case with funding.

2. Strict hierarchy : A dimension with only one outgoing rolls-up relationship
per entity, i.e. with a many-to-one relationship towards each upper level of
aggregation, for instance, chair → department → faculty → section.

3. Non-strict hierarchy : A dimension allows many-to-many relationships be-
tween its levels. In our example, the relationship between project and project
group allows a single project to be associated with multiple project groups.

4. Multiple hierarchies: A single dimension may have several aggregation paths,
as in period, where day may be grouped by month→ quarter→ semi-annual→
calendar year, or by week→ calendar year, or by month→ semester→ academic
year. The former two paths are called alternative since they aggregate to the
same top level.

5. Heterogeneous hierarchy : Consider the purchaser entity which is a super-class
of educational division, administrative division, and staff member. Each sub-
class has its own attributes and aggregation levels resulting in heterogeneous
subtrees in the data hierarchy. Another example is staff member with sub-
division into administrative staff and teaching staff.

6. Non-covering hierarchy : Strict hierarchy whose data tree is ragged due to
allowing the links between data nodes to “skip” one or more levels. In terms
of the ME/R diagram, such behavior occurs whenever the outgoing rolls-up
relationship has more than one destinations level, as in cost class.

7. Non-onto hierarchy : Strict hierarchy that allows childless non-bottom nodes.
For example, in the rolls-up relationship administrative staff → administrative
division a division may appear to have no staff in purchaser role.

8. Mixed-granularity hierarchy: The data tree is unbalanced due to mixed gran-
ularity, as in the case of educational division whose sub-classes are, on the
one hand, the end-instances of purchaser dimension, but, on the other hand,
serve as aggregation levels in the hierarchy chair → department → faculty.

Extending Visual OLAP for Handling Irregular Dimensional Hierarchies 99

3 Extending the Multidimensional Data Model

In our work we rely on the terminology and formalization introduced by Petersen
et al. in [9] since their model is the most powerful w.r.t. handling complex dimen-
sional patterns like the ones identified in the previous section. However, we have
also adopted some elements of the SQL(H) model [4] to enable heterogeneous
hierarchies.

3.1 Basic Definitions

Intuitively, data hierarchy is a tree with each node being a tuple over a set of
attributes. A dimensional hierarchy is based on a hierarchical attribute (the one
directly referenced in the fact table), propagated to all levels of the tree.

Definition 3.1. A hierarchical domain is a non-empty set VH with the only
defined predicates = (identity), � (child/parent relationship), and �∗ (tran-
sitive closure, or descendant/ancestor relationship) such that the graph G�
over the nodes {ei} of VH is a tree. Attribute A of VH is called a hierarchical
attribute.

A hierarchy H is non-strict whenever ∃(e1, e2, e3 ∈ VH)∧e1 � e2∧e1 � e3∧e2 �=
e3, or, informally, if any node is allowed to have more than one parent.

Definition 3.2. A hierarchy schema H is a four-tuple (C, �H, �H, ⊥H), where
C = {Cj , j = 1, . . . , k} are category types ofH, �H is a partial order on the Cj ’s,
and �H and ⊥H are the top and bottom levels of the ordering, respectively.

Cj is said to be a category type in H , denoted Cj ∈ H, if Cj ∈ C. Predicates
� and �∗ are used to define child/parent and descendant/ancestor relationship,
respectively, between the category types in C.

Definition 3.3. A hierarchy (instance) H associated with hierarchy schema
H is a two-tuple (C, �), where C = {Cj} is a set of categories such that
Type(Cj) = Cj and � is a partial order on ∪jCj , the union of all dimensional
values in the individual categories.

A category Cj is a set of dimensional values e such that Type(e) = Cj ; |Cj |
returns the number of values in set Cj . Hierarchy’s data is stored in collec-
tion of tables with at most one table per schema node. Unlike in the orig-
inal model of Jagadish et al. [4], we do not disallow tables with straddling
levels in order to enable modeling of non-covering and mixed-granularity
hierarchies.

We are now ready to formalize the notion of a homogeneous dimension.

Definition 3.4. A homogeneous dimension Ḋ is defined by its hierarchy
schema H = (C, �H, �H, ⊥H) and the respective hierarchy instance H =
(C, �).

100 S. Mansmann and M.H. Scholl

⊥H is the type of Ḋ’s bottom category, i.e. the one containing the values of the
finest granularity; �H corresponds to an abstract root node with a single value
�, also referred to as ALL.

A heterogeneous dimension is defined as consisting of multiple sub-dimensions,
unified into a single hierarchy by means of super-classing:

Definition 3.5. A heterogeneous dimension D̈ is a pair (D,�D) where D =
{Di} is a set of sub-dimensions and �D is an abstract super-class root node.
Each sub-dimension Di is of type Ḋ or D̈.

Figure 3 shows the resulting dimensional fact schema of our case study.

 Tcost class

Order

funding
day

projectcost class
purchaser

cost
category

cost
group

project
group

educational
division

administrative
division staff member

week month

quarter semester

semi-
annual

calendar
year

academic
year

chair

department

faculty

section

teaching
staff

administrative
staff

 Tpurchaser Tperiod Tfunding Tproject

chair

faculty

section

department

administrative
division

Fig. 3. University expenditures cube as 5-dimensional fact schema

3.2 Modeling Heterogeneous Hierarchies

At the conceptual level, heterogeneity corresponds to an is a relationship, i.e.
where the instances of a super-class are divided into sub-classes, each with its
own attributes and aggregation levels. Logically, a super-class corresponds to an
upper aggregation level w.r.t. its sub-class categories, but in the M/ER model
super-classing is used for “homogenizing” heterogeneous entities and thus, a
super-class ends up being a child of its sub-classes. Back to Figure 3, notice that
super-classes purchaser, educational division, and staff member had to be placed
underneath their respective sub-classes in the hierarchical schema.

From the logic of aggregation, the position of super-class entities is an obvious
misplacement provoked by the requirement to have a single bottom granularity
per dimension, so that it can be referenced by one foreign key in the fact table.

In Figure 4 we show the dimensional hierarchy of purchaser obtained by follow-
ing the logic of dis-aggregation1. Notice how the heterogeneity of the dimensional

1 Attached to each category node is the number of dimensional bottom-level values
covered by that catergory. Unlike standard hierarchical categories, a sub-class of an
is a relationship contains just a fraction of its parent’s values.

Extending Visual OLAP for Handling Irregular Dimensional Hierarchies 101

T staff member
655

T chair

faculty department

department

administrative division

T administrative division

53

53

department

teaching staff

faculty

chair
412

412

412

412

T teaching staff
412

administrative staff

243

T educational division

833
T purchaser

115

section
115

chair

T faculty
13 T department

102

78
T department

24

13

115

102

24 78 412 243

section

administrative division

faculty
T administrative staff

243

Fig. 4. Reshaping heterogeneous dimensions using abstract nodes

data has become obvious even at the bottom level. Using a straightforward in-
tuition about hierarchically decomposing an aggregate, we can now derive a rule
for modeling a heterogeneous hierarchy :

� the most general super-class serves as the root category �D whereas any
further super-classes are normal categories;

� sub-classes are multiple child categories of their super-class category;
� sub-class category is of abstract type �Di

since it plays the role of an abstract
root node for sub-dimension Di;

� sub-class entity is used repeatedly as a non-abstract bottom category ⊥Di
if

it corresponds to the finest granularity of Di.

3.3 Modeling Mixed-Granularity Hierarchies

A special case of heterogeneity is a mixed-granularity hierarchy in which sub-
classes of an is a relationship are also used as hierarchy levels, as observed in
educational institution where faculty and department are purchasers in their own
right and also serve as aggregation categories for chair.

Our approach to modeling mixed-granularity is a straightforward mapping of
the two-fold nature of its categories by means of sub-classing: mixed-granularity
category is viewed as a heterogeneous dimension sub-divided into a non-
hierarchical and a hierarchical sub-dimension, corresponding to its respective
two roles. Further, the general rule of heterogeneous dimension modeling is ap-
plied. The resulting schema for educational division is shown in Figure 4.

4 Schema-Based Navigational Framework

Analysts interact with OLAP data in a predominantly “drill-down” fashion,
starting with highly aggregated values and descending step-wise to the desired
dimensionality and level of detail. The analyst’s task can be thus reduced to a)
selecting the measure and the aggregation function, b) browsing to the desired
granularity in dimensional hierarchies, and c) filtering data to define the subset

102 S. Mansmann and M.H. Scholl

to display. The visual OLAP interface is divided into two major areas of inter-
action: a navigation panel for browsing through dimensional data and the main
window for displaying query results. Selection of measures, functions, dimen-
sional levels and values is done using the mouse, by clicking, marking, dragging
and so on.

Fig. 5. Fact table
navigation

A fact table is represented by a top-level folder (cube icon)
with sub-divisions DIMENSIONS and MEASURES. Each hi-
erarchical dimension is a folder containing its schema cate-
gories as nested subfolders, from the root category � at the
top-level to the bottom category ⊥, the latter represented
by a page icon. Non-abstract categories are supplied with a
button for displaying their actual data. Figure 5 shows the
navigational structure of our case study’s OLAP cube.

In the remaining subsections we present the techniques
for mapping all types of dimensional hierarchies described
in section 2 to a schema-based navigational hierarchy.

4.1 Hierarchy Normalization Techniques

Schema-based navigation works correctly, if each data instance strictly adheres
to the schema of its respective hierarchy, or, formally, if for any two categories
Cj , Ci such that Ci � Cj the following summarizability conditions hold:

1. The mapping is covering : ∀e1 ∈ Ci : ∃e2 ∈ Cj ∧ e1 � e2,
2. The mapping is onto2: ∀e2 ∈ Cj : (∃e1 ∈ Ci∨(∃e1 ∈ Ck∧Ck � Cj))∧e1 � e2,
3. The mapping is strict : ∀e1 ∈ Ci : e2, e3 ∈ Cj ∧ e1 � e2 ∧ e1 � e3 ⇒ e2 = e1.

Handling of non-summarizable data depends largely on the semantics behind
that data. If irregularity is caused by missing or imprecisely captured values and
it is crucial to produce imprecision-aware queries and results (e.g., in clinical
diagnosing or risk assessment), the approach of Pedersen et al. [9], in which the
original data remains un-normalized and imprecision is made explicit to the user
by providing a set of alternative queries, may be an appropriate solution.

However, if the data hierarchy is intrinsically irregular, as is project dimension,
where a project may be assigned to multiple groups or not assigned to any, such
data should be normalized to become navigable in a uniform way.

We adopt and modify the dimension transformation technique proposed by
Pedersen et al. in [7]. The original algorithm normalizes irregular hierarchies
by enforcing the summarizability conditions in the above order. The whole 3-
step transformation process, exemplified by normalizing the project dimension is
shown in Figure 6. In the second step, we provide options b) and c) in addition
to the original option a). Onto is enforced in the last step and can be omitted
altogether since missing bottom-level values are not relevant for navigability.

2 By considering another child Ck we account for contingent heterogeneity of Cj .

Extending Visual OLAP for Handling Irregular Dimensional Hierarchies 103

Enforcing covering

mapping by replacing

gaps with artificial

parent values

Enforcing onto mapping

by introducing

“placeholder” chil-

dren for childless non-

bottom values

Resolving multiple-

parent relationships to

obtain strict mapping:

a) by building a new in-

between category with a

“fused” value for each

multi-parent and speci-

fying a “priority”-

parent for aggregation

b) by specifying a single

“priority”-parent for

each child value

c) by specifying the

degree of belonging to

each of multiple parents

Technique Input Hierarchy Output Hierarchy

Group 2 Group 3Group 1 Others

w1,A

Project A
w2,A

Project A
w2,B

Project B
1

Project C
w3,B

Project B

Project
A

Project
B

Project
C

Group 1
All

Group 3
All

a)

c)

b)

Group 2 Group 3

Project
A

Project
B

Project
C

Group 1 Others

Groups 1,2 Groups 2,3 OthersGroup 3

all

all

Group 2 Group 3

Project
A

Project
B

Project
C

Group 1

all

Group 2 Group 3

Project
A

Project
B

Group 1 Others

Project
C

all

Group 2 Group 3

Project
A

Project
B

Group 1 Others

Project
C

all

Group 2 Group 3

Project
A

Project
B

Group 1 Others

Project
C

all

all

Group 2 Group 3

Project
A

Project
B

Group 1 Others

Project
C

Group 2 Group 3Group 1 Others

all

Fig. 6. 3-step normalization of the irregular dimension project

4.2 Schema Transformation Techniques

The navigational structure of a dimension is a recursive nesting of sub-
dimensional nodes, where each node is used for drilling down to the respective
granularity. The results of a drill-down are the sub-aggregates computed for each
dimensional value. With respect to its underlying data hierarchy, the behavior
of a sub-dimensional schema node can be reduced to the following types:

� Non-hierarchical, i.e bottom level, displayed as a non-expandable page icon;
� Single-hierarchy node is a folder containing a single subfolder of its child;
� Multiple hierarchy contains a subfolder for each of the alternative paths.

These paths are mutually exclusive, so that once the user has selected one
path, all others should be disabled for further interaction;

� Super-class is a folder containing all sub-class categories as subfolders. Since
the super-class has no data of its own, there is no data display option. How-
ever, drill-down is possible and produces the aggregates of the sub-class
categories. Sub-class folders are visually linked to each other, to be distin-
guished from the multiple hierarchy case since the former are not exclusive
and, therefore, can be further explored in parallel;

104 S. Mansmann and M.H. Scholl

� Abstract Root, node is a top-level folder with no data, used purely as a
“wrapper” for the entire dimensional schema nested therein. Notice that
abstract root is superfluous in case of a non-hierarchical (nothing to “wrap”)
or heterogeneous (abstract root already available) dimension.

� Mixed-granularity is a complex hierarchical node subdivided into a hierar-
chical and a bottom-level sub-dimensions.

Fig. 7. Schema navigation hierarchy
for a mixed-granularity fragment

Mixed-granularity deserves special atten-
tion due to its complexity. Figure 7 shows
the resulting navigation for the fragment
section → faculty → department → chair.
Its structure is derived from the schema de-
picted in Figure 4, with the exception that
the artificial sub-classes, such as�faculty and
�department are merged into a common super-
classnodeFaculty&Departments. Thisnode
is abstract and thus behaves as expected,
i.e., its drill-down displays each of the two

sub-class aggregates. The resulting navigation structure is rather complex, but
it enables retrieval of a wide spectrum of aggregates with mere “drag-and-drop”
interactions.

We have implemented the presented schema-based exploration approach for
complex OLAP data as a Java application which connects to a specified database
and allows user to navigate in OLAP cubes presenting the results as a pivot table,
chart or a decomposition tree. At this stage, performance and scalability issues
were left out of consideration.

5 Conclusion and Future Work

Inspired by the growing demand for OLAP applications in novel domains, con-
fronted with irregular multidimensional data, we have presented a framework
for modeling complex hierarchical dimensions and their seamless mapping to a
schema-based navigational structure of a visual OLAP interface. Using a case
study from the area of academic administration, we have provided a classifica-
tion of dimensional behaviors, leading to non-summarizable hierarchies, such as
ragged, unbalanced or non-strict data trees, as well as heterogeneous or mixed-
granularity dimensional schema.

Our approach in based on a two-phase transformation of irregular dimen-
sions: 1) enforcing summarizability within single homogeneous data hierarchies,
and 2) reshaping complex hierarchical schemata into a set of well-behaved sub-
dimensions. Our model does not introduce any query language extensions; it
rather relies on the meta-data (e.g., dimension type, hierarchy schema, cate-
gory type) for mapping OLAP data to a visual browser and translating user
interaction back to the database operations.

Extending Visual OLAP for Handling Irregular Dimensional Hierarchies 105

Among our future research directions are to provide explicit handling of tem-
poral and spatial aspects in modeling and querying OLAP data, to investi-
gate the applicability of schema-based browsing for semi-structured and high-
dimensional data, and to search for novel visualization and interaction techniques
capable of presenting large volumes of complex data for explorative analysis.

References

1. “Cognos PowerPlay: Overview–OLAP Software,” 2006. [Online]. Available:
http://www.cognos.com/powerplay

2. E. F. Codd, S. B. Codd, and C. T. Salley, “Providing OLAP (on-line analyti-
cal processing) to user-analysts: An IT mandate,” Technical report, E.F.Codd &
Associates, 1993.

3. C. A. Hurtado and A. O. Mendelzon, “Reasoning about summarizability in het-
erogeneous multidimensional schemas,” in ICDT 2001, Proceedings of the 8th In-
ternational Conference on Database Theory, 2001, pp. 375–389.

4. H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava, “What can hierarchies do
for data warehouses?” in VLDB ’99, Proceedings of 25th International Conference
on Very Large Data Bases, 1999, pp. 530–541.

5. H.-J. Lenz and A. Shoshani, “Summarizability in OLAP and statistical data
bases,” in Proceedings of 9th International Conference on Scientific and Statistical
Database Management, 1997, pp. 132–143.

6. T. Niemi, J. Nummenmaa, and P. Thanisch, “Logical multidimensional database
design for ragged and unbalanced aggregation,” in Proceedings of 3rd International
Workshop on Design and Management of Data Warehouses, 2001, pp. 7.1–7.8.

7. T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “Extending practical pre-
aggregation in on-line analytical processing,” in VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases, 1999, pp. 663–674.

8. ——, “The TreeScape system: Reuse of pre-computed aggregates over irregular
OLAP hierarchies,” in VLDB 2000, Proceedings of 26th International Conference
on Very Large Data Bases, 2000.

9. ——, “A foundation for capturing and querying complex multidimensional data,”
Information Systems, vol. 26, no. 5, pp. 383–423, 2001.

10. M. Rafanelli and A. Shoshani, “STORM: A statistical object representation
model,” in Proceedings of 5th International Conference on Statistical and Scientific
Database Management, 1990, pp. 14–29.

11. “SAP NetWeaver Business Intelligence,” 2006. [Online]. Available:
http://www.sap.com/solutions/netweaver/components/bi

12. C. Sapia, M. Blaschka, G. Höfling, and B. Dinter, “Extending the E/R model for
the multidimensional paradigm,” in ER ’98, Proceedings of the Workshops on Data
Warehousing and Data Mining, 1999, pp. 105–116.

13. “Tableau software,” 2006. [Online]. Available: http://www.tableausoftware.com
14. S. Vinnik and F. Mansmann, “From analysis to interactive exploration: Building

visual hierarchies from OLAP cubes,” in EDBT 2006, Proceedings of 10th Inter-
national Conference on Extending Database Technology, 2006, pp. 496–514.

15. T. Zurek and M. Sinnwell, “Datawarehousing has more colours than just black &
white,” in VLDB ’99, Proceedings of 25th International Conference on Very Large
Data Bases, 1999, pp. 726–729.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 106 – 119, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Hierarchy-Driven Compression Technique
for Advanced OLAP Visualization of Multidimensional

Data Cubes

Alfredo Cuzzocrea1, Domenico Saccà1,2, and Paolo Serafino1

1 Department of Electronics, Computer Science, and Systems
University of Calabria, I-87036 Cosenza, Italy

{cuzzocrea, sacca, serafino}@si.deis.unical.it
2 Institute of High Performance Computing and Networks
Italian National Research Council, I-87036 Cosenza, Italy

sacca@icar.cnr.it

Abstract. In this paper, we investigate the problem of visualizing multidimen-
sional data cubes, and propose a novel technique for supporting advanced
OLAP visualization of such data structures. Founding on very efficient data
compression solutions for two-dimensional data domains, the proposed tech-
nique relies on the amenity of generating “semantics-aware” compressed repre-
sentation of two-dimensional OLAP views extracted from multidimensional
data cubes via the so-called OLAP dimension flattening process. A wide set of
experimental results conducted on several kind of synthetic two-dimensional
OLAP views clearly confirm the effectiveness and the efficiency of our tech-
nique, also in comparison with state-of-the-art proposals.

1 Introduction

OLAP systems [7,8,19,22] have rapidly gained momentum in both the academic and
research communities, mainly due to their capability of exploring and querying huge
amounts of data sets in a multidimensional and multi-resolution way. Research-wise,
three relevant challenges of OLAP have captured a lot of attention during the last
years: (i) the data querying problem, which concerns with how data are accessed and
queried to support summarized knowledge extraction from massive data cubes; (ii)
the data modeling problem, which concerns with how data are represented and, thus,
processed inside OLAP servers (e.g., during query evaluation); (iii) the data visuali-
zation problem, which concerns with how data are presented to OLAP users and deci-
sion makers in Data Warehousing environments. Indeed, research communities have
mainly studied and investigated the first two problems, whereas the last one, even if
important-with-practical-applications, has been very often neglected.

Approximate Query Answering (AQA) techniques address the first challenge, and
can be justly considered as one of the most important topics in OLAP research. The
main proposal of AQA techniques consists in providing approximate answers to re-
source-consuming OLAP queries (e.g., range queries [18]) instead of computing exact
answers, as decimal precision is usually negligible in OLAP query and report activi-
ties (e.g., see [10]). Due to a relevant interest from the Data Warehousing research

 A Hierarchy-Driven Compression Technique 107

community, AQA techniques have been intensively investigated during the last years,
also achieving important results. Among the others, histograms (e.g., [2,5,15]), wave-
lets ([32]), and sampling (e.g., [13]) are the most successful techniques, and they have
also inducted several applications in even different contexts than OLAP. Summariz-
ing, AQA techniques propose (i) computing compressed representations of multidi-
mensional data cubes, and (ii) evaluating (approximate) answers against such repre-
sentations via ad-hoc query algorithms that, usually, meaningfully take advantage
from their hierarchical nature, which, in turn, is inherited from the one of input data
cubes. Conceptual data models for OLAP are widely recognized as based on data
cube concepts like dimension, hierarchy, level, member, and measure, first introduced
by Gray et al. [14], which inspired various models for multidimensional databases
and data cubes (e.g., [3,16,29,30,31]). Nevertheless, despite this effort, recently, sev-
eral papers have put in evidence some formal limitations of accepted conceptual mod-
els for OLAP (e.g., [6]), or theoretical failures of popular data cube operations, like
aggregation functions (e.g., [24,25,26]). Contrarily to the data querying and modeling
issues, since data presentation models do not properly belong to the well-founded
conceptual-logical-physical hierarchy for relational database models (which has also
been inherited from multidimensional models), the problem of OLAP data visualiza-
tion has been studied and investigated only so far [12,20,21,27,28]. On the other hand,
being essentially OLAP a technology to support decision making, thus based on (sen-
sitive) information exploration and browsing, it is easy to understand that, in future
years, tools for advanced visualization of multidimensional data cubes will quickly
conquest the OLAP research scene.

Starting from the fundamentals of the data cube compression and OLAP data visu-
alization research issues, in this paper we argue to meaningfully exploit the main
results coming from the first one and the goals of the second one in a combined man-
ner, and propose a novel technique for supporting advanced OLAP visualization of
multidimensional data cubes. The basic motivation of such an approach is realizing
that (i) compressing data is an (efficient) way of visualizing data, and (ii) this intuition
is well-founded at large (i.e., for any data-intensive system relying on massive data
repositories), and, more specifically, it is particularly targeted to the OLAP context
where accessing multidimensional data cubes can become a realistic bottleneck for
Data Warehousing systems and applications.

Briefly, our proposed technique relies on two steps. The first one consists in gener-
ating a two-dimensional OLAP view D from the input multidimensional data cube A
by means of an innovative approach that allows us to flatten OLAP dimensions (of A),
and, as a consequence, effectively support exploration and browsing activities against
A (via D), by overcoming the natural disorientation and refractoriness of human be-
ings in dealing with hyper-spaces. Particularly, the (two) OLAP dimensions on which
D is defined are built from the dimensions of A according to the analysis goals of the
target OLAP user/application. The second step consists in generating a bucket-based
compressed representation of D named as Hierarchy-driven Indexed Quad-Tree
Summary (H-IQTS), and denoted by H-IQTS(D), which meaningfully extends the
compression technique for two-dimensional summary data domains presented in [4],
by introducing the amenity of generating semantics-aware buckets, i.e. buckets that
“follow” groups of the OLAP hierarchies of D. In other words, we use the OLAP

108 A. Cuzzocrea, D. Saccà, and P. Serafino

hierarchies defined on the dimensions of D to drive the compression process. The
latter step allows us to achieve space efficiency, while, at the same time, supporting
approximate query answering and advanced OLAP visualization features. Similarly to
[4], H-IQTS(D) is shaped as a quad-tree (thus, each “internal” bucket in H-IQTS(D)
has four child sub-buckets), and the information stored in its buckets is still the sum
of the items contained within them.

The technique we propose in this paper can be successfully applied to all those
scenarios in which accessing and exploring massive multidimensional data cubes is a
critical requirement. For instance, this is the case of mobile OLAP systems and appli-
cations, where users access corporate OLAP servers via handheld devices. In fact,
mobile devices are usually characterized by specific properties (e.g., small storage
space, small size of the display screen, discontinuance of the connection to the
WLAN etc) that are often incompatible with the need of browsing and querying
summarized information extracted from massive multidimensional data cubes made
accessible through wireless networks. In such application scenarios, flattening multi-
dimensional data cubes into two-dimensional OLAP views represents an effective
solution yet an enabling technology for mobile OLAP, as, contrarily to what happens
for hyper-spaces, handheld devices can easily visualize two-dimensional screens. This
property, along with the realistic need of compressing data to be transmitted and
processed by handheld devices, makes perfect sense to our idea of using data com-
pression techniques as a way of visualizing OLAP data. Moreover, the amenity of
driving the compression process by means of the OLAP hierarchies, thus meaning-
fully generating semantics-aware buckets, further corroborates the application of our
proposed technique to mobile OLAP environments, as the limited computational
capabilities of handheld devices impose to definitively process useful knowledge, by
discarding the useless one, being resource-consuming transactions infeasible for such
kind of devices. For instance, these results can be successfully applied to the system
Hand-OLAP, proposed by us in [11], which allows a handheld device to extract,
browse and query compressed two-dimensional views (which are computed via the
technique [4]) coming from a remote OLAP server. The basic idea which Hand-
OLAP is based on is: rather than querying the original multidimensional data, it may
be more convenient to generate a compressed view of them, store the view into the
handheld device, and query it locally (off-line), thus obtaining approximate answers
that, as well-understood, are perfectly suitable for OLAP goals (e.g., see [10]). Now,
consider the benefits that can be achieved in Hand-OLAP thanks to the proposed
technique. In Hand-OLAP, compressed views extracted from remote OLAP servers
are mainly browsed via popular DRILL-DOWN OLAP operations (i.e., increasing the
level of detail of OLAP data) implemented via splits over buckets of the view. Never-
theless, letting b be the current bucket, since each split partitions b into four equal-
size sub-buckets, the OLAP user could be required to perform many splits before to
access the summarized knowledge he/she is interested in, as “wrong” buckets could
be accessed during the exploration task. On the contrary, by admitting semantics-
aware buckets, since OLAP analysis is subject-oriented [17], the OLAP user accesses
the summarized knowledge of interest in a faster manner rather than the previous
case, as each split partitions b into four sub-buckets computed over semantically-
related OLAP data.

 A Hierarchy-Driven Compression Technique 109

2 Fundamentals and Basic Definitions

In order to better understand our proposal, it is needed to introduce some fundamen-
tals and basic definitions regarding the constructs of OLAP conceptual data model we
adopt, along with the notation we use in the rest of the paper. These definitions are
compatible with main results of previous popular models (e.g., [14]).

Given an OLAP dimension di, and its domain of members Ψ(di), each of them de-
noted by ρj, a hierarchy defined on di, denoted by H(di), can be represented as a general
tree (i.e., such that each node of the tree has a number N ≥ 0 of child nodes) built on the
top of Ψ(di). The tree H(di) is usually built according to a bottom-up strategy by (i)
setting as leaf nodes of H(di) members in Ψ(di), and (ii) iteratively aggregating sets of
members in Ψ(di) to obtain other (internal) members, each of them denoted by σj, which
correspond to internal nodes in H(di). In turn, internal members in H(di) can be further
aggregated to form other super-members until a unique aggregation of members is ob-
tained; the latter corresponds to the root node of H(di), and it is known in literature as
the aggregation ALL. More precisely, ALL is only an artificial aggregation introduced
to obtain a tree (i.e., H(di)) instead of a list of trees, each of them rooted in the second
level internal nodes σj, which should be the “effective” upper-level partition of members
in Ψ(di). Each member in H(di) is characterized by a level (of the hierarchy), denoted by
Lj; as a consequence, we can define a level Lj in H(di) as a collection of members. For
each level Lj, the ordering of Lj, denoted by O(Lj), is the one exposed by the OLAP
server platform for the target data cube. Note that such ordering depends on how knowl-
edge held in (OLAP) data is produced, processed, and delivered.

Given a multidimensional data cube A such that Dim(A) = {d0, d1, …, dn-1} is the
set of dimensions of A, and Hie(A) = {H(d0), H(d1), …, H(dn-1)} the set of hierarchies
defined on the latter, being H(di) the hierarchy defined on di, letting Lj ≥ 0 be an inte-
ger, the collection of members σj at the level Lj (note that, when Lj = 0, σj ≡ ρj) of
each hierarchy H(di) in Hie(A) univocally refers, in a multidimensional fashion, a
certain (OLAP) data cell Cp in A at the level Lj (in other words, Cp is the OLAP ag-
gregation of data cells in A at the level Lj). We name such collection as j-level OLAP
Metadata (for Cp), and denote them as J-M(Cp).

Given a member σj at the level Lj of the hierarchy H(di) defined on an OLAP di-
mension di and the set of its child nodes Child(σj), which are members at the level
Lj+1, we define as the Left Boundary Member (LBM) of σj the child node of σj in
Child(σj) that is the first in the ordering O(Lj+1). Analogously, we define as the Right
Boundary Member (RBM) of σj the child node of σj in Child(σj) that is the last in the
ordering O(Lj+1).

3 OLAP Dimension Flattening

The OLAP dimension flattening process is the first step of our technique for supporting
advanced OLAP visualization of multidimensional data cubes. In more detail, we flatten
dimensions of the input multidimensional data cube A into two specialized dimensions
called Visualization Dimensions (VD) that support advanced OLAP visualization of A
via constructing an ad-hoc two-dimensional OLAP view D defined on the VDs.

110 A. Cuzzocrea, D. Saccà, and P. Serafino

Fig. 1. Merging OLAP hierarchies

The process that allows us to obtain the two VDs from the dimensions of A works
as follows. Letting Dim(A) and Hie(A) be the set of dimensions and the set of hierar-
chies of A respectively (formally defined as in Sect. 2), each VD is a tuple vi = di,
H*(di) such that (i) di is the dimension selected by the target OLAP user/application,
(ii) H*(di) is a hierarchy built from meaningfully merging the “original” hierarchy
H(di) of di with the hierarchies of other dimensions in A according to an ordered defi-
nition set MD(vi) = { HLi, dj, Pj , HLj, dj+1, Pj+1 , …, HLj+K-1, dj+K, Pj+K }, where K =
|MD(vi)| - 1. In more detail, for each couple of consecutive tuples HLj, dj+1, Pj+1 ,
HLj+1, dj+2, Pj+2 in MD(vi), the sub-tree of H(dj+2) rooted in the root node of H(dj+2)

and having depth equal to Pj+2, denoted by)(2
2

+
+

j
P
S dH j , is merged to H(dj+1) by

appending a clone of it to each member σj+1 of the level HLj+1, named as hooking
level, in H(dj+1). From the described approach, it follows that: (i) the ordering of items
in MD(vi) defines the way of building H*(di); (ii) the first hierarchy to be processed is
just H(di). As an example of the flattening process of two OLAP dimensions into a
new one, consider Fig. 1, where the hierarchy H*(dj) is obtained by merging H(dj+1)
to H(dj) via setting Pj+1 = 1 and HLj = 1.

As regards data processing issues, it should be noted that, due to the above OLAP
dimension flattening task, in order to finally compute D, it is needed to re-aggregate
multidimensional data in A according to the new VDs.

4 Hierarchy-Driven Compression of Two-Dimensional OLAP
 Views

Compressing the two-dimensional OLAP view D (extracted from A according to the
OLAP dimension flattening process presented in Sect. 3) is the second step of our
proposed technique. Given D, for each step j of our compression algorithm, we need
to (1) greedily select the leaf bucket b of H-IQTS(D) having maximum Sum of the

 A Hierarchy-Driven Compression Technique 111

Squared Errors (SSE), (2) split b in four sub-buckets through investigating, for each
dimension dk of D, levels of the hierarchy H(dk). The task (1) is similar to what pro-
posed in [4] for two-dimensional summary data domains, whereas the novelty pro-
posed in this paper consists in the task (2).

Formally, given the current bucket bj = D[lj,0:uj,0][lj,1:uj,1] to be split at the step j of
our compression algorithm, such that [lj,k:uj,k] is the range of bj on the dimension dk of
D, the problem is finding, for each dimension dk of D, a splitting position Sj,k belong-
ing to [lj,k:uj,k]. To this end, for each dimension dk of D, our splitting strategy aims at
(i) grouping items into buckets related to the same semantic domain, and (ii) main-
taining as more balanced as possible the hierarchy H(dk). Particularly, the first aspect
lets the benefits highlighted in Sect. 1; the second aspect allows us to sensitively im-
prove query estimation capabilities as, on the basis of this approach, we finally obtain
buckets with balanced “numerousness” (of items) that introduce a smaller approxima-
tion error in the evaluation of (OLAP) queries involving several buckets rather than
the contrary case (see [4] for further investigations).

4.1 A Hierarchy-Driven Algorithm for Compressing Two-Dimensional OLAP
 Views

For the sake of simplicity, we will present our hierarchy-driven compression algo-
rithm for two-dimensional OLAP views through showing how to handle the hierarchy
of an OLAP dimension dk (i.e., how to determine a splitting position Sj,k on dk). Obvi-
ously, this technique must be performed for both the dimensions of the target (two-
dimensional) OLAP view D, thus obtaining, for each couple of splits at the step j of
our algorithm (i.e., Sj,0 and Sj,1), four two-dimensional bucket to be added to the cur-
rent partition of D (see Sect. 1).

Fig. 2. Modeling the splitting strategy

Let bj = D[lj,0:uj,0][lj,1:uj,1] be the current bucket to be split at the step j. Consider the
range [lj,k:uj,k] of bj on the dimension dk of D. To determine Sj,k on [lj,k:uj,k], we denote
as Tj,k(lj,k:uj,k) the sub-tree of H(dk) whose (i) leaf nodes are the members of the sets
0-M(Cw) defined on the data cells Cw in D[lj,k:uj,k] (i.e., the one-dimensional bucket

112 A. Cuzzocrea, D. Saccà, and P. Serafino

obtained by projecting bj with respect to the dimension dk), and (ii) the root node is
the (single) member of the set Pk-M(Cr) defined on the data cell Cr that is the aggrega-
tion of D[lj,k:uj,k] at the level LP of H(dk) (note that Pk is also the depth of Tj,k(lj,k:uj,k)).
To give an example, consider Fig. 2, where the one-dimensional OLAP view Dk =
D[0:|dk| - 1], obtained by projecting D with respect to the dimension dk, along with
the hierarchy H(dk) are depicted. As shown in Fig. 2, the tree T0, properly denoted by
Tj,k(0:17), is related to the whole OLAP view Dk = D[0:17], and corresponds to the
whole H(dk). At the step j, dk is split in the position Sj,k = 11, thus generating the buck-
ets D[0:11] and D[12:17]. In consequence of this, the tree T1, properly denoted by
Tj+1,k(0:11), is related to D[0:11], whereas the tree T2, properly denoted by
Tj+1,k(12:17), is related to D[12:17].

Formally, let (i) dk be the dimension of D to be processed; (ii) H(dk) the hierarchy
defined on dk, such that Pk > 0 is the depth of H(dk); (iii) bj = D[lj,k:uj,k] the current
(one-dimensional) bucket to be split at the step j of our algorithm; (iv) Tj,k(lj,k:uj,k) the
tree related to bj. In order to select the splitting position Sj,k on [lj,k:uj,k], letting
T1

j,k(lj,k:uj,k) be the second level of Tj,k(lj,k:uj,k), we initially consider the data cell Ck in
D[lj,k:uj,k] whose indexer is in the middle of D[lj,k:uj,k], denoted by Xj,D =

⋅]:[
2

1
,, kjkj ulD . It should be noted that processing the second level of Tj,k(lj,k:uj,k)

(i.e., T1
j,k(lj,k:uj,k)) derives from the use of the aggregation ALL in OLAP conceptual

models, which, in total, introduces an additional level in the general tree modeling an
OLAP hierarchy (as discussed in Sect. 2).

Then, starting from ρk, being ρk the (only – see Sect. 2) member in the set
0-M(Ck), we go up on H(dk) until the parent of ρk at the level T1

j,k(lj,k:uj,k), denoted by σk,
is reached, and we decide how to determine Sj,k on the basis of the nature of σk. If σk is
the LBM of the root node of Tj,k(lj,k:uj,k), denoted by Rj,k, then Sj,k =

1]:[
2

1
,, −⋅ kjkj ulD and, as a consequence, we obtain the following two (one-

dimensional) buckets as child buckets of bj: −⋅=′+ 1]:[
2

1
: ,,,1 kjkjkjj ulDlb and

⋅=′′+ kjkjkjj uulDb ,,,1 :]:[
2

1 . Otherwise, if σk is the RBM of Rj,k, then Sj,k =

⋅]:[
2

1
,, kjkj ulD and, as a consequence, ⋅=′+]:[

2

1
: ,,,1 kjkjkjj ulDlb and

+⋅=′′+ kjkjkjj uulDb ,,,1 :1]:[
2

1 . Finally, if σk is different from both the LBM

and the RBM of Rj,k, i.e. it follows the LBM of Rj,k in the ordering O(T1
j,k(lj,k:uj,k)) and

precedes the RBM of Rj,k in the ordering O(T1
j,k(lj,k:uj,k)), we perform a finite number

of shift operations on the indexers of D[lj,k:uj,k] starting from the middle

indexer Xj,D and within the range ⋅−⋅=Γ :]:[
3

1
]:[

2

1
,,,,, kjkjkjkjkj ulDulD

 A Hierarchy-Driven Compression Technique 113

⋅+⋅]:[
3

1
]:[

2

1
,,,, kjkjkjkj ulDulD until a data cell Vk in D[lj,k:uj,k] such that the

corresponding member σk at the level T1
j,k(lj,k:uj,k) is the LBM or the RBM of Rj,k, if

exists, is found. It should be noted that admitting a maximum offset of

⋅±]:[
3

1
,, kjkj

k ulD with respect to the middle of the current bucket is coherent with

the aim of maintaining as more balanced as possible the hierarchy H(dk), which allows
us to take advantages from the above-highlighted benefits (see Sect. 4).

To this end, starting from the middle of Γj,k (which is equal to the one of D[lj,k:uj,k],
Xj,D), we iteratively consider indexers Ij,q within Γj,k defined by the following function:

>⋅−+
=

=
− 1)1(

0

1,

,
, qqI

qX
I q

qj

Dj

qj
 (1)

If such data cell Vk exists, then Sj,k is set as equal to the so-determined indexer *
,qjI ,

and, as a consequence, we obtain the couples of buckets []1: *
,,1 −=′+ qjkjj Ilb and

[]kjqjj uIb ,
*
,1 :=′′+ if *

,qjI is the LBM of Rj,k, or, alternatively, the couples of buckets

[]*
,,1 : qjkjj Ilb =′+ and []kjqjj uIb ,

*
,1 :1+=′′+ if *

,qjI is the RBM of Rj,k. On the contrary,

if such data cell Vk does not exist, then we do not perform any split on D[lj,k:uj,k], and
we “remand” the splitting at the next step of the algorithm (i.e., j + 1) where the split-
ting position Sj+1,k is determined by processing the third level T2

j+1,k(lj+1,k:uj+1,k) of the
tree Tj+1,k(lj+1,k:uj+1,k) (i.e., by decreasing the aggregation level of OLAP data with
respect to the previous step). The latter approach is iteratively repeated until a data
cell Vk verifying the above condition is found; otherwise, if the leaf level of Tj,k(lj,k:uj,k)
is reached without finding any admissible splitting point, then D[lj,k:uj,k] is added to
the current partition of the OLAP view without being split. We point out that this way
to do still pursues the aim of obtaining balanced partitions of the input OLAP view.

5 Experimental Study

5.1 Definitions and Metrics

In order to test the effectiveness of our proposed technique, we defined two kinds of
experiments. The first one is oriented to probe the data cube compression perform-
ances (or, equally, the accuracy) of our technique, whereas the second one is instead
oriented to probe the visualization capabilities of our technique in meaningfully sup-
porting advanced OLAP visualization of multidimensional data cubes.

As regards the data layer of our experimental framework, we engineered two kinds
of synthetic two-dimensional OLAP views (which, in turn, have been extracted from
synthetic multidimensional data cubes via a random flattening process on the dimen-
sions of the latter): (i) the view DC(L1,L2), for which data are uniformly distributed on
a given range [L1,L2] (i.e., the well-known Continuous Values Assumption (CVA) [9]
holds), and (ii) the view DZ(zmin,zmax), for which data are distributed according to a

114 A. Cuzzocrea, D. Saccà, and P. Serafino

Zipf distribution whose parameter z is randomly chosen on a given range [zmin,zmax].
Particularly, the latter realizes a totally random process for generating OLAP data
and, as a consequence, closer to real-life views are obtained. Among other well-
recognized benefits, using synthetic OLAP views allows us to completely control the
variation of input parameters determining the nature of the OLAP data distributions as
well as the one of the OLAP hierarchies (e.g., acting on the topology of the hierar-
chies etc), thus enriching the effectiveness of the analysis.

As regards the outcomes of our study, we defined the following metrics. For the
first kind of experiments (i.e., that focused on the accuracy), given a population of
synthetic range-SUM queries QS, we measure the Average Relative Error (ARE)
between exact and approximate answers to queries in QS, i.e.

−

=

⋅=
1||

0

)(
||

1 SQ

k
krel

S
rel QE

Q
E , such that, for each query Qk in QS,)(krel QE =

)(

|)(
~

)(|

k

kk

QA

QAQA − , where (i) A(Qk) is the exact answer to Qk, and (ii))(
~

kQA is the

approximate answer to Qk. Particularly, fixing a range sizes Δk for each dimension dk
of the target synthetic OLAP view D, we generate queries in QS through spanning D
by means of the “seed” Δ0 × Δ1 query Qs.

For the second kind of experiments, we was inspired from the Hierarchical Range
Queries (HRQ) introduced by Koudas et al. in [23]. In our implementation, a HRQ
QH(WH,PH) is a full tree such that: (i) the depth of such tree is equal to PH; (ii) each
internal node Ni has a fan-out degree equal to WH; (iii) each node Ni stores the defini-
tion of a (“traditional”) range-SUM query Qi; (iv) for each node Ni in QH(WH,PH),
there not exists any sibling node Nj of Ni such that Qi ∩ Qj <> ∅. Similarly to the
previous kind of experiments, for each node Ni in QH(WH,PH), the population of que-
ries QS,i to be used as input query set was generated by means of the above-described
spanning technique (i.e., upon the seed query s

iQ). In more detail, since, due the na-

ture of HRQs, the selectivity of seed queries s
kiQ , of nodes Ni at the level k of

QH(WH,PH) must decreases as the depth Pk of QH(WH,PH) increases, letting γ be an
input parameter and ||D|| the selectivity of the target OLAP view D, we first impose
that the selectivity of the seed query of the root node N0 in QH(WH,PH), denoted by

|||| 0,0
sQ , is equal to the γ % of ||D||, and then, for each internal node Ni in QH(WH,PH)

at level k, we randomly determine the seed queries of the child nodes of Ni by check-

ing the following constraint:
−

=
+

+

≤
1|)(|

0
,1,

1

||||||||
k

HW

i

s
ki

s
ki QQ and s

kj
s
ki QQ 1,1, ++ ∩ = ∅ for each i

and j in]1|)(|,0[1 −+k
HW , with i <> j, and adopting the criterion of maximizing each

|||| ,
s
kiQ .

It should be noted that HRQs have a wide range of applications in OLAP systems
(as also highlighted in [23]), since they allow us to extract “hierarchically-shaped”
summarized knowledge from massive data cubes. Given a HRB QH(WH,PH), we
measure the Average Accessed Bucket Number (AABN), which models the average
number of buckets accessed during the evaluation of QH(WH,PH), and it is defined as

 A Hierarchy-Driven Compression Technique 115

follows:
=

−

=

⋅=
H

k
HP

k

W

k
H

HHH NAABN
W

PWQAABN
0

1|)(|

0

)(
)(

1
)),((, where, in turn,

AABN(N) is the average number of buckets accessed during the evaluation of the

population of queries QS, of the node N in QH(WH,PH), i.e. =)(NAABN

−

=

⋅
1||

0,

,

)(
||

1 SQ

k
k

S

QABN
Q

, such that for each query Qk in QS, , ABN(Qk) is the number

of buckets accessed during the evaluation of Qk. Summarizing, given a compression
technique T, AABN allows us to measure the capabilities of T in supporting advanced
OLAP visualization of multidimensional data cubes as the number of buckets ac-
cessed can be reasonably considered as a measure of the computational cost needed to
extract summarized knowledge, as a sort of measure of the entropy of the overall
knowledge extraction process. As stated in Sect. 1, this aspect assumes a leading role
in mobile OLAP settings (e.g., Hand-OLAP [11]).

5.2 Experimental Results

In our experimental study, we compared the performances of our proposed technique
(under the two metrics defined above) against the following well-known histogram-
based techniques for compressing data cubes: MinSkew by Acharya et al. [2], GenHist
by Gunopulos et al. [15], and STHoles by Bruno et al. [5]. In more detail, having
fixed the space budget G (i.e., the storage space available for housing the compressed
representation of the input OLAP view), we derived, for each comparison technique,
the configuration of the input parameters that the respective authors consider the best
in their papers. This ensures a fair experimental analysis, i.e. an analysis such that
each comparison technique provides its best performances.

Fig. 3. Experimental results for the accuracy metrics with respect to the query selectivity ||Q||
on the 1.000 × 1.000 two-dimensional OLAP views DC(25,70) (left side) and DZ(0.5,1.5) (right
side) with r = 10

116 A. Cuzzocrea, D. Saccà, and P. Serafino

Fig. 4. Experimental results for the accuracy metrics with respect to the compression ratio r on
the 1.000 × 1.000 two-dimensional OLAP views DC(25,70) (left side) and DZ(0.5,1.5) (right
side) with ||Q|| = 350 × 300

Fig. 5. Experimental results for the visualization metrics with respect to the depth of HRQs P
on the 1.000 × 1.000 two-dimensional OLAP views DC(25,70) (left side) and DZ(0.5,1.5) (right
side) with WH = 5, r = 10, and γ = 70

Fig. 3 shows our experimental results for what regards the accuracy of the com-
pression techniques with respect to the selectivity of queries in QS on the 1.000 ×
1.000 two-dimensional OLAP views DC(25,70) (left side) and DZ(0.5,1.5) (right side)
respectively. For all the comparison techniques, letting r be the parametric compres-
sion ratio and size(D) the total occupancy of the input OLAP view D, we set the space
budget G as equal to the r % of size(D). For instance, r = 10 (i.e., G is equal to the 10
% of size(D)) is widely recognized as a reasonable setting (e.g., see [5]). Fig. 4 shows
the results of the same experiment when ranging r on the interval [5,20] (i.e., G on the
interval [5,20] % of size(D)), and fixing the selectivity of queries ||Q||; this allows us
to measure the scalability of the compression techniques, which is a critical aspect in
OLAP systems (e.g., see [10]). Finally, Fig. 5 shows our experimental results for what
regards the “visualization capabilities” of the comparison techniques (according to the

 A Hierarchy-Driven Compression Technique 117

guidelines drawn through the paper) with respect to the depth of HRQs (i.e., PH)
having fan-out degree WH equal to 5 and the parameter γ equal to 70. The input
two-dimensional OLAP views and the value of the parameter r are the same of the
previous experiments.

From Fig. 3, 4 and 5, it follows that, with respect to the accuracy metrics, our pro-
posed technique is comparable with MinSkew, which represents the best on two-
dimensional views (indeed, as well-recognized-in-literature, MinSkew presents severe
limitations on multidimensional domains); instead, with respect to the visualization
metrics, our proposed technique overcomes the comparison techniques, thus confirm-
ing its suitability in efficiently supporting advanced OLAP visualization of multidi-
mensional data cubes.

6 Conclusions and Future Work

In this paper, we have present an innovative technique for supporting advanced OLAP
visualization of multidimensional data cubes, which is particularly suitable for mobile
OLAP scenarios (like, for instance, those addressed by the system Hand-OLAP [11]).
Founding on very efficient two-dimensional summary data domain compression solu-
tions [4], our technique meaningfully exploits the data compression paradigm that, in
this paper, has been proposed as a way of visualizing multidimensional OLAP do-
mains to overcome the natural disorientation and refractoriness of human beings in
dealing with hyper-spaces. In this direction, the OLAP dimension flattening process
and the amenity of computing semantics-aware buckets are, to the best of our knowl-
edge, innovative contributions to the state-of-the-art OLAP research. Finally, various
experimental results performed on different kinds of synthetic two-dimensional
OLAP views extracted from (synthetic) multidimensional data cubes, where charac-
teristic parameters (such as the nature of distributions of OLAP data) can be easily
controlled to improve the effectiveness of the analysis, have clearly confirmed the
benefits of our proposed technique in the OLAP visualization context, also in com-
parison with well-known data cube compression techniques.

Future work is mainly focused on making the proposed technique capable of build-
ing m-dimensional OLAP views over massive n-dimensional data cubes, with m << n
and m > 2, by extending the algorithms presented in this paper. A possible solution
could be found in the results coming from the High-dimensional Data and Informa-
tion Visualization research area (e.g., see [1]), which are already suitable to be applied
to the problem of visualizing multidimensional databases and data cubes.

References

1. 2D, 3D and High-dimensional Data and Information Visualization research group. University of
Hannover (2005) available at http://www.iwi.uni-hannover.de/lv/seminar_ss05/
bartke/home.htm

2. Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity Estimation in Spatial Databases. Proc. of
ACM SIGMOD (1999) 13-24

3. Agrawal, R. Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. Proc. of IEEE
ICDE (1997) 232-243

118 A. Cuzzocrea, D. Saccà, and P. Serafino

4. Buccafurri, F., Furfaro, F., Saccà, D., Sirangelo, C.: A Quad-Tree Based Multiresolution Ap-
proach for Two-Dimensional Summary Data. Proc. of IEEE SSDBM (2003) 127-140

5. Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: A Multidimensional Workload-Aware Histo-
gram. Proc. of ACM SIGMOD (2001) 211-222

6. Cabibbo, L., Torlone, R.: From a Procedural to a Visual Query Language for OLAP. Proc. of
IEEE SSDBM (1998) 74-83

7. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. ACM
SIGMOD Record, Vol. 26, No. 1 (1997) 65-74

8. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP to User-Analysts: An IT Mandate. E.F.
Codd and Associates TR (1993)

9. Colliat, G.: OLAP, Relational, and Multidimensional Database Systems. SIGMOD Record, Vol.
25, No. 3 (1996) 64-69

10. Cuzzocrea, A.: Overcoming Limitations of Approximate Query Answering in OLAP. Proc. of
IEEE IDEAS (2005) 200-209

11. Cuzzocrea, A., Furfaro, F., Saccà, D.: Hand-OLAP: A System for Delivering OLAP Services on
Handheld Devices. Proc. IEEE ISADS (2003) 80-87

12. Gebhardt, M., Jarke, M., Jacobs, S.: A Toolkit for Negotiation Support Interfaces to Multi-
Dimensional Data. Proc. of ACM SIGMOD (1997) 348-356

13. Gibbons, P.B., Matias, Y.: New Sampling-Based Summary Statistics for Improving Approxi-
mate Query Answers. Proc. of ACM SIGMOD (1998) 331-342

14. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.: Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data
Mining and Knowledge Discovery, Vol. 1, No. 1 (1997) 29-53

15. Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Approximating Multi-Dimensional
Aggregate Range Queries over Real Attributes. Proc. of ACM SIGMOD (2000) 463-474

16. Hacid, M.-S., Sattler, U.: Modeling Multidimensional Databases: A Formal Object-Centered
Approach. Proc. of ECIS (1997)

17. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kauffmann Publishers
(2000)

18. Ho, C.-T., Agrawal, R., Megiddo, N., Srikant, R.: Range Queries in OLAP Data Cubes. Proc. of
ACM SIGMOD (1997) 73-88

19. Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons (1996)
20. Inselberg, A.: Visualization and Knowledge Discovery for High Dimensional Data. Proc. of

IEEE UIDIS (2001) 5-24
21. Keim, D.A.: Visual Data Mining. Tutorial at VLDB (1997) available at

http://www.dbs.informatik.uni-muenchen.de/daniel/VLDBTutorial.ps
22. Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons (1996)
23. Koudas N., Muthukrishnan S., Srivastava D.: Optimal Histograms for Hierarchical Range Que-

ries. Proc. of ACM PODS (2000) 196-204
24. Lehner, W., Albrecht, J., Wedekind, H.: Normal Forms for Multivariate Databases. Proc. of

IEEE SSDBM (1998) 63-72
25. Lenz, H.-J., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. Proc. of IEEE

SSDBM (1997) 132-143
26. Lenz, H.-J., Thalheim, B.: OLAP Databases and Aggregation Functions. In Proc. of IEEE

SSDBM (2001) 91–100
27. Maniatis, A., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y.: CPM: A Cube Presentation Model

for OLAP. Proc. of DaWaK (2003) 4-13
28. Maniatis, A., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y.: Advanced Visualization for

OLAP. Proc. of ACM DOLAP (2003) 9-16

 A Hierarchy-Driven Compression Technique 119

29. Thanh Binh, N., Min Tjoa, A., Wagner, R.: An Object Oriented Multidimensional Data Model
for OLAP. Proc. of WAIM (2000) 69-82

30. Tsois, A., Karayannidis, N., Sellis, T.: MAC: Conceptual Data Modeling for OLAP. Proc. of
DMDW (2001) available at http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-39/paper5.pdf

31. Vassiliadis, P.: Modeling Multidimensional Databases, Cubes and Cube Operations. Proc. of
IEEE SSDBM (1998) 53-62

32. Vitter, J.S., Wang, M., Iyer, B.: Data Cube Approximation and Histograms via Wavelets. Proc.
of ACM CIKM (1998) 96-104

Analysing Multi-dimensional Data Across
Autonomous Data Warehouses

Stefan Berger and Michael Schrefl

Department of Business Informatics - Data & Knowledge Engineering (DKE),
University of Linz, Austria

{berger, schrefl}@dke.uni-linz.ac.at

Abstract. Business cooperations frequently require to analyse data
across enterprises, where there is no central authority to combine and
manage cross-enterprise data. Thus, rather than integrating indepen-
dent data warehouses into a Distributed Data Warehouse (DDWH) for
cross-enterprise analyses, this paper introduces a multi data warehouse
OLAP language for integrating, combining, and analysing data from sev-
eral, independent data warehouses (DWHs). The approach may be best
compared to multi-database query languages for database integration.
The key difference to these prior works is that they do not consider the
multi-dimensional organisation of data warehouses.

The major problems addressed and solutions provided are: (1) a clas-
sification of DWH schema and instance heterogeneities at the fact and di-
mension level, (2) a methodology to combine independent data cubes tak-
ing into account the special characteristics of conceptual DWH schemata,
i.e., OLAP dimension hierarchies and facts, and (3) a novel query lan-
guage for bridging these heterogeneities in cross-DWH OLAP queries.

1 Introduction

Nowadays many companies use Data Warehouses (DWHs) and OLAP systems
to analyze the performance of their business processes. The integration of au-
tonomous DWHs is useful every time several enterprises cooperate in their busi-
ness intelligence activities. The basic option for DWH integration is either to build
a Distributed Datawarehouse System or a federation of several DWHs. Conse-
quently, the existing and well-established DWH systems are replaced or migrated
to implement a new, integrated schema, which are very labor-intensive tasks.

Multi Datawarehouse Systems (MDWHS) allow to analyze distributed mul-
tidimensional business data, overcoming the possible heterogeneities across sev-
eral autonomous data cubes yet leaving the component systems unchanged. No-
tably, a MDWHS permits local decision and data management autonomy to the
independent component DWHs in an architecture similar to “global-as-view”
database integration environments [1]. Such a loose coupling of the local data
cubes is advantageous for ad-hoc queries, especially if the permanent buildup of
a common Distributed DWH is impossible. However, the integration of several
multidimensional databases is a challenging task.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 120–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysing Multi-dimensional Data Across Autonomous Data Warehouses 121

In this paper we propose a basic Multi Datawarehouse framework for the
loosely coupled integration of data cubes. The resulting, integrated DWH schema
is instantiated but not physically stored. This virtual instantiation of the inte-
grated schema, denoted as virtual datacube, provides the basis for OLAP queries.
In contrast, a tightly coupled MDWHS architecture instantiates the integrated
DWH schema in a materialized datacube. The latter approach allows to easily
integrate additional system components such as an OLAP server and an OLAP
query tool to facilitate the analysts’ work. The tightly coupled architecture is a
subject of this paper.

Multidatabase Systems (MDBS) and Federated Database Systems (FDBS)pro-
vide successful examplesof database integration [11,12,13].AFDBSprovides trans-
parent access to the component databases through a global schema. In contrast,
a MDBS allows users to access the (possibly heterogeneous) schemata of multiple
databases directly. Thus, the coupling between the component databases is consid-
erably tighter in FDBS than in MDBS [12]. The approach in this paper is inspired
by MDBS architectures.

As part of the proposed framework, this paper classifies the possible het-
erogeneities among DWH schemata corresponding to the conceptual modelling
constructs fact and dimension. Moreover, we provide a methodology for DWH
schema integration, supported by the novel query language SQL-MDi, to deal
with conflicts in all of the conceptual constructs. The major contributions of
SQL-MDi are the following: (1) integration of dimension levels in a recursive
manner; (2) design of a new or modification of an existing dimension hierarchy;
(3) fine-grained conversion of attribute domains.

The main focus of our paper is to investigate the consequences of OLAP
dimension hierarchies on the Data Warehouse integration process. The presence
of hierarchical dimensions considerably complicates the consolidation of both
dimensions and facts, as we show in Section 4. In contrast to previous work,
our approach combines OLAP dimension and fact integration features with the
support of dimension hierarchies.

The outline of this paper is as follows. Section 2 presents a case study to
demonstrate the classes of heterogeneities among independent DWHs. Subse-
quently, Section 3 introduces the SQL-MDi language and briefly summarizes its
syntax. In Section 4 we discuss our methodology and illustrate example SQL-
MDi queries on the scenario of the case study. Section 5 discusses related work
on multidimensional database integration. Finally, Section 6 concludes the paper
and gives an outlook on our future research.

2 Case Study (Running Example)

As an illustrative example we assume the conceptual DWH schema of a health
insurance organization, as given in Figure 1. The fictitious health insurance con-
sists of independent suborganizations within several Federal States, governed
by a federal association. For simplicity, our scenario considers only two sub-
organizations, both of which autonomously operate a Data Warehouse. The

122 S. Berger and M. Schrefl

Fig. 1. Health insurance conceptual Data Warehouse schemata

schema is instantiated at two distinct nodes, dwh1 and dwh2, each of which
hosts one DWH.

The schema in Figure 1 is specified in the DFM-notation proposed by [2]. In
DFM, a conceptual DWH model consists of one or more facts, each of which
is linked to one or more dimensions. A datacube is a fact together with the
dimensions linked to it.

Our schema defines two cubes, treatment and medication, each with three di-
mensions describing the facts.1 Thus, in Figure 1 the fact and dimension schema
consist of {treatment, medication} and {method , drug , date time, patient}, re-
spectively. Note that DFM allows to “share” dimensions among multiple facts (as
patient and date time in Figure 1) [2]. An instantiation of our conceptual DWH
schema at both sites dwh1 and dwh2 is specified in Figures 2 and 3, showing
example fact and dimension instances.

Every dimension definition consists of (1) an arbitrary number of aggrega-
tion levels, including the implicit [ALL]-level, (2) a roll-up hierarchy between
the levels, i.e. a partial order on the dimension’s members, and (3) optional
non-dimensional attributes to model the dimension instances more precisely.
For example, the patient dimension is composed of (1) the levels patient and
age group, (2) the roll-up hierarchy {patient �→ age group �→ ALL} and (3) the
non-dimensional attribute name (of a patient).

In our running example, we assume a Relational OLAP (ROLAP) system be
the physical platform for the implementation of the conceptual schema. ROLAP
systems implement facts and dimensions as fact tables and dimension tables,
respectively [3]. Foreign key constraints on tables in ROLAP systems either

1 Later, both data cubes are used to exemplify conflicts on the schema and instance
level. We only use two cubes for an easier presentation—all conflict categories could
occur in a single cube.

Analysing Multi-dimensional Data Across Autonomous Data Warehouses 123

associate facts with dimensions (e.g. treatment—method) or express an aggre-
gation order on levels within a dimension (roll-up hierarchy, e.g. day—month).
The tuples of the fact and dimension tables contain, accordingly, the finite sets
of fact and dimension instances. The dimension instances are commonly denoted
as dimension members [3,4].

dwh1::medication
patient drug date time qty cost

p1 ’A’ 25-01-06 1 68.4
p2 ’A’ 03-02-06 5 342.0
p3 ’B’ 17-02-06 4 728.0

dwh1::drug
[drug] 	→ [manufacturer] 	→ [ALL]

’A’ 	→ ’Roche’ 	→ ALL
’B’ 	→ ’Sanchoz’ 	→ ALL

dwh2::medication
patient drug date time qty cost

p5 ’AA’ 03-02-06 2 148.0
p6 ’B’ 14-02-06 3 624.3
p2 ’A’ 03-02-06 1 70.8

dwh2::drug
[drug] 	→ [manufacturer] 	→ [ALL]

’A’ 	→ ’Roche’ 	→ ALL
’B’ 	→ ’Bayer’ 	→ ALL

Fig. 2. “Medication” fact tables of the case study

dwh1::treatment
method date phys cost p cost m

X-ray 23-02-06 ’Dr.A’ 356.0 425.0
CT 23-02-06 ’Dr.C’ 125.2 1742.0
CT 25-02-06 ’Dr.F’ 473.0 903.8

dwh1::date time
[day] 	→ [month] 	→ [year] 	→ [ALL]

dwh2::treatment
method date/hr cost cat cost-$

X-ray 23-02-06 08:00 personnel 480.0
X-ray 23-02-06 09:00 material 613.0
CT 24-02-06 14:00 material 624.5

dwh2::date time
[day/hr] 	→ [day] 	→ [week] 	→ [year] 	→ [ALL]

Fig. 3. “Treatment” fact tables of the case study

Summarizing, we regard a Data Warehouse as quadruple of distinct object
sets: fact schemata, dimension schemata, fact instances, dimension instances.
Every subset of DWH objects is a possible source of heterogeneities within the
Multi DWH System.

The example DWH instantiations (see Figures 2 and 3) demonstrate a situa-
tion that is commonly found in practice. Obviously, both DWHs model a similar
part of the real world. Nevertheless, it is easy to see that the medication and
treatment fact tables contain several heterogeneities. The conflicts contained in
the example are explained in detail below. A taxonomy of possible conflict classes
is briefly shown in Table 1. For a more detailed definition of the conflict classes
we refer the interested reader to [21].

The medication datacubes at dwh1 and dwh2 (see Fig. 2) conform to the
same ROLAP schema but contain numerous conflicts among their instance sets:
(1) a subset of the facts overlaps due to identical primary keys—given in bold
font (overlapping facts); (2) both drug dimensions contain an instance named
’A’, which is, however, erroneously named ’AA’ at dwh2 (instance naming con-
flict); (3) finally, the roll-up hierarchies of the dimension instances (shown at

124 S. Berger and M. Schrefl

Table 1. Overview of heterogeneities among Data Warehouses

Facts Dimensions

Instance
level

– Overlapping facts
– Disjoint fact subsets

– Naming conflicts
– Overlapping members
– Heterogeneous roll-up mappings

Schema
level

– Different number of dimen-
sions (“dimensionality”)

– Naming conflict (measures)
– Domain conflict (measures)

– Diverse aggregation hierarchies
– Inner level domain conflicts
– Lowest level domain conflicts
– Domain and/or naming conflicts

(non-dimensional attributes)
Schema vs. Fact context as dimension Dimension members as

instance instances contextualized facts

the bottom of Fig. 2) contain conflicting mappings for drug ’B’ (different roll-up
hierarchies).

The treatment datacubes at dwh1 and dwh2 (see Fig. 3) are heterogeneous due
to several conflicts among their ROLAP schemata, but do not contain further
conflicts in their instances: (1) whereas dwh1 uses two measures to distinguish
cost categories (cost p–personnel and cost m–material), the treatment datacube
at dwh2 defines the dimension cost cat (schema-instance conflict); (2) ignoring
the cost cat dimension (contained as implicit information in cost p and cost m),
the data cubes differ in their number of dimensions. The phys (physician) dimen-
sion of dwh1 is not modelled at dwh2 (dimensionality conflict); (3) the domain of
the cost-attributes is incompatible among the treatment datacubes. We assume
dwh1 to record cost figures in Euros, whereas dwh2 contains treatment costs
in US-$ (conflicting measure attribute domain); (4) the level hierarchy of the
date time dimension contains four levels at dwh2, compared to three at dwh1.
Moreover, the domains of the month and week levels are obviously different
(conflicts in the aggregation level hierarchy); (5) finally, the lowest aggregation
level of the date time is more fine-grained at dwh2 (heterogeneous lowest level
domain).

3 SQL-MDi—the Multi DWH OLAP Language

To integrate several autonomous Data Warehouses into a Multi DWH System,
we propose a query language named SQL-MDi (SQL for multi-dimensional in-
tegration), supporting the methodology we present in Section 4. As its name
suggests, SQL-MDi is based on the SQL standard [5]. SQL-MDi uses the ba-
sic select – from – where – group by – having structure, extended with various
constructs to specify the virtual data cube. All cube definition language clauses
precede the OLAP operations within the SELECT query part. Thus, the skeleton
of an SQL-MDi query looks as follows:

DEFINE <cube-definitions>
MERGE DIMENSIONS <merge-dim-subclauses>

Analysing Multi-dimensional Data Across Autonomous Data Warehouses 125

MERGE CUBES <merge-cube-subclauses>
<standard sql-query>

The data definition part of an SQL-MDi query allows the following clauses:
DEFINE CUBE contains a CUBE-declaration for every data cube to be merged
into the virtual cube. Within this clause, the designer modifies the cube schemata
and instances in order to be mutually compatible. Pivoting operations are avail-
able to restructure the multi-dimensional space of the integrated data cube.
These operations also solve schema-instance conflicts among the individual
DWHs. Further subclauses allow to specify either conversion functions or over-
riding instructions to resolve measure attribute conflicts. MERGE DIMENSIONS
is the directive to bridge heterogeneities among the dimension schemata and in-
stances of the independent DWHs. Within this clause the designer may (1) spec-
ify mappings between dimension levels (snowflake tables) of independent DWH
schemata, (2) rename ambiguously named attributes, (3) convert attribute do-
mains in dimension tables, (4) merge overlapping dimension instance sets, (5)
resolve naming conflicts of dimension instances and (6) choose a roll-up hierar-
chy to use in the virtual cube. MERGE CUBES finally instructs the MDWHS to
join the specified data cubes in order to compute the virtual cube. The designer
fine-tunes the desired schema of the virtual cube (1) by choosing which dimen-
sions to join over and (2) by specifying how the measures and dimensions of the
virtual cube are derived from the component DWHs.

Most of the SQL-MDi clauses listed above require several subclauses to specify
exactly how the virtual datacube is to be computed. In the remainder of the
paper, we omit a detailed specification of all query subclauses. Instead we prefer
to illustrate the expressive power of SQL-MDi using the various examples within
Section 4. A complete reference to the SQL-MDi syntax is given in [21].

Due to lack of space, we further omit to formalize the semantics of our query
language constructs and operators. Together with a query processing and exe-
cution model, the formalization of SQL-MDi is the topic of our current research.

4 Methodology for the Integration of Data Warehouses

In the following, we propose a DWH integration methodology, that accounts for
all classes of conflicts defined in this paper. These conflicts can of course occur
orthogonally in arbitrary combinations. To illustrate how SQL-MDi supports
the proposed methodology, we give example queries and informally explain their
semantics.

The integration methodology defines the consolidated multi-dimensional space
to compute the virtual data cube. It must bridge heterogeneities at both the
instance and schema level. Thus, the integration of heterogeneous DWHs consists
of the following phases: (1) resolution of schema-instance conflicts, (2) schema
integration, (3) instance consolidation, and finally (4) roll-up hierarchy design.

As preparatory step before integrating the dimension schemata, our method-
ology requires all dimensions of the autonomous DWHs to be converted to the

126 S. Berger and M. Schrefl

snowflake schema. This representation reveals both the aggregation levels (ta-
bles) and the hierarchy mappings between dimensional attributes (foreign keys
between levels) [3].

4.1 Resolve Schema-Instance Conflicts

The first phase of DWH integration achieves a uniform modelling of informa-
tion within schema and instances. Schema transformation in multidimensional
tables was investigated by Gingras and Lakshmanan [6]. They implemented sev-
eral query constructs into nD-SQL, allowing the conversion of schema objects
to schema information and vice versa. The nD-SQL constructs of “schema vari-
ables” and “complex columns” work well to restructure flat tables without di-
mension hierarchies.

Our query language, SQL-MDi, provides analogous constructs for fact table
pivoting. However, SQL-MDi allows a more powerful restructuring of datacubes
since it fully supports dimension hierarchies. Note that our language (in its
current version) does not define schema object variables such as in nD-SQL [6].

The resolution of schema-instance conflicts is possible in two directions, de-
pending on the desired virtual cube schema, as illustrated below. For the fol-
lowing two examples, assume dwh2::treatment with dimension date instead of
date time.

Example 1. Use an additional measure in dwh2::treatment:
DEFINE CUBE dwh1::treatment AS c1, CUBE dwh2::treatment AS c2

(MEASURE cost pers IS cost WHEN cost cat=’personnel’ DEFAULT 0,
MEASURE cost mat IS cost WHEN cost cat=’material’ DEFAULT 0,

DIM method, DIM date) MERGE TUPLES ON method, date
MERGE CUBES c1,c2 INTO gdb::treatment AS c0 ON method, date

(MEASURE cost pers IS SUM(c1.cost p, c2.cost pers),
MEASURE cost mat IS SUM(c1.cost m, c2.cost mat), DIM method, DIM date)

Example 2. Use an additional dimension in dwh1::treatment:2

DEFINE CUBE ...c2, CUBE ...c1 (MEASURE cost IS EITHER c1.cost p, c1.cost m,
DIM cost cat IS ’personnel’ WHEN SOURCE(cost) = cost p,

’material’ WHEN SOURCE(cost) = cost m), DIM method, DIM date)
SPLIT TUPLES FOR cost p, cost m DISCRIMINATE BY cost cat

MERGE CUBES c1,c2 INTO ...c0 ON method, date, cost cat
(MEASURE cost IS SUM(c1.cost, c2.cost))

The above examples model the information in dwh1 and dwh2 in a uniform way
either as dimension instances or measures. Example 1 adapts c2’s fact schema.
The additional measure makes a merging of the facts necessary to avoid many
’0’ measure values. Every pair of facts with identical method and date/hr values
is merged. Example 2 adds a dimension to c1, splits the facts adequately and
converts the measures cost pers and cost mat to a unique cost-attribute.

2 Let c1, c2 and c0 be defined as in example 1.

Analysing Multi-dimensional Data Across Autonomous Data Warehouses 127

4.2 Integrate Dimension and Fact Schemata

In the second phase of our integration methodology the designer defines a com-
mon physical (ROLAP) schema for both dimension and fact tables. Note that
the integration of dimensions has priority, since valid primary keys of the facts in
the virtual datacube can only be determined by using consolidated dimensions.
Previous approaches have already examined how to integrate OLAP dimensions
[7,8] or fact tables [6] on the schema level. In our opinion, both steps must be
combined, since mutual dependencies exist between the schemata of dimensions
and facts.

Hierarchies within the dimensions are significant for the computation of both
the base datacube and its aggregations (obtained by roll-up). Several previous
approaches have already recognized the importance of dimension integration
(e.g. [9,7,10]). Our methodology supports the integration of hierarchical OLAP
dimensions at every aggregation level using mappings between compatible levels
(similar to [9]).

Firstly, to identify common elements among dimension schemata, the designer
defines mappings between equivalent levels. Using these explicit mappings, both
an unequal number of dimension levels and granularity conflicts are resolved.
If necessary, the lowest aggregated levels of heterogeneous dimensions are also
harmonized.

Example 3. To define a common aggregation hierarchy for the date time dimen-
sions of the treatment fact tables, a roll-up of dwh2::date time is necessary (cf.
Figure 3):

DEFINE CUBE ...c1, CUBE...c2, CUBE ...c0 (ROLLUP c2.date/hr TO LEVEL day)
MAP LEVEL gdb::date time[day] IS dwh1::date time[day], dwh2::date time2[day],

LEVEL gdb::date time[year] IS dwh1::date time[year], dwh2::date time2[year]
MERGE DIMENSIONS c1.date AS d1, c2.date/hr AS d2 INTO c0.date AS d0
MERGE CUBES c1,c2 INTO ...c0 ON method, date

Additionally, this query maps compatible levels of d1 and d2. Note that merg-
ing directives for the other dimensions are unnecessary, since no conflicts exist
among them.

Secondly, the designer completes the definition of the virtual cube schema by
resolving heterogeneities among the fact schemata. The multi-dimensional space
of the virtual datacube is based upon the integrated dimensions (defined previ-
ously). All additional dimensions defined in the component DWHs are automat-
ically suppressed by rolling them up to [ALL]. Measure attributes are converted
to the domain used in the virtual cube if necessary (if the component DWHs de-
fine heterogeneous domains). Thus, both dimensionality and measure attribute
conflicts are solved.

Example 4. Define a homogeneous fact schema for the virtual treatment cube
by converting the cost-measure (let the MAP LEVEL and MERGE DIMENSIONS
clause be given as in Ex. 3):

128 S. Berger and M. Schrefl

DEFINE CUBE ...c1, CUBE ...c2 CUBE ...c0 (ROLLUP c2.date/hr TO LEVEL day)
CONVERT MEASURES APPLY usd2eur() FOR c2.cost DEFAULT

MAP LEVEL ... MERGE DIMENSIONS ...
MERGE CUBES c1,c2 INTO c0 ON method, date

An important feature of our methodology is fine-grained attribute conversion.
Sometimes a generalized conversion on all instances of an attribute (e.g. of
c2.cost in the previous example) is not precise enough. Based on selection pred-
icates, which may include dimensional attributes, the designer specifies an ap-
propriate conversion function for only a subset of instances.

Example 5. Assume that all costs for tomography at dwh2 are stored in CHF,
although this is inconsistent with the other cost figures. In this case, the con-
version clause of the previous example is only appropriate if extended to a more
fine-grained definition:

CONVERT MEASURES APPLY usd2eur() FOR c2.cost DEFAULT,
chf2eur() FOR c2.cost WHERE method = ’CT’

Finally, attribute naming conflicts among either fact or dimension tables are re-
solved. Thus, the designer overcomes homonyms and synonyms in the conceptual
schemata. Attribute mappings on the schema level are defined manually.

Example 6. Assume an additional non-dimensional attribute ’description’ in
dwh1:: method and ’desc’ in dwh2::method. As both attributes equivalently model
a textual description, they are mapped, extending Ex. 3 with an additional clause:

MERGE DIMENSIONS c1.method AS d4, c2.method AS d5 INTO c0.method AS d3
MATCH ATTRIBUTES d3.desc IS d4.description, d5.desc

4.3 Consolidate Dimension and Fact Instances

The next DWH integration phase converts the instances of dimension and fact
tables into the common schema defined previously—see 4.2. Similar to [8], we
view dimension instances, together with the hierarchy between them, as a tree.
These instance trees are consolidated by integrating the heterogeneous dimension
instances. Analogously to the schema integration phase, dimension instances are
processed before the facts.

The instance sets of every dimension in the virtual cube schema are inte-
grated recursively among every common level along the aggregation hierarchy,
beginning with the most fine-grained one. The designer performs the following
operations with the instance sets of every level. (1) Resolve naming conflicts us-
ing explicit mappings between corresponding instances to reveal homonyms and
synonyms. This way, subsets of corresponding and different dimension members
are identified. (2) Specify which existing aggregation hierarchy to use in case
of conflicting roll-up mappings. This ensures the referential integrity between
aggregation levels which is given by foreign keys.

Alternatively, if no given dimension hierarchy is adequate, the designer may
model a new one. The next subsection proposes a procedure for this purpose. If
the designer elects to create a new dimension hierarchy, he only has to integrate

Analysing Multi-dimensional Data Across Autonomous Data Warehouses 129

the leaf instances of the given dimensions at this step. The roll-up consistency is
ensured in the subsequent step of dimensional modelling. If needed, new roll-up
mappings for only some selected dimension instances can also be defined.

Example 7. Manually mark the drug instance ’AA’ at dwh2 as equivalent to
instance ’A’ at dwh1; moreover, define to use the roll-up mapping of dwh1::drug
for c0:

DEFINE CUBE dwh2::medication AS c3, CUBE dwh1::medication AS c4
(RENAME dg-id TO ’A’ WHERE dg-id = ’AA’), CUBE gdb::medication AS m0
RELATE dwh1::drug[drug] AS ds1, dwh2::drug[drug] AS ds2
WHERE ds1.dg-id = ds2.dg-id USING HIERARCHY OF dwh1::drug

MERGE DIMENSIONS c3.drug AS d3, c4.drug AS d4 INTO m0.drug AS d0
MERGE CUBES c3,c4 INTO m0 ON patient, drug

Next, the facts from the component DWHs are arranged within the common
multi-dimensional space. If fact subsets contain measures on the same real-world
entities (often characterized by identical primary keys in different fact sets), these
facts are said to overlap—otherwise, they are disjoint. Due to the conflicting
information on the measures, overlapping facts must be merged adequately to
compute meaningful results.

We distinguish two different semantic relationships between overlapping facts,
determining the possible computation method(s) to obtain meaningful results:

– Identical-relationship: facts are identical-related if they describe the same
real-world entities in the virtual datacube. Importantly, only one out of the
given measure values can be true. The application of aggregation functions
is meaningless.

– Context-relationship: matching facts are context-related if they describe one
or more real-world entities in different contexts. This implies that the facts
contain additional but hidden information, which may be made explicit. The
other basic option is to aggregate the fact measures. Importantly, in some
scenarios a subset of aggregation functions computes meaningless results,
especially if the facts model information on different entities.

To merge overlapping facts, the designer identifies the semantical relationship
between the facts and chooses an adequate merging strategy. Since the semantic
relation between overlapping facts usually depends on subtle details, only a hu-
man designer can safely determine it. Subsequently, he or she defines the desired
set operation to apply on the remaining, disjoint fact subsets.

Example 8. The overlapping medication-instances are identical. We assume the
data of dwh1 to be more trustworthy than dwh2 and therefore specify to prefer
the values received from dwh1. The union is computed of the remaining, disjoint
subsets:3

DEFINE CUBE ...c3, CUBE ...c4 MERGE CUBES c3,c4 INTO ...m0 ON patient, drug
PREFER c1.quantity DEFAULT PREFER c1.cost DEFAULT

3 Let c3, c4 and m0 be defined as in example 7.

130 S. Berger and M. Schrefl

Example 9. Let dwh3 be an additional DWH with the same schema as dwh2.
Overlapping treatment-instances are clearly context-related. To compare cost fig-
ures between several DWHs, the fact context is extracted to an additional di-
mension as follows:

DEFINE CUBE dwh2::treatment AS c2, CUBE dwh3::treatment AS c3
MERGE CUBES c2,c3 INTO ...c0 ON method, date/hr

TRACKING SOURCE AS DIMENSION state (state-id VARCHAR2(32))
(MEASURE cost, DIM method, DIM date/hr, DIM state IS

’state2’ WHERE SOURCE() = c2, ’state3’ WHERE SOURCE() = c3)

Finally, naming conflicts in non-dimensional attributes among the member sets
are resolved. Attribute mappings are defined either manually or in a mapping
table. This way, the designer overcomes homonyms and synonyms within the
dimension instances.

Example 10. Assume the name attribute of patient instances contains several in-
consistencies (not shown in Figure 2). They can be resolved using a mapping table:
DEFINE CUBE ...c3, CUBE ...c4
(RENAME c4.patient.name USING MAPPINGTABLE pat-names TO c3.patient.name)

MERGE DIMENSIONS c3.drug AS d3, c4.drug AS d4 INTO m0.drug AS d0
The mapping table pat-names contains two attributes medication.patient.name,
one for each DWH c1 and c2. Its tuples map pairs of different values modelling
the same real world entities. The RENAME clause specifies the values desired in
the virtual cube.

4.4 Design Roll-Up Hierarchies

If the integrated roll-up hierarchy of a dimension cannot satisfy the designer’s
needs, it is necessary to adapt these hierarchies. We propose a dimensional mod-
elling approach that allows to specify arbitrary dimension levels and hierarchies.
For this purpose, we slightly extend the snowflake schema to enhance its expres-
sive power as follows.

Our framework models dimension hierarchies using snowflake tables [3] and
the novel roll-up tables. Roll-up tables express a roll-up relationship between
levels, amending foreign keys in the traditional snowflake model [2]. Note that
predefined foreign keys are still valid, but a roll-up table definition may override it
to express different roll-up relationships. If a predefined foreign key is appropriate
for the integrated virtual cube, the (foreign key) constraint allows to compute the
equivalent roll-up table automatically. Otherwise, the roll-up table is specified
explicitly and populated manually.

Example 11. Retrieve the cost figures of the medication data cubes and define
the additional level quarter for the date time dimension:

DEFINE CUBE dwh1::treatment AS c1, CUBE dwh2::treatment AS c2
(ROLLUP c2.date/hr TO LEVEL day), CUBE gdb::treatment AS c0

MERGE DIMENSIONS c1.date AS d1, c2.date/hr AS d2 INTO c0.date AS d0
ADD LEVEL gdb::date.quarter(quarter-id VARCHAR2(32)),
ADD ROLLUP gdb::date.month-quarter, ADD ROLLUP gdb::date.quarter-year

MERGE CUBES c1,c2 INTO ...c0 ON patient, date time

Analysing Multi-dimensional Data Across Autonomous Data Warehouses 131

(MEASURE cost IS c1.cost, c2.cost, DIM patient, DIM date time IS
(SELECT ’q1-05’, ’q2-05’, ’q3-05’, ’q4-05’ FROM DUAL))

This statement inserts a new level quarter “between” month and year.

As demonstrated by the above example, our dimensional modelling approach
provides two atomic operations: add dimension level and add roll-up table. Exist-
ing tables are never deleted. The atomic operations can be employed to perform
the following complex dimensional modelling operations: (1) Split or merge exist-
ing dimension hierarchies (define dimension and roll-up tables; convert existing
dimension instances and mappings to instances of the new dimension schema);
(2) Insert an aggregation level into an existing hierarchy (define a new dimension
table and the corresponding roll-up tables); (3) Delete an existing aggregation
level (define a roll-up table “overriding” existing foreign-key constraints); (4)
Specify roll-up mappings between dimension instances (insert a tuple into the
appropriate roll-up table mapping both instances).

To finish dimensional modelling, the previously defined dimension and roll-
up tables are populated with instances. Standard SQL statements are used for
this purpose [5]. Dimension tables will most likely contain instances from within
the predefined dimension schemata. Therefore, SQL statements populating the
dimension tables can be embedded as subqueries into the SQL-MDi query (as
shown in the above example). Due to their complexity, SQL statements to specify
the contents of roll-up tables must be entered separately. For example, the roll-
up table month-quarter would be filled with tuples that map every month in the
month-table to the appropriate quarter.

5 Related Work

Query Languages for MDBS have received considerable attention in research
and practice (e.g. MSQL [14,15,16], InterSQL [17] or SchemaSQL [18]). Multi-
database languageslike MSQL and SchemaSQL provide extensions to standard
features to resolve data and schema conflicts [15,18]. Existing multidatabase lan-
guages cannot be applied to DWHs since they lack expressive power to handle
the multidimensional data model.

Appropriate languages enabling queries to Multi DWH Systems are far from
being mature. The first promising approach in this direction is nD-SQL [6], a lan-
guage introducing schema transformation features, including multidimensional
data. However, as the authors state themselves, the approach is still incomplete
since the most recent nD-SQL version does not support aggregation hierarchies
within dimensions [6].

A different approach extending standard SQL for OLAP applications is SQLM

[10]. The authors’ main contribution is the formal definition of an OLAP data
model together with a set of operations defined upon it. In contrast to our
approach, the focus of SQLM is primarily on irregularities in standalone OLAP
systems. Although the integration of additional data sources (mainly from XML
data) is addressed, SQLM does not support the integration of multiple DWHs
for OLAP purposes.

132 S. Berger and M. Schrefl

The DWH schema integration process itself still needs to be defined precisely
to facilitate the design of MDWHS. A valuable approach addressing the inte-
gration of multidimensional databases is [9]. The authors elaborate on several
techniques for dimension integration. However, they do not investigate any con-
sequences on the computation of facts. While Cabibbo et al. concentrate on the
development of the visual integration tool “DaWaII” [9,19], our work focuses on
a declarative query language, that can also be used as definition language for
DWH schema mappings.

Several approaches discuss how to exploit the common information of similar
OLAP dimensions to optimize centralized or distributed DWH environments.
Extended possibilities for drill-across queries based on similar dimensions are
investigated by [7]. The approach of [8] proposes integrity constraints on OLAP
dimensions as an attempt to establish design guidelines for multidimensional
databases.

OLAP dimension hierarchies have received little attention in the research on
data integration. Many approaches, including nD-SQL, assume flat, “degener-
ated” data cubes without aggregation hierarchies. A promising formal framework
on dimension integration was developed by Cabibbo and Torlone [9], who pro-
pose both a dimension data model and algebra. Compared to the dimension
algebra operators, the constructs of SQL-MDi provide an extended set of op-
erations to manipulate schema or instance objects in DWHs. Dehne et al. [20]
investigate how to deal with dimension hierarchies in parallel ROLAP systems.
They focus, however, primarily on query processing whereas our paper discusses
schema integration.

6 Conclusion and Future Work

We introduced a framework for the challenging problem of an OLAP query
architecture for multiple independent Data Warehouses. This paper discussed
a classification of heterogeneities to expect among distributed multidimensional
databases. The proposed framework further consists of a methodology for the
integration of autonomous data cubes, supported by a novel query language
based on SQL.

Due to the complexity of possible data and schema conflicts, SQL-MDi queries
are better suited for ad-hoc DWH integration scenarios. A Federated DWH Sys-
tem preserving the knowledge on virtual cube computation from the component
DWHs is the subject of our current research. Moreover, we are currently investigat-
ing further interesting topics such as SQL-MDi (distributed) query optimization.

References

1. Lenzerini, M.: Data Integration: A Theoretical Perspective. In Popa, L., ed.: Proc.
of PODS, ACM (2002) pp. 233–246.

2. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: a Conceptual
Model for Data Warehouses. Int. J. Cooperative Inf. Syst. (7) (1998) pp. 215–247.

Analysing Multi-dimensional Data Across Autonomous Data Warehouses 133

3. Vassiliadis, P., Sellis, T.K.: A Survey of Logical Models for OLAP Databases.
SIGMOD Record (28) (1999) pp. 64–69.

4. Schrefl, M., Thalhammer, T.: On Making Data Warehouses Active. Proc. Intl.
DaWaK Conf., LNCS Vol. 1874, Springer (2000) pp. 34–46.

5. International Organization for Standardization: (ISO/IEC 9075:1992: Information
technology—Database languages—SQL).

6. Gingras, F., Lakshmanan, L.V.S.: nD-SQL: A Multi-dimensional Language for In-
teroperability and OLAP. In Gupta, A., Shmueli, O., Widom, J., eds.: VLDB,
Morgan Kaufmann (1998) pp. 134–145.

7. Abelló, A., Samos, J., Saltor, F.: On Relationships Offering New Drill-across Pos-
sibilities. In Theodoratos, D., ed.: Proc. of DOLAP, ACM (2002) pp. 7–13.

8. Hurtado, C., Gutiérrez, C., Mendelzon, A.: Capturing Summarizability with In-
tegrity Constraints in OLAP. ACM Trans. Database Syst. (30) (2005) pp. 854–886.

9. Cabibbo, L., Torlone, R.: Integrating Heterogeneous Multidimensional Databases.
In Frew, J., ed.: Proc. of SSDBM. (2005) pp. 205–214.

10. Pedersen, D., Riis, K., Pedersen, T.B.: A Powerful and SQL-compatible Data Model
and Query Language for OLAP. In Zhou, X., ed.: Australasian Database Confer-
ence. CRPIT (5) (2002).

11. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, Second
Edition. Prentice-Hall (1999).

12. Litwin, W., Mark, L., Roussopoulos, N.: Interoperability of Multiple Autonomous
Databases. ACM Comput. Surv. (22) (1990) pp. 267–293.

13. Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Comput. Surv. (22) (1990)
pp. 183–236.

14. Grant, J., Litwin, W., Roussopoulos, N., Sellis, T.K.: Query Languages for Rela-
tional Multidatabases. VLDB Journal (2) (1993) pp. 153–171.

15. Litwin, W., Abdellatif, A., Zeroual, A., Nicolas, B., Vigier, P.: MSQL: A Multi-
database Language. Inf. Sci. (49) (1989) pp. 59–101.

16. Suardi, L., Rusinkiewicz, M., Litwin, W.: Execution of Extended Multidatabase
SQL. In: ICDE, IEEE Computer Society (1993) pp. 641–650.

17. Mullen, J.G., Elmagarmid, A.K.: InterSQL: A Multidatabase Transaction Pro-
gramming Language. In Beeri, C., Ohori, A., Shasha, D., eds.: DBPL. Workshops
in Computing, Springer (1993) pp. 399–416.

18. Lakshmanan, L.V.S., Sadri, F., Subramanian, S.: SchemaSQL: An Extension to
SQL for Multidatabase Interoperability. ACM Trans. Database Syst. (26) (2001)
pp. 476–519.

19. Torlone, R., Panella, I.: Design and Development of a Tool for Integrating Hetero-
geneous Data Warehouses. Proc. Intl. DaWaK Conf., LNCS Vol. 3589, Springer
(2005) pp. 105–114.

20. Dehne, F., Eavis, T., Rau-Chaplin, A.: Parallel Querying of ROLAP Cubes in the
Presence of Hierarchies. In Song, I.Y., Trujillo, J., eds.: Proc. of DOLAP, ACM
(2005) pp. 89–96.

21. Berger, S., Schrefl, M.: SQL-MDi Extended Syntax Reference. Technical report,
available at http://www.dke.jku.at.

What Time Is It in the Data Warehouse?

Stefano Rizzi and Matteo Golfarelli

DEIS, University of Bologna, Viale Risorgimento 2, 40136 Italy

Abstract. Though in most data warehousing applications no relevance
is given to the time when events are recorded, some domains call for a dif-
ferent behavior. In particular, whenever late registrations of events take
place, and particularly when the events registered are subject to further
updates, the traditional design solutions fail in preserving accountability
and query consistency. In this paper we discuss the alternative design
solutions that can be adopted, in presence of late registrations, to sup-
port different types of queries that enable meaningful historical analysis.
These solutions are based on the enforcement of the distinction between
transaction time and valid time within the model that represents the
fact of interest. In particular, we show how late registrations can be dif-
ferently supported depending on the flow or stock semantics given to
events.

1 Introduction

Time is commonly understood as a key factor in data warehousing systems,
since the decisional process often relies on computing historical trends and on
comparing snapshots of the enterprise taken at different moments. Within the
multidimensional model, time is typically a dimension of analysis: thus, the rep-
resentation of the history of measure values across a given lapse of time, at a
given granularity, is directly supported. On the other hand, though the multi-
dimensional model does not inherently represent the history of attribute values
within hierarchies, some ad hoc techniques are widely used to support the so-
called slowly-changing dimensions [1]. In both cases, time is commonly meant
as valid time in the terminology of temporal databases [2], i.e., it is meant as
the time when the event or the change within a hierarchy occurred in the busi-
ness domain [3]. Transaction time, meant as the time when the event or change
was registered in the database, is typically given little or no importance in data
warehouses, since it is not considered to be relevant for decision support.

One of the underlying assumptions in data warehouses is that, once an event
has been stored, it is never modified, so that the only possible writing operation
consists in appending new events as they occur. While this is acceptable for
a wide variety of domains, some applications call for a different behaviour. In
particular, the values of one or more measures for a given event may change over
a period of time to be consolidated only after the event has been for the first
time registered in the warehouse. In this context, if the current situation is to

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 134–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

What Time Is It in the Data Warehouse? 135

be made timely visible to the decision maker, past events must be updated to
reflect the incoming data.1

The need for updates typically arises when the early measurements made for
events may be subject to errors (e.g., the amount of an invoice may be corrected
after the invoice has been registered) or when events inherently evolve over
time (e.g., notifications of university enrollments may be received and stored
several days after they were issued). Unfortunately, if updates are carried out by
physically overwriting past events, some problems may arise:

– Accountability and traceability require the capability of preserving the ex-
act information the analyst based his/her decision upon. If old events are
replaced by their “new” versions, past decisions can no longer be justified.

– In some applications, accessing only up-to-date versions of information is
not sufficient to ensure the correctness of analysis. A typical case is that of
queries requiring to compare the progress of an ongoing phenomenon with
past occurrences of the same phenomenon: since the data recorded for the
ongoing phenomenon are not consolidated yet, comparing them with past
consolidated data may not be meaningful.

Note that the same problems may arise when events are registered in the data
warehouse only once, but with a significant delay with respect to the time when
they occurred: in fact, though no update is necessary, still valid time is not
sufficient to guarantee accountability. Thus, in more general terms, we will call
late registration any registration of events that is delayed with respect to the
time when the event occurs in the application domain, with the tolerance of
the natural delay related to the refresh interval of the data warehouse. A late
registration may either imply an update or not.

In this paper we discuss the design solutions that can be adopted, in the
presence of late registrations, to enable meaningful historical analysis aimed
at preserving accountability and consistency. These solutions are based on the
enforcement of the distinction between transaction time and valid time within
the schema that represents the fact of interest. The paper contributions can be
summarized as follows:

– Two possible semantics for events are distinguished, namely flow and stock,
and it is shown how they can be applied to the events occurring in the
application domain, to the events registered in the data warehouse for the
first time, and to the events registered later to represent updates (Section
4).

– Three basic categories of queries are distinguished, from the point of view of
their different temporal requirements in presence of late registrations (Sec-
tion 5).

– A set of design solutions to support late registrations is introduced, and their
relationship with the three categories of queries and with the two different
semantics of events is discussed (Section 6).

1 In the following, when using the term update, we will mean a logical update, which
does not necessarily imply a physical update (i.e., an overwrite).

136 S. Rizzi and M. Golfarelli

2 Related Literature

Several works concerning temporal data warehousing can be found in the liter-
ature. Most of them are related to consistently managing updates in dimension
tables of relational data warehouses — the so-called slowly-changing dimensions
(e.g., [4,5]). Some other works tackle the problem of temporal evolution and ver-
sioning of the data warehouse schema [6,7,8,9,10]. All these works are not related
to ours, since there is no mention to the opportunity of representing transaction
time in data warehouses in order to allow accountability and traceability in case
of late registrations.

In [3] it is distinguished between transient data, that do not survive updates
and deletions, and periodic data, that are never physically deleted from the data
warehouse. In [1] two basic paradigms for representing inventory-like information
in a data warehouse are introduced: the transactional model, where each increase
and decrease in the inventory level is recorded as an event, and the snapshot
model, where the current inventory level is periodically recorded. This distinction
is relevant to our approach, and is recalled in Section 4.

In [11], the importance of advanced temporal support in data warehouses,
with particular reference to medical applications, is recognized. In [12] the au-
thors claim that there are important similarities between temporal databases
and data warehouses, suggest that both valid time and transaction time should
be modeled within data warehouses, and mention the importance of temporal
queries. Finally, in [13] a storage structure for a bitemporal data warehouse
(i.e., one supporting both valid and transaction time) is proposed. All these ap-
proaches suggest that transaction time should be modeled, but not with explicit
reference to the problem of late registrations.

The approach that is most related to ours is the one presented in [14], where
the authors discuss the problem of DW temporal consistency in consequence of
delayed discovery of real-world changes and propose a solution based on trans-
action time and overlapped valid time. Although the paper discusses some issues
related to late registrations, no emphasis is given to the influence that the se-
mantics of the captured events and the querying scenarios pose on the feasibility
of the different design solutions.

3 Motivating Examples

In the first example we provide, late registrations are motivated by the fact that
the represented events inherently evolve over time. Consider a single fact model-
ing the student enrollments to university degrees; in a relational implementation,
a simplified fact table for enrollments could have the following schema2:

FT ENROLL(EnrollDate, Degree, AYear, City, Number)

where EnrollDate is the formal enrollment date (the one reported on the enroll-
ment form). An enrollment is acknowledged by the University secretariat only
2 For simplicity, we will assume that surrogate keys are not used.

What Time Is It in the Data Warehouse? 137

when the entrance fee is paid; considering the variable delays due to the bank
processing and transmitting the payment, the enrollment may be registered in
the data warehouse even one month after the enrollment has been formally done.
This is a case of late registrations. Besides: (i) notices of payments for the same
enrollment date are spaced out over long periods, and (ii) after paying the fee,
students may decide to switch their enrollment from one degree to another. Thus,
updates are necessary in order to correctly track enrollments. The main reason
why in this example the enrollment date may not be sufficient is related to the
soundness of analysis. In fact, most queries on this fact will ask for evaluating the
current trend of the number of enrollments as compared to last year. But if the
current data on enrollments were compared to the consolidated ones at exactly
one year ago, the user would wrongly infer that this year we are experiencing a
negative trend for enrollments!

The second example, motivated by the delay in registering information and
by wrong measurements, is that of a large shipping company with several ware-
houses spread around the country, that maintains a centralized inventory of its
products:

FT INVENTORY(InvDate, Product, Warehouse, Level)

We assume that the inventory fact is fed by weekly snapshots, coming from the
different warehouses, of the inventory level for each product. In this scenario,
delays in communicating the weekly levels and late corrections sent by the ware-
houses will produce late registrations, which in turn will raise problems with
justifying the decisions made on previous reports.

4 The Semantics of Events

The aim of this section is to introduce the classification of events on which we
will rely in Section 6 to discuss the applicability of the design solutions proposed.

As recognized in [1], from the point of view of the conceptual role given to
events, facts basically conform to one of two possible models:

– Transactional fact. For a transactional fact, each event may either record
a single transaction or summarize a set of transactions that occur during
the same time interval. Most measures are flow measures [15]: they refer to
a time interval and are cumulatively evaluated at the end of that period;
thus, they are additive along all dimensions (i.e., their values can always be
summed when aggregating).

– Snapshot fact. In this case, events correspond to periodical snapshots of the
fact. Measures are mostly stock measures [15]: they refer to an instant in
time and are evaluated at that instant; thus, they are non-additive along
temporal dimensions (i.e., they cannot be summed when aggregating along
time, while for instance they can be averaged).

This distinction is based on the semantics of the stored events, i.e., the events
logically recorded in the data warehouse: in a transactional fact they are meant

138 S. Rizzi and M. Golfarelli

as flow events, while in a snapshot fact they are meant as stock events. Intuitively,
while flow events model a “delta” for the fact, stock events measure its “level”.

The choice of one model or another is influenced by the core workload the
fact is subject to, but mainly depends on the semantics of the domain events,
i.e., on how the events occurring in the application domain are measured: in the
form of flows or in the form of stocks. In the first case, a transactional fact is the
more proper choice, though also a snapshot fact can be used provided that (i)
an aggregation function for composing the flow domain events into stock stored
events is known, and (ii) events are not subject to updates — otherwise, after
each update, all the related (stock) events would have to be updated accordingly,
which may become quite costly. Conversely, if events are measured as stocks, a
snapshot fact is the only possible choice, since adopting a transactional fact
would require disaggregating the stock domain events into inflows and outflows
— which, in the general case, cannot be done univocally.

A large percentage of facts in the business domain naturally conform to the
transactional model. For instance, in an invoice fact, each (domain and stored)
event typically represents a single line of an invoice, and its measures quantify
some numerical aspects of that line — such as its quantity or amount. In theory,
one could as well build an equivalent snapshot fact where each stored event
models the cumulated sales made so far, computed by summing up the invoice
lines: of course this would be quite impractical, since most query will focus
on partial aggregations of invoice lines, that would have to be computed by
subtraction of consecutive stored events.

Other facts naturally conform to the snapshot model: for instance a fact mea-
suring, on each hour, the level of a river in different places along its course. Also
the centralized inventory fact mentioned in Section 3 conforms to the snapshot
model, since both its stored and domain events have stock semantics.

Finally, for some facts both models may reasonably fit: an example is the
enrollment fact seen in Section 3, where two different interpretations can be
given to events (and to measure Number accordingly) for the same schema. In
the first (transactional) interpretation each (flow) event records the number of
students from a given city who enrolled, on a given date, to a given degree course
for a given academic year. In the second (snapshot) interpretation each (stock)
event records, at a given date, the total number of students from a given city
who enrolled to a given degree course for a given academic year so far. Two
sample sets of events for enrollments according to the two interpretations are
shown in Table 1; the designer will choose one or the other interpretation mainly
according to the expected workload.

Table 1. Enrollment events for the transactional (left) and the snapshot (right) facts

EnrollDate Degree AYear City Number EnrollDate Degree AYear City Number

Oct. 21, 2005 Elec. Eng. 05/06 Rome 5 Oct. 21, 2005 Elec. Eng. 05/06 Rome 5

Oct. 22, 2005 Elec. Eng. 05/06 Rome 2 Oct. 22, 2005 Elec. Eng. 05/06 Rome 7

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3 Oct. 23, 2005 Elec. Eng. 05/06 Rome 10

What Time Is It in the Data Warehouse? 139

5 Temporal Dimensions and Querying Scenarios

From a conceptual point of view, for every fact subject to late registrations,
at least two different temporal dimensions may be distinguished. The first one
refers to the time when events actually take place in the application domain, while
the second one refers to the time when they are perceived and recorded in the
data warehouse. In the literature on temporal databases, these two dimensions
correspond, respectively, to valid time and transaction time [2]. Note that, for
a fact that is not subject to late registrations, transaction time is implicitly
considered to coincide with valid time (the natural delay due to the refresh
interval in neglected).

While we take for granted that valid time must always be represented, since it
is a mandatory coordinate for characterizing the event, the need for representing
also transaction time depends on the nature of the expected workload. From
this point of view, three types of queries can be distinguished (the terminology
is inspired by [16]):

– Up-to-date queries, i.e., queries requiring the most recent value estimate for
each measure. An example of up-to-date query on the enrollment fact is
the one asking for the daily number of enrollments to a given degree made
during last week. In fact, this query is solved correctly by considering the
most up-to-date data available for the number of enrollments by enrollment
dates. Representing transaction time is not necessary to solve this kind of
queries, since they rely on valid time only.

– Rollback queries, i.e. queries requiring a past value estimate for each mea-
sure, as for instance the one asking for the current trend of the total number
of enrollments for each faculty as compared to last year. In order to get con-
sistent results, the comparison must be founded on registration dates rather
than enrollment dates. Thus, this kind of query requires that transaction
time is represented explicitly.

– Historical queries, i.e. queries requiring multiple value estimates for each
measure. An example of historical query is the one asking for the day-by-
day distribution of the enrollments registered overall for a given enrollment
date. Also these queries require transaction time to be represented explicitly.

6 Design Solutions

In presence of late registrations, two types of design solution can be envisaged
depending on the expected workload:

– Monotemporal schema, where only valid time is modeled as a dimension.
This is the simplest solution: during each refresh cycle, as up-to-date values
become available, a new set of events are recorded, which may imply updat-
ing events recorded at previous times. The time when the events are recorded
is not represented, and no trace is left of past values in case of updates, so
only up-to-date queries are supported.

140 S. Rizzi and M. Golfarelli

– Bitemporal schema, where both valid and transaction time are modeled as
dimensions. This is the most general solution, allowing for all three types
of queries to be correctly answered. On each refresh cycle, new events for
previous valid times may be added, and their registration time is traced; no
overwriting of existing events is carried out, thus no data is lost.

The monotemporal schema for the enrollment example is exactly the one already
shown in Section 3, where the only temporal dimension is EnrollDate. When
further enrollments for a past enrollment date are to be registered, the events
corresponding to that date are overwritten and the new values for measures
are reported. Note that this solution can be equivalently adopted for both a
transactional and a snapshot fact, and in neither case it supports accountability.

While the monotemporal schema deserves no additional comments, since it is
the one commonly implemented for facts that either are not subject to late reg-
istrations or only require to support up-to-date queries, the bitemporal schema
requires some further clarification. In fact, two specific solutions can be devised
for a bitemporal schema, namely delta solution and consolidated solution, where
the events used to represent updates have flow and stock semantics, respectively.
These solutions are described in the following subsections.

6.1 The Delta Solution

In the delta solution:

1. each update is represented by a flow event that records a “delta” for the
fact;

2. transaction time is modeled by adding to the fact a new temporal dimension,
typically with the same grain of the temporal dimension that models the
valid time, to represent when each event was recorded;

3. up-to-date queries are answered by aggregating events on all transaction
times;

4. rollback queries at a given time t are answered by aggregating events on the
transaction times before t;

5. historical queries are answered by slicing the events based on their transac-
tion times.

This solution can easily be applied to a transactional fact: in this case, all stored
events (those initially recorded and those representing further updates) have
flow semantics. In particular, flow measures uniformly preserve their additive
nature for all the events. Consider for instance the enrollment schema. If a delta
solution is adopted, the schema is enriched as follows:

FT ENROLL(EnrollDate, RegistrDate, Degree, AYear, City, Number)

where RegistrDate is the dimension added to model transaction time. Table 2
shows a possible set of events for a given city, degree, and year, including some
positive and negative updates. With reference to these sample data, in the fol-
lowing we report some simple examples of queries of the three types together
with their results, and show how they can be computed by aggregating events.

What Time Is It in the Data Warehouse? 141

Table 2. Enrollment events in the delta solution applied to a transactional fact (events
representing updates in italics)

EnrollDate RegistrDate Degree AYear City Number

Oct. 21, 2005 Oct. 27, 2005 Elec. Eng. 05/06 Rome 5

Oct. 21, 2005 Nov. 1, 2005 Elec. Eng. 05/06 Rome 8

Oct. 21, 2005 Nov. 5, 2005 Elec. Eng. 05/06 Rome −2

Oct. 22, 2005 Oct. 27, 2005 Elec. Eng. 05/06 Rome 2

Oct. 22, 2005 Nov. 5, 2005 Elec. Eng. 05/06 Rome 4

Oct. 23, 2005 Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

1. q1: daily number of enrollments to Electric Engineering for academic year
05/06. This up-to-date query is answered by summing up measure Number
for all registration dates related to the same enrollment dates, and returns
the following result:

EnrollDate Degree AYear City Number

Oct. 21, 2005 Elec. Eng. 05/06 Rome 11

Oct. 22, 2005 Elec. Eng. 05/06 Rome 6

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

2. q2: daily number of enrollments to Electric Engineering for academic year
05/06 as known on Nov. 2. This rollback query is answered by summing up
Number for all registration dates before Nov. 2:

EnrollDate Degree AYear City Number

Oct. 21, 2005 Elec. Eng. 05/06 Rome 13

Oct. 22, 2005 Elec. Eng. 05/06 Rome 2

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

3. q3: daily net number of registrations of enrollments to Electric Engineering
for academic year 05/06. This historical query is answered by summing up
Number for all enrollment dates:

RegistrDate Degree AYear City Number

Oct. 23, 2005 Elec. Eng. 05/06 Rome 3

Oct. 27, 2005 Elec. Eng. 05/06 Rome 7

Nov. 1, 2005 Elec. Eng. 05/06 Rome 8

Nov. 5, 2005 Elec. Eng. 05/06 Rome 2

In case of a snapshot fact where the domain events have stock semantics, the
delta solution is not necessarily the best one. See for instance Table 3, that with
reference to the inventory example seen in Section 3 shows a possible set of events
for a given week and product assuming that some data sent by local warehouses
are subject to corrections. In this case, up-to-date and rollback queries that
summarize the inventory level along valid time would have to be formulated
as nested queries relying on different aggregation operators. For instance, the
average monthly level for a warehouse is computed by first summing Level across
RegistrDate for each InvDate, then averaging the partial results.

142 S. Rizzi and M. Golfarelli

Table 3. Inventory events in the delta solution applied to a snapshot fact

InvDate RegistrDate Product Warehouse Level

Jan. 7, 2006 Jan. 8, 2006 LCD TV Milan 10

Jan. 7, 2006 Jan. 12, 2006 LCD TV Milan −1

Jan. 7, 2006 Jan. 12, 2006 LCD TV Rome 5

Jan. 7, 2006 Jan. 10, 2006 LCD TV Venice 15

Jan. 7, 2006 Jan. 14, 2006 LCD TV Venice 2

We close this section by considering the particular case of facts where registra-
tions may be delayed but events, once registered, are not further updated. In this
case accountability can be achieved, for both transactional and snapshot facts,
by adding a single temporal dimension RegistrDate that models the transaction
time. Up-to-date queries are solved without considering transaction times, while
rollback queries require to select only the events recorded before a given trans-
action time. Historical queries make no sense in this context, since each event
has only one logical “version”. As a matter of fact, the solution adopted can be
considered as a special case of delta solution where no update events are to be
registered.

6.2 The Consolidated Solution

In the consolidated solution:

1. each update is represented by a stock event that records the consolidated
version of the fact;

2. transaction time is modeled by adding to the fact two new temporal dimen-
sions, used as timestamps to mark the time interval during which each event
was current within the data warehouse (currency interval);

3. up-to-date queries are answered by slicing the events that are current today
(those whose currency interval is still open);

4. rollback queries at a given time t are answered by slicing the events that
were current at t (those whose currency interval includes t);

5. historical queries are answered by slicing the events based on their transac-
tion times.

In the inventory example, if a consolidated solution is adopted, the schema is
enriched as follows:

FT INVENTORY(InvDate, CurrencyStart, CurrencyEnd, Product, Warehouse, Level)

Table 4 shows the consolidated solution for the same set of events reported in
Table 3. An example of up-to-date query on these data is “find the total number
of LCDs available on Jan. 7”, which returns 31. On the other hand, a rollback
query is “find the total number of LCDs available on Jan. 7, as known on Jan.
10”, which returns 25. Finally, a historical query is “find the fluctuation on the
level of Jan. 7 for each warehouse”, which requires to progressively compute
the differences between subsequent events and returns −1, 0, and 2 for Milan,

What Time Is It in the Data Warehouse? 143

Table 4. Inventory events in the consolidated solution applied to a snapshot fact

InvDate CurrencyStart CurrencyEnd Product Warehouse Level

Jan. 7, 2006 Jan. 8, 2006 Jan. 11, 2006 LCD TV Milan 10

Jan. 7, 2006 Jan. 12, 2006 – LCD TV Milan 9

Jan. 7, 2006 Jan. 12, 2006 – LCD TV Rome 5

Jan. 7, 2006 Jan. 10, 2006 Jan. 13, 2006 LCD TV Venice 15

Jan. 7, 2006 Jan. 14, 2006 – LCD TV Venice 17

Table 5. Summary of the possible solutions (UQ and HQ stand for up-to-date and
historical queries, respectively)

transactional fact snapshot fact

flow domain events flow domain events stock domain events

monotemporal schema good but only supports
UQ

good if no updates, else
not recomm.

good but only supports
UQ

delta sol. – no upd. good good good

delta sol. – with upd. good not recomm. due to up-
date propagation fair due to nesting

consolidated solution good but overhead on
HQ

not recomm. due to up-
date propagation

good but overhead on
HQ

Rome, and Venice respectively. Thus, while up-to-date and rollback queries are
very simply answered, historical queries may ask for some computation.

Similarly, for a transactional fact, applying the consolidated solution is possi-
ble though answering historical queries may be computationally more expensive
than with a delta solution.

7 Conclusion

In this paper we have raised the problem of late registrations, meant as retro-
spective registrations of events in a data warehouse, and we have shown how
conventional design solutions, that only take valid time into account, may fail to
provide query accountability and consistency. Then, we have introduced some
alternative design solutions that overcome this problem by modeling transaction
time as an additional dimension of the fact, and we have discussed their appli-
cability depending on the semantics of events. Table 5 summarizes the results
obtained. Most noticeably, using a snapshot fact when domain events have flow
semantics is not recommendable in case of updates, since they should then be
propagated. Besides, for a transactional fact all solutions are fine, though the
delta one is preferable since it adds no overhead for historical queries. Conversely,
for a snapshot fact the consolidated solution is preferable since aggregation nest-
ing is not required.

The overhead induced by the proposed solutions on the query response time
and on the storage space obviously depends on the characteristics of the ap-
plication domain and on the actual workload. Frequent updates determine a

144 S. Rizzi and M. Golfarelli

significant increase in the fact table size, but this may be due to a wrong choice
of the designer, who promoted early recording of events that are not stable
enough to be significant for decision support. The increase in the query response
time may be contained by a proper use of materialized views and indexes: a ma-
terialized view aggregating events on all transaction times cuts down the time for
answering up-to-date queries in the delta solution, while an index on transaction
time enables efficient slicing of the events.

References

1. Kimball, R.: The data warehouse toolkit. Wiley Computer Publishing (1996)
2. Jensen, C., Clifford, J., Elmasri, R., Gadia, S.K., Hayes, P.J., Jajodia, S.: A con-

sensus glossary of temporal database concepts. ACM SIGMOD Record 23 (1994)
52–64

3. Devlin, B.: Managing time in the data warehouse. InfoDB 11 (1997) 7–12
4. Letz, C., Henn, E., Vossen, G.: Consistency in data warehouse dimensions. In:

Proc. IDEAS. (2002) 224–232
5. Yang, J.: Temporal data warehousing. PhD thesis, Stanford University (2001)
6. Bȩbel, B., Eder, J., Koncilia, C., Morzy, T., Wrembel, R.: Creation and manage-

ment of versions in multiversion data warehouse. In: Proc. SAC, Nicosia, Cyprus
(2004) 717–723

7. Blaschka, M., Sapia, C., Höfling, G.: On schema evolution in multidimensional
databases. In: Proc. DaWaK. (1999) 153–164

8. Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data
warehouses. In: Proc. CAiSE. (2002) 83–99

9. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data
warehouses: Enabling cross-version querying via schema augmentation. Data and
Knowledge Engineering (2006, To appear)

10. Quix, C.: Repository support for data warehouse evolution. In: Proc. DMDW.
(1999)

11. Pedersen, T.B., Jensen, C.: Research issues in clinical data warehousing. In: Proc.
SSDBM, Capri, Italy (1998) 43–52

12. Abelló, A., Mart́ın, C.: The data warehouse: an object-oriented temporal database.
In: Proc. JISBD 2003, Alicante, Spain (2003) 675–684

13. Abelló, A., Mart́ın, C.: A bitemporal storage structure for a corporate data ware-
house. In: Proc. ICEIS. (2003) 177–183

14. Bruckner, R., Tjoa, A.: Capturing delays and valid times in data warehouses -
towards timely consistent analyses. Journ. Intell. Inf. Syst. 19 (2002) 169–190

15. Lenz, H.J., Shoshani, A.: Summarizability in OLAP and statistical databases. In:
Proc. SSDBM. (1997) 132–143

16. Kim, J.S., Kim, M.H.: On effective data clustering in bitemporal databases. In:
Proc. TIME. (1997) 54–61

Computing Iceberg Quotient Cubes with
Bounding

Xiuzhen Zhang1, Pauline Lienhua Chou1, and Kotagiri Ramamohanarao2

1 School of CS & IT, RMIT University, Australia
{zhang, lchou}@cs.rmit.edu.au

2 Department of CSSE, The University of Melbourne, Australia
rao@csse.unimelb.edu.au

Abstract. In complex data warehouse applications, high dimensional
data cubes can become very big. The quotient cube is attractive in that
it not only summarizes the original cube but also it keeps the roll-up
and drill-down semantics between cube cells. In this paper we study the
problem of semantic summarization of iceberg cubes, which comprises
only cells that satisfy given aggregation constraints. We propose a novel
technique for identifying groups of cells based on bounding aggregates and
an efficient algorithm for computing iceberg quotient cubes for monotone
functions. Our experiments show that iceberg quotient cubes can reduce
data cube sizes and our iceberg quotient cubing algorithm can be over
10-fold more efficient than the current approach.

1 Introduction

Since the introduction of the Cube operator [3], interests on data cube re-
search has grown substantially. Several cube computation algorithms have been
proposed, including relational approaches PipeHash and PipeSort [1], Memo-
ryCube [7] and multiway array aggregation [13]. The number of cube cells grows
exponentially with the number of dimensions. Large data cubes are difficult for
storage and answering queries. Recent studies have focused on how to com-
pute compressed data cubes, including Condensed Cube [9], Dwarf [8], Quotient
Cube [5] and QC-Tree [6]. The quotient cube is especially attractive in that it
compresses the original cube as well as keeps the roll-up/drill-down semantic
among cells.

Iceberg cubes comprise cube cells whose aggregate value satisfies a given con-
straint. Many algorithms for iceberg cube computation have been proposed,
including BUC [2], H-Cubing [4] and Star-Cubing [11]. Since cells failing the
aggregation constraint are removed from the solution, there are “holes” in the
lattice structure for iceberg cubes (shown in Fig. 1). It is interesting to see, with
the presence of such “holes” of removed cells, whether semantic summarization
can compress the original iceberg cubes. It is also interesting to study if ice-
berg cubes can be efficiently summarized while keeping the semantics. A tricky
problem is how to incorporate effective pruning into summarization.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 145–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

146 X. Zhang, P.L. Chou, and K. Ramamohanarao

In this paper, we propose the concept of iceberg quotient cube and study
its efficient computation. An iceberg quotient cube comprises classes of cells
that satisfy a given constraint, and in each partition cells are of equal aggre-
gate values and are connected by the roll-up/drill-down relationship. Obviously
computing the iceberg cube first and then summarizing the resulting cells is
a time-consuming approach. It is more efficient the iceberg quotient cubes are
computed from base tables and pruning is applied with aggregation.

1.1 Main Ideas

We apply a novel technique bounding [12] for identifying lattices (of cells) of
equal aggregates while pruning unqualified lattices.

In Table 1(a) Month, Product, SalesMan and City are dimensions, and Sale
is the measure. Similarly Table 1(b) is a 4-dimensional dataset. A data cube of
4 dimensions comprises the 16 group-bys (including the empty group-by) from
any subset of the 4 dimensions. With an aggregate function, each group-by in a
data cube generates aggregations of the multi-set of measure values for partitions
of tuples with the equal dimension-values, which we call cells. For example in
Table 1(a) Min and Count are aggregate functions, and (Jan, Toy, John, Perth)
is a cell with aggregations of Min(Sale) = 200 and Count(∗) = 5.

A data cube is a lattice with top and bottom cells respectively. The lattice
on the left of Fig. 1 is the cube lattice for the toy dataset in Table 1(b). Cells
are related by the super-cell/sub-cell relationship. Following the convention of
BUC [2], a sub-cell (with more dimensions) are above its super-cells. The top
cell for the lattice is False (not shown in Fig. 1), the empty cell that does not
aggregate any tuples. The bottom cell is (*, *, *, *), aggregating all tuples (*
matches any value). The bounds for a lattice are computed from the most specific
cells (MSCs) in the lattice under consideration. The MSCs can be viewed as the
basic units for computing data cubes as all other cells can be computed from
the MSCs. Table 1(a) shows a 4-dimensional dataset with 6 MSCs. Min(Sale)
decreases monotonically with super-cells. The lower bound for the data cube is
the minimum of Min(Sale) for all MSCs, which is 100. The upper bound for
the cube is the maximum among all MSCs, which is 200. As will be seen later,
a data cube can be decomposed into a set of sub-cubes and the bounding from
MSCs applies to sub-cubes as well.

The 3 MSCs with “Month=March” form a sub-lattice, with (Mar, ∗, ∗, ∗) at
the bottom and False at the top. What is special about this lattice is that
its upper and lower bounds are both 100 (bounds are calculated as described
before). So the lattice represents a class of cells with Min(Sale) = 100. If the
aggregate value satisfies a given constraint, then it becomes a temporary class
in the solution; otherwise the class is pruned. For monotone aggregate functions,
such temporary classes are efficiently merged to produce the maximal partition
of an iceberg data cube.

Computing Iceberg Quotient Cubes with Bounding 147

Table 1. Two sample dimensional datasets

Month Product SalesMan City Min(Sale) Count(*)

Jan Toy John Perth 200 5
Mar TV Peter Perth 100 40
Mar TV John Perth 100 20
Mar TV John Sydney 100 10
Apr TV Peter Perth 100 8
Apr Toy Peter Sydney 100 5

(a) A sales dataset, partially aggregated

A B C D Sale

a1 b1 c1 d1 650
a1 b1 c2 d1 322
a1 b1 c2 d1 1087

(b) A toy dataset

1.2 Related Work

Our concept of iceberg quotient cube is motivated by the quotient cube [5].
We introduce semantic summarization into iceberg cubes. More importantly our
approach of bound-based pruning and computing of iceberg quotient classes is
different from the previous tuple-based approach [5]. A “jumping” method that
can identify an equivalence class of cells without examining all cells in the class
is essential for the efficiency of quotient cube computation. Based on BUC [2],
Lakshmanan et al. [5] proposed a jumping method that involves examining every
record in a partition of the underlying dataset. In contrast, our bound-based
jumping method identifies an equivalence class of cells by examining MSCs;
such an approach can improve the efficiency of quotient cube computation.

The QC-Tree is a data structure for storing quotient cubes. It is orthogonal
to and can complement our work on iceberg quotient cubes.

The Dwarf Cube [8] and Iceberg Dwarf Cube [10] compresses the cube cells
by exploiting shared prefixes and suffixes. The Condensed Cube [9] compresses a
data cube by condensing the cells aggregated from the same set of base relation
tuples into one cell. Nevertheless the focus of all these work are on compression
and the semantics of data cubes are lost in the process.

Bound-prune cubing was proposed in our previous work to compute iceberg
cubes [12]. In this work we apply bounding to summarization of data cubes.

2 Iceberg Quotient Cubes

The important roll-up and drill-down semantics on a data cube is the super-
cell/sub-cell relationship among cells. Lakshmanan et al. [5] proposed the basic
definitions for quotient cubes that preserve such semantics. Generally a data
cube is partitioned into convex classes of cells with equal aggregates and cells in
a class have the super-cell/sub-cell relationship.

Definition 1 Convex connected equivalence class. All cells in a connected
equivalence class are related by the super-cell(sub-cell) relationship and have equal
aggregate values. In a convex class P , if a cell g and a sub-cell g′ are in P , then
cells that are sub-cells of g and super-cells of g′ are also in P .

148 X. Zhang, P.L. Chou, and K. Ramamohanarao

IIIII

I

False

b1d1a1d1 b1c1a1b1 c1d1 a1c2 b1c2a1c1

c2a1 b1

c2d1

d1

ALL

a1b1c2d1

c1

a1b1d1 a1b1c1 a1c1d1

a1b1c1d1

a1b1c2 a1c2d1 b1c2d1b1c1d1

Class I

COUNT(*) = 3

COUNT(*) = 1
Class II

COUNT(*) = 2
Class III

Fig. 1. The quotient cube of the function Count(∗) for the dataset in Table 1(b)

Definition 2 Quotient Cube Lattice. A quotient cube lattice consists of con-
vex connected equivalence classes of cells. Classes in the quotient lattice are con-
nected by the super-class/sub-class relationship: a class C is super-class (sub-
class) of another class D if there exist cells c ∈ C and d ∈ D such that c is a
super-cell (sub-cell) of d. Each equivalence class is denoted as [B, T], where B
and T are the set of cells at the bottom and top of the class respectively.

Example 1. Consider the 4-dimensional dataset in Table 1(b). The original
cube-lattice for Count(∗) has 24 cells, shown in Fig. 1. Cells can be summarized
into 3 classes, which are represented by the bottom and top cells. Class I is
[{(ALL)}, {(a1, b1, d1)}]. [{(c1)}, {(a1, b1, c1, d1)}] and [{(c2)}, {(a1, b1, c2,
d1)}] are Class II and Class III respectively. Class II is a sub-class of class I.
all cells in class II are sub-cells of some cells in Class I but not super-cells.

Definition 3 Optimal Quotient Cube Lattice. A quotient cube is optimal
if all of its classes are maximal. A class is maximal if it contains the largest set
of cells with equal aggregate values while satisfying connectivity and convexity.

The aggregate value of a monotone aggregate function increases or decreases
monotonically with respect to the super-cell relationship. For example, Count(∗)
values increase with super-cells, whereas Min values decrease with super-cells.
For monotone functions, there is a unique optimal quotient cube partition that
coincides with the partition induced by connected equivalence partitions. In
other words, if all connected cells with equal aggregate values are clustered in
one class, the result is the optimal quotient cube. For non-monotone functions,
a connected equivalence class is not necessarily convex, therefore, the optimal
quotient cube cannot be induced solely from connected equivalence partitions.

Having all the basic definitions from [5], we are now ready to introduce our
new definitions. The observation below emphasizes the following fact: For a given
constraint, given that all cells in a class have the same aggregate value, a class
is either pruned entirely or remains as a class, in other words, it is never split as
the result of pruning by the aggregation constraint.

Computing Iceberg Quotient Cubes with Bounding 149

Observation 1. Given a constraint, all cells failing the constraint form classes
in the quotient cube. An iceberg cube consists of cells in the classes of the quo-
tient cube whose aggregate values pass the constraint. The roll-up and drill-down
semantics among the qualified classes are preserved.

Definition 4 Iceberg Quotient Cube. Let cells satisfying a given constraint
be called iceberg cells. All iceberg cells are partitioned into convex and connected
equivalence classes. The classes form an iceberg quotient cube.

Example 2. Continuing with Example 1, consider the constraint “Count(∗) ≥
2”. Class I and III in Fig. 1 remain while the entire Class II is pruned, as is
denoted by the cross in Fig. 1. The semantics between Class I and III is kept.

The crucial question to answer now is how to identify the equivalence classes of
cells while effectively prune unpromising cells to achieve efficient iceberg quotient
cubing. Our novel Bounding technique can solve both questions.

3 Computing Iceberg Quotient Cubes with Bounding

The naive approach of computing an iceberg cube first and then summarizing it
into a quotient is obviously not an efficient approach. A more efficient approach
of computing iceberg quotients is to compute iceberg quotients directly from in-
put datasets, where aggregation, pruning with constraints and summarization is
performed at the same time. Bounding can efficiently identify equivalence classes
in a cube lattice with little extra cost. For monotone aggregate functions, the
classes can then be easily merged to produce a set of maximal equivalence classes.
We also present an efficient iceberg quotient cubing algorithm that incorporate
all these ideas.

3.1 Bounding Aggregate Functions

Given a data cube on measure X and an aggregate function F , the tightest upper
bound and lower bound are respectively reached by the largest and smallest
aggregate values that can be produced by any set of MSCs of the data cube.
However exhaustively checking the power set of MSCs is not computationally
feasible. An aggregate function F is boundable [12] for a data cube if some upper
and lower bounds of F can be determined by an algorithm with a single scan of
some auxiliary aggregate values of MSCs of the data cube. We use an example
to explain the main ideas of bounding. Details are described in [12].

Example 3. Given measure X, Count(X) = Sum({Count(Xi) | i = 1..n}),
where X1, ..., Xn are MSCs. The number of tuples in a cell of a data cube
is no larger than the total number of tuples of all MSCs. Suppose g is a cube
cell, Count(g) ≤ Sum({Count(Xi) | i = 1..n}). So Sum({Count(Xi) | i = 1..n})
is an upper for Count(X) of the data cube. On the other hand, to compute the
lower bound, we also have Count(g) ≥ Min({Count(Xi) | i = 1..n}). As a result,
the lower bound is Min({Count(Xi) | i = 1..n}). Both bounds can be obtained by
one scan of MSCs and Count is boundable.

150 X. Zhang, P.L. Chou, and K. Ramamohanarao

Table 2. The bounds of SQL aggregate functions

F upper bound ; lower bound

Count Sum
i

Count(Xi); Min
i

Count(Xi)

Max Max
i

Max(Xi); Min
i

Max(Xi)

Min Max
i

Min(Xi); Min
i

Min(Xi)

Sum
Sum

Sum(Xi)>0
Sum(Xi) if (a)

Max
i

Sum(Xi) otherwise
;

Sum
Sum(Xi)<0

Sum(Xi) if (b)

Min
i

Sum(Xi) otherwise

Average Max
i

Avg(Xi); Min
i

Avg(Xi)

Given a dataset, X is the measure and X1, ..., Xn are the MSCs.
(a): there is i such that Sum(Xi) > 0. (b): there is i such that Sum(Xi) < 0.

All SQL aggregate functions Count, Min, Max, Sum and Average are bound-
able, and their bounding algorithms are listed in Table 2. Note that Count,
Max, Min, and Sum on non-negative (non-positive) measure values are mono-
tone functions whereas Sum on arbitrary values and Average are non-monotone
functions.

3.2 Identifying Equivalence Classes with Bounding

Observe that lattices are connected and convex. Bounding can be used to detect
if a cell-lattice is an equivalence class as stated in the following proposition.

Proposition 1. Given a lattice, all cells in the lattice have equal aggregate val-
ues if the upper and lower bounds of the lattice are equal.

Proof. Proof of the proposition follows directly from that the aggregate values
of cells in a lattice are bounded by the lower and upper bounds.

A data cube lattice can be partitioned into a set of sub-lattices each of which has
equal aggregates. For all monotone functions, such a partition is easily achieved
with single depth-first traversal of the G-tree (Section 3.3). If the bounds of a
sub-lattice are equal and pass the constraint, it can be identified as one single
class. The cells in the lattice do not need to be computed.

Although the temporary equivalence classes on a lattice is maximal with re-
spect to a sub-lattice, to obtain the global maximal equivalence classes the tem-
porary equivalence classes should be merged. Following Theorem 2 of [5], the
following remark for monotone functions allows the merging process to produce
maximal connected and convex equivalence classes based on the connectivity of
classes and equality of their aggregate values.

Remark 1. For monotone functions, the unique optimal iceberg quotient cube is
the partition induced by the connected equivalence classes.

Computing Iceberg Quotient Cubes with Bounding 151

Sydney
(5, 100)

March
(70, 300)

TV
(70, 300)

Peter
(40, 100)

January
(5, 200)

April
(13, 200)

Toy
(5, 200)

Toy
(5, 100)

John
(30, 200)

Perth
(40, 100)

John
(5, 200)

Perth
(20, 100)

Sydney
(10, 100)

Perth
(5, 200)

Peter
(8, 100)

Perth
(8, 100)

root
(88, 700)

Peter
(5, 100)

TV
(8, 100)

Fig. 2. The first G-tree Table 1(a) cube

-C -C -B

-C -B -A

ABCD:(ABCD, ABC, AB, A, All)1

BCD:(BCD, BC, B)2 ACD:(ACD, AC)/A6 ABD:(ABD)/AB8

CD:(CD,C)3

 D:(D)4

BD:(BD)/B5 AD:(AD)/A7

-C

Fig. 3. The G-trees for Cube(ABCD)

The following observation states how merging is achieved. The main idea is
to derive more general and specific cells respectively from the bottom and top
cells of lattices to be merged.

Observation 2. For monotone functions, if two convex equivalence classes C1
and C2 are connected, the two classes can be merged into a coarser class C as
follows: The bottom cells of C are the minimal set for the bottom cells of C1 and
C2 with respect to the sub-cell relationship. The top cells of C are the maximal
set for the top cells of C1 and C2 with respect to the sub-cell relationship.

From Observation 2, to compute an iceberg quotient cube for a monotone func-
tion, two classes of equal aggregate values are merged as long as they have the
super-cell/sub-cell relationship.

Example 4. For simplicity * is omitted in cell notations. Consider merging
C1 = [{(a1, b1, c1)}, {(a1, b1, c1, d1)}]

and
C2 = [{(b1, c1), (b1, d1)}, {(a1, b1, c1), (a1, b1, d1)}].

The resulting class C is 〈{(b1, c1), (b1, d1)}, {(a1, b1, c1, d1)}〉. Among the bot-
tom cells of C1 and C2, {(a1, b1, c1), (b1, c1), (b1, d1)}, (b1, c1) is a super-cell of
(a1, b1, c1). So the minimal set is {(b1, c1), (b1, d1)} and becomes the bottom cells
of C. The top cells of C are similarly derived.

3.3 The G-Tree

The data structure for computing quotient cubes is the G-tree [12]. We use
the first G-tree for cubing the dataset in Table 1(a) as an example to ex-
plain, which is shown in Fig. 2. In each node are the aggregates Sum(Sale)
and Count(∗). The aggregates in each node are for the cell with dimension-
values on the path from the root to the node. For the leftmost path from the
root of the G-tree, in the node (Peter) there are 40 tuples with Sum(Sale) =
100 in the (March, TV, Peter, ∗) partition. The leaf nodes give the MSCs for
Cube (Month, Product, SalesMan, City).

To compute cells not represented on the first G-tree, sub-G-trees 3 are re-
cursively constructed by collapsing dimensions. Fig. 3 shows the G-trees for
3 Note that a sub-G-tree is not part of the original G-tree, but obtained from the

original G-tree by collapsing a dimension.

152 X. Zhang, P.L. Chou, and K. Ramamohanarao

Input: a) An N -dimensional dataset D with measure m.
b) Aggregation constraint C(F), where the aggregate function F is monotone.

Output: the Iceberg quotient cube Q, assumed global.
(1) Build the G-tree T from D for F .
(2) Q = φ;
(3) BIQC(T , F , C);

Procedure BIQC (T , F , C)
(1) Let g be a conditional cell on T and Lg denote g’s lattice of cells
(2) Compute the bounds [B1, B2] for Lg;
(3) if (both B1, B2 violate C)
(4) Skip the processing of Lg;
(5) else if (B1 == B2)
(6) Merge the class from Lg to Q; //skip the processing of Lg, Section 3.2.
(7) else
(8) SL ← sub-lattices with equal bounds by depth-first traversal;// Section 3.1.
(9) Merge classes in SL to Q;
(10) for each dropping dimension D on T do
(11) Ts ← the sub G-tree from collapsing D from T ; //pruning, Section 3.4
(12) BIQC(Ts, F , C);

Fig. 4. The Bound Iceberg Quotient Cubing Algorithm

Cube(ABCD). Each node represents a G-tree. For the ABCD-tree at the top, the
corresponding group-bys are (A,B,C,D), (A,B,C), (A,B), (A) and (). The sub-
G-trees of the ABCD-tree, which are the (−A)BCD, A(−B)CD, and AB(−C)D trees,
are formed by collapsing on dimensions A, B, and C respectively. The dimen-
sions after “/” in each node denote common prefix dimensions for the tree at the
node and all its sub-trees. In the sub-G-tree construction process, we compute
the bounds based on prefix dimensions and use them for pruning [12].

3.4 The Bound Iceberg Quotient Cubing Algorithm

Our bound iceberg quotient cubing (BIQC) algorithm is shown in Fig. 4. Line 1 of
the algorithm denotes the following process of identifying temporary equivalence
lattices: Following the depth-first traversal of T , at the node of a prefix cell g,
a class C is formed and g is both the top and bottom cell of the class. If a
descendent node gd of g has equal aggregate value to that of g, then gd is added
as a top cell for G. Any sub-cell of gd as a top cell is replaced by gd. For any
descendent cell gd′ , if the aggregate value is different from that of C, a new class
C

′
with gd′ as the bottom cell is created. On returning from the recursion to the

bottom-cell of a class, the class is completed.
Merging classes is at lines 6 and 9. When a lattice under consideration is not an

equivalence class, it is partitioned into equivalence classes(Section 3.2). Pruning
is applied at line 4 and line 11 on lattices whose bounds fail the constraints.
Especially at line 11, all cells yet to be computed from the branches already
included in an equivalence class or failing the constraint are pruned.

Computing Iceberg Quotient Cubes with Bounding 153

4 Experiments

We did experiments to study the compression effectiveness of iceberg quotient
cubes and the efficiency of BIQC for the constraint “Count(∗) ≥ α”. We com-
pare BIQC with BUC, the underlying iceberg cubing algorithm in [5]. To accu-
rately compare computation cost, timing does not include the time for writing
output.

Three datasets are used in our experiments. The US Census dataset 4 is dense
and skewed: 88,443 tuples, 12 dimensions, and a cardinality range of 7–48. The
TPC-R5 dataset is relatively dense and random: 1000,000 tuples, 10 dimensions,
and a cardinality range of 3–25. The Weather dataset 6 is extremely sparse:
100,000 tuples, 9 dimensions, and a cardinality range of 2–6505.

4.1 Compression Effectiveness of Iceberg Quotient Cubes

The compression ratio is the number of classes in a iceberg quotient as the pro-
portion of number of cells in the original iceberg cube. A quotient cube with
lower compression ratio is more effective in compressing the original data cube.
With the constraint “support(*) ≥ α” (support is the relative Count in percent-
age), the compression ratio for the three datasets remains almost constant for
α = 10%..80%. On the sparse weather dataset, the compression ratio is around
80%. In contrast on the dense and skewed census dataset it is around 20%. This
low ratio is in contrast to that of 70% on the random TPC-R dataset, It can be
seen that iceberg quotient cube can more effectively reduce iceberg cube size on
dense and skewed data.

4.2 Efficiency of Bound Iceberg Quotient Cubing

Fig. 5 shows the runtime of BIQC on computing the iceberg quotient cube with
constraint “Count(*) ≥ α” in comparison to BUC on computing the original
iceberg cube. BIQC is over 10-fold more efficient than BUC on Census and

177 377 577 777 977 1177 1377
Count Threshold

0

20

40

60

R
un

 T
im

e
(s

ec
)

BUC

BIQC

(a) Census

200 300 400 500 600 700
Count Threshold

0

20

40

60

80

R
un

 T
im

e(
se

c) BUC

BIQC

(b) TPC-R

30 40 50 60 70 80
Count Threshold

0

2

4

6

R
un

 T
im

e
(s

ec
)

BUC

BIQC

(c) Weather

Fig. 5. Runtime comparison: BIQC vs. BUC with “Count(*) ≥ α”

4 ftp://ftp.ipums.org/ipums/data/ip19001.Z.
5 http://www.tpc.org/tpcr/.
6 http://cdiac.ornl.gov/ftp/ndp026b/SEP85L.DAT.Z.

154 X. Zhang, P.L. Chou, and K. Ramamohanarao

TPC-R for all Count thresholds. It is slower than BUC on the extremely sparse
Weather data. The likely reason can be that on sparse data there are much more
temporary equivalence classes while their sizes are smaller, which increase the
cost for merging. BIQC scales relatively well with lower Count thresholds.

5 Conclusions

We have proposed the iceberg quotient cube for semantic summarization of ice-
berg cubes. We apply a novel technique bounding for efficient computation. Our
experiments demonstrated that iceberg quotient cubes are effective for com-
pressing iceberg cubes and our algorithm is significantly more efficient than the
existing approach. Our future work will focus on the open problem of computing
iceberg quotient cubes for complex aggregate functions [5].

References

1. S. Agarwal et. al. On the computation of multidimensional aggregates. In Proc.
VLDB, 1996.

2. K Beyer and R Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In Proc. SIGMOD, 1999.

3. J Gray et al. Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1), 1997.

4. J Han et al. Efficient computation of iceberg cubes with complex measures. In
Proc. SIGMOD, 2001.

5. L. Lakshmanan et al. Quotient cube: How to summarize the semantics of a data
cube. In Proc. VLDB, 2002.

6. L. Lakshmanan et al. QC-trees: An efficient summary structure for semantic OLAP.
In Proc. SIGMOD, 2003.

7. K. A. Ross and D. Srivastava. Fast computation of sparse data cubes. In Proc.
SIGMOD, 1997.

8. Y. Sismanis et. al. Dwarf: Shrinking the petacube. In Proc. SIGMOD, 2002.
9. W. Wang et al. Condensed cube: An effective approach to reducing data cube size.

In Proc. ICDE, 2002.
10. L. Xiang and Y. Feng. Fast computation of iceberg dwarf. In Proc. SSDBM, 2004.
11. D. Xin et al. Star-cubing: computing iceberg cubes by top-down and bottom-up

integration. In Proc. VLDB, 2003.
12. X. Zhang, L. Chou and G. Dong. Efficient computation of iceberg cubes by bound-

ing aggregate functions. IEEE TKDE, 2006. In submission.
13. Y. Zhao et al. An array-based algorithm for simultaneous multidimensional aggre-

gates. In Proc SIGMOD, 1997.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 155 – 164, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Effective Algorithm to Extract Dense Sub-cubes from
a Large Sparse Cube∗

Seok-Lyong Lee

School of Industrial and Information Engineering,
Hankuk University of Foreign Studies,

89 Wangsan-ri, Mohyun-myon, Yongin-shi, Kyungki-do 449-701, Korea
sllee@hufs.ac.kr

Abstract. A data cube provides aggregate information to support a class of
queries such as a range-sum query. To process those queries efficiently, some
auxiliary information, i.e. prefix sums, is pre-computed and maintained. In
reality however most of high dimensional data cubes are very sparse, causing a
serious space overhead. In this paper, we investigate an algorithm that extracts
dense sub-cubes from a large sparse cube based on the density function. Instead
of maintaining a large prefix-sum cube, a few dense sub-cubes are maintained
to reduce the space overhead and to restrict the update propagation. We present
an iterative method that identifies dense intervals in each dimension and
constructs sub-cubes based on the intervals found. We show the effectiveness of
our method through the analytic comparison and experiment with respect to
various data sets and dimensions.

Keywords: Cube, Sub-cube, Data warehousing, Clustering.

1 Introduction

A range sum query over a data cube is popular in finding trends and relationships
between attributes. It sums values of selected cells in a specified query range. A direct
method to access the data cube causes a lot of cells to be accessed, incurring a severe
processing overhead. To overcome this, the prefix sum approach [7] has been
proposed. The main idea of this approach is to pre-compute prefix-sums of the cube.
Any range-sum query can be answered by accessing 2d appropriate prefix-sums,
where d is the number of dimensions. Even though this method shows a considerable
efficiency, it suffers from the update cost. In a current enterprise environment data
elements of a cube are dynamically changed, which causes the update propagation to
be an important issue. Another problem is the space overhead when a data cube is
sparse. As the dimensionality becomes higher, the space to accommodate cells
increases exponentially. In general the number of nonzero cells of the data cube is
very small compared to the total number of cells. For example, consider real-world
data from the U.S. Census Bureau using their Data Extraction System [1]. Only 11
attributes are chosen out of 372 attributes as follows: A measure attribute is income,

∗ This work was supported by Hankuk University of Foreign Studies Research Fund of 2006.

156 S.-L. Lee

and functional attributes are age, marital_status, sex, education, race, origin,
family_type, detailed_household_summary, age_group, and class_of_worker.
Although the cube is ten-dimensional, it contains more than 16 million cells with only
15,985 nonzero elements [9]. Consequently the density of the cube is about 0.001. In
reality many data warehouses contain multiple small regions of a clustered dense
region, with points sparsely scattered over the rest of the space [4].

Various approaches to minimize the update propagation have been proposed since
[7]. Geffner et el. [6] proposed the relative prefix sum (RPC) approach that tried to
balance the query-update tradeoff between the direct method and the prefix sum
approach. This approach is however impractical for high dimensionality and capacity
since the update cost increases exponentially. Chan and Ioannidis [3] proposed a new
class of cube representations called the hierarchical cubes. However, the index
mapping from a high-level abstract to a low-level concrete cube is too complicate for
implementation, and the analytical results of their method are not verified
experimentally. Geffner et el. [5] proposed the dynamic data cube which was
designed by decomposing the prefix sum cube recursively. But if the data cube is of
high dimensions and high capacity, it is difficult to apply their approach since the tree
becomes too large. These approaches based on RPC have the limitation in the context
that the RPC is a slight transformation of the prefix-sum cube.

Chun et al. [2] proposed an index structure called the Δ-tree to reduce the update
cost. However, the update speed-up of it is accomplished by the sacrifice of the retrieval
efficiency. In many on-line analytic processing (OLAP) applications, it becomes an
important issue to improve the update performance while minimizing the sacrifice of the
retrieval efficiency. Furthermore, the methods mentioned above do not address much on
the problem of the space reduction in a large data cube. More recently, Sismanis et al.
[8] proposed Dwarf, a highly compressed structure which solves the storage space
problem by identifying prefix and suffix redundancies in the structure of a cube and
factoring them out of the store. It accomplishes the space reduction by eliminating these
redundancies, not focusing on producing sub-cubes from a sparse cube. In this paper,
we propose an effective algorithm that finds dense sub-cubes from a large sparse data
cube to drastically reduce the space overhead. Those sub-cubes can be used to respond
the range-sum query with minimizing the update propagation. Changing the value of a
certain cell affects only a sub-cube in which the cell is contained, forcing the update
propagation to be limited within the sub-cube.

Suppose a set of dimensions is D = {Di | i = 1, 2, …, d}, and the size of each
dimension is represented by |Di|, where the dimension Di corresponds to a functional
attribute. Then, a d-dimensional data cube is represented by C[0:|D1|−1]..[0:|Dd|−1] of
size |D1| × |D2| × ⋅⋅⋅ × |Dd|. Each cell of C contains measure attributes and is denoted
by cl[j1][j2]..[jd] where 0 ≤ ji ≤ |Di|−1. The cube C may contain multiple sub-cubes,
each of which is represented by SC[l1:h1]..[ld:hd] where 0 ≤ li ≤ hi ≤ |Di|−1. Then, the
problem of finding sub-cubes is: Given a d-dimensional data cube
C[0:|D1|−1]..[0:|Dd|−1], the minimum number of cells in a sub-cube (minCells), the
density threshold for a histogram-bin (τ), and the density threshold for a sub-cube (δ),
we are to find a set of dense sub-cubes SC’s that satisfy the given condition. An input
parameter minCells is needed to determine outliers, and two density thresholds, τ and
δ, are used as conditional parameters to find dense sub-cubes.

 An Effective Algorithm to Extract Dense Sub-cubes from a Large Sparse Cube 157

2 Finding Dense Sub-cubes

We discuss our proposed method for finding dense sub-cubes from a given sparse
data cube. The overall process of it is shown in Fig. 1. Phase 1 produces candidate
sub-cubes from a given data cube. Dense intervals in each dimension are identified
and an initial set of sub-cubes is formed by those dense intervals. For each sub-cube
built, dense intervals within the sub-cube are identified again and sub-cubes of the
identified sub-cube are built based on newly identified intervals. This procedure is
applied repeatedly until a termination criterion is satisfied. In Phase 2, the sub-cubes
produced in Phase 1 are refined with respect to the given density threshold. The sub-
cubes that are closely placed are merged together in the enlarging step, while sparse
surfaces of candidate sub-cubes are pruned in the shrinking step.

Finding dense intervals

Building sub-cubes

Evaluating sub-cubes

Enlarging cube

Shrinking cube

Phase 1: Candidate sub-cube extraction Phase 2:Sub-cube refinement

Data
cube

Candidate
sub-cubes

Final
sub-cubes

Fig. 1. The overall sketch for finding dense sub-cubes

2.1 Candidate Sub-cube Extraction

Consider a 2-dimensional 16×16 data cube C with 33 non-empty cells in Fig.2, in
which non-empty cells are marked. To find dense intervals from each dimension, we
use the histogram flattening technique. A one-dimensional array is maintained for
each dimension whose size is |Di|. Each bin of the array holds the cardinality of non-
empty cells. A bin is regarded as ‘dense’ if it has more non-empty cells than the
threshold. In Fig. 2, an array for D1 has 16 bins and each bin contains the cardinality,
say, 0 for the first bin, 1 for the second bin, 3 for the third bin, and so forth. These
bins constitute a histogram. Let the i-th bin of a dimension have the value vi. vi is
generated by the projection of the corresponding cells along with this dimension,
representing the number of non-empty cells with respect to the bin. Now, let us
compute a representative value of the bin using the histogram-flattening technique.
We do not take vi as the representative value of the bin i. Instead, we consider its
neighboring bins as follows. Let f be the flattening factor and the representative value
f bin i be vi′. When f = 0, no flattening occurs. When f = 1, two neighbors of left and
right sides, are involved in computing vi′ = (vi-1 + vi + vi+1) / 3. Similarly, when f = 2,
four neighbors are involved. Thus, we get vi′ = (vi-2 + vi-1 + vi + vi+1+ vi+2) / 5.
Considering the boundaries of the histogram, the representative value of the i-th bin is
computed by Lemma 2.1.

158 S.-L. Lee

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

d1

d2

Fig. 2. A cube for a 2-dimensional 16×16 cube C with 33 non-empty cells

Lemma 2.1 (Representative value of the i-th bin): For the histogram H that covers
the interval [l:h], the representative value vi′ of the i-th bin is computed as follows:

≥−⋅
+−

≤≤+−≥−⋅
++−

−≤≤+≥−⋅
+

−+≤≤≥−⋅
+−+

=

=

−=

+

−=

+

=

. when ,
1

1

,1, when,
1

1

,, when ,
12

1

,1,n whe,
1

1

'

flhv
lh

hifhflhv
hif

fhiflflhv
f

flilflhv
lif

v

h

lt
t

h

fit
t

fi

fit
t

fi

lt
t

i

The value vi′ of the first and the last f bins, respectively, should be treated
differently since the number of bins involved in computing vi′ is less than 2f+1. For
instance when f=2, the v1′ for the first bin is computed as v1′ = (v1 + v2 + v3) / 3, and
the v2′ for the second bin is computed as v2′ = (v1 + v2 + v3 + v4) / 4. After we get the
flattened values for all bins, each value is evaluated with respect to the threshold τ, to
determine whether the bin is dense or not. The histogram for the dimension 1 is
computed as shown in Table 1 when f = 0, 1, and 2. We get dense intervals [1:5] and
[8:14] for f = 0 and τ = 1, [1:5] and [8:13] for f = 1 and τ = 1, a single dense interval
[1:14] for f = 2 and τ = 1, [1:4] and [9:13] for f = 2 and τ = 2.

Table 1. Histogram for the dimension 1 when f = 0, 1, and 2

 bin
f

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f = 0 0 1 3 4 3 2 0 0 2 3 4 5 4 1 1 0

f = 1 0.50 1.33 2.67 3.33 3.00 1.67 0.67 0.67 1.67 3.00 4.00 4.33 3.33 2.00 0.67 0.50

f = 2 1.33 2.00 2.20 2.60 2.40 1.80 1.40 1.40 1.80 2.80 3.60 3.40 3.00 2.20 1.50 0.67

 An Effective Algorithm to Extract Dense Sub-cubes from a Large Sparse Cube 159

Once we identify dense intervals in each dimension, we build sub-cubes based on
the intervals. When f = 0 and τ = 1, we get two dense intervals, [1:5] and [8:14] for
D1, and one interval [1:13] for D2. Using these intervals, we are able to build two
initial sub-cubes, SC[1:5][1:13] and SC[8:14][1:13]. However, these sub-cubes still
include sparse regions inside them. Thus, we apply again the process to find dense
intervals with respect to each dimension within each sub-cube. For a sub-cube
SC[1:5] [1:13], we get one dense interval [1:5] for D1 and two dense intervals, [3:3]
and [5:10] for D2, producing two sub-cubes, SC[1:5][3] and SC[1:5][5:10]. Similarly,
for a sub-cube SC[8:14][1:13], we get one dense interval [8:14] for D1 and three
intervals, [1:4], [6:6], and [9:13] for D2, producing three sub-cubes, SC[8:14][1:4],
SC[8:14][6], and SC[8:14][9:13]. This process is iterative. We therefore need to
determine a termination condition to stop the process. A cube is said to be continuous
if and only if all edges of the cube are composed of dense intervals.

The iterative process terminates if an identified sub-cube is continuous. From a
sub-cube SC[1:5][3], we get the sub-cube SC[2:3][3] by finding dense intervals in
each dimension. Since this sub-cube is continuous, we stop repeating the process for
this sub-cube. Similarly, we get the sub-cube SC[1:5][5:10] that is continuous. We get
SC[9:14][1:4] from SC[8:14][1:4], SC[8][6] from SC[8:14][6], and SC[8:12][9:13]
from SC[8:14][9:13], respectively. The algorithms in Fig. 3 and 4 describe the
procedures to find candidate dense sub-cubes.

Procedure_Create_SubCubes
Given: C[l1:h1]..[ld:hd] (a given original cube)
Find: SetSC (a set of d-dimensional sub-cubes - Ak[l1,k:h1,k]..[ld,k:hd,k])
/* Create d arrays from C[l1:h1]..[ld:hd] by projection*/

SetArr ← a set of d one-dimensional arrays for C[l1:h1]..[ld:hd]
/* Identify dense intervals from SetArr */

for each one-dimensional array ai[li:hi]
 SetSIi ← a set of dense intervals for ai

end for
/* Create SetSC */

Generate |SetSI1|×|SetSI2|×⋅⋅⋅×|SetSId| sub-cubes
from dense intervals in each dimension

SetSC ← sub-cubes created
/* Return a result SetSC */

return SetSC

Fig. 3. Algorithm Procedure_Create_SubCubes

Procedure_Build_Dense_SubCubes
Given: C[0:|D1|−1]..[0:|Dd|−1] (a d-dimensional cube)
Find: SetDSC (a set of d-dimensional dense sub-cubes)
/* Create sub-cubes and push them into a stack STK */

STK ← Procedure_Create_SubCubes(C)
/* Identifying dense sub-cubes */

do while (STK is not empty)
 c ← pop(STK) /* c is a cube extracted from STK. */

if (c is continuous) then

160 S.-L. Lee

SetDSC ← SetDSC ∪ { c }
else

STK ← Procedure_Create_SubCubes(c)
end if

end while
/* Return a result SetDSC */

return SetDSC

Fig. 4. Algorithm Procedure_Build_Dense_SubCubes

2.2 Sub-cube Refinement

The candidate sub-cubes identified by the iterative process in the previous section are
refined based on the density of a sub-cube. We start the discussion with defining the
density of a cube.

Definition 2.2 (Density of a cube): Let the number of cells in a cube C be
numCells(C) and the number of dense cells in C be numDenseCells(C). Then, the
density of the cube C, density(C), is defined as follows:

)(

)(
)(

CnumCells

CllsnumDenseCe
Cdensity =

Enlarging sub-cubes. Two closely located sub-cubes are merged in this step if the
merging satisfies a pre-specified condition. We call this step as an ‘enlarging’ step
since merging two cubes produces one larger cube. We first define a merging operator
between two sub-cubes as follows:

Definition 2.3 (Merging operator ⊕): Consider two d-dimensional cubes,
A[l1,A:h1,A]..[ld,A:hd,A] and B[l1,B:h1,B]..[ld,B:hd,B] to be merged. The merging operator ⊕
is defined as A ⊕ B = C[l1,C:h1,C]..[ld,C:hd,C] such that li,C = min(li,A, li,B) and hi,C =
max(hi,A, hi,B) for i = 1, 2, …, d.

Let a d-dimensional cube B[l1,B:h1,B]..[ld,B:hd,B] is to be merged to a cube
A[l1,A:h1,A]..[ld,A:hd,A]. The number of cells increased by the merging is computed as
numCells(A ⊕ B) − numCells(A), and the number of dense cells increased by merging
two cubes is numDenseCells(A ⊕ B) − numDenseCells(A). Thus, the density of the
increased portion, density(ΔA,B), of the merged cube is as follows:

)()(
)()(

)(, AnumCellsBAnumCells

AllsnumDenseCeBAllsnumDenseCe
density BA −⊕

−⊕=Δ

In the previous example, consider that a sub-cube SC[2:3][3] is merged to a sub-

cube SC[1:5][5:10]. The merging operation, SC[2:3][3] ⊕ SC[1:5][5:10], produces a
merged cube SC[1:5][3:10]. Thus the density of the increased portion, density(Δ), of
the merged cube is 2/10 = 0.20. Merging two cubes is allowed only when a pre-
specified condition is satisfied. Let δ be a density threshold for a sub-cube, then the
merging condition is defined as follows:

 An Effective Algorithm to Extract Dense Sub-cubes from a Large Sparse Cube 161

Definition 2.4 (Merging condition): When a cube B is to be merged to a cube A, the
merging condition should be satisfied and is defined as follows:

density(ΔA,B) ≥ δ

The density threshold δ is determined depending on various application requirements
and is given by a user. We however give some tips to determine the threshold. First, it
can be chosen as the density of the merging cube, say, δ = density(A) when a cube B
is to be merged to a cube A. Another choice can be the mean density densitymean of
sub-cubes identified by the previous process. Suppose that a sub-cube SC[2:3][3] is
merged to one of other sub-cubes. The density(Δ)’s are 0.20 for SC[1:5][5:10], 0.07
for SC[9:14][1:4], 0.19 for SC[8][6], and 0.17 for SC[8:12][9:13], respectively. When
we adopt the first case, the merging is not allowed to any sub-cube since density()’s
for SC[1:5][5:10], SC[9:14][1:4], SC[8][6], and SC[8:12][9:13] are 0.37, 0.38, 1.00,
and 0.40, respectively, and all these values do not meet the merging condition. When
we adopt densitymean = 0.54 as the threshold, the merging does not occur, either. If a
user specify the threshold explicitly, say, 0.15, then the sub-cube SC[2:3][3] is
merged to SC[1:5][5:10], producing a new larger sub-cube SC[1:5][3:10].

Shrinking sub-cubes. Even though sub-cubes are merged at the enlarging step under
a pre-specified condition, newly produced sub-cubes may contain sparse portions in
their surfaces. Thus, we evaluate each surface of them to prune it if its density is
lower than the density threshold δ. A d-dimensional cube C[l1:h1]…[ld:hd] has 2×d
surfaces (S1[l1:h1][l2:h2]…[ld], …, S2d[h1][l2:h2]…[ld:hd]). We call these surfaces
surface slices. We evaluate the surface slices of each candidate sub-cube produced by
the previous step. If the density of a slice is lower than δ, the slice is pruned from the
cube, resulting in shrinking sub-cubes. Let us consider the sub-cube SC[1:5][3:10]
that has 4 surface slices, S[1:5][3], S[1:5][10], S[1][3:10], and S[5][3:10]. The
densities of these slices are 0.4, 0.4, 0.125, and 0.25, respectively. If we adopt δ =
0.15 as the pruning threshold, then the surface slice S[1][3:10] is pruned, producing
the shrunken sub-cube SC[2:5][3:10]. This shrinking step is applied to the produced
sub-cube SC[2:5][3:10] until the shrinking does not occur any more. If minCells = 16,
then the sub-cube SC[8][6] is considered as an outlier. Finally, we get three sub-
cubes, SC[2:5][3:10], SC[9:14][1:4], and SC[8:12][9:13], and two outliers, SC[2:3][3]
and SC[8][6].

3 Experiments

To show the effectiveness of our method we provide an analysis and experimental
result on diverse data sets that are generated synthetically for various dimen-
ionalities. Our experiment focuses on evaluating the space reduction, while main-
aining the reasonable query execution time. The experiment was conducted using
Pentium 4 1.7GHz processor with 1G MEM and 80G HDD. For the experiment, we
have generated 16 sparse data cubes synthetically with the dimensionalities of 2, 3, 4,
and 5, four cubes for each. The experiment was conducted for four dimensions
(d = 2,3,4,5) for convenience, but our method does not restrict the dimensionality of

162 S.-L. Lee

data sets. These cubes are generated to have the clustered data distribution, in which
the area within clusters is dense while the area outside clustered regions is sparse.
From each data cube, we extracted dense sub-cubes using our method. For τ and δ, we
chose the mean value of the histogram bins at each dimension and the mean density of
sub-cubes, respectively. We have adopted 16 for minCells, leading all populated cells
in the sub-cube that has cells less than 16 to be treated as outliers and stored in the
table separated from the sub-cubes.

Space reduction. We present the space utilization of our method compared to the
prefix-sum cube for a large sparse data cube. Consider a data cube C with a set of
dimensions D = {Di | i = 1, 2, …, d}. The size of each dimension is represented by
|Di|, and the data cube is represented by C[0:|D1|−1]..[0:|Dd|−1]. Then, the size of the
cube |C| is as follows:

∏
=

=××=
d

i
id DDDC

1
1 ...

Let |D1| = |D2| = ⋅⋅⋅ = |Dd| = N for the convenience. Then the |C| is Nd. If the space that is
needed to store a single cell of the cube (that is, a measure attribute) is c, the total
amount of storage for C will be c⋅Nd when the cube is implemented by a multi-
dimensional array. The space complexity will be O(Nd). On the other hand, each dense
sub-cube identified is implemented by a multi-dimensional array (MOLAP: Multi-
dimensional OLAP), while outliers that is not contained in any sub-cube are stored in
the relational table (ROLAP: Relational OLAP). Suppose that the method generates m
sub-cubes (SCj, for 1≤j≤m) and o outliers, and the size of an edge of SCj with respect to
d-dimension is ej,d. Then, the size of sub-cubes identified, size(SC), is as follows:

∏
= ===

=××==
m

j

d

i
ij

m

j
djj

m

j
j eeeSCSCsize

1 1
,

1
,1,

1

...)(

Let us assume that ej,1 = ej,2 = … = ej,d = n and all sub-cubes are of equal-sizes for the
comparative convenience. Then the total size to implement all sub-cubes is m⋅c⋅nd.
Each outlier is stored in the (index, value) form, where an index is a coordinate in the
d-dimensional space and a value corresponds to a measure attribute. Thus, the space
needed to store an outlier is d×I+c, where I is the space that is needed to represent a
coordinate of a single dimension. Without great loss of generality, we assume I = c.
Therefore, the space needed to store all outliers is o⋅c⋅(d+1). The space complexity of
our method will be O(m⋅nd+ o⋅d). Since m and o can be considered as constants and n
is much smaller than N, we conclude that our approach demonstrates a significant
space efficiency compared to the prefix-sum approach.

The space reduction in Fig. 5 shows 89.9-95.7 % compared to the data cube for
dimension 2, 93.3-97.1 % for dimension 3, 95.4-97.3 % for dimension 4, and 96.3-
97.6 % for dimension 5, respectively. We can observe that our method has achieved
the high space efficiency, and that as the dimensionality becomes higher the space
reduction increases. It means that the efficiency of storage saving is getting better in
higher dimensions.

 An Effective Algorithm to Extract Dense Sub-cubes from a Large Sparse Cube 163

Fig. 5. Space reduction with respect to the dimensionality and flattening factor

Query efficiency. We have compared our method (SC) to the prefix-sum cube
method (PC) [7] since it shows better performance than other methods in terms of the
retrieval efficiency. The queries are grouped into three categories: small, medium, and
large. In the small group, each edge length of query rectangles is smaller than 30% of
the corresponding dimension length. And, 30-50% for the medium group and over
50% for the large group, respectively. We generated 20 queries for each group, and
thus 60 queries were used for each dimension. To respond the query, our method
takes the following two steps: (1) to search the sub-cubes in which most dense cells
are contained, and (2) to search a tree structure called delta(Δ)-tree[2] in which
outliers are stored. We do not describe how to store outliers in the tree due to the
space limitation. Interested readers are referred to [2] for the details. The query
performance is evaluated in term of the number of page I/O’s since the computation
time in the prefix-sum cube is negligible compared to the I/O time. Fig. 6 illustrates
the comparison of query performance with respect to the query size and
dimensionality. As we can observe from the figure, our method performs reasonably.
In case of the small query group, the number of page I/O’s is 5.7-18.4 in our method,
and 4.1-14.7 in the prefix-sum method, which shows a little difference. For example,
the page I/O ratio of our method versus the prefix-sum method is 1.02 to 1.39 for the
small group, which is quite usable in a real business environment.

Fig. 6. Query efficiency with respect to the query size and dimensionality

164 S.-L. Lee

4 Conclusion

In this paper, we have addressed the issue of finding dense sub-cubes from a sparse
data cube. In a real OLAP environment, analysts may want to explore the relationship
among attributes to find business trends and opportunities. A data cube for such
analyses is generally very sparse. This is the motivation that we proposed a new
technique. To solve the problem, we have first identified dense intervals in each
dimension using the histogram-flattening technique, and constructed candidate sub-
cubes based on the intervals. After the iterative process, those candidate sub-cubes are
refined through enlarging and shrinking steps.

We have performed the analytic comparison and experiments to examine the space
reduction and the query efficiency. It shows that our method drastically reduces the
space requirement for a large sparse data cube, compared to the methods that use a
large prefix-sum cube. The space reduction ratio is between 89.9 % and 97.6 %, and it
becomes higher as the dimensionality increases, while maintaining the reasonable
query performance. As a future work, we plan to study a multidimensional index
structure to store both multiple sub-cubes and outliers to obtain better retrieval
efficiency.

References

[1] U. S. Census Bureau, Census bureau databases. The online data are available on the web
at http://www.census.gov/.

[2] S. J. Chun, C. W. Chung, J. H. Lee and S. L. Lee, Dynamic Update Cube for Range-Sum
Queries, Proceedings of Int’l Conference on Very Large Data Bases, Italy, 2001, pp. 521-530.

[3] C. Y. Chan and Y. E. Ioannidis, Hierarchical cubes for range-sum queries, Proceedings of
Int’l Conference on Very Large Data Bases, Scotland, 1999, pp. 675-686.

[4] D.W. Cheung, B. Zhou, B. Kao, H. Kan and S.D. Lee, Towards the building of a Dense-
Region Based OLAP System, Data and Knowledge Engineering, Elsevier Science, V36,
1-27, 2001.

[5] S. Geffner, D. Agrawal, and A. El Abbadi, The Dynamic Data Cube, Proceedings of Int’l
Conference on Extending Database Technology, Germany, 2000, pp.237-253.

[6] S. Geffner, D. Agrawal, and A. El Abbadi, T. Smith, Relative prefix sums: an efficient
approach for quering dynamic OLAP Data Cubes, Proceedings of Int’l Conference on
Data Engineering, Australia,1999, pp. 328-335.

[7] C. Ho, R. Agrawal, N. Megido, and R. Srikant, Range queries in OLAP Data Cubes,
Proceedings of ACM SIGMOD Int’l Conference on Management of Data, 1997, pp. 73-88.

[8] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis, Dwarf: Shrinking the
PetaCube, Proceedings of ACM SIGMOD Int’l Conference on Management of Data,
2002, pp. 464-475.

[9] J. S. Vitter and M. Wang, Approximate Computation of Multidimensional Aggregates of
Sparse Data Using Wavelets, Proceedings of ACM SIGMOD Int’l Conference on
Management of Data, Pennsylvania, 1999, pp. 193-204.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 165 – 174, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Computation of
Maximal-Correlated Cuboids Cells

Ronnie Alves∗ and Orlando Belo

Department of Informatics, School of Engineering, University of Minho
Campus de Gualtar, 4710-057 Braga, Portugal
{ronnie, obelo}@di.uminho.pt

Abstract. The main idea of iceberg data cubing methods relies on optimization
techniques for computing only the cuboids cells above certain minimum
support threshold. Even using such approach the curse of dimensionality
remains, given the large number of cuboids to compute, which produces, as we
know, huge outputs. However, more recently, some efforts have been done on
computing only closed cuboids. Nevertheless, for some of the dense databases,
which are considered in this paper, even the set of all closed cuboids will be too
large. An alternative would be to compute only the maximal cuboids. However,
a pure maximal approaching implies loosing some information, this is one can
generate the complete set of cuboids cells from its maximal but without their
respective aggregation value. To play with some “loss of information” we need
to add an interesting measure, that we call the correlated value of a cuboid cell.
In this paper, we propose a new notion for reducing cuboids aggregation by
means of computing only the maximal-correlated cuboids cells, and present the
M3C-Cubing algorithm that brings out those cuboids. Our evaluation study
shows that the method followed is a promising candidate for scalable data
cubing, reducing the number of cuboids by at least an order of magnitude or
more in comparison with that of closed ones.

1 Introduction

Efficient computation of data cubes has been one of the focusing points in research
since the introduction of data warehousing, OLAP, and the data cube operator [8].
Data cube computation can be formulated as a process that takes a set of tuples as
input, computes with or without some auxiliary data structure, and materializes the
aggregated results for all cells in all cuboids. Its size is usually much larger than the

input database, since a table with n dimensions results in 2
n

cuboids. Thus, most work
is dedicated to reduce either the computation time or the final cube size, such as
efficient cube computation [3, 14, 9], or cube compression [11, 15]. These cost
reduction processes are all without loss of any information, while some others, like
the approximation [1] or the iceberg-cube [5, 3, 14, 9] ones, reduce the costs by
skipping trivial information.

∗ Supported by a Ph.D. Scholarship from FCT-Foundation of Science and Technology, Ministry

of Science of Portugal.

166 R. Alves and O. Belo

The ideas of compressing cuboids cells in terms of classes of cells, or closed cells,
seem to be an interesting approach to reduce size complexity, and also to explore
optimally the semantics from the cube lattice. Nevertheless, for some of the dense
databases we consider in this paper, even the set of all closed cuboids cells would
grow to be too large. The only recourse may be to mine the maximal cuboids cells in
such domains. However, a pure maximal approaching implies loosing some
information - one can generate the complete set of cuboids cells from its maximal but
without their respective aggregation value. To play with some loss of information we
propose a new measure, that we called the correlated value of a cuboid cell. This
measure is inspired on all_confidence measure [12], which has been successfully
adopted for judging interesting patterns in association rule mining, and further
exploited with confidence closed correlated pattern [10]. This measure must disclose
true correlation (also dependence) relationship among cuboids cells and needs to hold
the null-invariance property. Furthermore, real world databases tend to be correlated,
i.e., dimensions values are usually dependent on each other. The main motivation of
the proposed method emerged from the observation that real databases tend to be
correlated, i.e., dimensions values are usually dependent on each other. For example,
Store “Wallgreens” always sells Product “Nappy” or Store “Starbucks” always makes
Product “Coffee”. In addition, the result of correlated cells on the corresponding data
cube is to generate a large number of cells with same aggregation values. The Range
CUBE method was the first approach to explore correlation among dimensions values
by using a range trie [6]. Although it does not compress the cube optimally and may
not disclose true correlation relationship among cuboids cells holding the null-
invariance property [12, 16, 10]. Inspired on the previous issues we raise a few
questions to drive this work:

1. Can we develop an algorithm which captures maximal correlated cuboids cells
on dense/sparse databases?
2. How much such an approach can reduce the complete set of cuboids in
comparison with the other approaches (i.e., pure maximal to closed ones)?
3. How about the data cubing costs?

In this paper, we propose a new iceberg cube mining method for reducing cuboids
aggregation by means of computing only the maximal-correlated cuboids cells, and
present the M3C-Cubing algorithm that brings out those cuboids.

2 Maximal-Correlated Cuboids Cells

A cuboid is a multi-dimensional summarization of a subset of dimensions and
contains a set of cells. A data cube can be viewed as a lattice of cuboids, which also
integrates a set of cells.

Definition 1 – Cuboid Cell – In an n-dimension data cube, a cell c = (i1,i2,…,in : m)
(where m is a measure) is called a k-dimensional cuboid cell (i.e., a cell in a k-
dimensional cuboid), if and only if there are exactly k (k n) values among
{i1,i2,…,in} which are not * (i.e., all). We further denote M(c) = m and V(c) =
(ij,i2,…,in). In this paper, we assume that the measure m is count.

 On the Computation of Maximal-Correlated Cuboids Cells 167

A cell is called iceberg cell if it satisfies a threshold constraint on the measure. For
example, an iceberg constraint on measure count is M(c) min_supp (where
min_supp is a user-given threshold). Given two cells c = (i1,i2,…,in : m) and c’ =
(i'1,i'2,…,i'n : m’), we denote V(c) V(c’) if for each ij (j = 1,…,n) which is not *, i'j =
ij. A cell c is said to be covered by another cell c' if for each c'' such that V(c) V(c'')

 V(c'), M(c'') = M(c'). A cell is called a closed cuboid cell if it is not covered by any
other cells. A cell is called a maximal cuboid cell if it is closed and has no other cell c
which is superset of it (we have an exception just in case when its correlated value is
higher than a minimum threshold).

Definition 2 – The Correlated Value of a Cuboid Cell – Given a cell c, the correlated
value 3CV of a V(c) is defined as,

maxM(c) = max {M(ci)|for each ci ∈ V(c)} Eq.(1)
3CV(c) = M(c) / maxM(c) Eq.(2)

Definition 3 – Maximal Correlated Cuboid Cell – A cell c is a maximal-correlated
cuboid cell (M3C) if it is covered by a maximal cuboid cell, its M(c) value is higher
than min_supp and its 3CV(c) value is higher than min_3CV (where min_3CV is a
user-given threshold for correlation)

From the last definition we allow a correlated exception for its supersets, where it is
true when cell c is covered by another cell c' and 3CV(c') is higher than min_3CV.

Given the above definitions, the problem of computing the maximal-correlated
cuboids cells is to compute all maximal cuboids cells which satisfy iceberg
constraints and its correlated exception cells. An example of the maximal-correlated
cuboids cells is given in Example 1.

Table 1. Example of Maximal Correlated Cuboids Cells

A B C D
a1 b1 c1 d1
a1 b2 c2 d2
a1 b1 c1 d3
a1 b1 c1 d1
a2 b2 c2 d4

Example 1 - Maximal Correlated Cuboids Cells. Table 1 shows a table (with four
attributes) in a relational database. Let the measure be count, the iceberg be count 2
and the correlated value 3CV 0.85. Then c1 = (a1,b1,c1,* : 3) and c2 = (a1,*,*,* :
4) are closed cells; c1 is a maximal cell; c3 = (a1,b1,*,* : 3) and c4 = (*,b1,c1,* : 3)
are covered by c1; but c4 has a correlated exception (3CV=1); c5 = (a2,b2,c2,d4 : 1)
does not satisfy the iceberg constraint. Therefore, c1 and c4 are maximal correlated
cuboids’ cells. The iceberg condition is count min_sup and the correlated exception
value min_3CV.

168 R. Alves and O. Belo

3 M3C-Cubing

The proposed method for extraction of the Maximal-Correlated Cuboids Cells follows
the BUC data cubing ideas [3] – we call it as M3C-Cubing. The computation starts
from the smallest cuboids of the lattice, and works its way towards the larger, less
aggregated cuboids. Our method does not share the computation of aggregates
between parent and child cuboids, only the partitioning cost. Besides, as was verified
by BUC experimental results, partitioning is the major expense, not the aggregation
one.

We begin by defining the necessary terminology for describing the M3C-Cubing
algorithm. We consider a base relation cell to be a mapping K(c)→ M(c), where K is
a composite key built from the grouping attributes values in V(c) and M(c) is also a
composite key with the value to be aggregated. From the base relation cell we can
extract several partitions; each partition has a subset of cells to aggregate. The
partition of a base relation cell is defined as P(c)→ {K(c)→M(c)}, where P(c) is the
partition key.

In order to get the correlated value of a cuboid cell (3CV) we need to keep the
aggregation value for each 1-D cuboid. This is denoted as a mapping from 1-D(c)→
M(c). We should note that the maximum value will occur when the subset K(c)
consists of a single grouping attribute (see Definition 2).

M3C-Cubing is guided by an SE-tree framework, first introduced by Rymon [13],
and adopted later by Mafia [4] and Max-miner[2]. In this work, we call as M3C-tree.
The M3C-tree is traversed by using a pure depth-first (DFS) order. Each node of the
M3C-tree provides n-D cuboids which will be further partitioned, aggregated and
checked if it is maximal or not (see Definition 1). In general, superset pruning works
better with DFS order since many least aggregated cuboids may already have been
discovered.

The strategies for pruning non-maximal correlated cuboids cells (nonM3C)
basically attempt to: test out iceberg condition, check if it is maximal and when is not,
check if it is a correlation exception (see Definition 3). They are just discarded in case
its 3CV value is lower than a minimum threshold (min_3CV). Consequently, we
provide the complete set of interesting cuboids which are maximal-correlated cuboids.

M3C-Cubing also keeps the current cuboids aggregated and the previous one for
further pruning out of nonM3C cells. To speed up this process, we cannot remove an
entire branch of the M3C-tree, since we have to aggregate its related partitions in
order to validate the pruning conditions mentioned before. In this sense, we are just
able to prune out nonM3C cells by the time we expand the M3C-tree level-by-level.

Algorithm 3.1. M3C-Cubing: Computing maximal-correlated cuboids cells

Input: a table relation trel; min_supp; min_3CV.
Output : the set of maximal-correlated cuboids cells.
Method :
1. Let brel be the base relation of trel.
2. Build the M3C-tree concerning the grouping attributes in brel.
3. Call M3C-Cubing (min_supp, min_3CV, brel, M3C-tree).

 On the Computation of Maximal-Correlated Cuboids Cells 169

Procedure M3C-Cubing (min_supp, min_3CV, brel, M3C-tree)
 1: get 1-D cuboids from M3C-tree
 2: for each j in 1-D cuboids do
 3: get its partition from brel on dimensions [n], and

 set part ←{K(c)→M(c)}
 4: aggregate part and set agg ← {V(c)→M(c)} when M(c)>=min_supp
 5: set allCbs ← {agg}; set 3cv-1d ← {allCbs}
 6: end for
 7: get n-D cuboids in DFS order from M3C-tree
 8: for each k in n-D cuboids do
 9: get its partition from brel on dimensions [n-D],
 and set part ←{K(c)→M(c)}
10: aggregate part and set agg ← {V(c)→M(c)} when M(c)>=min_supp
11: set allCbs ← allCbs ∪ {agg}; set currCbs ← {agg}
12: set 3cv-nd ← 3cv-nd ∪ {call 3cv-nd(3cv-1d, agg)}
13: set maxCbs ← maxCbs ∪
 {call maxCorr (allCbs, currCbs, 3cv-nd, min_3CV)}
14: end for
Procedure maxCorr(allCbs, currCbs, 3cv-nd, min_3CV)
 1: set nonM3C ←{ }
 2: for each j in currCbs do
 2: for each k in allCbs do
 3: if dom(allCbs) is superset of dom(currCbs),
 nonM3C ← nonM3C ∪ {dom(currCbs)}
 4: end for
 5: end for
 6: remove any nonM3C in allCbs where 3cv-nd(nonM3C)< min_3CV
 7: return allCbs

Procedure 3cv-nd(3cv-1d, agg)
 1: for each j in agg do
 2: splits into 1-D cells; maxValue=0;
 3: for each k in 1-D cells do
 4: get its aggValue(3cv-1d)
 5: if aggValue>=maxValue, maxValue=aggValue
 6: end for
 7: set 3cv=SI{agg}/ maxValue; set 3cv-nd ← {dom(agg) → 3cv}
 8: end for; return 3cv-nd

With the aim of evaluating how M3C-Cubing reduces the final set of cuboids, we
have to do a few modifications to the main method to support both pure maximal
cuboids and closed ones. Those modifications are available as two new procedures:
One for pure maximal and other for closed cuboids. We omit here those procedures,
but one can also follows the definitions on section 2.

To bring out the pure maximal we just need to re-write the line 6 in maxCorr
Procedure. Thus, the conditional test on 3CV value of the ancestor cuboids is set
apart. Needless to say, that we cannot make any use of 3CV-nd procedure either to get
pure maximal or closed cuboids. To get just the closed cuboids we must verify the
closedness property [15] among the cuboids, consequently we just have to check if its
not covered by other cells.

3.1 Cover Equivalence in M3C-Cubing

The idea of grouping cover partitions cells into classes can also be explored by M3C-
Cubing in order to shrink even more the final data cube. By definition 1, it is possible
to group a set of cuboids cells by verifying those cells which are cover equivalent

170 R. Alves and O. Belo

ones [11]. Thus, these cells essentially have the same value for any aggregate on any
measure but with different degrees of correlation. For instance, in Example 1 the cells
(a1,b1,c1,*) and (*,b1,c1,*) are cover equivalent cells. Next, we present a few
concepts for guiding the grouping cover partition process with M3C-Cubing.

Cover partitions – The partition induced by cover equivalence is convex. Cover
partitions can be grouped into a M3C class (ji..jn) (Figure 1). Each class in a cover
partition has a unique maximal upper bound, and a unique lower bound (Table 2).

Upper bound cell – The upper bound for a particular class is the maximal cuboid
cell contained in this class. Such as, in Example 1, the cell (a1,b1,c1,*) is the upper
bound cell.

Lower bound cell – The lower bound cell for a particular class is the maximal 3CV
value achieved by the correlated value of the cuboid cell (see Definition 2). Since
M3C cubing allows catching all correlated exception cuboids, the lower bound cell
will be that one with the highest 3CV value. E.g., in Example 1, the lower bound cell
for class j1 is given by (*,b1,c1,*).

To explore maximal correlation over those classes we have to define the local_3CV
value for each class. The local_3CV value of a class is the maximum local value
given by the lower bound cell of each class (Table 2).

Fig. 1. The lattice formed by the cover partitions of the Example 1

Table 2. The set of classes from Example1

ClassID UpBound LoBound Local_3CV Lat_child Agg
j0 (*,*,*,*) (*,*,*,*) 0 -1 5
j1 (a1,b1,c1,*) (*,b1,c1,*) 1 j0 3
j2 (a1,b1,c1,d1) (*,b1,*,d1) 2/3 j0 2
j3 (*,b2,c2,*) (*,b2,c2,*) 1 j0 2

4 Evaluation Study

In this section, we report our experimental results on the shrinking and performance
aspects of each method (M3C=Maximal-Correlated, Max = pure Maximal and

 On the Computation of Maximal-Correlated Cuboids Cells 171

Closed). The results are quite the same concerning to the performance point of view.
This is true because those methods were developed having the basis on our main
method (M3C). So, we can take those results only as an example of how much these
modifications affect the whole time processing of the M3C-Cubing. On the other
hand, reducing aspects of M3C-Cubing shows its viability by providing an interesting
tradeoff between a pure maximal approaches to a closed one.

All the experiments were performed on a 3GHz Pentium IV with 1Gb of RAM
memory, running Windows XP Professional. M3C-Cubing was coded with Java 1.5,
and they were performed over eight synthetic datasets (Table 3). The values for
columns min_3CV% and min_supp are provided for the tests when fixing one value
and varying the other. The density column shows the degree(%)1 of
density/sparseness of each dataset. All datasets have a normal distribution.

Table 3. The overall information of each dataset

Dset Tuples Dims Card. Density Min_3CV% Min_Supp%
d1 100 3 3 27% 40% 2%
d2 250 5 3 97% 27% 0.80%
d3 500 3 5 25% 10% 0.60%
d4 750 4 5 83% 15% 0.67%
d5 1000 5 3 24% 17% 0.40%
d6 1250 4 6 100% 9% 0.16%
d7 3000 7 3 73% 35% 0.10%
d8 5000 6 4 82% 50% 0.04%

We first show that the complete set of maximal-correlated cuboids cells (M3C) is
much smaller in comparison with both that of pure maximal (Max) and that of close
ones (Closed). Figure 2 shows the number of cuboids generated by each approach
from all datasets. The number of cuboids is plotted on a log scale. Figure 2(a)
presents the number of cuboids generated when min_3CV is fixed and min_supp

Fig. 2. Number of cuboids generated from all datasets

1 The density degree of a dataset is calculated by the division: the product of each dimension

(its cardinality value) by the number of tuples within the related dataset. The dataset is more
dense when density degree is close to 100%.

min_3CV=25%

1

10

100

1000

10000

100000

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

(a) m in_supp(%)

n
u

m
b

er
 o

f
cu

b
o

id
s M3C Max Closed

min_supp=2

1

10

100

1000

10000

100000

0% 10% 20% 30% 40% 50% 60%

(b) m in_3CV(%)

n
u

m
b

er
 o

f
cu

b
o

id
s

M3C Max Closed

172 R. Alves and O. Belo

varies, while figure 2(b) shows those cuboids the other way around, fixing min_supp
and varying min_3CV. These figures show that the M3C generates much smaller
cuboids under lower min_supp or lower min_3CV. They also illustrate how much
bigger the closed cuboids are in comparison with the other two methods. These results
also indicate that under higher density datasets the chances of reducing cuboids by
M3C-Cubing is more effective. Furthermore, the distance between Max and M3C
reveals the gap of cuboids which are discarded (higher correlated ones) when using a
pure maximal approach.

The next two figures (figure 3(a) and figure 3(b)) show the performance aspects of
M3C-Cubing from all datasets. These figures follow the same configuration
properties from previous two (figure 2(a) and figure 2(b)). Figure 3(a) illustrate that
under a fixed min_supp, the maximal-correlated cuboids are useful only with lower
3CV thresholds. This is confirmed by the downward property [12] of 3CV_value of a
cuboid cell. By the time the data cubing process is getting closer to the least
aggregated cuboids, the 3CV_value also decreases, so the computation time is pretty
close, because 3CV is decreasing. Figure 3(b) points out the effectiveness of M3C-
Cubing under lower min_supp, giving more likelihood to identify correlated-cuboids,
increasing a little-bit the processing time to prune out nonM3C cells.

Fig. 3. The execution time from all datasets

Now, we are going to present a few examples concerning the reduction costs of
computing the complete cube instead of a “partial” data cubing process. Figures
ranging from figure 4(a) to figure 4(d) illustrate those results. Figure 4(a) and figure
4(b) shows the number of cuboids generated when min_supp varies and min_3CV is
fixed, while figures 4(c), 4(d) present those when min_3CV varies and min_supp is
fixed. Under any circumstances the final cube is quite closer to the closed one, which
points out that even using such closed-reduction the cuboids size remains even bigger.
It is also demonstrates how much M3C-Cubing can save in comparison with the other
methods.

In summary, the experimental results show that the number of maximal-correlated
cuboids is quite smaller in comparison with that of the closed ones. Even, with a few
modifications to the main features of M3C-Cubing, it still performs competitively
with the other ones. Moreover, we provide the set of all maximal-correlated cuboids.

m in_3CV=25%

1

10

100

1000

10000

100000

0.00% 0.50% 1.00% 1.50% 2.00% 2.50%

(a) m in_supp(%)

ru
n

ti
m

e

M3C

Max

Closed

min_supp=2

1

10

100

1000

10000

100000

1000000

10000000

0% 10% 20% 30% 40% 50% 60%

(b) m in_3CV(%)

ru
n

ti
m

e

M3C

Max

Closed

 On the Computation of Maximal-Correlated Cuboids Cells 173

Fig. 4. Reductions cost of cubing over all datasets

5 Final Remarks

The motivation behind iceberg cube mining is tightly related to reducing the search
space for computing aggregates. The classical methods either offer ways for sharing
the computation among cuboids or for exploring the partition costs in order to reduce
the large output size.

We have presented M3C-Cubing that effectively reduces the complete set of
cuboids cells introducing a new notion called maximal-correlated cuboids cells.
Through this cubing method we can find the maximal combinations among the
grouping attributes and also keep its exceptional correlated cuboids, which can also
indicates interesting changes on the cuboids during the cubing process.

We also have plans to investigate other aspects not addressed in this work such as:
the application of 3CV measure over other aggregate functions (average, min, max…)
and the issues related to recover an aggregation value of subcells of an M3C cell.

For efficient mining of those cuboids we have devised M3C-Cubing which is
guided by an M3C-tree with a pure DFS traversal order. In order to improve pruning,
we must investigate the tail information of each node in the M3C-tree such as
designed in [7, 17].

Finally, our evaluation study shows that maximal-correlated cuboids computation
reduces the number of cuboids by at least an order of magnitude or more in
comparison with the traditional approaches.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

d1 d2 d3 d4 d5 d6 d7 d8

(a) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

Cube M3C

Max Closed

0

2000

4000

6000

8000

10000

12000

14000

d1 d2 d3 d4 d5 d6 d7 d8

(b) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

M3C

Closed

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

d1 d2 d3 d4 d5 d6 d7 d8

(c) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

Cube M3C

Max Closed

0

2000

4000

6000

8000

10000

12000

14000

16000

d1 d2 d3 d4 d5 d6 d7 d8

(d) datase ts

n
u

m
b

er
 o

f
cu

b
o

id
s

M3C

Closed

174 R. Alves and O. Belo

References

1. Barbara, D., Sullivan, M.: Quasi-cubes: Exploiting Approximations in Multidimensional
Databases. In Proc. Int. Conference on Management of Data (SIGMOD), 1997.

2. Bayardo, R.: Efficiently Mining Long Patterns from Databases. In Proc. Int. Conference
on Management of Data (SIGMOD), 1998.

3. Beyer, K., Ramakrishnan, R.: Bottom-up Computation of Sparse and Iceberg Cubes. In
Proc. Int. Conference on Management of Data (SIGMOD), 1999.

4. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset Algorithm
for Transactional Databases. In Proc. Int. Conference on Data Engineering (ICDE),
pp.443-452, 2001.

5. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J., D.: Computing
Iceberg Queries Efficiently. In Proc. Int. Conference on Very Large Databases (VLDB),
1998.

6. Feng, Y., Agrawal, D., Abbadi, A.-E., Metwally, A.: Range Cube: Efficient Cube
Computation by Exploiting Data Correlation. In Proc. Int. Conference on Data
Engineering (ICDE), 2004.

7. Gouda, K., Zaki, J.: GenMax : An Efficient Algorithm for Mining Maximal Frequent
Itemsets. Data Mining and Knowledge Discovery, 11:1-20, 2005.

8. Gray, J., Bosworth, A., Layman, A., Pirahesh, A.: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In Proc. Int. Conference on
Data Engineering (ICDE), 1996.

9. Han, J., Pei, J., Dong, G., Wank, K.: Efficient Computation of Iceberg Cubes with
Complex Measures. In Proc. Int. Conference on Management of Data (SIGMOD), 2001.

10. Kim, W.-Y., Lee, Y.-K., Han, J.: CCMine: Efficient Mining of Confidence-Closed
Correlated Patterns. In Proc. Int. Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), 2004.

11. Lakshmanan, V.S., Pei, J., Han, J.: Quotient Cube: How to Summarize the Semantics of a
Data Cube. In Proc. Int. Conference on Very Large Databases (VLDB), 2002.

12. Omiecinski. Alternative Interest Measures for Mining Associations. IEEE Trans.
Knowledge and Data Engineering, 15:57-69, 2003.

13. Rymon, R.: Search through Systematic Set Enumeration. In Proc. Int. Conference on
Principles of Knowledge Representation and Reasoning (KR), 539-550, 1992.

14. Shao, Z., Han, J., Xin, D.: MM-Cubing: Computing Iceberg Cubes by Factorizing the
Lattice Space. In Proc. Int. Conference on Scientific and Statistical Database Management
(SSDBM), 2004.

15. Xin, D., Han, J., Shao, Z., Liu, H.: C-Cubing: Efficient Computation of Closed Cubes by
Aggregation-Based Checking. In Proc. Int. Conference on Data Engineering (ICDE),
2006.

16. Xiong, H., Tan, P.-N., Kumar, V. Mining Strong Affinity Associations Patterns in Data
Sets with Skewed Support Distribution. In Proc. Int. Conference on Data Mining (ICDM),
2003.

17. Zou, Q., Chu, W.-W., Lu, B.: SmartMiner: A Depth First Algorithm Guided by Tail
Information for Mining Maximal Frequent Itemsets. In Proc. Int. Conference on Data
Mining (ICDM), 2002.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 175 – 184, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Warehousing Dynamic XML Documents

Laura Irina Rusu1, Wenny Rahayu2, and David Taniar3

1,2 LaTrobe University, Department of Computer Science and Computer Engineering,
Bundoora, VIC 3086, Australia

lirusu@students.latrobe.edu.au, wenny@cs.latrobe.edu.au
3 Monash University, School of Business Systems, Clayton, VIC 3800, Australia

David.Taniar@infotech.monash.edu.au

Abstract: Due to the increased popularity of using XML documents in
exchanging information between diverse types of applications or in representing
semi-structured data, the issue of warehousing large collections of XML
documents has become strongly imperative. Furthermore, an efficient XML
warehouse needs to be able to answer various user queries about its content or
about the history of the warehoused documents. In this paper, we propose a
methodology for warehousing dynamic XML documents, which allows a low
degree of redundancy of the warehoused data, while preserving critical
information.

Keywords: XML, dynamic XML, data warehouse, semi-structured data.

1 Introduction

Following the growing popularity of using XML documents in exchanging
information between different legacy systems or in representing semi-structured data,
warehousing XML documents have started to pose various issues to the researchers
and industry people. One of the current research problems is to find out what type of
warehouse is most suitable and efficient to store collections of XML documents, in
such a way that they can be efficiently queried, either to answer user queries or to
extract meaningful hidden knowledge.

In our research, we have identified two types of XML documents which could be
included in a presumptive XML data warehouse: static XML documents, which do not
change their content and structure (e.g. an XML document containing the papers
published in a certain proceedings book) and dynamic XML documents, which change
their structure or content in time, based on certain business processes (e.g. the content
of an on-line bookshop, which might change daily, weekly or monthly, depending on
e-customer behaviour). While the first category of XML documents has been the
subject of intense research in the recent years, the topic of warehousing temporal
versions of XML documents has started to be considered only lately [5].

In this paper, we look at the concepts related to the star-schema approach proposed
in [6] for warehousing static XML documents and then we show how the multi-
versioned XML documents might fit into this star-schema. In explaining the concepts
involved in our proposal, we employ working examples throughout the paper and we
use XQuery [8] for code examples. Note that the points discussed in this paper are not
by any means exhaustive and they do not cover all the aspects and complexities
involved in warehousing static or dynamic XML documents; it is part of our future

176 L.I. Rusu, W. Rahayu, and D. Taniar

research work to investigate any other issues which might arise from their
implementation.

The rest of the paper is organized as follows: Section 2 studies the related work in
the area of warehousing static and dynamic XML documents, Section 3 presents the
proposed star-schema approach, for dynamic XML documents, Section 4 illustrates
the benefits of the proposal in terms of querying and presents some performance tests
results and finally, Section 5 gives some conclusions and highlights our future
research on warehousing XML documents.

2 Related Work

A substantial amount of work has been carried out during the last few years to find
efficient solutions to the problem of warehousing XML documents [1, 2, 3, 4]. A
study on how to construct an XML data warehouse by analysing frequent patterns in
user historical queries is provided in [4]. The authors start from determining which
data sources are more frequently accessed by the users, transform those queries in
Query Path Transactions and, after applying a rule mining technique, calculate the
Frequent Query Paths which stay at the base of building data warehouse schema.

Another approach is proposed in [3], where an XML data warehouse is designed
from XML schemas, proposing a semi-automated process. After pre-processing XML
schema, creating and transforming schema graph, the authors choose facts for data
warehouse and, for each fact, follow few steps in order to obtain star-schema.

With few exceptions, the common deficit of the most of existing research work in
this area is its limitation to warehousing static XML documents, as separate pieces of
information which needs to be stored using an organised and efficient format.

To our knowledge, our proposal is the first one to suggest a solution to the issue of
warehousing dynamic documents. It concentrates on the specifics of multiple-
versioned (i.e. dynamic) XML documents and their storage, with as less as possible
redundancy, maintaining in the same time the critical information from the multiple
versions of the documents, to allow rich and useful queries to be applied later on.

3 Proposed Approach

In this section, we will first recall the concepts related to building a star-schema
warehouse (called SSW throughout the paper) for XML documents, as it is detailed in
[6]. Then, we will look at how the critical information from multi-versioned XML
documents are historically grouped using the consolidated delta [7] and how they can
be stored in the SSW using the consolidated delta.

3.1 Building a Warehouse for Storing Static XML Documents

We proposed in [6] a generic process of building an XML data warehouse for static
XML documents. Mainly, the process consists of the following steps: data cleaning
and integration; data summarisation; creating intermediate XML documents; updating
/ linking existing documents and creating the complete data warehouse. A thoroughly
set of explanations for the cleaning part of the warehousing process (i.e. minimizing

 Warehousing Dynamic XML Documents 177

the number of occurrences of dirty data, errors, duplications or inconsistencies from
the raw XML data) can be found in [9].

For the purpose of our paper, we will exemplify the data summarization part, i.e.
building the dimensions of the final warehouse, as new XML documents. Note that
there are three types of dimensions proposed in [6], i.e. constructed, extracted or
partial-extracted. The decision on which dimensions are required in the warehouse is
taken only after the user-defined prerequisites have been analysed.

To exemplify, we consider the document in Fig.1, containing details of books in a
library and we build three dimensions, i.e. “time”, “authors” and “titles”, which will
become part of the data warehouse.

 libraryBook

title

ISBN
publisher

name address
publishing_date

author

name

affiliation

borrower

name address

identification

borrowing_date

returning_date

book

Fig. 1. Example of a static XML document

The code example for building the “time” dimension is given in Fig. 2. It uses the
borrowing date to summarize the data, so the user will be able to extract the patterns
of readers’ borrowing behaviours in time; “Get-month-from-date” function also has a
meaning of summarising data, by month, and it extracts the corresponding integer
representing the month out of the raw borrowing date.

A “fact” document is also built, to store the core information extracted from the
XML document (e.g. borrower details and returning date), together with links to the
previously built dimensions. They will form the final static SSW, as shown in Fig. 3.

 let $b:=0
document{
for $t in distinct-values
(doc(“libraryBooks.xml”)//borrowing_date)
 let $b:=$b+1

return
 <borrowtime>
 <timeKey>{$b}</timekey>
 <borrowdate>{$t}</borrowdate>
 <month>{get-month-from-

date($t)}</month>
 </borrowtime>

}

Fig. 2. Example of XQuery code for building “time” dimensions in SSW

178 L.I. Rusu, W. Rahayu, and D. Taniar

Each time a new document needs to be stored (e.g. daily borrowing details might
be collected in an XML document stored in the SSW at the end of the month), the
process will be repeated and it will add new items to the dimensions and new records
in the fact document, for the new added information. While this is a logical and
efficient process for the XML static documents which always brings new data to the
warehouse, this might not be equally efficient for dynamic XML documents.

 LIBRARYBOOKS
authorKey

titleKey
borrowDateKey

borrower
returning_date

TIME
timeKey

borrowDate
month

AUTHORS
authorKey

name
affiliation

TITLES
titleKey

description
publishingDate

Fig. 3. Star schema of “LibraryBooks” XML data warehouse

3.2 Building a Warehouse for Storing Dynamic XML Documents

In this section, we show how the dynamic XML documents could be also warehoused
using the star-schema approach. As exemplified in the “Introduction” section, a
dynamic XML document could be the content of an on-line shop, which can change
hourly/daily/weekly based on the users’ behaviour and market forces. For example,
new products can be added, some can become unavailable if sold out, prices can
change due to promotional sales etc. Multiple versions of an XML document are not,
by any means, just different XML documents and adding them, one by one, to the
SSW, would be a redundant process, as there might be a large degree of similarity
between successive versions.

A central piece in our proposal is the complex concept of consolidated delta [7], as
an efficient way of representing multiple historical versions of the same XML
document. It is built by appending the changes undergone by the document between
two consecutive versions, to the previous version of the consolidated delta. Note that
the initial version of the consolidated delta is actually the initial version of the
dynamic XML document. We assign unique identifiers to the elements in the initial
XML document, so at any time all the elements will be uniquely identified and we
will be able to track their changes. We refer the reader to [7] for detailed steps in
identifying changed elements and building the consolidated delta.

For example, consider a dynamic XML document representing the content of an
on-line bookshop (“catalog.xml”), in four consecutive versions, i.e. the initial
document at time T0, followed by three versions with changes at times T1, T2 and T3

(Fig. 4). After applying the steps of building the consolidated delta [7], the result (a
new XML document) will contain details of changes for each element (i.e. the time of
change, type of change and values for the inserted or modified elements), on top of
the initial elements’ values. At this point all the interesting and useful information
extracted from the document’s versions are “grouped” in the consolidated delta, so
our intention is to warehouse only the information contained in it.

 Warehousing Dynamic XML Documents 179

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>150$</price>

 </product>
 <product>
 <status>Not available</status>
 <name>MP1</name>
 <price>200$</price>

<description>a mobile
phone</description>

 </product>
 <product>
 <status>Not available</status>
 <name>MP2</name>

<description>another mobile
phone</description>

 </product>
</catalog>

T0

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>180$</price>

 </product>
 <product>
 <status>Not available</status>
 <name>MP1</name>

<description>a mobile phone</description>
 </product>
 </catalog>

T1

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>250$</price>

 </product>
 <product>
 <status>Available</status>
 <name>MP1</name>

<description>a mobile phone</description>
 </product>

<product>
 <status>Available</status>
 <name>Suitcase</name>
 <price>500$</price>

<description>red leather case</description>
 </product>
</catalog>

T2

<catalog>
 <product>
 <status> Available</Status>
 <name>Nice walkman</name>

<descript>A very good one</descript>
<price>250$</price>

 </product>
<product>

 <status>Available</status>
 <name>Suitcase</name>
 <price>450$</price>

<description> red leather case
</description>

 </product>
<product>

 <status>Available</status>
 <name>BBQ set</name>

<description>stainless steel bbq
tools</description>

 </product>
</catalog>

T3

Deleted T1

Inserted T3

Deleted T3

Inserted T2

Modified T3

Modified T3

Modified T2

Modified T2

Modified T1

Fig. 4. The “catalog.xml” document in four consecutive versions

Referring to our working example again, suppose that after analysing user
requirements, it was decided that the on-line products, their prices and their historic
changes information need to be stored in the data warehouse. In our working example,
we will build an extracted dimension, i.e. “products” (Fig. 5A), and three constructed
dimensions, i.e. “price_ranges”, “date_ranges” and “changes” (Fig. 5B, C and D).

After building the dimensions, the next stage is to extract the core information
from the consolidated delta and to include it into the fact document, linking it to the
dimensions. Few key steps must be observed for an efficient result, as follows:

(i) Extract the elements to be stored, from the consolidated delta, as they exist at T0
(i.e. the initial version of the document before any change) and add records to the
fact document containing the core data to be warehoused, together with links to
dimensions;

180 L.I. Rusu, W. Rahayu, and D. Taniar

(ii) For each timestamp Ti, where i=1,2,…n, add the changes to the SSW, as follows:
 a) check if any new elements have been inserted (products, in our case); add

records to the fact document, with details on time & type of change and add
records to the extracted dimensions with the new inserted elements;

 b) check if any elements have been deleted - if one parent element was
deleted, all its children would be considered as deleted; add record to the fact
document, together with details on time & type of change;

 c) check if any elements have been modified - a parent element is considered
to be modified when any of its children is modified. If modification relates to a
value in an extracted dimension (e.g. in our case prod_name & prod_descript in
“products” dimension), do: (1) look it up by element_Id in the corresponding
dimension and (2) add a record in the fact document with details of type & time
of change for its children, together with its value before modification. If
modification relates to values in a constructed dimension (e.g. in our case
“price_ranges” dimension), only need to add a record in the fact document with
details of child’s type & time of change and its value after modification;

At the end of the process, all the extracted and the constructed dimensions, linked up
to the central fact document will form the structure of the star-schema presented in
Fig. 6. This structure allows a very low degree of redundancy, because only the initial
document and the temporal changes are included; the XML fact document contains
links up to the extracted / constructed dimensions (by element/change Id), which

Let $no:=0
Let $d:= doc(“catalog.xml”)
Document {
<products>
For $a in distinct-values ($d//product/name)
 Where last-stamp($a/../stamp)<>”deleted”
 Let $no:=$no +1
 Return
 <product>
 <prod_Id> {$no}</prod_Id>
 <prod_name>{$a}</prod_name>
 <prod_descript>{$a/../description}</prod_descript>
 </product>
</products>
} (A)

Document {
<price_ranges>
For $a in {1,2,…n)
Return
 <price_range>
 <range_Id>{$a}</range_Id>
 <range>
 <from>50*({$a}-1)</from>
 <to>50 *{$a}</to>
 </range>
 </price_range>
</price_ranges>
} (B)

Document {
<date_ranges>
For $b in {1,2,…12)
Return
 <date_range>
 <date_range_Id>{$b}</date_range_Id>
 <from_date>First-day-month ({$b}) </from_date>
 <to_date>First-day-month ({$b}+1)</to_date>
 </date_range>

</date_ranges>
} (C)

Document {
 <changes>
 <change>
 <change_Id>1</change_Id>
 <description>insert</description>
 </change>
 <change>
 <change_Id>2</change_Id>
 <description>modify</description>
 </change>
 <change>
 <change_Id>3</change_Id>
 <description>delete</description>
 </change>
 </changes> } (D)

Fig. 5. Building dimensions in the XML warehouse for dynamic documents

 Warehousing Dynamic XML Documents 181

Fact XML document

Prod_Id
Price
Price_range_Id
Status
Prod_change_Id
Change_time
Change_time_range_Id
Price_change_Id
New_price
New_price_range_Id

Products

Prod_Id
Prod_name
Prod description

Price_ranges

Range_Id
Price_range
 From
 To

Date_ranges

Date_range_Id
Date_range
 From_date
 To_date

Changes

Change_Id
description

Fig. 6. Star-schema XML warehouse for multiple versions of an XML document

make temporal queries easy to be applied (see Section 4). In the same time, to avoid
redundancy, for a timestamp Ti (i=1,2,…n.), the fact document will include only
details of changes happened at Ti. (e.g., if only price of a product was changed at time
T2, the only additional information stored in the fact document would be:
price_change_Id, New_price and New_price_range_Id - italic in Fig. 6).

Surely, our working example is much simpler than any genuine situations which a
user might work with, in real applications. The purpose of the example though, is to
show, in clear steps, how our proposed approach works and how to build an XML
data warehouse for dynamic XML documents, using the information stored in the
consolidated delta, when warehousing each individual version is out of question,
because of the redundancy.

4 Evaluation Against Temporal Queries

As stressed in the Introduction section, the rationale of any efficient data warehouse is
to store the information as effective as possible for later use, making it easily
available to be queried by the user. We argue that our proposed methodology of
warehousing dynamic XML documents allows various temporal queries to be applied,
with different degrees of complexity.

4.1 Validation on Ability to Answer Benchmark Temporal Queries

In our proposal, the timestamps, initially included in the consolidated delta and
subsequently stored in the warehouse within time dimension(s), refers to the actual
points in time when a change or another occurs, so the proposed SSW for dynamic
XML documents is a historical (or valid-time) warehouse [10] for querying purposes.

In Fig. 7 we give an example of a query to be run on SSW; we look for modified
products, where the timestamp of change varies between two limits; this is a temporal
query returning a temporal result, as the date of change is included in the elements
returned. If the date of change was not to be returned by the query, it would have been

182 L.I. Rusu, W. Rahayu, and D. Taniar

Let $f:=doc(“fact.xml”)
Let $c:=doc(“changes.xml”)
Let $d:=doc(“date_ranges.xml”)
Let $pcId:={for $n in $c//change_Id where $n/../descript=”modified” return $n}
Document {
for $a in distinct-values($f//prod_Id)
 for $h in $d//date_range_Id
 where $a/../prod_change_Id=$pcId
 and $a/../change_time_range_Id=$h
 and $h/../date_range/From_Date>=#01/01/2006#
 and $h/../date_range/To_Date<=#01/03/2006#
 return
 <prod_Id>{$a}</prod_Id>
 <date_of_change>{$a/../change_time}</date_of_change>
}

Fig. 7. Query: Extract all modified products in a date range

a temporal query with a non-temporal result, but involving a temporal element for
processing (i.e. looking up change_time_range_Id in “date ranges” dimension).

4.2 Time Performance in Querying Star-Schema Warehouse

To analyse the time performance of the proposed method, we are looking at two main
areas: (i) the time required for adding data from a new version of the XML document
to the warehouse and (ii) the time required for running queries with temporal or non-
temporal result on the XML data warehouse built before.

We constructed a number of versions for some initial documents of 10kB, 20kB,
63kB, 127kB and 509kB respectively (downloaded from the SIGMOD dataset [11]),
by using a changes simulator implemented by us, where the percentages of deletions,
additions or updates is controlled via a user-friendly interface and the elements to be
changed are randomly chosen by the algorithm. Some of the tests results are as
follows:

(a) In Fig. 8A, we show how the consolidated delta performs during 10 successive
versions of a medium sized XML document (127kB), applying random 3% changes.
Black bars represent the total size of versions, while white bars represent the size of
the consolidated delta. As it can be noticed, the consolidated delta grows much more
slowly than the sum of version sizes. Also, the time required to add the information
for a new version from the consolidated delta to the data warehouse (the line running
on top of the bars) has a linear growth.

(b) In Fig. 8B, we give the times for running three different queries (Y axis shows
time in seconds) on warehouses of various sizes (i.e. 100kB, 250kB, s470kB, 530kB
and 1400kB; X axis shows size in kB). The time for running the query exemplified in
section 4.1 (middle one on graph), which involves temporal checks for all products in
the warehouse, takes a little longer than the other two queries but overall all behave
very well.

 Warehousing Dynamic XML Documents 183

Fig. 8. Dynamic of the consolidated delta during 10 successive changes of a medium sized
XML document (127kB) and the dynamic of time required for adding a new version’s data to
the warehouse

5 Conclusions and Future Work

In this paper we have presented a methodology for warehousing dynamic XML
documents, i.e. documents which change their content in time. Storing multiple
versions of the same document is not a feasible solution, because of the high degree
of similarity and, consequently, of the high cost of processing each version. We have
shown that the star-schema approach proposed in [6] to warehouse static XML
documents is also applicable for dynamic XML documents and allows the user to
store important information from the multiple versions (i.e. the actual initial data and
the changes between versions), so that temporal or non-temporal queries can be run
against it. As part of our future research work, we want to see how the consolidated
delta can be used to mine interesting knowledge out of multiple versions of an XML
document.

References

1. Widom, J., Data Management for XML: Research Directions, IEEE Data Engineering
Bulletin, 22(3):44:52, Sept.1999

2. Goffarelli, M., Maio, D. and Rizzi, S., Conceptual design of data warehouses from E/R In
Proceed. of Hawaii Intl. Conf. on System Sciences, vol. VII, Kona, Hawaii, pp. 334-343,
1998

3. Vrdoljak, B., Banek M. and Rizzi S., Designing Web Warehouses from XML Schema,
Data Warehousing and Knowledge Discovery, 5th International Conference DaWak 2003,
Prague, Czech Republic, Sept.3-5, 2003

4. Zhang J., Ling T.W., Bruckner R.M. and Tjoa A.M., Building XML Data Warehouse Based
on Frequent Patterns in User Queries, Data Warehousing and Knowledge Discovery, 5th
International Conference DaWak 2003, Prague, Czech Republic, Sept.3-5, 2003

5. Wang, F. and Zaniolo, C., Temporal queries in XML Document Archives and Web
Warehouses, In TIMEICTL, 2003

6. Rusu, L.I., Rahayu, W. and Taniar, D. A methodology for Building XML Data
Warehouses, International Journal of Data warehousing & Mining, 1(2), pp.67-92, April-
June 2005

184 L.I. Rusu, W. Rahayu, and D. Taniar

7. Rusu, L.I., Rahayu, W. and Taniar, D. Maintaining Versions of Dynamic XML
Documents, In Proceed. of The 6th International Conference on Web Information Systems
Engineering (WISE 2005), New York, NY, USA, November 20-22, 2005, pp.536-543

8. XQuery, http://www.w3.org/TR/xquery
9. Rusu, L.I., Rahayu, W. and Taniar, D. On Data Cleaning in Building XML Data

Warehouses, The 6th Intl. Conference on Information Integration and Web-based
Applications & Services (iiWAS2004), Jakarta, Indonesia, 797-807

10. P.P. Kalua, E.L. Robertson, Benchmark Queries for Temporal Databases, Technical
Report TR379, Computer Science Department, Indiana University, 1993

11. www.cs.washington.edu/datasets - SIGMOD XML dataset

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 185 – 194, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Integrating Different Grain Levels in a Medical Data
Warehouse Federation

Marko Banek1,* , A Min Tjoa2, and Nevena Stolba3,**

1 FER, University of Zagreb, HR-10000 Zagreb, Croatia
marko.banek@fer.hr

2 Institute of Software Technology and Interactive Systems (ISIS),
Vienna University of Technology, Favoritenstr. 9-11/188, A-1040 Wien, Austria

amin@ifs.tuwien.ac.at
3 Women’s Postgraduate College for Internet Technologies (WIT)

Vienna University of Technology, Favoritenstr. 9-11/188, A-1040 Wien, Austria
stolba@wit.tuwien.ac.at

Abstract. Healthcare organizations practicing evidence-based medicine strive
to unite their data resources in order to achieve a wider knowledge base for so-
phisticated research and matured decision support service. The central point of
such an integrated system is a data warehouse, to which all participants have
access. In order to insure a better protection of highly sensitive healthcare data,
the warehouse is not created physically, but as a federated system. The paper
describes the conceptual design of a health insurance data warehouse federation
(HEWAF) aimed at supporting evidence-based medicine. We address a major
domain-specific conceptual design issue: the integration of low-grained, time-
segmented data into the traditional warehouse, whose basic grain level is higher
than that of the time-segmented data. The conceptual model is based on a
widely accepted international healthcare standard. We use ontologies of the data
warehouse domain, as well as of the healthcare and pharmacy domains, to pro-
vide schema matching between the federation and the component warehouses.

1 Introduction

Evidence based medicine [14] successfully weaves the clinical decision process based
on human knowledge and the most efficient and most accurate computer-supported
research evidence. The application of its concepts speeds up the transfer of clinical
research findings into practice, which finally leads to cost reduction both for patients
and health insurance organisations, as well as the improvement of the healthcare proc-
ess as whole. A data warehouse storing a huge amount of healthcare data is the central
part of an information system that supports evidence-based medicine.

Healthcare institutions nowadays join their data into a single warehouse in order to
achieve a broader and more comprehensive data foundation for knowledge discovery,
to the benefit of all participants. However, laws insuring privacy protection forbid the

* “Ernst Mach” scholarship at ISIS funded by Austrian Fed. Ministry for Education, Science

and Culture.
** Research partially funded by Austrian Fed. Ministry for Education, Science and Culture and

the European Social Fund (ESF) under grant 31.963/46-VII/9/2002.

186 M. Banek, A Min Tjoa, and N. Stolba

confidential healthcare data to be copied and distributed outside the healthcare or-
ganizations. Instead of copying data physically into a new warehouse, a logical inte-
gration, a federated data warehouse [15] is created.

In this paper we propose a multidimensional conceptual model of a federated data
warehouse for the purpose of evidence-based medicine. The conceptual model of the
component warehouses offers a traditional view on financial measures, yet it does not
enable the processing of time-segmented medicine administration data (an important
topic in evidence based-medicine), whose grain level is even lower than the basic
grain level of the model. The contributions of our paper are the following: (1) we
develop a federated conceptual model that successfully integrates the low-level, time
segmented data but keeps the higher basic grain level. (2) Since the medicine admini-
stration quantities can be summed (like measures) and used as aggregation criteria
(like dimensions) they behave as a “cube in cube”. We regard the time-segmented
data as a unique XML-like structure, extending the existing approaches for merging
OLAP systems with XML documents described in [12, 13].

The paper is structured as follows. In Section 2 the requirements to a warehouse
federation in healthcare domain are explained. Section 3 presents how the integration
of different grain levels into the federated model is achieved. The use of ontologies in
matching schemas for the federation is described in Section 4. An outline of the re-
lated work is given is Section 5. Finally, in Section 6 conclusions are drawn.

2 Federated Data Warehouse for Healthcare

A federated database is “a collection of cooperating database systems that are
autonomous and possibly heterogeneous” [15]. The existence of a federation must not
have any impact on the local users of a component database. A federated data ware-
house is a functional data warehouse, a “big umbrella” [4]. No central, large data
warehouse collecting data from smaller component warehouses is created: heteroge-
neous data warehouses are integrated into one unit from the conceptual point of view.
A “common business model” [4] (i.e. common conceptual model) is needed, which
defines common facts and dimensions.

The paper describes how data warehouses of different health insurance organisa-
tions in Austria are merged in an evidence-based medicine collaboration project. The
case study of the federated data warehouse is called HEWAF (Healthcare Warehouse
Federation). A universal, simple and flexible common conceptual model is needed to
enable potential future integrations to be done seamlessly and with a minimum effort.
The conceptual model of HEWAF is based on the international healthcare standards
HL7 [21] in order to achieve a high level of generalisation and portability. Version 3
of HL7 standards defines the object-oriented Reference Information Model (RIM, the
starting point for all HL7 standards) and the Clinical Document Architecture (CDA),
an XML-based document mark-up standard, which specifies the structure and seman-
tics of clinical documents used for their exchange. Comparing to other existing stan-
dards, we claim HL7 to be the most comprehensive. Other standards either have a too
strict format or allow too much semantic or structural ambiguity.

HEWAF will be used for OLAP queries and data mining. Therefore the conceptual
model of the federation will be subject-oriented and multidimensional. Dimensions

 Integrating Different Grain Levels in a Medical Data Warehouse Federation 187

and facts should conform to HL7 RIM classes. Dimension attributes and measures
should conform to attributes of HL7 classes and it must be possible to display each
record (either at the basic-grain level of granularity, or an aggregated structure) as a
CDA-conforming XML structure.

On the one hand, the federated warehouse will be used to find correlations between
certain symptoms and diagnostic findings, to propose the best suitable therapy given
the complete anamnesis status of a patient or to compare the efficiency of different
medication products against the same disease. On the other hand, since health insur-
ance organisations pay for therapy procedures and prescribed medications, they want
to find possible unnecessary costs (e.g. medication therapies applied for a long time
with no or very little effect) and to foster therapies that give the best possible effi-
ciency for equal costs. Different from the patient-centred model based on the Elec-
tronic Patient Record, which is proposed in [9], our warehouse model is focused on
three billable acts: patient encounters, therapies and prescriptions, which correspond
to the HL7 RIM Act classes PatientEncounter, Procedure and SubstanceAdministra-
tion, respectively. In this way, all data relevant for a patient as well as financial data is
captured.

Fig. 1. The Prescription fact in HEWAF and its dimensions

The remainder of the paper describes the fact Prescription in the data warehouse
star schema. The fact is characterized by eight standard dimensions (Fig. 1). The
structures of the dimensions Patient and InsuranceOwner are identical, as they both
provide a different view of personal data (if the treatment of a patient is carried by
her/his own insurance policy, contents of both dimensions are the same). Analo-
gously, there are two time dimensions of identical structure: TimePharmacyIssued
and TimeApplicationStart. The value of the latter is often not exactly specified and in
that case it is generally presumed to be equal to the value of the first. The other six
dimensions are Clinic, Clinician, Diagnosis (only one, “main” diagnosis is specified
in prescription documents), Drug, Policy and InsuranceCompany. There are two de-
generate dimensions (i.e. single-attribute dimensions implemented as non-additive
measures, [5]) corresponding to the serial numbers in the prescription document:
prescriptionID and rowNumberID (Fig. 1). The fact contains two financial measures,
billedToInsurance and billedToPatient, and four additional measures: quantityPre-
scribed, quantityAdministered (the prescribed quantity can be 10 pills, but we can buy

188 M. Banek, A Min Tjoa, and N. Stolba

only a package of 12 pills), periodOfAdministration and unitsIssued. Finally, there is
an additional fact attribute, adminDose, which contains a sequence of time-labelled
segments giving a detailed description of medical substance administration.

3 Low-Grained Medicine Administration Data

The fact Prescription gives us the ability to determine how different variants of pre-
scription processes of the same drug substance can influence the patient’s recovery
and lead to a cost reduction. Several examples of the dosage instructions (also called
medicine administration data) in the prescription document can be seen in Fig. 2.

Fig. 2. Variants of dosage instructions (i.e. administration notes) in prescription documents

The total prescribed quantity (the quantity measure of the fact Prescription) is ei-
ther expressed in units of weight or volume (for solid substances and liquids, respec-
tively). Although it is possible to calculate the weight of the medical substance in a
dilute solution, this is neither easy (we should collect data about concentrations of
medical substance for all liquid drugs) nor practical (quantity is not additive across all
levels of dimension Drug, similar to the number of units of sold goods in a grocery
store [5]). Therefore the single attribute quantity consists of two parts: value and unit
(which is in accordance with HL7).

All component data warehouses store administration instructions of prescriptions
as a single attribute, adminDose, (Table 1, similar to the notation in Fig. 2), making
them unsuitable for processing. Such a level of granularity also corresponds to the
basic granularity of the fact Prescription in the federation model. However, the fed-
eration must enable administration data processing and putting queries at a detailed
level. The grain level needed for their processing is lower than the basic grain level
(i.e. the physical storage level) in the component warehouses. We argue that lowering
the basic grain [5, 10] to the level of administration data is not an advisable solution
for the following two reasons: (1) the semantics of the time dimension is different in
the two cases, and fragmenting financial measures is meaningless; (2) the general
focus of interest in the clinical decision making process is mainly aimed at prescrip-
tion data (as in Fig. 1), not at the instructions for medicine administration.

We propose a federated conceptual model whose basic grain corresponds to that of
the component warehouses and to the basic federate schema in Section 2, but enables
the integration of data at an even lower grain level. We can observe the medicine
administration data as a complex attribute of XML type in an object-relational data-
base (Fig. 3). It is a union of separate dosage records, time-labelled segments similar

1. Take 1 tablet each 8 hours for next 10 days
2. Take 600 mg each 12 hours for next 7 days
3. Take 2 tablets on the first day, and 1 on next four days (second tablet on the first day

12 hours after the first; tablet on the second day 12 hours after the last on the first day;
later 24-hour periods)

4. Take 500 mg in the morning and 500 mg in the evening for next 7 days.

 Integrating Different Grain Levels in a Medical Data Warehouse Federation 189

to a kind of a patient’s diary. Each record (<dose>) refers to a separate dose, an act of
drug consumption at a different point in time. Every separate dose, a <dose> sub-
element of <adminDose>, contains a sequence number attribute, sn, two attributes
defining the timestamp: ts (value) and tu (unit), and two attributes defining the quan-
tity q (value) and u (unit).

This kind of representation entirely follows the idea adopted by HL7, with only
one doseQuantity attribute, defined as a sequence of partial dosage records [21] . On
the contrary, the CDA representation of doseQuantity does not view a dose as an
inseparable, atomic unit, but splits time and quantity data, thus not being able to reach
as much expressive power as our model.

Table 1. Part of the prescription fact table in a relational component warehouse

drug
ID

billed-
ToIns ($)

qtyPrsc qtyAdm prdAdm noU
nits

adminDose

1234 23,50 7500 [mg] 8000 [mg] 10 [day] 2 1 t each 8 hours
1234 23,50 7000 [mg] 8000 [mg] 7 [day] 2 2 t each 10 hours

<adminDose>
 <dose sn="1" ts="0" tu="h" q="250" u="mg"/>
 <dose sn="2" ts="12" tu="h" q="250" u="mg"/>
 <dose sn="3" ts="1" tu="d" q="250" u="mg"/>
 <dose sn="4" ts="2" tu="d" q="250" u="mg"/>
 <dose sn="5" ts="3" tu="d" q="250" u="mg"/>
 <dose sn="6" ts="4" tu="d" q="250" u="mg"/>
</adminDose>

Fig. 3. Medicine administration data in an XML notation suitable for processing

3.1 Queries Containing Medicine Administration Data

Following the concept of HL7, we perceive adminDose as an XML-like structure that
is a single attribute of the HEWAF prescription fact. In this Section we show how the
dosage quantities can be aggregated as measures and used as selection or aggregation
criteria like dimensions. Hence, we call the adminDose attribute a “cube in cube”.

Querying the medicine administration data and associating it with other warehouse
attributes follows the principles of XML-extended OLAP querying elaborated by D.
Pedersen, Jensen and T.B. Pedersen [12, 13]. In their approach, a standard OLAP fact
can have one or more XML structures as dimensions. The approach is based on an
extended OLAP algebra and XPath [17] structures are added to SQL to fetch XML
data (the language is called SQLXM). They distinguish three different ways XML data
can be included into OLAP queries. First, queries may be decorated with XML data.
Second, external XML data may be used for selection (operation of restriction in
relational algebra). Third, OLAP data may be grouped by the values of external XML
data when aggregation is performed.

We adopt the basic principles of this approach, with one substantial difference: our
“XML” data is part of the fact (a “cube in cube”), not dimensions. Therefore we must
differentiate the internal aggregation, which processes data within the same fact

190 M. Banek, A Min Tjoa, and N. Stolba

record, and the global aggregation, which is described in [12, 13]. In HEWAF, deco-
ration and selection queries can include internally aggregated data. Aggregation op-
erators SUM, COUNT, MAX, MIN, AVG can be used, except for the constraint that
quantities measured by weight and those measured by volume cannot be aggregated
together. In the following queries we extend the principles of SQLXM.

Decoration. Decoration means providing supplementary medicine administration
data in the result of an OLAP query, without using it as selection (WHERE clause of
an SQL query) or global aggregation (GROUP BY clause) criteria.

In Query 1 a decoration without internal aggregation is presented. For each patient
who was prescribed 250 mg azithromycin capsules in May 2005, textual description
of the cause diagnosis should be displayed, as well as the quantity (value and unit) of
the first dosage portion and region where the patient lives.

Query 1: SELECT d.description, fp.adminDose/dose[@sn="1"]/@q, admin-
Dose/dose[@sn="1"]/@u, p.region FROM FactPrescription fp, Diagnosis d, Time t,
Drug dr, Patient p WHERE Time.month="05_2005" and Drug.drug_code=
"(azithr_250mg_code)"

Selection. In Query 2 medicine administration data is part of the WHERE clause, i.e.
determines selection. Also, it is aggregated internally, using the operator SUM. The
result returns the (altogether) cost billed to insurance institutions for all prescribed
antibiotics where the dosage on the first day (first 24 hours) is smaller than or equal to
the fifth of the entire prescribed dose. The results are grouped by diagnosis (the sec-
ond level of ICD-10 classification, [16]) and diagnosis ID, as well as diagnosis de-
scription are displayed.

Query 2: SELECT SUM(fp.billedToInsurance), d.level2ID, d.level2Desc FROM
FactPrescription fp, Diagnosis d WHERE SUM(fp.adminDose/dose[@ts<"24" and
@tu="h"]/@q)/(fp.quantityPrescribed)<=0.2 GROUP BY d.level2ID

Aggregation. Aggregation can be meaningfully performed over attributes with a
discrete domain of values. Considering time-segmented dose records, serial number
(sn) has a discrete domain, while timestamp (ts) and quantity (q) are typical features
with continuous values. In general, continuous domains should be split into a finite set
of groups and hierarchies created over the groups in order to perform aggregations.

We state one hour as the shortest periods of time during which aggregation can be
performed. Larger periods are 3-hour, 6-hour, 12-hour, 24-hour, 2-day, 7-day, 14-day
and 4-week period. Considering the dosage portions that are at the border of these
intervals, we define a time interval from a to b as [a, b), meaning that the portion at
the lower border (with timestamp a) is included in the interval while the upper border
(with timestamp b) is not included.

Although the aggregation over a single (non-grouped) quantity value seems possi-
ble but meaningless, for most of the products sold as pills, capsules or tablets there is
actually only a finite set of possible administration quantities. Moreover, medical
standards for administering liquids also prescribe a finite number of possible quanti-
ties. For instance, we can aggregate dosage data if we constrain the value of attribute
basicProductForm in dimension Drug only to “capsule” and “tablet” and restrict the

 Integrating Different Grain Levels in a Medical Data Warehouse Federation 191

query selection (WHERE clause) to the three lowest levels of the Drug dimension
hierarchy (a packed factory product: Sumamed 250g, Zithromax 500g, a factory prod-
uct: Sumamed, Zithromax or a substance: Azithromycin).

While in the approach described in [12, 13] the external XML dimension is used to
define aggregation criteria, not changing the essence of the aggregation process, in
our case the basic granularity of the Prescription fact is split to the level of an indi-
vidual administration dose and then the aggregation is performed.

Query 3 selects only prescriptions of 250 mg Zithromax capsules, groups them ac-
cording to the dosage quantities (quantity is the concatenation of quantity value and
quantity unit) and counts the quantities, so that we can see which dosage quantity is
preferred.

Query 3. SELECT concat (fp.adminDose/dose/@q, fp.adminDose/dose/@u),
COUNT(fp.adminDose/dose/@q) FROM FactPrescription fp, Drug d WHERE
d.drug_code= ”(zithromax_250mg_code)” and d.basicProductForm=”capsule”
GROUP BY concat (fp.adminDose/dose/@q, fp.adminDose/dose/@u)

4 Use of Ontologies in Achieving Federation

There have been many efforts during the last two decades to automate the process of
integrating component database schemas, and, more recently, component warehouse
schemas into a single federated schema. Sheth and Larson state that a completely
automatic schema integration is not possible because of the inability of the semantic
models to capture a real-world state completely, as well as the existence of multiple
views and interpretations of a real-world state [15].

Recent research into ontologies and development of large lexical databases like
WordNet [20] enables applications to “understand” the semantic relations between
items. Ontologies organize terms of a certain domain into classes (e.g. wine and or-
ange juice are both subclasses of drink and they are mutually disjoint) and state their
relationships (e.g. colour is a property of wine). Lexical databases provide a thesaurus
of synonyms, antonyms and homonyms.

Using ontologies and lexical databases in a rigorous manner could lead to a data-
base federation schema matching process that would be almost fully automated. The
application would deliver enough semantic information for the matching process, and
the warehouse designer would only have to check its consistency. We briefly present
the idea of an ontology-based warehouse schema matching, which is currently being
implemented in W3C Web Ontology Language (OWL, [18]).

The role of ontologies in our approach is twofold. First, since there is no standard
conceptual model of data warehouse, from which an ontology could be derived, we
define our own “structural ontology” over the basic data warehousing constructs:
cubes, dimensions, hierarchies, hierarchy levels, measures, dimensional attributes etc
(the left side of Fig. 4). Ontology instances, which provide the structural schema of
the federation and the component warehouses, can be automatically created from the
warehouse metadata (the right side of Fig. 4). Second, additional ontologies must be
used in order to match the structural components and accomplish the schema match-
ing process. The ontologies correspond to domains described by the warehouse facts
and dimensions. In our case we primarily need a healthcare and pharmacy ontology

192 M. Banek, A Min Tjoa, and N. Stolba

(which characterizes diseases, drugs, patients), but also other ontologies, referring to
time (segments and units) or personal data. The use of WordNet should give a sub-
stantial support in building the ontologies. WordNet will also be used in cases when
the query against ontologies produces no successful matching. Due to the lack of
space, we plan to dedicate an entire future paper to the ideas described in this chapter.

Fig. 4. Ontology of the data warehouse domain

5 Related Work

One of the first scientific papers describing an accomplished clinical data warehouse
development project is [3]. Differences between conventional, business-oriented data
warehouses and clinical data warehouses are outlined in [9] and key research issues in
clinical data warehousing identified. The warehouse outlined in [9] has the patient in
the focus of its interest, while the approach in [10] is similar to ours, focusing on
billable acts (encounters).

Some resemblance to our approach can be seen in [6], which illustrates an associa-
tion rule mining technique over human sleep datasets. There is a macro-level dataset
containing patient demographics, general and sleep-specific habits and sleep-related
disorders, as well as a micro-level dataset consisting of detailed, time-series data
obtained from sensors (data such as electro-encephalogram or electro-myogram).

A data warehouse federation is described in [1, 8]. XML Topic Maps (XTM) [19]
is used to provide the integration framework. Various elements of the federation
model and the component warehouses are described as topic map resources, providing
an abstraction layer and thus seamlessly overcoming the semantic heterogeneity.
However, the topics must be manually defined first.

In [11] an enterprise knowledge portal that integrates OLAP and information re-
trieval (IR) functionality is presented, with an RDF-based ontology as the core, which
stores metadata for different resources. A similarity function for metadata search is
defined, which treats two identical descriptions as a 100% match, while two com-
pletely unrelated descriptions are a 0% match. Construction of a federated spatial

<owl:Class rdf:ID="Attribute"/>

<owl:Class rdf:ID="DimAttribute">
 <rdfs:subClassOf
 rdf:resource="#Attribute"/>
</owl:Class>

<owl:Class rdf:ID="Level" />

<owl:ObjectProperty
rdf:ID="attributeOfLevel">
 <rdf:type
rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain
rdf:resource="#DimAttribute"/>
 <rdfs:range rdf:resource="#Level"/>
</owl:ObjectProperty>

<Level rdf:ID="ICDLevel2"/>

<DimAttribute
rdf:ID="level2Desc">
 <attributeOfLevel
rdf:resource="ICDLevel2">
</DimAttribute>

<Dimension
rdf:ID="Diagnosis">
<hasLevel
rdf:resource="ICDLevel1">
<hasLevel
rdf:resource="ICDLevel2">
<hasHierarchy
rdf:resource="DiagHierDef">
</Dimension>

 Integrating Different Grain Levels in a Medical Data Warehouse Federation 193

database, using OWL, is outlined in [7]. Spatial databases are defined by using a par-
ticular XML encoding for the transport and storage of geographic information. The
ontology is derived from WordNet and the spatial data transfer standard. A self-
medication information system, which proposes to patients information and services
on mild clinical signs and associated treatments, is illustrated in [2]. Given the simpli-
fied patient’s electronic health record as input, an ontology is used to infer the right
treatment proposal out of the self-medication knowledge base.

6 Conclusion

This paper presents the conceptual model of HEWAF, a federated data warehouse for
health insurance organizations practicing evidence-based medicine. The model is
based on the widely adopted international standard HL7. The biggest challenge we
addressed during the design process was the integration of time-segmented, low-
grained medicine administration data into the standard conceptual multidimensional
data warehouse model with financial measures. The medicine administration data is a
complex attribute of the fact, which can be observed as an XML-like “cube in cube”
and aggregated internally. The basic principles of OLAP-XML federation are adopted
and extended to generate queries. In order to automate the schema matching process
as much as possible, we developed a data warehouse domain ontology, and are cur-
rently working on developing a simplified domain ontology in the healthcare and
pharmacy area.

References

[1] Bruckner, R.M., Tok, W.L., Mangisengi, O., Tjoa, A.M.: A Framework for a Multidimen-
sional OLAP Model Using Topic Maps. In: Proc. Int. Conf. on Web Information Systems
Engineering (WISE’01). IEEE Computer Society (2001) 109-118.

[2] Curé, O.: Ontology Interaction with a Patient Electronic Health Record. In: Proc. Symp.
Computer-Based Medical Systems (CBMS’05). IEEE Computer Society (2005) 323-328

[3] Ewen, E.F., Medsker, C., Dusterhoft, L.E., Levan-Shultz, K., Smith, J.L., Gottschall,
M.A.: Data Warehousing in an Integrated Health System: Building the Business Case. In:
Proc. Int. Workshop on Data Warehousing and OLAP (DOLAP’98). ACM Press, New
York (1998) 47-53

[4] Jindal, R., Acharya, A.: Federated Data warehouse Architecture, Wipro Technologies
white paper, (2004) http://hosteddocs.ittoolbox.com/Federated%20data%20Warehouse
%20Architecture.pdf (Last access: April 10, 2006)

[5] Kimball, R., Ross, M.: The Data Warehouse Toolkit, The Complete Guide to Dimen-
sional Modeling. 2nd edn. John Wiley & Sons, New York (2002)

[6] Laxminarayan, P., Ruiz, C., Alvarez, S.A., Moonis, M.: Mining Associations over Human
Sleep Time Series. In: Proc. Symp. Computer-Based Medical Systems (CBMS’05). IEEE
Computer Society (2005) 323-328

[7] Morocho, V., Saltor, F., Pérez-Vidal, L.: Schema Integration on Federated Spatial DB
across Ontologies. In: Proc. Int. Workshop on Engineering Federated Information Sys-
tems (EFIS’03). IOS Press (2003) 63-72

194 M. Banek, A Min Tjoa, and N. Stolba

[8] Nguyen, T.B., Tjoa, A.M., Mangisengi, O.: MetaCube XTM: A Multidimensional Meta-
data Approach for Semantic Web Warehousing Systems. In: Proc. Int. Conf. on Data
Warehousing and Knowledge Discovery (DaWaK’03). Lecture Notes in Computer Sci-
ence, Vol. 2737, Springer Verlag, Berlin Heidelberg New York (2003) 76-88

[9] Pedersen, T.B., Jensen, C.S.: Research Issues in Clinical Data Warehousing. In: Proc. Int.
Conf. on Scientific and Statistical Database Management (SSDBM’98). IEEE Computer
Society Press (2001) 43-52

[10] Song, I.-Y., Rowen, W., Medsker, C., Ewen, E.F.: An Analysis of Many-to-Many Rela-
tionships between the Fact and Dimension Tables in Dimensional Modeling. In: Proc. Int.
Workshop on Design Management of Data Warehouses (DMDW’01), CEUR Workshop
Proceedings, Vol. 39, CEUR WS-org (2001) 6(1-13)

[11] Priebe, T., Pernul G.: Ontology-based Integration of OLAP and Information Retrieval. In:
Int. Workshop on Database and Expert Systems Applications (DEXA’03). IEEE Com-
puter Society (2003) 610-614

[12] Pedersen, D., Riis, K., Pedersen, T.B.: XML Extended OLAP Querying. In: Proc. Int.
Conf. on Scientific and Statistical Database Management (SSDBM’02). IEEE Computer
Society (2002) 195-206

[13] Pedersen D., Riis, K., Pedersen, T.B.: A Powerful and SQL-Compatible Data Model and
Query Language for OLAP. In: Database Technologies, Proc. Australasian Database Con-
ference (ADC’02). Australian Computer Society (2002)

[14] Sackett, D.L., Rosenberg, W.M.C., Gray, J.A.M., Haynes, R.B., Richardson, W.S,: Evi-
dence-Based Medicine: What It Is and What It Isn’t. British Medical J., Vol. 312 (7032).
BMJ Publishing Group (1996) 71-72

[15] Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed, Hetero-
geneous, and Autonomous Databases. ACM Computing Surveys, Vol. 22 (3). ACM
Press, New York (1990) 183-236

[16] World Health Organization (WHO): International Statistical Classification of Diseases
and Related Health Problems, 10th Revision, Version for 2003 http://www3.who.int/icd/
vol1htm2003/fr-icd.htm (Last access: April 10, 2006)

[17] World Wide Web Consortium: XML Path Language (XPath) v. 1.0. W3C recommenda-
tion (as of November 16, 1999). http://www.w3.org/TR/1999/REC-xpath-19991116

[18] World Wide Web Consortium: OWL Web Ontology Language. W3C Recommendation
(as of February 10, 2004). http://www.w3.org/TR/2004/REC-owl-features-20040210/

[19] XML Topic Maps (XTM) 1.0, TopicMaps.Org Specification (as of June 6, 2001)
http://www.topicmaps.org/xtm/1.0/xtm1-20010806.html

[20] Princeton University Cognitive Science Laboratory: WordNet, a lexical database for Eng-
lish language. http://wordnet.princeton.edu/ (Last access: April 10, 2006)

[21] Health Level Seven (HL7), www.hl7.org (Last access: April 10, 2006)

A Versioning Management Model for
Ontology-Based Data Warehouses

Dung Nguyen Xuan, Ladjel Bellatreche, and Guy Pierra

LISI/ENSMA - Poitiers University - Futuroscope - France
{nguyenx, bellatreche, pierra}@ensma.fr

Abstract. More and more integration systems use ontologies to solve
the problem of semantic heterogeneities between autonomous databases.
To automate the integration process, a number of these systems sup-
pose the existence of a shared domain ontology a priori referenced by
the local ontologies embedded in the various sources. When the shared
ontology evolves over the time, the evolution may concern (i) the ontol-
ogy level, (2) the local schema level, and/or (3) the contents of sources.
Since sources are autonomous and may evolve independently, managing
the evolution of the integrated system turns to an asynchronous version-
ing problem. In this paper, we propose an approach and a model to deal
with this problem in the context of a materialized integration system.
To manage the changes of contents and schemas of sources, we adapt the
existing solutions proposed in traditional databases. To support ontology
changes, we propose the principle of ontological continuity. It supposes
that an evolution of an ontology should not make false an axiom that
was previously true. This principle allows the management of each old
instance using the new version of ontology. With this assumption, we pro-
pose an approach, called the floating version model, that fully automate
the whole integration process. Our proposed work has been validated by
a prototype using ECCO environment and the EXPRESS language.

1 Introduction

As digital repositories of information are springing up everywhere and inter-
connectivity between computers around the world is being established, the con-
struction and evolution management of data warehouse over such autonomous,
heterogeneous and distributed data sources becomes crucial for a number of
modern applications. A data warehouse can be seen as an integration system,
where relevant data of various sources are extracted, transformed and materi-
alized (contrary to the mediator architecture) in a warehouse. To facilitate the
construction of a data warehouse, two main issues may be considered: (1) the
resolution of different conflicts (naming conflicts, scaling conflicts, confounding
conflicts and representation conflicts) caused by semantic and schematic hetero-
geneities [5] and (2) the schematic autonomy of sources, known as the receiver
heterogeneity problem [5]. To deal with the first issue, more and more approaches
associated to data an ontology [3]. An ontology is defined as a formal specifica-
tion of a shared conceptualization [6]. The main contribution of these ontologies

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 195–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

196 D.N. Xuan, L. Bellatreche, and G. Pierra

is to formally represent the sense of instances of sources. In [3], we showed that
when a shared (e.g., standardized) domain ontology exists, and each local source
a priori references that ontology, an automatic integration becomes possible. In-
deed, the articulation between the local ontologies and the shared one allows
an automatic resolution of the different conflicts. Over the last years, a number
of similar integration systems have been proposed following either mediator or
warehouse architectures. In the materialized approach, several ontology-based
data management systems like RDFsuite [1] and DLDB [11] have been devel-
oped. The main assumption of these systems is that all the sources use the same
shared ontology.

Most of the sources participating in the integration process operate au-
tonomously, they are free to modify their ontologies and/or schemas, remove
some data without any prior ”public” notification, or occasionally block access
to the source for maintenance or other purposes. Moreover, they may not always
be aware of or concerned by other sources referencing them or integration sys-
tems accessing them [13]. Consequently, the relation between the data warehouse
and its sources is slightly coupled which causes anomalies of maintenance [4].

In the traditional databases, changes have two categories [12]: (1) content
changes (insert/update/delete instances) and (2) schema changes (add/modify
/drop attributes or tables). In order to tackle the problem of schema changes,
two different ways are possible: schema evolution and schema versioning [9]. In
ontology-based integration systems, the evolution management is more difficult.
This difficulty is due to the presence of ontologies (shared and local) that may
also (slowly) evolve. In order to ensure the schematic autonomy of sources, some
ontology-based integration systems allow also each source to refine the shared
ontology by adding new concepts [3].

When the shared ontology evolves over the time and none global clock ex-
its enforcing all the sources and the warehouse to evolve at the same time,
various sources to be integrated may reference the same shared ontology as it
was at various points in time. Therefore, the problem of integration turns to
an asynchronous versioning problem. In this paper, we address this problem by
considering the ontology-based integration system developed in our laboratory
[3]. This system is based on three major assumptions that reflect our point of
view on large-scale integration: an automatic and a reliable integration of au-
tonomous data sources is only possible if the source owners a priori agree on a
common shared vocabulary. The only challenge is to define a mechanism that
leaves as much as possible schematic autonomy of each source [3]. These as-
sumptions are as follows: (1) Each data source participating in the integration
process shall contain its own ontology. We call such a source an ontology-based
database (OBDB) [3]. (2) Each local source a priori references a shared ontol-
ogy by subsumption relationships ”as much as possible” (i.e., each local class
must reference its smallest subsuming class in the shared ontology). (3) A local
ontology may restrict and extend the shared ontology as much as needed. The
work proposed in this paper can be extended to others ontology-based integra-
tion systems. Although the evolution was largely studied [10], to the best of

A Versioning Management Model for Ontology-Based Data Warehouses 197

our knowledge, none of these systems considered the problem of asynchronous
evolution of ontologies.

In order to manage asynchronous evolution, the following issues need to be ad-
dressed: (1) the management of the evolutions of ontologies in order to maintain
the relations between ontologies and the data originating from various sources,
(2) the management of the life cycle of the instances (periods where an instance
was alive), and (3) the capability to interpret each instance of the data ware-
house, even if it is described using a different set of properties than those defined
in the current version of the ontology (some properties are added/deprecated).

This paper is divided in six sections: Section 2 proposes our semantic integra-
tion approach based on a priori articulation between the shared ontology and
local ontologies. Section 3 presents our approach to manage evolution of contents
and schemas of data sources. Section 4 describes our mechanism of managing
ontology changes using the principle of ontological continuity, and presents our
floating version model. Section 5 presents an implementation of our approach
using the Express language and ECCO environment. Section 6 concludes the
paper by summarizing the main results and suggesting future work.

2 An a Priori Integration Approach

In this section, we formalize the ontology-based integration process in order to
facilitate the presentation of our proposed solution. Let S = {S1, ..., Sn} be a
set of sources participating in the integration process. Note that each source Si

has a local ontology Oi that references/extends the shared ontology O. Formally,
the ontology O can be defined as the 4-tuples < C,P,Applic, Sub >, where: (a)
C is the set of the classes used to describe the concepts of a given domain, (b)
P is the set of all properties used to describe the instances of the classes of C.
Note that only a subset of P might be selected by any particular database 1, (c)
Applic is a function defined as Applic : C → 2P . It associates to each class of
the ontology, the properties that are rigid (applicable) for each instance of this
class and that may be used, in the database, for describing its instances. Note
that for each ci ∈ C, only a subset of Applic(ci) may be used in any particular
database, for describing ci instances, and (d) Sub is the subsumption function
defined as Sub : C → 2C 2, where for a class ci of the ontology, it associates
its direct subsumed classes 3. Sub defines a partial order over C. In our model,
there exists two kinds of subsumption relationships: Sub = OOSub ∪ OntoSub,
where: OOSub is the usual object-oriented subsumption with the inheritance
relationship. Through OOSub, applicable properties are inherited. OOSub must
define a single hierarchy. OntoSub is a subsumption relationship without the
inheritance. Through OntoSub (also called case-of in the PLIB ontology model),
properties of a subsuming class may be imported by a subsumed class.

1 In our approach, each local ontology may also extend P .
2 2C denotes the power set of C.
3 C1 subsumes C2 iff ∀x ∈ C2, x ∈ C1.

198 D.N. Xuan, L. Bellatreche, and G. Pierra

OntoSub is also used as an articulation operator allowing to connect local ontolo-
gies into a shared ontology. Through this relationship, a local class may import or
map all or some of the properties that are defined in the referenced class(es). In
order to ensure the autonomy of sources, it may also define additional properties.

Now, we have all ingredients to define formally each source Si as 5-tuples :
< Oi, Schi, Ii, Popi,Mi >, where:
(i) Oi is an ontology (Oi :< Ci, Pi, Applici, Subi >). (ii) Schi : Ci → 2Pi asso-
ciates to each ontology class ci,j of Ci the properties which are effectively used to
describe the instances of the class ci,j . This set may be any subset of Appli(cij)
(as the role of an ontology is to conceptualize a domain, the role of a database
schema is to select only those properties that are relevant for its target applica-
tion). (iii) Ii is the set of instances of the source Si. (iv) Popi : Ci → 2Ii is the
set of instances of each class. Finally, (v) the mapping Mi represents the articu-
lation between the shared ontology O and the local ontology Oi. It is defined as
a function: Mi : C → 2Ci , that defines the subsumption relationships without
inheritance holding between C and Ci.

Several automatic integration scenarios may be defined in the above context
[3]. For simplicity reason, we just outline below the ExtendOnto integration
scenario, where the warehouse ontology consists of the shared ontology extended
by the local ontologies of all the sources that have been added in the warehouse.
Thanks to the articulation mappings (Mi), we note that all warehouse data that
may be interpreted by the shared ontology (i.e., of which the class is subsumed
by a shared ontology class) may be accessed through this ontology, whatever
source they came from 4.

Fig. 1. The Structure of our Data Warehouse

The ontology-based data warehouse DW has the same source structure (Fig-
ure 1): DW :< ODW , SchDW , IDW , PopDW , φ >, where:

1. ODW is the warehouse ontology. It is computed by integrating local ontolo-
gies into the shared one. Its components are computed as follows:
– CDW = C ∪ (∪1≤i≤nCi).
– PDW = P ∪ (∪1≤i≤nPi).

4 Another integration scenario, called ProjOnto, assumes that source instances are
extracted after a projection operation on the shared ontology.

A Versioning Management Model for Ontology-Based Data Warehouses 199

– ApplicDW (c) =
{

Applic(c), if c ∈ C
Applici(c), if c ∈ Ci

– SubDW (c) =
{

Sub(c) ∪Mi(c), if c ∈ C
Subi(c), if c ∈ Ci

2. IDW = ∪1≤i≤nIi.
3. The instances are stored in tables as in their sources.

– ∀ci ∈ CDW ∧ ci ∈ Ci(1 ≤ i ≤ n):
(a) SchDW (ci) = Schi(ci),
(b) PopDW (ci) = Popi(ci)

– ∀c ∈ C
(a) SchDW (c) = Applic(c) ∩ (Sch(c) ∪ (∪cj∈SubDW (c)Sch(cj))).
(b) PopDW (c) = ∪cj∈Sub(c)Pop(cj)

3 Evolution Management of Contents and Schemas

In this section, we present a mechanism to identify classes, properties and in-
stances and the life cycle of instances.

To identify classes and properties, we use the universal identifiers (UI) defined
in the ontology [3]. We assume that the identifiers contain two parts separated
by ”:”. The first and second parts represent, an UI and a version number, respec-
tively. In order to recognize instances of the data warehouse, any source must
define for each class having a population a semantic key. It is composed by the
representation (in character string form) of values of one or several applicable
properties of this class.

3.1 The Life Cycle of Instances

In some situations, it may be useful to know the existence of instances in the
warehouse at any previous point in time. To do so, we do not need to archive also
the versions of ontologies since the current version always allows to interpret old
instances (see Section 4). This problem is known by ”schema versioning” [15],
where all versioned data of a table are saved. Two solutions are possible to satisfy
this requirement: explicit storage and implicit storage approaches. In the explicit
storage approach [2,15], all the versions of each table are explicitly stored. This
solution has two advantages: (i) it is easy to implement and allows an automation
of the process of updating of data, and (ii) query processing is straightforward.
But it can be very important if the query needs an exploration of all versioned
data of the warehouse. Another drawback is due to the storage of the replicated
data. In the implicit storage approach [15], only one version of each table T is
stored. This schema is obtained by making the union of all properties appearing
in the various versions. On each data warehouse updating, one adds all existing
instances of each source tables. Instances are supplemented by null values. This
solution avoid the exploration of several versions of a given table. The major
drawbacks of this solution are: (i) the problem of replicated data is still present,
(ii) the implementation is more difficult than the previous one concerning the

200 D.N. Xuan, L. Bellatreche, and G. Pierra

automatic computation of the schema of stored tables (the names of columns
may have changed in the sources); (iii) the layout of the life cycle of data is
difficult to implement (”valid time” [15]) and (iv) the semantics ambiguity of
the null values.

Our solution follows the second approach and solves the problems as follows:
(1) the problem of replicated data is solved thanks to the single semantic iden-
tification (value of the semantic key) of each instance of data, (2) the problem
of the updating process of table schemata is solved through the use of universal
identifiers (UI) for all the properties, (3) the problem of the representation of the
instances life cycle is solved by a pair of properties: (V ersionmin, V ersionmax).
It enables us to know the validation period of a given instance, and (4) the
problem of the semantic ambiguity of the null values is handled by archiving the
functions Sch of the various versions of each class. This archive enables us to
determine the true schema of version of a table at any point in time, and thus
the initial representation of each instance.

4 Ontology Evolution Management

4.1 Principle of Ontological Continuity

The constraints that may be defined in order to handle evolution of versioned
ontology-based data sources result from the fundamental differences existing
between the evolution of conceptual models and ontologies. A conceptual model
is a model of a domain. This means, following the Minsky definition of a model
[8], that it is an object allowing to respond to some particular questions on
another object, namely, the target domain. When the questions change (when the
organizational objectives of the target system are modified), its conceptual model
is modified too, despite the fact that the target domain is in fact unchanged.
Therefore, conceptual models are heavily depending upon the objectives assigned
to the databases they are used to design. They evolve each time these objectives
change. Contrary to conceptual models, an ontology is a conceptualization that
is not linked with any particular objective of any particular computer system.
It only aims to represent all the entities of a particular domain in a form that is
consensual for a rather broad community having in mind a rather broad kind of
problems. It is a logic theory of a part of the world, shared by a whole community,
and allowing their members to understand each others. That can be, for example,
the set theory (for mathematicians), mechanic (for mechanical engineers) or
analytical counting (for accountants). For this type of conceptualizations, two
changes may be identified: normal evolution, and revolution. A normal evolution
of a theory is its deepening. New truths, more detailed are added to the old
truths. But what was true yesterday remains true today. Concepts are never
deleted contrary to [7].

It is also possible that axioms of a theory become false. In this case, it is not
any more an evolution. It is a revolution, where two different logical systems will
coexist or be opposed.

A Versioning Management Model for Ontology-Based Data Warehouses 201

The ontologies that we are considered in our approach follow this philosophy.
These ontologies are either standardized, for example at the international level,
or defined by large size consortium which formalize in a stable way the knowledge
of a technical domain. The changes in which we are interested are not those
changes where all the shared knowledge of a domain is challenged by a new
theory: we only address changes representing an evolution of the axioms of an
ontology and not a revolution.

Therefore, we propose to impose to all manipulated ontologies (local and
shared) to respect the following principle for ontology evolution:

Principle of ontological continuity: if we consider an ontology as a set of axioms,
then ontology evolution must ensure that any true axiom for a certain version of
an ontology will remain true for all its later versions. Changes that do not fulfill
this requirement are called ontology revolution.

In the remaining paper, we only consider ontology evolution.

4.2 Constraints on the Evolution of Ontologies

In this section, we discuss the constraints for each kind of concept (classes,
relation between classes, properties and instances) during ontology evolution.
Let Ok =< Ck, P k, Subk, Applick > be the ontology in version k.

Permanence of the classes. Existence of a class could not be denied across
evolution: Ck ⊂ Ck+1. To make the model more flexible, as it is the case non
computerized ontology, a class may become obsolete. It will then be marked as
”deprecated”, but it will continue belong to the newer versions of the ontology.
In addition, the definition of a class could be refined, but this should not exclude
any instance that was member of the class in the previous version. This means:

– the definition of a class may evolve,
– each class definition is to be associated with a version number.
– for any instance i, i ∈ Ck ⇒ i ∈ Ck+1.

Permanence of properties. Similarly P k ⊂ P k+1. A property may become
obsolete but neither its existence, nor its value for a particular instance may
be modified. Similarly, a definition or value domain of a property may evolve.
Taking into account the ontological principle of continuity, a value domain could
be only increasing, certain values being eventually marked as obsolete.

Permanence of the Subsumption. Subsumption is also an ontological con-
cept which could not be infirmed. Let Sub∗ : C → 2C be the transitive closure
of the direct subsumption relation Sub. We have then:

∀ C ∈ Ck, Sub∗k(c) ⊂ Sub∗k+1(c).
This constraint allows obviously an evolution of the subsumption hierarchy, for
example by intercalating intermediate classes between two classes linked by a
subsumption relation.

202 D.N. Xuan, L. Bellatreche, and G. Pierra

Description of instances. The fact that a property p ∈ Applic(c) means that
this property is rigid for each instance of c. This is an axiom that cannot be
infirmed: ∀c ∈ Ck, Applic∗k(c) ⊂ Applic∗k+1(c).

Note that this does not require that same properties are always used to de-
scribe the instances of the same class. As described in section 4.1, schematic
evolution does not depend only on ontology evolutions. It depends also, and
mainly, on the organizational objectives of each particular database version.

4.3 Floating Version Model: A Global Access to Current Instances

Before presenting our floating version model, we indicate the updating scenario
of our data warehouse: at given moments, chosen by the data warehouse adminis-
trator, the current version of a source Si is loaded in the warehouse. This version
includes its local ontology, the mapping Mi between local ontology Oi and the
shared ontology O, and its current content (certain instances eventually already
exist in the warehouse, others are new, others are removed). This scenario is
common in the engineering domain, where an engineering data warehouse con-
solidates descriptions (i.e., electronic catalogues) of industrial components of a
whole of suppliers. Therefore, in this scenario, the maintenance process is car-
ried out each time that a new version of an electronic catalogue of a supplier is
received.

Our floating version model is able to support two kind of user services: (i) it
allows to provide an access via a single ontology to the set of all instances that
have been recorded in the data warehouse over the time its ontology and/or (ii)
it also allows to record the various versions of the ontologies (shared and local)
and to trace the life cycle of instances (full multi-version management). In this
section we discuss how these objectives will be achieved.

The principal difficulty due to source autonomy is that in some situations,
when two different sources are loaded, let’s say Si and Sj , a same class c of
shared ontology O can be referred by an articulation mapping (i.e., subsump-
tion) in different versions. For example, classes cn

i of Si and cp
j of Sj may refer

to ck (class c with version k) and ck+j (class c with version k + j), respec-
tively. According to the principle of ontological continuity, it is advisable to note
that:

1. all applicable properties in ck are also applicable in ck+j ,
2. all subsumed classes by ck are also subsumed by ck+j ,

Thus, the subsumption relation between ck and cn
i could be replaced by a sub-

sumption relation between ck+j and cn
i . Moreover, all the properties that were

imported from ck may also be imported from ck+j . Therefore, the class ck is not
necessary to reach (as a subsuming class) instances of cn

i .
This remark leads us to propose a model, called the floating version model,

which enables to reach all the data in the data warehouse via only one version
of each class of the warehouse ontology. This set of versioned classes, called the
”current version” of the warehouse ontology is such that the current version of
each class cf is higher or equal to the largest version of that class referenced

A Versioning Management Model for Ontology-Based Data Warehouses 203

by a subsumption relationship at the time of any maintenance. In practice, this
condition is satisfied as follows:

– if an articulation Mi references a class cf with a version lower than f , then
Mi is updated in order to reference cf ,

– if an articulation Mi references a class cf with a version greater than f , then
the warehouse connect itself to the shared ontology server, loads the last
version of the shared ontology and migrates all references Mi (i = 1..n) to
new current versions.

Example 1. During the maintenance process of a class C1 ((Figure 2)) that refer-
ences the shared ontology class C with version 2 (1), the version of C in current
ontology is 1 (2). In this case, the warehouse downloads the current version
of the shared ontology (3). This one being 3, class C1 is modified to reference
version 3 (4).

Current Version

Warehouse

Result
C

(version 1)

C1
(version 1)

Warehouse

Current Version

C
(version 3)

C1
(version 2)

C1
(version 2)

C
(version 2)

Source

C
(version 3)

Shared
Ontology

1 2

3

4

Legend

Subsomption
 relationship

Loading of
 information

Fig. 2. A Model of the floating versions

We described below the two automatic maintenance processes that our floating
version model makes possible.

Simplified Version Management. If the only requirements of users is to
be able to browse the current instances of the data warehouse then, at each
maintenance step: (1) ontology description of the various classes of the data
warehouse ontology are possibly replaced by newer versions, and (2) the table
associated to each class coming from a local ontology in the data warehouse is
simply replaced by the corresponding current table in the local source.

A Full Multi-version Management. Note that in the previous case (Sec-
tion 5.1), the articulation between a local ontology class and a shared ontology
class stored in the current version of the data warehouse may not be its original
definition (see the Figure 2). If the data warehouse user also wants to browse
instances through the ontological definitions that existed when these instances
were loaded, it is necessary to archive also all the versions of the warehouse on-
tology. This scenario may be useful, for example, to know the exact domain of an
enumeration-valued property when the instance was defined. By implementing
this possibility, we get a multi-version data warehouse which archives also all

204 D.N. Xuan, L. Bellatreche, and G. Pierra

versions of classes having existed in the data warehouse life, and all the relations
in their original forms. Note that the principle of ontological continuity seems
to make seldom necessary this complex archive.

The multi-version data warehouse has three parts:

1. current ontology. It contains the current version of the warehouse ontology. It
represents also a generic data access interface to all instance data, whenever
they were introduced in the warehouse.

2. Ontology archive. It contains all versions of each class and property of the
warehouse ontology. This part gives to users the true definitions of versions
of each concept. Versions of table schema Ti are also historized by archiving
the function Schk(ci) of each version k of ci, where Ti corresponds to the
class ci.

3. multi-versioned tables. It contains all instances and their version min and
version max.

5 Implementation of Our Approach

In order to validate our work, we have developed a prototype integrating several
OBDSs (Figure 3), where ontologies and sources are described using the PLIB
ontology model specified by the Express language. Such ontologies and instance
data are exchangeable as instances of EXPRESS files (”physical file”). To process
EXPRESS files, we used the ECCO Toolkit of PDTec [14]. An ontology and

PLIB Editor

API PLIB (Java)

ECCO Toolkit

Edition/Evolve/Visualize
API

Data Layer

User Interface Layer
(Visualize/querying)

In
te

g
ra

tio
n
/E

xc
h
a
n
g
e

A

P
I

Ontology

Read / Write

Ontology

Fig. 3. Architecture of our Prototype

an OBDS may be created via an editor called PLIBEditor. It is used also to
visualize, edit and update ontologies (both shared and local) and sources. It
uses a set of PLIB API developed under ECCO.

We have developed a set of integration API allowing the automatic integration
both in the simplified version management scenario, and in the full multi-version
management scenario.

Figure 4 shows the view offered to users over the content of the data warehouse
after integration. The shared ontology (left side) provides for hierarchical access

A Versioning Management Model for Ontology-Based Data Warehouses 205

This symbol indicates
the OOSub relationship

This symbol indicates
the OntoSub relationship

Fig. 4. Integrated hierarchical access and integrated querying over the data warehouse

and query over the data warehouse content: (i) a query over a shared ontology class
allows to query all the classes subsumed either by the OOSub or by the OntoSub
relationships, thus integrating instance data from all the integrated sources (see
left side of Figure 4), and (ii) hierarchical access allows also to go down until classes
that came from any particular ontology (see right side of Figure 4).

6 Conclusion

In this paper, we presented the problem of asynchronous versioning of a material-
ized integration system of heterogeneous and autonomous ontology-based data
sources. The sources that we considered are those containing local ontologies
referencing in an a priori manner a shared one by subsumption relationships. A
difference between ontologies and database schemata is presented and we sug-
gested to distinguish between ontology evolution and ontology revolution. To deal
with ontology evolution, an ontological continuity principle is proposed. It al-
lows the management of each old instance of the integrated system using a new
version of the ontology. Following this assumption, two scenarios ensuring a fully
automatic integration process have been proposed. Both scenarios are based on
a floating version model, that needs only a single version of the warehouse ontol-
ogy, called the current ontology. It allows the interpretation of all the instances
of the warehouse. Our model was validated under ECCO by considering several
local ontologies, where for each ontology, a set of sources instance data is de-
fined. This approach allows, in particular, an automatic integration of electronic
component catalogues in engineering.

References

1. S. Alexaki, V. Christophides, G. karvounarakis, D. Plexousakis, and K. Tolle. The
ics-forth rdfsuite: Managing voluminous rdf description bases. Proceedings of the
Second International Workshop on the Semantic Web (SemWeb01), May 2001.

206 D.N. Xuan, L. Bellatreche, and G. Pierra

2. B. Bebel, J. Eder, C. Koncilia, T. Morzy, and R. Wrembel. Creation and man-
agement of versions in multiversion data warehouse. Proceedings of the 2004 ACM
symposium on Applied computing, pages 717–723, June 2004.

3. L. Bellatreche, G. Pierra, D. Nguyen Xuan, H. Dehainsala, and Y. Ait Ameur.
An a priori approach for automatic integration of heterogeneous and autonomous
databases. International Conference on Database and Expert Systems Applications
(DEXA’04), (475-485), September 2004.

4. S. Chen, B. Liu, and E. A. Rundensteiner. Multiversion-based view maintenance
over distributed data sources. ACM Transactions on Database Systems, 4(29):675–
709, December 2004.

5. C. H. Goh, S. E. Madnick, and M. Siegel. Context interchange: Overcoming the
challenges of large-scale interoperable database systems in a dynamic environment.
in Proceedings of the Third International Conference on Information and Knowl-
edge Management (CIKM’94), pages 337–346, December 1994.

6. T. Gruber. A translation approach to portable ontology specification. Knowledge
Acquisition, 5(2):199–220, 1995.

7. A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Managing multiple
ontologies and ontology evolution in ontologging. Intelligent Information Process-
ing, pages 51–63, August 2002.

8. M. Minsky. Computer science and the representation of knowledge. in The Com-
puter Age: A Twenty-Year View, Michael Dertouzos and Joel Moses, MIT Press,
pages 392–421, 1979.

9. T. Morzy and R. Wrembel. Modeling a multiversion data warehouse : A formal
approach. International Conference on Entreprise Information Systems(ICEIS’03),
2003.

10. Natalya F. Noy and Michel Klein. Semantic integration: a survey of ontology-based
approaches. SIGMOD Record, 33(4), December 2004.

11. Z. Pan and J. Heflin. Dldb: Extending relational databases to support semantic
web queries. Technical report, Dept. of Computer Science and Engineering, Lehigh
University, USA, 2004.

12. J. F. Roddick. A survey of schema versioning issues for database systems. Infor-
mation and Software Technology, 37(7):383–393, 1995.

13. E.A. Rundensteiner, A. Koealler, and X. Zhang. Maintaining data warehouses over
changing information sources. Communications Of The ACM, 43(6):57–62, June
2000.

14. G. Staub and M. Maier. Ecco tool kit - an environnement for the evaluation of
express models and the development of step based it applications. User Manual,
1997.

15. Han-Chieh Wei and Ramez Elmasri. Study and comparison of schema versioning
and database conversion techniques for bi-temporal databases. Proceedings of the
Sixth International Workshop on Temporal Representation and Reasoning (IEEE
Computer), May 1999.

Data Warehouses in Grids with High QoS

Rogério Lúıs de Carvalho Costa and Pedro Furtado

University of Coimbra
Departamento de Engenharia Informática

Pólo II - Pinhal de Marrocos
3030 - 290 - Coimbra - Portugal

rogcosta@dei.uc.pt, pnf@dei.uc.pt

Abstract. Data warehouses are repositories of large amounts of histor-
ical data and are used primarily for decision support purposes. On the
other hand, grids consist on the aggregation of distributed computational
resources and presentation of these as a single service with a common
interface. The deployment of distributed data warehouses on a grid archi-
tecture with QoS control strategies could lead to high levels of flexibility,
scalability, reliability and efficiency. However, due to grids characteris-
tics, it could also lead to great challenges. In this paper we investigate
an efficient architecture to deploy large data warehouses in grids with
high availability and good load balancing. We propose architecture and
present experimental results.

1 Introduction

Data warehouses are repositories of large amounts of historical data from mul-
tiple sources and are used primarily for decision support purposes. They must
ensure acceptable response time for complex analytical queries. Some works have
been done in order to provide high performance for data warehouses. Usually,
these involve materialized views [3], special index structures such as bitmap
indices [22,23] and special operators [16].

On the other hand, the use of parallel and distributed data as a technique
for improving performance in databases have been studied for some years. The
majority of the studies are related to parallel join execution [10,17,18], placement
[31] and query processing issues [7,8].

In this work we are especially concerned with the deployment and use of data
warehouses in highly distributed environments such as grids and peer-to-peer
networks.

Grid technology [11,12] consists on the aggregation of distributed computa-
tional resources and presentation of them as a single service with a common
interface. Grids could lead to high levels of flexibility, scalability, reliability and
efficiency. With careful partitioning and placement, the large computing power
of a grid-like environment can be used to handle large data warehouses (which
may reach in the order of hundreds of gigabytes or terabytes) efficiently.

Some of the key characteristics of a grid environment are: (1) processor ca-
pacities often differ, (2) processor loads change over time, (3) processors are

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 207–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 R.L. de Carvalho Costa and P. Furtado

geographically distributed, and (4) network conditions are highly unpredictable.
In fact, computers may connect and disconnect at any time, and their speeds
may change over time. Due to these characteristics, the deployment and use of
large data warehouses in grids leads to some challenges.

In this paper we propose a generic architecture to run the Node Partitioned
Data Warehouse over a grid environment (GRID-NPDW) with efficient availabil-
ity and load balancing mechanisms. Our discussion centers around fragmenting
the data warehouse, placing and replicating it into sites and nodes within sites
in a way that delivers availability with efficiency, that is, when nodes or en-
tire sites are unreachable, the system performance degrades only slightly. We
show that some skews could lead to the need of dynamic load balancing mech-
anisms. We propose and show experimental results for a load balancing policy
for GRID-NPDW.

This paper is organized as follows: in Section 2 we present related work. Then
we focus on fragmenting and replicating for availability in the grid context in
Section 3. This basic data infrastructure is then used as the basis for the GRID-
NPDW dynamic architecture discussed in Section 4. We present experimental
results of the proposed approaches in Section 5. Finally, on Section 6, we present
some conclusions and future work.

2 Related Work

Data warehouses are commonly organized as star schemas [4], which means that
there are huge fact tables and multiple conformed dimensions. They are usually
targeted at complex analytical queries. In fact, data warehouses are mostly read-
only databases with periodic loads.

As one thinks on using parallelism with data warehouses, many questions
arise. The first one is related to data allocation. Due to data warehouses’ spe-
cialized schema and mostly read-only behaviour, replication and partitioning
may be used simultaneously.

There have been some recent related works on data placement in distributed
data warehouses. In [27], the authors present the multi-dimensional hierarchical
fragmentation (MDHF) method. It is based on the fragmentation of the fact ta-
ble considering several fragmentation attributes, each one referring to a different
dimension. A fragment consists of all tuples belonging to one value range per
fragmentation attribute. To each query submitted to the database are associ-
ated subqueries processing the different fragments. The authors show simulation
results for a shared-disk architecture.

Node-Partitioned Data Warehouses (NPDW) are presented in [13] and ex-
tended in [14]. The author proposes that both facts and non-small dimension ta-
bles should be partitioned. Partitions are allocated to different processing nodes
and dimension tables are hash-partitioned by their primary key. Fact tables
are hash-partitioned by the most frequent equi-join attribute used by the re-
lation. Small dimension tables are replicated in each processing node, because
the processing burden for those relations is small. Dynamic repartitioning is

Data Warehouses in Grids with High QoS 209

also considered. In this strategy, each query submitted to the database must be
modified in order to allow parallel processing by the nodes.

In [19] dynamic load balancing for parallel data warehouses is discussed. The
authors present four strategies: Logical, Partition, Size and Integrated. All four
strategies are evaluated in a shared-disk environment. The Integrated strategy,
that considers either CPU and disk loads, has obtained the best performance.
The authors claim that only the Partition strategy could be used in shared-
nothing environments. Shared-disk servers are also considered in commercial
products, like Oracle, as presented in [24].

On the other hand, grid technology is becoming more and more popular.
Although today’s typical data intensive science Grid application still uses flat
files to process and store data [21], there are many works on the integration
of database technology into the Grid. They consider different database related
aspects, like distributed query processing [29], data placement [26] and data
replication strategies and management [2,28].

Load balancing is another important issue when implementing distributed
database systems. There are also some works on load balancing in Grids ([6,9,30]).
Most of them use predictive data and algorithms to engineer local load balancing
across multiple hosts.

Additionally, the technology of agent programming has emerged as a flexible
and complementary way to manage resources of distributed systems due to the
increased flexibility in adapting to the dynamically changing requirements of
such systems [5]. The notion of agent has become popular in the Grid community,
as exemplified by several publications on the use of agents in the grid [1,6,20,25].

In the next Section we discuss our fragmentation and replication approach as
the basis for the architecture and high availability features of the GRID-NPDW.

3 Data Infrastructure and Efficient Availability in
GRID-NPDW

There are many important challenges to be considered when implementing an
application on a grid environment. In this paper we are especially interested in
high availability and in high performance.

In grids, network conditions are highly unpredictable. It is usual that some
nodes are not always available. As one cannot have total control of the environ-
ment, it is important to have some contingency plan in order to always be able
to execute the requested application. Maintaining data replicas in several nodes
could be one of the strategies.

Data Warehouses are usually deployed in relational databases using star
schemas. These schemas are comprised of a few huge central fact relations and
several smaller dimension relations [4], as shown in Figure 1. Each fact references
a tuple in each dimension. For instance, facts may be sales measures and dimen-
sions may include time, shop, customer, product the sales fact refers to. The
NPDW is an architecture to process those data sets in parallel shared-nothing
systems efficiently [13].

210 R.L. de Carvalho Costa and P. Furtado

Original Scheme

Node i

Partition i
Fact Table 2

Fact
Table 1

Fact
Table 2

Dimension
Table 2

Dimension
Table 3

Dimension
Table 1

Dimension
Table 4

Dimension
Table 5

Partition i
Fact Table 1 Dimension

Table 2

Dimension
Table 3

Dimension
Table 1

Dimension
Table 4

Partition i
Dimension Table 5

Fig. 1. Data allocation in NPDW

In NPDW, each relation can be partitioned (divided into partitions or frag-
ments) or copied entirely into processing nodes (as also represented in Figure 1).
Very large fact relations are workload-based partitioned and dimensions (which
are small) are replicated into all sites. In this case most of the query processing
can proceed in parallel between the nodes with only modest amounts of data be-
ing exchanged between nodes [14], except when differently-partitioned relations
need to be joined.

In the case of a WAN-deployment, there is also the issue of latency between
sites and the amount of data that needs to travel between sites may become a
major issue. While in a LAN the partitioning of the central facts may be random
or hash-based, in a geographically distributed environment such as the one we
are considering, data origin is another logical option (e.g. a big multinational
corporation has its data placed geographically, with a sub-grid in each continent).

In NPDW the decision to replicate relations is based on performance issues
(to allow join processing without data migration between nodes) and also on
the efficiently availability issue. In [15], several data replication strategies for
efficient availability are presented and evaluated for NPDW.

One first approach (Full Replicas) could be to replicate an entire node (includ-
ing all the partitions and replicas it has) into another node. Suppose Node A is
replicated into Node B. Node B would have its own partitions and relations and
Node’s A partitions and relations. If Node A becomes unavailable or goes offline,
Node B could take its place. However, using this strategy Node B would have
to process twice as many data. If we asume homogeneous nodes for simplicity,
this would result in double execution time even though only a single node was
unavailable. So, this method is not efficient.

Partitioned Replica Groups (PRG) is shown as being the one that could lead
to best results considering both efficiency and availability. The objective of PRG
is twofold: to avoid the inefficiency of full replicas and still allow the system to
keep on processing even when entire groups of nodes become unavailable. For
partitioned relations, each Node A owns a partition. One or more replicas of
that partition are created and divided into X slices, which are then copied into

Data Warehouses in Grids with High QoS 211

X nodes that can replace Node A if Node A is unreachable. In case of failure
of Node A, its replica is processed by the X other nodes without making a big
imbalance of the load.

PRG also organizes processing nodes by groups, which allows some nodes to go
offline simultaneously [15]. The idea is that partitions of all nodes participating in
one group should always be (sliced and) replicated into nodes of a different group.
No replicas of large table’s data should be done in nodes of the same group. With
this simple constraint, a whole group can be offline without stopping the whole
system.

Suppose a fact table that is sliced into t fragments. In Figure 2 we show a
possible configuration of PRG considering such fragments in an environment
with six processing nodes. The nodes were organized into three groups of two
nodes each. In the first node of each group, we have placed the first n fragments
of the fact table. Fragments n+1 to t were replicated in the second node of
each group. The replicas from Group 1 are placed on the Groups 2 and 3 (two
sliced replicas). This way, no replicas of each fragment are placed in the same
group and if Group 1 fails, the other groups will divide the corresponding data
processing between them using the replicated fragments.

Group I

Node 1

Fragment
n

Fragment
2

Fragment
1

Node 2

Fragment
t

Fragment
n+2

Fragment
n+1

Group II

Node 3

Fragment
n

Fragment
2

Fragment
1

...

Node 4

Fragment
t

Fragment
n+2

Fragment
n+1

...

Group III

Node 5

Fragment
n

Fragment
2

Fragment
1

Node 6

Fragment
t

Fragment
n+2

Fragment
n+1

Fig. 2. Sample Group Configuration

This strategy can be adapted to the grid environment, where network condi-
tions are highly unpredictable, with interesting solutions for efficient processing.
Suppose we have a GRID-NPDW grid with nodes in four different locations:
Lisbon, Paris, Madrid and London. In each location we may have several nodes.
Consider that user’s requests are made in Lisbon. It is more susceptible that a
link from Lisbon to another location goes down (making all the nodes in this
location offline for the Lisbon’s server) then nodes within a single location.

This way, we propose the use of PRG in grids considering all the nodes in each
geographical location as a group of nodes that should have its database sliced
and replicated in other groups. But, due to grid’s characteristics, some actions
must be taken in order to achieve high levels of QoS, as it will be discussed in
the next Sections.

212 R.L. de Carvalho Costa and P. Furtado

4 Dynamic Architecture of the GRID-NPDW

NPDW is a data allocation strategy oriented for high performance on the ex-
ecution of OLAP queries. But, as in grid’s we do not have full control of the
environment, which may have slow or broken network connections and may be
highly heterogeneous, having different processor and memory capacities in each
processing node, some dynamic policy must be used for load balancing.

We propose the use of an on-demand approach that distributes tasks (queries)
to sites whenever these are available and idle. The PRG replication strategy used
in GRID-NPDW implies that the system can assign the processing of a fragment
to different nodes that already have the fragment, as every fragment is replicated
into more than one node.

A task manager is responsible for assigning new tasks to nodes that are idle
and ready to execute. A task is composed by a query to be executed and the
identifier of the data group (table fragments on which the query should be ex-
ecuted). No task is pre-assigned to a node: if it happens that a given node is
available or ready to execute another task, the system assigns a new task to it.
This approach aims at allocating tasks dynamically and in a preventive manner.
With this strategy, when some network connection is down or too slow (e.g. a
slow backup connection on a broken link), the GRID-NPDW still provides the
fastest execution that is possible under such constraints.

Initially, a coordinator node assigns one single task to each available process-
ing node. When a processing node completes its task, the results are sent to a
coordinator together with a message that asks for another task. A new task is
only sent to a processing node when it asks for it.

Although data warehouses are mostly read-only databases, there are also pe-
riodic loads of data. As some nodes may be offline during data load, we must
have specific data update propagation strategies.

Figure 3 shows the architecture of the GRID-NPDW system. In the figure
Client represents either a user or an application that submits queries against a
data warehouse and waits for an answer. The grid environment should be trans-
parent to the Client. It always interacts with a Coordinator node. Execution
Manager is the Coordinator node’s component responsible for communication
with clients, accepting requests and sending queries’ answers to clients. Task
Manager is the component responsible for sending tasks to computing nodes.
Task Manager makes the necessary changes in clients’ queries (i.e. adding sub-
queries) and sends the changed query and the indication of the fragment number
on which the query should be executed to computing nodes. The Task Manager
should know which computing node has each data fragment and replica, and if
nodes’ data is up to date or may be used in query execution according to QoS
requirements. The information about data allocation and data freshness in each
node is stored in a Meta-Base. Residing at each processing node is a Processing
Agent (software agent), which is responsible for any processing node’s related
operations. These include the communications with the Task Manager and data
manipulation (i.e. data replication). The Data manager is the Coordinator Node’s

Data Warehouses in Grids with High QoS 213

Processing Node

Processing Agent

Coordinatior Node

Execution
Manager

Table’s replicas
and fragments

Client
Query

Result

Task Manager

Meta-data

Data Manager

Database

Task (i.e. Execute
query A against

fragment Y) Data

Query result /
Demand for a

new task

Task

 Processing Node

Processing Agent

Table’s replicas
and fragments

Fig. 3. Architecture of GRID-NPDW

component responsible to interact with processing nodes in order to control data
allocation and replication (according to PRG).

5 Experimental Results

In this section we first present experimental results designed to test the efficient
availability features of the GRID-NPDW system. Then, we show some results
obtained on the use of the proposed dynamic load balancing policy.

Our experimental setup is composed of a master site, located in Rio de Janeiro,
Brazil, and two execution sites, with 10 homogeneous processing nodes each,
located at University of Coimbra, in Portugal. The schema and query 1 of the
TPC-H benchmark is used in the experiments over an Oracle database engine.
We have used a 25Gb database where tables lineitem and orders were sliced in
100 fragments.

First of all, we have tested the use of PRG for efficient availability. The num-
ber of fragments that each node needs to process depends on the number of
unavailable sites. We have distributed the 100 fragments for execution in differ-
ent configurations, testing both Full Replication and PRG in each configuration.
Depending on the number of sites that are unavailable, we measure the actual
execution time of the node considering that it has to process its own data plus
replica fragments from unavailable site(s).

With all nodes online, each node has processed 5 fragments. Then, we have
taken 2 nodes of each site offline. In this situation, using Full Replication, there
are four nodes (two at each site) that will process 10 table fragments each,
while other nodes will process 5 fragments each. Using PRG, four nodes (two at
each site) will process 7 table fragments each, while other nodes will process 6

214 R.L. de Carvalho Costa and P. Furtado

fragments each. The elapsed time 1 (min:secs) for each configuration is shown in
Figure 4.

In the 20 nodes configuration, although we have the same number of tasks
for each processing node, the elapsed times for each processing nodes are very
different: node 1 has completed its tasks in 3.5 minutes while node 18 has con-
sumed almost 7 minutes to complete its tasks. Similar skews have occurred in
the configurations that had offline nodes. This leads to the needs of a dynamic
load balancing policy, as the one proposed in the previous section.

0:06:00

0:06:43

0:07:27

0:08:10

0:08:53

0:09:36

0:10:19

0:11:03

20 16

Total number of active nodes

E
la

p
se

d
 t

im
e

Full
Replication

PRG

Fig. 4. NPDW-GRID with pre-determined number of tasks per node

We have tested the proposed policy using 10, 16 and 20 nodes. It has achieved
good results. In Figure 5 we show execution time for each node in the 16 nodes
configuration, considering Full Replication (FR), PRG and the demand driven
policy (DD). In that Figure, the total execution time of each strategy is approx-
imately the execution time of the slowest node (nodes 7 and 8). This means that
FR took about (10 : 34), PRG took about (8 : 28) and DD took about (6 : 56)
(i.e. DD’s execution time was about only 65% of FR’s execution time and about
82% of PRG’s execution time).

00:00

02:00

04:00

06:00

08:00

10:00

12:00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Node Number

E
la

p
se

d
 T

im
e

Full Replication

PRG

Demand Driven

Fig. 5. Total execution time per node - 16 node configuration

The demand driven approach has lead to good results as it does not pre-
assign tasks to nodes. In Figure 6 the number of tasks per node for the 16-node
1 Execution time of the slowest active node

Data Warehouses in Grids with High QoS 215

configuration is showed, considering Full Replication, PRG and the demand-
driven policy. As showed in Figure 6, the demand driven approach has assigned
different number of tasks for each node. The Figure shows the effect of the
Demand Driven allocation of tasks, as the nodes that would end sooner under
FR and PGR (e.g. node 1) execute more tasks under DD to balance the load,
while on the other hand, the slowest nodes (nodes 7 and 8) execute less tasks in
DD so that they do not slow the whole system as much.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Node Number

N
u

m
b

er
 o

f
ta

sk
s

Full Replication

PRG

Demand Driven

Fig. 6. Tasks per node - 16 node configuration

In fact, using Full Replication, as soon as a single node becomes unavailable,
the whole system takes somewhere near to twice the time to answer a query, even
though only a single node is delaying the whole system. On the other hand, the
results also show that only by using PRG setup in grid environments could not
always lead to the best results, not only because the nodes could have different
processing powers but also because some skews (e.g. data and communication)
may occur. The results have showed that the proposed architecture, including
the dynamic load-balancing policy, could lead to good results when being used
in the grid environment.

6 Conclusions and Future Work

In this paper we have proposed an efficient architecture for deploying and pro-
cessing large data warehouses over a grid (GRID-NPDW). We focused mostly on
data infrastructure, comprising fragmentation and replication into the grid, and
dynamic processing over that infrastructure.

Considering grid’s specifics characteristics, such as heterogeneous node pro-
cessor capacities and unpredictable network conditions, we have adapted the
partitioning and replication approach of a Node Partitioned Data Warehouse
parallel architecture (NPDW) to the grid environment. By slicing and group-
ing replicas around grid sites and proposing a dynamic allocation of tasks into
processing nodes, the strategy is able to deliver maximum efficiency in hetero-
geneous grids even when entire sites are unreachable or the link to those sites is
too slow (e.g. slower backup connection).

216 R.L. de Carvalho Costa and P. Furtado

Our experimental results focus on the efficient availability and load balanc-
ing issues, to show that dynamic policies are necessary and that the system
performance could be increased with an on-demand load balancing policy.

Our future work focuses on the data freshness features, considering how data
fragmentation and replication could be done automatically in grid environment,
where some nodes could be temporarily offline. The future work also includes
expanding the architecture to take care of users’ specific QoS parameters.

References

1. D. Bruneo, M. Scarpa, A. Zaia, A. Puliato: Communication Paradigms for Mobile
Grid Users, Procs. of the 3rd IEEE/ACM Intl. Symposium on Cluster Computing
and the Grid (CCGRID), 2003

2. W. H. Bell, D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger, F.
Zini: Evaluation of an Economy-Based File Replication Strategy for a Data Grid,
In Intl. Workshop on Agent based Cluster and Grid Computing at CCGrid, IEEE
Computer Society Press, 2003

3. E. Baralis, S. Paraboschi, E. Teniente: Materialzed View Selection in a Multidimen-
sional Database. Proc. of 23rd Intl. Conf. on Very Large Databases (VLDB), 1997

4. S. Chaudhuri, U. Dayal: An Overview of Data Warehousing and OLAP Technology,
SIGMOD Record 26(1), 1997.

5. A.L . Corte, A. Puliato, and O. Tomarchio: An agent-based framework for mobile
users, in ERSADS’99, 1999.

6. J. Cao, D. P. Spooner, S. A. Jarvis, G. R. Nudd: Grid Load Balancing Using
Intelligent Agents Future Generation Computer Systems special issue on Intelligent
Grid Environments: Principles and Applications, 21(1) pp.135-149, 2005

7. DeWitt, D., et. al.: The Gamma Database Machine Project, IEEE Knowledge and
Data Engineering, Vol. 2, No. 1, March, 1990.

8. D. J. DeWitt, Jim Gray, ”Parallel Database Systems: The Future of High Per-
formance Database Processing”, Communications of the ACM, 1992.

9. M. Dobbera, G. Koolea, R. van der Mei: Dynamic Load Balancing Experiments in
a Grid, Proc. of the 5th IEEE/ACM Intl. Symposium on Cluster Computing and
the Grid (CCGrid 2005), 2005

10. D.J.DeWitt, J.F. Naughton, D.A.Schneider, S.Seshadri: Pratical Skew Handling in
Parallel Joins, Proc. of 18ht Intl. Conf. on Very Large Databases (VLDB), pp.27-
40, 1992

11. D.W.Erwin and D.F. Snelling: UNICORE: A Grid computing environment, Lecture
Notes in Computer Science, vol.2150, 2001

12. I.Foster: The anatomy of the Grid: Enabling scalable virtual organizations, Con-
currency and Computation: Practice and Experience, vol.13, 2001

13. P. Furtado: Workload-based Placement and Join Processing in Node-Partitioned
Data Warehouses, in Intl. Conf. on Data Warehousing and Knownledge Discovery
(Dawak), 2004.

14. P. Furtado: Experimental Evidence on Partitioning in Parallel Data Ware-
houses, Procs of the 7th ACM Intl. Workshop on Data Warehousing and OLAP
(DOLAP), 2004

15. P. Furtado: Replication in Node Partitioned Data Warehouses, in VLDB Work-
shop on Design, Implementation, and Deployment of Database Replication
(DIDDR), 2005

Data Warehouses in Grids with High QoS 217

16. J. Gray et al: Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab and Sub-Totals. In: Data-Mining and Knowledge Discovery, 1997

17. K.A.Hua, H.C.Young: Desining a Highly Parallel Database Server Using Off-the-
shelf Components, Procs. of the Int’I Computer Symposium, pp.47-54, 1990

18. H.Lu, K.Tan: Load-Balanced Join Processing in Shared-Nothing Systems, Journal
of Parallel and Distributed Computing, 23, pp.382-398, 1994

19. H. MSrtens, E. Rahm, T. Sthr: Dynamic Query Scheduling in Parallel Data Ware-
houses, Procs of the 8th Intl. Euro-Par Conf. on Parallel Proc., pp.321 - 331, 2002

20. W. H. Min, W. Y. Wilson, Y. H. Ngi, W. Donghong, L. Zhixiang, L. K. Hong, Y. K.
L.: Dynamic Storage Resource Management Framework for the Grid, Procs. of the
22nd IEEE/13th NASA Goddard Conf. on Mass Storage Systems and Technologies
(MSST), 2005

21. M. A. Nieto-Santisteban, J. Gray, A. S. Szalay, J. Annis, A. R. Thakar, W.
O’Mullane, When Database Systems Meet the Grid, Second Biennial Conf. on
Innovative Data Systems Research (CIDR), Online Proceedings pp.154-161, 2005

22. P. O’Neil, G. Graefe: Multi-Table Joins Throug Bitmapped Join Indices, ACM
SIGMOD Record 23(4), 1995

23. P. O’Neil, D. Quass: Improved Query Performance With Variant Indexes, Proc. of
ACM SIGMOD Conf., 1995

24. M. Poess, R. K. Othayoth: Large Scale Data Warehouses on Grid: Oracle Database
10g and HP ProLiant Servers, Proc. of the 31st Intl. Conf. on Very Large Databases
(VLDB), pp 1055-1066, 2005.

25. O. F. Rana, L. Moreau: Issues in Building Agent based Computational Grids,
In Third Workshop of the UK Special Interest Group on Multi-Agent Systems
(UKMAS’2000), 2000.

26. P. Watson: Databases in Grid Applications: Locality and Distribution, Proc. of the
22nd British National Conf. on Databases, BNCOD, LNCS 3567 pp. 1-16, 2005

27. T. Sthr, H. MSrtens, E. Rahm: Multi-Dimensional Database Allocation for Parallel
Data Warehouses, Procs. of the 26th Intl. Conf. on Very Large Databases (VLDB),
pp 273-284, 2000.

28. A. Shoshani, A. Sim, K. Stockinger: RRS: Replica Registration Service for Data
Grids, VLDB Workshop on Data Management in Grids, 2005

29. J. smith, P. Watson, A. Gounaris, N. W. Paton, A. Fernandes, R. Sakellariou: Dis-
tributed Query Processing on the Grid, Intl. Journal of High Performance Com-
puting Applications 17, pp.353-367, 2003

30. J. White, D. R. Thompson: Load Balancing on a Grid Using Data Characteristics,
Proc. Int’l Conf. Grid Computing and Applications (GCA), pp. 184-188, 2005.

31. Zhou S., M.H. Williams: Data placement in parallel database systems, Parallel
Database Techniques, IEEE Computer Society Press, 1997.

Mining Direct Marketing Data by Ensembles of
Weak Learners and Rough Set Methods

Jerzy B�laszczyński1, Krzysztof Dembczyński1, Wojciech Kot�lowski1, and
Mariusz Paw�lowski2

1 Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

{jblaszczynski, kdembczynski, wkotlowski}@cs.put.poznan.pl
2 Acxiom Polska, 02-672 Warszawa, Poland

mariusz.pawlowski@acxiom.com

Abstract. This paper describes problem of prediction that is based on
direct marketing data coming from Nationwide Products and Services
Questionnaire (NPSQ) prepared by Polish division of Acxiom Corpora-
tion. The problem that we analyze is stated as prediction of accessibility
to Internet. Unit of the analysis corresponds to a group of individuals
in certain age category living in a certain building located in Poland.
We used several machine learning methods to build our prediction mod-
els. Particularly, we applied ensembles of weak learners and ModLEM
algorithm that is based on rough set approach. Comparison of results
generated by these methods is included in the paper. We also report
some of problems that we encountered during the analysis.

1 Introduction

Direct marketing is one of the most popular form of promotion and selling. It is
attractive, because its effectiveness can be measured, for example, by responses
of customers to the promotion. Database of profiled customers is an important
element in this type of marketing. From this database, one can select customers
that with high probability will response to the promotion. To perform such a se-
lection of customers one needs a prediction model. This model is derived from a
sample of customers that are relatively well-known, for example, customers that
fulfilled a special type of a questionnaire. Only attributes that are easily achieved
for out-of-sample customers are used as predictors in the model. Acxiom is a com-
pany which aims in direct marketing technologies and is focused on integration
data, services and technology to create innovative solutions that improve cus-
tomer relationships. The mission of the company is to transform data collected
from different sources (such as questionnaires, official registries) into marketing,
actionable information, which helps to understand customer preferences, predict
their behavior and increase effectiveness of direct marketing campaigns.

The problem considered in this paper consists in prediction of accessibility
to Internet. Unit of the analysis corresponds to a group of individuals in cer-
tain age category living in a certain building located in Poland. The information

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 218–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mining Direct Marketing Data 219

about access to Internet comes from Nationwide Products and Services Question-
naire (NPSQ) prepared by Polish division of Acxiom Corporation. Predictors are
taken from different databases coming from Acxiom and official registries that
we further describe in Section 2. From the business perspecitive, the most im-
portant factors indicating quality of constructed prediction models are precision
and true positive ratios. The preliminary analysis has shown that the problem
is hard and any small improvement of these ratios in comparison to the random
classifier that takes into account distribution of classes will be acceptable.

We have used several machine learning methods to build our prediction mod-
els. Particularly, we have applied algorithms constructing ensembles of weak
learners and ModLEM rule induction algorithm that is based on rough set ap-
proach. Ensembles of weak learners, sometimes called decision committees, have
been successfully used to many real-world problems. Some of these methods are
treated today as off-the-shelf methods-of-choice. Rough set approach has also
proved to be a useful tool for solving classification problems. It allows to de-
termine inconsistencies between analyzed objects (such as we have found in the
analyzed database) and functional dependencies between subsets of attributes.
Comparison of models built using these methods is included in the paper. First
results of our analysis were very promising. However, due to a mistake made
in the preparation of data, these results were overestimated. Results that we
obtained on the fixed data are worse, but still acceptable.

The paper is organized as follows. In Section 2, the problem is formulated from
business and machine learning perspectives. Data sources and project database
schema is also described there. Section 3 includes general description of pre-
diction methods used in the analysis. In Section 4, we describe problems faced
during the analysis and show results of predictions. The last section concludes
the paper.

2 Problem Statement

Acxiom in Poland collects data from many different sources, aggregated on differ-
ent levels: individual person, household, building, statistical region, community.
Since 1999 Acxiom is continuously running nationwide survey collecting infor-
mation thru over 100 questions about lifestyle, shopping behavior, product and
services preferences and also demographic profile of households and individuals.
Survey database (NPSQ) consist of over 2.2 million household and is the biggest
and the most comprehensive database of this kind. Even thou, this database
cover only about 15% of all households in Poland. The challenge at this point
is how to generate precise information about rest of the population. Collecting
data thru survey would take long time, a lot of money with no guaranty that this
project will ever succeed. One of the solutions is to look at the data available on
market, integrate and analyze it and transform into information we are looking
for. In the project described in this paper following data sources has been used:

220 J. B�laszczyński et al.

– Database of buildings from registry of inhabitants (PESEL), which consist
of data about over 5 millions of buildings in Poland with information of
number of flats, inhabitants, age and sex structure,

– Database of statistical regions with demographic data (Acxiom),
– Regional Data Bank with information aggregated on community level in-

cluding wide range of information about local markets (GUS BDR).

Aim of the project was to ”translate” information from survey to the lowest
possible level of aggregation based on data from sources listed above. The first
step in this project was to define the most precise unit of analysis. Having data
from PESEL database with age structure assigned to each building we decided
to define unit of analysis as an age category within each building. This defi-
nition is the closest level of data aggregation to the level of individual person
and thus allows describing individuals in the most precise way. This definition
causes a simplification that each person, living under certain building in certain
age brackets will be assigned the same characteristics mined out of all of the
data sources used in this project. However, results of initial analysis shows that
homogeneity of groups of individuals defined in this way is acceptable. We have
assumed that the prediction model will be deterministic. It means that outputs
of the model will indicate if a group of individuals in a certain age category
living in a certain building has access to Internet or not. Alternatively, we could
use a probabilistic model (i.e., in such a case outputs of the model will indicate
distribution of access to Internet for the unit of analysis).

After defining basic unit of analysis the next task was to integrate all data
sources. This process was simplified thanks to having complex reference database,
which includes all relations between addresses, statistical regions and communities
and also having the same standard of writing street names in PESEL and NPSQ
database. Finally, after integration each record in PESEL database was assigned
record id from NPSQ, Acxiom and GUS BDR databases. Combining databases
thru joined id’s allows building flat table including all data from all of the sources
assigned to the final level of analysis.

The database used in the case study contains more than 200 000 records
and totally 751 attributes (without counting key and auxiliary attributes). The
database after integration process was transformed for analysis purposes to a
model that is similar to star schema well-known in dimensional modelling. In
our schema, fact table contains attributes taken from NPSQ database, dimen-
sions are tables from PESEL, Acxiom and GUS BDR databases. The model is
presented in Figure 1. Such a construction of the database improves performance
and facilitates the analysis. For example, when we want to analyze impact of at-
tributes from GUS BDR’s dimension on accessibility to Internet, it is enough to
join the fact table with this dimension, omitting all other data.

Let us define the prediction problem in the formal way. Concluding the
above, the aim is to predict the unknown value of an attribute y (sometimes
called output, response variable or decision attribute) that represents accessibility
to Internet of individual person using the known joint values of other attributes
(sometimes called predictors, condition attributes or independent variables)

Mining Direct Marketing Data 221

Fig. 1. Database schema used in case study

x = (x1, x2, . . . , xn). The goal of a learning task is to produce a function F (x)
from a set of training examples (or objects) {xi, yi}N1 that predicts accurately y.
Each training example corresponds to a responder of NPSQ, or, in other words,
to a single record in NPSQ database. In the considered problem y ∈ {−1, 1}
indicates whether individual person has not or has access to Internet, respec-
tively. In other words, all objects for which y = −1 constitute the decision class
of individuals without Internet access, and all object for which y = 1 constitute
the decision class of individuals with Internet access. These classes are denoted
by Cl−1 and Cl1, respectively. Condition attributes x refer, however, to the
unit taken for the analysis, i.e., groups of individuals in a certain age category
within certain building, because this information is easily achieved for individ-
ual persons that are not included in NPSQ database. The optimal classification
procedure is given by:

F ∗(x) = arg min
F (x)

ExyL(y, F (x)) (1)

where the expected value is over joint distribution of all attributes (x, y) for the
data to be predicted. L(y, F (x)) is loss or cost for predicting F (x) when the
actual value is y. The typical loss in classification tasks is:

L(y, F (x)) =
{

0 y = F (x),
1 y �= F (x). (2)

The learning procedure tries to construct F (x) to be the best possible approxi-
mation of F ∗(x). The prediction model based on F (x) is then applied to individ-
ual person described by attributes x referring, however, to certain age category
within certain building to get information about her/his access to Internet.

3 Ensembles of Weak Learners and Rough Set Methods

To solve the defined problem we have used two types of algorithms: ensembles
of weak learners (sometimes called decision committees) and rough set methods.

222 J. B�laszczyński et al.

Algorithm 1. Ensemble of Weak Learners [4]
input : set of training examples {xi, yi}N

1

M – number of weak learners to be generated.
output: ensemble of weak learners {fm(x)}M

1 .
F0(x) = arg minα∈�

∑N
i L(yi, α);

for m = 1 to M do
p = arg minp

∑
i∈Sm(η) L(yi, Fm−1(xi) + f(xi,p));

fm(x) = f(x,p);
Fm(x) = Fm−1(x) + ν · fm(x);

end
ensemble = {fm(x)}M

1 ;

The first algorithm forms an ensemble of subsidiary classifiers that are simple
learning and classification procedures often referred to as weak learners. The
ensemble members are applied to classification task and their individual outputs
are then aggregated to one output of the whole ensemble. The aggregation is
computed as a linear combination of outputs or a simple majority vote. The
most popular methods that are used as weak learners are decision tree induction
procedures, for example C4.5 [7] or CART [3]. There are several approaches
to create ensembles of weak learners. The most popular are bagging [2] and
boosting [9]. In [4], Friedman and Popescu have formulated a general schema of
algorithm that can simulate these two approaches. The schema is presented as
Algorithm 1. In this procedure, L(yi, F (xi)) is a loss function, fm(xi,p) is the
weak learner characterized by a set of parameters p and M is a number of weak
learners to be generated. Sm(η) represents a different subsample of size η ≤ N
randomly drawn with or without replacement from the original training data. ν
is so called “shrinkage” parameter, usually 0 ≤ ν ≤ 1. Values of ν determine the
degree to which previously generated weak learners fk(x,p), k = 1..m, effect the
generation of a successive one in the sequence, i.e., fm+1(x,p).

Classification procedure is performed according to:

F (x) = sign(a0 +
M∑

m=1

amfm(x,p)). (3)

F (x) is a linear classifier in a very high dimensional space of derived variables
that are highly nonlinear functions of the original predictors x. These functions
are induced by weak learners, for example, they are decision trees. Parameters
{am}M0 can be obtained in many ways. For example, they can be set to fixed
values (for example, a0=0 and {am = 1/M}M1), computed by some optimization
techniques, fitted in cross-validation experiments or estimated in the process of
constructing an ensemble (like in AdaBoost [9]).

According to Friedman and Popescu [4], bagging method [2] may be represented
byAlgorithm 1 and classificationprocedure (3)by setting ν = 0, subsamplesSm(η)
are drawn randomly with replacement, where η is given by a user, a0 = 0 and
{am = 1/M}M0 . AdaBoost uses exponential loss, L(y, F (x)) = exp(−y · F (x)),

Mining Direct Marketing Data 223

for y ∈ {−1, 1}, and corresponds to Algorithm 1 by setting ν = 1 and Sm(η) to be
a whole set of training examples.

ModLEM [5] is a rule induction procedure that is based on rough set ap-
proach [6]. Decision rules are simple logical statements of a form: “if [condi-
tions], then [decision]”. The induction of rules in rough set approach consists
of the two following phases: calculation of lower and upper approximations of
decision classes, and induction of certain rules from lower approximations and
possible rules from upper approximations. The first phase is useful to show in-
consistencies in the data. Inconsistencies that we consider arise when objects
with the same values of condition attributes are assigned to different decision
classes. Lower approximation of a class is composed of all its objects that are
consistent. Upper approximation holds also inconsistent objects. In the second
phase, calculated approximations are used in rule induction process to obtain
rules that represent certain knowledge (i.e., certain rules) and rules that repre-
sent possible knowledge (i.e., possible rules). In our problem, we expected that
further insight into inconsistencies in groups of individuals that define units of
analysis will allow us to obtain more precise classification results.

ModLEM is a specialized version of a general procedure that is known as
sequential covering, very often used in rule induction systems. In fact, this pro-
cedure can be presented (see Algorithm 2) in a similar manner to Algorithm 1.
One can remark on this basis that a set of decision rules may be then treated
as an ensemble of decision rules that are very simple classifiers. Let us notice
that Friedman and Popescu [4] has recently also developed a variant of Algo-
rithm 1 that constructs an ensemble of decision rules. These rules are created in
a specific way from a decision tree induced in each iteration of the algorithm. In
sequential covering procedure, positive and negative examples are distinguished.
Rules are built in such a way that they cover only positive examples. For certain
rules assigning examples to a given class Cli, i ∈ {−1, 1} positive examples are
those from lower approximation of this class. Analogously, positive examples for
possible rules are those from upper approximation of this class. A set of positive
examples is denoted by X̂. A rule parameterized by c is defined as:

f(x, c) =

⎧⎨⎩
1 if x is covered by conditions c and rule assigns to Cl1,
0 if x is not covered by conditions c,
−1 if x is covered by conditions c and rule assigns to Cl−1.

(4)

Loss function is defined as:

L(y, Fm(x)) =
{

0 y = sign(Fm(x)),
1 y �= sign(Fm(x)). (5)

Procedure of constructing a decision rule consists in a greedy heuristic that
minimize

∑
i∈X̂ L(yi, Fm(xi) + f(xi, c)).

Classification procedure is performed according to a distance-based version
of the bucket brigade algorithm [1]. The decision to which class the classified
object is assigned depends on three factors: strength (str), specificity (spe) and
matching (mat) factor. All those factors are computed for rule f(x, c). Strength

224 J. B�laszczyński et al.

Algorithm 2. Sequential covering
input : set of training examples X = {xi, yi}N

1

set of positive examples X̂ ⊂ X.
output: set of rules {fm(x)}M

1 .
m = 1;
while

∑
i∈X̂ L(yi, f(xi, c)) �= 0 do

c = arg minc
∑

i∈X̂ L(yi, Fm(xi) + f(xi, c));
fm(x) = f(x, c);
Fm(x) = Fm−1(x) + fm(x);
m = m + 1;

end
M = m; rules = {fm(x)}M

1 ;

is a total number of training examples classified correctly by the rule. Specificity
is number of conditions of the rule. Matching factor reflects number of selectors
of the rule matched by object x.

F (x) = arg max
y

∑
f(x,c)=y

str(f(x, c)) · spe(f(x, c)) ·mat(f(x, c)). (6)

For more detailed description of ModLEM algorithm refer to [5].

4 Problems Indicated and Experimental Results

The first problem, that we encountered, was the size of the database. It contained
over 200 000 examples, described by 751 attributes. To succeed with our analysis
we decreased the number of attributes using filter method based on information
gain criterion [7]. We have sorted all attributes with respect to this criterion and
chosen 139 attributes, for which the value of information gain was on acceptable
level. Unfortunately, majority of attributes has this value very close to zero and
the highest value was also very small, what shows that the problem is very hard.
To make learning process more efficient, we decided to divide the database into
smaller data bins. We have decided to split the database with respect to values
of one of the attributes. The chosen attribute is ”the number of individuals in a
building” denoted as R later in this paper. We decided to use this attribute since
we expected to obtain different prediction models, depending on the type of the
building considered (e.g. family houses, blocks of flats, etc.). The database was
then split into 21 bins of similar size, but with different consecutive values of R
in each bin. To check impact of this type of splitting on the resulting models, we
have also randomly splited the database into 20 bins of equal size. Then, we have
compared accuracy of models resulting from these two splittings. The results of
the comparison are presented later in the paper.

For purpose of our experiments, the database has been divided into two bal-
anced sets. The one that is used to train and to validate prediction models. The
second is a test set used in a final verification of built models. Computations

Mining Direct Marketing Data 225

Table 1. First results obtained in the case study on test file

Classifier Bagging with j48 ModLEM

Class True positive Precision Class True positive Precision
-1 0.843 0.868 -1 0.844 0.871
1 0.463 0.409 1 0.451 0.4

were performed using Weka package [11] for ensembles methods and ROSE pro-
gram [8] for ModLEM. The problem of prediction of accessibility to Internet is
imbalanced. Only approximately 20% of NPSQ records indicate access to Inter-
net. To deal with it, we have used CostSensitiveClassifier in each computations
performed in Weka. ModLEM algorithm is less prone to imbalancement of data
sets and it performed without cost sensitive adaptation.

From the business perspective, the most important factors indicating quality
of models are precision and true positive ratios. They are defined for each decision
class Cl as follows:

precision(Cl) =
|set of examples correctly classified to Cl|
|set of all examples classified to Cl| ,

true positive(Cl) =
|set of examples correctly classified to Cl|

|set of all examples from Cl| ,

where |A| denotes a number of examples in set A.
To get the idea about improvement of constructed models, one can compare

them to random classifier that takes into account distribution of classes. In
our problem, where we have two decision classes, Cl−1 and Cl1, it is easy to
estimate the probability of error for such a random classifier. In our case 80%
of examples belong to class Cl−1, 20% to class Cl1. Random algorithm would
classify correctly 68% of objects (64% from class Cl−1 and 4% from class Cl1).
The precision in class Cl1 would be 20%, and the true positive ratio would
be also 20%, etc. While analyzing hard problems as it is in our case, we do not
expect to get high improvement of precision and true positive ratios as compared
to random classifier. Usually, even small improvements are acceptable. In our
problem, we expected that improvement around 10 percent points would be a
good result.

First experiments shown very promising results. We have obtained the best
results on the test set using ModLEM algorithm and Bagging (η = N) with j48
that is Weka implementation of C4.5 [7]. These results are presented in Table 1.
The parameters of j48 and ModLEM were fitted in cross-validation experiments,
and it was striking for us that the best models were obtained using parameters
that causes decision trees to be very detailed and high number of long decision
rules. Unfortunately, the results presented in Table 1 are overestimated. It was
caused by a mistake that we have made in preparation of data for the experiment.
This mistake consists in presence of duplicated record in NPSQ. In some cases
there were two records for a household for which there were no difference on
condition and decision attributes. In many cases, one record from such a pair

226 J. B�laszczyński et al.

Table 2. Revised results obtained in the case study

Classifier Bagging with j48 AdaBoost with DS

Type of split Class True positive Precision Class True positive Precision

Random -1 0.596 0.852 -1 0.579 0.851
1 0.582 0.262 1 0.59 0.258

by R -1 0.595 0.855 -1 0.591 0.85
1 0.591 0.265 1 0.577 0.258

for R < 4 -1 0.555 0.875 -1 0.556 0.875
1 0.716 0.31 1 0.717 0.311

test set, -1 0.574 0.846 -1 0.569 0.846
split by R 1 0.614 0.281 1 0.618 0.280

Classifier Bagging with SVM ModLEM

Random -1 0.591 0.855 -1 0.899 0.808
1 0.593 0.265 1 0.141 0.259

by R -1 0.597 0.858 -1 0.829 0.818
1 0.599 0.268 1 0.235 0.248

for R < 4 -1 0.529 0.873 -1 0.869 0.797
1 0.725 0.301 1 0.226 0.333

test set, -1 0.574 0.848 -1 0.777 0.808
split by R 1 0.621 0.283 1 0.323 0.284

was placed in the training set, and other record from such a pair was placed in
the test set. In total there were 17% of such redundant records.

Results on fixed data are much worse, but still acceptable. The algorithms
that performed best are: bagging (η = N) with j48, bagging (η = N/10) with
linear Support Vector Machines (SVM) [10], AdaBoost with decision stumps
(DS) (i.e., one level decision trees). Results obtained by ModLEM are worse.
We expect that it is caused by higher imbalance between decision classes and
increased overall level of inconsistencies between examples for which R was high.
We expect also that an approach to classification that is more focused on objects
from areas of inconsistency that are detected by rough set approach will provide
better results. Table 2 contains detailed results of experiments. These results
come from 10-fold cross-validation for each bin, averaging these results over
bins. In cross-validation experiments we have used two types of splitting. We
present also results for the bin in which R is lower than 4. Finally, we present
results on test set, where split by R was used.

We used t-test to check whether the constructed models increase significantly
precision and true positive ratios. These tests shown that there are significant
improvements between results of models as compared to results achieved by
random classifier. When it comes to check, whether splitting with respect to R
impacts accuracy of predicted models, there are almost no differences between
this type of splitting and random split. Division with respect to R parameter
does not influence considerably overall values of these factors. Let us underline
that usage of this type of splitting gives further insight into the problem. For
bins with small R, the results are better than for the whole data set. It is worth
noting that in the case of data with duplicates, there was a large difference of

Mining Direct Marketing Data 227

model quality factors between these two types of splitting. This difference is in
favor of models built on bins created with respect to R.

5 Conclusions

In this paper we have described project that concerns a real-world problem of
mining direct marketing data. We have applied several machine learning methods
to predict accessibility to Internet. When solving such problems one should be
very careful at initial stages of preparing data for the experiment. Mistake that
was made at this stage lead us to overestimation of obtained results. The results
that we have obtained after correction of the prepared data are worse but still
acceptable. The best results were obtained by application of ensembles of weak
learners. There is slight advantage of bagging with linear SVM, where subsamples
were of size N/10. In our opinion, the results of ModLEM can be improved if we
apply more sophisticated strategy for objects from areas of inconsistency that
are detected by rough set approach. It is included in our further research plans.

References

1. Booker, L. B., Goldberg, D. E., Holland, J. F.: Classifier systems and genetic
algorithms. In Carbonell, J. G. (ed.): Machine Learning. Paradigms and Methods.
Cambridge, MA: The MIT Press, (1990) 235–282

2. Breiman, L.: Bagging Predictors. Machine Learning 2 24 (1996) 123-140
3. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and Re-

gression Trees. Wadsworth (1984)
4. Friedman, J. H., Popescu, B. E.: Predictive Learning via Rule Ensembles. Research

Report, Stanford University, http://www-stat.stanford.edu/~jhf/ (last access:
1.06.2006), February (2005)

5. Grzymala-Busse, J. W., Stefanowski, J.: Three discretization methods for rule in-
duction. International Journal of Intelligent Systems 1 16 (2001) 29–38

6. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

7. Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann (1993)
8. Rough Sets Data Explorer (ROSE2),

http://idss.cs.put.poznan.pl/site/rose.html (last access: 1.06.2006)
9. Schapire, R. E., Freund, Y., Bartlett, P, Lee, W. E.: Boosting the margin: A new

explanation for the effectiveness of voting methods. The Annals of Statistics 5 26
(1998) 1651–1686

10. Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag, New York
(1995)

11. Witten, I., H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition. Morgan Kaufmann, San Francisco (2005)

Efficient Mining of Dissociation Rules

Miko�laj Morzy

Institute of Computing Science
Poznań University of Technology

Piotrowo 2, 60-965 Poznań, Poland
Mikolaj.Morzy@put.poznan.pl

Abstract. Association rule mining is one of the most popular data min-
ing techniques. Significant work has been done to extend the basic asso-
ciation rule framework to allow for mining rules with negation. Negative
association rules indicate the presence of negative correlation between
items and can reveal valuable knowledge about examined dataset. Un-
fortunately, the sparsity of the input data significantly reduces practical
usability of negative association rules, even if additional pruning of dis-
covered rules is performed. In this paper we introduce the concept of
dissociation rules. Dissociation rules present a significant simplification
over sophisticated negative association rule framework, while keeping
the set of returned patterns concise and actionable. A new formulation
of the problem allows us to present an efficient algorithm for mining dis-
sociation rules. Experiments conducted on synthetic datasets prove the
effectiveness of the proposed solution.

1 Introduction

Operational databases and enterprise data warehouses contain limitless volumes
of data. Valuable knowledge is hidden in these data under the form of trends,
regularities, correlations, and outliers. Traditional database and data warehouse
querying models are not sufficient to extract this knowledge. The value of the
data, as provided by traditional databases, can be greatly increased by adding
the means to automatically discover useful knowledge from large volumes of
gathered data. Data mining, a novel research discipline, aims at the discovery
and extraction of useful, previously unknown, non-trivial, and ultimately under-
standable patterns from large databases and data warehouses [1]. Data mining
uses methods from statistics, machine learning, artificial intelligence, databases,
and other related disciplines to extract unknown, utilitarian, and interesting
rules and regularities in order to assist users in informed decision making.

One of the most successful and widely used data mining techniques is associ-
ation rule mining. Association rules [3] represent the patterns of co-occurrence
of items in a large collection of sets. An example of an association rule is an
expression of the form ’wine’ ∧ ’grapes’ ⇒ ’cheese’ ∧ ’white bread ’, which rep-
resents the fact that purchasing wine and grapes implies purchasing cheese and
white bread in the same transaction. Association rules can be easily applied to

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 228–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Mining of Dissociation Rules 229

countless application domains. For instance, in market basket analysis the col-
lection of sets corresponds to the database of customer transactions and each set
corresponds to a set of products purchased by a customer during a single visit
to the store. Discovered rules can be used for organizing cross-sales, designing
mail catalogs, or reorganizing shelf layout.

Association rules capture only the ”positive knowledge”, i.e., sets of items
comprising associations are always positively associated. One might be interested
in discovering ”negative knowledge” expressed as negative associations between
items. An example of such pattern is an expression of the form ’FC Barcelona
jersey ’ ⇒ ¬ ’Real Madrid cap’ ∧ ¬ ’Real Madrid scarf ’, which represents the
fact, that a customer who purchases an FC Barcelona jersey will almost never
buy either a cap or a scarf with Real Madrid logo. Another type of a pattern
conveying ”negative knowledge” is an expression where only certain elements
in the antecedent or consequent are negated. An example of such an expression
is ’beer ’ ∧ ’sausage’ ⇒ ’mustard ’ ∧ ¬ ’red wine’ , which represents the fact,
that transactions containing beer and sausages usually contain mustard and do
not contain red wine. Negative associations can be successfully used in several
application domains to identify conflicting or complementary sets of products.

Unfortunately, incorporating negation into association rule framework is very
difficult. Due to the sparsity of data measured as the ratio of the average number
of items per transaction to the total number of possible items, the number of
possible association rules with negation is huge. Discovered patterns are valid, if
they are useful and utilitarian. For association rules with negation the number
of rules is unmanageable, thus not feasible in practice. This phenomenon can
be easily explained as follows: in an average transaction, only a small fraction
of items is present. At the same time, almost all possible items are not present
in every transaction. Therefore, each transaction supports a huge number of
patterns containing negation. Post-processing of association rules with negation
and pruning coincidental rules is also a difficult and tedious task.

In our opinion, the main problem of previously proposed solutions is the com-
plexity and the size of models, which effectively hinder the usefulness and prac-
tical applicability of these sophisticated models. In this paper we introduce a
novel concept of dissociation rules. Our goal is to allow users to find negatively
associated sets of items while keeping the number of discovered patterns low. We
concentrate on such formulation of the problem, which results in a compact and
usable set of patterns. By simplifying the model we sacrifice the abundance of
discovered patterns for the simplicity and intelligibility of the result, making our
model attractive for end users. Our main contribution includes the introduction
of dissociation rules and the development of the DI-Apriori algorithm for mining
dissociation rules. We conduct several experiments on synthetic datasets that
compare our algorithm to a straightforward naive approach. The results of the
experimental evaluation prove the feasibility of the presented proposal.

The paper is organized as follows. In Sect. 2 we review the related work on the
subject. We present basic definitions used throughout the paper in Sect. 3. The
naive approach and the DI-Apriori family of algorithms are presented in Sect. 4.

230 M. Morzy

Section 5 contains the results of the experimental evaluation of the proposed
solution. The paper concludes in Sect. 6 with the future work agenda.

2 Related Work

The first proposal to discover strong, exact, and approximate rules over the
tuples contained in a relational table was formulated in [12]. The notion of as-
sociation rule mining was introduced in [3]. In [4] the authors introduced the
Apriori algorithm that quickly became the seed for many other algorithms for
discovering frequent itemsets. The idea of mining ”negative” information was
first presented in [5] where the authors introduce the concept of excluding as-
sociations. They present a versatile method for finding associations of the form
A∧B∧¬C ⇒ D, where A∧B ⇒ D does not hold due to insufficient confidence.
Such a rule represents the fact that ”A and B imply D when C does not occur”.
Their solution is to transform the database into a trie structure and extract both
positive association rules and excluding association rules directly from the trie.

An algorithm for discovering strong negative association rules using taxonomy
of domain knowledge was presented in [13]. This fundamental work introduced
the concept of the interestingness of a rule measured in terms of the unexpect-
edness of the rule. A rule is unexpected if its support significantly deviates from
the expected support. The authors propose to use the taxonomy of items along
with the uniformity assumption to discover itemsets with support significantly
lower than the expected support computed from the taxonomy. Another method
for mining both positive and negative association rules is presented in [14]. The
authors define a new measure for rule importance that combines support, con-
fidence, and interestingness of a rule. Using this measure the authors introduce
novel concepts of frequent and infrequent itemsets of potential interest that are
used for mining positive and negative association rules.

An interesting algorithm for mining both positive and negative association
rules is presented in [6]. The authors constrain themselves to finding confined
negative association rules of the form ¬X ⇒ Y , ¬X ⇒ ¬Y , or X ⇒ ¬Y ,
where the entire antecedent or consequent is a conjunction of only negated or
a conjunction of only non-negated terms. These rules are a subset of the gen-
eralized negative association rules, for which its antecedents or consequents can
be expressed as a conjunction of negated or non-negated terms. The authors
acknowledge that their approach is not general enough to capture all types of
negative rules. However, limiting the algorithm to the discovery of confined neg-
ative association rules only allows the authors to develop an efficient method
based on the correlation coefficient analysis.

The problem of mining generalized negative association rules has been at-
tacked in [9]. Itemsets are divided into derivable and non-derivable based on
the existence of certain rules (functional dependencies) in the dataset. The au-
thors present an efficient method of concise representation of a huge number
of patterns with negation using negative border and rule generators. Further-
more, an efficient algorithm for mining rules with negation is presented that uses

Efficient Mining of Dissociation Rules 231

variations of candidate itemsets and error counts of rules. Finally, [8] discusses
inverse Apriori-like method for mining sporadic rules, which are rules with very
low support and high confidence.

Somehow related to the negative association rule mining is the problem of dis-
covering unexpected patterns [11]. The authors propose to use prior background
knowledge acquired from domain experts to serve as a set of expectations and
beliefs about the domain. They combine this prior knowledge with association
rule mining algorithm to discover patterns that contradict expert expectations.
Similar research on exception rules was conducted in [7,10]. Exception rules,
sometimes also referred to as surprising patterns, represent an unexpected devi-
ation from a well-established fact and allow negated terms to appear in patterns.

3 Basic Definitions

Let L = {l1, l2, . . . , ln} be a set of literals called items. Let D be a database of
variable-length transactions, and ∀ti ∈ D : ti ⊆ L. A transaction ti supports an
item x if x ∈ ti. A transaction ti supports an itemset X if ∀x ∈ X : x ∈ ti. The
support of an itemset X, denoted as supportD(X), is the ratio of the number
of transactions in D that support X to the total number of transactions in
D. Given two itemsets X,Y ⊂ L, the support of the itemset X ∪ Y is called
the join of X and Y . An itemset containing k items is called a k -itemset. An
itemset with the support higher than the user-defined threshold minsup is called
a frequent itemset. Let LD denote the set of all frequent itemsets discovered in the
database D. The negative border of the collection of frequent itemsets, denoted
as Bd− (LD), consists of minimal itemsets not contained in the collection of
frequent itemsets. Formally, Bd− (LD) = {X : X /∈ LD ∧ ∀ Y ⊂ X,Y ∈ LD}.

Given user-defined thresholds of minimum support and maximum join, de-
noted as minsup and maxjoin, respectively, where minsup > maxjoin. An item-
set Z is a dissociation itemset, if supportD(Z) ≤ maxjoin and Z can be divided
into disjoint itemsets X,Y , such that X ∪ Y = Z, supportD(X) ≥ minsup,
and supportD(Y) ≥ minsup. Dissociation itemsets are used to generate disso-
ciation rules. A dissociation rule is an expression of the form X � Y , where
X ⊂ L, Y ⊂ L, and X ∩ Y = ∅. Furthermore, supportD (X ∪ Y) ≤ maxjoin,
supportD (X) ≥ minsup, and supportD (Y) ≥ minsup. X is called the antecedent
of the rule and Y is called the consequent of the rule. A dissociation rule X � Y
represents the fact that, although items contained in X and items contained in
Y often occur together when X and Y are considered separately, items contained
in X ∪ Y occur together very rarely. A dissociation rule X � Y is minimal, if
�X ′ ⊆ X,Y ′ ⊆ Y such, that X ′ � Y ′ is a valid dissociation rule.

Three statistical measures are used to describe the statistical significance and
strength of the rule. The support of the rule X � Y is the smaller ratio of the
number of transactions that support either the antecedent or the consequent of
the rule to the total number of transactions.

supportD (X � Y) = min{supportD(X), supportD(Y)}

232 M. Morzy

We decide to redefine the notion of rule support purposely. The support of
the rule is used mainly for post-processing of discovered rules to select rules
of interest. In this case, users are likely to be interested in selecting rules that
pertain to statistically significant itemsets contained in either the antecedent or
the consequent of the rule. The join of the rule is used to measure the quality
of the rule expressed as the rarity of the rule,

joinD (X � Y) = supportD(X ∪ Y)

Again, we choose to use the term join for the measure known as the support
of the rule in traditional association rule mining. We decide to do so in order
to avoid confusion, as the relative importance of a rule increases with the in-
crease of the traditional support of the rule, whereas in the case of dissociation
rules the most important rules are the ones with very low values of the join
measure.

The confidence of the rule X � Y is the ratio of the number of transactions
that support the antecedent and do not support the consequent of the rule to
the number of transactions that support the antecedent of the rule.

confidenceD (X � Y) =
supportD (X)− supportD(X ∪ Y)

supportD (X)
=

= 1− joinD (X � Y)
supportD (X)

The problem of discovering dissociation rules can be formulated as follows.
Given a database D and thresholds of minimum support, confidence, and max-
imum join, called minsup, minconf, and maxjoin, respectively. Find all dissocia-
tion rules valid in the database D with respect to the above mentioned thresholds.
The thresholds are used in the following way. The minsup is used to select sta-
tistically significant itemsets for antecedents and consequent of generated rules.
The maxjoin threshold provides an upper limit of how often the elements con-
stituting the antecedent and the consequent of the rule are allowed to appear
together in the database D. Finally, the minconf threshold is used only for the
post-processing of rules and selecting the strongest rules. Note that given the
values of minsup and maxjoin, the confidence of each generated dissociation rule
has a lower bound confidenceD = (1−maxjoin/minsup).

4 Algorithm

The generation of dissociation rules is based on the following lemmas.

Lemma 1. Let LD denote the set of all frequent itemsets discovered in the
database D. If X � Y is a valid dissociation rule, then (X ∪ Y) /∈ LD.

Lemma 1 is trivial. X � Y implies that supportD (X ∪ Y) ≤ maxjoin ≤ minsup,
from which follows that (X ∪ Y) /∈ LD.

Efficient Mining of Dissociation Rules 233

Lemma 2. If X � Y is a valid dissociation rule, then ∀X ′ ⊇ X,Y ′ ⊇ Y such,
that X ′ ∈ LD ∧ Y ′ ∈ LD, X ′ � Y ′ is a valid dissociation rule.

From the fact that X ′ ⊇ X and Y ′ ⊇ Y follows that supportD (X ′ ∪ Y ′) ≤
supportD (X ∪ Y). Because supportD (X ∪ Y) ≤ maxjoin and both X ′ and Y ′

are frequent, X ′ � Y ′ is a dissociation rule.

Lemma 3. ∀X,Y such, that X � Y is a valid dissociation rule, there exists
Z ∈ Bd− (LD) such, that (X ∪ Y) ⊇ Z.

From the definition of the negative border follows that, for each set X, ei-
ther X is frequent, or X belongs to the negative border, or one of its proper
subsets belongs to the negative border. Since X � Y is a valid dissociation
rule, either (X ∪ Y) ∈ Bd− (LD) (and all its proper subsets are frequent),
or (X ∪ Y) /∈ Bd− (LD) and it has a proper subset in Bd− (LD). Otherwise,
(X ∪ Y) would have to be frequent and X � Y would not be a valid disso-
ciation rule. Lemma 3 is particularly important, because it allows to find all
dissociation rules by exploring and extending the negative border of the collec-
tion of frequent itemsets.

Similarly to traditional association rule mining, the problem of mining dis-
sociation rules can be divided into two subproblems. The first problem consists
in discovering all dissociation itemsets, given thresholds of minsup and maxjoin.
The second problem consists in using discovered dissociation itemsets to gener-
ate dissociation rules. The naive approach to generating dissociation rules is the
following. First, all frequent itemsets are discovered using the Apriori algorithm
[4]. Next, all possible pairs of frequent itemsets are joined to generate candidate
dissociation itemsets. Candidate dissociation itemsets that are contained in LD

are pruned based on Lemma 1. Actual support counts of candidate dissociation
itemsets are found during a full database scan. This approach is highly ineffec-
tive. The number of candidate dissociation itemsets can be large, especially for
low values of minsup threshold. Pruning performed based on Lemma 1 does not
eliminate many candidate dissociation itemsets and many candidates are unnec-
essarily verified. However, the advantage of the naive algorithm is exactly one
database scan to determine all valid dissociation itemsets and dissociation rules.

In order to efficiently discover dissociation rules, we propose the following
procedure. We conclude from Lemma 2 that it is sufficient to discover only
minimal dissociation rules. All remaining dissociation rules can be generated
by extending antecedents and consequents of minimal dissociation rules with
frequent supersets. Therefore, we reduce the problem of mining dissociation
rules to the problem of mining minimal dissociation rules. We use Lemma 3
to limit the search space of candidate dissociation itemsets to supersets of sets
contained in the negative border of the collection of frequent itemsets. Indeed,
each set contained in the negative border Bd− (LD) is either a candidate dis-
sociation itemset, or is the seed set for a candidate dissociation itemset. Let
us assume that the set {m,n, o} is contained in the negative border Bd− (LD).
If supportD ({m,n, o}) ≥ maxjoin, then {m,n, o} is extended with all frequent

234 M. Morzy

1-itemsets {pi}, such that {pi} ∪ {m,n, o} can be divided into two disjoint fre-
quent itemsets. Let L1

D denote the set of all frequent 1-itemsets. Let C� denote
the set of pairs of frequent itemsets that are candidates for joining into a dissoci-
ation itemset, and let D� denote the set of pairs of frequent itemsets that form
valid dissociation itemsets. The outline of the DI-Apriori algorithm is presented
in Figure 1.

Require: LD, the collection of all frequent itemsets
Require: L1

D, the collection of all frequent 1-itemsets
1: D� = {(X, Y) : {X ∪ Y } ∈ Bd− (LD) ∧ (X, Y) .support ≤ maxjoin
2: C� = {(X, Y) : {X ∪ Y } ∈ Bd− (LD) ∧ (X, Y) /∈ D�}
3: while C� grows do
4: for all (X, Y) ∈ C� do
5: for all l ∈ L1

D do
6: if {X ∪ l} ∈ LD ∧ {Y ∪ l} ∈ LD ∧ {X ∪ Y ∪ l} /∈ LD then
7: C� = C� ∪ {X ∪ Y ∪ l}
8: end if
9: end for

10: end for
11: for all (X, Y) ∈ C� do
12: compute supportD (X ∪ Y)
13: end for
14: end while
15: D� = {(X, Y) ∈ C� : (X, Y) .support ≤ maxjoin}
16: for all (X, Y) ∈ D� do
17: for all X ′ ∈ LD : X ′ ⊇ X , Y ′ ∈ LD : Y ′ ⊇ Y do
18: D� = D� ∪ {(X ′, Y ′)}
19: end for
20: end for
21: for all (X ′, Y ′) ∈ D� for which the support is unknown do
22: compute supportD (X ′ ∪ Y ′)
23: end for
24: for all (X, Y) ∈ D� do
25: if 1 − supportD(X∪Y)

supportD(X) ≥ minconf then
26: output X � Y
27: else if 1 − supportD(X∪Y)

supportD(Y) ≥ minconf then
28: output Y � X
29: end if
30: end for

Fig. 1. DI-Apriori

The DI-Apriori algorithm proceeds as follows. First, the negative border is
examined and all itemsets with support less than maxjoin are added to the
set of valid dissociation itemsets. The remaining itemsets in the negative bor-
der form the seed set of candidate dissociation itemsets. While the collection
of candidate dissociation itemsets grows, we repeat the following steps. Each
candidate dissociation itemset is extended with frequent 1-itemsets that allow

Efficient Mining of Dissociation Rules 235

to split the candidate dissociation itemset into a frequent antecedent and conse-
quent. All candidates are verified during a single database pass and their support
counts are determined. Candidate dissociation itemsets with support lower than
maxjoin are added to the set of valid dissociation itemsets. Discovered minimal
dissociation itemsets are used to generate the remaining dissociation itemsets by
replacing antecedents and consequents by their frequent supersets (lines 16–20).
Also, the join measure for newly created dissociation itemsets is computed (lines
21–23). Finally, all dissociation itemsets are used to produce dissociation rules
with respect to the provided minconf threshold.

Our implementation of the DI-Apriori algorithm uses a specialized physical
data structure, the DI-tree. DI-tree is a lattice of dissociation itemsets, where
each node of the lattice corresponds to a single dissociation itemset (either can-
didate or valid). DI-tree structure is optimized for fast lookup of dissociation
itemsets and their components. On the physical level we have devised two mod-
ifications to the original method of the DI-tree traversal (these modifications
are dubbed DI∗-Apriori and DI−-Apriori, we do not describe them in detail
due to the lack of space). The main advantage of DI-Apriori is the fact that
the number of generated candidate dissociation itemsets is significantly smaller
than when using the naive approach. Table 1 summarizes the number of frequent
and candidate itemsets processed during the invocation of the naive algorithm in
comparison with the number of itemsets tested by the DI-Apriori. The drawback
of DI-Apriori is the fact that several database scans are required to compute the
supports of dissociation itemsets. We present the results of the experimental
evaluation of the proposed algorithm in the next section.

Table 1. Number of itemsets processed by Basic Apriori vs. DI-Apriori

minsup maxjoin
Basic Apriori

DI-Apriori
frequent itemsets candidate itemsets

5% 1% 83 396 264

4% 1% 214 2496 1494

3% 1% 655 16848 4971

5 Experimental Results

All experiments have been conducted on synthetic datasets generated using the
generator from IBM’s Quest Project [2]. Experiments presented in this section
use a dataset consisting of 20 000 transactions with an average size of 10 items,
the minsup threshold is set to 5%, the number of patterns built into the dataset
is 300 with an average size of 4 items. The maxjoin threshold is set to 3% if
not stated otherwise. Figure 2 presents the number of dissociation rules and
the number of frequent itemsets discovered when varying the minsup threshold.
In this experiment the maxjoin threshold is always kept 4% below the minsup
threshold. We can see a strong correspondence between the number of disso-
ciation rules and frequent itemsets (note the logarithmic scale on the y-axis).

236 M. Morzy

The execution time of algorithms when varying the average length of transac-
tions is depicted in Figure 3. We do not observe any significant differences in
the execution times of variations of DI-Apriori. Furthermore, all variations of
DI-Apriori outperform the naive algorithm (again, note the logarithmic scale on
the y-axis). Figure 4 shows the scaling capabilities of DI-Apriori. We are glad
to notice that the algorithm scales almost linearly with the size of the database.
Finally, Figure 5 presents the execution time relative to the difference between
minsup and maxjoin thresholds. Obviously, the execution time of the naive al-
gorithm does not depend on this parameter. The DI-Apriori algorithms perform
slightly better for larger gaps between minsup and maxjoin thresholds, but the
difference in execution times is not significant. We attribute this behavior to
the fact that for larger gaps between minsup and maxjoin thresholds, although
the number of dissociation itemsets drops, the number of intermediate itemsets
(itemsets that are neither frequent nor rare) increases, thus keeping the size of
the DI-tree structure approximately constant.

 1

 10

 100

 1000

 10000

 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

nu
m

be
r

of
 it

em
se

ts
/d

is
so

ci
at

io
n

ru
le

s

minimum support [%]

Number of frequent itemsets and dissociation rules

frequent itemsets
dissociatioin rules

 1

 10

 100

 1000

 10000

 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

nu
m

be
r

of
 it

em
se

ts
/d

is
so

ci
at

io
n

ru
le

s

minimum support [%]

Number of frequent itemsets and dissociation rules

frequent itemsets
dissociatioin rules

Fig. 2. Number of dissociation rules

 0.1

 1

 10

 100

 1000

 10000

 6 8 10 12 14 16

tim
e

[s
]

average length of transactions

Execution time

Apriori
DI Apriori

DI* Apriori
DI- Apriori

 0.1

 1

 10

 100

 1000

 10000

 6 8 10 12 14 16

tim
e

[s
]

average length of transactions

Execution time

Apriori
DI Apriori

DI* Apriori
DI- Apriori

Fig. 3. Execution time

 10

 20

 30

 40

 50

 60

 70

 80

 20000 30000 40000 50000 60000 70000

tim
e

[s
]

number of transactions

Execution time

Apriori
DI Apriori

DI* Apriori
DI- Apriori

 10

 20

 30

 40

 50

 60

 70

 80

 20000 30000 40000 50000 60000 70000

tim
e

[s
]

number of transactions

Execution time

DI Apriori
DI Apriori

DI* Apriori
DI- Apriori

Fig. 4. Execution time

 100

 90

 80

 70

 1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e

[s
]

difference

Execution time

Apriori
DI Apriori

DI* Apriori
DI- Apriori

 100

 90

 80

 70

 1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e

[s
]

maxjoin

Execution time

Apriori
DI Apriori

DI* Apriori
DI- Apriori

Fig. 5. Execution time

6 Conclusions

This paper initiates the research on dissociation rules. It is a simple model that
successfully captures the ”negative knowledge” hidden in the data, while keeping

Efficient Mining of Dissociation Rules 237

the number of discovered patterns low. Main advantages of the proposal are
the simplicity, practical feasibility, and usability of the model. Our future work
agenda includes further investigation of the properties of the model. One of the
most urgent research directions is an experimental comparison of dissociation
rules with other types of ”negative” association rule models presented in Sect. 2.
We are also eager to see how dissociation rules behave on real-world market
basket datasets. Finally, we plan to refine the algorithm to scale to very large
databases and we intend to develop concise and compact representations for
collections of discovered dissociation rules.

References

1. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.
2. R. Agrawal, M. J. Carey, and C. F. et al. Quest: A project on database mining. In

Proceedings of the 1994 ACM SIGMOD International Conference on Management
of Data, Minneapolis, Minnesota, May 24-27, 1994, page 514. ACM Press, 1994.

3. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between
sets of items in large databases. In 1993 ACM SIGMOD, Washington, D.C., May
26-28, pages 207–216. ACM Press, 1993.

4. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB 1994, September 12-15, Santiago de Chile, pages 487–499.

5. A. Amir, R. Feldman, and R. Kashi. A new versatile method for association
generation. In Princ. of Data Mining and Knowledge Disc., pages 221–231, 1997.

6. M.-L. Antonie and O. R. Zaiane. Mining positive and negative association rules: An
approach for confined rules. Technical Report TR04-07, Department of Computing
Science, University of Alberta, 2004.

7. F. Hussain, H. Liu, E. Suzuki, and H. Lu. Exception rule mining with a relative
interestingness measure. In PADKK 2000, Kyoto, Japan, April 18-20, pages 86–97.

8. Y. S. Koh and N. Rountree. Finding sporadic rules using apriori-inverse. In PAKDD
2005, Hanoi, Vietnam, May 18-20, pages 97–106, 2005.

9. M. Kryszkiewicz and K. Cichoń. Support oriented discovery of generalized
disjunction-free representation of frequent patterns with negation. In PAKDD
2005, Hanoi, Vietnam, May 18-20, pages 672–682, 2005.

10. H. Liu, H. Lu, L. Feng, and F. Hussain. Efficient search of reliable exceptions. In
PAKDD 1999, Beijing, China, April 26-28, volume 1574, pages 194–203, 1999.

11. B. Padmanabhan and A. Tuzhilin. A belief-driven method for discovering unex-
pected patterns. In KDD 1998, August 27-31, New York City, New York, USA,
pages 94–100. AAAI Press, 1998.

12. G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In
Knowledge Discovery in Databases, pages 229–248. AAAI/MIT Press, 1991.

13. A. Savasere, E. Omiecinski, and S. B. Navathe. Mining for strong negative associa-
tions in a large database of customer transactions. In ICDE 1998, February 23-27,
Orlando, Florida, USA, pages 494–502. IEEE Computer Society, 1998.

14. X. Wu, C. Zhang, and S. Zhang. Efficient mining of both positive and negative
association rules. ACM Transactions on Information Systems, 22(3):381–405, 2004.

Optimized Rule Mining Through a Unified
Framework for Interestingness Measures

Céline Hébert and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen
Campus Côte de Nacre

F-14032 Caen Cédex France
Forename.Surname@info.unicaen.fr

Abstract. The large amount of association rules resulting from a KDD
process makes the exploitation of the patterns embedded in the database
difficult even impossible. In order to address this problem, various inter-
estingness measures were proposed for selecting the most relevant rules.
Nevertheless, the choice of an appropriate measure remains a hard task
and the use of several measures may lead to conflicting information. In
this paper, we propose a unified framework for a set of interestingness
measures M and prove that most of the usual objective measures be-
have in a similar way. In the context of classification rules, we show that
each measure of M admits a lower bound on condition that a minimal
frequency threshold and a maximal number of exceptions are considered.
Furthermore, our framework enables to characterize the whole collection
of the rules simultaneously optimizing all the measures of M. We finally
provide a method to mine a rule cover of this collection.

1 Introduction

Exploring and analyzing relationships between features is a central task in KDD
processes. Agrawal et al. [1] define association rules as the implications X → Y
where X and Y represent one or several features (or attributes). However, among
the overwhelming number of rules resulting from practical applications, it is
difficult to determine the most relevant rules [9]. An essential task is to assist
the user in selecting interesting rules. In this paper, we focus on classification
rules i.e. rules concluding on a class label. These rules are useful for producing
emerging patterns [5], characterizing classes [4] and building classifiers [10].

This paper is about the use of interestingness measures for classification rules.
Such measures are numerous. The Support and the Confidence measures are
probably the most famous ones, but there are more specific ones such as the
Lift [3] or the Sebag and Schoenauer’s measure [14]. In practice, choosing a
suitable measure and determining an appropriate threshold for this measure is
a challenge for the end user. Combining results coming from several measures
is even much more difficult. Thus an important issue is to compare existing
interestingness measures in order to highlight their similarities and differences
and understand better their behaviors [13, 2]. Even if most of the usual measures

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 238–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimized Rule Mining Through a Unified Framework 239

are based on the rule antecedent frequency and the rule number of exceptions,
there is a lack of generic results and this observation was the starting point of
this work.

Contributions. In this paper, we design an original framework grouping together
a large set M of measures (also called δ-dependent measures) having a similar
behavior. This framework points out the minimal frequency threshold γ and the
maximal number of exceptions of a rule δ as two parameters highly characterizing
the rule quality. We provide lower bounds according to γ and δ for any measure
in M. This result guarantees a minimal quality for the rules. We show that all
the measuresM can be simultaneously optimized, which ensures to produce the
best rules according to these measures. We finally provide a method to mine a
rule cover of these rules, making our approach efficient in practice.
Organization. The paper is organized as follows. Section 2 discusses related work
and gives preliminary definitions. Section 3 describes our framework and the
relationship with the parameters γ and δ. Section 4 shows how to optimize the
measures M and obtain a rule cover of all the rules optimizing simultaneously
these measures. Section 5 gives experimental results about the quality of the
mined rules.

2 Preliminaries

2.1 Covering and Selecting the Most Interesting Rules

Lossless cover. It is well known that the whole set of association rules contains a
lot of redundant rules [1]. So several approaches propose to extract a cover of the
rules [19] like the informative rules [11]. Such a rule has a minimal antecedent
and a maximal consequence. They are lossless since we can regenerate the whole
set of rules according to both minimal support and confidence thresholds. In
Section 4.3, we extend this result by proving that the informative classification
rules are a cover of all the rules optimizing simultaneously the measures M.
Deficiencies in selecting the most interesting rules. A lot of works address the
selection of relevant rules by means of interestingness measures. It requires to de-
fine properties characterizing “good” interestingness measures [9, 12]. Piatetsky-
Shapiro [12] proposes a framework with three properties and we set our work
with respect to it. Other works compare interestingness measures to determine
their differences and similarities, either in an experimental manner [16] or in
a theoretical one [15, 7]. There are also attempts to combine several measures
to benefit from their joint qualities [6]. However it should be underlined that
choosing and using a measure remain a hard task.

This paper deals with the previously mentionned aspects of the rule selection
problem. By defining a large set of measures M behaving in a similar way,
choosing one of these measures becomes a secondary issue. We intend to exhibit
the minimal properties that a measure must satisfy in order to get the most
generic framework. We combine their qualities by showing that they can be
simultaneously optimized. To avoid redundancy, we give a method to produce
only a cover of the rules optimizingM, i.e. the informative classification rules.

240 C. Hébert and B. Crémilleux

2.2 Definitions

Basic definitions. A database D is a relation R between a set A of attributes
and a set O of objects: for a ∈ A, o ∈ O, aR o if and only if the object o
contains the attribute a. A pattern is a subset of A. The frequency of a pattern
X is the number of objects in D containing X; it is denoted by F(X). Let
C = {c1, . . . , cn} be a set of class values. Each object in D is assigned a class
label in C. Di corresponds to the set of the objects labeled by ci. Table 1 shows
an example of database containing 8 objects and two labels c1 and c2.

Table 1. An example of database D
D Attributes Classes

Objects A B C D E F G H c1 c2
o1 1 0 1 0 1 0 1 0 1 0

D1
o2 0 1 1 0 1 0 1 1 1 0
o3 1 0 1 0 1 0 0 1 1 0
o4 1 0 1 0 1 0 0 1 1 0
o5 0 1 1 0 1 1 0 0 0 1

D2
o6 1 0 0 1 0 1 0 1 0 1
o7 0 1 1 0 1 1 0 1 0 1
o8 1 0 1 0 0 1 0 1 0 1

Classification rules. A rule r : X → ci where X is a pattern and ci a class
label is a classification rule. X is the antecedent of r and ci its consequence.
F(Xci) is the frequency of r and F(X) the frequency of its antecedent. For
instance, r1 : F → c2 and r2 : EH → c1 are classification rules in D (cf. Table
1). F(X)−F(Xci) is the number of exceptions of r, i.e., the number of objects
containing X which are not labeled by ci. The rule r2 admits 1 exception (object
o7) and the frequency of its antecedent is equal to 4.
Evaluating objective measures. An interestingness measure is a function which
assigns a value to a rule according to its quality. We recall here the well-known
Piatetsky-Shapiro’s properties [12] which aim at specifying what a “good” mea-
sure is. As this paper focuses on classification rules, we formulate them in this
context.

Definition 1 (Piatetsky-Shapiro’s properties). Let r : X → ci be a classi-
fication rule and M an interestingness measure.

– P1: M(r) = 0 if X and ci are statistically independent;
– P2: When F(X) and |Di| remain unchanged, M(r) monotonically increases

with F(Xci);
– P3: When F(Xci) and F(X) (resp. |Di|) remain unchanged, M(r) mono-

tonically decreases with |Di| (resp. F(X)).

P2 ensures the increase of M with the rule frequency. Most of the usual measures
satisfy P2 (e.g., support, confidence, interest, conviction). However, there are a
few exceptions (e.g., J-measure, Goodman-Kruskal, Gini index). In the next
section, we will use P2 to define our framework.

Optimized Rule Mining Through a Unified Framework 241

3 A Unified Framework for Objective Measures

This section defines our framework gathering various measures in a setM. The key
idea is to express a measure according to two parameters: the minimal frequency γ
for the rule antecedent and the maximal number of rule exceptions δ. Then, we
formalize the influence of δ by associating a δ-dependent function to each measure.

3.1 Dependency on the Parameter δ

Definition 2 indicates that a measure M can be expressed as a two-variable
function of the rule frequency and the frequency of its antecedent.

Definition 2 (Associated Function). Let M be an interestingness measure
and r : X → ci a classification rule. ΨM (x, y) is the function associated to M
i.e. it is equal to M(r) where x = F(X) and y = F(Xci).

For instance, when M is the Growth Rate, we obtain: ΨGR(x, y) = y
x−y ×

|D\Di|
|Di| .

Using ΨM , the Piatetsky-Shapiro’s properties P2 and P3 (cf. Section 2.2) can
be formulated as: “ΨM monotonically increases with y” and “ΨM monotonically
decreases with x”.

Figure 1 plots F(Xci) according to
F(X) for a classification rule r : X →
ci. The gray area depicts the condition
imposed by γ on the rule antecedent.
The hatched area of width δ illustrates
the link between the variables x =
F(X) and y = F(Xci) of ΨM : bound-
ing the rule number of exceptions by δ
ensures that F(Xci) is close to F(X).

y = x

x = γ

γ

γ

F(Xci)

y = x− δ

F(X)

δ

Fig. 1. Dependency between x = F(X) and y = F(Xci)

Definition 3 explicitly expresses this link by defining the now called δ-dependent
function ΨM,δ.

Definition 3 (δ-dependent function). Let M be an interestingness measure.
The δ-dependent function ΨM,δ is the one-variable function obtained by the
change of variable y = x− δ in ΨM i.e., ΨM,δ(x) = ΨM (x, x− δ).

Pursuing the example of the Growth Rate, we get: ΨGR,δ(x) = x−δ
δ ×

|D|−|Di|
|Di|

3.2 The Set M of δ-Dependent Measures

We think that the link between F(Xci) and F(X) highlighted above is an im-
portant feature when studying the behavior of an interestingness measure M .
That is the reason why we propose a new Property P4 which takes this link into
account. P4 imposes that M increases with the variable x of ΨM,δ.

242 C. Hébert and B. Crémilleux

Definition 4 (P4 : Property of δ-dependent growth). Let M be an inter-
estingness measure. When δ remains unchanged, ΨM,δ increases with x.

Table 2. Examples of δ-Dependent Measures

Measure Definition for Lower bound
classification rules

Support
F(Xci)

|D|
γ − δ

|D|
Confidence

F(Xci)

F(X)
1 −

δ

γ

Sensitivity
F(Xci)

|Di|
γ − δ

|Di|
Specificity 1 −

F(X) − F(Xci)

|D| − |Di|
1 −

δ

|D| − |Di|
Success Rate

|D| − |Di| − F(X) + 2F(Xci)

|D|
1 +

γ − 2δ − |Di|
|D|

Lift
|D| × F(Xci)

|Di| × F(X)
(1 −

δ

γ
) ×

|D|
|Di|

Piatetsky-Shapiro
F(Xci)

|D|
−

|Di| × F(X)

|D|2
[γ × (1 −

|Di|
|D|

) − δ] ×
1

|D|
Laplace (k=2)

F(Xci) + 1

F(X) + 2

γ − δ + 1

γ + 2

Odds ratio
F(Xci)

F(X) − F(Xci)
×

|D| − |Di| − F(X) + F(Xci)

|Di| − F(Xci)
[

γ − δ

|Di| − γ + δ
] × [

|D| − |Di| − δ

δ
]

Growth rate
F(Xci)

F(X) − F(Xci)
×

|D| − |Di|
|Di|

γ − δ

δ
×

|D| − |Di|
|Di|

Sebag & Schoenauer
F(Xci)

F(X) − F(Xci)

γ − δ

δ

Jaccard
F(Xci)

|Di| + F(X) − F(Xci)

γ − δ

|Di| + δ

Conviction
|D| − |Di|

|D|
×

F(X)

F(X) − F(Xci)

|D| − |Di|
|D|

×
γ

δ

φ-coefficient
|D| × F(Xci) − |Di| × F(X)√F(X) × |Di| × (|D| − F(X)) × (|D| − |Di|)

γ × (|D| − |Di|) − δ × |D|√
γ × (|D| − γ) × |Di| × (|D| − |Di|)

Added Value
F(Xci)

F(X)
−

|Di|
|D|

γ − δ

γ
−

|Di|
|D|

Certainty Factor
F(Xci) × |D| − F(X) × |Di|

F(X) × (|D| − |Di|)
γ × (|D| − |Di|) − δ × |D|

γ × (|D| − |Di|)
Information Gain log

(F(Xci)

F(X)
×

|D|
|Di|

)
log

(
γ − δ

γ
×

|D|
|Di|

)

We claim that P4 captures an important characteristic of an interestingness
measure M : the behavior of M with respect to the joint development of the
rule antecedent frequency and the rule number of exceptions. This characteristic
is not found in Piatetsky-Shapiro’s framework. Table 2 provides a sample of
measures fulfilling P4 (see their definitions in [15, 17]).

We define now the set M of δ-dependent measures:

Definition 5 (M : Set of δ-dependent measures). The set of δ-dependent
measures M is the set of measures satisfying P2 and P4.

Definition 5 does not require a δ-dependent measure to also satisfy P1 or P3.
Remember that our aim is to define the most generic framework. Contrary to
P2 and P3, P4 does not impose on ΨM,δ to monotonically increase and thus,
the Conviction is a δ-dependent measure. A lot of measures belong to M: for
instance, all the measures in Table 2 are in M. As M is defined in intension,
it is an infinite set. The next section shows how to bound and optimize these
measures.

Optimized Rule Mining Through a Unified Framework 243

4 Simultaneous Optimization of the δ-Dependent
Measures

4.1 Lower Bounds and Optimization

For any measure ofM, Theorem 1 explicits a lower bound depending on γ and
δ (|D| and |Di| are constant values).

Theorem 1 (Lower bounds). Let r : X → ci be a classification rule. Assume
that F(X) ≥ γ and r admits less than δ exceptions. Thus, for each measure M
in M, ΨM,δ(γ) is a lower bound of M(r).

Proof. Since r has less than δ exceptions, we immediately have F(Xci) ≥
F(X)− δ. From P2, ΨM (x, y) increases with y and thus ΨM (x, y) ≥ ΨM (x, x−
δ) = ΨM,δ(x). We know that x is greater than or equal to γ and M satisfies P4.
Consequently, ΨM,δ(γ) is a lower bound for ΨM,δ(x). ��

Theorem 1 means that the quality of any rule r whose antecedent is a γ-frequent
pattern and having less than δ exceptions, is greater than or equal to ΨM,δ(γ).
As this result is true for any measure in M, r satisfies a minimal quality for
each measure of M, thus we get a set of rules of good quality according to M.
The lower bounds only depends on δ and γ and constant values on D. They can
be computed (see the last column in Table 2) to quantify the minimal quality of
rules. Intuitively, the more the antecedent frequencies increase and the numbers
of exceptions decrease, the higher the global quality of a set of rules is. Due to
the properties P2 and P4 of the δ-dependent measures, for all measures M in
M, ΨM,δ(γ) increases with γ and decreases with δ. Property 1 (proved in [8])
shows that the lower bound of any measure M inM can tend towards its upper
bound. The conjunction of Theorem 1 and Property 1 proves that the rules
with a γ-frequent antecedent and having less than δ exceptions optimize all the
measures in M.

Property 1 The optimal value of ΨM,δ(γ) is obtained when γ → |D| and δ → 0.

4.2 Completeness

Theorem 2 indicates that any classification rule r optimizing the set of measures
M (i.e., ∀M ∈M, M(r) ≥ ΨM,δ(γ)) is a rule whose antecedent is frequent and
having less than δ exceptions.

Theorem 2 (Completeness). Let r : X → ci a classification rule. Assume
that M(r) ≥ ΨM,δ(γ) for all measures M in M. Then F(X) ≥ γ and r admits
less than δ exceptions.

Proof. We prove the completeness by reducing it to the absurd. We denote by
Spe the Specificity and by Sup the Support (see Table 2 for their definitions).
Assume that r admits δ′ exceptions with δ′ > δ. We have − δ′

|D|−|Di| < − δ
|D|−|Di|

244 C. Hébert and B. Crémilleux

followed by Spe(r) < ΨSpe,δ(γ), which is in contradiction with our hypothesis.
Thus r has less than δ exceptions.

Suppose that F(X) = γ′ < γ. We have Sup(r) < γ′−δ
|D| < ΨSup,δ(γ) and this

is in contradiction with our hypothesis as well. Thus, the antecedent frequency
is greater than γ. ��

The assumption M(r) ≥ ΨM,δ(γ) for M ∈ {Support, Specificity} is sufficient
to establish this proof. However, it is necessary to assume M(r) ≥ ΨM,δ(γ)
for all measures M in M in Theorem 2 to demonstrate the completeness of
our approach. So, this theorem is the reverse of Theorem 1. Combining Theo-
rems 1 and 2 results in an equality between the set of classification rules with a
γ-frequent antecedent and a number of exceptions under δ and the set of clas-
sification rules r whose value is greater than or equal to the lower bounds for
any measure M in M. Theorem 2 ensures the completeness when mining the
rules optimizing the setM by extracting the classification rules according to the
thresholds γ and δ. The next section shows that we can reduce even more the
set of rules to mine without any loss.

4.3 Reduction to a Rule Cover

We have introduced in Section 2.1 the rule cover based on informative rules.
This cover enables to restore the whole collection of association rules with their
exact frequencies and confidence [11]. In this section, we extend this result for
the classification rules optimizing simultaneously the measures M. By analogy
with informative rules, we call informative classification rule a classification rule
having a free1 pattern as antecedent and concluding on a class label. Theorem 3
proves that the informative classification rules having γ-frequent antecedents and
less than δ exceptions constitute a cover of the classification rules optimizing all
the measures in M.

Theorem 3 (Rule cover). The set of informative classification rules having
γ-frequent antecedents and less than δ exceptions enables to generate the whole
set of classification rules r with M(r) ≥ ΨM,δ(γ) for each measure M in M.

Proof. Assume that X → ci is an informative classification rule and h(X) is the
closure of X (see [18] for a definition of the closure). From X and h(X), it is
possible to build the set of patterns Y containing X and included in h(X). The
rules Y → ci constitute the whole set of rules optimizing M. We demonstrate
that:
(1) A rule Y → ci optimizes all the measures ofM. Due to the properties of the
closure, F(Y) = F(X) = F(h(X)). Thus, Y is γ-frequent. Moreover, since X
and Y appear in the same objects of D, we have F(Xci) = F(Y ci). This ensures
that the rules X → ci and Y → ci have an identical number of exceptions i.e.
less than δ. This proves the first point.

1 Free (or key) patterns are defined in [11]. They have interesting properties of mini-
mality in lattices and enable to build rules with minimal antecedents.

Optimized Rule Mining Through a Unified Framework 245

(2) All the rules optimizingM are generated. Suppose the rule Z → ci optimizes
M but is not generated by our method. Let X ′ be the largest free pattern con-
taining Z. X ′ → ci is not an informative rule (otherwise, Z → ci would have been
generated) thus we consider two cases: either X ′ is not frequent but this implies
that Z is not frequent (Contradiction) or X ′ → ci has more than δ exceptions
and thus, Z → ci has more than δ exceptions as well (Contradiction). ��
For any classification rule r, the cover always contains a rule having the same
quality as r for all the measures inM. As there are efficient algorithms to extract
the free (or key) patterns [11] which are the antecedents of the informative rules,
Theorem 3 is precious to mine in practice the informative classification rules. We
have designed the ClaRminer prototype [8] which produces the whole set of
informative classification rules.

5 Rule Quality Testing

The aim of the experiments is twofold. We quantify the quality of the rules mined
in practice according to the set of measures given in Table 2 and the reduction
brought by the informative classification rule cover. Experiments are carried out
on the MUSHROOM data set from the UCI Machine Learning Repository2 with a
2.20 GHz Pentium IV processor with Linux operating system by using 3Gb of
RAM memory.
Overview of the mined rules. We focus on the quality of the informative classi-
fication rules with γ = 812 and δ = 40. These values correspond to a relative
frequency of 10% and a relative number of exceptions under 5%. The mining
produces 1598 rules with antecedents containing a maximum of 7 attributes.
Table 3 gives for each measure: its lower bound, the average value and the ratio
avg−ΨM,δ(γ)

ΨM,δ(γ) (called difference in Table 3). For instance, the average value for
the set of rules is 0.252 for the Sensitivity (the lower bound is 0.184) and 74.65
for the Sebag & Schoenauer’s measure (the lower bound is 19.3).For the Sebag
& Schoenauer’s measure, the average value is 286.81% above the lower bound.
Remark that the difference is less important for other measures but the lower
bound for these measures is really close to their maximum. For instance, the dif-
ference is 4.3% for the Confidence and the lower bound is 0.951 with an optimal
value equal to 1.

Table 3. Lower bound, average value and difference (%)

Measure Support Confidence Sensitivity Specificity Success Rate Lift PS Laplace Odds Ratio
Lower bound 0.095 0.951 0.184 0.990 0.572 1.835 0.043 0.950 21.771
Average 0.128 0.992 0.252 0.998 0.620 1.958 0.063 0.991 29.603
Difference 34.74 4.3 37.33 0.81 8.39 6.70 45.63 4.3 35.97

Measure GR S & S Jaccard Conviction φ-coefficient AV Certainty Factor GI
Lower bound 17.961 19.30 0.185 9.785 0.289 0.433 0.898 0.607
Average 71.178 74.654 0.252 36.901 0.72 0.485 0.984 0.671
Difference 296.29 286.81 36.22 277.12 28.72 12.01 9.58 10.54

2 http://www.ics.uci.edu/∼mlearn/MLSummary.html

246 C. Hébert and B. Crémilleux

Table 4. Ratio number of rules/number of informative rules

γ 812 812 812 1500 1500 1500 2000 2000 2000
δ 25 50 100 50 100 200 75 150 300

Ratio 178.8 143.0 110.5 108.4 64.2 50.8 6.8 6.3 8.9

Comparison between informative rules and the whole set of rules. Table 4 shows
that considering only informative rules instead of all the rules optimizing the
measuresM significantly reduces the number of rules: according to γ and δ, the
cover only contains from 0.6% to 15.9% of the whole rule collection.

6 Conclusions and Future Work

In this paper, we have designed an original framework gathering most of the
usual interestingness measures for classification rules. The measures belonging
to this framework are shown to behave the same way and choosing “the” appro-
priate measure appears to be a secondary issue. We have established that all the
measures of this framework can be simultaneously optimized, thus enabling the
production of the best rules. A cover of these rules can be efficiently mined and
experiments indicate that the number of produced rules is significantly reduced.

This work could be extended in many directions. We are working on gener-
alizing our framework to any association rule. One key point of our approach
is that the rule consequence is a class label and its frequency is known. The
generalization is not obvious because no information is provided about the con-
sequence frequency when considering any association rule. Another objective is
to automatically determine the couples of parameters (δ, γ) to mine the rules
satisfying measure thresholds fixed by the user to combine the various semantics
conveyed by the measures. A third extension is the study of measures that do
not belong to our framework.

Acknowledgements. This work has been partially funded by the ACI ”masse
de données” (French Ministry of research), Bingo project (MD 46, 2004-2007).

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets
of items in large databases. In P. Buneman and S. Jajodia, editors, SIGMOD’93
Conference, pages 207–216. ACM Press, 1993.

[2] J. R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In KDD’99,
pages 145–154, 1999.

[3] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing as-
sociation rules to correlations. In J. Peckham, editor, SIGMOD 1997, Proceedings
ACM SIGMOD International Conference on Management of Data, May 13-15,
1997, Tucson, Arizona, USA, pages 265–276. ACM Press, 1997.

Optimized Rule Mining Through a Unified Framework 247

[4] B. Crémilleux and J.-F. Boulicaut. Simplest rules characterizing classes generated
by delta-free sets. In 22nd Int. Conf. on Knowledge Based Systems and Applied
Artificial Intelligence (ES’02), pages 33–46, Cambridge, UK, December 2002.

[5] G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends and
differences. In proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining (ACM SIGKDD’99), pages 43–52, San Diego, CA,
1999. ACM Press.

[6] D. Francisci and M. Collard. Multi-criteria evaluation of interesting dependencies
according to a data mining approach. In Congress on Evolutionary Computation,
pages 1568–1574, Canberra, Australia, 12 2003. IEEE Press,.

[7] J. Fürnkranz and P. A. Flach. Roc ’n’ rule learning-towards a better understand-
ing of covering algorithms. Machine Learning, 58(1):39–77, 2005.

[8] C. Hébert and B. Crémilleux. Obtention de règles optimisant un ensemble de
mesures. In Conférence francophone sur l’apprentissage automatique (CAp’06),
Trégastel, France, 2006.

[9] R. J. Hilderman and H. J. Hamilton. Measuring the interestingness of discovered
knowledge: A principled approach. Intell. Data Anal., 7(4):347–382, 2003.

[10] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rules mining.
In proceedings of Fourth International Conference on Knowledge Discovery & Data
Mining (KDD’98), pages 80–86, New York, August 1998. AAAI Press.

[11] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In proceedings of 7th International Conference on
Database Theory (ICDT’99), volume 1331 of Lecture notes in artificial intelli-
gence, pages 299–312, Jerusalem, Israel, 1999. Springer Verlag.

[12] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In
Knowledge Discovery in Databases, pages 229–248. AAAI/MIT Press, 1991.

[13] M. Plasse, N. Niang, G. Saporta, and L. Leblond. Une comparaison de cer-
tains indices de pertinence des règles d’association. In G. Ritschard and C. Djer-
aba, editors, EGC, volume RNTI-E-6 of Revue des Nouvelles Technologies de
l’Information, pages 561–568. Cépaduès-Éditions, 2006.

[14] M. Sebag and M. Schoenauer. Generation of rules with certainty and con dence
factors from incomplete and incoherent learning bases. In M. L. J. Boose,
B. Gaines, editor, European Knowledge Acquisistion Workshop, EKAW’88, pages
28–1–28–20, 1988.

[15] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness mea-
sure for association patterns. In KDD, pages 32–41. ACM, 2002.

[16] B. Vaillant, P. Lenca, and S. Lallich. A clustering of interestingness measures. In
The 7th International Conference on Discovery Science, pages 290–297, 10 2004.

[17] B. Vaillant, P. Meyer, E. Prudhomme, S. Lallich, P. Lenca, and S. Bigaret. Mesurer
l’intérêt des règles d’association. In EGC, pages 421–426, 2005.

[18] R. Wille. Ordered sets, chapter Restructuring lattice theory: an approach based
on hierachies of concepts, pages 445–470. Reidel, Dordrecht, 1982.

[19] M. J. Zaki. Generating non-redundant association rules. In KDD’00, pages 34–43,
2000.

An Information-Theoretic Framework for Process
Structure and Data Mining

Antonio D. Chiaravalloti2, Gianluigi Greco1, Antonella Guzzo2, and Luigi Pontieri2

Dept. of Mathematics1, UNICAL, Via P. Bucci 30B, 87036, Rende, Italy
ICAR, CNR2, Via Pietro Bucci 41C, 87036 Rende, Italy

ggreco@mat.unical.it, {chiaravalloti, guzzo,
pontieri}@icar.cnr.it

Abstract. Process-oriented systems have been increasingly attracting data min-
ing community, due to the opportunities the application of inductive process min-
ing techniques to log data can open to both the analysis of complex processes and
the design of new process models. Currently, these techniques focus on structural
aspects of the process and disregard data that are kept by many real systems, such
as information about activity executors, parameter values, and time-stamps.

In this paper, an enhanced process mining approach is presented, where differ-
ent process variants (use cases) can be discovered by clustering log traces, based
on both structural aspects and performance measures. To this aim, an information-
theoretic framework is used, where the structural information as well as perfor-
mance measures are represented by a proper domain, which is correlated to the
“central domain” of logged process instances. Then, the clustering of log traces
is performed synergically with that of the correlated domains. Eventually, each
cluster is equipped with a specific model, so providing the analyst with a compact
and handy description of the execution paths characterizing each process variant.

Keywords: process mining, workflow management, coclustering, mutual infor-
mation

1 Introduction

Process mining is a key technology for advanced Business Process Management aimed
at supporting the (re)design phase of process-oriented systems. In fact, based on the
log data that are gathered by these systems, process mining techniques (e.g., [9,6,7,8])
are devoted to discover the underlying process model and the constraints explaining the
episodes recorded. The “mined” model, providing the user with a summarized view on
process operations, can be profitably exploited in designing or re-engineering a concrete
workflow schema that will efficiently support the enactment of the process.

While mining a complex process, possibly involving hundreds of activities, it is of-
ten convenient to first single out its variants, i.e., its use cases, and then equip each of
them with a specialized schema (as in [10,5]). By this way, one can avoid generating an
overly-detailed and inaccurate description of the process, which mixes up semantically
different scenarios. Technically, such variants can be discovered by properly partition-
ing traces into clusters, as informally discussed in the following running example.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 248–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Information-Theoretic Framework for Process Structure and Data Mining 249

ID task sequence
t1 abcrxefgph
t2 abcrxyfegph
t3 acbrxefgph
t4 abcrxyefgph
t5 acybrefgph
t6 abcryefgph
t7 abrcyefgph
t8 abcyrfegph
t9 abcyefgdh

t10 abcxfyegdh
t11 acbfyegdh
t12 abfcxegdh

ID time
t1 8
t2 9
t3 9
t4 8
t5 2
t6 4
t7 4
t8 5
t9 4

t10 2
t11 1
t12 1

a

client

uthenticate

select

stores

validate

order plan

accept

order
make

bill

a

b

c

r

f

y

e

g
h

client

reliability

receive

order
AND

XOR

OR

AND

OR

OR

deferred

payment

applicat.

x

check

store X

check

store Y

d

XOR OR

p

payment

plan

evaluate

discount

(a) (b) (c)

Fig. 1. Log traces (a), metrics values (b) and a workflow schema (c) for process HANDLEORDER

Example 1. As a sample applicative scenario, consider the toy HANDLEORDER process
for handling customers’ orders in a business company, which is graphically illustrated
in Fig. 1.(c). An example log data for the process is shown in Fig. 1.(a), where each
execution trace is registered as a sequence of activity identifiers.

Note that a, b, c, e, f, g and h are executed in all the instances of HANDLEORDER,
while the other ones appear in a subset of them only. Moreover, every trace containing r
also includes p and does not contain d; conversely, d appears any time r does not. Based
on these observations, we can recognize two (structurally) homogeneous clusters of
traces, each one representing a variant of the process: {t1, ..., t8} (orders with deferred
payment) and {t9, ..., t12} (orders with immediate payment).

By equipping each cluster with a specific workflow schema, we can get a more accu-
rate representation than the one in Fig. 1.(c), actually mixing up different usage patterns
and models spurious executions – e.g., traces containing both r and p, as well as traces
where neither r or d appear. �

Despite the efforts spent in the design of process mining techniques, their actual impact
in the industry is endangered by some simplifying assumptions. For instance, most of
the approaches in the literature are propositional in that they exploit an abstraction of
logs as a set of task identifiers, thereby completely disregarding all non-structural data
that are still kept by many real systems, such as information about activity executors,
time-stamps, parameter values, as well as different performance measures.

In this paper, an enhanced process mining approach is presented which allows to
discover different process variants, by clustering log traces based on to both structural
and non-structural aspects. To this aim, beside the list of activity identifiers, we equip
each trace with a number of metrics, which are meant to characterize some performance
measures for the enactment at hand, such as the total processing time. As an example,
for each trace in the log of the HANDLEORDER process, the total execution time is
shown in Fig. 1.(b). One can note that instances including both r and x take longer than
the others, as a result, e.g., of some additional verification procedure done at store X
whenever the ordered goods are being payed in a deferred way.

In order to take care of the different execution facets in the clustering, we introduce
and discuss an information-theoretic framework that extends previous formalizations
in [3,2],in a way that the structural information as well as each of the performance

250 A.D. Chiaravalloti et al.

measures is represented by a proper domain, which is correlated to the “central domain”
of process instances according to the contents of the log. The clustering of log traces
is then performed in a synergic way w.r.t. the clustering of structural elements and
performance measures.

The simultaneous clustering of two different types of objects (short: bi-dimensional
co-clustering), such as documents and terms in text corpora [1,12] or genes and con-
ditions in micro-array data [11], has become a very active research area. However, in
order to profitably apply such a co-clustering approach in a process mining setting, we
extend it in different respects, as discussed below.

– First, in order to deal with both the structural information (activities) and the per-
formance measures, we consider co-clustering over (at least) three different do-
mains, which has been marginally addressed in the literature. In fact, an earlier
work [4] faced this problem through a spectral approach applied in a simplified
setting, where each domain can be clustered into two clusters only. Importantly, [4]
asked for both removing this assumption and assessing whether the information-
theoretic approach of [3] can be used in this setting. The research work illustrated
in Section 3 precisely faces both of these issues.

– Second, in Section 4, we tackle the co-clustering problem in a scenario where some
domains consists of numerical (ordered) values. This problem has been not inves-
tigated before and requires the definition of ad-hoc techniques to mine numeri-
cal (co)clusters as non-overlapping ranges of values. To this aim, we propose and
study an exact (but time-consuming) partitioning method, as well as a faster, greedy,
heuristic that provides an approximate solution to the problem.

We conclude by pointing out that all the algorithms proposed in the paper have been
implemented and tested. Discussion on experimental results are reported in Section 5.

2 Formal Framework

Process Modeling: Schemas and Performance Measures. The control flow graph
of a process P is a tuple 〈DA, E, a0, F 〉, where DA is a finite set of activities, E ⊆
(DA − F) × (DA − {a0}) is a relation of precedences between activities, a0 ∈ DA

is the starting activity, F ⊆ DA is the set of final activities. A control flow graph is
usually extended by specifying, for each activity, cardinality constraints on the number
of adjacent activities that can/must be performed.

Example 2. For example, the control flow graph for our running example is shown in
Fig. 1.(c). Here, constraints are specified by suitable labels next the activity nodes –
e.g., g is an and-join activity as it must be notified by its predecessors that both the
client is reliable and the order can be supplied correctly. �

A trace for P is a string over the alphabet DA, representing an ordered sequence of ac-
tivity occurrences. A process log L for P (over DA) is a tuple 〈DA, DT ,FZ1 , ...,FZN 〉
such that: (1) DT is a set of trace (over DA) identifiers, and (2) FZi , with i = 1..N ,

An Information-Theoretic Framework for Process Structure and Data Mining 251

is a performance measure associating a trace in DT with a real value, 1 i.e., FZi :
DT �→ R.

For each performance measure FZi with i = 1..N , we define its active domain,
denoted by DZi , as the image of FZi over the set of traces DT , i.e., DZi = {FZi(tj) |
tj ∈ DT }, where for any trace tj in DT , FZi(tj) is the value that tj is assigned by
the i-th function FZi . As an example, in the HANDLEORDER process, we have DT =
{t1, ..., t12}, while the active domain over the timings is DZ = {1, 2, 4, 5, 8, 9}.

The Information-Theoretic Framework. Based on the data stored in L, we can es-
tablish some correlations among the central domain DT , representing a set of logged
process instances, and the auxiliary domains DA, DZ1 , ..., DZN . Specifically, corre-
lations can be modelled by considering a random variable T ranging over DT , along
with a random variable X associated with each auxiliary DX , where X is a placeholder
for any of the auxiliary variables A,Z1, ..., ZN . Then, we use p(T,X) to denote the
joint-probability distribution between T and X; in particular, p(tj , x) is the probability
for the event that T is the trace tj and X takes the value x ∈ DX .

Assume that traces in DT (resp., values in DA, and in DZi) have to be clustered into
mT (resp., mA, mi) clusters, say D̂T = {t̂1, ..., t̂mT } (resp., D̂A = {â1, â2, ..., âmA},
D̂Zi = {ẑi

1, ẑ
i
2, ..., ẑ

i
mi}). Then, a co-clustering of the log L is a tuple C =

〈CT , CA, CZ1 , ..., CZN 〉, such that CT : DT �→ D̂T , CA : DA �→ D̂A and CZ :
DZi �→ D̂Zi , for i = 1 . . . N .2

As firstly observed in [3], in order to find “good” co-clusters, for any auxiliary do-
main DX , one can minimize the loss in mutual information ΔIX(CT , CX) = I(T ;X)−
I(T̂CT

; X̂CX
) (or, shortly, ΔIX) between the random variables T and X and their clus-

tered versions. Indeed, by minimizing the loss in mutual information, one can expect that
the random variables T̂ and X̂ retain as much information as possible from the original
distributions T and X .

An algorithm for the bi-dimensional co-clustering (cf. only one auxiliary domain X
must be co-clustered along with T) was proposed in [3], based on the observation that
ΔIX can be expressed as a dissimilarity between the original distribution p(T,X) and
a function q(T,X) approximating it. More precisely: ΔIX = D(p(T,X)||q(T,X)),
where D(·||·) denotes the Kullback-Leibler (KL) divergence, and q(T,X) = p(T̂ , X̂) ·
p(T |T̂) · p(X|X̂) is a function preserving the marginals of p(T,X). In particular,
ΔIX can be expressed in terms of “individual” loss contributes measuring the (KL-
based) dissimilarity between each element in DX (or, DT) and the cluster it was
assigned to:

ΔIX =
∑

x∈DX

δT (x, CX(x)) =
∑

t∈DT

δX(t, CT (t)) (1)

where δT (x, x̂) = p(x) · D(p(T |x)||q(T |x̂))), for each x ∈ DX , and δX(t, t̂) =
p(t) · D(p(X|t)||q(X|t̂))), for each t ∈ DT .

1 With no substantial modifications, FZi can be defined as a multi-valued function that groups
the metrics of different trace identifiers referring to the same sequence of activities.

2 The notation X̂CX will be shortened as X̂ whenever CX is clear from the context.

252 A.D. Chiaravalloti et al.

In fact, the algorithm in [3] searches for the function q(T,X) that is most similar to
p(T,X), according to D, by means of an alternate minimization, which considers one
dimension per time, and assigns each element in DX (resp., DT) to the cluster which is
the “most similar” to it, according to coefficient δT (resp., δX). A similar strategy is also
exploited in the multi-dimensional co-clustering approach, introduced in the following.

3 Multidimensional Co-clustering of Workflow Logs

When more than one auxiliary domains are considered, the ultimate goal is to discover a
clustering function for each of them, so that a low value for all the pairwise information
loss functions is obtained. A major problem, in this multi-dimensional extension, is that
there may well exists two auxiliary dimensions X,X ′ ∈ {A,Z1, ...ZN}, with X �= X ′,
such that the best co-clustering solution for the pair DT and DX does not conform with
the best co-clustering for DT and DX′ , as concerns the partitions of traces in DT .

Our solution to jointly optimize all the pairwise loss functions is to linearly combine
them into a global one, by using N + 1 weights βA, β1, ..., βN , with βA +

∑N
i=1 βi =

1, which are meant to quantify the relevance that the corresponding auxiliary domain
should have in determining the co-clustering of the whole log data. Therefore, the co-
clustering problem for the log L can be rephrased into finding the set of clusters that
minimize the quantity βA ·ΔIA +

∑N
i=1 βi ·ΔIZi .

Definition 1. Let L= 〈DA, DT ,FZ1 , ...,FZN 〉 be a process log, and βA, β1..., βN be
real numbers, such that βA +

∑N
i=1 βi = 1. Then, a co-clustering C =

〈CT , CA, CZ1 , ..., CZN 〉 of L is optimal if, for each co-clustering C ′ of L, it holds:

βAΔIA(CT , CA) +
N∑

i=1

βiΔIZi(CT , CZi) ≥ βAΔIA(C′
T , C′

A) +
N∑

i=1

βiΔIZi(C
′
T , C′

Zi)

Algorithm LogCC, shown in Fig. 2, computes an optimal co-clustering, by receiving in
input a log L = 〈DA, DT ,FZ1 , ...,FZN 〉, weights βA,β1,...,βN , and cluster sizes.

First, an initial co-clustering 〈C0
T , C0

A, C0
Z1 , . . . , C0

ZN 〉 is computed, which is even-
tually refined in the main loop. The refinement is carried out in an alternate manner.
Indeed, at each repetition, say s, a (locally) optimal clustering C

(s)
A (resp., C(s)

Zi) is com-
puted for the activity domain DA (resp., for each metrics domain Zi, with 1 ≤ i ≤ N),
based on the current clustering of the traces in T . Specifically, the cluster assigned to
each activity a ∈ DA is computed according to the formula:

C
(s)
A (a) = arg min

â∈D̂A

D(p(T |a)||q(s−1)(T |â)) (2)

where q(T,A) is a distribution approximating p(T,A), and preserving its marginals.
Note that the clustering C

(s)
Zi , for each (ordered) numerical domain Zi, is computed

by function Partition, which splits the domain into a number of intervals, and as-
sign each of them to one cluster in D̂Zi . The function, discussed later on, also takes as
input the distribution q(s−1), accounting for the current co-clustering solution.

Based on the clusters of A, Z1,..., ZN , an optimal clustering C
(s)
T is computed as:

C
(s)
T (t) = arg min

t̂∈D̂T

βA · D(p(A|t)||q(s−1)(A|t̂)) +

N∑
i=1

βi · D(p(Zi|t)||q(s−1)(Zi|t̂)) (3)

An Information-Theoretic Framework for Process Structure and Data Mining 253

Input: A process log L = 〈DT , DA,FZ1 , ...,F
ZN 〉,

real nums βA, β1, ..., βN , and cardinal nums mT , mA,m1,...,mN

Output:A co-clustering for L, and a set of workflow schemas W ;

Extract joint probability functions p(T, A), p(T, Z1), ..., p(T, ZN), out of L;
Define an arbitrary co-clustering 〈C0

T , C0
A, C0

Z1 , ..., C0
ZN 〉 for L;

Compute q(0)(T, A), and q(0)(T, Zi) for = 1 . . . N ;
let s = 0, ΔI

(0)
A

= D(p(T, A)||q(0)(T, Zi)), and ΔI
(0)
i

= D(p(T, Zi)||q(0)(T, Zi));
repeat

Compute q(s)(T, A), q(s)(T, Zi) for i = 1 . . . N , and set s = s + 1;
for each a ∈ DA do

C
(s)
A

(a) := arg min
â∈D̂A

δT (a, â);

for each Zi do

C
(s)

Zi
:= Partition(DZi , D̂Zi ,q(s−1)(T, Zi));

Compute q(s)(T, A), q(s)(T, Zi) for i = 1 . . . N , and set s = s + 1;
for each t ∈ DT do

C
(s)
T

(t) := arg min
t̂∈D̂T

(
βAδA(t, t̂) +

∑N

i=1
βiδZi (t, t̂)

)
;

let ΔI
(s)
A

= D(p(T, A)(s−1))||q(T, A)(s−1))):

let ΔI
(s)
i

= D(p(T, Zi)(s−1))||q(T, Zi)(s−1))), ∀Zi;

while βAΔI
(s)
A

+
∑

N

i=1
βiΔI

(s)
i

< βAΔI
(s−2)
A

+
∑

N

i=1
βiΔI

(s−2)
i

;

C∗
T := C

(s−2)
T

, C∗
A = C

(s−3)
A

, C∗
Z1 = C

(s−3)

Zi
, for = 1 . . . N ;

for each t̂ ∈ D̂T do

W (̂t) := MineSchema({t̂ ∈ D̂T | C∗
T (t) = t̂});

return 〈C∗
X , C∗

Y 1 , ..., C∗
Y N 〉 and W = {W (̂t) | t̂ ∈ D̂T };

Fig. 2. Algorithm LogCC: Discovery of co-clusters over workflow traces and correlated data

Each cluster is then equipped with a workflow schema, by function MineSchema
implementing some standard process mining algorithm [9,6,8,9].

Note that when applied to domains DT , DA, DZ1 ,...,DZN , LogCC cannot generally
ensure that every information loss function ΔIX monotonically decreases, for each
X ∈ {A,Z1, ..., ZN}. Conversely, the (global) objective function (i.e., βA · ΔIA +∑N

i=1 βi · ΔIi) is guaranteed to converge to a local optimum, under some technical
conditions on the implementation of Partition, which are discussed below.

Let DZ denote a numerical domain, D̂Z a set of cluster labels for it, and let CZ :
DZ �→ D̂Z and CT : DT �→ D̂T denote two clustering functions for DZ and, resp.,
DT . Moreover, let qCT ,CZ (T,Z) be a distribution preserving the marginals of p(T,Z).
Then a split function P computing a clustering from DZ to D̂Z , based on qCT ,CZ ,
is said loss-safe if for any DZ , D̂Z , CT , CZ it is ΔIZ(CT ,P(DZ , D̂Z , qCT ,CZ)) ≤
ΔIZ(CT , CZ).

Theorem 1. Provided that the split function Partition is loss-safe, algorithm
LogCC converges to a local optimum, i.e., to a co-clustering for L such that for any
other co-clustering C ′ = 〈C ′

T , C ′
A, C ′

Z1 , ...C ′
ZN 〉 of L it is:

(a) ΔIX(CT , C′
X) ≥ ΔIX(CT , CX), ∀X ∈ {A, Zi, ..., ZN}, and

(b) βAΔIA(C′
T ,CA)+

∑N
i=1 βiΔIZi(C′

T ,CZi)≥βAΔIA(CT , CA)+
∑N

i=1 βiΔIi(CT ,CZi),

254 A.D. Chiaravalloti et al.

Input: A domain DZ , a set of clusters D̂Z = {ẑ1, ..., ẑm};

Output: A clustering function from DZ to D̂Z ;

Compute cl(i) =
∑

0<i≤u
δT (zi, ẑl), ∀i ∈ [1..n] and ∀l ∈ [1..m];

g(1, i) := c1(i), ∀i ∈ [1..n];
for s = 2..m do

for i = 1..n do
g(s, i) := minμ∈[1..i](g(s − 1, μ) + cs(i) − cs(μ));
h(s, i) := arg minμ∈[1..i](g(s − 1, μ) + cs(i) − cs(μ));

end for
Let bm = n + 1, and b0 = 1;
for l = 1..m do

Let bm−l = h(m − l + 1, bm−l+1);
Set CZ(zi) := ẑl for each l ∈ [1..m] and for each i ∈ [bl−1 + 1..bl];
return CZ ;

Fig. 3. Algorithm NDP-OPT: A dynamic programming implementation of Partition

4 Clustering Numerical Domains: Function Partition

This section discusses two possible implementations of function Partition, used by
LogCC, which is aimed at computing a new clustering function CZ from a numerical
domain DZ = {z1, ..., zn} to a given set of clusters D̂Z = {ẑ1, ..., ẑm}.

Differently from the case of generic domains, values in DZ are disposed in an or-
dered way (i.e., zu < zv for each u, v such that u < v), and this ordering must still
hold among the clusters, i.e., ∀ẑk, ẑl ∈ D̂Z s.t. k < l, any value assigned to ẑk precedes
all the values assigned to ẑl. To make the above requirement clearer, we next define the
Numerical Domain Partitioning (short: NDP).

Let b1, ..., bm−1 be m − 1 boundary indexes such that 1 ≤ br ≤ bs ≤ n + 1 for
every r, s, and 1 ≤ r < s < m. A clustering function CZ can be extracted out of these
indexes as follows: CZ(zi) = ẑl iff bl−1 ≤ i < bl, where for notation convenience
two fixed, additional bounds are considered: b0 = 1 and bm = n + 1. Then, prob-
lem NDP consists in finding m − 1 boundary indexes such that the resulting clustering
function CZ gets the minimum value for GCZ (DZ , D̂Z) =

∑
ẑl∈D̂Z

∑bl−1
i=bl−1

δ(zi, ẑl).

From now on, the term GCZ (DZ , D̂Z) will be referred to as the partition cost of
CZ .

Clearly enough, the above formulation makes inappropriate the scheme proposed in
[3] (and used in algorithm LogCC for clustering the “non-numerical” domains DA

and DT), where elements in the domain are clustered independently of each other.
Thus, some specialized algorithms are needed to face NDP, which are discussed
below.

A dynamic programming algorithm for Partition. The algorithm shown in Fig. 3
computes an exact solution to problem NDP. The underlying idea is to consider the
problem of clustering a range D

[u,v]
Z = {zu, ..., zv} of DZ , by using a range D̂

[r,s]
Z =

{ẑr, ..., ẑs} of D̂Z . Based on the result below, this sub-problem can be solved by finding

a function C
[u,v]
Z : D

[u,v]
Z �→ D̂

[r,s]
Z minimizing GC

[u,v]
Z (D[u,v]

Z , D̂
[r,s]
Z).

An Information-Theoretic Framework for Process Structure and Data Mining 255

Theorem 2. Let G∗(D[u,v]
Z , D̂

[r,s]
Z) = min

C
[u,v]
Z

GC
[u,v]
Z (D[u,v]

Z , D̂
[r,s]
Z). Then it holds:

G∗(D[u,v]
Z , D̂

[r,s]
Z) = min

u≤μ≤v

[
G∗(D[u,μ]

Z , D̂
[r,s−1]
Z) + G∗(D[μ+1,v]

Z , D̂
[s,s]
Z)

]
noticing that G∗(D[μ+1,v]

Z , D̂
[s,s]
Z) =

∑v
i=μ+1 δ(zi, ẑs).

Algorithm NDP-OPT is, in fact, a dynamic-programming implementation of Theo-
rem 2. Indeed, at each step, g(s, i) will store the minimal partition cost of splitting
the first i values in DZ among the first s clusters, i.e., g(s, i) = G∗(D[1,i]

Z , D̂
[1,s]
Z).

These costs are computed in increasing order of s and, for each s, in increasing order
of i, for s = 1..m and i = 1..n. As a basic case, for every range D

[1,i]
Z the algorithm

stores in g(1, i) the cost that results from assigning all the values in D
[1,i]
Z to the sole

cluster ẑ1. Moreover, to efficiently evaluate the cost of assigning all the values in Du,v
Z

to any cluster ẑl, all prefix-sum cl(u) =
∑

0<i≤u δ(i, l) are preliminary computed —

note that, in fact, it holds: G∗(D[u,v]
Z , {ẑl}) = cl(v)− cl(u− 1).

In more detail, the optimal split cost g(s, i) = G∗(D[1,i]
Z , D̂

[1,s]
Z) is singled out

by evaluating, for each index μ < i, the value G∗(D[1,μ]
Z , D̂

[1,s−1]
Z), stored in g(s −

1, μ), along with G∗(D[μ+1,i]
Z , D̂

[s,s]
Z), which can be derived from cs(·). In addition, the

boundary index leading to this optimal split is kept in h(s, i). In the next step, the opti-
mal m − 1 boundary indexes, which ensure the minimum value (stored in g(m,n)) of
the whole objective function, are extracted out of table h. Finally, a clustering function
is built out of these boundaries, and returned as output. Note that the correctness of the
algorithm stems from the fact that each term g(s, i) coincides with the partial solution
G∗(D[1,i]

Z , D̂
[1,s]
Z), and is correctly computed according to the recursive formulation in

Theorem 2. Consequently, the approach leads to a loss-safe partitioning, since the solu-
tion found by NDP-OPT gets the minimal information loss among all possible splits of
DZ , including, in particular, the one found in the previous step of algorithm LogCC.

Let n = |DZ |, m = |D̂Z |, with 1 < m < n and PT,Z be the size of the contingency
table over DZ and DT , i.e., the number of non-zero values in the distribution p(T,Z).
Then, it can be shown that NDP-OPT is loss-safe, and computes in O(n2 ×m + PT,Z)
an exact solution to problem NDP.

A greedy algorithm for function Partition. A serious drawback of algorithm
NDP-OPT is the quadratic dependency on |DZ |, which makes it unviable in many
important real world application scenarios. Hence, we next investigate an alternative,
greedy, approach to NDP, which consumes linear time in |DZ | only.

The algorithm, shown in Fig. 4, iteratively performs a binary split on both DZ and
D̂Z , where every range D

[u,v]
Z = {zu, ..., zv} of values from DZ is associated with a

suitable range D̂
[r,s]
Z = {ẑr, ..., ẑs} of clusters from D̂Z . For any pair of intervals D

[u,v]
Z

and D̂
[r,s]
Z , we keep trace of the associated index ranges by storing 〈u, v, r, s〉 in R.

Starting with only one cluster, which encompasses the whole D̂Z and is assigned
to all values in DZ , the algorithm iteratively selects a cluster D̂

[r,s]
Z , spanning over at

least two clusters of D̂Z (i.e., s > r), along with its associated interval D
[u,v]
Z , and acts

256 A.D. Chiaravalloti et al.

Input: A domain DZ , a set of clusters D̂Z = {ẑ1, ..., ẑm};

Output: A clustering function from DZ to D̂Z ;

c(u, s) :=
∑

0<i≤u

∑
0<l≤r

δT (zu, ẑr), ∀u ∈ [1..n] and ∀r ∈ [1..m];
Let Θ(u, v, r, s) = (c(v, s) − c(u − 1, s) − c(v, r − 1) + c(u − 1, r − 1)) /(s − r + 1);
R := {〈1, m, 1, n〉};
while R �= ∅ do

Let 〈u, v, r, s〉 be a tuple in R, and τ =
⌊

s+r
2

⌋
;

if r = s then
Set CZ(zi) := ẑτ for each i in [u..l∗];

else
Let l∗ = arg minμ∈[u..v]((Θ(u, μ, r, τ) + Θ(μ + 1, v, τ + 1, s));
R := R ∪ {〈u, l∗, r, τ〉, 〈l∗ + 1, v, τ + 1, s〉};

end if;
end while;
return CZ ;

Fig. 4. Algorithm NDP-GR: A greedy implementation for Partition

a binary partition on both of them. While the cluster range [r, s] is divided into two
equi-numerous sub-ranges, [u..v] is split in a greedy way, based on the cost function Θ,
defined as follows: Θ(u, v, r, s) = 1

s−r+1 ·
∑s

l=r

∑v
i=u δ(i, l). Roughly, Θ(u, v, r, s)

provides a pessimistic estimation for the contribution given by values zu, ..., zv to the
final mutual information loss, when they are required to only be assigned to some of the
clusters ẑr, ..., ẑs – it is indeed an upper bound for G∗(D[u,v]

Z , D̂
[r,s]
Z).

Specifically, the selected interval [u..v] is split in correspondence of the index μ∗ that
guarantees the lowest value for Θ(u, μ∗, r, τ) + Θ(μ∗ + 1, v, τ + 1, s) – estimating the
loss in mutual information that will arise by assigning zu, ..., zμ∗ (resp., zμ∗+1, ..., zv)
to some clusters in ẑr, ..., ẑτ (resp., ẑτ+1, ..., ẑs). Then, R is updated accordingly, by
replacing tuple 〈u, v, r, s〉 with those representing the new clusters originated from it:
〈u, μ∗, r, τ∗〉 and 〈μ∗ + 1, v, τ∗ + 1, s〉. As a special case, when the tuple extracted
from R spots just a single cluster ẑr in D̂Z , the algorithm updates the function CZ ,
eventually returned as output, by assigning all the values in D

[u,v]
Z to ẑr.

It is easy to see that algorithm NDP-GR takes O(n ×m + PT,Z) only. This makes
the algorithm NDP-GR an efficient tool for clustering even large numerical domains.
However, as a price for its efficiency, we do not have any guarantee about the loss-
safe property, instead enjoyed by NDP-OPT. Yet, a number of experiments (discussed
in Section 5) evidenced that NDP-GR finds nearly-optimal solutions in many practical
cases, hence ensuring reasonable computation time for the whole co-clustering process.

5 Experiments

The approach discussed in the paper has been tested against several synthesized log
data, obtained by an ad-hoc Java generator, according to the following procedure. Given
a workflow schema, its activities are randomly partitioned into clusters. For each activ-
ity cluster, a number of traces are randomly generated according to the schema, yet
requiring that all the activities in the cluster occur. Conversely, a set of metric values
are generated according to a uniform distribution, and then ordered and divided into a

An Information-Theoretic Framework for Process Structure and Data Mining 257

a

client

uthenticate

select

stores

validate

order plan

accept

order

make

bill

a

b

c

f

y

e

g h

client

reliability

receive

order
AND

OR

AND

OR

x

check

store X

check

store Y

d

evaluate

discount

(a)

a

client

uthenticate

select

stores

validate

order plan

accept

order

make

bill

a

b

c

r
f

e

g h

client

reliability

receive

order
AND AND

deferred

payment

applicat.

x

check

store X

p

payment

plan

(b)

a

client

uthenticate

select

stores

validate

order plan

accept

order

make

bill

a

b

c

r
f

e

g h

client

reliability

receive

order
AND AND

deferred

payment

applicat.

y

check

store Y

p

payment

plan

(c)

Fig. 5. Workflow schemas for three trace clusters mined from a log of process HANDLEORDER

given number of intervals. Each such interval is made to correspond to a trace cluster,
and all the traces in the latter are randomly associated with some values in the inter-
val. Finally, all correlation tables are altered with some noise, by flipping a fraction
θ of their entries, and turned into valid joint probability matrices, by a normalization
step.

Qualitative results on the running example. We start our analysis by discussing the
results of LogCC on a syntectic log data we have randomly generated over the schema
in Fig. 1.(c). Specifically, to reflect the semantics of the application, we generated 2000
traces in a way that task d does not occur in any trace including r, and that p appears in
any trace not containing r. In order to cluster the log according to both structure and the
performances, three correlated dimensions are considered: traces (T), activities (A) and
durations (Z). For each dimension, we applied algorithm LogCC by requiring 3 clusters
(i.e., mT = 3, mA = 3 and mZ = 3). Moreover, we used the greedy implementation
of function Partition (cf. algorithm NDP-GR), and gave the same weight to both
auxiliary dimensions (i.e., βA = βZ = 0.5).

Fig. 5 shows the schemas associated with the discovered clusters, corresponding to
three different use case of the process. Indeed, Fig. 5.(a) describes a schema for man-
aging orders without deferred payment (task r does not appear at all), where discount
evaluation (task d) is done mandatorily. Conversely, the two other schemas (Fig. 5.(b)
and 5.(c)) concern orders with deferred payment, which are, in their turn, split in two
different clusters, based on the presence of task x. Note that such a finer grain partition
of the traces, which could not have been obtained by considering their structural aspects
only, allows to recognize a specific usage case, quite relevant to performance analysis:
deferred-payment orders requiring a check over store X (cf. Fig. 5.(b)), which clearly
distinguish from the remaining process instances (cf. Fig. 5.(c)) for higher duration.

Quantitative results on synthesized data. In order to make scalability tests, we fixed
a workflow schema of 200 activities, with 100 of them left optional, and we defined
metrics to take values from the range 0..500. Several datasets have been generated,
with different numbers of traces (up to 2000), by using a fixed noise factor θ = 0.2. In
each test, the number of required clusters (made varying up to 16) was set the same for
all dimensions (e.g., traces, activities, metrics).

258 A.D. Chiaravalloti et al.

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

Number of traces

T
im

e
[s

ec
]

2
4
8
16

metrics domains

500 1000 1500 2000
0

10

20

30

40

50

60

70

80

Domain size

T
im

e
[s

ec
]

 4 (NDP−GR)
 4 (NDP−OPT)
 8 (NDP−GR)
 8 (NDP−OPT)
16 (NDP−GR)
16 (NPD−OPT)

clusters

Fig. 6. Total computation time (left) and partitioning time (right) on synthetic data

nZ mZ Loss NDP-OPT Loss NDP-GR #steps NDP-GR #steps NDP-OPT

400 2 2,548656681 2,548751835 193,67 19052,33
800 2 2,571874636 2,571863359 382 73545

1200 2 2,58146775 2,581462137 576,67 167161,33
1600 2 2,585506739 2,58550221 771,67 298920,67
2000 2 2,589513452 2,589513266 967 469104,33
400 4 2,542673346 2,542453391 378,67 55205
800 4 2,574832966 2,574787792 764,67 222167

1200 4 2,582005478 2,582005276 1146 496971
1600 4 2,586112494 2,586100372 1555,33 913054
2000 4 2,590549195 2,590555083 1955,33 1441242
400 8 2,546683739 2,54598238 579 136089,33
800 8 2,574457027 2,574144555 1144 520352

1200 8 2,580460745 2,580369062 1737 1190361,67
1600 8 2,586304248 2,586284432 2349 2169104
2000 8 2,589181461 2,589158344 2905 3310708,33

Fig. 7. Loss in mutual information: NDP-OPT vs NDP-GR

The total computation time of algorithm LogCC, equipped with the greedy version
of function Partition, is depicted in the left side of Fig. 6. These results – confirmed
in a wider series of tests not illustrated here for space reasons – prove the scalability
of the approach, by showing a linear dependence of the computation time on both the
number of traces and the number of domains considered.

The right-side of Fig. 6 shows, instead, results for a comparison between NDP-OPT
(solid lines) and NDP-GR (dashed lines), for different number of clusters and sizes of
the partitioned domain. As expected from the theoretical analysis provided in Section 4,
one may notice that algorithm NDP-GR scales linearly w.r.t. the number of elements in
the domain, while algorithm NDP-OPT suffers from a quadratic dependence, which is
needed to provide an optimal solution for the partitioning problem. Further insights on
this behavior can be achieved from 7, where the number of steps (formally, the number
of times an element of the domain is considered for being a boundary) of both the
algorithms is reported, averaged on 4 executions.

Note that yet being an approximate solution that does not enjoy the loss-safe prop-
erty, NDP-GR is effective to clustering numerical domains, as it appears from Fig. 7,
which also compares the loss in mutual information produced by NDP-OPT and
NDP-GR, for different numbers of elements and numbers of asked clusters.

An Information-Theoretic Framework for Process Structure and Data Mining 259

6 Conclusions

We have devised a novel process mining approach that substantially differs from previ-
ous works in taking account performance measures on log traces, beside mere “struc-
tural” information on task timing. The approach founds on an information-theoretic
framework, where log traces are co-clustered along with their structural elements and
metrics values. Each cluster of traces is eventually provided with a workflow schema,
which hence models a specific use case of the process.

Notably, we extend the framework of [3] by considering more than two domains for
the clustering, and by introducing numerical domains to be split into non-overlapping
ranges. To face the latter issue, we have proposed two alternative implementations of
the splitting procedure, based on an exact dynamic-programming approach and on an
efficient greedy heuristic, respectively. Encouraging results were obtained by testing the
approach on synthesized data, even when using the greedy procedure.

As directions of future work, we intend to carry out a more extensive empirical analy-
sis of the approach on real process logs, as well as to devise some strategy for supporting
the user in properly setting the parameters of the algorithm.

References

1. I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning.
In Proc. Intl. Conf. on Knowledge Discovery and Data Mining (KDD01), pp. 269–274, 2001.

2. P. Berkhin and J. D. Becher. Learning simple relations: Theory and applications. In Proc.
SIAM Intl. Conf. on Data Mining (SDM02), 2002.

3. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proc. Intl.
Conf. on Knowledge Discovery and Data Mining (KDD03), pp. 89–98, 2003.

4. B. Gao, T.-Y. Liu, X. Zheng, Q.-S. Cheng, and W.-Y. Ma. Consistent bipartite graph co-
partitioning for star-structured high-order heterogeneous data co-clustering. In Proc. Intl.
Conf. on Knowledge Discovery and Data mining (KDD05)), pp. 41–50, 2005.

5. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Mining expressive process models by clus-
tering workflow traces. In Proc. Pacific-Asia Conference (PAKDD’04), pp. 52–62, 2004.

6. J. Herbst and D. Karagiannis. Integrating machine learning and workflow management to
support acquisition and adaptation of workflow models. Journal of Intelligent Systems in
Accounting, Finance and Management, 9:67–92, 2000.

7. S. Hwang and W. Yang. On the discovery of process models from their instances. Decision
Support Systems, 34(1):41–57, 2002.

8. G. Schimm. Mining most specific workflow models from event-based data. In Proc. Intl.
Conf. on Business Process Management, pp. 25–40, 2003.

9. W. van der Aalst, A. Weijters, and L. Maruster. Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering (TKDE),
16(9):1128–1142, 2004.

10. B. van Dongen and W. van der Aalst. Multi-phase process mining: Aggregating instance
graphs into EPCs and Petri nets. In Proc. Intl. Work. on Applications of Petri Nets to Coor-
dination, Worklflow and Business Process Management (PNCWB) at the ICATPN’05, 2005.

11. S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1:24–45.

12. H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning and data clus-
tering. In Proc. Intl. Conf. on Information and Knowledge Management (CIKM’01), pp.
25–32, 2001.

Mixed Decision Trees:
An Evolutionary Approach

Marek Krȩtowski and Marek Grześ

Faculty of Computer Science, Bia�lystok Technical University
Wiejska 45a, 15-351 Bia�lystok, Poland
{mkret, marekg}@ii.pb.bialystok.pl

Abstract. In the paper, a new evolutionary algorithm (EA) for mixed
tree learning is proposed. In non-terminal nodes of a mixed decision tree
different types of tests can be placed, ranging from a typical univariate
inequality test up to a multivariate test based on a splitting hyperplane.
In contrast to classical top-down methods, our system searches for an
optimal tree in a global manner, i.e. it learns a tree structure and tests
in one run of the EA. Specialized genetic operators allow for generating
new sub-trees, pruning existing ones as well as changing the node type
and the tests. The proposed approach was experimentally verified on
both artificial and real-life data and preliminary results are promising.

1 Introduction

Decision trees [18] are one of the most frequently applied data mining approaches.
There exist many induction algorithms which can differ in several more or less
important elements, like for example the way for tree construction (i.e. top-down
versus global) or the way for test selection. From a users point of view, one of the
most important features of a decision tree is a test representation in the internal
nodes. In typical univariate trees two types of tests are usually permitted. For
a nominal attribute, the mutually exclusive sets of feature values are associated
with each branch, whereas for a continuous valued feature inequality tests are
applied. In case of multivariate trees more than one feature can be used to create
a test. Linear (oblique) tests based on a splitting hyper-plane are specific and
the most widely used form of the multivariate test. It should be noticed that
most of the DT-based systems are homogeneous, which means that they take
advantage of only one type of test (i.e. univariate or oblique).

The term mixed decision trees was proposed by Llora and Wilson in [15] to
describe trees in which different types of tests can be exploited. One of the first
and best-known examples of such an approach is the CART system [3]. This
system is able to search for a linear combination of non-nominal features in each
node and it compares the obtained test with the best univariate test. However,
it should be noted that CART has a strong preference to simpler tests and it
results in very rare use of more elaborate splits. Another form of the hybrid
classifier is proposed by Brodley in [4]. Her MCS system combines univariate

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 260–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mixed Decision Trees: An Evolutionary Approach 261

tests, linear machines and instance-based classifiers (k-NN) and during the top-
down generation of a tree classifier it recursively applies automatic bias selection.
Recently, a fine grain parallel model GALE [15] was applied to generate decision
trees which employ inequality and oblique tests.

Evolutionary techniques [16] are known to be useful in many data mining
tasks [9]. They were successfully applied to learning univariate (e.g. [10,19,20])
and linear trees (e.g. [6,2,5]). Regardless of the tree types there are two main
approaches to the induction: top-down and global. The first one is based on a
greedy recursive procedure of test searching and sub-node creation until a stop-
ping condition is met. In contrast to this classical method, the global algorithm
searches for both the tree structure and tests at the same time.

The global approach based on evolutionary algorithms for decision tree in-
duction was investigated in our previous papers. We showed that homogeneous
trees (univariate [12] or oblique [13,14]) can be effectively induced and we demon-
strated that globally generated classifiers are generally less complex with at least
comparable accuracy. In this paper, we want to merge the two developed meth-
ods in one system, which will be able to induce mixed trees.

The rest of the paper is organized as follows. In the next section our global
system for induction of mixed decision trees is presented. Preliminary experi-
mental validation of the approach on both artificial and real-life datasets are
presented in section 3. The paper is concluded in the last section.

2 Global Induction of Mixed Decision Trees

The general structure of the proposed algorithm follows a typical evolutionary
framework [16]. As the presented approach is a continuation and unification of
our work on the global induction of homogeneous decision trees [12,13,14], in
this section we described only these issues that are specific to mixed trees.

Representation and initialization. A mixed decision tree is a complicated
tree structure, in which the number of nodes, test types and even the number
of test outcomes are not known in advance for a given learning set. Moreover
additional information, e.g. about feature vectors associated with each node,
should be accessible during the induction. As a result, decision trees are not
specially encoded in individuals and they are represented in their actual form.

There are three possible test types in internal nodes: two univariate and one
multivariate. In case of univariate tests, a test representation depends on the
considered attribute type. For nominal attributes at least one attribute value is
associated with each branch starting in the node, which means that an internal
disjunction is implemented. For continuous-valued features typical inequality
tests with two outcomes are used. In order to speed up the search process only
boundary thresholds1 as potential splits are considered and they are calculated
1 A boundary threshold for the given attribute is defined as a midpoint between such

a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples belong to two different classes.

262 M. Krȩtowski and M. Grześ

before starting the EA. Finally, an oblique test with binary outcome can be also
applied as a multivariate test. A splitting hyperplane is represented by a fixed-
size table of real values corresponding to the weight vector and the threshold.
The inner product is calculated to decide where an example is routed.

Before starting the actual evolution, the initial population is created. All
initial trees are homogeneous, but half of the population is initialized with uni-
variate tests and the other part with oblique tests. A simple top-down algorithm
is applied to generate all individuals. In each potential internal node it chooses
randomly a pair of objects from different classes and searches for a test which
separates them to distinct sub-trees. In case of a univariate tree, such a test can
be directly constructed for any feature with different feature values. When an
oblique test is necessary, the splitting hyperplane is perpendicular to the segment
connecting the two drawn objects and placed in a halfway position.

The algorithm terminates when the fitness of the best individual does not
improve during a fixed number of generations (default value is equal 1000) or
the maximum number of generations (default value: 10000) is reached.

Genetic operators. There are two specialized genetic operators corresponding
to the classical mutation and cross-over. Application of both operators can result
in changes of the tree structure and tests in non-terminal nodes.

A mutation-like operator is applied with a given probability to a tree (default
value is 0.5) and it guarantees that at least one node of the selected individual is
mutated [14]. Modifications performed by this operator depend on the node type
(i.e. if the considered node is a leaf node or an internal node). For a non-terminal
node a few possibilities exist:

– a completely new test of the same or different type can be drawn; new tests
are created in the same way as described for the initialization,

– the existing test can be altered by shifting the splitting threshold (continuous-
valued feature), by re-grouping feature values (nominal features) or by shifting
the hyperplane (oblique test); these modifications can be purely random or can
be performed according to the adapted dipolar operator [11],

– the test can be replaced by another test or tests can be interchanged,
– one sub-tree can be replaced by another sub-tree from the same node,
– the node can be transformed into a leaf.

Modifying a leaf makes sense only if it contains objects from different classes.
The leaf is transformed into an internal node and a new test is randomly chosen.
The search for effective tests can be recursively repeated for all descendants.

There are also several variants of cross-over operators (applied with a default
probability 0.2). One node is randomly chosen in each of two affected individuals
and an exchange encompasses sub-trees or is limited only to nodes (their tests).
The order of sub-trees can be also altered during the cross-over.

The application of any genetic operator can result in a necessity for relocation
of the input vectors between parts of the tree rooted in the modified node.
Additionally the local maximization of the fitness is performed by pruning lower
parts of the sub-tree on the condition that it improves the value of the fitness.

Mixed Decision Trees: An Evolutionary Approach 263

Fitness function. A fitness function drives the evolutionary search process
and is the most important and sensitive component of the algorithm. When
concerning a classification task it is well-known that the direct optimization
of the classifier accuracy measured on the learning set leads to an over-fitting
problem. In a typical top-down induction of decision trees, the over-specialization
problem is mitigated by defining a stopping condition and by applying a post-
pruning [8]. In our approach, the search for an optimal structure is embedded
into the evolutionary algorithm by incorporating a complexity term in the fitness
function. The fitness function is maximized and has the following form:

Fitness(T) = QReclass(T)− α · (Comp(T)− 1.0), (1)

where QReclass(T) is a reclassification quality and α is the relative importance
of the classifier complexity (default value is 0.005). In the simplest form the
tree complexity Comp(T) can be defined as the classifier size which is usually
equal to the number of nodes. The penalty associated with the classifier com-
plexity increases proportionally with the tree size and prevents classifier over-
specialization. Subtracting 1.0 eliminates the penalty when the tree is composed
of only one leaf (in majority voting).

This simple complexity definition is surely adequate for a homogeneous tree
composed of only univariate tests. However, when linear tests are also considered,
it seems that a more elaborate solution is necessary. It is rather straightforward
that an oblique split based on a few features is more complex than a univariate
test and that we should apply preference to simpler tests as an inductive bias.
As a consequence the tree complexity should also reflect the complexity of the
tests. However it is not easy to definitely decide how to balance different test
complexities because it depends on the problem solved and user preferences. In
such a situation we decided to define the tree complexity Comp(T) in a flexible
way and allow the user to tune its final form:

Comp(T) = |Nleaf (T)|+
∑

n∈Nint(T)

(1 + β · (F (n)− 1)), (2)

where Nleaf (T) and Nint(T) are sets of leaves and internal nodes correspond-
ingly, F (n) is the number of features used in the test associated with the node
n and β ∈ [0, 1] is the relative importance of the test complexity (default value
0.2). The complexity of the tree is defined as a sum of the complexities of the
nodes and it is assumed that for leaves and internal nodes with univariate tests
the node complexity is always equal to 1.0. It can be also observed that when
β = 1 the number of features used in a test is applied as the test complexity,
whereas when β = 0 the complexity of a test is completely ignored.

3 Experimental Results

The proposed approach to learning mixed decision trees is assessed on both
artificial and real life datasets and is compared to the well-known top-down

264 M. Krȩtowski and M. Grześ

house chessOBCL norm chessAP

Fig. 1. Examples of artificial datasets

univariate (C4.5 [21]) and oblique (OC1 [17]) decision tree systems. It is also
compared to two homogenous versions of our global GDT system: univariate -
GDT-AP [12] and oblique GDT-OB [14]. All prepared artificial datasets comprise
training and testing parts. In case of data from a UCI repository [1] for which
testing data is not provided, 10-fold stratified cross-validation was employed.
Each experiment on all stochastic algorithms (i.e. all except C4.5) was performed
10 times and the average result of such an evaluation was presented. The OC1
system was run with different values of the seed that initializes the random
number generator. Our system is initialized by the system time.

A statistical analysis of the obtained results was done by the Friedman test
with the corresponding Dunn’s multiple comparison test (significance level equal
to 0.05) as recommended by Demsar [7].

Artificial datasets. A range of artificial datasets suited to axis-parallel or
oblique tests was generated to assess the universality of the proposed approach.
Most of the datasets have two continuous-valued features (see examples in Fig.
1) and only the LS10 (Linearly Separable) dataset has 10 features. The number
of examples was varied and depends on the number of distinct regions. In the
training part it ranged from 1000 (for simple 2-dimensional problems) to 4000
(for LS10). The testing part is twofold larger in each case.

There was also prepared a special dataset (see Fig. 2a) to validate the per-
formance of the proposed mixed decision tree system. This dataset is the three
class problem that contains three descriptive features. Two of them (x and y)
are continuous-valued and the last one (z) is nominal with two binary values.
This experiment was intended to check whether our system can deal with such
a problem in which the best separability of classes can be achieved by incor-
porating all three types of splits. A hyperplane and an inequality test separate
observations on two planes and one nominal test provides additional separa-
tion between those planes. In Fig. 2b the decision tree learned by the GDT-Mix
system is presented. It is the best solution to this problem. The most impor-
tant thing is that the algorithm was able to select correctly different types of
tests and apply them to build the optimal tree structure. This experiment shows

Mixed Decision Trees: An Evolutionary Approach 265

Table 1. Results on artificial data

C4.5 OC1 GDT-Mix GDT-AP GDT-OB
Dataset size quality size quality size quality size quality size quality
chess2x2 1 50 10.1 89.3 4.0 99.7 4 99.75 4 99.34

chess2x2x2 1 50 23.8 71.0 8.0 98.5 8 99.72 8.2 97.00

chess3x3 9 99.7 21.1 73.7 9.0 98.8 9 99.73 9.9 97.08

chessOB2CL 33 95.6 7 77.3 4.3 98.0 17.9 92.64 4.7 99.05

chessOB4CL 35 94.6 4.3 49.8 4.0 97.9 18 92.14 4.4 98.41

house 21 97.4 8.2 92.8 4.0 96.0 13.3 96.62 4 96.71

ls10 284 77.3 7.3 95.3 2.0 95.7 18.8 70.68 2 97.20

ls2 22 97 2 99.7 2.0 99.8 14 95.68 2 99.93

normal 5 90 7.3 87.9 3.6 89.5 25.7 86.85 4 90.01

norm chessAP 1 50 11.2 85.5 4.0 95.4 4.2 95.53 4 95.42

norm chessOB 19 93 11 83.3 4.0 93.7 9.3 92.59 4 93.58

norm wave 15 94 8.4 90.3 4.0 94.5 9.1 93.45 4 94.87

zebra1 25 95.3 3 83.5 3.3 99.1 15.3 94.64 3 99.28

zebra2 2 59.5 4.8 94.1 4.0 98.5 21.4 91.63 4.4 98.70

zebra3 57 91.2 8.2 24.3 8.8 95.4 31.5 88.80 8.8 96.76

Z

x

y

z

a) b)

Fig. 2. A graphical representation of the dataset which can be optimally separated
only with all three test types and the tree obtained by GDT-Mix system

that when such compound relationships will exist in the real data our algorithm
may tackle them successfully revealing invaluable information for specialists in
a certain domain to which it might have been applied.

The results on the range of datasets designed for this investigation are col-
lected in Table 1. Because we analyze artificial data in this experiment, we know
how, in terms of the type of tests used in the tree, the optimal solution can be
represented. There are certain classification tasks, like for instance the classi-
cal chessboard problem, that suit very well univariate decision trees. There are
also linearly separable datasets (like e.g. LS10) for which splits based on hy-
perplanes are highly recommended to avoid a staircase-like structure. The main
aim of our endeavor in this work is to show that GDT-Mix can easily adjust
to the specific problem. The analysis of Table 1 proved that the GDT-Mix in-
ducer performs better on axis parallel data while compared to oblique systems

266 M. Krȩtowski and M. Grześ

a) b)

c) d)

Fig. 3. Decision trees obtained by GDT-Mix system for chess3x3 and zebra3 datasets
(b) and d)) and the corresponding dataset scatterplots with drawn splits (a) and c))

and on linearly separable data while compared to axis parallel systems. It is
also important that statistical analysis does not show significant differences be-
tween the GDT-Mix algorithm and the systems specialized for certain problems
when a comparison is made on such problems. Our universal system performs
as well as the specialized systems, that is its very strong point. The statistical
test indicates that GDT-OB is significantly better in terms of quality than C4.5,
OC1 and GDT-AP. As for GDT-Mix, it is statistically better than OC1. The
comparisons based on the second measure (the tree size) are also favorable. Sta-
tistical analysis reveals that GDT-Mix produces significantly smaller trees than
C4.5 and GDT-AP. This score is easily justified, because in the case of prob-
lems which require oblique splits our GDT-Mix system takes advantage of such
splits.

Discussed results show that the proposed algorithm is more flexible in terms of
representation which can be modified during the induction. For that reason more
detailed analysis of these results aims at investigating the obtained decision trees.
Such trees for relatively complex axis parallel and linearly separable classification
tasks are presented in Fig. 3. These trees present a promising result because
the GDT-Mix system managed to find the type of tests that suit the data in
the best way and was able to apply them to build trees that perform very
competitively while comparing to results of specialized systems. In Fig. 3a and
3c splits from decision trees are additionally drawn to present how the input
space is partitioned by the global inducer. These splits show that trees obtained

Mixed Decision Trees: An Evolutionary Approach 267

Table 2. Results on real datasets with only continuous attributes

OC1 GDT-Mix GDT-OB
Dataset size quality size quality size quality
balance-scale 5.4 90.0 2.8 89.3 3.2 89.1

bcw 4.7 91.2 2.0 97.1 2.0 96.9

bupa 5.8 65.6 3.6 69.5 3.0 71.3

glass 4.5 55.7 13.4 69.9 11.6 68.8

page-blocks 15.6 96.6 3.0 94.9 3.0 95.3

pima 6.5 69.6 2.4 75.0 2.1 75.3

sat 58.3 78.9 6.0 83.0 7.0 83.1

vehicle 21.6 66.4 8.8 67.7 7.7 65.7

waveform 10.5 77.4 4.2 81.2 4.2 82.2

wine 3.2 87.0 4.2 89.3 4.8 90.9

Table 3. Results on real datasets with both continuous and nominal attributes

C4.5 GDT-Mix GDT-AP
Dataset size quality size quality size quality
australian 39 87 2.0 86.5 22.8 84.6

cars 31 97.7 3.6 97.9 4.0 98.7

cmc 136.8 52.2 4.0 55.1 13.1 53.8

german 77 73.3 3.8 72.0 16.5 73.4

golf 5 60 4.9 70.5 4.7 72.5

heart 22 77.1 6.1 75.3 44.9 74.2

solar 20 73.1 5.8 70.7 33.7 73.6

vote 5 97 2.0 97.0 13.5 95.6

in this experiment have an optimal structure (the empirical superiority of global
induction).

Real-life data. Results on real-life data are divided into two groups. In the
first one, GDT −Mix is compared with OC1 and GDT − OB systems, which
are designed for applications where the instances have only numeric (continuous)
feature values (Table 2). In the second group, the proposed system is compared
with univariate tree induction algorithms on datasets that have both nominal
and continuous attributes (Table 3).

The analysis of these results shows that there are no statistically significant
differences in the quality between compared algorithms on all datasets. It is very
favorable result. It means that the GDT-Mix system, which is designed to be
universal to different kinds of tasks, performs as good as specialized counterparts.
In the case of the size of the tree the same statistical analysis of the Table
3 indicates that GDT-Mix produces significantly smaller trees than C4.5. A
detailed inspection of this table shows that there are some datasets (e.g. heart)
for which there is evident difference in the tree size which shows the superiority

268 M. Krȩtowski and M. Grześ

Fig. 4. The decision tree for heart data found by GDT-Mix

of the GDT-Mix algorithm. This is a very useful feature of mixed trees. As for
the Table 2 there is a statistical difference in terms of the tree size (p = 0.046)
but Dunn’s test failed to detect it.

More detailed analysis of decision trees obtained for real-life heart data is pre-
sented in Figure 4. This dataset was chosen for investigation because it contains
both nominal and continuous attributes and represents a quite easily understood
problem (at least in terms of outcomes of the classifier). Figure 4 presents one
of decision trees (there were 10 runs of the algorithm on each dataset) that were
gained in our experiment for heart data. In the presented tree all three types of
possible tests are used. This example underlines the advantage of decision trees
of being self explanatory and easy to understand. In mixed decision trees we can
have tests both on nominal and continuous attributes what present interesting
features of this system in terms of practical applications.

4 Conclusion and Future Works

In the paper a new evolutionary algorithm for global induction of mixed decision
trees is proposed. In the unified framework both univariate and oblique tests
are searched and applied in not-terminal nodes for optimal data splitting. The
flexible defined fitness function enables the controlling of the inductive biases.
Even preliminary validation shows that the algorithm is able to adapt to the
problem being solved and to locally choose the most suitable test representation.

The presented approach is still under development and currently we are work-
ing on introducing more specialized mutation variants. They will allow the sys-
tem e.g. to switch from an oblique hyper-plane to the closest axis-parallel test
and analogously to slightly incline an original univariate test. We also consider
introducing additional test types, especially multivariate tests. Furthermore, the
fitness function and especially the impact of the definition of the complexity
term on the resulting decision tree will be studied in more detail.

Acknowledgments. This work was supported by the grant W/WI/5/05 from
Bia�lystok Technical University.

Mixed Decision Trees: An Evolutionary Approach 269

References

1. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases,
Irvine, CA: University of California, Dept. of Computer Science (1998).

2. Bot, M., Langdon, W.: Application of genetic programming to induction of linear
classification trees. In EuroGP 2000. Springer LNCS 1802 (2000) 247–258.

3. Breiman, L., Friedman, J., Olshen, R., Stone C.: Classification and Regression
Trees. Wadsworth Int. Group (1984).

4. Brodley, C.: Recursive automatic bias selection for classifier construction, Machine
Learning 20 (1995) 63-94.

5. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation 7(1) (2003) 54–68.

6. Chai, B., Huang, T., Zhuang, X., Zhao, Y., Sklansky, J.: Piecewise-linear classi-
fiers using binary tree structure and genetic algorithm. Pattern Recognition 29(11)
(1996) 1905–1917.

7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7 (2006) 1–30.

8. Esposito, F., Malerba, D., Semeraro, G.: A comparative analysis of methods for
pruning decision trees. IEEE Transactions on Pattern Analysis and Machine In-
telligence 19(5) (1997) 476–491.

9. Freitas A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Springer (2002).

10. Koza, J.: Concept formation and decision tree induction using genetic programming
paradigm, In Proc. of PPSN 1., Springer LNCS 496 (1991) 124–128.

11. Krȩtowski, M.: An evolutionary algorithm for oblique decision tree induction, In:
Proc. of ICAISC’04, Springer LNCS 3070 (2004) 432–437.

12. Krȩtowski, M., Grześ, M.: Global learning of decision trees by an evolutionary
algorithm, In: Information Processing and Security Sys., Springer, (2005) 401–410.

13. Krȩtowski, M., Grześ, M.: Global induction of oblique decision trees: an evolution-
ary approach, In: Proc. of IIPWM’05., Springer, (2005) 309–318.

14. Krȩtowski, M., Grześ, M.: Evolutionary learning of linear trees with embedded
feature selection, In: Proc. of ICAISC’06, Springer LNCS 4029 (2006).

15. Llora, X., Wilson, S.: Mixed decision trees: Minimizing knowledge representation
bias in LCS, In: Proc. of GECCO’04, Springer LNCS 3103 (2004) 797–809.

16. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd

edn. Springer (1996).
17. Murthy, S., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees.

Journal of Artificial Intelligence Research 2 (1994) 1–33.
18. Murthy, S.: Automatic construction of decision trees from data: A multi-

disciplinary survey. Data Mining and Knowledge Discovery 2 (1998) 345–389.
19. Nikolaev, N., Slavov, V.: Inductive genetic programming with decision trees. Intel-

ligent Data Analysis 2 (1998) 31–44.
20. Papagelis, A., Kalles, D.: Breeding decision trees using evolutionary techniques.

In: Proc. of ICML’01., Morgan Kaufmann (2001) 393–400.
21. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993).

ITER: An Algorithm for Predictive Regression
Rule Extraction

Johan Huysmans1, Bart Baesens1,2 and Jan Vanthienen1

1 K.U.Leuven, Dept. of Decision Sciences and Information Management,
Naamsestraat 69, B-3000 Leuven, Belgium

2 School of Management, University of Southampton, Southampton, SO17 1BJ,
United Kingdom

Abstract. Various benchmarking studies have shown that artificial neu-
ral networks and support vector machines have a superior performance
when compared to more traditional machine learning techniques. The
main resistance against these newer techniques is based on their lack of
interpretability: it is difficult for the human analyst to understand the
motivation behind these models’ decisions. Various rule extraction tech-
niques have been proposed to overcome this opacity restriction. However,
most of these extraction techniques are devised for classification and only
few algorithms can deal with regression problems.

In this paper, we present ITER, a new algorithm for pedagogical re-
gression rule extraction. Based on a trained ‘black box’ model, ITER
is able to extract human-understandable regression rules. Experiments
show that the extracted model performs well in comparison with CART
regression trees and various other techniques.

1 Introduction

While newer machine learning techniques, like artificial neural networks and sup-
port vector machines, have shown superior performance in various benchmarking
studies [1,10] the application of these techniques remains largely restricted to re-
search environments. A more widespread adoption of these techniques is foiled
by their lack of explanation capability which is required in some application ar-
eas, like medical diagnosis or credit scoring. To overcome this restriction, various
algorithms [2,4,5,6,8] have been proposed to extract meaningful rules from such
trained ‘black box’ models. These algorithms’ dual goal is to mimic the behavior
of the black box as closely as possible with a minimal amount of rules. The main
part of these extraction algorithms focus on classification problems, with only a
few exceptions devised especially for regression.

In this paper, we present ITER, a new algorithm for pedagogical regression
rule extraction. Based on a trained ‘black box’ model ITER is able to extract
human-understandable regression rules. The algorithm works by iteratively ex-
panding a number of hypercubes until the entire input space is covered.

In the next section, a small overview of related research is given. While al-
gorithms for classification rule extraction are more widespread, we will cover

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 270–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

ITER: An Algorithm for Predictive Regression Rule Extraction 271

some techniques that are able to extract regression rules either directly from
the data points or from an underlying ‘black box’ regressor. In the third sec-
tion, the inner workings of the ITER algorithm are explained in great detail
and the performance of this algorithm is compared with other machine learning
techniques.

2 Related Research

Regression trees [3,7] are usually constructed directly from the available training
observations and are therefore not considered to be rule extraction techniques
in the strict sense of the word. A CART regression tree [3] is a binary tree with
conditions specified next to each non-leaf node. Classifying a new observation is
done by following the path from the root towards a leaf node, choosing the left
node when the condition is satisfied and the right node otherwise, and assigning
the observation the value below the leaf node. This value below the leaf nodes
equals the average y-value of training observations falling into this leaf node.

The regression tree is constructed by iteratively splitting nodes, starting from
only the root node, so as to minimize an impurity measure. Often, the impurity
measure of a node t is calculated as:

R(t) =
1
N

∑
xn∈t

(yn − y(t))2 (1)

with (xn, yn) the training observations and y(t) the average y-value for observa-
tions falling into node t. The best split for a leaf-node of the tree is chosen such
that it minimizes the impurity of the newly created nodes. Mathematically, the
best split s* of a node t is that split s which maximizes:

ΔR(s, t) = R(t)− pLR(tL)− pRR(tR) (2)

with tL and tR the newly created nodes. Construction of the tree is terminated
when certain stopping criteria are met. Pruning of the nodes is performed after-
wards to improve generalization behavior of the constructed tree.

Although most regression tree algorithms can be applied directly on the train-
ing data, it is also possible to apply these techniques for pedagogical rule extrac-
tion. Instead of using the original targets, the target values are provided by a
trained black box model and the regression tree is constructed on these new data
points. In our empirical experiments, we will use CART with both approaches.

3 ITER

3.1 Description

The pedagogical ITER-algorithm1 can be used to build predictive regression
rules from a trained regression model (e.g., a neural network or support vector
1 Iter=latin for ‘journey’.

272 J. Huysmans, B. Baesens, and J. Vanthienen

machine). With minor adaptations it is suitable for classification problems as
well. The main idea of the algorithm is to iteratively expand a number of (hy-
per)cubes until they cover the entire input space. Each of these cubes can then
be converted into a rule of the following format:

if Var 1 ∈ [ValueLow
1 ,ValueHigh

1] and Var 2 ∈ [ValueLow
2 ,ValueHigh

2]

. . . and Var M ∈ [ValueLow
M ,ValueHigh

M] then predict some Constant

with M the dimension of the input space. The algorithm starts with the creation
of a user-defined number of random starting cubes. These cubes are infinitesi-
mally small and therefore correspond to points in the input space. Afterwards,
these initial cubes are gradually expanded until they cover the entire input space
or until they can no longer be expanded. During each update the following steps
are executed:

1. For each hypercube i=1,. . . ,N and for each dimension j=1,. . . ,M calculate
how far the cube can be expanded to both extremes of the dimension be-
fore it intersects with another cube, call these distances LowerLimitji and
UpperLimitji .

2. For each hypercube i=1,. . . ,N and for each dimension j=1,. . . ,M calculate
the size of the update. The update equals MinUpdatej , a user-specified con-
stant, unless this size would result in overlapping cubes. If this is the case
then the update is smaller such that the two blocks become adjacent.
Mathematically: LowerUpdatej

i= minimum{LowerLimitji , MinUpdatej}
and UpperUpdatej

i = minimum{UpperLimitji , MinUpdatej}
3. For each hypercube i=1,. . . ,N and for each dimension j=1,. . . ,M create two

temporary cubes adjacent to the original cube along the opposite sides of
dimension j with a width of respectively LowerUpdatej

i and UpperUpdatej
i .

For each of both cubes, create a number of random points lying within
the cube and calculate the mean prediction for these points according to
the trained continuous regression model. Call the difference between each
of both means and the mean prediction for the original cube respectively
LowerDiff j

i and UpperDiff j
i .

4. Find the global minimum over all cubes of these differences and combine the
temporary cube for which the difference was minimal with its original cube.
Update the mean prediction for this cube and remove all other temporary
cubes.

A small example will help to clarify the above procedure. In Figure 1, a two-
dimensional input space (M=2) is shown with two cubes (N=2). We have chosen
MinUpdate1 equal to MinUpdate2, a small positive constant. The numbers
within the cubes are the mean predictions of the continuous black box model for
points lying within that cube.

For both cubes we create four new cubes that surround the original cube.
In Figure 1, these cubes are dark-shaded. The height of the cubes on the top
and bottom (expanding along Y-dimension) equals MinUpdate2. Similarly, the

ITER: An Algorithm for Predictive Regression Rule Extraction 273

BLOCK 2
(5.1)

5.2

5.3

5

5.5

Input Space

BLOCK 1
(6.4)

6

6

5.9

6.6

6.6

MinUpdate 2

MinUpdate 1

UpperUpdate 1
1=LowerUpdate 1

2

Fig. 1. Example for Iter-algorithm

width of the cubes on the left and right equals MinUpdate1. However, if the
first cube is expanded MinUpdate1 units to the right, it would overlap with
the second cube. Therefore the update to the right is smaller so that the two
blocks become adjacent and non-overlapping. The same situation occurs with
the update of the second block to the left (striped regions in Figure 1). For
each of the dark shaded cubes, a number of random observations lying within
that cube are generated and the predictions of the original ‘black box’ model
for these data points are averaged. Finally, we select the shaded cube for which
the difference between this average and the average prediction for the original
cube is minimal. In the example, this is the shaded cube most to the right with
a difference of 0.1. This cube is then combined with its original cube and the
mean prediction for this cube is updated. The above steps are iterated until no
further updates are possible.

3.2 Discussion

Size of Input Space. Before the first iteration of the algorithm, ITER calcu-
lates the size of the surrounding hypercube, i.e. the cube that surrounds all of
the training observations. When calculating the allowed update size, ITER takes
this surrounding cube into consideration and never creates cubes that lie out-
side the surrounding cube. The surrounding cube is also used to retrieve default
values for the MinUpdatej ’s. Unless the user specifies otherwise, the defaults
equal a twentieth of the size of each dimension. For example, if the values of
the training observations for some dimension lie within the interval [0,1] then
MinUpdate=0.05.

Non-exhaustivity
While ITER creates rules that are non-overlapping, it is not always able to cover
the entire input space. With other words, the rules created by ITER are exclusive
but not necessarily exhaustive. In Figure 4(f), a small example of this situation
is given. None of the four cubes can expand towards the middle because each
cube is blocked by another cube. The shaded area will therefore not be covered
by any rule. To ensure exhaustivity, we have to add a number of cubes that cover

274 J. Huysmans, B. Baesens, and J. Vanthienen

the remaining gaps. Fortunately, from initial experiments we have observed that
generally the number of cubes to add remains relatively small.

New Cube Creation
By specifying the number of starting cubes, the user automatically indicates the
desired number of rules because ITER will never create extra cubes during exe-
cution. Only to make the resulting rule set exhaustive, the algorithm is allowed
to construct additional cubes. There are several disadvantages, such as a strong
dependence of the results on the number and location of the starting cubes, that
make it worthwhile to give the algorithm the opportunity to create a new cube
when the current update is deemed not ‘good’ enough. In this definition, we con-
sider an update to be ‘good’ when the global minimum of step 4 is smaller than
a user-specified threshold. We will therefore modify step 4 of the algorithm to:

New Step 4
Find the global minimum over all cubes of these differences.
– If this global minimum is smaller than the threshold then combine the tempo-

rary cube for which the difference was minimal with its original cube. Update
the mean prediction for this cube and remove all other temporary cubes.

– If this global minimum is larger than the threshold then create a new cube
on the position of the temporary cube for which the difference was the global
minimum. The size of each side of the hypercube equals MinimumUpdatej

(smaller if this results in overlapping cubes)

BLOCK 1
(5.1)

5.2

5.3

5.5

MinUpdate 1

MinUpdate 25.9

Fig. 2. New Cube Creation

By setting the threshold to a very large value, all updates will be considered
good and the results of the updated step 4 will be similar to the original. In
Figure 2, the creation of a new cube is shown. When the threshold is smaller
than 0.1, a new cube will be created at the right hand side of the original cube.
The size of each dimension of this new cube equals MinUpdatej .

4 Empirical Results

In this section, ITER is applied to several artificial datasets with 2 continuous
inputs from the interval [0,1]. Each of the datasets consists of 1000 observations,
500 for training and 500 for testing, and implements the following rules:

ITER: An Algorithm for Predictive Regression Rule Extraction 275

Table 1. Datasets

ARTI1 ARTI2
if x ≤ 0.5 and y ≤ 0.5 then z=0.7 + α RAND if x ≤ 0.5 and y ≤ 0.5 then z=0 + α RAND
if x ≤ 0.5 and y > 0.5 then z=0.4 + α RAND if x ≤ 0.5 and y > 0.5 then z=1 + α RAND
if x > 0.5 and y ≤ 0.5 then z=0.3 + α RAND if x > 0.5 and y ≤ 0.5 then z=1 + α RAND
if x > 0.5 and y > 0.5 then z=0.0 + α RAND if x > 0.5 and y > 0.5 then z=0 + α RAND

ARTI3 ARTI4
z= x + y + α RAND z= 1 − (x − 0.5)2 − (y − 0.5)2 + α RAND
a linear function a parabole

with RAND a uniform random number in the interval [-1,1] and α a parameter
to control the amount of randomness in the data. Although ARTI1 and ARTI2
may seem very similar, the symmetry in ARTI2 will cause considerable problems
for a greedy algorithm like CART.

Several models are evaluated for each of these datasets and the influence of
noise is tested by applying different values for α. The different models are Lin-
ear Regression (LR), K-Nearest Neighbor (KNN), Least-Squares Support Vec-
tor Machines (LS-SVM) [9] and CART. For the LS-SVMs we use a RBF-kernel
with regularization and kernel parameters selected by a gridsearch procedure as
described in [9]. CART trees were applied both directly on the data and as a
pedagogical algorithm. For the pedagogical approach, we replace the original tar-
gets with values provided by the best performing ‘black box’, usually a LS-SVM
model. Subsequent pruning of the tree is performed by minimizing the 10-fold
cross-validation error on the training data to improve generalization behavior of
the tree.

For a comparison of ITER with the other models, we initialize the algorithm
with one random start cube and the default update sizes. For the selection of
an appropriate threshold value, a simple trial-and-error approach was followed.
For different values of the threshold we plot the average number of extracted
rules and the performance on the training data over 100 independent trials. In
Figure 3, we show this plot for ARTI 1 with α set to 0. It can be observed that
small values for the threshold result in better performance but that it comes at
the cost of an increased number of rules. A threshold somewhere between 0.1 and
0.25 might be preferred as it provides both interpretability and accuracy. Notice

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

25

50

75

100

P
er

fo
rm

an
ce

 (
R

2)

Threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

50

100

150

200

N
um

be
r

of
 R

ul
es

Performance (R2)
Number of Rules

Fig. 3. ITER (ARTI1 with α=0)

276 J. Huysmans, B. Baesens, and J. Vanthienen

0

0.5

1

0

0.5

1

−0.2

0

0.2

0.4

0.6

0.8

(a) LS-SVM Model

0

0.5

1

0

0.5

1

−0.2

0

0.2

0.4

0.6

0.8

(b) Extracted Rules (threshold=0.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

(c) Initial Cube (After 2 Updates)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

(d) After 25 Updates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

(e) After 50 Updates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2 3

4

(f) After 84 Updates

Fig. 4. Original LS-SVM Model (a) and extracted rules (b) for ARTI1 (α = 0)

that the choice for a small threshold will result in rules that better approximate
the underlying ‘black box’ model but that it will not lead to overfitting as long
as the underlying model generalizes well. In Figure 4, execution of the algorithm
is shown for ARTI1 with the threshold set to 0.2.

In Table 2, an overview of the results is given. For each of the models, we
calculate the Mean Absolute Error (MAE) and R2 value as follows:

MAE =
1
N

N∑
i=1

| yi − ŷi | (3)

ITER: An Algorithm for Predictive Regression Rule Extraction 277

R2 = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − ȳ)2

(4)

with N the number of observations, yi and ŷi respectively the target value and
model prediction for observation i and ȳ the mean target value. For the rule
extraction techniques, MAE Fidelity and R2 Fidelity show to what extent the
extracted rules mimic the behavior of the underlying model. The same formu-
las (3) and (4) were used to calculate these measures, but with yi and ŷi rep-
resenting the model prediction of respectively the ‘black box’ model and the
extracted rules.

From Table 2, one can conclude that ITER is able to mimic accurately the
behavior of the underlying models with only a limited amount of rules. For
several of the experiments, ITER even achieves the same level of performance

Table 2. Overview of Out-of-Sample Performance

MAE R2 # Rules MAE Fidel. R2 Fidel. MAE R2 # Rules MAE Fidel. R2 Fidel.

ARTI1 (α=0) ARTI1 (α=0.5)

LR 0.11 74.79 0.27 32.61
KNN(k=5) 0.02 93.10 0.27 27.90
LS-SVM 0.03 94.93 0.27 35.28
CARTdirect 0.00 99.52 4 0.26 37.99 4
CARTLS−SV M 0.01 97.41 12.95 0.02 97.80 0.26 36.26 51.31 0.03 97.47
ITERthreshold=0.05

LS−SV M
0.02 94.93 36.25 0.02 98.61 0.26 35.73 73.33 0.03 97.45

ITERthreshold=0.1
LS−SV M

0.02 95.12 12.94 0.02 97.75 0.26 35.74 16.40 0.05 91.19
ITERthreshold=0.2

LS−SV M
0.03 90.73 4.50 0.04 93.54 0.27 32.30 4.98 0.08 79.90

ARTI2 (α=0) ARTI2 (α=0.5)

LR 0.50 -0.65 0.48 -0.45
KNN(k=5) 0.05 92.18 0.30 59.15
LS-SVM 0.01 95.20 0.29 61.75
CARTdirect 0.00 98.40 11.96 0.27 68.15 11.01
CARTLS−SV M 0.01 97.11 11.35 0.01 96.15 0.28 65.38 41.20 0.07 96.27
ITERthreshold=0.1

LS−SV M
0.04 92.85 31.55 0.03 93.51 0.29 62.13 82.59 0.07 96.36

ITERthreshold=0.15
LS−SV M

0.04 92.94 26.72 0.03 93.43 0.29 63.48 35.64 0.08 94.31
ITERthreshold=0.20

LS−SV M
0.04 92.79 21.20 0.04 93.31 0.29 63.03 18.88 0.10 91.56

ARTI3 (α=0) ARTI3 (α=0.5)
LR 0.02 99.50 0.26 63.81
KNN(k=5) 0.03 99.17 0.28 56.74
LS-SVM 0.03 99.49 0.26 63.75
CARTdirect 0.05 97.48 86.41 0.28 55.65 15.11
CARTLS−SV M 0.06 97.09 74.88 0.05 97.75 0.26 63.68 77.10 0.04 98.19
ITERthreshold=0.05

LS−SV M
0.04 98.63 190.25 0.03 99.16 0.26 63.18 162.31 0.03 99.08

ITERthreshold=0.10
LS−SV M

0.07 96.08 51.90 0.06 96.61 0.27 61.54 44.58 0.06 96.35
ITERthreshold=0.15

LS−SV M
0.09 92.24 25.00 0.09 92.76 0.27 58.51 22.33 0.09 92.27

ITERthreshold=0.2
LS−SV M

0.12 87.02 15.34 0.12 87.53 0.28 54.98 13.39 0.11 87.11

ARTI4 (α=0) ARTI4 (α=0.25)
LR 0.08 -0.39 0.14 0.52
KNN(k=5) 0.01 98.22 0.14 17.76
LS-SVM 0.00 100.00 0.13 26.70
CARTdirect 0.02 94.27 92.08 0.14 17.56 14.48
CARTLS−SV M 0.02 93.49 59.15 0.02 93.50 0.13 24.35 65.09 0.02 94.59
ITERthreshold=0.04

LS−SV M
0.02 92.58 68.60 0.02 92.59 0.13 24.57 75.02 0.02 93.68

ITERthreshold=0.05
LS−SV M

0.03 88.71 44.82 0.03 88.71 0.13 23.22 49.00 0.03 90.24
ITERthreshold=0.1

LS−SV M
0.05 63.32 10.99 0.05 63.33 0.14 17.72 11.97 0.05 67.32

278 J. Huysmans, B. Baesens, and J. Vanthienen

as the underlying black box models. However, one can also observe that ITER
has difficulties with finding the exact boundaries when the update size is chosen
too large. For example, in Figure 4(f) ITER makes the first cube too large along
the Y-axis because it uses the default update size of 0.05. A smaller update size
would allow for better performance but at the cost of an increase in iterations
and computation time. We are therefore looking into the use of adaptive update
sizes so that larger updates are applied when the underlying ‘black box’ function
is flat and smaller update sizes when the algorithm encounters slopes.

The results show that CART slightly outperforms ITER on most datasets,
but what can not be observed from the results is the advantage of ITER’s non-
greedy approach for the interpretability of the extracted rules. For example,
CART will fail to find good rules for ARTI2 because it is unable to find a split
for the root node that significantly decreases impurity. It will therefore choose
a more-or-less random split, x2<0.95, that does not correspond to any of the
optimal splits (x1<0.5 or x2<0.5). ITER’s expanding of hypercubes does not
face this problem of looking only one step ahead and will be able to find rules
that correspond more closely to those of Table 1.

5 Conclusion

In this paper, we presented a new algorithm for regression rule extraction and
compared its performance with CART regression trees and several ‘black box’
regression techniques. While we believe that ITER can become a worthwhile
alternative to CART’s recursive partitioning approach, there is one major im-
provement recommended before ITER is able to assume this role. The use of
adaptive update sizes can increase performance of the extracted rules in combi-
nation with a reduction of the required number of iterations. Our current work
is focused on the implementation of this adaptive update rates. Future research
will expand the algorithm to allow nominal variables as inputs and consequents
for the rules that can be linear functions of the inputs.

References

1. B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and J. Vanthienen.
Benchmarking state of the art classification algorithms for credit scoring. Journal
of the Operational Research Society, 54(6):627–635, 2003.

2. N. Barakat and J. Diederich. Eclectic rule-extraction from support vector machines.
International Journal of Computational Intelligence, 2(1):59–62, 2005.

3. L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Regres-
sion Trees. Wadsworth and Brooks, 1984.

4. G. Fung, S. Sandilya, and R.B. Rao. Rule extraction from linear support vector
machines. In 11th ACM SIGKDD international conference on Knowledge discovery
in data mining, pages 32–40, 2005.

5. D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen. Adding comprehensibil-
ity to support vector machines using rule extraction techniques. In Credit Scoring
and Credit Control IX, 2005.

ITER: An Algorithm for Predictive Regression Rule Extraction 279

6. H. Núñez, C. Angulo, and A. Català. Rule extraction from support vector machines.
In European Symposium on Artificial Neural Networks (ESANN), pages 107–112,
2002.

7. J.R. Quinlan. Learning with Continuous Classes. In 5th Australian Joint Confer-
ence on Artificial Intelligence, pages 343–348, 1992.

8. R. Setiono, W.K. Leow, and J.M. Zurada. Extraction of rules from artificial neu-
ral networks for nonlinear regression. IEEE Transactions on Neural Networks,
13(3):564–577, 2002.

9. J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle.
Least Squares Support Vector Machines. World Scientific, Singapore, 2002.

10. S. Viaene, R. Derrig, B. Baesens, and G. Dedene. A comparison of state-of-the-art
classification techniques for expert automobile insurance fraud detection. Journal
of Risk And Insurance (Special Issue on Fraud Detection), 69(3):433–443, 2002.

COBRA: Closed Sequential Pattern Mining Using
Bi-phase Reduction Approach

Kuo-Yu Huang, Chia-Hui Chang∗, Jiun-Hung Tung, and Cheng-Tao Ho

Department of Computer Science and Information Engineering,
National Central University, Chung-Li, Taiwan 320

{want, ginhong, ctho}@db.csie.ncu.edu.tw, ∗chia@csie.ncu.edu.tw

Abstract. In this work, we study the problem of closed sequential pattern min-
ing. We propose a novel approach which extends a frequent sequence with closed
itemsets instead of single items. The motivation is that closed sequential patterns
are composed of only closed itemsets. Hence, unnecessary item extensions which
generates non-closed sequential patterns can be avoided. Experimental evaluation
shows that the proposed approach is two orders of magnitude faster than previous
works with a modest memory cost.

1 Introduction

Sequential pattern mining is a fundamental data mining task that has broad applica-
tions, including user behavior analysis, network intrusion detection and tandem repeats
in DNA sequences. Ever since Agrawal et al. [6,7] introduced the concept of sequential
pattern mining in 1995, this problem has received a great deal of attention [2,12,1,5].
Mining sequential pattern is more complex than frequent itemsets, since the permu-
tations of items needs to be considered. Thus, instead of mining the complete set of
frequent sequential patterns, we have stronger motive to mine closed sequential pat-
terns, i.e. those containing no super-sequence with the same support. Mining closed
sequential patterns not only reduce the number of sequences presented to users but also
increase the mining efficiency by pruning the enumeration space.

Although mining closed subsequences shares a similar problem setting with min-
ing closed itemsets [3,4], the techniques developed in closed itemset mining cannot
work for frequent subsequence mining directly because subsequence testing requires
ordered matching which is more difficult than simple subset testing. To the best of our
knowledge, there are only two algorithms in closed sequential pattern mining, including
CloSpan [10] and BIDE [9]. CloSpan takes the approach which generates a candidate
set for closed sequential patterns and conducts post-pruning on it. The idea is that if
a new discovered sequence s′ is a sub-sequence or super-sequence of an existing se-
quence s and the projected database of s and s′ is equal (closure checking), then we can
stop searching any descendant of s′ in the prefix search tree (thus pruning the search
space) since for all γ the support of sequence s′ �γ is equal to that of s�γ. What makes
the concept works is that the equivalence of the projected databases can be implemented
by comparing the size of the databases. Furthermore, the size of the projected databases

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 280–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach 281

can be used as the hash key to improve subsequence/supersequence checking more ef-
ficiently. However, the candidate maintenance-and-test paradigm suffers the inherent
drawback in scalability.

Therefore, Wang et al. propose an alternative solution without candidate mainte-
nance. It adopts a sequence closure-checking scheme called BIDE. From definition,
we know that if a sequence S = < s1, s2, . . . , sn > is not a closed sequence, there
must exist at least an event e′ which can be used to extend sequence S to a new se-
quence S′ with the same support. The sequence S can be extended from the right
most direction (after sn), the left most direction (before s1) or in the middle of the
sequence (between si and si+1). If no such event exists, then S must be a closed se-
quence. Thus, the proposed BIDE scheme is to scan for common items from the se-
quence database, which might exist between si and si+1. As for search space prun-
ing, they propose the BackScan pruning method to stop growing unnecessary patterns
if the current prefix can not be closed. Again, they have defined the subsequences
where the common items are searched for this BackScan closure checking. Although
BIDE do not keep track of any historical closed sequential patterns (or candidate) for
a new pattern’s closure checking, it is a computational consuming approach since it
needs multiple database scans for the bi-direction closure checking and the backscan
pruning.

Both algorithms adopt the framework of PrefixSpan [5] which grows patterns by
itemset extension and sequence extension, i.e. the last transaction of the current se-
quence is extended with a frequent item in the same transaction (item extension or
I-step, denoted by �i) or different transaction (sequence extension or S-step, denoted
by �s). However this pattern-growth strategy has two drawbacks: duplicate item exten-
sions (To find the closed sequence <{A,B}, {A,B}, {A,B}>, we need three item
extensions.) and expensive matching cost. In this paper, we have come up with a novel
approach which conducts only sequence extensions by adding frequent closed itemsets
to overcome these drawbacks. Frequent closed itemsets, as proved in the next section,
are in fact the basic components of frequent closed sequences. They can be used to
remove duplicate item enumeration as well as to reduce the matching cost for finding
locally frequent items for I-extension.

The rest of this paper is organized as follows. We define the problem of closed se-
quential pattern mining in Section 2. Section 3 presents our algorithm. Experiments are
reported in Section 4. Finally, conclusions are made in Section 5.

2 Problem Definition

Given a database SD of customer transactions, where each transaction consists of the
following fields: customer-id, transaction-time, and the items purchased in the transac-
tion. No customer has more than one transaction with the same transaction-time. Let
I = {i1, i2, . . . , iN} denote the set of items. A customer sequence can be represented
by an ordered lists of itemsets, i.e., S=<t1, . . . , tn>, where each itemset tj is a non-
empty subset of I , denoting the items bought in one transaction. The number of itemsets
in a sequence is called the length of the sequence and a sequence with length l is called
an l-sequence. A sequence α=<a1, . . . , am> is a sub-sequence of another sequence

282 K.-Y. Huang et al.

β=<b1, . . . , bn>, if and only if each aj (1 ≤ j ≤ m) can be mapped by bij
(aj ⊆ bij

)
and preserve its order (1 ≤ i1 < i2 < . . . < im ≤ n). We say β is super-sequence of α
and β contains α.

A sequence database SD = {S1, . . . , S|SD|} is a set of sequences. Each sequence
is associated with a sid. |SD| represents the number of sequences in the database SD.
The absolute support of a sequence α in a sequence database SD is the number of
sequences in SD which contain α.

Given two sequences α and β. If α is a super-sequence of β and their supports are
the same, we say α absorbs β. A sequential pattern β is a closed sequential pattern
if there exists no proper sequence α that absorb β. The problem of closed sequential
pattern mining is formulated as follows: given a minimum support level minsup, our
task is to mine all closed sequential patterns in the sequence database with support
greater than minsup, i.e. the frequent sequential patterns.

Table 1. An example sequence database SDB

.

SID Sequence
1 (C)(A, B, C)(B, C)(A, B, C)

2 (B, C)(A, B, C)(C)

3 (B, C)(A)(D, F)(A, B, C)(C)

4 (C)(A)(D, E)(A, B, C)

To make connection between closed itemsets with closed sequential patterns, we de-
fine transaction support and sequence support of an itemset as follows. The transaction
support of an itemset ρ is defined as the number of transactions that contain ρ while
the sequence support of ρ is the number of sequences that contain the 1-sequence ρ. As
usual, an itemset ρ is closed if there exist no superset of ρ with the same transaction
support. However, an itemset ρ is frequent in a sequence database SD if the sequence
support of ρ is greater than minsup. Thus, ρ is a frequent closed itemset if the sequence
support is greater than minsup and there exists no superset with the same transaction
support.

Example 1. Given minsup = 3, all subsets of {A,B,C} are frequent in the example
sequence database in Table 1 since each itemset has sequence support 4. However,
only {A}, {C}, {B,C}, and {A,B,C} are frequent closed itemsets. Itemset {B} is
not a closed itemset since it has the same transaction support 8 as itemset {B,C}.
Similarly, itemsets {A,B} and {A,C} are absorbed by {A,B,C} since they have the
same transaction support 5.

3 The COBRA Algorithm

In this section, we present an important observation and prove that a frequent closed
sequential pattern is composed of only frequent closed itemsets. Thus, we devise a bi-
phase reduction approach which mines frequent closed itemsets first and enumerate
frequent closed sequential patterns by conducting sequence extensions. Before intro-
ducing the pruning strategy, we first define some terms.

COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach 283

Definition 1. Given a sequence S = <s1, . . . , sn>, the First Matched Transaction
(FMT) of a 1-sequence <p1> is defined as the transactional ID of the first instance of
the itemset p1. Recursively, we can define the FMT of a (m + 1)-sequence
<p1 . . . pmpm+1> from the FMT of the m-sequence <p1 . . . pm> as (the transac-
tion ID of) the first appearance of itemset pm+1 which occurs after the FMT of the
m-sequence <p1 . . . pm>. Given a sequence database SD (each transaction in SD
has a unique ID), the First Matched transaction List (FML) of a prefix sequence
α=<p1 . . . pn> is defined as the list of first matched transactions of the sequences in
SD w.r.t. α. Similarly, the SID List of α is a list of sequence IDs that support α.

Given an itemset p, let c(p) denote the closed itemset which contains p and has the
same transaction support as p. If p is closed, then c(p) = p. By definition, c(p) and p
have the same transaction support and the FML are the same (denoted as p.FML =
c(p).FML).

Lemma 1. Given three sequential patterns α, β and γ, if α.FML = β.FML then
α �s γ.FML = β �s γ.FML and α �s γ.SIDList = α �s γ.SIDList (Definition 1).

Theorem 1. A closed sequential pattern is composed of only closed itemsets.

Proof. Assume α = p1 �s . . . �s pn is a closed sequential pattern, but some of the pis
are non-closed itemsets. Consider a sequential pattern β = c(p1) �s p2 �s . . . �s pn,
α.SIDList = β.SIDList since p1.FML = c(p1).FML (Lemma 1). Recursively,
we can find a sequential pattern δ = c(p1)�s . . .�s c(pn) such that α.FML = δ.FML.
Therefore, α is not a closed sequential pattern. We thus have a contradiction to the
original assumption that α is a closed sequential pattern and thus conclude that “all
closed sequential patterns α are composed of only closed itemsets.”

Theorem 1 is an important property as it provides a different view of mining closed
sequential patterns. Instead of extending a prefix by I-steps and S-steps alternatively,
we can mine closed frequent itemsets before mining closed sequential patterns and ex-
tends a prefix sequence by only S-steps. Therefore, we have come up with a three phase
algorithm. In the first phase, we find all frequent closed itemsets and denote each of
them by a unique C.F.I. code. To avoid the need to match closed frequent itemsets in
a sequence in the enumeration phase, the original database is transformed into another
database where the items in each sequence are replaced by C.F.I. codes that are con-
tained in the transactions. Finally, the closed sequential patterns are enumerated in the
third phase.

To illustrate, the example database SDB (Table 1) can be transformed into Figure 2
given the C.F.I. codes shown in Figure 1. This transformation retains the horizontal
format of the original database. Note that the transactions are renumbered to eliminate
empty transactions due to the removal of non-frequent items (e.g. D, E, F). Figure 1
also shows the location lists of each closed frequent itemset, which represent the vertical
format of the original database.

We refer this as a bi-phase reduction approach since we mine C.F.I. for first phase
reduction then mine closed sequences for second phase reduction. This approach not
only reduces the search spaces and duplicate combinations but also avoids the matching

284 K.-Y. Huang et al.

Code C.F.I. FML LocationList (SID,TID)
#1 ABC 2, 6, 10,14 (1,2), (1,4), (2,6), (3,10), (4,14)
#2 BC 2, 5, 8, 14 (1,2),(1,3), (1,4), (2,5), (2,6), (3,8), (3,10), (4,14)
#3 A 2, 6, 9, 13 (1,2), (1,4), (2,6), (3,9), (3,10), (4,13), (4,14)
#4 C 1, 5, 8, 12 (1,1), (1,2), (1,3), (1,4), (2,5), (2,6), (2,7), (3,8), (3,10), (3,11), (4,12), (4,14)

Fig. 1. Vertical-based LocationList and FML

TID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
SID 1 1 1 1 2 2 2 3 3 3 3 4 4 4
Code #4 #1 #2 #1 #2 #1 #4 #2 #3 #1 #4 #4 #3 #1

#2 #4 #2 #4 #2 #4 #2 #2
#3 #3 #3 #3 #3
#4 #4 #4 #4 #4

Fig. 2. Horizontal Encoded Database EDB

costs in item extension process. A similar framework has also been adopted in [8] for
inter-transaction association mining. However, applying such a framework in closed
pattern mining is much more economic than regular pattern mining since the number of
frequent itemsets are larger than that of frequent closed itemsets. In the next section, we
will discuss how to further prune the search space by LayerPruning and ExtPruning.

3.1 Pruning Strategies

Although the number of closed itemsets can be larger than the number of items, which
seems to harm the mining process, lots of them can be ignored without consideration
by layer pruning. As a contrast to previous works which only prune a branch of a non-
closed pattern, layer pruning removes several non-closed branches at once and reduces
the costs in pattern checking. Before introducing the pruning strategy, we first define
the order of two first match lists.

Definition 2. (The Order of FML) Given two FMLs
S1.FML = {a1, a2, . . . , am} and S2.FML = {b1, b2, . . . , bn} (m ≥ n), we say that
S1.FML <L S2.FML if and only if there exists i1, i2, ..., in such that aij

.SID =
bj .SID and aij

< bj for all j (1 ≤ j ≤ n). The equal signs hold (S.FML =L

S′.FML) when m = n and aj = bj for all j, (1 ≤ j ≤ m).

Example 2. Consider the example database SDB again, Figure 1 shows the first
matched transaction list (FML) for the frequent closed itemsets which are also
1-sequences. The FML for C.F.I. codes #1, #2, #3, #4 are {2,6,10,14}, {2,5,8,14},
{2,6,9,13} and {1,5,8,12}, respectively. The orders between these FMLs are #1.
FML >L #4.FML and #3.FML >L #4.FML.

LayerPruning: For two C.F.I. p1 and p2 that can be a sequence extension of a prefix
sequence α=<s1, . . . , sn> in form of S1 = α�s p1 and S2 = α�s p2, the LayerPruning
works as follows:

COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach 285

1. If S1.FML <L S2.FML, then remove p2. Vice versa.
2. If S1.FML =L S2.FML, then if (a) p1 ⊆ p2, then remove p1; (b) p2 ⊆ p1, then

remove p2; (c) neither p1 ⊂ p2 nor p1 ⊃ p2, then remove both p1 and p2.

For instance in our running example, we can completely skip prefix #1 and #3 from
root since #1.FML >L #4.FML and #3.FML >L #4.FML. Thus, the Layer-
Pruning technique removes non-closed patterns in the same layer since the pruning is
invoked within a local search of a prefix pattern. The correctness of the pruning tech-
nique can be proven by the following lemma and theorems.

Theorem 2. Let two C.F.I. p1 and p2 that can be a sequence extension of a prefix
sequence α=<s1, . . . , sn> in form of S1 = α �s p1 and S2 = α �s p2. If S1.FML <L

S2.FML, then all extensions of S2 must not be closed.

Proof. By definition (Definition 1), the FML of α is smaller than that of its extensions,
therefore, α.FML <L S1.FML. Since S1.FML <L S2.FML, wherever p2 occurs,
p1 will also occur in the interval between α.FML and S2.FML. Thus, the super-
sequence S′ = α �s p1 �s p2 of S2 has the same FML as S2, and S′.SIDList =
S2.SIDLis (Lemma 1). Therefore, S2 is not a closed sequential pattern.

Theorem 3. Let two C.F.I. p1 and p2 that can be a sequence extension of a prefix
sequence α=<s1, . . . , sn> in form of S1 = α�sp1 and S2 = α�sp2, and S1.FML =L

S2.FML. (a) If p1 ⊂ p2, then all extensions of S1 must not be closed. (b) If neither
p1 ⊂ p2 nor p1 ⊃ p2, then all extensions of p1 and p2 must not be closed.

Proof. (a) First, S1 is a subsequence of S2 since p1 is a subset of p2. Second, S1 and
S2 have the same support since S1.FML =L S2.FML. Therefore, S1 is not a closed
sequential pattern.

(b) Consider the sequential pattern β = α �s p1 �i p2=<s1, . . . , sn, p1 ∪ p2>. Since
S1.FML =L S2.FML and β.FML =L S1.FML∩S2.FML, we have β.FML =L

S1.FML =L S2.FML. Therefore, for any extension S1 and S2 of α, there exists
β, such that β is a super sequence of S1 and S2, and β.SIDList = S1.SIDList =
S2.SIDList. Therefore, S1 and S2 are not the closed sequential pattern.

Although LayerPruning can prune non-closed sequences during sequence extension
step of a prefix sequence, there are still some non-closed sequential patterns that can be
generated in different layer. Therefore, we need a checking step to remove non-closed
sequential patterns, we refer to this pruning as ExtPruning.

ExtPruning: For two sequential patterns α and β, the rule of ExtPruning states that

1. If α.FML =L β.FML and α is a super sequence of β, then remove β and vice
versa.

2. If Sup(α) = Sup(β) and α is a super sequence of β, then β is not closed pattern,
vice versa.

The first rule of ExtPruning holds according to Theorem 3, while the second rule fol-
lows the definition of closed sequential patterns.

286 K.-Y. Huang et al.

3.2 COBRA: Design and Implementation

In this section, we discuss the implementation of the COBRA algorithm. COBRA can
be outlined as three major phases: (I) Mining Closed Frequent Itemset; (II) Database
Encoding; and (III) Mining Closed Sequential Pattern. Figure 3 shows the pseudo code
of the COBRA algorithm. Line 1 calls a modified CHARM [11] to mine frequent closed
itemsets. Line 2-3 associates each C.F.I. with a unique code and constructs the encoded
database EDB using the codes of the C.F.I. Line 4-21 mines the set of all frequent
closed sequential patterns. Details are described below.

There are already many closed frequent itemset mining algorithms. We prefer using
a vertical-based mining algorithm in the first phase (e.g., CHARM[11]) since the ver-
tical format records the locations (TIDList) of C.F.I.s which can be used to construct
the transformed database in the second phase. Recall that frequent closed itemsets in
a sequence database are defined by both sequence supports and transaction support,
therefore, transaction ids are replaced by a 2-tuple (SID, TID) location to facilitate the
counting of sequence supports and transaction supports.

In the second phase, we associate each C.F.I. with a unique code and construct the
encoded database in horizontal format based on the location lists of the C.F.I. Note that
C.F.I.s are sorted by their length in a decreasing order such that super-sequences are
generated earlier to reduce update cost in the third phase. Once the encoded database is
constructed, we can release the memory space of LocationList for all C.F.I.s.

Procedure COBRA(sequence database SD, minsup)
1. Call mCHARM() to find the set of all C.F.I.;
2. Associate each C.F.I. with an code, and let CS denotes the set of codes.
3. Construct the encoded DB EDB using CS;
4. CS = LayerPruning(CS);
5. for each codei in CS do
6. cobraDFS(codei, code.FML);

Subprocedure cobraDFS(α, FML)
7. Compute Extended List EL of FML;
8. if (|EL| < minsup) then
9. ExtPruning(α); return;
10. end
11. if (|EL| < |FML|) then
12. if (ExtPruning(α,FML)) then return;
13. LC = Local Frequent Codes in α.PDB;
14. LC = LayerPruning(LC);
15. if (|EL| = |FML|) then
16. FEI = All LCis with |LCi.FML| = |FML|;
17. if (FEI == φ) then
18. if (ExtPruning(α,FML)) then return;
19. end
20. for each LCi in LC do
21. cobraDFS(α �s LCi, LCi.FML);

Fig. 3. COBRA Algorithm

COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach 287

Furthermore, we can remove transactions without any frequent items to reduce the size
of storage. Then, the first match transaction list for each C.F.I. (also the frequent 1-
sequences) is constructed for the use in the third phase.

The mining process follows the idea of PrefixSpan to look for locally frequent (ex-
tendable) codes in the projected database of a prefix sequence. Starting with an empty
sequence, the extendable codes are the frequent C.F.I.s. However, before the enumer-
ation, we first apply the LayerPruning strategy to remove unnecessary enumeration
in the same layer (line 4). To reduce the cost of comparing any two FMLs (a total of
O(|C.F.I.|2) comparisons), we devise a hash structure which uses Equation (1) as its
hash function (pNo is chosen to be a prime number. HSize is the size of the hash ta-
ble.). Equation (1) has more uniformly distributed keys than simple |SIDList| can do.
Only C.F.I.s that are hashed to the same bucket are compared to each other. Extendable
C.F.I. that are not able to produce closed sequential patterns are then removed based on
Theorem 2 and 3. In the pseudo code, the procedure LayerPruning, which imple-
ments the above idea, takes {#1, #2, #3, #4} as an input and returns {#2,#4} since
#4.FML <L #1.FML and #4.FML <L #3.FML.

h(SIDList) = (|SIDList|+
∑

Sid∈SIDList

Sid ∗ pNo)modHSize (1)

In the procedure cobraDFS, with a new pattern α and its FML α.FML = {t1, . . . ,
tn}, we first compute the extended position list (EL) by looking at the next transaction
of ti, which has the same sequence id with ti. For example, the EL of code #2 in
Figure 1 is {3, 6, 9} (transaction 15 is discarded for it does not have a sequence id as
transaction 14). The number of transactions in the EL represents the largest support
an extended sequence of α can have. Thus, if |EL| is less than minsup, then we can
skip all extensions of the prefix α (line 8-10); otherwise we do the extension of α (lines
11-21). In the later case, we compute the projected database of α (line 13) and find all
locally frequent codes (denoted by LC). Again, before extension, LayerPruning is
applied to remove unnecessary codes (line 14). Formally, we define the extended list
(EL) and projected database (PDB) of a pattern as follows.

Definition 3. Given a sequence α and its FML = {t1, . . . , tn}, the Extended List
(EL) of α is defined as a list of extended position t′i where t′i = ti + 1 and t′i.SID =
ti.SID.

Definition 4. Given the extended list of a sequential patternα, with extended list α.EL=
{t1, . . . , tn}, the Projected Database (PDB) of α is defined as α.PDB = {t′1, . . . , t′m}
where t′i.SID = tj .SID for some tj and tj < t′i ≤ t|SD|, where |SD| denotes the
number of transactions in the extended databases.

For example, the projected database for α = #2 (with #2.EL = {3, 6, 9}) in Figure 2
is #2.PDB = {3, 4, 6, 7, 9, 10, 11}.

Definition 5. Given a sequence α=<s1, . . . , sn>, the Forward Extended Itemset
(FEI) of α is defined as the set of extended codes of α which have the same SIDList as
α, i.e. α.SIDList = α �s p′i.SIDList.

288 K.-Y. Huang et al.

We output the new prefix sequence α only when it has the chance to be a closed se-
quential pattern. This includes the following three cases: (1) |EL| < minsup (line 8)
(2) |EL| < |FML| (line 11-12) (3) |FEL| = φ (line 17-18). In the first case, no super-
sequence of α can be generated as frequent patterns. In the second case, the supports of
all super-sequences of α are less than α. In the third case, there are no extendable codes
with the same support as α. This is equivalent to check for common codes that can be
extended from the right direction (one of the two directions in BIDE). However, non
closed sequential patterns still can be generated. Therefore, we should make a closure
checking to verify if α is a closed sequential pattern or not. This is implemented by
ExtPruning which maintains the set of generated sequences.

Similar to LayerPruning, ExtPruning also uses Equation 1 as the hash function.
The hash table for ExtPruning is called CSTab. A sequence α is only compared to
sequences with the same SIDLists. The return value of ExtPruning indicates whether
the extension of prefix α should go on. If α is a sub-sequence of an existing pattern β
in the hash table and α.FML = β.FML, then we simply discard α and return True
to stop the extension of prefix α (line 12,18).

Theorem 4. The COBRA algorithm generates all closed sequential patterns.

Proof. First of all, the anti-monotone property “if a pattern is not frequent, all its super-
patterns must be infrequent” is sustained for closed sequential patterns. According to
Theorem 1, the search space composed by only closed frequent itemset covers all closed
sequential patterns. COBRA’s search is based on a complete set enumeration space.
The only branches that are pruned as those that do not have sufficient support. The
LayerPruing only removes unnecessary enumerations (Theorem 2 and 3). On the
other hand, ExtPruning remove only non-closed sequential patterns. Therefore, the
COBRA algorithm generates all frequent and only closed sequential patterns.

The proposed algorithm, COBRA, is basically a memory-based algorithm since the
number of closed itemsets can be larger than the number of items. If the data is too
large to fit in the memory space, the partition-and-validation strategy can be used to
handle such a case. Two alternative partition strategies are proposed here: prefix-based
partition and horizontal-based partition (see [?] for details).

4 Experimental Result

In this section, we report the performance study of the proposed algorithms on synthetic
data set as used in [10,?]. All the experiments are performed on a 3.2GHz Pentium PC
with 3 Gigabytes main memory, running Microsoft Windows XP. All the programs are
written in Microsoft/Visual C++ 6.0. In the following experiments, the size of hash table
is set to 100.

Scalability Test. The synthetic sequence data is generated on the basis of the descrip-
tion in [6]. We start by looking at the performance of COBRA with default parameter
minsup = 0.5%. Figure 4(a) shows the scalability of the algorithms with varying data
size. COBRA is two orders of magnitude faster than BIDE for 50K sequences. The

COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach 289

scaling of COBRA with database size was linear. Because BIDE needs more scan-
ning time as the data size increases, BIDE has exponential scalability in terms of data
size. However, COBRA consumes more memory space than BIDE as shown in Fig-
ure 4(b). The main reason is that COBRA maintain the encoded database which is com-
posed by C.F.I.s instead of simple items. For example, COBRA costs approximately
6.6MB for the encoded database maintenance at |D| = 50K and FML costs approxi-
mately 10MB.

237

698

1439

2780
4251

3
5

7
11

14

1

10

100

1000

10000

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e
(S

ec
.)

BIDE
COBRA

5

9

12

16

20

2 2 3
4

6

0

3

6

9

12

15

18

21

10 20 30 40 50

Data Size (D*1000)
M

em
or

y
U

sa
ge

 (
M

B
s)

COBRA

BIDE

(a) Scaling with Date Size (Time) (b) Scaling with Date Size (Space)

195 226 280
374

743

3 3 4 4

8

1

10

100

1000

0.6 0.5 0.4 0.3 0.2
Support(%)

R
un

ni
ng

 T
im

e
(S

ec
.)

BIDE COBRA

5.2 5.3 5.3 5.4

7.4

1.9 1.9 1.9 1.9 2.1

0

2

4

6

8

0.6 0.5 0.4 0.3 0.2

Support (%)

M
em

or
y

U
sa

ge
 (

M
B

s)

COBRA
BIDE

(c) Scaling with minsup (Time) (d) Scaling with minsup (Space)

1.1 1.8 2.5
3.7

4.6
1.5 0.8

1.0

1.5

1.9

0.7
2.9

3.7

5.3

7.2

0

5

10

15

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e
(S

ec
.)

COBRA-III
COBRA-II
COBRA-I

5

9

12

16

20

4

7

11

14

17

4

7

11

14

18

0.1 0.2 0.3 0.5 0.6

0

7

14

21

10 20 30 40 50
Data Size (D*1000)

M
em

or
y

U
sa

ge
 (

M
B

s)

COBRA-I
COBRA-II
COBRA-III
CSTab

(e) Time cost in each phase of COBRA (f) Space cost in each phase of COBRA

1.0 1.3 1.1 1.1

3.4
0.4 0.3 0.4 0.4

0.5

1.5 1.4 2.0 2.6

4.6

0

3

6

9

0.6 0.5 0.4 0.3 0.2
Support(%)

R
un

ni
ng

 T
im

e
(S

ec
.

COBRA-III
COBRA-II
COBRA-I

5 5 5 5
6

4 4 4
4

5

4 4 4

4

7

0.1 0.1 0.1 0.2 0.3

0

2

4

6

8

0.6 0.5 0.4 0.3 0.2
Support (%)

M
em

or
y

U
sa

ge
 (

M
B

s)

COBRA-I
COBRA-II
COBRA-III
CSTab

(g) Time cost in each phase of COBRA (h) Space cost in each phase of COBRA

Fig. 4. Scalability Test

The runtime of COBRA and BIDE on the default data set with varying minimum
support threshold, minsup, from 0.2% to 0.6% is shown in Figure 4(c). COBRA is

290 K.-Y. Huang et al.

faster (90 times) and more scalable than BIDE since the number of sequences checked
in the backward extension of BIDE grows rapidly as the minsup decreases, while CO-
BRA only compare the maintained patterns with the newly found pattern. Again, the
memory requirement for COBRA increases as minsup decreases since the number of
C.F.I.s increases as minsup decreases (see Figure 4(d)). In short, the performance study
shows that the COBRA algorithm is efficient and scalable for closed sequential pattern
mining with acceptable memory cost.

To better understand the algorithm, Figure 4(e)(f)(g)(h) demonstrates the time and
space expense in each phase. Roughly speaking, the time costs for the three phases are
40%, 10%, and 50%, respectively. As shown in the Figure 4(e)(g), Phase I (the memory-
based CHARM) consumes the most time and space since it maintains the (SID, TID)
pairs for each closed frequent itemsets. The space requirement for each phase does not
vary much since each of them includes both the horizontal encoded database EDB and
the vertical database FML. The space requirement for maintaining closed sequential
patterns CSTab (by ExtPruning) in phase III is also shown in Figure 4(f)(h) for
reference.

33

19

3
5

7

11

14

6

23

15

10 15

11
9

0

10

20

30

40

10 20 30 40 50
Data Size (D*1000)

R
un

ni
ng

 T
im

e
(S

ec
.)

COBRA-PP
COBRA-HP5
COBRA

0
1

22

5

7

10

12

5

9

12

16

20

1 1
0

7

14

21

10 20 30 40 50
Memory Usage (MBs)

D
at

a
S

iz
e

(D
*1

00
0)

COBRA-PP
COBRA-HP5
COBRA

(a) Partitioning Performance (Time) (b) Partitioning Performance (Space)

Fig. 5. Partition-based COBRA: Synthetic Data

Partition-Based COBRA. Figure 5 demonstrates the memory reduction by partition-
based COBRA. Prefix-based partition (COBRA-PP) has less memory requirement than
horizontal-based partition (COBRA-HP 5 partitions). Since COBRA-PP divides more
partitions than COBRA-HP5, COBRA-PP needs more time in pattern validation than
COBRA-HP5. However, experimental result shows that both partition-and-validation
strategies are not only more efficient than BIDE but also reduce the memory require-
ments of the COBRA. Thus, while we are trading more space for speed in time, the
basic principle is worth trying since the memory cost can be well reduced by partition-
based approaches.

5 Conclusion

In this paper, we propose a bi-phase reduction approach algorithm for closed sequen-
tial pattern mining. Different from previous studies, we first conduct item extension
and then do sequence extension, which overcomes some drawbacks in typical pattern-
growth method. The mining process is divided into 3-phases: (I) Mining Closed Fre-
quent Itemset; (II) Database Encoding and (III) Mining Closed Sequential Pattern. The

COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach 291

proposed algorithm uses both vertical (FML) and horizontal (EDB) database formats
to reduce the searching time in the mining process. Basically, the proposed algorithm is
a memory-based algorithm, and its efficiency comes from the removal of database scans
and compressed strategy of bi-phase reduction approach. Although COBRA consumes
more memory space than BIDE, the gain in time cost shows the advantage of COBRA.
Besides, memory space cost can be further reduced by partition-and-validation strate-
gies or post (disk-based) ExtPruning.

Acknowledgement

This work was sponsored by National Science Council, Taiwan under grant NSC94-
2213-E-008-020.

References

1. M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining with regular
expression of constraints. IEEE Transactions on Knowledge and Data Engineering (TKDE),
14(3):530–552, 2002.

2. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. Freespan: Frequent pattern-
projected sequential pattern mining. In Proceedings of the 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’00), pages 355–359, 2000.

3. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without min-
imum support. In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM’02), 2002.

4. J. Pei, G. Dong, W. Zou, and Jiawei Han. On computing condensed frequent pattern bases.
In Proceedings of International Conference on Data Mining (ICDM’02), 2002.

5. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Min-
ing sequential patterns by pattern-growth: The prefixspan approach. IEEE Transaction on
Knowledge Data Engineering, 16(11):1424–1440, 2004.

6. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the 11th Interna-
tional Conference on Data Engineering (ICDE’95), pages 3–14, 1995.

7. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In Proceedings of the 5th International Conference on Extending Database
Technology (EDBT’96), volume 1057 of Lecture Notes in Computer Science, pages 3–17.
Springer, 1996.

8. A. K.H. Tung, H. Lu, J. Han, and L. Feng. Efficient mining of intertransaction association
rules. IEEE Transactions on Knowledge and Data Engineering (TKDE), 15(1):43–56, 2003.

9. J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Proceedings of
the 20th International Conference on Data Engineering (ICDE’04), pages 79–90, 2004.

10. X. Yan and R. Afshar J. Han. Clospan: Mining closed sequential patterns in large datasets.
In Proceedings of the Third SIAM International Conference on Data Mining (SDM), 2003.

11. M. J. Zaki and C.J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In
Proceedings of the 2nd SIAM International Conference on Data Mining (SDM’02), 2002.

12. M.J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning,
42(1/2):31–60, 2001.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 292 – 301, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Greedy Approach to Concurrent Processing of
Frequent Itemset Queries

Pawel Boinski, Marek Wojciechowski, and Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 2, 60-965 Poznan, Poland
{pawel.boinski, marek, mzakrz}@cs.put.poznan.pl

Abstract. We consider the problem of concurrent execution of multiple
frequent itemset queries. If such data mining queries operate on overlapping
parts of the database, then their overall I/O cost can be reduced by integrating
their dataset scans. The integration requires that data structures of many data
mining queries are present in memory at the same time. If the memory size is
not sufficient to hold all the data mining queries, then the queries must be
scheduled into multiple phases of loading and processing. Since finding the
optimal assignment of queries to phases is infeasible for large batches of
queries due to the size of the search space, heuristic algorithms have to be
applied. In this paper we formulate the problem of assigning the queries to
phases as a particular case of hypergraph partitioning. To solve the problem, we
propose and experimentally evaluate two greedy optimization algorithms.

1 Introduction

Multiple Query Optimization (MQO) [16] is a database research area that focuses on
optimizing sets of queries together by executing their common expressions only once
in order to save query execution time. Many exhaustive and heuristic algorithms have
been proposed for traditional MQO. A specific type of a database query is a Data
Mining Query (DMQ) [10], which describes a data mining task. It defines constraints
on the data to be mined and constraints on the patterns to be discovered. Existing data
mining systems execute DMQs serially and do not try to share any common
expressions between different DMQs.

DMQs can be processed in batches, executed during low user activity time. If
source datasets of the batched queries overlap, serial execution will result in reading
certain parts of the database more times than necessary. If I/O steps of batched DMQs
were integrated, then it would be possible to decrease the overall execution cost and
time of the whole batch. One of the methods to process batches of DMQs is Common
Counting, focused on frequent itemset discovery queries [1]. It is based on Apriori
algorithm [3] and it integrates the steps of candidate support counting – all candidate
hash trees for multiple DMQs are loaded into memory and the database is scanned
only once. Basic Common Counting [17] assumes that all DMQs fit in memory,
which is not the common case, at least for initial Apriori iterations. If the memory can

 A Greedy Approach to Concurrent Processing of Frequent Itemset Queries 293

hold only a subset of all DMQs, then it is necessary to partition/schedule the DMQs
into subsets called phases. The best query scheduling algorithms proposed so far are:
CCAgglomerative [19] and its extension called CCAgglomerativeNoise [6]. In this
paper we propose and experimentally evaluate two new greedy optimization
algorithms: CCGreedy and CCSemiGreedy. CCGreedy implements a pure greedy
strategy, and CCSemiGreedy is its extension following a semi-greedy heuristics [9].

2 Related Work

Multiple-query optimization has been extensively studied in the context of database
systems (see e.g. [16]), however very little work has been done on optimizing sets of
data mining queries. To the best of our knowledge, apart from the Common Counting
method discussed in this paper, the only other multiple data mining query processing
scheme is Mine Merge, presented in one of our previous papers [18].

As an introduction to multiple data mining query optimization, we can regard
techniques of reusing results of previous queries to answer a new query [5][7][11]
[14]. As we have shown in [15], these methods can be used to optimize processing of
batches of data mining queries after appropriate ordering of the queries. However,
such an approach is applicable just in a small fraction of cases that Common Counting
can successfully handle.

Hypergraph partitioning has been extensively studied particularly in the domain of
VLSI design [4]. In data mining context it has been proposed as a clustering technique
in [13]. Many formulations of the hypergraph partitioning problem have been
considered, differing in partitioning constraints and objectives (see e.g. [4] or [12]).
Our formulation differs from typical approaches because we do not have any balance
constraint on the sizes of resulting partitions, only a strict upper bound on the on the
sum of weights of vertices in a partition, reflecting the memory limit.

3 Background

3.1 Basic Definitions

Frequent itemset query. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, β),
where R is a relation, a is a set-valued attribute of R, Σ is a condition involving the
attributes of R, Φ is a condition involving discovered itemsets, and β is the minimum
support threshold. The result of dmq is a set of itemsets discovered in πaσΣR,
satisfying Φ, and having support β (π and σ denote projection and selection).

Elementary data selection predicates. The set S={s1, s2 ,..., sk} of data selection
predicates over the relation R is a set of elementary data selection predicates for a set
of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} if for all u, v we have
σsuR∩σsvR=∅ and for each dmqi there exist integers a, b, ..., m such that
σΣiR=σsaR∪σsbR∪..∪σsmR.

294 P. Boinski, M. Wojciechowski, and M. Zakrzewicz

3.2 Review of Common Counting

Common Counting is so far the best algorithm for multiple-query optimization in
frequent itemset mining. It consists in concurrent execution of a set of frequent
itemset queries using the Apriori algorithm and integrating their dataset scans. The
algorithm iteratively generates and counts candidates for all the data mining queries,
storing candidates generated for each query in a separate hash-tree structure. For each
distinct data selection formula, its corresponding database partition is scanned once
per iteration, and candidates for all the queries referring to that partition are counted.

Basic Common Counting assumes that memory is unlimited and therefore the
candidate hash-trees for all queries can completely fit in memory. If, however, the
memory is limited, Common Counting execution must be divided into multiple
phases, so that in each phase only a subset of queries is processed. In general, many
assignments of queries to phases are possible, differing in the reduction of I/O costs.
The task of assigning queries to phases in a way minimizing the overall I/O cost is
called query scheduling.

Since the sizes of candidate hash-trees change between Apriori iterations, the
scheduling has to be performed at the beginning of every Apriori iteration. A
scheduling algorithm requires that sizes of candidate hash-trees are known in
advance. Therefore, in each iteration of Common Counting, we first generate all the
candidate hash-trees, measure their sizes, save them to disk, schedule the data mining
queries, and then load the hash-trees from disk when they are needed. The exhaustive
search for an optimal assignment of queries to Common Counting phases is
inapplicable for large batches of queries due to the size of the search space (expressed
by a Bell number). Therefore, several scheduling heuristics have been proposed.

4 Frequent Itemset Query Scheduling by Hypergraph Partitioning

4.1 Data Sharing Hypergraph

A set of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} can be modeled as a
weighted hypergraph whose vertices represent queries and hyperedges represent
elementary data selection predicates. A hyperedge in the hypergraph corresponds to a
database partition and connects the queries whose source datasets share that partition.

Formally, a data sharing hypergraph for the set of data mining queries DMQ =
{dmq1, dmq2, ..., dmqn} and its corresponding set of elementary data selection
predicates S={s1, s2 ,..., sk} is a hypergraph DSG=(V,E), where V=DMQ, E=S, and a
vertex dmqi∈DMQ is incident with an hyperedge sj∈S iff σsjR ⊆σΣiR. Each vertex
dmqi has an associated weight w(dmqi) representing the amount of memory consumed
by data structures of the query dmqi. Each hyperedge sj has an associated weight w(sj)
representing the size of the database partition returned by the elementary data
selection predicate sj.

Note that the above definition of a data sharing hypergraph allows hyperedges
incident with only one vertex in order to represent database partitions read by only
one query.

 A Greedy Approach to Concurrent Processing of Frequent Itemset Queries 295

Example. Given three frequent itemset queries operating on the relation R1 = (a1, a2):
dmq1=(R1, “a2”, “5<a1<20”, ∅, 3%), dmq2=(R1, “a2”, “10<a1<30”, ∅, 5%),
dmq3=(R1, “a2”, “15<a1<40”, ∅, 4%). The set of elementary data selection predicates
for the set of frequent itemset queries DMQ={dmq1, dmq2, dmq3} is S={“5<a1<10”,
“10<a1<15”, “15<a1<20”, “20<a1<30”, “30<a1<40”}. The data sharing hypergraph
for DMQ is shown in Fig. 1.

dmq1

dmq2

dmq3

5<a1<10

10<a1<15 20<a1<30

30<a1<40

Data selection
predicate hyperedge

Frequent
itemset query
vertex

15<a1<20

Fig. 1. Example data sharing hypergraph

4.2 Hypergraph Partitioning Problem Formulation

The goal of query scheduling for Common Counting is assigning queries to phases
fitting into main memory in a way minimizing the overall I/O cost. Each of the phases
returned by the scheduling algorithm is a set of frequent itemset queries for which a
data sharing hypergraph can be constructed. Thus, query scheduling for Common
Counting can be interpreted as a particular case of hypergraph partitioning.

After partitioning, elementary data selection predicates corresponding to database
partitions shared by queries that have been assigned to different phases will be
represented as hyperedges in more then one resulting hypergraph. In other words, a
hyperedge that is cut by the partitioning will be partitioned into a number of
hyperedges connecting subsets of vertices previously connected by the original
hyperedge. One of the possible partitionings of the data sharing hypergraph from Fig.
1, representing scheduling into two phases is shown in Fig. 2. Hyperedges that have
been cut (partitioned) are presented in bold.

dmq1
dmq3

5<a1<10

10<a1<15

15<a1<20
15<a1<20

20<a1<30

30<a1<40

20<a1<30 dmq2

Fig. 2. Example partitioning of the data sharing hypergraph from Fig. 1

In terms of hypergraph partitioning, the goal of query scheduling for Common
Counting can be stated as follows:

296 P. Boinski, M. Wojciechowski, and M. Zakrzewicz

Problem Statement. Given a data sharing hypergraph for the set of frequent itemsets
queries DSG = (V,E) and the amount of available main memory MEMSIZE, the goal
is to partition the vertices of the hypergraph into k disjoint subsets V1, V2, …, Vk, and
their corresponding data sharing hypergraphs DSG1 = (V1,E1), DSG2 = (V2,E2), …,
DSGk = (Vk,Ek) such that

∈=
≤∀

xi Vdmq
i

kx
MEMSIZEdmqw)(

..1

minimizing

= ∈kx Es
j

xj

sw
..1

)(.

In the above formulation, the partitioning constraint has the form of an upper bound
on the sum of weights of vertices in each partition, reflecting the amount of available
memory, while the partitioning objective is to minimize the total sum of weights of
hyperedges across all the partitions, representing the overall I/O cost of the Common
Counting iteration. It should be noted that the number of resulting partitions (i.e.
Common Counting phases) is not known a priori, and there is no lower bound on the
sum of weights of vertices in each partition. Informally, the latter means that we do
not require that the resulting partitions are of similar sizes.

According to the classification from [12], the partitioning objective in our problem
formulation is equivalent to minimizing the k-1 metric, where the goal is to minimize
the size of the hyperedge cut to which each cut hyperedge contributes k-1 times its
weight.

Our hypergraph partitioning problem is NP-hard since if we consider only
hypergraphs with hyperedges connecting exactly two vertices, its decision version
will restrict itself to the classic graph partitioning problem formulation from [8]
(proof of NP-completeness by restriction). Taking that into account, for large number
of vertices (frequent itemset queries) heuristic approaches have to be applied to solve
the problem, resulting in possibly suboptimal solutions.

5 Greedy Approach to Query Scheduling

We propose to solve the hypergraph partitioning problem representing query schedul-
ing for Common Counting by starting with each query in a separate partition and then
iteratively merging pairs of partitions, greedily choosing the two partitions whose
merging results in greater improvement of the partitioning objective and at the same
time does not violate the partitioning constraint. This leads to the CCGreedy
algorithm presented in Fig. 3. To represent the gain in the partitioning objective for all
pairs of partitions the algorithm maintains a gain graph GG=(V, E), which is a fully
connected graph whose nodes represent partitions and each edge weight represents the
gain thanks to merging a pair of partitions connected by the edge. The gain is
computed as the difference between the values of partitioning objectives after and
before merging a given pair of queries. Limited by space we omit the formal
description of initial gain graph generation.

 A Greedy Approach to Concurrent Processing of Frequent Itemset Queries 297

CCGreedy(GG=(V,E)):
begin

while (true) begin
 sort E in desc. order with respect to ei.gain, ignore edges with zero gains
 newPartition = ∅
 for each ei = {vx, vy} in E do
 if (treesize(ei) ≤ MEMSIZE) then
 newPartition = vx ∪ vy
 V = V \ {vx, vy}; V = V ∪ {newPartition}; E = E \ ei
 for each v in V do begin
 newEdge = {v, newPartition}, compute newEdge.gain
 E = E ∪ {newEdge}
 end
 break
 end if
 end
 if newPartition = ∅ then break end if
end
return V

end

Fig. 3. CCGreedy algorithm

An obvious problem with greedy algorithms like CCGreedy is that the locally optimal
choice in each operation may not lead to the globally optimal solution. To increase the
chances of finding the optimal partitioning we modify CCGreedy by applying a semi-
greedy strategy to it. The result is the CCSemiGreedy algorithm depicted in Fig.4.

CCSemiGreedy(GG=(V,E), RCLLen):
begin
 while (true) begin
 sort E in desc. order wrt. ei.gain,
 ignore edges with zero gains
 newPartition = ∅
 RCL = genRCL(GG, RCLLen)
 if length(RCL) = 0 then break end if
 randomly choose ei = {vx, vy} from RCL
 newPartition = vx ∪ vy
 V = V \ {vx, vy}; V = V ∪ {newPartition}; E = E \ ei
 for each v in V do begin
 newEdge = {v, newPartition}
 compute newEdge.gain
 E = E ∪ {newEdge}
 end
 end
 return V
end

function genRCL(GG=(V,E), RCLLen):
begin
 RCL = nil
 for each ei = {vx, vy} in E do
 if (treesize(ei) ≤ MEMSIZE) then
 RCL = append(RCL, ei)
 if length(RCL) = RCLLen then
 break
 end if
 end if
 end
 return RCL
end

Fig. 4. CCSemiGreedy algorithm

298 P. Boinski, M. Wojciechowski, and M. Zakrzewicz

CCSemiGreedy differs from CCGreedy in the step of choosing the partitions to
merge. CCSemiGreedy uses restricted candidate list (RCL) which is returned by the
function genRCL. This procedure iterates over the gain graph and checks if hash trees
of all the queries from a given pair of partitions fit together in memory. If this
condition is satisfied, the current edge is added to the RCL. Generation of the RCL is
stopped when the list reaches the length of RCLLen (set by a user). In CCSemiGreedy
we check the length of the RCL. If it is zero, there is no possible merge, otherwise an
edge (for partition merging) is chosen randomly from the RCL. Other steps of the
CCSemiGreedy algorithm are the same as those described for CCGreedy algorithm.

In practice, CCSemiGreedy should be applied to query scheduling in the following
way: Firstly, an initial schedule should be generated with CCGreedy. Then,
CCSemiGreedy should be executed a user-defined number of times. In the end, the
best of the generated schedules should be used for Common Counting.

6 Experimental Evaluation

We implemented our algorithms in C# and conducted experiments on a PC with Intel
Pentium IV 2.53GHz processor and 512MB of RAM, running Windows XP.

In the first series of experiments, we performed simulations to determine influence
of CCSemiGreedy parameters (RCL length and number of attempts) on its
effectiveness. We simulated batches of data mining queries by randomly generating
the database predicate and size of the candidate tree for each query. Size of available
memory was randomly generated in such way that at least every single query could fit
into memory. Series of simulations consisted of 500 iterations to get average values
and were applied to batches of queries ranging from 3 to 50 queries per batch.

Figure 5 presents the influence of chosen RCL length on the number of disk blocks
read by CCSemiGreedy. The experiments indicate that the length of the RCL should
be very small but greater than 2 items. Best results were obtained for 3 to 6 items. For
further experiments we have chosen the length of RCL equal to 3.

2200

2250

2300

2350

2400

2450

2500

2550

0 5 10 15 20 25 30 35 40 45

RCL length

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad

CCSemiGreedy attempts=50

Fig. 5. Influence of the RCL length on the overall accuracy of CCSemiGreedy

Figure 6 presents influence of the second parameter of CCSemiGreedy, which is the
number of attempts to generate schedule. It is obvious that more attempts generally
will result in better schedules but at the expense of increasing the scheduling time.

 A Greedy Approach to Concurrent Processing of Frequent Itemset Queries 299

Results indicate that after more than fifty attempts there is no significant improvement
in the quality of the schedule.

2260

2280

2300

2320

2340

2360

2380

0 50 100 150 200

Attempts

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad CCSemiGreedy RCLLen=3

Fig. 6. Influence of the number of attempts on the overall accuracy of CCSemiGreedy

In the second series of experiments we compared CCGreedy and CCSemiGreedy
scheduling algorithms with previously proposed CCAgglomerative and
CCAgglomerativeNoise in terms of effectiveness (quality of generated schedules) and
efficiency (scheduling times). These experiments were performed on a synthetic
dataset generated with GEN [2]. The dataset had the following characteristics:
number of transactions = 500000, average number of items in a transaction = 4,
number of different items = 10000, number of patterns = 1000. The data resided in a
local PostgreSQL database. We randomly generated batches of 5 to 30 queries,
operating on subsets of the test database.

0,89

0,91

0,93

0,95

0,97

0,99

1,01

0 5 10 15 20 25 30 35
Number of queries

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad

 (
re

la
ti

ve
)

CCAgglomerative
CCGreedy

CCAgglomerativeNoise attempts=150 noise=3
CCSemiGreedy attempts=50 RCLLen=3

Fig. 7. Amounts of data read by different schedules

Figure 7 presents how the accuracy of the scheduling algorithms changes with the
number of queries. To improve readability of the chart, we present relative amount of
data blocks read by schedules generated by CCGreedy, CCSemiGreedy and
CCAgglomerativeNoise wrt. CCAgglomerative. CCAgglomerativeNoise iteratively
tries to improve the schedule generated by CCAgglomerative in a similar way as

300 P. Boinski, M. Wojciechowski, and M. Zakrzewicz

CCSemiGreedy extends CCGreedy. We used the optimal value (3%) of the noise
parameter of CCAgglomerativeNoise, determined in similar simulations to those
carried for CCSemiGreedy. The number of attempts (150) for CCAgglomerativeNoise
was chosen in such way that both CCSemiGreedy and CCAgglomerativeNoise
algorithms had equal time to generate the schedule.

Experiments were performed for three values of the main memory limit (90, 120
and 150kB) and for four levels of the average overlapping of datasets read by queries
in the set (20%, 40%, 60%, 80%). Due to limited space we present results that are
averages taken over all the conducted experiments. Results show that the most
effective schedules are generated by CCSemiGreedy and are about 5% better than
those generated by CCAgglomerative. For CCAgglomerativeNoise and CCGreedy the
measured improvement over CCAgglomerative was 2% and 1% respectively.

0,001

0,01

0,1

1

10

100

1000

10000

0 5 10 15 20 25 30 35
Number of queries

S
ch

ed
u

le
 t

im
e

[m
s]

CCAgglomerative
CCGreedy

CCAgglomerativeNoise attempts=50 noise=3
CCSemiGreedy attempts=50 RCLLen=3

Fig. 8. Scheduling times (logarithmic scale)

Figure 8 presents scheduling times for the considered algorithms. This time for
CCSemiGreedy and CCAgglomerativeNoise numbers of attempts were fixed at the
same level (50). Execution times of CCAgglomerative and CCGreedy are negligible,
with CCGreedy requiring at most twice as much time as CCAgglomerative. Execution
times of CCSemiGreedy are up to three times longer than those of CCAgglomerative
Noise and the gap increases with the number of queries.

The results of our experiments show that CCGreedy is more effective than
CCAgglomerative, and properly parameterized CCSemiGreedy generates better
schedules than CCAgglomerativeNoise, which makes it the best scheduling algorithm
for Common Counting. The execution times of the new algorithms are longer but in
typical situations the increase in scheduling time will be dominated by the reduction
of the time spent on disk operations thanks to better schedules.

7 Summary

In this paper we considered the problem of concurrent execution of frequent itemset
queries. We introduced two new heuristic query scheduling algorithms for the
Common Counting method: CCGreedy and CCSemiGreedy. Our experiments show

 A Greedy Approach to Concurrent Processing of Frequent Itemset Queries 301

that the new algorithms offer a significant improvement in accuracy over the existing
solutions while providing acceptable scheduling times.

CCGreedy and CCSemiGreedy assume that the set of data mining queries to execute
is static. However, in a real system, new queries may arrive while the other queries are
being executed. In the future we plan to extend our approach to allow for dynamic
scheduling of arriving queries.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd KDD Conference (1996)

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

4. Alpert C.J., Kahng A.B.: Recent Directions in Netlist Partitioning: A Survey. Integration:
The VLSI Journal 19 (1995)

5. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st
DaWaK Conference (1999)

6. Boinski P., Jozwiak K., Wojciechowski M., Zakrzewicz M.: Improving Quality of
Agglomerative Scheduling in Concurrent Processing of Frequent Itemset Queries. Proc. of
the International IIS: IIPWM'06 Conference (2006)

7. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules
in Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

8. Garey M.R., Johnson D.S.: Computers and Intractability. A Guide to the Theory of NP-
Completeness. WH Freeman and Company (1979)

9. Hart J.P., Shogan A.W.: Semi-greedy Heuristics: An Empirical Study. Operations
Research Letters, Vol. 6 (1987)

10. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

11. Jeudy B., Boulicaut J-F.: Using Condensed Representations for Interactive Association
Rule Mining. Proceedings of the 6th PKDD Conference (2002)

12. Karypis G.: Multilevel Hypergraph Partitioning. In: Cong J., Shinnerl J. (eds.): Multilevel
Optimization Methods for VLSI, Kluwer Academic Publishers (2002)

13. Karypis G., Han E., Kumar V.: Chameleon: A Hierarchical Clustering Algorithm Using
Dynamic Modeling. IEEE Computer, Vol. 32, No. 8 (1999)

14. Meo R.: Optimization of a Language for Data Mining. Proc. of the ACM Symposium on
Applied Computing - Data Mining Track (2003)

15. Morzy M., Wojciechowski M., Zakrzewicz M.: Optimizing a Sequence of Frequent
Pattern Queries. Proc. of the 7th DaWaK Conference (2005)

16. Sellis T.: Multiple Query Optimization. ACM Transactions on Database Systems, Vol. 13,
No. 1 (1988)

17. Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for
Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)

18. Wojciechowski M., Zakrzewicz M.: Evaluation of the Mine Merge Method for Data
Mining Query Processing. Proc. of the 8th ADBIS Conference (2004)

19. Wojciechowski M., Zakrzewicz M.: On Multiple Query Optimization in Data Mining. Proc.
of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (2005)

Two New Techniques for Hiding Sensitive
Itemsets and Their Empirical Evaluation

Ahmed HajYasien and Vladimir Estivill-Castro

Faculty of Engineering and Information Technology, Griffith University

Abstract. Many privacy preserving data mining algorithms attempt to
selectively hide what database owners consider as sensitive. Specifically,
in the association-rules domain, many of these algorithms are based on
item-restriction methods; that is, removing items from some transactions
in order to hide sensitive frequent itemsets.

The infancy of this area has not produced clear methods neither eval-
uated those few available. However, determining what is most effective
in protecting sensitive itemsets while not hiding non-sensitive ones as a
side effect remains a crucial research issue. This paper introduces two
new techniques that deal with scenarios where many itemsets of dif-
ferent sizes are sensitive. We empirically evaluate our two sanitization
techniques and compare their efficiency as well as which has the mini-
mum effect on the non-sensitive frequent itemsets.

Keywords: Privacy preserving data mining, association rules, sanitizing
algorithms, data sanitization, sensitive itemsets.

1 Introduction

In the context of data mining and in particular association rules, the process of
hiding sensitive patterns is called data sanitization [4]. Data sanitization is de-
fined as the process of making sensitive information in non-production databases
safe for wider visibility [8]. The problem of sanitizing the knowledge in order to
protect privacy of individuals or parties during a mining process is called Privacy
Preserving Data Mining (PPDM) [6]. Privacy preserving data mining allows in-
dividuals or parties to collectively discover knowledge without disclosing what
is considered private. Privacy preserving data mining can be attempted at three
levels (see Fig. 1). The first level is either raw data or databases where trans-
actions reside. The second level is data mining algorithms and techniques. The
third level is at the output of different data mining algorithms and techniques.
This paper works on Level 1; that is, sanitizing the database in order
to hide a set of sensitive itemsets specified by the database owners.
Typically this process has followed the path of processing a database to produce
another one so that sensitive itemsets are now hidden. Selecting the right tech-
nique to hide sensitive itemsets is important for an effective data sanitization
process. Hiding an item or itemset means reducing its support below a privacy
support threshold provided by the user. We use the word “attack” to indicate

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 302–311, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Two New Techniques for Hiding Sensitive Itemsets 303

that we modify the records about an item or itemset. This attack aims at re-
ducing the support of the item in order to hide it. In this paper, we introduce a
comparison between two techniques that hide sensitive itemsets.

Fig. 1. We can attempt privacy preserving data mining at three major levels. However,
others [14] have suggested a taxonomy of sanitizing algorithms.

2 Background

The task of mining association rules over market basket data [2] is considered
a core knowledge discovery activity. Association rule mining provides a use-
ful mechanism for discovering correlations among items belonging to customer
transactions in a market basket database. Let D be the database of transactions
and J = {J1, ..., Jn} be the set of items. A transaction T includes one or more
items in J (i.e., T ⊆ J). An association rule has the form X → Y , where X and
Y are non-empty sets of items (i.e. X ⊆ J , Y ⊆ J) such that X ∩ Y = ∅. A
set of items is called an itemset, while X is called the antecedent. The support
sprtD(x) of an item (or itemset) x is the percentage of transactions from D in
which that item or itemset occurs in the database. In other words, the support s
of an association rule X → Y is the percentage of transactions T in a database
where X ∪ Y ⊆ T . The confidence or strength c for an association rule X → Y
is the ratio of the number of transactions that contain X ∪ Y to the number of
transactions that contain X. An itemset X ⊆ J is frequent if at least a fraction
s of the transaction in a database contains X. Frequent itemsets are important
because they are the building blocks to obtain association rules with a given
confidence and support. Typically, algorithms to find frequent itemsets use the
anti-monotonicity property, and therefore, find first all frequent itemset of size
k before proceeding to find all itemsets of size k + 1. We will refer to the set of
all frequent itemsets of size k as depth k.

We assume a context where parties are interested in releasing some data but
they also aim to keeping some patterns private. We identify patterns with fre-
quent itemsets. Patterns represent different forms of correlation between items in
a database. Sensitive itemsets are all the itemsets that are not to be disclosed to
others. While no sensitive itemset is to become public, the non-sensitive itemsets

304 A. HajYasien and V. Estivill-Castro

are to be released. One could keep all itemsets private, but this would not share
any knowledge. The aim is to release as many non-sensitive itemsets as possi-
ble while keeping sensitive itemsets private. This is an effort to balance privacy
with knowledge discovery. It seems that discovery of itemsets is in conflict with
hiding sensitive data. Sanitizing algorithms that work at Level 1 take (as input)
a database D and modify it to produce (as output) a database D′ where mining
for rules will not show sensitive itemsets. The alternative scenario at Level 3 is
to remove the sensitive itemsets from the set of frequent itemsets and publish
the rest. This scenario implies that a database D does not need to be pub-
lished. However, this prevents data miners to apply other discovery algorithms
of learning models to data, and therefore, reduces the options for knowledge
discovery. Pattern-sharing algorithms are Level 3 algorithms and are also called
rule restriction-based algorithms [14]. Here, parties usually share a set of rules
after removing the sensitive rules. Thus, parties avoid sharing data and it is been
argued that this approach reduces the hazards of concluding any sensitive rules
or discovering private data. However, they are typically over-protected. They
correspond to the approach in statistical databases where data is released from
a data generator based on learned model. While the learned model is based on
the original data, users of the generated data can only learn the generator model
and therefore may miss many patterns in the data.

Thus, this paper considers sanitizing algorithms. Oliveira et al. [14] refer to
existing sanitizing algorithms mostly as data-sharing techniques Data-sharing
techniques correspond to Level 1 in our taxonomy and has been addressed in
the literature [4,7,12,13,15]. The data-sharing techniques have been divided into
three categories (see Fig. 1). First, (item restriction)-based algorithms reduce
either the support or confidence to a safe zone (below a given privacy support
threshold) by deleting transactions or items from a database to hide sensitive
rules that can be derived from that database. Second, (item addition)-based al-
gorithms add imaginary items to the existing transactions. Usually the addition
is performed in the antecedent part of the rule. As a result, the confidence of
such a rule is reduced and enters the safe zone. The problem with this approach
is that the addition of new items will create new rules and parties could share
untrue knowledge (sets of items that are not frequent itemsets appear as such).
Third, (item obfuscation)-based algorithms replace some items with a question
mark in some transactions to avoid the exposure of sensitive rules. Unlike the
(item addition)-based, with (item obfuscation)-based, no false rules are passed
to any party. Our algorithms here are (item restriction)-based, since again, these
minimise the risk of discovery knowledge that it is not valid.

3 Statement of the Problem

Let J be a finite set of items, D ⊆ 2J a set of transactions. Consider a fixed
support, and let F be the set of frequent itemsets in D, B ⊆ F a set of sensitive
itemsets, A = F \ B a set of non-sensitive itemsets, and t ≥ 0 an integer to
represent the privacy support threshold.

Two New Techniques for Hiding Sensitive Itemsets 305

Let X be the set of items that form the itemsets in B, and Y be the set of
items that form the itemsets in A. Note that while A ∩ B = ∅, usually X ∩ Y
is not empty. Typically we would like to attack items in X since these would
reduce the support of itemsets in B while we would like to preserve the support
of items in Y . We assume that we have a well posed problem in that we assume
no element of A is a subset of an element of B and vice versa, and that for all
a ∈ A or b ∈ B, σD(a) ≥ t and σD(b) ≥ t respectively (where σD(a), σD(b) are
the support of a and b respectively in D).

Formally, the problem receives as input D,B,A, and t. The task is to lower
the support of the itemsets in B below t and keep the impact on the non-
sensitive itemsets A = F \ B at a minimum. This problem has been proven to
be NP-hard [4,9]. Even though, an heuristic algorithm has been proposed [4],
such algorithm works only in the case ‖B‖ = 1. That is, only one itemset can be
hidden. While the algorithm can be applied to the case ‖B‖ > 1 by repeating the
algorithm on each b ∈ B, no details are provided on how to select and iterate over
the itemsets in B. Even when B = {b}, some ambiguity exists in the description
for what item in b to attack.

4 Our New Two Heuristics

Our two new heuristics focus on building an itemset g so that attacking items
in g would affect the support of sensitive itemsets. We first describe the process
of attacking items from g ⊂ J . Note that g is not necessarily sensitive itself;
that is, we do not require g ∈ B. In fact, it may be that g is not even frequent.
We describe two ways of selecting transactions to attack, these will be called
methods. We also describe two ways of building the set g, and we refer to these
as techniques. We present the methods first.

4.1 The Methods

The methods presented here determine what item and what transaction to at-
tack given an itemset g ⊂ J . The two methods hide one sensitive itemset re-
lated to itemset g. How sensitive itemsets are related to g will become clear in
the next subsection. Suffice it to say, for now that g will contain items that
have high support in sensitive itemsets (and hopefully low support in non-
sensitive itemsets). In both methods, we attack an item x ∈ g until one item-
set b ∈ B becomes hidden. Then, a new itemset g is selected. We perform
the attack on sensitive itemsets by attacking the item x ∈ g with the high-
est support. We determine the list of transactions Lg ⊆ D that support g (i.e.
Lg = {T ∈ D|g ⊂ T}. We remove the item x from the transactions T ∈ Lg

until the support of some b ∈ B is below the required privacy support thresh-
old. The difference between our two methods is that the transactions T ∈ Lg

are sorted in two different orders. Thus, which transactions are attacked and
which ones are left untouched, even though they include x is different for the
two methods.

306 A. HajYasien and V. Estivill-Castro

Method 1 sorts the transactions T ∈ Lg in ascending order based on ‖T \ g‖
(the number of items in T not in g). Notice that ‖T \g‖ can be zero. The guiding
principle is that if ‖T \ g‖ is small, then removing x from T would impact the
support of sensitive itemsets but rarely the support of other itemsets, thus non-
sensitive itemsets will remain mostly untouched. Method 2 sorts the transactions
T ∈ Lg in ascending order based on ‖(Y ∩ T) \ g‖ (recall that Y is all items in
A and A is all the non-sensitive frequent itemsets). Again, ‖(Y ∩ T) \ g‖ can be
zero. The second method makes even a stronger effort to make sure that those
transactions that are attacked have very few items involved in non-sensitive
itemsets.

4.2 How to Select the Itemset g — The Techniques

We present here the techniques to prioritize the order in which itemsets b ∈ B
are attacked so that their support is below t. The techniques build the itemset
g used by the methods described before.

Technique 1 (Item Count)

1. First sort the items in X based on how many itemsets in B contain the item.
Recall that X ⊂ J is all items in the sensitive itemsets. Thus, this sorts the
items in X is according to

Item Count(x) =
∑
b∈B

‖{x} ∩ b‖.

Let x0 ∈ X be the item with the highest count. If we have more than one
item with the same Item Count(x) value, we select the item with the highest
support. If the tie persists, we select arbitrarily. Then,

g =
⋃

b∈B and x0∈b

b.

That is, g is the union of sensitive itemsets that include the item x0.
2. If the construction of g results in hiding a sensitive itemset (either using

Method 1 or Method 2), then the hidden itemset is removed from B.
(a) If B is empty, then the technique stops.
(b) Otherwise the technique is applied again, building a new g from the very

beginning.
3. If the construction of g does not result in hiding a sensitive itemset, we

find x ∈ g with lowest support, and replace g with g \ {x}. We then re-
apply Method 1 or Method 2 again (whichever of the two methods has been
selected).

An illustrative example using Method 1: Suppose B = {(v1v2v4), (v2v4),
(v1v5), (v2v3v4)}. To hide these itemsets based on the item count technique,
first we need to sort the items based on their number of sensitive itemsets they
participate in (refer to Table 1(a)). The next step is to attack v4 in the transac-
tions where v4 appears with v1, v2 and v3. This is because v4 is involved in the

Two New Techniques for Hiding Sensitive Itemsets 307

largest number of sensitive itemsets (3) and the union of all sensitive itemsets
that contain v4 results in g = {v1, v2, v3}. Once we have this g, we find that the
item with highest support in g is again v4. If attacking v4 was not enough to
hide any itemset in B, then we attack v4 in the transactions where v4 appears
with v1 and v2. We exclude v3 to create a new g because it is the item with the
lowest support that appears with v4 in B. Again, if that attack was insufficient
to hide any itemset in B, we keep excluding the next item with the lowest sup-
port. The attack on v4 persists until at least one itemset in B is hidden (note
that this must eventually happen). Then, we remove this itemset from B and
repeat the process until all itemsets in B are hidden. Because in this example we
are using the item count technique with Method 1, these transactions should be
sorted based on the number of items that appear in each transaction excluding
v1, v2, v3 and v4. Transaction with nothing extra besides v1, v2, v3 and v4 will be
attacked first.

Table 1. Examples for the two techniques

(a) The first step in item count
is to sort items.

item # of occurrence support

v4 3 56%
v2 3 48%
v1 2 28%
v3 1 17%
v5 1 11%

(b) Increasing cardinality:
itemsets sorted by support.

itemset cardinality support

v2v4 15%
v1v5 10%

v2v3v4 6%
v1v2v4 5%

Technique 2 (Increasing Cardinality): The technique first sorts the itemsets
in B based on their cardinality. Starting from the smallest cardinality, the tech-
nique selects an itemset g that in this case is an itemset b ∈ B. The technique
can then have a Method 1 variant or a Method 2 variant. If we have more than
one itemset of the same cardinality, we attack the itemset with the highest sup-
port. This technique also iterates until all sensitive itemsets are hidden. Every
time an itemset b is hidden, a new g is calculated. Note that because g ∈ B, the
entire application of Method 1 or Method 2, must result in g being hidden, and
therefore a sensitive itemset is hidden.

An illustrative example using Method 2: Suppose Y = {v1, v2, v3, v4, v5,
v6, v7}, B = {(v1v2v4), (v2v4), (v1v5), (v2v3v4)}. To hide these itemsets based on
the increasing cardinality technique, first we need to sort the itemsets in B based
on their itemset cardinality (refer to Table 1(b)). Then, we start by attacking
the itemsets in the smallest cardinality (that is cardinality 2 in this example).
We let g be the itemset with highest support. As both Method 1 and Method 2
attack the item with highest support in g, and let us say that v2 has the highest
support, then based on Method 2, v2 will be attacked in the transactions where
v2 appear with v4. These transactions should be sorted based on those who have
fewest number of items in Y excluding items in g (that is, excluding v2 and v4).

308 A. HajYasien and V. Estivill-Castro

4.3 Data Structures and Algorithms

There are famous algorithms used to mine data and produce the frequent item-
sets like the Apriori algorithm [3] or the FP-tree growth algorithm [11]. The
sanitization of the database departs from results of a frequent itemset calcula-
tion; thus, we do not include in the cost of sanitization the first computation of
frequent itemsets. However, a naive implementation of our methods and tech-
niques would require that we recalculate the support of itemsets in A and B
after each itemset in B is hidden. This would be very expensive. From the min-
ing of the database for the first time, we have the support of each frequent
itemset. We store this in a dictionary abstract data type SUPPORT , where
we use the frequent itemset as the key, and the support as the information.
We chose a hash table as the concrete data structure, to efficiently retrieve and
update SUPPORT (b). We also build an additional data structure by extract-
ing all transactions that support each of the frequent itemsets in A and B. For
each frequent itemset, we have a list of IDs for transaction (those transactions
that support the itemset). Note that the attack of an item on a transaction cor-
responds to removing the item of the transaction. It is easy to identify which
frequent itemsets b see their support reduced by one. The dictionary informa-
tion SUPPOSRT (b) is updated as SUPPORT (b) ← SUPPOT (b) − 1. What
is costly in the methods is the sorting of Lg. Note that the criteria by which
the sorting is performed changes every cycle when we hide a sensitive itemset.
For Technique 2, the computational cost is small. In this technique, we sort the
frequent itemsets in B once and only once, and the criteria is their cardinality.
And we always remove the itemset at the front of the list. This technique is very
efficient. Technique 1 is more sophisticated, and those, more CPU intensive. In
fact, because it creates an itemset g that may not be sensitive, we may require
a pass through the original database to construct Lg.

5 Experimental Results and Comparison

Experiments on both techniques were carried out based on the first 20, 000
transactions from the “Frequent Itemset Mining Dataset Repository” (retail.gz
dataset) [1]. The dataset was donated by Tom Brijs and includes sales trans-
actions acquired from a fully-automated convenience store over a period of 5.5
months in 1998 [5]. We used the “A-priori algorithm” [10] to obtain the frequent
itemsets. We performed the experiments with three different privacy support
thresholds (σ = 5%, σ = 4%, and σ = 3%).

For each technique, we ran the experiment 10 times for each privacy support
threshold with different random selection of size-2 and size-3 itemsets among the
frequent itemsets (in this way we are sure we are not selecting favorable instances
to any of the two techniques). We ran the experiments once selecting randomly
3 itemsets and once selecting randomly 5 itemsets. Our results are presented
in Fig 2, Fig. 3, Fig. 4, and Fig. 5. It is clear that in terms of minimizing the
impact on non-sensitive itemsets, item count is superior to the technique based
on increasing cardinality. While item count has more CPU requirements, and

Two New Techniques for Hiding Sensitive Itemsets 309

Fig. 2. Item count vs. increasing cardinality, hiding 3 itemsets using method 1

Fig. 3. Item count vs. increasing cardinality, hiding 3 itemsets using method 2

Fig. 4. Item count vs. increasing cardinality, hiding 5 itemsets using method 1

potentially its complexity could imply a new scan of the original database, we
found that this additional scan did not occur in our experiments. Moreover, two
aspects diminish the potential disadvantage of item count as more costly. First,
most of the computational cost is not on the techniques but on the methods
when they sort Lg. Note that they are doing this for all itemsets which hold
the items x0 being attacked. Thus, it is not only one list, but several lists that
are sorted. Therefore, the difference between techniques is really not influen-
tial. Second, if the technique item count were to perform a scan of the database,
this is very seldom, and moreover, as we produce the sanitized database, we scan

310 A. HajYasien and V. Estivill-Castro

Fig. 5. Item count vs. increasing cardinality, hiding 5 itemsets using method 2

the original database. This production of the sanitized database at the conclusion
of both techniques implies that if item count does scan the database once or
twice, this is within a competitive constant factor with the item count technique.

6 Conclusion

As far as the authors of this paper know, in the field of association-rule mining,
there is no existing methodology that discuss the best ways to hide a set of
itemsets using item-restriction methods. We have presented in this paper two
techniques based on item-restriction that hide sensitive itemsets. We also showed
that rather simple new data structures implement these techniques with accept-
able cost since we avoid expensive steps of mining the database several times
during the sanitization process. We implemented the code needed to test both
techniques and conducted the experiments on real data set. Our results show
that both techniques have an effect on the frequent non-sensitive itemsets but,
Technique 1 (item count) has about 25% less effect compared to Technique 2
(increasing cardinality). Also, using Method 2 rather than Method 1 lowers the
effect on the frequent non-sensitive itemsets.

References

1. Frequent itemset mining dataset repository. http://fimi.cs.helsinki.fi/data/.
2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of

items in large databases. In Proc. of the ACM SIGMOD Conference on Manage-
ment of Data, pages 207–216, Washington D.C., USA, May 1993.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Jorge B.
Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc. 20th Int. Conf. Very Large
Data Bases, VLDB, pages 487–499. Morgan Kaufmann, December 1994.

4. M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Disclosure
limitation of sensitive rules. In Proc. of 1999 IEEE Knowledge and Data Engineer-
ing Exchange Workshop (KDEX’99), pages 45–52, Chicago, IL., November 1999.

5. T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using association rules for product
assortment decisions: A case study. In Knowledge Discovery and Data Mining,
pages 254–260, 1999.

Two New Techniques for Hiding Sensitive Itemsets 311

6. C. Clifton, M. Kantarcioglu, and J. Vaidya. Defining privacy for data mining.
In Proc. of the National Science Foundation Workshop on Next Generation Data
Mining, pages 126–133, Baltimore, MD, USA, November 2002.

7. E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E. Bertino. Hiding association
rules by using confidence and support. In Proc. of the 4th Information Hiding
Workshop, pages 369–383, Pittsburg,PA, April 2001.

8. D. Edgar. Data sanitization techniques. White Papers, 2004.
9. A. HajYasien, V. Estivill-castro, and R. Topor. Sanitization of databases for refined

privacy trade-offs. In Proc. of the IEEE International Conference on Intelligence
and Security Informatics (ISI 2006), San Diego, USA, May 2006. Springer LNCS.

10. J. Han and M. Kamber. Data mining:Concepts and Techniques. 2001.
11. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate genera-

tion. In Weidong Chen, Jeffrey Naughton, and Philip A. Bernstein, editors, ACM
SIGMOD Intl. Conference on Management of Data, pages 1–12, Dallas, May 2000.
ACM Press.

12. S. R. M. Oliveira and O. R. Zaiane. Privacy preserving frequent itemset mining. In
Proc. of the IEEE ICDM Workshop on Privacy, Security, and Data Mining, pages
43–54, Maebashi City, Japan, December 2002.

13. S. R. M. Oliveira and O. R. Zaiane. Algorithms for balancing privacy and knowl-
edge discovery in association rule mining. In Proc. of the 7th International Database
Engineering and Applications Symposium, pages 54–63, China, July 2003.

14. S.R.M. Oliveira, O.R. Zaiane, and Y. Saygin. Secure association rule sharing. In
Proc. of the 8th PAKDD Conference, pages 74–85, Sydney, Australia, May 2004.
Springer Verlag Lecture Notes in Artificial Intelligence 3056.

15. Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to prevent discovery of
association rules. SIGMOD Record, 30(4):45–54, December 2001.

EStream: Online Mining of Frequent Sets with
Precise Error Guarantee

Xuan Hong Dang1, Wee-Keong Ng1, and Kok-Leong Ong2

1 School of Computer Engineering, Nanyang Technological University, Singapore
{dang0008, awkng}@ntu.edu.sg

2 School of Engineering & IT, Deakin University, Australia
leong@deakin.edu.au

Abstract. In data stream applications, a good approximation obtained
in a timely manner is often better than the exact answer that’s delayed
beyond the window of opportunity. Of course, the quality of the approx-
imate is as important as its timely delivery. Unfortunately, algorithms
capable of online processing do not conform strictly to a precise error
guarantee. Since online processing is essential and so is the precision of
the error, it is necessary that stream algorithms meet both criteria. Yet,
this is not the case for mining frequent sets in data streams. We present
EStream, a novel algorithm that allows online processing while producing
results strictly within the error bound. Our theoretical and experimental
results show that EStream is a better candidate for finding frequent sets
in data streams, when both constraints need to be satisfied.

1 Introduction

In recent years, we are seeing a new class of applications that changed the tra-
ditional view of databases as a static store of information. These applications
are commonly characterized by the high-speed data streams they generate (or
receive), and the need to analyze them in real-time over limited computing re-
sources [8,2]. Further, stream data can be lost under high speed conditions,
become outdated in the analysis context, or intentionally dropped through tech-
niques like sampling [3] or load shedding [12]. This makes it imperative to design
algorithms that compute the answer in an online fashion with only one scan of
the data stream whilst operating under the resource limitations. Consequently,
this makes it impossible to compute an exact answer for the complex queries
often found in data analysis.

Fortunately, approximate answers are usually sufficient for these applications.
While approximates are desirable in the context of data stream applications,
it is important to remember that the quality of the approximation is equally
important as the timely processing of its query. Consider the case of processing
financial data streams. Clearly, if a large error margin exist in the approximated
answers, there will be serious financial consequences despite delivering the results
within the given timeframe. Therefore, while approximate answers are sufficient,
keeping the accuracy to within some error bound is necessary.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 312–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

EStream: Online Mining of Frequent Sets with Precise Error Guarantee 313

In the existing literature (e.g., [9,11,14]) the quality of the approximate answer
is often governed by an error parameter. Although this defines the allowable
error margin in the approximate answer, we observed that this is only the case
when the algorithms analyze the data stream in batch mode. In other words,
algorithms that are capable of online processing do not conform strictly to a
precise error guarantee. Since online processing is essential to these applications
and so is the precision of the error guarantee, it is essential that algorithms
for data streams meet both criteria. Yet, this is not the case especially on the
discovery of frequent sets in transactional data streams.

The goal of discovering frequent sets is to find the set of a collection of items
(or any objects), whose occurrence count is at least greater than a certain thresh-
old based on a fraction of the stream seen so far. So given a domain of m distinct
items, there are 2m distinct collections (or itemsets) that may appear in the data
stream. Practically, it is impossible to enumerate and count all collections for
each of the incoming transactions in the stream – given limited space and the
need for real-time analysis. Hence, the downward closure property is exploited
by delaying the counting of larger collections until all its subsets are found to be
above the given threshold [5,13,4]. The implication of that is a bigger error mar-
gin on collections of larger sizes. As a result, existing methods cannot guarantee
the same error threshold for frequent sets of different length.

We present EStream, our solution to finding frequent sets along with their
estimated supports and error guarantees. Underpinning the design of EStream
is the ability to give a precise error estimation on the support of frequent sets
based on their length during online processing. Specifically, our proposal ensures
that (i) there is no error in counting 1-itemsets; (ii) for 2-itemsets, the error in
the estimate is no more than ε; and (iii) for itemsets of length k > 2, the error
is no more than 2ε; where ε is the preset error threshold and k is the maximal
length of the frequent set in the stream.

Next in Section 2, we introduce the preliminaries of discovering frequent sets
in the context of data streams. We then present EStream’s data structure and
algorithm together with the error analysis. Section 3 is where we report our
empirical results, and Section 4 will follow with a discussion of related works.
Finally, we conclude our discussion in Section 5.

2 EStream: Data Structure and Algorithm

Let DS = {t1, . . . , tn, . . .} be a transactional data stream, where each transaction
ti contains items (or objects) drawn from I = {ai, . . . , am}. Without lost of
generality, let n be the logical timestamp for each transaction, and thus n is
also the number of transactions seen so far in DS. The frequency of an itemset
X, denoted freq(X), is therefore the occurrence count of X in DS up to the
nth transaction, and the support of X, denoted supp(X), is thus the ratio of
freq(X) to n, i.e., supp(X) = freq(X)× n−1.

We further define that an itemset is frequent at time n if supp(X) is no
less than σ ∈ (0, 1], the minimum support. It is an infrequent pattern if

314 X.H. Dang, W.-K. Ng, and K.-L. Ong

supp(X) � 2ε, where ε ∈ (0, 0.5σ] is the error parameter. Otherwise, it is a
sub-frequent pattern. Collectively, both frequent and sub-frequent patterns are
also called significant patterns. Further, let k > 2 be the maximal length of the
patterns to discover from the stream. Then, the objective of our algorithm is
to find, at any instant, all the frequent patterns up to length k with the error
guarantees mentioned earlier.

2.1 Data Structure

In order to capture potentially frequent patterns, a trie-like data structure
is used. A trie is a tree structure organized using key-space decomposition.
Here, the key range is equally subdivided and the split within the key range
for each node in the trie is predefined. A typical trie is the alphabet trie that
stores a dictionary of words. In EStream, we adopt a variation of the alphabet
trie.

First, let us elaborate that the set of items I = {a1, . . . , am} is ordered such
that any two items ai ∈ I, aj ∈ I (1 � i, j,� m), ai ≺ aj if and only if i < j.
Similarly, we assume that any transaction t ⊆ I has the items ordered in the
same way. We can now define the following.

Definition 1. A TrieIT (a.k.a. Trie Itemset) is a set of tree nodes where each
node w is a 2-tuple (wl, wc) such that wl ∈ I is the node’s label, and wc is
the frequency. Since each node corresponds to an item ai ∈ I, we also use
wi (for brevity) to refer to a node that corresponds to ai ∈ I. Then, the fol-
lowing conditions hold: (1) Let C(wi) be an ordered set of children nodes of
wi. If C(wi) �= ∅, then C(wi) ⊆ {wi+1, wi+2, ..., wm}; (2) For a node wi, let
w�, w�+1, ..., wi−1(1 � � � i− 1) be the set of nodes on the path from the root to
the parent of wi, then wc is the frequency of the itemset {a�, a�+1, ..., ai}.

Each TrieIT Wi corresponds to some ai ∈ I whose root node is also labeled
ai.

Definition 2. A STrieIT (a.k.a. Significant TrieIT) is a set of TrieITs that
maintains the significant itemsets found in the stream. It has a special root node
that references the root node of each TrieIT. Except for the root node, each node
in the STrieIT is a 4-tuple 〈w�, Ccnt,Acnt,Wid 〉, where w� ∈ I is the node
label; Ccnt is the frequency of the itemset {. . . , w�} in the current ‘condow’ 1;
Acnt is its accumulated frequency before the current ‘condow’; and Wid indexes
the ‘condow’ at which the itemset is inserted into the STrieIT.

2.2 Algorithm

We next describe EStream given in Algorithm 1. In addition to the data stream,
the analyst needs to specify three parameters: σ, ε, and k for each analysis. Since
the processing is online, starting and attaching multiple instances of EStream to
the data stream are possible, where each EStream instance will utilize a separate
1 The conceptual window, i.e., condow, will become clearer as we present our EStream

algorithm in the next section.

EStream: Online Mining of Frequent Sets with Precise Error Guarantee 315

STrieIT as its synopsis (denoted S in the algorithm) to maintain the frequent
set candidates based on the given parameters.

EStream processes each transaction on the fly and discards it immediately
from memory after processing. As each transaction arrives, the algorithm in-
serts each frequent set candidate identified from the transaction into S. After
processing Δ transactions, the algorithm scans S to remove those itemsets that
now become infrequent. In the algorithm, Δ is determined by 2k−2× ε−1, which
defines the size of the conceptual window (or condow). Since transactions are
processed one by one, each condow provides a conceptual grouping for the trans-
actions, and a logical time for scanning S.

For each itemset of length � (1 � � � k), we identify a corresponding minimal
frequency threshold. This threshold is used to specify whether a �-itemset can be
generated as a potentially frequent set in the current condow. More specifically,
a �-itemset is inserted into S if the frequencies of all its immediate subsets in
the condow are above this threshold. In the algorithm, the minimum thresholds
of every pattern length is stored in a arr of k elements. Element jth of arr is
determined by arr[j] = Δε

∑j
i=2(1/2i−2) for 2 � j � k; and arr[1] is set to 0

for 1-itemsets since they have no subsets (except for {∅}).
Let us denote the index of the current condow by wcrr = �n/Δ�. Whenever a

new transaction tn arrives, the algorithm processes it as follows.

Increment. If an itemset X appearing in tn is also maintained in S, then
increase Ccnt by 1.

Insert. For every X ⊆ tn not in S, insert X into S with initial values of
〈X, 1, 0, wcrr〉 if X is a singleton 2; otherwise, let Y be any immediate subset
of X, then X is inserted into S if all the following conditions hold:
– All immediate subsets of X are in S;
– �Y such that Acnt(Y) �= 0 and Ccnt(Y) � arr[|X|]; i.e., there are no

Y being inserted into S from previous condows whose frequency in the
current condow is insufficiently significant;

– �Y such that Acnt(Y) = 0 and Ccnt(Y) � (arr[|X|] − arr[|Y |]); i.e.,
there are no Y that has just been inserted into S in the current condow
but after that its frequency is no more than (arr[|X|]− arr[|Y |]).

In cases where X is not inserted into S, all its supersets in tn need not be
further checked.

Prune. This step is invoked each time n ≡ 0 mod Δ and after tn is pro-
cessed. The algorithm prunes S by removing all but 1-itemsets that satisfy
Ccnt(X) + Acnt(X) + X.Wid× arr[|X|] � wcrr × arr[|X|]. Consequently, if
an itemset is removed, all its supersets are also removed. An exception are
those itemsets recently inserted into S in the current condow. These item-
sets are generated after their immediate subsets became sufficiently frequent.
Also in this step, for each remaining itemset X, its accumulated frequency
is updated by Acnt(X) = Acnt(X)+Ccnt(X) and then reset Ccnt(X) = 0.

2 Recall that the immediate subsets of a 1-itemset is {∅} which appears in every
transaction, all 1-itemsets are therefore inserted into S without conditions. For the
same reason, they are also not pruned from S.

316 X.H. Dang, W.-K. Ng, and K.-L. Ong

At any instant upon the request of the analyst, the algorithm scans S to
produce all 1-itemsets satisfying Ccnt(X) + Acnt(X) � σ × n and those �-
itemsets satifying Ccnt(X) + Acnt(X) + X.Wid× arr[|X|] � σ × n.

Algorithm 1. EStream: Finds frequent sets from transactions sighted in DS.
Input

DS : data stream of transactions;
σ ∈ (0, 1] : minimum support threshold;
ε ∈ (0, 0.5σ] : maximum error allowable in σ;
k : the longest frequent patterns to find;

Output
At anytime on demand, all estimated frequent sets seen in the stream.

1: Δ = 2(k−2) × ε−1; wcrr = 1; a[1] = 0;
2: for j = 2; j � k; j + + do arr[j] = Δε

∑j
i=2(1/2i−2)

3: for each tn ∈ DS do
4: for each 1-itemset X ∈ tn do
5: if X ∈ S then Ccnt(X) + + else Insert (X, 1, 0, wcrr) to S;
6: for each itemset X ⊆ tn do
7: if X ∈ S then
8: Ccnt(X) + +
9: else

10: if ((�Y | (Acnt(Y) �= 0) ∧ (Ccnt(Y) � arr[|X|])) and (�Y | (Acnt(Y) =
0) ∧ (Ccnt(Y) � (arr[|X|] − arr[|Y |]) and (∀Y | Y ⊂ X ∧ Y ∈ S) then

11: Insert (X, 1, 0, wcrr) to S
12: end if
13: end if
14: if X cannot be inserted into S then
15: tn = tn − {C ⊆ tn | C is a superset of X}
16: end if
17: end for
18: if i ≡ 0 mod Δ then
19: Scan S to prune all nodes X such that (|X| � 2) ∧ (Ccnt(X) + Acnt(X) �

(wcurr − X.Wid) × arr[|X|]);
20: Acnt(X) = Acnt(X) + Ccnt(X); Ccnt(X) = 0;
21: end if
22: return {X | Ccnt(X) + Acnt(X) + X.Wid × arr[|X|] � σ × n} upon request;
23: end for

Of interest to the reader is that EStream does not rely on the frequencies of all
its subsets seen in the stream to generate a new candidate. Instead, only those
frequencies in the current condow are considered. This can be understood by the
fact that frequencies of itemsets are not uniformly distributed in all parts of the
stream. Further, shorter itemsets often gain higher frequency counts than those
of longer itemsets. Over a longer period of time, they are often have significant
frequencies. Thus, their frequencies will always support the generation of longer
candidates according to the downward closure property.

EStream: Online Mining of Frequent Sets with Precise Error Guarantee 317

Yet, the frequencies of these new itemsets are very close to the threshold used
to eliminate infrequent itemsets. Therefore, they are likely to be deleted again
due to time-variation in many streams. In view of this, EStream records the
variations on the frequency of each itemset X in different parts of the stream
by separating its frequency in the current condow (Ccnt) and the accumulated
one in previous condows (Acnt). This helps identify significant itemsets in the
entire stream seen so far but not in the current condow. As a result, EStream
efficiently reduces the generation of redundant itemsets and thus improve its
performance.

2.3 Error Analysis

For each itemset X, we denote its true frequency by freqT (X) and estimated fre-
quency by freqE(X) = Acnt(X) + Ccnt(X) using the synopsis S. Respectively,
suppT (X) and suppE(X) denote its true and estimated support.

Lemma 1. If an itemset X is deleted in the current condow wcrr, then its true
frequency freqT (X) seen so far in the stream is no more than wcrr × arr[|X|].

Lemma 2. The true frequency of any itemset X in S is with the limits of
freqE(X) � freqT (X) � freqE(X) + arr[|X|]×X.Wid.

Theorem 1. If n is the number of transactions seen so far and X is a 2-itemset,
then suppE(X) � suppT (X) � suppE(X) + ε.

Theorem 2. If n is the number of transactions seen so far and X is a k-itemset,
then suppE(X) � suppT (X) < suppE(X) + 2ε.

Due to space constraints, the proof of the above lemmas and theorems is pre-
sented in [7].

3 Performance Evaluation

We implemented our algorithm in C++ and performed our experiments on a
1.9GHz Pentium machine with 1GB of memory running Windows XP. We uti-
lized the method described in [1] to generate datasets and followed a similar
naming convention for these datasets.

3.1 Scalability Studies

To test scalability, we evaluated our algorithm on a number of datasets with vary-
ing characteristics. For space reasons, we reported two representative datasets
having opposite characteristics (see [7] for discussion of other datasets). In the
first, the transaction has an average of 8 items with frequent sets whose length
averages at 4. This dataset contains 5, 000 distinct items. In the other, the trans-
action has an average of 5 items with frequent sets whose length averages at 3

318 X.H. Dang, W.-K. Ng, and K.-L. Ong

0

15

30

45

60

75

200K 400K 600K 800K 1000K

Length of stream in thousands

A
llo

ca
te

d
 it

em
se

ts
 (

x
10

00
)

Support 0.001 Support 0.002 Support 0.004

Support 0.008 Support 0.01

(a) T5.I3.D1000K

0

50

100

150

200

250

200K 400K 600K 800K 1000K

Length of stream in thousands

A
llo

ca
te

d
 it

em
se

ts
 (

x
10

00
)

Support 0.001 Support 0.002 Support 0.004
Support 0.008 Support 0.01

(b) T8.I4.D1000K

Fig. 1. Memory usage on two representative datasets of opposite characteristics. The
scalability tests on other datasets can be obtained in [7].

but contains 10, 000 distinct items. In both streams, we have 1 million transac-
tions. We measured two parameters that is important for stream applications:
(i) the execution time; and (ii) the memory consumption.

To simulate an online data stream, transactions are processed individually
and discarded immediately. This leaves the available memory for the synopsis
S. Figure 1 shows the memory usage on the two datasets using EStream. The
usage levels indicated in the figure represents the maximum number of itemsets
being generated during processing. This is equivalent to the maximum number
of nodes allocated in S before pruning. We measure the usage levels over a
number of minimum supports, ranging σ from 0.1% to 1% (and ε = 0.1σ) after
200, 000 transactions 3. As expected a drop in the minimum support increases
the memory usage. Nevertheless, the interesting point here is that the memory
usage remains constant at any given support threshold throughout the lifetime of
processing the stream. This happens because EStream is designed to maintain
only potentially frequent sets in S; and by the pruning step, all insignificant
candidates are removed periodically after each condow.

Figure 2 shows the execution times on the two selected datasets. Again, with
the same range of support thresholds, we see that the cumulative execution time
of EStream grows linearly – which indicates the uniform processing time over
each condow; or uniform processing time for each transaction arriving from the
stream. This stable execution time is also important in a data stream environ-
ment where the size of the stream is potentially unbounded.

3.2 Time-Varying Studies

In the previous experiments, we have excluded the time-variation parameter
which has an effect on the memory consumption and execution time. In this
section, we evaluate the impact and show how EStream addresses this issue
effectively in its design.

3 Since Δ is determined by 2k−2×ε−1 and σ is varied from 0.1% to 1% (with ε = 0.1σ),
Δ is thus changed accordingly. Here, we took the measurement at the condow around
this value, which is 200K transactions.

EStream: Online Mining of Frequent Sets with Precise Error Guarantee 319

0

40

80

120

160

200K 400K 600K 800K 1000K

Length of stream in thousands

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Support 0.001

Support 0.002

Support 0.004

Support 0.008

Support 0.01

(a) T5.I3.D1000K

0

150

300

450

600

200K 400K 600K 800K 1000K

Length of stream in thousands

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Support 0.001

Support 0.002

Support 0.004

Support 0.008

Support 0.01

(b) T8.I4.D1000K

Fig. 2. Execution time on two representative datasets

0

250

500

750

1000

1250

1500

 = 0.01 = 0.008 = 0.004 = 0.002 = 0.001

Support threshold

T
im

e
ta

ke
n

 in
 s

ec
o

n
d

s

EStream

EStream(w/o Ccnt)

(a) Execution time

0

150

300

450

600

750

 = 0.01 = 0.008 = 0.004 = 0.002 = 0.001

Support threshold

A
llo

ca
te

d
 it

em
se

ts
 (

x
10

00
)

EStream

EStream(w/o Ccnt)

(b) Memory consumption

Fig. 3. Experiment results on a time-varying data streams

We have mentioned that the data stream distribution may change over time.
In Estream, we separate the counting of itemsets in the current condow from
the previous ones. New itemsets are generated only based on the presence of sig-
nificant subsets in the current condow. Consequently, a large scale of redundant
candidates are reduced. While we have discussed this at the end of Section 2.2,
we confirm the practicality of this approach in the experiments below.

Using T8.I4.D1000K, the effect of time-variation is simulated on the dataset
using the method proposed by Giannella et. al. [9], where an item mapping
table is utilized. Here, 20% of items are randomly chosen for itemset generation
with low frequencies; and periodically after every 50,000 transactions, random
permutations among all items are applied to the table. To test the difference,
we have a variation of EStream that generates candidates using all condows
since starting the algorithm, i.e., relying on Acnt only. We denote this variant
as EStream (w/o Ccnt). With the same range of support thersholds, Figure 3
shows the comparison in terms of execution and memory usage of EStream
and its variant that uses only the cumulative counts, i.e., EStream (w/o Ccnt).
Although a decrease in support threshold causes both to increase their number
of nodes used in S, we see that the memory utilization grows sharply in the
case of EStream (w/o Ccnt). This happens as 1-itemsets are often significant if
considering their frequency in the entire data stream but may not be sufficiently
frequent in some condows due to time-variations.

320 X.H. Dang, W.-K. Ng, and K.-L. Ong

In the case of EStream, a distinction is made through the use of Acnt (which
is the cumulative frequencies of previous condows) and Ccnt (which is the fre-
quencies of the current condow). By distinguishing the frequencies of itemsets in
the current condow, our algorithm is able to detect the presence of such spuri-
ous items and thus avoid unnecessary processing on transactions in which those
items appear. In contrast, EStream (w/o Ccnt) would tend to view them as
frequent which in turn, leads to the generation of longer itemsets causing an
increase in memory and processing demand.

4 Related Work

We can classify the problem of frequency counting into two categories: finding
frequent singletons (e.g., [11,6]), and finding frequent sets (e.g., [5,14]). In the
former category, the solutions have online processing capabilities and precise
error guarantees. However, it is not the case in the later one. The main diffi-
culty stems from the exponential explosion of itemsets, which caused existing
algorithms to approach the constraints in separation.

Hidber [10] proposed the first online processing algorithm called CARMA. In
CARMA, the error on an itemset’s frequency is based on the highest frequency
error among its subsets. This estimation is often too conservative as itemsets are
frequently deleted and inserted throughout the runtime of the algorithm. More
importantly, a loose estimate on smaller itemsets results in a looser estimate in
their supersets. This is why a vast majority (> 95%) of the itemsets generated
in CARMA turns out to be false positives. Chang et al. [5] recently introduced
an extension of CARMA in a forgetful model. In Chang’s extension, the weights
on older transactions are gradually decreased as new ones arrive in the stream.
Despite this non-uniform threshold, the maximum error of a new itemset is
derived by choosing the highest frequency error from its subsets. Consequently,
the error guarantee varies for each pattern.

In contrast, EStream’s strategy is not based on the highest error among sub-
sets. Rather, a set of frequency thresholds are specified in advance for every
itemset of specific lengths. These thresholds are then used to identify the can-
didates within each condow. If an itemset is not generated, its frequency in the
condow is guaranteed to be no more than the corresponding threshold. Since
the thresholds and the condow size are pre-specified, the support of each itemset
is guaranteed within the same error. Work of Manku and Motwani, the Lossy-
Counting [11], is the first attempt to guarantee a precise error on the patterns
it discovers. Our algorithm is similar to theirs by the virtue that both find all
frequent itemsets and guarantees the error on each itemset to be within the
user-specified limits. In order to achieve this however, their work has to pro-
cess transactions in batches and thus, results cannot be produced online due
to buffering. Another work that gives error guarantees on mining results is the
FDPM [14]. Jeffery et. al.’s work divides the stream into buckets, where the
size of each bucket is determined by the Chernoff bound and a user-specified
error. Each bucket is then processed separately and the results are updated into

EStream: Online Mining of Frequent Sets with Precise Error Guarantee 321

a global data structure recording the overall frequent patterns. Like the Lossy-
Counting, FDPM is also a batch-processing algorithm. Furthermore, the lossy
nature of FDPM causes truly frequent patterns to be missed in the final result.
On the other hand, EStream guarantees that all patterns (if truly frequent) will
be discovered while operating in online-processing mode.

5 Conclusions

We argue the need for critical stream applications, e.g., financial analysis, to
both satisfy the online processing requirements and a strict error guarantee in
their estimated results. We demonstrated this using the case of finding frequent
sets on transactional streams in which the algorithms in existence address ei-
ther the problem of online discovery and error guarantees separately. EStream
represents our first effort to address these two constraints simultaneously in
a single solution. As shown through theoretical analysis and empirical results,
EStream accomplishes this goal while capturing the inherent characteristics of
time-variation common in many data streams. We believe this will be an impor-
tant step towards effective data stream applications.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB Conference, pages 487–499, 1994.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In PODS Conference, pages 1–16, 2002.

3. B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over
streaming data. In ACM-SIAM Symposium on Discrete Algorithms, 2002.

4. J.H. Chang and W.S. Lee. Estwin: Adaptively monitoring the recent change of
frequent itemsets over online data streams. In CIKM Conference, 2003.

5. J.H. Chang and W.S. Lee. Finding recent frequent itemsets adaptively over online
data streams. In ACM SIGKDD Conference, pages 487–492, 2003.

6. Graham Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking
most frequent items dynamically. ACM Trans. Database Syst., 30(1):249–278, 2005.

7. X.H. Dang, W.K. Ng, and K.L. Ong. Online mining of frequent patterns with
precise error guarantees. Technical Report, Nanyang Technological University.

8. M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams:
you only get one look a tutorial. In ACM SIGMOD Conference, 2002.

9. C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu. Mining Frequent Patterns in
Data Streams at Multiple Time Granularities. AAAI/MIT, 2003.

10. C. Hidber. Online association rule mining. In SIGMOD Conference, 1999.
11. G.S. Manku and R. Motwani. Approximate frequency counts over data streams.

In VLDB Conference, pages 346–357, 2002.
12. N. Tatbul, U. Çetintemel, S.B. Zdonik, M. Cherniack, and M. Stonebraker. Load

shedding in a data stream manager. In VLDB Conference, pages 309–320, 2003.
13. W.G. Teng, M.S. Chen, and P.S. Yu. A regression-based temporal pattern mining

scheme for data streams. In VLDB Conference, pages 93–104, 2003.
14. J.X. Yu, Z.C., H. Lu, and A. Zhou. False positive or false negative: Mining frequent

itemsets from high speed transactional data streams. In VLDB Conference, 2004.

Granularity Adaptive Density Estimation and on
Demand Clustering of Concept-Drifting Data Streams�

Weiheng Zhu1, Jian Pei2, Jian Yin1, and Yihuang Xie1

1 Zhongshan University, China
gz zwh@263.net, issjyin@mail.sysu.edu.cn, lion21@163.com

2 Simon Fraser University, Canada
jpei@cs.sfu.ca

Abstract. Clustering data streams has found a few important applications. While
many previous studies focus on clustering objects arriving in a data stream, in this
paper, we consider the novel problem of on demand clustering concept drifting
data streams. In order to characterize concept drifting data streams, we propose
an effective method to estimate densities of data streams. One unique feature
of our new method is that its granularity of estimation is adaptive to the avail-
able computation resource, which is critical for processing data streams of unpre-
dictable input rates. Moreover, we can apply any clustering method to on demand
cluster data streams using their density estimations. A performance study on syn-
thetic data sets is reported to verify our design, which clearly shows that our
method obtains results comparable to CluStream [3] on clustering single stream,
and much better results than COD [8] when clustering multiple streams.

1 Introduction

Recently, clustering data streams has found a few important applications, such as stock
market and financial data analysis, sensor networks, wireless communication, and net-
work traffic management. A data stream can be regarded as a (potentially endless) list
of data entries. Typically, data streams are assumed arriving continuously and rapidly.

In this paper, we study the problem of on demand clustering concept drifting data
streams, which is illustrated in the following example.

Example 1 (Motivation). In a coal mine, thousands of sensors are deployed in pits to
monitor the temperature, the humidity, and the concentrations of oxygen and gas. Each
sensor keeps reporting the observed data, and thus generates a data stream. Typically,

� This work was supported by the National Natural Science Foundation of China (60573097) ,
Natural Science Foundation of Guangdong Province (05200302, 04300462), Research Foun-
dation of National Science and Technology Plan Project (2004BA721A02), Research Foun-
dation of Science and Technology Plan Project in Guangdong Province (2005B10101032),
Research Foundation of Disciplines Leading to Doctorate degree of Chinese Universi-
ties(20050558017), the NSERC Grants 312194-05 and 614067, and the NSF Grant IIS-
0308001. All opinions, findings, conclusions and recommendations in this paper are those
of the authors and do not necessarily reflect the views of the funding agencies.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 322–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Granularity Adaptive Density Estimation and on Demand Clustering 323

the sensors are not synchronized. That is, the rate that a sensor reports data is indepen-
dent of the others. Generally, such surveillance data streams are concept drifting. That
is, the distribution of a stream may evolve over time.

Clustering the surveillance data streams is important to monitor the working con-
ditions in pits. However, due to the nature of sensors and the detection environment,
the data collected is often noisy. It is not surprising at all that about 30% of data in
a large sensor network is noise. Data records may be lost on their way to the servers.
Apparently, clustering the objects (i.e., records of (temperature, humidity, oxygen con-
centration, gas concentration)) in a data stream does not make good sense. Instead,
if we can characterize the distributions of temperature, humidity, oxygen concentra-
tion, and gas concentration of sensors, we should cluster the sensors according to their
distributions.

To tackle the problem of on demand clustering concept drifting data streams motivated
in Example 1, we need to address some challenges.
Challenge 1: How we can characterize the distributions of noisy data streams?
Our contribution. We propose to characterize a data stream using its kernel density
estimation [15]. Accordingly, data streams should be clustered by their densities. Al-
though kernel density estimation is also used in [2] to estimate the changes in a data
stream, to the best of our knowledge, this is the first paper to apply kernel density esti-
mation to cluster multiple data streams.
Challenge 2: When the number of fast data streams is large, how can we develop an
efficient and scalable method to maintain the density estimations adaptively?
Our contribution. Many previous methods employ load-shedding, i.e., dropping some
data, to handle workload heavier than their capabilities. However, load-shedding may
lose some important information. Here, we propose a load-skimming approach, which
lowers down the granularity of the kernel density estimation adaptively but still captures
every incoming data entry. Our load-skimming approach can provide a solid bound on
the quality of density estimation.
Challenge 3: Concept drifting may happen in a data stream. How can we capture the
concept drifting effectively?
Our contribution. We develop an effective approach to detect significant changes of
the density of a data stream. The general idea is to monitor the top-k densest regions
in a data stream, and catch the changes. Comparing to the existing methods of change
detection, our method is simple and efficient, and thus can be used to handle a large
number of fast data streams.

The rest of the paper is organized as follows. In Section 2, we formulate the prob-
lem and review the related work. The granularity adaptive density estimation method is
proposed in Section 3. We develop the notion of top-k synopsis and the concept drift-
ing detection method in Section 4. The experimental results are reported in Section 5.
Section 6 concludes the paper.

2 Problem Definition and Related Work

In this section, we first present the model of on demand clustering of data streams
according to their kernel densities. Then, we review related work.

324 W. Zhu et al.

2.1 The Model

Without loss of generality, we consider data space Dn, where D = [α, β] ⊂ R is a
range of real numbers. A data stream S is a sequence of vectors vj (j = 1, 2, . . .) such
that each vector vj ∈ Dn. A vector is also called an entry.

To characterize a data stream S, the distribution of the vectors in the data space can
be used. Let f be the density function of data stream S. Conceptually, stream S is
generated by sampling an infinite data set generated by f .

A data stream S is call concept drifting if the density function f of S evolves over
time. In this paper, we consider a set of concept drifting data streams S1, . . . , Sm.
We assume that the data streams in question are not synchronized. In other words,
the j-th vector v1

j in stream S1 and the j-th vector v2
j in S2 may not arrive at the

same time or at the same time slot. This assumption reflects the application scenarios
where the input rates of data streams may vary from stream to stream, and from time to
time.

Essentially, the similarity between two streams S1 and S2 can be measured by the
similarity between their density functions f1 and f2. Therefore, we can cluster the
streams according to their densities.

Problem definition. Given a set of concept drifting data streams S1, . . . , Sm in the
data spaceDn, the problem of on demand clustering the data streams is to continuously
maintain the density functions f1, . . . , fm for the streams, and cluster the streams on
demand according to the similarity among their density functions.

The on demand clustering of data streams consists of two steps: continuous density
estimation and on demand clustering. In the continuous density estimation step, data
streams are summarized using density functions. In the clustering step, any clustering
method can be used, such as k-means employed in our experimental study. In the rest
of the paper, we shall focus on the continuous density estimation step.

2.2 Related Work

Clustering has been studied extensively in both statistics and computer science litera-
ture. Jain et al. [10] provides a nice survey.

Clustering data streams has been studied in depth recently (e.g., [1,3,2,5,9,14]). In
real applications, clustering analysis may be conducted under different models. For
example, many of the previous studies (e.g., [1,3,5,9,14]) focus on clustering data ob-
jects in one stream. That is, an entry in the data stream in question represents a data
object. The task is to cluster the objects, probably with some constraints such as con-
sidering only objects arriving in a sliding window, or finding clusters in subspaces. As
another example, some studies (e.g., [12,17]) maintain clusters of moving objects over
time.

Some methods have also been developed to detect changes of clusters. For exam-
ple, Aggarwal [2] uses velocity density estimation to capture and visualize changes in
an evolving data stream. Bursts are often considered as an important type of changes.
Burst-detection in data streams has been studied in [11,13,18].

When the input rates of streams exceed the capacity, load shedding techniques can
be used. Essentially, a load shedder samples the input data streams, and the stream

Granularity Adaptive Density Estimation and on Demand Clustering 325

processing methods are applied on the samples only instead of the raw streams. There-
fore, load shedding can improve the latency of the data analysis result by trading off the
answer quality. Various load shedding strategies for data stream processing have been
studied, such as [4,7,16].

The critical difference between load shedding and load skimming developed in this
paper is that load skimming still processes every observation instead of sampling the in-
coming streams. Load skimming adapts to changing input rates of streams by adjusting
the granularity of the data analysis.

Recently, clustering data streams on demand has been studied in [3,8]. In [3], Ag-
garwal et al. use micro-clusters to summarize objects in a data stream. Then, clustering
on demand is conducted using the micro-clusters instead of the original data. CluS-
tream [3] clusters objects in a single data stream, and does not address the problem of
clustering multiple data streams and clustering using densities. In [8], Dai et al. assume
that each data stream is an infinite time series and the data streams are synchronized in
entry arrival. COD [8] approximates the time series and use the approximation to con-
duct clustering on demand. In our model, a stream is not a time series and streams are
not synchronized in arrival. In Section 5, we shall experimentally compare our approach
and CluStream [3] and COD [8].

3 Granularity Adaptive Density Estimation

In this section, we discuss how to estimate the kernel density function for a data stream.
We assume that concept drifting does not happen. Section 4 will address how to handle
concept drifting.

3.1 Kernel Density Estimation

To estimate the density function f from a data stream, we adopt the kernel density
estimation method [15].

Consider estimating the density function f for a data stream S that has no concept
drifting. At a point p in the data space, f(p) is the density at the point. Suppose the
density function f is in Gaussian distribution. Then, f(p) can be estimated by

f(p) =
1
k

k∑
j=1

(
1√
2π
· e−

dist(p,v)2

2h2), (1)

where k is the number of entries in the data stream arrived so far, dist(p, v) is the
Euclidian distance between p and v, and h is a parameter to describe the influence of a
data point in its neighborhood. The intuition is that an entry can be regarded as being
generated by different points in the data space according to the density function, and
the density function at a point can thus be estimated by the sum of the contributions of
all the entries.

Generally, we can use any kernel functions for density estimation. In this paper, we
use the Gaussian kernel due to its simplicity and its universal applicability in applica-
tions. Our approach can still be applied using other kernel functions.

326 W. Zhu et al.

3.2 Grid-Based Estimation

To estimate a continuous density function for a data stream is difficult. In practice, we
can approximate a continuous density function by a discrete representation. Intuitively,
by estimating the densities of a large number of probe points evenly distributed in the
data space Dn, we can achieve a good estimation of the continuous density function.
For any point q in the data space, f(q) can be estimated by f(p) where p is the probe
point closest to q.

Technically, we can organize the probe points as a grid in the data spaceDn. Let l be
a granularity parameter specified by the user. Recall thatD = [α, β] is the range in each
dimension. Let ω = β−α

l . Then, we deploy (l+1)n probe points (α+i1ω, . . . , α+inω)
in the data space, where 0 ≤ i1, . . . , in ≤ l. That is, on each dimension we have (l +1)
probe point coordinate values evenly distributed. We call (l + 1)−n the granularity of
the probe grid. The smaller the granularity, the better the estimation quality.

When a new entry v in the data stream comes, for each probe point p, we shall update
the density function f(p) according to Equation 1.

3.3 Granularity Adaptive Estimation

Clearly, the complexity of updating the density estimation for each new entry in a stream
is O(ln). To control the cost in practice, we propose two methods: granularity adapting
discussed here and localized estimation introduced in Section 3.4.

The input rate of a data stream may change over time. When the input rate of a data
stream increases and becomes so fast that the density estimation cost exceeds the ca-
pacity of the stream mining system, updating every probe point in the grid may become
infeasible or unacceptable.

In order to still process every new observation point in the upcoming stream, we
can lower down the granularity of the probe grid. In other words, we can make the
granularity adaptive to the input rate of the data stream.

Technically, we can adjust the granularity parameter l. By reducing l, we can reduce
the number of probe point coordinates in each dimension, and thus reduce the granular-
ity. Suppose the new granularity parameter is l′. then, the reduction on the granularity
is ((l + 1)n − (l′ + 1)n). The following result help to set the granularity parameter l
properly.

Theorem 1. Let update time of the density estimation for a probe point be t, the input
rate of a stream be ν, and the fraction of runtime allocated to processing the stream be
a. Then, the granularity is minimized when the granularity parameter l = $(a

νt)
1
n %−1.

Proof. The maximum number of probe points that can be processed in a unit time is a
νt .

l must be an integer and satisfy inequality a
νt ≥ (l + 1)n. The theorem follows.

In implementation, adjusting granularity parameters frequently can be very costly. In-
stead, we use a granularity upgrade rate ψ > 1. Let the current granularity parameter
be l. When the input rate of a data stream exceeds the capacity of the system, the gran-
ularity parameter is reduced to l

ψ . On the other hand, when the available resource is
sufficient to support a finer granularity of parameter at least l ·ψ, then the granularity is
lowered down.

Granularity Adaptive Density Estimation and on Demand Clustering 327

When the granularity parameter is changed, a new probe point may not be a probe
point in the previous probe grid. To avoid loss of historical data, a new probe point that
is not in the previous probe grid inherits the density function estimation from the closest
probe point that is in the previous probe grid.

3.4 Localized Estimation

As analyzed before, when the granularity is small, updating the density estimation at
each probe point for a new entry in a data stream can be costly. From Equation 1, we
can observe that the effect of a new entry on a remote probe point can be very small.
The effect decreases exponentially with respect to the distance between the entry and
the probe point: the larger the distance, the smaller the effect.

This observation motivates the localized estimation method as follows. We can ig-
nore the effect on the probe points that are far away from the new entry. Technically,
we can neglect probe points that are of distance at least δh from the observation point.
We can prove the following.

Theorem 2 (Error bound). For a probe point p, if all entries q in the data stream such
that dist(p, q) > δh are ignored, the error on the estimation of f(p) is bound by

E =
1
k

∑
q,dist(p,q)>δh

e−
dist(p,q)2

2h2 ≤ |{q|dist(p, q) ≥ δh}|
k

· e− δ2
2 ,

where k is the total number of entries arrived so far in the data stream.

By Theorem 2, we can update only the probe points around a newly arrived entry in a
data stream. In practice, the error can be much smaller than the upper bound when the
granularity is not too rough.

3.5 Summary

We can use a probe grid to estimate a discrete representation of the density function of a
data stream. By localized estimation, when a new entry arrives, we only need to update
the density estimation of the probe points around the entry, and the accumulated error
is bound by Theorem 2. To address the change of input rate of a data stream, we can
adjust the granularity parameter adaptively.

4 Tracing Concept Drifting and on Demand Clustering

Section 3 presents an adaptive method to estimate densities of data streams. When con-
cept drifting happens, a data stream evolves and its density function changes over time.
How can we handle concept drifting data streams effectively and timely?

4.1 Tracing Drifting by Decaying

When concept drifting happens in a data stream, the density of the stream in a recent
window is different from the density in the long term history, as elaborated in Figure 1.

328 W. Zhu et al.

data stream

current windowhistory

Fig. 1. Concept drifting

Therefore, to handle concept drifting, we shall trace the drifting concepts by finding the
current density. Here, we propose two methods.

Critically, to trace the current density, we need a mechanism to eliminate stale data
gradually. Decaying is a typical and effective strategy, which is also used in some pre-
vious studies on data streams, such as [6]. Essentially, each data entry carries a weight
which decays over time. More recent data has higher weights than older data.

In the context of this study, we use a decay factor ρ, which is a value between 0
and 1. Periodically, the density estimation of each probe point is decayed by factor ρ,
i.e., f(p) = ρf(p). In implementation, decaying can be conducted lazily. That is, each
probe point p carries a time stamp τp. When the probe point p is updated due to a new
entry in the stream, τp is compared with the system current time stamp τ . The density
estimation f(p) should be decayed to f(p) · ρτ−τp before the effect of the new entry is
added in.

Alternatively, to capture the current density distribution, we can use a window W
of size τ , where τ is a user-specified parameter. We estimate the density distribution
in W . When the window is full (i.e., τ new entries arrive), the density distribution
in W is compared with the historical density distribution. If the difference between
the two distributions is minor, then no concept drifting happens and the density dis-
tribution in W can be added to the historical density distribution, since the density
distribution is addable. On the other hand, if the difference is substantial, then the con-
cept drifting happens. We should use the distribution in W to replace the historical
distribution.

4.2 On Demand Clustering

We can compare two data streams using their densities. Let f1 and f2 be the estimated
density functions of data streams S1 and S2, respectively. Then, the similarity between
S1 and S2 can be measured as

sim(S1, S2) =

√∫
Dn

(f1(p)− f2(p))2dp (2)

With the probe grids, Equation 2 can be approximated by

sim(S1, S2) =
√ ∑

probe point p

(f1(p)− f2(p))2 (3)

We can apply any clustering algorithms on demand to find clusters of the data
streams.

Granularity Adaptive Density Estimation and on Demand Clustering 329

Fig. 2. The 10 data sets used in Section 5.1

Table 1. The sum of squares of distances to means on the 10 synthetic data sets

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

CluStream 32394.9 69811.6 73561.5 49371.7 42980.7 53675.6 21952.9 29070.7 43029.2 34900.2
Our method 33887.7 66779.9 68583.9 58816.3 37240.7 47000.1 51351.3 49511.2 32093.4 68476.9

5 Experimental Results

To verify the clustering method proposed in this paper, we conduct an extensive per-
formance study using synthetic data sets. Limited by space, we can only report some
results on selected aspects here. More experimental results can be found in the full
version of the paper.

5.1 Clustering One Data Stream

First, we examine whether clustering using density estimation can be competent with
other clustering methods on mining one data stream. We use 10 synthetic data sets as
shown in Figure 2. Each data set contains 50, 000 entries of 5 clusters in a 2-dimensional
data space.

On each data set, we run CluStream [3] our density estimation algorithms, respec-
tively. CluStream uses 10, 000 entries to initialize 5, 000 micro-clusters. Our density
estimation algorithm uses a 200× 200 probe gride (i.e., the granularity parameter is set
to 19), and h = 10 in localized estimation (Section 3.4). Both methods scan the data set
only once. Then, micro-clusters and probe points are clustered by k-means, where the
number of clusters in clustering is set to 5. To compare the quality of clusters found, we
compute the sum of squares (SSQ) of distances between entries in the clusters and the
corresponding means. The results are shown in Table 1.

We observe that each method obtains the better clustering results on 5 data sets,
respectively. Interestingly, on data sets D7, D8 and D10 where some clusters distributed
in a long stripe, CluStream performs substantially better. In such cases, micro-clusters
are capable to capture the stripe structures and thus the situations are to the advantage
of CluStream. In the other data sets, our method achieves better or comparable results.

330 W. Zhu et al.

The runtime of computing micro-clusters in CluStream and the density estimation time
in our method are also comparable. Limited by space, we omit the details.

5.2 Clustering Multiple Streams

We generate synthetic data streams in Gaussian distribution. Each stream contains
10, 000 data entries. The experimental results on 100 streams are shown in Figure 3. In
this test, 10 clusters are found, which contain 2, 3, 8, 2, 7, 11, 14, 3, 43, and 7 streams,
respectively. The distribution of the streams are listed in the order of clusters. As can be
seen, streams in each cluster are of similar distribution. To the best of our knowledge,
there exists no other methods that can also cluster multiple streams according to their
density distributions. Please note that COD [8] treats each stream as a time series, and
thus cannot identify clusters properly in this test. In fact, COD outputs a cluster of 91
streams and 9 clusters each of 1 stream in this experiment.

Fig. 3. Clustering multiple streams

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2000 4000 6000 8000 10000

R
un

tim
e

(s
ec

on
ds

)

Number of streams

COD
Our method

Fig. 4. Scalability of clustering
multiple streams

Since COD also cluster multiple streams, we compare the runtime of our method and
that of COD. The result is shown in Figure 4. As can be seen, our method is scalable
with respect to the number of data streams. When there are many streams, our method
is clearly more efficient than COD.

6 Conclusions

In this paper, we propose a simple yet effective method for on demand clustering mul-
tiple concept drifting data streams. The central idea is to characterize concept drifting
data streams by estimating densities. Our new method is adaptive to the available com-
putation resource, which is critical for processing data streams of unpredictable input
rates. Moreover, we can apply any clustering method to on demand cluster data streams
using their density estimations. We report a performance study on synthetic data sets
to verify our design. The experimental results clearly show that our method can obtain
clusters of good quality and is scalable in mining a large number of data streams.

Granularity Adaptive Density Estimation and on Demand Clustering 331

References

1. C. Aggarwal, et al. A framework for projected clustering of high dimensional data streams.
In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB’04),
Toronto, ON, Canada, August 2004.

2. C. C. Aggarwal. A framework for diagnosing changes in evolving data streams. In Proceed-
ings of the 2003 ACM SIGMOD international conference on Management of data, pages
575–586. ACM Press, 2003.

3. C. C. Aggarwal, et al. A framework for clustering evolving data streams. In Proc.the 19th
Int. Conf. on Very Large Data Bases (VLDB’03), Berlin, Germany, September 2003.

4. B. Babcock, et al. Load shedding techniques for data stream systems. In Proceedings of the
2003 Workshop on Management and Processing of Data Streams (MPDS 2003), San Diego,
California, June 2003.

5. B. Babcock, et al. Maintaining variance and k-medians over data stream windows. In Pro-
ceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (PODS’03), pages 234–243, New York, NY, USA, 2003. ACM Press.

6. J. H. Chang and W. S. Lee. Finding recent frequent itemsets adaptively over online data
streams. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 487–492. ACM Press, 2003.

7. Y. Chi, et al. Loadstar: A load shedding scheme for classifying data streams. In Proc. 2005
SIAM Int. Conf. Data Mining, New Port Beach, CA, April 2005.

8. B-R Dai, et al. Clustering on demand for multiple data streams. In Proceedings of the
Fourth IEEE International Conference on Data Mining (ICDM’04), pages 367–370. IEEE,
November 2004.

9. S. Guha, et al. Clustering data streams. In Proc. IEEE Symposium on Foundations of Com-
puter Science (FOCS’00), pages 359–366, Redondo Beach, CA, 2000.

10. A. K. Jain, et al. Data clustering: A survey. ACM Comput. Surv., 31:264–323, 1999.
11. J. Kleinberg. Bursty and hierarchical structure in streams. In KDD ’02: Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 91–101, New York, NY, USA, 2002. ACM Press.

12. Y. Li, et al. Clustering moving objects. In KDD ’04: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 617–622, New
York, NY, USA, 2004. ACM Press.

13. J. Ma and S. Perkins. Online novelty detection on temporal sequences. In KDD ’03: Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 613–618, New York, NY, USA, 2003. ACM Press.

14. L. O’Callaghan, et al. High-performance clustering of streams and large data sets. In Proc.
2002 Int. Conf. Data Engineering (ICDE’02), San Fransisco, CA, April 2002.

15. B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall,
1986.

16. N. Tatbul, et al. Load shedding in a data stream manager. In VLDB, pages 309–320, 2003.
17. Q. Zhang and X. Lin. Clustering moving objects for spatio-temporal selectivity estimation.

In Proceedings of the fifteenth conference on Australasian database (CRPIT’04), pages 123–
130, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

18. Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In Proceedings of
the ninth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 336–345. ACM Press, 2003.

Classification of Hidden Network Streams

Matthew Gebski, Alex Penev, and Raymond K. Wong

National ICT Australia
and School of Computer Science & Engineering

University of New South Wales
Sydney, NSW 2052

Australia

Abstract. Traffic analysis is an important issue for network monitor-
ing and security. We focus on identifying protocols for network traffic by
analysing the size, timing and direction of network packets. By using these
network stream characteristics, we propose a technique for modelling the
behaviour of various TCP protocols. This model can be used for recognis-
ing protocols even when running under encrypted tunnels. This is comple-
mented with experimental evaluation on real world network data.

1 Introduction

Computer security and intrusion detection have become important problems in
computer science. One interesting area of security is that of misuse detection, in
which we attempt to discern inappropriate behaviour by users who (seemingly)
have legitimate access to a system. With the increase in importance of the web
over the past 10 years, so too has there been an increase in the number of ways
that appropriate network access can be abused. For instance, users may attempt
to abuse their privileges and resources by tunneling or proxying file sharing
software connections over HTTP or SSH to mask the inappropriate activity by
using an acceptable protocol.

In this paper, we address the problem of protocol identification in which,
from a network stream, we attempt to identify the underlying protocol that
applications are using for communication. Unlike some previous approaches, we
restrict ourselves to limited information about the traffic, using only the timing
and size of observed packets. There are numerous scenarios where the amount of
information for identification is limited to these attributes. Consider the problem
of classifying encrypted traffic based on the protocol. The traffic may be flowing
over an SSH stream or may be encrypted in some other manner. Examples of
malicious activity include access to websites that may generally be prevented
due to the company’s firewall, or running filesharing programs.

To a third party observer, the only information that may be ascertained is
the timing between packets and the size of the packets themselves. Unlike many
instances where the packets may be available to an administrator, we are unable
to extract the protocol information directly from the headers of the packets.
Furthermore, it is not possible even to discern the ports to which the connections

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 332–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Classification of Hidden Network Streams 333

are being made as this information is hidden at the client end and reconstructed
at the server end of the tunnel.

Our aim is to develop a model based on the traffic structure that is visible
externally. This is then used to evaluate the likelihood of a new stream matching
each of the previously observed protocols. In addition to being able to discrim-
inate between protocols with high accuracy, we are able to determine certain
websites based on their idiosyncratic behaviour (i.e. GMail). Our technique is
based around the construction of a bipartite graph representing outgoing and
incoming packets. From this graph, we weight edges between outgoing and in-
coming nodes based on the likelihood of the ratios of the transmitted and re-
ceived packet sizes. This allows us to classify new connection sequences based
on particularly indicative sub-sequences.

The remainder of this paper is organised as follows. We begin in section 2
by discussing the existing work for intrusion detection, focusing on work that is
related to the problem of protocol identification. Following this, in section 3 we
present our approach. In section 4 we discuss our experimental evaluation and
we conclude in section 5.

2 Related Work

There is a large amount of research for network security. In particular, the area
of intrusion detection focuses on discerning aberrant behaviour which may indi-
cate malicious or inappropriate use of a system. Many approaches to intrusion
detection use pattern matching [7,1,2], but they often require significant human
effort in constructing rules to specify what constitutes inappropriate behaviour.
Recently, more “automatic” approaches such as neural networks have been used
for intrusion detection [11], in addition to other data mining techniques such as
frequent item analysis [10], episode rules [6] and root cause analysis [5].

Related to intrusion detection is the problem of misuse detection. Misuse
detection involves determining if a legitimate user is abusing the system, such
as attempting to disguise their illegitimate actions as legitimate actions. We
should note that it is possible that the a malicious third party may have gained
unauthorised access to a user’s account resulting in the misuse.

Our previous work [4] into misuse detection has focused on detecting unusual
user behaviour (in particular for UNIX shell commands). It is possible to model
commands that users enter, and using a tree-based system, generate a score
indicating the likelihood of a new sequence of commands having been entered by
that user (or by an intruder). Unfortunately, this technique can not be applied
to the problem of protocol identification as incoming sequences were compared
to one particular user whereas for protocol identification, there are numerous
relevant protocols and user behavioural patterns. Other work on misuse detection
include Lane and Brodley’s instance based learning approach [8,9], and Sequeira
and Zaki’s clustering approach, ADMIT [12].

In this paper, we focus on the identification of network protocols as an indi-
cation of misuse. This identification should be applicable even when ports have

334 M. Gebski, A. Penev, and R.K. Wong

been disguised by tunneling or encrypting data. The naive technique for protocol
identification is to simply examine the outgoing and incoming ports — connec-
tions on port 80 are classified as HTTP, on port 22 as SSH and so forth. This
is trivially circumvented by proxy servers, tunnels or port remapping. In [3],
Early et al. used a decision tree for identification of HTTP, FTP, Telnet, SMTP
and SSH traffic without using port numbers. The C5.0 classification algorithm
was used, and although their classification accuracy ranged from 82-100%, their
method heavily relied on the SYN, ACK, PSH and FIN flags in TCP frames.
Each of these fields is unavailable if the traffic has been encrypted or tunneled.

For the related problem of classifying webpages over a secure socket layer
connection (SSL), Sun et al [13] constructed signatures of approximately 100,000
sites using the number and the sizes of referenced HTTP objects. By comparing
signatures, they were able to identify 80% of return visits to the sites with a false
positive rate of under 5%. While identification for static pages was accurate,
dynamic pages were virtually “non-identifiable”. This approach is unsuitable for
our problem because few TCP sessions are consistent in their packet counts,
which makes protocol identification closer in nature to dynamic pages.

More recently, Wright et al. [14] considered encrypted tunnels, and noted that
only three packet-level data were available to a protocol classifier: delta time
between session packets, direction of packets and block rounded sizes. Based
on these limitations, their Hidden Markov Model approach aimed to solve a
sequence alignment problem with 4 states (Insert, Delete, and two Match states
to model client-server crosstalk). Training was done on 9 protocols to determine
parameters and transitional probabilities of their profile HMMs. Test sessions
were classified as the protocol responsible for the best-matching HMM profile.
Despite not using TCP-headers, their results were comparable to [3]. However,
the approach had sub-optimal accuracy for interactive protocols such as SSH
and FTP, and it is unclear how their model will perform for protocols such as
BitTorrent.

3 Our Approach

3.1 Preliminaries

We will assume that we are dealing with sets of incoming/outgoing sequences
comprised of tuples summarising a packet. Each tuple is of the form < time, size,
direction >. We will use S to denote a session with Sout and Sin for the outgoing
and incoming packets respectively. Sout[i] will be used to refer to the ith tuple in
Sout. For simplicity and clarity we do not consider the ACK acknowledgement
packets (although our model can be adjusted to accommodate the existence of
the acknowledgement packets).

For the construction of our model, we take into account the source and des-
tination hosts and ports in addition to the time and size. This host and port
information is not used for the identification of the protocols in the testing stage.
Although the source and destination ports would aid in the identification, these
fields are not used as the information would no longer be available if the user

Classification of Hidden Network Streams 335

(a) An example of HTTP traffic (b) An example of MSN traffic

Fig. 1. Two examples of network traffic

tunnels their connection. While it may not be possible to determine the actual
destination host or port for a tunneled connection, we only require the direc-
tion for incoming/outgoing packets. After training, we can classify an unknown
stream using only the time, size and direction of its packets.

3.2 Model

The primary assumption that we make in regards to the traffic structure relates
to request and responses. From the sequences Sout and Sin, we create a set of
forward/backward pairs. Physically, the first value of these pairs corresponds
with a request made from the client machine while the second corresponds with
a response from the remote server. Of course, either the request or the response
may require multiple packets in order to transmit all the intended information.
An example of this may be a client requesting an image via HTTP — the request
is typically only a few packets. However, the HTTP response often may require
numerous packets. Figure 1 demonstrates this concept, the horizontal axis rep-
resents packet observation times (transmission times for outgoing packets and
arrival times for incoming packets) while the vertical axis represents packet size.
Figure 1a shows an HTTP session with the black dots indicating client side traf-
fic (outgoing) and the grey dots indicating server responses. We can see that
there are only three request packets followed by a number of large reply packets.
Conversely, Figure 1b displays a portion of an MSN session. Again black dots
indicate outgoing transmissions while the white dots indicate server replies. We
can observe the primary communication consists of ‘keep alive’ packets from the
client followed by a reply from the server accepting the keep alive request. This
concept is highlighted in the enlarged region where we can clearly see a small (6
bytes) outgoing transmission followed by a slightly larger reply (8 bytes).

With this flow structure in mind, a bipartite graph is constructed to represent
each session. We use two sets of nodes, OutgoingNodes and IncomingNodes to

336 M. Gebski, A. Penev, and R.K. Wong

represent the outgoing nodes respectively. Multiple transmissions or responses
without an intervening packet are combined to contain the information from
subsequent packets. This means that if the image used in the previous example
is transmitted using multiple packets without any response from the client (other
than the ACK packets that are ignored), the image will be represented as one
node in the bipartite graph.

Graph construction is performed as follows:

1. OutgoingNodes = ∅
2. IncomingNodes = ∅
3. For each packet in the session:

(a) If the packet is an outgoing packet:
i. If the last observed packet was incoming, create a new incoming

node and add it to IncomingNodes. Create an edge between this
node and the second most recently created outgoing node.

ii. If the last observed packet was outgoing, add this packet to the node
storing the previously observed packet

(b) If the packet is an incoming packet:
i. If the last observed packet was outgoing, create a new outgoing node

and add it to OutgoingNodes. Create an edge between this node
and the most recently created outgoing node.

ii. If the last observed packet was incoming, add this packet to the node
storing the previously observed packet.

3.3 Edge Weighting

Once we have constructed the graphs representing the incoming and outgoing
packets for various sessions, we are now motivated to summarise these graphs
so that they may be used for our analysis. Furthermore, we wish to weight the
edges of this summary graph to represent the strengths of various relationships
between transmissions of varying sizes.

There are two cases that are of particular interest:

1. Given an outgoing node Nout of size Nout.s, we wish to determine the likeli-
hood of receiving return information (that is, an incoming node) with packets
of size Nin.s. An example of where this would be of assistance would be in the
identification of HTTP connections as the request is often relatively small
while the reply is typically much larger.

2. Given an outgoing node Nout and corresponding return packet, we wish to
be able to represent if either more outgoing packets are likely to be trans-
mitted or if Nout is likely to be the last. For instance, HTTP connections
are typically shorter, while MSN sessions are kept alive longer with many
request/response pairs.

For the first of these cases, the weights are determined based on the outgoing
packet size and the return sizes. For each outgoing packet size, we consider the
likelihood of receiving each of the corresponding return sizes. Let us denote

Classification of Hidden Network Streams 337

Rs as the set of outgoing nodes with a size of s. Then we compute the set
Rin = {Nin|Nin has an edge to a node in Rs} for any given s. We then calculate
the weight for a return packet of size s′ having transmitted a packet of size s as
W (s, s′) = count(s′)∗R−1

in

argmaxr∈Rin
(count(s′))∗|Rin|−1)

That is, the weights are the ratio to the previous number of observations
for that packet size to the maximum number of observed packets. In the case
of a particular value for s′ typically following a value of s, other values of s′

will be given low weights. In the case where a given transmission size may have
many values of s′ for the reply, there will be little contribution. Additionally,
we also take into account Rin and σ(Rin). There are a number of reasons why
the scores produced by this weighting system are beneficial. Firstly, if we have a
large spread of values, σ(Rin) will be large; the spread of relevant values which
s′ may take result in a good rating will also be large. This may happen with
the previously mentioned HTTP image example. We would expect a reasonably
high variance for the replies in addition to a mean that is typically higher than
the size of the request. In contrast, MSN sessions will often have small outgoing
packets for keep-alive messages along with small replies. The ratio between the
outgoing and incoming packets is close to 1 and the variance will be small. In
this case, with low variance, if s′ is not very close to the mean of Rin, it will be
marked as being not relevant to the protocol in question.

To improve consistency in terms of sizes, we remove outliers from the return
sizes. For a given size s with corresponding return set R, we remove the top and
bottom 1% entries in R when sorted by size. This removes outliers that greatly
affect the mean and variance and in turn would lead to a decrease in accuracy.

3.4 Protocol Identification

As with the model construction, we consider outgoing/incoming tuples. Once we
have the pairs, we match each against the previously observed outgoing nodes.
For each matching node, we weight the pair currently being considered by the
likelihood of it being from the protocol under consideration. Once the pair has
been scored, we consider the following pair. In addition to calculating the score
for the following pair, we also examine the likelihood of the size of the following
pair given the current pair.

We calculate the score for a session as:

score(S) =
1

|Pairs|
∑

pair∈Pairs

W (pair.outsize, pair.insize) ∗W ′(pair, previous)

Where Pairs is the set of outgoing-incoming node pairs created by building the
bipartite graph with no outgoing-outgoing edges (i.e. the set of request/response
pairs). pair.outsize and pair.insize correspond to the outgoing and incoming
nodes sizes respectively. Finally, W ′ corresponds to the likelihood of an outgoing
packet of the size of pair.outsize following the previous outgoing packet. That
is, the score is the average score obtained by weighting each node based on the
request/response sizes and the size of the following previous nodes.

338 M. Gebski, A. Penev, and R.K. Wong

This technique for scoring does not take into account sizes that have not
been previously observed. Consider the case of a model being constructed for
a set of HTTP connections with request sizes of 453, 454 and 456, each with
a large response. If we then try to identify a connection with a single outgoing
transmission of size 455 and a large response, we will have no corresponding
outgoing size for weighting.

In order to account for this, we use binning to divide the existing outgoing
values. These bins are then used for determining the corresponding outgoing
packets for the scoring of the session of interest.

4 Experimental Analysis

4.1 Experimental Structure

Our data has been collected from TCP logs from a number of users in our
organisation, over the course of approximately 6 weeks. From the raw log files,
we determine individual protocol connections using source/destination host and
port pairs, and sequence numbers. This allows us to construct entire connections
of related packets, even if they were to time-out or advertise out-of-sequence
numbers. While we use data from the TCP/IP frames for construction of our
model, we do not use this data during classification.

Almost 35,000 successful host-host connections occurred, a total of 2.4m pack-
ets averaging 69 per connection. Of these, we initially discarded zero-sized pack-
ets (e.g. ACK, SYN/FIN) in addition to packets for protocols for incidental
connections such as SMB and IMAP. We then ignored connections with less
than 5 packets. Connections which were already established when logging began
were also discarded.

The remaining 15,000 connections focused heavily on our protocols of interest.
Approximately 2,800 of these constitute our main data set with the remaining
12,500 being related to failed network intrusion attempts (which we consider
later, please see Table 4). The distribution of the protocols is: HTTP (38%),
BitTorrent (59%), MSN (2%) and SSH (1%). The MSN and SSH sessions were
infrequent in number but generally lasted a very long time, while peer BitTorrent
connections and HTTP tend to have a shorter lifespan.

4.2 Experimental Results

Table 1 shows the results on the raw session information collected (although, we
should mention that no information other than the size, time and directions of
packets was used). As we can see, the accuracy is consistently high with all but
HTTP and SSH sessions being identified correctly more than 90% of the time.
Closer inspection reveals that these sessions are often mistaken for BitTorrent
packets due to repeated communication with the server in question.

Of those HTTP sessions that were incorrectly identified, we observe that often
the incoming data was particularly large which is consistent with some of the
observed BitTorrent connections. Additionally, the SSH packets are generally

Classification of Hidden Network Streams 339

Table 1. Results for standard identification

Protocol SSH BitTorrent MSN HTTP

SSH 86.96% 13.04% 0.0% 0.0%
BitTorrent 0.06% 98.90% 0.0% 0.98

MSN 0.0% 2.04% 97.96% 0.0%
HTTP 0.0% 13.09% 0.0% 86.91%

classified correctly. The SSH protocol was the one on which performance was
least optimal in [14].

Our second set of experiments analyse the performance of our approach on
connection data with the block size rounded to simulate the effect of encryption.
Once again we did not use any information other than size, time and direction
of the packets. The blocks were padded to the next highest multiple of 16 bytes.

Conceptually, we would expect a reduction in the quality of our approach. The
rounding of the packet sizes further obfuscates the limited information originally
available to us. This is supported by our results as shown in Table 2. The two
protocols to be most seriously affected are the HTTP and BitTorrent protocols.
In both cases, packets are now misclassified.

Despite this, the accuracy is still reasonable. The HTTP packets are classified
correctly approximately 83% of the time while the accuracy for the BitTorrent
connections is marginally under 80% (78.6%). In fact, for the SSH streams, there
is a slight increase in the accuracy of the identification (this is due to a lower
score being given by the BitTorrent model as opposed to an improvement in the
quality of the SSH model.

Table 2. Results for identification with simulated encrypted block sizes

Protocol SSH BitTorrent MSN HTTP

SSH 86.96% 13.04% 0.0% 0.0%
BitTorrent 5.86% 78.5% 11.9% 3.60%

MSN 0.0% 4.08% 95.9% 0.0%
HTTP 0.97% 16.0% 0.0% 82.9%

Our third set of experiments again uses the rounded packet sizes. However we
also add the task of identifying a particular website (GMail 1). Table 3 depicts
the results for these experiments. GMail is somewhat ’interactive’ in that the
webpage is updated and draft emails automatically saved. As such, some smaller
BitTorrent sessions were classified as GMail sessions. Overall, GMail sessions
were identified correctly slightly over 80% the time. However, the misclassified
GMail sessions were classified as HTTP sessions, which is technically correct but
does not provide us with the granularity in analysis that we desire.

Our final set of experiments incorporate a number of failed SSH connections
from unauthorized parties attempting access for which network traffic was being
1 http://www.gmail.com

340 M. Gebski, A. Penev, and R.K. Wong

Table 3. Results for identification with simulated encrypted block sizes and separate
GMail packets

Protocol SSH BitTorrent MSN HTTP GMail

SSH 95.6% 4.34% 0.0% 0.0% 0.0%
BitTorrent 5.86% 78.5% 11.9% 3.35% 0.24%

MSN 0.0% 4.08% 95.9% 0.0% 0.0%
HTTP 1.01% 16.6% 0.0% 79.2% 3.03%
GMail 0.0% 0.0% 0.0% 17.4% 82.5%

Table 4. Results for identification with simulated encrypted block sizes and intrusion
attempts

Protocol SSH BitTorrent MSN HTTP GMail SSH Intr. Attempts

SSH 82.6% 4.34% 0.0% 0.0% 0.0% 13.0%
BitTorrent 5.85% 78.4% 12.0% 3.35% 0.24% 0.12%

MSN 0.0% 2.04% 95.9% 0.0% 2.04% 0.0%
HTTP 1.01% 16.6% 0.0% 79.2% 3.03% 0.0%
GMail 0.0% 0.0% 0.0% 17.4% 82.5% 0.0%

SSH Intr. Attempts 0.02% 0.0% 0.0% 0.0% 0.0% 99.9%

monitored. There were 12465 of these connections. Detecting such sessions would
be particularly useful as it provides a means by which it would be possible to
identify the computer being used as a tool for intrusion detection on a third
party system.

Table 4 shows the results for the SSH intrusion attempt experiments. We
can see these sessions are consistently identified correctly with only 3 classified
incorrectly. Furthermore, these incorrectly identified sessions were classified as
SSH connections. We may notice some SSH sessions being incorrectly — this
is due to being very short in length and similarity with the signature for an
’average’ SSH session is lower than the similarity with a short exchange of keys
and authentication information. The intrusion SSH model is very ’tight’ as the
intrusion attempts are very consistent with each other, with only the attempt
to set up an SSH connection. This contrast with the other profiles contributes
to the very high accuracy.

5 Conclusions and Future Work

In this paper, we have presented an approach for modelling and identifying proto-
cols based on encrypted streams of network traffic. More specifically, we are able
to perform this identification using only the timing and size of observed packets,
as opposed to using any information contained within the packets themselves.
We believe that the presented results are indeed promising and can be applied
for network monitoring and security even under various encryption schemes.

We are currently working towards extending our system for real-time moni-
toring of network traffic including a more rigorous system for classifying access

Classification of Hidden Network Streams 341

to certain webpages over tunnels. Furthermore, this work will incorporate work
on determining particular network behaviours that may be illegal (such as using
the system as a base for intrusion of third party systems).

References

1. S. Antonatos, K. Anagnostakis, M. Polychronakis, and E. Markatos. Performance
analysis of content matching intrusion detection systems, 2004.

2. C. R. Clark and D. E. Schimmel. A pattern-matching co-processor for net-
work intrusion detection systems. In IEEE International Conference on Field-
Programmable Technology (FPT), pages 68–74, Tokyo, Japan, 2003.

3. J. P. Early, C. E. Brodley, and C. Rosenberg. Behavioral authentication of server
flows. In ACSAC ’03: Proceedings of the 19th Annual Computer Security Applica-
tions Conference, page 46, Washington, DC, USA, 2003. IEEE Computer Society.

4. M. Gebski and R. K. Wong. Intrusion detection via analysis and modelling of user
commands. In Data Warehousing and Knowledge Discovery, pages 388–397, 2005.

5. K. Julisch. Clustering intrusion detection alarms to support root cause analysis.
ACM Trans. Inf. Syst. Secur., 6(4):443–471, 2003.

6. K. Julisch and M. Dacier. Mining intrusion detection alarms for actionable knowl-
edge. In KDD ’02: Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 366–375, New York, NY,
USA, 2002. ACM Press.

7. S. Kumar and E. H. Spafford. A Pattern Matching Model for Misuse Intrusion
Detection. In Proceedings of the 17th National Computer Security Conference,
pages 11–21, 1994.

8. T. Lane and C. E. Brodley. Approaches to online learning and concept drift for
user identification in computer security. In Knowledge Discovery and Data Mining,
pages 259–263, 1998.

9. T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. ACM Trans. Inf. Syst. Secur., 2(3):295–331, 1999.

10. W. Lee. Applying data mining to intrusion detection: the quest for automation,
efficiency, and credibility. SIGKDD Explor. Newsl., 4(2):35–42, 2002.

11. J. Ryan, M.-J. Lin, and R. Miikkulainen. Intrusion detection with neural net-
works. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural
Information Processing Systems, volume 10. The MIT Press, 1998.

12. K. Sequeira and M. Zaki. Admit: anomaly-based data mining for intrusions. In
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 386–395. ACM Press, 2002.

13. Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu.
Statistical identification of encrypted web browsing traffic. In IEEE Symposium
on Security and Privacy, pages 19–30, 2002.

14. C. Wright, F. Monrose, and G. M. Masson. Hmm profiles for network traffic
classification. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, pages 9–15, New York, NY,
USA, 2004. ACM Press.

Adaptive Load Shedding for Mining Frequent
Patterns from Data Streams

Xuan Hong Dang1, Wee-Keong Ng1, and Kok-Leong Ong2

1 School of Computer Engineering, Nanyang Technological University, Singapore
{dang0008, awkng}@ntu.edu.sg

2 School of Engineering & IT, Deakin University, Australia
leong@deakin.edu.au

Abstract. Most algorithms that focus on discovering frequent patterns
from data streams assumed that the machinery is capable of managing
all the incoming transactions without any delay; or without the need to
drop transactions. However, this assumption is often impractical due to
the inherent characteristics of data stream environments. Especially un-
der high load conditions, there is often a shortage of system resources to
process the incoming transactions. This causes unwanted latencies that
in turn, affects the applicability of the data mining models produced
– which often has a small window of opportunity. We propose a load
shedding algorithm to address this issue. The algorithm adaptively de-
tects overload situations and drops transactions from data streams using
a probabilistic model. We tested our algorithm on both synthetic and
real-life datasets to verify the feasibility of our algorithm.

1 Introduction

Recently, data streams have emerged as a new data type that has attracted much
attention from the data mining community. They arise naturally in a number
of applications, including financial services (e.g., stock ticker, financial monitor-
ing), sensor networks (e.g., earth sensing satellites, astronomical observatories),
web tracking and personalization (e.g., web log entries or web-click streams) [2].
These stream applications share three distinguishing characteristics that limit
the applicability of most traditional algorithms: (i) data continuously arrive at
high and unpredictable arrival rate; (ii) the volume of data is unbounded, mak-
ing it impractical to store the entire data stream; (iii) on the basic of the data,
decisions are arrived at and acted upon in close to real time. Consequently, the
main challenge in mining data streams is to develop adaptive algorithms that
support the processing of stream data in one-pass manner with constraints on
system resources.

Finding frequent item(set)s (or patterns) plays an important role in analyz-
ing data streams [11]. Given a stream of transactions, the goal is to compute all
itemsets that occur in at least a fraction of the stream. To address this prob-
lem, many algorithms have been reported in the literature [11,5,13,8,15,10]. A
common characteristics among them, however, is the focus on memory man-
agement while assuming that the machinery itself is fast enough to handle all

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 342–351, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptive Load Shedding for Mining Frequent Patterns from Data Streams 343

incoming transactions without incurring any unwanted latencies. In practice, this
assumption is impractical, e.g., data streams generated from a large number of
bio-sensors embedded in the soldiers’ uniforms [12]; data streams generated by
large scale multi-player online games [4]. These applications are characterized
by a large number of push-based data sources and more importantly, the data
rates can be very high and unpredictable. For instance, the arrival rate of data
in a network game is not easy to be predicted due to volatility in the number of
players as well as the game-state of each player [4]. In [12,3], the authors have
shown that the arrival rate of data streams usually exceeds the system capacity
despite all the efforts in scaling up processing algorithms. For the problem of
mining frequent itemsets, this issue is even more serious due to the huge number
of itemsets that needs frequency updates. Given a transaction of length m, the
number of frequent patterns can exponentially increase to 2m. It is obvious that
completely processing all incoming transactions is generally impractical under
high load conditions. Therefore, algorithms mining from data streams must cope
with system overload situations.

In this paper, we study the problem of mining frequent patterns over data
streams under the assumption that the CPU is a limited resource. When the
CPU capacity is overloaded, the system will not be able to keep up with newly
arrived data, so load shedding – discarding some fraction of unprocessed data –
becomes necessary. We propose an algorithm to detect overload situations, and
selectively drops a fraction of the transactions from data streams. Specifically,
we address and provide solutions to the following questions: (i) How to deter-
mine overload situations? (ii) How much load to shed? (ii) How to approximate
frequent patterns under the introduction of load shedding? We adopt an adap-
tive and self-regulating approach to these questions. The current statistics of
data streams are periodically evaluated to detect overload conditions. An adap-
tive dropping strategy, based on the Hoeffding bound, is then applied to discard
transactions from the data stream. We have conducted a set of experiments on
both synthetic and real-life datasets to evaluate the efficiency of our approach.
The results were very encouraging even when the data rate exceeds an order
of magnitude over the CPU capacity and that the underlying distribution is
constantly changing.

Next in Section 2, we formally formulate the problem of load shedding in min-
ing frequent patterns from data streams. The proposed approach to the problem
is described in Section 3. The experimental results are reported in Section 4. In
Section 5, we review related work. Finally, our conclusion is given in Section 6.

2 Problem Formulation

Let I = {a1, a2, ..., am} be a set of literals called items. Let DS = {t1, t2, ...,
tN , ...} be a data stream where each transaction ti contains a set of items
(ti ⊆ I); tN is the current transaction and thus N is the current length
(or timestamp) of the stream. We denote the frequency of an itemset X by
freq(X), which is the occurrence count of X in DS up to the N th transaction,

344 X.H. Dang, W.-K. Ng, and K.-L. Ong

and the support of X, denoted supp(X), is the ratio of freq(X) to N ; i.e.,
supp(X) = freq(X)×N−1. X is called a frequent itemset at the point of output
timestamp N if supp(X) is no less than σ ∈ (0, 1], the minimum support; it is
called a maximal frequent itemset (MFI) if none of its immediate supersets are
frequent. We formulate the load shedding problem for finding frequent patterns
over data streams as follows.

We are given a processing capacity (CPU) C of a mining system and a data
stream DS with arbitrary high arrival rates. Let Load(DS) indicate the workload
of the system. Then a load shedding is invoked when Load(DS) > C. The ob-
jective is to construct an adaptive algorithm that can detect and drop a fraction
of transactions to guarantee Load(DS) � C and yet discover a set of patterns
that closely approximates to the set of actual frequent itemsets from the data
stream.

3 Adaptive Load Shedding in Data Streams

3.1 Overload Detection

It is obvious that the system workload is dependent on the time to process each
transaction, which in turns mainly depends on the number of itemsets contained
in the transaction whose frequencies must be updated. Unfortunately, we may
not know how much time is needed to process a transaction if we do not know
exactly the number of frequent itemsets in the transaction. The difficulty lies in
the fact that we are not be able to process all transactions under a high-speed
data stream. Thus, to quickly estimate the system workload, we propose an ap-
proximate method that is relied on maximal frequent itemsets (MFIs). There are
three main reasons that we may utilize MFIs for this task. First, it is known that
the set of MFIs also contains all frequent itemsets. Therefore, updating a MFI
also updates all its subsets that are also frequent. Second, the number of MFIs is
significantly smaller than the number of frequent itemsets [14]. Actually, it pro-
vides the most compact representation for all frequent patterns. Third, according
to the definition, the support of MFIs is always closest to σ. Consequently, the
set of MFIs essentially reflects the current content of the data stream.

Let k be the number of MFIs in a transaction and Xi, 1 � i � k, be a MFI.
We derive estimated time (i.e., load coefficient) to process one transaction:

L =
k∑

i=1

2|Xi| −
k∑

i,j=1

2|Xi∩Xj | (1)

The first summation in the equation estimates the number of frequent itemsets
within each MFI. The second one estimates the common itemsets sharing among
MFIs. In practice, we can ignore all MFIs whose length is only 1 or 2. This is
because the number of itemsets in each of these short MFIs is very negligible
compared to those in a longer one. For example, if a transaction contains a
MFI of length 10, the total number of itemsets need to update frequencies is
at least 210 − 1, whereas if the transaction contains only MFIs of length 1, this

Adaptive Load Shedding for Mining Frequent Patterns from Data Streams 345

number is at most equal to the transaction length. Therefore, we can quickly
estimate processing time of a transaction by comparing it with a small set of
MFIs. Suppose we measure the above statistics for n transactions over one time
unit. Let r be the current rate of the data stream (i.e., the number of transactions
arriving in one time unit), we introduce the following inequality:

r ×
∑n

i=1 Li

n
� C (2)

The left hand side gives the estimated workload during one time unit. Li is
calculated from Equation 1. C, as formulated above, is the processing capacity
of the mining system. We assume that when this inequality is not held, the
mining system is overloaded.

3.2 Load Shedding by Sampling Transactions

In order to estimate how much load to shed, we rely on Inequality 2. Let P be
a parameter expressing the fraction of transactions that should be discarded.
Then P must satisfy:

P × r ×
∑n

i=1 Li

n
� C (3)

If P = 1, there is no need to shed load. Otherwise, a maximal value of P is
identified such that the inequality still holds. Suppose P < 1, then we may
use the following approach to discard transactions and to approximate frequent
patterns. We apply one of statistical results, the Hoeffding bound [9].

Consider the situation that we randomly draw n transactions from a dataset
and estimate the true support p of itemset X in this dataset (i.e., supp(X) = p).
We assume that the occurrence of X in a transaction is a Bernoulli trial and
denote a random variable Ai = 1 if X occurs in the ith transaction and Ai = 0
if not. Obviously, Pr(Ai = 1) = p and Pr(Ai = 0) = 1− p.1 Hence, n randomly
drawing transactions are regarded as n independent Bernoulli trials. Let r be
the number of times that Xi = 1 occurs in these n transactions; r is called a
binomial random variable and thus, its expectation is np. Then, the Hoeffding
bound states that for any ε, 0 < ε < 1:

Pr{|r − np| � nε} � 2e−2nε2 (4)

Let suppE(X) = r/n be the estimated support of X computed from n sam-
pling transactions. Equation 4 gives us the probability that the true support
supp(X) of X is deviated from its estimated support suppE(X) by an amount
of ±ε. If we want this probability to be no more than δ, then the required number
of sampling transactions is at least (by setting δ = 2e−2n0ε2):

n0 =
1

2ε2
ln

2
δ

(5)

1 We use Pr(.) to denote the probability of a condition being met.

346 X.H. Dang, W.-K. Ng, and K.-L. Ong

It is obvious that if the data stream is uniformly distributed, then n0 transac-
tions can reflect the same statistical information about the entire data stream.
Hence, processing these n0 transactions gives us a set of patterns that closely
approximates (within (ε, δ)) the set of actual frequent itemsets over the entire
data stream. Unfortunately, this assumption is often unrealistic in stream envi-
ronments. Rather, when the data rate significantly varied, we often expect that
the underlying distribution also changes as well. When the workload changes,
the corresponding value of P must be detected. Then, each incoming transaction
is chosen with probability P until we sample enough n0 transactions, which is
called a sample batch. All frequent itemsets in this sample batch are then discov-
ered. We call them local patterns because they are found only within part of the
stream. This procedure is repeated until the system workload changes to another
level. By the Hoeffding bound, we are guaranteed that the true support of each
local pattern is close to its estimated support computed in these n0 transactions.

We now address the problem of how to report the global frequent itemsets in
the entire data stream. For ease of explanation, we ignore the error produced
by applying the Hoeffding bound (i.e., ε = δ = 0). It is easy to prove that a
global pattern must be locally frequent in at least one part of the data stream.
Therefore, we can safely report all local frequent itemsets as an approximate
set of all global patterns. However, due to the non-uniform distribution of the
stream, this approximation clearly will result in many false global patterns that
are locally frequent only. One way to reduce this number is to control the maxi-
mal support error of each pattern within a threshold σ0 (< σ) called significant
support and further classify itemset X to be frequent if supp(X) � σ; infrequent
if supp(X) � σ0; otherwise, X is sub-frequent. Collectively, both frequent and
sub-frequent itemsets are also called significant patterns.

With the introduction of σ0, we need to revisit the problem of identifying
n0. So far, n0 is computed from Equation 5. However, it is clear that this value
cannot be chosen arbitrarily because if ε is too small, n0 will be very large. For
instance, with ε = 0.001 and δ = 0.01, n0 ≈ 2, 600, 000 transactions, making it
too huge to buffer in main memory. On the other hand, n0 cannot be too small
since it depends on σ0, which is used to control the number of significant patterns.
For instance, we assume that each itemset appearing more than 0.01% of the
sample batch size will be significant and if n0 = 10, 000, then every itemset will be
chosen. Certainly, this number is extremely huge due to the nature of exponential
explosion of itemsets. In view of this, we select n0 = Max{ β

σ0
; 1

2ε2 ln 2
δ }, where

β is an integer that must be greater than 1.

3.3 The Algorithm

With the above analysis, this section presents our algorithm named Load
Shedding for mining F requent I temsets (LSFI). We use a prefix tree S to main-
tain significant itemsets. Initially, S is empty. Each node in S corresponds to an
itemset X and has the following fields: (1) Item: The last item of X and thus X
is represented by the set of items on the path from the root to the node; (2) Acnt:

Adaptive Load Shedding for Mining Frequent Patterns from Data Streams 347

The accumulated frequency of X seen so far in the data stream;(3) Bid: The
index of the sample batch at which X is inserted into S.

The algorithm receives the following parameters: processing capacity C; data
stream DS; minimum support threshold σ and significant support threshold
σ0 ∈ (0, σ]. Load shedding is invoked when the system workload exceeds C. On
demand, the algorithm returns an approximate set of frequent itemsets seen so
far in the data stream. LSFI includes the following steps:

1. Before processing the data stream, the algorithm initializes the sample batch
index bcrr = 0 and computes the sampling size n0 = Max{ β

σ0
; 1

2ε2 ln 2
δ }.

2. Periodically, it estimates the workload of the system and identifies an ap-
propriate sampling rate P . If the workload is no more than C, set this value
to 1. Otherwise, choose P such that Inequality 3 is satisfied.

3. Each time when tN arrives, LSFI samples it with probability P .
4. When n0 transactions has been sampled:

– LSFI firstly increases the index of sample batch by 1.
– Then, all significant itemsets from this sample batch are mined. Any

X whose frequency in this batch, denoted by Ccnt(X), is greater than
�σ0 × n0� will be viewed as a significant itemset.

– For each such itemset X:
• If X is already maintained in S, update Acnt(X) by adding an

amount of �1/P ×Ccnt(X)�. Note that to compensate for the drop-
ping transactions caused by P , the frequency of each itemset must
be scaled up appropriately by 1/P to approximate its true frequency
in the current part of the stream.

• Otherwise, if X is not in S, create a new node for X with Acnt(X) =
�1/P × Ccnt(X)� and X.Bid = bcurr.

– After that, LSFI travels S to prune all infrequent itemsets whose
Acnt(X) � (bcrr −X.Bid)× �σ0 × n0�. To be clear with this condition,
we need to clarify some points. First, the minimum frequency needed
to make X significant in each sampling batch n0 is at least more than
�σ0×n0�. Since X was inserted at X.Bid, the frequency it must accumu-
late to continue staying significant until the current sample batch must
be more than (bcrr −X.Bid)× �σ0 × n0�. On the other hand, Acnt(X)
is its true frequency since inserted at X.Bid. Therefore, if this value is
no more than (bcrr −X.Bid)× �σ0 × n0�, X is no longer significant. In
case X is removed, all its supersets are also removed.

– For the next sample batch index, LSFI updates it by bcrr = �N/n0�.
5. When a user requests for the results, LSFI scans S and produces all itemsets

X whose Acnt(X) + X.Bid × �σ0 × n0� � σ × N . It is worth to note that
X.Bid×�σ0×n0� is X’s maximal frequency lost caused by the pruning step
described above.

4 Performance Results

We implemented LSFI in C++ and performed experiments on a 1.9GHz Pen-
tium machine with 1GB of main memory running Windows XP. To verify the

348 X.H. Dang, W.-K. Ng, and K.-L. Ong

feasibility of LSFI, both synthetic and real-life datasets are utilized. Using
method described in [1], we generate two datasets of size 1 million transactions
using 10,000 unique items. The first one has an average transaction size of 5
items with an average pattern size of 3. The second one has average transaction
size 8 with an average pattern size of 4. We denote two datasets respectively by
T5.I3.D1000K and T8.I4.D1000K. For a real-life dataset, the KDD Cup 2000
“BMS-POS” dataset is used that contains 515,597 transactions with 1,657 dis-
tinct items and the average number of items per transactions is 6.5.

Since our algorithm is probabilistic, both recall and precision measures will
be used. For the same reason, each experiment is repeated 10 times for each
parameter combination and the results are reported using their average values.

4.1 Accuracy Measurements

In our experiments, we fix ε = 0.01, δ = 0.01, Accordingly, n0 ≈ 25K. We also
select β = 4 and σ0 = 0.1σ. Thus, the last value n0 is Max{ β

0.1σ ; 25K}. For each
experiment, C is fixed but the system workload, expressed as a multiple of CPU
capacity, is varied from 2 to 10. For example, a workload of 2 corresponds to a
stream rate that is twice as high as the CPU capacity when no load shedding is
needed.

Figure 1 shows our experiment results on the three selected datasets where σ
is varied from 0.1% to 0.8%. For two synthetic datasets, there are no (or a few)
frequent itemsets found at σ > 0.4%. Hence, only σ less than those is considered.
As expected, at lower levels of workload, LSFI generates a higher number of true
frequent patterns indicated by the high value of recall, and a smaller number
of false frequent patterns shown by the high precision value. Nevertheless, the
interesting point is that, at all levels of σ, the algorithm still finds more than
92% of all the true frequent itemsets and retains the percentage of false frequent
itemsets below 10% even when the system workload is 10 times higher than C.

With the same range of σ, more detail results are reported in Figure 2 where
we plot precision and recall for each itemset length. Due to space constraints,
only results on the real-life dataset (with pattern length � 4) are reported (see [7]
for results on other datasets). It is observed from the figure that as the length
of itemsets increases, the precision decreases. This happens because, for longer
itemsets, their support tends to be closer to σ. According to our approximation,
all itemsets whose support is greater than (σ − σ0) are reported as frequent
patterns. Therefore, the precision is often lower for longer patterns due to many
of them having true support in the range (σ − σ0, σ). This observation can be
realized more clearly when σ is set smaller (indicated by the slope is higher).
As with lower supports we find more of longer frequent patterns. Note that the
recall is not affected by this approximation as the true frequency of patterns is
guaranteed by the Hoeffding bound, which is generally dependent on the number
of sampling transactions. When the level of workload is 2, the recall is always
found to be higher than 97% for every itemset length.

Adaptive Load Shedding for Mining Frequent Patterns from Data Streams 349

T5.I3.D1000K

88

90

92

94

96

98

0.1 0.15 0.2 0.4

Minimum Support (Percentage)

P
re

ci
si

o
n

 (
P

er
ce

n
ta

g
e)

Load Factor = 2

Load Factor = 4

Load Factor = 6

Load Factor = 8

Load Factor = 10

T5.I3.D1000K

88

90

92

94

96

98

100

0.1 0.15 0.2 0.4

Minimum Support (Percentage)

R
ec

al
l (

P
er

ce
n

ta
g

e)

Load Factor = 2

Load Factor = 4

Load Factor = 6

Load Factor = 8

Load Factor = 10

T8.I4.D1000K

88

90

92

94

96

98

100

0.1 0.15 0.2 0.4

Minimum Support (Percentage)

P
re

ci
si

o
n

 (
P

re
ce

n
ta

g
e)

Load Factor = 2

Load Factor = 4

Load Factor = 6

Load Factor = 8

Load Factor = 10

T8.I4.D1000K

88

90

92

94

96

98

100

0.1 0.15 0.2 0.4

Minimum Support (Percentage)

R
ec

al
l (

P
re

ce
n

ta
g

e)
Load Factor = 2

Load Factor = 4

Load Factor = 6
Load Factor = 8

Load Factor = 10

BMS-POS

88

90

92

94

96

98

100

0.1 0.2 0.4 0.8

Minimum Support (Percentage)

P
re

ci
si

o
n

 (
P

er
ce

n
ta

g
e)

Load Factor = 2

Load Factor = 4

Load Factor = 6

Load Factor = 8

Load Factor = 10

BMS-POS

88

90

92

94

96

98

100

0.1 0.2 0.4 0.8
Minimum Support (Percentage)

R
ec

al
l (

P
er

ce
n

ta
g

e)

Load Factor = 2

Load Factor = 4

Load Factor = 6

Load Factor = 8

Load Factor = 10

Fig. 1. Accuracy of our algorithm on both synthetic and real-life datasets

4.2 Adaptability

To test the ability of LSFI to adapt to changes, we generate dataset T5T8.
D1000K where the first part includes 200K transactions taken from T5.I3.
D1000K, and the second one includes 800K transactions from T8.I4.D1000K.

We send the dataset to the system at a rate just below the CPU capacity.
When the algorithm progresses to the second part of the dataset, the set of MFIs
changes significantly. For example, at σ = 0.1%, the number of MFIs of length
5 increased from 14 to 40 and the number of MFIs of length 6 increased from
5 to 9. Furthermore, we also found 1 MFI of length 7 and 2 MFIs of length 8
that did not appear in the first part of the dataset. This is due to the length of
transactions increasing from 5 to 8 also increasing the number of longer MFIs.
Consequently, the system needs more time to process these transactions. With
this detection, P was adjusted correspondingly. Figure 3 shows the accuracy
of LSFI in this experiment. We observe that the recall at all σ thresholds is
still very high (≥ 95%) and is likely the same. Nevertheless, the precision is

350 X.H. Dang, W.-K. Ng, and K.-L. Ong

BMS-POS

94

95

96

97

98

99

100

1 2 3 4
Itemset Length

P
re

ci
si

o
n

 (
P

er
ce

n
ta

g
e)

min_supp=0.10%

min_supp=0.20%

min_supp=0.40%

min_supp=0.80%

BMS-POS

94

95

96

97

98

99

100

1 2 3 4
Itemset Length

R
ec

al
l (

P
re

ce
n

ta
g

e)

min_supp=0.10%

min_supp=0.20%

min_supp=0.40%

min_supp=0.80%

Fig. 2. Accuracy vs. Itemset Length for BMS-
POS dataset at Load Factor 2

T5T8.N10K.D1000K

88

90

92

94

96

98

100

0.1 0.15 0.2 0.4
Minimum Support (Precentage)

A
cc

u
ra

cy
 (

P
er

ce
n

ta
g

e)

Recall
Precision

Fig. 3. Accuracy on dataset
T5T8.D1000k

slightly lower than that in the uniform dataset T8.I4.D1000K (which occupies
80% of our new dataset). To explain this point, we note that when the size of
transactions increases, LSFI finds more frequent patterns in the second part of
the dataset. According to our approximation where we estimate σ0 to be the
maximum support error of any frequent pattern, a small fraction of itemsets
discovered in the second part have over-estimated frequency. This means that
they were (locally) frequent in the second part, but not in the first part of the
dataset. To reduce this number of false frequent patterns, we can set σ0 smaller.
However, by setting σ0 = 0.1σ, the precision is still above 90% in all cases. That
means the percentage of false frequent patterns is guaranteed no more than 10%.

5 Related Works

In querying data streams, the problem of load shedding is defined as the process
of finding an optimal plan for inserting dropping operations along existing arcs of
a query network. Aurora [12] is one of the first projects addressing this issue by
utilizing different QoS graphs representing various important levels of querying
objects. Based on that, transactions will be dropped progressively starting from
those that contain information about the lowest important objects. STREAM [3]
is another project where a load shedding scheme based on sampling is proposed
for aggregate queries. It modifies the query network by inserting load shedder
operators together with sampling rates in such a way that the total sampling
rate eliminates sufficient amount of dropping data. This work is similar to ours
in that the random sampling is used as a means of load shedding. In stream
mining, Loadstar [6] is the first work addressing the load shedding problem for
classification by utilizing a set of Quality of Decision metrics.

Recent work on mining frequent patterns over data streams can be classi-
fied into three models:(i) Landmark model where patterns are discovered be-
tween a particular point of time and the current time. Lossy Counting [11] and
FDPM [15] are typical algorithms; (ii) Time-fading model where transactions
are weighted based on the time arrival. Works on this model include estDec [5]
and FP-Stream [8]; (iii) Sliding-window model where it further considers the
elimination of transactions. As a new transaction arrives, the oldest one in the
window is retired. FTP-DS [13], TSSW [10] are some algorithms. All these works

Adaptive Load Shedding for Mining Frequent Patterns from Data Streams 351

just address only the problem of memory limitation in data streams. Our work
(on landmark model) further addresses the load shedding problem.

6 Conclusions

In this paper, we address the problem of finding frequent patterns from data
streams where the mining system may not keep up with the arrival rate of the
stream. We have proposed an approach to detect the overload situation based on
a small set of maximal frequent itemsets. By adopting the Hoeffding bound, we
have developed an algorithm that sheds load by discarding a fraction of incoming
transactions adaptively under overload situations. Experiments both on real-life
and synthetic datasets have been conducted to evaluate the proposed algorithm.
The results showed that both the precision and recall are guaranteed in very
high values even when the arrival rate of data streams is much higher than the
capacity of the mining system and the skew of data streams is simulated.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB Conference, pages 487–499, 1994.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In PODS Conference, pages 1–16, 2002.

3. B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries
over data streams. In ICDE Conference, pages 350–361, 2004.

4. C. Chambers, W. Feng, S. Sahu, and D. Saha. Measurement-based characterization
of a collection of on-line games. In IMC Conference, pages 1–14, 2005.

5. J.H. Chang and W.S. Lee. Finding recent frequent itemsets adaptively over online
data streams. In ACM SIGKDD Conference, pages 487–492, 2003.

6. Y. Chi, P.S. Yu, H. Wang, and R. R.Muntz. Loadstar: A load shedding scheme for
classifying data streams. In SIAM Conference, pages 346–357, 2005.

7. X.H. Dang, W.K. Ng, and K.L. Ong. Adaptive load shedding for mining frequent
patterns from data streams. Technical Report, Nanyang Technological University.

8. C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu. Mining Frequent Patterns in
Data Streams at Multiple Time Granularities. AAAI/MIT, 2003.

9. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

10. C.H. Lin, D.Y. Chiu, Y.H. Wu, and A.L.P. Chen. Mining frequent itemsets from
data streams with a time-sensitive sliding window. In SIAM Conference, 2005.

11. G.S. Manku and R. Motwani. Approximate frequency counts over data streams.
In VLDB Conference, pages 346–357, 2002.

12. N. Tatbul, U. Çetintemel, S.B. Zdonik, M. Cherniack, and M. Stonebraker. Load
shedding in a data stream manager. In VLDB Conference, pages 309–320, 2003.

13. W.G. Teng, M.S. Chen, and P.S. Yu. A regression-based temporal pattern mining
scheme for data streams. In VLDB Conference, pages 93–104, 2003.

14. G. Yang. The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In ACM SIGKDD Conference, pages 344–353, 2004.

15. J.X. Yu, Z.C., H. Lu, and A. Zhou. False positive or false negative: Mining frequent
itemsets from high speed transactional data streams. In VLDB Conference, 2004.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 352 – 362, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Approximate Approach for Mining Recently
Frequent Itemsets from Data Streams*

Jia-Ling Koh and Shu-Ning Shin

Department of Computer Science and Information Engineering
National Taiwan Normal University

Taipei, Taiwan 106, R.O.C
jlkoh@ntnu.edu.tw

Abstract. Recently, the data stream, which is an unbounded sequence of data
elements generated at a rapid rate, provides a dynamic environment for collect-
ing data sources. It is likely that the embedded knowledge in a data stream will
change quickly as time goes by. Therefore, catching the recent trend of data is
an important issue when mining frequent itemsets from data streams. Although
the sliding window model proposed a good solution for this problem, the ap-
pearing information of the patterns within the sliding window has to be main-
tained completely in the traditional approach. In this paper, for estimating the
approximate supports of patterns within the current sliding window, two data
structures are proposed to maintain the average time stamps and frequency
changing points of patterns, respectively. The experiment results show that our
approach will reduce the run-time memory usage significantly. Moreover, the
proposed FCP algorithm achieves high accuracy of mining results and guaran-
tees no false dismissal occurring.

1 Introduction

The strategies for mining frequent itemsets in static databases have been widely stud-
ied over the last decade such as the Apriori[1], DHP[3], and FP-growth[2]. Recently,
the data stream, which is an unbounded sequence of data elements generated at a
rapid rate, provides a dynamic environment for collecting data sources. It is consid-
ered that the main restrictions of mining data streams include scanning the data in one
pass and performing the mining within a limited memory usage.

Since it is not feasible to store the past data in data streams completely, a method
for providing the approximate answers with accuracy guarantees is required. Lossy-
counting is the representative approach for mining frequent itemsets from data
streams[7]. Given an error tolerance parameter , the Lossy-counting algorithm
prunes the patterns with support being less than from the pool of monitored patterns
such that the required memory usage is reduced. Consequently, the frequency of a
pattern is estimated by compensating the maximum number of times that the pattern

* This work was partially supported by the R.O.C. N.S.C. under Contract No. 94-2213-E-003-010 and

94-2524-S-003-014.

 An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams 353

could have occurred before being inserted into the monitored patterns. It is proved no
false dismissal occurs with Lossy-counting algorithm and the frequency error is guar-
anteed not to exceed a given error tolerance parameter. The hash-based approach was
proposed in [4], in which each item in a data stream owns a respective list of counters
in a hash table, and each counter may be shared by many items. A new novel algo-
rithm, called hCount, was provided to maintain frequent items over a data stream and
support both insertion and deletion of items with a less memory space.

Although the restriction of memory usage was considered in the two works intro-
duced previously, the time sensitivity issue is another important issue when mining
frequent itemsets from data streams. It is likely that the embedded knowledge in a
data stream will change quickly as time goes by. In order to catch the recent trend of
data, the estDec algorithm [5] decayed the old occurrences of itemsets as time goes by
to diminish the effect of old transactions on the mining result of frequent itemsets in
the data steam.

The above approach provided time-sensitive mining for long-term data. However,
in certain applications, it is interested only the frequent patterns mined from the re-
cently arriving data within a fixed time period. The sliding window method [6] at-
tempted to solve this problem, in which the current sliding window was defined to be
the most recently coming W transactions in a data stream by a given window size W.
Accordingly, the recently frequent itemsets were defined to be the frequent itemsets
mined from the current sliding window. Meanwhile, the Loosy-counting strategy was
applied to reduce the number of maintained patterns. Consequently, the processing of
the sliding window approach is characterized into two phases: window initialization
phase and window sliding phase. The window initialization phase is activated when
the sliding window is not full. In this phase, the occurrences of patterns in a newly
coming transaction are maintained in a lattice structure at each time point. After the
sliding window has become full, the window sliding phase is activated. In addition to
maintain the occurrence for the new transaction, the oldest transaction has to be re-
moved from the sliding window. However, all the transactions in the current sliding
window need to be maintained in order to remove their effects on the current mining
result when they are beyond the scope in the window.

To prevent from storing the whole transaction data in current transaction window,
two data representation methods, named average time stamps (ATS) and frequency
changing points (FCP), respectively, are provided in this paper for monitoring the
recent occurrence of itemsets in data streams. Moreover, a FP-tree-like data structure is
adopted to store the monitored patterns for further reducing the memory usage. Ac-
cordingly, ATS and FCP algorithms are proposed for maintaining the corresponding
monitoring data structures. The experimental results show that our approach will
reduce the run-time memory usage significantly. Moreover, the proposed FCP algo-
rithm achieves high accuracy of mining results and guarantees no false dismissal
occurring.

This paper is organized as follows. The related terms used in this paper are defined
in Section 2 first. The two provided methods for approximately monitoring recently
frequent patterns in a data stream are introduced in Section 3 and Section 4, respec-
tively. The performance evaluation on the proposed algorithms and a related work is
reported in Section 5. Finally, in Section 6, we conclude this paper.

354 J.-L. Koh and S.-N. Shin

2 Preliminaries

Let I = {i1, i2, …, im} denote the set of items in the specific application domain and a
transaction be composed of a bucket of items inputted within a fixed time unit. A data
stream, DS = [T1, T2, …, Tt), is an infinite sequence of transactions, where each trans-
action Ti is associated with an time identifier i, and t denotes the time identifier of the
latest transaction currently. Let the set of transactions in DS from time i to j be de-
noted as DS[i,j]. Under a predefined window size w, the current transaction window
at time t, denoted as CTWt, is DS[t-w+1, t]. The time identifier of the first transaction
in CTWt is denoted as CTWt

first, that is t-w+1.
An itemset (or a pattern) is a set consisting of one or more items in I, that is, a non-

empty subset of I. If itemset e is a subset of transaction T, we call T contains e. The
number of transactions in CTWt which contain e is named the recent support count of
e in DSt, denoted as RCt(e). The recent support of e, denotes as Rsupt(e), is obtained
from RCt(e) / w. Given a user specified minimum support value between 0 and 1,
denoted as Smin, and a maximum support error threshold value between 0 and Smin,
denoted as , an itemset e is called a recently frequent itemset in DSt if Rsupt(e) ≥
Smin. If Smin ≥ Rsupt(e) ≥ , e is called a recently potential frequent itemset in DSt.
Otherwise, Rsupt(e) < and e is a recently infrequent itemset in DSt.

3 Average Time Stamps Method

3.1 ATS Monitoring Data Structure

In our model of data streams, each transaction Ti, has a corresponding time identifier
i. For an itemset p contained in Ti, i is named an appearing time stamp of p. The
average time stamp(ATS) of an itemset p is the average of all the appearing time
stamps of p from the first time p appears in the data stream.

In the ATS monitoring data structure, each entry maintains a 3-tuple (ts, f, sum) for
its corresponding itemset p as described as the following.

1) ts: time of the first occurring of p to be counted into the accumulated support count;
2) f: the accumulated support count of p in DS[ts, t];
3) sum: the sum of appearing time stamps of p in DS[ts, t].

Consequently, the average time stamp of a pattern p, denoted as avgt(p), is obtained
by performing p.sum / p.f.

3.2 ATS Algorithm

In the window initialization phase, for each newly coming transaction Tt at time t, the
work for maintaining Tt in the ATS monitoring data structure is described as follows.
For each subset p of Tt, if the corresponding record is stored in the monitoring data
structure, the record is updated to be: p.f= p.f+1 and p.sum= p.sum+t. Otherwise, a

record for p is inserted into the data structure with p.f =1, p.ts= t and p.sum= t.
Similar to the window sliding phase proposed by [6], in addition to append the new

transaction, the first transaction in CTWt-1 has to be removed from the current

 An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams 355

transaction window. However, the transactions in CTWt-1 are not maintained in our
approach. Instead, the average time stamps of itemsets are estimated according to the
stored information. If p.ts < CTWt

first and avgt(p) < p.ts +(CTWt
first - p.ts)/2, it implies

most of the occurrences of p are beyond the period of CTWt under the uniform distri-
bution assumption. Therefore, such a pattern is pruned from the monitoring data
structure. Otherwise, p is still active in CTWt and the corresponding record remains.
 Moreover, in order to reduce the memory requirement, the records of recently in-
frequent patterns are pruned from the monitoring data structure every m time identifi-
ers. The recent support of a pattern p is estimated according to the following equation:

If p.ts > CTWt
first, Rsupt(p)=(p.f + ((p.ts div m)×m - CTWt

first) ×ε)/w; ---- <1>
 Else Rsupt(p)= p.f / (t- p.ts +1). ---- <2>

Based on the information cashed in the monitoring data structure, the structure is
traversed to find all the patterns p with Rsupt

 (p) ≥ Smin whenever needing to mine the
recently frequent itemsets.

4 Frequency Changing Points Method

4.1 FCP Monitoring Data Structure

With the average time stamp method described in Section 3, for each pattern p, p.f is
used to accumulate the occurrences of p from p.ts to current time t. If a pattern p was
never being pruned from the monitoring data structure, p.ts denotes the first time iden-
tifier when p appeared in the data stream. There are two cases to be analyzed accord-
ing to the relationship between p.ts and CTWt

first:
(1) p.ts ≥ CTWt

first: it is implied that p.f accumulates the actual support count of p in
CTWt . Thus, Rsupt(p) is obtained from (p.f / w) accurately.

(2) p.ts < CTWt
first: it is implied that p.f accumulates the support count of p not only in

CTWt but also in DS[p.ts , CTWt
first-1]. The cases that whether a pattern p is frequent in

DS[p.ts , CTWt
first-1], in CTWt, and in DS[p.ts , t] are summarized in Table 1.

Table 1. The case analysis of a frequent pattern in DS during different time intervals

Interval DS[p.ts , CTWt
first-1] CTWt DS[p.ts , t]

Case 1 p is frequent p is frequent p is frequent
Case 2 p is frequent p is infrequent p is frequent or infrequent
Case 3 p is infrequent p is frequent p is frequent or infrequent
Case 4 p is infrequent p is infrequent p is infrequent

According to Case 2 and Case 3, to decide whether p is frequent in CTWt accord-
ing to its support in DS[p.ts, t] may cause false alarm and false dismissal, respectively.
The false alarm occurring in Case 2 dues to p becomes sparser in CTWt. The recent
support of p in CTWt is estimated according the count in DS[p.ts , t] such that p is evalu-
ated to be recently frequent incorrectly. Similarly, in the situation of Case 3, the false

356 J.-L. Koh and S.-N. Shin

dismissal occurring because a frequent pattern p in CTWt is judged to be infrequent
wrongly if p appears sparsely in DS[p.ts, CTWt

first-1].
According to the cases discussed above, it is a critical point when the appearing

frequency of a pattern becomes sparser. Let t’ denote the last time identifier when a
pattern p appeared previously. If p appears at current time t and (t-t’) > (1/Smin), t is
named a frequency changing point(FCP) of p. It means p is infrequent in DS[t’+1, t].
The frequency changing points of a pattern p are being used to adjust the boundaries
of intervals for accumulating the support counts of p. When p.ts is beyond the corre-
sponding time interval of CTWt, p.ts is adjusted to be a frequency changing point of p
as close to CTWt

first as possible. Accordingly, the estimated recent support of p will
approach the actual recent support of p in CTWt.

In the monitoring data structure of frequency changing point, for an itemset p, each
entry maintains a 5-tuple (ts, f, te, Cd, Rqueue) as described as the following.

(1) ts: the starting time of p to be counted into the accumulated support count;
(2) f: the accumulated support count of p in DS[ts, t];
(3) te: the time identifier of the most recent transaction that contains p;
(4) Cd: the accumulated support count of p in DS[ts, te-1];
(5) Rqueue: a queue consists of a sequence of (ct1, ac1), (ct2, ac2), …, (ctn, acn) pairs,

in which cti is a frequency changing point of p for i=1,…,n. Besides, ac1 denotes
the support count of p in DS[ts, ct1-1] and aci denotes the support count of p in
DS[cti-1, cti-1] for i=2,…,n.

4.2 FCP Algorithm

In the window initialization phase, each subset p in a new transaction is appended into
the FCP monitoring data structure (FCP_MDS). The maintained information of p
includes its frequency changing points and the accumulated support counts between
the changing points. The corresponding pseudo code is shown below.

Procedure AppendNew_FCP()
{If p is in FCP_MDS

{ p.f= p.f+1;
If t-p.te > (1/Smin) /* a frequency changing point */

{n = the number of elements in p.Rqueue ; n=n+1;
ctn=t, acn= (p.f – 1)- p.Cd;
append (ctn, acn) into p.Rqueue; p.Cd = p.f - 1; }

 p.te =t;}
else { p.f =1; p.ts= t ; p.te= t; p.Cd=0; p.Rqueue=null;
 insert p into FCP_MDS;}}

In the window sliding phase, in addition to perform procedure AppendNew_
FCP(), it is necessary to adjust the starting point of support count accumulation for the
monitored pattern p if p.ts is less than CTWt

first. If p.Rqueue is empty for such a pattern
p, it implies p remains frequent during the accumulation interval as Case 1 enumer-
ated in Table 1. Therefore, no false dismissal occurs when discovering recently fre-
quent patterns according to the support count of p in DS[p.ts, t] and there is no need to
adjust p.ts. On the other hand, it implies there is one or more frequency changing

 An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams 357

points of p occurring if p.Rqueue is not empty. Then the frequency changing points of
p are checked one by one to adjust its starting time of support count accumulation. It
is applicable to adjust p.ts in the following three situations:

(1) The changing point ct1 ≤ CTWt
first: it implies the support count accumulated in ac1

is beyond the scope of CTWt.

(2) The changing point ct1 >CTWt
first and ac1=1: it implies the occurring of p before

ct1 is at p.ts only which is out of the time period covered by CTWt.

(3) The changing point ct1 > CTWt
first, ac1>1, and the previous time point when p

appears before ct1, denoted as te’, is less than CTWt
first: although the value of te’ is

not maintained, the largest value of te’ is derivable from ct1 and p.ts. Because ct1
is a frequency changing point, ct1 - te’>1/Smin. Thus, te’< (ct1 -1/Smin). Moreover,
ac1 keeps the support count accumulated in DS[p.ts, ct1-1] and no changing point
occurs in this period. In other words, the interval of every two adjacent appearing
time among the ac1 times of occurring must be less than or equal to 1/Smin. Thus,
te’≤ p.ts+ (ac1-1)×(1/Smin) and te’< p.ts+ (ac1-1)×(1/Smin)+1 is derived. By combin-
ing these two inequalities, the largest value of te’, denoted as te’_max, is derived
to be min((ct1 -1/Smin), p.ts+ (ac1-1)×(1/Smin)+1)-1. If te’_max is less than CTWt

first,
it implies the support count accumulated in ac1 has been expired.

When satisfying each one of the situations enumerated above, the changing point pair
(ct1,ac1) is removed from p.Rqueue, p.ts is adjusted to be ct1; and the accumulated
support counts p.f and p.Cd are modified accordingly. Then the following changing
points are examined similarly. The corresponding code is shown below.

Procedure AdjustStart_FCP()
{For each p in FCP_MDS

 If p.ts < CTWt
first

 If Rqueue≠null {
 i=1; Adjust = True;
 While (Adjust) {

If (cti ≤ CTWt
first)

Else if ((cti > CTWt
first)∧(aci=1))

 Else {te’_max = min((ct1 -1/Smin), p.ts+ (ac1-1)×(1/Smin)+1) 1− ;
 If (te’_max ≥ CTWt

first) Adjust = False;}
If (Adust) {

Remove (cti,aci) from p.Rqueue;
p.t s = cti; p.f= p.f-aci; p.Cd= p.Cd-aci. ; i= i +1; }

 }/*end while */
 } /* end If */ }

Moreover, it is indicated that a pattern p does not appear in CTWt if p.f becomes 0
or te is less than CTWt

first. Therefore, such a pattern is pruned to prevent from storing
the unnecessary patterns in the monitoring data structure.

The situation that p.ts and p.f are not adjusted occurs when p.Rqueue is not empty
and the changing point ct1 in p.Rqueue does not satisfy the three situations enumer-
ated above. It is implied that ct1>CTWt

first, ac1>1, and te’_max ≥ CTWt
first. In this case,

p is frequent in DS[p.ts, CTWt
first-1] because there is not any frequency changing point

358 J.-L. Koh and S.-N. Shin

appearing between p.ts and ct1. When judging whether p is recently frequent in CTWt
according to its support estimated from DS[p.ts, t], even though false alarm may oc-
cur, it is certain that no false dismissal will occur.

Similar to the ATS algorithm, the recently infrequent patterns are pruned periodi-
cally to avoid the monitoring data structure glowing huge. The recent support of a
pattern is estimated also according to equation <1> and <2> defined in ATS method.

[Example 1]

Table 2. Data stream sample

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Itemset AB AB D A AB AC AE AC E AE AD B AE B AE

Table 2 shows a sample of data stream. Suppose Smin is set to be 0.5, is 0.25, and
window size w is 10. Under the assumption that the infrequent patterns are pruned
every 5 time identifiers, the process of constructing the monitoring data structure of
frequency changing points is described as the following.

From time t1 to t4, there was not any frequency changing point occurring for
those monitored patterns. The corresponding constructed monitoring data structure
at t4 is shown in Figure 1(a). After that, time t5 is a frequency changing point of AB.
Thus, the changing point entry (5, 2) is appended into AB.Rqueue. After pruning
the infrequent pattern D, whose estimated recent support is less than 0.2, the resul-
tant monitoring data structure is shown in Figure 1(b).Continuing the similar proc-
essing, the resultant monitoring data structure at t10 after the patterns in T10 have
been appended into the data structure is shown in Figure 1(c). Then the following
process starting at t11 changes into the window sliding phase. The values of p.ts and.
p.f are going to be adjusted if p.ts is less than CTWt

first. For example, after the pat-
terns in T12 are processed, both B.ts and AB.ts are less than CTW12

first, and their cor-
responding Rqueues are not empty. By satisfying the third case among the three
conditions of adjustment, B.ts is adjusted to be 5 and B.f= B.f -2. Similarly, AB.ts is
set to be 5 and AB.f= AB.f-2. The obtained result is shown in Figure 1(d). After the
patterns in T15 are appended to the monitoring data structure at time t15, the informa-
tion of pattern B is adjusted. Then pattern AB is removed because the last time it
appeared is out of the range of CTW15. After pruning the infrequent itemsets C, D,
and AC, the monitoring data structure is shown as Figure 1(e).From the result
shown in Figure 1(e), the recent supports of A, B, E, and AE are estimated to be
0.73(11/15=0.73), 0.3((2+1/10=0.3), 0.5(5/10=0.5), and 0.4(4/10 =0.4). Therefore,
the discovered recent frequent patterns are A and E.

For compressing the FCP monitoring data structure in the implementation, the FP-
tree-like structure is adopted to store the 5-tuples of patterns. However, to prevent
from two scans over the data set, the items in a transaction are sorted according to
their alphanumeric order instead of their frequency-descending order. Moreover, the
mining algorithm on FP-tree is performed on FCP_MDS to find all the patterns p with
Rsupt(p)≥ Smin on demand.

 An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams 359

Fig. 1. The FCP_MDS of the data stream sample

5 Performance Study

The proposed algorithms and Sliding Window method (SW algorithm in short) [6] are
implemented using Visual C++ 6.0. The TD_FP_Growth algorithm[8] is applied to
discover recently frequent patterns from the FCP monitoring data structure. The ex-
periments have been performed on a 3.4GHz Intel Pentium IV machine with 512
megabytes main memory and running Microsoft XP Professional. Moreover, the data
sets are generated from the IBM data generator [1], where each dataset simulates a
data stream with a transaction coming within each time unit. In the first part of ex-
periments, the false dismissal rates/ false alarm rates are measured to indicate the
effectiveness of the proposed methods. Furthermore, the execution time and memory
usage is measured in the second part of experiments to show the efficiency of the
proposed FCP algorithm by comparing with the ones of SW algorithm.

 A:1:11:15:0:
{}

 E:7:4:15:2:
{(10,1)(13,1)}

 B:12:2:14:0:
{} E:7:5:15:3:

{(13,3)}

(e) t15

 B:5:2:12:1:
{(12,1)} C:6:2:8:0:

{} E:7:3:10:0:
{}

 B:5:1:5:0:
{}

 E:7:2:10:1:
{(10,1)}

 A:1:9:11:0:
{} D:11:1:11:0:

{}

 C:6:2:8:0:
{} D:11:1:11:0:

{} (d) t12

 A:1:8:10:0:
{}

 B:1:3:5:2:
{(5,2)}

 B:1:3:5:2:
{(5,2)}

 C:6:2:8:0:
{}

 E:7:3:10:0:
{}

 C:6:2:8:0:
{} (c) t10

 E:7:2:10:1:
{(10,1)}

 A:1:3:4:0:
{}

 B:1:2:2:0:
{}

 B:1:2:2:0:
{} D:3:1:3:0:

{} B:1:3:5:2:
{(5,2)}

 A:1:4:5:0:
{}

 B:1:3:5:2:
{(5,2)}

(a) t4 (b) t5

360 J.-L. Koh and S.-N. Shin

Time Point

FD
R

(%
)

ATS

FCP

(a) (b)

Fig. 2. The FDR and FAR values of the mining results

[Experiment 1]. To evaluate the effectiveness of ATS and FCP algorithms, an ex-
periment is performed on the dataset T5.I4.D1000K with window size=20000, Smin
=0.01, and =0.005. In this experiment, ATS and FCP algorithms are performed to
maintain the corresponding monitoring data structures, respectively, and TD_FP-
Growth algorithm is performed once every 200K time points to find recently frequent
itemsets. By comparing the mining results with the frequent itemsets found by Apriori
Algorithm on the corresponding CTWt, the false dismissal rate (FDR), false alarm rate
(FAR), and average support error (ASE) of the two algorithms are measured.

The results shown in Figure 2(a) illustrates that all the recently frequent patterns
are discovered and no false dismissal occurs in FCP algorithm. On the other hand, the
false dismissal rate of ATS algorithm changes dramatically, it is indicated that its
mining quality is unstable. The false alarm rates of the two proposed algorithm at
various time points are shown in Figure 2(b). It is reported that the false alarm rate of
FCP algorithm is below 0.5%. Although the ATS algorithm has higher FAR, more
than 88% of the mining results are accurate.

Moreover, the average support error defined in [7] is also used to model the rela-
tive accuracy of the proposed methods. The results show that ASEs(RFCP|RApriori)
keeps under 3×10-5 at different time points; ASEs(RFCP|RApriori) are less than 3×10-3 but
with variations from time to time.

[Experiment 2]. In this experiment, FCP and SW algorithms are compared on their
accumulated execution time and maximum memory usage used for maintaining the
monitored patterns (the mining time is not included). This experiment is performed on
the dataset T5.I4D1000K with Smin=0.01 and =0.005. When the window size is var-
ied from 10000, 20000, to 30000, the results of accumulated execution time and
maximum memory usage are shown in Figure 3(a) and 3(b), respectively. Although
the accumulated execution time increases as the window size is raised, the efficiency
of FCP algorithm is comparable to the one of SW algorithm. In contrast with SW
algorithm, the memory usage of FCP is significantly reduced without being sensitive
to the window size. Moreover, it verifies that FCP is feasible for the streaming envi-
ronment with a small memory. By varying the setting of , Figure 3(c) and 3(d) show
the results of accumulated execution time and maximum memory usage, respectively.
It is indicated that the execution time of FCP is not sensitive to . In addition, the
maximum memory usage of FCP keeps steady, which is limited within 15 MB.

 An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams 361

0
100

200
300
400

500
600

200K 400K 600K 800K 1000K
Time Point

A
cc

um
ul

at
ed

 E
xe

cu
ti

on
T

im
e(

se
c)

FCP (w=10000)

FCP (w=20000)

FCP (w=30000)

SW (w=10000)

SW (w=20000)

SW (w=30000)

(a)

0
10
20
30
40
50
60
70
80

200K 400K 600K 800K 1000K

Time Point

M
em

or
y

Si
ze

(M
B

) FCP (w=10000)

FCP (w=20000)

FCP (w=30000)

SW (w=10000)

SW (w=20000)

SW (w=30000)

(b)

0

100

200

300

400

500

200K 400K 600K 800K 1000K

Time Point

A
cc

um
ul

at
ed

 E
xe

cu
ti

on
T

im
e

(s
ec

)

FCP (=0.001)

FCP (=0.003)

FCP (=0.005)

SW (=0.001)

SW (=0.003)

SW (=0.005)

(c)

0

10

20

30

40

50

60

200K 400K 600K 800K 1000K

Time Point

M
em

or
y

Si
ze

(M
B

)

FCP (=0.001)

FCP (=0.003)

FCP (=0.005)

SW (=0.001)

SW (=0.003)

SW (=0.005)

(d)

Fig. 3. The execution time and memory usage of FCP and SW algorithms

362 J.-L. Koh and S.-N. Shin

6 Conclusion

In this paper, the average time stamps and frequency changing points are proposed,
respectively, to represent the summarization of occurrences of recent patterns. Conse-
quently, ATS and FCP algorithms are designed for maintaining the corresponding FP-
tree-like monitoring data structures according to the newly coming transaction. Be-
sides, the effect of old transactions on the mining result of recent frequent itemsets is
diminished by performing pruning rules on the monitoring data structures without
needing to keep the whole transactions in the current sliding window physically. From
the monitoring data structure, the recently frequent patterns are discovered efficiently
at any time. Finally, the experimental results demonstrate that the proposed FCP algo-
rithm achieves high accuracy for approximating the supports of recently frequent
patterns and guarantees no false dismissal occurring. Not only the execution time of
FCP is acceptable under various parameters setting, but also the memory usage of
FCP is significantly reduced by comparing with the one of SW algorithm. It demon-
strates that FCP is a stable and feasible algorithm for mining recently frequent pat-
terns in the streaming environment with a small memory.

References

1. R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in Proc. of Int.
Conf. on Very Large Data Bases, 1994.

2. J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent Patterns without Candidate Generation:
A Frequent-Pattern Tree Approach”, Data Mining and Knowledge Discovery, 8(1):53-87,
2004.

3. J.S. Park, M.S. Chen, and P.S. Yu, “An Effective Hash-based Algorithm for Mining Asso-
ciation Rules,” in Proc. of the ACM SIGMOD International Conference on Management of
Data (SIGMOD'95), May, pages 175-186, 1995.

4. C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou, “Dynamically Maintaining Frequent Items
Over a Data Stream,” in Proc. of the 12th ACM International Conference on Information
and Knowledge Management, 2003.

5. J. H, Chang and W.S. Lee, “Finding Recent Frequent Itemsets Adaptively over Online Data
Streams, ” in Proc. of the 9th ACM International Conference on Knowledge Discovery and
Data Ming, 2003.

6. J. H. Chang and W. S. Lee, “A Sliding Window Method for Finding Recently Frequent
Itemsets over Online Data Streams, ” in Journal of Information Science and Engineering
Vol. 20, pp753-762, 2004.

7. G. S. Manku and R. Chen Motwani, “Approximate Frequent Counts over Data Streams, ” in
Proc. of the 28th International Conference on Very Large Database, Hong Kong, China
Aug, 2002.

8. K Wang, L. Tang, J. Han, and J. Liu, “Top Down FP-Growth for Association Rule Mining,
” in Proc. of the 6th Pacific Area Conference on Knowledge Discovery and Data Mining,
May 6-8, Taipei, Taiwan, PAKDD-2002.

Learning Classifiers from Distributed,
Ontology-Extended Data Sources

Doina Caragea, Jun Zhang, Jyotishman Pathak, and Vasant Honavar

AI Research Lab, Department of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA 50011

{dcaragea, zhang, jpathak, honavar}@cs.iastate.edu

Abstract. There is an urgent need for sound approaches to integrative and col-
laborative analysis of large, autonomous (and hence, inevitably semantically het-
erogeneous) data sources in several increasingly data-rich application domains.
In this paper, we precisely formulate and solve the problem of learning classifiers
from such data sources, in a setting where each data source has a hierarchical
ontology associated with it and semantic correspondences between data source
ontologies and a user ontology are supplied. The proposed approach yields al-
gorithms for learning a broad class of classifiers (including Bayesian networks,
decision trees, etc.) from semantically heterogeneous distributed data with strong
performance guarantees relative to their centralized counterparts. We illustrate
the application of the proposed approach in the case of learning Naive Bayes
classifiers from distributed, ontology-extended data sources.

1 Introduction

The availability of large amounts of data in many application domains has resulted in
unprecedented opportunities for data driven knowledge discovery. However, the mas-
sive size, the distributed nature of the data sources and the inevitability of semantic dif-
ferences between independently managed data repositories present significant hurdles
in our ability to fully exploit such data sources in knowledge discovery. The Semantic
Web enterprise [1] is aimed at supporting seamless and flexible access and use of se-
mantically heterogeneous data sources by associating meta-data (e.g., ontologies) with
data available in many application domains. The work described in this paper is aimed
at the development of algorithms for learning concise and accurate classifiers from se-
mantically heterogeneous, distributed data sets for applications in which integration of
data from multiple sources into a centralized repository is not feasible (e.g., because of
the enormous size of the data sources).

The problem that we seek to address is best illustrated by an example: Consider two
academic departments that independently collect information about their Students in
connection to Internships. Suppose a data set D1 collected by the first department is
described by the attributes ID, Advisor Position, Student Level, Monthly Income and In-
ternship and it is stored into a table as the one corresponding to D1 in Table 1. Suppose
a second data set D2 collected by the second department is described by the attributes
Student ID, Advisor Rank, Student Program, Hourly Income and Intern and it is stored
into a table as the one corresponding to D2 in Table 1.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 363–373, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

364 D. Caragea et al.

Consider a user, e.g., a university statistician, who wants to draw some inferences
about the two departments of interest from the user’s perspective, where the represen-
tative attributes are Student SSN, Advisor Status, Student Status, Yearly Income and
Internship. For example, the statistician may want to infer a model that can be used to
find out whether a student in the statistician’s data (DU in Table 1) has completed an
internship or not.

Table 1. Student data collected by two departments
and a statistician

ID Adv.Pos. St.Level M.Inc. Intern.
34 Associate M.S. 1530 yes

D1 49 None 1st Year 600 no
23 Professor Ph.D. 1800 no

SID Adv.Rank St.Prog. H.Inc. Intern
1 Assistant Master 14 yes

D2 2 Professor Doctoral 17 no
3 Associate Undergrad 8 yes

SSN Adv.Status St.Status Y.Inc. Intern
475 Assistant Master 16000 ?

DU 287 Professor Doctorate 18000 ?
530 Associate Undergrad 7000 ?

This requires the ability to perform
queries over the two data sources
associated with the departments of
interest from the user’s perspective
(e.g., number of doctorate students
who did an internship). However, we
notice that the two data sources differ
in terms of semantics from the user’s
perspective. In order to cope with this
heterogeneity of semantics, the user
must observe that the attributes ID in
the first data source and Student ID in
the second data source are similar to
the attribute Student SSN in the user
data; the attributes Advisor Position
and Advisor Rank are similar to the
attribute Advisor Status; the attributes Student Level and Student Program are similar to
the attribute Student Status, etc.

To establish the correspondence between values that two similar attributes can take,
we need to associate types with attributes and to map the domain of the type of an
attribute to the domain of the type of the corresponding attribute (e.g., Hourly Income
to Yearly Income or Student Level to Student Status). We assume that the type of an
attribute can be a standard type such as String, Integer, etc. or it can be given by a
simple hierarchical ontology. Figure 1 shows examples of attribute value hierarchies
for the attributes Student Level, Student Program, and Student Status in the data sources
D1, D2 and the user data DU , respectively. Examples of semantical correspondences
in this case could be: Graduate in D2 is equivalent to Grad in DU , 1st Year in D1 is
equivalent to Freshman in DU , M.S. in D2 is smaller than (or hierarchically below)
Master in DU , etc.

In this paper, our main focus is on learning classifiers from such semantically het-
erogeneous data sources. Learning typically requires extracting relevant statistics from
data. When the data sources are semantically heterogeneous, because of differences in
the levels of abstraction at which data in different data sources are specified relative to
the user’s perspective, we are presented with the problem of learning classifiers from
partially specified data. Previous work [2] has shown how to exploit a set of hierarchi-
cally structured ontologies in the form of isa hierarchies over attribute values in a single
data source to learn classifiers from partially specified data. Against this background,
this paper aims to address the problem of learning concise and accurate classifiers from
semantically heterogeneous distributed data sources.

Learning Classifiers from Distributed, Ontology-Extended Data Sources 365

U Student Status

Undergrad Grad

Freshman

Sophomore
Junior

Senior

Prelims ABD

Ph.D.Master

Student Level

1st year

2nd year
3rd year

4th year Ph.D.

GradUndergrad

M.S.

Student Program

Undergraduate Graduate

Master Doctoral

M.S. M.A.

D1
D2

D

Fig. 1. Hierarchical ontologies associated with the attributes Student Level, Student Program and
Student Status that appear in the two data sources of interest D1 and D2 and in user data DU ,
respectively

The rest of the paper is organized as follows: Section 2 provides a more precise for-
mulation of the problem of learning compact and concise classifiers from semantically
heterogeneous distributed data; Section 3 presents a general approach to solving this
problem, illustrates its application in the case of Naive Bayes classifiers and presents
theoretical guarantees associated with the proposed algorithm; and Section 4 concludes
with a summary and discussion.

2 Problem Formulation

2.1 Ontology-Extended Data Sources

Suppose that the data of interest are distributed over the data sources D1, · · · , Dp, where
each data source Di contains only a fragment of the whole data D. Two common types
of data fragmentation are horizontal fragmentation, where each data fragment contains
a subset of data tuples and vertical fragmentation, where each data fragment contains
subtuples of data tuples [3].

Let Di be a distributed data source described by the set of attributes {Ai
1, · · · , Ai

n}
and Oi = {Λi

1, · · · , Λi
n} a simple ontology associated with this data. The element Λi

j ∈
Oi corresponds to the attribute Ai

j and describes the type of that particular attribute. The
type of an attribute can be a (possibly restricted) standard type (e.g., Positive Integer or
String) or a hierarchical type. A hierarchical type is defined as an ordering of a set of
terms [4] (e.g., the values of an attribute). Of special interest to us are tree structured
isa hierarchies over the values of the attributes that describe a data source, also called
attribute value taxonomies (see Figure 1).

The schema Si of a data source Di is given by the set of attributes {Ai
1, · · · , Ai

n}
used to describe the data together with their respective types {Λi

1, · · · , Λi
n} de-

scribed by the ontology Oi. We define an ontology-extended data source as a tuple
D〉 =<Di, Si, Oi>, where Di is the actual data in the data source, Si is the schema of
the data source and Oi is the ontology associated with the data source.

2.2 Complete Data from a User Perspective

Let <D1,S1,O1>,· · ·, <Dp, Sp, Op> be an ordered set of p ontology-extended data
sources and U a user that poses queries against these heterogeneous data sources. A

366 D. Caragea et al.

user perspective is given by a user ontology OU and a set of interoperation constraints
IC that define correspondences between terms in O1, · · · , Op and terms in OU . The
constraints can take one of the forms: x:Oi ≡ y:OU (x is semantically equivalent to
y), x:Oi ≤ y:OU (x is semantically below y), x:Oi ≥ y:OU (x is semantically above
y) [4]. The set of constraints specified by the user can be used to (semi-automatically)
infer a set of mappings between data source ontologies O1, · · · , Op and a user ontology
OU .

Let Γ = Γ (OU) be a cut through the user ontology. If ΛU
j ∈ OU is a standard

(linear) type, then the cut Γ (ΛU
j) through the domain ΛU

j is the domain itself. However,
if ΛU

j is a hierarchical type, then Γ (ΛU
j) defines the level of abstraction at which the

user queries are formulated. For example, {Undergrad,Master, Ph.D.} is a level
of abstraction in the hierarchy associated with the attribute Student Status in the user
perspective in our example (Figure 1). Any value above this cut implies a higher level of
abstraction (e.g., Grad), while a value below the cut (e.g., ABD) implies a lower level
of abstraction, when used to specify instances. A user level of abstraction Γ determines
a level of abstraction Γi = Γ (Oi) in each distributed data source Di (by applying the
corresponding mappings). Let x = (v(Ai

1), · · · , v(Ai
n)) be an instance in Di. We say

that the instance x is:

– Fully specified if for all 1 ≤ j ≤ n, the value v(Ai
j) is on or below the cut Γi. If

v(Ai
j) is on the cut Γi, we say that v(Ai

j) is an exactly specified value; if v(Ai
j) is

below the cut Γi, we say that v(Ai
j) is an over-specified value.

– Partially specified if there exist at least one attribute value v(Ai
j) which is above

the cut Γi. We say that v(Ai
j) is an under-specified value.

Given a cut Γ through the user ontology, the available data sources D1, · · · , Dp could
be seen as a complete virtual data set D, whose instances are specified at the level of
abstraction corresponding to the cut Γ . More precisely, D is defined as the multi-set
union (i.e., duplicates are allowed) of the distributed instances, appropiately mapped to
the user ontology by mapping each attribute value to the corresponding value in the user
ontology. Note that the complete data cannot always be constructed in practice (e.g.,
when the user cut results in under-specified data in the distributed data sources), thus
making impossible the application of standard centralized machine learning algorithms.
However, under specific assumptions about the distribution of the under-specified data
(e.g., all the under-specified values are equally likely), certain statistics about data (e.g.,
counts of data) can be easily estimated.

2.3 Learning Compact and Accurate Classifiers from Distributed,
Ontology-Extended Data Sources

The problem of learning classifiers from data can be summarized as follows [5]: Given
a data set D of labeled examples, a hypothesis class H , and a performance criterion
P , the learning algorithm L outputs a hypothesis h ∈ H that optimizes P . In pattern
classification applications, h is a classifier (e.g., a Naive Bayes classifiers, a Decision
Tree, a Support Vector Machine, etc.). Under appropriate assumptions, the resulting
classifier is likely to accurately classify unlabeled instances.

Learning Classifiers from Distributed, Ontology-Extended Data Sources 367

A distributed setting typically imposes a set of constraints Z on the learner that are
absent in the centralized setting. In this paper, we assume that the constraints Z prohibit
the transfer of raw data from each of the sites to a central location while allowing the
learner to obtain certain statistics from the individual sites (e.g., counts of instances that
have specified values for some subset of attributes). Thus, the problem of learning com-
pact and accurate classifiers from distributed, semantically heterogeneous data sources
can be formulated as follows: Given a collection of ontology-extended data sources
<D1, S1, O1>,· · ·,<Dp, Sp, Op>, a user perspective (OU , IC), a set of constraints Z,
a hypothesis class H and a performance criterion P , the task of the learner Ld is to
output a hypothesis h ∈ H that optimizes P using only operations allowed by Z.

We say that an algorithm Ld for learning from distributed, semantically heteroge-
neous data sets D1, · · · , Dp is exact relative to its centralized counterpart L if the hy-
pothesis produced by Ld is identical to that obtained by L from the complete data set
D obtained by appropriately integrating the data sets D1, · · · , Dp according to the user
perspective, as defined in the previous section.

3 Sufficient Statistics Based Solution

We want to design algorithms for learning compact and accurate classifiers from dis-
tributed, semantically heterogeneous data sources. Our approach is based on a general
strategy for transforming algorithms for learning classifiers from data into algorithms
for learning classifiers from distributed data [6].

This strategy relies on the de-

p

Statistical Query

Decomposition
Query

Answer
Composition

q

q

1

2

Query Formulation

User Ontology O

D

D
2

1

User Ontology O

, O

, O

1

2

O1

O2

Mappings

Dq

Hypothesis Generation Result

Oq

Learning Algorithm

M(Oi−>O)

...

p, O
p

Op

Fig. 2. Learning from semantically heterogeneous data
sources

composition of the learning task
into two components [7]: an infor-
mation gathering component, in
which the information needed for
learning is identified and gathered
from the distributed data sources,
and a hypothesis generation com-
ponent which uses this informa-
tion to generate or refine a par-
tially constructed hypothesis. The
information gathering component
involves a procedure for specify-
ing the information needed for learning as a query and a procedure for answering this
query from distributed data. The procedure for answering queries from distributed data
entails the decomposition of a posed query into sub-queries that the individual data
sources can answer, followed by the composition of the partial answers into a final
answer to the initial query. If the distributed data sources are also semantically hetero-
geneous, mappings between the data sources ontologies and a user ontology need to be
applied in the process of query answering to reconcile the semantical differences [6]
(Figure 2).

The strategy described can be applied to a large class of learning algorithms (e.g.,
naive Bayes, decision trees, Bayesian networks, etc.). To illustrate it, we will use Naive

368 D. Caragea et al.

Bayes algorithms as an example. Zhang and Honavar [8] proposed an algorithm (AVT-
NBL) for learning compact and accurate Naive Bayes classifiers from a data set in the
presence of an associated ontology. In the remaining of this section we identify the
information requirements (sufficient statistics) of AVT-NBL algorithm, and we show
how to transform it into an algorithm for learning compact and accurate Naive Bayes
classifiers from distributed, semantically heterogeneous data sources.

3.1 Sufficient Statistics for AVT-NBL

A statistic s(D) is called a sufficient statistic for a parameter θ if s(D) captures all
the information about the parameter θ contained in the data D [9]. Caragea et al. [6]
generalized this notion of a sufficient statistic for a parameter θ to yield the notion
of a sufficient statistic sL(D) for learning a hypothesis h using a learning algorithm
L applied to a data set D. Thus, a statistic sL(D) is a sufficient statistic for learning
a hypothesis h using a learning algorithm L applied to a data set D if there exists a
procedure that takes sL(D) as input and outputs h.

Consider for example, the Naive Bayes classifier that operates under the assump-
tion that each attribute is independent of the others given the class. Thus, the joint
class conditional probability of an instance can be written as the product of individual
class conditional probabilities corresponding to each attribute defining the instance. The
Bayesian approach to classifying an instance x = {v1, · · · , vn} is to assign it to the most
probable class cMAP (x). Thus, we have: cMAP (x) = argmax

cj∈C
p(v1, · · · , vn|cj)p(cj) =

argmax
cj∈C

p(cj)
∏

i

p(vi|cj). Therefore, the task of the Naive Bayes Learner (NBL) is to

estimate the class probabilities p(cj) and the class conditional probabilities p(vi|cj), for
all classes cj ∈ C and for all attribute values vi ∈ dom(Ai). These probabilities can
be estimated from a training set D using standard probability estimation methods [5]
based on relative frequency counts. We denote by σ(vi|cj) the frequency count of the
value vi of the attribute Ai given the class label cj , and by σ(cj) the frequency count
of the class label cj in a training set D. These frequency counts completely summarize
the information needed for constructing a Naive Bayes classifier from D, and thus, they
constitute sufficient statistics for Naive Bayes learner.

While the sufficient statistics required for constructing a classifier can be computed
in one step in some simple cases (e.g., Naive Bayes), in general, this may require inter-
leaved execution of the information gathering and hypothesis generation components of
the algorithm over several steps with each step yielding refinement sufficient statistics
that are used to refine a partially construted classifier. More precisely, sL(D,hi → hi+1)
is a sufficient statistic for the refinement of hi into hi+1 if there exists a procedure R
that takes hi and sL(D,hi → hi+1) as inputs and outputs hi+1 [3].

We next identify the refinement sufficient statistics for the AVT-NBL algorithm
[8]. AVT-NBL efficiently expoits taxonomies defined over values of each attribute
in the data set to find a Naive Bayes classifier that optimizes the Conditional
Minimum Description Length (CMDL) score [10]. The CMDL score provides a
means of trading off the error of the classifier against its complexity. If we denote by

Learning Classifiers from Distributed, Ontology-Extended Data Sources 369

|D| the size of the data set, Γ a cut through the AVT associated with this data,
h = h(Γ) the Naive Bayes classifier corresponding to the cut Γ , size(h) the
number of probabilities used to describe h and CLL(h|D) the conditional log-
likelihood of the hypothesis h given the data D, then the CMDL score can be writ-

ten as CMDL(h|D) =
(

log |D|
2

)
size(h) − |D|CLL(h|D). Here, CLL(h|D) =

|D|
|D|∑
i=1

log ph(ci|vi1 · · · vin), where ph(ci|vi1 · · · vin) represents the conditional prob-

ability assigned to the class ci ∈ C associated with the example xi = (vi1, · · · , vin).
Because each attribute is assumed to be independent of the others given the class, we

can write CLL(h|D) = |D|
|D|∑
i=1

log

(
p(ci)

∏
j ph(vij |ci)∑|C|

k=1 p(ck)
∏

j ph(vij |ck)

)
.

AVT-NBL starts with a Naive Bayes classifier corresponding to the most abstract cut
in the attribute value taxonomy associated with the data (most general classifier) and it
iteratively refines the cut by searching in a greedy fashion through the space of possible
cuts, until a best cut, according to the performance criterion, is found. More precisely,
let hi be the current hypothesis corresponding to the current cut Γ (i.e., hi = h(Γ)) and
Γ ′ a (one-step) refinement of Γ (see Figure 3).

Let h(Γ ′) be the Naive Bayes Λ

ΓCut

ΓCut ’

AVT Λ AVT

Fig. 3. The refinement of a cut Γ through an attribute
value taxonomy Λ

classifier corresponding to the cut
Γ ′ and let CMDL(Γ |D) and
CMDL(Γ ′|D) be the CMDL
scores corresponding to the hy-
potheses h(Γ) and h(Γ ′), re-
spectively. If CMDL(Γ) >
CMDL(Γ ′) then hi+1 = h(Γ ′),
otherwise hi+1 = h(Γ). This
procedure is repeated until the differences |CMDL(Γ) − CMDL(Γ ′)| approaches
zero for all (one-step) refinements Γ ′ of Γ . The last hypothesis constructed is the out-
put of the AVT-NBL algorithm.

Therefore, the final classifier that the AVT-NBL outputs is obtained from the most
general classifier through a sequence of refinement operations. Each refinement oper-
ation corresponds to the refinement of the current cut and it is based on the CMDL
score. Thus, the sufficient statistics for learning AVT-NBL classifiers can be seen as
refinement sufficient statistics, which are identified below.

Let hi be the current hypothesis corresponding to a cut Γ and CLDM(Γ |D) its
score. If Γ ′ is a refinement of the cut Γ , then the refinement sufficient statistics needed
to construct hi+1 are given by the frequency counts needed to construct h(Γ ′) together
with the probabilities needed to compute CLL(h(Γ ′)|D) (calculated once we know
h(Γ ′)). If we denote by domΓ ′(Ai) the domain of the attribute Ai when the cut Γ ′ is
considered, then the frequency counts needed to construct h(Γ ′) are σ(vi|cj) for all
values vi ∈ domΓ ′(Ai) of all attributes Ai and for all class values cj ∈ domΓ ′(C), and

370 D. Caragea et al.

σ(cj) for all class values cj ∈ domΓ ′(C). To compute CLL(h(Γ ′)|D) the products∏
j ph(Γ ′)(vij |ck) for all examples xi = (vi1, · · · , vin) and for all classes ck ∈ C are

needed.
The step i + 1 of the algorithm corresponding to the cut Γ ′ can be briefly described

in terms of information gathering and hypothesis generation components as follows:

1) Compute σ(vi|cj) and σ(cj) corresponding to the cut Γ ′ from the training data D
2) Generate the NB classifier h(Γ ′)
3) Compute

∏
j ph(Γ ′)(vij |ck) from D

4) Generate the hypothesis hi+1

3.2 Naive Bayes Classifiers from Semantically Heterogeneous Data

Let <D1, S1, O1>,· · ·,<Dp, Sp, Op> be a set of p ontology-extended data sources and
OU a user ontology. Let Γ be a cut through the user ontology.

The step i + 1 (corresponding to the cut Γ ′ in the user ontology) of the algorithm
for learning Naive Bayes classifiers from distributed, semantically heterogeneous data
sources D1, · · · , Dp is similar to the step i + 1 of the algorithm for learning from a
single data set (described above), except that the sufficient statistics are computed from
the distributed data sources D1, · · · , Dp.

Thus, we have reduced the problem of learning Naive Bayes classifiers from dis-
tributed, ontology-extended data sources, to the problem of gathering the statistics
sL(D,hi → hi+1) from such data sources. Next, we show how to answer statistical
queries q(sL(D,hi → hi+1)) that return statistics sL(D,hi → hi+1), from horizon-
tally and vertically fragmented distributed, semantically heterogeneous data sources.

Horizontally Fragmented Data. If the data are horizontally fragmented, the examples
are distributed among the data sources of interest. Thus, the user query q(σ(vi|cj)) can
be decomposed into the sub-queries q1(σ(v1

i |c1
j)), · · · , qp(σ(vp

i |c
p
j)) corresponding to

the distributed data sources D1, · · · , Dp, where vk
i and ck

j are the values in Ok that map
to the values vi and cj in OU . Once the queries q1(σ(v1

i |c1
j)), · · · , qp(σ(vp

i |c
p
j)) have

been answered, the answer to the initial query can be obtained by adding up the indi-
vidual answers into a final count σ(vi|cj) = σ(v1

i |c1
j) + · · · + σ(vp

i |c
p
j). Similarly, we

compute the counts σ(cj). Once the counts σ(vi|cj) and σ(cj) have been computed, the
Naive Bayes classifier h′ = h(Γ ′) corresponding to the cut Γ ′ can be generated. The
next query that needs to be answered is q(

∏
j ph′(vij |ck)) corresponding to each (vir-

tual) example xi = (vi1, · · · , vin) (in the complete data set) and each class ck based on
the probabilities that define h′. Because all the attributes of an example are at the same
location in the case of the horizontal data fragmentation, each query q(

∏
j ph′(vij |ck))

is answered by the data source that contains the actual example xi. When all such
queries have been answered, the score CMDL can be computed and thus the hypothe-
sis that will be output at this step can be generated.

If any of the values vk
i or ck

j are partially specified in Ok, we “fill in” the partially
specified values and increment the count accordingly. Traditional methods for dealing

Learning Classifiers from Distributed, Ontology-Extended Data Sources 371

with missing data, as well as new statistical methods designed specifically for partially
specified data can be used to “fill in” partially specified values. In this paper, we assume
that the user specifies a distribution over partially specified values or that such a distri-
bution is inferred based on the corresponding specified values in a different data source.

Vertically Fragmented Data. If the data is vertically fragmented, the attributes are
distributed among the data sources of interest, but all the values of an attribute are found
at the same location. Therefore, a user query q(σ(vi|cj)) can be answered by a particular
data source that contains the attribute Ai. However, the user query q(

∏
j ph(vij |ck)) is

decomposed into sub-queries according to the distributed data sources and the final
answer is obtained by multiplying the individual answers.

3.3 Theoretical Analysis

Theorem 1 (Exactness). The algorithm for learning Naive Bayes classifiers from a set
of horizontally (or vertically) fragmented distributed, ontology-extended data sources
<D1,S1,O1>,· · ·,<Dp,Sp,Op>, from a user perspective <OU , IC>, in the presence
of the inferred mappings ψ1, · · · , ψp, is exact with respect to the algorithm for learn-
ing Naive Bayes classifiers from the complete data set D, obtained (in principle) by
integrating the data sources D1, · · · , Dp according to mappings ψ1, · · · , ψp.

Proof sketch: Because of the information gathering and hypothesis generation decom-
position of the the AVT-NBL algorithm, the exactness of the algorithm for learning
from distributed, semantically heterogeneous data sources depends on the correctness
of the procedures for decomposing a user query q into sub-queries q1, · · · , qp corre-
sponding to the distributed data sources D1, · · · , Dp and for composing the individual
answers to the queries q1, · · · , qp into a final answer to the query q. More precisely,
we need to show that the condition q(D) = C(q1(D1), · · · , qp(Dp)) (exactness condi-
tion) is satisfied, where q(D), q1(D1), · · · , qp(Dp) represent the answers to the queries
q, q1, · · · , qp, respectively, and C is a procedure for combining the individual answers.

When data is horizontally fragmented the query q(σ(vi|cj)) is decomposed into sub-
queries q1(σ(v1

i |c1
j)), · · · , qp(σ(vp

i |c
p
j)) corresponding to the distributed data sources

D1, · · · , Dp and the final answer is σ(vi|cj)(D1, · · · , Dp) = σ(v1
i |c1

j)(D1) + · · · +
σ(vp

i |c
p
j)(Dp). If we denote by σ(vi|cj)(D) the answer to the query q(σ(vi|cj)) posed

to the complete data set D, we need to show that σ(vi|cj)(D1, · · · , Dp) = σ(vi|cj)(D).
This is obviously true when the data sources D1, · · · , Dp are homogeneous because the
addition operation is associative. The equality holds also when the data sources are het-
erogeneous, due to the way we compute the counts (by simulating the construction of
the complete data set D). A similar argument can be made for the exactness condition
in the case of the query q(σ(cj)). Because the answer to the query q(

∏
j ph(vij |ck)) is

obtained from a single data source and no combination procedure is needed, the exact-
ness condition is trivially satisfied in this case. Similarly we can prove the exactness of
the algorithm for leaning from vertically fragmented distributed data, which completes
the proof of the exactness theorem.

372 D. Caragea et al.

4 Summary and Discussion

There is an urgent need for algorithms for learning classifiers from distributed, au-
tonomous (and hence inevitably, semantically heterogeneous) data sources in several
increasingly data-rich application domains such as bioinformatics, environmental in-
formatics, medical informatics, social informatics, security informatics, among others.

In this paper, we have precisely formulated the problem of learning classifiers from
distributed, ontology-extended data sources, which make explicit (the typically implicit)
ontologies associated with autonomous data sources. User-specified semantic corre-
spondences (mappings between the data source ontologies and the user ontology) are
used to answer statistical queries that provide the information needed for learning clas-
sifiers, from such data sources. The resulting framework yields algorithms for learning
classifiers from distributed, ontology-extended data sources. These algorithms are prov-
ably exact relative to their centralized counterparts in the case of the family of learning
classifiers for which the information needed for constructing the classifier can be bro-
ken down into a set of queries for sufficient statistics that take the form of counts of
instances satisfying certain constraints on the values of the attributes. Such classifiers
include decision trees, Bayesian network classifiers, classifiers based on a broad class
of probabilistic models including generalized linear models, among others. We have
illustrated the proposed approach in the case of learning Naive Bayes classifiers from
horizontally fragmented distributed, ontology-extended data sources.

There is a large body of literature on distributed learning (See [11] for a survey).
However, with the exception of [3], most algorithms for learning classifiers from dis-
tributed data do not offer performance guarantees (e.g., exactness) relative to their
centralized counterparts. Integration of semantically heterogeneous data has received
significant attention in the literature (see [12] for a survey). Most of this work has
focused on bridging semantic differences between schemas and ontologies associated
with the individual data sources and answering (typically relational) queries from such
data sources.

Caragea et al. [6] present an approach to semantic integration of data from multi-
ple sources when data are described in terms of different ontologies and briefly outline
some ideas on extending this approach to solve the problem of learning from seman-
tically heterogeneous data. In contrast, this paper precisely formulates and provides a
solution to this problem in the important special case where each data source has an
AVT ontology associated with it.

The algorithm and the analysis presented in this paper, together with results like
those presented in [6] represent important steps towards a problem of significant current
interest that cuts across multiple areas of AI (such as informtion integration, machine
learning, knowledge representation, etc.).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
2. Zhang, J., Caragea, D., , Honavar, V.: Learning ontology-aware classifiers. In: Proceedings

of the Eight International Conference on Discovery Science (DS 2005). (2005) 308–321

Learning Classifiers from Distributed, Ontology-Extended Data Sources 373

3. Caragea, D., Silvescu, A., Honavar, V.: A framework for learning from distributed data using
sufficient statistics and its application to learning decision trees. International Journal of
Hybrid Intelligent Systems 1 (2004)

4. Bonatti, P., Deng, Y., Subrahmanian, V.: An ontology-extended relational algebra. In: Pro-
ceedings of the IEEE Conference on Information Integration and Reuse, IEEE Press (2003)
192–199

5. Mitchell, T.: Machine Learning. McGraw Hill (1997)
6. Caragea, D., Pathak, J., Honavar, V.: Learning classifiers from semantically heterogeneous

data. In: Proceedings of the International Conference on Ontologies, Databases, and Appli-
cations of Semantics for Large Scale Information Systems. (2004)

7. Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal of the ACM 45
(1998) 983–1006

8. Zhang, J., Honavar, V.: AVT-NBL: An algorithm for learning compact and accurate naive
bayes classifiers from attribute value taxonomies and data. In: Proceedings of the Fourth
IEEE International Conference on Data Mining, Brighton, UK (2004)

9. Casella, G., Berger, R.: Statistical Inference. Duxbury Press, Belmont, CA (2001)
10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning

29 (1997)
11. Kargupta, H., Chan, P.: Advances in Distributed and Parallel Knowledge Discovery.

AAAI/MIT (2000)
12. Doan, A., Halevy, A.: Semantic Integration Research in the Database Community: A Brief

Survey. AI Magazine, Special Issue on Semantic Integration 26 (2005) 83–94

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 374 – 383, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Coherent Biomedical Literature Clustering and
Summarization Approach Through Ontology-Enriched

Graphical Representations

Illhoi Yoo1, Xiaohua Hu2, and Il-Yeol Song2

1 Department of Health Management and Informatics, School of Medicine, University of
Missouri-Columbia, Columbia, MO, 65211, USA

MU.Prof.Yoo@gmail.com
2 College of Information Science and Technology, Drexel University, Philadelphia, PA,

19104, USA
{thu@cis, song} @drexel.edu

Abstract. In this paper, we introduce a coherent biomedical literature clustering
and summarization approach that employs a graphical representation method
for text using a biomedical ontology. The key of the approach is to construct
document cluster models as semantic chunks capturing the core semantic
relationships in the ontology-enriched scale-free graphical representation of
documents. These document cluster models are used for both document
clustering and text summarization by constructing Text Semantic Interaction
Network (TSIN). Our extensive experimental results indicate our approach
shows 45% cluster quality improvement and 72% clustering reliability
improvement, in terms of misclassification index, over Bisecting K-means as a
leading document clustering approach. In addition, our approach provides
concise but rich text summary in key concepts and sentences. The primary
contribution of this paper is we introduce a coherent biomedical literature
clustering and summarization approach that takes advantage of ontology-
enriched graphical representations. Our approach significantly improves the
quality of document clusters and understandability of documents through
summaries.

Keywords: Document clustering, text summarization, ontology, scale-free
network, MEDLINE.

1 Introduction

A huge amount of textual information has been produced and collected in text
databases or digital libraries for decades because the most natural form to store
information is text. For example, MEDLINE, the largest biomedical bibliographic text
database, has more than 16 million articles and more than 10,000 articles are weekly
added to MEDLINE. In order to tackle this pressing text information overload
problem, document clustering and text summarization together have been used as a
solution. This is because document clustering enables us to group similar text
information and then text summarization provides condensed text information for the
similar text by extracting the most important text content from a similar document set

 A Coherent Biomedical Literature Clustering and Summarization Approach 375

or a document cluster. For this reason, document clustering and text summarization
can be used for important components of information retrieval system. Document
clustering improves information retrieval (IR) performance because similar
documents grouped by document clustering tend to be relevant to the same user
queries [13] [14]. Text summarization helps IR users identify which documents
satisfy their needs the best by providing summaries of the retrieved documents.

In this paper, we introduce a coherent biomedical literature clustering and sum-
marization approach. The coherence of document clustering and text summarization is
required because a set of documents are usually multiple-topics. For this reason text
summarization does not yield high-quality summary without document clustering. On
the other hand, document clustering is not very useful for users to understand a set of
documents if the explanation for document categorization or the summaries for each
document cluster is not provided. In other words, document clustering and text
summarization are complementary. This is the primary motivation for the coherent
approach of document clustering and text summarization.

The primary contribution of this paper is we introduce a coherent biomedical
literature clustering and summarization approach that takes advantage of ontology-
enriched graphical representations of documents. Our approach significantly improves
the quality of document clusters and understandability of documents through
summaries for each document cluster.

The rest of the paper is organized as follows. Section 2 surveys the related works.
In Section 3, we propose a novel graph-based document clustering approach that uses
domain knowledge in an ontology and text summarization using Text Semantic
Interaction Network using the semantic relationships in the document cluster model.
An extensive experimental evaluation on MEDLINE articles is conducted and the
results are reported in Section 4. Section 5 concludes our paper.

2 Related Works

Document Clustering: A number of document clustering approaches have been
developed for several decades. Most of these document clustering approaches are
based on the vector space representation and apply various clustering algorithms to
the representation. Thus, the approaches can be categorized as hierarchical or
partitional.

Hierarchical agglomerative clustering algorithms were used for document
clustering. The algorithms successively merge the most similar objects based on the
pairwise distances between objects until a termination condition holds. Thus, the
algorithms can be classified by the way they select the pair of objects for calculating
the similarity measure (e.g., single-link, complete-link, and average-link). An
advantage of the algorithms is that they generate a document hierarchy so that users
can drill up and drill down for specific topics of interest. However, due to their cubic
time complexity, they are limited for a very large number of documents.

Partitional clustering algorithms (especially K-means) are the most widely-used
algorithms in document clustering [10]. Most of the algorithms first randomly select k
centroids and then decompose the objects into k disjoint groups through iteratively
relocating objects based on the similarity between the centroids and the objects. As

376 I. Yoo, X. Hu, and I.-Y. Song

one of the most widely-used partitional algorithms, K-means minimizes the sum of
squared distances between the objects and their corresponding cluster centroids. As a
variation of K-means, BiSecting K-means [10] first selects a cluster (normally the
biggest one) to split and then splits the objects into two groups (i.e. k = 2) using K-
means. One major drawback of partitional algorithms is that clustering results are
heavily sensitive to the initial centroids because the centroids are randomly selected.

Recently, Hotho et al. introduced the semantic document clustering approach that
uses background knowledge [7]. The authors apply an ontology during the
construction of a vector space representation by mapping terms in documents to
ontology concepts and then aggregating concepts based on the concept hierarchy,
which is called concept selection and aggregation (COSA). As a result of COSA, they
resolve a synonym problem and introduce more general concepts in the vector space
to easily identify related topics [7]. Their method, however, cannot reduce the
dimensionality (i.e. the document features) in the vector space; it still suffers from the
“Curse of Dimensionality”.

While all the approaches mentioned above represent documents as a feature vector,
Suffix Tree Clustering (STC) [16] does not rely on the vector space model. STC does
not treat a document as “a set of words”. One of major drawbacks of STC is that
semantically similar nodes may be distant within a suffix tree, because STC does not
consider the semantic relationships among phrases (nodes or base clusters). In
addition, some common expressions may lead to combine unrelated documents.

Text Summarization: Text summarization has been studied since Luhn’s work in
1958 [9]. Since then, a variety of summarization approaches have been introduced.
For instance, there are statistical methods based on the bag-of-words model, linguistic
methods using natural language processing, knowledge-based methods using concepts
and their relations, and summary generation methods. The first three approaches try to
seek the most important information (usually sentences or terms) for a condensed
version of documents while the last approach generates completely a new summary
that consists of informative terms, phrases, clauses and sentences. The main difficulty
of the last approach is to figure out how to combine them to make sentences that are
grammatically correct.

In the bioinformatics/biomedical field many multi-document summarization
systems have also been introduced. TextQuest [8] is designed to summarize
documents retrieved in response to a keyword(s) based search on PubMed. However,
it does not retain the association between the genes and the retrieved documents.
MedMiner [12] can provide summarized literature information on genes but it is
limited when finding relations between two genes only. In addition, it returns a few
hundred sentences as the summary. Shatkey et al. [11] suggested a system, which
attempts to find functional relations among genes on a genome-wide scale. However,
this system requires the user to specify a representative document for each gene which
describes the gene very well. Looking for the representative document may take a lot
of time, effort and knowledge on the part of the user. In addition, as genes have
multiple biological functions, it is very rare to find a document that covers all aspects
of a gene across various biological domains. GEISHA [3] is based on the comparison
of the frequency of abstracts linked to different gene clusters. Interpretation by the
end user of the biological meaning of the terms is facilitated by embedding them in

 A Coherent Biomedical Literature Clustering and Summarization Approach 377

the corresponding significant sentences and abstracts and by establishing relations
with other, equally significant terms.

3 The Proposed Approach: CSUGAR

We present a novel coherent document clustering and summarization approach, called
Clustering and SUmmarization with GrAphical Representation for documents
(CSUGAR). The proposed approach consists of two components, document clustering
and text summarization as shown in Figure 1. Each step is discussed in detail below;
see the circled numbers in Figure 1. Note the steps 1 to 3 correspond to document
clustering and the steps 4 to 6 correspond to text summarization.

D1

A J
E

B C H

D2

L
S

N O

Q

D3

A J
E

G

I

D4

L
S

Q

M T P

Dn

D1

D2

D3

D4

making an ontology-enriched graphical representation for documents
graph clustering for a graphical representation of documents
assigning documents to clusters based on the document cluster models

Dn

{S1, S2, S3, S4, S5, S6, , Sm}

S1

S2

S3

Sm

D1 D3 Dn

S4S5

S6

...

Summary

making ontology-enriched graphical representations for each sentence
constructing Text Semantic Interaction Network (TSIN)
selecting significant text contents for summary

Fig. 1. The Dataflow of the CSUGAR

Step1 - Ontology-enriched Graphical Representation for Documents through
Concept Mapping
The idea of the use of ontology-enriched graphical representation for documents for
document clustering was first introduced in our previous work [15]. Here, we briefly
introduce the graphical representation method.

The first step of all document clustering methods is to convert documents into a
proper format. Since we recognize documents as a set of concepts that have their
complex internal semantic relationships, we represent each document as a graph
structure using the MeSH ontology. The primarily motivations behind the graphical
representation of documents are the following. First, the graphical representation of
documents is a very natural way to portray the contents of documents because the
semantic relationship information about the concepts in documents remains on the
representation while the vector space representation loses all the information. Second,
the graphical representation method provides document representation independence.

378 I. Yoo, X. Hu, and I.-Y. Song

This means that the graphical representation of a document does not affect other
representations. In the vector space representation, the addition of a single document
usually requires the changes of every document representation. Third, the graphical
representation guarantees better scalability than vector space model. Because a
document representation is an actual data structure on text processing, its size should
be as small as possible for better scalability. As the number of documents to be
processed increases, a corpus-level graphical representation at most linearly expands
or keeps its size with only some changes on edge weights, while a vector space
representation (i.e. document*word matrix) at least linearly grows or increases by n*t
where n is the number of documents and t is the number of distinct terms in
documents. For the detailed description about the graphical representation method for
documents, refer to [15].

Step 2 - Graph Clustering for a Graphical Representation of Documents
A number of phenomena or systems, such as the Internet [2] have been modeled as
networks or graphs. Traditionally those networks were interpreted with Erdos &
Rényi’s random graph theory, where nodes are randomly distributed and two nodes
are connected randomly and uniformly (i.e. Gaussian distribution) [4]. However,
researchers have observed that a variety of networks such as those mentioned above,
deviate from the random graph theory [1] in that a few most connected nodes are
connected to a high fraction of all nodes (there are a few hub nodes). However, these
hub nodes cannot be explained with the traditional random graph theory. Recently,
Barabasi and Albert introduced the scale-free network [2]. The scale-free network can
explain the hub nodes with high degrees because its degree distribution decays as a
power law, γ−kkP ~)(, where P(k) is the probability that a vertex interacts with k
other vertices and is the degree exponent [2].

Recently, Ferrer-Cancho and Solé have observed that the graph connecting words
in English text follows a scale-free network [5]. Thus, the graphical representation of
documents belongs to a highly heterogeneous family of scale-free networks. Our
Scale Free Graph Clustering (SFGC) algorithm is based on the scale-free nature (i.e.
the existence of a few hub vertices (concepts) in the graphical representation). SFGC
starts detecting k hub vertex sets (HVSs) as the centroids of k graph clusters and then
assigns the remaining vertices to graph clusters based on the relationships between the
remaining objects and k hub vertex sets. For the detailed description of SFGC
algorithm, refer to [15].

Step3 - Model-based Document Assignment
In this section, we explain how to assign each document to document clusters. In
order to decide which document belongs to which document cluster, CSUGAR
matches the graphical representation of each document with each of the graph clusters
as models. Here, we might adopt graph similarity mechanisms, such as edit distance
(the minimum number of primitive operations for structural modifications on a
graph). However, these mechanisms are not appropriate for this task because
individual document graphs and graph clusters are too different in terms of the
number of vertices and edges. As an alternative to graph similarity mechanisms we

 A Coherent Biomedical Literature Clustering and Summarization Approach 379

take a vote mechanism. This mechanism is based on the classification (HVS or non-
HVS) of the vertices in the graph clusters according to their salient scores. This
classification leads to different votes. To this end, each vertex of each individual
document graph casts two different numbers of votes for document clusters based on
whether the vertex belongs to HVS or non-HVS. Each document is assigned to the
document cluster that has the majority of votes in the document clusters.

The next three steps correspond to text summarization. Text summarization is to
condense information in a set of documents into a concise text. This text
summarization problem has been addressed by selecting and ordering sentences in
documents based on a salient score mechanism. We address the problem by analyzing
the semantic interaction of sentences (as summary elements). This semantic structure
of sentences is called Text Semantic Interaction Network (TSIN), where vertices are
sentences. We select sentences (vertices in the network) as summary elements based
on degree centrality. Unlike traditional approaches, we do not use linguistic features
for summarization for MEDLINE abstracts since they usually consist of only single
paragraphs.

Step 4 - Making Ontology-enriched Graphical Representations for Each
Sentence
The first step of the graphical representation for sentences is basically the same as the
graphical representation method for documents except concept extension and
individual graph integration. In this step the concepts in sentences are extended using
the relationships in relevant document cluster models rather than the entire concept
hierarchy. In other words, we extend concepts within relevant semantic field.

Step 5 - Constructing Text Semantic Interaction Network (TSIN)
The key process of text summarization is how to select “salient” sentences (or
paragraphs in some approaches) as summary elements. We assume that the sentences
becoming summary have the strong semantic relationships with other sentences
because summary sentences cover the main points of a set of documents and comprise

Fig. 2. Edit Distance between Two Graphical Representations of D1 and D2

380 I. Yoo, X. Hu, and I.-Y. Song

a condensed version of the set. In order to represent the semantic relationship among
sentences, we construct Text Semantic Interaction Network (TSIN), where vertices
are sentences, edges are the semantic relationship between them, and edge weights
indicate the degree of the relationships.

In order to deal with the semantic relationships between sentences and calculate the
similarities (as edge weight in the network) between them, we use edit distance
between the graphical representations of sentences. The edit distance between G1 and
G2 is defined as the minimum number of structural modification required to become
G1 into G2, where structural modification is one of vertex insertion, vertex deletion,
and vertex update. For example, the edit distance between the two graphical
representations of D1 and D2 in Figure 2 is 5.

Step 6 - Selecting Significant Text Contents for Summary
A number of approaches have been introduced to identify “important” nodes
(vertices) in networks (or graphs) for decades. These approaches are normally
categorized into degree centrality based approaches and between centrality based
approaches. The degree centrality based approaches assume that nodes that have more
relationships with others are more likely to be regarded as important in the network
because they can directly relate to more other nodes. In other words, the more
relationships the nodes in the network have, the more important they are. The
betweenness centrality based approaches views a node as being in a favored position
to the extent that the node falls on the geodesic paths between other pairs of nodes in
the network [6]. In other words, the more nodes rely on a node to make connections
with other nodes, the more important the node is.

These two approaches have their own advantages and disadvantages. For example,
betweenness centrality based approaches yield better experiment results to find cluster
centroids than other relevant approaches, while they require cubic running times so
that they are not appropriate for very large graphs. Degree centrality based approaches
have been criticized because they only take into account the immediate relationships
for each node while they require the linear running time and provide comparable
output quality with betweenness centrality based approaches.

To this end, we adopt degree centrality to measure the centrality of sentences in
TSIN because of its linear computational time. In order to overcome its
disadvantage, mentioned above, we measure, for each node, the semantic
relationships with all other nodes (i.e., pairwise similarities for every pair of
nodes) so that both immediate and distant relationships that each node has are
considered while using degree centrality.

4 Experimental Evaluation

In order to measure the effectiveness of CSUGAR, we conducted extensive
experiments on public MEDLINE abstracts. For the extensive experiments, first we
collected document sets related to various diseases from MEDLINE. We use

 A Coherent Biomedical Literature Clustering and Summarization Approach 381

“MajorTopic” tag along with the disease-related MeSH terms as queries to
MEDLINE. After retrieving the base data sets, we generate various document
combinations whose numbers of classes are 2 to 9 by randomly mixing the document
sets. The document sets used for generating the combinations are later used as answer
keys on the performance measure. For the detailed description about the document
sets, the evaluation method, and the experimental setting, refer to [15].

Document Clustering
Because the full detailed experiment results are too big to be depicted in this paper,
we average the clustering evaluation metric values and show the standard deviations
() for them to indicate how consistent a clustering approach yields document clusters
(simply, the reliability of each approach). The would be a very important document
clustering evaluation factor because document clustering is performed in the
circumstance where the information about documents is unknown. Table 1
summarizes the statistical information about clustering results. From the table, we
notice the following observations:

• CSUGAR outperforms the nine document clustering methods.
• CSUGAR has the most stable clustering performance regardless of test

corpora, while CLUTO Bisecting K-means and K-means do not always show
stable clustering performance.

• Hierarchical approaches have a serious scalability problem.
• STC and the original Bisecting K-means have a scalability problem.
• MeSH Ontology improves the clustering solutions of STC.

We observe that CSUGAR has the best performance, yields the most stable
clustering results and scales very well. More specifically, CSUGAR shows 45%
cluster quality improvement and 72% clustering reliability improvement, in terms of
MI, over Bisecting K-means with the best parameters.

Table 1. Summary of Overall Experiment Results on MEDLINE Document Sets

STC CLUTO Bisecting
K-means

CSUGAR

word
strings

concept
strings

K-
means

Original
Bisecting
K-means

[10] Largest LOS

MI
: 0.429
: 0.238

: 0.359
: 0.149

: 0.128
: 0.148

: 0.395
: 0.193

: 0.161
: 0.139

: 0.096
: 0.112

: 0.053
: 0.031

Purity
: 0.601
: 0.214

: 0.731
: 0.098

: 0.932
: 0.080

: 0.666
: 0.154

: 0.918
: 0.064

: 0.944
: 0.056

: 0.947
: 0.030

F-
measure

: 0.499
: 0.285

: 0.512
: 0.198

: 0.828
: 0.206

: 0.532
: 0.236

: 0.780
: 0.180

: 0.880
: 0.139

: 0.926
: 0.062

LOS: selecting the cluster (to be bisected) with the least overall similarity and Largest:
selecting the largest cluster to be bisected. MI: the smaller, the better clustering quality. Purity
and F-measure: the bigger, the better clustering quality

382 I. Yoo, X. Hu, and I.-Y. Song

Text Summarization
Table 2 shows the experiment result for text summarization for a document cluster
called “Alzheimer Disease”; due to the page limitation only a document cluster is
presented. We believe that its document cluster model in HVS and Top 7 sentences as
summary significantly help users understand the document cluster.

Table 2. Experiment Results for Text Summarization: For the Alzheimer Disease document
cluster its document cluster model and key sentences as summary are shown

Document Cluster
Model (HVS sets)

Top 7 Sentences as
Summary for the
Document Cluster

• Tau protein extracted from filaments of familial multiple
system tauopathy with presenile dementia shows a minor 72-
kDa band and two major bands of 64 and 68 kDa that contain
mainly hyperphosphorylated four-repeat tau isoforms of 383
and 412 amino acids.

• The central pathological cause of Alzheimer disease (AD) is
hypothesized to be an excess of beta-amyloid (Abeta) which
accumulates into toxic fibrillar deposits within extracellular
areas of the brain.These deposits disrupt neural and synaptic
function and ultimately lead to neuronal degeneration and
dementia

• In dementia of Alzheimer type (DAT), cerebral glucose
metabolism is reduced in vivo, and enzymes involved in
glucose breakdown are impaired in post-mortem brain tissue

• Alzheimer's disease (AD), a progressive, degenerative
disorder of the brain, is believed to be the most common
cause of dementia amongst the elderly

• The fundamental cause of Alzheimer dementia is proposed to
be Alzheimer disease, i.e. the neurobiological abnormalities in
Alzheimer brain

• Alzheimer's disease (AD) is a degenerative disease of the
brain, and the most common form of dementia

• Regional quantitative analysis of NFT in brains of non-
demented elderly persons: comparisons with findings in
brains of late-onset Alzheimer's disease and limbic NFT
dementia.

 A Coherent Biomedical Literature Clustering and Summarization Approach 383

5 Conclusion

The primary contribution of this paper is we introduce a coherent biomedical
literature clustering and summarization approach that takes advantage of ontology-
enriched graphical representations of documents. Our approach significantly improves
the quality of document clusters and understandability of documents through
summaries for each document cluster.

Acknowledgments. This research work is supported in part from the NSF Career
grant (NSF IIS 0448023) NSF CCF 0514679 and the PA Dept of Health Tobacco
Settlement Formula Grant (#240205, 240196).

References

1. Amaral, L.A.N., Scala, A., Barthélémy, M. and Stanley, H.E. Proc. Nat. Ac. Sci USA, 97,
2000, 11149-11152.

2. Barabasi, A.L., Albert, R. Emergence of scaling in random networks, Science, 286, 1999, 509.
3. Blaschke C, Oliveros JC, Valencia A (2001) Mining Functional Information Associated

With Expression Arrays. Funct. Integr. Genomics, Vol. 1, No. 4, pp. 256-268
4. Erdos, P. and Rényi, A. On the Evolution of Random Graphs. Publ. Math. Inst. Hungar.

Acad. Sci. 5, 1960, 17-61.
5. Ferrer-Cancho, R., and Solé, R.V., The small world of human language. In Proceedings of

the Royal Society of London, 268, 1482, 2001, 2261–2266.
6. Hanneman, R. A., Riddle, M. 2005. Introduction to social network methods [online].

University of California. Available from: http://faculty.ucr.edu/~hanneman/
7. Hotho, A., Maedche A., and Staab S. Text Clustering Based on Good Aggregations.

Künstliche Intelligenz (KI), 16, 4, 2002, 48-54.
8. Iliopoulos I, Enright AJ, Ouzounis CA (2001). Textquest: document clustering of Medline

abstracts for concept discovery in molecular biology. PSB 2001, pp. 384-395
9. Luhn, H.P. (1958) The automatic creation of literature abstracts. IBM Journal of Research

and Development, Vol. 2, No. 2, pp. 159-165
10. Shatkey, H., Edwards, S., Wilbur, W.J. and Boguski, M. (2000) Genes, Themes and

Microarrays: Using Information Retrieval For Large-Scale Gene Analysis. The 8th
International Confer-ence on Intelligent Systems Molecular Biology (ISMB 2000), La Jolla,
pp. 317-328

11. Steinbach, M., Karypis, G., and Kumar, V. A Comparison of Document Clustering
Techniques. Technical Report #00-034. University of Minnesota, 2000.

12. Tanabe, L., Scherf, U., Smith, L.H., Lee, J.K., Hunter, L., and Weinstein, J.N (1999)
MedMiner: An Internet Text-Mining Tool for Biomedical Information, with Application to
Gene Expression Profiling. Biotechniques, Vol. 27, No. 6, pp. 1210-1217

13. van Rijsbergen, C. J. Information Retrieval, 2nd edition, London: Buttersworth, 1979.
14. Willett, P. Recent trends in hierarchical document clustering: A critical review.

Information Processing & Management, 24, 5, 1988, 577-597.
15. Yoo I., Hu X., and Song I.Y., Clustering Ontology-enriched Graph Representation for

Biomedical Documents based on Scale-Free Network Theory, accepted in the IEEE
Conference on Intelligent Systems (IEEE IS’06), Sept 4-6, 2006.

16. Zamir, O., and Etzioni O. Web Document Clustering: A Feasibility Demonstration, In
Proceedings of SIGIR 98, 1998, 46-54.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 384 – 393, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Extraction for Creating a Lexical Repository
of Abbreviations in the Biomedical Literature

Min Song1, Il-Yeol Song2, and Ki Jung Lee2

1 Information Systems Department, New Jersey Institute of Technology
University Heights, Newark, NJ 07102-1982, 01,

min.song,@njit.edu
2 College of Information Science & Technology, Drexel University

Philadelphia, PA 19104
(215) 895-2474, 01

{song, leekijung}@drexel.edu

Abstract. The sheer volume of biomedical text is growing at an exponential
rate. This growth creates challenges for both human readers and automatic text
processing algorithms. One such challenge arises from common and
uncontrolled usages of abbreviations in the biomedical literature. This, in turn,
requires that biomedical lexical ontologies be continuously updated. In this
paper, we propose a hybrid approach combining lexical analysis techniques and
the Support Vector Machine (SVM) to create an automatically generated and
maintained lexicon of abbreviations. The proposed technique is differentiated
from others in the following aspects: 1) It incorporates lexical analysis
techniques to supervised learning for extracting abbreviations. 2) It makes use
of text chunking techniques to identify long forms of abbreviations. 3) It
significantly improves Recall compared to other techniques. The experimental
results show that our approach outperforms the leading abbreviation algorithms,
ExtractAbbrev and ALICE, at least by 6% and 13.9%, respectively, in both
Precision and Recall on the Gold Standard Development corpus.

1 Introduction

In parallel with the growth of the increase in the biomedical literature, the growth in
biomedical terminology has been significantly increased. Since multiple names and
abbreviations exist in many biomedical entities, it is desirable to have an automated
means to collect these synonyms and abbreviations to help users conduct literature
searches. In addition, automatic extraction of synonyms and abbreviations would
facilitate text mining tasks if all of the synonyms and abbreviations for an entity could
be mapped to a single term representing the context. A typical task in this line of
research on information extraction is to uncover gene name synonyms and biomedical
term abbreviations [4].

Understanding of abbreviations in documents is a challenging task for human
readers and computers, particularly in the situation where large amounts of data to be
digested increases at an exponential rate. The task of abbreviation extraction was
reported to affect knowledge-intensive systems, such as information retrieval systems
and information systems in the biomedical domains [2].

 Automatic Extraction for Creating a Lexical Repository of Abbreviations 385

An abbreviation database would help users to understand and digest the content
provided in the biomedical domain if the database lists abbreviations together with
their senses and it is automatically updated periodically. Constructing abbreviation
databases manually is a time-consuming and labor intensive task. In addition, manual
maintenance and further extension are increasingly complex. As an effective and
alternative approach, automatic construction of an abbreviation database has been
proposed [2; 7].

There are several compelling reasons for why abbreviation extraction is a difficult
task. First, an automatic method to associate an abbreviation to its corresponding
expansion in the context is required, with an assumption that the authors define
abbreviations when they are first introduced in a specific domain for the less well-
known senses of abbreviations. Second, well-known senses of abbreviations are not
always defined in the document where abbreviation is presented. Third, it requires a
method to identify senses in documents, a method to group textual variants of the
same sense together, and a method to link them to the proper sense in the
corresponding sense inventory. Additionally, abbreviations are highly ambiguous: one
abbreviation may represent dozens of senses. A method to resolve the sense
ambiguity is needed.

In this paper, we propose a hybrid approach combining lexical analysis techniques
and the Support Vector Machine (SVM) to create an automatically generated and
maintained lexicon of abbreviations. The proposed technique is differentiated from
others in the following aspects. 1) It incorporates lexical analysis techniques to
supervised learning for extracting abbreviations. 2) It makes use of text chunking
techniques to identify long forms of abbreviations. 3) It significantly improves recall
compared to other techniques.

The rest of this paper is organized as follows: Section 2 summarizes the related
work. Section 3 describes the overall architecture and methodology of our techniques.
Section 4 describes the evaluation. Section 5 concludes the paper.

2 Related Work

In this section, we review existing studies on extracting abbreviations. Many studies
use rule based algorithms and detection of parentheses as the core part of extracting
valid abbreviated terms and matching them with appropriate expanded expressions.

Chang et al. [3] use an algorithm with a logistic regression technique to extract
abbreviations. Their algorithm scores abbreviation expansions based on the similarity
to a training set of human-annotated abbreviations from MEDLINE abstracts. Their
system locates candidate abbreviations by identifying parentheses and set basis of its
approach on the resemblance to a training set of human-annotated abbreviations. The
algorithm is reported to have a maximum recall of 83% at 80% precision. Major
limitations of their approach are that an abbreviation must be enclosed in parentheses
and a set of rules applied to abbreviation extraction was not comprehensive compared
to other rule-based extraction techniques.

Yu et al. [10] present a system (i.e., AbbRE) with a rule-based algorithm. Their
system contains pattern-matching rules for mapping abbreviations to their full forms
in biomedical text. AbbRE is reported to have an average 70% recall and 95%

386 M. Song, I.-Y. Song, and K.J. Lee

precision for defined abbreviations. However, their experimental setup was limited to
defined abbreviations which constitute only 25 percent of total abbreviations in
biomedical articles as their own statistics identify.

Liu and Friedman [8] propose an algorithm based system to extract a set of related
terms from the biomedical literature. The recall of the algorithm was around 88.5%,
and its precision was 96.3%. The limitation of their approach is that the system is not
suitable for identifying expansions that occur only once in a text.

Schwartz and Hearst [9] report a system with a simple algorithm based on the use
of parentheses and ad hoc rules for identifying abbreviations’ definitions in
biomedical texts. It, first, extracts “short form-long form” pair candidates from a text
and then identifies the correct long-form from the sentence that the paired short-form
is enclosed. Their simple algorithm processes the extraction beginning from the end
of both the short-form and the long-form, moves from right to left, checking the
shortest long-form that matches the short-form. In order to be a valid extraction, each
and every letter in the short-form must match a character in the long-form, while the
matched characters in the long-form must be in the same order as the characters in the
short-form. The algorithm has an experimental result of 82% of recall and a precision
of 96%.

Ao and Takagi [1] describe an ad hoc algorithm called ALICE. ALICE identifies
and extracts pairs of abbreviations and their expansions by using parentheses-
searching and heuristic pattern-matching rules. In addition to the strategies used by
Yu et al. [11] and Schwartz and Hearst [9], this algorithm uses manually expanded
patterns, rules, and stop word lists. The authors argue that their system can potentially
validate 320 abbreviation-expansion patterns as combinations of the rules. It is
reported that the system achieved 95% recall and 97% precision on randomly selected
titles and abstracts from the MEDLINE database. ALICE is reported to be limited to
disambiguate synonyms and expansions.

Major drawback of presented studies is that they depend on heuristic rule for
extraction of abbreviations and matching them with proper expanded expressions. By
adopting a technique that identifies phrase groups by the SVM-based text chunking
technique, our approach of abbreviation extraction is not limited to structural
dependency of algorithms that looks for parenthetical expressions in a sentence.
Moreover, pattern matching algorithm based on distance calculation provides more
scalable process of abbreviation-expansion matching.

3 The Hybrid Abbreviation Extraction System

In this section, we describe the proposed hybrid abbreviation extraction system, called
AbbrevExtractor, combining the Support Vector Machine-based noun chunking
technique with pattern matching techniques. In Section 3.1, we present the system
architecture of AbbrevExtractor. In Section 3.2, we discuss the noun chunking
technique. Finally, Section 3.3 explains our abbreviation extraction algorithm.

3.1 The System Architecture

The system architecture of our hybrid abbreviation extraction system, AbbrevExtractor,
is illustrated in Fig. 1. AbbrevExtractor consists of five major components: 1) data

 Automatic Extraction for Creating a Lexical Repository of Abbreviations 387

reader, 2) sentence parser, 3) noun chunker, 4)abbreviation matcher, 5) best-match
selector component.

The Noun Chunker component applies a SVM-based text chunking technique. A
typical text chunking algorithm seeks a complete partitioning of a sentence into
chunks of different types [6]. Since our chunking technique requires identifying
POS (Part-Of-Speech) tags for individual words, we incorporate Brill’s POS
Tagger into AbbrevExtractor. Brill's technique is one of the high quality POS
tagging techniques.

The Best-Match Selector component identifies the correct long form from a set of
candidate long forms within the sentence by computing the proximity of candidate
long forms to a short form.

Fig. 1. System Architecture of AbbrevExtrator

The outline of the approach described in Figure 1 is as follows:
1) A query is submitted to Pubmed to retrieve MEDLINE documents.
2) A set of retrieved documents is read into AbbrevExtractor in the XML format.
3) Sentences are identified and parsed by the Sentence Parser component.
4) Each sentence is split into phrase groups by the SVM-based noun chunking

component.
5) Short forms and candidate long forms are identified by the pattern matching-

based Abbreviation Matcher component.

388 M. Song, I.-Y. Song, and K.J. Lee

6) Correct long forms are determined and selected from candidate long forms by
the best match selector component.

7) A pair of a short form and a long form is inserted into the database of
Ontologies for abbreviations.

3.2 Sentence Chunking by SVM component

Text chunking is defined as dividing a text into syntactically correlated parts of words
[6]. Chunking is recognized as a series of processes – first, identifying proper chunks
from a sequence of tokens, and second, classifying these chunks into some
grammatical classes. Major advantages of using text chunking over full parsing
techniques are that partial parsing such as text chunking is much faster, more robust,
yet sufficient for abbreviation extraction.

Support Vector Machine (SVM) based text chunking was reported to produce the
highest accuracy in the text chunking task [6]. The SVMs-based approach such as
other inductive-learning approaches takes as input a set of training example and finds
a classification function that maps them to a class. SVMs are known to robustly
handle large features [5]. This makes them an ideal model for abbreviation extraction.
SVMs are particularly useful for real world data sets that often contain inseparable
data points. Although training is generally slow, the resulting model is usually small
and runs quickly as only the patterns that help define the function that separates
positive from negative examples. In addition, SVMs are binary classifiers, and thus
we need to combine several SVM models to obtain a multiclass classifier. Due to the

Fig. 2. A Procedure of Sentence Parsing (JJ denotes adjective, IN denotes preposition, DT
denotes determiner, CD cardinal number, NN denotes singular noun, NNP denotes proper
noun, VBZ and VBN denote verb, RB denotes adverb.)

 Automatic Extraction for Creating a Lexical Repository of Abbreviations 389

nature of the SVM as a binary classifier it is necessary in a multi-class task to
consider the strategy for combining several classifiers. In this paper, we use Tiny
SVM [6] in that Tiny SVM performs well in handling a multi-class task.

Figure 2 illustrates the procedure of converting a raw sentence from PubMed to the
phrase-based units grouped by the SVM text-chunking technique. The top box shows
a sentence that is part of abstracts retrieved from PubMed. The middle box illustrates
the parsed sentence by POS taggers. The bottom box shows the final conversion made
to the POS tagged sentence by the SVM based text chunking technique.

3.3 Determination of Correct Short and Long Forms

AbbrevExtractor selects a short and candidate long forms within noun phrase groups.
Given this prerequisite, AbbrevExtractor applies pattern matching-based rules to
identify short forms and long forms, similar to ExtractAbbrev and ALICE.

In ExtractAbbrev, short forms are selected if the following conditions are satisfied:
1) it consists of at most two terms, and its length is between two to ten characters, at
least one of the characters is a letter, and the first character is alphanumeric. Finding
correct long forms is based on starting from the end of both the short form and the
long form, moving right to left, trying to find the shortest long form that matches the
short form. In ALICE, short forms are determined by the rules of nine discard
conditions and four acceptance conditions. Long forms are selected by five discard
conditions and 16 templates.
 Compared to these ExtractAbbrev and ALICE, AbbrevXtractor identifies correct
short and long forms within noun phrase groups. The selection rules for short forms
are adapted from ExtractAbbrev [9]. The selection rules for candidate long forms are
as follows: 1) The first word of the candidate long form is not in the first word list of
candidate long forms. 2) The candidate long forms do not consist of only one word in
the long form list. 3) The number of words in a noun group less than 10. 4) The
characters in short forms are matched in capitalized characters in candidate long
forms. 5) Candidate long forms are one word and the name of its POS is CD.

Once all the candidate long forms are identified, we compute distance between
short form and candidate long forms, based on order it is presented in the sentence.
Figure 3 shows how candidate long forms and a short form are located in a sentence.
A candidate long form in the shortest distance with a short form is selected as the best
matched long form.

Fig. 3. Topology of Short and Candidate Long forms

390 M. Song, I.-Y. Song, and K.J. Lee

4 Evaluation

In this section, we present the data collections used for the experiments, the
experimental methods, and the other abbreviation extraction techniques for
comparison. To evaluate AbbrevExtractor, we compare it with two other query
expansion techniques: 1) ExtractAbbrev, a simple pattern-matching rule-based, 2)
ALICE, a heuristic rule-based. Performance of these techniques is measured by the
precision, recall, and F-measure. The data used for experiments are the Gold Standard
Development and Evaluation corpus and ALICE corpus.

4.1 Data Collection

To evaluate our technique, we use ALICE corpus [1]. ALICE corpus was built with
1000 abstracts with titles that were randomly selected from the MEDLINE (PMID:
12500000 – 12599999). ALICE corpus was manually tagged with pairs of abbreviations
and their expansions by experts. There were 1095 tagged abbreviation-expansion pairs.

We also use the Medstract Gold Standard Evaluation Corpus. The gold standard was
created to help evaluate the algorithms used for information extraction and data mining
in bioinformatics for the task of acronym identification. The gold standard is publicly
available as an XML file at <http://www.medstract.org/gold-standards. html>.

4.2 ExtractAbbrev

We chose ExtractAbbrev to compare the performance of our technique in extracting
abbreviations from MEDLINE. ExtractAbbrev is a pattern matching-based extraction
system. It implements a simple algorithm for extracting abbreviations and their
definitions from the biomedical text. It extracts abbreviation-definition candidates
adjacent to parentheses. It finds correct definitions by matching characters in the
abbreviation to characters in the definition, starting from the right. The first character
in the abbreviation must match a character at the beginning of a word in the definition.

4.3 ALICE

We also compared our technique with ALICE [1]. ALICE is a rule-based extraction
system that builds by searching parentheses and extracting pairs of abbreviations and
their expansions by using heuristic pattern-matching rules. ALICE is composed of
three phases, that is, the Inner Search (IS), the Outer Extraction (OE), and the Validity
Judgment (VJ). The IS phase is for searching a candidate abbreviation and
recognizing whether the candidate is an abbreviation or not, the OE phase is for
extracting of its expansion, and the VJ phase is for judging the propriety of the pair of
an abbreviation and its expansion.

4.4 Experimental Results

We conducted a set of experiments to measure the performance of the three
techniques: 1) ExtractAbbrev, 2) ALICE, and 3) AbbrEx. F-measure combines
precision and recall in order to provide a single number measurement for information
extraction systems (1).

 Automatic Extraction for Creating a Lexical Repository of Abbreviations 391

RPb

PRb
bF

+

+=
2

)12(
 (1)

Here, P is precision and R is recall. If b=0, F becomes precision. If b= ∞ , F becomes
recall. Last, b=1 means that recall and precision are equally weighted. If b=0.5, it
means that recall is half as important as precision. If b=2.0, it means recall is twice as
important as precision. Because 1,0 ≤≤ RP , a larger value in the denominator

means a smaller value overall. We also use recall and precision which are prevalent
evaluation methods in IE.

Table 3, 4 and 5 respectively shows the overall performance of the three algorithms
on Gold Standard Development and Evaluation data and ALICE corpus. The results
indicate the improvements in precision and recall of each algorithm compared to its
preceding algorithm. Among the algorithms, AbbrevExtractor in precision and recall
shows the best improvement among the algorithms.

Table 3 shows the results of the performance among these three techniques on the
Gold Standard Development data. As shown in Table 3, AbbrevExtractor outperforms
the other two techniques from 8.8% to 13.2% better in F-measure. In precision,
AbbrevExtractor is higher than the other two by 13.9% and 19.4%. In recall,
AbbrevExtractor is higher than the other two by 6% and 9%. The second best
technique is ALICE. ExtractAbbrev turns out to be ranked last.

Table 3. Results Obtained Using the Gold Standard Development Corpus

Gold Standard Development Corpus

Algorithm

Recall Precision F-measure
ExtractAbbrev 0.61 0.58 0.59
ALICE 0.63 0.62 0.62
AbbrevXtractor 0.67 0.72 0.68

Table 4 demonstrates that AbbrevExtractor outperforms the other two techniques
from 4.2% to 5.6% higher in F-measure. In precision, AbbrevExtractor is higher than
the other two by 3.8% and 14%. In recall, AbbrevExtractor is higher than the other
two by 7.2% and 8.7%.

Table 4. Results Obtained Using the Gold Standard Development Corpus

Gold Standard Evaluation Corpus

Algorithm

Recall Precision F-measure
ExtractAbbrev 0.64 0.76 0.69
ALICE 0.63 0.68 0.68
AbbrevXtractor 0.69 0.79 0.72

392 M. Song, I.-Y. Song, and K.J. Lee

Table 5 shows the results of the performance among these three techniques on
ALICE data. As shown in Table 5, AbbrevExtractor outperforms ExtractAbbrev by
5.2% in F-measure. In precision, AbbrevExtractor outperforms ExtractAbbrev by
4.1%. In terms of F-measure and precision, AbbrevExtractor is equivalent to ALICE.
In recall, AbbrevExtractor outperforms the other two by 2% and 8.2%.

Table 5. Results Obtained Using Gold Standard Development Corpus

ALICE Corpus Algorithm

Recall Precision F-measure
ExtractAbbrev 0.89 0.93 0.91
ALICE 0.95 0.97 0.96
AbbrevXtractor 0.97 0.97 0.96

Overall, the results of the experiments show that AbbrevEXtractor achieves the
best performance in Precision, Recall and F-measure.

5 Conclusion

We proposed a novel effective abbreviation extraction (AE) technique, called
AbbrevExtractor. AbbrevExtractor is a hybrid AE technique that applies the SVM-
based noun chunking with pattern matching-based rules to the abbreviation extraction
problem. Our approach automatically identifies pairs of best long forms with its short
forms (i.e., abbreviations).

The proposed technique is differentiated from others in the following aspects. 1) It
incorporates lexical analysis techniques to supervised learning for extracting
abbreviations. 2) It makes use of text chunking techniques to identify long forms of
abbreviations. 3) It significantly improves recall compared to other techniques.

We also demonstrated our approach consistently performs better than the other two
well-received systems for abbreviation extraction, ExtractAbbrev and ALICE. In
terms of F-measure, AbbrevExtractor performed better than the other two by 4.1% to
14.1%. In terms of Precision and Recall, our technique outperforms ExtractAbbrev
and ALICE by 3.8% to 19.4% and 2% to 9%, respectively.

As a follow-up study, we are developing an abbreviation server that connects to the
PubMed server to retrieve MEDLINE records and extract abbreviations from the result
sets. We are also conducting a series of experimental tests with a much bigger size of
data to investigate whether the size of data influences on accuracy of extraction.

References

1. 1. Ao, H. and Takagi, T. (2005) ALICE: An algorithm to extract abbreviations from
MEDLINE, Journal of the American Medical Informatics Association, 12: 576-586.

2. Aronson, A.R. (2001) Effective Mapping of Biomedical Text to the UMLS Metathesaurus:
the MetaMap Program, Proceedings of the AMIA Symposium: 17-21.

 Automatic Extraction for Creating a Lexical Repository of Abbreviations 393

3. Chang, J.T., Schütze, H. and Altman, R.B. (2002) Creating an Online Dictionary of
Abbreviations from MEDLINE, The Journal of the American Medical Informatics
Association, 9: 612-620.

4. Cohen, A. and Hersh, W. (2005) A Survey of Current Work in Biomedical Text Mining,
Briefing in Bioinformatics, 6: 57-71.

5. Cortes, C. and Vapnik, V. (1995) Support-vector Networks, Machine Learning, 20:
273-297.

6. Kudo, T. and Matsumoto, Y. (2000) Use of Support Vector Learning for Chunk
Identification, Proceedings of the CoNLL-2000 and LLL-2000: 142-144.

7. Liu, H., Aronson, A.R. and Friedman, C. (2002) A Study of Abbreviations in MEDLINE
Abstracts, Proceedings of the AMIA Annual Fall Symposium: 64-69.

8. Liu, H. and Friedman, C. (2003) Mining Terminological Knowledge in Large Biomedical
Corpora, Proceedings of the Pacific Symposium on Biocomputing, 8: 415-426.

9. Schwartz, A.S. and Hearst, M.A. (2003) A simple algorithm for identifying abbreviation
definitions in biomedical text, Proceedings of the Pacific Symposium on Biocomputing, 8:
451-462.

10. Yu, H., Hripcsak, G. and Friedman, C. (2002) Mapping abbreviations to full forms in
biomedical articles, Journal of the American Medical Informatics Association, 9: 162-172.

11. Yu, Z., Tsuruoka, Y. and Tsujii, J. (2003) Automatic Resolution of Ambiguous
Abbreviations in Biomedical Texts using Support Vector Machines and One Sense Per
Discourse Hypothesis, Proceedings of the SIGIR.

Priority-Based k-Anonymity Accomplished by
Weighted Generalisation Structures

Konrad Stark1, Johann Eder2, and Kurt Zatloukal1

1 Medical University Graz, Institute of Pathology, Auenbruggerplatz 25, A-8036 Graz
2 University of Vienna, Department of Knowledge and Business Engineering,

Rathausstrae 19/9 A-1010 Wien

Abstract. Biobanks are gaining in importance by storing large collec-
tions of patient’s clinical data (e.g. disease history, laboratory param-
eters, diagnosis, life style) together with biological materials such as
tissue samples, blood or other body fluids. When releasing these patient-
specific data for medical studies privacy protection has to be guaranteed
for ethical and legal reasons. k-anonymity may be used to ensure privacy
by generalising and suppressing attributes in order to release sufficient
data twins that mask patients’ identities. However, data transformation
techniques like generalisation may produce anonymised data unusable
for medical studies because some attributes become too coarse-grained.
We propose a priority-driven anonymisation technique that allows to
specify the degree of acceptable information loss for each attribute sepa-
rately. We use generalisation and suppression of attributes together with
a weighting-scheme for quantifying generalisation steps. Our approach
handles both numerical and categorical attributes and provides a data
anonymisation based on priorities and weights. The anonymisation al-
gorithm described in this paper has been implemented and tested on a
carcinoma data set. We discuss some general privacy protecting methods
for medical data and show some medical-relevant use cases that benefit
from our anonymisation technique.

1 Introduction

When using patient-related data in medical research, the protection of patient
privacy is of highest priority. Whenever data records containing sensitive patient
data are released, the risk of patient reidentification has to be considered and
suitable measures for data protection have to be found. To do this we use a
concept of k-anonymity [7] which assures that each record describing a person
contained in a released data set has at least k-1 data twins (similar records) in
this set. Following the concept of k-anonymity various approaches ([4], [9], [10],
[5], [6]) exist for transforming data in such a way as to avoid identification. On
the one hand generalisations are used to transform attribute values to aggregated
values depending on hierarchical structures. On the other hand, attribute values
that may unmask individuals are simply suppressed. Each of these techniques
provides privacy protection at the cost of data quality, since each transforma-
tion is associated with an information loss. This loss may be quantified [8], [2] in

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 394–404, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Priority-Based k-Anonymity 395

order to detect an anonymisation providing the least information loss. However,
the acceptable information loss may differ as the case arises. Some attributes
should be generalised as little as possible while others may be transformed to
more general values. Therefore, we propose a novel anonymisation technique
that takes into account data quality requirements. We propose a hierarchical
generalisation model that includes information loss quantifiers. Depending on
the overall degree of information loss, a suitable generalisation solution can be
found. Furthermore, the output of the anonymisation algorithm is strongly in-
fluenced by customizable priorities. By assigning priorities to attributes, the
degree of preferred anonymisation is defined. Additionally, maximal generalisa-
tion limits guarantee that the transformed data set is applicable to subsequent
processing. We use descriptive meta-data information of the data set to be re-
leased in order to check for data twins. The concept was developed in the context
of the Austrian Genome Programme GEN-AU [3] and as preliminary work for
the biobank initiative of the Medical University Graz [1]. We developed a virtual
data warehouse solution where patient data (personal data, anamnesis, lifestyle
data, clinical analysis data) and gene expression data is integrated and material-
ized in a data mart which then supports analytical queries. A critical part of this
system is the support of tissue and patient data selection and the anonymisation
of data. The released data should not allow the identification of the individual
and the anonymisation process should generate data that is still applicable for
medical research. Our anonymisation technique manages to fulfill both demands
if possible: Released records meet the k-anonymity requirement and the degree
of acceptable information loss may be specified by user-defined priorities. The
rest of the paper is organized as follows: We introduce our meta data model
in section 2 and show what kind of meta data about the released data set and
hierarchies is needed. In section 3 preprocessing work for medical data is de-
scribed. The anonymisation algorithm and its various parameters are presented
in section 4. Finally, we give a short overview of our prototype implementation
in 5 and a summary and an outlook on our future activities in 6.

2 Meta-data Model

A record set R is a table containing a set of tuples t(id, ν1, .., νn) where id is the
unique tuple id and n is the number of table attributes. Let QI be the set of
table attributes and a single attribute is denoted as αi ∈ QI. The concept of k-
anonymity [4] requires that each distinct value combination of quasi-identifying
attributes occurs at least k times in the released data (|(ν1,.., νn)| ≥ k). Hence,
we determine each distinct value combination in the following way: Let R∗ be
the multiset accomplished by the projection of [R− id]. Then an equivalence
relation ’equal values for all αi’ may be defined on R∗. That relation defines a
partition on R∗ in equivalence classes. Each equivalence class [classi] is gener-
ated for a certain attribute value combination (ν1, .., νn) and has an associated
cardinality ci counting the number of its elements. We store the set of [classi] in
the aggregated data table TAgg to check the k-anonymity constraint for a certain

396 K. Stark, J. Eder, and K. Zatloukal

attribute value combination. Each attribute αi has an associated generalisation
hierarchy that allows to transform an attribute value to a more general value.
Each transformation is denoted as generalisation step. Formally, a generali-
sation step may be defined as a function generalise : Υ → Υ ′. Record set Υ ⊆ R
is transformed to record set Υ ′ in the following way:
∀ t ∈ Υ, t = t(id, ν1, .., νn) • ∃ t′ ∈ Υ ′, t′ = t(id, ν′

1, .., ν
′
n) that satisfies following

conditions:

1. ∃ i, 1 < i < n • ν′
i = generalisedV alue(νi)

2. ∀ j �= i • ν′
j = νj

In other words, each tuple is transformed by replacing an attribute value of a
certain αi with a more general value. We distinguish between a dimension hi-
erarchy that describes the hierarchical scheme of an attribute and a member
hierarchy describing the hierarchy of attribute values. While the member hier-
archy is used to transform record values to generalised values, the dimensional
hierarchy is used for evaluation of generalisation steps.

2.1 Dimensional Hierarchy

A dimensional hierarchy is composed of generalisation levels. Let the lowest gen-
eralisation level be L0, at that level all attribute values remain unchanged. Let
Lmax be the maximal generalisation level for a certain αi. At this level, all values
of an attribute αi are combined to a single generalised value. The highest gen-
eralisation level corresponds to the suppression of the attribute, since a general
all value has as much information as a masked out attribute. Generalisations
are always associated with an information loss, since an attribute value is
transformed to a less specific value. By applying a sequence of consecutive gen-
eralisation steps, the information loss is accumulated. However, the data quality
decrease is not necessarily equal for each generalisation step along the hierarchy.
For instance, consider the generalisation of patient age values 10, 12, 16, 20. If
10 and 12 are generalised to [10-15] and 16 and 20 are generalised to [16-20], less
information is lost than by generalising all four values to [10-20]. Table 1 shows
another example from the medical research domain. Tumour staging T specifies
the size of the tumour and its local spread. Stage T is a numeric value in the
range from 1-4 combined with prefixes for subclassification, such as ’a’, ’b’, ’c’
or ’mic’. By applying two generalisation steps value classification ”1a” is trans-
formed into ”1-2”. Staging T is determined by the size of the primary tumour.
While for instance in breast cancer, tumours with a greatest dimension of 2 cm

Table 1. Staging T

”1a”, ”1b” 	→ [”1”] L0 	→ L1

”2a”, ”2b”, ”2c” 	→ [”2”] L0 	→ L1

”1”, ”2” 	→ [”1 − 2”] L1 	→ L2

Priority-Based k-Anonymity 397

are classified as T1, tumours with a greatest dimension of minimal 2 and maxi-
mal 5 cm are classified as T2. The transformation from L0 �→ L1 is of different
quality than transformation L1 �→ L2, since the difference among the subclassi-
fications ”1a”, ”1b” and ”1c” is smaller than the one among the classifications
”1” and ”2”. In order to weight data transformations we introduced a quality
criterion for each generalisation step. ϕ is an estimation metric specifying how
the goodness of information is affected by a generalisation step. It measures the
information loss for attribute αi at a certain generalisation level. We will refer
to ϕ also as penalty. It is 0 at L0 and 1 at Lmax. Information loss quantifiers
ϕj are assigned to all intermediate generalisation levels Lj , 0 < j < max. Each
attribute hierarchy has to be evaluated separately by carefully choosing ascend-
ing values that appropriately reflect the data quality at each step. Penalties are
included in the dimension hierarchy which consists of simple level relationships
modelling the generalisation levels: step(αi, LParent, LChild, ϕ). Attribute αi is
subject to an incremental informational loss when being generalised from level
Child to level Parent, whereas the total accumulated information loss compared
to L0 is given in ϕ. The accumulated information loss ϕParent for attribute αi

and level LParent is calculated as follows: Let ψ be the relative (subjectively cho-
sen) information loss between levels Parent and Child then if there is a relation
step(αi, LChild, LChild−1, ϕChild), ϕParent = ψ + ϕChild, else ϕParent = ψ. We
assume an equal information loss for each generalisation level. That is, penalties
need not be included in the member hierarchy. By assigning penalties generali-
sation steps become weighted and comparable to each other. The anonymisation
algorithm is capable of searching within a weighted graph and can create gener-
alisations on basis of minimal information loss.

2.2 Member Hierarchy

Each attribute αi (αi ∈ QI) takes its values from a certain domain Di. Generally,
we distinguish two types of domains: Nominal/ordinal domains and numeric do-
mains. Depending on the type of domain different generalisation strategies are
applicable. Attributes with nominal or ordinal data types are typically gener-
alised using a predefined generalisation hierarchy. Attributes of numeric domain
type may also be generalised with a predefined (interval-based) hierarchy. Addi-
tionally, numeric values may be mapped to categories (e.g.: blood pressure) or
they could be aggregated dynamically without predefined hierarchies. A set of
relations model a member hierarchy for one attribute. Formally, a hierarchical
member relation is defined as follows: parent(αi, Parent, Child). The attribute
identifier αi has to be unique, Parent is the generalised value of Child, whereas
Child could be either a generalised value itself or a value from the attribute
domain. Alternative hierarchies may be modelled in the same way as multiple
parents are assignable to the same child. For numerical attributes with pre-
defined intervals additional relations are necessary: interval(Ident, From,To).
Ident corresponds to a generalised Parent value of the above-mentioned rela-
tion. From and To specify the interval borders. Intervals do not need an explicit
assignment from attribute values to certain intervals, since the membership to

398 K. Stark, J. Eder, and K. Zatloukal

a range may be easily calculated on-the-fly. A possible interval mapping for pa-
tients’ age could be as follows:

parent(patientAge, ”0− 40”, ”0− 20”)
parent(patientAge, ”0− 40”, ”20− 40”)
parent(patientAge, ”40 + ”, ”40− 60”)
parent(patientAge, ”40 + ”, ”60 + ”)
interval(”0− 20”, 0, 20)
interval(”20− 40”, 21, 40)
interval(”40− 60”, 41, 60)
interval(”60 + ”, 61, ∞)
interval(”0− 40”, 0, 40
interval(”40 + ”, 41, ∞)

We assume predefined intervals as disjunctive, that is, each attribute value is
mapped to exactly one interval on the same generalisation level.

3 Preprocessing Steps

Attributes that are not obviously linked to individuals still have to be investi-
gated carefully. An unique value for one or a set of non-sensitive attributes allows
reidentification of an individual. For instance, if the surgery date, height and
weight of a certain patient are known, this information may be matched against
a released table of the surgery. It is unlikely that a large patient collective with
the same characteristics is operated on the same day. Hence, the patient’s indi-
viduality could not be preserved and additional individual information like blood
parameters and diagnosis could be unveiled. In order to limit the disclosure risk
some attributes may be transformed preemptively to less specific values. This,
however, requires that there is no relevant information loss for each transformed
attribute in the domain of application. Therefore, the attribute set of the table
to be released has to be scanned thoroughly to identify attributes with low or
no information content at all. While superfluous attributes are simply skipped,
domain-relevant attributes may be recoded. That is, the values range of one
(single attribute recoding) or the combination of multiple attributes (attribute
combination recoding) is mapped to either a computed or categorical range. In
the following application-specific examples for preprocessing a medical data set
are given.

Attribute elimination: Attributes that are immediately related to patients’ iden-
tities are removed from the released data set. First name, surname, day of birth
and address of the patient are eliminated. While sensitive information is neces-
sary for daily medical routine activities, there is no need to disclose such private
data to medical studies.

Substitution: Before filtering the patient’s birthday, the relative age of the patient
is determined by calculating the period of time between a medical relevant event
and the day of birth. For instance a medical study monitoring different courses

Priority-Based k-Anonymity 399

of disease for liver carcinoma is interested in the patient age at the moment the
initial diagnosis was made. Further, the period of time between tumour resection
and local recurrence should be used in statistical analysis. In both cases date
types are transformed to relative values: patient age at initial diagnosis = initial
diagnosis date - day of birth, disease free survival = local recurrence date -
tumour resection date.

Categorical recoding: Attributes with a broad range easily permit reidentifica-
tion of individuals if only a few or no data twins at all are available for distinctive
attribute values. By standardising/categorising those attributes the information
content is preserved and privacy protection could be facilitated. Medical diag-
noses frequently have a variety of notations and abbreviations for describing
identical diseases. Typically, diagnoses are stored in large free text fields allow-
ing different spellings, abbreviations and synonyms. Thus, even in huge patient
collectives diagnosis texts may be unique for one patient. This problem can
be solved by introducing international codes like ICD-N (International Classi-
fication of Diseases) or ICD-O (International Classification for Oncology). In
addition to privacy protection the use of classifiers facilitates data queries and
makes individual cases more comparable with each other.

Attribute combination recoding: In some cases multiple attributes may be sum-
marized to one code. Individual-related characteristics like height and weight are
combinable to a BMI (body mass index) measure. Furthermore, blood pressure
and age may be mapped to the categories of low, normal and high.

4 Anonymisation Algorithm

The aim of the algorithm is to find a suitable anonymisation solution that sat-
isfies k-anonymity and user-specific requirements. That is, the search takes into
account quality aspects of attribute generalisations mentioned in section 2.1 and
is driven by contextual preferences.

4.1 Priorities and Limits

Priorities are used to specify the degree of desired anonymisation of attributes.
In some cases exact values for a specific attribute may be favored while the gen-
eralisation degree of others is negligible. By specifying priorities the user is able
to determine the degree of generalisation and information loss he is willing to
cope with. Attributes with lower priorities are generalised first while attributes
with higher priorities are only generalised when no other solution may be found.
A priority pi is assigned to each attribute αi. Priorities have values in the range
[0, .., 1]. The most important attribute has the highest priority value and all dif-
ferences between any two consecutive priorities values are equal. The following
example illustrates the equally scaled priority values:
StagingT � 0.2, StagingN � 0.4, StagingM � 0.6, PatientAge � 0.8

400 K. Stark, J. Eder, and K. Zatloukal

Priorities are used to weight the information loss quantifiers of generalised at-
tribute values. Hence, in the final generalisation solution the information loss for
attribute PatientAge should be much smaller than for attribute StagingT . In
other words, attribute StagingT might be transformed to a more general value
than attribute PatientAge. In some cases, attributes should be generalised only
up to a certain degree or not transformed at all. Otherwise, their values become
useless for an application domain. Therefore, it’s crucial to allow definition of
maximal limits for information loss, someone is willing to cope with. If an at-
tribute value should be excluded from generalisation its limit is set to L0.

4.2 Search Space

Generally, an anonymisation algorithm looks for an acceptable generalisation
solution by trying various combinations of single attribute generalisations. Since
no information about the attributes’ value distribution may be deduced from the
member hierarchy, a blind search would try all possible combinations of single at-
tribute generalisations. The total number of possible generalisations may be cal-
culated as follows:

∏n
i=1 Lmaxi, where Lmaxi is the maximal generalisation level

for attribute αi and n is the number of all attributes. The set of possible general-
isations form a search space lattice, where each search node contains generalisa-
tion levels of all attributes αi ∈QI. In the initial node, each αi is at generalisation
level L0, while the end node consists of generalisation levels (Lmax1,..,Lmaxn).
Let η be the set of search nodes and let the search nodes be connected to
each other by edges. Then, ∀ np, nq ∈ η, np �= nq, np = (lp1, .., lpn) ∧ nq =
(lq1, .., lqn) • edge(np, nq)→ (∃ i • lpi = Lx ∧ lqi = Lx+1) ∧(∀ j �= i • lpj = lqj)
The search space lattice defined above allows anonymisation of a certain tuple set
by performing a sequence of generalisation steps until the k-anonymity condition
holds. Each edge of the lattice stands for one generalisation step and each search
node represents the state after the generalisation step has been applied. With-
out any additional information, a standard breadth-first search would look for
a generalisation solution by simply concatenating anonymisation steps between
nodes. Finally, it would return the first found generalisation solution that satis-
fies k-anonymity. The breadth-first algorithm guarantees to find a generalisation
solution if one exists. Though, there is no way of ranking all generalisation so-
lutions that could be created. Therefore, our anonymisation algorithm utilizes a
combination of actual generalisation levels and user-defined priorities for ranking
paths in the search space.

4.3 Match Operator

Generalisation steps aim at increasing the number of data twins of a released
record set. In order to calculate the number of data twins a generalised tuple
has we introduce a match operator. That operator determines a set of matched
tuples MS for a given tuple t and record set RS: matchedSet(t, RS) → MS.
We search for matched tuples in the aggregated table TAgg defined in section 2,
whereas the cardinality column is not considered in the search. Two tuples t and

Priority-Based k-Anonymity 401

Table 2.

Match StagingT StagingN StagingM Counter

”1a” ”1” ”1” 1
X ”1b” ”2” ”1” 1

”1c” ”1” ”1” 1
”1a” ”2” ”1” 2

”1b” ”2” ”1” 1

Table 3.

Match StagingT StagingN StagingM Counter

”1a” ”1” ”1” 1
X ”1b” ”2” ”1” 1

”1c” ”1” ”1” 1
X ”1a” ”2” ”1” 2

”1a”,”1b”,”1c” ”2” ”1” 3

t′ can be matched if their corresponding attribute values can be unified. Two
attribute values ν and ν’ can be unified ν

.= ν′ if one of the following conditions
holds:

1. ν = ν′

2. ν is a generalised value of ν′ along the member hierarchy

That is, t = (ν1, .., νn) matches t′ = (ν′
1, .., ν

′
n) if ∀ νi, ν

′
i, 1 ≤ i ≤ n • νi

.= ν′
i.

To determine the set of tuples that match a certain tuple a search pattern Pt

may be defined. Pt is a list of sets (S1, .., Sn) that is defined for a certain tuple
t = (ν1, .., νn) as follows: If νi is a generalised value then Si is the set of its leaf
nodes in the member hierarchy, otherwise Si = {νi}. Hence, we can define a set
of tuples t′ ∈ MS that may be matched with tuple t if

1. t′ = (ν′
1, .., ν

′
n)

2. Pt = (S1, .., Sn)
3. ∀ ν′

i 1 ≤ i ≤ n • ν′
i ∈ Si

Consider the following example: Table 2 shows an aggregated table TAgg with 4
entries (vk1, .., vk4). Tuple t1 = t(”1b”, ”2”, ”1”) should be released. The number
of data twins of t1 is assessed by looking for an entry in TAgg that match with
t1. The last row in table 2 specifies the search pattern for t1. Entry vk2 shows
that t1 has no data twin. Hence, t1 is generalised by applying the generalisation
step ”1b” �→ [”1”]) on staging T attribute. Now, vk1 and vk3 match with t1
and two addionally data twin were generated as shown in table 3. When staging
M is generalised by generalisation step ”1” �→ [”1− 2”], t1 has 4 data twins
(table 4).

402 K. Stark, J. Eder, and K. Zatloukal

Table 4.

Match StagingT StagingN StagingM Counter

X ”1a” ”1” ”1” 1
X ”1b” ”2” ”1” 1
X ”1c” ”1” ”1” 1
X ”1a” ”2” ”1” 2

”1a”,”1b”,”1c” ”1”,”2” ”1” 5

4.4 Algorithm Specification

Input: Record set to be released, PriorityList,
Limits, k-anonymity parameter

Output: Anonymised record set

1. Determine k-anonymity violating records
Let Υ be the record set to be released, k the anonymity parameter. Let
priorV = (p1, .., pn) be the vector of priorities and let limV = (lim1, .., limn)
the vector of limits for n attributes. Vector costV = (cost1, .., costn) stores
the generalisation cost for each attribute. Let v[attributeName] be the pro-
jection operation to access the associated value for attribute attributeName
in structure v (could be vector or tuple). For lack of space we do not include
the treatment of alternative hierarchies. Let vki be an entry of the aggre-
gated table TAgg, then Γ is the record set that violates the k-anonymity
constraint:
∀ ti ∈ Γ • ti ∈ Υ ∧ ti = (ν1, .., νn) ∧ ∃ vki = (ν1, .., νn, ci) ∧ ci < k

2. Initialize the generalisation level vector
The generalisation level vector levelV = (l1, .., ln) reflects the current gen-
eralisation levels for all n attributes. Initially, all levels are set to 0.
while(Γ �= ∅)
do steps 3, 4, 5

3. Determine attribute to be generalised
αg is the attribute to be generalized and is determined by the function
minimum(costV). Among all attributes, αg is the attribute that has the
minimal weighted information loss after being transformed to the next gen-
eralization level.
for all αi ∈ QI

cl = levelV [αi]
step(αi, Lpl, Lcl, ϕ)
if(pl ≥ limV [αi])

costV [αi] =∞
else

costV [αi] = ϕ ∗ priorV [αi]
end for
αg = minimum(costV)

Priority-Based k-Anonymity 403

If all costs of costV are ∞, no solution on the basis of given priorities and
limits can be found. The anonymisation has to be started with a different
parameter setting.

4. Generalise Γ
The generalisation step is applied to all ti ∈ Γ . In every tuple αg value is
replaced by its generalised value.
for all ti ∈ Γ

value = ti [αg]
parent(αg, GenV alue, value)
ti [αg] = GenV alue

end for
Finally, the level vector has to be adapted:
levelV [αg] = levelV [αg] + 1

5. Match tuples
The set of matched tuples is determined for each tuple as described in section
4.3. Tuples, that fulfill the k-anonymity constraint are excluded from further
search. sumCardinalities sums up the cardinality values of matchedTuples.
for all ti ∈ Γ

matchedTuples = matchedSet(ti, TAgg)
counter = sumCardinalities(matchedTuples)
if(counter ≥ k)

Γ = Γ \ ti
end for

If no violating tuple is left, (Γ = ∅), a suitable generalisation has
been found.

if(Γ = ∅)
The set of necessary generalisation steps are applied to every record
of the data set to be released

5 Prototype Implementation

The anonymisation algorithm has been implemented in SWI Prolog. Both hier-
archy description and data description models are mapped to prolog facts. In
order to fill the metadata models the data set to be released has to be analyzed
accurately. Attribute values with dentical semantics may be coded in multiple
ways due to spelling messings or synonyms. We had to screen all value occur-
rences and recode them to standardized values adequately. Moreover, defining
hierarchies suitable for medical studies and weighted generalisation steps turned
out to be a challenging task. Our example data set consists of 8,124 patients with
carcinoma extracted from the tissue sample database of the Institute of Pathol-
ogy, Medical University of Graz. For simplicity, a small subset of four attributes
was chosen for anonymisation: tumour staging T, staging N, staging M and age
of patients. 925 distinct value combinations were identified, whereas nearly 50
% of all patients have unique value combinations for those attributes. We used
categorical hierarchies for the staging attributes and an interval-based hierarchy

404 K. Stark, J. Eder, and K. Zatloukal

for the patient age. The prototype allows to check whether the k-anonymity con-
straint holds on a certain data set and it generates generalisation transformations
for each record violating that constraint. Priorities and generalisation limits may
be specified and included in the anonymisation process. Search for alternative
generalisations and evaluation of acceptable solutions will be implemented in the
next steps.

6 Conclusion

We have presented an anonymisation algorithm that takes different weights for
attribute generalisations. On the one hand, penalties are assigned to generali-
sation steps allowing to quantify each transformation and measure the overall
information loss. On the other hand, priorities can be used to reflect chang-
ing requirements of data quality. Important attributes may be protected from
extensive generalisations while non-relevant attributes are transformed to more
general values. Moreover, generalisation limits can be declared for each attribute
separately to guarantee that the anonymised data meet medical study criteria.
We will focus on the comparisons of alternative generalisation solutions, the
modelling of alternative hierarchies and dynamic generalisations of numerical
attributes in our future work.

References

1. A biobank for the advancement of medicine. http://www.bioresource-med.com.
2. Benjamin C. M. Fung, Ke Wang, and Philip S. Yu. Top-down specialization for

information and privacy preservation. In ICDE, pages 205–216, 2005.
3. Genomeresearch in Austria. http://www.gen-au.at/english/content.jsp.
4. LatanyaSweeney. Computational disclosure control for medical microdata, 1997.
5. Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Incognito: Efficient

full-domain k-anonymity. In SIGMOD Conference, pages 49–60, 2005.
6. Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Multidimensional

k-anonymity. In Technical Report 1521, University of Wisconsin, 2005., 2005.
7. L. Sweeney P. Samarati. Protecting privacy when disclosing information: k-

anonymity and its enforcement through generalization and suppression. Proceed-
ings of the IEEE Symposium on Research in Security and Privacy, 1998.

8. P. Samarati. Protecting respondents’ identities in microdata release. IEEE Trans-
actions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

9. Latanya Sweeney. Achieving k-anonymity privacy protection using generalization
and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):571–588,
2002.

10. Ke Wang, Philip S. Yu, and Sourav Chakraborty. Bottom-up generalization: A
data mining solution to privacy protection. In ICDM, pages 249–256, 2004.

Achieving k-Anonymity by Clustering in Attribute
Hierarchical Structures

Jiuyong Li1, Raymond Chi-Wing Wong2, Ada Wai-Chee Fu2, and Jian Pei3

1 Department of Mathematics and Computing, The University of Southern Queensland,
Australia

2 Department of Computer Science and Engineering, The Chinese University of Hong Kong
3 School of Computing Science, Simon Fraser University, Canada

jiuyong@usq.edu.au, cwwong, adafu@cse.cuhk.edu.hk, jpei@cs.sfu.ca

Abstract. Individual privacy will be at risk if a published data set is not prop-
erly de-identified. k-anonymity is a major technique to de-identify a data set. A
more general view of k-anonymity is clustering with a constraint of the mini-
mum number of objects in every cluster. Most existing approaches to achieving
k-anonymity by clustering are for numerical (or ordinal) attributes. In this paper,
we study achieving k-anonymity by clustering in attribute hierarchical structures.
We define generalisation distances between tuples to characterise distortions by
generalisations and discuss the properties of the distances. We conclude that the
generalisation distance is a metric distance. We propose an efficient clustering-
based algorithm for k-anonymisation. We experimentally show that the proposed
method is more scalable and causes significantly less distortions than an optimal
global recoding k-anonymity method.

1 Introduction

A vast amount of operational data and information has been stored at different vendors
and organizations. Most of the stored data is useful only when the data is shared and
analysed with other related data. However, this kind of data normally contains some
personal details and sensitive information. The data can only be allowed to be released
when the private information is protected.

More and more powerful data mining tools require a large amount of data from
various sources to produce promising results. On the other hand, these powerful data
mining tools may be maliciously used to uncover personal-related sensitive information
in data. Therefore, privacy preservation becomes a fundamental issue in data mining.

Cryptographic technique is a choice since it can hide data from unauthorised users.
However, cryptographic methods may restrict data access and exchange too much.
Furthermore, cryptographic privacy-preserving methods [15,22,24] usually tailor some
specific data mining tasks, and therefore lose generality.

Random perturbation can provide certain privacy protection [5,4,18], but they are
suitable for data of numerical attributes. When data contains categorical values, the
methods are not quite effective.

Data generalisation is applicable to both categorical and numerical data, and
k-anonymity provides a practical model for privacy protection [21,20,19]. Since the

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 405–416, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

406 J. Li et al.

k-anonymity model is simple and practical, it has been extensively studied in recent
years [14,6,23,10,13]. A more general view of k-anonymisation is clustering with a con-
straint of the minimum number of objects in every cluster [3]. A number of methods
approach identity protection by clustering [4,1]. However, these methods are applicable
to numerical attributes only. A recent work [9] extends a clustering-based method [8]
to ordinal attributes, but it does not deal with attributes in hierarchical structures. Other
works [2,17] dealing with categorical attributes do not consider attribute hierarchies. In
this paper, we focus our effort on achieving k-anonymity in hierarchical attribute struc-
tures. We define some general metrics in attribute hierarchies for measuring the quality of
k-anonymous tables, and map them to generalisation distances which can be minimised
in the process of k-anonymisation. This greatly facilitates achieving k-anonymity by lo-
cal recoding via clustering. To the best of our knowledge, this work is the first work to do
such mapping. We also present an efficient algorithm for this purpose, and demonstrate
that our method causes less distortions than an optimal k-anonymity algorithm.

2 Preliminary Definitions

The objective of k-anonymisation is to make every tuple of privacy-related attributes in
a published table identical to at least (k - 1) other tuples. As a result, no privacy-related
information can be easily inferred.

For example, young people with stress and obesity are potentially identifiable by
their unique combinations of gender, age and postcode attributes in Table 1a.

To preserve their privacy, we may generalise their gender and postcode attribute val-
ues such that each tuple in attribute set {Gender, Age, Postcode} has two occurrences.
The view after the generalisation is listed in Table 1b.

Table 1. (a) Left: a raw table. (b) Middle: a 2-anonymous view by local recoding. (c) Right: a
2-anonymity view by global recoding.

Gender Age Pcode Problem
male middle 4350 stress
male middle 4350 obesity
male young 4351 stress

female young 4352 obesity
female old 4353 stress
female old 4353 obesity

Gender Age Pcode Problem
male middle 4350 stress
male middle 4350 obesity

* young 435* stress
* young 435* obesity

female old 4353 stress
female old 4353 obesity

Gender Age Pcode Problem
* middle 435* stress
* middle 435* obesity
* young 435* stress
* young 435* obesity
* old 435* stress
* old 435* obesity

In this paper, we adopt a simplified postcode scheme, where its hierarchy {4201,
420*, 42**, 4***, *} corresponds to {suburb, city, region, state, unknown}, respectively.

Definition 1 (Quasi-identifier Attribute Set). A quasi-identifier attribute set is a set
of attributes in a table that potentially reveal private information, possibly by joining
with other tables.

For example, attribute set {Gender, Age, Postcode} in Table 1a is a quasi-identifier.
Table 1a potentially reveals private information of patients (e.g. young patients with

Achieving k-Anonymity by Clustering in Attribute Hierarchical Structures 407

stress and obesity). If the table is joined with other tables, it may reveal more informa-
tion of patients’ disease history. Normally, a quasi-identifier attribute set is understood
by domain experts.

Definition 2 (equivalence class). An equivalence class of a table with respect to an at-
tribute set is the set of all tuples in the table containing identical values for the attribute
set.

For example, tuples 1 and 2 in Table 1a form an equivalence class with respect to at-
tribute set {Gender, Age, Postcode}. Their corresponding values are identical.

Definition 3 (k-anonymity Property). A table is k-anonymous with respect to a
quasi-identifier if the size of every equivalence class with respect to the attribute set
is k or more.

k-anonymity requires that every occurrence within an attribute set has the frequency
at least k. For example, Table 1a does not satisfy 2-anonymity property since tuples
{male, young, 4351} and {female, young, 4352} occur once.

Definition 4 (k-anonymisation). A view of a table is said to be a k-anonymisation
of the table if the view modifies the table such that the view satisfies the k-anonymity
property with respect to the quasi-identifier.

For example, Table 1b is a 2-anonymous view of Table 1a since the size of all equiva-
lence classes with respect to the quasi-identifier is 2.

A table may have more than one k-anonymous views, but some are better than oth-
ers. For example, we may have another 2-anonymous view of Table 1a as in Table 1c.
Table 1c loses more details than Table 1b. Another objective for k-anonymisation is to
minimise distortions. We will give a definition of distortion later. Initially, we consider
it as the number of cells being modified.

There are two ways to achieve k-anonymity, namely global recoding and local re-
coding. Another name for global recoding is domain generalisation. The generalisation
happens at the domain level. When an attribute value is generalised, every occurrence
of the value is replaced by the new generalised value. Most working models are global
recoding models, such as [20,14,6,19,12,23,10] 1. A global recoding method may over-
generalise a table. An example of global recoding is given in Table 1c.

A local-recoding method generalises attribute values at cell level. A generalised
attribute value co-exists with the original value. A local recoding method does not
over-generalise a table and hence may minimise the distortion of an anonymous view.
Sweeney studied a local recoding model, but did not present a working local recoding
algorithm [21,20]. Sweeney’s MinGen algorithm is impractical and DataFly is a global
recoding algorithm. Gagan Aggarwal et al. [2] and Adam Meyerson et al. [17] analysed

1 [13] also considers global-recoding. However, the definition is different from our work and
most previous work. Suppose there are three dimensions (A,B, C). In their global-recoding
model, for each possible value (a, b, c) (where a ∈ A, b ∈ B and c ∈ C), all tuples with
this value in the data set should be generalised to the same value. However, this formulation is
actually a local-recoding in our work and most previous work.

408 J. Li et al.

a simplified local recoding model that does not involve hierarchical attributes. Both pa-
pers conclude that optimal k-anonymisation is NP-hard. μ- and τ -Argus methods [11],
are two working local recoding methods, but μ-Argus does not guarantee k anonymity
as discovered in [20]. τ -Argus works efficiently only on limited number of attributes.
More recent work of local recoding k-anonymisation was reported in [13] by LeFevre
et al. The method deals with numerical values, and does not involve attribute domain
hierarchies. An example of local recoding is given in Table 1b.

A global-recoding method causes too much distortions to a table. It is preferable
to use a local-recoding method. However, optimal local-recoding is NP-hard [2,17] 2.
Therefore, good heuristic methods are required to achieve k-anonymisation by local
recoding.

The objectives of k-anonymisation by local recoding is listed as follows.

– to modify a table to satisfy the k-anonymity property, and
– to minimise the distortion of the view from its original table.

3 Measuring the Quality of k-anonymisation

In this section, we discuss metrics for measuring the quality of generalisation.
A general criterion should be the distortion of a table. A simple measurement of dis-

tortion is the modification rate. For a k-anonymous view V of table T , the modification
rate is the fraction of cells being modified within the quasi-identifier attribute set. For
example, the modification rate from Table 1a to Table 1b is 22.2% and the modification
rate from Table 1a to Table 1c is 66.7%.

This criterion does not consider hierarchical structures. For example, the distortion
caused by the generalisation of birth date from D/M/Y to M/Y is significantly different
from the distortion caused by the generalisation of gender from M/F to *. The former
still keeps most information of Birth Date but the latter loses all information for Gender.
The modification rate is too simple to reflect such differences.

We calculate distortions of two tables based on distortions of their corresponding
tuple pairs. We first define a metric measuring the distance between different levels in
an attribute hierarchy.

Definition 5 (Weighted Hierarchical Distance). Let h be the height of a domain hi-
erarchy, and let levels 1, 2, . . . , h − 1, h be the domain levels from the most general
to most specific, respectively. Let the weight between domain level j and j − 1 be pre-
defined, denoted by wj,j−1, where 2 ≤ j ≤ h. When a cell is generalised from level
p to level q, where p > q. The weighted hierarchical distance of this generalisation is
defined as

WHD(p, q) =

∑p
j=q+1 wj,j−1∑h

j=2 wj,j−1

2 To the best of our knowledge, the global local-recoding K-anonymity problem defined in
this paper has not been shown to be NP-hard in the literature. As the definition of the global
recoding in [13] is different from ours, the result of the NP-hardness shown in [13] can be
regarded for the local-recoding problem in our work.

Achieving k-Anonymity by Clustering in Attribute Hierarchical Structures 409

The right part of Figure 1a shows the numbering methods of hierarchical levels and the
left part of Figure 1a shows weights between hierarchical levels. Level 1 is always the
most general level of a hierarchy and contains one value.

We can define weight wj,j−1 to enforce a priority in generalisation. In the following,
we discuss two simple but typical schemes.

1. Uniform Weight: wj,j−1 = 1 , where 2 ≤ j ≤ h
This is the simplest scheme where all weights are equal to 1. In this scheme, WHD
is the number of steps a cell being generalised over all possible generalisation steps,
e.g. h − 1. For example, let birth date hierarchy be {D/M/Y, M/Y, Y, 10Y, C/Y/M/O,
*}, where 10Y stands for 10-year interval and C/Y/M/O for child, young, middle age
and old age. WHD from D/M/Y to Y is WHD(6, 4) = (1 + 1)/5 = 0.4. In gender
hierarchy, {M/F, *}, WHD from M/F to * is WHD(2, 1) = 1/1 = 1. This means that
the distortion caused by the generalisation of five cells from D/M/Y to Y is equivalent
to the distortion caused by the generalisation of two cells from M/F to *.

As this scheme is quite simple, this does not capture that the generalisations at dif-
ferent levels yield different distortions. It is expected that the generalisation near to the
root should distort the data more compared with the generalisation far from the root.
We take the address for illustration. Suppose the address contains three components
- street no, street name and postcode. For example, the address is “20, Smith Street,
Pcode 4351”. Let us consider two generalisations - the generalisation G1 from “20,
Smith Street, Pcode 4351” to “Smith Street, Pcode 4351” and the generalisation G2
from “Pcode 4351” to “Pcode 435*”. It is obvious that G1 (i.e. the removal of the street
no) corresponds to a smaller distortion while G2 (i.e. the removal of the suburb) cor-
responds to a larger distortion, because the area coverage by the suburb, of course, is
larger than the area coverage by a housing (denoted by the street no). This example
motivates us to propose another scheme.

2. Height Weight: wj,j−1 = 1/(j − 1)β where 2 ≤ j ≤ h and β is a real number
≥ 1 provided by a user.

For a fixed β, the intuition of this scheme is that the generalisation near to the top
should give greater distortion compared with the generalisation far from the top. Thus,
we formulate the height weight scheme, where the weight near to the top is larger and
the weight far from the top is smaller. For example, consider a hierarchy: {D/M/Y,
M/Y, Y, 10Y, C/Y/M/O, *} for birth date. Let β = 1. WHD from D/M/Y to M/Y is
WHD(6, 5) = (1/5)/(1/5 + 1/4 + 1/3 + 1/2 + 1) = 0.087. In gender hierarchy
{M/F, *}, WHD from M/F to * is WHD(2, 1) = 1/1 = 1. The distortion caused by the
generalisation of one cell from M/F to * in gender attribute is more than the distortion
caused by the generalisation of 11 cells from D/M/Y to M/Y in birth date attribute.

In some cases, users prefer that the weight near to the leaf node should be equal to
a smaller value (compared with the case when β = 1). Then, in this model, we allow
this requirement. In order to satisfy this kind of requirement, we simply set the β value
with a larger value (e.g. 2) such that the weight near to the leaf node is smaller.

There are other possible other schemes for various applications.

410 J. Li et al.

*

435*

43**

4***

*

most specific

most general

value

interval

38

30 - 40

unkown

Numerical valuesPostcode

4350suburb

city

region

state

unkown

ddd

hierarchy

and weights
hierarchical value tree

w

w

w

21

32

43

dd*

d**

* *

1**0**

00* 01* 10* 11*

level 4
cd

ba

root
level 1

level 2

level 3

111110101100000 001 010 011

Fig. 1. (a) Left: Two examples of domain hierarchies - one for categorical values and one for
numerical values. (b) Right: Depiction of weights between domain levels and a simplified hierar-
chical value tree.

In the following, we define distortions caused by the generalisation of tuples and
tables.

Definition 6 (Distortions of Generalisation of Tuples). Let t = {v1, v2, . . . , vm} be a
tuple and t′ = {v′1, v′2, . . . , v′m} be a generalised tuple of t. Let level(vj) be the domain
level of vj in an attribute hierarchy. The distortion of this generalisation is defined as

Distortion(t, t′) =
m∑

j=1

WHD(level(vj), level(v′j))

For example, let the weights of WHD be defined by the uniform weight, attribute Gen-
der be in hierarchy of {M/F, * } and attribute Postcode be in hierarchy of {dddd, ddd*,
dd**, d***, * }. Let t3 be tuple 3 in Table 1a and t′3 be tuple 3 in Table 1b. For at-
tribute Gender, WHD = 1. For attribute Age, WHD = 0. For attribute Postcode,
WHD = 1/4 = 0.25. Therefore, Distortion(t3, t′3) = 1.25.

Definition 7 (Distortions of Generalisation of Tables). Let view D′ be generalised
from table D, ti be the i-th tuple in D and t′i be the i-th tuple in D′. The distortion of
this generalisation is defined as

Distortion(D, D′) =
|D|∑
i=1

Distortion(ti, t′i)

where |D| is the number of tuples in D.

From Table 1a and 1b, WHD(t1, t′1) = WHD(t2, t′2) = WHD(t5, t′5) = WHD(t6, t′6)
= 0 and WHD(t3, t′3) = WHD(t4, t′4) = 1.25. The distortion between the two tables is
Distortion(D, D′) = 1.25 + 1.25 = 2.5.

4 Generalisation Distances

In this section, we map distortions to distances and discuss the properties of the mapped
distances.

Achieving k-Anonymity by Clustering in Attribute Hierarchical Structures 411

4.1 Distances Between Tuples and Equivalence Classes

An objective of k-anonymisation is to minimise the overall distortions between a gen-
eralised table and the original table. We first consider how to minimise distortions when
generalising two tuples into an equivalence class.

Definition 8 (Closest Common Generalisation). All allowable values of an attribute
form a hierarchical value tree. Each value is represented as a node in the tree, and a
node has a number of child nodes corresponding to its more specific values. Let t1 and
t2 be two tuples. t12 is the closest common generalisation of t1 and t2 for all i. The
value of the closest common generalisation t12 is

vi
12 =

{
vi
1 if vi

1 = vi
2

the value of the closest common ancestor otherwise

where, vi
1, vi

2, and vi
12 are the values of the i-th attribute in tuples t1, t2 and t12.

For example, Figure 1b shows a simplified hierarchical value tree with 4 domain levels
and 2(l−1) values for each domain level l. Node 0** is the closest common ancestor of
nodes 001 and 010 in the hierarchical value tree. Consider another example. Let t1 =
{male, young, 4351} and t2 = {female, young, 4352}. t12 = {∗, young, 435∗}.

Now, we define the distance between two tuples.

Definition 9 (Distance between Two Tuples). Let t1 and t2 be two tuples and t12 be
their closest common generalisation. The distance between the two tuples is defined as

Dist(t1, t2) = Distortion(t1, t12) + Distortion(t2, t12)

For example, let the weights of WHD be defined by the uniform weights, attribute
Gender be in hierarchy of {M/F, * } and attribute Postcode be in hierarchy of {dddd,
ddd*, dd**, d***, * }. t1 = {male, young, 4351} and t2 = {female, young, 4352}.
t12 = {∗, young, 435∗}. Dist(t1, t2) = Distortion(t1, t12) + Distortion(t2, t12) =
1.25 + 1.25 = 2.5. We discuss some properties of tuple distance in the following.

Lemma 1. Basic properties of tuple distances
(1) Dist(t1, t1) = 0 (i.e. a distance between two identical tuples is zero)
(2) Dist(t1, t2) = Dist(t2, t1) (i.e. the tuple distance is symmetric), and
(3) Dist(t1, t3) ≤ Dist(t1, t2) + Dist(t2, t3) (i.e. the tuple distance satisfies triangle
inequality)

Proof. The first two properties obviously follow Definition 9b. We prove property 3
here.

We first consider a single attribute. To make notions simple, we omit the superscript
for the attribute. Let v1 be the value of tuple t1 for the attribute, v13 be the value of the
generalised tuple t13 for the attribute from tuple t1 and tuple t3, and so forth.

Within a hierarchical value tree, Dist(t1, t3) is represented as the shortest path link-
ing nodes v1 and v3 and Dist(t1, t2) + Dist(t2, t3) is represented as the path linking v1

412 J. Li et al.

and v3 via v2. Therefore, Dist(t1, t3) ≤ Dist(t1, t2) + Dist(t2, t3). The two distances
are equal only when v2 is located within the shortest path between v1 and v3.

The overall distance is the sum of distances of all individual attributes. The above
proof is true for all attributes. Therefore, the property 3 is proved.

An example of Property 3 can be found in the hierarchial value tree of Figure 1b. The
distance between 00* and 011 is (a + b + c), the distance between 00* and 010 is
(a+b+d), and the distance between 010 and 011 is (c+d). Therefore, Dist(00∗, 011) <
Dist(00∗, 010)+Dist(010, 011). In a special case, Dist(00∗, 011) = Dist(00∗, 01∗)+
Dist(01∗, 011).

Now, we discuss distance between two groups of tuples.

Definition 10 (Distance between Two equivalence classes). Let C1 be an equivalence
class containing n1 identical tuples t1 and C2 be an equivalence class containing n2
identical tuples t2. t12 is the closest common generalisation of t1 and t2. The distance
between two equivalence classes is defined as follows.
Dist(C1, C2) = n1 ×Distortion(t1, t12) + n2 ×Distortion(t2, t12)

Note that t12 is the tuple that t1 and t2 will be generalised if two equivalence classes
C1 and C2 are merged into one equivalence class. The distance is equivalent to the
distortions of the generalisation and therefore the choice of merger should be those
equivalence classes with the smallest distances.

5 Algorithm

In this section, we present an algorithm to implement k-anonymisation by local
recoding.

The basic idea for the algorithm is finding an arbitrary equivalence class of size
smaller than k and merging it with the closest equivalent classes to form a larger equiva-
lent class with the smallest distortion. This process repeats recursively until each equiv-
alent class contains at least k tuples.

We first discuss how to handle the situation that a small equivalent class (e.g. the
class containing one tuple) merges to a large equivalent class (e.g. the class containing
a hundred of tuples). Should we generalise the whole large equivalent class in order to
absorb the small equivalent class? We should not. A better solution is to allocate a small
number of tuples. For example, k-1 tuples from the large equivalent class are allocated
to merge with the small equivalent class. As a result, information in most tuples of the
larger equivalent class is preserved. the set of the tuples allocated in this way is called a
stub and the set of the remaining tuples is called a trunk.

Definition 11 (Stub and Trunk of Equivalent Class). Suppose a small equivalent
class E1 and a large equivalent class E2 are to be generalised for k-anonymity. If
|E1| < k and |E1|+ |E2| ≥ 2k, E2 is split into two parts, a stub and a trunk. The stub
contains (k − |E1|) tuples, and the trunk contains (|E1|+ |E2| − k) tuples.

After this split, both the generalised equivalent class of E1 with the stub and the remain-
ing trunk of E2 satisfy k-anonymity property. The detailed information in the trunk is
preserved.

Achieving k-Anonymity by Clustering in Attribute Hierarchical Structures 413

After this definition, we calculate the distance between two equivalent classes E1
and E2, where |E1| < k, as follows.

– if (|E1|+ |E2| < 2k), calculate normal as in Definition 10.
– if (|E1|+ |E2| ≥ 2k), calculate the distance between E1 and the stub of E2.

The pseudo code of the proposed algorithm is presented in Algorithm 1.

Algorithm 1. K-Anonymisation by Clustering in Attribute hierarchies (KACA)
1: form equivalence classes from the data set
2: while there exists an equivalence class of size < k do
3: randomly choose an equivalence class C of size < k
4: evaluate the pairwise distance between C and all other equivalence classes
5: find the equivalence class C′ with the smallest distance to C
6: generalise the equivalence classes C and C′

7: end while

Line 1 forms equivalent classes. Sorting data in a certain order will speed up the
process. One tuple is also called an equivalent class. Normally, the number of equivalent
classes is significantly less than the number of tuples in the data set.

The generalisation process continues in lines 2-6 when there is one or more equiva-
lence classes whose size is smaller than k.

In each iteration, we randomly find an equivalence class C of size smaller than k in
line 3. Then, we calculate the pairwise distances between C and all other equivalence
classes in line 4. Line 5 finds the equivalence class C′ with the smallest distance. Line
6 generalises the equivalence classes C and C′.

The above process terminates when there is no equivalent class whose size is smaller
than k. The sizes of all equivalent classes are greater than or equal to k, and hence
k-anonymity is achieved.

All tuples are sorted and only O(n) passes is needed to find all equivalent classes.
The complexity of this step is O(nlog n). Let |E| be the number of equivalent classes in
line 2. Each iteration requires to choose an arbitrary equivalence class, which takes O(1)
time, evaluate the pairwise distance, which takes O(|E|) time, find the equivalence
class with the smallest distance, which takes O(|E|) time, and finally generalise the
equivalence class, which takes O(1) time. Thus, the runtime of an iteration is O(|E|).
As there are O(|E|) iterations, the overall runtime is O(nlog n + |E|2).

The above algorithm is easy to extend to handle outlier tuples, which are far away
from all other tuples, by setting a minimum distance threshold in line 6 to avoid large
distortions caused by generalising two distant equivalent classes. Outlier tuples are sup-
pressed instead of generalised. We did not do this in this algorithm since in the next
section we compare an optimal algorithm that does not suppress tuples.

6 Empirical Study

A Pentium IV 2.2GHz PC with 1GM RAM was used to conduct our experiments. The
algorithm was implemented in C/C++. In our experiments, we adopted the publicly avail-
able data set, Adult Database, from the UCIrvine Machine Learning Repository [7]. This

414 J. Li et al.

Table 2. Description of Adult Data Set

Attribute Distinct Values Generalisations Height
1 Age 74 5-, 10-, 20-year ranges 4
2 Work Class 7 Taxonomy Tree 3
3 Education 16 Taxonomy Tree 4
4 Martial Status 7 Taxonomy Tree 3
5 Occupation 14 Taxonomy Tree 2
6 Race 5 Taxonomy Tree 2
7 Sex 2 Suppression 1
8 Native Country 41 Taxonomy Tree 3
9 Salary Class 2 Suppression 1

data set (5.5MB) was also adopted in [14,16,23,10]. We also used a configuration sim-
ilar to [14,16]. We eliminated the records with unknown values. The resulting data set
contains 45,222 tuples. Nine attributes were chosen as the quasi-identifier, as shown in
Table 2.

We evaluated the proposed algorithm in terms of two measurements: execution time
and distortion ratio. Let T be the original data set and T ′ be the data set generalised by
an algorithm. Let T ′′ be the fully generalised data set, where all attributes of all tuples
are generalised to the root of the hierarchy. Distortion ratio of a generalised data set T ′

is equal to the distortion of T ′ divided by the distortion of T ′′.
We conducted the experiments ten times and took the average execution time. We

compared our algorithm KACA proposed with the best-known global recoding based
algorithm Incognito [14].

We conducted the experiments with two types of distortion measures discussed in
Section 3 - uniform weight and height weight. Figure 2 shows the results with uniform
weight measurement.

(a) (b)

(c) (d)

Fig. 2. Execution Time and Distortion Ratio Versus Quasi-identifier Size (Uniform Weight) (k =
2 for (a) and (b) and k = 10 for (c) and (d))

Achieving k-Anonymity by Clustering in Attribute Hierarchical Structures 415

Figure 2 shows that the execution time of both algorithms increases with the quasi-
identifier size. On average, the execution time of the KACA algorithm is larger than
that of the Incognito algorithm.

The distortion ratio increases with the quasi-identifer size. This is because it is less
likely that two tuples in the original data set are equal to each other when the quasi-
identifier size is greater. Thus, a larger distortion is needed. The distortion ratio of the
KACA algorithm is 5.57 times lower than that of the Incognito algorithm on average.
This is because, as we discussed before, the global recoding algorithm (Incognito algo-
rithm) over-generalises the data set a lot while the KACA algorithm generalises the data
set less extent for k-anonymity. When k increases, the distortion ratio of all algorithms
increases. As we require more tuples to be identical for larger k, more distortions will
be generated for larger k.

We have also conducted the experiments with height weight measurement. For the
sake of space, we do not show the results as the results with height weight measurement
are similar to Figure 2.

7 Conclusions

In this paper, we study how to achieve k-anonymity by clustering in attribute hierar-
chies. We define two general metrics of the generalised data sets to measure the quality
of k-anonymisation. We define generalisation distances between tuples to characterise
distortions of generalisations and discuss the properties of the distances. We conclude
that the generalisation distance satisfies properties of metric distances. We propose an
efficient algorithm to achieve k-anonymity by clustering in attribute hierarchical struc-
tures. We experimentally show that the proposed method causes significantly less dis-
tortions than an optimal global recoding k-anonymity method. The distortion ratio of
our proposed algorithm is 5.57 times smaller on average.

Acknowledgement

This research was supported by the Innovation and Technology Fund (ITF) in the
HKSAR [ITS/069/03] and the RGC Earmarked Research Grant of HKSAR CUHK
4120/05E. This research has also been partially supported by ARC Grant DP0559090,
NSERC Grant 312194-05, and NSF Grant IIS-0308001.

References

1. C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In VLDB ’05: Proceed-
ings of the 31st international conference on Very large data bases, pages 901–909. VLDB
Endowment, 2005.

2. G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu.
Anonymizing tables. In ICDT05: Tenth International Conference on Database Theory, pages
246–258, 2005.

3. G. Aggarwal, T. Feder, K. Kenthapadi, A. Zhu, R. Panigrahy, and D. Thomas. Achieving
anonymity via clustering in a metric space. In PODS ’06: Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2006.

416 J. Li et al.

4. D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data
mining algorithms. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 247–255, New York, NY, USA,
2001. ACM Press.

5. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of the ACM SIGMOD
Conference on Management of Data, pages 439–450. ACM Press, May 2000.

6. R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In ICDE05:
The 21st International Conference on Data Engineering, pages 217–228, 2005.

7. E. K. C. Blake and C. J. Merz. UCI repository of machine learning databases,
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

8. J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microaggregation for statis-
tical disclosure control. IEEE Transactions on Knowledge and Data Engineering, 14(1):189–
201, 2002.

9. J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogeneous k-anonymity
through microaggregation. Data Mining and Knowledge Discovery, 11(2):195–212, 2005.

10. B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and privacy
preservation. In ICDE05: The 21st International Conference on Data Engineering, pages
205–216, 2005.

11. A. Hundepool and L. Willenborg. μ-and τ - argus: software for statistical disclosure control.
In Third international seminar on statsitcal confidentiality, Bled, 1996.

12. V. S. Iyengar. Transforming data to satisfy privacy constraints. In KDD ’02: Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 279–288, 2002.

13. K. LeFevre, D. DeWitt, , and R. Ramakrishnan. Multidimensional k-anonymity. In M.
Technical Report 1521, University of Wisconsin, 2005.

14. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-
anonymity. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international con-
ference on Management of data, pages 49–60, 2005.

15. Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology, 15(3):177–
206, 2002.

16. A. Machanavajjhala, J. Gehrke, and D. Kifer. l-diversity: privacy beyond k-anonymity. In
To appear in the 22st International Conference on Data Engineering (ICDE06), 2006.

17. A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS04:
Proceedings of the twenty fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 223–228, 2004.

18. S. Rizvi and J. Haritsa. Maintaining data privacy in association rule mining. In Proceed-
ings of the 28th Conference on Very Large Data Base (VLDB02), pages 682–693. VLDB
Endowment, 2002.

19. P. Samarati. Protecting respondents’ identities in microdata release. IEEE Transactions on
Knowledge and Data Engineering, 13(6):1010–1027, 2001.

20. L. Sweeney. Achieving k-anonymity privacy protection using generalization and sup-
pression. International journal on uncertainty, Fuzziness and knowldege based systems,
10(5):571 – 588, 2002.

21. L. Sweeney. k-anonymity: a model for protecting privacy. International journal on uncer-
tainty, Fuzziness and knowldege based systems, 10(5):557 – 570, 2002.

22. J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically partitioned
data. In The Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 24–27, Washington, DC, 2003. ACM Press.

23. K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: A data mining solution to
privacy protection. In ICDM04: The fourth IEEE International Conference on Data Mining,
pages 249–256, 2004.

24. R. Wright and Z. Yang. Privacy-preserving bayesian network structure computation on dis-
tributed heterogeneous data. In KDD ’04: Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 713–718, New York, NY,
USA, 2004. ACM Press.

Calculation of Density-Based Clustering
Parameters Supported with Distributed

Processing

Marcin Gorawski and Rafal Malczok

Silesian University of Technology,
Institute of Computer Science,

Akademicka 16,
44-100 Gliwice, Poland

{Marcin.Gorawski, Rafal.Malczok}@polsl.pl

Abstract. In today’s world of data-mining applications there is a strong
need for processing spatial data. Spatial objects clustering is often a cru-
cial operation in applications such as traffic-tracking systems or
telemetry-oriented systems. Our current research is focused on provid-
ing an efficient caching structure for a telemetric data warehouse. We
perform spatial objects clustering for every level of the structure. For
this purpose we employ a density-based clustering algorithm. However
efficient and scalable, the algorithm requires an user-defined parameter
Eps. As we cannot get the Eps from user for every level of the struc-
ture we propose a heuristic approach for calculating the Eps parameter.
Automatic Eps Calculation (AEC) algorithm analyzes pairs of points
defining two quantities: distance between the points and density of the
stripe between the points. In this paper we describe in detail the algo-
rithm operation and interpretation of the results. The AEC algorithm
was implemented in both centralized and distributed version. Included
test results compare the two versions and verify the AEC algorithm cor-
rectness against various datasets.

1 Introduction

In today’s world of computer science and computer applications there is a strong
need for processing spatial data. There are on-line services providing very pre-
cise and high-quality maps created from satellite images [2]. Another example is
traffic tracking in big cities, which results are later used to support decisions of
building new bypasses, highways and introducing other rationalizations. More
very interesting details can be found in [1].

One very important branch of spatial systems is telemetry. We are working on
a telemetric system of integrated meter readings. The system consist of utility
meters, collecting nodes and telemetric servers. The meters are located in blocks
of flats, housing developments etc. They meter water, natural gas and energy us-
age and send the readings to the collecting nodes via radio. The collecting nodes

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 417–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

418 M. Gorawski and R. Malczok

collect the readings and send them to the telemetric servers through the Eth-
ernet network. Apart from meter readings, the data warehouse database stores
information about meters’ geographical location, and their attributes (e.g. meter
type, installation date etc).

The most typical use for the described data warehouse is to investigate the
consumption of the utilities. Our current research is focused on providing fast and
accurate answers to spatial aggregate queries. We are in the process of design-
ing and implementing a hierarchical caching structure dedicated for telemetry-
specific data. We named the structure a Clustered Hybrid aR-Tree (CHR-Tree)
because we intend to use clustering to create the structure nodes, and, like in
the aR-Tree [5], the structure nodes store aggregates.

We already have a solution to a problem of storing and processing the ag-
gregates in the CHR-Tree nodes [4]. Currently we are trying to construct the
structure of the CHR-Tree. To create the intermediate level nodes we employ
density-based clustering algorithm. We decided to use the DBRS algorithm [6].
Although efficient and scalable, the algorithm requires an user-defined parame-
ter Eps. Eps is a parameter defining a half of the range query square side. The
side length is used by the clustering algorithm to evaluate range queries when
searching for neighboring points. As we cannot get the Eps parameter from the
user for every level of the structure, we propose a heuristic approach for calculat-
ing the Eps parameter. We named the algorithm an Automatic Eps Calculation
(AEC) algorithm. The algorithm is not limited to the telemetry-specific data and
can be applied to any set of two-dimensional points. In the following sections
we provide an extensive description of the AEC algorithm and its operation and
implementation versions. We present also tests results proving that the AEC
algorithm is applicable to sets of two-dimensional points of a wide variety and
cardinality.

2 AEC Algorithm

As mentioned above, to apply the DBRS algorithm in our research we must be
able to define the Eps parameter for proper clustering process. To the best of
our knowledge, there is no automatic method for calculating or even estimating
the Eps parameter for the density-based clustering. Authors of the DBScan al-
gorithm proposed in [3] a simple heuristics to determine the Eps and MinPts
parameters. However, the heuristics cannot be considered automatic as it re-
quires user interaction. In this section we present an Automatic Eps Calculation
(AEC) algorithm which, basing on the points distribution characteristics, is able
to calculate the Eps parameter value. The sets of points analyzed by the al-
gorithm may be large, hence the amount of processed data must be limited. A
random sampling approach alllows obtaining good results in acceptable time.

2.1 Algorithm Coefficients

A dataset containing all points is marked P . The AEC algorithm creates two
sets of points. The first set N contains points randomly chosen from the set P .

Calculation of Density-Based Clustering Parameters 419

A function creating the N set takes one optional parameter r, that defines the
region from which the points are being picked. When the r parameter is present
during the N set generation, we mark the set with an appropriate subscript:
Nr. The second set H also contains points randomly picked from the P set. The
function creating the set, next to the r optional parameter, whose meaning is
identical as for the N set, takes another parameter defining the point that is
skipped during random points drawing. The H sets are created for points from
the N set. The notation Hr,ni

means that the H set was created for the point
ni ∈ N ; the point ni was skipped during random points drawing and the points
in H are located in a region r.

The cardinalities of N and H sets are the AEC algorithm parameters. Thanks
to the parameterization of those values we can easily control the algorithm pre-
cision and operation time. The cardinality of the N set is defined as the percent
of the whole P set. The cardinality of the H set is defined directly by the number
of points creating the set.

The AEC algorithm coefficients are calculated using the N and H sets. The
algorithm picks random points from the set P creating the set N . In the next
step, for each point ni ∈ N the algorithm creates set Hni

.

Distance Between Points. The first AEC algorithm coefficient is a distance
between two points. The distance analysis is based on calculating the Euclidean
distances between the point ni and all the points from the related Hni

set. The
distances are calculated for all points in the N set and all related H sets.

Points In Stripe and Stripe Density To evaluate the Eps parameter the
AEC algorithm requires the knowledge about the neighborhood of the analyzed
points; actually about the points in the region between the investigated points
pi and pj . We decided to introduce a coefficient PIS (Points In Stripe). The
value of PIS(pi, pj) is the number of points located in a stripe connecting the
points pi and pj . To evaluate the PIS coefficient value for a pair of points we
use one spatial query and four straight lines equations. Having the pi and pj

points coordinates we can easily calculate the parameters a and b of the straight
line L equation y = ax+ b. The line L contains the points pi and pj . In the next
step we calculate equations of the lines perpendicular to L in points pi and pj ,
respectively Lpi

and Lpj
(we do not include the equations because of the compli-

cated notation and straightforward calculations). The final step is to calculate
two lines parallel to L, the first above line L – La and the second below line L –
Lb. The distance between the parallel lines and the L line (the difference in the
b line equation coefficient) is defined as a fraction of the distance between points
pi and pj . The fraction is the AEC algorithm parameter named stripeWidth;
stripeWidth ∈ (0, 1). The lines create a stripe between the points, and the stripe
encompasses some number of points (fig. 1).

Having the lines equations we can easily calculate, whether an arbitrary point
from the set P is located inside the stripe between points pi and pj or not. In
order to reduce the number of points being analyzed we evaluate a rectangle
encompassing the whole stripe. The rectangle vertexes coordinates are set by

420 M. Gorawski and R. Malczok

calculating the coordinates of the points where the stripe-constructing lines (La,
Lb, Lpi

and Lpj
) cross, and then choosing the extreme crossing points coordi-

nates. Using the stripe-encompassing rectangle we execute the range query, to
choose the points which can possibly be located within the stripe between pi and
pj . In the next step, only the points chosen by the range query are examined
whether they are located within the stripe.

Basing on the distance between points: dist(pi, pj) and the number of points
in a stripe between points PIS(pi, pj) we calculate another coefficient which is
a density of the stripe between pi and pj : dens(pi, pj) = PIS(pi,pj)

dist(pi,pj)2·stripeWidth .

pi pjL

La

Lb

Lpi

Lpj
stripeWidth

Fig. 1. Stripe between pi and pj points containing two points

Equipped with the distance and stripe density coefficients we are able to
ascertain whether two points are relatively close to each other, and whether they
are located in dense neighborhood. Our approach is not to search for a distance
between points in clusters or for the thinnest cluster diameter, but rather for a
minimal distance between clusters. The distance, or at least a value based on
the distance, can be used as the Eps parameter in the density-based clustering
algorithm. Using a minimal distance between clusters as the Eps parameter
should result in grouping all the points whose distances to their closest neighbors
are shorter than the minimal distance between clusters (they are in one cluster)
and not grouping points when the distance between them is greater than the
minimal distance between clusters.

2.2 Algorithm Operation

The AEC algorithm applies an iterative approach. In every iteration the algo-
rithm tries to minimize the possible minimal distance between clusters. In the
first step the algorithm sets the initial average distance between clusters distinit

and related initial density densinit. The values must be set in a way that they
reduce the number of iterations to minimum, but on the other hand does not
narrow down the set of possible solutions. After many experiments we decided to
use an average distance between randomly selected points, and average density
related to the distance. The calculation of the initial values uses the N and H
sets.

Calculation of Density-Based Clustering Parameters 421

The iterative section of the algorithm performs the following steps:

1. If the current iteration is the first iteration, assume that the current mini-
mum distance between clusters distcur = distinit, and the respective current
density is denscur = densinit.

2. Create a new N set, in a way described in subsection 2.1.
3. For every point ni ∈ N create a rectangle rni

, which vertexes coordinates
are given by the following equation:
rni

(left, top, right, bottom) = rni
(ni.x− distcur, ni.y + distcur,

ni.x + distcur, ni.y − distcur).
4. For every point ni ∈ N create a set Hrni

,ni
skipping the point ni.

5. Evaluate an average density of the rni
rectangle.

6. For every point ni, and points from the related Hni
set calculate a set of

quantities: distance, PIS and density of the stripe between points.
7. From all the results choose the shortest distance, for which the PIS > 0 and

the density is less than the average density of the rni
. If there is no such

result, do not return anything.
8. Compare the result obtained for the point ni with the current values of

distcur and denscur. If disti < distcur and densi <= denscur then update
the current values of minimal distance and minimal density between clus-
ters: distcur := disti and denscur := densi. If only the first part of the
condition holds (disti < distcur), then check a suspected region defined by
using the coordinates of points for which the disti was calculated. Details
of this operation are described below. The operation of checking a suspected
region can possibly return a pair of results: the distance dists and related
density denss. The returned pair is compared with the iteration results and
if dists < distcur and denss <= denscur then the results of the iteration are
updated: distcur := dists and denscur := denss.

9. Check the iteration breaking condition. The iterations can be broken in two
cases: (1) the number of performed iterations is greater than the declared
number of iterations (which is another AEC algorithm parameter), and (2)
if the result returned by consecutive iterations was repeated a fixed number
of times. Breaking the iteration caused by the second condition is more
desirable, because we can expect that the algorithm found a minimal distance
between clusters that cannot be replaced by any other distance.

Suspected Regions Analysis. The case of a suspected region is considered for
points pi, pj when only the distance condition (dist(pi, pj) < distcur)) holds, the
density condition (dens(pi, pj) <= denscur)) does not. Our experiments show
that there are two possible scenarios resulting in examining the suspected region:

1. the points pi, pj are located close to each other inside a cluster. Then the
distance is short, but the density of the stripe between the points is high.

2. the points pi, pj are located in separate clusters but they are not border
points (according to the definition presented in [6]). The density of the stripe
between the points is increased by the presence of the border points of both
clusters.

422 M. Gorawski and R. Malczok

Of considerable interest is the second case. The AEC algorithm does not analyze
distances with the zero PIS coefficient. There are many cases when clusters’
shapes make it difficult to randomly pick two points so that one of them is a
border point of the first cluster and the second is located near the border of the
second cluster. The analysis of suspected region is performed as follows:

1. define the suspected region. The rectangle rs for the suspected region has its
center directly between the points pi and pj . In the next step calculate the
density densrs

of the rs.
2. create a set of points Nrs

.
3. for each point ni ∈ Nrs

create a set Hni,rs
, then calculate distances and

densities of the stripe between points ni and the related points hj ∈ Hni,rs
.

As the result choose the minimal distance with the minimal density.

In the event the calculated result density is less than the average density of the
rs region, the suspected region analysis results are compared with the results
of the analysis in the iterative section of the AEC algorithm. For a pair of
points located inside a cluster the suspected region analysis does not influence
the results because the density condition is not satisfied (the density is high
inside a cluster). But for the points located in two different clusters the analysis
often gives important results.

The amount of points checked during suspected regions analysis depends on
the number of points in the rs rectangle. If the number is less than the N set
cardinality, then all the points are checked. But if the number is greater, the
cardinality of the Nrs

set equals the cardinality of the N set created in the
iterative section of the algorithm. The situation is identical for the H sets.

Clustering with AEC-calculated Eps Parameter. Application of the cal-
culated Eps parameter to density-based clustering results in creating clusters
which number and cardinalities depend on the points distribution characteris-
tics. If the density of all clusters is similar (the distances between neighboring
points in all clusters are always less than the distances between border points
of the closest clusters), then the result of the AEC algorithm is the distance
between a pair of closest clusters. Having the estimated distance between the
closest clusters we can define the Eps parameter for the density-based clustering
as 85% – 90% of the obtained distance. Decreasing the value of the distance we
prevent merging of the closest clusters during clustering process.

If the points are grouped in clusters of significantly different density then the
AEC algorithm outcome depends on the density of the sparse clusters. If the
distance between dense clusters is lower than the distance between neighbor-
ing points in the most sparse cluster, then the AEC algorithm outcome is the
distance between the dense clusters. Performing the clustering results in creat-
ing the dense clusters and, in sparse clusters, merging points located close to
each other. But if distances between neighboring points inside all kinds of clus-
ters (both dense and sparse) are less than the minimal distance between border
points of two closest clusters, then the AEC algorithm outcome is the minimal
distance between clusters. Performing the clustering results in proper creating
both dense and sparse clusters.

Calculation of Density-Based Clustering Parameters 423

2.3 Implementation

The process of calculating the Eps parameter by means of the AEC algorithm is
time-intensive. In order to improve the efficiency we used distributed processing.
The architecture of the distributed implementation is based on the client-server
standard. Every server stores the set of all points P and every server performs
the same operations but for different subsets of points. Each server is assigned
a set of points from which it creates the N sets. The sets are disjoint for all
servers. Thus we minimize the possibility that some servers examine the same
pair of points. The H sets are created from the whole P set, without limitations.
We implemented two different distributed versions of the AEC algorithm.

1. The first version named at once (AO) assumes, that the client and servers
do not communicate during the process of Eps evaluation. The servers cal-
culate the minimum distance between clusters with the lowest density and
return the results to the client which selects the best result (the shortest
distance with the lowest related density). Disadvantage of this approach is
that the servers calculations are less precise because they use N sets which
cardinalities are only 1

K cardinality of the sets used in the centralized version
(where K is the number of servers).

2. The second version named iterative (IT) assumes that the client requests the
servers to perform the i iteration of the whole process. The servers return
results of the i iteration to the client. The client selects the best result from
all the answers. In the next step, the client transfers the chosen result to
all the servers. The servers use the result as the initial distance and initial
density for the next i + 1 iteration. The number of performed iterations
and the number of repeated consecutive results are controlled by the client.
Operation of the servers is synchronized by setting the initial distance and
initial density. In this approach client and servers communicate more often,
but the obtained results are more precise.

3 Test Results

In this section we present tests results obtained for eight various sets of points.
The sets were marked from A to H; they vary with cardinality, points distribu-
tion and clusters shapes (fig. 2). The A set contains about 650 points grouped
in 10 dense clusters; density of all clusters is very similar. The next set, B, con-
tains about 200 points grouped in three relatively sparse clusters; density of all
clusters is similar. The C set contains only about 120 points grouped in eight
small clusters. In the D set 400 points are grouped in three dense clusters, one
less dense, and one sparse cluster. The E and F sets contain over 400 points. The
G and H sets contain respectively 1000 and 1500 points. In all four sets, clus-
ters have similar density but significantly differ in shapes. Small clusters located
inside the big ones were intended to disrupt the AEC algorithm when calculating

424 M. Gorawski and R. Malczok

Fig. 2. Sets of points used for testing

the PIS coefficient. For each dataset we performed a set of experiments with
the following parameters:

– the cardinality of the N set was 5, 15, 25 and 35% of the input dataset
cardinality,

– the cardinality of the H set was 5, 15, 25 and 35 points for each value of the
N set cardinality,

– the number of iterations was set to 10, 20 and 30 for each combination of N
and H sets cardinality.

As can be easily calculated, a single test set contained 4 × 4 × 3 = 48 tests. In
our tests the iterations were broken if the result of the consecutive iterations was
repeated more than 5 times. The iteration breaking was always caused by the
number of repeated consecutive results. Thus we can treat the tests for identi-
cal cardinality of N and H sets as three repeated tests, which is useful in the
presence of the random factor. We performed the tests for a centralized version
of the algorithm, and for two distributed versions AO and IT.

The AEC algorithm is written in Java. All the experiments were run on ma-
chines equipped with Pentium IV 2.8 GHz and 512 MB RAM. The software
environment was Windows XP Professional, Java Sun 1.5 and Oracle 10g. The
distributed environment consisted of four machines connected with Ethernet
100Mbit network. The communication was based on Java RMI.

The main purpose of the experiments was to verify the AEC algorithm cor-
rectness and efficiency against various datasets. The AEC algorithm was run
with a given set of parameters. The calculated Eps parameter was passed to
the DBRS algorithm, which was returning the number of created clusters. If the
number of clusters declared for a given dataset equaled the number of clusters
found by the DBRS, we marked the experiment as success. If the number of
clusters was not equal, we marked the experiment as failure.

Calculation of Density-Based Clustering Parameters 425

Number of investigated points

0

2

4

6

8

10

12

14

A B C D E F G H

set of points

re
la

tiv
e

of

 in
ve

st
ig

at
ed

 p
oi

nt
s

single

dist it

dist ao

Fig. 3. Relative number of points checked
for correct Eps calculation

AEC algorithm operation time

0

100

200

300

400

500

600

375 1125 1875 2625 3375 5625 7875 9375 13125 18375

of investigated points

tim
e

[s
]

single

dist it

dist ao

Fig. 4. AEC algorithm operation times as
function of investigated points number

The graph in figure 3 illustrates the relative number of investigated points for
various set of points. The number of investigated points calculated as |N | · |H|
was related to the cardinality of the set P , hence we can compare the results for
sets of different cardinality on a single plot. In figure 4 we present a graph com-
paring AEC algorithm operation times for the three implementation versions.
The x axis shows the number of investigated points. The y axis shows AEC
algorithm operation times in seconds. We considered only the cases when the
algorithm gave the correct results. As expected, the centralized version execu-
tion consumes much more time when compared to the distributed versions. For
small cardinalities of investigated points sets (less than 3000) the differences in
operation times are not significant. But for greater cardinalities the distributed
versions operate much more efficiently. For cardinalities exceeding 10000 points
we observe nearly linear speed-up.

Summarizing the tests results we notice that for all tested sets of points the
AEC algorithm gives proper results. There are more and less difficult sets of
points but the algorithm is able to correctly analyze all of them. The most
difficult to analyze are sets of points with a big number of small clusters. The al-
gorithm operation is not disturbed by the differences in densities and/or shapes
of the clusters. Also the presence of small clusters inside big ones does not neg-
atively affect the algorithm operation. The accuracy of the AEC algorithm is
determined by the algorithm parameters. The bigger the N and H sets car-
dinalities (the more pairs of points the algorithm investigates) and the more
iterations performed, the more accurate the results. However, every investigated
pair of points has its influence on the algorithm operation time. The parameters
should be set according to the tested dataset. If the dataset characteristics are
not known in advance (as with the presented test scenario) the obtained results
show that investigating 25% of a dataset and setting the maximal number of
iterations to 10 always gives accurate results.

The centralized version of the AEC algorithm gives the most accurate results.
For all tested sets of points the centralized version always required the smallest

426 M. Gorawski and R. Malczok

N and H sets. This version also needed the smallest number of iterations for ob-
taining the correct results. The AO distributed version operates most efficiently
(is able to examine the biggest number of pairs of points in the shortest time),
but on the other hand, the AO version always requires the biggest N and H sets,
and the biggest number of iterations. Therefore, the best choice is the iterative
distributed version (IT). It is faster than the centralized version and gives better
results than the distributed AO version.

4 Conclusions and Future Work

This paper presents an empirical approach to a problem of automatic calcula-
tion of Eps parameter applicable in density-based clustering algorithms such as
DBRS and DBScan. In our approach the AEC algorithm, working iteratively,
chooses randomly a fixed number of sets of points and calculates three coeffi-
cients: distance between the points, number of points located in a stripe between
the points and density of the stripe. Then the algorithm chooses the best possi-
ble result, which is the minimal distance between clusters. The calculated result
has an influence on the sets of points created in the next iteration.

We implemented the AEC algorithm in one centralized and two distributed
versions. We presented test results for a collection of eight different sets of points.
With appropriately high number of examined points the algorithm was able to
calculate the proper Eps parameter for all tested sets of points. Our future work
includes further improving the AEC algorithm efficiency. We want to eliminate
the most time-intensive part of the algorithm which is calculating the value of
the PIS coefficient. We are currently searching for conditions allowing us to skip
the PIS coefficient calculation.

References

1. Barclay T., Slutz D.R., Gray J.: TerraServer: A Spatial Data Warehouse, Proc.
ACM SIGMOD 2000, pp: 307-318, June 2000

2. http://maps.google.com
3. Ester M., Kriegel H.-P., Sander J., Wimmer M.: A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. In proc. of 2nd Inter-
national Conference on Knowledge Discovery and Data Mining, 1996

4. Gorawski, M., Malczok, R.: On Efficient Storing and Processing of Long Aggregate
Lists. DaWaK, Copenhagen, Denmark 2005.

5. Papadias D., Kalnis P., Zhang J., Tao Y.: Effcient OLAP Operations in Spatial
Data Warehouses. Spinger Verlag, LNCS 2001

6. Wang X., Hamilton H.J.: DBRS: A Density-Based Spatial Clustering Method with
Random Sampling. In proceedings of the 7th PAKDD, Seoul, Korea, 2003

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 427 – 436, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Cluster-Based Sampling Approaches to
Imbalanced Data Distributions

Show-Jane Yen and Yue-Shi Lee

Department of Computer Science and Information Engineering, Ming Chuan University
5 The-Ming Rd., Gwei Shan District, Taoyuan County 333, Taiwan

{sjyen, leeys}@mcu.edu.tw

Abstract. For classification problem, the training data will significantly in-
fluence the classification accuracy. When the data set is highly unbalanced,
classification algorithms tend to degenerate by assigning all cases to the most
common outcome. Hence, it is important to select the suitable training data
for classification in the imbalanced class distribution problem. In this paper,
we propose cluster-based under-sampling approaches for selecting the repre-
sentative data as training data to improve the classification accuracy in the
imbalanced class distribution environment. The basic classification algorithm
of neural network model is considered. The experimental results show that
our cluster-based under-sampling approaches outperform the other under-
sampling techniques in the previous studies.

1 Introduction

The classification techniques usually assume that the training samples are uniformly-
distributed between different classes. A classifier performs well when the classifica-
tion technique is applied to a dataset evenly distributed among different classes. How-
ever, many datasets in real applications involve imbalanced class distribution problem
[5, 7]. The imbalanced class distribution problem occurs while there are much more
samples in one class than the other class in a training dataset. In an imbalanced data-
set, the majority class has a large percent of all the samples, while the samples in
minority class just occupy a small part of all the samples. In this case, a classifier
usually tends to predict that samples have the majority class and completely ignore
the minority class.

One simple method of under-sampling is to select a subset of MA randomly and
then combine them with MI as a training set, which is called random under-sampling
approach. Several advanced researches are proposed to make the selective samples
more representative. The under-sampling approach based on distance [7] uses distinct
modes: the nearest, the farthest, the average nearest, and the average farthest distances
between MI and MA, as four standards to select the representative samples from MA.
For every minority class sample in the dataset, the first method “nearest” calculates
the distances between all majority class samples and the minority class samples, and
selects k majority class samples which have the smallest distances to the minority

428 S.-J. Yen and Y.-S. Lee

class sample. If there are n minority class samples in the dataset, the “nearest” ap-
proach would finally select k× n majority class samples (k ≥ 1). However, some sam-
ples within the selected majority class samples might duplicate.

Similar to the “nearest” approach, the ”farthest” approach selects the majority class
samples which have the farthest distances to each minority class samples. For every
majority class samples in the dataset, the third method “average nearest” calculates
the average distance between one majority class sample and all minority class sam-
ples. This approach selects the majority class samples which have the smallest aver-
age distances. The last method “average farthest” is similar to the “average nearest”
approach; it selects the majority class samples which have the farthest average dis-
tances with all the minority class samples. The above under-sampling approaches
based on distance in [7] spend a lot of time selecting the majority class samples in the
large dataset, and they are not efficient in real applications.

In 2003, J. Zhang and I. Mani [6] presented the compared results within four in-
formed under-sampling approaches and random under-sampling approach. The first
method “NearMiss-1” selects the majority class samples which are close to some
minority class samples. In this method, majority class samples are selected while their
average distances to three closest minority class samples are the smallest. The second
method “NearMiss-2” selects the majority class samples while their average distances
to three farthest minority class samples are the smallest. The third method “NearMiss-
3” take out a given number of the closest majority class samples for each minority
class sample. Finally, the fourth method “Most distant” selects the majority class
samples whose average distances to the three closest minority class samples are the
largest. The final experimental results in [6] showed that the NearMiss-2 approach
and random under-sampling approach perform the best.

In this paper, we study the effects of under-sampling [1, 3, 6] on the backpropaga-
tion neural network technique and propose some new under-sampling approaches
based on clustering, such that the influence of imbalanced class distribution can be
decreased and the accuracy of predicting the minority class can be increased.

2 Our Approaches

In this section, we present our approach SBC (under-Sampling Based on Clustering)
which focuses on the under-sampling approach and uses clustering techniques to
solve the imbalanced class distribution problem. Our approach first clusters all the
training samples into some clusters. The main idea is that there are different clusters
in a dataset, and each cluster seems to have distinct characteristics. If a cluster has
more majority class samples and less minority class samples, it will behave like the
majority class samples. On the opposite, if a cluster has more minority class samples
and less majority class samples, it doesn’t hold the characteristics of the majority
class samples and behaves more like the minority class samples. Therefore, our ap-
proach SBC selects a suitable number of majority class samples from each cluster by
considering the ratio of the number of majority class samples to the number of minor-
ity class samples in the cluster.

 Cluster-Based Sampling Approaches to Imbalanced Data Distributions 429

2.1 Under-Sampling Based on Clustering

Assume that the number of samples in the class-imbalanced dataset is N, which in-
cludes majority class samples (MA) and minority class samples (MI). The size of the
dataset is the number of the samples in this dataset. The size of MA is represented as
SizeMA, and SizeMI is the number of samples in MI. In the class-imbalanced dataset,
SizeMA is far larger than SizeMI. For our under-sampling method SBC, we first cluster
all samples in the dataset into K clusters. The number of majority class samples and

the number of minority class samples in the ith cluster (1 i K) are i
MASize and

i
MISize , respectively. Therefore, the ratio of the number of majority class samples to

the number of minority class samples in the ith cluster is i
MI

i
MA SizeSize / . If the ratio

of SizeMA to SizeMI in the training dataset is set to be m:1, the number of selected ma-
jority class samples in the ith cluster is shown in expression (1):

××=

=

K

1i

)(

i
MI

i
MA

i
MI

i
MA

MI
i
MA

Size
Size

Size
Size

SizemSSize (1)

In expression (1), MISizem × is the total number of selected majority class samples

that we suppose to have in the final training dataset.
=

K

1i
 i

MI

i
MA

Size
Size is the total ratio of

the number of majority class samples to the number of minority class samples in all
clusters. Expression (1) determines that more majority class samples would be se-
lected in the cluster which behaves more like the majority class samples. In other

words, i
MASSize is larger while the ith cluster has more majority class samples and

less minority class samples. After determining the number of majority class samples
which are selected in the ith cluster, 1 i K, by using expression (1), we randomly
choose majority class samples in the ith cluster. The total number of selected majority
class samples is m× SizeMI after merging all the selected majority class samples in
each cluster. At last, we combine the whole minority class samples with the selected
majority class samples to construct a new training dataset. Table 1 shows the steps for
our under-sampling approach.

For example, assume that an imbalanced class distribution dataset has totally 1100
samples. The size of MA is 1000 and the size of MI is 100. In this example, we clus-
ter this dataset into three clusters. Table 2 shows the number of majority class samples

i
MASize , the number of minority class samples i

MISize , and the ratio of i
MASize to

i
MISize for the ith cluster.

Assume that the ratio of SizeMA to SizeMI in the training data is set to be 1:1, in other
words, there are 100 selected majority class samples and the whole 100 minority class
samples in this training dataset. The number of selected majority class samples in each
cluster can be calculated by expression (1). Table 3 shows the number of selected

430 S.-J. Yen and Y.-S. Lee

Table 1. The structure of the under-sampling based on clustering approach SBC

Step1. Determine the ratio of SizeMA to SizeMI in the training dataset.
Step2. Cluster all the samples in the dataset into some clusters.
Step3. Determine the number of selected majority class samples in

each cluster by using expression (1), and then randomly
select the majority class samples in each cluster.

Step4. Combine the selected majority class samples and all the mi-
nority class samples to obtain the training dataset.

Table 2. Cluster descriptions

Cluster ID Number of majority
class samples

Number of minority
class samples

i
MI

i
MA SizeSize /

1 500 10 500/10=50
2 300 50 300/50=6
3 200 40 200/40=5

Table 3. The number of selected majority class samples in each cluster

Cluster ID The number of selected majority class samples
1 1×100× 50 / (50+6+5) =82
2 1×100× 6 / (50+6+5) = 10
3 1×100× 5 / (50+6+5)= 8

majority class samples in each cluster. We finally select the majority samples ran domly
from each cluster and combine them with the minority samples to form the new dataset.

2.2 Under-Sampling Based on Clustering and Distances

In SBC method, all the samples are clustered into several clusters and the number of
selected majority class samples is determined by expression (1). Finally, the majority
class samples are randomly selected from each cluster. In this section, we propose
other two under-sampling methods, which are based on SBC approach. The difference
between the two proposed under-sampling methods and SBC method is the way to
select the majority class samples from each cluster. For the two proposed methods,
the majority class samples are selected according to the distances between the major-
ity class samples and the minority class samples in each cluster. Hence, the distances
between samples will be computed.

For a continuous attribute, the values of all samples for this attribute need to be
normalized in order to avoid the effect of different scales for different attributes. For
example, suppose A is a continuous attribute. In order to normalize the values of at-
tribute A for all the samples, we first find the maximum value MaxA and the minimum
value MinA of A for all samples. To lie an attribute value ai in between 0 to 1, ai is

normalized to
AA

Ai

MinMax

Mina

−

− . For a categorical or discrete attribute, the distance between

 Cluster-Based Sampling Approaches to Imbalanced Data Distributions 431

two attribute values x1 and x2 is 1 (i.e. x1-x2=1) while x1 is not equal to x2, and the
distance is 0 (i.e. x1-x2=0) while they are the same.

Assume that there are N attributes in a dataset and X
iV represents the value of at-

tribute Ai in sample X, for 1 i N. The Euclidean distance between two samples X
and Y is shown in expression (2).

−=
=

N

i

Y
i

X
i VVYX

1

2)(),(distance (2)

The two approaches we proposed in this section first cluster all samples into K (K
1) clusters as well, and determine the number of selected majority class samples for
each cluster by expression (1). For each cluster, the representative majority class
samples are selected in different ways. The first method SBCMD (Sampling Based on
Clustering with Most Distant) selects the majority class samples whose average dis-
tances to M closest minority class samples in the ith cluster are the farthest. The sec-
ond method, which is called SBCMF (Sampling Based on Clustering with Most Far),
selects the majority class samples whose average distances to all minority class sam-
ples in the cluster are the farthest.

3 Experimental Results

For our experiments, we use three criteria to evaluate the classification accuracy for
minority class: the precision rate P, the recall rate R, and the F-measure for minority
class. Generally, for a classifier, if the precision rate is high, then the recall rate will
be low, that is, the two criteria are trade-off. We cannot use one of the two criteria to
evaluate the performance of a classifier. Hence, the precision rate and recall rate are
combined to form another criterion F-measure, which is shown in expression (3).

MI’s F-measure =
RP

RP2

+
××

 (3)

In the following, we expression (3) to evaluate the performance of our approaches
SBC, SBCMD, and SBCMF by comparing our methods with the other methods AT,
RT, and NearMiss-2 on synthetic datasets. The method AT uses all samples to train
the classifiers and does not select samples. RT is the most common-used random
under-sampling approach and it selects the majority class samples randomly. The last
method NearMiss-2 is proposed by J. Zhang and I. Mani [6], which has been dis-
cussed in section 1. The two methods RT and NearMiss-2 have the better performance
than the other proposed methods in [6]. In the following experiments, the classifiers
are constructed by using the artificial neural network technique in IBM Intelligent
Miner for Data V8.1.

For each generated synthetic dataset, the number of samples is set to 10000, the
number of numerical attributes and categorical attributes are set to 5, respectively.
The dataset DSi means that the dataset potentially can be separated into i clusters,
and our methods also cluster the dataset DSi into i clusters. Figure 1 shows the

432 S.-J. Yen and Y.-S. Lee

Fig. 1. The distribution of samples in a dataset

distribution of samples in a dataset which has three clusters inside. Moreover, in order
to make the synthetic datasets more like real datasets, the noisy data are necessary.

Fig. 2. Example for disordered samples

The synthetic datasets have two kinds of noisy data: disordered samples and excep-
tional samples. The disordered samples mean that some majority class samples (or
minority class samples) lie to the area of minority class samples (or majority class
samples). The disordered samples are illustrated with Figure 2. As for exceptional
samples, they distribute irregularly in a dataset and outside the clusters. The samples
outside the clusters in Figure 3 are exceptional samples. A dataset DSi with j% excep-
tional samples and k% disordered samples is represented as DSiEjDk. If there is no
disordered sample in the synthetic dataset, the dataset is represented as DSiEjDN.

 Cluster-Based Sampling Approaches to Imbalanced Data Distributions 433

Fig. 3. Example for exceptional samples

Figure 4 shows the experimental results in the datasets in which the ratios of the
number of majority class samples to the number of minority class samples are 2:1,
4:1, 9:1, 18:1, 36:1, and 72:1, respectively. For each specific ratio, we generate sev-
eral synthetic datasets DSiE10D20 in which i is from 2 to 16. Hence, the average
MI’s F-measures are computed from all the datasets for each specific ratio. In Figure
4, we can see that the average MI’s F-measure for SBC is higher than the other meth-
ods in most cases.

0

10

20

30

40

50

60

70

80

90

100

2 : 1 4 : 1 9 : 1 18 : 1 36 : 1 72 : 1

Datasets

A
ve

ra
ge

 M
I's

 F
-m

ea
su

re
 (%

)

SBC
RT
AT
NearMiss2
SBCMD
SBCMF

Fig. 4. Average MI’s F-measure for datasets DSiE10D20

434 S.-J. Yen and Y.-S. Lee

0

10

20

30

40

50

60

70

80

90

100

DS2 DS4 DS6 DS8 DS10 DS12 DS16

Dataset DSiE30D40

M
I's

 F
-m

ea
su

re
 (

%
)

SBC
RT
AT
NearMiss2
SBCMD
SBCMF

Fig. 5. MI’s F-measure for each method on the datasets with 30% exceptional samples and 40%
disordered samples

0

10

20

30

40

50

60

70

80

90

100

DS2 DS4 DS6 DS8 DS10 DS12 DS16

Dataset DSiE50D60

M
I's

 F
-m

ea
su

re
 (

%
)

SBC RT

AT NearMiss2

SBCMD SBCMF

Fig. 6. MI’s F-measure for each method on the datasets with 50% exceptional samples and 60%
disordered samples

We raise the percentage of exceptional samples and disordered samples to 30% and
40%, respectively. And then we continue to raise the percentage of exceptional sam-
ples and disordered samples to 50% and 60%, respectively. Figure 5 and Figure 6

 Cluster-Based Sampling Approaches to Imbalanced Data Distributions 435

show the experimental results in DSiE30D40 and DSiE50D60, respectively, in which
i is from 2 to 16. The experimental results show that SBCMD is the most stable
method and has high MI’s F-measure in each synthetic dataset. RT is also a stable
method in the experiments, but the performance for SBCMD is better than RT in most
cases. Although the MI’s F-measure for SBCMF is higher than the other methods in
some cases, the performance for SBCMF is not stable. Hence, the performance for
SBCMD is the best in most of the cases when the datasets contain more exceptional
samples and disordered samples, and SBC is stable and performs well in any case.

The average execution time for each method is shown in Figure 7. The execution
time includes the time for executing the under-sampling method and the time for
training the classifiers. According to the results in Figure 7, both SBC and RT are
most efficient among all the methods, and NearMiss-2 spends too much time for se-
lecting the majority class samples.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

DS2 DS4 DS6 DS8 DS10 DS12 DS16

Datasets

E
xe

cu
ti

on
 ti

m
e

(s
ec

.)

SBC

RT

AT

NearMiss2

SBCMD

SBCMF

Fig. 7. Average execution time for each method

4 Conclusion

In a classification task, the effect of imbalanced class distribution problem is often
ignored. Many studies [2, 4] focused on improving the classification accuracy but did
not consider the imbalanced class distribution problem. Hence, the classifiers which
are constructed by these studies lose the ability to correctly predict the correct deci-
sion class for the minority class samples in the datasets which the number of majority
class samples are much greater than the number of minority class samples. Many real
applications, like rarely-seen disease investigation, credit card fraud detection, and

436 S.-J. Yen and Y.-S. Lee

internet intrusion detection always involve the imbalanced class distribution problem.
It is hard to make right predictions on the customers or patients who that we are
interested in.

In this study, we propose cluster-based under-sampling approaches to solve the
imbalanced class distribution problem by using backpropagation neural network. The
other two under-sampling methods, Random selection and NearMiss-2, are used to be
compared with our approaches in our performance studies. In the experiments, our
approach SBC has better prediction accuracy and stability than other methods. SBC
not only has high classification accuracy on predicting the minority class samples but
also has fast execution time. SBCMD has better prediction accuracy and stability
when the datasets contain more exceptional samples and disordered samples. How-
ever, SBCMF does not have stable performances in our experiments. The two meth-
ods take more time than SBC on selecting the majority class samples as well.

References

1. Chawla, N. V.: C4.5 and Imbalanced Datasets: Investigating the Effect of Sampling
Method, Probabilistic Estimate, and Decision Tree Structure. Proceedings of the ICML’03
Workshop on Class Imbalances (2003).

2. Caragea, D., Cook, D., Honavar, V.: Gaining Insights into Support Vector Machine Pattern
Classifiers Using Projection-Based Tour Methods. Proceedings of the KDD Conference,
San Francisco, CA (2001) 251-256.

3. Drummond, C., Holte, R. C.: C4.5, Class Imbalance, and Cost Sensitivity: Why Under-
Sampling Beats Over-Sampling. Proceedings of the ICML’03 Workshop on Learning from
Imbalanced Datasets (2003).

4. del-Hoyo, R., Buldain, D., Marco, A.: Supervised Classification with Associative SOM.
Lecture Notes in Computer Science, Vol.2686 (2003) 334–341.

5. Japkowicz, N.: Concept-learning in the Presence of Between-class and Within-class Imbal-
ances. Proceedings of the Fourteenth Conference of the Canadian Society for Computa-
tional Studies of Intelligence (2001) 67–77.

6. Zhang, J., Mani, I.: kNN Approach to Unbalanced Data Distributions: A Case Study Involv-
ing Information Extraction. Proceedings of the ICML’2003 Workshop on Learning from
Imbalanced Datasets (2003).

7. Chyi, Y.M.: Classification Analysis Techniques for Skewed Class Distribution Problems,
Master Thesis, Department of Information Management, National Sun Yat-Sen University
(2003).

Efficient Mining of Large Maximal Bicliques

Guimei Liu, Kelvin Sim, and Jinyan Li

Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
{visgmliu, shsim, jinyan}@i2r.a-star.edu.sg

Abstract. Many real world applications rely on the discovery of maxi-
mal biclique subgraphs (complete bipartite subgraphs). However, exist-
ing algorithms for enumerating maximal bicliques are not very efficient
in practice. In this paper, we propose an efficient algorithm to mine large
maximal biclique subgraphs from undirected graphs. Our algorithm uses
a divide-and-conquer approach. It effectively uses the size constraints
on both vertex sets to prune unpromising bicliques and to reduce the
search space iteratively during the mining process. The time complex-
ity of the proposed algorithm is O(nd · N), where n is the number of
vertices, d is the maximal degree of the vertices and N is the number
of maximal bicliques. Our performance study shows that the proposed
algorithm outperforms previous work significantly.

1 Introduction

Graphs can be used to model a wide range of real world applications. In this
paper, we study the problem of mining maximal complete bipartite subgraphs
(not necessarily induced subgraphs) from undirected graphs. Complete bipartites
are also called bicliques. A biclique has two disjoint sets of vertices, and there
is an edge between two vertices if and only if the two vertices are in different
vertex sets. A biclique is maximal if the biclique is not a proper subgraph of
another biclique. Maximal bicliques have been used to solve the edge covering
problem [7], and they have many other arising applications.

Web community discovery. Websites that are part of the same community
frequently do not reference one another for many reasons [11]. Linkage be-
tween these related pages can nevertheless be established by a different phe-
nomenon: related pages are frequently visited together. Related pages and
the Web users visiting these pages form a biclique or a dense bipartite. Web
communities can be discovered by first enumerating maximal bicliques from
Web log data as community cores, and then find the rest of the community
members using community cores.

Topological structure discovery from protein-protein interaction net-
works. In the last several years, high-throughput interaction detection ap-
proaches have led to the discovery of thousands of interactions between pro-
teins. Some hidden topological structures discovered from protein-protein
interaction networks, such as cliques and bicliques, consist of biologically
relevant functional groups [6].

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 437–448, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

438 G. Liu, K. Sim, and J. Li

Maximal concatenated phylogenetic dataset discovery. A phylogenetic
tree is a tree showing the evolutionary interrelationships among various
species or other entities that are believed to have a common ancestor. To
improve the accuracy of tree reconstruction, phylogeneticists are extracting
increasingly large multigene data sets from sequence databases [18]. Deter-
mining whether a database contains at least k genes sampled from at least
m species is to determine whether there are k genes and m species forming a
biclique. Complete phylogenetic datasets can be discovered by enumerating
all the maximal bicliques satisfying the size constraints.

In real world problems, such as the applications described above, those bi-
cliques with a very small vertex set are usually of no interest. It is therefore
desirable to mine only large interesting bicliques. A biclique is large if the size
of its both vertex sets is no less than a predefined threshold. Mining maximal
bicliques has been studied previously. Alexe et al. [2] use consensus algorithms
to enumerate all maximal bicliques, which may generate many uninteresting
small bicliques. Li et al. [12] have proved that there is a correspondence between
maximal bicliques and frequent closed itemsets. On one hand, a closed itemset
and the set of transactions containing the closed itemset form a biclique. On
the other hand, the adjacency matrix of a graph can be viewed as a transac-
tion database, and a biclique corresponds to a pair of frequent closed itemsets
in the transaction database. Li et al. suggest to use frequent closed itemset
mining techniques [23,22,13,20] to mine maximal bicliques. However, the large
maximal biclique mining problem has size constraints on both vertex sets, while
the frequent itemset mining problem put size constraint on only one side—the
transaction set. Traditional frequent itemset mining algorithms also use only the
size constraint on transaction set to prune the search space. As a result, using
frequent closed itemset mining algorithms to mine maximal bicliques also gen-
erates many small bicliques. Another problem with the frequent itemset mining
approach is that each maximal biclique is generated twice in undirected graphs.
This paper introduces the problem of mining large maximal biclique subgraphs
and proposes an efficient algorithm to solve the problem. Our algorithm takes
a divide-and-conquer approach, and it effectively uses the size constraints on
both sides to iteratively prune the search space. Non-maximal bicliques as well
as duplicate bicliques are pruned efficiently during the mining process.

The rest of the paper is organized as follows. Section 2 formulates the problem,
our algorithm is described in Section 3. Section 4 reports experiment results.
Related work is reviewed in Section 5. Section 6 concludes the paper.

2 Definitions and Properties

In this section, we formulate the problem of mining large maximal bicliques.
An undirected graph G is defined as a pair (V,E), where V is a set of ver-
tices, and E is a set of edges between the vertices. Two vertices are adjacent if
there is an edge between them. The adjacency list of a vertex v in G = (V,E),
denoted as Γ (v,G), is defined as the set of vertices adjacent to v, that is,

Efficient Mining of Large Maximal Bicliques 439

Γ (v,G) = {u|{u, v} ∈ E}. The adjacency list of a set of vertices X in G = (V,E)
is defined as Γ (X,G) = {u|u ∈ V and ∀v ∈ X, {u, v} ∈ E} = {u|u ∈ V and X ⊆
Γ (u)}. We denote Γ (X,G) as Γ (X) if G is clear from the context. The adjacency
lists of vertex sets have the anti-monotone property.

Proposition 1. Let V1 and V2 be two sets of vertices in G = (V,E) and V1 ⊆ V2.
We have Γ (V2) ⊆ Γ (V1).

Given a graph G = (V,E), graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V ,
E′ ⊆ E and ∀{u, v} ∈ E′, u, v ∈ V ′. If V ′ ⊂ V or E′ ⊂ E, then we say G′ is a
proper subgraph of G. A graph G = (V,E) is a bipartite if its vertex set V can
be partitioned into two disjoint nonempty sets V1 and V2 such that every edge
in E connects a vertex in V1 and a vertex in V2, that is, no edge in E connects
either two vertices in V1 or two vertices in V2. Bipartite G is also denoted as
G = (V1, V2, E).

Definition 1 (Biclique). A bipartite G = (V1, V2, E) is called a biclique if
for each v1 ∈ V1 and v2 ∈ V2, there is an edge between v1 and v2, that is,
E = {{u, v}|u ∈ V1, v ∈ V2}.

The edge set E of a biclique G = (V1, V2, E) can be completely determined by the
two vertex sets V1 and V2, so we omit the edge set and denote a biclique G simply
as G = (V1, V2). Let G = (V,E) be an undirect graph, V1 and V2 be two subsets
of V . If V1, V2 and all the edges between V1 and V2 form a biclique subgraph
of G, we say that V1 and V2 form a biclique subgraph of G. According to the
definition, for any subset V1 of V , V1 and Γ (V1, G) form a biclique subgraph of
G.

Proposition 2. Let G′ = (V1, V2, E
′) be a biclique subgraph of G = (V,E). We

have V1 ⊆ Γ (V2, G) and V2 ⊆ Γ (V1, G).

If G = (V1, V2, E) is a biclique, then any induced subgraph G′ = (V ′
1 , V ′

2 , E′)
of G such that V ′

1 �= φ, V ′
2 �= φ, V ′

1 ⊆ V1 and V ′
2 ⊆ V2 is also a biclique. The

bicliques induced from a biclique G provides no more information than G, so we
focus on mining maximal bicliques in this paper.

Definition 2 (Maximal biclique). Let G′ be a biclique subgraph of graph G.
If there does not exist any other biclique subgraph G′′ of G such that G′ is a
proper subgraph of G′′, then G′ is a maximal biclique of G.

Proposition 3. Let V1 and V2 be two sets of vertices in graph G = (V,E) and
E′ = {{u, v}|u ∈ V1, v ∈ V2 and {u, v} ∈ E}. Graph G′ = (V1, V2, E

′) is a
maximal biclique subgraph of G if and only if Γ (V1, G) = V2 and Γ (V2, G) = V1.

The proof of this proposition can be found at [12].

Corollary 1. Let V1 be a set of vertices in G = (V,E). G′ = (V1, Γ (V1, G)) is
a maximal biclique subgraph of G if and only if Γ (Γ (V1, G), G) = V1.

440 G. Liu, K. Sim, and J. Li

 {}

1 2 3 4 5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 2,3,41,4,5 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,3,4,51,2,4,5 2,3,4,5

1,2,3,4,5

Fig. 1. The search space

A maximal biclique G′ is called a large maximal biclique if the size of its
both vertex sets is no less than a predefined threshold ms. The task of mining
large maximal biclique subgraphs is to enumerate all the large maximal biclique
subgraphs with respect to ms from a given graph.

Given a graph G = (V,E), any subset of V can form a biclique with another
subset of V . Therefore, the search space of the large maximal biclique subgraph
mining problem is the power set of V . Figure 1 shows the search space of a graph
with five vertices {1, 2, 3, 4, 5}. We are interested in only those large maximal bi-
cliques. A vertex set is not of interest if itself is too small or its adjacency list is
too small. Therefore, in Figure 1, only those vertex sets between the two borders
(indicated by dotted lines) are of interest. The vertex sets above the two borders
are uninteresting because themselves are too small, and the vertex sets below the
two borders are uninteresting because their adjacency lists are too small. We use
the following proposition and Proposition 1 to prune uninteresting bicliques.

Proposition 4. If a vertex set |V1| < ms, then ∀V ′ ⊂ V1, we have |V ′| < ms.

Proposition 4 implies that if a vertex set is smaller than the minimum size
threshold, then there is no need to consider the subsets of the vertex set. This
proposition can be used to prune the uninteresting vertex sets above the two
borders. Proposition 1 implies that if the adjacency list of a vertex set is smaller
than the minimum size threshold, then there is no need to consider the supersets
of the vertex set because their adjacency lists are also smaller than the minimum
size threshold. This proposition can be used to prune those uninteresting vertex
sets below the two borders.

The maximal biclique mining problem is related to the frequent closed itemset
mining problem [24,12]. A graph G can be mapped to a transaction database [1],
denoted as D(G), by treating each vertex as an item and the adjacency list of
each vertex as a transaction. Table 1 shows a mapping example. In the frequent
itemset mining problem, the concept of frequent closed itemsets is proposed to
remove redundant itemsets [16]. An itemset X is closed if there does not exist
another itemset Y such that Y is a superset of X and T (Y) = T (X), where
T (X) denotes the set of transactions containing X, that is, T (X) = {t|t ∈ D(G),
X ⊆ t}. This definition is equivalent to Definition 2 because T (X)={t|t ∈ D(G),

Efficient Mining of Large Maximal Bicliques 441

Table 1. A graph G is mapped into a transaction database D(G)

V1 V2

V6

V5 V4

V7 V3

V8

⇒

TID Transactions

v1 v2, v3, v4, v6, v7

v2 v1, v3, v4, v5, v8

v3 v1, v2, v4, v6

v4 v1, v2, v3, v5

v5 v2, v4, v6

v6 v1, v3, v5

v7 v1

v8 v2

X ⊆ t} defined on the transaction database is equivalent to Γ (X) = {u|u ∈
G,X ⊆ Γ (u)} defined on the graph.

Li et al. [12] has proved that there is a correspondence between maximal bi-
cliques and closed itemsets, that is, a maximal biclique in G corresponds to a
pair of closed itemsets in D(G). Based on this observation, mining large maximal
bicliques with respect to ms from a graph G is equivalent to mining frequent
closed itemsets with respect to ms from D(G), and the size of the frequent item-
sets should be no less than ms. However, using existing frequent closed item-
set mining algorithms [23,22,13,20] to mine large maximal bicliques has several
drawbacks. First, the large maximal biclique mining problem has size constraints
on both vertex sets, but existing closed itemset mining algorithms only use the
size constraint on transaction sets to prune the search space, which not only gen-
erate many uninteresting small maximal bicliques but also waste mining cost.
Secondly, a maximal biclique corresponds to a pair of closed itemsets, so each
maximal biclique is generated twice using frequent closed itemset mining algo-
rithms. Finally, frequent itemset mining algorithms produce only itemsets, so
a post-processing step is necessary to obtain the corresponding transaction set
for each frequent closed itemset. The post-processing step can be costly when
both the number of closed itemsets and the transaction database are very large.
Algorithms that adopt the vertical mining approach can be modified to produce
both itemsets and transaction sets during the mining process, but they still have
the first two drawbacks. In the next section, we present an algorithm which mine
maximal bicliques directly.

3 New Algorithm for Mining Large Maximal Bicliques

Given a graph G = (V,E), the search space of the large maximal biclique mining
problem is the power set of V . The search space can be represented by a set
enumeration tree as shown in Figure 1. The root of the tree represents the
empty set. Each node at level k represents a vertex set containing k vertices.
The subtree rooted at vertex set X is called the sub search space tree of X. In
a search space tree, the vertices are sorted into some order. For every vertex set
X in the tree, only vertices after the last vertex of X can appear in the sub
search space tree of X. This set of vertices are called tail vertices of X, denoted

442 G. Liu, K. Sim, and J. Li

as tail(X). For example, in the search space tree shown in Figure 1, vertices are
sorted into lexicographic order, so vertex 4 is in tail({1, 3}), but vertex 2 is not
a tail vertex of {1, 3} because vertex 2 is before vertex 3.

In a search space tree, the search space of every internal vertex set is parti-
tioned into several disjoint sub search spaces by the child nodes of the vertex
set. We explore the search space tree in depth-first order to recursively partition
the whole search space into small sub search spaces. At each node, we generate
the adjacency list of the corresponding vertex set X. Based on Proposition 1, if
the size of the adjacency list is less than the predefined size threshold ms, the
search on that branch should be terminated to avoid mining those vertex sets
whose adjacency lists are smaller than ms. If the adjacency list of a vertex set
is no less than ms, we call the vertex set as frequent. For each frequent vertex
set X, we identify those vertices v from tail(X) such that |Γ (X ∪ {v})| ≥ ms,
and the child nodes of X representing these vertices should be explored further.
The mining is performed on these child nodes recursively.

The vertex sets that themselves are too small are pruned based on Proposition
4. The vertex sets appearing in the sub search space of a vertex set X are subsets
of X ∪ tail(X). Based on Proposition 4, if |X|+ |tail(X)| is less than ms, then
there is no need to search in the subtree rooted at X because all the vertex sets
in that subtree contain less than ms vertices. Similarly, if there are less than
ms−|V | vertices v ∈ Tail(X) such that Γ (X ∪{v}) ≥ ms, then there is no need
to search in the subtree rooted at X either.

Algorithm 1 shows the pseudo-codes of the mining algorithm. When the algo-
rithm is first called on a graph G = (V,E), X is set to the empty set, and Γ (X)
and tail(X) are set to V . For a vertex set X, we first remove those vertices v from
tail(X) such that the adjacency list of X ∪ {v} is less that ms (line 1-3). Then
we check whether |X| + |tail(X)| is less than ms. If it is true, then the search
should be terminated based on Proposition 4 (line 4-5). If |X|+ |tail(X)| is no
less than ms, then the algorithm is recursively called for each v ∈ tail(X) (line
7-14). Before we search in the sub search space tree of X ∪ v, we check whether
|X ∪{v}|+ |tail(X ∪{v}| is no less than ms. Only if |X ∪{v}|+ |tail(X ∪{v}| is
no less than ms, the search in the sub search space tree of X ∪v should continue
(line 9).

We sort the vertices in tail(X) into ascending order of |Γ (X ∪ {v})| (line 6),
that is, for any two vertices u, v ∈ tail(X), if |Γ (X∪{u})| > |Γ (X∪{v})|, then u
is after v in the order. The ascending ordering method has been adopted in many
frequent itemset mining algorithms and has been proved to be very effective for
pruning the search space. The rationale behind this ordering method is to let
the vertex set with a smaller adjacency list have a larger number of tail vertices
and the vertex set with a larger adjacency list have a smaller number of tail
vertices so that the vertex sets in the sub search space tree of the vertex set with
a smaller adjacency list are likely to be pruned because of their small adjacency
lists, and the vertex sets in the sub search space tree of the vertex set with a
larger adjacency list are likely to be pruned because of their small tail vertex
sets.

Efficient Mining of Large Maximal Bicliques 443

Algorithm 1. MineLMBC Algorithm
Input:

X is a vertex set
Γ (X) is the adjacency list of X
tail(X) is the tail vertices of X
ms is the minimum size threshold;

Description:
1: for all vertex v ∈ tail(X) do
2: if |Γ (X ∪ {v})| < ms then
3: tail(X) = tail(X) − {v}
4: if |X| + |tail(X)| < ms then
5: return ;
6: Sort vertices in tail(X) into ascending order of |Γ (X ∪ {v})|;
7: for all vertex v ∈ tail(X) do
8: tail(X) = tail(X) − {v};
9: if |X ∪ {v}| + |tail(X)| ≥ ms then
10: Y = Γ (Γ (X ∪ {v}));
11: if ((Y − (X ∪ {v})) ⊆ tail(X)) then
12: if |Y | ≥ ms then
13: Output (Y , Γ (X ∪ {v})) as a large maximal biclique;
14: MineLMBC(Y , Γ (X ∪ {v}), tail(X) − Y , ms);

One optimization can be made to Algorithm 1 is to prune the adjacency list of
a vertex set based on Proposition 4. Let v be a vertex in Γ (X). If v is adjacent to
less than ms−|X| vertices in tail(X), then v cannot be adjacent to any superset
Y of X such that |Y | ≥ ms. Hence vertex v can be removed from Γ (X). By
pruning the adjacency list, those vertex sets with a small adjacency list can be
identified and pruned earlier.

Pruning non-maximal bicliques. Non-maximal bicliques are identified and
pruned during the mining process. Let X be a vertex set in the search space
tree. Based on Corollary 1, biclique G′ = (X,Γ (X)) is maximal if and only if
Γ (Γ (X)) = X is true. If G′ is not a maximal biclique, that is, Γ (Γ (X)) �= X,
then Γ (Γ (X)) must be a proper superset of X based on Proposition 2. We can
prune the sub search space of X based on the following proposition.

Proposition 5. Let X be a vertex set. For any maximal biclique G′ = (V1, V2)
such that X ⊆ V1, we have Γ (Γ (X)) ⊆ V1.

Proof. Biclique G′ is maximal, so we have V2 = Γ (V1). Vertex set X is a subset
of V1, so we have V2 = Γ (V1) ⊆ Γ (X) based on Proposition 1, and hence based
on Proposition 1 again, we have Γ (Γ (X)) ⊆ Γ (V2) = V1.

The above proposition indicates that if a maximal biclique has a vertex set
containing X, then the vertex set must also contain Γ (Γ (X)). If biclique G′ =
(X,Γ (X)) is not maximal, there are two cases. One case is that Γ (Γ (X))−X is
a subset of tail(X). For this case, the maximal bicliques that have a vertex set
containing X are in the sub search space of X. Since any maximal biclique that
have a vertex set containing X must also contain Γ (Γ (X)), we use Γ (Γ (X))
to replace X and remove vertices in Γ (Γ (X))−X from tail(X) to prune those
non-maximal bicliques that have a vertex set containing X but not containing
Γ (Γ (X)). The other case is that there exists a vertex v ∈ (Γ (Γ (X))−X) such
that v is not in tail(X). For this case, none of the bicliques discovered from
the sub search space tree of X can be maximal because these bicliques have a

444 G. Liu, K. Sim, and J. Li

vertex set containing X but this vertex set does not contain v. To avoid mining
non-maximal bicliques, we check whether Γ (Γ (X)) = X is true before searching
in the sub search space tree of X. If it is not true and there exists a vertex
v ∈ Γ (Γ (X)) such that v is not in tail(X), then we skip the sub search space
tree of X (line 11).

Pruning duplicate bicliques. A biclique has two disjoint vertex sets. Our
search strategy is based on vertex set searching. Therefore, every maximal bi-
clique is generated twice in Algorithm 1. It is desirable to avoid generating
duplicate bicliques to save mining cost. We prune duplicate bicliques based on
the following observation, which is inspired by the pruning technique for mining
maximal bicliques [5,19]. Given a vertex v in a graph G = (V,E), the adjacency
list of any subset of Γ (v) must contain v because v is adjacent to all the vertices
in Γ (v). If we have generated all the vertex sets containing v and their adjacency
lists, then there is no need to generate any subset of Γ (v). To maximize the num-
ber of vertex sets being pruned, we pick the vertex with the largest adjacency
list and prune all the subsets of its adjacency list.

We use the graph shown in Table 1 to illustrate the pruning of duplicate
bicliques. We set ms to 2. There are 6 vertices whose adjacency list is no less than
2. We sort the 6 vertices in ascending order of their adjacency list size, and we
get {v6, v5, v4, v3, v2, v1}. Vertex v1 has the largest adjacency list. We adjust the
ordering by putting those vertices adjacent to v1 to the end of the ordering, and
we get {v5, v1, v6, v4, v3, v2}. All the vertex sets discovered from the sub search
space tree of v6, v4, v3 and v2 must be subsets of Γ (v1) = {v2, v3, v4, v6, v7},
thus their adjacency lists must contain v1. All the vertex sets containing v1 have
already been discovered from the sub search space tree of v5 and v1. Therefore,
there is no need to search in the sub search space tree of v6, v4, v3 and v2.

Using the above method, many duplicate bicliques can be pruned especially
when there is a vertex in the graph with a very high degree. However, we cannot
guarantee that all of the duplicate bicliques can be pruned using the above
method. The remaining duplicate bicliques can be identified by comparing a
vertex set with its adjacency list. The adjacency list of a vertex set is also
a vertex set in the search space tree. If the adjacency list of a vertex set is
before the vertex set in the search space tree in depth-first order, it means that
the biclique has been generated from the adjacency list before and the biclique
generated from the vertex set itself is a duplicate.

When mining maximal bicliques from bipartite graphs, duplicate maximal
bicliques can be completely avoided. Let G = (V1, V2, E) be a bipartite graph.
Since there is no edge between two vertices in V1 or two vertices in V2, the
two vertex sets of a biclique discovered from G cannot both be subsets of V1 or
subsets of V2. Therefore, it is sufficient to use only one vertex set of bipartite
graph G to form the search space. We pick the smaller vertex set to form the
search space. The adjacency lists of the vertex sets generated during the mining
process must be from the other vertex set of G, and they are never searched.
Hence duplicate bicliques can be avoided.

The correctness of Algorithm 1 is guaranteed by Propositions 1, 3, 4 and 5.

Efficient Mining of Large Maximal Bicliques 445

Theorem 1. Given a graph G and a minimum size thres-hold ms, Algorithm
1 generates all the large maximal biclique subgraphs with respect to ms from G,
and only the large maximal biclique subgraphs of G are generated.

For a complexity analysis on the time and space of Algorithm 1, we use the
following notations: n is the total number of vertices, d the maximal degree of
the vertices, m the number of edges and N the number of maximal bicliques.

In algorithm 1, before we search in the sub search space tree of a vertex set
X, we first check whether Γ (Γ (X)) ⊆ (X∪tail(X)) is true. If it is not true, then
there is no need to explore the sub search space tree of X because no biclique
in the sub search space tree of X is maximal. Hence Algorithm 1 is called only
for each maximal biclique. The cost for generating Γ (Γ (X)) is bounded by d2.
When exploring the sub search space tree of a vertex set X, we first find all those
vertices v ∈ tail(X) such that |Γ (X∪{v})| ≥ ms (line 1-3). The cost of this step
is bounded by |tail(X)| · |Γ (X)| ≤ nd. The cost for sorting the vertices in tail(V)
is bounded by |tail(X) · log(|tail(X)|) ≤ n · logn. Therefore, the worst-case time
complexity of Algorithm 1 is O(nd ·N).

During the mining process, we keep the whole graph in the memory. The
space overhead for storing the graph is O(m). When exploring the search space
in depth-first order, we need to keep the adjacency lists of the vertex sets on the
path this is currently being visited. The maximal depth of the path is bounded
by d and the maximal size of the adjacency list of a vertex set is also bounded
by d. Hence the space complexity of Algorithm 1 is O(m + d2).

4 A Performance Study

We conducted a set of experiments to demonstrate the efficiency and flexibility of
our algorithm. Our experiments were conducted on a PC with an Intel Pentium
IV 3.6GHz processor and 2GB of main memory. The operating system is Fedora
Core 4. Our algorithm was implemented using C++ and complied using g++.

We compared our algorithm with two other algorithms. The first algorithm is
MICA [2], which uses consensus algorithms to generate maximal bicliques. The
MICA algorithm is available at http://genome.cs.iastate.edu/supertree/
download/biclique/README.html. The second algorithm is the current fastest
closed pattern mining algorithm—LCM, which shows the best performance in a
comparative study of frequent itemset mining implementations [3]. We used the
latest version of LCM—LCM3 [21] in our experiments, which is kindly provided
by Takeaki Uno. Table 2 shows some information of three graphs used in our
experiments. All of them are obtained from the Second DIMACS Challenge
benchmarks 1. Here, the edge density of a graph is the number of edges of the
graph divided by the total possible number of edges of the graph.

We observed that most graphs in the Second DIMACS Challenge benchmarks
are very dense and all the algorithms takes a long time to finish. Here we report
results on three graphs shown in Table 2, on which at least one of the algorithms

1 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/

446 G. Liu, K. Sim, and J. Li

Table 2. Three dense graphs

Graph #vertices n #Edges edge density

johnson8-4-4 70 1855 0.768
keller4 171 9435 0.649

c-fat200-2 200 3235 0.163

can terminate within one hour. For sparse graphs in the benchmarks, such as
johnson8-2-4, c-fat200-1, c-fat500-1 and p hat300-1, all the algorithms can ter-
minate within several seconds, so we do not show the results on these sparse
graphs due to the limit of space.

 1

 10

 100

 1000

 11 12 13 14 15 16 17 18 19 20

T
im

e(
se

c)

Minimum Support

Data set: johnson8-4-4

MineLMBC
LCM3

(a) johnson8-4-4

 10

 100

 1000

 25 26 27 28 29 30 31 32 33 34

T
im

e(
se

c)

Minimum Support

Data set: keller4

MineLMBC

(b) keller4

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16

T
im

e(
se

c)

Minimum Support

Data set: c-fat200-2

MineLMBC
LCM3

(c) c-fat200-2

Fig. 2. Running time (The running time of MICA exceeds one hour on all the datasets,
so it is not shown in the figures.)

Figure 2 shows the running time (y-axis) of the three algorithms with respect
to the minimum size threshold (x-axis). The MICA algorithm cannot complete
the mining task in any of the three datasets within one hour. LCM is unable
to complete the task for keller4 because keller4 has a high edge density of 0.649
and a large number vertices of 171. Only our algorithm (denoted mineLMBC in
the figure) is able to enumerate the large maximal bicliques from all the three
graphs within one hour. The similar performance of MineLMBC and LCM3 in
graph c-fat200-2 may be attributed to the fact that c-fat200-2 has a much lower
edge density than the other two graphs.

5 Related Work

Enumerating all maximal bicliques from graphs is a NP-complete problem [2].
Some related problems have been studied. The maximal vertex biclique problem
is to decide whether or not a bipartite graph contains a biclique such that |V1|+
|V2| ≥ k, and it can be solved in polynomial time [10]. If the constraint is
that |V1| = |V2| = k (this is called the balanced biclique problem) or |V1| ·
|V2| = k (this is called the maximal edge biclique problem), then the problem
is NP-complete [10,17]. Geerts et al. [9] developed an approximate algorithm
to find tilings—a collection of tiles from transaction databases, where a tile is
a region in the database consisting solely of ones. Besson et al. [4] proposed
an algorithm D-Miner to compute constrained concepts, i.e., closed sets and

Efficient Mining of Large Maximal Bicliques 447

associated transaction sets. Mishra et al. [15] propose a new formulation of the
conceptual clustering problem where the goal is to explicitly output a collection
of simple and meaningful conjunctions of attributes that define the clusters.
Connections between this conceptual clustering problem and the maximum edge
biclique problem are made. Randomized algorithms are given that discover a
collection of approximate conjunctive cluster descriptions in sublinear time.

Several algorithms have been proposed to mine maximal bicliques. Makino et
al. [14] propose three algorithms to mine bicliques from bipartite graphs. The first
algorithm runs with O(M(n) ·N) time complexity and O(n2) space, the second
one runs with O(d3 ·N) time complexity and O(n + m) space, and the last one
runs with O(d2 ·N) time complexity and O(n+m + d ·N) space, where n is the
number of vertices, M(n) is the time needed to multiply two n×n matrices, m is
the number of edges, d is the maximal degree of vertices and N is the number of
maximal bicliques. Eppstein [8] proves that all maximal bipartite cliques can be
enumerated in time O(a3 ·22a ·(n+m)), where a is the minimum number of forests
into which the edges of the graph can be partitioned and it can easily be around
10 to 20 in practice. Alexe et al. [2] use consensus algorithms to mine maximal
bicliques. Their algorithms need to keep all the maximal bicliques in memory, so
the space complexity of their algorithm is O(N), and the time complexity of their
algorithm is O(n3 · N). Our algorithm has better complexities than the above
algorithms. Furthermore, the algorithms proposed by Makino et al. are limited
to bipartite graphs. Our algorithm can be applied to any undirected graphs.

6 Conclusion

In this paper, we have presented an efficient algorithm for mining large maximal
biclique subgraphs from undirected graphs. The proposed algorithm explores the
search space in depth-first order. It effectively utilizes size constraints on both
vertex sets to prune the search space. Our performance study shows that the
proposed algorithm outperforms previous algorithms significantly.

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets
of items in large databases. In Proc of the 1993 ACM SIGMOD Conference, pages
207–216, 1993.

2. G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B. Simeone. Con-
sensus algorithms for the generation of all maximal bicliques. Discrete Applied
Mathematics, 145(1):11–21, 2004.

3. R. J. Bayardo, B. Goethals, and M. J. Zaki, editors. Proc. of the IEEE ICDM Work-
shop on Frequent Itemset Mining Implementations, volume 126 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

4. J. Besson, C. Robardet, and J.-F. Boulicaut. Constraint-based mining of formal
concepts in transactional data. In Proc. of the 8th PAKDD Conference, pages
615–624, 2004.

448 G. Liu, K. Sim, and J. Li

5. C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

6. D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang,
G. Li, and R. Chen. Topological structure analysis of the protein protein interaction
network in budding yeast. Nucleic Acids Research, 31(9):2443–2450, 2003.

7. F. Chung. On the coverings of graphs. Discrete Applied Mathematics, 30(2):89–93,
1980.

8. D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Information
Processing Letters, 51(4), 1994.

9. B. G. Floris Geerts and T. Mieliká́ınen. Tiling databases. In Proc. of the 7th
International Conference on Discovery Science, pages 278–289, 2004.

10. M. Garey and D. Johnson. Computers and Intractability: A guide to the theory of
NP-completeness. Freeman, San Francisco, 1979.

11. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for
emerging cyber-communities. In Proceeding of the 8th international conference on
World Wide Web, pages 1481–1493, 1999.

12. J. Li, H. Li, D. Soh, and L. Wong. A correspondence between maximal complete
bipartite subgraphs and closed patterns. In Proc. of the 9th PKDD Conference,
pages 146–156, 2005.

13. G. Liu, H. Lu, W. Lou, and J. X. Yu. On computing, storing and querying frequent
patterns. In Proc. of the 9th ACM SIGKDD Conference, pages 607–612, 2003.

14. K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In
Proc. of the 9th Scandinavian Workshop on Algorithm Theory, pages 260–272, 2004.

15. N. Mishra, D. Ron, and R. Swaminathan. A new conceptual clustering framework.
Machine Learning, 56(1-3), 2004.

16. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proc. of the 7th ICDT Conference, pages 398–
416, 1999.

17. R. Peeters. The maximum edge biclique problem is np-complete. Research Mem-
orandum 789, Tilburg University, Faculty of Economics and Business Administra-
tion, 2000.

18. M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, and S. Langley. Obtain-
ing maximal concatenated phylogenetic data sets from large sequence databases.
Molecular Biology and Evolution, 20(7):1036–1042, 2003.

19. E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for
generating all maximal cliques. In International Computing and Combinatorics
Conference (COCOON 2004), pages 161–170, 2004.

20. T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient mining algorithms
for frequent/closed/maximal itemsets. In Proc. of the ICDM 2004 Workshop on
Frequent Itemset Mining Implementations, 2004.

21. T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 3: Collaboration of array, bitmap
and prefix tree for frequent itemset mining. In Proc. of the ACM SIGKDD Open
Source Data Mining Workshop on Frequent Pattern Mining Implementations, 2005.

22. J. Wang, J. Pei, and J. Han. Closet+: Searching for the best strategies for mining
frequent closed itemsets. In Proc. of the 9th ACM SIGKDD Conference, pages
236–245, 2003.

23. M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset mining.
In Proc. of SIAM International Conference on Data Mining, pages 398–416, 2002.

24. M. J. Zaki and M. Ogihara. Theoretical foundations of association rules. In Proc.
of the 3rd SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, 1998.

Automatic Image Annotation by Mining the
Web

Zhiguo Gong, Qian Liu, and Jingbai Zhang

Faculty of Science and Technology
University of Macau

P.O. Box 3001 Macao, PRC
{zggong, ma46620, ma46597}@umac.mo

Abstract. Automatic image annotation has been becoming an attrac-
tive research subject. Most current image annotation methods are based
on training techniques. The major weaknesses of such solutions include
limited annotation vocabulary and labor-intensive involvement. How-
ever, Web images possess a lot of texts, and rich annotation of samples
is provided. Therefore, this report provides a novel image annotation
method by mining the Web that term-image correlation is obtained from
the Web not by learning. Without question, there are many noises in that
relation, and some cleaning works are necessary. In the system, entropy
weighting and image clustering technique are employed. Our experiment
results show that our solution can achieve a satisfactory performance.

1 Introduction

With the huge amount of Web images, it is a strong need to automatically ex-
tract term-image correlation by mining the Web. And the relation can be used
to annotate images or to perform image semantic explanation. In most current
researches, image annotation refers to the process of automatically labeling the
image contents with a predefined set of concepts representing the semantic con-
tent of images, and that method can be called the traditional image annotation.
Generally, the process of tackling that traditional image annotation has several
steps:

– preprocess image, including segmentation and visual content extraction.
– label sample images.
– classification problem, including clustering units, training visual feature clas-

sifier or semantic content classifier.

For the traditional image annotation, in the first step, the main optional work
is to segment images into regions. Actually, the accuracy of segmentation is still
an open problem. Thus, some recent systems utilize regions as sub-units and
others use the whole image as a unit. And another important component is ex-
traction of visual features. The conventional approaches of visual content-based
image retrieval can be employed. The visual features of images, such as color,

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 449–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

450 Z. Gong, Q. Liu, and J. Zhang

texture and shape, can be extracted. Labeling images is the second step which
is tedious and needs much human involvement. In this step, the predefined word
set, which is used to label images manually, confines the application scope of the
traditional image annotation. The third steps is the core of the annotation work,
which is to construct the correlation between the terms and visual features. The
current approaches have provided several models to learn that correlation, in-
cluding LDA model[1], cross-media relevance model[2], 2D HMM[3], translation
model[4], co-occurrence model[5] and continuous-space relevance model[6]. Their
common point is to correlate the evidence about the probability of the units of
images and the annotated keywords. Finally, that evidence is used to annotate
unlabeled images.

As we all know, the key point in the traditional image annotation is how to
learn the relationship between the semantic concepts and visual features of im-
ages. As a matter of the fact, with the explosive increase of Web information,
Web images are becoming one of the most indispensable information represen-
tation types on the Web. More importantly, those Web images have two types
of inherent contents attached: visual contents and semantic content. Therefore,
there is a rich resource about term-image correlations and it is possible and ad-
vantageous to utilize that resource to annotate unlabeled images. And this report
describes an novel approach to automatically annotate unlabeled images based
on those Web image resource. That approach is called Web-based image anno-
tation which contains two stages. The first stage is content extraction of Web
images, including semantic content extraction and visual feature extraction. In
the second stage, the key work is data cleaning instead of learning. Some tech-
niques in data clustering and traditional document retrieval are employed for
this purpose.

The reminder of the report is organized as follows. Sect. 2 introduces some
related works. Sect. 3 shows detail discussion on semantic content extraction
and visual feature extraction techniques of the Web images. Sect. 4 describes
our solution on term-image correlation enhancement or noise cleaning from the
aspect of both the semantic and visual feature. In Sect. 5 our evaluations are
presented. And Sect. 6 gives the conclusion.

2 Related Work

Image annotation is to give the meaning of images based on existed evidence
of images and the keywords. Its basic idea is to give the possible keywords of
unlabeled images based on the similarity between visual features of unlabeled
images and those of annotated images with keywords. That similarity can be
measured by color, shape and texture. The earliest attempt at transformation
of ”image-to-word” was Mori et al.[5], who used co-occurrence model to anno-
tate images based on trained clusters with predicted keywords after clustering
the fix-sized regions which images are divided into. And then, different models
of image annotation came forth. Barnard and Forsyth[7] considered visual fea-
tures and the semantic of images are different language contexts and utilized

Automatic Image Annotation by Mining the Web 451

translation model to give keywords to regions which was similar to the language
translation. Blei and Jordan[1] proposed the Latent Dirichlet Allocation (LDA)
model to handle the words and images, which generated the mixture of latent
factors for words and units of images. Li and Wang[3] proposed two-dimensional
multiresolution hidden Markov (2D HMM) model to associate concepts to im-
ages. Jeon et al.[2] propounded cross-media relevance model, which considered
image annotation as the cross-lingual retrieval problem. Chang et al.[8] used the
Bayes Point Machine to associate the images with the keywords at image level.
All those methods are based the traditional supervised learning principle. To
achieve better performance, the training set is large enough, and then causes
plenty of manual work.

To overcome the problem of the large training set, Feng and Chua[9] provided
bootstrapping method, which was to start from a small set of labeled train-
ing samples, and to successively annotate the larger set of unlabeled images by
co-training. They demonstrated that the method reached a relative better perfor-
mance to the traditional supervised learning method. To overcome the problems
that the performance is influenced by clustering and the mutual independence of
the events of observing region, Rui et al.[10] proposed clustering with pair-wise
constrained and formulated Semi-Näıve Bayesian model to annotate images. To
deal with the problem of the keyword sparseness, Cheng and Chien[11] provided
three levels to annotate images, including image level, keyword level and concept
level.

As a summary of the past works, two main weaknesses exist, including (1) lim-
ited scope of annotation vocabulary and (2) labor-intensive expert involvement.
Those weaknesses seriously confine the application areas of the traditional im-
age annotation. Meanwhile, Web images provide many rich sample images with
large amount of dynamic and abundant terms. Therefore, it is both possible and
valuable to annotate images based on the Web image resource.

3 Automatic Image Annotation

Image annotation is based on the assumption that images with the same kind
in semantic content are similar in visual features. And in the traditional image
annotation, the basic works include extracting visual features of units of images
or the whole images and labeling the sample images. After that, the key work
is to construct the term-image correlation before annotating unlabeled images.
And the correlation between the terms and visual features is obtained during
the process of learning. That correlation can be represented into the following
pseudometric.

MetricImageTerm =

⎛⎜⎜⎜⎝
ttfi1t1 ttfi1t2 . . . ttfi1tN

ttfi2t1 ttfi2t2 . . . ttfi2tN

...
...

. . .
...

ttfiM t1 ttfiM t2 . . . ttfiM tN

⎞⎟⎟⎟⎠ (1)

452 Z. Gong, Q. Liu, and J. Zhang

In metric 1, there are N keywords and M visual features of images. And each
row presents the information of visual features of an unit of images or an image
and each column is a word. Thus, each element in the metric ttfijtk

represents
the association between term tk and image ij . The metric is the basis of image
annotation.

In Web-based image annotation, the relationships between terms and visual
features is also represented with that metric, but the metric is obtained not by
learning from the labeled samples but from Web image mining. Therefore, the
metric is built while the process of the content extraction from Web images on
semantic level and visual feature level. While the Web has a huge and compre-
hensive source of sample images, there are many noises. Therefore, it is necessary
to clean the noises before annotating unlabeled images. The architecture of our
image annotation system is shown in Fig. 1.

Noise Cleaning

Words Set
kN

...k2
k1

�

fM

...f2
f1

�
�

��
�
� ���� ���	
......

ttfijtk

Features Set
fM

...f2
f1

Features Extraction

Extraction
Semantic

Extraction
Visual Features

Web Images

sml

Words

Words Ranking

f
�.... �
���

Similarity Measure

Visual Features Extraction

Unlabeled Image

Fig. 1. The Architecture of the System

In Fig. 1, sml, which can be calculated by Euclidean distance between vi-
sual features, is the similarity between unlabeled images and annotated images,
ttfijtk

, M and N are the same as those in metric. It can be seen from Fig. 1 that
sml is how much similarity between unlabeled images and the annotated images
and ttfijtk

is the association between keywords and the annotated images, what
is important is how to determine the association between keywords and unla-
beled images based on that information. Out of question, the association can be
obtained by the product of sml and ttfijtk

. Therefore, in the process of keywords
ranking, the formula 2 is used to calculate the association of the keyword tk to
images in:

ttfintk
=

M∑
l=1

sml∑M
j=1 smj

∗ ttfiltk
. (2)

Automatic Image Annotation by Mining the Web 453

Therefore, there are two basic components necessary in Web-based image an-
notation: one is semantic content extraction for ttfijtk

and the other is visual
feature extraction for sml.

3.1 Semantic Content Extraction

In most works of the traditional image annotation, the sample images are usually
labeled by human beings, which involves extensive work and may produce many
problems, such as keyword sparseness comparing with the rich semantic terms
used in the real world. Meanwhile, huge and comprehensive images associated
with texts are available on the Web and those valuable images can just overcome
the limitations caused by the traditional methods. Furthermore, the dynamic
Web can well support the evolution of the annotation vocabulary.

Before extracting the semantic of Web images, the text sources must be de-
termined. Based on the relationship of the embedded images and the Web pages,
there are several text sources with potential semantic relevant to the Web im-
ages: images title, images alt, images caption, pages title[12,13,10] and other sur-
rounding text[12,10]. Some another sources, such as HTML meta data, maybe
provide some information in some cases, but generally, they often cause the con-
fusion. At length, we choose five parts, image’s title(STT), image’s alt(STA),
image’s caption(STC), page’s title(STP) and nearest surrounding text(STS) for
the semantic sources.

When extracting the semantic, term oriented representation model[12] is uti-
lized. The basic idea is to consider each word independently and the terms have
different weights which are based on the relevance of different text sources to
Web images. A variable of TFIDF model[12] can describe the association of term
tk to image ij as follows:

ntf(tk)|STl
=

tf(tk)|STl

|STl|
(3)

In (3), tf(tk)|STl
is the frequency of term t in the text block type STl, where

the text block type may be STT, STA, STC, STP or STS. |STl| is the size of
text block type STl. Thus, the total term association to image ij is calculated
as:

ttf(tk)|ij =
L∑

k=1

wl*ntf(tk)|STl
(4)

In (4), L is the total number of the text block type, and wl is the weight fac-
tor of STl, which is defined according to how much this semantic word con-
tributes to the image ij . Without loss of generality, after normalizing wl,

∑L
k=1

wl = 1.

3.2 Visual Content Extraction

To annotate unlabeled images, there are two key issues: one is the association of
keywords to annotated images which is ttfijtk

in the metric 1, and the other is

454 Z. Gong, Q. Liu, and J. Zhang

the similarity between visual features of unlabeled images and annotated images.
Currently, the available visual features include color, texture and shape. Those
features can be based on whole images or based on the units of images. But the
technologies to segment images into regions is still open problem. Therefore, the
global color feature and global texture feature are utilized.

For color feature, HSL color space is selected because it is tractable and per-
ceptually uniform and easy and possible to transform from popular RGB color
space to HSL color space. There are several forms of color feature, including
color histogram, color coherence vector[14], color correlogram, color moments
and color set[15]. And in Web-based image annotation, the form of color fea-
ture is quantized color histogram. In HSL, hue is quantized into 18 levels, and
lightness and saturation are quantized into 3 levels respectively. Thus, there are
162(18*3*3) color in HSL color space. In addition, grey color is quantized into
4 levels. At length, the color histogram is 166-dimension.

For texture feature, Daubechies wavelet transform is chosen because of its
better performance in the time and frequency domain. Each image is decom-
posed into four frequencies at each level, diagonal coefficients(HH), vertical co-
efficients(HL), approximation coefficients(LL), horizontal coefficients(LH). For
those frequencies, except HH, each frequency is decomposed again because HH
is unstable. And for each frequency at each level, the mean and variance are used
as the components of texture feature vector, which can be described as follow:

−→
fvt = { μ11

δμ11

σ11

δσ11

μ12

δμ12

σ12

δσ12

· · · μij

δμij

σij

δσij

· · · μNM

δμNM

σNM

δσNM

} (5)

In (5), N is the level of the transform and M is the number of frequency of each
level and here, M is four denoting the number of one approximation frequency
and three detail frequencies. μij and σij is respectively the mean and variance of
the frequency j in level i. And δσij

and δμij
are standard deviations of σij and μij

respectively in the entire database. For each unit of images, 4-level wavelet trans-
form is performed. Therefore, texture feature vector is 320(4*(1+3+9+27)*2)-
dimension. And the distance between those visual features can be measured by
Euclidean distance.

Up to now, the metric is obtained from Web pages. Metric 1 is dynamic,
efficient and automatically expanded with the increase of Web pages. Inevitably,
there are some noises. Therefore, the metric must be cleaned in order to raise
the annotation performance.

4 Methods for Cleaning

As we know, in Web pages, many associated words of Web images are irrelevant
to the semantic of the images. Those words may produce many noises in the
metric 1 and there is a strong need to clean those noises in order to raise the
performance. In our approach, we employ three techniques available for noise
cleaning, including word weighting with respect to inter-image dissimilarity, non-
semantic term removing and image clustering.

Automatic Image Annotation by Mining the Web 455

From the metric 1, it is obvious that the relationship between visual features
and words is similar to that between text documents and words. And further,
for Web pages, some words are often used but they are noises, such as term ’im-
age’. Therefore, some methods of document term weighting, such as inter-image
weight strategy, can be used to recalculate the association between images and
terms in order to clean effectively the noises. Typical weight strategies include
boolean weighting, word frequency, tf×idf weighting, tfc weighting, ltc weighting
and entropy weighting. Entropy weighting produces a better performance [16].
And the formula of entropy weighting is calculated as:

ttfwijtk
= log(ttfijtk

+ 1) +

(
1 +

1
log(N)

N∑
l=1

[
ttfiltk

nk
log

(
ttfiltk

nk

)])
(6)

where ttfwijtk
is the item of metric 1, N the number of images and ni is the sum

of the association of word i to all images. Through that method, some noises,
such as ’image’ can be assigned with lower association.

From the aspect of linguistics, it is notable that image annotation is based on
the meaningful terms. However, the associated text of Web images often contains
many less meaningful terms which are called non-semantic terms, such as the
size description, identifier, and created time of the images. Those terms have
little helps for image annotation. In our system, that associated text is the form
of number term, which can account for more than 12% of the words extracted.
Therefore, in our system, those non-semantic terms are removed to raise the
annotation performance.

The above techniques are used to reduce the adverse affections caused by
the noise terms and the improvement of the performance can be found from
Table 2. Further, visual features of Web images also include many noises. As we
know from metric 1, each word is associated with a list of Web images. As a
matter of the fact, large percent of the images in the list are irrelevant to the
concepts. That is, we can naturally suppose that Web images associated to a
word can be classified into two clusters, one for relevant images and the other
for irrelevant images. Further, the relevant images actually construct a dense
set, while the irrelevant class tends to be a spare set. And more importantly, in
those two clusters, inversely and generally, the dense set is considered as more
close to the word with smaller mean and variance, and it is called relevant image
set, and the spare set is considered as irrelevant image set. In other words, the
relevant set of images have similar visual features, and irrelevant set is hard to
converge to some points, and the mean and variance of distances of the relevant
images are smaller than those of irrelevant image set. However, in relevant image
set, although those images have the same semantic with most probability, the
relevant degrees are different greatly. Therefore, it is necessary to enhance that
relevance. It is opposite for irrelevant image set. And we know, ttfijtk

is inverse
to the mean and variance of the distance in the sets and this relation can be
used to recalculate ttfijtk

in order to cleanse. Supposed that clustering method
can be utilized to obtain the two sets and m is the mean of the distance for
each set and v is its variance, ttfijtk

can be recalculated again by the formula:

456 Z. Gong, Q. Liu, and J. Zhang

tffcijtk
=

tffijtk

log(m×v)α , where α is the coefficient and denotes how much m and v

affect ttfijtk
. And then the effect of those irrelevant images is scaled down and

that of those relevant images is enhanced in the process of annotating unlabeled
images. Now, the performance of clustering is shown in Table 1. In Table 1,

Table 1. Clustering Performance

topic Precision Recall F1

umac 0.37766 0.747368 0.501767

dv 0.506849 0.536232 0.521127

camera 0.298734 0.751592 0.427536

printer 0.151515 0.882353 0.258621

calculator 0.188889 0.607143 0.288136

game 0.34728 0.734513 0.471591

scanner 0.226667 0.894737 0.361702

Average 0.287891375 0.74892675 0.415906217

the performance of some topic is very low, which is due to that the number
of those topic is not enough, such as topic ’scanner’ with only 18 images in
database. From Table 1, the association of most images with same sematic has
been enhanced as expected, although the precision is not very high.

5 Performance Evaluation

To evaluate the performance, the prototype system is implemented based on
the architecture described in Fig. 1. In our experiments, more than 12000 Web
images from 50000 Web pages are gathered after noise images, such as icons,
banners, logos and any image with size less than 5k, removed. And there are
more than 50000 keywords. In our experiments, the performance is evaluated by
Mean Reciprocal Rank (MRR) method in (7),

MRR =
1
N

N∑
k=1

1
nk

(7)

where N is the number of testing images used and nk is the position of the
first correct word in the image annotation. About the performance evaluation,
Cheng and Chien[11] used a method about the relation of the position and the
precision and the recall at that position. However, that method is not suitable
for our experiments due to the reasons: (1) The prototype system has abundant
words while in [11] there is word sparseness. Abundant words produce great
effect on the precision and the recall. For example, an image, which is about
a notebook, can be annotated with word ’notebook’ or ’laptop’ and so on by
different Web developer and those words are unexpected. Therefore, when eval-
uating annotation, more relevant words are added to the testing image, higher
the precision is but lower the recall is. It is opposite for the precision and the

Automatic Image Annotation by Mining the Web 457

recall when the relevant words is less. But that inverse action does not in [11];
and (2) The unlabeled image can be considered as single content, if not, it is
possible to segment an image into several images, because multi-content images
can lead to low precision based on visual features. Therefore, it is little valuable
to give another relevant semantic word to an image when the first correct word
has been added to the image. That is, the first correct word is more important.
Therefore, MRR approach is suitable to make the performance evaluation.

100 test images are used to evaluate the performance of Web image annota-
tion. And Table 2 is the annotation performance. In Table 2, baseline value is to

Table 2. Annotation Performance

Baseline Word Cleaning Clustering Cleaning

MRR 0.129422 0.292236 0.349141

use the original data in metric 1 to make the annotation. Its MRR is 0.129422.
It is not satisfactory because of there are so many noises. Therefore, some obvi-
ous noises are removed, such as number terms. And then, the entropy weighting
is used to recalculate ttfijtk

. That process is called word cleaning and better
performance is obtained with MRR 0.292236. And then, clustering cleaning is
performed. And it uses the similarity between the images to cluster the images
associated to some term into two sets and degrades the effect of the noises based
on the relation that ttfijtk

is inversely related to the mean and the variance of
the similarity within the same set. Finally, the performance is further improved
and acceptable with MRR 0.349141.

6 Conclusion

Image annotation is an attractive research area. There is a lot of contribution
made and many famous models have been produced, such as LDA model, cross-
media relevance model, 2D HMM, translation model, co-occurrence model and
continuous-space relevance model. Those models are all based on training data,
with limited word vocabulary and extensive manual works. To overcome those
problems in the traditional works, in this report, we proposes automatic image
annotation techniques based on Web image resource. However, there are many
noises from both the semantic aspect and visual feature aspect. Therefore, some
document processing method and image clustering technique are used to clean
the noises from both aspects. With such techniques, the performance of our
annotation system can provide a satisfied result.

References

1. David M. Blei and Michael I. Jordan. Modeling annotated data. In SIGIR [17],
pages 127–134.

2. Jiwoon Jeon, Victor Lavrenko, and R. Manmatha. Automatic image annotation
and retrieval using cross-media relevance models. In SIGIR [17], pages 119–126.

458 Z. Gong, Q. Liu, and J. Zhang

3. James Z. Wang and Jia Li. Learning-based linguistic indexing of pictures with
2–d mhmms. In MULTIMEDIA ’02: Proceedings of the tenth ACM international
conference on Multimedia, pages 436–445, New York, NY, USA, 2002. ACM Press.

4. Kobus Barnard, Pinar Duygulu, David A. Forsyth, Nando de Freitas, David M.
Blei, and Michael I. Jordan. Matching words and pictures. Journal of Machine
Learning Research, 3:1107–1135, 2003.

5. Y. Mori, H. Takahashi, and R. Oka. Image-to-word transformation based on di-
viding and vector quantizing images with words, 1999.

6. Victor Lavrenko, R. Manmatha, and Jiwoon Jeon. A model for learning the seman-
tics of pictures. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf,
editors, NIPS. MIT Press, 2003.

7. Kobus Barnard and David A. Forsyth. Learning the semantics of words and pic-
tures. In ICCV, pages 408–415, 2001.

8. Edward Y. Chang, Kingshy Goh, Gerard Sychay, and Gang Wu. Cbsa: content-
based soft annotation for multimodal image retrieval using bayes point machines.
IEEE Trans. Circuits Syst. Video Techn., 13(1):26–38, 2003.

9. HuaMin Feng and Tat-Seng Chua. A bootstrapping approach to annotating large
image collection. In Nicu Sebe, Michael S. Lew, and Chabane Djeraba, editors,
Multimedia Information Retrieval, pages 55–62. ACM, 2003.

10. Rui Shi, Wanjun Jin, and Tat-Seng Chua. A novel approach to auto image an-
notation based on pairwise constrained clustering and semi-näıve bayesian model.
In Yi-Ping Phoebe Chen, editor, MMM, pages 322–327. IEEE Computer Society,
2005.

11. Pu-Jen Cheng and Lee-Feng Chien. Effective image annotation for searches using
multilevel semantics. Int. J. on Digital Libraries, 4(4):258–271, 2004.

12. Zhiguo Gong, Leong Hou U, and Chan Wa Cheang. An implementation of web
image search engines. In ICADL, pages 355–367, 2004.

13. Heng Tao Shen, Beng Chin Ooi, and Kian-Lee Tan. Giving meanings to www
images. In MULTIMEDIA ’00: Proceedings of the eighth ACM international con-
ference on Multimedia, pages 39–47, New York, NY, USA, 2000. ACM Press.

14. Greg Pass, Ramin Zabih, and Justin Miller. Comparing images using color coher-
ence vectors. In ACM Multimedia, pages 65–73, 1996.

15. John R. Smith and Shih-Fu Chang. Visualseek: A fully automated content-based
image query system. In ACM Multimedia, pages 87–98, 1996.

16. Susan T. Dumais. Improving the retrieval of information from external sources.
In Behavior Research Methods, Instruments, and Computers 23(2), pages 229–236,
1991.

17. SIGIR 2003: Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, July 28 - August 1, 2003,
Toronto, Canada. ACM, 2003.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 459 – 468, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Privacy Preserving Spatio-temporal Clustering on
Horizontally Partitioned Data*

Ali nan and Yücel Saygın

Sabancı University, Faculty of Engineering and Natural Sciences,
34956, Istanbul, Turkey

inanali@su.sabanciuniv.edu
ysaygin@sabanciuniv.edu

Abstract. Time-stamped location information is regarded as spatio-temporal
data and, by its nature, such data is highly sensitive from the perspective of pri-
vacy. In this paper, we propose a privacy preserving spatio-temporal clustering
method for horizontally partitioned data which, to the best of our knowledge,
was not done before. Our methods are based on building the dissimilarity ma-
trix through a series of secure multi-party trajectory comparisons managed by a
third party. Our trajectory comparison protocol complies with most trajectory
comparison functions and complexity analysis of our methods shows that our
protocol does not introduce extra overhead when constructing dissimilarity ma-
trix, compared to the centralized approach.

1 Introduction

Advances in wireless communication technologies resulted in a rapid increase in
usage of mobile devices. PDAs, mobile phones and various other devices equipped
with GPS technology are now a part of our daily life. One direct consequence of this
change is that, using such devices, locations of individuals can be tracked by wireless
service providers. Individuals sometimes voluntarily pay for being tracked by means
of Location Based Services (LBS) such as vehicle telematics that offer vehicle track-
ing and satellite navigation. Tracking is also enforced by law in some countries, as in
the case of the Enhanced-911 mandate, passed by U.S. Federal Communications
Commission in 1996. The mandate requires that any cellular phone calling 911, the
U.S. nationwide emergency service number, be located within at least 50 to 100
meters.

Time-stamped location information is regarded as spatio-temporal data due to its
time and space dimensions and, by its nature, is highly vulnerable to misuse. In fact,
privacy issues related to collection, use and distribution of individuals’ location
information is the main obstacle against extensive deployment of LBSs. Suppressing
identifiers from the data does not suffice since trajectories can easily be re-bound to
individuals using publicly available information such as home and work addresses.
Therefore new privacy preserving knowledge discovery methods, designed specifically

* This work was funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under IST-014915
GeoPKDD project.

460 A. nan and Y. Saygın

to handle spatio-temporal data, are required. Existing privacy preserving data mining
techniques are not suitable for this purpose since time-stamped location observations of
an object are not plain, independent attributes of this object.

In this work, we propose a privacy preserving clustering technique for horizontally
partitioned spatio-temporal data where each horizontal partition contains trajectories
of distinct moving objects collected by a separate site. Consider the following sce-
nario where the proposed techniques are applicable: In order to solve traffic conges-
tion, traffic control offices want to cluster trajectories of users. However, the required
spatio-temporal data is not readily available but can be collected from GSM operators.
GSM operators are not eager to share their data due to privacy concerns. The solution
is running a privacy preserving spatio-temporal clustering algorithm for horizontally
partitioned data.

Our method is based on constructing the dissimilarity matrix of object trajectories
in a privacy preserving manner which can then be input to any hierarchical clustering
algorithm. Main contributions are introduction of a protocol for secure multi-party
computation of trajectory distances and its application to privacy preserving cluster-
ing of spatio-temporal data. We also provide complexity and privacy analysis of the
proposed method.

In Section 2, we provide related work in the area and then formally define the
problem in Section 3. Classification of trajectory comparison functions is provided in
Section 4. Communication and computation phases of our method are explained in
Sections 5 and 6 respectively. We provide complexity and privacy analysis in Section
7 and finally conclude in Section 8.

2 Related Work

Privacy preserving data mining has become a popular research area in the past 5
years. The aim of privacy preserving data mining is ensuring individual privacy while
maintaining the efficacy of data mining techniques. Agrawal and Srikant initiated
research on privacy preserving data mining with their seminal paper on constructing
classification models while preserving privacy [7]. Saygin et al. propose methods for
hiding sensitive association rules before releasing the data [14]. Privacy preserving
data mining methods can be classified under two headings: data sanitization and se-
cure multi-party computation. Data sanitization approaches sacrifice accuracy for
increased privacy, while secure multi-party computation approaches try to achieve
both accuracy and privacy at the expense of high communication and computation
costs.

Researchers developed methods for privacy preserving clustering. Most of these
methods are based on sanitizing the input and they address only centralized data.
Merugu and Ghosh propose methods for constructing data mining models from the
input data. These models are not considered private information. The overall cluster-
ing schema is constructed by merging these models coming from vertically or hori-
zontally distributed data sources [9]. Oliveira and Zaiane propose methods for pre-
serving privacy by reducing the dimensionality of the data [5]. Their method is not
applicable to horizontally partitioned data and moreover, results in loss of accuracy.
Vaidya and Clifton propose a secure multi-party computation protocol for k-means

 Privacy Preserving Spatio-temporal Clustering on Horizontally Partitioned Data 461

clustering on vertically partitioned data [10]. Jha et al. [8] propose a privacy preserv-
ing, distributed k-means protocol on horizontally partitioned data through secure
multi-party computation of cluster means. Inan et al. propose another privacy preserv-
ing clustering algorithm over horizontally partitioned data that can handle numeric,
categorical and alphanumeric data [6].

Privacy of spatio-temporal data is of utmost importance for individuals since such
data is highly vulnerable to misuse. In this work, we focus on spatio-temporal data
and propose a secure multi-party comparison protocol that is applicable to most tra-
jectory comparison functions. Previous work on ensuring individual privacy for spa-
tio-temporal data is limited to sanitization approaches and access control mechanisms.
Gruteser and Hoh propose confusing paths to garble trajectories of individuals [11].
Beresord and Stajano introduce “mix zones”, in which identification of users is
blocked and pseudonyms of incoming user trajectories are mixed up while leaving
these mixed zones [12]. A detailed discussion on privacy mechanisms through access
control and anonymization can be found in [13]. To the best of our knowledge, this
work is the first to introduce a secure multi-party solution to privacy problems in
spatio-temporal data without any loss of accuracy.

3 Problem Formulation

Spatio-temporal knowledge discovery deals with time-stamped location observa-
tions of moving objects. In some applications spatial component may interpreted in
a different way. For example, in stock market analysis, trajectory of a stock is the
one-dimensional vector of price fluctuations in time. In weather forecasting, obser-
vations are two dimensional measurements of atmospheric pressure and temperature
at weather stations. In this paper, we primarily focus on moving objects and assume
that location information is two dimensional as in the case of GPS, neglecting the
altitude.

Trajectory T of a moving object X is a set of location observations in the form O =
(t, d) where t represents the time dimension and d represents the two dimensional
location information. Number of observations for this trajectory is denoted as
length(X) and ith element of TX is denoted by TX(i). Figure 1 depicts these notions for
the sample one dimensional spatio-temporal data provided in Table 1.

Table 1. Spatio-temporal data for trajectories X and Y

Time X
1 4 7 10 16

Location 2,3 4,5 6,7 3 2
Time Y

2 4 6 8
Location 4,3 3,6 7 3

462 A. nan and Y. Saygın

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

Time

L
o

ca
ti

o
n

X Y

Fig. 1. Trajectories X and Y. length(X) = 5 and length(Y) = 4

Suppose that there are K data holders, such that K 2, which track locations of
with unique object id’s. The number of objects in data holder k’s database is
denoted as sizeK. Data holders want to cluster the trajectories of moving objects
without publishing sensitive location information so that clustering results will be
public to each data holder at the end of the protocol. There is a distinct third party,
denoted as TP, who serves as a means of computation power and storage space.
TP’s role in the protocol is: (1) managing the communication between data hold-
ers, (2) privately constructing the global dissimilarity matrix, (3) clustering the
trajectories using the dissimilarity matrix, and (4) publishing the results to the data
holders.

Involved parties, including the third party, are assumed to be semi-honest which
means that they follow the protocol as they are expected to, but may store any
information that is available in order to infer private data in the future. Semi-
trusted behavior is also called honest-but-curious behavior. Another assumption is
that, all parties are non-colluding, i.e. they do not share private information with
each other.

4 Trajectory Comparison Functions

Clustering is the process of grouping similar objects together. In order to measure
the similarity between object trajectories, robust comparison functions are needed.
However, trajectory comparison is not an easy task since spatio-temporal data is
usually collected through sensors and therefore is subject to diverse sources of
noise. Under ideal circumstances, object trajectories would be of the same length
and time-stamps of their corresponding elements would be equal. The distance
between two trajectories satisfying these conditions could be computed using
Euclidean distance, simply by summing the distance over all elements with equal
time-stamps. In real world, on the other hand, non-overlapping observation inter-
vals, time shifts and different sampling rates are common. Although various trajec-
tory comparison functions have been proposed to cope with these difficulties, this
topic is still an ongoing research area.

Most trajectory comparison functions stem from four basic algorithms: (1) Euclid-
ean distance, (2) Longest Common Subsequence (LCSS), (3) Dynamic Time Warping

 Privacy Preserving Spatio-temporal Clustering on Horizontally Partitioned Data 463

(DTW), and (4) Edit distance. We classify these algorithms into two groups with
respect to penalties added per pair-wise element comparisons: real penalty functions
and quantized penalty functions. Real penalty functions measure the distance in terms
of the Euclidean distance between observations while quantized penalty functions
increment the distance by values 0 or 1 at each step depending on spatial proximity of
the compared observations. In the following subsections we explain crucial trajectory
comparison functions briefly and provide the reasoning behind this classification. For
a detailed discussion on characteristics of these algorithms, please refer to [1].

Significance of our privacy preserving trajectory comparison protocol is due to the
fact that it is applicable to all comparison functions explained below. Furthermore, the
protocol does not trade accuracy against privacy unlike previous work.

4.1 Comparison Functions with Real Penalty

Euclidean distance, Edit distance with Real Penalty (ERP) and DTW are the compari-
son functions with real penalty. Euclidean distance is a naïve method based on com-
paring the corresponding observations of trajectories with the same length. The algo-
rithm terminates in O(n) time, returning the sum of real penalties. Euclidean distance
function is sensitive to time shifts and noise but the output is a metric value.

ERP [4] measures the minimum cost of transforming the compared trajectory to the
source trajectory using insertion, deletion and replacement operations. Cost of each
operation is calculated using real spatial distance values. Cost of replacing observa-
tion i with observation j is dist(i, j), where dist is the Euclidean distance. However in
case of insertion (or deletion), added cost is the distance between the inserted (or
deleted) observation and the constant observation value g, defined by the user. ERP
compares all pairs of elements in the trajectories, returning a metric value in O(n2)
time. The algorithm is resistant to time shifts but not to noise.

DTW was initially proposed for approximate sequence matching in speech recog-
nition but is generalized to similarity search in time series by authors of [3]. The algo-
rithm is very similar to Edit distance but instead of insertions and deletions, stutters
are used. The ith stutter on x dimension, denoted as stutteri(x), repeats the ith element
and shifts following elements to the right. Computation cost is O(n2) as expected and
resultant distance value is non-metric. Allowing repetitions strengthens the algorithm
against time shifts but does not help with noise.

4.2 Comparison Functions with Quantized Penalty

Trajectory comparison functions with quantized penalty are LCSS [2] and Edit dis-
tance on Real Sequence (EDR) [1]. Both algorithms try to match all pairs of elements
in the compared trajectories and therefore have a computation cost of O(n2). A pair of
observations is considered a match if they are close to each other in space by less then
a threshold, . LCSS returns the length of the longest matched sequence of observa-
tions while EDR returns the minimum number of insertion, deletion or replacement
operations required to transform one trajectory to the other. Although these algo-
rithms are resistant to time shifts and noise, distance values are not metric.

464 A. nan and Y. Saygın

5 Communication Phase

As explained before, the protocol for privacy preserving comparison of trajectories
consists of two phases: communication phase and computation phase. In the commu-
nication phase, data holders exchange data among themselves and the third party
(TP), who will carry out the computation phase and publish the clustering results.

Prior to the communication phase we assume that every involved party, including
the third party, has already generated pair-wise keys. These keys are used as seeds to
pseudo-random number generators which disguise the exchanged messages. Diffie-
Hellman key exchange protocol is perfectly suitable for key generation [15].

Dissimilarity matrix is an object by object structure. In case of spatio-temporal data,
an entry D[i][j] of the dissimilarity matrix D is the distance between trajectories of
objects i and j calculated using any comparison function. In Section 6, we show that our
privacy preserving comparison protocol is suitable for all comparison functions ex-
plained in Section 4. If trajectories of both i and j are held by the same site, this site can
calculate their distance locally and send it to the third party. However, if trajectories of i
and j are at separate sites, these sites should run the protocol explained below. Assuming
K data holders, C(K,2) runs are required, one for each pair of data holders.

Suppose that two data holders, DHA and DHB, with size(A) and size(B) trajectories
respectively, want to compare their data. Assume that the protocol starts with DHA.
For each trajectory T in DHA’s database, two pseudo-random number generators are
initialized, rngAB and rngAT. The seed for rngAB is the key shared with DHB and the
seed for rngAT is the key shared with TP. Then, for each dimension of spatial compo-
nent of T’s elements (i.e. x and y), DHA disguises its input as follows: if the pseudo-
random number generated by rngAB is odd, DHA negates its input and increments it by
the pseudo-random number generated by rngAT. Finally, DHA sends the disguised
values to DHB.

Begin
 For j=0 to size(DHA)
 Initialize rngAB with the key KAB
 Initialize rngAT with the key KAT
 For m=0 to length(DHA[j])

 DHA[j][m].x =rngAT + DHA[j][m].x * -1
rngAB%2

 DHA[j][m].y =rngAT + DHA[j][m].y * -1
rngAB%2

 Send DHA to DHB
End

Fig. 2. Pseudo code of trajectory comparison protocol at site DHA

Upon receiving data from DHA, DHB initializes a matrix M of size size(B)×size(A),
which will be DHB’s output. For each trajectory T in its database, DHB initializes a
pseudo-random number generator rngAB with the key shared with DHA and negates its
inputs in a similar fashion. This time negation is done when the generated number is
even. DHB then starts filling values into M. An entry M[i][j][m][n] of M is DHA’s jth
trajectory’s nth observation compared to DHB’s ith trajectories mth observation. DHB sim-
ply adds its input to the input received from DHA. At the end, M is sent to TP by DHB.

 Privacy Preserving Spatio-temporal Clustering on Horizontally Partitioned Data 465

Begin
 For i=0 to size(DHB)
 For j=0 to size(DHA)
 For n=0 to length(DHB[i])
 Initialize rngAB with the key KAB
 For m=0 to length(DHA[j])
 M[i][j][n][m].x +=DHB[i][n].x * -1

(rng

AB

+1)%2
 M[i][j][n][m].y +=DHB[i][n].y * -1

(rng

AB

+1)%2
 Send M to TP
End

Fig. 3. Pseudo code of trajectory comparison protocol at site DHB

TP subtracts the random numbers added by DHA using a pseudo-random number
generator, rngAT, initialized with the key shared with DHA. Now, absolute value of any
entry M[i][j][m][n] is | DHA[j][n] – DHB[i][m] |. These values are all that is needed
by any comparison function to compute the distance between trajectories i and j.

Pseudo codes for the roles described above are given in Figures 2, 3 and 4. Discus-
sion on the necessity of each pseudo-random number generator used in the protocol is
provided in Section 7.

Begin
 For i=0 to size(DHB)
 For j=0 to size(DHA)
 For n=0 to length(DHB[i])
 Initialize rngAT with the key KAT
 For m=0 to length(DHA[j])
 M[i][j][n][m].x = |M[i][j][n][m].x - rngAT|
 M[i][j][n][m].y = |M[i][j][n][m].y - rngAT|
End

Fig. 4. Pseudo code of trajectory comparison protocol at site TP

6 Computation/Aggregation Phase

The third party can compute pair-wise trajectory distances for data holder sites A and
B, once the comparison matrix M is built through the protocol in Section 5. If the
comparison function measures distances using real penalty, then M[i][j][m][n] is the
cost for A’s jth trajectory’s nth observation with respect to B’s ith trajectory’s mth obser-
vation. Otherwise, if a quantized penalty comparison function is to be employed, TP
simply checks whether M[i][j][m][n] < to match these two observations.

What remains is performing comparisons of the form M[i][j], where both i and j
are trajectories of the same data holder site. In such cases, another privacy preserving
protocol is not required to compute these values, since conveying local dissimilarity
matrices to TP does not leak any private information, proven in [5].

In order to build the dissimilarity matrix, TP must ensure that every data holder site
has sent its local dissimilarity matrix and run the pair-wise comparison protocol with
every other data holder. Figure 5 is the pseudo-code for constructing local dissimilar-
ity matrices where distance denotes the comparison function.

466 A. nan and Y. Saygın

Begin
 For m=0 to size(DH)
 For n=0 to m
 D[m][n]= distance(DH[m], DH[n])
End

Fig. 5. Pseudo code for local dissimilarity matrix construction

After gathering comparison results for all pairs of trajectories, TP normalizes the
values in the dissimilarity matrix. These normalized distances are the only required
input for most clustering algorithms, such as k-medoids, hierarchical and density
based clustering algorithms. Another key observation here is that using our protocol,
TP may use any clustering algorithm depending on requirements of the data holders.

At the end of the clustering process, the third party sends the clustering results to
the data holders. The results are in the form of lists of objects identifiers, since pub-
lishing the dissimilarity matrix itself would cause private information leakage. The
third party can also publish clustering quality parameters, if requested by the data
holders.

7 Complexity and Privacy Analysis

In this section, we analyze the communication and computation costs of the pair-wise
comparison protocol and local dissimilarity matrix construction. An analysis of the
privacy offered by the protocol follows.

Every data holder has to send its local dissimilarity matrix to the third party. Com-
putation cost of constructing the matrix is O(n2 * distance) where n is the number of
trajectories and distance denotes the complexity of the comparison function. For
Euclidean, the cost becomes O(n2*p) and for the other comparison functions it is
O(n2*p2) where p is the maximum number of observations in a trajectory.

The initiator of the comparison protocol, DHA in Section 5, has a computation cost
of O(n*p). The follower, DHB, on the other hand makes O(n*m*p2) computations
where m is the number of trajectories at site DHB. Communication costs are parallel to
computation costs since every party sends the result of the computation without any
further operation.

There is an apparent imbalance in the computation and communication costs of the
follower and initiator parties. TP can easily solve this problem by arranging the se-
quence that pair-wise comparison protocols are carried out such that every party will
be the initiator at least ⎣ ⎦2/)1(−K times in a setting of K data holders.

Sharing dissimilarity matrices does not leak any private information according to
[5], as long as the private data is kept secret. The proof of the theorem relies on the
fact that given the distance between two data points, there are infinitely many pairs of
points that are equally distant. Since we assume that involved parties do not collude
with each other and honestly follow the protocol, TP can not collude with a data
holder site to infer private information of another data holder. Therefore sharing local
dissimilarity matrices does not harm privacy unless the comparison protocol intro-
duces inference channels that may leak private information.

 Privacy Preserving Spatio-temporal Clustering on Horizontally Partitioned Data 467

In the comparison protocol, the message sent by the initiator is a matrix containing
values of the form (n + r) or (-n + r) where n is initiator’s input and r is a random
number. In either case, these values are completely random to the follower. On the
other hand, follower sends TP a matrix of values of the form (n – m + r) or (m – n +
r). Although TP knows r, (n – m) or (m – n) does not help inferring either n or m,
since there are infinitely many pairs (m, n) whose distance is | m – n |.

Purpose of the pseudo-random number generator shared between the initiator and
the follower is preventing TP from inferring whose input is larger. Suppose that al-
ways the follower subtracts its input from the initiator’s input. If m > n, (n + r – m – r)
= (n – m) would be negative, pointing out that follower’s input is greater. Shared
pseudo-random number generator garbles the negation sequence and prevents such
inferences.

One possible attack against our comparison protocol could be statistical analysis.
Notice that observations of every trajectory in initiator’s database with the same index
is disguised using the same random number. This is due to the fact that the pseudo-
random number generator is re-initialized at each step. Given enough statistics on the
data and assuming that the databases are large enough to contain many repetitions of
spatial values, such an attack is realizable. But considering that the domain of spatial
values is very large and such statistics is not publicly available, we regard these types
of attacks as very unlikely to succeed.

8 Conclusion

In this paper, we proposed a protocol for privacy preserving comparison of trajecto-
ries and its application to clustering of horizontally partitioned spatio-temporal data.
The main advantage of our protocol is its applicability to most trajectory comparison
functions and different clustering methods such as hierarchical clustering. The data
holder sites can decide the clustering algorithm of their choice and receive clustering
quality parameters together with the results. Only a small share of existing privacy
preserving clustering algorithms can handle horizontally partitioned data and these
algorithms do not specifically address spatio-temporal attributes.

We also provided complexity and privacy analysis of our protocol and observed
that communication and computation costs are parallel to the computation costs for
clustering local data. Privacy analysis shows that an attack using statistics of spatial
components is possible but very unlikely to succeed. A proof-of-concept implementa-
tion of the clustering algorithm in C# language is available at [17]. We used real spa-
tio-temporal datasets from the R-Tree Portal [16] for debugging and verifying the
software.

References

1. Chen, L., Özsu, M. T., Oria V.: Robust and Fast Similarity Search for Moving Object Tra-
jectories. In: Proc. of the 2005 ACM SIGMOD. (2005) 491-502

2. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering Similar Multidimensional Trajecto-
ries. In: Proc. of the 18th ICDE. (2002) 673-684

468 A. nan and Y. Saygın

3. Yi, B-K., Jagadish, H. V., Faloutsos, C.: Efficient Retrieval of Similar Time Sequences
Under Time Warping. In: Proc. of the 14th ICDE. (1998) 201-208

4. Chen, L., Ng, R.: On the Marriage of Edit Distance and Lp-Norms. In: Proc. of the 2004
VLDB. (2004) 792-803

5. Oliveira, S.R.M., Zaiane, O.R.: Privacy Preserving Clustering by Object Similarity-Based
Representation. In: Proc. of the 2004 ICDM Workshop on Privacy and Security Aspects of
Data Mining. (2004) 40-46

6. Inan, A., Saygin, Y., Savas, E., Hintoglu, A.A., Levi, A.: Privacy Preserving Clustering on
Horizontally Partitioned Data. In: Proc. of the 22nd ICDE Workshop on Privacy Data Man-
agement. (2006)

7. Agrawal, R., Srikant, R.: Privacy Preserving Data Mining. In: Proc. of the 2000 ACM
SIGMOD. (2000) 439-450

8. Jha, S., Kruger, L., Mc Daniel, P.: Privacy Preserving Clustering. In: Proc. of the 10th
European Symposium on Research in Computer Security. (2005) 397-417

9. Merugu, S., Ghosh, J.: Privacy Preserving Distributed Clustering using Generative Mod-
els. In: Proc. of the 3rd ICDM. (2003) 211-218

10. Vaidya, J., Clifton, C.: Privacy Preserving K-Means Clustering over Vertically Partitioned
Data. In: Proc. of the 9th ACM SIGKDD. (2003) 206-215

11. Hoh, B., Gruteser, M.: Protecting Location Privacy through Path Confusion. In: Proc. of
the 2005 SecureComm. (2005)

12. Beresford, A.R., Stajano, F.: Mix Zones: User Privacy in Location-Aware Services. In:
Proc. of PerCom Workshops. (2004) 127-131

13. Beresford, A.R.: Location Privacy in Ubiquitous Computing. Ph.D. Dissertation, Univer-
sity of Cambridge. (2004)

14. Saygin, Y., Verykios, V.S., Clifton, C.: Using Unknowns to Prevent Discovery of Associa-
tion Rules. In: SIGMOD Record 30(4). (2001) 45-54

15. Diffie, W., Hellman, M.E.: New Directions in Cryptography. In: IEEE Transactions on In-
formation Theory. (1976) IT-200, 644-654

16. The R-Tree Portal. <http://isl.cs.unipi.gr/db/projects/rtreeportal/trajectories.html>. (March
28, 2006)

17. “ppSTClusteringOnHP.zip” [3510K].
 <http://students.sabanciuniv.edu/~inanali/ppSTClusteringOnHP.zip>. (March 28, 2006)

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 469 – 480, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovering Semantic Sibling Associations
from Web Documents with XTREEM-SP

Marko Brunzel and Myra Spiliopoulou

Otto-von-Guericke-University Magdeburg
forename.name@iti.cs.uni-magdeburg.de

Abstract. The semi-automatic extraction of semantics for ontology
enhancement or semantic-based information retrieval encompasses several open
challenges. There are many findings on the identification of vertical relations
among concepts, but much less on indirect, horizontal relations among concepts
that share a common, a priori unknown parent, such as Co-Hyponyms and Co-
Meronyms. We propose the method XTREEM-SP (Xhtml TREE Mining for
Sibling Pairs) for the discovery of such binary "sibling"-relations between
concepts of a given vocabulary. While conventional methods process an
appropriately prepared corpus, XTREEM-SP operates upon an arbitrarily
heterogeneous Web Document Collection on a given topic and returns sibling
relations between concepts associated to it. XTREEM-SP is independent of
domain and language and does not rely on linguistic preprocessing nor on
background knowledge beyond the ontology it is asked to enhance. We present
our evaluation results with two gold standard ontologies and show that
XTREEM-SP performs well, while being computationally inexpensive.

1 Introduction

The discovery of semantic relations among terms is a crucial task in many
applications on text retrieval and understanding. Ontologies, the backbone of the
Semantic Web, rely on making semantic relations explicit. There are many methods
for the discovery of vertical hierarchical relations. There is less work on the discovery
of concepts that stand in a horizontal relation to each other and are the children of a
common, not a priori known and possibly not interesting parent concept; “Co-
Hyponym relations” and “Co-Meronym relations” are two types of such horizontal
relationships. In this paper, we propose a method that identifies such sibling relations.
In ontology engineering, there are different approaches for the discovery of semantic
relations. Most of them [FN99, MS00, and BCM05] use unstructured plain text as
input; semi-structured text is converted to plain text. There are also approaches that
exploit resources like dictionaries, glossaries or database schemata [K99], but are
limited to the rare case when such resources are available. Our method rather uses
semi-structured content as input, exploiting the XHTML document structure.

The core of our method is XTREEM, a mechanism that performs Xhtml TREE
Mining. In [BS06b], we have proposed XTREEM-SG that discovers groups of sibling
concepts; an earlier version appeared in [BS06a]. In this paper, we extend the
XTREEM core to find sibling pairs characterized by association strength, whereby the
concepts come from a given vocabulary. XTREEM-SP does not use linguistic

470 M. Brunzel and M. Spiliopoulou

resources, nor a prepared corpus; it uses publicly available Web Documents. We
show that XTREEM-SP finds pairs of concepts in Co-Hyponymy or Co-Meronymy
relation with higher accuracy than conventional approaches.

In the next section, we discuss related work. In section 3, we present XTREEM-
SP. Section 4 is devoted to experiments and evaluation using two gold standard
ontologies from the domain of tourism. The last section concludes our study.

2 Related Work

The idea of using structural similarities [ZLC03, B04], including path structures, of
XHTML/XML Documents is used for several goals, such as clustering documents on
structural similarities [DCWS04, TG06, and CMK06]. In contrast we use the Path
information to infer siblings. The constitution of the paths is not used itself; no
comparison with paths from other documents is performed with XTREEM-SP.

The broad domain of research is ontology learning: A comprehensive overview on
this subject has appeared recently in [BCM05]. Those approaches are focusing on
ontology learning from text. There are also approaches performing Ontology Learning
from structure [K99]: However, these methods use existing database schemas or other
conceptualizations as input and are therefore limited to cases where such schemas are
available, which is usually not the case. Closer related are studies also discovering
semantics on the Web [FS02, AHM00].

Hearst patterns [H92] are used to find relations among terms in text collections.
Also Co-Hyponym relations can be found with this approach. But the disadvantage is
that such patterns are rare, the coverage is low, even on big document collections.
Cimiano et al also discover (Co-)Hyponym relations by finding and analyzing
examples of Hearst patterns on the WWW [CS04, CS05]. In [P05] instances of
WordNet concepts are found within big Web Document Collections with a rule based
mechanism ignoring the Mark-Up. The document structure is taken into account for
the establishment of a knowledge base of extracted entities from the WWW in
[ECD04].

The Acquisition of Co-Hyponym semantics from text with association measures is
performed by [HLQ01], but there the document structure is not used. Kruschwitz
[K01a, K01b] uses Mark-Up sections of Web Documents to learn a domain model.
Similarly to our approach, Kruschwitz exploits the Mark-Up for the representation of
similar concepts inside Web Documents. However, as opposed to our approach, the
tree structure of (X)HTML documents is not incorporated. [ST04] uses also different
tags of HTML documents for acquiring Hyponymy relations. They only use list
itemizations. There is no mentioning of using the tree structure of (X)HTML
documents in general, where contributions also from other tags than item elements
can be expected.

3 Finding Sibling Groups with XTREEM-SP

XTREEM-SP is based on mark-up conventions that can be found in almost all
Web Documents: Different authors use different nested tags to structure pieces of
information in Web Documents, but tend to adhere to similar structures. XTREEM-SP

 Discovering Semantic Sibling Associations from Web Documents 471

exploits this observation to find terms appearing within the same syntactic structure of
an XHTML (or HTML) document. Pairs of such terms are potentially correlated, so
XTREEM-SP applies statistical to identify strongly associated pairs. Hence, XTREEM-
SP can find pairs of correlated terms, even if they are not co-located inside the same
narrow context window. This can be seen in the headings example of Table1: Both text
spans “WordNet” and “Germanet” appear within the same syntactic structure, i.e. the
sequence of HTML tags leading to them. Hence, XTREEM-SP uses such syntactic
structures to infer semantic relatedness.

Table 1. Semantically related terms, located in different paragraphs or separated by other terms

Headings, located in different
paragraphs

Highlighted keywords, separated by normal text

…
<h2>WordNet</h2>
<p>Was developed
…</p>
<h2>Germanet</h2>
<p>Analogous …</p>
…

… <p> … there are different
important standards for building
the Semantic Web.
… is RDF. …
RDFS adds …
whereas OWL is …
</p> …

The XTREEM-SP procedure, which aims to organize a given vocabulary of terms
into Co-Hyponym groups, entails Pre-processing (Group-By-Path, the core of the
XTREEM-SP approach) and Processing (Association Strength Calculation), which
are shown in the following data–flow diagram (Fig. 1) and described in section 3.2.

Fig. 1. Data-Flow Diagram of the XTREEM-SP procedure

We now introduce our algorithm XTREEM-SP that takes as input a collection of
documents, observing each document as collection of Text-Span sets. On the elements
of those sets a Co-Occurrence statistic is created. Upon this statistic association
strength on term pairs is calculated. so that the terms with a strong association stand
in sibling (Co-Hyponym, Co-Meronym) relationship to each other.

472 M. Brunzel and M. Spiliopoulou

Step 1 – Querying & Retrieving: The XTREEM procedure operates on a Web
Document Collection. Such a Web Document Collection is obtained by querying a
Archive+Index Facility on a query Q with a Web Document Collection W={d1,...,ds}
as result, for which Q is satisfied. Q constitutes the domain of interest whereupon
semantics should be discovered. It should therefore encircle the Documents which are
supposed to entail domain relevant content, e.g. “tourism*”.

The Web Document Collection should be big enough to contain manifold
occurrences of the desired concepts. The Web Document Collection is not supposed
to be a small manually handcrafted document collection; bigger amounts of web
content which have an appropriate coverage of the domain are more desirable. Here,
recall is more important than precision. To obtain such a comprehensive Web
Document Collection, alternatively a focused web crawl can be performed; when a
vocabulary is given, this vocabulary can also be used to obtain Web Document
references via the web services of internet search engines.
Step 2 - Group-By-Path: The Group-By-Path operation, described in detail in
[BS06b] represents the core of the overall XTREEM-SP method. We consider Web
Documents to find sibling relations among terms. We group Text-Spans that have the
same Tag Path as its predecessor. The Group-By-Path approach performs a transition
of a Web Document from a tree, to a collection of Pairs(Tag-Path, Text-Span) to a
collection of Text-Span sets. For each di∈W with i=1,…,s the Group-By-Path
algorithm is applied. As result we obtain the collection of Text-Span sets
H'=(b1,…bu).
Step 3 - Filtering: The aim of the procedure described in this publication is to infer
semantically motivated sibling Pairs. Let V={v1,…,vp} be the vocabulary of terms
given as input. For the following steps we only consider all Text-Spans e∈b which
are contained in V. H''=(b1,…,bu) so that for all e∈b it is also true e∈V.
Step 4 – Co-Occurrence Counting: In this step a Co-Occurrence statistic is created.
Co-Occurrence is obtained from all pair wise occurrences of e1∈bi ∩ e2∈bi for all
bi∈ H'' with i=1,…,u. Such pairs are only obtained from bi with cardinality > 1 since
only sets containing at least two elements are able to reflect a sibling relation among
their elements. For all Combinations of v1∈V ∩ v2∈V with v1 ≠ v2 a count is
associated reflecting how often a combination occurred in H''.
Step 5 – Association Calculation: From the counts on term pairs obtained in Step 4,
the strength of the association between the pair components can be inferred in many
ways. From simply using the raw Co-Occurrence frequency, through the many
association measures from statistics (such as χ2-Association [MS00]) to information
theoretic measures (such as Mutual Information). For a comprehensive overview on
association measures see [E04]. χ2-Association is the association measure of our choice,
since in the experiments it showed the best results and its application is appropriate on
sufficiently large data sets as the ones obtained from big Web Document Collections.

4 Experiments and Evaluation

As evaluation reference we use two gold standard ontologies (GSO). The GSO’s
contain sibling relations besides other content. They also provide the closed vocabulary
whereupon sibling relations are automatically derived by the XTREEM-SP procedure.

 Discovering Semantic Sibling Associations from Web Documents 473

In Experiment 1 we will contrast the results obtained with XTREEM-SP (Group-
By-Path) on sibling semantics against the results obtained on the traditional Bag-Of-
Words vector space model and a further alternative method based on Mark-Up. In
experiment 2 we will contrast the influence an Association Measure has compared to
the solely usage of Co-Occurrence frequency. In experiment 3 we will investigate the
influence of the input query which constitutes the Web Document Collection
processed. In Experiment 4 we will vary the required minimum support of terms
within the Web Document Collection to be processed.

4.1 Description of Experimental Influences

Evaluation Reference: The Evaluation is performed on two gold standard ontologies,
from the tourism domain. The concepts of these ontologies are also terms, thus in the
following the expressions “concepts” and “terms” are used interchangeably.

Sibling relations can be obtained from the GSO’s for all Sub-Concepts where the
corresponding Super-Concept has more than one Sub-Concept; if there are at least
two child Concepts of a Parent Concept. As a result, there is a number of Concept
Pairs which stand in a sibling relation, whereas other Concept Pairs are not
conceptualized as standing in sibling relation. We only use the direct Super-Concept
Sub-Concept relation to derive sibling relations.

The “Tourism GSO”1 contains 293 concepts grouped into 45 sibling sets resulting
in 1176 concept pairs standing in sibling relation; the “Getess annotation GSO”2
contains 693 concepts grouped into 90 sibling sets resulting in 4926 concept pairs
standing in sibling relation.

There are three Inputs to the XTREEM-SP procedure described in the following:
Input(1) : Archive+Index Facility: We have performed a topic focused web crawl
on “tourism” related documents. The overall size of the document collection is about
9.5 million Web Documents. The Web Documents have been converted to XHTML.
With an n-gram based language recognizer non-English documents have been filtered
out. The Documents are indexed, so that for a given query a Web Document
Collection can be retrieved.
Input(2) : Queries: For our experiments we consider four document collections
which result from querying the Archive+Index Facility. The constitution is given by
all those documents adhering to Query1 - “touris*”, Query2 - “accommodation” and
by the whole topic focused Web Document Collection reflected by Query3 – “*”.
Additionally we give the results for Query4 – “accomodation”. Query4 was foremost
misspelling on Query2, but since this variant is present in millions of Web Documents
we will present theses results. Those variations are object of Experiment 3.
Input(3) : Vocabulary: The GSO’s described before, are lexical ontologies. Each
concept is represented by a term. These terms constitute the vocabulary whereupon
sibling relations are calculated.

The overall XTREEM-SP procedure is constituted of preprocessing and processing:
Procedure (1) : Preprocessing method: For the evaluation of the Group-By-Path
sub procedure we will contrast our Group-By-Path (GBP) method with the traditional

1 http://www.aifb.uni-karlsruhe.de/WBS/pci/TourismGoldStandard.isa
2 http://www.aifb.uni-karlsruhe.de/WBS/pci/getess_tourism_annotation.daml

474 M. Brunzel and M. Spiliopoulou

Bag-Of-Words (BOW) vector space model The BOW is the widespread established
method on processing of textual data, while The variation of these influences is object
Experiment 1.
Procedure (2) : Processing – Association Strength Derivation: From the raw
sibling sets obtained by the Pre-processing, the Co-Occurrence frequency of Term
Pairs is counted. This frequency can be used as indicator of association strength. We
will refer to this method by “frequency”. With the χ2-Association Measure, more
statistical stable values of association strength can be calculated. The variation of
these influences is object of Experiment 1 and Experiment 2.

In our experiments we found that some of the terms of the vocabulary are never or
very rarely found on rather big Web Document Collections. E.g. one reference contains
the errors “Kindergarden” instead of the correct English “Kindergarten”. To eliminate the
influence of errors in the reference, we also vary the required minimum feature support.
The support is given by the frequency of the features (terms) in the overall text of the
Web Document Collection. We used minimum support thresholds from 0 (all features are
used, nothing is pruned) to 100000 (0, 1, 10, 100, 1000, 10000, 100000). When the
support is varied, only those features of the Vectorization and of the reference fulfilling
these criteria are incorporated into the evaluation. The variation of these influences is
object Experiment 4.

4.2 Evaluation Criteria

From the gold standard ontologies we extract all Concept Pairs which stand in a sibling
relation to each other. This is in the following also referred to as “Reference”.

Object of the evaluation is a ranked list of automatic obtained Concepts Pairs, whereas
the ranking is given according to the Association Strength of the Concept Pair. For each
automatic obtained Concept Pair can be determined if this relation is also supported by
the Reference which gives a positive count. If a Concept Pair is not supported be the
Reference a negative count is assumed. With this, for each position in the ranked list,
recall and precision can be calculated. The recall is the number of already seen true
Sibling Pairs (#positive) to the number of Sibling Pairs given by the Reference (#overall).
The precision is the number of true Sibling Pairs (#positive) to the number of seen
automatic generated Pairs (#positive + #negative).

overall

positive
recall

#

#=
negativepositive

positive
precision

##

#

+
=

For a ranked list of associated Term Pairs a recall precision chart line can be
obtained by a series of measurements on recall precision values.

4.3 Experiments

In the following we will show the results obtained from the experiments. Table 2 shows
the number of documents which adhere to a certain query. This corresponds to the size of
the Web Document Collection which is processed by the subsequent following
processing steps. Table 2 also shows the number of candidate sibling sets obtained after
performing the Pre-processing on different Queries for the two vocabularies. Only terms
which are present in the input vocabulary are observed in the subsequent. Table 2 also
shows the number of observed pairs derived from these sets.

 Discovering Semantic Sibling Associations from Web Documents 475

Table 2. Experimental Data Numbers
p

Query
Name

Query Phrase Number of
Documents

Number of
Candidate Sets II
obtained with GBP

Number of Sibling Pairs
(from Candidate Sets II)

GSO1 GSO2 GSO1 GSO2
Query1 “touris*” 1,468,279 222,037 318,009 1,600,440 3,804,214
Query2 “accommodation” 1,612,108 293,225 373,802 2,092,432 3,885,532
Query3 “*” 9,437,703 924,045 1,326,843 5,763,596 14,071,016
Query4 “accomodation” 471,540 78,289 98,886 686,108 1,198,224

Experiment 1: Group-By-Path in comparison to alternatives Methods
In this experiment we will contrast the quality of results on sibling relations obtained
with the Bag-Of-Words (BOW) vector space model, on a usage of Mark-Up without
Path Information as described in [K01a] against our new Group-By-Path method.
Query1 was chosen as the query constituting the Web Document Collection. The
comparison was performed for two methods on association strength (frequency, χ2)
and for both references (GSO1,GSO2).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

BOW MU GBP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

BOW MU GBP

Fig. 2. and 3. Pre-processing - BOW vs. MU vs. GBP (Frequency,Query1) for GSO1 and GSO2

The diagrams which result on the usage of “frequency”, Fig. 2 and Fig. 3, show
that GBP performs best for both GSO’s. MU performs better than BOW. The overall
measured results are relatively low. On the top ranked association Pairs, GBP (and
MU) shields a high precision which then rapidly declines. For higher recall values the
chart lines converge. Since a recall above 40 percent is only obtained on BOW, we
can conclude that some sibling relations never occur up on Marked-Up Web
Document Structure. This does not necessarily mean that GBP is weak; since the
ontologies do not directly encode sibling relations, there may exist Concepts which
tend not to occur together. E.G. “ski school” and “surf school” may be sub-concepts
of “sport school” but are rather unlikely to be discovered from content. The
evaluation criteria can not prevent from such cases.

Fig. 4 and Fig. 5 show the results by using the association strength calculated by
the χ2-Association Measure. In contrast to the usage of “frequency”, the results of
MU are nearly the same as for GBP. An explanation for this is that the χ2-Association
Measure here performs well on diminishing sporadic occurrences which can happen
on MU in comparison to GBP. BOW performs again worst. All the experiments

476 M. Brunzel and M. Spiliopoulou

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

pr
ec

is
io

n

BOW MU GBP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

BOW MU GBP

Fig. 4. and 5. Pre-processing - BOW vs. MU vs. GBP (χ2,Query1) for GSO1 and GSO2

within this publication are performed on a closed vocabulary. The choice of Pairs
observed in the documents is therefore drastically limited in comparison when using
an open vocabulary. When using an open vocabulary the alignment of association
generated with GBP towards sibling semantics, in comparison to MU, becomes more
visible than measured on the limit vocabulary.
Conclusion: Our experiments on automatically obtaining sibling relations showed
that our Group-by-Path method, the core of the XTREEM-SP procedure, shows the
best results. Though it was not claimed that the Bag-Of-Words model is strong on
capturing sibling semantics, we can confirm our hypothesis that the results obtained
with XTREEM-SP (based on GBP) are motivated by sibling semantics.

Experiment 2: Different Methods on Association Strength in Comparison
In this Experiment we will focus on how variations on the method association
strength is obtained influences the results. Specifically we will use the Co-Occurrence
frequency and the χ2-Association Measure [MS00]. In Experiment 1 for the different
association strength methods this was done in series; in contrast Fig. 6 shows the chart
lines on GBP of Fig. 2 and Fig. 4 together. Fig. 7 shows the chart lines on GBP of
Fig. 3 and Fig. 5 together.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

Frequency Chi-Squared

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

Frequency ChiSquared

Fig. 6. and 7. Association Strength - Frequency vs. χ2 (GBP,Query1) for GSO1 and GSO2

Fig. 6 and Fig. 7 show that on both vocabularies/references the usage of χ2 -
Association strength shielded the best results.

We also used Mutual Information and Poison Sterling Association Measure as well
as cosines distance; the results are comparable to χ2-Association or worse but better
than just frequency. The literature on the quality of these association measures

 Discovering Semantic Sibling Associations from Web Documents 477

mentions that different association measures perform sometimes better, sometimes
worse than other with no clear conclusions. In the experiments of this publication χ2-
Association Measure gave the best results compared to the solely frequency support.

Experiment 3: Varying the Topic Focus
XTREEM-SP relies on constituting a Web Document Collection by a query. A query
therefore represents the focus of the data analyzed. Here we will investigate how
variations on the query influence the obtained results on sibling semantics. The
different Queries are shown in Table 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

Query1 Query2 Query3 Query4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

pr
ec

is
io

n

Query1 Query2 Query3 Query4

Fig. 8. and 9. Results on different Web Document Collection constituting Queries (GBP, χ2)
for GSO1 and GSO2

As Fig. 8 shows, the results of all for Queries are closely together for GSO1. For
GSO2 the results vary more than for GSO1. For both GSO’s, Query3 – “*” which
depicts the full topic focused Web Document Crawl shielded the best results. A
explanation for this is that with the single phrase queries (Query1,Query2 and
Query4) always a too focused Web Document Collection is processed. The Reference
contains terms – and relations which are not present on Web Documents adhering to a
certain “focused” query. This means that for practical settings a combined query (E.G.
“touris* OR accommodation OR holidays OR ‘sport event’ … “) may be the better
choice. On the other hand a ontology engineer will rather focus on a fraction of the
conceptualization to be obtained or improved at one moment and therefore focused
Queries are appropriate.

Experiment 4: Variations on the required support
In the last experiment we will investigate the influence of the term frequency in the
Web Document Collection on the obtained results. As a side effect of an increased
required support, “misconceptualization”, present in the reference ontologies, is
outweighed. With increasing required support more and more relations are not
relevant, which is reflected by eliminating these Pairs from the reference. Table 3
shows the decreasing number of relations by increased required term support. We
used the support of terms, not of the Co-Occurrence of term Pairs which would be an
alternative approach. As Fig. 10 and Fig. 11 show, for increased required support,
better results regarding recall and precision are obtained. This means that recall and
precision on sibling relations of high frequent terms are found better than on low
frequent ones.

478 M. Brunzel and M. Spiliopoulou

Table 3. Decreasing number of reference sibling relations on increased required support

Required support 0 1 10 100 1000 10000 100000
GSO1 1176 1120 1033 844 637 404 161 Number of

reference sibling
relations GSO2 4926 4553 4073 3439 2653 1006 582

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

0 1 10 100 1000 10000 100000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
re

ci
si

o
n

0 1 10 100 1000 10000 100000

Fig. 10. and 11. Variations on the Required Support (Query1,GBP, χ2) for GSO1 and GSO 2

5 Conclusions and Future Work

We have presented XTREEM-SP, a method that discovers binary horizontal semantic
relations among concepts by exploiting the structural conventions of Web Documents
XTREEM-SP processes Web Documents collected from the WWW and thus
eliminates the need for a well-prepared document corpus. Furthermore, it does not
rely on linguistic pre-processing or NLP resources. So, XTREEM-SP is much less
demanding of human resources. Our experiments with two golden standard ontologies
and with several parameter variations show that XTREEM-SP delivers good results,
i.e. semantically meaningful sibling pairs.

Our method is only a first step on the exploitation of the structural conventions in
Web Documents for the discovery of semantic relations. In our future work we want
to investigate the impact of individual Mark-Up element tags like <p>, , and <dt>
on the results. Discovering the corresponding Super-Concept for the Sub-Concepts
standing in sibling relation is a further desirable extension.

References

[AHM00] E. Agirre, O. Ansa, E. Hovy, and D. Martinez. Enriching very large
ontologies using the WWW, Proc. of the Workshop on Ontology
Construction ECAI-2000

[B04] D. Buttler. A short survey of document structure similarity algorithms. In
Proc. of the International Conference on Internet Computing, June 2004.

[BCM05] P. Buitelaar, P. Cimiano, Bernardo Magnini, Ontology Learning from Text:
Methods, Evaluation and Applications, Frontiers in Artificial Intelligence and
Applications Series Volume 123, IOS Press, Amsterdam, 2005

 Discovering Semantic Sibling Associations from Web Documents 479

[BS06a] M. Brunzel, M. Spiliopoulou. Discovering Multi Terms and Co-Hyponymy
from XHTML Documents with XTREEM. In Proc. of PAKDD Workshop on
Knowledge Discovery from XML Documents (KDXD 2006), LNCS 3915,
Singapore, April 2006

[BS06b] M. Brunzel, M. Spiliopoulou. Discovering Semantic Sibling Groups from
Web Documents with XTREEM-SG. In Proc. of EKAW 2006 (accepted for
publication), Podebrady, Czech Republic, October 2006

[CMK06] I. Choi, B. Moon, H-J- Kim. A Clustering Method based on Path Similarities
of XML Data. Data & Knowledge Engineering, vol. no. pp.0-0, Feb. 2006

[CS04] P. Cimiano and S. Staab. Learning by googling. SIGKDD Explorations,
6(2):24-34, December 2004.

[CS05] P. Cimiano, S. Staab. Learning concept hierarchies from text with a guided
hierarchical clustering algorithm. Workshop on Learning and Extending
Lexical Ontologies at ICML 2005, Bonn 2005.

[DCWS04] T. Dalamagas, T. Cheng, K. J. Winkel, T. Sellis, Clustering XML documents
using structural summaries, in Proc. of the EDBT Workshop on Clustering
Information over the Web (ClustWeb04), Heraklion, Greece, 2004

[E04] Stefan Evert, The Statistics of Word Cooccurrences: Word Pairs and
Collocations. PhD dissertation, University of Stuttgart. 2004

[ECD04] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S.
Soderland, D. S. Weld, A. Yates. Web-Scale Information Extraction in
KnowItAll. Proc. of the 13th International WWW Conference, New York,
2004

[FN99] D. Faure, C. Nedellec. Knowledge acquisition of predicate argument
structures from technical texts using machine learning: the system ASIUM,
In Proc. of EKAW 1999

[FS02] A. Faatz, R. Steinmetz, Ontology Enrichment with Texts from the WWW,
Proc. of the First International Workshop on Semantic Web Mining, ECML
2002, Helsinki 2002

[H92] M. Hearst, Automatic acquisition of hyponyms from large text corpora. In
Proc. of the 14th International Conference on Computational Linguistics,
1992

[HLQ01] G.Heyer; M. Läuter, U. Quasthoff, Th. Wittig, Ch. Wolff. Learning Relations
using Collocations. In Proc. IJCAI Workshop on Ontology Learning,
Seattle/WA, 2001

[K01a] U. Kruschwitz, A Rapidly Acquired Domain Model Derived from Mark-Up
Structure. In Proc. of the ESSLLI'01 Workshop on Semantic Knowledge
Acquisition and Categorization, Helsinki, 2001.

[K01b] U. Kruschwitz. Exploiting Structure for Intelligent Web Search. Proc. of the
34th Hawaii International Conference on System Sciences (HICSS), Maui
Hawaii 2001, IEEE

[K99] V. Kashyap. Design and creation of ontologies for environmental information
retrieval. Proc. of the 12th Workshop on Knowledge Acquisition, Modeling
and Management. Alberta, Canada. 1999.

[MS99] C. Manning, H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press. Cambridge, MA: May 1999.

[MS00] A. Maedche and S. Staab. Discovering conceptual relations from text. In
Proc. of ECAI 2000

[P05] M. Pasca. Finding Instance Names and Alternative Glosses on the Web:
WordNet Reloaded. In: CICLing-2005, LNCS 3406, 2005.

480 M. Brunzel and M. Spiliopoulou

[ST04] K. Shinzato and K. Torisawa. Acquiring hyponymy relations from Web
Documents. In Proc. of the 2004 Human Language Technology Conference
(HLT-NAACL-04), Boston, Massachusetts, 2004.

[TG06] A. Tagarelli, S. Greco. Toward Semantic XML Clustering. 6th SIAM
International Conference on Data Mining (SDM ’06). Bethesda, Maryland,
USA, April 20-22, 2006

[ZLC03] Z. Zhang, R. Li, S. Cao, and Y. Zhu. Similarity metric for XML documents.
In Proc. of the Workshop on Knowledge and Experience Management,
October 2003.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 481 – 490, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Difference Detection Between Two Contrast Sets*

Hui-jing Huang1, Yongsong Qin2, Xiaofeng Zhu2, Jilian Zhang2,
and Shichao Zhang3,**

1 Bureau of Personnel and Education, Chinese Academy of Sciences, Beijing, China
2 Deparment of math and Computer Science, Guangxi Normal University, China

3 Faculty of Information Technology, UTS, PO Box 123, Broadway NSW 2007, Australia
hjhuang@cashq.ac.cn, ysqin@mailbox.gxnu.edu.cn,

xfzhu_dm@163.com, zhangjilian@yeah.net, zhangsc@it.uts.edu.au

Abstract. Mining group differences is useful in many applications, such as
medical research, social network analysis and link discovery. The differences
between groups can be measured from either statistical or data mining pers-
pective. In this paper, we propose an empirical likelihood (EL) based strategy
of building confidence intervals for the mean and distribution differences
between two contrasting groups. In our approach we take into account the
structure (semi-parametric) of groups, and experimentally evaluate the proposed
approach using both simulated and real-world data. The results demonstrate that
our approach is effective in building confidence intervals for group differences
such as mean and distribution function.

1 Introduction

In intelligent data analysis, identifying the mean and distribution differences between
two groups is useful in predicting the properties of a group using one another. In
medical research, it is interesting to compare the mean value of prolonging patient’s
life between a group using a new product (medicine) and a group with another
product; In research of children’s growth, the height below/over the standard are
important, since the median height (near the standard) is associated with normal
growth status, it may be meaningful with children’s growth to compare two groups on
the basis of both below the standard or over the standard of height. In this paper we
are interested in constructing confidence intervals for mean and distribution
differences between two data groups.

Work in [2, 3, 4, 17] focus on mining contrast sets: conjunctions of attributes and
values that differ meaningfully in their distribution across groups. This allows us to
answer queries of the form, “How are History and Computer Science students
different?” or “What has changed from 1993 through 1998?”

Another kind of related work is change mining in [7, 12, 16]. In the change mining
problem, there are an old classifier, representing some previous knowledge about

* This work is partially supported by Australian large ARC grants (DP0449535 and DP0559536),

a China NSF major research Program (60496327), a China NSF grant (60463003), a National
Basic Research Program of China (2004CB318103), and a National Science Foundation of
China (60033020).

** Correspondence author.

482 H.-j. Huang et al.

classification, and a new data set that has a changed class distribution. The goal of
change mining is to find the changes of classification characteristics in the new data
set. Change mining has been applied to identifying customer buying behavior [6],
association rules [1], items over continuous append-only and dynamic data streams
[18], and predicting source code changes [10].

The work of [8] uses the bootstrap approach to measure the uncertainty in link
discovery (LD), while most current LD algorithms do not characterize the
probabilistic properties of the hypothesis derived from the sample of data. The authors
adopt the bootstrap resampling to estimate group membership and their associated
confidence intervals, because it makes no assumptions about the underlying sampling
distribution and is ideal for estimating statistical parameters.

Different from the above work, our approach takes into account the structure of a
group: parametric, semi-parametric, or nonparametric; the imputation method when
contrasting groups are with missing data; and confidence intervals for the mean and
distribution differences between two groups. Use F and G to denote the distribution
functions of groups x and y, respectively. We construct confidence intervals for the
mean and distribution differences between contrasting groups x and y using an
empirical likelihood (EL) model.

The rest of this paper is organized as follows. Section 2 presents the semi-
parametric model, data structure and imputation method. In Section 3, the empirical
likelihood ratio statistic and the empirical likelihood (EL) based confidence intervals
(CIs) for the mean and distribution function differences are constructed. In Section 4,
we give the experimental results both on the simulation data and a real medical
dataset. Conclusion and future work are given in Section 5.

2 Semi-parametric Model, Data Structure and Imputation
Method

We use ()F x and ()
0

G yθ to denote the distribution functions of groups x and y,

respectively, where G is known, F and 0θ are unknown. This is regarded as Semi-

parametric model. We are interested in constructing confidence intervals for some
differences of x and y such as the differences of the means and the distribution
functions of two groups. In general, either F or G is unknown, or both. So
nonparametric methods are developed to address this situation. In the case of
complete observations, related work can be found in [9].

For any difference, denoted by Δ , the following information is available:

(, ,) 00E xω θ Δ = (1)

Where ω is a function in a known form. Some examples that fit (2.1) are given in the
following.

Difference of means: Denote (), () ()1 2 0E x E yμ μ μ θ= = = and 2 1μ μΔ= − , Let

(, ,) ()0 0x xω θ μ θΔ = − +Δ (2)

 Difference Detection Between Two Contrast Sets 483

Difference of distribution functions: For fixed 0x , denote (),1 0p F x=

() ()2 0 00
p G x p θθ= = and 2 1p pΔ= − . Let

(, ,) () ()0 0 0x I x x pω θ θΔ = ≤ − + Δ (3)

Where I(.) is the indicator function. Note that we can assume that F follows
exponential or normal distribution in order to construct the model (denote as
exponential and normal distribution model respectively).

We use a simple method to represent the data. Consider the following simple
random samples of data associated with groups x and y, we denoted them as
(,)x xδ and y respectively,

(,) , 1 , , ; , 1 , , .x i m y j ni x ji
δ = =

Where

0 ,
.

1 , ,

=

i f x i s m i s s i n g
i

x o t h e r w i s ei
δ

(4)

We assume that x and y are missing completely at random (MCAR) [11],

i.e. (1) 1P x Pxδ = = (constant) throughout this paper. We also assume that (,)x xδ and

y are independent. Next, an example from real life application is given below in order
to illustrate the goal of this paper.

In the medical analysis of a kind of disease, the breast cancer for example, some
data are obtained from the patients (see Table 1).

Table 1. Breast Cancer data

Patient ID Radius Smoothness Perimeter Diagnosis

1 13.5 0.09779 78.04 benign
2 21.16 0.1109 94.74 malignant
3 12.5 0.0806 62.11 benign
4 14.64 0.01078 97.83 benign

… … … … …

There are two problems that we concerned most. One, what is the difference of the
benign and malignant patients with regard to a specified feature? The other is, how
reliable the difference is, when we calculated it from the sample data of the benign
and malignant patients?

One can compute the difference of a specified feature of two groups by using
simple statistical methods or other more sophisticated data mining techniques [2, 3, 4,
17]. While for the second problem, we use the empirical likelihood (EL) method to
construct the confidence intervals, under a significance level α , for the difference Δ
of two groups with missing data.

484 H.-j. Huang et al.

A common method for handling incomplete data is to impute a value for each
missing value and then apply standard statistical methods to the complete data as if they
were true observations. Commonly used imputation methods include deterministic
imputation and random imputation [15]. We refer to the reader to [11] for examples and
excellent account of parametric statistical inferences with missing data.

Let ,1
mr m m rix x xxi

δ= = − . = Denote the sets of respondents and nonrespon-

dents with respect to x as rxs and rys , respectively. We use random hot deck

imputation method to impute the missing values. We do not use the deterministic
imputation as it is improper in making inference for distribution functions [15].
Let *xi be the imputed values for the missing data with respect to x. Random hot

deck imputation selects a simple random sample of size mx with replacement

from srx , and then uses the associated x-values as donors, that is, *x xi j= for

some j srx∈ . Let
*

(1),x x xI i x i x ii i
δ δ= + − represent the ‘complete’ data after

imputation, where 1, , , 1, , ,i m j n= = .
We will investigate the asymptotic properties of the empirical likelihood ratio

statistic for Δ based on , 1, , y , j 1, ,, , jx i m nI i I = ; = . The results are used to construct

asymptotic confidence intervals for Δ .

3 Building CI for Δ Based on Empirical Likelihood

At first, the empirical likelihood ratio statistic is constructed. It is interesting to notice
that the empirical likelihood ratio statistic under imputation is asymptotically
distributed as a weighted chi-square variable 2

1χ [13, 14], which is used to construct

the EL based confidence interval for Δ . The reason for this deviation from the
standard 2

1χ is that the complete data after imputation are dependent.

Let tα satisfy 2() 11P tχ αα≤ = − , we can construct an EL based confidence interval

on Δ with coverage probability 1 α− , that is { : 2 log ((,)) },R tm nω θ αΔ − Δ ≤ ,

where ω is the weight [13, 14].

This result can directly apply to test the hypotheses on Δ . For instance, if the
hypothesis is : , :0 0 1 0H HΔ = Δ Δ ≠ Δ , we first construct the confidence interval on Δ .

Then check if 0Δ is in the interval. If 0Δ is in the interval, we accept the hypothesis

0H and reject 1H ; otherwise, 0H should be rejected and 1H is accepted.

We also want to notice that the result can apply to the data without missing values.
In complete data situation, we can see that the asymptotic distribution of the EL
statistic is found to be a standard 2

1χ distribution. The EL based confidence interval

for Δ in complete data case is thus constructed as { : 2 log ((,)) },R tm nθ αΔ − Δ ≤ .

 Difference Detection Between Two Contrast Sets 485

4 Experiments

Extensive experiments were conducted on a DELL Workstation PWS650 with 2G
main memory and 2.6GHz CPU, the operating system is WINDOWS 2000.

4.1 Simulations Models

We conducted a simulation study on the finite sample performance of EL based
confidence intervals on the mean difference () ()1 E y E xΔ = − , and the distribution function

difference () ()2 0 00
G x F xθΔ = − for fixed 0x . For the purpose of simulating the real world

data distributions as closely as possible, we generated two groups of x si and y si from

the exponential distributions (exp(1) and exp(2)) and the normal distributions
((2,2)N and (3,2)N) respectively, because these two data distributions are the most
popular and common distributions in real world applications. And then the exponential
and normal distribution models are running on these different distributed datasets. The
following two cases of response probabilities were used under the MCAR assumption

(in which the response rates is denoted as P): Case 1: P =0.6 ; Case 2: P =0.9.1 1 The

response rates in Case 2 were higher than those in case 1, which were chosen to
compare the performance of EL confidence intervals under different response
rates.

Sample sizes were chosen as (m, n) = (100, 100), and (m, n) = (200, 150) for the
purpose to compare the performance of EL confidence intervals under different
sample sizes. For each of the cases of different response rates and sample sizes, we

generated 1,000 random samples of incomplete data (,), 1, , ; , 1, , .x i m y j ni x ji
δ = = For

nominal confidence level 1 α− =0.95, using the simulated samples, we evaluated the
coverage probability (CP), the average left endpoint (LE), the average right endpoint
(RE) and the average length of the interval (AL) of the empirical likelihood based
(EL) intervals.

Tables 2-9 present the performance of proposed method for finding CIs of the
mean difference and distribution function with different models on different
distributed datasets. More detailed experimental settings can be seen in the table
titles.

Table 2. CIs of the mean difference for the exponential distribution model (with exponential
distributed data, true difference 0x =1)

Case (m,n) CP(%) LE RE AL
1 (100,100) 100 0.374348 1.664007 1.289659
1 (200,150) 99.69 0.381603 1.552474 1.170871
2 (100,100) 99.78 0.498466 1.548741 1.050275
2 (200,150) 98.77 0.518341 1.454267 0.935926

486 H.-j. Huang et al.

Table 3. CIs of the mean difference for the normal distribution model (with exponential
distributed data, true difference 1Δ =1)

Case (m,n) CP(%) LE RE AL

1 (100,100) 96.78 0.259185 1.233423 0.974238

1 (200,150) 92.46 0.401004 1.204256 0.803252

2 (100,100) 88.15 0.556322 1.168804 0.612482
2 (200,150) 88.82 0.572257 1.176884 0.604627

Table 4. CIs of the distribution function difference for the exponential distribution model (with
exponential distributed data, fixed 0x =2, true difference 2Δ =-0.2325)

Case (m,n) CP(%) LE RE AL

1 (100,100) 90.98 -0.259507 -0.10194 0.158

1 (200,150) 89.50 -0.253168 -0.126162 0.127

2 (100,100) 85.64 -0.224214 -0.134105 0.091
2 (200,150) 82.86 -0.227793 -0.158197 0.079

Table 5. CIs of the distribution function difference for the normal distribution model (with
exponential distributed data, fixed 0x =2, true difference 2Δ =–0.1915)

Case (m,n) CP(%) LE RE AL

1 (100,100) 92.21 -0.415641 -0.193948 0.222

1 (200,150) 87.62 -0.403683 -0.218695 0.185

2 (100,100) 83.50 -0.401349 -0.266323 0.135

2 (200,150) 84.62 -0.399944 -0.264595 0.135

Table 6. CIs of the mean difference for the exponential distribution model (with normal
distributed data, true difference 1Δ =1)

Case (m,n) CP(%) LE RE AL

1 (100,100) 100 0.304478 2.04389 1.739411

1 (200,150) 99.67 0.28442 1.98484 1.70043
2 (100,100) 100 0.42359 1.8026 1.379

2 (200,150) 98.68 0.38113 1.7308 0.979761

Table 7. CIs of the mean difference for the normal distribution model (with normal distributed
data, true difference 1Δ =1)

Case (m,n) CP(%) LE RE AL

1 (100,100) 98.76 0.362515 1.561752 1.199237

1 (200,150) 99.01 0.453377 1.408632 0.955255

2 (100,100) 98.37 0.475443 1.373007 0.897564

2 (200,150) 94.12 0.599176 1.306111 0.706935

 Difference Detection Between Two Contrast Sets 487

Table 8. CIs of the distribution function difference for the exponential distribution model (with
normal distributed data, fixed 0x =2, true difference 2Δ =–0.2325)

Case (m,n) CP(%) LE RE AL

1 (100,100) 93.64 -0.216152 0.139717 0.355869

1 (200,150) 90.52 -0.175146 0.13745 0.312596

2 (100,100) 88.10 -0.162031 0.111836 0.273867

2 (200,150) 87.58 -0.130788 0.104844 0.261068

Table 9. CIs on the distribution function difference for the normal distribution model (fixed

0x =2, true difference 2Δ =–0.1915)

Case (m,n) CP(%) LE RE AL

1 (100,100) 91.42 -0.419944 -0.202104 0.2178

1 (200,150) 90.48 -0.39838 -0.228987 0.169

2 (100,100) 88.75 -0.377728 -0.238151 0.13958

2 (200,150) 89.68 -0.379188 -0.270484 0.10870

Tables 2-9 reveal the following results:
For every response rate and sample size, the coverage probabilities (CPs) of all EL-

based confidence intervals for mean are close to the theoretical confidence level 95%.
In almost all situations, the lengths of CIs also become smaller as the sample size
increases. The same trends occur when considering different response rates. While the
ALs for distribution function difference fluctuate slightly with respect to different
sample size and response rates.

Another interesting phenomenon is that the CIs built by using normal distribution
model for mean difference are shorter than those by exponential distribution model,
without much loss of coverage accuracy. That is to say, we can use the normal
distribution model to construct CIs in real applications when we have no prior
knowledge about the distribution of the data.

We can see from above results that the length of CIs will be shorter when the
amount of sample data increases, because the information that is useful for building
the CIs also increases. So under the same significance level α , the shorter CIs will
give the same confidence of the difference. Note that higher response rate means that
there are more data available when building CIs than those under lower response rate.

4.2 Experiments on UCI Dataset

We also conducted extensive experiments on real world dataset, due to the fact that the
real world data do not fit the ideal statistical distributions exactly. What’s more, there
may be noises in real world data, which will distort the distribution of the real world data.

We used the medical dataset, Wisconsin Diagnostic Breast Cancer (WDBC), which
is downloaded from [5]. It contains 569 instances in total and 32 features for each
instance. Each instance, represented a patient, has been classified as benign and
malignant according to these features. The WDBC dataset contains 357 benign
instances and 212 malignant instances. For interesting of space, we only report the

488 H.-j. Huang et al.

experimental results of attribute 4 and 27. We give some statistical information of
these two features in Table 10, more detailed information about these features can be
seen in [19]. In order to verify the effectiveness of our method, we randomly divide
WDBC into two parts. One (contains 2/3 instances, denoted as BS) is used to
construct the CI, the other (contains 1/3 instances, denoted as VS) is used to verify the
coverage probability (CP) of the CI. We then divide the BS into two groups, that is,
the Benign and Malignant groups. Let the values of attribute A from Benign group be
the group x, and those from Malignant be group y. Then CI is built based on group x
and y using the techniques described in Section 3. In the verification process of CP,
we divide the VS into two groups (Benign and Malignant) and compute the difference

Δ̂ of them with respect to attribute A. Thus we can easily see whether Δ̂ falls into the
range of the constructed CI.

Table 10. Statistics for attribute 4 and 27 of Wisconsin Diagnostic breast Cancer

Mean Distribution function

A4 A27 A4 (x0=15) A27 (x0=0.1)
Malignant 21.6 0.1448 0.0189 0.0094

Benign 17.91 0.1249 0.2437 0.1092

Difference Δ 3.69 0.0198 -0.2248 -0.0998

(A4: Mean texture, A27: Worst smoothness)

Figures 2, 3, and 4 compare the CIs for mean on the complete and imputed dataset
WDBC under different missing rates. We give the experimental results of CIs for mean
difference of attribute 4 and 27 in Figures 2 and 3. In Figure 2, we can see that the
length of CIs built from imputed data (case-1) is much larger than those built from
original data (without missing). While the length of CIs built from imputed data (case-2)
is very close to the original data’s CIs. This means that with a lower missing rate, the
length of CIs are shorter. The same phenomenon can be seen in CIs of DF for attribute 4
(see Figure 4). As for attribute 27, the lengths of CIs built from case-1, case-2 and the

Fig. 2. CIs for attribute 4 Fig. 3. CIs for attribute 27

 Difference Detection Between Two Contrast Sets 489

original data are very close, which
almost give the same coverage pro-
babilities. However, we don’t pre-
sent the CIs of DF for attribute 27,
due to lack of space.

The average left, right endpoint
(LE, RE), length and CP are listed
in table 11. An interesting observa-
tion is that the value of CP is
decreesing from 70% to 60% when
the response rate P (note that miss-
ing rate=1-P) is increasing from
(0.6, 0.7) to (1, 1). Note that the
original data has the response rate
(P1=1, P2=1). On the other hand,

the average length AL is also decreasing when the response rate is increasing, that is,
the AL is longer when the groups contain more missing data, which are imputed by
random imputation. By combining these two facts, we know that the length of CIs will
be shorter when using lower missing rate data, but the CP will be lower. On the
contrary, the length of CIs will be longer when using higher missing rate data, resulting
in a higher CP.

For group with small range of values, attribute 27 for example, the LE, RE, AL and
CP of CIs are comparatively stable under different response rates.

Table 11. Average intervals, ALs and CP for mean

 LE RE AL Average CP (%)

2.789261 4.198938 1.409677 60

2.560288 4.617375 2.057087 75

A.4 (Original)

Case 1(0.6, 1)

Case 2(0.9, 1) 2.781663 4.362656 1.580993

4.124679

65

-0.19973 0.237031 0.436765 100

-0.19981 0.237 0.43681 100

A.27 (Original)

Case 1(0.6, 1)

Case 2(0.9, 1) -0.19961 0.237172 0.436782

0.022297

100

5 Conclusions

In this paper we have proposed a new method based on empirical likelihood (EL) for
identifying confidence intervals for the mean and distribution differences between
two contrasting groups. The mean and distribution differences between two contrast-
ing groups assist in predicting the properties of a group using one another. To extend
the applied range, our method takes into account the situation of two contrasting
groups, one group is known well, and the other is unknown (for example, having no
information about the form of distribution and parameters). In comparing of the
differences of two contrasting groups with missing data, we have shown that the EL-
based confidence intervals works well in making inference for various differences

Fig. 4. CIs for distribution function of attribute 4

490 H.-j. Huang et al.

between the two groups, especially for the mean and distribution function differences.
We have also shown that this result can directly be used to test the hypotheses on the
differences, and that the result can apply to the complete data settings.

References

1. Au, W., Chan, K. (2005), Mining changes in association rules: a fuzzy approach. Fuzzy
Sets and Systems, 149(1): 87-104.

2. Bay, S., and Pazzani, M. (1999), Detecting Change in Categorical Data: Mining Contrast
Sets. KDD’99, pp. 302-306.

3. Bay, S., and Pazzani, M. (2000), Characterizing Model Erros and Differences. ICML’00,
pp. 49-56.

4. Bay, S., and Pazzani, M. (2001), Detecting Group Differences: Mining Contrast Sets. Data
Mining and Knowledge Discovery, 5(3): 213-246.

5. Blake, C., and Merz,C. (1998). UCI Repository of machine learning database. http://
www.ics.uci.edu/~mlearn/

6. Cho, Y.B., Cho, Y.H., & Kim, S. (2005), Mining changes in customer buying behavior for
collaborative recommendations. Expert Systems with Applications, 28(2): 359-369.

7. Cong, G., and Liu, B. (2002). Speed-up Iterative Frequent Itemset Mining with Constraint
Changes. ICDM’02, pp 107-114.

8. Adibi, J. Cohen, P., and Morrison, C. (2004), Measuring Confidence Intervals in Link
Discovery: A Bootstrap Approach. KDD’04.

9. Hall, P., and Martin, M. (1988), On the bootstrap and two-sample problems. Austral. J.
Statist, 30A, pp 179-192.

10. Li, H.F., Lee, S.Y., and Shan, M.K., (2005). Online Mining Changes of Items over
Continuous Append-only and Dynamic Data Streams. The Journal of Universal Computer
Science, 11(8): 1411-1425 (2005).

11. Little, R. and Rubin, D. (2002), Statistical analysis with missing data. 2nd edition. John
Wiley & Sons, New York.

12. Liu, B., Hsu, W., Han, H. and Xia, Y. (2000), Mining Changes for Real-Life Applications.
DaWaK’00, pp337-346.

13. Qin, J., (1994). Semi-empirical likelihood ratio confidence intervals for the difference of
two sample mean. Ann. Inst. Statist. Math. 46, 117-126.

14. Qin, J. and lawless, J. (1994), Empirical likelihood and general estimating equations. Ann.
Statists. 22, 300-325.

15. Rao, J. (1996). On variance estimation with imputed survey data. J. Amer. Statist. Assoc.,
91: 499-520.

16. Wang, K., Zhou, S., Fu, A., and Yu, X. (2003). Mining Changes of Classification by
Correspondence Tracing. SIAMDM'03, 2003.

17. Webb, G., Butler, S., and Newlands, D. (2003), On detecting differences between groups.
KDD’03, pp. 256-265.

18. Ying, A., Murphy, G., Raymond, T., and Mark, C. (2004), Predicting Source Code
Changes by Mining Change History. IEEE Trans. Software Eng., 30(9): 574-586.

19. W.N. Street, W.H. Wolberg and O.L. Mangasarian1993. Nuclear feature extraction for
breast tumour diagnosis. IS&T/SPIE 1993 volume 1905, pages 861-870, San Jose, CA,
1993.

EGEA : A New Hybrid Approach Towards
Extracting Reduced Generic Association Rule

Set (Application to AML Blood Cancer
Therapy)

M.A. Esseghir, G. Gasmi, S. Ben Yahia, and Y. Slimani

Département des Sciences de l’Informatique
Faculté des Sciences de Tunis

Campus Universitaire, 1060 Tunis, Tunisie
mohamedemir@gawab.com

Abstract. To avoid obtaining an unmanageable highly sized association
rule sets– compounded with their low precision– that often make the pe-
rusal of knowledge ineffective, the extraction and exploitation of compact
and informative generic basis of association rules is a becoming a must.
Moreover, they provide a powerful verification technique for hampering
gene mis-annotating or badly clustering in the Unigene library. However,
extracted generic basis is still oversized and their exploitation is imprac-
tical. Thus, providing critical nuggets of extra-valued knowledge is a
compellingly addressable issue. To tackle such a drawback, we propose
in this paper a novel approach, called EGEA (Evolutionary Gene Extrac-
tion Approach). Such approach aims to considerably reduce the quantity
of knowledge, extracted from a gene expression dataset, presented to an
expert. Thus, we use a genetic algorithm to select the more predictive
set of genes related to patient situations. Once, the relevant attributes
(genes) have been selected, they serve as an input for a second approach
stage, i.e., extracting generic association rules from this reduced set of
genes. The notably decrease of the generic association rule cardinality,
extracted from the selected gene set, permits to improve the quality of
knowledge exploitation. Carried out experiments on a benchmark dataset
pointed out that among this set, there are genes which are previously un-
known prognosis-associated genes. This may serve as molecular targets
for new therapeutic strategies to repress the relapse of pediatric acute
myeloid leukemia (AML).

Keywords: Generic association rules, Genetic Algorithms, Neural net-
works, Frequent Closed itemset algorithms, Bioinformatics.

1 Introduction

High-throughput sequencing and functional genomic technologies provided to
the scientific community a human genome sequence and have enabled large-
scale genotyping and gene expression profiling of human populations [1]. Bio-
logical databases contain heterogeneous information such as annotated genomic

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 491–502, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

492 M.A. Esseghir et al.

sequence information, results of microarray experiments, molecular structures
and properties of proteins, etc. In addition, an increasing number of databases
from the medical domain, containing medical records and valuable information
on diseases and phenotypes, become available. Data Mining techniques and/or
tools, aiming to go further beyond the top of the Iceberg, delve and efficiently dis-
cover valuable, non-obvious information from large microarray databases (e.g.,
information about diseases and their relation to sub-cellular processes). Microar-
rays provide a prolific, ”exciting” and challenging contexts for the application
of data mining techniques. For recent overviews, please refer to recently edited
books respectively by Wang et al. [1] and Chen [2].

In this respect, extracting generic basis of association rules seems to be an
efficient approach for providing extra-added value knowledge for biologists. In
this case, we expect that a biologist may not only discover synexpression groups
but may also identify correlations between a group of genes and a particular
cell type. However, the unmanageably large association rule sets, even though
generic association rule set size is known to be compact, compounded with their
low precision often make the perusal of knowledge ineffective, their exploitation
time-consuming, and frustrating for the user.

In this paper, and aiming to tackle this highly important topic, we propose
a novel approach towards reducing ”shrewdly” and informatively the amount of
knowledge to be presented to a user, we propose an hybrid approach showing
the potential benefits from the synergy of genetic algorithms and association rule
extraction. Thus, we used a genetic algorithm to select the more predictive set of
genes related to the patient situation. Then, we extract generic association rules
from this reduced set of genes. The notably decrease of the generic association
rules, extracted from the selected genes, permits to ameliorate the quality of
knowledge exploitation.

Experiments were carried out on a dataset of the affimetrix GeneChip
Human Genome U95Av2 oligonucleotide microarray (Affymetrix, Santa Clara,
CA) that contains 12 566 probe sets. This dataset contains Analysis of mononu-
clear cells from 54 chemotherapy treated patients less than 15 years of age with
acute myeloid leukemia (AML). Mononuclear cells taken from peripheral blood
or bone marrow. Treatment results describing patient situation associated with
complete remission and relapse with resistant disease are also reported. After the
chemotherapy treatment, most patients with Acute Myeloid Leukemia (AML)
enter complete remission. However, some of them enter relapse with a resistant
disease. Obtained results showed that Also, among this set, there are genes which
are previously unknown prognosis-associated genes. This may serve as molecular
targets for new therapeutic strategies to repress the relapse of pediatric AML.

The remainder of the paper is organized as follows. Section 2 details the
proposed hybrid approach. The genetic algorithm applied for the selection of
most predictive attributes is described. Section 3 presents the obtained results
from the carried out experiments on the benchmark dataset. Section 4 concludes
this paper and points out future perspectives.

EGEA: A New Hybrid Approach 493

2 Dimensionality Reduction: Selection of a Predictor Set
of Genes

Applying classical association rule extraction framework to dense microarrays
leads to an unmanageably highly sized association rule sets– compounded with
their low precision– that often make the perusal of knowledge ineffective, their
exploitation time-consuming, and frustrating for the user. Even though extract-
ing and exploiting compact and informative generic basis of association rules can
be an advisable remedy, a glance to their size can be nightmarish to the user (c.f,
reported statistics in Experiments section). Another avenue to tackle the high
dimensionality problem in gene expression datasets, is to assess and select one
of the more discriminatory set of genes to the target. In fact, feature selection
refers to the problem of selecting the more predictive and valuable attributes, in
terms classification and class separability, correlated with a given output. Nu-
merous studies have focused on the selection of relevant features, by discarding
misleading and noisy ones [3]. Such studies, involving different techniques can
be viewed under two families: wrappers and filters. Wrappers evaluate attributes
by using accuracy estimates provided by the actual target learning algorithm.
Alternatively, filters use general characteristics of the data to evaluate attributes
and operate independently of any learning algorithm [4]. Indeed, an exhaustive
search within the large set of feature combination is very consuming in term
of computational time, since the search space of possible combination increases
exponentially with the number of genes. An exhaustive search of all possible
combinations of attributes is impractical, especially when the evaluation proce-
dure for the generated solutions involves a learning algorithm. In this respect,
the use of AI global search techniques, such as genetic algorithms (GA) seems
to be very promising, since they have proven to be valuable in the exploration
of large and/or complex problem spaces [5]. GA attempt to apply evolutionary
techniques to the field of the problem solving notably in combinatorial optimiza-
tion [6,7]. In fact, GA may be used to select the more predictive set of genes
related to the target class (patient situation). Our genetic algorithm evolves a
set of feasible solutions evaluated with an artificial neural network as a wrapper.
Subsets of variables are assessed within the evaluation procedure according to
their generalization accuracy in classification.

Believing that combining classifiers and boosting methods can lead to im-
provements in performance, in this paper, we propose, a new hybrid model whose
the driving idea is the go towards assessing potential benefits form a synergy of
two data mining techniques, namely feature selection by Artificial neural net-
works and GA and association rule extraction.

Figure 1 graphically sketches the model and shows that it is composed of
two steps. On, the first stage selects the best set of inputs having a predictive
relationship with the target class. Whereas, the second step consists in the gen-
eration of a compact set of generic association rules using the selected genes. It
is noteworthy that the whole process, i.e., sequentially applying feature selection
and rule extraction, is performed in an iterative process. From an iteration to
another one, and acting towards a more reduced and guided search space, the

494 M.A. Esseghir et al.

Fig. 1. The proposed hybrid model

system can be fed by biological apriori knowledge or given by experts or pointed
out by generic association rules.

2.1 Preprocessing Stage: Dimensionality Reduction

In this section we look to the problem of building a representative set of rele-
vant features. In fact Data reduction techniques was successfully applied in in
numerous gene expression data analysis using as well wrapper as filters [8,9,10].
Narayanan et al. [11] have applied different data mining techniques, mainly based
on neural network classifiers, to mine knowledge enfolded in microarrays data
using also neural networks as a wrapper to tackle the high dimensional data.

Believing that feature selection methods, to use as well in the definition of
a compact pattern representation as in mining knowledge with robust and in-
terpretable methods, depends mainly both on wrapper accuracy -quality of the
evaluation procedure- and on the search procedure applied. We decide to opt
for a stochastic global search procedure to explore the search space of feasible
subsets of relevant non-redundant features: Genetic algorithms. In addition, the
wrapper consists of an artificial neural networks trained with the backpropagation
learning algorithm [12]. The genetic algorithm, presented here, will be applied to
select a subset of genes involved in the prediction of patient situation: complete
remission or relapse. Each set of candidate solutions are evolved through a fixed
number of generations. The pseudo-code for localizing compact predictive set of
genes is provided by Algorithm 1. GA process is roughly summarized in what
follows:

EGEA: A New Hybrid Approach 495

– Representation: Each generation consists of a set of candidate solutions rep-
resented using a binary encoding. Any possible solution to the problem is
encoded as binary string of 12625 genes, where the code 1 means that the
gene is selected to build an ANN and 0 when it is discarded (c.f., Figure 2).

Fig. 2. Chromosome representation

– Initialization: An initial set of solutions is randomly generated. For each indi-
vidual a number of genes are randomly selected by setting the corresponding
bits equal to 1. Once the initial set is generated, the evaluation process starts.
A fitness value is assigned to each chromosome. The first generation of solu-
tions is derived by applying a tournament selection to the evaluated set.

– Evaluation: Two steps are required to evaluate each chromosome. First a
neural network, with the selected genes in the chromosome as input, is built
and partially trained. Next, the trained network is evaluated using the test
set. The test set presents to the network a new data which is not trained
with it. The chromosome evaluation assesses the predictive generalization
ability of the neural network and consequently of the set of involved genes
. Our fitness involves two evaluation criteria: the proportion of incorrectly
classified instances and the mean square error on the test set.

fitness = (ICI + TMSE)/2 (1)

Where ICI andTMSE denotes respectively the proportion of incorrectly clas-
sified instances in the data set and the mean square error found on the test set.

2.2 Generic Association Rule Extraction

An association rule R : X ⇒ Y − X is a relation between two frequent item-
sets X ⊂ Y . X and (Y − X) are called, respectively, premise and conclu-
sion of the rule R. An association rule is valid whenever its strength metric,
confidence(R)= support(Y)

support(X) , is greater than or equal to the minimal threshold of
confidence minconf.

However, in practice, the number of valid association rules is very high. Indeed,
this number was estimated to be equal to 22×l, where l is the length of the longest
frequent itemset [13].

Consequently, the user can not interpret and exploit efficiently a such amount
of knowledge. To palliate this problem, a solution consists in extracting a re-
duced subset of association rules, called generic basis. On the demand of the
user, we have to be able to derive all the remaining association rules (i.e.., generic
basis extraction should be done without information loss). For this reason,
generic basis extraction have to fulfill the following requirements: [14]

496 M.A. Esseghir et al.

Algorithm 1. Feature selection: Localizing compact set of genes
Input:
S: set of genes
Ni: initial population size
N: population size
t: tournament size
pmut: mutation probability
pcross: Crossover probability
it: number of training iterations
Maxgen: number of generations
h: number of hidden nodes
η: learning rate
m: momentum value
Output: S1: Best subset of gene predictors
Begin1

Population P0, P,Ptmp2

P0=P=Ptmp= ∅;3

P0=GenerateInitialPopulation(Ni)4

Evaluate (P0, η, m, h, it)5

P=Select(P0, N, t) //Applying a tournament to select N chromosomes from6

P0

i=07

While i < Maxgen do8

Ptmp=Select (P, N, t)9

Crossover(Ptmp, pcross)10

Mutate(Ptmp, pmut)11

Evaluate(Ptmp, η, m, h, it)12

Replace(Ptmp, P) //replacing solutions from P by newest ones from Ptmp13

using reverse tournament
i=i+114

S1=P.bestChromosome().extractGenes() // extracting selected chromosome15

genes
Return(S1)16

End17

– “Derivability”: An inference mechanism should be provided (e.g., an ax-
iomatic system). The axiomatic system has to be valid (i.e., should forbid
derivation of non valid rules) and complete (i.e., should enable derivation of
all valid rules).

– “Informativeness”: The generic basis of association rules allows to retrieve
exactly the supportandconfidenceof thederived (redundant)association rules.

To extract a reliable number of association rules, we use the IGB (Informative
Generic Basis) basis [14]. This choice is justified by:

1. Conveying maximum of useful knowledge: Association rules of the
IGB basis convey the maximum of useful knowledge. Indeed, IGB is defined
as follows:

EGEA: A New Hybrid Approach 497

Definition 1. Let FCIK be the set of frequent closed itemsets 1 extracted
from an extraction context K. For each entry f in FCIK, let MGf be the
set of its minimal generators 2. The IGB generic basis is given by: IGB =
{R : gs ⇒ (f-gs) | f ∈ FCIK ∧ f �= ∅ ∧ gs ∈ MGf1 , f1 ∈ FCIK ∧ f1
⊆ f ∧ confidence(R) ≥ minconf ∧ � g / g ⊂ gs ∧ confidence(g ⇒ f-g)≥
minconf}.
Thus, a generic association rule of IGB is based on the extraction of fre-
quent closed itemsets from whose we generate minimal generic association
rules, i.e., with minimal premise part and maximal conclusion part. It was
shown that this type of association rules conveys the maximum of useful
knowledge [15];

2. Information lossless: It was pointed out that the IGB basis is extracted
without information loss [14];

3. Compactness: In [14] and by comparing obtained set cardinalities, we
showed that IGB is by far more compact than the following:
– The Non-Redundant association Rules NRR basis, defined by Zaki

et al. [16,17];
– The Generic Basis of Exact rules and the Transitive reduction of

Generic Basis of Approximative rules (GBE , T GBA), defined by Bastide
et al. [18].

Algorithm 2. Evaluate procedure
Input:
P: population
h: number of hidden nodes
it: number of training iterations
η: learning rate
m: momentum value
Output: P: Population evaluated
Begin1

Foreach Chromosome ch ∈ P do2

I=extractGeneIndexes(ch)3

TestSet=GenerateTestSet(I)4

TrainSet=GenerateTrainSet(I)5

N=new Network(I, h, 1) // building an ANN with the I selected genes6

N.train(Trainset, it, η, m) //Training N for it epochs with Trainset7

Eval(N, TestSet, TMSE , ICI) //Evaluating ANN generalization ability8

ch.fitness=(TMSE + ICI)/2 // computing ch fitness value9

Return(P)10

End11

1 A closed frequent itemset is a the largest set of items sharing the same transactions
(objects).

2 A minimal generator is a the smallest set of items sharing the same transactions
(objects).

498 M.A. Esseghir et al.

3 Experiments

3.1 Feature Selection Settings

Modeling tools based on a ANN can not be trained or assessed by a raw dataset.
In our case, fortunately all the variable values have a numerical representation,
and thus data have to be normalized. ANN algorithms require data to range
within the unit interval. The chosen method for data normalization is the linear
transform scaling [19]:

νn =
νi −min{ν1..νn}

max{ν1..νn} −min{ν1..νn}
(2)

Where νn and νi respectively represent the normalized and the actual values.
This expression takes values and maps them them into corresponding values
in the unit interval [0, 1]. The main advantage of the linear scaling is that it
introduces no distortion to the variable distributions.

During carried out experiments, we have tested different values for each pa-
rameter. Table 1 summarizes neural network and genetic algorithm parameters,
that permitted to obtain the best results.

Table 1. GA and ANN parameter settings

GA parameters ANN parameters

Parameter Value Parameter Value

Number of generations 200 Number of iterations 250

Crossover probability(pcross) 80% learning rate (η) 0.25

Mutation probability (pmut) 20% Number of hidden nodes 10

Initial population size 30 Weights initialization range [−0.1..0.1]

population size 20 Architecture Feed forward fully-connected

Table 2. The 45 selected genes

Code Probe set ID average level Code Probe set ID average level Code Probe set ID average level

1 31469-s-at 43.54 2 32004-s-at 390.79 3 33647-s-at 432.65
4 34589-f-at 190.60 5 34600-s-at 411.39 6 36399-at 65.98
7 36411-s-at 538.70 8 32352-at 987.98 9 33495-at 70.75
10 33981-at 15.60 11 34037-at 13.90 12 34495-r-at 614.79
13 36770-at 11.76 14 37159-at 54.96 15 37483-at 146.19
16 39672-at 881.20 17 31853-at 111.69 18 31891-at 213.32
19 32672-at 42.20 20 33237-at 242.10 21 33334-at 110.69
22 34189-at 129.69 23 34664-at 91.65 24 36044-at 220.39
25 36927-at 17.32 26 39783-at 354.10 27 40449-at 22.81
29 40451-at 170.80 30 40485-at 201.10 31 40870-g-at 254.10
32 33344-at 40.20 33 34825-at 200.89 34 35775-at 14.90
35 37383-f-at 16806.40 36 39118-at 983.20 37 39494-at 432.87
38 39848-at 114.40 39 39922-at 57.70 40 40532-at 84.50
41 40958-at 132.45 42 32583-at 951.20 43 33144-at 53.87
44 942-at 65.21 45 323-at 98.43

EGEA: A New Hybrid Approach 499

Starting with the previously defined parameters, we obtained a highly com-
pact set genes whose size is by far lower than the initial number of genes, i.e.,
more than twelve thousands. Table 2 sketches the 45 genes retained from among
more than twelve thousands. Even though, more compact gene sets were ob-
tained, the retained gene set achieves high generalization performance on test
set: around 93% of accuracy.

3.2 Generic Association Rule Extraction

Table 3 illustrates cardinalities of the different generic basis extracted from the
discretized ”54×12 566” matrix for an absolute minsup value equal to 1 patient.
Indeed, extraction context matrix has been translated into a boolean context by
considering that a gene is over-expressed in a patient whenever his expression
value level is greater than or equal to its expression level average at the different
patients for the same gene.

Table 3. Extraction of generic association rules from the initial context

minconf IGB (GBE , T GBA) IGB
(GBE,T GBA)

0.05 1058829 6511866 0.162

0.3 5887121 6420922 0.916

0.5 5920969 6381928 0.927

0.7 6348233 6374305 0.995

1 999848 999848 999848

Table 3 shows important profits in terms of compactness of the IGB basis.
Indeed, the third column of Table 3 shows that the ratio between the cardinality
of IGB and that of (GBE , T GBA) ranges between 0.162 and 1.

Table 3 points out that the unmanageably highly sized association rule sets
makes the perusal of knowledge ineffective. To palliate such drawback, we applied
a feature selection process we retrieved only 45 ”interesting” genes. From the
selected genes, we constructed a binary K′ context composed of 47 columns (45
genes, complete remission and relapse) and 54 rows (patients). Table 4 illustrates
the cardinalities of the different generic basis. From Table 3 and Table 4, we can

Table 4. Extraction of generic association rules from filred context

minconf IGB (GBE , T GBA) NRR IGB
(GBE,T GBA)

IGB
NRR

0.05 852 3683 1974 0.231 0.431

0.3 3063 3432 1803 0.892 1.698

0.5 2398 2928 1422 0.818 1.686

0.7 1187 1336 605 0.888 1.961

1 850 850 24 1 35.416

conclude that the number of the generic association rules considerably decreased
and this may permit to ameliorate the quality of the knowledge exploitation.

500 M.A. Esseghir et al.

From the extracted generic rules of IGB, we selected those whose conclu-
sion part at least contains complete remission / relapse. Indeed thanks to the
”Augmentation” axiom defined in [14], it is possible to straightforwardly derive
”classification rules”, i.e., rules whose the conclusion part refers to the class at-
tribute. For example, from the post- feature selection process extracted generic
rules– whose a sample is sketched by Figure 3– one may remark the following rule
”22/129.69, 33/200.89⇒ 26/354.10, Complete Remission”. From such rule, we
can derive the following classification rule: ”22/129.69, 33/200.89,26/354.10 ⇒
Complete Remission”. This may permit to easily identify prognosis-associated
genes. In order to facilitate the interpretation of the generic rules, we colored
the patient situation (the green color corresponds to the complete remission,
whereas the red one corresponds to the relapse). Also, it is important to men-
tion that under an explicit request from experts, we decorated genes within the
extracted rules by statistical information. This information represents the aver-
age of minimal expression level for each gene. Such information was considered
of paramount importance by biologists since they were interested in checking the
presence or absence of a given gene in conjunction with a significant signature
appearance level.

Fig. 3. The extracted rules

4 Conclusion

Under some number of hypothesis, generic association rules can constitute a
gene annotation framework based on a strong correlation clustering. However,
and even though they are compact, their high size can hamper their exploitation
by experts.

EGEA: A New Hybrid Approach 501

In this paper, we proposed a novel approach towards filtering the most ”pre-
dictive” compact set of genes. This approach, firstly uses genetic algorithms to
filter out significant set of genes. Second, using this compact, we extracted rea-
sonably sized generic association rules. Carried out experiments on a benchmark
dataset showed the potential benefits of such approach. Indeed from more twelve
thousands genes (possibly from which we may extract millions of generic rules
and one imagine the number of all extractable association rules), we selected
only 45 gene. From such reduced set of gene, it was possible to straightforwardly
extract classification rules by means of associated derivation axioms.

References

1. Wang, J., M.J.Zaki, Toivonen, H., Shasha, D.: Data Mining in Bioinformatics.
Advanced Information and Knowledge Processing. Springer (2005)

2. Chen, Y.: Bioinformatics Technologies. Advanced Information and Knowledge
Processing. Springer (2005)

3. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence
97 (1997) 273–324

4. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete
class data mining. IEEE Transactions on Knowledge and Data Eengineering 15
(2003)

5. Cornujols, A., Miclet, L., Kodratoff, Y., Mitchell, T.: Apprentissage artificiel :
concepts et algorithmes. Eyrolles (2002)

6. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
Addison Wesley (1989)

7. Trabelsi, A., Esseghir, M.A.: New evolutionary bankruptcy forecasting model based
on genetic algorithms and neural networks. 17th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI’05) (2005) 241–245

8. Liu, H., Li, J., Wong, L.: A comparative study on feature selection and classifi-
cation methods using gene expression profiles and proteomic patterns. Genome
Informatics 13 (2002) 51–60

9. Shang, C., Shen, Q.: Aiding classification of gene expression data with feature se-
lection: A comparative study. International Journal of Computational Intelligence
Reasearch 1 (2005) 68–76

10. Esseghir, M.A., Yahia, S.B., Abdelhak, S.: Localizing compact set of genes involved
in cancer diseases using an evolutionary conectionist approach. In: European Con-
ferences on Machine Learning and European Conferences on Principles and Prac-
tice of Knowledge Discovery in Databases. ECML/PKDD Discovery Challenge.
(2005)

11. A. Narayanan, A. Cheung, J.G.E.K.C.V.: Artificial neural networks for reducing
the dimensionality of gene expression data. Bioinformatics Using Computational
Intelligence Paradigms. Springer Verlag 176 (2005) 191–211

12. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. MIT Press, Cambridge (1986)

13. Zaki, M.J.: Mining non-redundant association rules. Data Mining Knowledge
Discovery 9 (2004) 223–248

502 M.A. Esseghir et al.

14. Gasmi, G., BenYahia, S., Nguifo, E.M., Slimani, Y.: IGB: A new informative
generic base of association rules. In: Proceedings of the Intl. Ninth Pacific-Asia
Conference on Knowledge Data Discovery (PAKDD’05), LNAI 3518, Hanoi, Viet-
nam, Springler-Verlag (2005) 81–90

15. Kryszkiewicz, M.: Representative association rules and minimum condition max-
imum consequence association rules. In: Proceedings of Second European Sym-
posium on Principles of Data Mining and Knowledge Discovery (PKDD), 1998,
LNCS, volume 1510, Springer-Verlag, Nantes, France. (1998) 361–369

16. Zaki, M.: Mining Non-Redundant Association Rules. Data Mining and Knowledge
Discovery (2004) 223–248

17. Zaki, M.J.: Generating non-redundant association rules. In: Proceedings of the
6th ACM-SIGKDD International Conference on Knowledge Discovery and Data
Mining, Boston, Massachusetts, USA. (2000) 34–43

18. Bastide, Y., Pasquier, N., Taouil, R., Lakhal, L., Stumme, G.: Mining minimal
non-redundant association rules using frequent closed itemsets. In: Proceedings of
the International Conference DOOD’2000, LNAI, volume 1861, Springer-Verlag,
London, UK. (2000) 972–986

19. Pyle, D.: Data Preparation for Data Mining. (1999)

AISS: An Index for Non-timestamped Set
Subsequence Queries

Witold Andrzejewski and Tadeusz Morzy

Institute of Computing Science
Poznan University of Technology

Piotrowo 2, 60-965 Poznan, Poland
{wandrzejewski, tmorzy}@cs.put.poznan.pl

Abstract. In many recent applications of database management sys-
tems data may be stored in user defined complex data types (such as
sequences). However, efficient querying of such data is not supported by
commercially available database management systems and therefore ef-
ficient indexing schemes for complex data types need to be developed.
In this paper we focus primarily on the indexing of non-timestamped
sequences of sets of categorical data, specifically indexing for set subse-
quence queries. We address both: logical structure and implementation
issues of such indexes. Our main contributions are threefold. First, we
specify the logical structure of the index and we propose algorithms for
set subsequence query execution, which utilize the index structure. Sec-
ond, we provide the proposition for the implementation of such index,
which uses means available in all of the “of the shelf” database man-
agement systems. Finally, we experimentally evaluate the performance
of the index.

1 Introduction

Many of todays commercially available database management systems allow
users to define complex datatypes, such as sets, sequences or strings. One of the
most important complex datatypes is the sequence. Sequences are very convie-
nient in modelling such objects as protein sequences, DNA chains (sequences of
atomic values of a small alphabet), time series (composed of real values), and
Web server logs (composed of events). Purchases made by customers in stores
are also sequential. Here, sequences are composed of sets of products bought
by the customer, which are ordered by the date of purchase. The problem of
indexing and querying sequences has recently received a lot of attention [7,12].

Although modern database management systems provide users with the
means to create sequences, they do not support efficient querying of this data
type. To illustrate the problem, let us consider the following example. We are
given the database of four sequences of sets (for example database of sequences
of purchases) shown on Table 1 and the sequence Q = 〈{2}, {1}〉. The problem
is to find all sequences from the database such that they contain the sequence
Q. By sequence containment we mean that the sequence Q is contained within

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 503–512, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

504 W. Andrzejewski and T. Morzy

Table 1. Running example database

Id Sequence
1 S1 = 〈{1, 2}, {1, 2}, {1, 6}〉
2 S2 = 〈{2, 7}, {1, 3}, {1, 5}〉
3 S3 = 〈{2, 8}, {1, 3}, {1, 4}〉
4 S4 = 〈{1, 3}, {3, 9}, {1, 6}〉

the sequence S IFF it may be obtained by removing of some of the items from
the sequence S. Here, sequence Q is contained within sequences S1, S2 and
S3, but not in S4. Such queries are very common in many database application
domains, such as: market basket sequence mining, web log mining and mining
results analysis. As can be easily seen the problem is difficult. If there is no in-
dexing structure for the database, then, in order to answer the query, we need to
read all sequences from database one by one, and for each such sequence check
whether it contains the given sequence Q. Unfortunately, for large databases,
brute force solution may be very costly.

Concluding, there is evidently a need to research efficient, possibly general,
indexing schemes for sequences. Several indexing schemes for sequences have
been proposed so far. Most of them were designed either for time series [1,4] or
sequences of atomic values [14,9]. Almost nothing has been done with regard
to indexing sequences of sets. According to out knowledge, the only index for
sequences of sets developed so far was proposed by us in [3]. However, this index
was designed for sequences of timestamped sets and its main task was to support
a very special case of set subsequence queries, where sets were also timestamped.

The original contribution of this paper is the proposal of a new indexing
scheme capable of efficient retrieval of sequences of non-timestamped sets. More-
over, the index also supports retrieval of multisets. We present the physical struc-
ture of the index and we develop algorithms for query processing. We also present
algorithms for incremental set/sequence insertion, deletion and update in the in-
dex. The index has a very simple structure and may be easily implemented over
existing database management systems.

The rest of the paper is organized as follows. Section 2 contains an overview
of the related work. In Section 3 we introduce basic definitions used throughout
the paper. We present our index in Section 4. Experimental evaluation of the
index is presented in Section 5. Finally, the paper concludes in Section 6 with a
summary and a future work agenda.

2 Related Work

Most of research on indexing of sequential data is focused on three distinct types
of sequences: time series, strings, and web logs.

Indexes proposed for time series support searching for similar or exact sub-
sequences by exploiting the fact, that the elements of the indexed sequences
are numbers. This is reflected both in index structure and in similarity metrics.

AISS: An Index for Non-timestamped Set Subsequence Queries 505

Popular similarity metrics include Minkowski distance [16], compression-based
metrics [6], and dynamic time warping metrics [13]. Often, a technique for re-
duction of the dimensionality of the problem is employed [1].

String indexes usually support searching for subsequences based on identity
or similarity to a given query sequence. Most common distance measure for
similarity queries is the Levenshtein distance [8], and index structures are built
on suffix tree [15] or suffix array [10].

Indexing of web logs is often based on indexing of sequences of timestamped
categorical data. Among the proposed solutions, one may mention: SEQ family of
indexes which use transformation of the original problem into the well-researched
problem of indexing of sets [11], ISO-Depth index [14] which is based on a trie
structure and SEQ-Join index [9] which uses a set of relational tables and a set
of B+-tree indexes.

Recently, works on sequences of categorical data were extended to sequences of
sets. The Generalized ISO-Depth Index proposed in [3] supports timestamped
set subsequence queries and timestamped set subsequence similarity queries.
Construction of the index involves storing all of the sequences in a trie structure
and numbering the nodes in depth first search order. Final index is obtained
from such trie structure.

3 Basic Definitions and Problem Formulation

Let I = {i1, i2, . . . , in} denote the set of items. A non-empty set of items is
called an itemset. We define a sequence as an ordered list of itemsets and denote
it: S = 〈s1, s2, . . . , sn〉, where si, i ∈ 〈1, n〉 are itemsets. Each itemset in the
sequence is called an element of a sequence. Each element si of a sequence S
is denoted as {x1, x2, . . . , xn}, where xi, i ∈ 〈1, n〉 are items. Given the item i
and a sequence S we say that the item i is contained within the sequence S,
denoted i (S, if there exists any element in the sequence such that it contains
the given item. Given a sequence S and an item i, we define n(i,S) as a num-
ber of elements in a sequence S containing the item i. Given sequences S and
T , the sequence T is a subsequence of S, denoted T � S, if the sequence T
may be obtained from sequence S by removal of some of items from the ele-
ments and removal of any empty elements which may appear. Conversely, we
say that the sequence S contains the sequence T and that S is a supersequence
of T .

In order to present the structure of the proposed index, additional notions and
definitions are needed. A multiset is an itemset where items may appear more
then once. We denote multisets as SM = {(x1 : n1), (x2 : n2), . . . , (xm : nm)},
where xi, i ∈ 〈1,m〉 are items, and ni are counters which denote how many times
the items xi appear in the multiset. We omit such items, that their counters are
equal to zero (i.e. they do not appear in the multiset). Given the SM and TM

multisets, the TM multiset is a subset of the multiset SM , denoted TM ⊆ SM if
the multiset TM may be obtained from multiset SM by removal of some of the
items.

506 W. Andrzejewski and T. Morzy

Fig. 1. Basic Inverted File Index structure

We define a database, denoted DB, as a set of either sequences or multisets,
called database entries. Each database entry in the database has a unique iden-
tifier. Without the loss of generality we assume those identifiers to be consecu-
tive, positive integers. A database sequence identified by the number i is denoted
Si, whereas a database multiset is denoted Si

M . Given the query sequence Q,
the set subsequence query retrieves a set of identifiers of all sequences from the
database, such that they contain the query sequence, i.e. {i : Si ∈ DB∧Q � Si}.
Given the query multiset QM , the subset query retrieves a set of identifiers of
all multisets from the database such, that the multiset QM is their subset, i.e.
{i : Si

M ∈ DB ∧QM ⊆ Si
M}.

4 The AISS Index

Now, we will proceed to the presentation of our index for sequences of non-
timestamped sets. The idea of the index is based on the well known Inverted
File Index [5]. The new structure allows to search for supersequences of sequences
of sets and supersets of multisets.

The general idea for the index is as follows. We transform sequences from
database to multisets by discarding data about which items belong to which
itemsets and about the order of the itemsets. Next, we store these multisets in
the structure based on the idea of the Inverted File Index. To perform a query,
we transform the query sequence to a multiset, and retrieve all the supersets of
such multiset from the index. Because we discard some of the data, additional
verification phase is needed to prune false positives.

Basic Inverted File structure, which is used for indexing itemsets, is composed
of two parts: dictionary and appearance lists. The dictionary is the list of all the
items that appear at least once in the database. Each item has an appearance
list associated with it. Given the item i, the appearance list associated with item
i lists identifiers of all the sets from database, that contain that item. Structure
of the basic Inverted File Index is shown on Figure 1.

In order to be able to store multisets in the above presented structure we
propose a straightforward modification. We alter appearance lists, so that they
store counters which show how many times the item appears in the set as well
as identifiers. Notice, that such modification allows us to store full informa-
tion about multisets. In order to be able to store sequences of sets in such
index, we use a sequence to multiset transformation which is introduced by the
Definition 1.

AISS: An Index for Non-timestamped Set Subsequence Queries 507

Algorithm 1. AISS index creation.
1. Build a dictionary by scanning a database and retrieving all distinct items stored

in the database.
2. For each of the sequences Sj ∈ DB or for each of the multisets Sj

M ∈ DB perform
the following steps:
(a) if DB is a database of sequences, perform the following transformation: Sj

M =
T (Sj).

(b) For each of the pairs (xi : ni) ∈ Sj
M create an entry (j, ni) in the appearance

list associated with the item xi.

Fig. 2. AISS Index for exemplary database

Definition 1. Sequence to multiset transformation.
Sequence is transformed to a multiset by creating a multiset, that contains all

the items from the sequence. Formally,

T (S) = {(xi : ni) : xi (S ∧ ni = n(xi,S)} (1)

Example 1. We want to transform the sequence S1 = 〈{1, 2}, {1, 2}, {1, 6}〉 from
the running example database to a multiset. In this sequence, item 1 occurs
three times, item 2 occurs two times, and item 6 occurs one time. Therefore the
multiset should contain three items 1, two items 2 and a single item 6.

S1
M = T (S1) = T (〈{1, 2}, {1, 2}, {1, 6}〉) = {(1 : 3), (2 : 2), (6 : 1)}

The steps for AISS index creation, which utilizes a sequence to multiset trans-
formation, are shown by algorithm 1. It is easy to notice that both steps of
the algorithm 1 can be performed during a single database scan. The process
of building the AISS index for the running example database is presented on
Figure 2.

Basic steps for procesing subset queries are given by algorithm 2. It is easy to
notice, that the basic algorithm would run faster, if the items in the query mul-
tiset were ordered by their frequency of appearance in the database. Therefore,
before executing the query, we should calculate, for each item of the multiset,
how many multisets in the database contain this item. This of course needs to be
done only once, and can be easily updated incrementally after database updates.

508 W. Andrzejewski and T. Morzy

Algorithm 2. Subset query algorithm utilizing the AISS index.
Parameter: query multiset QM = {(x1 : n1), (x2 : n2), . . . , (xl : nl)}

– For each entry (j1, m1) from the appearance list of item x1, if n1 < m1, do:
1. level ← 2
2. While level <= l do:

(a) Find entry (jlevel, mlevel) on appearance list for item xlevel, such that
jlevel = j1. If such entry does not exist, break the while loop.

(b) If (nlevel < mlevel) then level ← level + 1 else break the while loop.
3. If level = l + 1 then the set j1 contains the query set.

Algorithm 3. Incremental updating of the AISS Index.
1. For each such item, that it appears both in the new and old version of the multiset,

correct the counters on the respective appearance lists.
2. For each such item, that it appears only in the new version of the multiset, create

appropriate entry on the respective appearance lists, creating an appearance list
if necessary. Increase frequency counters of such items by one.

3. For each such item, that it appears only in the old version of the multiset, delete
appropriate entry from the respective appearance lists, deleting appearance lists if
they become empty. Decrease frequency counters of such items by one.

After that we need to execute the steps of the algorithm 2 starting with the least
frequent items.

In order to perform set subsequence queries, two steps need to be added. First,
before we start processing the query, we must transform the query sequence to
a multiset using a sequence to multiset transformation. Because such transfor-
mation loses information about the order of items in the sequence, a verification
phase needs to be added, to prune the false positives. In order for verification
phase to work efficiently, we must make an assumption that each of the sequences
in the database is placed at a single location on disk and may be easily accessed
by rowid. During the verification phase, we access all of the sequences that were
returned from index and check whether they fulfill the query conditions or not.

Algorithms for incremental updates are also very simple. Due to the lack of
space we will present only the algorithm for updates. Algorithms for insertions
and deletions may be easily derived from it. In order to update index after mod-
ification of the multiset, perform the steps shown by algorithm 3. For databases
of sequences of sets update algorithms are almost the same. The only difference
is the necessity of transformation of the updated sequence (both old and new
version) to the multiset before proceeding.

The performance of the index depends mainly on its physical implementation.
In this paper we propose a way of implementing the AISS index, which uses func-
tionality offered by any commercially available database management system.
Both, the dictionary and appearance lists may be represented by a B+-tree or a

AISS: An Index for Non-timestamped Set Subsequence Queries 509

Table 2. Synthetic data and experiment parameters

Parameter Exp.1 Exp.2 Exp.3
size of the domain [items] 150000 150000 150000

item distribution zipfian and uniform
minimal set size [items] 1 1 5 – 95
maximal set size [items] 30 30 15 – 105

minimal set number [sets] 1 5 – 95 5
maximal set number [sets] 10 15 – 105 15

number of sequences 10000 – 100000 10000 10000
page/node size [bytes] 4096B 4096B 4096B

B∗-tree structure. These structures allow very fast mapping of key values to some
values associated with them. Let us consider the following key-value pair. Let
the key be a pair (item, id), where item is some item from the dictionary and id
is the multisets unique identifier, and let the value be a number of appearances
of the item in the multiset identified by the id. If we assume lexicographic order
imposed on key pairs, then the groups of consecutive entries in leaves of the
B+-tree will form appearance lists. To read an appearance list of the item xi we
just need to locate the first leaf entry, which corresponds to the item xi, and
read consecutive entries, until we find the first entry for the next appearance
list. If we need to locate an entry corresponding to the multiset j on the ap-
pearance list of the item xi, we can easily locate it, because the (xi, j) forms a
key. Notice, that such implementation has other advantages: very easy insertion,
deletion and modification of entries, as well as “automatic” removal, or insertion
of appearance lists (each list only exists, if there is at least one entry from it
stored in the tree).

An additional structure, which maps multiset/sequence id to rowid, is needed
to locate multisets or sequences on disk. This is especially important for se-
quences, for which there is additional phase of verification. Such mapping could
be easily performed by the second B+-tree. Frequency counters for items should
be stored in memory when database is up, and therefore they do not any need
special structures to store.

5 Performance Tests

We have performed three experiments testing the impact of the number of se-
quences of sets in the database, average number of sets in the sequence, average
size of sets in the sequence and average length of the query sequence on the index
performance. Performance of index was measured as an average time of query
execution, including the time of verification phase. Due to lack of competitors,
we compare query processing times when using index only to the brute force
solution of scanning the whole database. Table 2 summarizes the parameters in
experiments.

The first experiment tested the impact of the number of sequences stored in
database on the index performance. Figure 3 presents the performance of the

510 W. Andrzejewski and T. Morzy

Fig. 3. Average size of sets Fig. 4. Average size of sets (no index)

AISS index for zipfian and uniform distributions. Figure 4 presents the same
experiments without the index. Analysing Figure 3 one may notice few things.
First, query execution time for databases with uniform distribution grows lin-
early with respect to the number of sequences. Second, for databases with zipfian
distribution of items, the trend of growth is also linear, however the query pro-
cessing times are not “stable”. This is caused by random generation of queries.
When a short query with frequent items is generated, there is a large set of pos-
sible results which need to be verified, and therefore query processing times grow
considerably. For example, the peak obtained during querying database of 80000
sequences appeared during processing of a query sequence that contained only
a single item. Partial solution to this problem may be based on an observation
that when the query sequence contains only a single item, no verification is nec-
essary, as the results obtained from index will be accurate. Queries for databases
with uniform distribution of items are more “stable” because there are no such
items, that appear in a very large number of sequences, which could be the cause
of a long verification phase. When we compare query processing times to those
presented on Figure 4 we may notice, that they are three orders of magnitude
smaller.

The second experiment tested the impact of the average number of sets in
the sequence on the index performance. Figure 5 presents the performance of
the AISS index for zipfian and uniform distributions. Figure 6 presents the same
experiments without the index. Once again, when analysing Figure 5 one may
notice linear dependency of query processing time on average number of el-
ements in the sequence. One may also notice divergence of query processing
times for zipfian and uniform distributions. Better performance of the AISS
index for zipfian distribution is caused by the optimization described in Sec-
tion 4, in which we start processing the query with the least frequent item of the
query multiset. Once again, when we compare query processing times to those
presented on Figure 6 we may notice, that they are three orders of magnitude
smaller.

The third experiment tested the impact of the average sizes of sets in the
sequences on the index performance. Figure 7 presents the performance of the
AISS index for zipfian and uniform distributions. Figure 8 presents the same
experiments without the index. Once again we may notice linear dependency of

AISS: An Index for Non-timestamped Set Subsequence Queries 511

Fig. 5. Average number of sets Fig. 6. Average number of sets (no index)

Fig. 7. Average size of sets Fig. 8. Average size of sets (no index)

query processing time on average size of sets in the sequence and three orders of
magnitude improvent over full scan of database.

During the experiments, the verification phase took from 5% to 50% of the
query processing time with the exception of the observed peaks, when it took
about 95% of the query processing time.

Let us notice, that theoretically we could create other solutions for indexing
sequences of sets based on other solutions for indexing sets. However, as we have
experimentally shown in [2] Inverted File Index outperforms all other solutions
in subset queries and therefore we know in advance, that other solutions, will
not be as good as the one presented in this paper.

6 Conclusions

To the best of authors’ knowledge, the AISS index presented in this paper is
the only index for sequences of sets supporting set subsequence queries without
timestamps. We have presented both: logical and physical structure as well as
algorithms for set subsequence query execution and incremental updates. Ex-
periments show that the ratio of speed-up for set subsequence queries is three
to four orders of magnitude when compared to brute-force approach.

In the future we plan to perform additional extensive experiments to deter-
mine weak points of our index. We also plan to design a new index, which is able
to answer set subsequence queries without verification and apply such index to
improve speed of sequential pattern mining algorithms.

512 W. Andrzejewski and T. Morzy

References

1. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence
databases. In Proceedings of the 4th International Conference on Foundations of
Data Organization and Algorithms, pages 69–84. Springer-Verlag, 1993.

2. W. Andrzejewski, Z. Królikowski, and M. Morzy. Performance evaluation of hi-
erarchical bitmap index supporting processing of queries on setvalued attributes
(polish). Archiwum Informatyki Teoretycznej i Stosowanej, 17(4):273–288, 2005.

3. W. Andrzejewski, T. Morzy, and M. Morzy. Indexing of sequences of sets for
efficient exact and similar subsequence matching. In Proceedings of the 20th In-
ternational Symposium on Computer and Information Sciences, pages 864–873.
Springer-Verlag, 2005.

4. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching
in time-series databases. In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, pages 419–429. ACM Press, 1994.

5. S. Helmer and G. Moerkotte. A study of four index structures for set-valued
attributes of low cardinality, 1999.

6. E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data
mining. In KDD ’04: Proceedings of the 2004 ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 206–215. ACM Press, 2004.

7. A. Lerner and D. Shasha. Aquery: Query language for ordered data, optimization
techniques, and experiments. In VLDB, pages 345–356, 2003.

8. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Doklady Akademia Nauk SSSR, 163(4):845–848, 1965.

9. N. Mamoulis and M. L. Yiu. Non-contiguous sequence pattern queries. In Pro-
ceedings of the 9th International Conference on Extending Database Technology,
2004.

10. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
pages 319–327. Society for Industrial and Applied Mathematics, 1990.

11. A. Nanopoulos, Y. Manolopoulos, M. Zakrzewicz, and T. Morzy. Indexing web
access-logs for pattern queries. In WIDM ’02: Proceedings of the 4th international
workshop on Web information and data management, pages 63–68. ACM Press,
2002.

12. R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. Optimization of sequence queries
in database systems. In Symposium on Principles of Database Systems, 2001.

13. M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-
dimensional time-series with support for multiple distance measures. In ACM
KDD, 2003.

14. H. Wang, C.-S. Perng, W. Fan, S. Park, and P. S. Yu. Indexing weighted-sequences
in large databases. In Proceedings of International Conference on Data Engineer-
ing, 2003.

15. P. Weiner. Linear pattern matching algorithms. In Proceedings 14th IEEE Annual
Symposium on Switching and Automata Theory, pages 1–11, 1973.

16. B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In
Proceedings of the 26th International Conference on Very Large Data Bases, pages
385–394. Morgan Kaufmann Publishers Inc., 2000.

A Method for Feature Selection on Microarray
Data Using Support Vector Machine

Xiao Bing Huang and Jian Tang

Memorial University of Newfoundland,
Computer Science Department,

St. John’s, NL, A1B3X5, Canada

Abstract. The data collected from a typical microarray experiment
usually consists of tens of samples and thousands of genes (i.e., features).
Usually only a small subset of features is relevant and non-redundant to
differentiate the samples. Identifying an optimal subset of relevant genes
is crucial for accurate classification of samples. In this paper, we propose
a method for relevant gene subset selection for microarray gene expres-
sion data. Our method is based on gap tolerant classifier, a variation of
support vector machine, and uses a hill-climbing search strategy. Unlike
most other hill-climbing approaches, where classification accuracies are
used as a criterion for feature selection, the proposed method uses a mix-
ture of accuracy and SVM margin to select features. Our experimental
results show that this strategy is effective both in selecting relevant and
in eliminating redundant features.

1 Introduction

In a typical microarray data set, only tens of samples are available altogether for
training and testing while each sample has thousands of genes as the features.
Usually only a small subset of features is relevant and non-redundant to differen-
tiate the samples. Searching for the optimal feature subset, i.e., Feature Subset
Selection (FSS), is crucial for the accuracy of classifications of the samples. In
theory, the goal of FSS is to select a minimum sized set of features that produce
the same or close classification accuracy as the full feature set1.

The algorithms that tackle the FSS problem can be generally classified into two
main categories, filter and wrapper [7][10]. Filter methods [1][8][9] filter out irrel-
evant features before the learning occurs and use general characteristics of the
training set to select features. The main weakness of filter approaches is that it
pays little attention to redundance avoidance. Wrappers algorithms [10] utilize
as a black box a learning algorithm, which runs on the training data and the accu-
racy of the resulting classifier is used as a metric for scoring. It employs a search
strategy to obtain the optimal subset. Besides being computationally more ex-
pansive, the performance of wrapper approaches depends on such factors as the
classifiers used, the validation methods, etc. Recently, some algorithms were de-
veloped that combine the merits of both approaches [5][11][20][15]. Among them
1 In practices, since irrelevant features introduce noises to samples, well selected fea-

ture subset will produce higher classification accuracy than a full feature set.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 513–523, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

514 X.B. Huang and J. Tang

the most relevant to ours is in [5], where a Recursive Feature Elimination (RFE)
algorithm is proposed. It is based on SVM. Starting from the full set of genes, RFE
calculates the score for each gene, an indicator of its discriminative power. It then
eliminates the gene with the worst score. The process then repeats itself for the
subset of the genes. The merit of RFE is that with a single training on the current
training set, the scores for all the genes are calculated, and hence is less expensive
than a general wrapper algorithm. On the other hand, redundant genes normally
receive bad scores, improving the weakness of a filter algorithm. However, the use
of the backward feature elimination strategy still incurs considerable cost. In fact,
to speed up the process, RFE has to resort to ’chunk at a time’ elimination strat-
egy. This, however, will adversely affect its effectiveness.

In this paper, we propose a method for feature selection for microarray gene
expression data. Our method is based on gap tolerant classifier, a variant of
support vector machine, and uses a forward hill-climbing search strategy. Unlike
most other hill-climbing approaches, where classification accuracies are used as a
criterion for feature selection, our method uses a mixture of accuracy and SVM
margin to select features. Our experimental results show that this strategy is
effective both in selecting relevant and in eliminating redundant features.

The rest of the paper is organized as follows. Section 2 reviews some basic con-
cepts about support vector machine and related gap tolerant classifiers. Section
3 introduces our feature selection method. Section 4 presents the experimental
results. Section 5 concludes the paper by summarizing the main results.

2 Concepts

2.1 Support Vector Machine (SVM)

We explain the idea only for the basic case. (For general case, refer to [19].)
Given the training data points {xi, yi}, i = 1, . . . , N, xi ∈ Rd, yi = {−1, 1},
suppose there exists some hyperplane in Rd which separates the positive from the
negative samples (See Figure 1). Let this hyperplane be defined by the function
xT β+β0 = 0, where β is normal to the hyperplane. Thus |β0|

‖β‖ is the perpendicular
distance from the hyperplane to the origin. In addition, let the training points
satisfy the following constraints2

xT
i β + β0 ≥ +1 for yi = +1 (1)

xT
i β + β0 ≤ −1 for yi = −1. (2)

The two constraints can be combined into one set of inequalities:

yi(xT
i β + β0)− 1 ≥ 0 ∀i. (3)

Now consider the points for which the equality in Equation 1 holds. These points
lie on the hyperplane H1 : xT

i β + β0 = 1 with normal β and perpendicular

2 Note that for separable case, this is always possible.

A Method for Feature Selection on Microarray Data Using SVM 515

Fig. 1. The Linear Separating Hyperplane with Three Support Vectors

distance from the origin |1−β0|
‖β‖ . Similarly, the points for which the equality in

Equation 2 holds lie on the hyperplane H2 : xT
i β +β0 = −1, with normal β, and

perpendicular distance from the origin |−1−β0|
‖β‖ . Let d+ and d− be the distances

from the separating hyperplane to H1 and H2, respectively. Thus d+ = d− =
1

‖β‖ , and d+ + d− = 2
‖β‖ . (This value is called the “margin” of the separating

hyperplane [18].) Note that H1 and H2 are parallel and no training points fall
between them. The SVM training process searches for the separating hyperplane
with the largest margin. This can be formulated by the following optimization
problem:

min
β,β0
‖β‖2 subject to yi(xT

i β + β0) ≥ 1, i = 1, . . . , N (4)

Those training data points for which the equalities in Equation 4 hold are called
support vectors. This is illustrated in Figure 1. Let β and β0 be the solution to the
above optimization problem. The SVM classifies an arbitrary point x according
to the following rule:

class(x) = sign(xT β + β0)if |xT β + β0| ≥ λ (5)

where λ ≥ 0 is a pre-determined small value.

2.2 Gap Tolerant Classifier (GTC)

A GTC consists of a sphere S, called a decision domain, and two parallel decision
planes Lp and Ln that intersect with S [2], as shown in Figure 2. For any point

516 X.B. Huang and J. Tang

x, the classification of a GTC abides by the following rules:

class(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+ If dist(x, Ln) = dist(x, Lp) + dist(Ln, Lp)

and x belongs to S
− If dist(x, Lp) = dist(x, Ln) + dist(Ln, Lp)

and x belongs to S
reject otherwise

(6)

The condition for the plus rule indicates that Ln and the points in plus-class

+

L p

L n

+ + +

S

−
−

−
−

−

Fig. 2. A Gap Tolerant Classifier

are on the opposite sides of plane Lp, and the condition for the minus rule is
symmetric. The rejection rule signifies that the classifier cannot make a decision
when a point either falls between the two planes or is outside of the decision
domain. A GTC is rarely used as is in reality for classifications. Its significance
lies on its easy-to-analyze feature, and its similarity to SVM.

2.3 Error Rate and VC-Dimension for GTC

Define the error rate of a classifier as the probability that it incorrectly classifies
a random point. Since it depends on the underlying data distribution that is
unknown, the error rate can only be estimated. Many work has been done in
this direction. One of the most influential results is in [19][2], where the authors
introduce a probabilistic upper bound independently of the underlying distribu-
tion. Let C be a set of classifiers. With probability 1− α, the error rate for any
classifier c ∈ C is

R(c) ≤ Remp(c) +

√
h(ln(2�/h) + 1)− ln(α/4)

�
(7)

where Remp(c) is the testing error of c, � is the size of the testing set, and h is
the VC-dimension of class C. (Roughly, the VC-dimension of a set of classifiers
measures the generalization ability of the classifiers in that set: the higher the
VC-dimension, the lower its generalization ability. For more detail, see [19].) In
reality, accurate VC-dimensions are unavailable for most classes of classifiers.
We have to resort to upper bounds for their estimation. Well established upper
bounds include those for the class of GTCs [19][2]. Let C be a set of GTCs with

A Method for Feature Selection on Microarray Data Using SVM 517

maximum diameter of D for the spheres, and minimum decision margin of M .
Then the following is true:

h ≤ min{�D2/M2�, d}+ 1 (8)

3 Relevant Subset Selection Using Minimum Upper
Bound (RSSMUB)

3.1 Motivation

Let R be the set of genes already selected so far. Theoretically, we wish to add
to R a gene, q, only if R∪{q} minimizes the error rate among all the remaining
genes. In addition, this error rate should be smaller than that introduced by R.
The question is, in the context of microarray data, is it feasible to approximate
such an idea using the upper bounds in expressions 7 and 8? The answer is
positive. The next subsection gives the justification.

3.2 Using GTC to Simulate SVM on Microarray Data Sets

Any microarray data needs to be preprocessed to eliminate noises passed down
from the preceding hybridization phase. One of the often used measures is to set
up a threshold on all the expression values. If a value is larger than the threshold
in absolute value, then it will be considered non-informative, and either discarded
or circumvented by replacing it with a smaller value. Let H be the threshold for
the microarray in the experiment, where d genes have been selected. Let B be
the training set drawn from the (unknown) data distribution, and T be the
SVM trained on B. For simplicity, assume the training classes are separable.
Let P1 and P2 be the parallel planes where the support vectors reside. Thus
no training points fall between P1 and P2. Let S be a sphere centering at the
origin with a radius of

√
dH in the d-dimensional space. Consider a random

point q =< f1, · · · , fd >. If q is valid, we must have |fi| ≤ H for all i, implying
‖q‖ =

√
Σd

i=1f
2
i ≤
√

dH. Thus q ∈ S. On the other hand, if B is selected truly
at random, we can expect it to be a good approximation of the underlying data
distribution. Thus the likelihood that any data point will fall between P1 and
P2 is negligible. This means T can be viewed as a GTC. Let D = 2

√
dH and

M = dist(P1, P2). Let C be the set of all GTCs in the d-dimensional space with
maximum diameter of D for the sphere and minimum margin of M . Thus T ∈ C.
We say C is formed from T . From Section 2.3, the VC-dimension h for C has
the upper bound given in 8. Thus, the error rate for T can be estimated using
the upper bound in 7, with h being substituted by the upper bound in 8.

3.3 Selection Criteria

Again, let R be the set of genes that have already been selected. Suppose we are
considering gene q for possible selection next. We could require the upper bound
on the generalization error for R∪{q} to be lower than that for R as a condition

518 X.B. Huang and J. Tang

for selecting q. To enforce more stringent scrutiny over irrelevant/redundant
genes, we use the following alternative: each term in the upper bound for R∪{q}
must be lower than the corresponding term in the upper bound for R. (Note the
upper bound contains two terms, as shown in 7.) More precisely, let TR and
TR∪{q} be the SVMs trained respectively for R and R ∪ {q}, CR and CR∪{q}
be the classes of GTCs formed respectively from TR and TR∪{q}, and hR and
hR∪{q} be the VC-dimensions respectively for CR and CR∪{q}. We select q only
if both of the folowing conditions hold true:

Remp(TR∪{q}) < Remp(TR) (9)√
hR∪{q}(ln(2�/hR∪{q}) + 1)− ln(α/4)

�
<

√
hR(ln(2�/hR) + 1)− ln(α/4)

�
(10)

Note that (10) is implied by hR∪{q} < hR. Using (8), we can get the upper bounds
for hR∪{q} and hR, the VC-dimensions for CR∪{q} and CR. We then use these
upper bounds in places of hR∪{q} and hR in the last inequality. More specifically,
let DR and MR be the maximum diameter for the spheres and minimum margin,
respectively, for CR. Let DR∪{q} and MR∪{q} be the maximum diameter for the
spheres and minimum margin, respectively, for CR∪{q}. Thus, we require

min{�D2
R∪{q}/M

2
R∪{q}�, |R|+ 1}+ 1 < min{�D2

R/M2
R�, |R|}+ 1 (11)

Inequality 11 implies

min{�D2
R∪{q}/M

2
R∪{q}�, |R|+ 1} = �D2

R∪{q}/M
2
R∪{q}� (12)

Since min{�D2
R/M2

R�, |R|} ≤ �D2
R/M2

R�, we have

�D2
R∪{q}/M

2
R∪{q}� < �D2

R/M2
R� (13)

implying
D2

R∪{q}/M
2
R∪{q} < D2

R/M2
R (14)

On the other hand, we have shown that in a d-dimensional space, the diameter of
the sphere for a GTC for a microarray is 2

√
dH where H is the threshold. (Refer

to Section 3.2.) Substituting 2
√
|R|H and 2

√
|R|+ 1H for DR and DR∪{q},

respectively, in (14) and rearranging the result, we have

MR∪{q}/
√
|R|+ 1 > MR/

√
|R| (15)

In our algorithm, (15) will be used in place of (10) as a criterion to select genes.

3.4 The Hill-Climbing Method

The algorithm uses a working set of genes, initially empty, that expands one
gene per iteration. The following notations are used in the algorithm: S1 and
S2 are the sample points in class 1 and class 2, respectively; G denotes the

A Method for Feature Selection on Microarray Data Using SVM 519

entire set of genes; R is the working set; error rate(S1, S2, B) is the error rate
for the SVM trained on S1 ∪ S2 using feature set B3; Margin(S1, S2, B) is the
margin of the separating hyperplane between S1 and S2 for the aforementioned
SVM,

Algorithm 1–RSSMUB

1. mg1 ← 0 //maximum margin in the last iteration
2. er1 ←∞ //minimum error rate in the last iteration
3. R← Φ
4. while R �= G do
5. er2 ← min{error rate(S1, S2, {q} ∪R) : q ∈ G−R}
6. mg2 ← max{margin(S1, S2, {q} ∪R) : q ∈ G−R &

error rate(S1, S2, {q} ∪R) = err}
7. if er2 > er1 or mg2√

|R|+1
≤ mg1√

|R| return R

8. p← q such that q ∈ {G−R} & margin(S1, S2, {q} ∪R) = mg2 &
error rate(S1, S2, {q} ∪R) = er2

9. R← R ∪ {p}
10. er1 ← er2
11. mg1 ← mg2
12. end while

The outer loop from lines 4 to 12 expands the working set, R, one gene per
iteration. Line 5 returns the minimum error rate of the SVMs trained on S1∪S2
for all the working set expansions. In line 6, the maximum margin for the genes
that generate the minimum error rate is retrieved. This margin then participates
in line 7 in a comparison expression with the maximum margin generated in the
last iteration. The other comparison expression in line 7 involves the error rates
of the current and the last iteration. These implement the criteria in (9) and
(15) in the previous section.

4 Experimental Results

We have done experiments on a number of data sets. Due to the space limita-
tion, we present results only on one of them, the Leukemia data set [4]4. (For
the results on other data sets, refer to http://www.cs.mun.ca/ xbhuang/.)We
compare our method with RFE in[5]. The reason we choose RFE for compar-
ison is because (1) both methods are based on SVM, and (2) the authors of
RFE have already shown that their method out perform other well established
methods [5].

3 In this paper, this error rate is generated from cross-validation on the training set.
4 The implementation was written with Java 1.5 on a Linux 2.4.26 kernel and tested

on a computer with a X86-64 AMD architecture CPU.

520 X.B. Huang and J. Tang

4.1 Description of the Data Set

The Leukemia data set contains two types of cancer data, Acute Lymphocytic
Leukemia (ALL) and Acute Myelogenous Leukemia (AML). It is formed by two
subsets, the training set and the test set. The training set consists of 38 samples
(27 ALL and 11 AML) from bone marrow specimens. The test set has 34 samples
(20 ALL and 14 AML), prepared under different experimental conditions, and
includes 24 bone marrow and 10 blood sample specimens. All samples have 7129
genes. The preprocessing procedure has normalized the original data by setting
the minimum threshold to 20 and the maximum to 16000. We also standardized
the data set as suggested in [4], namely, from each gene expression value, we
subtracted its mean and divided the result by its standard deviation.

4.2 Results of Comparisons

We train the SVM for feature selection using the training set, as described by Algo-
rithm 1. When we run the algorithm, twenty four genes are selected. Among them
we select some subsets to run classifiers on the test set. Three main results are ob-
served: 1. The classification accuracy; 2. The size of the gene subset; 3. The infor-
mation provided by the generated subset. We use two classifiers, SVM and C4.5,
to classify the observations in the testing set. The reason we use C4.5 is because
we would like to see how a widely used non-SVM based classifier adapts its perfor-
mance to the genes selected by the two methods. The results are shown in Table 1.

Table 1. Comparisons of Classification Results

of genes selection methods SVM classifier C4.5

1
RSSMUB 65% 65%
RFE 59% 59%

2
RSSMUB 82% 79%
RFE 56% 59%

4
RSSMUB 71% 71%
RFE 65% 76%

8
RSSMUB 74% 71%
RFE 59% 56%

16
RSSMUB 71% 79%
RFE 76% 82%

full set of genes 82% 91%

The left most column lists the numbers of genes selected by each method. We
start from 1, and, except for the last row, the numbers are a power of 2. This is
because the RFE eliminates the gene set on the boundary of power of two. The
reason that we use the gene sets only with sizes up to 16 is because not only we
prefer a gene set with high relevancy, but also we would like it to have very low
redundancy. Thus, both accuracy and size need to be considered for the qualities
of the set of the genes selected. From the table, it can be seen that with only
the top two genes selected by RSSMUB, the SVM classifier can attain the same

A Method for Feature Selection on Microarray Data Using SVM 521

Table 2. Annotations of top 8 genes selected by RSSMUB

gene name annotation explanation source

LEPR Leptin Receptor
A polymorphism in LEPR, Gln223Arg, might influence [13]
susceptibility to obesity in survivors of childhood ALL

C-myb
Highly expressed in ALL recognized based on mutual [6]
information and the P-metric value

Liver mRNA for interferon- Maintaining graft-versus-leukemia effect [12]
gamma inducing factor after allogeneic bone marrow transplantation (BMT)

GB DEF: Homeodomain Hoxa9 collaborates with other genes to produce [17]
protein HoxA9 mRNA highly aggressive acute leukemic disease

ELL2 Homologous to the product of the human ELL gene, [14]
a frequent target for translocations in AML

ADH4 for class II alcohol no annotation has been found
dehydrogenase

Leukotriene C4 synthase Elevated leukotriene C4 synthase activity observed [16]
(LTC4S) gene in peripheral blood granulocyte suspensions from

patients with chronic myeloid leukemia

PTMA: Prothymosin alpha
loss of PTMA in induced human myeloid leukemia [3]
(HL-60) cells is a differentiation-related event

accuracy as the full set of genes, while it needs sixteen genes selected by the
RFE to attain the highest accuracy, which is still 6% lower than that for the full
gene set. We also note that for the top four out of five gene sets, the RSSMUB
leads the RFE in accuracies when the SVM is used. On the other hand, when
the decision tree classifier is used, the RSSMUB leads RFE in accuracies for the
three out of five gene sets.

The above result shows that for both SVM and C4.5, the accuracies on the full
data set are higher than that on any selected subset of genes by both RSSMUB
and RFE. Although this matches the theory (i.e., the full data set provides the
most information), this is unusual from practical point of view. We attribute this
result to the fact that due to the preprocessing step, by both the original producer
and our experiment, the Leukemia data set has been cleaned a great deal. Thus
the irrelevant features most likely exhibits only moderate noisy behavior, which
are largely neutralized by those strong relevant features. We also observe that the
overall accuracy is not very high. This is because the data used for training and
testing are not exactly from the same tissues, and therefore represent somewhat
different distributions. This will necessarily affect the accuracies in the testing.

It is also interesting to examine our selected features from a biological point
of view. We have taken the top 8 genes selected by RSSMUB. We found that
seven of them have been annotated by the biological literatures as being related
to the Leuhemia one way or another. The results are shown in Table 2.

5 Conclusions

We propose a new approach for feature selection for microarray expression
data. Our method is based on the observation that when SVM is applied to

522 X.B. Huang and J. Tang

a microarray data set, it can be viewed as a gap tolerant classifier. This allows
us to build our feature selection method on a well established statistical upper
bound on the generalization error. We use a forward search strategy to select
genes that decrease the upper bound. The experimental results show that, com-
pared with the similar work, our method can eliminate more irrelevant as well
as redundant genes while at the same time attain high accuracy.

References

1. H. Almuallim and T.G. Dietterich. Learning with many irrelevant features. In
Proceedings of the Ninth National Conference on Artificial Intelligence, volume 2,
pages 547–552, 1991.

2. C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

3. M. Dosil, L. Alvarez-Fernandez, and J. Gomez-Marquez. Differentiation-linked ex-
pression of prothymosin alpha gene in human myeloid leukemic cells. Experimental
Cell Research, 204(1):94–101, 1993.

4. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov,
H. Coller, M. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander.
Molecular classification of cancer: Class discovery and class prediction by gene
expression monitoring. Science, 286(5439):531–537, 1999.

5. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classi-
fication using support vector machines. Machine Learning, 46(1-3):389–422, 2002.

6. Kyu-Baek Huang, Dong-Yeon Cho, Sang-Wook Park, Sung-Dong Kim, and
Byoung-Tak Zhang. Applying machine learning techniques to analysis of gene
expression data: cancer diagnosis. Methods of Microaray Data Analysis, 2001.

7. G.H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In Proceedings of the Eleventh International Conference on Machine
Learning, pages 121–129, 1994.

8. K. Kira and L. Rendell. The feature selection problem: Traditional methods and
a new algorithm. In Tenth National Conference on Artificial Intelligence, pages
129–134, 1992.

9. K. Kira and L. Rendell. A practical approach to feature selection. In Nineth
International Conference on Machine Learning, 1992.

10. R. Kohavi and G.H. John. Wrappers for feature subset selection. Journal of
Artificial Intelligence Research, 97(1-2):273–324, 1997.

11. K.Z. Mao. Feature subset selection for support vector machines through discrim-
inative function pruning analysis. IEEE Transactions on Systems, Man and Cy-
bernetics, Part B, 34(1):60–67, 2004.

12. P. Reddy, T. Teshima, G. Hildebrandt, U. Duffner, Y. Maeda, K. Cooke, and
J. Ferrara. Interleukin 18 preserves a perforin-dependent graft-versus-leukemia
effect after allogeneic bone marrow transplantation. Blood, 100(9):3429–3431, 2002.

13. J. Ross, K. Oeffinger, S. Davies, A. Mertens, E. Langer, W. Kiffmeyer, C. Sklar,
M. Stovall, Y. Yasui, and L. Robison. Genetic variation in the leptin receptor gene
and obesity in survivors of childhood acute lymphoblastic leukemia: a report from
the childhood cander survivor study. Journal of clinical Ontology, 22(17):3558–
3562, 2004.

14. A. Shilatifard, D. Duandagger, D. Haque, C. Florence, E. Schubach, J. Conaway,
and R. Conaway. Ell2, a new member of an ell family of rna polymerase ii elongation
factors. Proceedings of Natural Academic Science, 94:3639–3643, 1997.

A Method for Feature Selection on Microarray Data Using SVM 523

15. V. Sindhwani, S. Rakshit, D. Deodhare, D. Erdogmus, J.C. Principe, and P. Niyogi.
Feature selection in mlps and svms based on maximum output information. IEEE
Transactions on Neural Networks, 15(4):937– 948, 2004.

16. M. Sjolinder, L. Stenke, B. Glaser, S. Widell, J. Doucet, P. Jakobsson, , and J. Lind-
gren. Aberrant expression of active leukotriene c4 synthase in cd16+ neutrophils
from patients with chronic myeloid leukemia. Blood, 95(4):1456–1464, 2000.

17. U. Thorsteinsdottir, J. Krosl, E. Kroon, A. Haman, T. Hoang, , and G. Sauvageau.
The oncoprotein e2a-pbx1a collaborates with hoxa9 to acutely transform primary
bone marrow cells. Molecular Cell Biology, 19(9):6355–6366, 1999.

18. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,New York,
1995.

19. V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.
20. D.F. Wang, P.P.K. Chan, D.S. Yeung, and E.C.C. Tsang. Feature subset selection

for support vector machines through sensitivity analysis. In Proceedings of the
Third International Conference on Machine Learning and Cybernetics, volume 7,
pages 4257–4262, 2004.

Providing Persistence for Sensor Data Streams
by Remote WAL

Hideyuki Kawashima, Michita Imai, and Yuichiro Anzai

Information and Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, JAPAN

Abstract. Rapidly changing environments such as robots, sensor networks, or
medical services are emerging. To deal with them, DBMS should persist sensor
data streams instantaneously. To achieve the purpose, data persisting process must
be accelerated. Though write ahead logging (WAL) acceleration is essential for
the purpose, only a few researches are conducted.

To accelerate data persisting process, this paper proposes remote WAL with
asynchronous checkpointing technique. Furthermore this paper designs and im-
plements it. To evaluate the technique, this paper conducts experiments on an
object relational DBMS called KRAFT.

The result of experiments shows that remote WAL overwhelms performance
disk based WAL. As for throughput evaluation, best policy shows about 12 times
better performance compared with disk based WAL. As for logging time, the
policy shows lower than 1000 micro seconds which is the period of motor data
acquisition on conventional robots.

1 Introduction

In the fields of sensor networks (SN) [1] or data stream management systems (DSMS)
[2], immediate data persisting process is not considered at all. However, if it is realized,
the application domains of data warehouse can be expanded to real-time or ubiquitous
computing fields such as robots [3].

To realize the vision, a new type of database management system (DBMS) should be
designed for managing sensor data streams. The DBMS should be able to (C1) manage
massive data, (C2) providing persistence for data certainly, (C3) manage variable length
tuple, and (C4) providing persistence for data instantaneously. Most of conventional
DBMS satisfy (C1), (C2), and (C3). However, only (C4) is not satisfied yet. Conse-
quently, we set the purpose of this paper as realizing a technique which accelerates
reliable data persisting processing on DBMS. To efficiently avoid data loss at system
crash, DBMS makes log records, writes them onto persistent storage, and then updates
durable storage [4]. In this paper, the process to write log records onto persistent storage
is denoted as “persisting process”.

To accelerate persisting process, differential logging [5] and remote logging [6,7]
are proposed. [5] is for main memory database system (MMDB). Since it prepares a
log file for each page, log files are divided and persisting process is accelerated. [6] is
also for MMDB. It uses two remote memories as persistent storage with 2 phase commit
protocol. Since remote memory is faster than than local disk, it accelerates persisting

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 524–533, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Providing Persistence for Sensor Data Streams by Remote WAL 525

process. [7] also uses remote memories, and the application domain is focused on sensor
data. Inherently sensor data has continuous nature and thus it is considered that a few
data loss can be recovered by interpolation. Based on the concept, the paper proposes
imprecise remote logging.

Unfortunately, these techniques do not satisfy the above four conditions. Since differ-
ential logging [5] is for MMDB and thus the number of log files are limited. Therefore
the technique is difficult to apply for our purpose. Since neighbor-WAL [6] does not
describe how to deal with remote memory overflow, this technique is difficult to apply
for our purpose. Since imprecise-WAL [7] is unreliable, this technique is difficult to
apply for our purpose.

To achieve the purpose, this paper proposes remote WAL with two level asyn-
chronous checkpointing technique, and realizes it on an object relational database
system KRAFT [8].

This paper is organized as follows. Section 2 summaries related work. Section 3 for-
mulates problems and describes basic architecture of object relational DBMS called
KRAFT for the preparation of the proposition. Section 4 presents the two level asyn-
chronous checkpointing technique. Section 5 describes experiments to evaluate the
proposition. Section 6 discusses with this work. Finally Section 7 describes conclusions
and future work.

2 Related Work

Differential Logging. P*TIME [5] adopts “differential logging” technique to accelerate
WAL for MMDB. Differential logging adopts transient logging method and it reduces
the amount of log records compared with ARIES [9] method since transient logging re-
quires bit-level XOR difference of before image and after image while ARIES method
requires both of them. Although the differential logging technique shows great per-
formance, the maximum size of data which P*TIME can deal with is restricted to the
size of physical memory. Since the size of sensor data increases monotonically as time
goes, it is obvious that sensor data devours physical memories soon. Therefore differ-
ential logging technique is not proper for frequently sensor data insertion environment
unfortunately.

Neighbor-WAL. Neighbor-WAL [6] uses two remote computer’s memories (remote
memories) as a persistent storage instead of a disk. The transfer of log records is exe-
cuted on two phase commit protocol. Since the response time of remote memories is
faster than a local disk, neighbor-WAL achieves faster performance compared with tra-
ditional disk based WAL. The weak point of neighbor-WAL is memory overflow. Since
log records are stored on remote memories, the memories often overflow. Although this
is the most important problem, no approach is described in [6].

Imprecise WAL. To accelerate sensor data insertion, imprecise WAL method is pro-
posed in [7] as a modification of neighbor-WAL. This technique accelerates neighbor-
WAL by reducing network traffic cost. On the imprecise WAL, DBMS does not receive
any ACK of log record transfer from remote log servers. Although some log records
might be lost, the authors of [7] consider that they can be interpolated since they are

526 H. Kawashima, M. Imai, and Y. Anzai

Table 1. Comparison of Related Work

Study
Massive Data Precise Variable Length Fast Data

Management (C1) Persistence (C2) Tuple (C3) Insertion (C4)
Differential Logging [5] Never Good Good Good

Neighbor-WAL [6] Never Good Good Good
Imprecise WAL [7] Good Never Never Good

Conventional DBMS Good Good Good Bad
DSMS [2] Never Never Good Never

Ideal Good Good Good Good

gradually changing sensor data. To achieve performance, the imprecise WAL method
loses certain persistence for each data. Since the target of this paper is providing persis-
tence for all of sensor data to realize predictor applications, the technique is not proper
for our purpose.

The summary of related work is shown in Table 1. We present the technique from
the rest of this paper, and conducts the performance on our prototype DBMS called
KRAFT.

3 Preparation

This Section prepares for our proposition in Section 4. The first subsection formulates
problems to achieve our purpose, and the second subsection describes basic architecture
the database system KRAFT in which we will built our proposition.

3.1 Problem Formulation

The purpose of this paper is realizing a technique which accelerates reliable data persist-
ing processing on DBMS. In other words, a technique to solve (C4) should be proposed,
and furthermore it should be realized on DBMS.

To evaluate the contribution of our proposition to (C4), we measure throughput
of transactions, logging time of for a transaction, and blocking time to deal with re-
mote memory overflow on KRAFT. Thus, we formulate the problems of this paper as
follows.

(P1) : Maximizing Throughput on DBMS
(P2) : Minimizing Logging Time on DBMS

3.2 Basic Architecture of KRAFT

The proposition of this paper is based on an object relational database system KRAFT
which we have developed. To clarify the novelty of the proposition, we describe basic
architecture of KRAFT here. The implementation was done by programming language
C on FreeBSD 5.3 Release. The number of lines is over 15000.

Overview. KRAFT is a database system that supports a variety of sensor data, and
provides the following features: (1) freshness for sensor data without losing persistence,
(2) abstract data type for sensor data, and (3) efficient periodic monitoring.

Providing Persistence for Sensor Data Streams by Remote WAL 527

Data Model. KRAFT provides object relational data model as shown in Figure 1. Each
tuple is constituted of RELATION part and SENSOR part and the format is dynamically
set by CREATE TABLE command. The types which a tuple can have are INT (fixed
length 4 byte), TEXT (variable length, however, the size should be lower than DBMS
buffer pool size), and SENSOR which is constructed by the set of sensor data objects. A
sensor object has four attributes: arrival time(16 byte), generate time (16 byte), sensor
data (8 byte), and meta data (64 byte).

Software Architecture. Fig.2 shows basic software architecture of KRAFT. Since
KRAFT conducts remote logging for persisting process, it is constituted of DBMS
Server and Log Server. Although KRAFT has many modules, only RecoveryMan-
ager, LogReceiver, CheckPointer, BufferManager relate to the proposition of this
paper.

SENSORRELATION

(Arrival Time, Generate Time, Value, Metadata)

Fig. 1. Data Model of KRAFT

Storage manager

Executor

Parser

DBMS Server
Log Server

Client

Recovery manager

 Lock manager

Log client

Transaction manager

 Buffer manager

Log receiver

Checkpointer

Logging threads

Concurrent
execution

Monitor manager

Fig. 2. KRAFT Architecture

Transaction Model and Operations. KRAFT supports INSERT, DELETE, and AP-
PEND operations. INSERT and DELETE are used to manipulate tuples, while AP-
PEND operation is used for inserting new sensor data objects to SENSOR area.

KRAFT recognizes one operation as one transaction. In other words, each opera-
tion is executed transactionally. Therefore, all of data on buffer pools are assured to be
finished the persisting process.

Buffer Pool. Buffer pool is managed by storage manager on DBMS Server. If all of
page are used, one page is selected as a victim. And the victim page is written to disk
(durable storage), and it is initialized for next requirement. Buffer pool is constituted
of N-th buffer pages. To optimize disk I/O, the size of each buffer page is set to the
multiplies of PAGESIZE variable which is dependent on hardware.

Basic Remote WAL Protocol. KRAFT conducts remote WAL for the persisting process.
The basic protocol of KRAFT’s remote logging protocol is shown in the Fig.3. This
figure omits error handling because of space limitation.

4 Approach to Problems

4.1 Two Level Asynchronous Checkpointing

To solve the problems which Section 3.1 described, blocking time should be decreased.
To decrease the blocking time, this paper proposes the two level asynchronous check-
pointing technique. The overview of the technique is shown in Fig.4.

528 H. Kawashima, M. Imai, and Y. Anzai

When a Logger detects the end of k-th LogPage, it immediately switches to k + 1-
th LogPage. The switching time is the blocking time which have to be decreased. As
Fig.4 shows, the technique is constituted of four threads, Redoer, Logger, LogWriter,
and LogTransfer. And, Fig.4 shows asynchronous buffer transfer (log server’s mem-
ory→ log server’s disk) and asynchronous file transfer (remote disk→ DBMS storage
area).

� �
1: if (Send Log to LogSrv1 == timeout) {
2: Recover using LogSrv2; }
3: if (Send Log to LogSrv2 == timeout) {
4: Recover using LogSrv1; }
5: if (ACK from LogSrv1 == timeout) {
6: Recover using LogSrv2; }
7: if (ACK from LogSrv2 == timeout) {
8: Recover using LogSrv1; }

� �
Fig. 3. Remote WAL Protocol

Logger

LogWriter

LogTransfer

LogArea

(CheckPointer) (LogReceiver)

(BufferManager)

READ

READ

WRITE

LOGFILES

Redoer
(Recovery
Manager)

WRITE

WRITE

DATABASE

DBMS Server Log Server

LogPage
COMPRESS
 &
TRANSFER

Fig. 4. Two Level Asynchronous Checkpointing

� �
1: Set Current LogPage C = 0; (Initialization);

2: while (TRUE) {
3: Recv log record L;

4: Lock entire LogArea & Lock C;

5: if (C is full) {
6: Unlock C & Switch C &Lock C; }
7: Unlock entire LogArea;

8: Write L’s size to C’s header;

9: Write L onto C;

10: Unlock C; }
� �

Fig. 5. Logger Algorithm

� �
1: Dirty LogPage D = 0; (Initialization)

2: while (TRUE) {
3: if (C > D) {
4: Get Ti (Current Time);

5: Make a log file of which name is Ti;

6: Transfer D to Ti.

7: Switch D; }
8: sleep(TIME LW); }

� �
Fig. 6. LogWriter Algorithm

� �
1: while (TRUE) {
2: while (log file Ti exists) {
3: Compress Ti & send it to DBMS Srv;

4: Recv ACK from DBMS Srv;

5: Delete Ti;}
6: sleep(TIME LT);}

� �
Fig. 7. LogTransfer Algorithm

� �
1: while (TRUE) {

2: Receive the size of Ti;

3: Allocate space to extract Ti;

4: Recv Ti & Extract Ti;

5: ptr = header of the first log record;

6: while (ptr != NULL) {
7: REDO using a log indicated by ptr;

8: ptr = ptr->next; }
9: Release allocated space;}

� �
Fig. 8. Redoer Algorithm

Providing Persistence for Sensor Data Streams by Remote WAL 529

4.2 Algorithm Descriptions

This subsection presents the description of algorithms to realize Redoer, Logger, Log-
Writer, and LogTransfer.

The algorithm of Logger is shown in Fig.5 Each log record has header area in which
the size of log record is stored. Without the headers, it is impossible to reorganize log
record from LogPage.

The algorithm of LogWriter is shown in Fig.6. LogWriter chases the current page
C, but it never passes C. If LogWriter works slow, Logger soon finishes up all of
log pages and waits for LogWriter, and it incurs blocking phenomenon. To avoid it,
TIME LW (Fig.6) should be slow enough.

Fig.7 shows LogTransfer algorithm. As long as log files Ti exists, LogTransfer
compresses Ti and transfers it to Redoer. The compression reduces the amount of nec-
essary network resource. In our experiment, the compression enhanced the performance
of our system.

Fig.8 shows Redoer algorithm. Redoer receives compressed Ti, extracts it, con-
ducts REDO processing by calculating the address of each log record. If the address
is not written by storage manager, Redoer discards the log records because the access
must make old the state of the page, which is never permitted.

5 Evaluation

5.1 Experimental Environment

Hardware and System Parameters
Hardware. The specification of a machine for DBMS server and clients is Pentium
4 (3 GHz) CPU, 4GB RAM, and FreeBSD 5.3-Release OS.And, the specification of
machines for log servers are Pentium4 (2.4 GHz) CPU, 1GB RAM, and FreeBSD 5.3-
Release OS. For network, 100 Mbps Ethernet interfaces and Gigabit Switching Hub
FXG-08TE were used for the experiment.

System Parameters. Both TIME LW (Fig.6) and TIME LT (Fig.7) were adjusted as 1
micro second. The number of DBMS buffer pools was 32. FIFO was applied for page
replacement algorithm. The number of log buffer pages on each log server was 128, and
each size was 16 KB. To improve network response time, TCP NODELAY option was
set not to use Nagle algorithm on TCP/IP. For each experiment, all of clients are generated
on a DBMS Server machine. The number of log servers is 2 for each experiment.

Comparison Methods. “DWAL (GC)” shows disk-based “Willing To Wait” policy
group commit implementation on KRAFT.

“RWAL (Simple)” shows RWAL without group commit. In other words, all of log
transfers are executed isolately. In this case, the number of Logger threads on each log
server is the same as the number of DBMS clients which means the number of sensor
data streams in this experiment. In this case, the size of log record is smaller than 1 KB.

“RWAL (GC)” shows RWAL-based “Willing To Wait” policy group commit imple-
mentation on KRAFT. The number of Logger threads on each log server is one since
log transfers are integrated for group commit. The size of WAL buffer on DBMS Server
is 16 KB.

530 H. Kawashima, M. Imai, and Y. Anzai

“PostgreSQL” shows PostgreSQL-7.3.6 which implements “Willing To Wait” policy
group commit.

Experiment Descriptions. We conduct three experiments. They are “throughput”,
“logging time” and “log insertion time on log server”. As for “throughput”, each client
generages 1000 operations. Clients are concurrently executed. Total execution time is
measured and then throughput is calculated. “Logging time” is the time for one WAL
execution. This is measured at the internal of DBMS Server. “Log insertion time on a
log server” is the time for LogPage modification on a log server. If memory overflow
incurs blocking, this values would show high.

5.2 Results

Throughput. Fig.9 shows average of throughput. It shows that RWAL overwhelms
DWAL. “RWAL (Simple)” shows 12 times better performance compared with “DWAL
(GC)” in the maximum case (4 concurrency). However, “DWAL (GC)” shows worse
performance than “PostgreSQL”. Though we do not clarity the precise reason, the dif-
ference of buffer management algorithm (FIFO vs. clock) or “Willing To Wait” opti-
mization might be related.

Fig.10 shows standard deviation of throughput. Though “RWAL (Simple)” shows
unstable behavior, the reason is not clarified.

Logging Time. Fig.11 shows the average of logging time. “RWAL (Simple)” shows
lower than 1000 micro seconds while concurrency is low, but the performance de-
grades in accordance with concurrency obtaining 4000 micro seconds at 500 concur-
rency. However, in all of concurrency, “RWAL (Simple)” shows better performance
than “RWAL (GC)”.

Fig.12 shows standard deviation of logging time. Though “RWAL (Simple)” shows
unstable behavior, the reason is not clarified.

Log Insertion Time on a Log Server. Fig.13 shows average of one log record insertion
time on a log server. In the worst case, “RWAL (Simple)” shows 7 micro seconds while
“RWAL (GC)” shows 25 micro seconds. From the results, it is considered that blocking
did not occur on log servers. the difference of 7 micro seconds and 25 micro seconds
would be related to the size of insertion size. For “RWAL (Simple)”, only one log record
is written while sets of log records are written for “RWAL (GC)”.

Fig.14 shows standard deviation time of one log record insertion time on each log
server. All of values are smaller than 18 micro seconds, which are enoughly small.

Summary. As for performance “RWAL (Simple”) policy showed the best performance
in all of experiments. Since the policy overwhelms disk based WAL as for throughput,
it satisfies (P1) Maximing Throughput on DBMS. In addition, since the policy also
showed better performance than “RWAL (GC)”, it most appropriately satisfies (P2)
Minimizing Logging Time on DBMS. The reason why logging time was minimized,
was because of non-blocking on log servers, which was clarified in the experiments
with log insertion times.

Providing Persistence for Sensor Data Streams by Remote WAL 531

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500

A
ve

ra
ge

 o
f T

P
S

Concurrency

DWAL (GC)
RWAL (Simple)

RWAL (GC)
PostgreSQL

Fig. 9. Average of Throughput

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 T

P
S

Concurrency

DWAL (GC)
RWAL (Simple)

RWAL (GC)

Fig. 10. Standard Deviation of Throughput

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500

A
ve

ra
ge

 o
f L

og
gi

ng
 T

im
e

[M
ic

ro
 S

ec
]

Concurrency

RWAL (Simple)
RWAL (GC)

Fig. 11. Average of Logging Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 L

og
gi

ng
 T

im
e

[M
ic

ro
 S

ec
]

Concurrency

RWAL (Simple)
RWAL (GC)

Fig. 12. Standard Deviation of Logging Time

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 o
f B

lo
ck

in
g

T
im

e
[M

ic
ro

 S
ec

]

Concurrency

RWAL (Simple)
RWAL (GC)

Fig. 13. Average of Log Insert Time

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100 150 200 250 300 350 400 450 500

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 B

lo
ck

in
g

T
im

e
[M

ic
ro

 S
ec

]

Concurrency

RWAL (Simple)
RWAL (GC)

Fig. 14. Standard Deviation of Log Insert Time

6 Discussion

Persistence Strongness of Log Records by Remote WAL. If failure occurs on a host
which log server runs, all of log records stored in the log server are lost. To cope with
such a situation, our protocol shown in Fig.3 requires database server sending a log

532 H. Kawashima, M. Imai, and Y. Anzai

record to two log servers. Therefore, our remote WAL protocol does not lose log records
unless both of hosts failures at the same time, and we think the probability of the phe-
nomenon would not be high. We think this philosophy is the same as the ClustRa [6]
which is accepted for industry community. Therefore we consider remote WAL provide
enough strongness of persistence for log records.

Preciousness of Sensor Data Stream. Currently sensor data streams are not considered
to be enough to precious to persist in the field of sensor network community or data
stream community. However we consider it will be precious in this decade, because (1)
sensory/image communication is easier to understand compared with text based com-
munication, (2) the price of disk is rapidly decreasing, and (3) real-time applications
which use sensor data are emerging. Therefore we predict that data warehouses would
store fine-grained sensor data streams in the near future.

Having N disks. Having N disks on the DBMS server, the performance of DWAL may
be increased. However, the ratio would be low since (1) conventional group commit
technology [10] is highly established and (2) the management of multiple group commit
buffers requires cost.

SAN. By using SAN, the performance of DWAL would improve dramatically since
batteries are equipped on disk cache device and thus no need to write some data on
harddrive to persist the data. However, this paper focuses on low-end devices and thus
expensive SAN is out of range.

7 Conclusions and Future Work

The purpose of this paper was to propose a technique which accelerates reliable data
persisting processing on DBMS. To achieve the purpose, this paper proposed the two
level asynchronous checkpointing technique, and implemented the proposition on an
actual DBMS. And, this paper tackled the following three problems. (1) Maximizing
throughput. (2) Minimizing logging time.

The result of experiments showed that remote WAL provided better performance
than disk based WAL. As for throughput evaluation, the “RWAL (Simple)” policy
showed about 12 times better performance compared with disk based WAL in the max-
imum case. As for logging time, the policy showed lower than 1000 micro seconds
which is the period of motor data acquisition for conventionally used robots. Further-
more it also showed stable performance on log insertion time on log server. Therefore
we consider the “RWAL (Simple)” policy most appropriately solves problems formu-
lated in Section 3.1.

Therefore the proposition in this paper satisfies (C4) in Table 1. Furthermore,
KRAFT already satisfies (C1), (C2), and (C3). Therefore new KRAFT reinforced by
this paper satisfies all of four conditions in Table 1. Hence we conclude that our work
achieved the purpose of this paper.

For further improvement, non volatile memories such as ram-disks should be used.
Even if non volatile memories are used, the two level check pointing technique we
proposed in this paper should be used because the available size of non volatile memo-
ries is still limited.

Providing Persistence for Sensor Data Streams by Remote WAL 533

References

1. Madden, S. R., Franklin, M. J., Hellerstein, J. M. and Hong, W.: The Design of an Ac-
quisitional Query Processor for Sensor Networks, Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 491–502 (2003).

2. Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J.: Models and Issues in Data
Stream Systems, ACM Symposium on Principles of Database Systems (2002).

3. Imai, M. and Narumi, M.: Generating common quality of sense by directed interaction,
Proceedings of the 12th IEEE International Workshop on Robot and Human Interactive
Communication(RO-MAN 2003), pp. 199–204 (2003).

4. Gray, J. and Reuter, A.: Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann Publishers (1993).

5. Cha, S. K. and Song, C.: P*TIME: Highly Scalable OLTP DBMS for Managing Update-
Intensive Stream Workload, Proceedings of 30th International Conference on Very Large
Data Bases, pp. 1033–1044 (2004).

6. Hvasshovd, S.-O., Torbjørnsen, Ø., Bratsberg, S. E. and Holager, P.: The ClustRa Telecom
Database: High Availability, High Throughput, and Real-Time Response, Proceedings of the
21th International Conference on Very Large Data Bases, pp. 469–477 (1995).

7. Kawashima, H., Toyama, M., Imai, M. and Anzai, Y.: Providing Persistence for Sensor
Streams with Light Neighbor WAL, Proceedings of Pacific Rim International Symposium
on Dependable Computing(PRDC2002), pp. 257–264 (2002).

8. Kawashima, H., Imai, M. and Anzai, Y.: Improving Freshness of Sensor Data on KRAFT
Sensor Database System, International Workshop on Multimedia Information Systems, pp.
1–8 (2004).

9. Mohan, C.: Repeating History Beyond ARIES, Proceedings of 25th International Confer-
ence on Very Large Data Bases, pp. 1–17 (1999).

10. Spiro, P. M., Joshi, A. M. and Rengarajan, T. K.: Designing an Optimized Transaction Com-
mit Protocol, Digital Technical Journal, Vol. 3, No. 1, pp. 1–16 (1991).

Support Vector Machine Approach for Fast
Classification

Keivan Kianmehr1 and Reda Alhajj1,2

1 Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
{kiamehr, alhajj}@cpsc.ucalgary.ca

2 Department of Computer Science, Global University, Beirut, Lebanon

Abstract. In this study, we propose a new technique to integrate sup-
port vector machine and association rule mining in order to implement a
fast and efficient classification algorithm that overcomes the drawbacks
of machine learning and association rule-based classification algorithms.
The reported test results demonstrate the applicability, efficiency and
effectiveness of the proposed approach.

Keywords: classification, association rules, support vector machines,
classification rules, data mining, machine learning.

1 Introduction

Classification is supervised categorization of a given set of items into classes. It
is beneficial for several applications, such as preventing theft and saving lives,
medical diagnosis, increasing revenue and market analysis, better decision mak-
ing, predicting customer behavior, signaling potentially fraudulent transactions,
etc. A wide variety of research has considered the use of popular machine learn-
ing techniques, such as Neural Network, Decision Trees, Baysian Network and
Support Vector Machine, in the classification task to automate the discovery of
classification rules and to build a classifier model based on the extracted rules.
The accuracy and efficiency of the model is usually evaluated by a combination
of statistical techniques and domain experts.

Despite showing outstanding performance in many real applications, machine
learning classification techniques are not able to discover all interesting and
understandable rules. Also, the discovered rules may not be of the domain
expert’s interest. In fact, machine learning techniques work based on math-
ematical and statistical algorithms. So, rules generated by these algorithms
are domain independent and difficult to be investigated by domain experts.
For example, there might be some rules which may play an important role in
understanding the classification task, but not discovered by machine learning
techniques.

To overcome the understandability problem of the classification task, associ-
ation rule-based classification techniques have been recently proposed and have
received a great consideration. Association rule mining is the process of discov-
ering all association rules having support and confidence greater than a pre-
determined threshold. In association rule-based classification, the focus is on a

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 534–543, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Support Vector Machine Approach for Fast Classification 535

subset of association rules, the consequent of each is class attribute. This set of
rules is known as class association rules [4].

The main steps in building a classifier based on association rules are: 1) Rule
Generator: generates from the training set the set of association rules in the
form (attributes⇒ class− label); 2) Rule Pruning: pruning the set of generated
association rules to find the best set of rules that cover the training set, and
3) Classifier Builder: building the best classifier that can predict the class of a
new unseen object.

The related literature indicates that association rule-based classification tech-
niques have better and more accurate results than machine learning classification
algorithms. However, they suffer from efficiency issues. First, the rule genera-
tor algorithm generates a large number of rules, and it is difficult to store the
rules, retrieve the related rules, prune and sort the rules [5]. Second, it is chal-
lenging to find the best subset of rules to build the most robust and accurate
classifier.

As a result of the above analysis, the main motivation of the research efforts
described in this paper is to overcome the drawbacks of machine learning and
association rule-based classification algorithms. By considering the advantages
of both techniques, we try to integrate both trends into a novel, fast and ac-
curate classification technique that solves their weaknesses. We propose a new
classification algorithm based on association rule mining combined with Support
Vector Machine (SVM). The task involves using an available method for gener-
ating class-based rules. Our proposed approach then extracts the strong rules
with the most uneven class distribution for each class, i.e., rules that are more
often valid for one class than the other class. The validity of these rules for each
data sample is then used to build a binary feature vector as an input to the SVM
classification algorithm. Finally, the SVM algorithm builds the classifier using
the binary feature vector, which represents the coverage distribution of the rules
(covered/not covered) by each data sample of the training set. The conducted
experiments and comparative study demonstrate the applicability, efficiency and
effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section 2 describes the associa-
tion rule-based classification problem. Section 3 presents a review of association
rule-based classifier techniques and highlights our contribution to this problem.
Section 4 explains our approach to build an association rule-based classifier in
detail. Section 5 provides detailed explanation on the selected evaluation model,
the conducted experiments and the achieved results. Section 6 is summary and
conclusions.

2 Association Rule-Based Classification: Problem
Description

The association rule-based classification problem may be described as follows:
Given a transactional dataset D consisting of transactions T = {t1, t2, . . . , tn}, a
set of items I = {i1, i2, . . . , ik} consisting of all items in D, which is also the range

536 K. Kianmehr and R. Alhajj

of possible values for the transactions, a set of class labels C = {c1, c2, . . . , cn},
support and confidence thresholds; the objective is to generate the set of strong
class-association rules in the form (attributes ⇒ class − label), and to build
the best classifier that can predict the class of a new unseen object under the
constraints: The transactional data set D is a normalized dataset to positive
integer values, the domain of the class label is {0, 1}, and class-based association
rules are in the form (attributes⇒ class− label).

In this study, we assume that the input to the classifier is a uniform dataset
consisting of integer values of the attributes and a class label. However, in general
datasets contain continuous and/or categorical data. In order to normalize all the
values to integers, we map all categorical values to consecutive positive integers.
For continuous values, we first discretize them into intervals, and then map the
intervals to the consecutive positive integers.

The above formulation highlights an important aspect of rule-based classi-
fication, namely building a classifier based on class-based association rules. A
class-based association rule takes the form I ′ → c, where I ′ ⊆ I and c ∈ C. The
problem of generating strong class-based association rules from a set of transac-
tions D is to find the class-based association rules such that their support and
confidence are greater than the user-defined thresholds.

3 Related Work and Our Contribution

As described in the literature, association rule-based classification includes two
major techniques: ordered rule based classifier techniques and unordered rule
based classifier techniques. Alternative approaches have been also proposed to
combine different techniques to improve the classification task. In the rest of
this section, we will briefly describe several well-known association rule-based
classification algorithms.

3.1 Classification Based on Single Class Association Rules

A subset of strong rules, called candidate set, is sorted in descending order of
rules’ accuracy (a rule is accurate if both its confidence and support are above the
pre-determined thresholds). When classifying a new unseen data object, the first
rule in the sorted candidate set that matches the object makes the prediction.
The candidate set also contains a default class at the end. The class label of
uncovered training data objects by the last rule in the candidate set which has
the majority is identified as the default class. When there is no rule to cover
the new coming data object, it will be classified to the default class. CBA [4]
and C4.5 [10] are two techniques that work based on single class association
rules.

The CBA approach sorts the rules in descending order of rules’ confidence
and support. If there are rules with the same confidence and support, the rule
generated earlier will be selected as a classifier rule. This sorting task guarantees
that the most accurate rules will be selected for the classifier. After ordering the
rules, the data set is scanned for each rule to find those data samples covered

Support Vector Machine Approach for Fast Classification 537

by the selected rule. If the selected rule can classify at least one data sample
correctly, it will be a candidate for the classifier. After scanning all the class
association rules and selecting the candidate rules for the classifier, a default class
is also added to the classifier. After building the candidate rules set, the total
number of errors made by candidate rules and the default class is determined;
and rules that decrease the accuracy of classification are ignored. The remaining
rules and the default class will form the final classifier. The obvious problem with
this approach is over-fitting. After a data sample is covered by a highly accurate
rule, all other rules that cover the data sample may be discarded if they do not
cover any other data sample.

The C4.5 rule-based approach is derived from C4.5 decision tree [10]. The
rules are generated and C4.5 decision tree is trained first. Then, every path from
the root to a leaf is extracted as an initial rule by considering all the test con-
ditions appearing in the path as the conjunction between rule antecedents and
the class label. Afterward, each initial rule is induced by removing antecedents
that do not improve the discriminating process of a specific class from other
classes. This task is performed by a pessimistic estimate of the accuracy of the
rule. After the rules induction process, they are grouped into rule sets corre-
sponding to the classes, respectively. All rule sets are pruned with the minimum
description length principle technique [11] so that rules which have no effect on
the accuracy of a rule set are removed. Then, the rule sets are sorted accord-
ing to the ascending order of their false positive error rates. Finally, a default
class is also added to the set for dealing with data objects that don’t have any
matching rule in the set of generated rules. The default class is the one that
contains the most training data objects not covered by any rule. Rule set gen-
erated by C4.5 is too small to cover the possible missing values in a new unseen
dataset.

3.2 Classification Based on Multiple Class Association Rules

The candidate set of strong rules is not sorted and most matching rules may
participate in the classification process. Simply if the new data object is covered
by all candidate rules, it will be assigned to the class label of candidate rules;
otherwise the majority vote of candidate rules will specify the class label of
the new object. CPAR [14] employs this technique to classify new data objects.
Another method is to divide candidate rules into groups according to class labels
and then to compute the actual effect obtained from the multiple rules for all
groups. The group with the highest efficiency will identify the class of the new
object; CMAR [5] employs this method.

CMAR determines the class label by a set of rules instead of relying on a
single rule for classification. To assign a class to a new given sample, CMAR
selects a subset of highly related rules with high confidence, and analyzes the
correlation among those rules. After selecting a set of rules for classification, if
the rules are not consistent in class labels, CMAR divides the rules into groups
according to class labels and compares the effects of the groups based on their
strengths. If the rules are highly correlated in a group and have high support

538 K. Kianmehr and R. Alhajj

value, the group should have strong effect. A strength measurement technique
called X2 has been developed to compare the strength of the groups. It specifies
how strong the rule is under both conditional support and class distribution.
There are many possible ways to measure X2 value. However, the weighted X2

measure [6] is the best among a good set of candidate measure formulas that can
be applied. The main drawback of CMAR approach is that it is time consuming
to extract classifier rules, group the rules and compare their X2 measures when
the dataset is large.

CPAR applies the idea of FOIL [12] in rule generation and integrates the
features of associative classification in predictive rule analysis. FOIL is a greedy
algorithm that learns rules to distinguish between positive and negative samples.
In CPAR, FOIL is modified to propose PRM [14] (Predictive Rule Mining),
which achieves higher accuracy and efficiency in rule mining. Since the number
of rules generated by FOIL is very small, it does not achieve high accuracy as
PRM. In PRM, the weight of the rule is decreased by a factor if it correctly
classifies an example. By using this weighting strategy instead of removing the
rules, PRM generates more rules and a positive example might be covered several
times. Although has higher efficiency than associative classification, PRM has
lower accuracy. CPAR combines the advantages of both FOIL and PMR to
generate a smaller set of high quality predictive rules. It also generates the rules
by considering the set of previously generated rules to avoid redundancy. CPAR
predicts the class label of an example by using the best set of rules covering the
example.

4 The Proposed Association Rule-Based Classifier

In the different subsections of this section, we describe the steps of the proposed
approach.

4.1 Discretization and Normalization of a Data Set

The problem in class-based association rule mining arises mainly when the data
sets used for classification contain continuous values for some attributes, discrete
attributes and categorical attributes. Actually, mining association rules in such
data sets is still a major research problem. The general method used to deal
with this kind of data sets is Discretization and Normalization.

Discretization is the process of mapping the range of possible values associ-
ated with a continuous attribute into a number of intervals each identified by a
unique integer label; and converting all the values associated with this attribute
to the corresponding integer labels. Continuous data attributes take values that
are real numbers within some range defined by minimum and maximum limits.
Normalization is also the process of mapping values associated with categori-
cal attributes to unique integer labels. Categorical data attributes take values
selected from an available list of values. There are several algorithms already
described in the literature for data set discretization.

Support Vector Machine Approach for Fast Classification 539

4.2 Class-Based Rule Generator

We have implemented a class-based rule generator algorithm which is based on
the Apriori algorithm [1]. Apriori is adapted to find all class-based association
rules that satisfy the minimum support and minimum confidence constraints.
The algorithm generates all the frequent rule-items by making multiple passes
over the data. In the first pass, it counts the support of each individual rule-item
and determines whether it is frequent.

In each subsequent pass, it starts with the seed set of rule-items found to
be frequent in the previous pass. It uses this seed set to generate new possibly
frequent rule-items, called candidate rule-items. The actual supports for these
candidate rule-items are calculated during the pass over the data. At the end of
the pass, it determines which of the candidate rule-items are actually frequent.
From this set of frequent rule-items, it produces the class-based association rules.
As a result of this process, we have a set of all class-based rules. So, we are ready
to implement the next step, which is extracting strong rules with the most uneven
class distribution for each class.

4.3 Separating and Sorting Rules

In this study, we consider the binary classification problem. We assume one of
the class labels as the positive class and the other one as the negative class.
Therefore, we can identify the extracted rules as the positive classifier rules and
negative classifier rules. A rule having a positive label on the right hand side
(consequent) is called a positive classifier rule and a rule having a negative label
on its consequent is called negative classifier rule. In order to build a monotonous
feature vector based on discrimination ability of the positive and negative rules,
we separate positive and negative rules into two different subsets and call them
the subset of positive classifier rules and the subset of negative classifier rules,
respectively. The ordering of the rules inside each subset is important because we
prefer to select the most discriminate positive and negative rules from each rule
subset. We would like to order the rules inside a subset such that they conform
to the order imposed by rules strengths.

In order to perform the ordering inside each subset, we specify the strengths
of the rules according to their confidence and support values. Rules with greater
confidence values are stronger than the rules with smaller confidence values. For
all the rules that have the same confidence, the rule with higher value of support
is considered as the strongest rule. If there are more than one rule with the same
confidence and support values, we sort them randomly. The results of the sorting
of the subsets are two classes: one containing ordered positive classifier rules and
the other one containing ordered negative classifier rules.

4.4 Building the Binary Feature Vector

The SVM classification algorithm accepts feature vectors as input to generate a
classifier model. In a feature vector, features are usually representatives of the

540 K. Kianmehr and R. Alhajj

attributes of a data item. In other words, a feature vector consists of values
that represent the key properties of the data item to be classified. Our SVM
classification method runs on binary feature vectors. A data object represented
by a binary feature vector takes the form x = (a1, . . . , an) and ai = 1 or 0,
∀i ∈ {1 . . . n}.

Our approach is to build a new binary feature vector for each data item
in the original training set by utilizing rules. This way each data item in the
original training set is represented as a binary feature vector. This new binary
feature vector is different from the traditional feature vector that captures the
key attributes of a data item. In order to build a binary feature vector for
each data item, first we select a predefined percentage (which can be considered
as a threshold) of strong positive classifier rules from the positive rules subset
and the same percentage of strong negative classifier rules from the negative
rules subset. Since the rules in each subset are sorted based on their strength,
we pick up the rules starting from the beginning of each subset until we have
enough number of rules that satisfy the threshold value. A feature in the vector
is a predicate indicating whether each selected rule (positive and negative) is
covered by the data item in the original dataset. So the number of features in
the feature vector is equal to the number of rules that have been selected from
the two subsets of positive and negative rules. If a rule is covered by a data item,
the value of the feature representing that rule in the feature vector is assigned
the value 1; otherwise it is assigned the value 0. The binary feature vector is
a popular representation in many learning methodologies (e.g., Rule learning
like k-DNF and CNF, decision tree); it is used in a wide range of applications
(e.g., automatic diagnosis [8], classifying Web pages and emails [15], and mining
graphs [16]).

5 Experimental Results

In this section, we report the test results of the experiments conducted, using
Pima, a well-known datasets downloaded from UCI ML Repository [9]. We con-
ducted an extensive performance study to evaluate the accuracy of our proposed
technique. Our target is to demonstrate the effectiveness of the classification
method proposed in this paper. We also compare the proposed method with
other existing approaches. The selected dataset has two class labels; thus the
binary classification is applicable.

For our experiments, we used Personal Computer with Intel P4 2.4GHZ CPU
and 1GB memory. Our main performance metric is classification accuracy. An in-
crease in the classification accuracy is an indicator of how accurate the proposed
model is. A 10-fold cross validation is used to estimate the accuracy of the pro-
posed classification technique. First, the datasets are discretized and normalized
using the Entropy method described in [3]. The code is taken from MLC++ ma-
chine learning library [7]. The SVM technique used in our classification method

Support Vector Machine Approach for Fast Classification 541

is implemented using a Matlab interface of LIBSVM [2] in Matlab 7; LIBSVM
is a library for SVM classification and regression.

In the first experiment, we evaluated the accuracy of the proposed model
by varying the number of rules participating in the construction process of the
feature vectors. Then, we compared the result of using binary feature vector
with the case where we used the original dataset as the input feature vectors to
the SVM algorithm. We also compared the classifiers produced by our algorithm
against those produced by C4.5, CBA, CMAR and CPAR.

Table 1. Experimental Results on Pima Dataset

Dataset Rules(%) SVM (Binary FV) SVM (Original FV)
Linear Non-Linear Linear Non-Linear

Pima 10 78.26 77.73 74.87 73.31
20 78.26 76.30
30 77.47 75.00
40 83.07 80.99
50 94.14 93.10
60 98.83 98.31
70 99.22 99.22
80 99.87 100.00
90 100.00 100.00
100 100.00 100.00

Table 1 reports experimental results on the Pima dataset. It demonstrates
that the accuracy of the proposed model is better than the accuracy of SVM
(using the original dataset as the input feature vectors) in all cases as we increase
the number of rules from 10% to 100% by steps of 10. Table 1 also demonstrates
that the classification accuracy decreases (still it is better than the standard
SVM) when we increase the percentage of the selected rules from 10% to 20%
and from 20% to 30%. Also, it is worth noting that starting at 40% of the
class-based rules, the classification accuracy of the proposed model on the Pima
dataset is getting higher. By adding more extracted class-based rules to our
model, we can improve the classification accuracy. When we select 90% of the
rules to build the binary feature vectors, both Linear and Non-Linear SVM using
binary feature vectors give 100% classification accuracy.

Figures 1 compares the accuracy of the proposed model with C4.5, CBA,
CMAR and CPAR. Actually, these approaches are independent from the per-
centage value of the selected rules. This is the reason that the accuracy of these
approaches is displayed as straight lines in the chart; there are constant values
of accuracy for all cut-offs along the X-axis. We added these straight lines to
the chart for the purpose of the comparison. As it can be seen from the chart
reported in Figure 1, the proposed model performs better than all the mentioned
approaches.

542 K. Kianmehr and R. Alhajj

Fig. 1. Comparing the accuracy of the proposed approach with other existing
approaches

6 Summary and Conclusions

In this paper, we proposed a new classification algorithm which integrates SVM
and association rule mining. Consequently, we achieved a major goal, which is
satisfied by having the proposed approach powerful enough to overcome the
drawbacks and weaknesses of both machine learning and association rule-based
classification techniques. In our classification framework, the focus is on a sub-
set of association rules such that the consequent of each rule is class attribute
(class-based rules). The class-based rules are used as the base for building new
set of binary feature vectors. The binary feature vectors are then used as inputs
to the SVM algorithm, which in turn builds a classifier model using the binary
feature vectors. Our expectation from this approach is to increase the classifica-
tion accuracy. The proposed method has been evaluated through performance
experiments on aa well-known dataset. The class-based rules obtained from min-
ing the dataset have been used to build the feature vectors. The performance of
our method has been compared with four well-known existing approaches. From
the conducted experiments, it has been observed that a considerable increase
in classification accuracy can be obtained when the binary feature vectors built
based on class-based rules are used in the learning process of the SVM classifier.

Support Vector Machine Approach for Fast Classification 543

References

1. R. Agrawal and R. Srikant,“Fast algorithms for mining association rules”, Proc. of
the International Conference on Very Large Databases, 1994.

2. C.C. Chang and C.J. Lin, “LIBSVM: A Library for Support Vector Machines”,
2001. URL: http://www.csie.ntu.edu.tw/ cjlin/libsvm.

3. U. M. Fayyad and K.B. Irani, “Multi-interval Discretization of Continuous-Valued
Attributes for Classification Learning”, Proc. of International Joint Conference on
Artificial Intelligence, pp.1022-1027, 1993.

4. B. Liu, W. Hsu and Y. Ma, “Integrating Classification and Association Rule Min-
ing”, Proc. of ACM International Conference on Knowledge Discovery and Data
Mining, 1998.

5. W. Li, J. Han and J. Pei, “CMAR: Accurate and Efficient Classification Based
on Multiple Class-Association Rules”, Proc. of IEEE International Conference on
Data Mining, 2001.

6. W. Li, “Classification Based on Multiple Association Rules”, M.Sc. Thesis, Simon
Fraser University, April 2001.

7. R. Kohavi, G. John, R. Long, D. Manley and K. Pfleger, “MLC++: A Machine
Learning Library in C++”, Proc. of IEEE International Conference on Tools for
Artificial Intelligence, pp.740-743, 1994.

8. L. A. Kurgan, K.J. Cios, R. Tadeusiewicz, M. Ogiela, and L. S. Goodenday,
“Knowledge Discovery Approach to Automated Cardiac Spect Diagnosis”, Arti-
ficial Intelligence in Medicine, Vol.23, No.2, pp.149169, 2001.

9. C.J, Merz and P. Murphy, UCI repository of machine learning database,
[http://www.cs.uci.edu/ mlearn/MLRepository.html], 1996.

10. J.R. Quinlan, C4.5: Programs for Machine Learning, San Mateo, CA:Morgan Kauf-
mann, 1993.

11. J.R. Quinlan and R.L. Rivest, “Inferring Decision Trees Using the Minimum De-
scription Length Principle”, Inform. Comput., Vol.80, No.3, pp.227248, 1989.

12. J.R. Quinlan and R.M. Cameron-Jones, “FOIL: A midterm report”, Proc. of the
Europian Conference on Machine Learning, pp. -20, Vienna, Austria, 1993.

13. G. Wahba, “Spline Models for Observational Data”, Proc. of SIAM. CBMS-NSF
Regional Conference Series in Applied Mathematics, v.59, 1990.

14. X. Yin and J. Han, “CPAR: Classification based on predictive association rules”,
Proc. of SIAM International Conference on Data Mining, 2003.

15. H. Yu, K. C. Chang, and J. Han, “Heterogeneous Learner for Web Page Classifi-
cation”, Proc. of IEEE International Conference on Data Mining, 2002.

16. X. Yan and J. Han, “Closegraph: Mining Closed Frequent Graph Patterns”, Proc.
of ACM International Conference on Knowledge Discovery and Data Mining, 2003.

Document Representations for Classification of Short
Web-Page Descriptions�

Miloš Radovanović and Mirjana Ivanović

University of Novi Sad
Faculty of Science, Department of Mathematics and Informatics

Trg D. Obradovića 4, 21000 Novi Sad
Serbia and Montenegro

{radacha, mira}@im.ns.ac.yu

Abstract. Motivated by applying Text Categorization to sorting Web search re-
sults, this paper describes an extensive experimental study of the impact of bag-
of-words document representations on the performance of five major classifiers –
Naı̈ve Bayes, SVM, Voted Perceptron, kNN and C4.5. The texts represent short
Web-page descriptions from the dmoz Open Directory Web-page ontology. Dif-
ferent transformations of input data: stemming, normalization, logtf and idf, to-
gether with dimensionality reduction, are found to have a statistically significant
improving or degrading effect on classification performance measured by classi-
cal metrics – accuracy, precision, recall, F1 and F2. The emphasis of the study is
not on determining the best document representation which corresponds to each
classifier, but rather on describing the effects of every individual transformation
on classification, together with their mutual relationships.

1 Introduction

Text Categorization (TC – also known as Text Classification or Topic Spotting) is the
task of automatically sorting a set of documents into categories (or classes, or topics)
from a predefined set [1]. Applications of TC include text filtering (e.g. protection from
spam e-mail), word sense disambiguation, and categorization of Web pages.

The initial motivation for this paper lies in the development a meta-search engine
which uses TC to enhance the presentation of search results [2]. From the context of this
system, we intended answer the three questions posed in [3]: (1) what representation to
use in documents, (2) how to deal with the high number of features, and (3) which
learning algorithm to use. This paper focuses on question one and its interaction with
question three, trying (but not completely succeeding) to avoid question two.

Although the majority of works in TC employ the bag-of-words approach to docu-
ment representation [4], studies of the impact of its variations on classification started
appearing relatively recently. Leopold and Kindermann [5] experimented with the Sup-
port Vector Machine (SVM) classifier with different kernels, term frequency transforms

� This work was supported by project Abstract Methods and Applications in Computer Science
(no. 144017A), of the Serbian Ministry of Science and Environmental Protection.

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 544–553, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Document Representations for Classification of Short Web-Page Descriptions 545

and lemmatization of German. They found that lemmatization usually degraded classi-
fication performance, and had the additional downside of great computational complex-
ity, making SVMs capable of avoiding it altogether. Similar results were reported for
neural networks on French [6]. Another study on the impact of document representation
on one-class SVM [7] showed that, with a careful choice of representation, classifica-
tion performance can reach 95% of the performance of SVM trained on both positive
and negative examples. Kibriya et al. [8] compared the performance of SVM and a
variant of the Naı̈ve Bayes classifier, emphasizing the importance of term frequency
and inverse document frequency transforms for Naı̈ve Bayes.

This paper presents an extensive experimental study of bag-of-words document rep-
resentations, and their impact on the performance on five classifiers commonly used in
TC. An unorthodox evaluation methodology is used to measure and compare the ef-
fects of different transformations of input data on each classifier, and to determine their
mutual relationships with regards to classification performance.

The next section outlines the experimental setup – how datasets were collected,
which document representations were considered, and which classifiers. Section 3 pre-
sents the results – the representations that were found best, and the effects of and re-
lationships between different transformations: stemming, normalization, logtf and idf.
The final section concludes, and gives guidelines for future work.

2 The Experimental Setup

The WEKA Machine Learning environment [9] was used to perform all experiments
described in this paper. The classical measures – accuracy, precision, recall, F1 and
F2 [1] – were chosen to evaluate the performance of classifiers on many variants of the
bag-of-words representation of documents (i.e. short Web-page descriptions) from the
dmoz Open Directory.

Datasets. A total of eleven datasets were extracted from the dmoz ontology, one for
each top-level category chosen for the meta-search system, namely Arts, Business,
Computers, Games, Health, Home, Recreation, Science, Shopping, Society and Sports.
The examples are either positive – taken from the corresponding category, or negative
– distributed over all other categories, making this a binary classification problem.

When constructing the datasets and choosing the number of examples (around 700),
care was taken to keep the number of features below 5000, for two reasons. The first
reason was to give all classifiers an equal chance, because some of them are known not
to be able to handle more than a couple of thousand features, and to do this without
using some explicit form of feature selection (basically, to avoid question two from
the Introduction). The second reason was the feasibility of running the experiments
with the C4.5 classifier, due to its long training time. However, results from Section 3
(regarding the idf transform) prompted us to utilize the simple dimensionality reduction
(DR) method based on term frequencies (TFDR), eliminating features representing the
least frequent terms, at the same time keeping the number of features at around 1000.
Therefore, two bundles of datasets were generated, one with and one without TFDR.

Document representations. Let W be the dictionary – the set of all terms (words)
that occur at least once in a set of documents D. The bag-of-words representation of

546 M. Radovanović and M. Ivanović

document dj is a vector of weights wj = (w1j , . . . , w|W |j). For the simplest binary rep-
resentation where wij ∈ {0, 1}, let the suffix 01 be added to the names of the datasets,
so, for instance, Arts-01 denotes the binary representation of the Arts dataset. Simi-
larly, the suffix tf will be used when wij represent the frequency of the ith term in
the jth document. Normalization (norm) can be employed to scale the frequencies to
values between 0 and 1, accounting for differences in document lengths. The logtf trans-
form may be applied to term frequencies, replacing the weights with log(1 + wij). The
inverse document frequency (idf) transform is expressed as: log(|D|/docfreq(D, i)),
where docfreq(D, i) is the number of documents from D the ith term occurs in. It can
be used by itself, or be multiplied with term frequency to yield the tfidf representation.

All these transformations, along with stemming (m), add up to 20 different variations
of document representations, summarized in Table 1. This accounts for a total of 11 ·
20 · 2 = 440 different datasets for the experiments.

Table 1. Document representations

Not stemmed Stemmed
Not normalized Normalized Not normalized Normalized
01 m-01
idf m-idf
tf norm-tf m-tf m-norm-tf
logtf norm-logtf m-logtf m-norm-logtf
tfidf norm-tfidf m-tfidf m-norm-tfidf
logtfidf norm-logtfidf m-logtfidf m-norm-logtfidf

Classifiers. Five classifiers implemented in WEKA are used in this study: Comple-
mentNaiveBayes (CNB), SMO, VotedPerceptron (VP), IBk, and J48.

CNB [10,8] is a variant of the classic Naı̈ve Bayes algorithm optimized for appli-
cations on text. SMO is an implementation of Platt’s Sequential Minimal Optimization
algorithm for training SVMs [11]. VP was first introduced by Freund and Schapire [12],
and shown to be a simple, yet effective classifier for high-dimensional data. IBk imple-
ments the classical k-Nearest Neighbor algorithm [13], and J48 is based on revision 8
of the C4.5 decision tree learner [14].

All classifiers were run using their default parameters, with the exception of SMO,
where the option not to normalize training data was chosen. IBk performed rather er-
ratically during initial testing, with performance varying greatly with different datasets,
choices of k and distance weighing, so in the end we kept k = 1 as it proved most
stable. Only later we realized this was because of IBk’s use of the Euclidian distance
measure, which tends to deform with high numbers of features. For IBk we will report
only results without TFDR, since TFDR completely broke its performance.

3 Results

A separate WEKA experiment was run for every classifier with the 20 document repre-
sentation datasets, for each of the 11 major categories. Results of all evaluation

Document Representations for Classification of Short Web-Page Descriptions 547

measures were averaged over five runs of 4-fold cross-validation. Measures were com-
pared between datasets using the corrected resampled t-test implemented in WEKA, at
p = 0.05, and the number of statistically significant wins and losses of each document
representation added up for every classifier over the 11 categories.

For the sake of future experiments and the implementation of the meta-search sys-
tem, best representations for each classifier were chosen, based on wins–losses values
summed-up over all datasets. The declared best representations were not winners for
all 11 categories, but showed best performance overall. Table 2 shows the best doc-
ument representations for each classifier, along with their wins–losses values, before
and after TFDR. Binary representations were practically never among the best, for all
datasets.

Table 2. Wins–losses values of best document representations for each classifier, on datasets
without (left columns) and with TFDR

CNB SMO VP IBk J48
m-norm-tf m-norm-logtf m-logtf m-norm-logtf m-logtf

Accuracy 41 1 1 37 15 2 119 40 40
Precision 45 1 20 6 29 12 11 −6 −5

Recall 4 1 −4 68 0 0 67 56 57
F1 28 1 0 47 7 0 120 59 52
F2 9 0 −3 71 0 0 78 63 57

Total 127 4 14 229 51 14 395 212 201

To illustrate the impact of document representations on classification, Table 3 sum-
marizes the performance of classifiers on the best representations, and the improve-
ments over the worst ones, on the Home dataset, without TFDR. Note that the empha-
sis of this paper is not on fine-tuning the classifiers using document representations, as
much as it is on determining the impacts and relationships between different transforms
(stemming, normalization, logtf, idf) and TFDR, with regards to each classifier. This is
the prevailing subject of the remainder of this section.

Table 3. Performance of classification (in %) using the best document representations on the
Home dataset without TFDR, together with improvements over the worst representations (statis-
tically significant ones are in boldface)

CNB SMO VP IBk J48
Accuracy 82.56 (5.26) 83.19 (1.67) 78.38 (5.12) 74.93 (21.96) 71.77 (3.64)
Precision 81.24 (8.66) 85.67 (3.86) 80.45 (7.85) 71.32 (14.32) 90.24 (1.60)

Recall 83.91 (1.81) 78.93 (3.80) 74.06 (0.96) 81.66 (45.20) 47.59 (10.59)
F1 82.48 (3.64) 82.07 (2.17) 77.02 (4.23) 76.07 (33.90) 62.12 (9.09)
F2 83.31 (2.19) 80.14 (3.30) 75.20 (2.16) 79.31 (39.72) 52.48 (10.41)

Effects of stemming. The effects of stemming on classification performance were mea-
sured by adding-up the wins–losses values for stemmed and nonstemmed datasets, and

548 M. Radovanović and M. Ivanović

examining their difference, depicted graphically in Fig. 1. It can be seen that stemming
improves almost all evaluation measures, both before and after TFDR. After TFDR,
the effect of stemming is generally not as strong, which is understandable because its
impact as a dimensionality reduction method is reduced. CNB is then practically un-
affected, only SMO exhibits an increased tendency towards being improved. Overall,
J48 is especially sensitive to stemming, which can be explained by its merging of words
into more discriminative features, suiting the algorithm’s feature selection method when
constructing the decision tree.

Fig. 1. The effects of stemming before (left) and after TFDR

To investigate the relationships between stemming and other transformations, a chart
was generated for each transformation, measuring the effect of stemming on repre-
sentations with and without the transformation applied. Figure 2 shows the effect of
stemming on non-normalized and normalized data, without TFDR. It can be noted that
normalized representations are affected by stemming more strongly (for the better).
The same holds with TFDR applied. The logtf transform exhibited no influence on the
impact of stemming, regardless of TFDR.

Fig. 2. The effects of stemming on non-normalized (left) and normalized datasets, without TFDR

The above analysis confirms the common view of stemming as a method for improv-
ing classification performance for English. However, this may not be the case for other
languages, for instance German [5] and French [6].

Effects of normalization. The chart in Fig. 3 shows that normalization tends to improve
classification performance in a majority of cases. Without TFDR, VP was virtually

Document Representations for Classification of Short Web-Page Descriptions 549

unaffected, CNB and SMO were improved on all counts but recall (and consequently
F2), while the biggest improvement was on IBk, which was anticipated since normal-
ization assisted the comparison of document vectors. J48 was the only classifier whose
performance worsened with normalization. Apparently, J48 found it tougher to find ap-
propriate numeric intervals within the normalized weights, for branching the decision
tree. After TFDR, CNB joined VP in its insensitivity, while SMO witnessed a big boost
in performance when data was normalized.

Fig. 3. The effects of normalization before (left) and after TFDR

No significant interaction between normalization and stemming was revealed, only
that stemmed J48 was more strongly worsened by normalization. It seems that normal-
ization misleads J48 from the discriminative features introduced by stemming.

Normalization and the logtf transform exhibited no notable relationship, while with
idf transformed data, normalization had stronger influence on classification. After di-
mensionality reduction, this tendency was especially noticeable with the improvement
of the precision of SMO (Fig. 4). This can be explained by the fact that idf severely
worsens the performance of SMO after TFDR, and normalization compensated some-
what for this. This compensating effect of one transform on the performance degrading
influences of another was found to be quite common in the experiments.

It is important to emphasize that the datasets used in the experiments consist of
short documents, thus normalization does not have as strong an impact as it would have
if the differences in document lengths were more drastic. Therefore, the conclusions
above may not hold for the general case, for which a more comprehensive study is
needed.

Effects of the logtf transform. As can be seen in Fig. 5, the logtf transform causes
mostly mild improvements of classification performance. After TFDR, improvements
are greater on SMO, while the impact on other classifiers is weaker.

Figure 6 shows that logtf has a much better impact on CNB when idf is also applied,
without TFDR. This is similar to the compensating effect of normalization on idf with
the SMO classifier. Relations change quite dramatically when TFDR is applied (both
charts resemble Fig. 6 right), but the effect of logtf on SMO is again compensating. The
improvements on CNB in both cases are especially significant, meaning that logtf and
idf work together on improving classification.

550 M. Radovanović and M. Ivanović

Fig. 4. The effects of normalization on datasets without (left) and with the idf transform applied
to tf, with TFDR

Fig. 5. The effects of the logtf transform before (left) and after TFDR

Before TFDR, the interaction of logtf and norm varied across classifiers: logtf im-
proved CNB and IBk on normalized data, while others were improved without normal-
ization. After TFDR, logtf had a weaker positive effect on normalized data, especially
for CNB and SMO, which were already improved by norm (charts not shown).

Understandably, the logtf transform has a stronger positive impact on nonstemmed
data, regardless of dimensionality reduction, with the exception of VP which exhibited
no variations. This is in line with the witnessed improvements that stemming introduces
on its own, and the already noted compensation phenomenon.

Effects of the idf transform. Applying the idf transform turned out to have the richest
repertoire of effects, from significant improvement to severe degradation of classifica-
tion performance. Figure 7 (left) illustrates how idf drags down the performance of all
classifiers except SMO, without TFDR. For this reason we introduced TFDR in the first
place, being aware that our data had many features which were present in only a few
documents. We expected idf to improve classification, or at least degrade it to a lesser
extent. That did happen, as Fig. 7 (right) shows, for all classifiers except SMO, whose
performance drastically degraded! The simple idf document representation rose from
being one of the worst, to one of the best representations, for all classifiers but SMO.

No significant correlation was detected by applying idf on stemmed and nonstem-
med data. However, plenty of different effects were noticeable with regards to normal-
ization. Without TFDR (Fig. 8), a stronger worsening effect on non-normalized data
was exhibited with CNB, VP and IBk, while for SMO normalization dampened idf’s

Document Representations for Classification of Short Web-Page Descriptions 551

Fig. 6. The effects of the logtf transform on datasets without (left) and with the idf transform
applied to tf, without TFDR

Fig. 7. The effects of idf applied to tf before (left) and after TFDR

Fig. 8. The effects of idf applied to tf on non-normalized (left) and normalized datasets, without
TFDR

improvement of recall, but overturned the degradation of accuracy and precision. With
TFDR, the picture is quite different (Fig. 9): normalization improved the effects on
CNB and VP, with SMO witnessing a partial improvement on precision, while J48
remained virtually intact. The impact of idf on (non-)logtfed datasets showed no big
differences.

The above analysis shows the need to be careful when including the idf transform
in the representation of documents. Removing infrequent features is an important
prerequisite to its application, since idf assigns them often unrealistic importance, but
that may not be enough, as was proved by the severe degradation of SMO’s
performance.

552 M. Radovanović and M. Ivanović

Fig. 9. The effects of idf applied to tf on non-normalized (left) and normalized datasets, with TFDR

4 Conclusions and Further Work

By using transformations in bag-of-words document representations there is, essen-
tially, no new information added to a dataset which is not already there (except for the
transition from 01 to tf representations). The general-purpose classification algorithms,
however, are unable to derive such information without assistance, which is understand-
able because they are not aware of the nature of data being processed. Therefore, it can
be expected of transforms to have a significant effect on classification performance, as
was demonstrated at the beginning of Section 3.

Besides determining a best representation for each classifier, the experiments re-
vealed the individual effects of transforms on different measures of classification per-
formance, and some of their relationships. Stemming generally improved classification,
partly because of its role as a dimensionality reduction method. It had an exception-
ally strong improving impact on J48, which can be explained by its merging of words
into more discriminative features, suiting the algorithm’s feature selection method when
constructing the decision tree. Normalization enhanced CNB, SMO and especially IBk,
leaving VP practically unaffected and worsening J48. Although dmoz data consists of
short documents, normalization did have a significant impact, but no definite conclu-
sions may be drawn for the general case. The logtf transform had mostly a mild im-
proving impact, except on SMO after TFDR, which exhibited stronger improvement.
SMO is known to work well with small numeric values, which explains its sensitivity
to normalization and logtf. The situation with idf was trickier, with the effects depend-
ing strongly on dimensionality reduction for CNB and SMO, but in opposite directions:
CNB was degraded by idf before, and improved after TFDR; for SMO it was vice versa.

The most common form of relationship between transforms that was noticed were the
compensating effects of one transform on the performance degrading impact of another
(e.g. norm and logtf on idf). The logtf and idf transforms seemed to work together on
improving CNB after TFDR. The impact of idf on normalization was most complex,
with great variation in the effects on different evaluation measures. Note that the method
for determining relations between transforms appeared not to be commutative, e.g. the
effects of normalization on idfed data and of idf on normalized data were not the same.

The comments above refer to the general case of performance measuring. Some
transforms (e.g. idf) may improve one measure, at the same time degrading another.

Document Representations for Classification of Short Web-Page Descriptions 553

Often, the preferred evaluation measure, chosen with the application of the classifier in
mind, will need to be monitored when applying the results presented in this paper.

The main difficulty with comprehensive TC experiments is sheer size. Roughly
speaking, factors such as datasets, document representations, dimensionality reduction
methods, reduction rates, classifiers, and evaluation measures, all have their counts mul-
tiplied, leading to a combinatorial explosion which is hard to handle. We tackled this
problem by excluding detailed experimentation with DR, and using dmoz as the only
source of data. Therefore, no definite truths, but only pointers can be derived from the
described experience. A more comprehensive experiment, featuring other common cor-
pora (Reuters, OHSUMED, 20Newsgorups etc.), and more dimensionality reduction
methods, is called for to shed more light on the relationships of all above mentioned
factors. In the next phase, however, we plan to conduct experiments with DR methods
on dmoz data, with the document representations that were determined best for each
classifier, before applying the winning combination to categorization of search results.

References

1. Sebastiani, F.: Text categorization. In Zanasi, A., ed.: Text Mining and its Applications. WIT
Press, Southampton, UK (2005)

2. Radovanović, M., Ivanović, M.: CatS: A classification-powered meta-search engine. In:
Advances in Web Intelligence and Data Mining. Studies in Computational Intelligence 23,
Springer-Verlag (2006)

3. Mladenić, D.: Text-learning and related intelligent agents. IEEE Intelligent Systems, Special
Issue on Applications of Intelligent Information Retrieval 14(4) (1999) 44–54

4. Gabrilovich, E., Markovitch, S.: Text categorization with many redundant features: Using ag-
gressive feature selection to make SVMs competitive with C4.5. In: Proceedings of ICML04,
21st International Conference on Machine Learning, Baniff, Canada (2004)

5. Leopold, E., Kindermann, J.: Text categorization with Support Vector Machines. How to
represent texts in input space? Machine Learning 46 (2002) 423–444

6. Stricker, M., Vichot, F., Dreyfus, G., Wolinski, F.: Vers la conception automatique de fil-
tres d’informations efficaces. In: Proceedings of RFIA2000, Reconnaissance des Formes et
Intelligence Artificielle. (2000) 129–137

7. Wu, X., Srihari, R., Zheng, Z.: Document representation for one-class SVM. In: Proceedings
of ECML04, 15th European Conference on Machine Learning. LNAI 3201, Pisa, Italy (2004)

8. Kibriya, A.M., Frank, E., Pfahringer, B., Holmes, G.: Multinomial naive bayes for text
categorization revisited. In: Proceedings of AI2004, 17th Australian Joint Conference on
Artificial Intelligence. LNAI 3339, Cairns, Australia (2004) 488–499

9. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. 2nd
edn. Morgan Kaufmann Publishers (2005)

10. Rennie, J.D.M., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of naive
Bayes text classifiers. In: Proceedings of ICML03, 20th International Conference on Ma-
chine Learning. (2003)

11. Platt, J.: Fast training of Support Vector Machines using Sequential Minimal Optimization.
In: Advances in Kernel Methods – Support Vector Learning. MIT Press (1999)

12. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Ma-
chine Learning 37(3) (1999) 277–296

13. Aha, D., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning
6(1) (1991) 37–66

14. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)

GARC: A New Associative Classification
Approach

I. Bouzouita, S. Elloumi, and S. Ben Yahia

Faculty of Sciences of Tunis,
Computer Science Department, 1060 Tunis, Tunisia
{samir.elloumi, sadok.benyahia}@fst.rnu.tn

Abstract. Many studies in data mining have proposed a new classi-
fication approach called associative classification. According to several
reports associative classification achieves higher classification accuracy
than do traditional classification approaches. However, the associative
classification suffers from a major drawback: it is based on the use of a
very large number of classification rules; and consequently takes efforts
to select the best ones in order to construct the classifier. To overcome
such drawback, we propose a new associative classification method called
Garc that exploits a generic basis of association rules in order to reduce
the number of association rules without jeopardizing the classification ac-
curacy. Moreover, Garc proposes a new selection criterion called score,
allowing to ameliorate the selection of the best rules during classification.
Carried out experiments on 12 benchmark data sets indicate that Garc
is highly competitive in terms of accuracy in comparison with popular
associative classification methods.

Keywords: Associative Classification, Generic Basis, Classification
Rules, Generic association rules, Classifier.

1 Introduction

In the last decade, a new approach called associative classification (AC) was pro-
posed to integrate association rule mining and classification in order to handle
large databases. Given a training data set, the task of an associative classification
algorithm is to discover the classification rules which satisfy the user specified
constraints denoted respectively by minimum support (minsup) and minimum
confidence (minconf) thresholds. The classifier is built by choosing a subset of
the generated classification rules that could be of use to classify new objects
or instances. Many studies have shown that AC often achieves better accuracy
than do traditional classification techniques [1,2]. In fact, it could discover in-
teresting rules omitted by well known approaches such as C4.5 [3]. However,
the main drawback of this approach is that the number of generated associative
classification rules could be large and takes efforts to retrieve, prune, sort and
select high quality rules among them. To overcome this problem, we propose a
new approach called Garc which uses generic bases of association rules. The

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 554–565, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

GARC: A New Associative Classification Approach 555

main originality of Garc is that it extracts the generic classification rules di-
rectly from a generic basis of association rules, in order to retain a small set of
rules with higher quality and lower redundancy in comparison with current AC
approaches. Moreover, a new score is defined by the Garc approach to find an
effective rule selection during the class label prediction of a new instance, in the
sake of reducing the error rate. This tackled issue is quite challenging, since the
goal is to use generic rules while maintaining a high classifier accuracy.

The remainder of the paper is organized as follows. Section 2 briefly reports ba-
sic concepts of associative classification and scrutinizes related pioneering works.
Generic bases of association rules are surveyed in section 3. Section 4 presents
our proposed approach, where details about classification rules discovery, build-
ing classifier and prediction of test instances are discussed. Experimental results
and comparisons are given in section 5. Finally, section 6 concludes this paper
and points out future perspectives.

2 Associative Classification

An association rule is a relation between itemsets having the following form:
R : X ⇒ Y − X, where X and Y are frequent itemsets for a minimal support
minsup, and X ⊂ Y . Itemsets X and (Y−X) are called, respectively, premise and
conclusion of the rule R. An association rule is valid whenever its strength metric,
confidence(R)= support(Y)

support(X) , is greater than or equal to the minimal threshold of
confidence minconf.

An associative classification rule (ACR) is a special case of an association
rule. In fact, an ACR conclusion part is reduced to a single item referring a class
attribute. For example, in an ACR such as X ⇒ ci, ci must be a class attribute.

2.1 Basic Notions

Let us define the classification problem in an association rule task. Let D be the
training set with n attributes (columns) A1, .., An and |D| rows. Let C be the
list of class attributes.

Definition 1. An object or instance in D can be described as a combination of
attribute names and values ai and an attribute class denoted by ci [4].

Definition 2. An item is described as an attribute name and a value ai [4].

Definition 3. An itemset can be described as a set of items contained in an
object.

A classifier is a set of rules of the form A1, A2, ..., An ⇒ ci where Ai is an
attribute and ci is a class attribute. The classifier should be able to predict, as
accurately as possible, the class of an unseen object belonging to the test data
set. In fact, it should maximise the equality between the predicted class and the
hidden actual class.

The AC achieves higher classification accuracy than do traditional classifica-
tion approaches [1,2]. The classification model is a set of rules easily understand-
able by humans and that can be edited [1,2].

556 I. Bouzouita, S. Elloumi, and S. Ben Yahia

2.2 Related Work

One of the first algorithms to use association rule approach for classification was
CBA [4]. CBA, firstly, generates all the association rules with certain support
and confidence thresholds as candidate rules by implementing the Apriori algo-
rithm [5]. Then, it selects a small set from them by evaluating all the generated
rules against the training data set. When predicting the class attribute for an
example, the highest confidence rule, whose the body is satisfied by the example,
is chosen for prediction.

CMAR [6] generates rules in a similar way as CBA with the exception that
CMAR introduces a CR-tree structure to handle the set of generated rules and
uses a set of them to make a prediction using a weighted χ2 metric [6]. The
latter metric evaluates the correlation between the rules.

ARC-AC and ARC-BC have been introduced in [7,8] in the aim of text cate-
gorization. They generate rules similar to the Apriori algorithm and rank them
in the same way as do CBA rules ranking method. ARC-AC and ARC-BC cal-
culate the average confidence of each set of rules grouped by class attribute in
the conclusion part and select the class attribute of the group with the highest
confidence average.

The CPAR [2] algorithm adopts FOIL [9] strategy in generating rules from
data sets. It seeks for the best rule itemset that brings the highest gain value
among the available ones in data set. Once the itemset is identified, the examples
satisfying it will be deleted until all the examples of the data set are covered.
The searching process for the best rule itemset is a time consuming process, since
the gain for every possible item needs to be calculated in order to determine the
best item gain. During rule generation step, CPAR derives not only the best
itemset but all close similar ones. It has been claimed that CPAR improves the
classification accuracy whenever compared to popular associative methods like
CBA and CMAR [2].

A new AC approach called Harmony was proposed in [10]. Harmony uses an
instance-centric rule generation to discover the highest confidence discovering
rules. Then, Harmony groups the set of rules into k groups according to their
rule conclusions, where k is the total number of distinct class attributes in the
training set. Within the same group of rules, Harmony sorts the rules in the same
order as do CBA. To classify a new test instance, Harmony computes a score
for each group of rules and assign the class attribute with the highest score or
a set of class attributes if the underlying classification is a multi-class problem.
It has been claimed that Harmony improves the efficiency of the rule generation
process and the classification accuracy if compared to CPAR [2].

The main problem with AC approaches is that they generate an overwhelm-
ing number of rules during the learning stage. In order to overcome this draw-
back, our proposed approach tries to gouge this fact by the use of generic bases
of association rules in the classification framework. In the following, we be-
gin by recall some key notions about the Formal Concept Analysis (FCA), a
mathematical tool necessary for the derivation of generic bases of association
rules.

GARC: A New Associative Classification Approach 557

3 Generic Bases of Association Rules

The problem of the relevance and usefulness of extracted association rules is of
primary importance. Indeed, in most real life databases, thousands and even mil-
lions of highly confident rules are generated among which many are redundant.
In the following, we are interested in the lossless information reduction of associ-
ation rules, which is based on the extraction of a generic subset of all association
rules, called generic basis from which the remaining (redundant) association rules
may be derived. In the following, we will present the generic basis of Bastide et al.
[11,12] and IGB [13] after a brief description of FCA mathematical background
necessary for the derivation of generic bases of association rules.

3.1 Mathematical Background

Interested reader for key results from the Galois lattice-based paradigm in FCA
is referred to [14].

Formal context: A formal context is a triplet K = (O, I,R), where O rep-
resents a finite set of transactions, I is a finite set of items and R is a binary
(incidence) relation (i.e., R ⊆ O×I). Each couple (o, i) ∈ R expresses that the
transaction o ∈ O contains the item i ∈ I.
Frequent closed itemset: An itemset I ⊆ I is said to be closed if ω(I) = I(1)

[15]. I is said to be frequent if its relative support, Support(I) = |ψ(I)|
|O| , exceeds

a user-defined minimum threshold, denoted minsup.

Minimal generator [12]: An itemset g ⊆ I is said to be minimal generator of
a closed itemset f , if and only if ω(g) = f and does not exist g1 ⊆ g such that
ω(g1) = f . The set Gf of the minimal generators of f is: Gf = {g ⊆ I | ω(g) = f
∧ � g1 ⊂ g such as ω(g1) = f}.

3.2 The Generic Basis for Exact Association Rules (GBE) and the
Informative Basis for Approximate Association Rules (GBA)

Bastide et al. considered the following rule-redundancy definition [12]:

Definition 4. Let AR be a set of association rules derived from an extraction
context K and c be a confidence value. A rule R: X c⇒Y ∈ AR is redundant in
comparison with R1: X1

c⇒Y1 if R fulfills the following constraints:

1. Support(R) = Support(R1) and Confidence(R) = Confidence(R1)= c;
2. X1 ⊆ X ∧ Y ⊂ Y1.

The generic basis for exact association rules is defined as follows:

Definition 5. Let FCIK be the set of frequent closed itemsets extracted from
the extraction context K. For each frequent closed itemset f∈ FCIK, let Gf be
the set of its minimal generators. The generic basis of exact association rules
1 The closure operator is indicated by ω.

558 I. Bouzouita, S. Elloumi, and S. Ben Yahia

GBE is given by: GBE = {R: g ⇒ (f - g) | f ∈ FCIK and g ∈ Gf and g �=
f (2)}.

Bastide et al. also characterized the informative basis for approximate association
rules, defined as follows [12]:

Definition 6. Let FCIK be the set of frequent closed itemsets extracted from
the extraction context K. The GBA basis is defined as follows [12]:
GBA = {R | R: g ⇒ (f1 - g) | f, f1 ∈ FCIK and ω(g) = f and f) f1 and
Confidence(R) ≥ minconf }.

The pair (GBE , GBA) is informative, sound and lossless [12,16] and rules be-
longing to this pair are referred as informative association rules.

3.3 Informative Generic Basis (IGB)

The IGB basis is defined as follows:

Definition 7. Let FCIK be the set of frequent closed itemsets and Gf be the set
of minimal generators of all the frequent itemsets included or equal to a closed
frequent itemset f . The IGB basis is defined as follows [13]:

IGB = {R: gs ⇒ (f1 - gs) | f, f1 ∈ FCIK and (f - gs) �= ∅ and gs ∈ Gf ∧ f1
) f ∧ confidence(R) ≥ minconf ∧ � g′ ⊂ gs such that confidence(g′ ⇒ f1-g′)≥
minconf}.

IGB basis [13] presents the following characteristics:

1. Conveying maximum of useful knowledge: Association rules of the IGB
basis convey the maximum of useful knowledge. Indeed, a generic associa-
tion rule of IGB is based on a frequent closed itemset and has the minimal
premise since the latter is represented by one of the smallest frequent mini-
mal generators satisfying minconf threshold. It was shown that this type of
association rules conveys the maximum of useful knowledge [17];

2. Information lossless: It was pointed out that the IGB basis is extracted
without information loss [13];

3. Compactness:the IGB basis is more compact than other informative generic
basis [13], e.g., the pair (GBE , GBA).

4 GARC: A New Associative Classification Approach

In this section, we propose a new AC method Garc3 that extracts the generic
classification rules directly from a generic basis of association rules in order to
overcome the drawback of the current AC approaches, i.e., the generation of a
large number of associative classification rules. In the following, we will present
and explain in details the Garc approach.
2 The condition g �= f ensures discarding non-informative rules of the form g ⇒ ∅.
3 The acronym Garc stands for: Generic Association Rules based Classifier.

GARC: A New Associative Classification Approach 559

4.1 Rule Generation

In this step, Garc extracts the generic basis of association rules. Once obtained,
generic rules are filtered out to retain only rules whose conclusions include a class
attribute. Then, by applying the decomposition axiom, we obtain new rules of
the form A1, A2, ..., An ⇒ ci. Even though, the obtained rules are redundant,
their generation is mandatory to guarantee a maximal cover of the necessary
rules.

The IGB basis is composed of rules with a small premise which is an advan-
tage for the classification framework when the rules imply the same class. For
example, let us consider two rules R1: A B C D ⇒cl1 and R2: B C ⇒cl1. R1
and R2 have the same attribute conclusion. R2 is considered to be more inter-
esting than R1, since it is needless to satisfy the properties A D to choose the
class cl1. Hence, R2 implies less constraints and can match more objects of a
given population than R1.

Let us consider a new object Ox: B C D. If we have in the classifier just the rule
R1, we cannot classify Ox because the attribute A does not permit the matching.
However, the rule R2, which has a smaller premise than R1, can classify Ox. This
example shows the importance of the generic rules and, especially, the use of the
IGB basis to extract the generic classification rules. In fact, such set of rules is
smaller than the number of all the classification rules and their use is benefical
for classifying new objects.

4.2 Classifier Builder

Once the generic classification rules obtained, a total order on rules is set as
follows. Given two rules R1 and R2, R1 is said to precede R2, denoted R1 > R2
if the followed condition is fulfilled:

– confidence(R1) > confidence(R2) or
– confidence(R1) = confidence(R2) and support(R1) > support(R2) or
– confidence(R1) = confidence(R2) and support(R1) = support(R2) and R1

is generated before R2.

The data set coverage is similar to that in CBA. In fact, a data object of the
training set is removed after it is covered by a selected generic rule.

The major difference with current AC approaches [4,6,7,8,10] is that we use
generic ACR directly deduced from generic bases of association rules to learn
the classifier as shown by algorithm 1.

4.3 New Instance Classification

After a set of rules is selected for classification, Garc is ready to classify new
objects. Some methods such as those described in [4,7,8,10] are based on the
support-confidence order to classify a new object. However, the confidence mea-
sure selection could be misleading, since it may identify a rule A ⇒ B as an
interesting one even though, the occurrence of A does not imply the occurrence
of B [18]. In fact, the confidence can be deceiving since it is only an estimate of

560 I. Bouzouita, S. Elloumi, and S. Ben Yahia

Data: D: Training data, GR: a set of generic classification rules
Results: C: Classifier
Begin

GR=sort(GR) in a descending order;
Foreach rule r ∈ GR do

Foreach object d ∈ D do
If d matches r.premise then

remove d from D and mark r if it correctly classifies d;

If r is marked then
insert r at the end of C;
select a default class;

add the default class at the end of the classifier;
return Classifier C ;

End

Algorithm 1: Garc: selected generic rules based on database coverage

the conditional probability of itemset B given an itemset A and does not mea-
sure the actual strength of the implication between A and B. Let us consider the
example shown in Table 1 which shows the association between an item A and
a class attribute B. A and A represent respectively the presence and absence of
item A, B represents a class attribute and B the complement of B. We consider
the associative classification A ⇒ B. The confidence of this rule is given by con-
fidence(A⇒ B)= support(AB)

support(A) = 201
250 = 80.4%. Hence, this rule has high confidence.

Now, let us calculate the correlation between A and B by using the lift metric
[18]. lift(A ⇒ B)= support(AB)

support(A)∗support(B) = 0.201
0.250∗0.900 = 0.893. The fact that this

quantity is less than 1 indicates negative correlation between A and B.

Table 1. Example

B B Total

A 201 49 250

A 699 51 750

Total 900 100 1000

To avoid the lacuna of using only confidence metric, we define a new lift based
score formula as follows:

Score= 1
|Premise|∗lift

|Premise|
numberofitems = 1

|Premise|∗(
support(Rule)

support(Premise)∗support(Conclusion))
|Premise|

numberofitems

The introduced score includes the lift metric. In fact, the lift finds interesting
relationships between A and B. It computes the correlation between the occur-
rence of A and B by measuring the real strength of the implication between them
which is interesting for the classification framework. Moreover, the lift is divided
by the cardinality of the rule premise part in order to give a preference to rules
with small premises. Thus, Garc collects the subset of rules matching the new

GARC: A New Associative Classification Approach 561

object attributes from the classifier. Trivially, if all the rules matching it have
the same class, Garc just assigns that class to the new object. If the rules do
not imply the same class attribute, the score firing is computed for each rule.
The rule with the highest score value is selected to classify the new object.

5 Experiments

We have conducted experiments to evaluate the accuracy of our proposed ap-
proach Garc, developed in C++, and compared it to the well known classifiers
CBA, ID3, C4.5 and Harmony. Experiments were conducted using 12 data sets
taken from UCI Machine Learning Repository(4). The chosen data sets were
discretized using the LUCS-KDD (5) software.

The features of these data sets are summarized in Table 2. All the experiments
were performed on a 2.4 GHz Pentium IV PC under Redhat Linux 7.2.

Table 2. Data set description

Data set # attributes # transactions # classes

Monks1 6 124 2

Monks2 6 169 2

Monks3 6 122 2

Spect 23 80 2

Pima 38 768 2

TicTacToe 29 958 2

Zoo 42 101 7

Iris 19 150 3

Wine 68 178 3

Glass 48 214 7

Flare 39 1389 9

Pageblocks 46 5473 5

Classification accuracy can be used to evaluate the performance of classifica-
tion methods. It is the percentage of correctly classified examples in the test set
and can be measured by splitting the data sets into a training set and a test set.

During experiments, we have used available test sets for data sets Monks1,
Monks2 and Monks3 and we applied the 10 cross-validation for the rest of data
sets, in which a data set is divided into 10 subsets; each subset is in turn used
as testing data while the remaining data is used as the training data set; then
the average accuracy across all 10 trials is reported.

The parameters are set as the following. In the rule generation algorithm,
minsup is set to 10% and minconf to 80%. In order to extract generic association

4 Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
5 Available at http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS-KDD-DN/

lucs-kdd DN.html

562 I. Bouzouita, S. Elloumi, and S. Ben Yahia

rules, we used the Prince algorithm [19] to generate both the pair (GBE , GBA)
and IGB bases.

To evaluate C4.5 and ID3, we used the Weka(6) software and the Harmony
prototype was kindly provided by its authors. We have implemented the CBA
algorithm in C++ under Linux.

In the following, we will compare the effectiveness of the use of generic bases
of the pair (GBE , GBA) and IGB for the classification framework. For this,
we conducted experiments with reference to accuracy in order to compare the
classifiers GarcB and GarcI issued respectively from the generic bases of the
pair (GBE , GBA) and IGB without using the score firing.

Moreover, to show the impact of the score firing on the quality of the pro-
duced classifiers, we report the accuracy results of GarcsB and Garc deduced
respectively from the generic bases of the pair (GBE , GBA) and IGB using the
score firing.

5.1 The Score Firing Impact

Table 3 represents a comparison between the classifiers deduced from the generic
bases of the pair (GBE , GBA) and IGB when using or not the score firing.

Table 3. Accuracy comparison of GarcB , GarcI , GarcsB and Garc algorithms for
minsup=10% and minconf =80%

Without using the score Using the score

Data set GarcB GarcI GarcsB Garc

Monks1 92.0 92.0 92.0 92.0

Monks2 56.0 56.0 56.0 56.0

Monks3 96.3 96.3 96.3 96.3

Spect 67.0 68.9 67.0 68.9

Pima 73.0 73.0 73.0 73.0

TicTacToe 65.0 67.4 65.0 65.0

Zoo 89.0 89.0 89.0 90.0

Iris 95.0 94.7 95.6 95.4

Wine 89.2 89.4 90.0 89.8

Glass 58.0 59.3 58.0 64.0

Flare 85.0 85.0 85.0 85.0

Pageblocks 92.0 89.8 92.0 89.8

Average accuracy 79.7 80.0 79.9 80.4

Table 3 points out that the use of the score firing increases the accuracy per-
formance for the classifiers deduced from the pair (GBE , GBA). In fact, GarcsB

has a better average accuracy than GarcB . Moreover, for the classifiers deduced
from IGB, the use of the score firing ameliorates the accuracy for four data
sets. In fact, Garc outperforms GarcI on Zoo, Iris, Wine and Glass data sets.

6 Available at http://www.cs.waikato.ac.nz/ml/Weka

GARC: A New Associative Classification Approach 563

Thus, the best average accuracy, highlighted in bold print, is given by Garc.
Furthermore, as shown in Table 4, the number of rules generated by Garc is less
than that generated by the approaches deduced from the pair (GBE , GBA), i.e.,
GarcB and GarcsB . In the following, we put the focus on comparing Garc
accuracy versus that of the well known classifiers ID3, C4.5, CBA and Harmony.

Table 4. Number of associative classification rules for minsup=10% and minconf =80%

Data set # generic ACR deduced # generic ACR deduced
from IGB from (GBE , GBA)

Monks1 12 12

Monks2 4 4

Monks3 20 20

Pima 20 20

TicTacToe 15 15

Zoo 832 1071

Iris 22 24

Wine 329 471

Glass 31 36

Flare 237 561

Pageblocks 128 128

5.2 Generic Classification Rules Impact

Table 5 represents the accuracy of the classification systems generated by ID3,
C4.5, CBA, Harmony and Garc on the twelve benchmark data sets. The best
accuracy values obtained for each of data sets is highlighted in bold print. Table
5 shows that Garc outperforms the traditional classification approaches, i.e.,
ID3 and C4.5 on six data sets and the associative classification approaches on
nine data sets.

Table 5. Accuracy comparison of ID3, C4.5, CBA, Harmony and Garc algorithms

Data set ID3 C4.5 CBA Harmony Garc

Monks1 77.0 75.0 92.0 83.0 92.0
Monks2 64.0 65.0 56.0 48.0 56.0

Monks3 94.0 97.0 96.3 82.0 96.3

Spect 65.0 64.0 67.0 - 68.9
Pima 71.3 72.9 73.0 73.0 73.0
TicTacToe 83.5 85.6 63.1 81.0 65.0

Zoo 98.0 92.0 82.2 90.0 90.0

Iris 94.0 94.0 95.3 94.7 95.4
Wine 84.8 87.0 89.5 63.0 89.8
Glass 64.0 69.1 52.0 81.5 64.0

Flare 80.1 84.7 85.0 83.0 85.0
Pageblocks 92.3 92.4 89.0 91.0 89.8

564 I. Bouzouita, S. Elloumi, and S. Ben Yahia

Statistics depicted by Table 5 confirm the fruitful impact of the use of the
generic rules. The main reason for this is that Garc classifier contains generic
rules with small premises. In fact, this kind of rule allows to classify more objects
than those with large premises.

6 Conclusion

In this paper, we introduced a new classification approach called Garc that
aims to prune the set of classification rules without jeopardizing the accuracy
and even ameliorates the predictive power. To this end, Garc uses generic bases
of association rules to drastically reduce the number of associative classification
rules. Moreover, it proposes a new score to ameliorate the rules selection for un-
seen objects. Carried out experiments outlined that Garc is highly competitive
in terms of accuracy in comparison with popular classification methods. In the
near future, we will investigate new metrics for the rule selection and we will
apply Garc approach to a wide range of applications like text categorization
and biological applications.

Acknowledgements. We are deeply grateful to Frans Coenen at the univer-
sity of Liverpool for providing us the discretized UCI data sets and addressing
our questions. We also thank Jianyong Wang for providing us the Harmony
executable code.

References

1. Zaiane, O., Antonie, M.: On pruning and tuning rules for associative classifiers.
In: Ninth International Conference on Knowledge Based Intelligence Information
And Engineering Systems (KES’05), Melbourne, Australia (2005) 966–973

2. Xiaoxin Yin, J.H.: CPAR: Classification based on Predictive Association Rules.
In: Proceedings of the SDM, San Francisco, CA (2003) 369–376

3. Quinlan, J.R.: C4.5 : Programs for Machine Learning. (1993)
4. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.

In: Knowledge Discovery and Data Mining. (1998) 80–86
5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,

J.B., Jarke, M., Zaniolo, C., eds.: Proceedings of the 20th Intl. Conference on Very
Large Databases, Santiago, Chile. (1994) 478–499

6. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on
multiple class-association rules. In: Proceedings of IEEE International Conference
on Data Mining (ICDM’01), San Jose, CA, IEEE Computer Society (2001) 369–376

7. Antonie, M., Zaiane, O.: Text Document Categorization by Term Association.
In: Proc. of the IEEE International Conference on Data Mining (ICDM’2002),
Maebashi City, Japan (2002) 19–26

8. Antonie, M., Zaiane, O.: Classifying Text Documents by Associating Terms with
Text Categories . In: Proc. of the Thirteenth Austral-Asian Database Conference
(ADC’02), Melbourne, Australia (2002)

9. Quinlan, J., Cameron-Jones, R.: FOIL: A midterm report. In: Proceedings of
European Conference on Machine Learning, Vienna, Austria. (1993) 3–20

GARC: A New Associative Classification Approach 565

10. Wang, J., Karypis, G.: HARMONY: Efficiently mining the best rules for classifi-
cation. In: Proceedings of the International Conference of Data Mining (SDM’05).
(2005)

11. Bastide, Y.: Data mining : algorithmes par niveau, techniques d’implantation et
applications. Phd thesis, Ecole Doctorale Sciences pour l’Ingénieur de Clermont-
Ferrand, Université Blaise Pascal, France (2000)

12. Bastide, Y., Pasquier, N., Taouil, R., Lakhal, L., Stumme, G.: Mining minimal
non-redundant association rules using frequent closed itemsets. In: Proceedings of
the International Conference DOOD’2000, LNAI, volume 1861, Springer-Verlag,
London, UK. (2000) 972–986

13. Gasmi, G., BenYahia, S., Nguifo, E.M., Slimani, Y.: IGB: A new informative
generic base of association rules. In: Proceedings of the Intl. Ninth Pacific-Asia
Conference on Knowledge Data Discovery (PAKDD’05), LNAI 3518, Hanoi, Viet-
nam, Springler-Verlag (2005) 81–90

14. Ganter, B., Wille, R.: Formal Concept Analysis. Springer-Verlag (1999)
15. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association

Rules Using Closed Itemset Lattices. Journal of Information Systems 24 (1999)
25–46

16. Kryszkiewicz, M.: Concise representations of association rules. In: Proceedings of
Exploratory Workshop on Pattern Detection and Discovery in Data Mining (ESF),
2002, LNAI, volume 2447, Springer-Verlag, London, UK. (2002) 92–109

17. Kryszkiewicz, M.: Representative association rules and minimum condition maxi-
mum consequence association rules. In: Proceedings of the Second European Sym-
posium on Principles of Data Mining and Knowledge Discovery (PKDD), 1998,
LNCS, volume 1510, Springer-Verlag, Nantes, France. (1998) 361–369

18. Han, J., Kamber., M.: Data Mining : Concepts and Techniques. Morgan Kaufmann.
(2001)

19. Hamrouni, T., BenYahia, S., Slimani, Y.: Prince : An algorithm for generating
rule bases without closure computations. In Tjoa, A.M., Trujillo, J., eds.: Proceed-
ings of 7th International Conference on Data Warehousing and Knowledge Discov-
ery (DaWaK 2005), Springer-Verlag, LNCS 3589, Copenhagen, Denmark. (2005)
346–355

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2006, LNCS 4081, pp. 566 – 575, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Conceptual Modeling for Classification Mining in Data
Warehouses

Jose Zubcoff1 and Juan Trujillo2

1 Departamento de Ciencias del Mar y Biología Aplicada.
Universidad de Alicante. Spain
Jose.Zubcoff@ua.es

2 Departamento de Lenguajes y Sistemas Informáticos.
Universidad de Alicante. Spain
jtrujillo@dlsi.ua.es

Abstract. Classification is a data mining (DM) technique that generates classes
allowing to predict and describe the behavior of a variable based on the charac-
teristics of a dataset. Frequently, DM analysts need to classify large amounts of
data using many attributes. Thus, data warehouses (DW) can play an important
role in the DM process, because they can easily manage huge quantities of data.
There are two approaches used to model mining techniques: the Common
Warehouse Model (CWM) and the Predictive Model Markup Language
(PMML), both focused on metadata interchanging and sharing, respectively.
These standards do not take advantage of the underlying semantic rich multidi-
mensional (MD) model which could save development time and cost. In this
paper, we present a conceptual model for Classification and a UML profile that
allows the design of Classification on MD models. Our goal is to facilitate the
design of these mining models in a DW context by employing an expressive
conceptual model that can be used on top of a MD model. Finally, using the de-
signed profile, we implement a case study in a standard database system and
show the results.

Keywords: Data warehouses, conceptual modeling, multidimensional model-
ing, data mining, UML extension, classification, decision trees.

1 Introduction

Classification is one of the most commonly applied data mining techniques due to its
usability and simplicity. It consists of input data analysis, distinguishing between the
corresponding classes on the basis of data features, and of rules deduced in order to
classify each new observation into one of the existing classes. The rules can take the
form of a tree (called Decision Tree), able to classify and describe the data (Fig.1).

Data mining techniques are used to extract patterns from large amounts of input
data such as files, databases or DWs. Among the advantages of using DW lies the fact
that they contain subject-oriented data, prepared for analysis, integrated from several
sources, cleansed from different input errors. Furthermore, in DW data is aggregated
and may contain hierarchies describing the data at different levels of detail. It is

 Conceptual Modeling for Classification Mining in Data Warehouses 567

widely accepted that the development of DW is based on MD modeling, as these
models easily represent the main DW concepts. Therefore, this extra information
provided by the MD models can be used in decision making.

There are two approaches to representing data mining models, the CWM [12] and
the PMML [13]. The former focuses on metadata interchange, while the latter aims at
sharing data between DM applications. However, these approaches do not take advan-
tage of the previously designed structure to reduce time and cost. On the other hand,
the MD can provide additional semantics for DM models. For example, a dimension
hierarchy allows users to analyze the data at different abstraction levels.

The present work proposes a conceptual model for the Classification mining tech-
nique. A conceptual model represents the semantics of a given domain without any
concern for logical aspects or platform specific issues. Therefore, this conceptual
model will provide support for the analysis process in order to obtain rich models able
to aid in the Classification process. Users can thus focus on their main objective:
discovering knowledge by using Classification.

We also propose a definition of the semantics and primitives to design Classifica-
tion processes on DW, in a well-known visual modeling language. We employ the
Unified Modeling Language (UML) [11] that allows us to extend its meta-model and
semantics to a specific domain. In order to adapt it to this particular domain we use
the “lightweight” method of extending the UML with a Profile. This is a mechanism
for adapting an existing meta-model to a particular domain without changing the
UML meta-model, by using domain specific constructs. This lightweight extension is
also employed in our previous work: the Profile to design MD models [1] and the
Profile for designing Association Rules (AR) mining models on MD models [5]. The
latter uses attributes from the MD model of the data warehouse to represent AR.

The present paper is structured as follows: Section 2 illustrates the conceptual
model for Classification. Section 3 proposes the new UML profile for Classification
Mining based on MD modeling. Section 4 presents a case study. Section 5 sketches
some further implementation issues. Section 6 presents related efforts that have dealt
with Data Mining, Data Warehouses and modeling. Finally, Section 7 comprises the
main conclusions and introduces immediate and future work.

2 A Conceptual Model for Classification

In this section, we outline our approach to Classification Mining. We propose a con-
ceptual model for this technique, based on UML 2.0 [11]. The goal of Classification is
to sequentially partition the data to maximize the differences among the values of the
dependent variable, the predicted one [4]. From the root node, grow the branches (that
correspond to certain data features) that try to maximize the differences between
them. The process of classification starts again at every node.

Classification can be used as a diagnostic tool, for example in hospital emergen-
cies, when heart attack patients are admitted in a hospital, several tests are performed
to obtain physiological measures such as heart rate, blood pressure, and so on. Per-
sonal information is also gathered, such as the patient's age and medical history. The
patients’ data is subsequently evaluated to see if they will survive the heart attack for

568 J. Zubcoff and J. Trujillo

a specific number of days, for instance 30 days. It can be useful in developing specific
treatments for heart attack patients, to identify for example high-risk patients (those
who are not likely to survive at least 30 days). One Classification Tree that Breiman
et al. [3] developed to address this problem was a simple, three-question decision tree.
This Classification Tree can be described with the statement: "If the patient's mini-
mum systolic blood pressure over the initial 24 hour period is greater than 91, then if
the patient's age is over 62 years, then if the patient displays sinus tachycardia, then
and only then the patient is predicted not to survive for at least 30 days." In Figure 1,
we show all the nodes derived from the previous analysis that helps decision-makers
to analyze the risk level of a patient.

Fig. 1. Decision Tree for coronary disease risk based on risk factors

In order to perform a Classification, we must select which attributes of the input
data will predict the others. Classification uses each Input attribute as a split candidate
(regressor) to predict the Predict attribute. The case constitutes the entity under study
that relates all dimensions and the fact included. Case, Input and Predict are attributes
of the CMModel class and clearly define the model structure (Fig. 2).

There are several parameters that control the tree growth, shape and other charac-
teristics, thus helping to provide users more accurate trees. MinSupp specifies that a
node should never be split if it contains fewer rows than a specified value. MinConf is
the minimum confidence a node must fulfill. MaxTreeLevels is the maximum number
of levels in the tree that the user wants to obtain. This is a threshold parameter of
feature selection. When the number of predictable attributes is greater than this pa-
rameter value, selecting the most significant attributes is required. The same selection
is involved for a number of selected input attributes greater than MaxInputAttributes.
Algorithm is the function used to classify the data. SplitMethod specifies if the nodes
split into two (binary) or more branches. HomogeneityMetrics indicate the homogene-
ity criteria to split nodes (the most common criteria are Entropy and Gini Index). The
TrainingSize establishes the maximum size of the training data. The Filter parameter
specifies the exclusions of the itemset. Users can provide additional constraints on the
input data in order to improve the generated tree. Useless branches of the tree are
pruned using these settings (attributes of the CMSettings class).

We can derive rules from a decision tree. In the case of a decision tree, a conjunc-
tion of split conditions encountered on the path from the root to each node becomes
the left part (antecedent or Body) of the rule and the classifier distribution becomes

 Conceptual Modeling for Classification Mining in Data Warehouses 569

the right part (consequent or rule Head). Each rule has its own Support and Confi-
dence values. These attributes belong to the CMResults class (shown in Fig. 2).

Fig. 2. Profile for Classification

3 UML Profile for Classification

Based on the previously described conceptual model for Classification, this section
defines the profile that uses this schema. We start by describing the profile and the
prerequisite extensions, we then propose the new stereotypes and tagged values, as
well as the well-formedness rules, and, finally, the profile comments.

3.1 Description

The present UML extension defines a set of tagged values, stereotypes, and con-
straints, which enable us to create Classification models with constraints shared with
MD models. We outline our approach to DW conceptual modeling [1] in the subsec-
tion on prerequisites extension. Well-formedness rules are defined through a set of
domain constraints. Our extension uses Object Constraint Language (OCL) [10] for
expressing well-formedness rules of the new defined elements, thereby avoiding an
arbitrary use of this extension.

3.2 Prerequisite Extensions

This UML profile (Fig.2) reuses stereotypes that were previously defined in [1]. In
order to facilitate the understanding of the profile presented in the present paper we
resume the main characteristic in the Table 1.

570 J. Zubcoff and J. Trujillo

Table 1. Stereotypes from the UML profile for conceptual MD modeling [1]

Name Base
Class

Description

Fact Class Classes of this stereotype represent facts in a MD model
DegeneratedFact Class Classes of this stereotype represent degenerated facts in a MD model
Dimension Class Classes of this stereotype represent dimensions in a MD model
Base Class Represent dimension hierarchy levels in a MD model
OID Property OID attributes of Facts, Dimension or Base classes in a MD model
Fact-Attributes Property Represent attributes of Fact classes in a MD model
Degenerated
Dimension

Property Attributes of this stereotype represent degenerated dimensions in a MD
model

Descriptor Property Descriptor attributes of Dimension or Base classes in a MD model
Dimension-
Attribute

Property Attributes of Dimension or Base classes in a MD model

Rolls-upTo Association Represent associations between Base classes
Completeness Association Represent the completeness of an association between a Dimension class

and a Base class or between two Base classes

3.3 Stereotypes and Tagged Values

This section presents the defined stereotypes. Fig.2 sketches the profile containing
the new stereotypes and their attributes. Table 2 shows the detailed description, the
name, the base class, the constraints and the icon that represents each new stereo-
type. For the sake of simplicity, in this paper we present only the definition for the
CMModel stereotype (the OCL constraints are therefore omitted in the following
table).

Table 2. Stereotypes defined in the Profile

Name CMModel Icon CMModel

Base Class Class

Description Contains the Classification model that define the structure of the model

Constraints - An CMModel can only contain C, I, IP and P attributes.
- An CMModel can only be associated to CMS or CMR classes.
- An CMModel must contain at least one C
- An CMModel must contain at least one I or IP
- An CMModel must contain at least one IP or P

A CMModel Class must contain at least one Case. The Case stereotype can be any
discrete attribute from a Fact class or from a Dimension class (continuous values must
be previously categorized). We must select at least one Input and at least one Predict
or InputAndPredict attribute for each CMModel class. This means that we can design
Classification mining models with more than one Input and Predict attributes. The
CMSettings class contains nine attributes that helps users to tune the accuracy of the
mining model. Finally, the CMResults class stereotype contains the patterns in rule
form using the Head, Body, Support and Confidence attributes. Table 3 illustrates the
defined tagged values.

 Conceptual Modeling for Classification Mining in Data Warehouses 571

Table 3. Tagged values defined in the Profile

Name Type Default
Value

Description

Classes Set(OCLType) None Classes that are involved in a rule

MinSupp Integer 10 Is the minimum number that must contain a node to split.

MaxInputAttributes Integer 255 It specifies the maximum number of input attributes.

MinConf Double 0.01 It specifies the minimum confidence of one node.

MaxTreeLevels Integer 20 It specifies the maximum number of levels in the tree

SplitMethod String Binary It specifies the splitting method

HomogeneityMetrics String Gini It indicates the homogeneity criteria to split nodes

TrainingSize Integer 0 Is the maximum size of the training data

Algorithm String DT It specifies the function used to obtain the result

Filter Set(String) None It specifies the exclusions of the itemset

Head Set(String) None It specifies the head of the rule

Body Set(String) None It specifies the body of the rule

Support Double None It specifies the support of the rule

Confidence Double None It specifies the confidence of the rule

3.4 Well-Formedness Rules

We specify the well-formedness rules of the profile, used to determine whether a
model is semantically consistent with itself, in both natural language and OCL con-
straints. These rules are presented in Table 4.

Table 4. Well-Formedness constraints

- Correct type of the case stereotype:
The case (C) must be defined for an OID attribute of a Fact or Dimension class of the model
context Model inv
self.classes-> forAll(a | a.attributes ->forÄll(c | c.C) -> notEmpty() implies self.attribute.oclIsTypeOf(OID))

- Categorization of continuous values of an Input and Predict tagged value of attribute
Input (I) and Predict (P) or (IP) must be Type of Integer or must be discrete
context Model inv
self.classes-> forAll(a | a.attributes ->forÄll(p | p.P) -> notEmpty() implies self.attribute.oclType(Integer)) or

self.attribute.oclType(Set(String)))
self.classes-> forAll(a | a.attributes ->forÄll(p | p.I) -> notEmpty() implies self.attribute.oclType(Integer))
or self.attribute.oclType(Set(String)))
self.classes-> forAll(a | a.attributes ->forÄll(p | p.IP) -> notEmpty() implies self.attribute.oclType(Integer))
or self.attribute.oclType(Set(String)))

3.5 Comments

Along with the previous constraints, the users can define specific OCL constraints. If
the Input or Predict values depend on the value of an instance attribute, this can be
captured by an OCL expression. Aside from the restrictions imposed by the tagged
values definitions, we do not impose any other restriction on the content of these
notes in order to give the designer higher flexibility.

572 J. Zubcoff and J. Trujillo

4 A Case Study

The main objective of our proposal is to facilitate the design of Classification models
in a MD framework by taking advantage of this structured data and by using a visual
modeling language. We show the use of the profile described in this paper with an
example that analyzes the characteristics of Marine Areas to obtain a classification of
“Relative Abundance” by Marine Area type (Protected or not), Catch Per Unit Effort
(CPUE), Posidonia and Rock cover percentages, total marine area and maximum
depth. This classification will serve to describe the current state of the studied Marine
Areas and to serve as “diagnosis” tool for the behavior of other Marine Areas. Due to
the diversity and the large amount of data we use a DW as a repository. We select the
granularity of the fact, the dimensions, and the attributes to be analyzed. The design
process of the DW gives users a suitable knowledge of the domain and structures. The
benefit is to use it to obtain knowledge to support the decision-making. For the sake
of simplicity, we will use a reduced version of the DW (Fig.3). This contains only one
fact (Observation), and three dimensions (Species, Time and MarineArea). This DW
stores historical observation data for different marine areas, at different times, for
different species, and coming from diverse sources.

Fig. 3. Example of a Classification model

Therefore, in order to discover classes in this MD model we follow three steps: first
to select the case we want to analyze, second to select Input and Predict attributes, third
to adjust the parameters that control the final decision tree. In this example, we will

 Conceptual Modeling for Classification Mining in Data Warehouses 573

classify the RelativeAbundance attribute, based on the values observed for the other
previously mentioned attributes. Thus, we set RelativeAbundance as Predict, while the
CPUE, CoverPercentage_Posidonia, CoverPercentage_Rock, MarineArea.Type, Size
and MaxDepth attributes are set as Input, meaning that they will be used to classify the
Predict attribute. The result of this mining process will give us a diagnosis tool for the
status of a Marine Area on the basis of the previously enumerated variables. The situa-
tion is captured by Fig.3. The designed mining model is self-descriptive. Users can
design models based on their domain knowledge. No constraints are imposed on the
number of models users can design.

5 Implementation

The model described above was implemented in SQL Server 2005 that allows the
implementation of mining techniques on data stored in DW. Based on the case
study (Fig. 3), we have defined the Classification model, using RelativeAbundance
as Predict_only, Observation_id as the nested table key, and CPUE, Size, Cover-
Percentage_Posidonia, CoverPercentage_Rock, MarineArea.Type, Area,
MaxDepth as Input. The code below shows the instruction that creates the mining
model.

CREATE MINING MODEL AbundanceClassification{
MarineArea_Id long key,
MarineArea_Type text discrete,
MaxDepth long discretized,
Area long discretized,
RelativeAbundance long discrete predict_only,
Observation Table (
Observation_id long key,
CPUE long continuous,
CoverPercentage_Posidonia long continuous,
CoverPercentage_Rock long continuous)
} USING Microsoft_Decision_Trees(MINIMUM_SUPPORT = 15)

After applying this mining model to the DW, we obtain a decision tree that indi-

cates the main attributes to analyze, their categories and their probabilities. The de-
rived decision tree could therefore be used not only to describe the behavior of the
studied Marine Areas, but also to predict the state of other not yet studied marine
areas, by observing only the characteristics that lead to the diagnosis of the respective
area, with their corresponding probability values.

The results shown in Fig. 4 suggest that the most important characteristic to be
observed in Protected Marine Areas is the Cover Percentage of Posidonia. If it is
greater than 60%, then the next variable to be observed is Size (the categorized
species sizes). Otherwise, the next indicator is the CPUE. The final decision tree is
very helpful for the evaluation of marine areas, and also gives decision-makers a
classification of the most important indicators to be observed in diagnosing marine
areas.

574 J. Zubcoff and J. Trujillo

Fig. 4. Results obtained from Classification

6 Related Work

The rapid growth of data mining techniques and algorithms is partially due to multid-
isciplinary contributions (machine learning, statistic and database communities).
From the first investigations on Classification [3, 4], there are some proposals inte-
grating the mining process into databases or DW using SQL queries [2, 6]. However,
they use DW just as a data repository, not employing the important information un-
derneath. In [8, 9] the authors proposed SQL-like primitives for databases. This repre-
sents an important advance in building a relationship between Data Mining and
databases. A Pattern Base Management is proposed by [7] who manages data with a
database management system, not integrated in a DW framework.

There are two main proposals to model Data Mining learning models: the Common
Warehouse Model (CWM) [12] and the Predictive Model Markup Language (PMML)
[13]. The former addresses metadata definition for the business intelligence field,
mainly focusing on metadata interchange. On the other hand, the latter is an XML-
based language that provides a platform for sharing learning models among different
vendor’s applications, by describing all properties, structures and instances of the
models. Still, using PMML does not improve modeling, its main goal is to be a stan-
dard that allows interchanging information, structures and algorithm properties among
applications. These efforts do not take advantage of the information given by the
underlying MD model, thus, this information is missing.

Therefore, we claim that there is still a gap between the use of mining techniques
on DW and the multi-dimensional modeling process. The existing approaches to
model data mining do not take advantage of the semantic rich MD model.

7 Conclusions and Future Work

The main purpose of this work is to provide an expressive Conceptual Model that facili-
tates the design and implementation of Classification using DW. We have defined a

 Conceptual Modeling for Classification Mining in Data Warehouses 575

UML 2.0 Profile that allows users to represent Classification on top of multidimensional
objects with several advantages such as a structured model underneath, and the use of
historical, cleansed and integrated data from the DW. We have applied our Profile to a
case study to demonstrate the usability and, finally, we have also shown how the re-
sulted model is implemented on a commercial data base management server with data
mining facilities such as Microsoft SQL Server 2005. Consequently, all the classifica-
tions we defined in the multidimensional modeling at conceptual level are directly im-
plemented in the final DW. Our next goal is to apply transformations in our model to
obtain platform specific models in order to align this proposal with the Model Driven
Architecture (MDA). We are also working on extending UML to represent other data
mining techniques.

References

[1] S. Luján-Mora, J. Trujillo and I. Song. A UML profile for multidimensional modeling in
data warehouses. Data & Knowledge Engineering (DKE) (in press). May 2006

[2] Günzel, H., Albrecht, J., and Lehner, W. Data Mining in a Multidimensional Environ-
ment. In: Proceedings of ADBIS’99. pages 191-204. 1999. Springer-Verlag.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression
trees. Chapman & Hall. Wadsworth, Inc. 1984.

[4] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[5] J.Zubcoff and J. Trujillo. Extending the UML for Designing Association Rule Mining
Models for Data Warehouses. In Proc. DaWaK 2005: 11-21.

[6] X. Shang, K. Sattler. Processing Sequential Patterns in Relational Databases. In Proc.
DaWaK 2005: 438-447.

[7] S. Rizzi. UML-Based Conceptual Modeling of Pattern-Bases. In Proc. 1st Int. Workshop
on “Pattern Representation and Management (PaRMa’04), Crete, Greece, March 2004.

[8] T. Imielinski, A. Virmani. MSQL: A Query Language for Database Mining. Data Mining
and Knowledge Discovery, 3. 1999: 373-408

[9] J. Han, J. Fu, W. Wang, K. Koperski, O. Zaiane. DMQL: A Data Mining Query Language
for Relational Databases. In DMKD'96, Montreal, Canada, 1996.

[10] J. Warmer and A. Kleppe. The Object Constraint Language Second Edition. Getting Your
Models Ready for MDA. 2003: Addison Wesley.

[11] OMG, Object Management Group. UML Infrastructure Specification, v2.0. Internet:
www.omg.org/cgi-bin/doc?ptc/2004-10-14. October 2004.

[12] OMG: CWM Common Warehouse Metamodel Specification. www.omg.org.

[13] DMG, Data Mining Group. PMML Specification, v3.0. www.dmg.org/pmml-v3-0.html

Author Index

Abelló, Alberto 85
Adam, Nabil 45
Alhajj, Reda 534
Alves, Ronnie 165
Andrzejewski, Witold 503
Annoni, Estella 75
Anzai, Yuichiro 524
Atluri, Vijayalakshmi 45

Baesens, Bart 270
Banek, Marko 185
Bellatreche, Ladjel 195
Belo, Orlando 165
Ben Yahia, Sadok 491, 554
Berger, Stefan 120
B�laszczyński, Jerzy 218
Boinski, Pawel 292
Bouzouita, Ines 554
Brunzel, Marko 469

Caragea, Doina 363
Chang, Chia-Hui 280
Chiaravalloti, Antonio D. 248
Chou, Pauline Lienhua 145
Crémilleux, Bruno 238
Cuzzocrea, Alfredo 106

Dang, Xuan Hong 312, 342
de Carvalho Costa, Rogério Lúıs 207
Dembczyński, Krzysztof 218

Eder, Johann 394
Elloumi, Samir 554
Esseghir, M.A. 491
Estivill-Castro, Vladimir 302

Fu, Ada Wai-Chee 405
Furtado, Pedro 207

Gasmi, G. 491
Gebski, Matthew 332
Golfarelli, Matteo 134
Gong, Zhiguo 449
Gorawski, Marcin 417

Greco, Gianluigi 248
Grześ, Marek 260
Guzzo, Antonella 248

HajYasien, Ahmed 302
Hébert, Céline 238
Ho, Cheng-Tao 280
Honavar, Vasant 363
Hu, Cheng 23
Hu, Xiaohua 374
Huang, Hui-jing 481
Huang, Kuo-Yu 280
Huang, Xiao Bing 513
Huysmans, Johan 270

Imai, Michita 524
İnan, Ali 459
Ivanović, Mirjana 544

Kawashima, Hideyuki 524
Kianmehr, Keivan 534
Koh, Jia-Ling 352
Kot�lowski, Wojciech 218
Krȩtowski, Marek 260

Lawrence, Michael 33
Lee, Ki Jung 384
Lee, Seok-Lyong 155
Lee, Yue-Shi 427
Li, Jinyan 437
Li, Jiuyong 405
Liu, Guimei 437
Liu, Qian 449

Ma, Wenbin 55
Malczok, Rafal 417
Mansmann, Svetlana 95
Mazón, Jose-Norberto 13
Morzy, Miko�laj 228
Morzy, Tadeusz 503

Ng, Wee-Keong 312, 342

Ong, Kok-Leong 312, 342

Pardillo, Jesús 13

578 Author Index

Pathak, Jyotishman 363
Paw�lowski, Mariusz 218
Pedersen, Torben Bach 1
Pei, Jian 322, 405
Penev, Alex 332
Pierra, Guy 195
Pontieri, Luigi 248

Qin, Yongsong 481

Radovanović, Miloš 544
Rafiei, Davood 23
Rahayu, Wenny 175
Ramamohanarao, Kotagiri 145
Rau-Chaplin, Andrew 33
Ravat, Franck 65, 75
Rizzi, Stefano 134
Romero, Oscar 85
Rusu, Laura Irina 175

Saccà, Domenico 106
Saygın, Yücel 459
Scholl, Marc H. 95
Schrefl, Michael 120
Serafino, Paolo 106
Shin, Shu-Ning 352
Sim, Kelvin S.H. 437
Slimani, Y. 491
Song, Il-Yeol 374, 384
Song, Min 384
Spiliopoulou, Myra 469
Stark, Konrad 394
Stolba, Nevena 185

Tang, Jian 513

Taniar, David 175
Teste, Olivier 65, 75
Theodoratos, Dimitri 55
Thomsen, Christian 1
Tjoa, A Min 185
Trujillo, Juan 13, 566
Tung, Jiun-Hung 280

Vanthienen, Jan 270

Wojciechowski, Marek 292
Wong, Raymond Chi-Wing 405
Wong, Raymond K. 332

Xie, Yihuang 322
Xu, Wugang 55
Xuan, Dung Nguyen 195

Yen, Show-Jane 427
Yin, Jian 322
Yoo, Illhoi 374
Yu, Songmei 45

Zakrzewicz, Maciej 292
Zatloukal, Kurt 394
Zhang, Jilian 481
Zhang, Jingbai 449
Zhang, Jun 363
Zhang, Shichao 481
Zhang, Xiuzhen 145
Zhu, Weiheng 322
Zhu, Xiaofeng 481
Zubcoff, Jose 566
Zurfluh, Gilles 65, 75
Zuzarte, Calisto 55

	Frontmatter
	ETL Processing
	ETLDiff: A Semi-automatic Framework for Regression Test of ETL Software
	Applying Transformations to Model Driven Data Warehouses
	Bulk Loading a Linear Hash File

	Materialized View
	Dynamic View Selection for OLAP
	Preview: Optimizing View Materialization Cost in Spatial Data Warehouses
	Preprocessing for Fast Refreshing Materialized Views in DB2

	Multidimensional Design
	A Multiversion-Based Multidimensional Model
	Towards Multidimensional Requirement Design
	Multidimensional Design by Examples

	OLAP and Multidimensional Model
	Extending Visual OLAP for Handling Irregular Dimensional Hierarchies
	A Hierarchy-Driven Compression Technique for Advanced OLAP Visualization of Multidimensional Data Cubes
	Analysing Multi-dimensional Data Across Autonomous Data Warehouses
	What Time Is It in the Data Warehouse?

	Cubes Processing
	Computing Iceberg Quotient Cubes with Bounding
	An Effective Algorithm to Extract Dense Sub-cubes from a Large Sparse Cube
	On the Computation of Maximal-Correlated Cuboids Cells

	Data Warehouse Applications
	Warehousing Dynamic XML Documents
	Integrating Different Grain Levels in a Medical Data Warehouse Federation
	A Versioning Management Model for Ontology-Based Data Warehouses
	Data Warehouses in Grids with High QoS

	Mining Techniques (1)
	Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods
	Efficient Mining of Dissociation Rules
	Optimized Rule Mining Through a Unified Framework for Interestingness Measures
	An Information-Theoretic Framework for Process Structure and Data Mining

	Mining Techniques (2)
	Mixed Decision Trees: An Evolutionary Approach
	ITER: An Algorithm for Predictive Regression Rule Extraction
	COBRA: Closed Sequential Pattern Mining Using Bi-phase Reduction Approach

	Frequent Itemsets
	A Greedy Approach to Concurrent Processing of Frequent Itemset Queries
	Two New Techniques for Hiding Sensitive Itemsets and Their Empirical Evaluation
	EStream: Online Mining of Frequent Sets with Precise Error Guarantee

	Mining Data Streams
	Granularity Adaptive Density Estimation and on Demand Clustering of Concept-Drifting Data Streams
	Classification of Hidden Network Streams
	Adaptive Load Shedding for Mining Frequent Patterns from Data Streams
	An Approximate Approach for Mining Recently Frequent Itemsets from Data Streams

	Ontology-Based Mining
	Learning Classifiers from Distributed, Ontology-Extended Data Sources
	A Coherent Biomedical Literature Clustering and Summarization Approach Through Ontology-Enriched Graphical Representations
	Automatic Extraction for Creating a Lexical Repository of Abbreviations in the Biomedical Literature

	Clustering
	Priority-Based k-Anonymity Accomplished by Weighted Generalisation Structures
	Achieving {\itshape k}-Anonymity by Clustering in Attribute Hierarchical Structures
	Calculation of Density-Based Clustering Parameters Supported with Distributed Processing
	Cluster-Based Sampling Approaches to Imbalanced Data Distributions

	Advanced Mining Techniques
	Efficient Mining of Large Maximal Bicliques
	Automatic Image Annotation by Mining the Web
	Privacy Preserving Spatio-Temporal Clustering on Horizontally Partitioned Data

	Association Rules
	Discovering Semantic Sibling Associations from Web Documents with XTREEM-SP
	Difference Detection Between Two Contrast Sets
	EGEA : A New Hybrid Approach Towards Extracting Reduced Generic Association Rule Set (Application to AML Blood Cancer Therapy)

	Miscellaneous Applications
	AISS: An Index for Non-timestamped Set Subsequence Queries
	A Method for Feature Selection on Microarray Data Using Support Vector Machine
	Providing Persistence for Sensor Data Streams by Remote WAL

	Classification
	Support Vector Machine Approach for Fast Classification
	Document Representations for Classification of Short Web-Page Descriptions
	{\sc GARC}: A New Associative Classification Approach
	Conceptual Modeling for Classification Mining in Data Warehouses

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

