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Abstract. Data sharing in a large scale and for high volatility tolerance
requires peer-to-peer solutions where traditional multiprocessor shared
memory systems are not applicable. Efficiency of those P2P shared mem-
ory systems depends, in particular, on scale, dynamics, and concur-
rent write accesses. We have developed a P2P shared memory solu-
tion, DAEDALUS, based on SUN’s JXTA framework, and integrated
an efficient stochastic locking protocol, proper resource clustering, and
semi-hierarchical grouping of nodes. We evaluated the applicability under
heavy load, scale, and node mobility. Here, DAEDALUS outperformed
a client/server system and solved its inherent scalability problem.

1 Introduction

Shared memory systems provide the foundation for efficient development of dis-
tributed applications. A lot of mature shared memory solutions for multiproces-
sor systems exist. However, data sharing in a large scale and for high volatility
tolerance – typically occurring in ubiquitous computing scenarios – is still unac-
complished and has become an active field of research. Under such conditions,
peer-to-peer architectures provide advantages over traditional distributed ar-
chitectures with classical shared memory approaches. On the other hand there
are numerous shared memory systems that are well designed for large amount of
write accesses, but those are usually intended for supercomputers or cluster com-
puting. However, none of these systems fully cover issues arising in ubiquitous
computing scenarios where network topology and quality of service parameters
are subject to frequent changes. Providing a synchronized and consistent view
on the shared data for all participants with reasonable communication overhead,
accordingly, is challenging and requires proper utilization of caching, routing,
grouping, data compression, cryptography, forwarding, and consensus.

Therefore, we have developed DAEDALUS, a platform-independent and light-
weight framework for peer-to-peer communication. It enables mobile/embedded
devices to easily and efficiently share their data. Data may be distributed among
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thousands of peers and subjected to permanent updates, while further dynamics
induced by mobility or environmental changes remain transparent to users or
application developers. Devices may join or leave groups in an ad-hoc manner
and can be members of an arbitrary number of groups at the same time, while
our framework keeps the data stochastically in sync and consistent among all
members of any group even in case of numerous concurrent write accesses. Our
approach therefore uses stochastic locking and semi-hierarchical grouping. The
implementation is based on SUN’s JXTA Java classes for peer-to-peer communi-
cation. As a case study, we have integrated it in MagicMap, a cooperative WLAN
positioning system. The client/server communication here did not scale well and
required reliable connectivity. Both problems could be successfully solved using
DAEDALUS, which achieved significant improvements regarding dependability,
scalability and performance.

2 The MagicMap Application Scenario

MagicMap is a cooperative context aware computing application we introduced
in [1,2,3]. Every node senses its environment and uses the observed data to calcu-
late its location and situation. From that, location/situation specific actions can
be triggered. The system works cooperatively, i.e., nodes exchange their mea-
surements among each other. Calculations can be done redundantly on multiple
nodes to improve fault tolerance, in particular, to prevent a minority of malicious
nodes to affect system stability. In our current implementation we use WLAN
equipped Laptops, PDAs, and Smartphones that exploit WLAN signal strength
to sense the environment and calculate their positions (see Fig. 1). Nodes sense
the WLAN received signal strength (RSSI) of neighboring nodes (access points,
other clients, or previously measured reference points) and estimate the physical
distance. A spring layout algorithm moves the nodes with unknown positions
such that length of edges best match the calculated physical distance. Thus, the
graph converges to a ”magic map”, where nodes are located approximately at
their true physical position.

Since different nodes may calculate devices positions, the calculating nodes
need access to signal strength measurements. Consider the following scenario
shown in Fig. 2. Node C wants to know the position of node B. Node C, as well as
node B, has low processing capabilities. Node A has high processing capabilities
and therefore calculates the position of node B. Node E, being sufficiently capable
as well, does that calculation too for redundancy reasons. All WLAN-aware
nodes sense signal strength (1) and forward it to the nodes where calculation is
done (3).

Note, that in this scenario we assume the mobile clients A, B, and C to sense
the signal in a symmetric manner, i.e., A senses signal strength from B and
symmetrically, B can sense signal strength from A. Some nodes may not sense
the signal, in our case node D, which might be an access point or a peer node
without MagicMap installed. However, given D is using its WLAN interface, its
radio signals can be sensed by other nodes (2).
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Fig. 1. MagicMap screenshot

Fig. 2. Example scenario with high-performance nodes A and E and low performance
nodes B and C

Finally, the calculated positions are sent to node C (4) who then can use,
for example, the mean value of both calculations as best position estimation. In
case C receives three or more independent position estimations, it could employ
elaborated voting algorithms for improved fault tolerance and resilience against
malicious behavior. To provide a real-time picture, signal strength measurement
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and position recalculation is done periodically at least every 10 seconds. Obvi-
ously, this scenario implies significant performance and real-time demands: all
measured values need to be on time at the nodes calculating the positions, and
finally, all calculated positions need to be on time at those nodes, that have
interest in this information.

3 Peer-to-Peer Data Sharing Concepts

Several research projects emerged in the last years investigating efficient data
updates in peer-to-peer systems. However, they impose limitations that reduce
their usefulness in ubiquitous computing scenarios. Systems like Freenet [4],
OceanStore [5], or P-Grid [6] assume no conflicting writes, going as far as lim-
iting updates to the original author of a data item in Freenet. Ivy [7] requires
application-level programming to cope with conflicting manipulations of data
objects and only provides some tools to detect those conflicts. These systems do
not provide any locking mechanisms or other concurrency protocols since their
main purpose is to provide high scalability – at the costs of sacrificed consistency.
Systems such as JuxMem [8] take the opposite approach: they provide locking
mechanisms while limiting the size of the network.

3.1 Concurrency Control – Pessimistic and Optimistic Approaches

There are two opposed approaches for concurrency control, the pessimistic and
the optimistic one. The first assumes that conflicting write accesses to a data
item might cause intolerable inconsistency and thus have to be avoided anyway
(conflict prevention). To guarantee that no other node is performing a concurrent
write access to any replica of a data item, a node has to lock that item to prevent
it from other concurrent manipulations. In a distributed scenario, this requires
two-phase locking, i.e., the node has to wait for all item replicas to confirm the
lock request. After the write has been performed, all replicas have to be updated
accordingly to obtain a consistent state. Meanwhile, since the data might be
temporarily inconsistent, additional write or read accesses to it are not allowed.

Pessimistic locking, hence, is not applicable in highly dynamic networks where
typically presumed latencies cannot be guaranteed.

Therefore, an optimistic approach, in contrast, assumes that temporary in-
consistency resulting from concurrent writes to a data item is tolerable. It em-
ploys conflict resolution instead of the above conflict prevention. Optimism is
accounted for the assumption that the number of actual conflicts and resolving
them will be manageable and temporary inconsistencies will be rare. If, however,
a conflicting update occurs, nodes have to use roll back or roll forward mecha-
nisms to resolve inconsistency and recover a consistent system state. An example
is Ivy, which stores the history of operations that have been performed on the
items. It does not resolve conflicting updates, but it detects them and provides
application-level means to resolve them.

Instead of pessimistic or optimistic conflict handling, its also possible to create
a disjoint global storage space, such that conflicts cannot occur. Freenet, for
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example, combines keys for files with a private key, specific to a user, and thereby
creates a global name space with private subspaces. This however, would result
in unmanageable network traffic and does not fit the MagicMap scenario where
every device can publish estimates of other devices’ positions.

Since none of the above approaches seem appropriate for our purpose, we have
employed a hybrid approach (see Section 4.2).

3.2 Considering Different Node Capabilities

All above systems assume the peers to possess comparable capabilities. This as-
sumption, although it might be acceptable in workstation environments, is un-
realistic in heterogeneous networks of ubiquitous computing. Therefore, caching
a snapshot of the overall storage system as required by Ivy is only feasible for
very small distributed file systems. OceanStore does allow multiple nodes to
change a single data item. To prevent faulty nodes from publishing wrong ver-
sion information, a Byzantine agreement is formed between all primary replicas.
OceanStore however, as well as P-Grid, does not offer means to prevent or re-
solve conflicting write accesses to the same data item. Since MagicMap updates
position information rather frequently, such peer-to-peer systems are likewise
not appropriate.

4 The DAEDALUS Peer-to-Peer Shared Memory System

The system architecture is divided into platform dependent and platform inde-
pendent components, see Fig. 3. Measurements of signal strength and collection
of other sensor data is highly dependent on particular hardware, operating sys-
tem, and drivers. The platform independent components – in particular the
DAEDALUS shared memory and the normalization and calculation of position
estimations – are written in Java. All components are freely available via our
website www.magicmap.org.

4.1 Peer Groups

The basic idea of our shared memory system is to assign every data item a specific
peer group. Peers that have interest in this data item join the related group and
serve as a replica. The advantage of this approach is scalability. Thereby, the
amount of messages send does not depend on the number of nodes participating
in the entire system, instead it depends on the number of peers interested in
this data item. While the number of nodes in a network could become rather big
in real world scenarios, the number of peers interested in a specific data item
is limited. The idea, however, has a downside: once no peer is interested in a
data item, it will be lost. To prevent this, nodes having enough resources to join
multiple groups in parallel will be asked to join this group, in case the number
of member nodes is decreasing below certain threshold. As these groups still can
grow rather big, a further differentiation is needed. A percentage of all nodes in
this group acts as a manager. Managers act as replicas, vote on locking requests,
and keep track of the group size.
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Fig. 3. System architecture with platform dependent and platform independent com-
ponents communicating via the DAEDALUS peer-to-peer shared memory

4.2 Stochastic Locking – A Hybridization of Pessimistic and
Optimistic Concurrency Control

Since both, pessimistic and optimistic approaches are not feasible in our scenario,
we pursue a hybrid approach. We use a locking mechanism but we do not require
all nodes to answer a lock request. Instead, only a relatively small number of
nodes has to answer and broadcast their decision to all managing nodes in a
group as shown in Fig. 4. The requesting node has successfully locked a data
item, if a majority of those answers is positive. This approach is optimistic, as it
assumes that enough nodes receive the lock request messages and there are only
a few faulty nodes that give an insane answer regarding a request. It is as well
pessimistic to a certain degree, as it reduces the number of conflicts by locking a
resource before updating it. While this stochastic locking cannot guarantee that
no conflict occurs, it does provides a high probability of conflict prevention.

4.3 Scalability Considerations

As only a fixed number of managers is required to answer a client request, the
expected traffic for each update process is limited and known. However, in order
to ensure that the number of managers answering a request does not exceed the
threshold, the managers have to keep track how much of them are in a group.
Therefore, every peer joining a group broadcasts a hello packet to all managers.
A fixed number of managers will provide the new member with all necessary
information, such as group size and a list of managers. Every peer node joining
the group starts as a manager. If the peer later discovers that there are already
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Fig. 4. The locking process. Node A sends a lock request to all manager nodes. Of those
manager nodes B and C respond and broadcast their decision to all other managers.

enough managers it can alter its status and become a regular client. Additionally,
managers check whether there are still enough managers in the group, and ask
clients of the group to become managers, if the number falls below the threshold.
On the other hand, if a manager detects that there are not enough members in
its group, they call other nodes that still have enough resource capacity available
to enter the group.

While the load of a client is independent from the number of nodes in the
group, the load of managers does grow with the size of the group. For a single
process the load is constant. However, as only the request for data items can be
balanced over all managers, the load for writing, locking and counting is not.
Therefore, the number of messages a manager has to process increases linear
with the number of nodes in the group. This however does not compromise the
original goal of low load for small computing devices. As the chance for such a
device to be a manager decreases with group size, the load for small devices will
not grow beyond a point which depends on the ratio of small and large nodes
within it.

4.4 Integration into MagicMap

We implemented the peer-to-peer shared memory system as a Java application
which communicates with any local application via UDP datagrams. It supports
calls to read the data item of a given name, to store a new version and to lock
and unlock the data item. Additionally, we included calls to search for groups
and peers. As group names are the same as their data item’s name, a search for
all groups will result in a list of all available data items. By applying a name
scheme an application can easily search for all data items it needs. We have
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developed one call specifically for MagicMap: joining a specific group. We use
this call to create a hierarchical tree that stores all nodes and their positions.

4.5 Data Clustering

To keep management overhead reasonable, the data items have to be clustered
appropriately. One clustering option is to subsume all external measurements
according to each node and store it in a single data item. This would allow
the position calculating nodes to easily discover the relevant data. However, it
would increase the number of groups that each node has to join and would cause
frequent locks and updates to data items.

This made the alternative option – aggregating all values measured by the
same node – most promising to us. As only a single node will change the data
item, no locking is required. However, now the calculating node has to find all
other nodes that have measured the signal strength of the node to be located.
To make the discovery process feasible, we decided to add a data item for each
node to store a list of the nodes having measured its signal strength. Thus, the
calculating node can scan the list and find all the data items required to calculate
the node’s position. As this node list has to be updated by different nodes, locking
is required. Fortunately, the number of updates to the list typically remain in a
manageable amount.

The position values for each node are stored in a single data item. As there
are typically less than five nodes actually updating this data item, this does not
cause heavy load. We end up with three data items for every MagicMap node. For
a node A there are A-Measurements where this node stores all signal strengths it
sensed, A-See stores all nodes that sense signals from A and A-Position contains
the calculated position of this node. A node that wants to know the position of
node A accesses A-Position. If no other node has yet calculated the position and
the data item is empty, this node may want to calculate the position itself. To
do so the node first reads A-See and then accesses all measurement data items
of the nodes in this list.

5 System Evaluation

We conducted our tests using the MagicMap application as a case study and com-
pared the delay of data item updates in the client-server setup to the DADALUS
peer-to-peer setup at different numbers of participating nodes (see Fig. 5).

In the client-server setup, updates were done via a centralized server us-
ing Web Service communication. The peer-to-peer setup utilized JXTA broad-
cast/unicast and comprises locking the data item, updating it, and finally re-
leasing the lock.

For both setups we employed 8 Dell PDAs as ”low capable” nodes and 8
desktop computers as ”high capable” nodes and simulated further nodes. The
ratio of low to high capable nodes was kept at constantly 1:1. We tested each
setup for a period of 6 hours and repeated the measurement three times at
different days. While we consider the obtained result quite realistic, true real
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C/S Avg. C/S Standard P2P Avg. P2P Standard
#Nodes Delay Deviation Delay Deviation

10 2.5 s 11 s 1.0 s 461 s
20 3.5 s 12 s 1.6 s 810 s
40 7.5 s 13 s 2.9 s 1,103 s
80 12.5 s 14.5 s 4.1 s 1,221 s
120 - - 4.2 s 1,069 s

Fig. 5. Comparing the data update delay of the standard client-server and the
DAEDALUS peer-to-peer setup

world measurement with heterogeneous devices in a magnitude of hundreds or
even thousands of nodes have to remain for future work.

6 Conclusion and Outlook

We have proposed a peer-to-peer shared memory system designed for ubiquitous
computing scenarios. It provides stochastic locking and data clustering to arrive
at reasonable performance even at high scale and dynamics. In our WLAN posi-
tioning case study implementation we used relatively well equipped Dell PDAs
and measured performance parameters. Using these measurements, we further
investigated scalability and other quality of service issues by simulation. The
results indicate that, regardless of group size, 95% of all data updates will not
take longer than 6 seconds, provided that no conflicting writes occure.

Future work may integrate a way to preserve multiple versions of a single data
item. Also a privacy scheme has to be developed to protect data and improve
system acceptance – since user locations are definitely very sensitive information.
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