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Preface

Euro-Par Conference Series

Euro-Par is an annual series of international conferences dedicated to the pro-
motion and advancement of all aspects of parallel computing. The major themes
can be divided into the broad categories of hardware, software, algorithms and
applications for parallel computing. The objective of Euro-Par is to provide a fo-
rum within which to promote the development of parallel computing both as an
industrial technique and an academic discipline, extending the frontier of both
the state of the art and the state of the practice. This is particularly important at
a time when parallel computing is undergoing strong and sustained development
and experiencing real industrial take-up. The main audience for, and participants
in, Euro-Par are researchers in academic departments, government laboratories
and industrial organizations. Euro-Par’s objective is to be the primary choice
of such professionals for the presentation of new results in their specific fields
of expertise. Euro-Par is also interested in applications that demonstrate the
effectiveness of the main Euro-Par themes.

Previous Euro-Par conferences took place in Stockholm, Lyon, Passau,
Southampton, Toulouse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, and
Lisbon. The next conference will take place in Rennes. The Euro-Par conference
series is traditionally organized in cooperation with the International Federa-
tion for Information Processing (IFIP), the Association for Computer Machin-
ery (ACM), and the Institute of Electrical and Electronics Engineers (IEEE)
Computer Society, Technical Committee on Parallel Processing (TCPP). Euro-
Par has a permanent website where its history and organization are described:
http://www.europar.org .

Euro-Par 2006 in Dresden, Germany

Euro-Par 2006, the 12th conference in the Euro-Par series, was chiefly orga-
nized by the Center for Information Services and High Performance Computing
(ZIH) in collaboration with the Department of Informatics and the Institute of
Scientific Computing at the Technische Universität Dresden.

Three prominent workshops were collocated with the conference: the Core-
Grid Workshop on Grid Middleware, the UNICORE Summit Workshop, and
the Petascale Computational Biology and Bioinformatics Workshop. For the first
time at a Euro-Par conference, real-time applications requiring high bandwidth
were presented as part of a Grid Village exhibit complementing the Industrial
Exhibition. A special Industrial Session was reserved within the main conference
program for technical presentations by the exhibitors.

Euro-Par 2006 was able to attract three renowned invited speakers. Their
talks highlighted some of the most recent trends:
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Dominik Marx (Theoretical Chemistry, Ruhr-Univ. Bochum): The Virtual Lab-
oratory: Scientific Computing Beyond the Cutting Edge.

Ajay K. Royyuru (Computational Biology Center, IBM T.J. Watson Research
Center): Deep Computing in Biology: Challenges and Progress.

Alistair Dunlop (OMII-Europe, the Open Middleware Infrastructure Institute,
Univ. of Southampton): Integrating and Interoperability of Grid Infrastruc-
tures in OMII-Europe.

Euro-Par 2006 Statistics

Compared with the traditional conference format, Euro-Par 2006 introduced two
new topics — High-Performance Bioinformatics and Embedded Parallel Systems
— for a total of 18 topics covering a large variety of aspects of parallel and
distributed computing. Each topic was supervised by a committee of four: a
global chair, a local chair, and two vice-chairs. The call for papers attracted a
total of 290 submissions. For most of the submitted papers, at least three and
often four individual review reports were collected. A total of 110 full papers were
finally accepted, of which 5 received the special honor of distinguished paper. The
acceptance rate was thus below 38%. The submitting authors of accepted papers
are from 26 countries, with the four main contributing countries — Germany,
Spain, France and the USA — accounting for 67 accepted papers.

Acknowledgments

Euro-Par 2006 was made possible through the generous support and diligent
work of many individuals and organizations. At the Technische Universität Dres-
den, the Center for Information Services and High Performance Computing
(ZIH), the Department of Informatics, and the Institute of Scientific Computing
were heavily involved in the organizational tasks, contributing their staff and
their infrastructure.

Furthermore, a number of institutional and industrial sponsors made con-
tributions and participated in the Industrial Exhibition and the Grid Village.
Their names and logos appear on the Euro-Par 2006 website at http://www.tu-
dresden.de/europar2006/ . We gratefully acknowledge their support.

At the ZIH, Claudia Schmidt undoubtedly bore the brunt of the adminis-
trative and organizational chores, all the while keeping her good humor (and
her senses), Stefan Pflüger did a superb job in organizing and setting up the
Industrial Exhibition and the Grid Village, and Guido Juckeland took on the
difficult task of assembling the present volume of proceedings. The organizers are
greatly indebted to them and the numerous other helping hands who donated
their valuable time and went to great lengths to make Euro-Par 2006 a success.

We are greatly indebted to José Cunha, the organizer of Euro-Par 2005 in
Lisbon, who never failed to give us prompt advice regarding any organizational
matters.
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We are also grateful to the members of the Euro-Par Steering Committee for
their support. We owe special thanks to Christian Lengauer, chairman of the
Steering Committee, who was always available to share with us his experience in
the organization of Euro-Par, for giving us friendly advice, support, and encour-
agement. We also thank Luc Bougé, vice-chair, for his vision and contributions
to improve Euro-Par conferences.

Specific thanks are due to the authors of all the submitted papers, the 72
members of the 18 topic committees, and the vast number of reviewers, for
contributing to the success of this conference.

Last, but not least, we are grateful to Springer for agreeing to publish these
proceedings, thus continuing a long and successful Euro-Par tradition.

It was a pleasure and an honor to host Euro-Par 2006 at the Technische
Universität Dresden. We hope that we were able to make it a memorable event
for all participants.

Dresden, June 2006 Wolfgang E. Nagel
Wolfgang V. Walter

Wolfgang Lehner
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Mikael Hoegqvist
J. Hofer
Bo Hong
Thomas Huckle
Danny Hughes
Sascha Hunold
Felix Hupfeld

Hitoshi Iba
Liviu Iftode

David Janovy
Mohamed Jemni
Morris Jette
Sheng Jiang
Josep Jorba

Peter Kacsuk
Marcus Kaiser

Helen Karatza
Sven Karlsson
Darren J. Kerbyson
Arie Keren
Omid Khalili
Thilo Kielmann
Andy King
Dirk Koch
Spyros Kontogiannis
Pierre Kuonen
Amund Kvalbein
Oren Laadan
Tobias Langhammer
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dCache, Storage System for the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
Patrick Fuhrmann, Volker Gülzow

Computing the Diameter of 17-Pancake Graph Using a PC Cluster . . . . . . 1114
Shogo Asai, Yuusuke Kounoike, Yuji Shinano, Keiichi Kaneko



Table of Contents XXXIII

Topic 17: High-Performance Bioinformatics

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
Craig A. Stewart, Michael Schroeder, Concettina Guerra,
Konagaya Akihiko (Topic Chairs)

Multidimensional Dynamic Programming for Homology Search on
Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127

Shingo Masuno, Tsutomu Maruyama, Yoshiki Yamaguchi,
Akihiko Konagaya

Load Balancing and Parallel Multiple Sequence Alignment
with Tree Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

Guangming Tan, Liu Peng, Shengzhong Feng, Ninghui Sun

ZIB Structure Prediction Pipeline: Composing a Complex Biological
Workflow Through Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

Patrick May, Hans-Christian Ehrlich, Thomas Steinke

Evaluation of Parallel Paradigms on Anisotropic Nonlinear Diffusion . . . . 1159
S. Tabik, E.M. Garzón, I. Garćıa, J.J. Fernández
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Topic 1: Support Tools and Environments

Bronis R. de Supinski, Matthias Brehm, Luiz DeRose, and Tomás Margalef

Topic Chairs

Support tools and environments are vital to the production of efficient parallel
and distributed applications. This year, eleven papers were submitted to this
topic area, from which five were accepted as full papers.

As in previous years, many submitted papers focused on the internal be-
haviour of applications, including how to enhance cache locality, how to detect
inefficiency patterns in MPI applications and how to profile performance effec-
tively. The infrastructure of the tools ranges from profiling, analysis, and simu-
lation to visualization tools for graphical representation and code development.

Automatic performance analysis that can detect bottlenecks related to code
regions or to data structures were of particular interest. Pattern-based perfor-
mance diagnosis is not only applied to master-worker computations, but also,
in a distinguished paper, to patterns that arise from inefficiencies in one-sided
communication. Another paper presents an automatic synthetic I/O workload
in which multiple factor analysis describes the behaviour of the I/O subsystem.

Other submitted papers this year focused on tools for grid and P2P infras-
tructures, particularly on resource management. An accepted paper with this
focus presents a generic framework that enables run-time monitoring tools to
be launched under the control of a resource management system. The crucial
issues of process creation, tool creation, process monitoring and control and
front-end/back-end coordination are addressed.

The qualified papers demonstrate significant tool improvement and matura-
tion. We look forward to the stimulating discussions during session meetings
that they will engender.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Abstract. The purpose of this paper is twofold. First, we present IOA-
gent, a tool that allows to generate synthetic workloads for parallel en-
vironments in a simple way. IOAgent has been implemented for Linux
and takes into account different I/O characteristics like synchronous and
asynchronous calls, buffered and unbuffered accesses, as well as different
numbers of disks, intermediate buffers and number of agents simulating
the workload. Second, we propose statistical models that help us to ana-
lyze the I/O behaviour of an IBM e-server OpenPower 710, with 4 SCSI
drives. The observations used to build the model have been obtained
using IOAgent.

Keywords: parallel I/O, synthetic workload generator, Linux, perfor-
mance evaluation, statistical modelling.

1 Introduction

The quest for tools that generate workloads for the evaluation of parallel I/O
comes from long ago [1]. It is a need both as an aid for the optimum configu-
ration of complex applications on complex computer architectures, and for the
evaluation of research on Operating Systems and storage performance. The rea-
son for such tools to exist is that they can emulate the behaviour of complex
applications, avoiding the use of such applications for evaluation.

Bonnie [2], LMbench [3] and FileBench [4] are examples of tools that allow
this type of workload emulation for Unix-like environments. However, such tools
are restricted from many different points of view, like the number of threads and
the type of I/O operating system calls that they can trigger.

� The authors at UPC thank Generalitat de Catalunya for its support through grant
GRE-00352. Sergio Gómez-Villamor thanks IBM for its support through a CAS
grant.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 3–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In order to give access to a generic workload generator for the evaluation
of parallel I/O subsystems, we present IOAgent. Our tool sits on top of the
Operating System in the same way as an application would do, and allows for
the generation of workloads tailored to the needs of the system to evaluate.
IOAgent allows users to generate synthetic application-level requests and defines
a considerable number of behaviour-variables that allow to mimic an application.
Our tool has been tested in large environments with up to 24 disks to emulate
the accesses caused by a DBMS with a transactional processing workload [5].

In addition, as an example of the use of IOAgent, we evaluate an Open-
Power 710 I/O subsystem. For the evaluation, we generate different workloads
that stress the I/O subsystem in different ways and execute them to obtain
more than 10 thousand execution time measures. With all those data, we pro-
pose a statistical model of the system using the Analysis of Variance (ANOVA).
We show that using statistical tools it is easier and more reliable to extract
conclusions.

The rest of this paper is organized as follows. In Section 2 we explain IOAgent.
Then, in Section 3, we describe the environment and tests performed. In Section 4
we describe the statistical models obtained and in Section 5 we discuss the results
with the help of the models. In Section 6 we give a short overview of the literature
on the topic and, finally, we conclude.

2 IOAgent

IOAgent offers the possibility to mimic the stress imposed by an application
on the I/O subsystem. This is done by simulating processes that exercise read
and write predefined patterns on the accessed devices. Thus, IOAgent allows to
evaluate parallel environments, both from the processing and the I/O points of
view.

Currently, most OSs provide different system calls to execute I/O operations
in a synchronous or asynchronous manner. Also, depending on whether the
data blocks involved in I/O operations are mapped onto kernel buffers we can
distinguish between buffered or unbuffered I/O. IOAgent allows for all those
possibilities.

At this moment, IOAgent is implemented for Linux but could be ported to
any other OS with little effort. IOAgent can be freely accessed in [6].

2.1 Basic Structures

The synthetic workload configuration of IOAgent is set by means of (i) a set of
per-thread access-patterns, also called agents, and (ii) a set of pseudo-devices,
also called files.

Agents are responsible for performing the desired stress. Every agent is a
thread which performs one access pattern. The mixed execution of different
agents will determine the desired global workload. Each agent in a simulation
will have specific values for the following fields:
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– File. The file used to perform the I/O operations.
– Operation mode. There are four simultaneously compatible operation

modes:
• Synchronous or asynchronous. Synchronous I/O operations block a

process until the I/O is performed while asynchronous I/O operations
do not block the process.

• Number of buffers. IOAgent associates each I/O operation to a buffer.
Synchronous operations are performed sequentially, thus, IOAgent re-
quires only one buffer for synchronous agents. Asynchronous operations
can be performed concurrently, thus, asynchronous agents require as
many buffers as I/O operations on the fly. The buffers of IOAgent emu-
late those provided by the application it is emulating.

• Buffered or unbuffered. With buffered I/O, IOAgent uses its own
buffers, and indirectly those provided by the OS as an intermediate step
for the I/O operations. With unbuffered I/O, IOAgent only uses its own
buffers. Unbuffered I/O can be specified using raw devices or the Direct
I/O mode, which can be associated to a block device interface or a file of
some file systems (i.e. some file systems do not allow Direct I/O mode).

• Read or write. Each agent will perform exclusively read or write op-
erations.

• Sequential or random. Sequential accesses perform a set of consecu-
tive or strided I/O operations. Random accesses perform a number of
read or writes over each position of the file following a certain probabil-
ity distribution. At present, it is possible to choose among Uniform or
Poisson distributions.

– Operation size. The size of the I/O operations is fixed for an agent.
– Inter-arrival times. We fix this per-agent value as the number of I/O

operations per unit of time that each agent must generate.

Files are used in our environment to encapsulate the different storage capabil-
ities of a system. Therefore, every agent is associated to a file which represents
where the agent performs its I/O operations. Files are devices or common files
on which I/O operations are executed. Regarding the storage system support,
IOAgent allows for:

– File systems. The most common way to access hard disks (or its logical
partitions) is through files of a built-in file system (e.g. ext3, ext2, reiserfs,
xfs, jfs, etc.).

– Block devices interface. Different block devices (e.g. hard disks) of UNIX-
type systems can be accessed through the /dev interface.

– Raw devices interface. A raw device can be bound to an existing block
device (e.g. a disk) and can be used to perform raw I/O with that existing
block device. Such raw I/O bypasses the caching that is normally associated
with block devices.

For a comprehensive explanation of other parameters not used in this paper,
and how to configure a workload generation, we refer the reader to [5].
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Table 1. OpenPower 710 configuration

Processor 2 Power5 at 1.65 GHz

Memory 4 GBytes, DDR-I ECC at 266 MHz

L1 data cache 4-way set associative LRU

L2 cache 10-way set associative 1.9 MBytes

L3 cache 36 MBytes

4 146.8 GBytes drives at 10 Krpm
Storage 2 channel Ultra320 SCSI controller

320 MBps peak transfer

3 Evaluation Setup

In order to show the use of IOAgent, we perform an analysis of the I/O perfor-
mance characteristics of an IBM e-server OpenPower 710 [7], with 4 SCSI drives,
and Red Hat Enterprise Linux AS v4 for 64-bit IBM Power based on the 2.6
Kernel. The configuration of the OpenPower 710 evaluated in this paper is as
shown in Table 1.

We run extensive executions of IOAgent on the system. The executions added
up to 10,368 performance measures (two weeks of executions). For the evaluation,
we have set up the parameters of IOAgent shown in Table 2.

Buffered and unbuffered I/O tests were both performed on 4 GBytes files, one
per disk used. For buffered I/O tests, we used files mounted with an ext3 file
system and to allow buffered file system asynchronous I/O we patched a 2.6.12
kernel version [8]. Asynchronous I/O is a very recent feature in the Linux kernel,
therefore we focused our studies on this new feature. For unbuffered I/O we used
a 2.6.9 kernel version.

In order to analyze the system under maximum stress, we fix the inter-arrival
time to zero for all the agents.

4 Statistical Modelling

We study five different categorical variables (factors) related to the I/O subsys-
tem performance, namely, the use of the OS buffers, the number of disks accessed
by the application, the number of agents accessing the disks, the number of in-
termediate application buffers used to store the data managed during the I/O
operations, and the size of those intermediate application buffers. As a response
variable, we study the average transfer rate from disk for four different access
patterns: sequential reads, sequential writes, random reads and random writes.
We propose two models, a general one useful for the four access patterns, and a
simplified specific model for random reads, based on the five factors mentioned
above.

The models we propose provide a way to analyze the data collected and allow
us to find out which parameters are most significant.
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Table 2. Parameters used for the evaluation

Factor Name Levels #levels
Buffered O Buffered and Unbuffered 2

#disks D 1, 2 and 4 3

#agents/disk A 1, 2, 4, 8, 16 and 32 6

#buffers/agent B 1, 2, 4, 8, 16 and 32 6

buffer size (KBytes) S 8, 32 and 128 3

4.1 The Models

We use the Analysis of Variance (ANOVA) because it is the classical statistical
technique to describe the behaviour of a response variable as a function of some
factors [9]. Conversely, regression plays the same role for continuous variables.
The factors considered in the models and their levels are summarized in Table 2.
All of them are fixed effect factors, which means that the levels are considered
constants. This case is opposed to the random effects case, in which they are
considered observations from a random variable.

First, we try to model the transfer rate as a function of the main effects
of the factors without interactions. The results are not satisfactory since the
errors (difference between the observed and the predicted values) do not satisfy
the hypothesis of independence, normality and equal variance, required for the
ANOVA. The problem disappears by transforming the response variables by
means of a logarithm, and considering some interactions in the model. Following
the Principle of Parsimony [9], we have finally accepted the following model for
the four access patterns analyzed in this paper:

yijkml = µ + Oi + Dj + Ak + Sl + Bm +
+(OD)ij + (OA)ik + (OS)il + (OB)im + (DA)jk +
+(AS)kl + (AB)km + (SB)lm + eijklm (1)

for i = 1..2 (2 levels for factor O), j = 1..3 (3 levels for factor D), k = 1..6 (6
levels for factor A), l = 1..3 (3 levels for factor S), and m = 1..6 (6 levels for
factor B) where,

1. yijkml is the logarithm of the average transfer rate of 4 executions of the
application, that have been run under conditions i, j, k,m, l of the factors.

2. µ is known as the general average. In our case, it represents the mean value
of the logarithm of the average transfer rate expected if the conditions under
which the observation has been obtained are unknown.

3. Oi, Dj , Ak, Sl and Bm correspond to the main effects of the five factors ex-
plained before. Specifically, Oi corresponds to the effect of the ith level of
O, Dj corresponds to the effect of the j th level of D, and so on. For being
a fixed effects model, the conditions

∑
i Oi =

∑
j Dj =

∑
k Ak =

∑
l Sl =∑

m Bm = 0 must be satisfied.
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4. (OD)ij corresponds to the interaction of the ith level of O with the j th
level of D. Those constants must verify that ∀i, ∑

j (OD)ij = 0 and ∀j,∑
i (OD)ij = 0. Analogously, (OA)ik , (OS)il, (OB)im, (DA)jk , (AS)kl,

(AB)km and (SB)lm correspond to the different interactions between the
levels of the corresponding factors, and the corresponding analogous restric-
tions must be verified.

5. eijklm corresponds to the experimental error and contains the information
in the data which is not explained by the considered factors.

However, for random reads, the model above can be simplified since some
interactions are not statistically significant. The simplified model is:

yijkml = µ + Oi + Dj + Ak + Sl + Bm +
+(OD)ij + (OS)il + (OB)im + (AB)km + eijklm (2)

The R-Squares of the four response variables modeled (sequential reads and
writes, and random reads and writes) are 0.81, 0.95, 0.99 and 0.99 respectively,
using model (1) for all the cases except for random reads, where we use model
(2). This means that the models explain the corresponding percentage of the
total variability in the data (i.e. 81% for 0.81). The error terms for each model
are independent and follow a normal distribution with zero mean and constant
variance. Therefore we can accept model (1) for sequential I/O activity and
random writes and model (2) for random reads.

5 Discussion

In the following paragraphs we dissect the general and specific characteristics
of the four types of accesses that we exercised: sequential reads and writes, and
random reads and writes. Although the models characterize the logarithm of
the transfer rate, we always refer to the transfer rate of the I/O subsystem for
simplicity in the text. All the plots show averages obtained from real executions.

5.1 Single Factor Analysis

First of all, it is remarkable that the models show an important difference be-
tween the levels of factor O, OS buffered/unbuffered accesses. While OS buffered
accesses work better in sequential reads, unbuffered accesses work better in the
rest of the cases. This can be understood from the fact that the OS monitors
sequential read access patterns and prefetches data blocks in those cases.

A general characteristic for factor A is that, in random accesses, the larger
the number of agents, the better, while in sequential accesses, the smaller the
number of agents, the better. An explanation to this follows. One of the strate-
gies to maximize throughput is to sort disk accesses to reduce the number of
backward and forward disk arm movements [10]. Therefore, in random accesses,
a small number of agents may cause the disk arms to move backward and for-
ward constantly. A larger number of random accesses (i.e. a larger number of
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agents) causes more chance to have accesses to be on the route between two
far away accesses, improving the usage of the resource. On the other hand, in
sequential accesses, there is a trade off between the number of accesses and the
randomness introduced by having several sequential accesses along a significant
lapse of time.

Factors D and S increase the transfer rate of the I/O subsystem as their
values increase. Finally, although factor B behaves in the same way, there are
cases where its influence is unnoticeable.

5.2 Multiple Factor Analysis

Now we analyze the most significant interactions between pairs of factors for the
different access patterns.

Sequential Reads. Among the interactions modeled for this type of I/O ac-
cesses, we found that the most interesting were the two shown in Figure 1: (top
chart) between the OS buffered/unbuffered I/O, factor O, and the size of the ap-
plication buffers, factor S, and (bottom chart) between OS buffered/unbuffered
I/O, factor O, and the number of application buffers used, factor B.

As shown in Figure 1, OS buffered I/O always behaves better than unbuffered
I/O for sequential reads. Also, the interactions show that both increasing the
number of application buffers (factor B) or their size (factor S) benefits un-
buffered I/O while, in general, it is less significant for OS buffered I/O through-
put. This makes sense since the OS prefetches or reads data ahead when it
detects sequential access patterns. On the other hand, unbuffered I/O improves
with larger number and size of buffers (factors B and S respectively) because
the bandwidth of the I/O is exercised more intensely either with more agents in
parallel or with larger data sets accessed sequentially that, in both cases, allow
for better throughput.

Sequential Writes. The interactions that we chose in this case for their signifi-
cance are shown in Figure 2: (top chart) between the number of agents, factor A,
and the OS buffered/unbuffered I/O, factor O, and (bottom chart) between the
number of agents, factor A, and the number of buffers per agent, factor B.

The first interaction shows how increasing from one agent to two decreases
the performance of the I/O subsystem in OS buffered accesses. This is caused by
the randomness added by one more agent accessing a different set of data. The
performance for two agents is sustained for more agents as shown in the same
plot. Note that if we increase the size of the buffer (not shown in the plots),
we improve the performance, showing that increasing the sequentiality benefits
performance.

Turning to the plot at the bottom, we can see that the number of buffers used
per agent saturates the performance at a certain point with 8 or 16 buffers per
agent for one agent and more for more agents. This shows that having a larger
number of buffers allows for a better planning of the I/O activity when an agent
is writing data to the disks. This is also true when we increase the number of agents
but, in those cases, the randomness and the number of context switches introduced
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Fig. 1. (top) Interaction between OS buffered I/O, factor O, and the application buffer
size, factor S, and (bottom) interaction between OS buffered I/O, factor O, and the
number of application buffers, factor B, for sequential data reads

due to a larger number of agents reduces significantly the performance of the sys-
tem. Therefore, the performance decreases when the number of agents increases.

In general, we can say that it is beneficial to have a large number of buffers
per agent. In particular, the performance starts to saturate at 16 to 32 buffers
for the case of one agent.

Finally, not in the plots, we observe that the interaction between the number
of buffers per agent (factor B) and their size (factor S) is also significant. In
this case, the smaller the size of the buffer, the more beneficial it is to have a
larger number of buffers. In any case, the combination of large buffers with large
number of buffers is the best, even though it is more important to have large
buffers than a large number of them.
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Fig. 2. (top) Interaction between OS buffered I/O, factor O, and the number of agents,
factor A, and (bottom) interaction between the number of agents, factor A, and the
number of buffers per agent, factor B, for sequential data writes

Random Reads and Random Writes. As a general observation, in the plot
of Figure 3 we observe that a larger number of agents is beneficial for random
operations, as opposed to sequential operations (plot at the bottom in Figure 2),
where it was better to have less agents.

More specifically, in the plot of Figure 3, we show the interaction between the
number of buffers per agent (factor B) and the number of agents (factor A) for ran-
dom reads (the behaviour for random writes is similar although the model for ran-
dom reads is simpler). The plot shows a clear tendency to converge to an asymp-
tote, with larger numbers of agents converging faster. This is so because there is
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Fig. 3. Interaction between the number of agents, factor A, and the number of buffers
per agent, factor B, for random data reads

a better planing of the resources when the number of agents and buffers is large.
However, the size of the buffer (not shown in the plot) does not have a significant
interaction neither on the number of agents nor on the number of buffers.

6 Related Work

There is a significant amount of work on synthetic workload generation tools for
Unix-like systems as Bonnie [2], LMbench [3] and FileBench [4]. However, those
softwares do not have all the features IOAgent offers and we have used here, as
explained above.

On the other hand, we are not aware of the existence of a comprehensive
study of the performance of the Linux asynchronous I/O on parallel devices be-
fore, or the Linux I/O performance on Power-based architectures. Moreover, our
characterization can be regarded as the first one to use statistical methods for
the analysis of the results. However, we want to mention the following pieces
of work related to Linux I/O characterization, as examples. Ram Pai et al. [11]
used iozone to study the performance improvement through readahead opti-

Table 3. Recommended configurations. SNS stands for Statistically Not Significant

Access Buffered Number of Buffer Number of
pattern mode agents size buffers

Sequential reads Buffered small large SNS
Sequential writes Unbuffered small SNS large

Random reads and writes Unbuffered large SNS large
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mization. Unfortunately, the tool used did not allow to test the optimizations
under the Linux native asynchronous I/O. Also, Suparna et al. [12] analyzed
the performance and robustness of the new Linux asynchronous I/O for enter-
prise workloads. The main difference between the evaluation done in this paper
and that in [12] is that we give a more generic view and make extensive use of
statistical infrastructure to validate the model presented.

7 Conclusions

This paper shows the importance of using a solid software and mathematical
infrastructure for the evaluation of hardware/software systems. Our most impor-
tant conclusion is that using a workload generator and a statistical methodology,
we can extract solid and sound conclusions about the interaction of a simulated
application, the OS and the hardware at use, in particular, the I/O subsystem.

We have generated test cases for the evaluation of the I/O subsystem of an
IBM OpenPower 710. With more than 10 thousand execution results, we have
built a statistical model that describes and fits accurately the behaviour of the
I/O subsystem. Table 1 summarizes the best configurations for the four scenarios
analyzed in this paper.

From the point of view of the use of IOAgent in a parallel environment, we
show that the benefits obtained with an increase in the degree of parallelism is
not straight forward.
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5. Sergio Gómez-Villamor, John Tran, Steve Rees, Victor Muntés-Mulero, and Josep-
L. Larriba-Pey. IOAgent: Leveraging the Application Analysis of Workload Effects.
Technical Report UPC-DAC-RR-2005-49, Department of Computer Architecture,
Universitat Politecnica de Catalunya, 2005.

6. DAMA-UPC. Data Management group at Universitat Politècnica de Catalunya.
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Abstract. Resource management systems and tool support are two important 
factors for efficiently developing applications in large clusters. On the one 
hand, management systems (in the form of batch queue systems) are 
responsible for all issues related to executing jobs on the existing machines. On 
the other hand, run-time tools (in the form of debuggers, tracers, performance 
analyzers, etc.) are used to guarantee the correctness and the efficiency of 
execution. Executing an application under the control of both a resource 
management system and a run-time tool is still a challenging problem in most 
cases. Using run-time tools might be difficult or even impossible in usual 
environments due to the restrictions imposed by resource managers. We 
propose TDP-Shell as a framework for providing the necessary mechanisms to 
enable and simplify using run-time tools under a specific resource management 
system. We have analyzed the essential interactions between common run-time 
tools and resource management systems and implemented a pilot TDP-Shell. 
The paper describes the main components of TDP-Shell and its use with some 
illustrative examples.   

1   Introduction 

Large distributed clusters are becoming a common platform for running compute-
intensive applications. Developing applications that run in these environments is still 
a difficult task, even after several decades of intense research on methodologies and 
supporting tools. The intrinsic complexity of distributed systems and the continuous 
changes in hardware, operating systems and middleware platforms contribute to this 
complexity. Run-time tools play an important role in program development and we 
can find tools of various types to help programmers to develop, optimize and maintain 
code [1][2]. These tools can be used for debugging, performance analysis, program 
tracing, program flow visualization and computational steering. 

While these tools are readily available in the programmer’s desktop computer, 
when programs move into a distributed environment their usage and availability 
                                                           
*  This work was supported by MEyC-Spain under contract TIN 2004-03388, and partially 
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become more difficult. On one hand, the required components of the run-time tools 
may not be in place and, on the other hand, the run-time tool may not be able to carry 
out some necessary actions to control and monitor the application. These problems 
generally arise due to conflicts between executing run-time tools and the existence of 
resource management systems that schedule access to the distributed resources. 
Resource management software is responsible for accessing resources and providing 
the resources needed to run a job, as well as monitoring the job’s execution and 
retrieving any results produced by the job. It plays a crucial role in any distributed 
cluster because it guarantees that applications are executed seamlessly and securely. 
Common resource management systems are used in local clusters in the form of batch 
queuing environments (e.g. Condor [3] or PBS[4]).  

Using run-time tools in a distributed environment is difficult because of complex 
interactions between the application program, operating system, and layers of job and 
resource management software. This leads to situations where executing a run-time 
tool to monitor an application is incompatible with the existence of a resource 
management system unless the run-time tool is individually ported and adapted to run 
under each particular resource management system. We refer to this problem as a 
problem of interoperability between run-time tools and resource management 
systems. By interoperability, we mean the ability of different tools and resource 
managers to co-operate in controlling user applications by using common services and 
communication mechanisms.  

A different approach to the interoperability problem was also considered in the 
literature when the concept of interoperable tools was used by some authors to refer to 
using more than one run-time tool in a user’s program [5][6][7][8]. For instance, 
using a debugger and a performance analyzer concurrently is an example of two inter-
operable tools. In this case, the problem of interoperability applies to sets of tools that 
work at the same level, while in our work we consider resource managers and run-
time tools, which have a different hierarchy in the system. Run-time tools have to run 
under the control and supervision of resource managers.  

There are few references to this case of the interoperability problem in the 
literature on development tools for distributed systems. The TDP (Tool Daemon 
Protocol) [9] constitutes a recent contribution aimed at providing a standard interface 
that codifies the essential interactions between the run-time tool, the resource 
manager and the application program in order to make them interoperable. Using 
TDP-enabled tools and resource managers significantly simplifies the interoperability 
problem because it reduces the porting effort. Obviously, this requires modifications 
in existing tools and resource management systems in order to include the necessary 
TDP pieces. This limitation of TDP has motivated the continuation of this work 
towards TDP-Shell, a framework intended to provide interoperability in a flexible and 
easy way, which does not require changes in run-time tools or in resource managers. 
TDP-Shell provides a scripting-like language that allows programmable steps to be 
specified to guarantee their cooperation while executing a user application with 
maximum transparency and portability. It also uses agents interposed between the 
resource manager and the run-time tool that execute all these programmed steps. 

The rest of the paper is organized as follows. Next, in Section 2, we discuss the 
problem background and we review the main characteristics of TDP, which has been 
used as a basis for TDP-Shell. Section 3 describes the general architecture of  
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TDP-Shell and Section 4 illustrates usage examples of TDP-Shell. We present 
conclusions and future work in Section 5. 

2   Problem Background 

Analysis of run-time tools and resource management environments shows a common 
architecture based on the existence of two main pieces: a front-end part that runs on 
the user’s desktop computer and a back-end part that runs on the remote host where 
the user’s application is also running. This common configuration requires a 
communication channel (typically a TCP/IP connection) that is established between 
the front-end and the back-end processes.  

There are several crucial issues that must be addressed when an application 
running under the control of a resource management system also has to be monitored 
by a run-time tool.  

• Process creation: This operation can be in conflict with a tool such as a 
debugger or profiler that also expects to launch the process. While most 
sophisticated run-time tools have the ability to attach to a running process, they 
cannot handle the case when the tool wants to attach to the process before it 
starts execution. There might be scenarios in which an application process is 
created but does not start, so the run-time tool attaches to the process and 
performs its initial processing, and then starts the application. Tools such as gdb, 
Totalview, and Paradyn use this technique. The appropriate information must be 
provided to the run-time tool so that it can find and operate on the application 
program. 

• Tool creation: Similarly to the application, the resource manager is responsible 
for launching the run-time tool. This action also implies that configuration and 
data files needed by the run-time tool are transferred to the execution nodes. The 
run-time tool might be launched before the application is created (as above) or 
launched afterwards. In this second case, the resource manager must provide the 
appropriate information to the run-time tool so that it can attach to and operate 
on the application. 

• Process monitoring and control: In the course of normal operation, the resource 
manager may pause and resume or vacate the application process. All these 
actions should also affect the run-time tool back-end, while the tool front-end is 
notified somehow.  

• Front-end/back-end coordination: The front-end and the back-end of the run-
time tool need to communicate and this communication is typically done with 
TCP/IP sockets. This communication can generally be established by a host/port 
number pair that must be provided either to the front-end or to the back-end 
when the other party has started execution. Executing a back-end controlled by 
the resource manager implies that in most cases this information is not known 
before hand and the front-end must wait until the resource manager allocates a 
particular resource and starts the back-end there. Therefore, a synchronization 
and coordination mechanism is required to guarantee a proper connection 
between the front–end and the back-end. 
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TDP-Shell is specifically targeted at the above mentioned issues, which are related 
to the problem of interoperability between a resource manager and a run-time tool. 
Other significant works have studied the problem of interoperability between run-time 
tools and the issues involved in coordinating the interactions between multiple run-
time tools. While TDP-Shell is designed to allow multiple tools to be launched for a 
given application, the interactions between these tools must be coordinated by the 
tools themselves.  

To the best of our knowledge, no other significant works have been proposed to 
deal with the interoperability problem as considered in this paper. There are isolated 
solutions (such as Totalview [10] running under MPICH) but only the Tool Daemon 
Protocol (TDP) mentioned in the introduction addresses the problem in a general way 
by proposing an interface that codifies the essential interactions between run-time 
tools and resource managers. 

2.1   The Tool Daemon Protocol (TDP) Library 

Our work on TDP-Shell uses the basic functionality provided by the Tool Daemon 
Protocol library. The TDP library provides three main groups of services: process 
management, inter-daemon communication interface and event notification. We 
outline below the main features related to these three groups. The core component of 
TDP consists in an Attribute Space that is used as a medium for data exchanging, for 
process synchronization and for event notification. The Attribute Space has many 
similarities with a Linda tuple space [11]. The two basic Attribute Space primitives 
are tdp_get and tdp_put. Information in the shared environment space is kept in the 
form of (attribute, value) pairs, where both the attribute and value are constrained to 
only being null terminated strings. An attribute consists simply in a character string 
that names data in the shared space. In the current implementation, the attribute space 
is supported by a Central Attribute Space Service that runs on the front-end machine. 
Any process using the TDP library can access the attribute space of the CASS.  

The basic functions to work with the attribute space are the following: 

- tdp_get: obtains the value of a given attribute from the attribute space 
- tdp_put: inserts a new (attribute, value) pair into the attribute space. 
- tdp_del: obtains and removes a given attribute from the space. 

These operations block forms of communication between a daemon and the CASS. 
Asynchronous versions for retrieving and storing information from the shared space 
are also available: (tdp_async_get, tdp_async_put and tdp_aync_del).  

Finally, the TDP library provides several process management functions that are 
used to create, destroy, attach to, detach from, suspend or resume processes. While 
similar process management functions are present in common operating systems, TDP 
provides its own interfaces that are OS neutral.  

3   The TDP-Shell Architecture 

TDP-Shell is a framework based on two process agents. One agent runs on the front-
end machine (referred to as TDP-SC:TDP-Shell Console) and the other agent runs on 
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the back-end machine (referred to as TDP-SA: TDP-Shell Agent). Communication 
between the TDP-SC and the TDP-SA is based on the TDP attribute space. The 
framework also includes a scripting-like language that is used to describe actions that 
must be carried out both at the front-end machine and the back-end machine in order 
to start the run-time tool components and the process application in the right order. 
Both TDP-SC and TDP-SA execute a command file written in the above mentioned 
scripting language. Most of the available commands consist of wrappers to the TDP 
library functions mentioned above. Additionally, the command file may include 
simple assignment and control flow statements. Figure 1 shows the main components 
of the framework and their connection to the resource management and the run-time 
tool daemons. 

 

Fig. 1. Architecture of the TDP-Shell framework 

1. TDP-Shell Console (TDP-SC): this is the process that runs at the front-end 
machine. It receives a job submit command file that specifies all the actions that 
should be carried out in the front-end machine. Among others, the job submit 
command file contains a set of commands to submit the application process to the 
resource manager, commands to start the run-time tool front-end and commands 
for the subsequent steps required to synchronize the run-time tool front-end with 
the run-time tool back-end. TDP-SC also contains the specific logic that 
guarantees that all the necessary components of the run-time tool are transferred to 
the remote machine. It does this by generating an appropriate submit file that is 
later submitted to the resource manager. A specific plug-in for different resource 
managers is used in TDP-SC to generate these submission files. TPD-SC is also 
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responsible for starting the central attribute space and it may run as an interactive 
process or in the background. 

2. TDP-Shell Agent (TDP-SA): this is the process that runs in the back-end machine. 
It is started by the back-end daemon of the resource manager and, similarly to the 
TDP-SC, it executes a command file that specifies the actions that must be carried 
out to start the application process and the run-time tool back-end daemon. The 
command file also contains communication and synchronization actions between 
TDP-SA and TDP-SC through the attribute space provided by the TDP library. 
TDP-SA sits between the resource manager daemon and the application process 
and therefore it is also responsible for forwarding to the latter all control actions 
generated by the former.  

3. TDP-Shell command file: this file contains the set of commands that specify the 
actions that should be carried out either at the front-end machine or at the back-
end machine. Commands are wrappers to the functions provided by the TDP 
library that are combined with flow control statements and local function 
definitions. 

4   Operation of the TDP-Shell 

Below, we briefly sketch the process of submitting a user job using the TDP-Shell.  
1. In the initial state, the front-end and the back-end resource management daemons 

are running in the corresponding machines (see Figure 2). Users supply their 
applications with all the necessary files, a job submission file and two TDP-Shell 
command files (a local one and a remote one). The job submission file is specific 
for each resource management system (for instance, this file could be a shell script 
in PBS and a description file in Condor). 

 

Fig. 2. TDP-Shell operation: initial state 

2. Users create the TDP-Shell Console (using a tdp-sc command). The corresponding 
TDP-Shell command file is provided as a complement to TDP-SC (Figure 3 shows 
an example of the command file that uses gdb as a run-time tool). The TDP-SC 
starts the execution of the TDP-Shell command file. Following the example in  
Figure 3, the attribute space is created once the tdp_init command is called (see 
Figure 4).  
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Fig. 3. TDP-Shell command file example. Left: TDP-Shell Console part; Rigth: TDP-Shell 
Agent part 

3. A job is submitted to the resource manager when the tdp_launch command is 
found. The TDP-Shell Console creates a special submission file taking into 
account the particular resource manager used in the system (in our example, 
$RESOURCE_MANAGER = Condor), the original job submission file 
($JOB_SUBMIT_FILE = job.cfg) and if necessary the binaries and other 
additional files required by the back-end daemon of the run-time tool (in our 
example, we assume that these binaries are available in every remote machine, so 
they don’t need to be transferred). A specific plug-in for each resource 
management system (see Figure 1) is responsible for generating the special 
submission file. Actually, TDP-SC submits a job that consists in the TDP-Shell 
Agent. The information about the original user’s job and the run-time tool are 
combined in this TDP-SA job automatically and transparently. As a consequence, 
when the resource manager finds a suitable machine for the job, it will actually 

tdp_gdb_commands.tdp tdp_gdbserver_commands.tdp 
$RESOURCE_MANAGER= Condor 
$JOB_SUBMIT_FILE=job.cfg 
$REMOTE_COMMANDS_FILE =tdp_gdbserver_commands.tdp 
 
tdp-include file_to_gdb.sh 
 
tdp-fun fun_error ($error_msg) {              

tdp-print $error_ms 
tdp-exit 

} 
tdp-fun fun_gdbserver_end () {                 

(b1) 
tdp-print _$async_value  

} 
tdp-init 
tdp-asyncget END_GDBSERVER fun_gdbserver_end  
$prog_debug_name=/tdp-tool/bin/demo_prog 
tdp-put PROG_DEBUG=$prog_debug_name 
$ret_fun=tdp-launch 
if ($ret_fun==ERROR) { 

$error_info="ERROR launching the remote gdbserver" 
fun_error $error_info 
tdp-exit 

}  
$port=tdp-get PORT      
$host_remote=tdp-get REMOTE_HOST     
file_to_gdb.sh $host_remote $port $gdb_remote    
$gdb_id=tdp-create_process -interactive gdb -x $gdb_remote     
                                             $prog_debug_name                            
if ($gdb_id==ERROR) { 

$error_info="ERROR creating the gdb process" 
tdp-asyncput END_GDB=$error_info                      

fun_error $error_info 

} 
repeat ($ret_fun!=FINISH) { 

$ret_fun=tdp-process-status $gdb_id 
if ($ret_fun==ERROR){ 

$error_info="ERROR during execution of gdb" 
tdp-asyncput END_GDB=$error_info          
fun_error $error_info 

} 
}  
tdp-asyncput END_GDB=”gdb has finished”   
tdp-exit 

tdp-include hostname.sh 

 
tdp-fun fun_error ($error_msg) {                 
    tdp-asyncput ERROR_GDBSERVER=$error_msg                       
    tdp-exit 
} 
tdp-fun  fun_gdb_end () {                                                            

 tdp-exit 
} 
 
tdp-init 
tdp-asyncget END_GDB fun_gdb_end                                         
 
hostname.sh  &$local_host                                                            
$prog_debug=tdp-get PROG_DEBUG 
 
$process_id=tdp-create_process -paussed $prog_dubug                 
if ($process_id==ERROR) { 

error_info="ERROR paussing the  program to debug " 
fun_error $error_info 

}  
 
$gdbserver_id=tdp-create_process gdbserver $local_host:5000 
                                                       -atach 'pidof $prog_debug'         
if ($gdbserver_id==ERROR) { 

$error_info="ERROR in the gdbserver command"  
fun_error $error_info 

}  
 
tdp-put PORT=5000                
tdp-put REMOTE_HOST=$local_host                                     
 
repeat ($ret_fun!=FINISH) { 
$ret_fun=tdp-process-status $gdbserver_id 

if ($ret_fun==ERROR){ 
$error_info="ERROR during execution of gdbserver  " 
fun_error $error_info 

} 
}  
 
tdp-asyncput END_GDBSERVER=”gdbserver has finished”         
tdp-exit 
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start an instance of the TDP-Shell Agent. The TDP-SA command file (see 
example of TDP-SA command file on the right side of Figure 3), the user job files 
and the run-time tool files will also be copied in the same machine. The TDP-SA 
starts the execution of the command file and joins the attribute space when the 
tdp_init command is called (see Figure 5). 

 

Fig. 4. TDP-Shell operation: job submission 

 

Fig. 5. TDP-Shell operation: TDP-SA start up 

4. The TDP-SC and the TDP-SA execute their commands concurrently and they 
synchronize or exchange information using the attribute space provided by the 
TDP library. Specifically, the TDP-SC will start the run-time tool front-end 
daemon and the TDP-SA will create the user job and the run-time tool-back end 
daemon (see Figure 6). 

The order for creating these elements depends strongly on the run-time tool’s 
characteristics. Some tools require the front-end daemon to start before the back-
end daemon (i.e. Paradyn [12]), while others require the opposite order  
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(i.e. Totalview [10] or gdb [13]). In order to accommodate the requirements of any 
particular run-time tool, users can control the order of creation by using the 
appropriate synchronization between the TDP-SC and the TDP-SA. In our example 
in Figure 3, the TDP-SA first creates the gdbserver (back-end daemon) and puts two 
attributes in the attribute space (PORT and REMOTE_HOST), which are needed in 
the TDP-SC to start the gdb front-end. The TDP-SC is blocked until these two 
attributes are put in the attribute space and then it starts the gdb front-end. In general, 
most run-time tools publish some information that is required to establish the 
connection between its back-end and front-end daemons properly. Unfortunately, 
there is no common and easy way to obtain this information. For instance, the 
Paradyn front-end publishes its two connection ports in an external file, the gdb 
front-end must know the host name of the machine where the gdbserver has been 
starter, and so on. An external user function provided by the user can be used to 
obtain this information. This external function (shell script) must publish the 
information in the stdout; it is declared with the tdp_include statement and invoked 
within the TDP-Shell command file. Finally, the application can be created either in 
a paused or non-paused way. The choice depends on the ability of the tool to attach 
to the application later and continue it.  

 

Fig. 6. TDP-Shell operation: run-time tool and application start-up 

Once the application and the run-time tools have been successfully created, they 
continue their execution in a normal way. Users may interact with the run-time tool 
front-end and control the execution of the application as usual. TDP-SA detects the 
finalization of the application or the run-time back-end daemon. It will carry out any 
programmed action included in the command file, which includes notifications 
through the attribute space (the example in Figure 3 contains some examples of error 
control statements that are invoked asynchronously).    
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5   Conclusions and Future Work 

Large-scale distributed environments imply a new scenario that requires new 
mechanisms that enable run-time monitoring tools to be launched under the control of 
a resource management system. We have developed TDP-Shell as a generic 
framework that is able to deal with a wide range of different run-time tools and 
resource managers. TDP-Shell uses a simple and easy notation mechanism, similar to 
the one exhibited by most OS shells, to specify the interactions between the run-time 
tool and the user application when executed by a given resource management system. 
TDP-Shell is based on two agents that have little impact on the normal execution of 
the application and introduce minimum overhead (mostly at the application launching 
time). Our current prototype includes two resource manager plug-ins (one for PBS 
and one for Condor) and it has been successfully used to submit sequential 
applications to these two batch systems and monitor them using gdb and Paradyn. 
Currently, a user is still limited to specifying the usage of a run-time tool at the 
submission time and it is not possible to start a run-time tool on-the-fly if it was not 
specified when the application was submitted. Our future aims are to overcome this 
limitation and also to support parallel applications (based on MPI). 
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Abstract. Cache performance significantly influences the computation
power of modern processors. With the trend of microprocessor design
for both general use and embedded systems towards chip-multiple, cache
performance becomes more important because an off-chip access is rather
expensive in comparison with on-chip references. This means cache lo-
cality optimization remains a hot research area for the next generation
of computer architectures.

In this paper we present a tool environment aiming at providing the
programmers sufficient support in the task of optimizing source codes
for better runtime cache behavior. This environment contains a set of
tools ranging from profiling, analysis, and simulation tools for gathering
performance data, to visualization tools for graphical presentation and
platforms for program development. Together, these tools establish a
feedback loop for tuning cache performance on current and emerging
uniprocessor and multiprocessor systems.

1 Introduction

Processor speed is growing at an exponential rate. In contrast, the increase of
memory speed is rather lower. This results in an ever widening gap and the con-
tinuously growing memory wall. Uniprocessor chips usually rely on large cache
size to overcome the problem, however, this solution is often not efficient due
to the complexity in both application access pattern and the memory system.
In addition, such solutions can not be commonly applied to chip-multiprocessor
machines, while the increase in number of on-chip processors usually results in
the decrease of per-processor caches.

For a deeper insight into the influence of cache memories we examine a simple,
easy-to-understand example. Suppose a program generate 180 millions memory
accesses during execution. If each memory access takes 50ns, 9 seconds are needed
to access the memory. Would 20% of the data be found in cache, which is 20-
fold faster than the main memory, the time for memory operation takes 7.29
seconds, forming an improvement of 19%. If the cache access behavior could be
optimized and 80% of the data was acquired from the cache, the time for data
accesses would only account for 4.95 seconds, which is a 56% improvement to
the no-cache version.
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This example depicts that cache performance can significantly affect the over-
all execution behavior of an application. It also demonstrates the necessity of
code optimization with respect to cache performance. A prerequisite for this
kind of optimization is the cache access behavior and the access pattern of ap-
plications. For this knowledge, programmers must rely on the help of tools, since
static analysis of the source code usually show inefficiency and tedious work.

In this case, a visualization tool is needed to present such access pattern and
the runtime behavior in user understandable manner. This tool, in turn, requires
performance data, potentially not at high-level but in detail and covering various
aspects.

Actually, modern processors offer a set of performance counters to collect
specific events including those about caches. This helps to locate performance
bottlenecks, however, does not suffice for a comprehensive understanding of the
access pattern and behavior. For example, it does not present the reason of
misses; it also say nothing about the affinity among data accesses. Therefore,
due to this limit, most existing visualization tools are only capable of providing
an environment for programmers to analyze the problem of the code and to
detect the regions or data structures responsible for the poor performance. It
is difficult or even impossible for users to detect an appropriate optimization
scheme with their help.

In this case we implemented a set of tools with the goal of efficiently helping
the users in locality optimization by presenting both the problem and hints for
solutions. This toolset contains the following tools:

– A visualization tool that displays the performance data in user-
understandable way. In contrast to existing tools, this cache visualizer not
only shows the updates of cache contents but also, and with more endeavor,
depicts the reason of cache misses enabling the detection of optimization
strategies.

– A profiling tool that utilizes performance counters to collect information
about individual events like cache hit/miss, total memory access, and access
latency.

– A pattern analyzer that detects repeated address sequence and access stride.
The former helps to allocate data with spatial locality in the same cache
block, while the latter can be used to guide software prefetching.

– A cache simulator that models the runtime cache activities and analyzes the
feature of cache misses.

– A program development environment that establishes a platform for appli-
cation design.

All these tools work on both sequential and parallel applications, hence can
be used to optimize the data locality on both uniprocessor and multiprocessor
architectures.

In the following, Section 2 depicts the whole infrastructure of the toolset. This
is followed by a detailed description of individual tools, first the visualization
tool in Section 3, then the tools for data acquisition in Section 4, and lastly
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the development environment in Section 5. In Section 3 we also demonstrate
how to apply the visualized information to optimize applications towards better
runtime cache performance. The paper concludes in Section 6 with some current
and future directions.

2 Infrastructure of the Toolset

The infrastructure of the toolset is depicted in Figure 1. As shown on the most
right side of the figure, the program development environment is the core of
this infrastructure. From there execution commands can be issued and perfor-
mance profiling, pattern analyzing, cache simulation, and visualization can be
started. The profiling has to be done during the execution of an application
because it relies on the performance counters to acquire performance data. A
memory reference trace is also generated at the runtime. This trace records all
memory accesses performed during the program run. The trace is used as input
of both the pattern analyzer and the cache simulator which in turn produce
access patterns and cache miss information individually. Performance data from
the profiler and the cache simulator is displayed by the visualization tool, where
the profiler contributes statistical numbers, while the simulator provides cache
miss analysis and other detailed information about the cache behavior like the
runtime cache operations. The visualization of the output from the Analyzer,
however, is integrated in the development environment due to the combination
with source codes.

Execution on
target machine

Profiler

Program development
environment

Visualization
tool

Cache statistics

Execution command (make,...)

Execution monitoring

Analyzer

Optimized
version

Access pattern

Simulation command

performance counter

Trace

Miss analysisCache
simulation

Accessing

Reference analyzing

Fig. 1. Infrastructure of the toolset

Figure 1 also demonstrates the feedback loop for tuning cache performance.
This loop contains four steps: running the program, gathering performance data,
cache visualization, and optimization in source code. After the optimization,
users can execute the optimized version of the program and examine the op-
timization result using the development environment. If cache problems still
exist, another feedback loop may be started and further optimizations can be
conducted.
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3 Cache Visualization

Core of the tool infrastructure is a visualization tool, called YACO [6], which
shows both bottlenecks and the reason for them. Following the common opti-
mization process, YACO uses a top-down approach to direct the user step-by-
step to detect the problem and the solution. First, users acquire an overview
about the cache access behavior shown by the chosen program. Based on this
overview, users can determine whether an optimization is essential. In the next
step, the access hotspots can be located. After that, the reasons and interrela-
tions between memory references can be detected using the presented informa-
tion about runtime cache operations. This information also enables the user to
select appropriate optimization scheme and related parameters.

Specific feature of YACO, in comparison with existing cache visualization
tools like CACHEVIZ [11], lies in its ability of presenting the miss reason. This
information can guide the user to deploy effective optimization schemes. Actu-
ally, there exist a number of strategies for optimizing the cache locality. However,
individual scheme is usually effective to certain cache miss. For example, array
padding can tackle conflict miss, but not capacity miss. Hence, in order to ade-
quately apply theses techniques users have to know the reason of cache misses.
For this, YACO depicts the runtime activities of both data structures and the
caches enabling the detection of the cache miss reason.

Now we use a matrix multiplication code to demonstrate how YACO helps the
programmers to perform data locality optimization. The code contains mainly
the following loop for computation:

for(i = 0; i < N ; i ++)
for(j = 0; j < N ; j ++)
for(k = 0; k < N ; k ++)
a(i ∗ N + j) = c[i ∗ N + j] + a[i ∗ N + k] ∗ b[k ∗ N + j];

First, YACO’s Performance Overview shows an L1 miss ratio of 54%, render-
ing an optimization as necessary. For optimization we first use the Variable Miss
Overview to locate the optimization target. As illustrated in Figure 2, this view
presents the miss behavior of all data structures in the program, where for each
data structure four columns show the statistics on total misses and each miss
category. Absolute numbers of misses are depicted at the left bottom.

It can be seen that all three matrices introduce cache misses, especially matrix
b. It can be also seen that most misses with a and b are capacity miss, while
with c mapping conflict is the main miss reason.

For a and b this view indicates an insufficient number of cache lines for hold-
ing all the required data within an iteration. Examining the code region above,
it can be observed that each k loop calculates a single element of matrix c and
for this it needs a whole row of a and a whole column of b. More importantly,
the row of a is reused for computing the next element. The capacity miss with
a means that these elements have to be evicted from the cache before being
reused. This problem can be tackled with loop blocking, an efficient approach
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Fig. 2. Variable Miss Overview

for reducing capacity miss [8]. With blocking we generate the following code:

for(block = 0; block < N ; block+= N/2)
for(i = 0; i < N ; i ++)
for(j = 0; j < N ; j ++)
for(k = block; k < block+N/2; k ++)
c(i ∗ N + j) = c[i ∗ N + j] + a[i ∗ N + k] ∗ b[k ∗ N + j];

The difference with the original code lies in that the innermost loop (loop k)
does not perform the whole work for generating an element of matrix c; rather
it does only a half of the whole work. The additional loop with block guarantees
the whole work to be covered.

This optimization introduces a significant performance gain, which can be ob-
served in Figure 3, which illustrates two Performance Overview of YACO showing
the overall cache performance of both unoptimized version and the version with
blocking. Observing the second column of both diagrams it can be noted that
the number of cache hits is significantly increased with the optimization. As a
result, the cache hit ratio raises from 46% to 62%.

For matrix c, however, a further study on conflict is needed in order to decide
how to optimize the code. For this, we examine the Cache Set view of YACO,
which shows the content update in the cache.

As depicted in Figure 4, this view contains several horizontal blocks, in this
case 2 blocks, which corresponds to the cache lines in a cache set. These blocks
demonstrate the operations and content update in the specific set. The oper-
ations are presented in chronological order with the right followed by the left.
Figure 4 shows the operations of initializing the last few elements of matrix b
and the begin of calculating the first element of matrix c.
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Fig. 3. Optimization with loop blocking

Fig. 4. The Cache Set view of set 0 in L1

For each operation, the operation type, which can be a load, a replacement,
or a hit, and the operation target, i.e. a variable or an element in an array, are
presented. Examining line 1 it can be seen that the same element of matrix c, here
c 0/0 in the form of block/element, is reused but replaced by elements of matrix a
every time after the access. Actually, this corresponds to the computing process
where first a multiplication is performed and then the result is accumulated
to the c element. The multiplication is performed on different elements of a
and b, but the accumulation targets on the same element of c. Hence, better
performance can be achieved if the elements of c can be kept in cache.

An efficient approach to tackle conflict miss is padding [5]. The idea of this
approach is to additionally allocate a memory buffer to change the mapping
behavior of data structures in the cache. Following this approach we add a pad
of one cache line between matrix b and c like this:
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a = (double∗)malloc(sizeof(double) ∗ N ∗N)
b = (double∗)malloc(sizeof(double) ∗ N ∗ N)
d = (double∗)malloc(sizeof(double) ∗ 4)
c = (double∗)malloc(sizeof(double) ∗ N ∗ N)

From the Cache Set views for this code version we see that with the padding
the mapping of matrix c has been changed to set 1 rather than set 0. This intro-
duces cache hits not only with c but also with a. As a result, this optimization
shows a 40% of cache miss reduction which results in a raise of 23% in cache hit
ratio.

All these performance gains have to be a contribution of the visualization
tool that allows the user to detect the miss reason and further the optimization
strategy.

4 Tools for Gathering Cache Performance Data

A prerequisite for any visualization is cache performance data. We currently
rely on three tools to acquire this data with one extending another. Fist we
deploy performance counters to collect information of global cache events. This
information can be used to detect access bottlenecks. We then use a pattern
analyzer to acquire access patterns, such as spatial relationship among references
and access strides. This information shows the user how to accurately use certain
optimization schemes, such as grouping and prefetching, to reduce cache misses.
Finally, we deploy a cache simulator to deliver information about miss feature
and runtime cache activities. This information enables the application of more
efficient optimization schemes like code transformation and array padding.

Data Structure Profiling with Performance Counters. Performance coun-
ters are specially provided by modern architectures to gather performance in-
formation with limited overhead. This feature has to be utilized to first detect
access hotspots where a large number of cache misses occur. For user-level op-
timization, however, the hotspots have to be related to code regions and data
structures. This requires the counters to deliver access addresses together with
the miss report. In this case, we developed a novel data profiler on Itanium 2 [4].
However, this profiler can be ported to other architectures with the requested
counter feature.

Based on the pfmon kernel interface [3], we are able to control and access the
performance counters, and generate a trace file for captured cache miss events.
For each event, this file stores the address of the instruction issuing this access,
the data address, and the latency for acquiring the missing data. For mapping the
addresses to variables in the source code, we rely on the debugging information
in the binary for static data structures and a self-made library for dynamic data
structures. This library is used to instrument the malloc calls and collect the
mapping information. Based on this mapping information and also the source
code, miss events in the trace file are ordered to individual data structures and
as a result miss statistics on them are generated. These statistics can cover the
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whole problem, a single function, or even a code line, allowing hence to exactly
locate the concrete access hotspots.

Pattern Analysis. The second tool for collecting performance data is a pat-
tern analyzer [10] that provides address groups, access strides, and push back
distances. The base of this tool is a memory reference trace, which is acquired
with a code instrumentor. The instrumentor takes an assembly code as input,
marks all memory references, inserts calls for acquiring thread IDs, and gener-
ates an extended version of the code. The execution of this version results in a
creation of the reference trace.

Based on the trace, the analyzer applies appropriate algorithms to detect the
regularity among the references and to give hints about optimization possibilities.
For detecting address groups it applies Teiresias [7], an algorithm often used for
pattern recognition in Bioinformatics, to find accesses which repeatedly occur
together but target different memory locations. This helps to pack the target
addresses of these accesses in the same data block so that the needed data can be
loaded into the cache with the data for the first access, guaranteeing that the rest
accesses are all cache hit. This kind of optimization is called grouping, another
useful technique to enhance the cache performance. However, for deploying this
scheme the knowledge about reference affinity is necessary. In comparison with
common-used compiler-based approach [9], our analyzer is simple and based on
runtime references.

For detecting access strides the analyzer uses an algorithm similar to that
described in [2] to find the access regularity within a data array. The results are
a set of records that describe each detected stride with three parameters: start
address, access distance, and number of repeating. This information can be used
for efficient prefetching, because it shows the address of the next required data.

Additionally, this analysis tool determines for each memory access whether
it is a cache hit or a cache miss by computing the reuse distance and set reuse
distance. For a cache miss, it also calculates the push back distance which shows
how many steps a miss access must be shifted in order to achieve a hit.

The Cache Simulator. Simulation has been generally used to evaluate archi-
tecture design, to understand the behavior of applications and target machines,
to deliver state information, and to optimize system behavior including the cache
performance [1]. Similarly, we developed a cache simulator.

The cache simulator models the runtime cache operations and gathers infor-
mation about cache activities and information exhibiting cache miss reason. It
also uses the memory reference trace as input. For each record in the trace, it
simulates the search process in a real multiprocessor cache hierarchy and stores
the result in an operation sequence file.

For a cache miss, the simulator analyses the reason for it, i.e. whether it is
a cold miss, a conflict miss, or a capacity miss. While cold miss can be simply
identified by examining if an access is a first reference, identifying capacity and
conflict miss has to rely on reuse and set reuse distance, which need specially
designed algorithms to compute efficiently.
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Besides, the cache simulator provides specific functionality for multiprocessor
systems. For example, it models a variety of cache coherence protocols and can
detect false-sharing across processors.

5 Program Development Environment

In order to simplify the user’s task in code optimization, we implemented a
programming environment which builds a platform for code development and
also for integrating all tools.

This environment is mainly composed of three components: window for code
development, window for visualization of access patterns and for comparison of
cache performance by different runs, and window for information like runtime
output.

The first component offers a platform for modifying, compiling, analyzing,
and executing an application. It uses a menu concept to enable the issuing of
execution command or the starting of those tools for data collection and visu-
alization. The second component provides a platform for displaying the access
pattern, in this case the address group and access stride, the hit/miss behavior
of each memory reference, and the execution comparison between transparent
and optimized version of the same program. Address groups are presented using
virtual addresses. However, by clicking an individual group the corresponding
variables to the addresses in the group are immediately marked in the source
code. Similarly, for the view showing the hit/miss behavior users can select any
reference and in the source code all occurrence of the corresponding variable is
marked and in case of a cache miss the position is highlighted, where the refer-
ence has to be issued in order to achieve a cache hit for it. The access stride,
however, is directly presented within the arrays that are depicted using a dia-
gram showing the array elements holding this stride. In addition, the hit/miss
behavior of the access to the elements is also presented.

6 Conclusions

In this paper we introduce a set of tools developed for supporting users in the
task of cache locality optimization. This toolset contains components for acquir-
ing cache performance data, tools for behavior visualization, and platform for
program development. Based on theses facilities, users can detect cache problem
and optimization strategies, and further perform the optimization directly in the
source code.

A limitation of this toolset is the workload size of examined applications
because both the simulator and the pattern analyzer use a reference trace as
input. This trace could be rather large for realistic applications. Currently we
are working on different approaches to reduce the trace size. First, we use smaller
workload size to detect optimization strategies and then deploy these strategies
to realistic applications. This means also a corresponding reduction of the cache
size, which indicates additional burden to users. The second approach is to first
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use counter information to find critical functions and then only instrument these
functions. However, this can still generate large trace file, while most applications
show considerate accesses even within a function. Hence, our third approach is to
generate a reduced trace which only stores the accesses in the first few iterations
of all loops. All theses approaches have to be examined in detail with respect to
accuracy and the trace size.

We also intend to investigate compiler-level optimization. This means the
gathered cache information is delivered to compilers which based on this in-
formation transparently perform the optimization during the generation of exe-
cutables. This will introduce better performance than approaches using heuristic
analysis, because we provide the runtime access pattern for compilers to make
optimization decisions.
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Abstract. Parallel performance tuning naturally involves a diagnosis
process to locate and explain sources of program inefficiency. Proposed
is an approach that exploits parallel computation patterns (models) for
diagnosis discovery. Knowledge of performance problems and inference
rules for hypothesis search are engineered from model semantics and
analysis expertise. In this manner, the performance diagnosis process
can be automated as well as adapted for parallel model variations. We
demonstrate the implementation of model-based performance diagnosis
on the classic Master-Worker pattern. Our results suggest that pattern-
based performance knowledge can provide effective guidance for locating
and explaining performance bugs at a high level of program abstraction.

Keywords: Performance diagnosis, parallel models, master-worker,
measurement, analysis.

1 Introduction

Performance tuning (a.k.a. performance debugging) is a process that attempts
to find and to repair performance problems (performance bugs). For parallel
programs, performance problems may be the result of poor algorithmic choices,
incorrect mapping of the computation to the parallel architecture, or a myriad
of other parallelism behavior and resource usage problems that make a program
slow or inefficient. Expert parallel programmers often approach performance
tuning in a systematic, empirical manner by running experiments on a parallel
computer, generating and analyzing performance data for different parameter
combinations, and then testing performance hypotheses to decide on problems
and prioritize opportunities for improvement. Implicit in this process is the ex-
pert’s knowledge of the program’s code structure, its parallelism approach, and
the relationship of application parameters with performance factors. We can
view performance tuning as involving two steps: detecting and explaining per-
formance problems (a process we call performance diagnosis), and performance
problem repair (commonly referred to as performance optimization). This paper
focuses on parallel performance diagnosis and how it can be supported as an
automated knowledge-based process in performance analysis tools.
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Performance diagnosis, as a process, is best based on understanding of how
expert parallel programmers debug performance problems. That is, we should
regard performance diagnosis as an intelligent system wherein we capture knowl-
edge about performance problems and how to detect them, and then apply this
knowledge in a diagnosis framework. The key idea is to extract performance
knowledge from parallel computational models that represent structural and
communication pattern of a program. The models provide semantically rich de-
scriptions that enable better interpretation and understanding of performance.
The goal is to engineer the performance knowledge to support bottom-up infer-
ence of performance causes effectively. A diagnosis system can then use the per-
formance knowledge for performance problem search and reasoning. The problem
we focus on in this paper is the knowledge engineering required for model-based
performance diagnosis. We will show in a particular scenario, the classic Master-
Worker parallel model, that the performance knowledge derived from parallel
models provides a sound basis for automating performance diagnosis processes
and can explain performance loss from high-level computation semantics.

In Section §2, we more formally discuss performance diagnosis as a general
intelligent process and provide background on why we advocate a model-based
diagnosis approach. From this perspective, Section §3 describes our approach to
engineering performance knowledge and problem inference. A prototype diagno-
sis system, Hercule, was developed based on this approach and is presented. The
Master-Worker pattern is illustrated in section §4 to demonstrate how perfor-
mance knowledge is engineered in Hercule and to show automatic performance
diagnosis in action. Section §5 highlights related research and Section §6 con-
cludes with observations and future work.

2 Model-Based Performance Diagnosis

Performance diagnosis is the process of locating and explaining sources of perfor-
mance loss in a parallel execution. Expert parallel programmers often improve
program performance by iteratively running their programs on a parallel com-
puter, then interpreting the experiment results and performance measurements
to suggest changes to the program. Specifically, the process involves:

Designing and running performance experiments. Parallel computing re-
searchers have developed integrated measurement systems to facilitate per-
formance analysis [18,15,2]. The performance experiments specify input data,
number of processors, and other parameters. The experiments also decide
on points of instrumentation and what information to capture. Performance
data are then collected from experiment runs.

Finding symptoms. We define a symptom as an observation that deviates
from performance expectation. General metrics for evaluating performance
includes execution time, parallelization overhead, speedup, efficiency, and
cost. By comparing the metric values computed from performance data with
what is expected, we can find symptoms such as low scalability, poor effi-
ciency, and high overhead.
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Inferring causes from symptoms. Causes are explanations of observed symp-
toms. Expert programmers interpret performance symptoms at different lev-
els of abstraction. They may explain symptoms by looking at more specific
performance properties [9], such as load balance and communication cost, or
tracking down specific source code fragments that are responsible for major
performance loss. Performance analysis expertise and knowledge about code
structure and parallelization design can help form performance hypotheses,
capture supporting performance information, synthesize raw performance
data to test the hypotheses, and iteratively refine hypotheses toward higher-
level abstractions until some cause is found.

A parallel computational model [13,14], also called a parallel pattern [16] or
programming paradigm [6] in the literature, is a recurring parallel solution to a
class of problems. Typical models include master-worker, pipeline, divide-and-
conquer, and domain decomposition [13]. Models usually describes computa-
tional components and their behaviors (semantics) and how multiple threads of
execution interact and collaborate in a parallel solution (parallelism). Parallel
programming models abstract parallelism common in realistic parallel applica-
tions and serve as a computational basis for parallel program development. It
is possible to extract from them a performance knowledge foundation based on
which we are able to derive performance diagnosis processes tailored to realistic
program implementations. Specifically, we envision that computational models
can play an active role in the following aspects of performance diagnosis:

Selective instrumentation. Performance diagnosis naturally involves map-
ping low-level performance details to higher-level program designs, which
raises the problems of what low-level information to collect and how to spec-
ify experiment to generate the information. Parallel models identify major
computational components in a program, and can therefore guide the code
instrumentation and organize performance data produced.

Detection and interpretation of performance bugs. In a parallel program,
a significant portion of performance inefficiencies is due to process interac-
tions arising from data/control dependency. Parallel models capture infor-
mation about computational structures and process coordination patterns
generic to a broad range of parallel applications. This information provides
a context for describing performance properties and associated behaviors.

Expertanalysisofperformanceproblems. There is a collection of commonly-
used parallel models for constructing parallel applications. Expert knowledge
about the model performance includes typical performance properties and
corresponding factors at the level of program/algorithm design. If we can
represent and manage the performance knowledge in a proper manner, they
will effectively drive diagnosis process with little or no user intervention.

3 Performance Diagnosis Engineering and Hercule

To build a performance diagnosis system, we need to generate performance
knowledge from computational models and represent it in a knowledge base for
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Fig. 1. Generating performance knowledge from
models. The dashed line draws a boundary between
model-based and algorithm/implementation specific
knowledge generation.
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Fig. 2. Hercule Framework

use in experimentation and problem discovery. Extracting performance knowl-
edge from parallel computational models involves four types of actions, which
are shown in Figure 1. The computational modeling captures knowledge of pro-
gram execution semantics as behavioral patterns represented by a set of abstract
events at varying detail levels, depending on the complexity of the model and
diagnosis needs. The purpose of the abstract events in the diagnosis system is
to give contextual informaton for performance modeling, metric analysis, and
diagnosis inferencing.

Performance modeling is carried out based on structural information in the
abstract events. The modeling identifies performance attributes with respect to
the behavior patterns represented by abstract events and model-specific perfor-
mance overhead categories. Performance metrics are then defined, in terms of
performance attributes in related abstract events, to evaluate the performance
properties for problem interpretation. Inference modeling (i.e., performance bug
search) is driven by the metric and property evaluation. Cause inference tries
to explain found performance problems with performance-critical program de-
sign factors, as specific to the particular computational model. The performance
problem analysis and cause refinement are captured in the form of an inference
tree linking symptoms to sources.

Algorithmic implementations of a computational model may introduce new
performance knowledge with regard to behavioral models, performance proper-
ties, performance-critical design factors, or cause inference. Following our four-
step knowledge extraction approach, the new knowledge can be generated by the
users in the form of refinements or extensions of the generic model knowledge, as
shown on the right hand part of Figure 1. In our design and implementation of
a model-based performance diagnosis system, we will allow the expression of al-
gorithmic features and incorporating it into the inference system that is initially
based on generic model knowledge.
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We have built a prototype automatic performance diagnosis system called
Hercule1, which implements the model-based performance diagnosis approach
discussed above; see Figure 2. The Hercule system operates as an expert system
within a parallel performance measurement and analysis toolkit, in this case,
the TAU [2] performance system. Hercule includes a knowledge base composed
of an abstract event library, metrics set, and performance factors for individual
parallel models. Below, we describe in more detail how the performance diagnosis
engineering is accomplished in Hercule.

The abstract event description used in EBBA [4] is adapted in Hercule to
describe behavioral characteristics of a target computational model. The de-
scription of each abstract event type consists of one required component, ex-
pression, and four optional components, constituent event format, associated
events, constraints, and performance attributes. An abstract event usually rep-
resents a sequence of constituent events. A constituent event can be a primitive
event presenting an occurrence of a predefined action in the program (e.g., inter-
process communication or regular routine invocations), or an instance of other
abstract event type. The expression is a specification that names the constituent
events and enforces their occurrence order using event operators. The order can
be sequential (◦), choice (|), concurrent (∆), repetition (+ or *), and occur zero
or one time ([]). Constituent event format specifies the format and/or types of
the constituent events. For primitive events, the format often takes the form of
an ordered tuple that consists of the event identifier, the timestamp when the
event occurred, the event location, etc. For constituent abstract events, their
types are specified. Associated events are a list of related abstract event types,
such as a matching event on a collaborating process or the successive event on
the same process. Constraints indicate what attribute values an instance of an
abstract event type must possess to match its corresponding expression members
and associated events. Performance attributes present performance properties of
the behavior model an abstract event type represents and computing rules to
evaluate them. Figure 3 in the next section shows an example abstract event for
the Master-Worker (M-W) computational model.

Hercule implements the abstract event representation in a Java class library.
The event recognizer in Hercule fits event instances into abstract event descrip-
tions as performance data stream flows through it. It then feeds the event
instances into Hercule’s performance model evaluator - metric evaluator. Per-
formance models in Hercule are coded as Java classes used to represent model-
specific metrics and associated performance formulations. The performance
metrics will be evaluated based on the related abstract event instances. The
event recognizer and metric evaluator can incorporate algorithm-specific abstract
event definitions and metric computing rules.

Perhaps the most interesting part of the Hercule knowledge engineering is the
cause inferencing system. The expert knowledge used to reason about perfor-
mance problems based on model symptoms can be structured as inference trees

1 The name was chosen in the spirit of our earlier performance diagnosis project,
Poirot [12].
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where the root is the symptom to be diagnosed, the branch nodes are interme-
diate observations obtained so far, and the leaf nodes are an explanation of the
root symptom in terms of high-level performance factors. We encode inference
trees with production rules. A production rule consists of one or more perfor-
mance assertions and performance evidences that must be satisfied to prove the
assertions. Hercule makes use of syntax defined in the CLIPS [1] expert system
building tool to describe production rules, and the CLIPS inference engine for
operation. The inference engine provided in CLIPS is particularly helpful in per-
formance diagnosis because it can repeatedly fire rules with original and derived
performance information until no more new facts can be produced, thereby real-
izing automatic performance experiment generation and cause reasoning. Due to
the limitation of space, we refer readers to elsewhere [11] for details of encoding
performance knowledge with CLIPS.

The effort involved in implementing performance knowledge base for a com-
putational model consists of two parts: acquiring knowledge with the approach
presented above and encoding the knowledge with abstract event specification,
performance formulation, and production rules. Work time needed for a perfor-
mance analyst to generate knowledge varies depending on computational com-
plexity of the model and desired detail level of the targeting inference tree.
When using the knowledge base to diagnose a parallel application based on a
parallel model, the developer may need to express the programatic or algorithm
variations with respect to abstract event descriptions, metric computing speci-
fications, and corresponding inference tree. Because the generic knowledge base
is inherited, additional efforts are reduced to adding knowledge specialization.

4 Master-Worker Parallel Pattern and Diagnosis

A widely used parallel computation pattern is the classic Master-Worker (M-W)
model. Here we use the M-W model to demonstrate the performance diagnosis
methodology above and show how it is implemented in the Hercule framework.
Master-Worker models a computation that is decomposed into a number of inde-
pendent tasks of variable length. A master is responsible for assigning the tasks
to a group of workers. Communications are required between the master and
workers before and after processing each task. The workers are independent to
one another. The master usually employs certain task scheduling algorithms to
achieve load balance and minimize workspan. M-W performance factors we iden-
tified, through performance observation of M-W codes and knowledge obtained
from expert performance analysts, are:

– Inherent sequential code fragments in the master.
– Number and complexity of tasks assigned to the workers.
– Task setup costs in the master and the task scheduling method.
– Number of worker processors.
– Task scheduling strategy

In a M-W program, an independent task assigned to a worker process has a
well-defined life cycle: first the worker sends a task request to the master, the
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Fig. 3. An abstract event description of Master-Worker model

master receives the request and sets up a task, it then transfers the data and
task specification to the requesting worker, and the worker processes the task
until finished. At that time, that worker returns the result to the master and
the cycle continues until the worker is instructed to terminate. We specify the
program behaviors and performance properties associated with a task life cycle
by an abstract event type TaskLifeCycle, as shown in Figure 3.

Given the program behavior, we can formulate M-W performance models.
For instance, a worker’s total elapsed time tworker consists of tinit (initialization
cost), tcomp (the amount of time spent computing tasks), tcomm (the amount of
time spent communicating with the master), twait (the amount of time spent
waiting for task assignment or synchronizing with other workers before finaliza-
tion, excluding communication overhead), and tfinal (finalization cost):

tworker = tinit + tcomp + tcomm + twait + tfinal (1)

Whenever we refer to communication time, we mean effective message passing
time that excludes time loss due to communication inefficiencies such as late
sender or late receiver in MPI applications. Rather, waiting time accounts for the
communication inefficiencies with the purpose of making explicit performance
losses attributed to mistimed processor concurrency.

Performance coupling of a worker with the master and the rest of peer work-
ers manifests four performance overheads – tseq (the master initialization and
finalization costs translated to idle overhead in the worker), tw−setup (master
task setup time), tw−bn (blocking time in master bottlenecks), and tw−final (the
cost of synchronization with other workers for finalization).

twait = tseq + tw−setup + tw−bn + tw−final (2)
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Fig. 4. Inference Tree for Performance Diagnosis of M-W programs

The above performance models enable us to define performance metrics specif-
ically tailored to M-W programs. We start with evaluating individual worker
efficiencies to detect a top-level symptom because efficiency is a reflection of
total worker scalability.

worker efficiency :=
tworker
comp

tworker
(3)

Refining each item in model (2), we obtain metrics of worker wait time:

tseq := max{tmaster
init − tworker

init , 0} + max{tmaster
final − tworker

final , 0}

tw−setup :=
M∑
i=1

tisetup, tw−bn :=
M∑
i=1

tiw−bn =
M∑
i=1

(tiwait − tisetup)

tw−final := max
all workers

{Tfin} − Tfin

where M is the number of tasks the worker processes altogether, tisetup the
amount of time for setting up task i, tiw−bn is the waiting time due to master
bottleneck when requesting the ith task, tiwait is the total amount of worker idle
time between sending out request and receiving task i, maxallworkers{Tfin} is
the finish timestamp of the last task computed, and Tfin the last task finish
timestamp of the observed worker processor.

Now we can incorporate these performance factors and metrics in diagnosis
inference rules. An inference tree is created for every symptom. The inference
tree for explaining low efficiency of a worker process, for instance, is shown
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task_setup,   if the process is master
task_processing,  if workers

Time
imbalance

workers

master

master bottlenecks

Fig. 5. Vampir timeline view of an example M-W
program execution

Metric Performance
name loss%
tw−bn 39.2%

tw−setup 34.3%

tw−final 14.8%

tcomm 6.2%

Fig. 6. Metric values of the
run

in Figure 4. The root is the symptom to be diagnosed, the branch nodes are
intermediate observations obtained so far (i.e., a performance evaluation with
respect to a performance metric, such as waiting time is a significant percentage
of total elapsed time), and need further performance evidences to explain, and
the leaf nodes are an explanation of the root symptom in terms of high-level
performance factors. It is interesting to note that nodes at different inference
tree levels may enforce varying experiment specifications. Our diagnosis system
can construct the experiments according to the abstract event descriptions from
which the metrics derive.

We tested Hercule’s performance diagnosis capability for the M-W pattern
using a synthetic M-W application. This allowed us to introduce various known
performance problems (i.e., performance faults) and evaluate whether Hercule
would be able to discover them. All experiments were run on an distributed
memory Pentium Xeon cluster running Linux. The M-W synthetic program was
implemented using MPI.

For the results discussed below, we introduced in the M-W program a perfor-
mance fault targeting the impact of master-request-processing speed on overall
performance. Figure 5 presents a Vampir [3] timeline view of a parallel execution
with one master and six workers. The event trace and profiles are generated by
TAU [2] with only major model components being instrumented. The red regions
in the figure represent task setup periods at the master and task processing pe-
riods at the workers. Light blue regions represent MPI function calls. Note that
blocking (waiting) time of processors is implicitly included in the elapsed time
of blocked MPI Send, MPI Recv and MPI Finalize operations.

Given the program and performance knowledge associated with M-W model,
Hercule will automatically request three experiments during the diagnosis of this
problem. The inference process and diagnosis results of these experiments are
presented in Figure 7. The first experiment collects data for computing efficien-
cies of each worker. The measurement data shows that worker 3 performs worst.
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dyna6-166:~/PerfDiagnosis lili$ ./model_diag MW.clp
Begin diagnosing ...
============================================================================================
Level 1 experiment - collect data for computing worker efficiencies.
--------------------------------------------------------------------------------------------
Worker 3 is least utilized, whose efficiency is 0.385.
============================================================================================
Level 2 experiment - collect data for computing initialization, communication, finalization
costs, and wait (idle) time of worker 3.
--------------------------------------------------------------------------------------------
Waiting time of worker 3 is significant.
============================================================================================
Level 3 experiment - collect data for computing individual waiting time fields.
--------------------------------------------------------------------------------------------
Among lost cycles of worker 3, 14.831% is spent waiting for the last worker to finish up
(time imbalance).
--------------------------------------------------------------------------------------------
Master processing time for assigning task to workers is significant relative to average task
processing time, which causes workers to wait a while for next task assignment. Among lost
cycles of worker 3, 34.301% is spent waiting for master computing next task to assign.
--------------------------------------------------------------------------------------------
Among lost cycles of worker 3, 39.227% is spent waiting for the master to process other
workers’ requests in bottlenecks. This is because master processing time for assigning
task is expensive relative to average task processing time, which causes some workers to
queue up waiting for task assignment.
============================================================================================
Diagnosing finished...

Fig. 7. Diagnosis result output from Hercule of the M-W test program

Then Hercule investigates the performance loss of worker 3 (of course, any worker
can be identified for additional study), and issues the second experiment to eval-
uate individual overheads in equation (1). Waiting time cost stands out as a
result of this inference step. The third experiment then targets performance loss
categories in equation (2). Figure 6 presents model-specific metrics computed
during the diagnosis in the form of percentage that each overhead category con-
tributes to the overall performance loss (i.e., total elapsed execution time minus
effective task processing time). It is important to note that diagnosis results can
be encoded to present output in a manner close to programmer’s reasoning and
understanding of the M-W computation model.

5 Related Research

There are several related projects to our work. Paradyn [15] is a performance
analysis system that automatically locates bottlenecks using the W 3 search
model. According to the model, searching for a performance problem is an it-
erative process of refining the answer to three questions: why is the application
performing poorly, where is the bottleneck, and when does the problem occur.
Unlike Hercule, the performance bugs Paradyn targets are not in direct relation
to parallel program design and not intended for explanation of high-level causes.
In [10], a cause-effect analysis approach is proposed to explain inefficiencies in
distributed programs. It interprets performance losses by comparing earlier ex-
ecution paths of behaviorally inconsistent processes. Similarly, [17] looks for
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cause of communication inefficiencies in message passing programs by classifica-
tion. They train decision trees with real trace data in order to classify individual
communication operations and find inefficient behaviors automatically.

Several research work use parallel computational models in performance mod-
eling and evaluation. [5] evaluates the performance of parallel programs coded
in algorithmic skeletons with process algebras. POETRIES [7] is a performance
tuning tool that takes advantage of the knowledge about the high-level struc-
ture of the application to detect and correct performance drawbacks. It builds
analytical models based on the structures and attributes performance degra-
dation to parameters composing the models. Hercule differs to POETRIES
in that, first, it targets performance explanation and, second, it features a
knowledge-based inference system that diagnoses performance in an automated
manner.

The project closest to Hercule is Kappa-Pi [8]. This is an automatic per-
formance analysis tool that encodes knowledge about commonly-seen perfor-
mance problems into deduction rules at various abstraction levels. It explains
the problem found by building an expression of the highest-level deduced fact
which includes the situation found, the importance of such a problem, and the
program elements involved in the problem. Kappa-Pi has been applied to the
Master-Worker problem with excellent success. Our work builds on the Kappa-
Pi objectives by proposing a systematic approach to extracting knowledge from
high-level parallel design patterns.

6 Conclusions and Future Directions

This paper describes a systematic approach to generating and representing per-
formance knowledge for the purpose of automatic performance diagnosis. The
methodology makes use of operation semantics and parallelism found in par-
allel models as a basis for performance bug search and explanation. In order
to generate performance knowledge from computational models and apply it
to diagnosing realistic parallel programs, we specifically identify methods for
behavioral model representation, performance modeling, metric definition, and
performance bug search and interpretation. The methods address not only per-
formance cause interpretation at high-level program abstractions, but adaptivity
to allow algorithm and implementation variants.

The Hercule framework offers a prototype performance diagnosis system based
on computational patterns. We demonstrated the use of Hercule on the Master-
Worker pattern to validate the approach. However, there is still much work to be
done for further improvement and application of model-based diagnosis. First,
we are encoding additional parallel patterns, such as Wavefront and Divide-and-
Conquer. As parallel applications can use a combination of parallel paradigms,
an important target for our future work is the inclusion of compositional patterns
that allow hierarchical reasoning about performance problems.
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52425 Jülich, Germany
{a.kuehnal, m.a.hermanns, b.mohr, f.wolf}@fz-juelich.de

Abstract. Automatic performance analysis of parallel programs can be accom-
plished by scanning event traces of program execution for patterns representing
inefficient behavior. The temporal and spatial relationships between individual
runtime events recorded in the event trace allow the recognition of wait states
as a result of suboptimal parallel interaction. In our earlier work [1], we have
shown how patterns related to MPI point-to-point and collective communication
can be easily specified using common abstractions that represent execution-state
information and links between related events. In this article, we present new ab-
stractions targeting remote memory access (also referred to as one-sided commu-
nication) as defined in the MPI-2 standard. We also describe how the general struc-
ture of these abstractions differs from our earlier work to accommodate the more
complicated sequence of data-transfer and synchronization operations required
for this type of communication. To demonstrate the benefits of our methodology,
we specify typical performance properties related to one-sided communication.

1 Introduction

Remote memory access (RMA) describes the ability of a process to access a part of
the memory of a remote process directly without explicit participation of the remote
process in the data transfer. Since all parameters for the data transfer are determined
by one process, it is also called one-sided or single-sided communication. One-sided
communication is often made available to the programmer in the form of platform or
vendor-specific libraries, such as SHMEM (Cray/SGI) or LAPI (IBM). In 1997, one-sided
communication was added to the portable MPI standard version 2 [2].

On platforms with special hardware providing RMA support, one-sided communi-
cation can be used to improve the efficiency of parallel applications. For example,
NASA researchers reported a 39% improvement in throughput after replacing MPI-1
non-blocking with MPI-2 one-sided communication in a global atmosphere simulation
program [3]. As more and more scientists adopt this new paradigm to better utilize the
underlying hardware, the demand for performance tools supporting RMA communica-
tion will increase. This is especially important in view of the complicated sequences of
data transfer and synchronization operations involved and the fact that the MPI specifica-
tion leaves a large degree of freedom to implementors regarding the blocking behavior
of corresponding operations.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 47–62, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



48 A. Kühnal et al.

A performance-analysis technique successfully applied to traditional message-
passing applications is event tracing. An event trace records performance-relevant run-
time events, such as routine entries or exits or as sending and receiving point-to-point
messages. The KOJAK tool [4] uses the temporal and spatial relationships between in-
dividual runtime events reflected in the event trace to recognize patterns that occur as
a result of suboptimal parallel interaction. These patterns are specified as compound
events to (i) allow the classification of inefficient behavior by describing the exact cir-
cumstances causing it and to (ii) enable the quantification of wait times incurred.

Compound events consist of multiple primitive events, as recorded in the trace file,
and are connected by relationships, such as message transfers, that are often specific to a
particular parallel programming model, such as MPI. They may be further characterized
by constraints imposing, for example, a certain temporal order of events. To keep the
pattern specifications as simple as possible and also to make the simultaneous search
for different patterns more efficient, KOJAK includes a separate layer with common
abstractions representing execution-state information and links between related events
in terms of which the actual patterns are described.

In our earlier work [1], we have defined abstractions along with typical patterns
describing performance properties in the context of traditional message passing (MPI-1)
and shared-memory (OpenMP) programming. In [5], we provided informal descriptions
of patterns suitable to diagnose inefficiencies related to one-sided communication. In
this article, we outline the formal specification of these new abstractions and patterns.
Compared to the previous ones related to MPI-1 and OpenMP, the abstractions presented
here are more complicated to accommodate the complex sequences of data-transfer and
synchronization operations involved in MPI-2 one-sided communication and to reflect
the intricate inter-process relationships established by groups denoting potential origins
or targets during communication epochs. The new patterns have been incorporated into
the KOJAK tool, taking advantage of the recently added measurement infrastructure for
one-sided communication events reported in [6]. As part of this effort, we have also
specified abstractions and patterns related to SHMEM, which, however, are beyond the
scope of this paper.

The outline of this article is as follows: We start with a short description of MPI-2
RMA communication and synchronization functions in Section 2. In Section 3, we give a
brief overview of related work. In Section 4, we introduce the idea of creating suitable
abstractions on top of which inefficiency patterns can be specified and explain their
general structure. After that, we define abstractions for MPI-2 one-sided communication
in Section 5. To demonstrate the usefulness of our methodology, Section 6 specifies
several example MPI-2 patterns containing wait states the application developer may
wish to identify. In Section 7, we conclude our paper and give an outlook on future
work.

2 MPI-2 One-Sided Communication

The interface for RMA operations defined by MPI-2 differs from the vendor-specific
APIs in many respects. This is to ensure that it can be efficiently implemented on a wide
variety of computing platforms even if a platform does not provide any direct hardware
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support for RMA. The design behind the MPI-2 RMA API specification is similar to that
of weakly coherent memory systems: correct ordering of memory accesses has to be
specified by the user with explicit synchronization calls; for efficiency, the implemen-
tation can delay communication operations until the synchronization calls occur.

MPI does not allow RMA operations to access arbitrary memory locations. They can
access only designated parts of a process’ memory, which are called windows. Windows
must be explicitly initialized (with a call to MPI Win create) and released (with
MPI Win free) by all processes that either provide memory or want to access this
memory. These calls are collective between all participating partners and include an
internal barrier operation. By origin MPI denotes the process that performs an RMA

read or write operation, and by target the process in which the memory is accessed.
There are three RMA communication calls in MPI: MPI Put transfers data from the

caller’s memory to the target memory (remote write); MPI Get transfers data from the
target to the origin (remote read); and MPI Accumulate1 updates locations in the
target memory, for example, by replacing them with sums or products of the local and
remote data values (remote update). These operations are nonblocking: the call initiates
the transfer, but the transfer may continue after the call returns. The transfer is com-
pleted, both at the origin and the target, only when a subsequent synchronization call is
issued by the caller on the involved window object. Only then are the transferred values
(and the associated communication buffers) available to the program. RMA communi-
cation falls in two categories: active target and passive target communication. In both
modes, the parameters of the data transfer are specified only at the origin, however in
active mode, both origin and target processes have to participate in the synchronization
of the RMA accesses. Only in passive mode is the communication and synchronization
completely one-sided.

RMA accesses to locations inside a specific window must occur only within an access
epoch for this window. Such an access epoch starts with an RMA synchronization call,
proceeds with any number of remote read, write, or update operations on this window,
and finally completes with another (matching) synchronization call. Additionally, in
active target communication, a target window can only be accessed within an exposure
epoch. RMA operations issued by an origin process for a target window will access that
target window during the same exposure epoch if and only if they were issued during the
same access epoch. Distinct epochs for a window at the same process must be disjoint.
However, epochs pertaining to different windows may overlap.

MPI provides three RMA synchronization mechanisms:

Fences: The MPI Win fence collective synchronization call is used for active target
communication. An access epoch at an origin process or an exposure epoch at a
target process are started and completed by such a call. All processes who partic-
ipated in the creation of the window synchronize, which in most cases includes a
barrier. The data transfered is only accessible to user code after the fence.

General Active Target Synchronization (GATS): Here, synchronization is reduced:
only pairs of communicating processes synchronize, and they do so only when
needed to correctly order accesses to a window with respect to local accesses to

1 In our model, we consider an accumulate operation as a special version of a put operation and,
therefore, distinguish only between get and put in the remainder.
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that window. An access epoch is started at an origin process by MPI Win start
and is terminated by a call to MPI Win complete. The start call specifies the
group of targets for that epoch. An exposure epoch is started at a target process by
MPI Win post and is completed by MPI Win wait or MPI Win test. Again,
the post call specifies the group of origin processes for that epoch. Data written is
only accessible after the wait (or test) call, however data can only be read after the
complete call.

Locks: Finally, shared and exclusive locks are provided through the MPI Lock and
MPI Unlock calls. They are used for passive target communication. In addition,
they also define the access epoch for this window at the origin. Data read or written
is only accessible from user code after the unlock operation has completed.

It is implementation-defined whether some of the described calls are blocking or non-
blocking; for example, in contrast to other shared memory programming paradigms, the
lock call must not be blocking. For a complete description of MPI-2 RMA communica-
tion see [2].

3 Related Work

Currently, there are only very few tools that support the measurement and analysis of
one-sided communication and synchronization on a wide range of platforms. The well-
known Paradyn tool which performs an automatic on-line bottleneck search, was re-
cently extended to support several major features of MPI-2 [7]. For RMA analysis, it col-
lects basic, process-local statistical data (i.e., transfer counts and execution time spent
in RMA functions). It does not take inter-process relationships into account nor does it
provide detailed trace data. Also, it does not support the analysis of SHMEM programs.
The very portable TAU performance analysis tool environment [8] supports profiling
and tracing of MPI-2 and SHMEM one-sided communication. However, it only monitors
the entry and exit of the RMA functions; it does not provide RMA transfer statistics nor
are the transfers recorded in tracing mode. The commercial Intel Trace Collector tool
(formerly known as VampirTrace) [9] records MPI execution traces. When used with
MPI-2, it does not measure the routines of the general active target synchronization, cre-
ating the wrong impression that useful user calculations are done instead. Also, message
lines show the RMA transfer as completed by the end of the put or get operation, which
does not reflect the user-visible behavior, as specified by the MPI-2 standard. Finally,
it does not record the collective nature of MPI-2 window functions. Besides these there
are also some non-portable vendor tools with similar limitations.

4 State Sequences and Pointer Attributes

Event tracing models the execution of a program as a sequence of events represent-
ing actions relevant to the purpose of the observation. Therefore, the selection of event
types to be observed defines the view of program execution an event trace can provide.
An event model defines the formal properties of that view. It comprises a set of event
types with an associated set of attributes and constraints defining correct event order-
ing. Each event has a location attribute as well as a wall-clock time stamp. The event
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location is an abstraction usually referring to the process or the thread generating an
event. Since the following discussion only considers pure MPI applications, the location
of an event can be regarded as equivalent to the MPI process, as identified by the rank in
MPI COMM WORLD. Another attribute denotes the event type. An event trace is a finite
indexed set of events E := {e1, . . . , ene}. The indexing reflects the time-sequenced
order of event records in the trace file.

To be able to express complex relationships among the constituents of a compound
event, the event model of system observation can be extended by creating instances of
two different categories of abstractions: (i) state sequences and (ii) pointer attributes.
The process of creating these abstractions is called event model enhancement because it
enhances the model’s capabilities to describe complex situations of execution behavior.
We summarize the key concepts below. The interested reader may refer to [10] for more
details.

State sequences. An event happening in a parallel system indicates a change in its
state, thus, events can be regarded as state transitions. An event trace can be seen as a
sequence of state transitions starting at an initial state and changing into the next state,
event by event, until a final state is reached after the last event. The state entered as
the result of an event is a useful abstraction when specifying compound events that
represent inefficient behavior.

The overall state of a parallel system is characterized by different aspects. For ex-
ample, one aspect might be the set of messages being transferred at a given moment,
another aspect might be the dynamic call stack of a process or thread. Such a state aspect
can be conveniently characterized in terms of the events that caused that aspect’s state.
For each of these aspects we can define a state sequence that describes the evolution of
that aspect over time. A state sequence is inductively defined by a transition operator.
The transition operator is applied to the current state and the next event to compute the
next state in the sequence. Since a state sequence describes only one aspect of the sys-
tem, we can combine all state sequences into a vector of state sequences to obtain the
overall-state sequence.

In our earlier work, a state sequence has been defined as a sequence of event sets.
Starting with the empty set, the transition operator either added the current event or
removed events related to the current event, changing the event set describing an as-
pect of the overall system. To conveniently retrieve event sets of interest during trace
analysis, we have defined auxiliary functions that can be applied to individual states
of a sequence. For example, a scheme that proved to be useful to identify individual
collective-operation instances was to collect all events belonging to an instance and re-
trieving it using an auxiliary function upon its completion if needed. Immediately after
this point, the transition operator removes the instance from the set. Later, we will see
that simple event sets are inconvenient to describe patterns involving intertwined steps
of communication and synchronization, such as occur in one-sided communication, and
that a hierarchical grouping of events becomes necessary.

Pointer attributes. Another useful abstraction is a link connecting related events, so
that one can navigate from one event to another related event. An example is a link
from the event of receiving a message back to the corresponding event of sending it.
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This mechanism permits navigation along a path of related events and the definition of
relationships among the constituents of a compound event using such paths. A natural
way of representing such links is to provide event attributes with pointer semantics,
which we call pointer attributes.

5 One-Sided Abstractions

In this section, we describe abstractions suitable as building blocks for the specifica-
tion of inefficiency patterns related to MPI-2 one-sided communication. For reasons of
brevity, we refrain from presenting the unabridged formalism underlying our abstrac-
tions and try to restrict ourselves to key concepts explained in natural language as far
as possible. See [11] for a complete specification.

The state sequences and pointer attributes presented in this article apply to the un-
derlying KOJAK event model, whose relevant portions are summarized in Table 1.

Table 1. Event types in KOJAK relevant to MPI-2 RMA analysis

Abstraction Event type Type specific Attributes
Entering / leaving a region ENTER region id

(e.g., a function) EXIT region id
Leaving an MPI collective function MPICEXIT region id, comm id, root loc, sent,

recvd
Start / end / origin of RMA PUT 1TS window id, rma id, length, dest loc

one-sided transfers PUT 1TE window id, rma id, length, src loc
GET 1TO window id, rma id
GET 1TS window id, rma id, length, dest loc
GET 1TE window id, rma id, length, src loc

Leaving an MPI GATS function MPIWEXIT window id, region id, group id
Leaving an MPI collective RMA function MPIWCEXIT window id, region id, comm id
Locking / unlocking an MPI window WLOCK window id, lock loc, type

WUNLOCK window id, lock loc

The table lists type-specific attributes that are added to the location attribute and the
timestamp mentioned in Section 4. For entries and exits of regions and ,in particular,
MPI functions, we record which region was entered or left. In the case of collective
MPI functions, instead of “normal” EXIT events, special collective events are used to
capture the attributes of the collective operation. This is the communicator, the root
process, and the amounts of data sent and received during this operation. Start and end
of RMA one-sided transfers are marked with PUT 1TS and PUT 1TE (for remote writes
and updates) or with GET 1TS and GET 1TE (for remote reads). For these events, we
collect the source and destination and the amount of data transferred, as well as a unique
RMA operation identifier which allows an easier mapping of # 1TE to the correspond-
ing # 1TS events in the analysis stage later on. For all MPI RMA communication and
synchronization operations we also collect an identification for the window on which
the operation was performed. Exits of MPI-2 functions related to general active target
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synchronization (GATS) are marked with a MPIWEXIT event which also captures the
groups of origin or target processes. For collective MPI-2 RMA functions, we use an
MPIWCEXIT event and record the communicator that defines the group of processes
participating in the collective operation. Finally, MPI window lock and unlock opera-
tions are represented by WLOCK and WUNLOCK events. A more detailed description
of the MPI-2-specific events and their implementation in KOJAK can be found in [6].

Collective operations. In active target mode, access and exposure epochs may be en-
closed in collective fence synchronization operations. The synchronizing character of
these operations may result in wait times when processes reach the fence at different
points in time. The same applies to functions to create and destroy windows. To detect
wait states resulting from collective synchronization, we have defined a state sequence
modeling the progress of collective operations on RMA windows - similar to the one for
MPI-1 collective communication defined in our previous model.

Since the structure of the RMA-collective sequence is nearly identical to the sequence
used in our previous model, we have introduced the concept of generic meta-sequences
that can be instantiated with a type argument to simplify the formulation of sequences
describing arbitrary collective operations. We have created a meta-sequence Cg < T >
collecting the exit events of collective operations carried out by members of a group
g of processes. Depending on the type T of these exit events, this group is identified
either by an MPI communicator, an OpenMP team, or an RMA window. Once all events
of type T belonging to a collective operation instance are present, the complete instance
is removed upon the next event applied to the set. An auxiliary function complete <
T > (e) is provided to query for instances completed by an event e, which is useful to
measure waiting times. The state sequence for collective window operations is created
by instantiating Cg < MPIWCExit >. Note that this abstraction can also be used for
SHMEM collective operations.

Data transfers. Data transfers are modeled as pairs of events: (i) a start event initi-
ating the transfer (i.e., PUT 1TS or GET 1TS) and (ii) an end event completing the
transfer (i.e., PUT 1TE or GET 1TE). KOJAK’s event model observes the MPI-2 syn-
chronization semantics and, therefore, reflects the user-visible behavior of MPI-2 RMA

operations. Figure 1 shows the model for the three different synchronization methods
defined by MPI-2. The transfer line shown in the picture is not part of the model and is
only shown for clarity.

The end GATS calls is modeled with MPIWEXIT events, the end of fences with MPI-
WCEXIT events to capture their collective nature. The transfer-start event is placed at
the source process immediately after the begin of the corresponding communication
function. However, the transfer-end event is placed at the destination process shortly
before the exit of the RMA synchronization function which completes the transfer ac-
cording to the MPI-2 standard rules. Unfortunately, this has an undesired side effect. As
one can see in the figure, this results in a separation of the data transfer for remote reads
from the correspondingMPI Get function. To rectify this situation, we have introduced
a new event GET 1TO indicating time and location of the transfer’s origin.

To access all events belonging to the same data transfer, we have defined pointer
attributes startptr and originptr, which connect the end event with its corresponding
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Fig. 1. Examples of KOJAK’s MPI-2 event model

start event and the start event with its corresponding origin event, respectively. Their
definition is based on state sequences collecting transfer events separately for each lo-
cation (i.e., process) - similar to the queue for point-to-point messages defined in our
earlier model. The identification of events belonging to the same transfer is based on the
rma id attribute assigned during trace generation. Subsequently, we use these pointer at-
tributes to reach start and origin events for given transfer-end events. Beyond that, these
pointer attributes can be useful to calculate matrices with amounts of data transferred
between processes.

Access and exposure epochs in general active target synchronization. The most
challenging part of analyzing MPI-2 one-sided communication is GATS synchronization.
To facilitate cross-process analysis in GATS mode, it is necessary to identify correspond-
ing access and exposure epochs. Here, we present a multi-step method to recognize all
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access epochs belonging to a given exposure epoch (and vice versa) with the goal of
providing all data needed for their analysis. This is the most intricate part of our model
as it requires considering sets of sets of events to reflect the hierarchical grouping of the
events involved. Note that this constitutes an important difference to the abstractions
defined in our earlier work. We start with an introduction of the overall structure of
event sets related to GATS communication:

Data transfer. A put or get operation.
Put operation. A PUT 1TE and its corresponding PUT 1TS event connected by the

startptr attribute.
Get operation. A GET 1TE and its corresponding GET 1TS and GET 1TO events

connected by startptr and originptr attributes.
Epoch. An access or exposure epoch.
Access epoch. Includes two MPIWCEXIT events, one for each call to MPI Win

start and MPI Win complete, plus all GET 1TE events in between at the
same location and referencing the same window to represent all get operations be-
longing to this epoch. Note that put operations are represented by their respective
PUT 1TE events inside the exposure epoch.

Exposure epoch. Includes two MPIWCEXIT events, one for each call to MPI Win
post and MPI Win wait, plus all PUT 1TE events in between at the same loca-
tion and referencing the same window to represent all put operations belonging to
this epoch. Note that get operations are represented by their respective GET 1TE
events inside the access epoch.

Epoch pair. Union of an access epoch at location l with a corresponding exposure
epoch at location k but without any communication events not related to commu-
nication between l and k.

Access transaction. Union of an access epoch at location l with all corresponding ex-
posure epochs at locations k1, . . . , kn, but without any communication events not
related to communication between l and k1, . . . , kn. Figure 2 (left) shows an access
transaction involving one access and two exposure epochs.

Exposure transaction. Union of an exposure epoch at location l with all correspond-
ing access epochs at locations k1, . . . , kn, but without any communication events
not related to communication between l and k1, . . . , kn. Figure 2 (right) shows an
exposure transaction involving one exposure and two access epochs.

Matching GATS-based patterns requires the recognition of the above structures in the
event trace. For this purpose, we have defined a hierarchical system of state sequences
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Fig. 2. An access transaction (left) and an exposure transaction (right)
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that detects higher-level structures step-by-step based on lower-level structures already
detected.

At the bottom, there are two state sequences Al,w and El,w responsible for collect-
ing all events belonging to an access or exposure epoch taking place at location l and
referring to window w. The separation by window ensures that epochs belonging to the
same window do not overlap in time at the same location. Once the event set describing
an epoch is complete, the state is cleared upon the occurrence of the next event.

Completed epochs are combined into epoch pairs by a state sequence P̄k,l,w, which
is defined for a target location k, an origin location l, and a window w. Before com-
bining the two epochs, however, all events not related to communication between the
two sides of the pair are removed. Again, after completion of the whole pair, the state
is cleared. Different from our earlier sequence, the states of this sequence contain sets
of event sets. This is necessary to express the hierarchical grouping of events typi-
cal for GATS transactions that consist of zero or more data transfer events enclosed
by synchronization operations at each participating location. The auxiliary function
epoch pair(e, l) extracts a complete epoch pair as a flat set if e constitutes the last
event of a pair with l being the location of the counter epoch.

The next level of composition is achieved through an auxiliary function expta(e, P̄ )
that can be applied to an event e and a set of epoch pairs P̄ and that returns all epoch
pairs belonging to an exposure transaction if e constitutes the last event of this trans-
action. Using this and the function above, we have defined a state sequence Ēl,w for
a location l and a window w that successively adds epoch pairs as they are finished
until a full exposure transaction has been completed, which then can be extracted using
expta(e, P̄ ). l denotes the location of the access epoch. Similarly, we have defined a
function accta(e, P̄ ) and a state sequence Āl,w to identify whole access transactions
for later performance analysis.

6 One-Sided Patterns

Now, we use the abstractions defined in the previous section to specify complex inef-
ficiency patterns spanning more than one process as a prerequisite for their automatic
detection in event traces. The general structure of a pattern consists of a root event de-
scribed by a simple test condition and zero or more constituents that can be located
from the root event using the abstractions. The root event is the latest constituent event
because the search for the remaining ones occurs backwards for efficiency reasons. An
additional rule specifies how to quantify the pattern’s performance impact (i.e., the time
lost). Since it is the most complicated part of MPI-2 one-sided communication, we have
focused mostly on patterns related to GATS synchronization.

A major challenge in specifying appropriate detection mechanism has been the fact
that the latest event in an epoch pair can either belong to an access or an exposure epoch.
This can lead to complicated case distinctions that are not necessary for traditional
point-to-point communication, where a send event always precedes a receive event.
Another important difference to point-to-point communication arises from the one-to-
many relationships existing between access and exposure epochs involving more than
two processes. For example, during an exposure epoch, a window may be accessed
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by multiple processes each passing through a separate access epoch according to our
definition above.

Early Transfer. This pattern describes a situation that may happen when communicat-
ing in GATS mode. MPI Get/Put() blocks during an access epoch until the related
exposure epoch is started with MPI Win post() (Figure 3). Recognizing the pattern
requires considering epoch pairs. The root event is the last event of an epoch pair and is
of type MPIWEXIT. It either completes the access or the exposure epoch and, therefore,
either belongs to MPI Win complete() or to MPI Win wait/test().

The complete set of epoch pairs finished by the root event is determined by calcu-
lating epoch pair(root, l) for every location l being a member of the partner group
recorded with the root event. If the root event belongs to an exposure epoch, the pattern
covers all corresponding access epochs already finished.

The waiting time is counted from the start of an access operation within the access
epoch until the corresponding post operation has been issued during the matching ex-
posure epoch. The begin of the access operation is identified using the pointer attributes
startptr and originptr in the case of a get operation.

Early Wait. This pattern represents the premature request to finish an exposure epoch
using MPI Win wait() and is depicted in Figure 4. We consider the request as pre-
mature if it was posted before the last access epoch’s closure has been requested using
MPI Win complete() within the same exposure transaction.

The recognition of this pattern requires the recognition of an exposure transaction.
Two cases must be distinguished: (i) the transaction is completed by an exposure epoch
or (ii) the transaction is completed by an access epoch. In the first case, the root event
is the MPIWEXIT event of the wait operation and the full transaction is easily obtained
by applying expta() to the root event and Ēl,w with l being the location of the root
event.

In the second case, the root event is the MPIWEXIT event of a complete opera-
tion and, therefore, finishes an access epoch. Now, the detection mechanism needs to
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find all exposure transactions finished with this access epoch. This is accomplished
by iterating over all exposure epochs belonging to epoch pairs completed by the root
event and extracting completed exposure transactions from Ēk,w using the expta()
function. The exposure epochs are found by means of P̄k,l,w with l being the lo-
cation of the root event and k being a location in the root event’s partner group.
Since the exposure transactions we are looking for have been completed by the root
event, we need to consider Ēk,w at the time of the root event. The waiting time is
the period between the start of the wait until the beginning of the latest complete
operation in the transaction.

Late Complete. If a process delays the completion of an access epoch by perform-
ing work between the last access and the complete operation and the wait operation
has already been posted, a situation named Late Complete occurs (Figure 5). It is ac-
tually a sub-property of Early Wait. This pattern considers an exposure transaction and
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measures the time spent in the wait operation between exiting the last put or get and
entering the corresponding complete (or the latest complete if the last get/put is not
unique). The recognition of the exposure transaction is similar to Early Wait.

Late Post. Refers to access-sided synchronization operations that block until access is
granted by an exposing process (Figure 6). Depending on the MPI implementation, this
may happen either during MPI Win start() or during MPI Win complete().
Since the exact blocking semantics are usually not known to a performance tool, our
pattern counts time spent in both operations before the earliest post call within the
same access transaction is issued in the case that MPI Win start() does not block.
Then, however, the time spent in the start operation will be small and the resulting
inaccuracy negligible. Whereas the semantics of the pattern are closer to Early Transfer,
its recognition is very similar to Early Wait, only that it requires the recognition of
an access transaction using Āl,w. Like Early Wait, this pattern needs to distinguish
two cases: (i) the root event finishes an access epoch or (ii) the root event finishes an
exposure epoch, in which case the access transactions have to be identified by iterating
over all related access epochs.

Wait at Fence. Whereas the previous patterns all refer to GATS synchronization, this
pattern covers the simpler case of synchronization with MPI Win fence(). Since
fence normally2 implies a barrier, waiting times occur if the fence is not reached si-
multaneously by all participating processes (Figure 7). Early processes have to wait
for the latest one. The recognition of Wait at Fence is accomplished using Cg <
MPIWCExit >, which collects collective window operation instances. After re-
trieving such an instance using complete < MPIWCExit > () and identifying the
latest entry into the operation, the waiting times of different processes can be easily
determined.

2 The internal barrier can be avoided by passing additional ”hints” to the fence call as a
second parameter.
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7 Conclusion

To the best of our knowledge, this is the first systematic approach of automatically iden-
tifying wait states related to MPI-2 one-sided communication in event traces. Building
upon our earlier framework to identify wait states in traditional two-sided and collective
communication, we have defined new abstractions representing higher-level events re-
lated to one-sided operations. These abstractions serve as a useful prerequisite to specify
inefficiency patterns in a way facilitating their automatic detection in the event stream.

A major difficulty that has been solved within our new framework is the fact that
one-sided communication is accomplished in complex sequences of synchronization
and communication, where the notion of send and receive operations is replaced by
the notion of access and exposure epochs comprising both synchronization and access
operations. Also, a single epoch may perform communication with an entire group of
processes, which requires the recognition of all counter epochs performed by members
of this group. In addition, the root event from where the constituents of a pattern may
be located may reside on either side of an epoch pair, which involves complex case
distinctions on the side of the detection mechanism.

To demonstrate the usefulness of our framework, we have specified several complex
patterns of inefficient behavior targeting, in particular, general active target synchro-
nization, which can be challenging for programmers. Meanwhile, we have completed
the implementation of all KOJAK modules necessary for the instrumentation, measure-
ment, conversion, and analysis of parallel applications based on MPI-2 RMA and we
have a prototype version for SHMEM programs. Figure 8 shows a summary of the cur-
rently implemented pattern hierarchy. We have also extended our internal test suite to
cover one-sided communication and used it to verify our implementation. As a next
step, we need to evaluate the relevance of these patterns using real-world applications.

Finally, we hope that some of the complexity in the analysis can be avoided, when
transferring this approach to the new parallel analyzer architecture developed in the
SCALASCA [12] project. By exploiting distributed memory and parallel processing
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capabilities, the analysis is carried out entirely in main memory, relaxing the efficiency-
motivated forward-analysis requirement imposed by our previous sequential analysis
approach.
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Jesús Labarta, Bernd Mohr, Allan Snavely, and Jeffrey Vetter

Topic Chairs

Parallel computing enables solutions to computational problems that are im-
possible on sequential systems due to their limited performance. To meet this
objective, it is critical that users can both measure performance on a given
system and predict the performance for other systems. Achieving high perfor-
mance on parallel computer systems is the product of an intimate combination
of hardware architecture (processor, memory, interconnection network), system
software, runtime environment, algorithms, and application design. Performance
evaluation is the science of understanding these factors that contribute to the
overall expression of parallel performance on real machines and on systems yet
to be realized. Benchmarking and performance characterization methodologies
and tools provide an empirical foundation for performance evaluation. Perfor-
mance prediction techniques provide a means to model performance behaviors
and properties as system, algorithm, and software features change, particularly
in the context of large-scale parallelism. These two areas are closely related since
most prediction requires data to be gathered from measured runs of a program,
to identify application signatures or to understand the performance characteris-
tics of current machines.

A total of eighteen papers were submitted to the performance prediction and
evaluation topic area. The submissions covered a broad range of prediction and
evaluation topics, and reflect a high level of current interest in the parallel com-
puting community. The eight papers accepted (44state-of-the-art results from
leading parallel performance researchers in the field today. The papers cover
two general themes in performance prediction and evaluation. The first theme
considers methods to explore performance properties from different evaluation
contexts: data access, processor, and interconnect. Three papers investigate per-
formance issues on shared-memory machines (IBM Cyclops-64, SGI Altix 3700,
and Sun Fire E25K). Another three articles center around the analysis of ap-
plications on distributed memory architectures (IBM BlueGene/L, Linux Multi-
clusters, Clusters with Infiniband interconnect). The second theme concerns ad-
vances in performance prediction with two papers about tools for predicting
multi-processor system on a chip (MPSoC) performance and system for hierar-
chical model validation.

Finally, we would like to thanks all contributing authors as well as all reviewers
for their work.
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Abstract. Multi-resolution validation of hierarchical performance models of 
scientific applications is critical primarily for two reasons. First, the step-by-
step validation determines the correctness of all essential components or phases 
in a science simulation. Second, a model that is validated at multiple resolution 
levels is the very first step to generate predictive performance models, for not 
only existing systems but also for emerging systems and future problem sizes. 
We present the design and validation of hierarchical performance models of two 
scientific benchmarks using a new technique called the modeling assertions 
(MA). Our MA prototype framework generates symbolic performance models 
that can be evaluated efficiently by generating the equivalent model 
representations in Octave and MATLAB. The multi-resolution modeling and 
validation is conducted on two contemporary, massively-parallel systems, XT3 
and Blue Gene/L system. The workload distribution and the growth rates 
predictions generated by the MA models are confirmed by the experimental 
data collected on the MPP platforms. In addition, the physical memory 
requirements that are generated by the MA models are verified by the runtime 
values on the Blue Gene/L system, which has 512 MBytes and 256 MBytes 
physical memory capacity in its two unique execution modes. 

1   Introduction  

Performance models of scientific applications have been generated using analytical 
techniques and measurement-based techniques. Analytical techniques like the one 
presented by Almasi et. al. [2] provide detailed information about the application 
structure and underlying algorithms but do not capture the computation and workload 
characteristics in detail that is essential to carry out performance prediction studies on 
a given target architecture. The measurement-based techniques [7, 9], for instance, 
techniques based on collecting detailed memory tracing data on target systems 
provide detailed system-specific performance characteristics of an application [7]. 
However, these approaches do not capture the algorithmic and problem resolution 
metrics of scientific applications in the performance models. Thus, the applicability is 
limited if an underlying algorithm or the target architecture characteristics are 
modified. For instance, the prediction error rates can change dramatically if the 
memory hierarchy of a target system varies from the architecture on which the 
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measurements are taken. A successful performance modeling and prediction effort is 
presented by Kerbyson et. al. [5] for a large-scale scientific application and its 
kernels; however, this scheme requires an expert understanding of the application and 
underlying algorithms as well as detailed information about the features of the target 
parallel platform. 

We have proposed a portable and extensible approach for developing performance 
models of scientific applications called modeling assertions (MA) [1]. Our approach 
encapsulates an application’s key input parameters as well as the workload parameters 
including the computation and the communication characteristics of the modeled 
applications.  The MA scheme requires an application developer to describe the 
workload requirements of a given block of code using the MA API in form of code 
annotations. These code annotations are independent of the target platforms. 
Moreover, the MA scheme allows multi-resolution modeling of scientific 
applications. In other words, a user can decide which functions are critical to a given 
application, and can annotate and subsequently develop detailed performance models 
of the key functions. Depending on the runtime accuracy of the model, a user can 
develop hierarchical, multi-resolution performance models of selected functions, for 
instance, models of critical loop blocks within a time-consuming function. MA 
models can capture the control structure of an application. Thus, not only an 
aggregated workload metric is generated but also the distribution of a given workload 
over an entire execution cycle can be modeled using the MA framework. 

In this paper, we present the step-by-step validation of the MA performance 
models for two scientific kernels, the NAS parallel, message passing (MPI) CG and 
SP benchmarks [3]. The runtime measurement has been conducted on two distributed 
memory, teraflop/s scale systems, Cray XT3 [8] and IBM Blue Gene/L [6]. The XT3 
systems is based on a 2.4 GHz Opteron processor connected with a high-speed 
Hypertransport link. A single processor is capable of delivering 4.8 gigaFLOP/s and 
provides up to ~6200 Mbytes/s memory bandwidth.  The Blue Gene/L system has a 
unique memory hierarchy because of the two modes of execution namely co-
processor mode and the virtual-node mode [6]. The Blue Gene/L system has a small 
physical memory per processor, 512 Mbytes and in the virtual-node execution mode, 
only half (256 Mbytes) is available to the user processes.  The peak performance of a 
Blue Gene/L processing core is 1.4 gigaFLOPS/s  and its main memory bandwidth is 
~3200 Mbytes/s, which is shared between two processors in the virtual-node mode.  

We developed workload models for the two NAS MPI benchmarks, one each for 
the floating-point computation, memory operations, memory capacity and sizes and 
patterns of MPI operations [1]. The model predictions are validated with the runtime 
data by altering the key input parameter values and by running a fix size application 
in strong-scaling mode. The MA models capture the workload distribution that is 
represented as a function of key input parameters. These workload requirements are 
validated with the runtime performance data measured on two parallel systems. In 
addition to workload requirements, the MA models of the two NAS benchmarks can 
generate the growth rates for the workload distribution as a function of input 
parameters. The growth rates and sensitivity studies are also validated with the 
runtime data. 

The outline of the paper is as follows: section 2 presents the design of the MA 
models using the MA framework. A brief description of NAS CG and SP models of 
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computation and communication is presented in section 3. The step-by-step process of 
model validation at multiple-resolutions is provided in section 4. Section 4 also 
presents the validation results for the MA models that show the workload growth rate 
as a function of input parameters. Section 5 gives a summary of the MA approach and 
future research directions. 

2   The MA Framework 

In order to evaluate our approach of developing symbolic models with MA, we have 
designed a prototype framework [1]. This framework has two main components: an 
API and a post-processing toolset. Figure 1 shows the components of the MA 
framework. The MA API is used to annotate the source code. As the application 
executes, the runtime system captures important information in trace files. These trace 
files are then post-processed to validate, analyze, and construct models. The post-
processing toolset is a collection of tools or Java classes. The post-processor currently 
has three main classes: model validation, control-flow model creation and symbolic 
model generation classes. The symbolic model shown in the Figure 1 is generated for 
the MPI send volume. This symbolic model can be evaluated and is compatible with 
MATLAB [10] and Octave [11].  

The MA API provides a set of functions to annotate a given FORTRAN or C code 
with MPI message-passing communication library. For example, ma_loop_start, a 
MA API function, can be used to mark the start of a loop. Upon execution, the code 
instrumented with MA API functions generates trace files. For parallel applications, 
one trace file is generated for each MPI task. The trace files contain traces for ma_xxx 
calls and MPI communication events. Most MA calls require a pair of 
ma_xxx_start and a ma_xxx_end calls. The ma_xxx_end traces are primarily used 
to validate the modeling assertions against the runtime values. The assertions for 
hardware counter values, ma_flop_start/stop, invoke the PAPI hardware counter API 
[4]. The ma_mpi_xxx assertions on the other hand are validated by implementing 
MPI wrapper functions (PMPI) and by comparing ma_mpi_xxx traces to PMPI_xxx 
traces. Additional functions are provided in the MA API to control the tracing 
volume, for example, the size of the trace files, by enabling and disabling the tracing 
at compile time and also at runtime. At runtime, the MA runtime system (MARS) 
tracks and captures the actual instantiated values as they execute in the application. 
MARS creates an internal control flow representation of the calls to the MA library as 
they are executed. It also captures both the symbolic values and the actual values of 
the expressions. Multiple calls to the same routines with similar parameters maps onto 
the same call graph, therefore, the data volume is manageable. 

The validation of an MA performance model is a two-stage process. When a model 
is initially being created, validation plays an important role in guiding the resolution 
of the model at various phases in the application. Later, the same model and 
validation technique can be used to validate against historical data and across the 
parameter space. 
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Control flow Model validation 

Symbolic model 

main () 
{ loop (NAME = conj_loop) (COUNT = niter) 
  { loop (NAME = norm_loop) (COUNT = l2npcols) 
    { mpi_irecv (NAME = nrecv) (SIZE = dp*2); 

ma_subroutine_start/end 
ma_loop_start/end 
ma_flop_start/stop 
ma_heap/stack_memory 
ma_mpi_xxxx
ma_set/unset_tracing 

Runtime system 
generate trace 
files

send = niter*(l2npcols*(dp*2)+l2npcols*(dp)+ 
cgitmax*(l2npcols*(dp*na/num_proc_cols)+dp*na/
num_proc_cols+l2npcols*(dp)+l2npcols*(dp))+l2n
pcols*(dp*na/num_proc_cols)+dp*na/num_proc_col
s+l2npcols*(dp))

Classes of API calls 
currently implemented 
and tested 

MA API in C 
(for Fortran & 
C applications 

With MPI) 

 

Fig. 1. Design components of the Modeling Assertion (MA) framework: The MA API, which is 
written in C and the extensible, post-processing toolset classes in Java. The MA API is 
available for C and FORTRAN code. 

3   Evaluation of Symbolic Models 

NAS CG computes an approximation to the smallest eigenvalue of a large, sparse, 
symmetric positive definite matrix, which is characteristic of unstructured grid 
computations. The main subroutine is conj_grad, which is being a called niter 
time. The first step was to identify the key input parameters, na, nonzer, niter and 
nprocs (number of MPI tasks); the MA symbolic models for floating-point, load-
store, physical memory and communication volume requirements are generated in 
terms of these four input parameters.  

The NAS parallel benchmarks provide different problem sizes or classes where 
class S is the smallest problem size. The MA model for SP is represented in terms of 
one input parameter, problem_size. In addition, the number of MPI tasks 
determines some derived parameters like the log2 of MPI tasks in CG and the square-
root of number of processors in the SP benchmark to simplify model representations. 
Both CG and SP benchmarks follow a Single Program Multiple Data (SPMD) 
programming paradigm. Hence, the workload and memory mapping and distribution 
per processor not only depend on the key input parameters but also on the number of 
MPI tasks. 

Upon termination of a runtime experiment, MA outputs a control flow model 
representation, an intermediate file and symbolic models for number of floating-point, 
load-store and communication operations. The control flow model representation is 
similar to the actual code annotations; that is, it is a high level, visual flow of the 
annotated parts of the application. The intermediate representation serves as an input 
to develop symbolic models for user-defined characteristics or relative quantities like 
memory byte-to-flop ratio. For instance, a user can create models for load/store-to-
flop ratios using the intermediate representation. The symbolic models generated by 
the MA framework are compatible with Matlab and Octave script format. Figure 2 
shows symbolic model representation for SP communication operations. Only three  
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ncells = sqrt (no_nodes) 
elems = problem_size / ncells 
dp = sizeof (double) 
niter * (elems ˆ 2 * (ncells - 1) * 10 * dp 
+ elems ˆ 2 * (ncells - 1) * 10 * dp 
+ . . .  
+ ncells * (22 * (elems - 1) ˆ 2 * dp) 
+ ncells * (10 * (elems - 1) ˆ 2 * dp) 
+ . . . 

Fig. 2. A MATLAB/Octave compatible symbolic model generated by the MA framework 

input parameters are required to evaluate this model, no_nodes (number of MPI 
tasks), niter (number of time step iterations) and problem_size (application 
input parameter). Our target is to be able to generate symbolic models that represent 
the architecture independent requirements of an application and that can be evaluated 
efficiently by existing mathematical software frameworks. 

One of the aims of creating the models of scientific applications is to be able to 
predict the application requirements for the future problem configurations. We used 
our MA models to understand the sensitivity of floating-point operations, memory 
requirements per processor, and message volume to applications’ input parameters. 
We begin experiments with a validated problem instance, Class C, for both the NAS 
CG and SP benchmarks, and scale the input parameters linearly. Note that the MA 
framework has a post-processing toolset that allows validation of MA model 
annotations with the runtime values. For instance, the PAPI_FP_OPS (number of 
floating-point operations) data was compared with the ma_flop runtime value. The 
validated problem instances, Class C, have na=150000, nonzer=15, for CG Class C 
benchmark with 128 MPI tasks. We increase the value of na linearly and generate the 
floating-point and load-store operation count using the MA symbolic models of the 
NAS CG benchmark. Figure 3 shows that the floating-point and load-store cost in the 
CG experiments increase linearly with the na parameter value. 
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Fig. 3. Sensitivity of the number of Floating-point (FP) and load-store (LS) operations per 
processor in a 128 processor experiment by increasing the array size parameter: na 
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Fig. 4. Sensitivity of FP and LS by increasing the number of non-zero elements parameter: 
nonzer 

Similarly, we generated the growth rates for the floating-point and load-store 
operation cost for the other input parameter, nonzer. Results in Figure 4 show that 
the floating-point and load-store operation cost in CG is relatively more sensitive to 
the increase in the number of nonzer elements in the array than the array size: na.  

The NAS SP benchmark has a single application parameter, problem_size, 
which we have used to represent the workload requirements (floating-point, load-
store, memory and communication) in the MA symbolic models. Figure 5 shows the 
increase in the floating-point and load-store operation count by increasing the 
problem_size linearly. Note that like CG, the initial set of experiments (Class S, W, 
A, B, C and D) are validated on the target MPP platforms. Figure 5 shows that the 
floating-point operation cost increases at a very high rate by increasing the 
problem_size. 

Using the MA models, we can not only generate the aggregated workload 
requirements shown earlier, but also get an insight into the scaling behavior of the  
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Fig. 5. Sensitivity of workload requirements with respect to the SP input parameter: 
problem_size 
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workload requirements within an application as a function of the problem_size 
parameter.  Figure 6 shows contribution of different functions in total floating-point 
operation count in SP time step iterations. The results shown in Figure 6 are generated 
for a fix number of MPI tasks and by increasing the problem_size parameter 
linearly. The floating-point workload requirements generated by the MA model show 
that the z_solve is the most expensive function for runs with large number of 
processors. The cost of x_solve and y_solve are identical and consistent. 
Moreover, based on the MA model results shown in Figure 6, we can safely ignore 
cost of txinvr and add functions in the further analysis.  
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Fig. 6. Impact of individual functions on the overall increase in the number of floating-point 
operations by increasing the input parameter problem_size on 1024 processors 

4   Multi-resolution Validation of MA Models 

The model verification output enables us to identify the most floating-point intensive 
loop block of the code in the CG benchmark. This loop block is shown in Figure 7, 
which is called twice during a conjugate gradient calculation in the CG benchmark. 
The symbolic floating point operation cost of the loop is approximately 
2*na/(num_proc_cols*nonzer*ceiling(nonzer/nprows)). 

Using the MA models, we generated the scaling of the floating-point operation cost 
of the loop block in Figure 7 with the other loop blocks within a conjugate gradient  
 

         do j=1,lastrow-firstrow+1 
            sum = 0.d0 
            do k=rowstr(j),rowstr(j+1)-1 
               sum = sum + a(k)*p(colidx(k)) 
            enddo 
            w(j) = sum 
         enddo 

Fig. 7. The partition submatrix-vector multiply 
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iteration. The model predictions are shown in Figure 8. The total cost of two 
invocations of the submatrix vector multiply operation contributes to a large fraction 
of the total floating-point operation cost. l1 is the first loop block in the CG timestep 
iteration and l2 is the second. Figure 8 shows that the workload is not evenly 
distributed among the different loop blocks (or phases of calculations), and the 
submatrix vector multiply loop can be serious bottleneck. Furthermore, as we scale 
the problem to a large number of processors, we begin to identify loop that are either 
the Amdahl’s proportions of the serial code or their loop count is directly propotional 
to the number of MPI tasks in the system. We found that the loop count of loop 
number 3 and 8 depend on the number of MPI tasks (log2(log2(MPI_Tasks)), while 
loop 1 and 8 scale at a slower rate than loop 2 and 7 (submatrix vector multiply loop), 
since the cost of loop 2 and 7 is divided twice by the scaling parameters as compared 
to 1 and 8, which is divided once by the scaling parameter. Another interesting feature 
is the scaling pattern, which is not linear because of the mapping and distribution of 
workload depends on ceiling(log2(MPI_tasks)). 
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Fig. 8. Distribution of floating-point operation cost within a time step iteration in the NAS CG 
benchmark. Default na and nonzer parameter values for the Class C problem instance are 
used for the experiments. l1 is the first loop block and l2 is the second loop block in the 
conjugate gradient iterations. l2 and l7 perform calculations shown in Figure 7.  

We collected the runtime data for the loops blocks in CG time step iterations on 
XT3 and Blue Gene/L processors to validate our workload distribution and scaling 
patterns. Figure 9 shows the percentage of runtime spent in individual loop blocks. 
Comparing it with the workload distribution in Figure 8, we observe not only a 
similar workload distribution but also a similar scaling pattern. Note that the message 
passing communication times are not included in these runtime measurements. We 
collected data for the Class D CG benchmark on the XT3 system, which also validate 
the floating-point message count distribution and scaling characteristics that are 
generated by the symbolic MA models.  
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Fig. 9. Percentage of total runtime spent in individual loop blocks in a CG iteration. These 
runtime are measured in the co-processor mode. Default na and nonzer parameter values for 
the Class C problem instance are used for the experiments. 

On Blue Gene/L we collected data in the two execution modes to investigate the 
effect of reduced memory bandwidth. The memory bandwidth in the virtual node 
mode is shared by two Blue Gene/L processors, while in the co-processor mode, a 
single compute processor accesses the main memory during the computation. In the 
co-processor mode, the other processor, the communication processors, is typically 
associated with MPI communication data movement. We did not observe a significant 
increase in runtime in the virtual-node mode experiments on the Blue Gene/L system 
as shown in Figure 10. Although the runtime increases for the most time-consuming 
loops, we conclude that the memory traffic is not a major issue in the most time-
consuming block of the code. We expect the memory bandwidth to be an issue when 
workload sizes per processor are increased significantly. 
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Fig. 10. Percentage increase in the runtime values in the virtual-node mode experiments 
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Figure 3 and 4 demonstrated that the CG workload is more sensitive to the 
nonzer parameter. In order to validate our MA performance model predictions, we 
ran the experiments by doubling the nonzer parameter. On Blue Gene/L, we ran the 
experiments both in the virtual node mode and in the co-processor mode. First, we 
validate the MA model for the physical memory requirements. Our model predicts 
that the sizes of all large arrays depend on the nonzer value, therefore, the overall 
memory requirement will double. The runtime measurements confirm that a minimum 
of 8 Blue Gene/L processors in co-processor mode and 16 processors in the virtual 
node mode are needed to run the Class C benchmark with nonzer=30. Second, the 
MA models of floating-point operation and load-store operation count predicted that 
only the cost of the submatrix vector multiply loop depend on the nonzer parameter 
value. According to the MA model predictions, by doubling the value of nonzer 
(Class C problem instance), the floating-point and the load-store operation cost 
increases by ~300%. The runtime data in Figure 11 confirm the cost distribution and 
scaling by doubling the nonzer parameter as predicted by the MA model. We also 
validated our MA model for up to five times increase in the nonzer value with the 
runtime data.  
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Fig. 11. Percentage increase in runtime of individual loop blocks by doubling the nonzer 
parameter 

In addition to the hierarchical validation of the CG model, we validated the 
sensitivity of the problem_size parameter for the NAS SP model. We identified 
that the floating-point operation cost increases by increasing the problem_size 
parameter and that the z_solve calculations are the most expensive calculations in 
the SP application simulation in terms of the floating-point operation cost. Figure 12 
shows the breakdown of floating-point cost distribution within the key calculation 
phases as generated by the MA model. 
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Fig. 12. Distribution of the floating-point operation cost in different code blocks in the z_solve 
method of the NAS SP benchmark. These distributions are generated by the MA models. 

We conducted fine-grain measurements on the z_solve operation and collected 
runtime data on the XT3 and Blue Gene/L processors. Figure 13 shows the runtime 
data collected on the Blue Gene/L processor for different phases of calculation in the 
z_solve operation. The distribution of the runtime cost in the z_solve function 
confirm the workload distribution and scaling pattern that was generated by the MA 
model for the NAS SP benchmark (Figure 12). 
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Fig. 13. The distribution of the runtime cost measured on the Blue Gene/L processor for the 
Class C problem instance of the NAS Parallel benchmark 
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In Figure 5, we showed that the floating-point and load-store operation cost 
increase at an exponential rate by increasing the problem_size parameter in the 
SP benchmark. In order to confirm the growth rate prediction generated by the MA 
models, we ran experiments by doubling the problem_size parameter value for 
NAS SP Class C experiments on the Blue Gene/L system. Results in Figure 14 
confirm that the runtime cost for a large number of loop blocks increases rapidly (up 
to 10 times) by doubling the problem_size parameter. 
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Fig. 14. Percentage increase in runtime by doubling the problem_size parameter in NAS SP 
Class C experiments on the Blue Gene/L system 

5   Conclusions and Future Work 

We present the multi-resolution validation of symbolic performance models of 
parallel scientific kernels using a technique called Modeling Assertions (MA). We 
have shown that our modeling scheme provides an insight into the workload 
distribution and scaling characteristic of scientific codes by comparing model 
predictions with the runtime data collected on contemporary massively-parallel 
systems. Furthermore, we validate the growth rates predictions generated by the MA 
models of two scientific benchmarks by increasing key input parameters of the 
scientific simulations. Development of hierarchical MA symbolic models is a first 
step toward developing precise prediction model on target architectures and future 
problem configurations. We are extending the MA API and the framework that will 
enable code and algorithm developers to augment MA annotations with performance 
attributes, for instance, the memory access patterns and data-level parallelism for a 
given loop block. We also plan to introduce a set of modeling attributes that can 
represent the unique performance enhancing features of emerging architectures.  
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Abstract. The joining of geographically distributed heterogeneous clusters of 
workstations through the Internet can be a simple and effective approach to 
speed up a parallel application execution. This paper describes a methodology 
to migrate a parallel application from a single-cluster to a collection of clusters, 
guaranteeing a minimum level of efficiency. This methodology is applied to a 
parallel scientific application to use three geographically scattered clusters lo-
cated in Argentina, Brazil and Spain. Experimental results prove that the 
speedup and efficiency estimations provided by this methodology are more than 
90% precision. Without the tuning process of the application a 45% of the 
maximum speedup is obtained whereas a 94% of that maximum speedup is at-
tained when a tuning process is applied. In both cases efficiency is over 90%. 

1   Introduction 

The usage of heterogeneous clusters of computers to solve complex scientific prob-
lems became ubiquitous in universities departments around the globe. These systems 
represent a cost-effective tool to achieve data intensive computation. The joint of 
these clusters for a parallel application execution could enhance the application’s 
problem study by achieving faster results or by increasing its dimension. 

The evolution of Internet made usual the interconnection and organization of dis-
tributed clusters in computational grids [1]. Although it is not a trivial matter to reach 
efficiency in heterogeneous clusters [2] and, despite the simplicity of physically inter-
connecting them, this complexity is increased in a multi-cluster environment [3]. It 
has been shown that parallel applications written for a single cluster do not run effi-
ciently without modifications on multi-cluster systems [4]. 

The difficulties are even magnified when Internet represents the multi-cluster in-
terconnection network because of Internet’s unpredictable latency, throughput and 
performance limitations. The study of workload distribution policies is then crucial 
for obtaining applications speedup in such a heterogeneous and unstable environment. 

This paper describes a methodology to migrate master-worker parallel applications 
from their original cluster to a multi-cluster environment. The proposed methodology 
targets to decrease the execution time in the multi-cluster environment guaranteeing a 
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pre-established threshold level of efficiency. The methodology “inputs” are the desired 
efficiency, some characteristics of the application (computation and communication 
volume) and multi-cluster system (computers performance and networks throughputs). 

The methodology described in this paper is based in a developed hierarchical  
master-worker system architecture and an analytical system model [5]. Hierarchical 
approaches proved to be a viable alternative for handling the communication hetero-
geneity in a multi-cluster [6, 7]. 

The system architecture enables the collection of clusters to be seen as a single en-
tity, allowing the transparent transition of a master-worker application to the multi-
cluster environment, overcoming possible problems with Internet communication [8]. 
The analytical system model is based on the computation-communication analysis 
and evaluates which level of collaboration is possible (if possible) between clusters. 
Before the methodology is used, the application is adapted to the architecture. 

The methodology can be divided in three basic phases: Local Cluster Analysis, 
Multi-Cluster Analysis, and Application Tuning. The Local Cluster Analysis evalu-
ates the possibility for the application in the original cluster to get performance con-
tribution from external clusters. 

The Multi-Cluster Analysis evaluates the speedup that each available external clus-
ter can add to the local one executing the specific application. Each cluster’s re-
sources are then selected to reach the evaluated speedup respecting the target effi-
ciency. 

The Application Tuning phase evaluates the possibilities of tuning the application 
for improving the reachable performance. For doing this the methodology provides 
some guide and parameters values to the application developer.  

We present our methodology applying it to the execution of a complex scientific 
application migrated to a multi-cluster system composed of three clusters located in 
Argentina, Brazil and Spain. The selected application was described in [9] and it stud-
ies the problem of short-term memory storage in the central nervous system through 
simulations of a ring of bistable oscillators. The phenomenon is called Stochastic 
Resonant Memory Storage Device (SRMSD).  

Experiments to validate the methodology by checking the predicted and the real 
obtained efficiency and speedup are also shown aside the methodology explanation. 
The experiments proved that for this application it is possible, without the  
application tuning changes, to reach 45% of the maximum speedup with a level of 
efficiency over 90%. After the tuning process, based on the Application Tuning 
recommendations, 94% of the maximum speedup was achieved, maintaining the 
efficiency over 90%.  

The following sections present our study in further detail. Section 2 describes the 
methodology phases. The SRMSD problem, the system architecture and the basic 
adaptation of the application to the proposed architecture are explained in section 3. 
In section 4 the three phases methodology is applied to the selected application, to 
show the application tuning process for the above mentioned multi-cluster system. 
Finally, conclusions and further work are presented in section 5. 
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2   Migrating Form a Single Cluster to a Multi-cluster System 

The methodology to adapt a parallel application to a heterogeneous multi-cluster 
environment has as basic goals the decrease of the execution time, maintaining the 
efficiency over a selected threshold. 

The methodology is divided in three basic phases providing an estimated efficiency 
and speedup, and the selected resources to be used in each cluster. The methodology 
flow diagram is shown in Fig.1.  

 

 

Fig. 1. A flow diagram of the multi-cluster tuning methodology 

The speedup is the metric for measuring the performance improvement. It is de-
fined as the ratio between the application original execution time in the local base 
cluster and the execution time in the multi-cluster system. 

For parallel applications in homogeneous clusters the efficiency is defined as the 
ratio between the execution speedup and the number of computers. This ratio is not 
directly appropriate when heterogeneous computers are used [10]. For our work effi-
ciency is redefined as the ratio between the obtained and available performances. 

The first phase is the Local Cluster Analysis that requires the algorithms communi-
cation volume and the local cluster performance parameters (the performance of each 
computer running the application and the local area network throughput) to evaluate if 
the application is apt to receive external clusters’ performance collaboration.  

When the remote clusters can collaborate raising up the speedup then the Multi-
Cluster Analysis is the following phase. On the contrary, the application should be 
tuned to be able to use the multi-cluster resources. The Multi-Cluster Analysis has as 
“inputs” the performance parameters of all the remote clusters and the average value 
of Internet throughput between the clusters. 

The Multi-Cluster Analysis identifies for each remote cluster the resources that can 
collaborate with the local cluster, keeping the efficiency threshold. This analysis also 
provides the attainable speedup for the application execution using these resources.  

There are two possible outputs from the Multi-Cluster Analysis. The first output, 
when the obtainable performance is satisfactory, leads to the end of the process, the 
other output, for improving the performance, is the Application Tuning phase. 
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The Application Tuning evaluates the possibilities of adapting the application data 
distribution strategy for improving the collaborative performance. Some performance 
recommendations are presented to guide the possible application changes. If the ap-
plication is changed the application needs to be re-evaluated.  

Detailed explanations of the methodology phases are provided in section 4. 

3   The Testbed Description: The Application and the Architecture 

3.1   The SRMSD Problem and Simulation Application 

The Stochastic Resonant Memory Storage Device SRMSD application [9] represents 
a numerical simulation to study the response of a system of bistable oscillators cou-
pled unidirectional driven by a source of external noise and a periodic and temporal 
stimulus.  

The physical phenomena underlying such short-time storage is that of stochastic 
resonant (SR) [11], that is, the presence of external noise is essential in sustaining the 
stored information for an appreciable time once the external stimulus has disappeared. 
Under this condition the set up acts as a SRMSD. 

The application is used to perform several numerical simulations involving rings 
with different numbers of links and delay times in the coupling. The result is the 
evaluation of the power-spectral density of the first oscillator during the travelling 
signal loops, averaging it over a suitable ensemble of N initial conditions in order to 
hinder fluctuations. The windowed Fourier transform is used to provide a picture of 
the decaying process. 

The SRMSD model and its simulation in a single-cluster environment were previ-
ously developed by the Argentinean research group using the master-worker para-
digm [9]. The master distributes to all workers the command to execute one simula-
tion. The worker then generates a random set of initial conditions and simulates the 
traveling signal, sending back to the master a tri-dimensional matrix representing the 
simulation result. When the master receives one result back, it sends to this worker 
another simulation command, reaching a dynamic load balancing in the heterogene-
ous cluster. 

When all the N simulations matrices results are received and added by the master, 
the master calculates the average value of these tri-dimensional matrices, writes it in a 
file and terminates the program execution.  

3.2   Multi-cluster Architecture 

To interconnect clusters in such way that it is possible to reach efficient collaboration 
in a multi-cluster environment a run-time architecture was created. This architecture 
is a hierarchical master-worker on which the remote clusters are called sub-clusters, 
with their sub-masters and sub-workers. 

The architecture supports the overlapping of computation and communication in 
the workers and a dynamic on-demand tasks distribution policy. To isolate the local 
network and Internet, overcoming the problems on the Internet communication be-
tween clusters, the architecture includes a module called Communication Manager 
(CM) [8].  
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The required modifications in the single-cluster SRMSD application to be executed 
in the multi-cluster system were to add the CM module and to allow the sub-master to 
execute receiving its amount of work from the main cluster. The integration of the 
CM simply implies the creation of a special worker process that communicates 
through Internet. For the master, this “special worker” acts like any worker with the 
difference that it has a higher performance (correspondent to the whole remote clus-
ter) and a higher latency (because of the use of Internet). Fig. 2 shows the three test-
bed clusters. 

 

Average 

16.6 Kbytes/sec

Average 

22.3 Kbytes/sec

 

Fig. 2. Multi-cluster testbed system with the local cluster in Argentina 

4   Applying the Methodology to the SRMSD 

Throughout this section the methodological phases are applied to the SRMSD appli-
cation migrating it from its original single-cluster version (Argentina) to the multi-
cluster (Argentina, Brazil and Spain) scenario. The target threshold efficiency is fixed 
in 85% and the SRMSD application is executed for a set of N=500 initial conditions. 

The Fig. 3 shows the methodology flow diagram with the internal structure of its 
phases – Local Cluster Analysis (LCA), Multi-Cluster Analysis (MCA) and Applica-
tion Tuning (AT).  

4.1   Local Cluster Analysis 

The main process inside the LCA is to apply the computation-communication analysis 
[5] to the local cluster. This analysis is oriented to the estimation of the speedup and 
efficiency that can be obtained in the parallel application execution.  

If the analysis’ concludes that the application is not able to obtain the whole Avail-
able Performance in the local cluster then the application should be tuned (AT phase). 
Otherwise the next phase is the MCA. 
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Fig. 3. Methodology flow diagram and phases internal structure 

a) General computation-communication analysis 
Considering the master does not represent the bottleneck, a parallel application execu-
tion time is either limited by the computers performance (computation-bounded) or by 
the network throughput (communication-bounded). The Maximum Performance 
(MaxPerf) for a specific execution is achieved when the execution is computation-
bounded. This happens when the application’s computation time is greater than or 
equal to its communication time. 

For a worker task running on a processor, the computation time (TCpt) is defined as 
the ratio between the task number of operations (Oper) and the processor perform-
ance (Perf): TCpt=Oper/Perf. The communication time (TComm) is the ratio between the 
volume of data communication (Comm) (worker task data from and to the master) and 
the network throughput (TPut): TComm=Comm/TPut. The MaxPerf is the performance 
that can be obtained when TCpt  TComm (Eq. 1). 

In a multi-cluster environment there are two communication levels: intra-cluster 
and inter-clusters. To calculate the MaxPerf for the intra-cluster (MaxPerfintra) it is 
necessary to consider the local-area throughput and for the MaxPerf for the inter-
cluster (MaxPerfinter) the Internet average throughput between the clusters. 

The Available Performance (AvPerf) is the addition of each worker performance 
executing standalone the application tasks. The Estimated Performance (EstPerf) that 
a cluster can provide to the multi-cluster system is then minimum value between its 
AvPerf, MaxPerfLAN and MaxPerfInet (Eq.2). The Estimated Efficiency for each cluster 
is the ratio between the cluster EstPerf and AvPerf while the Estimated Speedup is the 
ratio between the cluster EstPerf and the local cluster EstPerf (EstPerfLC) (Eq. 3). 

Comm

TPutOper
PerfMaxPerfTT CommCpt

*≤=≥  (1) 

),,min( InetLAN MaxPerfMaxPerfAvPerfEstPerf =  (2) 
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AvPerf

EstPerf
fficiencyEstimatedE = ;

LCEstPerf

EstPerf
peedupEstimatedS =  (3) 

b) SRMSD simulation computation-communication analysis 
For the SRMSD simulation application we consider each single simulation as the task 
to apply our computation-communication local and remote analysis. Each worker 
performance is then measured in simulation tasks per second. The worker available 
performance value should be obtained by the execution of simulations tasks in each 
cluster computer. 

The number of operations (Oper) is the total number N of simulations. The com-
munication for each simulation task consists of one integer value (representing a 
command for a simulation execution) from the master to the worker, and a 601x31x31 
float-point elements matrix with the simulation results from worker to master. The 
total communication volume for one task is then CV=2,310,248 bytes. The total 
communication is N times CV.  For the SRMSD application Eq.1 become in Eq.4. 

CV

Tput

CVN

TputN
MaxPerf ==

*

*
 (4) 

In this Local Cluster Analysis step the efficiency and speedup are evaluated for the 
local cluster (Argentina). Table 1 shows the testbed parameters, and the estimated and 
experimentally obtained values for the Speedup and the Efficiency in the Argentinean 
Cluster. The testbed parameters are the number of computers, the LAN throughput 
and the Available Performance in tasks/second. The Eq. 3 were used to estimate the 
speedup and efficiency. The comparison from the experimental speedup and the esti-
mated one is our estimation precision. 

Table 1. Testbed parameters, estimated and experimental Speedup and Efficiency, and estima-
tion precision for the local cluster stand alone execution of the application 

Cluster 
#Co
m 

LAN 
TPut 
(Mbyte
s /sec) 

AvPerf 
(10-3 

Tasks 
/sec) 

Estimated  
Speedup 

Estimated  
Efficiency 

Experi-
mental  

Speedup 

Experi-
mental  

Efficiency 

Estima-
tion 

Preci-
sion 

Argentina 4 1 1.754 1.000 100% 0.918 92% 92% 

The experimental data shows that a high-level of efficiency is possible although the 
theoretical peak could not be achieved. The differences between the estimated and 
experimental efficiency values are mainly caused by light load-imbalance.  Since the 
application is able to execute efficiently in the local cluster, the next phase is the 
MCA. 

4.2   Multi-cluster Analysis 

The first step of the MCA is to apply the computation-communication analysis to 
each remote cluster. The MCA parameters, the estimated and experimental Speedup 
and Efficiency values for the clusters are displayed in Table 2.  



 Tuning Application in a Multi-cluster Environment 85 

 

Table 2. Testbed parameters, estimated and experimental Speedup and Efficiency, and estima-
tion precision for the multi-cluster execution of the application with all resources  

Cluster 
#Wo
rkers

Inet Tput 
(Kbytes 
/sec) 

AvPerf 
(10-3 Tasks 
/sec) 

Esti-
mated 

Speedup 

Esti-
mated  

Efficiency

Experi-
mental  

Speedup 

Experi-
mental 
Efficiency 

Estima-
tion 
Precision 

Argentina 3   1.754 1.000 100% 0.886 89% 89% 

Brazil 5 25.3 3.106 1.771 100% 1.621 92% 92% 

Spain 8 21.0 23.570 5.307 39% 5.795 43% 92% 

Total 16   28.430 8.077 50% 8.302 51% 97% 

From the Table 2 we can infer that it is possible to get a speedup of 8 for the application 
execution using the external clusters. The experimental speedup of the Spanish cluster is 
higher than estimated because during the experiments the real Internet average throughput 
was 23.0 Kbytes/sec, greater than the estimated average used in the analysis. 

The estimation data in Table 2 shows that the target threshold efficiency for the 
cluster in Spain is not reachable. To attain the efficiency threshold it is necessary to 
select the resources to be used in this cluster. This adjustment is done by selecting the 
workers for which the addition of Available Performance is approximate to the Esti-
mated Performance (Eq. 3). Table 3 shows the data using just the selected computers 
of the Spanish cluster.  

This experiment shows that the speedup decreased from 8.3 to 7.3 while the effi-
ciency of the Spanish cluster increased from 39% to 96%. This means a better utiliza-
tion of the resources or a lower cost, in case of paying for remote resources utilization. 

Even though the execution speedup can be 8, comparing the total AvPerf and the 
Argentinean cluster AvPerf in Table 2, we can infer that potential speedup of the 
multi-cluster is 16.2. To try to get the maximum speedup it is necessary to apply the 
Application Tuning phase. 

Table 3. Testbed parameters, estimated and experimental Speedup and Efficiency, and estima-
tion precision for the multi-cluster execution of the application with selected resources 

Cluster 

#Wo
rker

s 

Inet Tput 
(Kbytes 
/sec) 

AvPerf  
(10-3 Tasks 

/sec) 

Esti-
mated 

Speedup

Esti-
mated 

Efficiency

Experi-
mental 

Speedup 

Experi-
mental 

Efficiency
Estimation 
Precision 

Argen-
tina 3   1.754

1.00
0 100% 0.858 86% 86% 

Brazil 5 25.3 3.106
1.77

1 100% 1.621 92% 92% 

Spain 3 21.0 8.885
5.06

5 100% 4.863 96% 96% 

Total 11   13.745
7.83

6 100% 7.341 94% 94% 

4.3   Application Tuning 

At the MCA we concluded that, without modifications, the SRMSD application can not 
obtain the whole of the Spanish cluster performance. Based on the data in Table 2, the 
value for the Spanish cluster MaxPerfinter (Eq.4) is of 9.30x10-3 tasks/sec. Comparing 
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this value with the Spanish cluster Available Performance (23.57x10-3 tasks/sec), we 
can conclude that Internet communication between Spain and Argentina is saturated.  

In this case, the Application Tuning (AT) phase intends to improve the application 
computation-communication ratio to enhance the obtained performance. It is neces-
sary then to evaluate the increase in the inter-cluster granularity, executing more tasks 
with the necessity of less communication. 

The final operation at the SRMSD application is to average the different simula-
tions results. The granularity could be changed if sub-masters perform the addition of 
workers partial results and just communicates to the local master the result of a cer-
tain number S of additions. This granularity change means that each result simulation 
communicated (CV bytes) represents S simulation tasks. The number S of simulations 
that need to be aggregated before sending the results depends on the Internet through-
put. S should be small enough to avoid load imbalance and big enough to reach the 
desired performance.  

Once the tuning strategy is set, the application needs to be changed and re-
evaluated. Nothing was changed in the local execution and the LCA can be skipped. 
On the remote execution, for N simulation tasks (oper), (N/S)*CV bytes are commu-
nicated (comm). Applying it in the Eq. 2, the new MaxPerfInet is Eq. 5. 

CV

TputS
MaxPerfInet

*=  (5) 

The Spanish cluster has an Available Performance of 23.57 x10-3 tasks/sec. Using 
this as the MaxPerfInet in the Eq. 5 we can conclude the number of aggregated simula-
tions S should be 2.53. The amount of simulations needs to be an integer and for 
choosing its value it is necessary to evaluate the impact of this number in the balance 
of the load. 

For S=2 we would not achieve the totality of the Spanish performance. For S=3 the 
load-imbalance is increased. Since the value 3 is still not significant when compared to 
the total number of tasks (N=500) we choose this value for the application tuning. 

Table 4 shows the testbed parameters, the estimated and experimental Speedup and 
Efficiency for the tuned application. This table shows that with the AT the speedup 
was increased from 7.34 to 15.33. The efficiency in all clusters was 95% and, since all 
the clusters’ resources were used, this means 95% of the total AvPerf.  

Table 4. Testbed parameters, estimated and experimental Speedup and Efficiency, and estima-
tion precision for the multi-cluster execution of the tuned application 

 Testbed parameters 
Theoretical peak 

performance Real performance  

Cluster 

Inet 
Tput 

(Kbytes 
/sec) 

AvPerf 
(10-3 

Tasks 
/sec) 

Estimated 
Speedup 

Estimated 
Efficiency 

Experi-
mental 

Speedup 

Experimen-
tal Effi-
ciency 

Estima-
tion 

Precision 

Argentina   1.754 1.000 100% 0.889 89% 89% 

Brazil 25.3 3.106 1.771 100% 1.594 90% 90% 

Spain 21.0 23.570 13.437 100% 12.848 96% 96% 

Total   28.430 16.208 100% 15.332 95% 95% 
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Table 5 presents a summary of the predicted values and the experimental results 
obtained as results of the different phases of the proposed methodology.  

Table 5. Estimation and experiments speedup, efficiency and execution time comparison for 
different steps along the methodology 

 
Estimated Indexes 

Values 
Experimental Indexes 

Values 

Description Speedup Efficiency Speedup Efficiency 
Prediction 
Precision 

Original application single cluster 
execution. 1 100% 0.918 92% 92% 
Intermediate evaluation in the MCA 
phase: All clusters with all resources. 8.077 50% 8.302 51% 97% 
After the MCA phase: All the clusters 
with selected resources. 7.836 100% 7.341 94% 94% 
After the AT phase: All the clusters with 
all resources with tuned application 16.208 100% 15.332 95% 95% 

5   Conclusions and Future Work 

A multi-cluster environment using Internet as inter-communication network repre-
sents a cost-effective way to speedup the execution of scientific applications. This 
paper presented a methodology for adapting a parallel application from a single clus-
ter to a multi-cluster environment, keeping a threshold level of efficiency. The meth-
odology phases were presented and an example application was used to follow the 
methodological steps. 

To validate the methodology, experiments were done in different stages. The re-
sults proved that the estimation is over 90% precision.  

The application execution time was reduced to 12% its original single cluster time 
just with the adaptation to the proposed architecture. When the application was tuned 
the execution time was reduced to 6% its original value. The efficiency of the system 
was kept over 90%. 

Our methodology should be considered as a low level, direct resources utilization 
of computational grid environments. Therefore it provides an upper limit of the envi-
ronment utilization, providing a good prediction of the maximum available speedup 
guarantying a defined resources utilization efficiency. 

Future lines are to extend the multi-cluster computation-communication model to 
other parallel programming paradigms and to include in the model other system pa-
rameters (memory size, cache size, ...). 
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Abstract. Nowadays, most high performance computing systems run
in multiprogramming mode with several user programs simultaneously
utilizing the available CPUs. Even though most current SMP systems
are implemented as ccNUMA to reduce the bottleneck of main memory
access, the user programs still interact as they share other system re-
sources and influence the scheduler decisions with their generated load.
PARbench was designed to generate complete load scenarios based on
synthetic jobs and to measure the job behavior during the execution of
these scenarios. The E25K is a ccNUMA system with up to 72 dual core
CPUs and a crossbar-based connection network. This paper describes the
results of the examination of such a Sun Fire E25K system with PAR-
bench. First, PARbench was used to investigate the performance impact
caused by the interactions of jobs on fully loaded and overloaded ma-
chines. Second, the impact of operating system tasks to the performance
of OpenMP parallelized programs in scenarios of full load as created by
the cluster batch engine is quantized, especially when these system tasks
are not considered in the initial load calculation. Additionally, the gen-
erated scenarios were used for a statistical analysis of the scheduling of
OpenMP programs, focusing on data locality and migration frequency.

1 Introduction

Current installations of high performance computing systems often contain sys-
tems with several hundred processors. Not all user programs need this huge
amount of CPUs. Thus, the systems run several user jobs simultaneously in
multiprogramming mode. While these jobs can often use a subset of the avail-
able CPUs almost exclusively, they nevertheless share common resources like
data connections, caches, or the I/O subsystem. The scheduler may also migrate
jobs to other CPUs in order to assign resources equitably. Such migrations and
saturated memory connections are major causes of performance degradations.
The performance impact becomes more and more substantial as the proces-
sor/memory speed gap widens.
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OpenMP is a widely used approach to parallelize calculations on SMP systems.
In the past a lot of work has been presented that assesses the performance
of OpenMP programs on dedicated SMP systems or measures the runtime of
different OpenMP directives. However, these benchmarks assess the machine’s
performance under quite favorable circumstances and say nothing about the
interaction of several user jobs in production environments. They also do not
consider the load generated by the operating system itself, that may be much
higher in real production environments than in benchmark situations.

PARbench was designed to address exactly this issue. It permits the user to
generate synthetic jobs with various characteristics based on sequences of simple
benchmark kernels. After that, several of these jobs can be executed simulta-
neously. This permits the composition of almost arbitrary workload scenarios.
During the execution of the whole scenario the runtime and the CPU time of
each job is measured. Thereby, PARbench can not only generate sequential jobs
but even tightly coupled parallel programs based on OpenMP. The first version
of PARbench had been designed from 1988-1990 to measure the interaction of
several programs during execution in multiprogramming mode [1], [2]. In 2001
PARbench was ported to the SGI Origin 3800 by Sebastian Boesler and the use
of OpenMP as a standard for parallelization was introduced [3]. Meanwhile, the
vector systems NEC SX-4 and SX-5 and the IBM p690 series were also analyzed
[4], [5].

Object of this investigation were the Sun Fire E25Ks of the RWTH Aachen
with 72 dual core UltraSPARC IV CPUs each, running on Solaris 9. The PAR-
bench code was compiled with the Sun Studio 9 Compiler Collection. A compre-
hensive view of the architecture of the Sun Fire E25K can be found in [6]. More
details about the UltraSAPRC IV CPU can be found in [7].

The work is parted in the following sections: The first part of the investigation
will be a general assessement of the scalability of the crossbar-based ccNUMA
architecture with dual core CPUs. The second part will examine the operation
mode driven by the cluster batch engine (Sun N1 Grid Engine 5.3). The perfor-
mance impact to OpenMP programs due to operating system tasks, which are
not considered in the load calculation of the batch engine, will be elaborated.
The last part is dedicated to a statistical analysis of the scheduling and will
reveal some weaknesses in the treatment of OpenMP programs.

2 Performance of Sequential Jobs Under Full Load and
Overload

The main reason for applying the ccNUMA for large symmetric multiprocessor
systems is to effectively widen the memory access bottleneck in comparison to
UMA systems. Therefore, ccNUMA systems should scale significantly better for
a larger number of CPUs. The first question, that was to be answered by this
investigation, is how well the E25Ks do scale. The amount of interaction between
the user jobs, due to sharing system resources and maintaining cache coherency
in the system, was examined.
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Fig. 1. 144 different jobs on the Fire E25K

2.1 Full Load

To obtain a first overview about the scalability of the architecture, 36 jobs with
different kernel numbers and 100 seconds runtime each were generated. These
kernels covers all of the 17 internally used math cores, do not perform any
I/O operations and span as much as possible of the available data matrices to
run out of the caches and stress the memory subsystem. After the generation all
generated jobs were executed simultaneously with four copies each to achieve 144
jobs. The result is shown in fig. 1. Some jobs clearly distinguish from other by
their increased CPU usage but none of the jobs suffers from a crucial performance
impact. Even the most affected job took only 120 seconds which correspond to
a relative increase of just 20%. From this point of view the hardware scales very
well.
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2.2 Specifying the OS Load

In the previous test the jobs showed some waiting time. This was caused by
operating system tasks that need a CPU from time to time to do their work.
The short interruptions of the user jobs may lead to increased rates of cache
misses due to the system jobs replacing the cache lines with their own data
or the user jobs being migrated to other CPUs by the scheduler to assure fair
resource assignment. Therefore, 144 user jobs at once as well as the system
tasks results in a slightly overloaded system. The impact on sequential jobs by
these circumstances will be investigated in a next step. Additionally it may
be of interest, to what extend the influence increases within clearly overloaded
systems.

For this reason the load created by the operating system itself is quantified
in order to build tests, that consider this load and avoid interruption of the
user jobs. PARbench measures CPU usage time and real time for every job and
calculate the overall waiting time for a scenario. A simple scenario with 144
sequential jobs shows, that the jobs remained without CPU in about 2% of their
runtime. The experiment was repeated with gradually reduced number of user
jobs until the overall waiting time became almost zero at 140 user jobs.

2.3 Overload

For a next test, a core sequence merely based on only one kernel version was
generated to take 100 seconds. Then several copies of this jobs were run at once,
first with 140 copies to consider the system tasks, second with 144 copies which
comply to the load factor achieved by the cluster batch engine and do not con-
sider system task and third with 164 jobs to overload the system. This test was
repeated for various kernel versions. Table 1 compares the results. As one can
see, most of the kernels do not show any relevant influence from slight or con-
spicuous overload in comparison to their CPU usage time in a full loaded system
with 140 user jobs plus system jobs. Only version 241, 281 and 301 consume rec-
ognizable more CPU time on the clearly overloaded system. For a analysis of this
behavior, some additional data from the jobs, like cache usage and percentage
of write-accesses, is needed. This can be achieved with the performance counters
of the UltraSPARC IV CPU but is not yet included in PARbench. The code
of the math cores, however, reveals that these cores contains some really odd
access patterns to confuse the cache usage and stress the memory subsystem.
Hence, their generated load in the memory subsystem is not typical for scientific
computations. In the outcome sequential jobs are practical not affected by the
system tasks.

3 Influence of Operating System Processes on OpenMP
Programs

The cluster batch engine of the RWTH Aachen uses a simple scheme to avoid over-
loading the systems. The users have to specify the number of processes or threads
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Table 1. Relative increase in CPU usage time with raising load factor for different
kernel versions

Kernel version MREFS FLOPS Relative average CPU time
single 140x 144x 164x

126 765.7 770.1 100% 100.1% 100.1% 100.1%

111 406.9 638.6 100% 100.2% 100.4% 100.2%

101 451.3 702.3 100% 100.4% 100.3% 100.4%

151 919.8 893.2 100% 100.4% 100.3% 100.4%

81 205.2 410.6 100% 102.5% 102.6% 102.4%

226 669.0 79.0 100% 104.5% 104.5% 103.0%

61 71.5 286.0 100% 106.7% 106.5% 106.5%

246 311.2 1.4 100% 107.4% 107.4% 107.5%

221 485.1 54.1 100% 111.5% 113.0% 108.4%

121 309.5 309.6 100% 109.1% 108.9% 108.8%

141 130.7 126.7 100% 118.6% 118.6% 118.4%

281 8.5 0.0 100% 117.6% 120.0% 122.0%
241 325.2 0.1 100% 109.1% 109.1% 124.7%
286 75.1 0.6 100% 124.6% 124.7% 124.8%

201 593.9 119.3 100% 125.3% 125.3% 124.8%

301 63.3 31.7 100% 124.4% 127.0% 135.2%

that they want to use for their MPI or OpenMP jobs. The batch engine then ex-
ecutes only as many jobs simultaneously on the according system that each MPI
instance and each thread of the OpenMP programs can theoretically use a CPU
exclusively. For the E25K systems the batch engine adjust the number of user pro-
grams and threads to 144, which is the number of CPU cores. However, operating
system tasks are not considered at all, thus, the system runs slightly overloaded.
As it could be seen in the previous section, sequential programs do not suffer much
from the short interruptions caused by system tasks. On the other hand, paral-
lelized programs, especially fine-grained parallelized programs like OpenMP pro-
grams, may experience much more impact from these short interruptions. To en-
sure data validity, OpenMP programs contain a lot of synchronization barriers,
that have to be reached by all worker threads before the calculation can proceed.
In order to obtain efficiently parallelized programs, the work will be spread to ev-
ery worker thread equally. If every thread can use a CPU exclusively, all worker
threads will reach the barriers at the same time and the next part of the work is
spread to the worker threads immediately. But if some worker threads are inter-
rupted by system tasks, all other threads of the OpenMP program will have to
wait on the next barrier for the interrupted thread. Part of the investigation was
to quantify these impact on the performance of OpenMP programs.

For this purpose a job with 200 seconds sequential runtime and no I/O was
created. This job was generated to average 500 MREFS and 500 MFLOPS and
contains about 5000 kernels, which means 5000 implicit barriers for the OpenMP
parallelization. The scenario contains nine copies of this job which were paral-
lelized to eight threads each. First these jobs were executed with 72 sequential
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Table 2. Average CPU usage time (user+system) and runtime of the parallelized jobs
(9x8) with spinning threads (busy waiting) and different background load in the system

Total number of Test setup CPU usage time [s] Runtime [s]
user threads of the par. jobs (average)

8 1x8 232.4 29.1

72 9x8 234.7 29.3

138 66x1 9x8 238.7 30.0

140 68x1 9x8 239.5 30.1

142 70x1 9x8 248.2 31.4

144 72x1 9x8 272.7 34.9

Table 3. Runtime differences of the parallelized jobs between considering operating
system tasks and not

Threads/job Average runtime of the par. jobs [s] Rel. extension
for total number of user threads [%]

140 144

8 30.1 34.9 15.9%

16 19.3 26.3 36.3%

24 14.1 22.3 58.2%

32 10.7 20.6 92.5%

jobs simultaneously and then with only 68 sequential jobs in parallel to ensure
four free CPUs for the system tasks. Fig. 2 and fig. 3 show the results. Some of
the OpenMP jobs ran notably longer without free CPUs for system jobs. To en-
sure that the impact does not originate from other influences, the measurement
was also repeated without the simultaneous sequential jobs to compare CPU us-
age and runtime with these values. Table 2 contains the average runtime and the
average CPU usage for all of the parallelized jobs and the different scenarios. As
one can see, the runtime does not differ much for lower system loads but does no-
tably increase with more than 140 user threads in the system1. But then again,
an increase to 35 seconds compared to 30 seconds is practically neglectable.

After that the examination was expanded to a higher degree of paralleliza-
tion with up to 32 threads. Again the OpenMP jobs were executed with some
sequential jobs simultaneously to fill the system and then with four sequential
jobs lesser to avoid interruption by system tasks. Table 3 compares the average
runtime of the parallel jobs in the two scenarios for the an increasing number of
parallel threads. One can see, that the impact increases rapidly with higher par-
allelization. The slight overload caused by the operating system has a dramatic
impact on the performance of the OpenMP programs with higher paralleliza-
tion. OpenMP jobs with 32 threads will already run almost twice as long, if the
operating system tasks are not considered in the load calculation and slightly
overload the system.

1 Sequential programs are counted as one thread.
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Fig. 2. 144 user threads within the SF-E25K (144 CPUs)
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Fig. 3. 140 user threads within the SF-E25K (144 CPUs)

4 Scheduling Analysis

PARbench allows assessing the performance of jobs in different multiprogram-
ming scenarios. The measured interaction, however, may caused by hardware
limitation as well as by unfavorable scheduling. To obtain a direct access to the
decisions of the scheduler the PARbench startup script was extended in order to
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run the Solaris prstat tool during the workload execution. The tested workloads
were reduced by one sequential job to achieve the same load factor as without
prstat. The prstat tool is a program similar to the widely known top utility
but additionally offers precise information about every thread of the running
programs. In this case prstat was run in batch mode to log the process and
thread assignment to the CPUs every second. After the experiments, the gath-
ered data was analyzed regarding migrations and data locality. The sequence of
used CPUs was determined for every user job and for each of their threads.

A migration always occurred, if the CPU number changed between two snap-
shots. Since most of the performance of the UltraSPARC IV CPU is related
to its huge level two cache, programs will only obtain this performance, if they
utilize this cache effectively. If a process or thread is migrated to another CPU,
the cache usage will be disturbed. To compare the migrations, a migration rate,
which set the counted migrations in ratio to the total number of snapshots made
for each thread or process, was calculated.

The home board rate is the second ratio calculated from the gathered data. The
home board of a process is the system board, where a process was first executed
and where it allocated its data structures in main memory (first touch policy).
Within a system board, the latency to main memory is almost the same but data
access across the central crossbar switch takes much longer. Thus, the Solaris
scheduler tries to bind processes to its home board and avoid migrations to other
system boards. The board number is related to the CPU numbers, so it is quite
simple to determine, if a process was being executed on its home board during
a snapshot. The threads of an OpenMP program should also gain fast access to
the data, consequently they should also be executed on the home board of the
according process. As a system board contains only 4 UltraSPARC IV CPUs
with two cores each, it makes only sense to examine OpenMP programs with up
to 8 threads. Hence, the home board rate for a thread or process was calculated
by counting the number of snapshots the thread or process was executed on its
home board and setting this value in ratio to the total number of snapshots for
the according thread or process.

Table 4 lists the results for the full load scenarios with and without con-
sideration of the operating system tasks, divided into the sequential and the
parallel jobs. For the sequential jobs the average was taken over the values of
each sequential job. For parallel jobs the according rate was calculated for every
thread separately and then averaged. As one can see, the home board binding
works very well for sequential jobs. The migration ratio is very low, too, and

Table 4. Average home board rate and thread migrations rate separated for sequential
an parallelized jobs

Total number of Average home board rate [%] Average migration rate [%]
user threads sequential (x1) parallel (x8) sequential (x1) parallel (x8)

140 98.8 38.4 2.6 8.2

142 96.6 36.3 3.1 11.3

144 95.7 38.2 5.7 16.5
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Table 5. Average executions ratio on the home board separated for the thread numbers

Total number of Test setup Home board rate [%] for thread
user theads 1 (master) 2 3 4 5 6 7 8

140 67x1, 9x8, prstat 98.7 83.2 44.4 33.3 0.0 11.1 19.1 11.5

142 69x1, 9x8, prstat 96.7 62.2 56.3 12.2 11.5 22.2 0.0 22.2

144 71x1, 9x8, prstat 95.7 77.3 67.6 29.6 10.1 21.6 9.3 3.4

does only slightly increase with the small overload caused by the system tasks
in the scenario with 144 user threads. The tide turns for parallelized jobs. All
threads of the OpenMP programs were only executed one third of the time on
the home board and suffer from significantly more migrations than the sequen-
tial jobs. OpenMP programs compiled with the Sun Studio 9 compilers allocate
all threads at the program’s start. In order to save the time for stopping and
starting the threads over and over again, temporarily idle threads do busy wait-
ing per default in order not to loose their CPU. This approach is reasonable, if
the system does not become overloaded and no other jobs are available to use
the freed CPUs. Accordingly, starting and stopping of threads is not the reason
for the higher migration rate.

The assumption was that the scheduler does not distinguish between a se-
quential program and the master thread of an OpenMP program but has no
favorable strategy for further threads. Thus, the same data was analyzed again
but the values were grouped by the thread number. The values of the sequential
jobs and the values of the master thread of the parallel jobs become one group for
averaging, the second group contains the second thread of each parallel program
and so on. Table 5 lists these average home board rates.

The values for the first thread resemble the values of the sequential jobs in the
previous table, which supports the assumption. The binding to the home board
rapidly decrease for larger thread numbers. Starting with thread five the threads
are practically no more subject to any home board binding and will suffer from
slow remote access to their data in the main memory of another CPU board.

5 Conclusions

In this paper, the performance of the Sun Fire E25K in multiprogramming mode
was evaluated. The tests with workloads containing different sequential jobs
indicate that the hardware scales very well and the ccNUMA architecture with
crossbar-based connection network provide sufficient throughput to effectively
eleminate the memory access bottleneck.

In contrast to sequential programs, that are not very influenced by the inter-
ruptions caused by system jobs, tightly coupled parallel programs suffer much
more from those CPU losses. The performance impact increases rapidly with
larger number of threads and it was shown how the consideration of the system
tasks in the load calculation already reduces the runtime of OpenMP jobs with
32 threads in half. Thus, system tasks could not be ignored in the batch engine’s
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load calculation. On the E25Ks the batch engine should limit the number of user
processes and threads to 140 instead of 144, which is the current configuration.

The statistical analysis of the thread scheduling reveals some weaknesses. The
first thread, which is the only thread for sequential jobs, is tightly coupled to
the board, where the program data was allocated. This ensures fast access to
the data and reduce the usage of the central crossbar switch. Further threads
are not subject to this tight home board binding and suffer from higher memory
access latency for that reason. They also show higher migration rates, which
reduce cache utilization. Better thread scheduling could offer some performance
increases here. Sun promises much improved thread handling with Solaris 10,
which will be subject for further research.
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Abstract. The influences of OS and system-specific effects on applica-
tion performance are increasingly important in high performance
computing. In this regard, OS kernel measurement is necessary to un-
derstand the interrelationship of system and application behavior. This
can be viewed from two perspectives: kernel-wide and process-centric.
An integrated methodology and framework to observe both views in
HPC systems using OS kernel measurement has remained elusive. We
demonstrate a new tool called KTAU (Kernel TAU) that aims to pro-
vide parallel kernel performance measurement from both perspectives.
KTAU extends the TAU performance system with kernel-level monitor-
ing, while leveraging TAU’s measurement and analysis capabilities. As
part of the ZeptoOS scalable operating systems project, we report early
experiences using KTAU in ZeptoOS on the IBM BG/L system.

Keywords: Kernel, performance, measurement, analysis.

1 Introduction

As High Performance Computing (HPC) moves towards ever larger parallel en-
vironments, the influence of OS and system-specific effects on application per-
formance are increasingly important to include in a comprehensive performance
view. These effects have already been demonstrated ([10], [16]) to be poten-
tial bottlenecks, but an integrated methodology and framework to observe their
influence relative to application activities and performance has yet to be fully
developed. Such an approach will require OS performance monitoring. OS per-
formance can be observed from two different perspectives. One way is to view
the entire kernel operation as a whole, aggregating performance data from all
active processes in the system and including the activities of the OS when ser-
vicing system-calls made by applications as well as activities not directly related
to applications (e.g. servicing interrupts or keeping time). We will refer to this as
the kernel-wide perspective, which is helpful to understand OS behavior and to
identify and remove kernel hot spots. Unfortunately, this view does not provide
insight into what parts of an application spend time inside the OS and why.

Another way to view OS performance is within the context of an application’s
execution. Application performance is affected by the interaction of user-space
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behavior with the OS, as well as what is going on in the rest of the system. By
looking at how the OS behaves in the context of individual processes (instead
of aggregate performance) we can provide a view that details interactions be-
tween programs, daemons, and system services. This process-centric perspective
is helpful in tuning the OS for a specific workload, tuning the application to bet-
ter conform to the OS configuration, and in exposing the source of performance
problems (in the OS or the application).

Both these perspectives are important in OS performance measurement and
analysis on HPC. The challenge is how to support both while providing a mon-
itoring infrastructure that provides detailed visibility of kernel actions and that
is easy to use by different tools. For example, the interactions between applica-
tions and the OS mainly occur through five different mechanisms: system-calls,
exceptions, interrupts, scheduling, and signals. It is important to understand
all forms of interactions as the application performance is influenced by each.
However, some are easier to observe than others.

Our approach to the challenges above is the development of a new Linux Ker-
nel performance measurement facility called KTAU, which extends the TAU [4]
performance system with kernel-level monitoring. KTAU allows both a kernel-
wide perspective of the OS performance as well as a process-centric perspec-
tive which merges kernel-space measurements with user-space performance data
measured by TAU. KTAU is part of the ZeptoOS [5] research project to study
operating systems for petascale systems and is included in the ZeptoOS distri-
bution for the IBM BG/L I/O nodes. Below we describe the design of KTAU
in Section 2, the BG/L in Section 3, KTAU’s integration in the ZeptoOS and
our early experiences on the IBM BG/L platform in Section 4, Related work is
given in Section 5. Section 6 offers final remarks and future directions.

2 KTAU Design and Implementation

Kernel Tuning and Analysis Utilities (KTAU) is a toolkit for profiling and trac-
ing the Linux Kernel. The toolkit is unique in its ability to produce both a
kernel-specific and process-specific view of performance. Its main strength is in
analyzing program behavior within the context of the kernel. KTAU generates
performance data compatible with the TAU performance system [4], allowing
TAU’s analysis tools to be used.

As shown in Figure 1, KTAU consists of five distinct parts, namely,

– the Kernel Instrumentation
– the Kernel Infrastructure
– the KTAU proc filesystem
– the libKtau user-space library
– and clients of KTAU including the integrated TAU framework and daemons

2.1 Kernel Source Instrumentation

The kernel instrumentation is composed of easy to use C macros and functions.
The instrumentation allows KTAU to intercept the kernel execution path and
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Fig. 1. KTAU Architecture

at each point measurement data is recorded. Profiling and tracing share the
same instrumentation points. Instrumentation points are coarsely grouped based
on various aspects of the kernel such as the subsystem in which they occur
(e.g. scheduling, networking) or in what contexts they occur (e.g. system calls,
interrupt, bottom-half handling). Compile-time configuration options and boot-
time parameters control which groups of instrumentation points are turned on.

Three different types of macros are provided, namely mapping, timer and
event macros. The mapping macro is necessary in every function that contains
the other two types of instrumentations. It performs the function of provid-
ing identities to instrumentation points and mapping performance data to the
instrumentation points. The next macro is a start-stop timer that calculates
time elapsed between an entry and exit point. To obtain high-granularity timing
resolution, low-level hardware timers are used. Lastly the event macro is used
for events that do not conform to the entry/exit semantics or for events with
non-monotonically increasing values.
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2.2 Kernel KTAU Infrastructure

The infrastructure consists of the main in-kernel component that collects per-
formance data and manages the lifecycle of profile/trace data structures. These
structures are managed on a per-process basis and are initialized at the process
creation time. KTAU adds a member of type struct ktau prof ∗ to the process’
task struct which is the process control block in Linux. Small changes are also
made to process creation and termination subroutines.

struct ktau prof comprises of a profile table of configurable size, a fixed-size
circular trace buffer and various other state variables for synchronizing access,
inclusive/exclusive time calculation and merging of user and kernel profile data.

2.3 KTAU proc Filesystem

The proc filesystem component interfaces user-space clients with the kernel in-
frastructure component. It exposes two entries under /proc/ktau called profile
and trace. User-space clients perform IOCTLs on these files to access kernel
performance data.

To accommodate frequent use clients, such as daemons that repeatedly
retrieve data at small intervals, a memory-mapped buffer strategy (using get
user pages and vmap() kernel routines in Linux) is being experimented with.
This removes the need to repeatedly copy to/from userspace.

2.4 libKtau – User Library and API

The User API to KTAU provides a small set of easy to use functions that hide
the details of the proc filesystem protocol, shielding applications from changes to
KTAU kernel components. It provides control (merging, overhead calculation),
data retrieval, data conversion (ASCII/binary) and formatted output.

All requests from user-space are grouped into three accessing schemes namely
’self’, ’others’ and ’all’, referring to the set of processes of interest. For ’self’
requests, kernel-mode performance data of the same process as the user-space
client making the request is accessed. ’other’ requests are for a set of processes
(one or more) explicitly named in the request. And ’all’, just an extension of
’other’, is a convenience sparing clients from having to find the pids of all the
processes on the system. The reason for having different modes has to do with
reducing or removing the need for locking(a process accessing its own kernel-level
profile does not need synchronization as it cannot race against itself).

2.5 KTAU Clients

KTAUD - KTAU Daemon. KTAUD periodically extracts performance data
from the kernel. It can be configured to extract information for all or a subset of
processes. Although it supports extracting profile data, its periodic nature suits
it to dumping trace data, as trace buffers within the kernel can become full.
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Integrated TAU Framework. The TAU measurement framework has been
integrated with KTAU and is a client of libKtau. Applications instrumented with
TAU automatically have access to kernel performance data of their own process
(i.e. they will be self-profiling clients, using the ’self’ mode of libKtau). When
enabled through configuration, TAU will generate merged user/kernel profile
information. This is supported only on KTAU-patched Linux OSes.

runKtau. Another type of client is similar to how the ’time’ command under
UNIX works. ’time’ spawns a child process, executes the required job within that
process, and then gathers rudimentary performance data by doing a waitpid on
the child’s pid. Similarly ’runktau’ extracts the process’ detailed KTAU profile.

3 The BG/L and Its Performance Observation

3.1 Brief Description of the Blue Gene/L

The Blue Gene L(BG/L) is a recent massively parallel supercomputer system
from IBM, developed in collaboration with LLNL, that scales to 65,536 compute
nodes [13]. Its architecture includes dual-processor Compute Nodes, I/O Nodes,
front-end nodes and a Service node. Five different interconnect networks provide
file I/O, control, debugging and interprocessor communication. Our focus is cur-
rently toward the compute and I/O nodes. We provide only a brief description
of those aspects relevant to the current work as other work describes all aspects
of the BG/L architecture and system software in detail([11],[6]).

The dual-processor (700 Mhz PPC 440) compute nodes, running a proprietary
IBM operating system called the Compute Node Kernel (CNK) act as the main
computation engines. The CNK is a small, light-weight OS, written in C++,
without multitasking or virtual memory support allowing as many cycles as
possible to application processing. File I/O is not directly implemented by the
CNK and instead is call-forwarded to dedicated I/O nodes.

The I/O nodes serve two purposes. They participate in control of compute
nodes including initialization, program launch and termination. They also per-
form all File I/O processing on behalf of the compute nodes. Multiple Compute
nodes share a single I/O node. The ratio of I/O to compute nodes is configurable
during system setup with values ranging from 1:8 to 1:128. The I/O node along
with the compute nodes connected to it, forms a partition set (or pset).

The IO node OS is a modified Linux kernel (called the IO Node Kernel or
INK). Modifications include patches to change interrupt/exception handling, add
device drivers and floating point unit support. Due to the nodes being disk-less,
a ramdisk containing shells and utilities is loaded into memory during bootup
and forms the root filesystem. After bootup remote filesystems can be mounted
onto the I/O Node based on the configuration of the ramdisk.

The Control and Input/Output daemon (CIOD) running on the I/O Node
manages the control and file I/O of compute nodes in its pset. It listens for and
accepts requests for processing of forwarded I/O system calls from the compute
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node applications. The file-I/O is blocking on the application side. The CIOD re-
issues the system-calls through the VFS (Virtual File system) on the I/O Node
which in turn is implemented by the file-system in use (e.g. NFS or PVFS2).

A tree network connects the Compute Nodes in a pset to their corresponding
I/O node. The tree is used for collective operations as well as file I/O.

3.2 The Performance Measurement Problem

The BG/L system involves different nodes and multiple interacting software
components within the nodes. Our approach is to place a unified measurement
framework, based on TAU and KTAU, that can observe the applications, the
system software and the operating systems and can correlate the performance
data from the disparate sources.

The compute and I/O nodes tend to influence application performance the
most. The I/O node being a shared resource within a pset, it is important to
understand aspects of sharing such as fairness and utilization. Key questions re-
garding configuration of CIOD and the kernel, kernel version, choice of filesystem
(NFS, PVFS2, Lustre etc) need to be answered with reference to performance
data. The problem can be further split as follows:

1. Measurement of the Compute Node applications and the CNK and correla-
tion of both performance results across compute nodes. This is (partially) tackled
by using applications instrumented with TAU. TAU instrumentation allows trac-
ing/profiling the applications and libraries such as MPI (using the MPI profiling
interface). The CNK is closed and proprietary (akin to a black-box) and hence
cannot be profiled or traced. But it is considered to be light-weight and built to
stay out of the way of the application. We do not go into the details of using the
TAU system on the compute nodes any further in this paper.

2. Measurement and correlation of performance of the CIOD, system daemons
and IO Node Kernel. This is the focus of out current work including the integra-
tion with the ZeptoOS IO Node kernel on the Blue Gene/L at Argonne National
Labs and our early experiences and results in using KTAU on the IO Nodes. The
black-box nature of the CIOD is one of the challenges in measuring I/O node
performance. The next section describes our approach.

3. Correlation of performance between the compute and I/O nodes within a
pset and across multiple psets. This faces the problem of two black-boxes (CNK
and CIOD) obscuring the call flow between the Compute and I/O-nodes, making
correlation of events challenging. This is the target of future work.

4 KTAU On BG/L

Figure 2 shows a simplified view of the architecture of the BG/L’s I/O and
Compute Nodes within a pset and the main software components on those nodes.
The ZeptoOS Linux kernel on the IO Node has been patched with KTAU support
and KTAUD has been added to the IO Node utilities. On the compute node side,
the applications can be instrumented with TAU to generate profiles or traces.
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KTAU’s process-centric kernel level profiling and tracing support is used to
observe the CIOD despite it being closed-source. Its interactions at the kernel-
level are the only way to peer into it. While utilities such as ’strace’ are being used
for this purpose, the perturbation caused by strace’s trap-and-signal mechanism
can cause significant differences between observed and ’real’ behavior.

The integration with ZeptoOS (see [1] for details) includes patching and con-
figuration changes to the Kernel source and the ramdisk image.

4.1 Performance Observation Capabilities Demonstrated

The following experiments aim to show KTAU’s fine-grained performance ob-
servation capabilities on the BG/L IO Nodes. The experimental setup consists
of a single pset (a single I/O node with 1 to 32 compute nodes). The compute
nodes run a MPI I/O benchmark called iotest (used at ANL) which produces ag-
gregate bandwidth numbers over varying block-sizes, number of processors and
iterations. While the benchmark is run on the compute nodes, the CIOD services
the read and write calls on the I/O node. On the I/O node while KTAU captures
the kernel interactions, KTAUD periodically queries and saves the KTAU trace
or profile information. Paraprof and Vampir [17] are used for visualization.

1. Fine Grained CIOD Tracing: We first show a trace fragment of the CIOD
along with a zoomed in view in Figure 3. The groups of kernel functions shown in
the upper image include TCP/IP, Socket calls, Interrupts, bottom half handling
and scheduling. The lower zoomed-in image shows a typical CIOD kernel inter-
action when servicing a write system call from the compute node. The CIOD
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Fig. 3. KTAU Trace of CIOD – Bottom is Zoomed-In view of Top

calls sys write on the IO node which in turn gets translated into socket and
bottom half handling. UDP, instead of TCP, is used due to the filesystem being
NFS (but the UDP activity is not shown as those instrumentation points were
not enabled). The fine grained detail also shows interrupts occurring in between
(do IRQ). The ’node 266’ in the title refers to process-id 266 (of the CIOD).

2. Effect of Increasing Compute Jobs on CIOD: As the I/O Node is a shared
resource among the compute nodes in the pset, the load on the CIOD will no-
doubt increase as the iotest benchmark is run in parallel over multiple compute
nodes. Using KTAU we are able to capture the effect on the CIOD through its
increasing interactions with the INK as it tries to service all of the compute
nodes. Figure 4 shows five runs each with varying number of compute jobs.

3. Correlating behavior of Daemons and Kernel threads: It is possible to loosely
correlate activity between different interacting daemons and kernel threads using
traces collected from them. While no actual causal relationships can be directly
deduced from the traces, intelligent guesses can be made based on timestamps
and functionality of the processes. Figure 5 shows trace fragments from two pro-
cesses on the IO node namely the CIOD and the RPCIOD (RPC I/O daemon).
CIOD can be seen to repeatedly make sys write calls and then be scheduled-
out. At the same time, RPCIOD can be seen to be scheduled-in and perform
sock sendmsg followed by bottom-half handling. This behavior can be explained
by the fact that with the underlying filesystem being NFS, the CIOD’s sys write
calls are being handled by the RPCIOD.

4. Effect of Filesystem choice on CIOD: The backend filesystem mounted by
the IO Node after bootup can be varied. By default on the ANL BG/L this
is NFS, but a PVFS2 based configuration is also supported. The choice and
configuration parameters of the backend filesystem can significantly influence
I/O performance. To demonstrate KTAU’s characterization of this effect two
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Fig. 4. KTAU Trace of CIOD - Effect of Increasing Compute Nodes from 2 to 32

runs of the benchmark were conducted, one under NFS and the under PVFS2.
The traces1 show clear differences in behavior (including obvious ones such as
the use of TCP in the PVFS client versus the use of UDP in the RPCIOD).

5. Profiling support on the IO Node: Profiling support is important to provide
as it can quickly help locate performance bottlenecks. While trace information
can be post-processed to provide profiles, direct online profiling has much lower
overheads. KTAU can collect profiling data, in addition to above mentioned
traces, that can be visualized in Paraprof. The profiles1 show inclusive and ex-
clusive times taken by various kernel routines in the context of the CIOD.

5 Related Work

It is interesting to compare KTAU to other kernel instrumentation and measure-
ment projects. We discuss below a few of the tools presented in Table 1.

KTAU is clearly distinguished from tools that use dynamic instrumentation
rather than modify the kernel source. In KernInst [8] and DTrace [9] kernel
routines are instrumented by splicing in measurement code dynamically at run-
time. While kernel measurement can be modified during execution, the overhead
of changing instrumentation can be greater than direct code instrumentation.
KernInst, by itself, does not support merging user and kernel related performance
information. Dtrace’s user-level instrumentations also trap into the kernel, mak-
ing it a costly choice for measurement of parallel HPC codes.
1 Not shown here due to lack of space.
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Fig. 5. Correlating CIOD Activity with RPC-IOD

In contrast to KernInst and DTrace, the Linux Trace Toolkit (LTT) [12]
is based on source instrumentation. The actual source code of the Linux ker-
nel is modified to include LTT macros in specified functions and LTT based
data structures for holding the trace information. Other tools that fall into this
category are K42 [14] and KLogger [18]. All of these only provide tracing.

5.1 Measured and Statistical Profiling Tools

SGI’s KernProf [3] (under call-graph modes) is an example of measured-
profiling tools. It uses compiler (gcc -pg option) generated profiling support.
Every function is instrumented at compile-time with code to track a call-count
and which functions called it and which functions were called from it. This is
used to generate a call-graph of the kernel.

Oprofile [2], a statistical profiler, is meant to be a type of continuous profiler
for Linux meaning always turned on. It performs both user-mode and kernel-
mode profiling across the system providing merged user/kernel information. Its
shortcomings include its inability to provide online information and the costly
requirement of a daemon. SGI KernProf’s flat-profile mode also uses sampling.

5.2 Merged User-Kernel Performance Analysis Tools

These tools explicitly provide support to merge the performance information
between the application and the kernel. This enables understanding program-
OS interaction and being able to pin-point bottleneck location in overall pro-
gram/OS stack. It may also allow identifying intrusive effects such as excessive
scheduling or interrupts that can steal cycles from applications.

CrossWalk [7] is a tool that walks a merged call-graph across the user-kernel
boundary in search of the real source of performance bottlenecks. Using a spec-
ified performance threshold, it tries to find routines that take longer than the
threshold starting its search from the main() function and examining the en-
tire user/kernel control flow. DeBox [19] and [15] are also merged performance
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measurement tools. All three suffer from the fundamental problem of not pro-
viding merged support, unlike KTAU, for interrupts, exceptions and scheduling.

5.3 Discussion

The tools mentioned above are unable to produce valuable merged information
for all aspects of program-OS interaction. In addition, online OS performance
information and ability to function without a daemon is not widely available.
Most of the tools do not provide explicit support for collecting, analyzing and
visualizing parallel performance data. KTAU aims to explicitly support online
merged user/kernel performance analysis for all program-OS interactions in par-
allel HPC execution environments while using existing visualization tools.

Table 1. Related Work (N/E stands for ’No Explicit support’)

Tool Instr. Measurement User+Kernel Parallel SMP OS

KernInst Runtime Flexible N/E N/E Yes Sun
DTrace Runtime Flexible Trap into OS N/E Yes Sun

KLogger Static Src. Trace N/E N/E Yes Linux
LTT Static Src. Trace N/E N/E Yes Linux

OProfile Not App. Stat. Prof. Partial N/E Yes Linux
KernProf(Flat) Not App. Stat. Prof. N/E N/E Yes Linux

KernProf(C Path) gcc -pg Call Path N/E N/E Yes Linux

LACSI’05 Static Src. Trace Syscall Only N/E No Linux
CrossWalk Runtime Flexible Syscall Only N/E Yes Sun

DeBox Static Src. Meas. Prof., Trace Syscall Only N/E Yes Linux
KTAU+TAU Static Src. Meas. Prof., Trace Full Explicit Yes Linux

6 Conclusions and Future Work

The desire for a kernel monitoring infrastructure that can provide both a kernel-
wide and process-centric performance perspective led us to the design and de-
velopment of KTAU. KTAU is unique in its ability to measure the complete
program-OS interaction, its support for joint daemon and program access to
kernel performance data, and its integration with a robust application perfor-
mance measurement and analysis system, TAU. In this paper, we described us-
ing KTAU as part of a performance measurement framework on Argonne’s IBM
BG/L system within the scope of the ZeptoOS project. Our early experiences
indicate that KTAU along with TAU can be used to perform fine-grained perfor-
mance measurement across the system. We demonstrated KTAU’s measurement
capabilities showing tracing/profiling of the I/O Node processes.

The I/O Node and the BG/L system as a whole provide many interesting
performance questions that KTAU can be used to answer. We intend to deepen
these early efforts through full-fledged experiments to study BG/L I/O perfor-
mance and scaling under different backend filesystems, application loads and IO
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Node (and CIOD) configurations. Another area we intend to explore is corre-
lating performance observations between the Compute and I/O nodes. As the
ZeptoOS project matures, KTAU will be also be used to provide kernel perfor-
mance measurement and analysis for dynamically adaptive kernel configuration.
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Abstract. In the past, research on Multiprocessor Systems-on-Chip
(MPSoC) has focused mainly on increasing the available processing
power on a chip, while less effort was put into specific system-level per-
formance analysis, or into behavior prediction. This paper introduces
PAM-SoC, a light-weight performance predictor for MPSoC system-level
performance. Being based on Pamela, a static performance predictor for
parallel applications, PAM-SoC can compute its prediction in seconds for
cases when cycle-accurate simulation takes tens of minutes. The paper
includes a set of PAM-SoC validation experiments, as well as two sets of
experiments to show how PAM-SoC can be used for either application
tuning or MPSoC platform tuning in early system design phases.

1 Introduction

Systems-on-Chips (SoCs) are built to answer the increased processing power re-
quirements of real-time embedded applications by integrating (most of) the func-
tions of a complete electronic system on a single chip [1]. Multiprocessor SoCs
(MPSoCs) are SoCs that integrate several programmable processors, adding
more flexibility and programmability to these devices. Currently, consumer elec-
tronics, automotive and dedicated industrial control systems are foreseen as the
main consumers of MPSoC technology.

So far, MPSoC research was focused mainly on hardware issues, allowing de-
signers to prove their skills in squeezing as much processing power as possible on
a single chip. As a result, many different platforms have emerged [2,3]: IXP2850
Network Processor (Intel), OMAP (Texas Instruments), NexperiaTM(Philips),
NomadikTM(STMicroelectronics), or Cell (IBM/Sony/Toshiba).

Currently, MPSoCs face a difficult challenge: predictable programmability in
terms of performance. Unfortunately, integrating more resources on the same
chip does not directly increase performance. It does, however, increase the anal-
ysis complexity and the software design time. On top of this complexity, the
inherent hardware imbalance between the almost unlimited available processing
power and the severely limited on-chip memory may induce performance gaps
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that have not been foreseen during design. Furthermore, MPSoCs lack dedi-
cated performance analysis methodologies. Most of the current analysis is based
on simulations, a time-consuming solution that also requires specific well-defined
benchmarks (not yet available), and specific programming models (emerging [4]),
in order to provide meaningful conclusions. In other words, current performance
analysis is expensive and cumbersome, thus difficult to use in any system design
flow feedback loops.

This paper presents PAM-SoC, a light semi-static performance prediction
toolchain that computes system-level performance estimations for applications
running on MPSoCs. PAM-SoC is based on Pamela[5], a static performance
prediction methodology for general purpose parallel platforms (GPPPs). By cou-
pling an application model with the target machine model, Pamela computes
the lower bound of the execution time of the application on the target archi-
tecture. To address the specifics of MPSoCs, PAM-SoC includes new techniques
for machine modeling and tools for gathering memory behavior statistics. In
its prediction, PAM-SoC trades accuracy for estimation speed: in cases when
cycle-accurate simulation would take tens of minutes, application behavior can
be estimated in tens of seconds. Thus, PAM-SoC can be part of the MPSoC
design flow, for either application or architecture tuning.

The paper is organized as follows: Section 2 briefly presents the Pamela
methodology. Section 3 introduces the PAM-SoC predictor, discussing the appli-
cation and machine modeling in detail. Section 4 presents the validation process
of PAM-SoC and two interesting usage scenarios. Section 5 presents related work,
while Section 6 draws the conclusions and presents future work directions.

2 Pamela Methodology

Pamela (PerformAnce ModEling LAnguage) [6] is a performance simulation for-
malism that facilitates symbolic cost modeling, featuring a modeling language, a
compiler, and a performance analysis technique. The Pamela model of a Series-
Parallel (SP) program[7] is a set of explicit, algebraic performance expressions in
terms of program parameters (e.g., problem size), and machine parameters (e.g.,
number of processors). These expressions are automatically compiled into a sym-
bolic cost model, that can be further reduced and compiled into a time-domain
cost model and, finally, evaluated into a time estimate. Note that Pamela mod-
els trade prediction accuracy for the lowest possible solution complexity. Fig. 1
presents the Pamela methodology.

Modeling. The Pamela modeling language is a process-oriented language de-
signed to capture concurrency and timing behavior of parallel systems. Data
computations from the original source code are modeled into the application
model in terms of their resource requirements and workload. The available re-
sources and their usage policies are specified by the machine model.

Any Pamela model is written as a set of process equations, composed from
use and delay basic processes, using sequential, parallel, and conditional
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Fig. 1. The Pamela symbolic cost estimation

composition operators. The construct use(Resource,t) stands for exclusive ac-
quisition of Resource for t units of (virtual) time. The construct delay(t) stalls
program execution for t units of (virtual) time. A machine model is expressed in
terms of available resources and an abstract instruction set (AIS) for using these
resources. The application model of the parallel program is implemented using
an (automated) translator from the source instruction set to the machine AIS.
The example below illustrates the modeling of a block-wise parallel addition
computation y =

∑N
i=1 xi on a machine with P processors and shared memory

mem:

// application model: // machine model
par (p=1,P) { load=use(mem,taccess)

seq (i=1,N/P) { load ; add } ; add=delay(tadd)
store }

Symbolic Compilation and Evaluation. A Pamela model is translated into
a time-domain performance model by substituting every process equation by a
numeric equation that models the execution time associated with the original
process. The result is a new Pamela model that only comprises numeric equa-
tions, as the original process and resource equations are no longer present.
The Pamela compiler can further reduce and evaluate this model for different
numerical values of the parameters, computing the lower bound of the applica-
tion execution time. The analytic approach underlying the translation, together
with the algebraic reduction engine that drastically optimizes the evaluation
time, are detailed in [8].

3 The PAM-SoC Toolchain

Using Pamela for MPSoC performance predictions is quite difficult because of
the architecture and application modeling efforts required. Details that can be
safely ignored for GPPP models, as they do not have a major influence on the
overall performance, may have a significant influence on MPSoC behavior. As a
consequence, for correct modeling of MPSoC applications and architectures, we
have extended Pamela with new techniques and additional memory behavior
tools. The resulting PAM-SoC toolchain is presented in Fig. 2. In this section
we will further detail its specific components.
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Fig. 2. The PAM-SoC toolchain

3.1 MPSoC Machine Modeling

The successfull modeling of a machine architecture starts with accurate detec-
tion of its important contention points, i.e., system resources that may limit
performance when used concurrently. Such resources can be modeled at vari-
ous degrees of detail, i.e., granularities, by modeling more or less from their
internal sub-resources. The model granularity is an essential parameter in the
speed-to-accuracy balance of the prediction: a finer model leads to a more ac-
curate prediction (due to better specification of its contention points), but it is
evaluated slower (due to its increased complexity). Thus, a model granularity
boundary should be established for any architecture, so that the prediction is
is still fast and sufficiently accurate. This boundary is usually set empirically
and/or based on a set of validation experiments.

Previous GPPPs experiments with Pamela typically used coarse models,
based on three types of system resources: the processing units, the communi-
cation channels and the memories. For MPSoC platforms, we have established
a new, extended set of resources to be included in the machine model, as seen
in Fig. 3. The new granularity boundaries (the leaf-level in the resource tree in
Fig. 3) preserve a good speed-to-accuracy balance, as proved by various exper-
iments we did [9], while allowing drastic simplification of the MPSoC machine
modeling procedure. Some additional comments with respect to the machine
modeling are the following:

• When on-chip programmable processors have subunits able to work in par-
allel, they should be modeled separately, especially when analyzing applica-
tions that specifically stress them.

• The communication channels require no further detailing for shared-bus ar-
chitectures. For more complex communication systems, involving networks-
on-chips or switch boxes, several channels may be acting in parallel. In this
case, they have to be detected and modeled separately.

• The memory system is usually based on individual L1’s, an L2 shared cache
(maybe banked) and off-chip memory (eventually accessed by dedicated L2
Refill and L2 Victimize engines). If hardware snooping coherency is enforced,
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Fig. 3. The extended set of resources to be included in a PAM-SoC machine model

two more dedicated modules become of importance: the Snooping and the
Coherency engines. Any of these components present in the architecture
must be also included in the model.

After identifying model resources, the AIS has to be specified as a set of rules for
using these resources, requiring (1) in-depth knowledge on the functionality of
the architecture, for detecting the resource accesses an instruction performs, and
(2) resource latencies. As an example, Table 1 presents a snippet from a (possible)
AIS, considering an architecture with: several identical programmable processors
(Procs(p)), each one having parallel arithmetic (ALU(p)) and multiplication
(MUL(p)) units and its own L1(p) cache; several Specialized Functional Units
(SFU(s)); a shared L2 cache, banked, with dedicated Refill and Victimize
engines; virtually infinite off-chip memory (mem).

The cache hit/miss behavior cannot be evaluated using the cache (directory)
state, because Pamela, being algebraic, is a state-less formalism. Thus, we
compute a probabilistic average cache latency, depending on the cache hit ra-
tio, hratio, and on the hit/miss latencies, thit and tmiss. Also the if branches
in the READ(addr) model are addressed in a probabilistic manner. For exam-
ple, if(missL1) is replaced by a quantification with (1 − hratio

L1 ), which is the

Table 1. Snippet from an AIS for a generic MPSoC

Operation Model
p: ADD use(ALU(p), tADD)
p: MUL use(MUL(p), tMUL)
s: EXEC use(SFU(s), tSFU)

p: accessL1(addr) use(L1(p), thit
L1 ∗ hratio

L1 + tmiss
L1 ∗ (1 − hratio

L1 ))
p: accessL2(addr) use(L2(bank(addr)), thit

L2 ∗ hratio
L2 + tmiss ∗ (1 − hratio

L2 ))
p: refillL2(addr) use(Refill, tRD

Mem )
p: victimizeL2(addr) use(Victimize, victimizationratio ∗ tWR

Mem )
p: READ(addr) accessL1(addr);

if (missL1) { accessL2(addr);
if (missL2) {

if (victimize) victimizeL2(addr);
refillL2(addr)}}
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probability that this condition is true. All these probabilistic models are based
on memory behavior parameters which are both application- and architecture-
dependent. PAM-SoC uses an additional tool for computing these parameters,
which is presented in Section 3.3.

3.2 Application Modeling

Translating an application implemented in a high-level programming language
to its Pamela application model (as well as writing a Pamela model from
scratch) implies two distinct phases: (1) modeling the application as a series-
parallel graph of processes, and (2) modeling each of the processes in terms of
Pamela machine instructions. However, modeling an existing application to its
Pamela model is a translation from one instruction set to another, and it can
be automated if both instruction sets are fully specified as exemplified in [5].

3.3 The Memory Statistics

For computing its prediction, PAM-SoC uses two types of numerical parame-
ters: (1) the hardware latencies (measured under no-contention conditions), and
(2) the memory statistics. While the former have been also required by GPPP
models, the latter become of importance mainly for modeling MPSoC platforms.

The hardware latencies are fixed values for a given architecture and can be
either obtained from the hardware specification itself (i.e., theoretical latencies)
or by means of micro-benchmarking (i.e., measured latencies). We have based
our experiments on the theoretical latencies.

The memory statistics are both machine- and application-dependent, and they
have to be computed/evaluated on a per-application basis. For this, we have built
MemBE, a custom light-weight Memory system Behavior Emulator able to ob-
tain memory statistics like cache hit ratios, snooping success ratios, or vitimiza-
tion ratios, with good speed and satisfactory accuracy. MemBE is built as a
multi-threaded application that permits the (re)configuration of a custom mem-
ory hierarchy using the memory components supported by PAM-SoC. MemBE
emulates the memory system of the target architecture and executes a memory-
skeleton version of the analyzed application1. The memory skeleton is stripped of
any data-processing, which allows MemBE to run faster and to focus exclusively
on monitoring the application data-path.

4 Experiments and Results

In this section we present the validation experiments for our PAM-SoC toolchain,
as well as two sets of design-space exploration experiments, one for architecture
tuning and one for application tuning, respectively.

1 Currently, the application simplification from the source code to the memory-
skeleton is done by hand. In principle, we believe that Pamela and MemBE can
both start from a common, autmatically-generated application model.
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4.1 Validation Experiments

The validation process of PAM-SoC aims to prove its abilities to correctly predict
application behavior on a given MPSoC platform. For these experiments, we have
modeled the Wasabi platform, one tile of the CAKE architecture from Philips
[10,11]. A Wasabi chip is a shared-memory MPSoC, having 1-8 programmable
processors, several SFUs, and various interfaces. The tile memory hierarchy has
three levels: (1) private L1’s for each processor, (2) one shared on-chip L2 cache,
available to all processors, and (3) one off-chip memory module. Hardware con-
sistency between all L1’s and L2 is enforced. For software support, Wasabi runs
eCos2, a modular open-source Real-Time Operating System (RTOS), which has
embedded support for multithreading. Programming is done in C/C++, using
eCos synchronization system calls and the default eCos thread scheduler.

The simulation experiments have been run on Wasabi’s configurable cycle-
accurate simulator, provided by Philips. For our experiments, we have chosen
a fixed memory configuration (L1’s are 256KB, L2 is 2MB, and the off-chip
memory is 256MB) and we have used up to 8 identical Trimedia processors3.

For validation, we have implemented a set of six simple benchmark appli-
cations, each of them being a possible component of a more complex, real-life
MPSoC application. These applications are: (1) element-wise matrix addi-
tion - memory intensive, (2) matrix multiplication - computation intensive,
(3) RGB-to-YIQ conversion - a color-space transformation filter, from the
EEMBC Consumer suite4, (4) RGB-to-Grey conversion - another color-space
transformation, (5) high-pass Grey filter - an image convolution filter, from
the EEMBC Digital Entertainment suite5, and (6) filter chain - a chain of
three filters (YIQ-to-RGB, RGB-to-Grey, high-pass Grey) successively applied
on the same input data. All benchmark applications have been implemented
for shared-memory (to comply with the Wasabi memory system), using the SP-
programming model and exploiting data-parallelism only (no task parallelism,
which is a natural choice for the case of these one-task applications).

The results of PAM-SoC prediction and Wasabi simulation for matrix addi-
tion and RGB-to-Grey transformation are presented together in Fig. 4. Due to
space limitation, we have only included these two graphs, for the two applica-
tions that clearly exhibit memory contention and therefore show the prediction
abilities of PAM-SoC. The complete set of graphs (for all the applications) and
experiment results are presented in [9]. For all the applications, the behavior
trend is correctly predicted by PAM-SoC. The average error between simula-
tion and prediction is within 19%, while the maximum is less than 25% [9].
These deviations are due to (1) the differences between the theoretical Wasabi
latencies and the ones implemented in the simulator (50-70%), (2) the averaging
of the memory behavior data, and (3) the Pamela accuracy-for-speed trade.

2 http://ecos.sourceware.org/
3 TriMedia is a family of Philips VLIW processors optimized for multimedia process-

ing.
4 http://www.eembc.org/benchmark/consumer.asp
5 http://www.eembc.org/benchmark/digital entertainment.asp
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Fig. 4. Predicted and measured speedup for (a) matrix addition and (b) RGB-to-Grey
conversion

Table 2. Simulation vs. prediction times [s]

Application Data size Tsim TMemBE TPam TPAMSoC Speed-up
MADD 3x1024x1024 words 94 2 1 3 31.3
MMUL 3x512x512 words 8366 310 2 312 26.8
RGB-to-YIQ 6x1120x840 bytes 90 7 4 11 8.1
RGB-to-Grey 4x1120x840 bytes 62 3 1 4 15.5
Grey-Filter 2x1120x840 bytes 113 6 4 10 11.3
Filter chain 8x1120x840 bytes 347 20 12 32 10.8

While Fig. 4 demonstrates how PAM-SoC is accurate in terms of application
behavior, Table 2 emphasizes the important speed-up of PAM-SoC prediction
time (TPAMSoC = TMemBE + TPam) compared to the cycle-accurate simula-
tion time, Tsim, for the considered benchmark applications and the largest data
sets we have measured. While a further increase of the data set size leads to a
significant increase for Tsim (tens of minutes), it has a minor impact on TPam

(seconds) and leads to a moderate increase of TMemBE (tens of seconds up to
minutes). Because MemBE is at its first version, there is still much room for
improvement, by porting it on a parallel machine and/or by including more ag-
gressive optimizations. In the future, alternative cache simulators or analytical
methods (when/if available) may even replace MemBE for computing memory
statistics.

4.2 Design Space Exploration

PAM-SoC can be successfully used for early design space exploration, both for
architecture tuning, where architectural choices effects can be evaluated for a
given application, and for application tuning where application implementation
choices effects can be evaluated for a given architecture.
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(a) (b) (c)

Fig. 5. The hypothetical MPSoCs: (a) M1, (b) M2, (c) M3

Architecture tuning. For architecture tuning, we have considered a hypothet-
ical system with up to eight identical programmable processors, each processor
having its own L1 cache, a fast shared on-chip L2 cache and practically unlim-
ited external memory (i.e., off-chip). We have modeled three variants of this
hypothetical system, named M1, M2, and M3, and we have estimated the
performance of a benchmark application (matrix addition, implemented using
1-dim block distribution) on each of them. In this experiment we have chosen
to tune the memory configuration of the architecture for these different models,
but different processing and/or communication configurations can be evaluated
in a similar manner.

M1 is a basic model presented in Fig. 5(a), being a good starting point for mod-
eling any MPSoC architecture. Its key abstraction is the correct approximation
of the off-chip memory latencies - for both READ and WRITE operations.

M2 is an improved version of M1, presented in Fig. 5(b). It has multiple inter-
leaved banks for the L2 cache (providing concurrent access to addresses that do
not belong to the same bank) and buffered memory access to the external mem-
ory. Due to these changes, we expect the execution of an application to speed-up
on M2 compared to M1. The M2 model can be adapted to suite any MPSoC
architecture with shared banked on-chip memory, if the number of banks, the
sizes of the on-chip buffers, and the banking interleaving scheme are adapted for
the target machine.

M3, presented in Fig. 5(c), has hardware-enforced cache coherency, based on
a snooping protocol. The snooping mechanism may increase performance for
successful snoopings, when an eventual L1-to-L1 transfer is replacing a slower
L2-to-L1 fetch. On the other hand, the L1-to-L2 coherency writes may slow
down the application execution. Furthermore, due to the L2-to-Memory transfers
performed by the Victimize (for WRITE) and Refill (for READ) engines, two
new contention points are added. Overall, because matrix addition has almost no
successfull snoopings, the application execution on M3 is slowed down compared
to its run on M2. M3 covers the most complex variants of a three-level memory
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hierarchy to be found in shared memory MPSoCs. Fig. 6 shows that PAM-SoC
is able to correctly (intuitively) predict the behavior of the given application
on these three models. Unfortunately, we could not run validation experiments
for the same data sets because these would require cycle-accurate simulators for
M1, M2, and M36, which are not available. However, previous Pamela results
[5] provide ample evidence that PAM-SoC will not predict a wrong relative order
in terms of performance: it either correctly identifies the best architecture for
the given application, or it cannot distinguish one single best architecture.

Application tuning. The aim of application tuning experiments is to try eval-
uate several possible implementations of the same application and choose the
best one. To prove the use of PAM-SoC for application tuning, we have used
the model of the Wasabi platform and we have implemented the high-pass Grey
filter mentioned in Section 4.1 using row and column stride distribution. For
this example, based on the PAM-SoC predictions (which are validated by the
simulation results), we can decide that row-stride distribution is the best for the
Wasabi architecture. Similarly, the experiments like, for example, matrix addi-
tion (see Fig. 4(a)), can detect the maximum number of processors to be used
for the computation. Fig. 7 shows how PAM-SoC correctly detects the appli-
cation implementation effects on the given architecture. The simulation results
that validate the predictions are also included in the graph.

5 Related Work

Because performance prediction and analysis specifically targeted to MPSoCs
is still young, we relate our work to more mature adjacent fields, namely (1)
performance prediction for parallel applications, (2) MPSoC performance eval-
uation and design space exploration techniques, and (3) methods for estimating
embedded systems performance.
6 Wasabi is a variant of M3, but its simulator is implemented as a combination of M2

and M3.
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For static performance prediction of (scientific) parallel applications, we di-
rect the reader to Pamela and its related work, to be found in [5,12,13]. Most
of these methodologies are difficult to adapt for MPSoCs and their applica-
tions, mainly because of the sheer complexity of the hardware platforms. On
the practical side, we name the PERC framework [14], close to PAM-SoC in
both objectives and realization, as it aims to estimate parallel application be-
havior by combining machine and application models with the aid of behavior
statistics; however, because PERC is intended for scientific applications running
on high-performance computers, its analysis granularity is too coarse for direct
applicability to MPSoCs.

MPSoC performance analysis is still relying heavily on simulation. MPSoC de-
signers and producers deliver proprietary toolchains, while generic frameworks,
like [15,16], provide complex solutions for hardware/software co-simulation and
integrated performance estimation. Although very accurate, these simulations
are still expensive in terms of computation time. Many hybrid performance esti-
mation techniques have been developed in the context of design space exploration
of both MPSoC-specific applications and architectures [17,18]. For example, an
interesting hybrid co-simulation solution, similar to PAM-SoC in combining per-
formance estimation with simulation techniques, is presented in [19]. The reduc-
tion in complexity is obtained by simulating the architecture at the functional
level, with approximate timing behavior which, compared to PAM-SoC, is much
coarser. Other MPSoC performance analysis methods are dedicated to estimate
the performance of MPSoC components, such as on-chip communication [20,21]
or memory systems [22]. An available solution for formal system-level perfor-
mance verification of MPSoCs is presented in [23], but their approach aims to
verify the performance of the hardware system, not to estimate its application-
specific behavior.

Although there is no clear border between embedded systems and MPSoC
platforms, most of the existing performance evaluation methods for embedded
systems, like those presented in [24,25], have not been tested/adapted for MP-
SoCs, so there are no clear results in this direction.

6 Conclusions and Future Work

In this paper we have presented PAM-SoC, the first toolchain (to the best of our
knowledge) for MPSoCs semi-static performance prediction.

Static performance prediction for MPSoCs is motivated by its reduced cost,
which allows it to be a part of the design loop. Even though static performance
predictors trade accuracy for estimation cost, a behavior estimation within min-
utes is more valuable, in the early design phases, than an hours-long simulation
with very precise results. We have shown how PAM-SoC is used to predict the
performance of MPSoC platforms. To validate the methodology, we have mod-
eled a real MPSoC platform and compared the PAM-SoC prediction results for
a set of six benchmark applications with the simulation results. Furthermore, we
have presented the successful results of PAM-SoC in two early design exploration
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use-cases, namely application tuning and architecture tuning. For the future, we
plan to enhance PAM-SoC by exploring three directions: (1) to model and test
more complex applications, for further validation/improvement of PAM-SoC, (2)
to make the modeling process as automatic as possible, and (3) to investigate
how can PAM-SoC become a truly static performance predictor.
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for understanding the details of the architecture, support that allowed us to
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Abstract. To leverage high speed interconnects like InfiniBand it is im-
portant to minimize the communication overhead. The most interfering
overhead is the registration of communication memory.

In this paper, we present our analysis of the memory registration pro-
cess inside the Mellanox InfiniBand driver and possible ways out of this
bottleneck. We evaluate and characterize the most time consuming parts
in the execution path of the memory registration function using the Read
Time Stamp Counter (RDTSC) instruction. We present measurements
on AMD Opteron and Intel Xeon systems with different types of Host
Channel Adapters for PCI-X and PCI-Express. Finally, we conclude with
first results using Linux hugepage support to shorten the time of regis-
tering a memory region.

1 Introduction

High speed interconnects like InfiniBand [4] or Myrinet [11] use DMA engines
in conjunction with user level communication protocols to achieve high band-
width, low latency and a low CPU utilization. That is the user level application
(Consumer in InfiniBand Architecture) just creates a communication request in-
cluding the relevant information like starting address and length of the commu-
nication buffer. This communication request is then transmitted to the network
adapter (Host Channel Adapter in InfiniBand) through a simple user level API
function call. For a normal send operation the HCA takes the request to create
the appropriate packet structure and programs the DMA engine to get the user
data. After this the packet is immediately transferred to the other communica-
tion partner. This process is depicted in figure 1.

The DMA engine responsible for transferring the data from main memory to
the network adapter handles only physical addresses. Thus the virtual addresses
of the communication buffer have to be translated into a physical one. Further-
more it is important to ensure that every page of the communication buffer is
pinned to prevent swapping. This process of pinning and address translation is
called memory registration. Every communication operation of InfiniBand needs
registered memory except the inline send operation where the data is directly
transferred to the network adapter inside the communication request.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 124–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. InfiniBand Architecture Communication Stack ([4])

To avoid the expensive registration costs several approaches were investigated
and integrated. We present them in the next section. In section 3 we give a de-
tailed description of the memory registration function of the Mellanox InfiniBand
software stack and how we measured the single components inside this function.
This section includes also the appropriate measurements and presents the re-
sults of our first approach to shorten the registration time. We summarize and
conclude in section 4.

2 Related Work

Due to the costs of memory registration several approaches try to reduce the im-
pact of this operation on middleware or application level. These approaches can
roughly be categorized in two classes static and dynamic. Static means that every
memory area is registered in advance or it is hidden in a memory allocation call.
Dynamic means that a memory area is registered on the fly in the communica-
tion path. Typically – to complicate there work further – the amount of pinned
memory pages and the number of registered memory regions may be limited.

Avoiding the registration operation by using memory copies in conjunction
with pre-registered memory regions belongs to the static class. This is typi-
cally used if only small messages are sent or received to improve the latency
behaviour. Application examples are several InfiniBand MPI implementations
like MVAPICH [8], MVAPICH2 [7] and MPICH2-CH3-IB [3].

Registration of the whole physical memory or parts thereof in advance is
another approach in the static class. A call to malloc allocates then already
registered memory for the application. DSM systems like [6] use this approach.
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Tezuka proposed the Pin-Down caching [14] where a lazy deregistration mech-
anism is applied. That is memory regions are registered once and then hold in
a cache. To improve the search speed a hash table is used in MVAPICH [8]
and MPICH2-CH3-IB [3]. To find memory areas with different starting page ad-
dresses that reside inside of another is not possible in a hash table. To remedy
this problem tree structures are used in VIA-RPI [9] for LAM/MPI and Open-
MPI [16] instead of hash tables. All these approaches belong to the dynamic
class and are typically used to transfer large messages.

Other dynamic approaches are Fast Memory Registration and Deregistration
(FMRD) [17] as well as Optimistic Group Registration (OGR) [18]. Both are
proposed for an InfiniBand PVFS implementation to improve the speed of Pin-
Down caching and noncontiguous memory registration.

Further proposals to improve the handling with the registration operation
were made in [13],[15],[19] and [2].

But all the above mentioned approaches merely tried to mitigate the registra-
tion costs in an application specific manner and expect an efficient implementa-
tion of the registration operation. To the best of our knowledge there has been
no detailed analysis which went underneath the registration call.

3 Memory Registration Analysis

It has been observed by several researchers that registering memory for commu-
nication is very time-consuming. Table 1 compares the best case (no registration
at all) and worst case (every buffer must be registered) scenario running the
SendRecv test of the Intel MPI Benchmark [5] suite between two Opteron test-
systems each hosting a PCI-express InfiniBand HCA. This comparison clearly
shows how big the influence on communication performance is. A detailed ana-
lysis regarding the impact on applications is done in [10].

The main goal of the work described here is to obtain a precise understanding
of the execution timing of all InfiniBand driver functions contributing to memory
registration. We aimed at identifiying potential performance bottlenecks and
entry points for optimization.

Table 1. Factor of improvement (FOI) when there are no registration costs

Msg size Bandwidth when Registration necessary FOI if No Registration

32kB 270MB/s 3.22
64kB 457MB/s 2.55

128kB 701MB/s 2.00
256kB 892MB/s 1.74
512kB 1058MB/s 1.56

1024kB 1217MB/s 1.39
2048kB 1295MB/s 1.33
4096kB 1332MB/s 1.31
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3.1 Profiling the Driver

Prior to data transfer, the following main functions are performed sequentially
by the driver:

– pin the requested quantity of memory pages for subsequent DMA transfers
by the IB controller using mlock(),

– translate the virtual addresses of the pinned pages into physical addresses,
– transmit the obtained physical addresses to the IB controller.

It is irrelevant, whether a send or a receive operation follows that preparation.
The sequence constitutes the memory registration.

The first experiment focused on profiling this sequence. We instrumented the
relevant driver functions (mainly VAPI register mr()) of the Mellanox Infini-
Band driver API with rdtsc machine instructions and code to write the obtained
time stamps into the kernel log. This writing needed approximately 2000-5000
clock cycles which is two to three orders of magnitude smaller than the functions
profiled. Therefore we could safely neglect that measurement error.

Two different situations concerning mlock() can be distinguished:

a) All or most of the pages to be pinned are present in main memory.
b) The pages are not present in memory. mlock() generates page faults and its

performance degrades.

Situation b) typically occurs when: Either the buffer is allocated and registered
for the very first time or the pages have been swapped out due to tight memory.
That is, the former case usually occurs when receiver memory is registered, or
sender memory is pre-registered during the init stage. The latter case should be
avoided at all costs, e. g, by fitting a maximum of physical main memory into
the machine. We conducted our experiments for both situations.

The experimental setup consisted of an AMD Opteron 244 Dual Processor
Machine clocked at 1.8 GHz and equipped with 2 GBytes of RAM. We used the
PCI-Express InfiniBand Adapter MT25208 InfiniHost III Ex with 256MB RAM
and the MemFree version respectively. All experiments were conducted with the
Mellanox InfiniBand Gold Edition Package (IBGD), versions 1.7.0 and 1.8.0.
The operating system was a standard Linux kernel, version 2.6.10UP and SuSe
2.6.11.4-20a-smp (MemFree HCA). One observation that can be made between
the UP and SMP kernel is a slightly bigger overhead due to the spinlock insertion
in SMP kernels. All figures are in doubly logarithmic representation.

Figure 2 and 3 depicts the execution timings for the individual steps and the
overall memory registration for different communication buffer sizes when the
pages of the buffer to be registered are present in memory.

The most time-consuming factor is the address transfer to the IB controller.
Pinning and address translation contribute to overall timing only marginally with
a slightly larger influence for large buffers. Unfortunately, the communication
with the IB controller does not exhibit much optimization potential, because it
is bound by the controller’s reaction time.
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Fig. 3. Memory Registration Performance, Pages Present (MemFree HCA)

Figure 4 and 5 depicts the same execution timings with the pages of the buffer
not present in memory.

Several observations can be made here: For buffers larger than 256 kBytes
registration time is almost completely dominated by pinning whereas for small
buffer sizes the communication with the adapter is the most influential factor.
This is not surprising, because the number of occuring page faults increases with
buffer size. Virtual-to-Physical address translation is almost not influencing the
registration timing. Registration of small buffers has almost a constant timing
overhead regardless of the exact buffer size.

We repeated both experiments on an Intel Xeon SMP system hosting 2 CPUs
at 2.4 GHz and 2 GBytes of memory and a PCI-X InfiniBand HCA. The software
used was the same as on the Opteron System with the 256MB HCA mentioned
above. We used a slightly modified methodology due to some driver peculiarities
and obtained very similar timing proportions as one can see in figure 6 and 7.
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Fig. 4. Memory Registration Performance, Pages not Present
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Fig. 7. Memory Registration Performance, Pages not Present (PCI-X HCA)

But the quantitative values are worse compared to AMD Opterons due to
the different locations of the memory controller and PCI-X vs. PCI-express
(Opteron) HCAs. More details can be found in [12].

3.2 Performance of mlock()

Because mlock() performance seemed relevant if pages are not present, we next
concentrated on profiling it. The table lists the obtained timings for pinning
a single page of 4kBytes on the AMD Opteron and the Intel Xeon processor
when the page is not present in memory. The shown profile is a typical case
when registering receiver memory or preregister sender memory. All times are
in processor cycles.

Table 2. Timing Profile for mlock()

Function AMD Opteron Intel Xeon

Search for Free Page Frame and Up-
date Page Table

3500 9000

Zero out Page Frame 1000 2000

Pin the Page 1800 5400

Even if you normalize the numbers of the timings the Xeon system needs
almost twice the time to execute mlock() due to its memory subsystem. As you
can see the pinning itself is now only a fraction of the costs of the mlock() call.
We tried in some experiments to remove the zeroing step but failed with libraries
which presume zeroed pages.

3.3 Using Large Pages

Most modern processors like Intel Xeon or AMD Opteron support different page
sizes. The most obvious improvement of registration time could be the usage of
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larger pages. The current 2.6 Linux kernels [1] provide the hugetlbfs to use these
different page sizes simultaneously. Apparent advantages using larger page sizes
for registering memory are:

– mlock() has to pin less pages
– there are less address translations
– and thus less translations has to be transferred to the HCA
– the Mellanox driver can already use large page sizes

Table 3. Comparison of registration time for 4kB and 2MB page sizes

Buffer Size in kB Registration Time 4kB (ms) Registration Time 2MB (ms)

2048 1.8 1.5

4096 3.7 2.9

8192 7.4 5.7

16384 14.7 11.3

32768 28.8 22.5

65536 57.9 45.0

To use the hugetlbfs it is necessary to utilize mmap() or shared memory system
calls. In table 3 the registration times are shown using 4kB and 2MB page sizes.
The timings in the 4kB column correspond to the values of figure 4. To be
comparable the timings in the 2MB column include mmap() and the register
call. By using hugetlbfs one attains improvements of 15% up to 25%.

4 Summary and Conclusions

With this paper we have given a quantitative analysis of the execution timing of
the memory registration inside the Mellanox InfiniBand driver. We showed that
in the case where the pages are not present the mlock() call is the dominant
factor. Otherwise the communication with the adapter to communicate the ad-
dress translations is the dominant part. Furthermore, we showed that the AMD
Opteron has a much better timing behaviour of the mlock() call than the Intel
Xeon.

Finally we presented our first results using larger page sizes and showed that
improvements of 15% up to 25% are attainable using the mmap approach.

To improve the behaviour of mlock() when pages are not present, a seperate
kernel thread could fill the pages with zeros when the kernel has time. This
could drastically reduce the amount of work which mlock() does. To avoid the
address translation and thus the communication with the HCA, one would have
to change the behaviour of the HCA that it can handle virtual addresses and has
access to the kernel page tables. Finally to better utilize hugetlbfs we have to
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provide a malloc/free library that supports multiple page sizes simultaneously.
Therefore also the communication protocol to convey the address translation in
the InfiniBand driver has to be changed. Then the applications can transparently
make use of this kernel feature in a memory footprint efficient manner.

All these propositions will be investigated in the future.
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Abstract. This paper presents a study of performance optimization of dense ma-
trix multiplication on IBM Cyclops-64(C64) chip architecture. Although much
has been published on how to optimize dense matrix applications on shared mem-
ory architecture with multi-level caches, little has been reported on the applicabil-
ity of the existing methods to the new generation of multi-core architectures like
C64. For such architectures a more economical use of on-chip storage resources
appears to discourage the use of caches, while providing tremendous on-chip
memory bandwidth per storage area.

This paper presents an in-depth case study of a collection of well known op-
timization methods and tries to re-engineer them to address the new challenges
and opportunities provided by this emerging class of multi-core chip architec-
tures. Our study demonstrates that efficiently exploiting the memory hierarchy is
the key to achieving good performance. The main contributions of this paper in-
clude: (a) identifying a set of key optimizations for C64-like architectures, and (b)
exploring a practical order of the optimizations, which yields good performance
for applications like matrix multiplication.

1 Introduction

Cyclops-64 (C64) [1,2] is a petaflop supercomputer project under development at IBM.
As shown in Figure 1(a), a C64 system is built from thousands of C64 chips that employ
a unique multiprocessor-on-a-chip design. Each chip consists of 160 thread units and
the same number of SRAM memory banks connected by an on-chip crossbar network
(see Figure 1(b)). C64 chip architecture features massive intra-chip parallelism and on-
chip memory bandwidth (320GB/s). Given such a novel architecture, the challenge is
how to use these two features to obtain high sustained performance for scientific and
engineering applications.

During the past two decades, there has been a considerable amount of work on how
to optimize dense matrix applications on shared memory architectures with multi-level
caches. However, it is not clear whether the existing methods are applicable to the new
generation of multi-core architectures, such as C64.

This paper presents an in-depth case study of how a collection of well known opti-
mization methods can be applied to address the new challenges and opportunities that
the emerging class of multi-core chip architectures may present. The phase ordering
of different optimizations has long been challenging but interesting research problem
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Fig. 1. Cyclops-64 Architecture

that still remains open [3]. Furthermore, previous work [4], which has established the
optimization order for cache-based architectures, may or may not be applicable to a
cacheless architecture like C64. In this work, we apply specific optimizations following
the order dictated by our experience and knowledge of the problem at hand. However,
we do not in any way claim that this order is optimal. Our goal is to demonstrate that
overall, for a given dense matrix operation, it is possible to derive a good order of op-
timization. We hope that the experience reported in this paper will prove to be useful
for developers, in designing compilers and runtime systems for C64-like multi-core
architectures.

2 Cyclops64 Chip Architecture

The work described in this paper focuses on a single C64 chip [1,2], the main compo-
nent of a C64 node (see Figure 1(b)). Within a C64 chip there are 80 processors, each
consisting of two thread units, a floating-point unit, and two SRAM memory banks of
32KB each. Hence, the total on-chip memory is approximately 5MB. A 32KB instruc-
tion cache, not shown in the figure, is shared among five processors.

At boot time, SRAM banks are partitioned into two segments. One segment con-
tributes to the globally shared interleaved on-chip memory. Processors and interleaved
memory are logically arranged in a dancehall configuration with processors and mem-
ory banks on opposite sides connected by a one-level crossbar switch. The other seg-
ment, called scratchpad memory (SPM), is regarded as local memory since the corre-
sponding thread unit has fast access to its own SPM. The C64 architecture also provides
four DRAM controllers. Each one is attached to a 256MB bank, hence a C64 node fea-
tures 1GB off-chip DRAM. As a summary, Figure 2(a) reflects the current size, latency
(when there is no contention) and bandwidth of each level of the memory hierarchy. The
C64 instruction set architecture incorporates efficient support for thread level execution,
hardware barriers, and atomic in-memory operations.

3 The Problem and Experimental Method

This paper is a case study of square matrix multiplication (MM), which is a widely
used computation kernel for scientifc and engineering applications. For our baseline,
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we choose a straightforward implementation of the sequential algorithm. To parallelize
matrix multiplication, we partitioned the three matrices into t2 blocks and we assign
each thread unit the computation of a number of such blocks. The computation of a
Cm,n block requires t block multiplications and additions according to the following
expression:

Cm,n+ =
t−1∑
k=0

Am,k × Bk,n (1)

To exploit spatial locality, it is best to assign the calculation of Cm,n to a single
thread, as the resultant matrix block does not need to move around.

To study matrix multiplication on the C64 architecture we used the FAST simula-
tor [5]. FAST is an functionally-accurate simulator that, among other features, models
the memory hierarchy of C64 architecture, including the latencies and bandwidth of
each memory segment.

4 Evolutionary Performance Tuning

In this paper, 128×128 and 256×256 matrix multiplications are simulated on up to 68
thread units. The former ensures the matrix fits into on-chip memory, the latter forces
some blocks of the matrix to be stored in DRAM. However, the results hereby presented
can be extrapolated to larger matrices.

The study begins with the sequential version, where the code always resides in off-
chip DRAM, and data is placed in each of the three memory segments one at a time. We
compare the performance and memory latencies of the three cases. Then a straightfor-
ward parallel version of the MM is introduced, with data stored in SRAM and DRAM,
respectively. In the following sections, we improve the performance of the parallel im-
plementation and measure the effectiveness of various optimizations.
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4.1 Sequential Matrix Multiplication

We start by comparing the performance achieved by the sequential implementation,
with matrices placed in SPM, interleaved SRAM, and DRAM, respectively. SPM size
is quite limited. In addition it holds both the runtime stack and thread-private data.
Hence, the maximum size allowed for each matrix is 16×16 only. The results from this
experiment are shown in Figure 2(b).

It is apparent that the performance difference comes from the latency incurred by
load operations accessing different memory segments. We may conclude that data
should always be loaded into SPM first before starting the computation. However, data
needs to be loaded from SRAM/DRAM into registers first and stored into SPM af-
terwards on this architecture. If data reuse rate is low, it is not worth performing this
“prefetching”. Therefore, data reuse is a key issue for achieving high performance on
C64. Matrix multiplication has the potential for high data reuse as the memory size is
O(n2) and computation is O(n3).

4.2 Matrix Multiplication Parallelization in On-Chip SRAM

We implemented a straightforward parallel version, which places three 128 × 128 ma-
trices into interleaved SRAM. This version will be used as the baseline version for per-
formance comparison. The matrices are partitioned into 82 blocks, each with 16 × 16
size. At most 64 thread units are used in this experiment, as there are 64 blocks in total.
Thus, it is natural to assign one resultant matrix block to each thread, as well as all
the computation for that block. We encapsulate the computation for one resultant block
into one task. Also notice that the resultant block can be reused 8 times while the other
blocks are used only once for each task. A task array is employed to store the tasks.
Each task consists of a pointer to the resultant block, and two arrays of pointers that
point to 8 pairs of source blocks.

Table 1. Baseline Parallel Version

Num of Threads Cycles FLOPS Speedup

1 93,435,509 22.5M 1.00
2 46,750,840 44.9M 2.00
4 23,413,382 89.6M 3.99
8 11,783,500 178.0M 7.93

16 5,942,832 352.9M 15.72
32 3,207,410 653.9M 29.13
64 1,627,767 1.3G 57.40

Each thread tries to obtain the next available task from the task pool. When success-
ful, it performs the computations, writes the resultant block back, and attempts to get
a new task until the task pool is empty. The result is shown in Table 1. Although we
get near linear speed up, the overall performance is still low - up to 1.3GFLOPS for 64
threads - 4% of the peak performance (32GFLOPS with 64 thread units).

Next, we will study a sequence of optimizations to improve the parallel performance.
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Using SPM. The next step is to use the SPM as a high speed buffer to accelerate the
corresponding thread unit in the computation. We still perform the 16× 16 matrix mul-
tiplication in SPM. The matrices are copied into SPM block by block. The computation
is conducted and the result is stored back into SRAM. It is worth copying the resultant
block into SPM as it will be used 8 times. Since the two source matrices are only used
once, they are not copied into the SPM. Implementing this yielded 1.79GFLOPS. This
represents a 38% performance improvement over the base version (See ”Using SPM”
in Table 2).

Table 2. 128x128 MMM Incremental Optimizations in SRAM

Optimizations GFLOPS Speedup Over Speedup Over Incremental
Baseline Sequential

Parallel Version Version

Baseline 1.29 1.00 40.31 0%
Using SPM 1.79 1.38 55.94 38%

Tiling+Unrolling 2.77 2.15 88.56 55%
Reg. Tiling 5.05 3.91 157.81 82%
Inst. Sched. 10.02 7.77 313.12 99%
Reg. Alloc. 11.03 8.55 344.69 10%
Sync. Opt. 13.70 10.61 428.12 24%

Loop Tiling and Unrolling. Loop tiling is a very effective optimization for architec-
tures with caches. The tile size is chosen to allow all the data accessed by the inner most
tile to fit into the cache. For matrix multiplication, the 16 × 16 matrix is split into two
levels of 4 × 4 tiles.

A simple tiling does not bring performance gain as the number of branch instructions
and code size are increased. By unrolling the next level of inner loops, 2.77GFLOPS,
which is a 55% improvement over ”Using SPM”, is achieved.

Register Tiling (Manually). For the inner most 3 loop nests, there are total 4×4×3 =
48 data elements that can fit into 64 registers of C64. The data reuse rate is 4 for each
element of A and B, and 32 for C.

Because of the current limitation in the compiler, we manually did the register tiling
by allocating registers properly to the data elements of the 3 matrices, as well as other
index variables. Those elements are used in the 2 inner most loop nests, with A and B
inside and C one level outside. After manually performing register tiling and allocation,
the optimized code achieved 5.05GFLOPS, which is an 82% improvement over the
simple tiling plus unrolling.

Instruction Scheduling (Manually). After register tiling, by properly scheduling the
instructions in the innermost loop, we can hide the latencies of most memory and float-
ing point operations and achieve 10.02GFLOPS - another 99% improvement over the
register tiling. By moving accesses to C outside of the inner most loop, the performance
reaches 11.03GFLOPS.
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A good instruction scheduler is very important to the MM application as well as
other programs. The key issue is that the scheduler should be aware of the different
latencies when accessing different memory segments (SPM, SRAM and DRAM). Most
existing compilers assume cache latency when they do instruction scheduling. For this
architecture, there is no data cache and each load/store may have different latency de-
pending on the target memory segment. Explicit multi-level memory hierarchy aware
instruction scheduling is a key optimization for the C64 architecture. In fact, loop tiling,
register tiling and instruction scheduling have to be tightly coupled, and the aggrega-
tion of the 3 optimizations is the key to generate optimal code for even a simple matrix
multiplication.

Remove Unnecessary Synchronization. In all the above experiments, mutex is used
to control the access to the task pool. When one thread is getting a task from the task
pool and updating the status of the allocated task, all other threads have to wait for the
release of the mutex lock.

Since MM is a regular application, an alternative approach is to statically assign
workload, i.e., each thread is assigned to a fixed number of tasks. As a result, the mutex
lock is not needed. After removing the mutex, we get 13.70GFLOPS, which is 42.8%
of the potential peak performance (32GFLOPS for 64 threads).

All of the above results are based on the assumption that 3 matrices are stored into on-
chip SRAM. The memory bandwidth (320GB/s) is enough to sustain the computation.
However, when the matrices become larger and larger such that they cannot be stored
into on-chip SRAM, bandwidth of DRAM becomes a major issue. In the next section,
we are going to investigate bandwidth optimizations to bring high performance to the
algorithm assuming that data resides in off-chip DRAM.

4.3 Parallelizing Matrix Multiplication in DRAM

Off-chip DRAM is the largest memory resource of the C64 architecture. Most data and
code will be stored there for real applications. On-chip SRAM and SPM are smaller
and more expensive resources, and should be used more carefully.

To demonstrate the optimizations, we use 256×256 matrices that need to be stored in
DRAM with 128× 128 sub-banks buffered in SRAM. Therefore, the application has to
move data between DRAM and SRAM. In this section we study the impact of DRAM
bandwidth limitation on the application’s performance and how to tackle this problem
by hiding the communication latency between DRAM and SRAM with computation.
A nice feature of C64 is that thread units are not expensive - there are very many of
them. On-chip memory resources are more expensive. We can use a set of thread units
to do the computation and another group of thread units to move data between DRAM
and SRAM. In this case study, we use two sets of SRAM banks (double buffering). One
set for computation and another set for preloading, and switch between them during the
computation.

DRAM Bandwidth. For the first version of C64 chip design, the DRAM can transfer
at most 32 bytes every cycle. Hence, the total DRAM bandwidth is 16GB/s.
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To make the best utilization of the DRAM bandwidth, load multiple and store multi-
ple (of 8 doublewords or 64 bytes) instructions should be used and the starting address
should be 64 byte aligned.

Bandwidth limitation is the major challenge here. For 128 × 128 matrix multiplica-
tion, the total number of memory accesses is 128 × 128 × 128 × 8 × (3 + 1) bytes
(3 loads, 1 store), or 67, 108, 864 bytes. Then, the ideal access to memory time is
67, 108, 864/32, or 2, 097, 152 cycles. Even excluding load/store conflicts and ignor-
ing other instructions, the peak performance can only be 1GFLOPS.

We may assume the C array is loaded and stored in the second innermost loop. The
total bytes to be accessed becomes 128 × 128 × 128 × 8 × 2 + 128 × 128 × 8 × 2, or
33,816,576 bytes. In this case, the ideal performance increases to 1.98 GFLOPS. But
we are still far from the peak performance (32GFLOPS for 64 threads).

This means that we have to use on-chip SRAM and/or SPM to buffer matrix blocks,
perform the computation in SRAM/SPM, and store the results back to off-chip DRAM.
In other words, we have to reduce the DRAM bandwidth requirements via the on-chip
data reuse.

Using LDM and STM. One optimization is to use LDM and STM instructions to
aggregate multiple memory accesses. Four LDD (load doubleword) are combined into
one LDM and four STD are combined into one STM. Hence, DRAM requests are ef-
fectively reduced to 1/4 of its original number, and DRAM bandwidth has been better
utilized here. The best case is to combine 8 LDD into one LDM and 8 STD into one
STM. But for register tiling, 4x4 is a better choice. If we do 8x8, although we can load
sub-blocks into registers, we cannot consume them and have to store them into on-chip
memory. This is not good for matrices A and B.

Using On-chip Memory. To reduce the bandwidth requirement to DRAM, we try to
move sub-blocks of matrices into SRAM, and move intermediate results back to DRAM
whenever it is necessary. We also pipeline the process by using two SRAM blocks for
each matrix: one for computation and the other for load/store.

In this study, we assume the original size of the three matrices is 256× 256 and they
reside in DRAM. The on-chip block size is 128 × 128. Each matrix has two blocks in
SRAM and half of each is loaded into SRAM. We assume c1 and c2 for matrix C, a1 and
a2 for A, and b1 and b2 for B. While one set of SRAM blocks is used for computation,
the other set can be used to load or store . The pipeline is designed as follows:

The total DRAM accesses: 128×128×8×(4 loads of C+4 stores of C+4 loads of
A + 6 loads of B) = 2, 359, 296 bytes. The ideal DRAM access time in this case is
73, 728 cycles, which is equivalent to 56.9GFLOPS without considering other
computations.

Synchronization Overhead. To implement the above pipelined scheme, a barrier is
inserted at the end of each step. There are 12 barrier invocations in the implementation.
This guarantees that computation happens after loading all the required data, and storing
follows the corresponding computation stage. C64 has hardware barrier support with
low cost. A barrier can be completed in as little as dozens of cycles.
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Computation Threads                               Memory Access Threads

compute c00/a00/b00 in c1/a1/b1           load a01(to a2) b10 (to b2)
compute c00/a01/b10 in c1/a2/b2           load c01(to c2) b01 (to b1)

compute c01/a00/b01 in c2/a1/b1           load b11(to b2)
compute c01/a01/b11 in c2/a2/b2           load c11(to c1) a10 (to a1)

compute c11/a10/b01 in c1/a1/b1           load a11(to a2) 
compute c11/a11/b11 in c1/a2/b2           load c10(to c2) b00 (to b1)

compute c10/a10/b00 in c2/a1/b1           load b10(to b2)
compute c10/a11/b10 in c2/a2/b2           

                                                                 store c00

                                                                 store c01

                                                                 store c11

                                                                  store c10

                                                                 load c00 (to c1), a00(a1),b00 (b1) 

Fig. 3. Execution Steps When the Matrices are in DRAM

Optimized memcpy(). The standard C library features an optimized version of mem-
cpy(), which is up to 20 times faster than the initial straightforward implementation. It
takes into account possible unalignment at the source and destination, as well as differ-
ent copy lengths. It is also capable of pipelining the three basic stages: loading from the
source array, address computation and storing into the destination array.

Using More Threads for Load/Store. In previous sections, only one thread handles
the work of loading and storing. To further improve the performance, we assign three
more threads, four in total. Three threads are responsible for preloading each of the three
matrices, and the main thread handles the task pool creation and stores the resulting sub
matrices back to DRAM.

The final result we achieve is 1, 206, 048 cycles and 13.9 GFLOPS for a 256 × 256
problem size, which is 43.4% of the peak performance (we use 68 threads in this case:
64 threads for computation, 4 threads for load/store).

Table 3. Optimizations for Matrices in DRAM

Optimizations Size Cycles Mem/Delay FLOPS Speedup
No Opt 128 6,499,276 5,401,783 322.7M
No Opt 256 42,078,325 35,060,687 398.7M 1.00

LDM/STM 128 1,745,340 1,439,301 1.2G
LDM/STM 256 13,996,754 11,652,068 1.2G 3.00

All Opt 256 1,206,048 810,997 13.9G 34.86

5 Conclusions

Our results demonstrate that efficiently exploiting the multi-level memory hierarchy is
the key to achieve good performance on C64. When data fits into SRAM, tiling, loop
unrolling, register allocation, and instruction scheduling are the most important opti-
mizations. SPM can also be used to buffer frequently accessed data. When data does
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not fit in SRAM, DRAM bandwidth becomes the bottleneck. To overcome this issue,
first we use SRAM to buffer blocks of DRAM data, which additionally reduces the
bandwidth requirements to DRAM. Second, we overlap DRAM accesses with compu-
tation in SRAM to dramatically improve the performance.

For compiler designers, inner most register tiling is very important. The instruction
scheduler should be aware of the latency for each memory segment. High level loop
optimization should be able to automatically choose SPM buffers for SRAM data and/or
SRAM buffers for DRAM data.

6 Related and Future Work

Locality optimizations have been studied by numerous researchers which resulted in
many publications on cache-based architectures. Loop transformations have been in-
vestigated to exploit computation parallelism and data locality for scientific applica-
tions [6,7,8,9,10,11]. Loop tiling is a well known loop transformation to increase cache
locality ( see [12,7,9,13,14] and their references). We use loop tiling (and register tiling)
to map a matrix block into the register file, SPM, and SRAM. Bandwidth optimization
has also been extensively explored in [15,16,17,18,19,20,21] and their references. In-
deed, we have shown that an efficient utilization of the memory bandwidth is critical
for C64 when data is stored in DRAM. Phase order problem has been studied in [4,3]
and their references. We identify a set of useful optimizations for C64-like architec-
tures. Moreover, we explore a practical sequence order of optimizations for the matrix
multiplication that yields 14GFLOPS.

As future work we intend to the study other representative benchmarks. The identi-
fied optimizations will be implemented in the C64 compiler. Traditional loop optimiza-
tions may be extended to support automatic storage and thread unit management by
allocating SPM and SRAM to the hot data at certain computation phases, and automat-
ically overlap memory transfer with computation.
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Abstract. Using functions of parallelized mathematical libraries is a
common way to accelerate numerical applications. Computer architec-
tures with shared memory characteristics support different approaches
for the implementation of such libraries, usually OpenMP or MPI.

This paper’s content is based on the performance comparison of
DGEMM calls (floating point matrix multiplication, double precision)
with different OpenMP parallelized numerical libraries, namely Intel
MKL and SGI SCSL, and how they can be optimized. Additionally, we
have a look at the memory placement policy and give hints for initializing
data. Our attention has been focused on a SGI Altix 3700 Bx2 system
using BenchIT [1] as a very convenient performance measurement suite
for the examinations.

1 Measurement Environment

For a detailed analysis of a system architecture by parameter studies, the choice
of a suitable measuring framework is an important decision. To benchmark the
DGEMM calls we use BenchIT. This performance measurement suite helps to
compare different algorithms, implementations of algorithms, features of the soft-
ware stack, and hardware details of whole systems. It has been designed to run
many microbenchmarks on every POSIX 1.003 compatible system in a very user-
friendly way. BenchIT has been developed at the Center for Information Services
and High Performance Computing (ZIH) at the Technische Universität Dresden
and was previously mentioned at [2,3,4]. Sources and results are freely available
at [1].

2 The SGI Altix 3700 Bx2 System

2.1 System Architecture

The SGI [5] Altix 3700 Bx2 is a ccNUMA shared memory system based on
Intel Itanium 2 processors and SGI’s scalable node architecture SN2. In develop-
ing this, special attention has been paid to building a highly scalable computer

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 145–154, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



146 D. Hackenberg et al.

with large bandwidths on all data paths. It provides cache coherency in one
coherent sharing domain (CSD), which runs a Linux kernel and can scale up to
512 processors each. A single processor is operating at 1.5GHz and therefore
a maximum floating point performance of 6 GFLOPS can be reached. More in-
formation, especially about the SGI bricks and application benchmarks, can be
found at [6].

2.2 First Touch Policy

In contrast to former SGI systems like the Origin 3800, the Altix does not move
data near the processor which is using it most. Instead, it uses the so-called first
touch policy which means that data is placed next to the processor that writes
to it first. This may have no effect if the application was parallelized with MPI,
and the data was spread manually. Multithreaded programs usually don’t spread
data because all addresses can be accessed from every thread.

In the worst case, all data is placed in just one memory module when all other
OMP threads want to access it. The remaining bandwidth for each thread would
shrink to b/p, where b is the bandwidth of a single memory module and p the
number of participating processors and threads respectively.

3 Optimizing the DGEMM Call

The cblas dgemm call is defined as shown in Listing 1.1. A description of the
parameters can be found at [7].

void cblas_dgemm (
const enum CBLAS_ORDER Order ,
const enum CBLAS_TRANSPOSE TransA ,
const enum CBLAS_TRANSPOSE TransB ,
const int M, const int N,
const int K, const double alpha ,
const double *A, const int lda ,
const double *B, const int ldb ,
const double beta ,
double *C, const int ldc);

Listing 1.1. cblas dgemm call declaration

A simple cblas dgemm call for a matrix multiplication for two square matrices
of order size would look like this:

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,
size , size , size , 1.0, A, size , B,
size , 1.0, C, size );

Listing 1.2. Simple matrix multiplication using cblas dgemm
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The following sections will explain how these DGEMM calls can be parallelized
and optimized to scale well up to at least 124 processors on the SGI Altix 3700.

3.1 The BenchIT DGEMM Kernel

As previously mentioned, BenchIT is a measurement environment which helps
to examine a system with microbenchmarks. Some of these execute a sequential
matrix multiplication with different libraries. During each measuring run, which
means one performance measurement for one problem size, the matrices are
allocated and filled with variables. After the measurement the allocated memory
is being released. Therefore, each measurement consists of three steps: initializing
the data, recording the duration of processing, and destroying data. The problem
sizes that are to be measured can be set as parameters for the microbenchmark.

The original hardware vendor mathematical libraries available on SGI Al-
tix 3700 are the Intel Math Kernel Library - MKL 8.0 [8] and the SGI Scientific
Computing Software Library - SCSL 1.6.1.0 [9]. They both nearly reach peak
performance on a single processor (Fig. 1).

MKL SCSL
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Fig. 1. MKL and SCSL DGEMM performance on Intel Itanium 2

3.2 Library Provided OpenMP Parallelization

The DGEMM calls can easily be parallelized by setting the environment variable
OMP NUM THREADS. This implicit parallelization is provided by both the
MKL and SCSL, using OpenMP to handle different threads in order to calculate
the matrix multiplication faster.

Fig. 2 shows a nearly linear speedup for 2, 4, and 8 processors. The graph
for 16 CPUs in Fig. 3 also shows acceptable performance, but using 32 or 64
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Fig. 2. MKL DGEMM performance on Itanium2 for 1, 2, 4, and 8 CPUs
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Fig. 3. MKL DGEMM performance on Itanium2 for 16, 32, and 64 CPUs

processors will need very large matrices to achieve at least a small speedup, and
can even be slower for small matrices.

The SCSL shows equally discouraging results as the MKL does in Fig. 3,
which is not surprising, as the limiting factor for more than 16 processors is just
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the memory bandwidth due to the bad data distribution. The next subsection
will describe how this performance degradation can easily be corrected for both
libraries.

3.3 Parallelizing the Data Initialization

With the first touch policy (see 2.2) in mind, a better data distribution on
the machine should be implemented. This can be achieved by surrounding the
initialization loop that fills the matrices with an OpenMP pragma. Listing 1.3
shows the corresponding C code. Please note that the data is distributed on
the machine by different threads, each of them running on a different processor.
Therefore the matrices are spread row-wise over the memory modules. Special
attention should be paid to this parallelization in order not to scatter the cache
lines. We did not find a better data distribution by using, for example, different
chunksizes or other scheduling strategies such as dynamic scheduling.

Without having extended knowledge of the DGEMM library, it is impossible
to know which processor will predominantly use which data to further improve
the code in listing 1.3. Thus we can only spread the data over the memory mod-
ules in order to use the whole memory bandwidth of the system as efficiently
as possible without providing a perfect data distribution. However, when us-
ing OpenMP-parallized calculations in a specific program, the data distribution
should be adjusted accordingly.

#pragma omp parallel for schedule (static ,1) \
private(x,index ,max) shared(A,B,C,size)

for(x = 0; x < size; x++) {
index = x * size;
max = index + size;
for(index; index < max; index++) {

A[index] = 30.0;
B[index] = 0.01;
C[index] = 0.0;

}
}

Listing 1.3. Surrounding pragma for initialization loop

As shown in Fig. 4, the improved data distribution speeds up the matrix
multiplication for a large number of processors significantly. The 64 processor
measurement now peaks at about 330GFLOPS instead of 170GFLOPS. As we
have noticed for example for getrf (LAPACK) measurements, the effect can
be much larger for algorithms which are not as cache efficient as DGEMM but
depend more on memory bandwidth. As a welcome side effect, the improved data
distribution has resolved the issue of the striking variability in the performance
of the MKL calls in Fig. 3.
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Fig. 4. Optimized MKL and SCSL DGEMM performance on Itanium 2
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Fig. 5. Zoom on MKL DGEMM performance for 64 and 124 CPUs

Despite the obvious performance improvement, Fig. 4 also shows that MKL
DGEMM calls with 64 and more processors are still not perfect. Instead, they
show a very unsteady behavior. A more detailed view on the results (Fig. 5)
shows that MKL scales best when the problem size is a multiple of the number
of processors used. For a matrix multiplication running on 124 processors a
difference of one as matrix order can decide whether the achieved performance
is about 300 or 600GFLOPS.



Optimizing OpenMP Parallelized DGEMM Calls on SGI Altix 3700 151

The SCSL on the other hand does not show this unsteady behavior as the plot
for 124 CPUs represents in Fig. 4. However, the MKL peak performance is signif-
icantly higher, which suggests a further improvement of the MKL DGEMM call.

3.4 Partitioning the DGEMM Call

It was shown that a very good but not constant performance for a DGEMM call
was reached by the MKL. For further optimization, we split up the DGEMM
call to limit the computation of the resulting matrix in the number of columns
and rows to a multiple of the number of processors and threads respectively.
The remaining parts of the resulting matrix are calculated later on in separate
DGEMM calls. Fig. 6 shows how this partitioning is done for a square matrix.
There are four separate matrix multiplications and four corresponding DGEMM
calls to be calculated. optsize equals the original matrix order (size) truncated
to a multiple of the number of processors (p) and diff represents the overlapping
part. Or as a formula: diff = size mod p and optsize = size − diff .

optsize diff

X 11 X 12

X 21 X 22

1. main : C11 = (A11A12) ·
(

B11

B21

)

2. right : C12 = (A11A12) ·
(

B12

B22

)

3. bottom : C21 = (A21A22) ·
(

B11

B21

)

4. bottom right : C22 = (A21A22) ·
(

B12

B22

)

Fig. 6. Partitioning the matrix multiplication

By splitting up the DGEMM calls we make sure that the largest part of
the calculation (C11 in Fig. 6) is done with optimal performance. Considering
the cubic complexity of the matrix multiplication, the computing effort for the
remaining parts is, especially for larger matrices, very small.

The optimized C code for square matrices is shown in Listing 1.4. The code
for non-square matrices is similar but slightly more sophisticated, as there are
three optimal sizes that need to be calculated.

With this implementation, a maximal performance of about 600GFLOPS for
124 processors is reached and stays nearly at the very same level. This means a
speedup of about 102 in comparison to a single Itanium 2 processor for DGEMM
calls. The performance of the new implementation is dominating the old one
which means that there is nearly no performance loss. A speedup of 2 is reached
for problem sizes N , when N = p ∗ n − 1, where p is the number of processors
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and n is a large natural number. The lowest performance improvement is visible
for problem sizes N = p ∗ n, as they already had a good performance before the
optimization. The overhead for these problem sizes is very small as there are
only three additional integer calculations to be executed.

diff = size % omp_get_max_threads ();
optsize = size - diff;
cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,

optsize , optsize , size , 1.0,
A, size , B, size , one , C, size ); /* main part */

if (diff > 0) /* calculate remaining parts */

{
/* right */

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,
optsize , diff , size , 1.0, A, size , &(B[optsize ]),
size , one , &(C[optsize]), size );

/* bottom */

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,
diff , optsize , size , 1.0, &(A[size*optsize]),
size , B, size , one , &(C[size*optsize]), size );

/* bottom right */

cblas_dgemm (CblasRowMajor ,CblasNoTrans ,CblasNoTrans ,
diff , diff , size , 1.0, &(A[size*optsize]),
size , &(B[optsize ]), size , one ,
&(C[size*optsize+optsize]), size );

}

Listing 1.4. Optimized DGEMM call for MKL on SGI Altix

The overall speedup for the optimization described in this section is between
one and two. Figure 7 compares the DGEMM performance on 124 processors
for SCSL and MKL with improved data distribution according to 3.3 and MKL
with additional DGEMM partitioning.

However, a direct optimization within the Intel MKL library might deliver
even higher performance than the implementation described above.

3.5 Reinitializing the Data

Further examinations have revealed that beyond the DGEMM call a lot of time
is used for initializing the matrices, even though this was parallelized. In fact, the
parallel initialization of the three matrices with an order of 13000 takes about
nine seconds on 124 processors. The corresponding write bandwidth is about
31MByte/s. According to SGI [10], the glibc malloc/free calls consume sig-
nificant system time due to memory management overhead. In order to prevent
glibc from using mmap, the environment variables MALLOC TRIM THRESHOLD =-1
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Fig. 7. Optimized MKL and SCSL DGEMM performance for 124 CPUs

and MALLOC MMAP MAX =0 have to be set. Thereby, repeated matrix reinitializa-
tions as in our BenchIT performance measurement runs are about one order of
magnitude faster. However, these time values are unsteady and therefore further
examination is planned.

4 Conclusion

The Altix 3700 combined with the Intel MKL or SGI SCSL provides a fast
computation of DGEMM calls. These calls can easily be parallelized, but special
attention should be paid to the first touch policy. For matrices of order 5000 or
higher, 64 or more CPUs can be used efficiently but native MKL DGEMM calls
show unsteady performance. We have described how to optimize these calls to
offer steady performance and clearly outperform SCSL, mostly independent of
the matrix order and the number of OpenMP threads used.
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Topic 3: Scheduling and Load Balancing
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Topic Chairs

An increasing variety of parallel and distributed systems is being developed
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Abstract. We consider a scheduling game, where a set of selfish agents
(traffic loads) want to be routed in exactly one of the two parallel links of
a system. Every agent aims to minimize her own completion time, while
the social objective is the makespan, i.e. the time at which the last agent
finishes her execution. We study the problem of optimizing the makespan
under the constraint that the obtained schedule is a (pure) Nash equilib-
rium, i.e. a schedule in which no agent has incentive to unilaterally change
her strategy (link). We consider a relaxation of the notion of equilibrium
by considering α-approximate Nash equilibria where an agent does not
have sufficient incentive (w.r.t. the value of α) to unilaterally change
her strategy. Our main contribution is the study of the tradeoff between
the approximation ratio for the makespan and the value of α. We first
give an algorithm which provides a solution with an approximation ratio
of 8

7 for the makespan and which is a 3-approximate Nash equilibrium,
provided that the local policy of each link is Longest Processing Time
(LPT). Furthermore, we show that a slight modification of the classical
Polynomial Time Approximation Scheme (PTAS) of Graham allows to
obtain a schedule whose makespan is arbitrarily close to the optimum
while keeping a constant value for α. Finally, we give bounds establish-
ing relations between the value of α and the best possible value of the
approximation ratio, provided that the local policies of the links are LPT.

1 Introduction

The scheduling setting that we consider in this paper is the following one: we are
given a simple network of two parallel links and a set of n selfish agents. Each
agent has some (positive) traffic load and wants to use exactly one of the parallel
links to route it through. Equivalently, every agent can be viewed as a task, and
each link as a machine. Every agent aims to maximize her own profit, and there
are two basic models depending on what is considered as the individual profit
of the agents:

– In [2], the profit of an agent is the inverse of the completion time of the
machine on which she is assigned to. This model is known as the KP model.

– In [1], the profit of an agent is the inverse of her completion time. This model
is known as the CKN model.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 157–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In both cases, the social optimum (or global objective function) is the
makespan, i.e. the time at which the last agent terminates her execution.

Our aim is to obtain a schedule which minimizes the makespan and which
at the same time is stable, i.e. such that no agent has incentive to unilaterally
change her link. More precisely, we assume that each processor uses a local policy
(known by all the agents) in order to schedule the tasks assigned to it, and if
a task decides to leave, in the proposed schedule, its current machine to go on
another machine, knowing its local policy, it can calculates its new completion
time. Therefore, the solution we seek is a best Nash equilibrium w.r.t. the global
objective function. A new measure for evaluating the impact of searching a stable
solution, i.e. a Nash equilibrium, has been introduced by Schultz et al. [3] and
by Anshelevich et al. [4]: the price of stability is defined as the ratio of the
objective function in a best Nash equilibrium and a global optimum schedule
(this maximum is taken over all solutions). This measure can be viewed as the
optimistic price of anarchy [2].

In the KP model there always exists a pure Nash equilibrium which is an
optimal solution w.r.t. the makespan, and so the price of stability is 1 for this
model. This result is a direct corollary of the following fact: it is always possible
in the KP model to transform (nashify) an initial solution into a pure Nash
equilibrium without increasing the value of the makespan [7]. It is then natural
to ask if this is also possible for the CKN model. Notice that the the price of
stability depends on the local policies of the links. We assume that each link
schedules the tasks assigned to it using the Longest Processing Time (LPT)
order, i.e. each link schedules its tasks from the largest one to the smallest one.
In that case, it is not difficult to see that there is only one pure Nash equilibrium
and that this schedule can be obtained using the classical LPT list scheduling
algorithm. This shows that the price of stability in that case is 7/6, i.e. the
approximation ratio of the LPT algorithm [6].

A natural way to improve this ratio, is to relax the definition of a “stable”
schedule. We consider that a schedule is stable if it is an α-approximate Nash
equilibrium (α ≥ 1), i.e. a schedule in which no agent has sufficient incentive to
unilaterally change its behavior. We say that an agent does not have sufficient
incentive to unilaterally leave the link on which it is scheduled, if and only if
this does not increase its profit by more than α times its current profit1. We
can define now the price of α-approximate stability as the ratio of the objec-
tive function in a best α-approximate Nash equilibrium and a global optimum
schedule (this maximum is taken over all solutions). If α = 1 we get the price
of stability defined before. Thus, if the price of α-approximate stability is γ,
it means that no algorithm (even an exponential one) with an approximation
ratio smaller than γ can return schedules which are always α-approximate Nash
equilibrium.

1 Note that this definition is different from the definition of an ε-Nash equilibrium in
[5]: in [5], if a solution is an ε-Nash equilibrium, then if an agent unilaterally changes
strategy, her profit should be smaller than or equal to her current profit plus ε (and
not times α as in our definition).
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Example: Let us consider two machines using LPT policy, and the following
tasks: two tasks t1 and t2 of length 3 and 3 tasks t3, t4 and t5 of length 2.
The only pure Nash equilibrium is the schedule where the tasks of length 3 are
scheduled at time 0, and are followed by the tasks of length 2. This solution has a
makespan of 7, whereas the makespan of the optimal solution is 6. In the optimal
solution, let us consider the task of length 3 which starts at time 3. By going
on the second machine, this task would be the largest one of this machine and
would then be scheduled in the first position. Its completion time would then be
3 instead of 6. Since this task can reduce its completion time by a factor of 2 by
changing machine, we will say that this task is 2-approximate. Each task of this
schedule can reduce its completion time by at most 2 by changing machine, so
this schedule is a 2-approximate Nash equilibrium.

Our contribution: We give relations between α and the approximation ratio
for the makespan, provided that the policies of the links are LPT. We show
that the price of α-approximate stability is at least 8

7 for all α < 2.1, and at
most 8

7 for all α ≥ 3. We give in Section 2 an algorithm which shows this last
bound: it achieves an approximation ratio of 8

7 for the makespan and returns
a 3-approximate Nash equilibrium. We show that the price of α-approximate
stability is larger than or equal to 1 + ε for any α ≤ k, where k is a certain
constant in Θ(ε−1/2), and that it is smaller than or equal to 1 + ε for any α ≥ 1

ε
(see Section 3). This last bound is obtained by analyzing the PTAS of Graham
(slightly modified) [6]. Section 4 shows a summary of the negative and positive
results of this paper.

2 A Variant of LPT

For simplicity in the sequel, we adopt the classical terminology of scheduling
theory. We want to schedule n tasks {t1, . . . , tn} on 2 identical machines, and
we want to minimize the maximum completion time of the last task scheduled,
i.e. the makespan. We denote by P1 the machine with maximum load, and by
P2 the other machine. Let ni be the number of tasks scheduled on Pi. Let xi be
the ith task on P1, and yi the ith task on P2. We denote by l(ti) the execution
time (or length) of task ti.

We represent a schedule by two sets A and B, where A (respectively B) is
the set of the tasks scheduled on P1 (respectively P2). On each machine, the
tasks are scheduled in the decreasing order of execution times. Let ξ = (A,B)
be a schedule of the n tasks on the two machines. Let a (respectively b) be a
subset of tasks scheduled on P1 (respectively P2). We denote by swap(ξ, a ↔ b)
the schedule ((A \ a) ∪ b, (B \ b) ∪ a). In this new schedule, each machine still
executes its tasks using the LPT policy (if two tasks have the same lengths, the
one with the smallest identification number is scheduled first).

Let us now consider the following algorithm LPTswap.

Theorem 1. The algorithm LPTswap achieves an approximation ratio of 8
7 for

the makespan.
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Order tasks by non increasing execution times. At each step i, for 1 ≤ i ≤ n,
schedule the current task ti on the machine which has the smallest completion
time. Let LPT denote the schedule obtained in this way.
Let S =

∑n
i=1 l(ti).

if n2 ≥ 2 and ((n1 = 3 and l(x1) + l(x2) + l(x3) > ( 4
7 )S) or (n1 = 4)) then

if n1 = 3 then
Let ξ1 = swap(LPT, {x1} ↔ {y2}), ξ2 = swap(LPT, {x2} ↔ {y2}) and
ξ3 = swap(LPT, {x1} ↔ {y1}).
Return a schedule which minimizes the makespan among the schedules:
LPT, ξ1, ξ2 and ξ3.

end
if n1 = 4 then

Let ξ4 = swap(LPT, {x3, x4} ↔ {y2}).
Return a schedule which minimizes the makespan among the schedules:
LPT and ξ4.

end
end
else

Return LPT .
end

Algorithm LPTswap

Proof: Let us assume that ξ is a LPT schedule which does not achieve a
8
7 -approximation ratio. We show that the algorithm LPTswap transforms this
schedule into a schedule which achieves a 8

7 -approximation ratio.
Let tmax be the last task scheduled on P1 (the machine with maximum load).

We say that a task is large if its execution time is greater than or equal to the
execution time of tmax. A task is small if its execution time is smaller than the
one of tmax.

x1 x2 x3 x3 = tmax

y1 y2

∆
P2

P1

Fig. 1. A LPT schedule

Claim: There are 3 or 4 tasks on P1 and exactly 2 large tasks on P2.
Let us show that we have exactly two large tasks on

Let us call ∆ the difference between the completion time of the last task
of P1 and the last task of P2 (see Figure 1). The makespan of the schedule
ξ is

∑n
i=1 l(ti)+∆

2 . Since ξ does not achieve a 8
7 -approximation ratio, we have∑n

i=1 l(ti)+∆

2 > 8
7OPT . Since the makespan OPT of an optimal solution is at

least
∑n

i=1 l(ti)

2 , we have ∆
2 > (8

7 −1)OPT , and so ∆ > 2
7OPT . Let ε > 0 be such

that ∆ = (2
7 + ε)OPT .
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We know that l(tmax) ≥ ∆ (because in a LPT schedule, at each step, we add
a task on the machine with the smallest load), so the minimum execution time of
a large task is ∆. We also know that the completion time of the last task on P2

is smaller than or equal to OPT − (1
7 + ε1)OPT , with ε1 > 0, because otherwise

the schedule ξ would achieve a 8
7 -approximation ratio. So the maximum number

of large tasks on P2 is equal to �OPT−( 1
7+ε1)OPT

∆ 	 = � 1−( 1
7 +ε1)

2
7+ε

	 = 2.
Moreover we can deduce that there are at least two large tasks on P2 because

otherwise the schedule ξ would be an optimal schedule.
Let us show now that there are either 3 or 4 tasks on P1. There are at least 3

tasks on P1 because otherwise the schedule ξ would be optimal. Indeed, if there
is only one task on P1 it is trivial that ξ is optimal. If there are two tasks on
P1 and l(x1) ≤ l(y1) then we would not decrease the makespan by putting x2

and y1 on the same machine (because P1 is the machine which has the largest
load). If there are two tasks on P1 and l(x1) > l(y1), then l(y2) ≥ l(x2) (schedule
LPT ): if we add x2 to the large tasks of P2 (y1 and y2) we do not decrease the
makespan (x2 starts before the completion time of y2), and if we add to x1 one
of the large tasks of P2 (i.e. we exchange x2 with y1 or y2), we do not decrease
the makespan because the execution time of each of these tasks (y1 or y2) is
greater than or equal to the execution time of x2.

Let us now show that there are at most 4 tasks on P1.
We know that l(tmax) ≥ ∆ > 2

7OPT , and each task on P1 is larger than
or equal to tmax. Since the maximum makespan of a LPT schedule on two
machines is at most 7

6OPT [6] then the maximum number of tasks on P1 is

� ( 7
6 )OPT

∆ 	 = � ( 7
6 )OPT

( 2
7+ε)OPT

	 = � 49
12	 = 4.

We have shown that if a LPT schedule does not achieve a 8
7 -approximation

ratio, then it has 3 or 4 tasks on P1, and at least 2 tasks on P2. Moreover,∑
ti∈P1

l(ti) > (8
7 )OPT ≥ 8

7 (
∑n

i=1 l(ti)

2 ) = 4
7

∑n
i=1 l(ti). Thus all the conditions

to enter in the first “if” of the algorithm LPTswap are fulfilled. Due to space
limitation, the sequel of the proof which proceeds by cases analysis, is omitted
here. �

Theorem 2. The schedule returned by LPTswap, on two machines whose poli-
cies are LPT, is a 3-approximate-Nash equilibrium.

Proof: Let ξ be a LPT schedule of the n tasks and ξs be the schedule returned
by LPTswap. Let mξ denote the makespan of ξ, and mξs the makespan of ξs. If
ξs = ξ, then ξs is a LPT schedule and it is a Nash equilibrium. Else ξs 
= ξ, and
LPTswap has done a swap: ξs is then equal to ξ1, ξ2, ξ3 or ξ4. Let us show that
each task of ξs does not have incentive to go on the other machine.

First of all, x3 and all the small tasks (the tasks whose lengths are smaller
than the one of tmax) do not have incentive to go on the other machine because
if they change they will always be started after at least two large tasks, that
is a length greater than mξs

3 , and without changing they are always completed
before or at mξs . Indeed, l(x3) ≤ mξs

3 and if a small task (or x3) changes, it will
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be scheduled at the earliest at mξs − l(x3) ≥ mξs − mξs

3 >
mξs

3 . Likewise, it is
trivial that the tasks which are scheduled at the beginning of the schedule (e.g.
x1 and y1 in ξ2) do not have incentive to swap.

We then prove by case analysis that every large task of ξ1, ξ2, ξ3 or ξ4 does
not have incentive to change machine. Due to space limitations, the end of the
proof is omitted here. �

Corollary 1. The price of α-approximate stability is at most 8
7 , for all α ≥ 3.

Theorem 3. Let ε be any small constant such that ε > 0. The price of α-
approximate stability is at least 8

7 , for all α ≤ 2.1 − ε.

Proof: Let ε be a small number such that ε > 0. Consider the following tasks:
a task of length 3.3− ε, a task of length 3+ ε, and three tasks of length 2.1. The
optimal schedule (for the makespan) of these tasks is achieved if and only if the
tasks of length 2.1 are on the same machine, and the other two tasks are on the
other machine (see Figure 2 Left). The makespan of this schedule is OPT = 6.3.
In this schedule, the completion time of the task of length 3 + ε is 6.3 but this
task could be on the first position if it goes on the other machine (because the
policies of the machines are LPT), and its completion time would then be 3+ ε.
So this schedule is 6.3

3+ε > (2.1 − ε)-Nash approximate.

1P 1P

2P2P 2.1 2.1 2.1

2.1

2.1 2.1

Makespan = Makespan = 

3.3 − ε3.3 − ε

3 + ε

3 + ε

7.2 + ε6.3

Fig. 2. Left: Optimal schedule for the makespan. This is a 6.3
3+ε

-approximate Nash
equilibrium. Right: Approximate schedule for the makespan.

Notice that all the other schedules have a makespan of at least 7.2 + ε >
8
7 OPT . So if we want a schedule which is 8

7 -approximate, this schedule will not
be an α-approximate Nash equilibrium, with α < 2.1 − ε. Thus the price of
α-approximate stability is at least 8

7 , for all α ≤ 2.1 − ε. �

An interesting question concerns the relation between the approximation ratio
and α, i.e. what happens if we consider other values of the approximation ratio
we wish to obtain, or other values of α ? In particular, does there exist algo-
rithms with smaller approximation ratios and which return α-Nash approximate
equilibria, with α bounded (and as small as possible)? The following section
gives an answer to this question.

3 A Variant of Graham’s Algorithm

We are now interested in (1+ ε)-approximate schedules, for any ε > 0. We show
that the price of α-approximate stability is smaller than (1 + ε) if α is at least
equal to k, where k is a constant smaller than 1

ε .
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We consider the algorithm of Graham [6], slightly modified:
(i) Let k be some specified and fixed integer.
(ii) Obtain an optimal schedule for the k longest tasks, such that:

– Once tasks are assigned to each machine, they are scheduled on their ma-
chines in order of decreasing lengths (i.e. for a given machine, tasks are
scheduled from the largest one to the smallest one).

– If two tasks have the same length, the one which has the smallest identifica-
tion number is scheduled the first.

(iii) Schedule the remaining n− k tasks using the LPT rule.

This algorithm is a polynomial time approximation scheme (PTAS), and its
approximation ratio is 1+ ε, where ε is equal to 1

2+2 � k
2 �

, if the k largest tasks of
the schedule are optimally scheduled [6]. Let us now show that this algorithm,
denoted by OPT-LPT(k), returns α-approximate-Nash equilibria, with α < k−2.

Theorem 4. The schedules returned by algorithm OPT-LPT(k) are α-approxi
mate-Nash equilibria, with α < k − 2.

Proof: Let us show that each task of an OPT-LPT(k) schedule either does not
have incentive to change machine, or does not decrease its completion time by
a factor larger than or equal to k− 2, by going on the other machine. The n− k
smallest tasks of the schedule are scheduled using the LPT rule, so they do not
have incentive to change machine. Thus we consider the case of the k largest
tasks. Let OPT be the optimal solution of these tasks, such as computed by
OPT-LPT(k). We now consider three cases.

• In the first case, there are, in OPT , only one task on a machine (w.l.o.g.
on P1), and k − 1 tasks on the other machine. Since this schedule is an optimal
solution, the task on P1 is necessarily the largest task on the schedule, and this
schedule is a LPT schedule. So no task has incentive to change machine in this
case.

• Let us now consider the case where there are exactly two tasks on a machine
(w.l.o.g. on P1) in OPT . The others k − 2 tasks are then on P2.

We first show that no task scheduled on P2 has incentive to go on P1. By
construction, we know that l(x1)+ l(x2) is larger than or equal to the sum of the
lengths of the k − 3 first tasks of P2,

∑k−3
j=1 yj . Let i be the largest number such

that l(x1) ≥
∑i

j=1 yj : the i + 1 first tasks of P2 (i.e. the tasks who start at the
latest at the end of x1) do not have incentive to go on P1, otherwise they would
be scheduled after P1 and would not decrease their completion times. Moreover,
we know that l(x2) ≥

∑k−3
j=i+2 yj : thus the tasks from yi+2 to yk−3 do not have

incentive to change machine. Likewise, yk−2 does not have incentive to change:
if it is smaller than x2, then it would be scheduled on P1 after x2, and would
not decrease its completion time, since OPT is an optimal solution. If yk−2 is
larger than x2, then yk−2 starts to be executed before (or at the same time as)
x2. Thus, if it goes on P1, yk−2 will be scheduled after x1, and then will not
decrease its completion time.
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The only task which may have incentive to change machine is x2. If x2 is
smaller than all the other tasks, then it does not have incentive to change.
Otherwise, since OPT is an optimal solution, we know that at least a task of P2

starts at the same time or after x2. In the best case, x2 can go to the first position
on P2: by doing this, it starts on P2 before at most k − 3 tasks which started
before it when it was on P1. These k − 3 tasks are smaller than x2: the sum of
their completion time, S, is thus smaller than (k−3) l(x2). The completion time
of x2 decreases with this change, from S + l(x2) < (k − 2) l(x2) to l(x2). Thus
x2 is, in OPT , α-Nash-approximate, with α < k − 2.

• Let us now consider the case where there are exactly a < k− 2 tasks on P1,
and b < k − 2 tasks on P2. Let t be a task on P1 (respectively P2) which has
incentive to change machine. When it changes machine, t overtakes p tasks of
P2 (respectively P1), i.e. it starts to be executed before p tasks which started to
be executed before t before the change. We know that p is smaller than k − 2
because there are less than k − 2 tasks on each machine. Moreover, these tasks
have a length smaller than the one of t, otherwise t would not overtake them.
Thus, in the best case, t overtakes k−3 tasks of length almost equal to l(t), and
the completion time of t decreases from a value smaller than (k − 2) l(t) to l(t).
Thus t is α-Nash-approximate, with α < k − 2. �

Theorem 5. Let ε be any small number such that 0 < ε < 1. OPT-LPT(k) can
return α-approximate Nash equilibria, with α ≥ k − 2 − ε and k ≥ 5.

Proof: Let ε′ = ε
k−2−ε , and let us consider the following instance: a task of

length k − 3 − ε′, a task of length 1 + ε′ denoted by t, and k − 2 tasks of
length 1. In the only optimal solution for this instance, it can be shown that t is
(k−2−ε)-approximate. The schedule returned by OPT-LPT(k) on this instance
is an α-approximate Nash equilibrium, with α ≥ k − 2 − ε. �

We can deduce from Theorem 4, and from the fact that the approximation ratio
of OPT-LPT(k) is 1

2+2 � k
2 �

, the following result:

Corollary 2. Let k be any integer larger than or equal to 5. The price of α-
approximate stability is at most 1 + ε, where ε = 1

4+2 � k
2 �

< 1
k , for all α ≥ k.

Note that if we want to get an algorithm 8
7 -approximate which returns solutions

as stable as possible, then LPTswap is better than OPT-LPT(k): indeed, the
solution of LPTswap can be found faster (in OPT-LPT(k) we have 64 schedules
to compare, whereas in LPTswap there are at most 4 schedules to compare), and
the OPT-LPT(k) returns 4-approximate-Nash equilibria (versus 3-approximate
Nash equilibria for LPTswap). On the other hand, OPT-LPT(k) is useful if
we wish algorithms with smaller approximation ratios, since OPT-LPT(k) is
a PTAS.
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4 Tradeoffs

We first show that if we want a price of α-approximate stability smaller than or
equal to (1 + ε), then α must be larger than a certain constant in Θ(ε−1/2).

Theorem 6. Let ε > 0 and k > 0 such that ε = 1
k (k+1) . Then to get a price of

α-approximate stability smaller than 1 + ε, we have to set α ≥ k.

Proof: Consider the following instance: a task of length k − 1, a task of length
1, and k + 1 tasks of length k

k+1 . The optimal schedule (for the makespan) of
these tasks is achieved if and only if the tasks of length k

k+1 are on the same
machine, and the other two tasks are on the other machine (see Figure 3 Left).
The makespan of this schedule is OPT = k. This schedule is a k-approximate
Nash equilibrium. Indeed, the completion time of the task of length 1 is k but
this task could be on the first position if it goes on the other machine (because
the policies of the machines are LPT), and its completion time would then be 1
(which is n times smaller than its current completion time).

1P

2P
1P

2P 1

1k − 1 k − 1

. . . . . .k
k+1

k
k+1

k
k+1

k
k+1

k
k+1

k + 1 tasks k tasks

Fig. 3. Left: Optimal schedule for the makespan. This is a k-approximate Nash equi-
librium (the policies of the machines are LPT). Right: Approximate schedule for the
makespan.

Figure 3 Right shows the second smallest makespan schedule with these tasks:
all the schedules which are not the optimal one have a makespan greater than or
equal to the makespan of this schedule. This makespan is k − ( k

k+1 ) + 1. So the

ratio between this makespan and OPT is
k−( k

k+1 )+1

k = 1+ 1
k − 1

k+1 = 1+ 1
k (k+1) .

Thus if we want a schedule which is (1 + ε)-approximate, with ε < 1
k (k+1) , this

schedule will not be an α-approximate Nash equilibrium, with α < k. �

We can also prove:

Theorem 7. The price of α-approximate stability is at least 1.1 (respectively
9
8), for all α ≤ 10

3 (respectively α ≤ 8
3).

Figure 4 illustrates the tradeoffs between the approximation ratio of an algo-
rithm, and the stability of the schedules it can returns. The dark grey zone
illustrates the results showed in Theorem 6 (for 2 ≤ k ≤ 10), Theorem 3, and
Theorem 7. Each point (x, α) belonging to the dark grey zone represents a neg-
ative result, i.e. it means that there is no x-approximate algorithm which re-
turns α-Nash equilibria. The light grey zone illustrates the results showed by
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Theorem 4 and Theorem 1: each point (x, α) belonging to the light grey zone
represents a positive result, i.e. it means that there is an x-approximate algo-
rithm which returns α-Nash equilibria (this algorithm is either OPT-LPT(k) or
LPTswap). If a point (x, α) belongs to the white zone, then it means that we do
not have any algorithm corresponding to this point, nor any impossibility result.

1

1.11.051
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Policies of the links  = LPT

LPTswap

1.158
7

7
6

α
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Fig. 4. Light grey (respectively Dark grey): Relation between α and approximation
ratios that it is possible (respectively it is not possible) to obtain if we wish an algorithm
which returns α-approximate Nash equilibria
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Abstract. This paper presents new techniques for master-slave tasking on tree-
shaped networks with fully heterogeneous communication and processing re-
sources. A large number of independent, equal-sized tasks are distributed from
the master node to the slave nodes for processing and return of result files. The
network links present bandwidth asymmetry, i.e. the send and receive bandwidths
of a link may be different. The nodes can overlap computation with at most one
send and one receive operation. A centralized algorithm that maximizes the plat-
form throughput under static conditions is presented. Thereafter, we propose sev-
eral distributed heuristics making scheduling decisions based on information es-
timated locally. Extensive simulations demonstrate that distributed heuristics are
better suited to cope with dynamic environments, but also compete well with
centralized heuristics in static environments.

1 Introduction

In this paper, we consider the allocation of a large number of independent equal-sized
tasks onto a tree platform. We concentrate on tree-shaped platforms since they represent
a natural framework for master slave tasking. More importantly, administrative organi-
zations often rely on tree-shaped networks to interconnect computing resources [1].
Initially, the root of the tree (master node) holds a large bunch of tasks. Those tasks
will be either processed by the master node or transmitted to its child nodes (also called
slave nodes). Then, in turn, the child nodes face the same allocation problem (either
processing the tasks locally or forwarding them to their child nodes). We consider the
case where slave processors need to send back a file of results after processing each
task. Even if this is the most natural situation, it is worth noting that most of the papers
on independent tasks scheduling or Divisible Load Theory (DLT) do not consider those
return communications. Targeted platforms are fully heterogeneous, i.e. both the pro-
cessing resources and the communication resources have different capacities in terms
of processing power and bandwidth. Moreover, the network links present bandwidth
asymmetry in the sense that the bandwidth for sending tasks down the tree may be
different from the bandwidth for returning results up the tree.

We concentrate on the influence of dynamic resource characteristics on the allocation
scheme. In shared and unstable environments such as grids and peer to peer systems,
the performance of the resources may well change during the execution of the whole
process. In this context, it is not realistic to assume that one of the nodes knows at any
time step the exact performance of all resources and is able to make optimal scheduling
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decisions [1]. Therefore, the main question consists in determining whether the alloca-
tion scheme can make use of some static knowledge about the platform (for instance,
the optimal solution computed from an initial snapshot of the platform), or whether we
need to rely on fully dynamic scheduling schemes. In order to answer this question, we
first derive optimal scheduling algorithms (with respect to throughput maximization).
Then we present several heuristics. Some of them make their scheduling decisions us-
ing the optimal scheduling policy, computed using a snapshot of resource performance
characteristics. Those heuristics may lead to optimal scheduling decisions in static en-
vironments. On the other hand, we propose a set of fully dynamic allocation heuristics
that make their scheduling decisions only according to information measurable locally.
Those heuristics may give poor results in static environments, but their performances are
expected to be more robust in dynamic environments. We compare all those heuristics
through extensive simulations using the SimGrid toolkit [2]. We rely on simulations
rather than direct experiments in order to make a fair comparison between proposed
heuristics. Indeed, simulation enables running of the different tests on computing plat-
forms having exactly the same dynamic behavior. Moreover, SimGrid enables to define
the trace of performance data over time for each processing or communication resource.
Therefore, it is possible to compute (off-line) the optimal solution at any given time step
and it is therefore possible to compare the performances of the different heuristics be-
tween them and against the optimal ideal solution.

The rest of the paper is organized as follows. Section 2 is devoted to a survey of
related work, both DLT studies, independent tasks scheduling and on dynamic schedul-
ing. Then, we present our platform model in Section 3 and how to find the optimal
solution, in presence of return messages, in Section 4. Section 5 states the main Theo-
rem of this paper, which provides a mean to optimize the nodes bandwidth utilization.
Section 6 presents a task-flow control mechanism that regulates the amount of tasks
and results buffered by the nodes throughout the execution. The set of centralized and
distributed heuristics are described in Section 7. The methodology and results of the
simulations are discussed in Section 8. Finally, we give some remarks and conclusions
in Section 9. Due to space limitation, many of the technical details have been omitted,
but can be found in the extended version of this paper [3].

2 Related Work

The problem of master-slave tasking on heterogeneous tree platforms has already been
widely studied, both in the context of Divisible Load Theory (DLT) and independent
tasks scheduling. A divisible load is a perfect parallel task that can be arbitrarily split
and allocated to slave processors, without processing overhead. The overall load is first
split at the master node in order to minimize the total execution time. Tasks are dis-
tributed in one round to the slaves, so that the master node makes the decisions about
the set of slaves to be used, the amount of data to be sent to each slave, and the communi-
cation ordering [4,5,6]. When return messages are taken into account, two permutations
must then be determined (one for tasks distribution and one for results collection) [7,8].
Although the complexity of this problem is still open, Rosenberg et al. [9] proved that
in the case of a homogeneous single-level tree, the optimal schedule for both outgoing
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and incoming messages can be determined, and the optimal LIFO and FIFO orderings
are given in [10] for heterogeneous single-level trees.

On the other hand, when considering independent tasks scheduling, the master node
faces the allocation problem for each task and the communications with its child nodes
may well be split into several rounds [11,12,13]. Recently research studies have focused
on steady-state scheduling, i.e. throughput maximization [11, 14, 15]. The steady-state
scheduling approach has been pioneered by Bertsimas and Gamarnik [16] who con-
sidered packet routing and proposed to concentrate first on resource occupation rather
than scheduling. The optimal solution for resource occupation, given link capacities,
is obtained via a linear program. Then, an algorithm based on super-steps is proposed
for building the actual schedule of packets. This idea has been adapted in [14] to the
distribution of independent tasks on static platforms. Results collection was not consid-
ered in [14], but the linear program presented in Section 4 is a direct adaptation of the
solution proposed in [14].

Dynamic scheduling of independent tasks has not been widely studied. Recently,
Hong et al. [1, 15, 17] proposed a very nice algorithm, based on decentralized versions
of flow algorithms. It is worth noting that this algorithm assumes a strongly different
communication model than the one presented in this paper, and consequently cannot be
easily adapted to our model. Here again, the results collection has not been considered.

3 Platform Model

The model considered in this paper is based on the model proposed in [14] that we
augment by introducing communication weights for returning computation results back
to the master. Processing nodes are assumed to be connected via a node-weighted edge-
weighted tree T = (V,E,w, c, c′) as depicted in Figure 1.

Each node Pi ∈ V represents a com-
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puting resource of weight wi, meaning
that node Pi requires wi units of time
to process one task. Each edge corre-
sponds to a communicating resource
and is weighted by two values: ci which
represents the time needed by a parent
node to send one task to its child Pi, and
c′i which represents the time needed by
the child Pi to send one result back to
its parent. All the wi’s are assumed to
be positive rational numbers since they
represent node processing times. We
disallow wi = 0 since it would permit
node Pi to perform an infinite number of tasks. Similarly, we assume that all ci’s and
c′i’s are positive rational numbers since they correspond to the communication times
between two processors. A node can perform three kinds of activity simultaneously: (i)
it can process a task, (ii) it can receive a task file from its parent or a result file from
one of its children, and (iii) it can send a result file to its parent or a task file to one
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of its children. This model is known under the name full overlap, bidirectional-single-
port model [14,11]. At any given time-step, a node may overlap computation with only
two connections, one for incoming communications and one for outgoing communica-
tions. Computation and communication are assumed to be atomic operations, i.e. once
initiated they cannot be preempted. Finally the communication model works in a store-
and-forward fashion.

4 Maximizing the Throughput

Given the resources of a weighted tree T operating under the full overlap, bidirectional-
single-port model, we aim at maximizing the number of tasks processed per time unit.
Let Ci denote the set of Pi’s children. During one time unit, let αi be the fractional
number of tasks processed by Pi, and βi be the fractional number of tasks received by Pi

from its parent. Equivalently,αi and βi correspond respectively to the fractional number
of results produced by Pi, and to the fractional number of results sent by Pi to its
parent. The optimal throughput is obtained by solving the following linear programming
problem (LPP), whose objective function is to maximize the number of tasks processed
per time unit.

Maximize ntask(T ) =
∑

i αi

subject to 
∀i, 0 ≤ αi ≤ 1

wi∀i 
= m, 0 ≤ βi

∀i 
= m, βi = αi +
∑

j∈Ci
βj

∀i, ∑
j∈Ci

cjβj + c′iβi ≤ 1
∀i, ∑

j∈Ci
c′jβj + ciβi ≤ 1

The first set of constraints states that computation resources are limited. The second
set of constraints confines the variables βi within non-negative values. Note that the
master Pm does not have a parent, so that we let βm = 0. The third set of constraints
deals with conservation laws. For each node Pi (except the master), the number of tasks
received by Pi, should be equal to the number of tasks that Pi processes locally, plus
the number of tasks forwarded to the children of Pi. Equivalently, the number of results
sent by Pi to its parent, should be equal to the number of results produced locally by
Pi, plus the number of results received from its children. The last constraints account
for the single-port model. The send and receive operations performed by the nodes are
assumed to be sequential.

Since we are looking for a solution of the LPP into rational numbers, optimal ratio-
nal values for all variables can be obtained in polynomial time. However, the solution
of the above LPP is in general not unique and some solutions might be more interesting
than others in our context. In particular, compact solutions, i.e. that utilize nodes close
to the root in priority, are more preferable than stretched solutions (that utilize nodes far
away from the root). Indeed, start-up time (required to enter the steady-state) and wind-
down time (required to gather the last results to the root) will be longer for stretched
solutions than for compact ones. In order to obtain compact solutions, we first need to
solve the initial LPP to derive the optimal throughput ntask(T ) of the tree. The objec-
tive function of the second LPP becomes the minimization of all the communications,
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under the aforementioned constraints plus an additional one that states the conserva-
tion of the optimal throughput obtained by the former LPP. Minimizing the amount of
communications while maintaining the optimal number of tasks processed implicitly
enforces compact solutions. We hence add the following constraint:

∑
αi = ntask(T ).

And the objective function of the second LPP becomes: Minimize
∑

i βi. Once a so-
lution has been obtained, one needs to construct a schedule that (i) ensures that the
optimal throughput is achieved and (ii) exhibits a correct orchestration of communica-
tion events, i.e. where simultaneous communications involve disjoint pairs of senders
and receivers. We can obtain a time period Γ by taking the least common multiple (lcm)
of all the denominators of the variables αi. Then, the integer number of tasks γi that
must be communicated to Pi during each time period Γ is obtained by γi = βiΓ .

Proposition 1. Sending and receiving files by bunches of γi in a round robin fashion
generates an optimal steady-state schedule where single-port constraints are satisfied.

Proof. The proof is done by induction over h, the height of the tree T [3]. �
Initially, nodes do not dispose of tasks nor results buffered locally to comply with
Proposition 1. Therefore an initialization phase must take place before entering steady-
state. During start-up, nodes will act as if they were in steady-state, at the difference that
fake results will be sent to the parents if not enough results are available. Thus, tasks
will be propagated down the tree, while fake results will be propagated up the tree. The
fake results received by parents nodes are simply discarded. Once the first bunch of
results processed by all the deepest nodes used in the schedule have been transmitted to
the root node, then steady-state has been reached.

5 Bandwidth Optimization

A simple scheduling principle is presented in [14] when returning results is neglected.
This scheduling algorithm was termed bandwidth-centric because priorities do not de-
pend on the children processing capabilities, but only on their communication capa-
bilities. The bandwidth-centric principle is extended to our problem as follows. First,
observe that for each task that a node Pi delegates to a child Pj , Pi must first receive
the task from its parent, then forward it to Pj , receive the associated result back, and
finally send the result to its parent. Consequently, Pi will spend xj = cj + c′i time units
sending data, and yj = c′j + ci time units receiving data. Since the master Pm does
not have a parent, we let xm = cm and ym = c′m. The bandwidth utilization of a node
Pi can be sketched within the Cartesian plane, where the X and Y axes represent the
time spent in emission and reception respectively. Hence, allocating a task to child Pj

corresponds to a displacement in the Cartesian plane along vector vj of components
(xj , yj).

Theorem 1. In steady-state, the bandwidth utilization of a parent node is optimized
when using at most 2 children (if processing capabilities are not taken into account).

Proof. The proof is done by induction over n, the number of children that are utilized by
a parent in addition to the two nodes mentioned in Theorem 1. Consider the case where
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n = 1, i.e. when a parent delegates α1, α2 and α3 tasks per time unit to three children
P1, P2 and P3 respectively (see Figure 2). Displacements OA1, A1A2 and A2A3 stand
for delegating α1, α2 and α3 tasks to the children P1, P2 and P3 respectively.

Consider the triangle A1A2P where the
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Fig. 2.

displacements A1P and PA2 amount to al-
locate j1 and j3 tasks to P1 and P3 respec-
tively. Consider now both quantities (j1 + j3)
and α2. If (j1 + j3) ≥ α2, it means that it is
more profitable to spend the bandwidth time
assigned to P2 by allocating more tasks to P1

and P3. As a consequence, P2 should not be
used. But if (j1 + j3) < α2, then consider the
triangle ORA1, where the displacements OR
and A1R amount to allocate k2 and k3 tasks
to P2 and P3 respectively. Since both triangles
A1A2P and ORA1 are equal (since their in-
ternal angles are equal), if (j1 + j3) < α2 then
(α1 + k3) < k2. In that case, it becomes more
profitable to assign k2 tasks to P2 instead of α1

tasks to P1 and j3 tasks to P3, and P1 should not be used. Assume now that Theorem 1
is true for rank n, and let us prove that it holds also for rank n + 1. Consider a parent
utilizing n + 3 children. Extract 3 of the n + 3 children and apply the aforementioned
geometric transformation. One then utilizes only n + 2 children without degrading the
initial throughput. �
Theorem 1 assumes that nodes can provide as much computing power as necessary
which contravenes the fact that computing resources are limited. Nonetheless, it allows
identifying the way to optimize the bandwidth of any node Pi in using at most two
children. Furthermore, we show in [3] that if such a pair of children exists, then the
emission and reception bandwidth of Pi are equally utilized.

6 Task-Flow Control

In order to regulate the number of tasks and results that nodes are allowed to buffer lo-
cally throughout the execution, a threshold value θi is introduced for each node Pi, i 
=
m. On the one hand, if the number of tasks buffered locally by Pi is beneath the thresh-
old, then Pi will request more tasks in order to prevent starvation. On the other hand,
if the number of results buffered locally by Pi is larger than the threshold, then Pi will
not request additional tasks in order to hinder a monotonic accumulation of results. Ini-
tially, θi = 1, ∀i 
= m. Since we search for compact solutions, parent nodes will try
to process as many tasks as possible. If additional tasks arrive while a node is busy
processing, then the task will be forwarded down the tree. During the execution, nodes
are allowed to increase their local thresholds θi only when (i) they are starving and
(ii) if they recently succeeded to accumulate θi tasks locally (to ensure that the current
threshold is not sufficient) and (iii) if the number of results buffered locally is strictly
lower than θi. This mechanism allows nodes to collect enough tasks locally to feed their
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sub-trees, while ensuring that results do not accumulate monotonically locally. On the
other hand, nodes must decrease their local thresholds whenever the number of results
buffered locally exceeds the threshold. This threshold growth mechanism provides a
mean to adapt to the platform dynamics.

7 Scheduling Heuristics

Round Robin. (RR) This heuristic implements Proposition 1. Once all the αi are
known, the period Γ is estimated as follows. Let us set x = �log10(maxi αi)	. If x ≤ 0
then Γ = 10|x|+1, Γ = 10x otherwise. The aim is to obtain a compromise between a
short time period, and an approximation close to the optimal solution. Then we get the
number of tasks computed by each node Pi by rounding Γαi to the nearest integer.
On the Fly. (OTF) This heuristic makes use of the centralized knowledge. Once all the
βi’s are known, each node maintains a table tasks given[j], which records the number
of tasks delegated to child Pj so far. The child node that has the lowest tasks given[j]

βj

ratio is served in priority.
FIFO. Tasks are delegated in a first-come first-served basis.
Bandwidth-Centric. (BC) Let rj = min{ 1

xj
, 1

yj
} denote the maximum amount of

tasks that Pi can delegate to child Pj per time unit. The child which has the highest rj

is served in priority.
Geometric. (Geo) This heuristic makes use of Theorem 1, but starts by applying the
bandwidth-centric heuristic, in order to determine which child obtains the highest rj .
Then, it inspects if a pair of children can improve that rate. If such a pair of children ex-
ists, one must decide which child should be served. In order to make the right decision,
we use a variable ∆ which works much like a pair of scales. At start, ∆ = 0. Each time
a child node Pj is served, we put xj in one scale, and yj in the other, which amounts
to ∆ = ∆ + xj − yj . When a pair of children nodes is elected, then the child which
brings ∆ closest to 0 is serve. The aim is to utilize equally the emission and reception
bandwidths of the parent nodes. Such strategy will optimize the bandwidth utilization
of the nodes, while naturally adapting to the platform dynamics.

8 Simulations Results

To evaluate our heuristics, we simulate the execution of an application on different ran-
dom trees. Since a sub-tree can be reduced to a single super-node of equivalent process-
ing power [14], it is not necessary to employ thousands of nodes to simulate large-scale
systems [15]. We arbitrarily limited the number of nodes in a tree to 100. Each node
was arbitrarily restricted to have at most 10 child nodes. A random tree is generated as
follows. Each node is numbered with an ID number between 0 and 99. Then, each node
Pi, i ∈ [1, 99] is connected randomly to a node Pj , j ∈ [0, i− 1]. The links have static
performance values comprised between cmin and cmax and the nodes between wmin

and wmax. All random distributions are uniform. The dynamic environments used in
our simulations were generated as follows. Each resource Ri (node or link) has a cyclic
behavior, i.e. its performance changes ni times per cycle. The number of changes ni
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per cycle is randomly taken within the interval [5, 15]. Resource performance changes
will occur every 25 treated tasks in average. We do not claim that these arbitrary deci-
sions correspond to realistic network conditions. Our aim is to compare our heuristics
on a set of different tree configurations. Inspired by Kreaseck et al. [11], we determine
the throughput rate by using a growing window. The execution time is divided into 100
equal-sized time slots. Then, the window increases in size by step of one time slot, and
the throughput rate delivered within the window time-frame is computed. The through-
put rates delivered by the trees have been normalized to the maximum steady-state
rates obtained with the LPP in static environments. However, throughput rates obtained
in dynamic environments have been scaled up by a dynamic factor that accounts for the
performance loss incurred by the platform dynamics. The dynamic factors have been
obtained by successively solving LPPs of static platforms and comparing them to their
homologous LPPs where some dynamism have been introduced (i.e. with the same plat-
form topologies but with scaling down resource performances). More details about our
methodology as well as a broader set of simulation can be found in [3].

In this paper, we report the simulation of an independent-task application of 2500
tasks on 50 trees where cmin = 1, cmax = 10, wmin = 20 and wmax = 200. Two
scenarios for the data volume associated to the tasks and results were considered: (i)
task data are 1000 times larger than result ones ( t

r = 1000), and (ii) task and result
data have the same size ( t

r = 1). Figure 3 plots an average of the 50 throughput rates
(associated to the 50 trees) over time. Figure 3 (a) and (b) correspond to static environ-
ments, while Figure 3 (c) and (d) correspond to fully dynamic environments, i.e. where
resource performances can degrade down to 1% of the static value. The RR heuristic
has been simulated with more than 2500 tasks in order to overcome the long start-up
time required to enter steady-state. Still, RR does not outperform the other heuristics
in static environments, certainly due to the truncating and rounding operations that oc-
curred when computing Γ and the γi’s. Not only the integer number of tasks intended
to each node may be sub-optimal, but also the schedule of communications gets dis-
turbed. The centralized heuristics (RR and OTF) are the highest performers in static
environments, but the lowest ones in dynamic environments. Indeed, the information
on which they rely throughout the execution becomes misleading in dynamic settings.
As expected, the BC heuristic works very well when result data are small, while Geo
only departs from BC when result data become significant.

Interestingly, when result data become significant, the performance of the best heu-
ristics decrease, whereas the performance of FIFO increases. On the one hand, the de-
cline of the best heuristics can be explained by the scheduling problem becoming more
complicated. Returning results up the tree taking as long as sending tasks down the tree,
parent nodes may sometimes have to stall a long time, waiting for a child to become
available in reception. On the other hand, the performance increase of FIFO is a di-
rect consequence of the task-flow control mechanism. When returning results takes a
long time, local accumulations of results will arise, hindering the ineffective nodes to
request for additional tasks. In contrast, when returning results is quick, no local results
accumulations take place, increasing the margin to make wrong scheduling decisions.

Finally, it is worth noticing that BC and Geo compete well with the centralized
heuristics even in static environments. See [3] for further details and interpretations.
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Fig. 3. Average of the 50 throughput rates (associated to the 50 trees) over time, with the com-
putation to communication ratio wi

ci
= 20. In the dynamic environments, resource performances

can degrade arbitrarily without failing, i.e. down to 1% of the static performance value.

9 Conclusion and Future Work

The problem of distributing a large number of independent tasks onto heterogeneous
tree-shaped platforms with bandwidth asymmetry was considered. In contrast with most
previous studies, the cost of returning results to the master node was represented in
the problem formulation. We provided theoretical results that were embedded into au-
tonomous heuristics. Simulations results showed that the autonomous heuristics put
together with the task-flow control mechanism not only behaved very well in dynamic
environments, but also compete well with centralized heuristics in static environments.

The scope of this paper was restricted to tree-shaped networks. However, at the back-
bone level, various geographically organizations are connected via the Internet resulting
in a graph topology. Adapting the theoretical results presented in this paper to graph-
shape platforms is a natural continuation of this work, albeit graph topology introduces
routing problems. Another direction is to consider master-slave tasking in the presence
of multiple masters. This situation arises naturally when several applications share the
same platform, or when multiple masters collaborate on a single application.
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Abstract. The computation capacity of the workstations of an open
laboratory in almost every university is enough to execute not only the
local workload but some distributed computation. Unfortunately, the
local workload introduces a big uncertainty into the predictability of the
system, which hinders the applicability of the job scheduling strategies.

In this work, we introduce into our job scheduling system, termed
CISNE, a simulator, which allows its scheduling decisions to be en-
hanced by estimating the future cluster state. This process of estimation
is backed by analytic procedures which are also described in this study.
Likewise, the simulation let us assure some limit to the turnaround time
for the parallel user. This paper analyses the performance of the simu-
lation process in relation to different scheduling policies. These results
reveal that those policies that respect an FCFS order for the waiting
jobs are more predictable than those that alter the job ordering, like
Backfilling.

1 Introduction

Several studies [1] have revealed that a high percentage of computing resources
(CPU and memory) in a Network Of Workstations (NOW/Cluster) are idle. The
possibility of using this computing power to execute distributed applications with
a performance equivalent to a Massively Parallel Processor (MPP) and without
perturbing the performance of the local users applications on each workstation
has led to a proposal for new resource management environments [2,3].

With the aim of taking advantage of these idle computing resources (CPU
and memory) available across the cluster, we have developed a new scheduling
environment, named CISNE [3], which combines space sharing and time sharing
scheduling techniques. The space sharing scheduling component of CISNE is
a job scheduler, named LoRaS (Long Range Scheduler). When a parallel job
is submitted to the LoRas, the job waits in a queue until it is scheduled and
� This work was supported by the MEyC-Spain under contract TIN 2004-03388.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 177–187, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



178 M. Hanzich et al.

executed. Thus, LoRaS must deal with the Job Selection process from a waiting
queue, together with the problem of selecting the best set of nodes for executing a
job (Node Selection policies). This is performed by taking into account the state
of the cluster system together with the characteristics of the local and parallel
workload. Based on those considerations, different policies are implemented to
assign jobs to processors in the LoRaS system.

Once a parallel job is executed, the time sharing component of CISNE, named
CCS (Cooperating CoScheduling) [4], takes control of the progression of each
parallel job. CCS provides an execution environment where the parallel appli-
cations can be dynamically coscheduled. It means that the tasks belonging to
the same parallel job are coscheduled according to its communication require-
ments [5]. In addition, the resources given to parallel tasks are balanced and
the interactive responsiveness of the local applications (local workload) is fully
preserved by means of a job interaction mechanism, and even when using a
MultiProgramming Level of parallel jobs (MPLparal) greater than one [6].

In order to take better scheduling decisions, the CISNE system needs to fore-
cast the future state of the cluster [7]. Likewise, this prediction capacity could
help to guarantee some limit in the turnaround time for the applications of any
parallel user.

These considerations have stimulated some works focused on the estimation
process. The most evaluated alternative is to use a historical system that records
the past executions of an application [8,9]. This kind of system normally looks
for a state that is similar to the current one by defining a comparison function
that determines how similar one state is to another. This focus is valid when
the state is defined by a small set of variables, but in our case we have to
consider a more complex cluster state (i.e. more variables), due to the non-
dedicated characteristic of the environment. Besides, a historical system needs a
learning phase to become accurate and, the larger the set of variables to consider,
the longer the time needed to achieve precision. Following studies like [10,11],
we decided to use a simulation approach to represent our scheduling system.
However, in such studies the authors use a historical system for predicting the
execution time of each parallel application, while we focus on an analytic schema.
The results obtained from those studies can reach an error of around 37% for the
execution time prediction of any single application. Our analytic results give an
error of around 41%, but with an estimation time that remains constant whatever
the cluster state, while a historical system needs a linear time (depending on the
number of cases to be studied), for estimating the same value. It should be
noted that the number of cases to be evaluated by the historical system in a
non-dedicated environment is much greater than those available in studies such
as [10,11].

Unfortunately, different policies for distributing the parallel applications may
have different effects on the estimation methods and vice-versa. This could make
some predicting schemes more suitable for some specific policy but not for oth-
ers. This has motivated us to propose some estimation methods oriented to
non-dedicated clusters and evaluate their performance in relation to different
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Fig. 1. The integration of the simulation into the CISNE system

distribution policies. With this aim, a simulation tool has been implemented in
the CISNE system. In this framework, we have observed that those policies that
distribute the resources in a more balanced way are more predictable reaching
an accuracy of 12%. On the other hand, those policies that could alter the order
of the waiting jobs, such as backfilling, are inherently more inaccurate.

The outline of this work is as follows, section 2 depicts our simulation method.
Some proposals for the estimation process are explained in section 3. Next, the
experimental results are analyzed in section 4. Finally, some conclusions and the
future work are explained.

2 The Simulation Process on the CISNE System

As stated above, the simulation process is integrated into the CISNE system [3].
In order to deal with this estimation in a non-dedicated environment, CISNE
needs information from two different inputs: the characterization of the parallel
applications and the modelling of the current cluster state, including the local
load activity. As we can see in Fig. 1, this information is provided by the queue
manager and application characterization block, respectively. At the end of the
simulation, the estimated job turnaround time is returned to the queue manager.

The behavior of the parallel applications is obtained by means of running
the parallel application in isolation. This is preferred over the information given
by the user about the resources used by the applications, which is normally an
inaccurate method [12]. For a fixed number of processors per application (n),
CISNE collects:

– ExeT imetot(J): execution time of the job J .
– CPUtimetot(J): amount of CPU time used by the job J .
– CPU(J): CPU percentage (CPUtimetot(J)/ExeT imetot(J)) used by the

job J .
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The queue manager collects the usage of the resources in each node together
with the state of each application. The following set of data models the cluster
state:

– JSP and NSP policies: Job and Node Selection Policies used by CISNE,
respectively.

– ExeT imecur(J): current running time for the job J .
– CPUtimecur(J): amount of CPU time used by the job J from its beginning.
– nodes(J): set of nodes where the job J is running.
– CPUlocal/paral(n): sum of the CPU usage of each local/parallel task running

in the node n.
– MPLparal/local(n): number of parallel/local tasks executing simultaneously

in the node n. As we demonstrated in several previous studies [3,6], the time
sharing component of CISNE allows the execution of more than one parallel
application in the same set of nodes, whenever it does not disturb the local
user.

– tasks(n): set of parallel tasks running in the node n.

Once all the needed elements are collected, CISNE is ready to start the simula-
tion process described in the next section.

3 Turnaround Time Prediction by Simulation

The simulation process is triggered whenever a new application arrives to the
CISNE system. Every time that the simulation is started, the turnaround time
for each application, either running or waiting, is estimated and adjusted, giving
some extra information to the job scheduler about the future cluster state. If the
simulator is working when a new application arrives, the whole process has to be
restarted considering the new job to be executed. Alg. 1 depicts our simulation
method.

The core of the simulation algorithm relies on a while that loops as long as any
parallel application is running (Alg. 1:3-16). For each iteration, the algorithm
estimates the Remaining Execution Time (RemainTime) of every job in the
running queue (DRQ), selects the next job that will finish (Ji) and removes
it from DRQ (Alg. 1:4-6). After that, the CPUtimecur used by each of the
remaining jobs in DRQ is calculated (Alg. 1:7) to be used in the next simulation
step (Alg. 1:3 loop). Next, another loop tries to execute some waiting jobs using
the system scheduling policy, the available resources and those resources released
by Ji (Alg. 1:8). Finally, the waiting time for every job in DQ is updated (Alg.
1:14) and the simulation step advances to ti(Alg. 1:15).

In order to carry out this simulation, we need a pair of extra functions which
define the estimation process. The first is the RemainTime (Alg. 1:4), which
estimates the remaining execution time for a given application considering the
current cluster and application state. The second tries to predict the CPU time
(CPUtimecur) that the application has used in the past (Alg. 1:7). Our ap-
proaches to solving both functions are depicted in the following subsections.
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Algorithm 1. Simulation process
1: Duplicate the system state in a dummy system state: DQ as a copy of the jobs

waiting queue, DRQ as a copy of the running jobs queue and CLsim as a copy of
the cluster nodes with their state

2: Store the current time (t0), as the moment when the simulation has begun.
3: while (∃ J in DRQ) do
4: forall (J in DRQ) Calculate the RemainT ime(J).
5: Assume that the application Ji is the next one to finish in time ti.
6: Update the estimated ExeT imetot(Ji) to ti and remove Ji from DRQ.
7: forall (J in DRQ) Calculate the CPUtimecur(J) in [t0, ti].
8: while (∃ usable resources in Clsim and any job waiting in DQ) do
9: Look for an application Jx in DQ that could be executed in the Clsim state.

10: Select the best subset of Clsim for executing Jx, using the system policy.
11: Execute the application Jx in the selected subset of Clsim and add it to DRQ.
12: Increment the estimated WaitingT ime(Jx) in [t0, ti].
13: end while
14: forall (J in DQ) Increment the estimated WaitingT ime(J) in [t0, ti].
15: Set t0 to ti.
16: end while

3.1 Remaining Execution Time Approaches

The easiest estimation is to think that the future will be similar to the past. With
this in mind, the remaining execution time of a job J , denoted as RemainT ime
(J), is calculated according to the following equation:

RemainT ime(J) =
ExeT imecur(J) × (CPUtimetot(J) − CPUtimecur(J))

CPUtimecur(J)
(1)

Note that Eq.1 assumes that the CPU time (CPUtimetot(J)) used by the job
J during its complete execution (RemainT ime(J) + ExeT imecur(J)) is pro-
portional to the CPU time (CPUtimecur(J)) used during the current execution
time (ExeT imecur(J)).

The second proposal considers both the past and current states. It starts
by calculating the remaining execution time that the job J would need if it
were executed in isolation (RemainT imeisol(J)). This value, following the same
reasoning as Eq. 1, is calculated as follows:

RemainT imeisol(J) =
ExeT imetot(J) × (CPUtimetot(J) − CPUtimecur(J))

CPUtimetot(J)
(2)

Next, the maximum MPL (MPLmax(J)) is defined as:

MPLmax(J) = max(MPLparal(n) + MPLlocal(n) | n ∈ nodes(J)). (3)

It is worth pointing out that Eq. 3 returns the maximum number of tasks, both
local (MPLlocal(n)) and parallel (MPLparal(n)), executing concurrently with
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the job J among the nodes where it is running (nodes(J)). Taking MPLmax(J)
and RemainT imeisol(J) into account, the remaining execution time of job J is
calculated according to the following equation:

RemainT ime(J) = RemainT imeisol(J) × MPLmax(J) (4)

Our last approach considers not only the number of tasks executing concur-
rently (MPL) but also the CPU requirements of those tasks (in percentage).
According to this, the RemainT ime(J) is calculated as follows:

RemainT ime(J) = RemainT imeisol(J) × CPU(J)
CPUfeas(J)

(5)

where:

CPUfeas(J) = min(CPU(J),
CPU(J)

CPUmax(J)
), (6)

is the maximum CPU usage (in percentage) that we expect the job J could use,
and:

CPUmax(J) = max(CPUparal(n) + CPUlocal(n) | n ∈ nodes(J)) (7)

is the maximum CPU usage requirements (in percentage) among the nodes where
the job J is running (nodes(J)).

It is important to emphasize that no matter which the chosen approach is,
the value for CPUtimecur(J) is accurate only at the beginning of the simula-
tion process (Alg. 1:3), but for each simulation step it is necessary to estimate
this value again (Alg. 1:7). Therefore, in the next subsection we describe some
proposals for estimating this value.

3.2 Used CPU time Proposals

This section describes two different proposals for estimating the current CPU
time for a given job J at a specific moment (ti), denoted as CPUtimecur(J, ti),
considering that this value has been measured in the past (CPUtimecur(J, ti−1)).

In our first approach, we assume that the application CPU usage is pro-
portional to the maximum MPL calculated in Eq. 3. The following expression
represents this proposal.

CPUtimecur(J, ti) = CPUtimecur(J, ti−1) +
(ti − ti−1) × CPUtimetot(J)

MPLmax(J) × ExeT imetot(J)
(8)

Our second proposal is based on the same idea used for the remaining time in
Eq. 5, but applied to the CPUtime. The following equation represents that idea.

CPUtimecur(J, ti) = CPUtimecur(J, ti−1) + (ti − ti−1) × CPUfeas(J) (9)
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4 Experimentation

In order to carry out the experimentation process, we need two different kinds
of workload. On one hand, we need to simulate the local user activity and, on
the other hand, we need some parallel applications that arrive at some interval.

The local user activity is represented by a benchmark that could be parame-
terized in such a way that it uses a percentage of CPU, memory and network.
To parameterize this benchmark realistically, we measure our open laboratories
for a couple of weeks and use the collected values to run the benchmark (15%
CPU, 35% Mem., 0,5KB/sec LAN).

The parallel workload was a list of 30 PVM NAS parallel jobs (CG, IS, MG,
BT) with a size of 2, 4 or 8 tasks that entered the system following a Poisson dis-
tribution of inter-arrival times with mean=15s. These jobs were merged so that
the entire workload had a balanced requirement for computation and communi-
cation. It is important to mention that the MPLparal reached for the workload
depends on the system state at each moment, but in no case will surpass an
MPLparal = 4 [6].

This workload was executed with different combination of Job Selection (JSP)
and Node Selection policies (NSP). Regarding the JSP policies, FCFS (First-
Come-First-Served) and Backfilling techniques were tested. A backfilling policy
consists of executing a job, not at-the-head of the FCFS queue, whenever this
does not delay the start of the job at the head. The set of nodes onto which
the selected job will be launched, was chosen according to two different NSP
policies. The first one, termed Normal, selects the nodes for executing a parallel
application considering only the resource usage level throughout the cluster, so
it does not overload any node in detriment of the local user interactiveness. An
example can be observed in Fig. 2.b, where the J3 shares its nodes with J1and
J2. The second approach, called Uniform, selects the nodes respecting not only
the resource usage but also the job distribution. In this case, the policy executes
a pair of jobs of the same size in the same set of nodes whenever possible.
Besides, the system tries to execute tasks of different oriented applications (i.e.
communication bound vs. computation bound), in the same set of nodes trying
to enhance the underlying Time-Sharing schema of our CISNE system [3]. An
example can be seen in Fig. 2.a, where J3 only shares its nodes with J2. Finally,
and for the purpose of comparison, we include a Basic policy made up of a
Normal+FCFS policy with the MPLparal = 1, rather than 4 as in the other
policies.

The whole system was evaluated in an Linux cluster using 16 P-IV (1,8GHz)
nodes with 512MB of memory and a fast Ethernet interconnection network.

4.1 Experimental Results

In this subsection, we present some results showing the effect of the different JSP
and NSP policies over the different mixes for the Remaining Execution Time
(RemainT ime) and the Used CPU Time (CPUtime) estimation methods. Fig. 3
shows the estimated turnaround deviation (in %) from the real turnaround time
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Fig. 2. Uniform (a) and Normal (b) Node Selection Policy

for the different policies and estimation methods. These results were obtained
considering that 25% of the nodes had some kind of local activity.

From Fig. 3 and considering the RemainTime methods, we can see that a
Uniform policy favors the predictability of the system over a Normal policy
because it tries to balance the resources given to the parallel applications. In
such a case, the tasks forming a parallel application have the same resources
and then they can evolve jointly letting the estimation methods be more accu-
rate. Likewise, Fig. 3 shows that a Basic policy performs worse than Normal
or Uniform for some cases. This is mainly due to the Basic restriction of the
MPLparal (MPLparal=1). In such a scenario, the waiting queue length increases
and hence the waiting time prediction become less accurate. As a consequence,
the turnaround time prediction is worse. In addition, this figure reflects that a
scheduling policy that includes a backfilling scheme is more unpredictable. This
is due to the difficulty of tracking the variation in the order of the elements in
the waiting queue. However, and even considering that the resulting estimations
are not as good as for those policies without a backfilling scheme, the results
are almost always pessimistic, due to the possibility of backfilling some of them,
and hence reducing their waiting time. This means that the parallel user has
a turnaround time that in the worst case, is overestimated, but never under-
estimated. Finally, and as was to be expected, the Proportional (Prop., Eq. 1)
RemainTime method performs badly. This is due to the assumption that the
future behaves like the past. This assumption is not true when the environment
state changes continuously due to the local and parallel loads.

From the same Fig. 3, and focusing now on the Used CPU Time methods,
it is clear that the estimation via the CPU usage (right columns, Eq. 9) is
more reliable in most of the cases, compared with the estimation through the
MPL (left columns, Eq. 8) method. This happens because the CPUtime method
represents reality better by considering the real percentage of CPU consumed by
each task, while the MPL method assumes that every task consumes the same
percentage of CPU. There is a special case for the Basic policy, where these
results are apparently contradictory. However, these results are due to the light
parallel load imposed on the system (on Basic, the parallel MPL is at most 1),
that results in a longer, and hence more unpredictable, waiting queue.

In addition, we want to analyze the influence of the local load on the esti-
mation methods and scheduling policies. Table 1 shows the turnaround devia-
tion for two different combinations to estimate the RemainTime and CPUtime
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Fig. 3. Turnaround deviation (%) for the different RemainTime and CPUtime mixes
for the scheduling policies evaluated

Table 1. Turnaround deviation (%) for the different RemainTime and CPUtime mixes
for the evaluated policies and different local loads

Norm+BF Unif+BF Basic Normal Uniform
Local Load MPL CPU MPL CPU MPL CPU MPL CPU MPL CPU

25% 144,33 99,67 69,67 63,33 6,33 23,00 23,00 15,33 12,67 8,67
50% 58,67 59,67 55,00 31,33 14,00 18,67 20,50 21,33 22,00 21,67
100% 46,33 45,00 54,00 46,67 34,33 8,67 16,67 28,33 25,33 18,33

values respectively: MPL-MPL (MPL in table 1) and CPU-CPU (CPU in table
1). Both combinations were tested varying the number of nodes with local load
from 25% to 100% of nodes. From this table, we can see that the CPU-CPU es-
timation method gives us a better estimate than the MPL-MPL method in most
of the cases. This agrees with our expectations, because an estimation process
that considers the CPU consumption of each task instead of assuming that every
task uses the same amount of CPU, as the MPL-MPL method does, tends to
be more accurate. There are, however, some cases where the CPU-CPU method
does not give us the best results. One of them was found for the Normal policy
and 100% of nodes loaded with local tasks. In this case, these bad results are
due to an unbalanced distribution of the resources throughout the cluster, which
complicates the CPU-CPU method capacity for tracking the CPU usage of the
parallel and local loads. The other case that it is not favorable to the CPU-CPU
method is for the Basic policy. In this case, when the system is unloaded (local
load of 25%) and the MPL is at most 1, the CPU usage calculation is misleading
because the whole set of tasks could evolve faster than the estimation process as-
sume. However, in such a situation, the estimation process is always pessimistic,
so that the application will always finish before the estimated finish time.
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The second effect to note is the increment in the accuracy of the estimation
methods for the policies that include Backfilling when the local load increases.
This might seem contradictory, but is in fact perfectly understandable because
when the local load increases, the available resources decrease, as do the oppor-
tunities to backfill a job.

It is worthwhile pointing out that the time cost spent by all our proposals to
estimate the turnaround time of a single application is always lower than 4ms.
It means that this is at least two orders of magnitude lower than the execution
time of the parallel applications (minutes).

5 Conclusions and Future Work

In order to improve the prediction capacity of a resource management environ-
ment over a non-dedicated cluster, this work presents a simulation algorithm
that merges different estimation methods for predicting the turnaround time of
parallel applications. The proposed estimation methods focus on two different
goals. The first set tries to predict the Remaining Execution Time for a given
running application and a defined cluster state, while the second set of methods
estimates the CPU usage that an application could absorb for a given time in-
terval and cluster state. The relationship between these estimation methods and
different job scheduling policies are evaluated. We conclude that those methods
that consider not only the MultiProgramming Level (MPL) of the parallel and
local tasks in each node but also the CPU consumption of each one, are more ac-
curate in the general case. Besides, those policies including a backfilling scheme
are inherently more difficult to estimate accurately due to the possibility of al-
tering the job ordering in the queue. However, this estimation always tends to be
pessimistic and hence the jobs finish before the predicted finish time. Another
effect that could be observed was the influence of the job distribution on the
estimation process. For those policies that balance the resources it is easier to
generate a more accurate estimation, reaching an accuracy of 12%.

In the future, we want to introduce an hybrid system that merges our simu-
lator with a Remaining Execution Time method that uses a historical system.
This way it will be possible to generate an estimation method that becomes
more and more accurate over time, but without the cost of assuming a whole
historical prediction system that has to manage a lot of variables.
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Abstract. This paper presents an adaptive scheduling method, which
can be used for parallel applications whose total workload is unknown a
priori. This method can deal with the unpredictable execution conditions
commonly encountered on grids. To address this scheduling problem, pa-
rameters which quantify the dynamic nature of the execution conditions
had to be defined. The proposed scheduling method is based on an on-
line algorithm so as to be adaptable to the varying execution conditions,
but avoids the idle periods inherent to this on-line algorithm.

Keywords: scheduling, parallel application, grid, master-worker, on-
line, multi-round, heterogeneity, dynamicity.

1 Introduction

In this paper, we present an adaptive method for scheduling parallel applications,
that can be used in the dynamic context of grids and when some of the infor-
mation traditionally used by scheduling algorithms is lacking. This method is
based on an on-line algorithm from Drozdowski [1]. We assume that a set of grid
resources has been identified and tackle the problem of distributing optimally
the tasks of a parallel application on this set of resources, so that the application
terminates as soon as possible. Precisely, we consider applications that process
a finite –but a priori unknown– amount of data independently. The total work-
load of the application is supposed arbitrarily divisible in any number of chunks
where each chunk consists of some amount of data. The same computation is
performed on each chunk, producing its own result without any communication.
Such applications are suitable for the master-worker programming model, with
the master distributing chunks to the workers, then collecting the corresponding
results from them. Clearly, for such a parallelization to be useful, the processing
cost for a chunk by a worker must dominate the corresponding communication
costs between master and worker in a certain sense that will be stated later on,
when appropriate notations have been introduced (see inequality (2)).

It has to be noted that although we consider so called divisible load, the DLT
(Divisible Load Theory [2, 3, 4, 5]) cannot be straightforwardly applied in our
case, as we suppose that the total workload of the application is not known a
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priori. For this reason, we shall be bound to use on-line algorithms to address
our scheduling problem.

We adopt a one-port communication model [6] without contention, which
means that for a fixed node neither two emissions nor two receptions can over-
lap each other, whereas one emission can overlap one reception, and computa-
tion can overlap communication. Furthermore, in the context of grid computing,
computation and communication latencies must both be considered.

This paper is organized as follows. Section 2 defines precisely the scheduling
problem we consider. Section 3 describes the on-line algorithm which our schedul-
ing method is based on and introduces some notations. Section 4 presents the
new method itself. It first gives an overview of the approach then successively
states the conditions for the method to succeed, details the various computations
of the proposed scheduling algorithm and finally compares it with the initial on-
line algorithm. Section 5 concludes the paper and outlines future work.

2 The Scheduling Problem

We consider a master-worker model for which the data to be processed are
continuously received by the master in an input buffer until the final item is ob-
tained. It is only when the master acquires this last item that the total workload
of the application happens to be known. We want to minimize the makespan of
the application on a set of grid resources. As this problem is NP-complete when
latencies are considered [7], it can only be heuristically dealt with.

Execution parameters on a grid, such as available computing power or net-
work bandwidth, vary both in space (heterogeneity) and time (dynamicity). We
assume that we know all past values of these parameters and are unaware of the
future ones. Because of the one-port communication model, the workers cannot
start their work simultaneously: the master has to finish the emission of some
chunk to one worker before being able to begin to send a chunk to another one.

In this paper, we do not consider the fundamental problem of choosing the
nodes to be used and the order in which they are served. To terminate the
execution of the application as soon as possible, the computation should start
as soon as possible on all the selected worker nodes, which should then be sent
small initial amounts of work in order to quickly start their computation.

When each worker has received a first chunk, the execution enters the steady-
state phase [8]. The main characteristic of this phase is that the total workload
is still unknown. If the choice of the computing resources is optimal (i.e. opti-
mal nodes are chosen in optimal proportion), then keeping the selected nodes
active minimizes the makespan. When the master gets the final data item to be
processed, the steady-state phase ends and the clean-up phase begins.

From this time instant, the problem of scheduling the remaining load is suit-
able for DLT, as now the total workload is known: namely the amount of data
still present in the master input buffer. So, according to the optimality princi-
ple, we can try and minimize the makespan by synchronizing the termination of
the computation of all the workers. This, being possible only if the master does
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not overload any worker too much during the steady-state phase, which would
cause a discrepancy too large for late workers to catch up, thus preventing a
synchonous termination of all workers. In the following, we focus on scheduling
during the steady-state phase.

3 Drozdowski’s On-Line Scheduling Method

Our scheduling method is based the On-Line method presented by Drozdowski
in [1], denoted "OL" thereafter. OL proceeds incrementally, computing the size
αi,j of the chunk to be sent to a worker Ni for each new round j, in order to
try and maintain a constant duration τ for the different rounds and thus avoid
contention at the master.

OL determines αi,j so as to make the distribution asymptotically periodic
with period τ , an arbitrarily fixed value, for all the workers. For worker Ni, let
σi,j−1 be the elapsed time between the begining of the emission of the chunk of
its (j − 1)th round and the end of the reception of the result corresponding to
this chunk. OL determines the value of αi,j as follows:

αi,j = αi,j−1 · τ

σi,j−1
. (1)

That is it allocates comparatively bigger (resp. smaller) chunks to workers with
higher (resp. lower) performance. Hence, this method can take the heterogeneous
nature of computing and communication resources into account, without explicit
knowledge of execution parameters (as equality (1) shows); as Drozdowski states,
"the application itself is a good benchmark" [1] (actually the best one).

Lemma 6.1 in [1] shows that, in a static context, with affine cost models
for communication, the way αi,j is computed using equation (1) ensures the
convergence of σi,j to τ when j increases indefinitely.

Being an estimation of the asymptotic period used for task distribution, τ is
also an upper-bound on the discrepancy between workers. Being able to control
this bound makes it possible to minimize the makespan during the clean-up
phase.

The following notations are used throughout the rest of the paper:

– N number of workers,
– γi start-up time for a computation by worker Ni,
– wi,j computation cost for a chunk of size 1 of the jth round by worker Ni,
– βi (resp. β′

i) start-up time for a communication from the master to Ni (resp.
from Ni to the master),

– ci,j (resp.c′i,j) transfer cost for a data (resp. result) chunk of size 1 of the jth

round from the master to worker Ni (resp. from Ni to the master).

It should be noted that, unlike previous work [1, 9], this paper introduces com-
putation start-up times in order to be more realistic when considering grids. As
suggested in section 2, the values of the execution parameters of any worker Ni

— here wi,j , ci,j and c′i,j — depend on the round. We assume that costs are
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roundwise affine in the size of chunks. Hence, for a chunk of strictly positive size
α (i.e. α ∈ IR+∗) of the jth round, we define the cost of:

• sending the chunk to worker Ni α · ci,j + βi,

• processing the chunk on worker Ni α · wi,j + γi,

• receiving the corresponding result from worker Ni α · c′i,j + β′
i.

We indicated in section 1 that the processing cost for a chunk should dominate its
communication costs in a certain sense. We choose to formulate this assumption
as:

∀α ∈ IR+∗, γi + α · min
j∈IN∗ wi,j ≥

(
α · max

j∈IN∗ ci,j + βi

)
+

(
α · max

j∈IN∗ c′i,j + β′
i

)
(2)

for i = 1, N.

Equation (2) ensures that sending chunks of any size α to a worker Ni and
receiving the corresponding results cost less than processing these chunks.

The problem with OL is that computation never overlaps communication in any
worker node, as the emission of the chunk of the next round is at best triggered
by the return of the result of the previous one, with no possible anticipation.

4 The OLMR Method

4.1 Overview of the Method

Our method is based on OL, but avoids idle time with respect to computing.
When the total load is important compared to the available bandwidth be-
tween master and workers, the workload should be delivered in multiple rounds
[10, 11, 12]. Therefore we will have each worker receive its share of the load
through multiple rounds, hence the name On-Line Multi-Round method [9], de-
noted "OLMR" thereafter. OLMR divides the chunk sent to Ni for each round
j into two subchunks "I" and "II" of respective sizes αi,j and αi,j − αi,j . Di-
viding the chunks in two parts is enough in order to apply the principle, and
the division allows the computation to overlap the communications as can be
seen in figure FIG.1. In order to compute αi,j , we use a value of σi,j−1 derived
from the measurement of the elapsed time (including both communications and
computation) for subchunk I of the previous round: σi,j−1. We will show that,
thanks to this anticipation (compared to OL) in the computation of αi,j , we can
avoid the inter-round starvation.

Figure FIG.2 gives the OLMR scheduling algorithm. The OLMR scheduler
computes αi,j in the same way as the OL scheduler does, and the values of
σi,j−1 and αi,j as detailed later in the next subsections.

Unfortunately, while attempting to deal with the inter-round starvations in-
herent to OL, there is a risk of creating intra-round starvation between subchunks
I and II (see on figure FIG.3 the idle period ∆). We explain below how to prevent
both risks.
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Computing
Result Comm

time

Data Comm j/I j/II
j/I j/II

j+1/I j+1/II
j+1/I j+1/II

j+1/I j+1/IIj/I j/II

Fig. 1. Overlapping between communication and computation with OLMR

while (the last data item has not been acquired) do
if (Reception from Ni of the result of subchunk I of its (j − 1)th round) then

• Get σi,j−1, ωi,j−1, c′
i,j−1 (and γi for the first result from Ni)

• Compute σi,j−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (cf. (8))
• Compute αi,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (cf. (1))
• Compute αi,j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (cf. (7))
• Send a subchunk of size αi,j to Ni as subchunk I of its jth round
• Send a subchunk of size (αi,j − αi,j) to Ni as subchunk II of its jth round

end if
end while

Fig. 2. OLMR scheduler

∆

Data Comm
Computing
Result Comm

time

j/I j/II
j/I

j/I
j/II

j/II

Fig. 3. Example of intra-round starvation with OLMR

As we assume that (2) holds, intra-round starvation can be avoided if αi,j is
large enough for the processing of subchunk I to overlap the sending of subchunk
II of size αi,j − αi,j . There is no intra-round starvation if and only if

αi,j ≥ βi − γi + αi,j · ci,j

wi,j + ci,j
. (3)

Inter-round starvation between the jth and (j + 1)th rounds of Ni could occur if
subchunk I happens to be too large compared to subchunk II (see figure FIG.4).
Let νi,j be some real number dominating αi,j+1: νi,j ≥ αi,j+1. Figure FIG.4
shows that, when Ni is given a subchunk I of size νi,j for its (j + 1)th round,
there is no inter-round starvation if and only if

αi,j ≤ αi,j · wi,j − νi,j · ci,j+1 + γi − (β′
i + βi)

c′i,j + wi,j
. (4)

If inequality (4) holds, then the necessary constraint αi,j < αi,j holds too, as
soon as (β′

i + βi) > γi.
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Fig. 4. Example of inter-round starvation with OLMR

Relying on inequations (3) and (4), we can choose αi,j so as to avoid idle
periods of Ni. Finally, nothing remains but to determine σi,j−1 and αi,j .

4.2 Determining αi,j

In order to fix the value of αi,j according to constraint (4), we need a value for
νi,j . We can decide such a value by extrapolating an upper bound for αi,j+1 from
the values of αi,k for the previous rounds, (αi,k)k=1,j . So long as inequalities (3)
and (4) hold, an inaccuracy in the value of νi,j does not have any dramatic
consequence on the course of the method. That is, if inequalities (3) and (4) are
compatible, then starvation risks can be avoided.

As the amount of data processed during the steady-state phase is finite, there
necessarily exists a real number λi (λi ≥ 1) for each Ni such that:

αi,j+1 ≤ λi · αi,j ∀j ∈ IN∗.

λi characterizes the amplitude of the fluctuations of αi,k between two successive
rounds. If λi can be estimated (see Remarks 2 and 3 for hints), then we have an
upper-bound νi,j for αi,j+1:

νi,j = λi · αi,j . (5)

The following Theorem proposes a way to set the value of αi,j so that constraints
(3) and (4) are both satisfied (see [9] for similar proof).

Theorem 1. Given αi,j , if γi, wi,j , ci,j, βi, c′i,j and β′
i satisfy (2) and

(αi,j − (λi + 1)) ·wi,j +(λi + 1) ·γi ≥ (λi · αi,j + (λi + 1)) ·ci,j +(λi +1) ·βi (6)

for i=1,N.
Then, taking

αi,j =
αi,j

λi + 1
, (7)

constraints (3) and (4) are satisfied. Therefore, the workers will compute without
any idle period during the steady-state phase.

Remark 1. Parameters τ and λi are characteristic of the evolution of the ex-
ecution parameters. On the one hand, τ characterizes their speed of evolution.
Practically, it is the period that should be used for reconsidering their value. On
the other hand, λi measures the amplitude of their variations on such a period.
The obvious dependence between τ and λi can take on the most varied forms. For
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instance, we can have rapid variations (small τ) with little consequence on the
scheduling of the application (λi close to 1), or on the contrary slow variations
(large τ) with important consequences on the scheduling (λi far from 1).

Remark 2. The knowledge of νi,j is implicitly the result of some extrapolation
of the values (αi,k)k=1,j to get an upper-bound of αi,j+1. If the variations are
slight, one can use the quasi-stationary approximation of αi,j+1 by αi,j. In this
case, we have αi,j+1 = αi,j . Then we only have to apply Theorem 1 with λi = 1.
More generally, considering a polynomial interpolation of degree (p - 1) for the
value of αi,j+1, we have αi,j+1 = p · αi,j −

∑p−1
k=1 αi,k. In this case, it suffices to

apply Theorem 1 with λi = p.

Remark 3. The satisfaction of the hypotheses of Theorem 1 guarantees the ab-
sence of idle time for the workers but requires the knowledge of (λi)i=1,N . Nev-
ertheless, OLMR may still be used when these values (which characterize the
dynamicity of execution parameters) are not known. Starting with arbitrary val-
ues (e.g. λi = 1 corresponding to a stability assumption) the scheduler could, if
necessary, adjust λi values at any round according to information provided by
the workers. Actually an inappropriate value of λi used for some round will lead
to an intra- or inter-round starvation observable by the corresponding worker.
The scheduler could then adjust this value for the next round, according to the
type of starvation observed by the worker.

Remark 4. Although different, hypotheses (2) and (6) both make the assump-
tion that processing should dominate communications. Recall that hypothesis (2)
ensures an efficient usage of the master-worker paradigm.

4.3 Determining σi,j−1

In order to determine the size of the chunk to be sent for the next round without
waiting for the result of the currently processed chunk, it suffices to replace the
measured value σi,j−1 in expression (1) by some computed value derived from
σi,j−1. But we only know the values of the execution parameters for the data
whose result have been received by the master. We choose to get these parameters
just after the master has reveived the result for subchunck I of round j − 1 (see
tag “Snapshot” on FIG.5). It is another extrapolation problem. In order to solve
it, we assume that the time taken by Ni to process some amount of data during
its (j − 1)th round is the same for both subchunks I and II.

With the help of figure FIG.5, and omitting the cost of the scheduling algo-
rithm itself, we have

σi,j−1 = σi,j−1 + A + B − C,

σi,j−1 = σi,j−1 + (αi,j−1 − αi,j−1) · ωi,j−1 + (αi,j−1 − 2 · αi,j−1) · c′i,j−1 + γi.(8)

Remark 5. The values of ωi,j−1, γi and c′i,j−1 can be estimated easily by the
master with the help of Ni. There is no need to know the value of either the
communication start-up times βi and β′

i or that of ci,j−1 in order to compute
σi,j−1 by means of equation (8).



An Adaptive Scheduling Method for Grid Computing 195

Snapshot

Data Comm
Computing
Result Comm

B

σi,j−1

σi,j−1

time

A

C
j-2/II

j-2/I j-2/II
j-2/I j-2/II j-1/II

j-1/I
j-1/I

j-1/II
j-2/I

j-1/I

j-1/II

Fig. 5. From the measurement of σi,j−1 to the computation of σi,j−1

4.4 Comparing OL and OLMR

In this section, we compare OL and OLMR, and quantify the benefit of using
OLMR compared to OL. We study their behaviour in identical settings: a static
context.

Using OLMR requires that the hypotheses of Theorem 1 be satisfied. Lemma
6.1 in [1] sets the context of OL as static. Let us denote ci, wi and c′i the value
of ci,j , wi,j and c′i,j for any round j as they do not depend on the round, due
to the static nature of the execution environment. Under these conditions, both
methods send chunks of the same size αi,j to Ni for any round j; for the same
value of τ . So processing a workload of size M by both methods requires the
same number of rounds δM . The gain GM of OLMR over OL when processing
this workload can thus be estimated as :

GM = (δM − 1) · (βi + β′
i)− δM · γi +(M − αi,1) · ci +(M − (αi,δM − αi,δM )) · c′i.

This gain is the direct consequence of overlapping computation and communi-
cations (see figure FIG.6).
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Result CommO
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R
O

L

time

saved time
GMj/IIj/I

j
j

j

j+1
j+1

j+1

j+1/IIj+1/I

Fig. 6. Comparison between OL and OLMR
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Given hypotheses of Theorem 1 and an optimal choice of resources, compet-
itive analysis [13] of OLMR method with an off-line method is not necessary;
due to the full use of the computing resources.

5 Conclusion

In this paper, we have considered a scheduling problem that we think is realistic
when executing parallel applications on shared resources such as those of a grid.
To the best of our knowledge, this scheduling problem has not received much
attention up to now. We have presented an adaptive scheduling method, OLMR,
to optimize the workload distribution, which can deal with the heterogeneity and
dynamicity of the grid if our modelisation hypotheses are realistic; it can also
be used when the information that scheduling algorithms traditionally need is
lacking. Sufficient conditions have been stated for full usage of the computing
resources by means of avoiding idle time.

In order to design the OLMR method, we had to consider the characterization
of the dynamicity of the execution conditions. This led us to define N +1 param-
eters: τ and (λi)i=1,N (see Remark 1). But the improvement made by OLMR
to the on-line method presented in [1] has been quantified in a static execution
context only.

This approach of scheduling is susceptible to numerous developments, either
tending to confirm the results of this paper or aiming at enlarging the poten-
tialities of the OLMR method. First of all, it is useful to check experimentally
that, under the hypotheses of our model, the method gives the expected results.
For that, we are currently developping simulation programs, using the SimGrid
toolkit [14] in order to study OLMR behavior in various conditions and make
comparisons with other methods. Furthermore, OLMR could be adapted in dif-
ferent ways: in this paper, τ and λi have implicitly been considered as constant
throughout all the rounds, but this hypothesis restricts the degree of approxima-
tion (order one) of the dynamicity that the scheduler takes into account. From
one round to the next, the value of τ could be adapted in order to take further
account of the evolution of heterogeneity and dynamicity that would be noticed.
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Thomas Röblitz1,4 and Krzysztof Rzadca2,3,4

1 Zuse Institute Berlin, D-14195 Berlin-Dahlem, Germany
2 Laboratoire ID-IMAG, Grenoble, France

3 Polish-Japanese Institute of Information Technology, Warsaw, Poland
4 CoreGRID Institute on Resource Management and Scheduling

Abstract. We present a new method for determining placements of flex-
ible reservation requests into a schedule. For each considered placement
the what-if method inserts a placeholder into the schedule and simu-
lates the processing of batch jobs currently known to the system. Each
placement is evaluated wrt. well-known scheduling metrics. This infor-
mation may be used by a Grid reservation service to choose the most
likely successful placement of a reservation. According to the results of
extensive simulations, the what-if method grants more reservations and
improves the performance of local jobs compared to our previously used
load method.

1 Introduction

Reserving resources is an accepted technique for delivering Quality-of-Service
(QoS) [1]. Without support for reservations, QoS-levels may be achieved by
cancelling conflicting tasks [2], or by using “best effort” strategies like assigning
higher priority to QoS-critical tasks [3] or predicting the future utilization of
resources [4,5].

In space-sharing resource management systems the diversity of scheduling
policies, the inaccurate estimates of job execution times and unknown future
job submissions make predictions of future utilization imprecise. These predic-
tions are clearly not sufficient for supporting QoS formed e.g. by Service Level
Agreements.

Furthermore, the autonomy of individual Grid resources makes it difficult to
coordinate complex requests such as multi-site jobs or workflows. Such coordi-
nation could be managed in a peer-to-peer manner, i.e. the sites’ local resource
management systems agree on the start time of the parts of a complex request.
While the complexity of a single peer is small, the control of the overall behavior
of multiple peers is difficult. Thus, we favor another approach which is based on
the capability to reserve resources at Grid sites in advance. The coordination
is therefore achieved at the Grid level by a reservation service which implicitly
solves conflicts between individual sites.

As discussed in our previous work [6] a reservation request should allow
fuzzy parameters, such as the requested QoS-level, the requested duration and
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the start and end times. Fuzzy parameters reduce the communication between
the requestor and the reservation service when certain parameters may not be
matched, because the reservation service may try alternative configurations au-
tomatically. In addition, the reservation scheme may let the Grid site’s local
resource management system express its preferences on the parameters of a re-
quest, i.e. to enforce local scheduling policies and utilization goals.

This paper presents a superior method (what-if ) to calculate such preferences
from the point of view of a Grid site’s local resource management system. The
what-if method calculates different placements of a reservation into a schedule
by simulating the current workload including a placeholder for the reservation
and measuring well-known scheduling metrics. Using discrete event simulations
based on a workload log from the SDSC Blue Horizon supercomputer, we found
that the what-if method performs better than our previously best – the load
method.

Algorithms for placing reservations have been studied in previous work. Erne-
mann et al. [7] describe a method for determining available slots at Grid re-
sources. With our method a Grid site does not only determine a list of available
slots, but also calculates its preferences for them. [7] also assumes that all jobs
have fixed start and end times. Therefore all jobs are in fact reservations. Our
method works in situations when users submit both reservations and normal
(movable) jobs. Heine et al. [8] propose two schemes for processing rigid reser-
vations requests (with a fixed start time): (1) denying requests conflicting with
jobs and (2) delaying jobs to admit more requests. In our approach requests are
flexible wrt. the start time. Also, the what-if method allows to adjust the ad-
mission policy between the two possibilities proposed by [8]. Thus, it is easier to
adapt to the systems’ need. Smith et al. [9] study the use of advance reservations
for co-scheduling multi-site jobs in the Grid. The reservation request specifies a
start time for which the algorithm tries to make a reservation. If it fails, the next
available start time is taken. As in [7], a resource does not specify its preferences
for alternative start times. Through evaluation [9] concludes that backfilling,
stopping and restarting jobs and more accurate execution times decrease the
impact of reservations on jobs. In our work, we do not consider stopping and
restarting of jobs, because this feature is not available on all systems.

The remainder of this paper is structured as follows. In Section 2 we describe
basic entities in our context. Then, we briefly present an architecture for pro-
cessing reservation requests in Section 3. In Section 4 we describe the methods
to calculate the availability of a Grid site for placements of a reservation. We ex-
perimentally evaluate these methods by simulating a single cluster with normal
jobs and reservations in Section 5. We conclude in Section 6.

2 Modelling Resources, Non-reservation Jobs and
Reservations

A resource R is described by its number of processors RN . We assume that
the Local Resource Management System (LRMS) of a resource uses first-come-
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first-serve (FCFS) scheduling with EASY backfilling [10] for scheduling jobs to
available processors.

A non-reservation job (short: job) is described by its submission time jsbt, its
estimated execution time jeet and its requested number of processors jnp. The
LRMS has no knowledge about a job before it is submitted to the waiting queue
at time jsbt. A job is started by the scheduler at some time jstt (start time).
Usually jeet is overestimated and a job finishes sooner. We denote the actual
execution time of a job as jaet.

The request parameters of a reservation are its submission time rsbt, its du-
ration rdur, its earliest start time rest, its latest end time rlet and its number
of requested processors rnp. The reservation algorithm may place a reservation
in the time interval [rest, rlet]. Because there may be multiple feasible param-
eter sets satisfying a request, a user may specify its preferences rpref to let a
reservation system automatically decide which set should be chosen. When a
reservation was granted, its start time and end time are denoted by rstt and
redt, respectively.

A scheduling event occurs when a new job or a reservation is submitted or
an existing one is completed. On each such event, the LRMS schedules jobs and
reservations in the following order:

1. The LRMS assigns the earliest possible start time to the first job in the
waiting queue, such that it does not conflict with running jobs and exist-
ing (granted) reservations, and locks the requested processors jnp for the
estimated execution time of the job jeet.

2. All submitted (but not yet granted) reservation requests are handled in their
submission order. Reservations are granted if they do not conflict with al-
ready scheduled workload and if they do not delay too much the remaining
waiting jobs.

3. The LRMS assigns start times to the remaining waiting jobs using FCFS
scheduling and EASY backfilling.

3 Architecture and Mechanism for Processing
Reservation Requests

In this section, we briefly introduce the architecture and the reservation proce-
dure as it was proposed in our previous work [6]. Figure 1 shows the involved
components and their interaction.

The Grid Reservation Service (GRS) provides an interface to the clients,
coordinates the processing of a request and selects the best time slot to be
reserved. The Grid Information Service (GIS) stores information about resources
in the Grid, such as the operating system, the total number of processors, the
number of running jobs, etc. The Cluster Reservation Service (CRS) provides
methods for probing status information and for reserving a time slot.

Upon reception of a request (step ①), the GRS queries the GIS for appropriate
candidate resources (steps ② and ③). Then the GRS sends probe requests to these
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Fig. 1. Architecture and mechanism for processing reservation requests

candidates to obtain detailed information about their availability (step ④). In
each candidate resource, the CRS processes the probe and returns a list of time
slots including the requested status information to the GRS (step ⑤). When the
GRS has received the responses from the candidates, it orders the time slots
according to the user preferences. Next, it tries to reserve the best time slot by
sending a reserve request to the corresponding CRS (step ⑥). If the request fails
(step ⑦), the time slot is removed and the processing continues with step ⑥. If
any reserve request succeeded or all failed (step ⑦), the GRS sends a response
including the result to the client (step ⑧). In case of success, the result contains
the agreed start time of the reservation. Otherwise, the result may indicate the
reason for the failure.

4 Methods for Placing Reservations

When the CRS receives a probe request, it determines a limited number of time
slots distributed over the time interval [rest, rlet]. The number is limited by a
configurable constant and a constraint on the minimum time gap between two
succeeding time slots [6]. For each time slot the CRS calculates properties such
as the availability of the resource, the cost for reserving, etc. In this work we
concentrate on methods for determining the availability.

In our previous work [6], we presented three methods for calculating the avail-
ability of a time slot. The load method performed best in all experiments. Thus,
we only use the load method in the comparison with the newly developed what-if
method.

Generally, both the load method and the what-if method work by defin-
ing a function, respectively pL

res and pW
res, which ranks each possible slot for a
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reservation by assigning a real number from the range [0, 1]. The higher the value
assigned, the minor the expected impact of the reservation placed in this slot on
the performance of local jobs.

4.1 Load Method

The load method uses information on the current state of the system: running
and waiting jobs and active or pending (but already granted) reservations. This
information is used to calculate an approximate end time T for the current
workload. Given a time slot 〈tsbegin, tsend〉, we define the function pL

res as follows

pL
res(tsbegin, T ) :=

{
1, if tsbegin ≥ T
0, if tsbegin < T

(1)

The approximate end time T is calculated as follows. First, the remaining
execution time (per processor) for running and waiting jobs is determined. Then,
it is multiplied by an arbitrarily chosen accuracy factor of 0.5 to take into account
the overestimation of jobs’ execution times. Next, we iteratively increase the
temporary T for reservations which may be active between the current time ct
and T . For each reservation r, we add to the time T the area occupied by this
reservation rnp · (redt − max(rstt, ct)) divided by the total number of processors
in the system RN .

Although the value for T is only a rough approximation, the method proved
to be reasonable in our previous experiments. However, time slots between the
current time ct and T are not considered for reservations. Existing reservations
starting later than T are also not taken into account. The latter may lead to
failing reservation attempts in the presence of existing advance reservations.

4.2 What-If Method

The basic idea of the what-if method is to let the availability reflect the im-
pact of a reservation on the non-reservation jobs. For this purpose, the local
scheduling system must be able to construct execution plans for jobs without
executing them. This requirement is, however, not very restricting, as commonly-
used cluster-level schedulers, such as Maui [11] or OAR [12], either provide a
simulation mode or can operate in planning mode.

The what-if method uses three kinds of execution plans – original (ORG),
with reservation placeholder (RSV) and with job placeholder (JOB).

Original: The execution plan PORG for the current workload.
Reservation placeholder: Given a time slot [tsbegin, tsend] and a requested

number of processors rnp, it places a temporary reservation for rnp processors
from tsbegin until tsend into the system. Then it determines the execution
plan PRSV/tsbegin . This procedure is repeated for all time slots.

Job placeholder: The execution plan determines the time when a job with
the same requirements would have been started. Therefore a temporary job
with an estimated execution time jeet equal to the duration of the reservation
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request rdur and the same number of requested processors is submitted to
the system. The resulting execution plan P JOB defines a new time slot by
setting its properties as follows: tsbegin := jstt, tsend := jstt + jeet.

Next, the algorithm calculates the availability pW
res for the execution plans

P {JOB,RSV/tsbegin}. The availability represents the quality of an execution plan
wrt. the well-known scheduling metrics. In this work we measure the makespan
and the average completion time of the jobs, which are normalized to map onto
the interval [0, 1] ⊂ IR. The execution plan PORG is used as reference in the nor-
malization, possibly defining optimal values for the scheduling metrics. Other
well-known scheduling metrics such as slowdown or resource utilization can be
easily added if needed. If a time slot cannot be reserved by a reservation place-
holder – because it conflicts with running jobs, the first job at the head of the
waiting queue (EASY backfilling) or existing reservations – its availability is set
to zero.

Let K be the number of jobs in the current workload and P be one of the
above execution plans. The start time of job ji in the execution plan P is denoted
by the term stt(P, ji) where 1 ≤ i ≤ K.

In order to assess the quality of a simulated execution plan, the makespan
and the average completion time is computed. The makespan Cmax(P ) of an
execution plan P is defined as

Cmax(P ) := max1≤i≤K(stt(P, ji) + ji
eet) (2)

Cmax, stating how long the resource will be occupied, ranks proposed execu-
tion plans from the point of view of the owner. Let C∗

max denote the minimum
makespan for all considered execution plans P {JOB,RSV/tsbegin}.

The average completion time Cavg(P ) of the jobs in an execution plan P is
defined as

Cavg(P ) :=
1
K

∑
1≤i≤K

(stt(P, ji) + ji
eet − ji

sbt) (3)

Cavg expresses how fast on average the jobs are completed and thus rates plans
from the point of view of resource’s users. Let C∗

avg denote the minimum average
completion time for all considered execution plans P {JOB,RSV/tsbegin}.

Let ωCmax denote the weight for the makespan (ωCmax ≥ 0, ωCmax ∈ IR) and
ωCavg denote the weight for the average completion time (ωCavg ≥ 0, ωCavg ∈ IR).
We require that ωCmax + ωCavg = 1. Considering a time slot 〈tsbegin, tsend〉, the
availability pW

res(tsbegin, P ) of an execution plan is computed as:

pW
res(tsbegin, P ) := ωCmax · C∗

max

Cmax(P )
+ ωCavg · C∗

avg

Cavg(P )
(4)

The unweighted parts, both for the makespan and for the average completion
time are normalized to fit into the interval [0, 1] ⊂ IR. Thus the availability is a
number in the interval [0, 1] ⊂ IR too. The more a reservation at tsbegin delays
the execution of the local jobs, the lower is the availability pW

res.
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Fig. 2. Non-reservation workload characteristics: (a) system utilization, (b) backlog

5 Experimental Evaluation

We evaluated the presented methods with a simulation based on a workload log
of the SDSC Blue Horizon supercomputer published in [13]. Because we found
it difficult to implement the what-if simulations in Maui, we developed our own
scheduler Mica (MICrotus Arvalis, field mouse). In the following sections we will
briefly describe the simulation environment including Mica. Then, we describe
the workloads used in the experiments. Last, we present the results in detail.

5.1 Simulation Settings

In order to measure the performance of reservations accurately, there was one
GRS and one CRS in our testing environment (cf. Figure 1). Instead of interfac-
ing a real system, the CRS communicated with the simulation scheduler Mica.
Mica is a simple scheduler capable of FCFS scheduling with EASY backfilling.
Mica allows users to submit reservations and normal, parallel jobs. In addition,
it can perform what-if simulations for both job and reservation requests.

We used the same workloads as in our previous work [6]. Thus, we were able
to compare the behavior of the Mica and Maui schedulers. These workloads
were generated as follows. We extracted the first 2000 sound jobs of a workload
log of the SDSC Blue Horizon supercomputer published in [13]. The workload
log contains non-reservation jobs only. Fig. 2 shows (a) the utilization of the
processors during the simulation and (b) the backlog1 of the jobs (right). The
complete workload lasts about 12.5 simulation days. Because there are only 5
jobs during the first 4.5 days (388800 s), we only show the data for jobs processed
after simulation time 370000 s.

The reservation workload was generated by converting 10% of the jobs into
reservations. We split the 2000 jobs into blocks of ten jobs (based on consecutive
submission times). From each block we selected a single job, removed it from the

1 The backlog is defined as

( ∑
j∈RUN

(jret · jnp) +
∑

j∈WAIT

(jeet · jnp)

)
/RN with jret :=

jeet − (ct − jstt) being the remaining execution time of a running job.
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Fig. 3. The reservation success rate for the methods load (left) and what-if (right)

non-reservation workload and converted it into a reservation request. In such a
request rsbt, rnp were copied from the original job. The duration rdur was set
to the job’s actual execution time jaet. An important parameter of a reservation
request is the book-ahead time or advance notice time which is derived as rest −
rsbt. In order to measure the impact of the reservation’s parameters on the
algorithm, within a particular workload all reservation requests had the same
book-ahead time bat ∈ {0, 2, 4, 6, 12, 24} hours and the same size of the start
time window stw ∈ {0, 1, 2, 5, 10, 30} hours. For each request, we set its earliest
start time as rest = rsbt + bat and its latest end time as rlet = rest + rdur + stw.
We tested all 36 combinations for each reservation placement method.

5.2 The Reservation Success Rate

The reservation success rate can be defined as a percentage of submitted reser-
vations which were granted by the system. Fig. 3 shows the results in detail for
the load method (left) and the what-if method (right). The average success rate
for all workloads is 97% with the what-if and 80% with the load method. When
reservation requests have small start time windows and book-ahead times (in
scenarios when both parameters are up to 2 hours), the what-if method grants
92% of submitted reservations. The load method’s success rate is only 38%.

Similarly, we observed that the what-if method yields significantly better re-
sults than the load method when the system load is high. For each reservation
request r we have defined the load Lr as the backlog of jobs and reservations at
the time rsbt. We have ordered the reservations according to the load Lr. Consid-
ering the top 20% reservation requests (i.e. submitted at the highest load situa-
tions), the what-if method granted 92% of such requests, whereas load method
– only 58%.

5.3 The Impact of Reservations on Jobs

We use two metrics to demonstrate the impact of reservations on jobs: the
makespan (more system oriented) and the waiting time of jobs (more user ori-
ented). The makespan resulting from admitting reservations scheduled by ei-
ther method was extended by 1% to 8% (approx. 60000 s), compared with the
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Table 1. Waiting time results for delayed jobs in simulation runs with book-ahead
times (BAT) = 0, 2, 4, 6, 12, 24 in hours and a start time window of 30 hours. All
reservation requests (200) were successful.

BAT ∅ Waiting time [s] BAT ∅ Waiting time [s]
Experiment [h] #jobs

original affected [h] #jobs
original affected

load-Maui 0 186 3191 9296 2 276 2225 6442
load-Mica 0 284 2532 7853 2 341 2138 11572
what-if-Mica 0 172 4155 8112 2 280 3594 8744

load-Maui 4 408 1525 7514 6 356 1939 8436
load-Mica 4 372 1782 11167 6 357 1984 11036
what-if-Mica 4 319 3491 9193 6 429 2426 11081

load-Maui 12 383 1901 8957 24 422 1872 17051
load-Mica 12 390 2244 15405 24 411 1638 12832
what-if-Mica 12 393 1926 16649 24 407 1646 13011

makespan of the workload without any reservation. We found that the what-if
method performed better than the load method in most combinations of book-
ahead time and start time window. We do not present the full results because
of space limitations.

The waiting time of jobs expresses the performance of the system from the
users’ point of view. The more jobs are delayed wrt. to their waiting time if no
reservations were admitted, the lower is the acceptance of reservations by the
users of a system. We only present results for the workloads with a start time
window of 30 hours (and different book-ahead times), because all reservation
requests were granted with these parameters.

Table 1 shows the number of delayed jobs (#jobs), the average of the original
waiting time for these jobs and the average of the affected waiting time. For each
book-ahead time we show the results for the experiments load-Maui, load-Mica
and what-if-Mica.

The results for the schedulers Maui and Mica using the load method differ
significantly. Both schedulers show the tendency of delaying more jobs with
larger book-ahead times. While the average original waiting times are similar,
the difference in the average affected waiting times is much larger. We account
the simplified nature of Mica for this.

Comparing the results for the experiments load-Mica and what-if-Mica, the
what-if method performs better for small book-ahead times (0, 2 and 4 hours).
Both the number of delayed jobs and the additional waiting time for these are
significantly smaller. With a book-ahead time of 6 hours, more jobs were delayed
by the what-if method, but the additional waiting time per job was similar to
the load method. The load method performed slightly better than what-if in
the experiment with 12 hours book-ahead time. With a book-ahead time of 24
hours the results were nearly identical for both experiments.



On the Placement of Reservations into Job Schedules 207

5.4 Detailed Analysis of the Job Delays

Fig. 4 shows the cumulated additional waiting time of the delayed jobs for the
methods load (left) and what-if (right) using the same experimental settings as
in Section 5.3. For each job the additional waiting time was cumulated at the
start time of the job.

The sharp increases of the curves show situations in which blocking jobs or
reservations finished and many waiting jobs could start in parallel. Studying the
logs of the experiments we found a specific pattern for these situations illustrated
in Fig. 5. At the current time ‘now’ the jobs RJ1, RJ2, RJ3 and RJ4 are being
executed. Already granted (advance) reservations are shown along the horizontal
axis (boxes with ‘RSV’). These reservations were small in their duration and the
number of processors. The waiting jobs (WJ1, WJ2 and WJ3) are planned to
start after the currently last reservation.

Note, in particular, the very large job WJ1 which is planned to start at the
end of the last reservation. The number of processors this job requested is close to
the total available number of processors RN . Therefore the job is either blocked
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by already running jobs or by the sequence of reservations. With EASY back-
filling, the job is planned into the schedule to prevent its starvation, after it
has advanced to the head of the waiting queue (cf. Section 2). The utilization
decreases as the time approaches the scheduled start of the large job. The re-
maining waiting jobs require more processors than the large job leaves available
and their estimated execution time is larger than the time remaining to the start
of the large job. Therefore, if they were executed before the large job, the large
job would be delayed.

Generally, the further in the future reservations may be placed into the system
(latest time is given by the book-ahead time plus the size of the start time
window), the later a large job will be planned in. Thus, the unused area in the
front of a large job will increase as well. The situation may be improved by the
following means:

Job size limitation: We repeated the experiments with changed non-reser-
vation workloads. We restricted all jobs to request less than 89 processors.
The job delays were significantly improved and the limitation affected less
than 10 jobs (out of 1800).

Improving execution time estimates: The influence of inaccurate execution
time estimates was extensively studied in other work [14]. Obviously, jobs
with more accurate execution time estimates could fit in the hole before
a large job. The situation observed will not disappear completely, but the
number of delayed jobs and the extent of their delays could be reduced.

6 Conclusion

We presented a new method for placing reservations into a schedule. The what-if
method simulates the schedule with different placements of the reservation and
ranks them according to well-known scheduling metrics, such as makespan and
average completion time.

The performance of the what-if method was compared with the best method
from our previous work, the load method, wrt. the reservation success rate,
the number of delayed jobs, the average waiting time of delayed jobs and the
distribution of the delays. In general, the what-if method performs better than
the load method, except for large book-ahead times and start time windows,
where both methods perform equally well. More reservations are granted and,
at the same time, the performance of local jobs is better. Clearly, the main
advantage of the what-if method is the ability to place reservations into holes
in the schedule.

A detailed analysis of the simulation data revealed a characteristic pattern
when a job requesting a large fraction of processors delays a number of smaller
jobs. This pattern accounts for a large fraction of the job delays. When the largest
jobs (which represented less than 1% of the load) were shrank, the cumulated
additional waiting time of the delayed jobs was significantly decreased. Beside
shrinking the size of jobs, more accurate estimates for the execution time of jobs
could lower the impact generated by this blocking pattern.
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Abstract. In this paper, a practical approach of diffusion load balanc-
ing algorithms and its implementation are studied. Three problems are
investigated. The first one is the determination of the load balancing pa-
rameters without any global knowledge. The second problem consists in
estimating the cost and the benefit of a load exchange. The last one stud-
ies the convergence detection of the load balancing algorithm. For this
last point we give an algorithm based on simulated annealing to reduce
the convergence towards a load repartition in steps that can be done
with discrete loads. Several simulations close this paper and illustrate
the impact of the various methods and algorithms introduced.

1 Introduction

One of the most important problems in distributed processing consists in balanc-
ing the work load among all processors. The purpose of load (work) balancing is
to achieve better performances of distributed computations, by improving load
allocation. The load balancing problem was studied by several authors from
different points of view [1,2,3,4,5,6,7].

In this paper we focus our study on the iterative load balancing algorithms
introduced in [1]. These kinds of algorithms assume that a node manages its
load only with its nearest neighbors. They are generic algorithms, useful when
the system is decentralized or when some nodes cannot directly communicate
with all the other nodes. However these algorithms face several problems. Firstly,
the majority of studies about these algorithms use a global knowledge, like the
network or the nodes properties, to determine the load balancing parameters.
Secondly, most of these algorithms assume that balancing the load is always
beneficial and leads to a reduction of the execution time. Thirdly, since the
load is not infinitely divisible, the final load balancing (after convergence of the
algorithm) can face a step problem.

In this paper we propose a practical approach of load balancing that solves the
3 above problems. They are 3 main problems that can appear in an implemen-
tation of these load balancing algorithms. To the best of our knowledge no load
balancing algorithm of the literature can deal with these 3 issues at the same

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 211–221, 2006.
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time. We give methods to determine the diffusion parameters without any global
knowledge. We propose an analysis of the cost and benefit of load exchange in
order to determine when it is worth exchanging some load. The convergence of
the load balancing algorithms with no infinitely divisible loads is also studied in
this paper. Finally, the given methods are efficient and easy to implement.

It is important to note that, in this work, we make very few assumptions. We
can deal with either static or dynamic load. The network topology can be of
any type as long as it is connected. Nodes and networks can be homogeneous
or heterogeneous. The notion of load is very abstract, it can be anything that
just requires some time to be processed (data, etc.). The proposed methods
deal with static networks but the adaptation to dynamic networks is straight
forward. Finally, no global knowledge is required to process the algorithm. The
knowledge is limited to the neighborhood. The obtained results give in the better
case, performance gains greater than 100% and the algorithm does not always
use all the available resources: it is able to find the right amount of resources
that gives a good speed-up.

This paper is organized as follows. Section 2 presents the related works, we
review the diffusion on any static network. In Section 3.1, we study the problem
of the connection links heterogeneity. Section 3.2 presents a decentralized method
to compute the load balancing parameters. Section 3.3 is dedicated to the not
infinitely divisible loads and to the detection of the convergence of the load
balancing algorithm. In Section 4 we illustrate the behavior of the load balancing
algorithm according to the methods that we give by some experimentation.

2 Related Work

The studied algorithms are generally dedicated to static networks. A static net-
work topology is classically represented by a simple undirected connected graph
G = (V,E), where V is the set of vertexes and E is the set of edges, E ⊆ V ×V .
Each processor is a vertex of the graph and each communication link between
two processors i, j is the edge (i, j) ∈ E between the two vertexes i and j
(i, j ∈ V ). Vertexes are labeled from 1 to n where n is the number of proces-
sors, hence |V | = n. Let m be the number of communication links (|E| = m).
Let F be the vector of edge-weight and let us note fi,j the weight of edge (i, j)
(fi,j = Fk|Ek = (i, j)). Let Cn be the vector of node-weight such that the average
of Cni is normalized

∑
i Cni

n = 1.
In [1], Cybenko introduced a distributed load balancing (LB) algorithm for

static networks called the diffusion algorithm or FOS (First Order Scheme). It
assumes that a process i balances its load simultaneously with all its neighbors.
To balance the load, a ratio αij of the load difference between the process i and
j is swapped between i and j. In the general case - on heterogeneous networks -
the LB step of a process i with all its neighbors is given by Equation (1) where
w

(t)
i is the work load done by process i at time t.
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w
(t+1)
i = w

(t)
i −

∑
j

αi,j .fi,j .

(
w

(t)
i

Cni

− w
(t)
j

Cnj

)
(1)

Equation (1) is linear and thus it can be re-written in matrix form: W (t+1) =
MTW (t), where W (t) is the vector (w(t)

i ) and M is the diffusion matrix defined
by

mij =


αijfi,j

Cnj
if (i, j) ∈ E ∧ i 
= j,

1 −∑
k mik ∀k|(i, k) ∈ E ∧ i = j,

0 otherwise.

This algorithm has often been studied and derived - Dimension Exchange Algo-
rithm [1,2,8], Second Order Scheme [9,4], dynamic networks [10,11,12] ...

In the literature, various methods can be found that determine these parme-
ters αi,j or fi,j. There are three classical methods to compute α: Cybenko
Choice [1], Boillat Choice [5] or optimal Choice [13]. The optimal Choice and the
Cybenko Choice need a global knowledge of the network and the Boillat Choice
only needs a knowledge of neighbors degree to determine α: αij = 1

max(d(i),d(j))+1 ,

where d(i) is the degree of node i at time t. The parameter fi,j must be de-
termined according to the constraints of the diffusion matrix M , M must be
stochastic, irreducible and aperiodic [1].

3 A Decentralized Practical Approach

3.1 Cost and Benefit of Load Balancing

Let us start by defining the cost and the benefit of a LB algorithm. The cost is
the time lost by exchanging the load, it is generally due to communication. The
benefit is the time gained by exchanging the load, it is due to a better balance. In
Equation (1) the parameter fi,j corresponds to the weight of edge (i, j). Hence,
the parameter fi,j must be determined such that the cost of the LB algorithm is
lower than the benefit given by the exchange of load. In our practical approach,
fi,j is in {0, 1}. If the cost of an exchange L

(t)
ij between i and j is greater than its

benefit, then fi,j is set to 0 and there is no exchange between i and j, otherwise
fi,j is set to 1. It can be noted that by this definition fi,j depends on the time,
hence it becomes f

(t)
i,j and its corresponding vector F becomes F (t).

The cost and the benefit of an exchange depends on the size of this exchange.
To determine the cost of an exchange we give the following equation,

Cost(L(t)
ij ) = PreExcCost(|L(t)

ij |) + ExcCost(|L(t)
ij |) + PostExcCost(|L(t)

ij |).

The cost of a load exchange L
(t)
ij is the time to prepare this load for the ex-

change (PreExcCost(|L(t)
ij |)), plus the time of the exchange (ExcCost(|L(t)

ij |)),
plus the time to integrate it on the receiver (PostExcCost(|L(t)

ij |)). PreExcCost
and PostExcCost completely depend on the application. ExcCost only depends



214 E. Jeannot and F. Vernier

on the load L
(t)
ij and on the edge (i, j), a good estimation of this cost can be:

ExcCost(|L(t)
ij |) = Latij +

|L(t)
ij |

Bwij
, where Latij and Bwij are respectively the la-

tency and the bandwidth of edge (i, j). Let us note that the communication can
always be hidden some computation.

The benefit given by the exchange of L(t)
ij can be estimated by the computation

time on i and j without exchange minus the computation time on i and j after
this exchange. Intuitively the benefit of a load exchange must be positive if the
computation time is reduced by this exchange and negative in the other case.
Let us recall that the computation time on i and j is given by the maximum
between the computation time on i and the computation time on j. The following
equation gives the benefit for the cases - L

(t)
ij > 0 and L

(t)
ij < 0.

Benefit(L(t)
ij ) =


max(Cp(w(t)

i ),Cp(w(t)
j ))

−max(Cp(w(t)
i − L

(t)
ij ),Cp(w(t)

j + L
(t)
ij )) if L

(t)
ij > 0,

max(Cp(w(t)
i ),Cp(w(t)

j ))
−max(Cp(w(t)

i + L
(t)
ij ),Cp(w(t)

j − L
(t)
ij )) if L

(t)
ij < 0,

(2)

where Cp(w(t)
i + ...) is the computation time of (w(t)

i + ...) on i.
In the iterative LB algorithms, the benefit of an exchange of load at a given

iteration can increase with the next iterations. The estimation of the benefit that
we give in Equation (2) is evaluated on only one iteration. Hence, a parameter
k is introduced to estimate the benefit on the k successive iterations after an
exchange. Indeed, f

(t)
i,j is equal to 1 if and only if Cost(L(t)

ij ) < k∗Benefit(L(t)
ij ).

The parameter k can be constant or not (in Section 4 the impact of both cases
are compared).

One limit of this cost/benefit system appears when the algorithm converges
to a load repartition in step. This problem is studied in Section 3.3.

3.2 Parameter Computation

From the general equation of FOS we have determined the parameter f
(t)
i,j in the

previous section. Now, let us study the parameters αi,j and Cni . In Section 2
we have seen that only the Boillat Choice does not need a global knowledge to
compute αi,j , but this method is limited to homogeneous networks.

In this section, a method that only needs a local knowledge is given to de-
termine the relation αi,j

Cni
. Let us denote C the vector of the processors speeds.

Let Cr be the matrix of relative speeds defined by Cri,j , the relative speed of j
compared to i:

Cri,j =

{
Cj

Ci+Cj
(i, j) ∈ E, j 
= i

0 otherwise.

Thus the unit of C is not important, it can be MHz, Mflops or any other. With
this definition of a relative speed matrix a diffusion matrix that we denote Mr

can be given. Mr is defined such that:
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Mrij =
{

min(δiCri,j , δjCri,j ) j 
= i
1 −∑

j(j �=i) Mrij j = i

with δi = 1∑
j Cri,j

. By construction, it is easy to show that Mrij ≥ 0 and∑
j Mrij = 1, in other words the matrix Mr is stochastic.

Theorem 1. The diffusion LB algorithm with Mr as diffusion matrix converges
toward a load distribution relative to the node speed if and only if Mr is irre-
ducible and aperiodic - the graph G must be connected and non-bipartite.

Proof. If Mr is stochastic, irreducible and aperiodic, thus the Perron-Frobenius
Theorem can be applied, i.e. ∃µ (µ is a fixed point vector) such that MT

r µ = µ.
By construction of Mr is stochastique and MT ∞

r tends to the matrix in which
each column is 1∑

i Ci
C, thus µ = hC where h is such that

∑
i w

(0)
i = h

∑
i Ci.

Thus for a given W (0) the invariant distribution µ is proportional to C.

As shown by Theorem 1, the LB algorithm converges if the network G is con-
nected and non-bipartite. The connectivity of the network depends on the set E
and the network is not bipartite if Mr is well constructed. The previous method
does not ensure that the network is not bipartite, to ensure that we can use the
following definition to compute Cri,j :

Cri,j =


Cj

Ci+Cj
(i, j) ∈ E, j 
= i

Ci

2Ci
j = i

0 otherwise.

To build the diffusion matrix M with one of these two methods and the
cost/benefit defined in Section 3.1, the vector L

(t)
r of load exchange prediction

must be defined to compute f
(t)
ij . L

(t)
r is given by L

(t)
rij = Mrijw

(t)
i − Mrjiw

(t)
j .

With F (t) and Mr defined, the diffusion matrix M (t) - as F depends on t, M
depends on t - is given by:

m
(t)
ij =

{
f

(t)
ij Mrij j 
= i,

1 −∑
k(k �=i) f

(t)
ik Mrik

j = i.

3.3 Convergence Detection with Unit Size Tokens

The last step that we study in this paper is the termination of the LB algorithm.
This step consists in detecting the end of the LB algorithm to stop it and avoid
the cost of exchange of information done by the LB algorithm. This cost can be
important if the network is slow and if the number of neighbors is high.

The main problem to detect the convergence is that the load is not infinitely
divisible for the real applications. This implies that the LB algorithm cannot
always reach a uniform load distribution, hence it does not always reach the
convergence point. Some steps of load can appear in the system that can block
the LB algorithm.
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The unit size tokens problem. Let us start by eliminating this step problem.
In the literature, the LB problem of indivisible unit-size tokens is studied in [9]
where the authors introduced the ”I Owe You” (IOU) unit on each edge, and
in [14] where the authors introduced a randomized algorithm that deals with
heterogeneous networks. In this section, a new approach based on simulated
annealing algorithms is used. The objective is to shake the system to move the
load of the most loaded nodes toward the least loaded nodes when the classical
LB algorithm is blocked. Hence, the algorithm operates as follows: if a node i
is unbalanced with its neighbor j and no load is exchanged between these two
nodes, a random value denoted alea is drawn between 0 and 1 (0 <alea< 1),
and if alea < e(−κ∗Uij), a part of load is exchanged. Uij denotes the number of
successive LB iterations during which the neighbors nodes i and j are unbalanced
and do not exchange load. The parameter κ defines the probability to exchange
load and can be defined by κ = ln(p)

τ where p is the probability to exchange load
at the iteration τ of Uij . For example if 50% of probability to exchange is wanted
at the second iteration κ = ln(0.5)

2 . Let us note that this method does not ensure
to reach the uniform load distribution but it can reduce the unbalance.

Convergence detection problem. Let us recall that the first problem pre-
sented in this section is the convergence detection of the LB algorithm. Hence,
we must detect that no more load is exchanged in the network. In [15] the
authors give a decentralized convergence detection algorithm dedicated to par-
allel iterative asynchronous algorithms. This algorithm is based on the leader
election on the IEEE-1394 (FireWire) protocol, and this base can be used to de-
tect a global state in synchronous algorithms without any centralization. These
algorithms operate on a tree, hence a spanning tree of the network must be
defined [16,17,18,19].

For the LB algorithm, an adaptation of algorithm given in [15] is used. This
adaptation is synchronous and dedicated to binary state detection. The idea
of this algorithm is as follows: each node i defines k channels where k is the
number of neighbors of i. In the first stage of the algorithm, if a node has only
one channel that is not associated to a neighbor, it associates this channel to its
neighbor that has no channel and defines this neighbor as its father and sends to
its father the state of its sub-tree. If a node receives the state of a sub-tree from
a neighbor, it associates a channel to this neighbor and defines this neighbor as
one of its children. It is obvious that the leaf nodes of the spanning tree have
exactly one such channel at the start of the protocol. Hence, the algorithm is
started by a leave that sends its state to its father. In the second and last stage of
the algorithm, when a node i has all its channels associated to all its neighbors
and that all its neighbors are its children, this node i is the root of the tree.
Hence, the state of its sub-tree is the state of the tree, in other words, this node
detects the global state of the system. It sends this global state to its children
and they do likewise with their children and so on. Thus the information of the
global state goes through all the network.

To finish with, if the convergence is detected, the LB algorithm can be stopped
if the load is static. In the other case - dynamic load, dynamic networks or other ...
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- the convergence detection algorithm can be used to reduce the frequency of LB
steps if the system became stable or increase it if it became unbalanced.

4 Simulations

The following simulations are realized with SimGrid [20]. The application that
is balanced is represented by an integer that corresponds to the load of the
application. Let us recall that the load is static to illustrate the convergence of
the algorithm and it is considered homogeneous.

The behavior of the FOS algorithm is studied on the worse configuration - a
line topology with all the load on the first node - with 64 homogeneous nodes
(2000MFlops). The program that is balanced can be viewed as a parallel and
iterative numerical solver that computes 1000 iterations where the topology is
virtual and depends on the data dependency - communication for data depen-
dency are simulated. This study is realized for two cases, a first one when the
network is a LAN and a second one when the network is a DSL.

4.1 Fast Network

In the former, a bandwidth of 100Mb/s is used with 0.15ms of latency on each
edge. Figure 1 shows the gain given by the FOS algorithm with the cost/benefit
system and with convergence detection (Algo2) compared to the FOS algorithm
without cost/benefit system and without convergence detection (Algo1). Let us
note that in Algo2 the cost/benefit parameter k is given by k(t+1) = k(t)−1 with
k(0) = 1000. The gain is given by T1−T2

T1 , where T 1 and T 2 are the computation
time of Algo1 and Algo2, respectively. In this figure, the gain depends on the
load average w∗ - the global load is given by 64×w∗ - and on the number of LB
steps. The results on Figure 1 show that the gain is significant when w∗ is low
and also show that the gain is null when w∗ is high. This is due to the cost of

 1
 10

 100
 1000

 0
 200

 400
 600

 800
 1000

 0

 0.5

 1

Gain

w*

Lb Ite

Gain

Fig. 1. Gain given with the cost/benefit parameter: k(t+1) = k(t) − 1 and with the
convergence detection algorithm on a LAN network
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the LB algorithm itself: when it has converged, its cost is constant and it only
depends of the network. Hence, when the computation time is low - when w∗

is low - the cost of load balancing is relatively high and when the computation
time is high - when w∗ is high - it is negligible. If the cost of load balancing is
negligible, the cost/benefit system and the convergence detection are not useful
but it can be noted that they are not costly with a LAN network: the gain on
Figure 1 is never negative when w∗ is high.

4.2 Slow Network

In the latter, the same problem is deployed on a DSL network where the band-
width is 1Mb/s and the latency is 40ms. Figures 2 and 3 show the program com-
putation times depending on the load average w∗ and on the number of LB steps.

Figure 2 corresponds to the program with a classical FOS algorithm without
cost/benefit system and without convergence detection algorithm. Here, we can
see that the first iterations of the LB algorithm give a gain and that after some
iterations of load balancing, the computation time increases and the time to
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Fig. 2. Classical load balancing
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Fig. 3. Load balancing with convergence detection and cost/benefit system with k
depends on the computation time of an iteration
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compute the program becomes much greater than a sequential computation.
This problem has two complementary reasons: the cost of load exchanges and the
cost of information exchanges after the convergence of the algorithm. Hence, the
cost/benefit system and the convergence detection algorithm can be interesting,
in particular also for for small w∗.

An implementation of the convergence detection algorithm and the cost/
benefit system as in the LAN configuration - k defined by k(t+1) = k(t) − 1
- showed us that this definition of k is not effective in a DSL network.

Figure 3 shows the results obtained with the convergence detection algorithm
and the cost/benefit system with k depending on the computation time of an
iteration. For a given node, when the computation time of its iteration is greater
than the computation time of its previous iteration, it divides its value of k by
2. Figure 3 shows that with this system, the LB algorithm is stopped after a few
iterations in which the computation time has increased. Thus the LB algorithm
is beneficial to the program in quasi all configurations. When the global load
is small - when a parallel computation is costlier than a sequential one - the
LB algorithm is not beneficial but it is stopped fast enough for its cost to be
negligible. Moreover, it can be noted that with this extreme configuration the
LB algorithm with this cost/benefit system does not use all the processors, see
Table 1. The optimal value is the number of processors to reach the minimum

Table 1. This table shows for a given load, in line 2 and in line opt, the number of
nodes used and the optimal number of nodes with the cost/benefit system

load nxw∗ 64x1 64x5 64x10 64x50 64x100 64x500 64x1000

number used 3/64 5/64 6/64 7/64 8/64 9/64 10/64
of opt 1/64 1/64 1/64 1/64 3/64 5/64 10/64

computation time with the cost/benefit system. This optimal value is computed
using a global knowledge. We see that without global knowledge, we find a result
close to the optimal.

5 Conclusion

In this paper we have studied a practical approach of diffusion load balancing.
We have proposed an analysis of the cost and benefit of a load exchange. Based
on this analysis we are able to decide wherever or not to exchange the load. This
cost and benefit mechanism increases the well-known step problem. In order to
tackle this problem, we propose a new feature based on simulated annealing
that shakes the load when required. Finally, we have enhanced the classical
convergence detection to take into account these new elements.

In this work very few assumptions are made. We can deal with static or
dynamic load, with any kind of network topology, with heterogeneous nodes
and networks and with any type of load. Furthermore, no global knowledge is
required to perform the algorithm.
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Results show that the proposed features do not degrade the performance of the
load balancing algorithm and can lead (in the best case) to 100% of performance
increase. Furthermore, in case of slow networks, the algorithm does not use all
the available resources in order to give a good speed-up.
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Abstract. In this paper, we consider the application of accelerated meth-
ods in order to increase the rate of convergence of the diffusive iterative
load balancing algorithms. In particular, we compare the application of
Semi-Iterative, Second Degree and Variable Extrapolation techniques on
the basic Diffusion method and the Extrapolated Diffusion method for
torus graphs. It is shown that our methods require approximately 30%
less iterations to reach the balanced state compared to the existed ones.

Keywords: Iterative load balancing; Diffusion algorithms; Distributed
processor network; accelerated techniques.

1 Introduction

We consider the following abstract distributed load balancing problem. We are
given an arbitrary, undirected, connected graph G = (V,E) in which node vi ∈ V
contains a number ui of current workload. The goal is to determine a schedule
to move an amount of workload across edges so that, the weight on each node
is equal. Communication between non-adjacent nodes is not allowed. This prob-
lem describes load balancing in synchronous distributed processor networks and
parallel machines when we associate a node with a processor, an edge with a com-
munication link of unbounded capacity between two processors, and the weight
as infinitly divisible independent tasks. Diffusion algorithms assume that a node
of the graph is able to send and receive messages to/from all its neighbours
simultaneously.

The performance of a balancing algorithm can be measured in terms of num-
ber of iterations to reach a balanced state and the amount of load moved over
the edge of the graph. The original algorithm described by Cybenko [2] and,
independently, by Boillat [1] lacks in performance because of its very slow con-
vergence to the balanced state [14]. Recently, diffusive algorithms have been
proposed [3,6,8,10,12] to speed up the iteration process by an order of magni-
tude. All commonly used diffusion schemes generate the unique l2-minimal flow
[3,4,8]. Most of the existing iterative dynamic load balancing algorithms [3,8,14]
involve two steps:

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 222–231, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– Flow calculation: Calculating the amount of workload to be migrated be-
tween neighbouring processors such that a uniform load distribution is
achieved when the migration is carried out to satisfy the flow.

– Task selection: Deciding which particular tasks are to be migrated, and
scheduling these tasks to the appropriate neighbouring processors.

In practice, the diffusion iteration is used for the flow calculation. The real
movement of task is complex and the exact details depend on the applications
and the data structures used. This paper is concerned with algorithms for the
first step. We consider the application of accelerated methods in order to increase
the rate of convergence of the diffusive iterative load balancing algorithms for
torus graphs. In particular, we apply Semi-Iterative (SI), Second Degree (SD)
and Variable Extrapolation (VE) techniques [13,15] on the Extrapolated Diffu-
sion (EDF) method [11] and compare their performances with the Diffusion (DF)
method. It is shown that our methods require approximately 30% less iterations
to reach the balanced state compared to the existed ones [4,6,8].

The paper is organized as follows. Section 2 presents the extrapolated diffu-
sion method. Section 3 adapts the aforementioned accelerated techniques to the
extrapolated diffusion method. These methods increase the rate of convergence
of the basic iterative scheme by an order of magnitude. Section 4 presents our
results and conclusions.

2 The Extrapolated Diffusion Method

The Extrapolated Diffusion (EDF) method for the load balancing has the
form [1,2]

u
(n+1)
i = u

(n)
i − τ

∑
j∈A(i)

cij

(
u

(n)
i − u

(n)
j

)
, (1)

where cij are diffusion parameters, A(i) is the set of the nearest neighbors of
node i of the graph G = (V,E), u

(n)
i , i = 0, 1, 2, . . . , |V | is the load after the

n-th iteration on node i and τ ∈ R\{0} is a parameter that plays an important
role in the convergence of the whole system to the equilibrium state. The overall
workload distribution at step n, denoted by u(n), is the transpose of the vector
(u(n)

1 , u
(n)
2 , . . . , u

(n)
|V |) and u(0) is the initial workload distribution. In matrix form

(1) becomes
u(n+1) = Mu(n), (2)

where M is called the diffusion matrix. The elements of M , mij , are equal
to τcij , if j ∈ A(i), 1 − τ

∑
j∈A(i) cij , if i = j and 0 otherwise. With this

formulation, the features of diffusive load balancing are fully captured by the
iterative process (2) governed by the diffusion matrix M . Also, (2) can be written
as u(n+1) = (I− τL)u(n), where L = BWBT is the weighted Laplacian matrix of
the graph, W is a diagonal matrix of size |E| × |E| consisting of the coefficients
cij and B is the vertex-edge incident matrix. At this point, we note that if
τ = 1, then we obtain the DF method proposed by Cybenko [2] and Boillat [1],
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independently. If W = I, then we obtain the special case of the DF method
with a single parameter τ (unweighted Laplacian). In the unweighted case and
for network topologies such as chain, 2D-mesh, nD-mesh, ring, 2D-torus, nD-
torus and nD-hypercube, optimal values for the parameter τ that maximize the
convergence rate have been derived by Xu and Lau [14]. Next, we consider the
weighted case.

The diffusion matrix of EDF can be written as

M = I − τL, L = D − A, (3)

where D = diag(L) and A is the weighted adjacency matrix. Because of (3), (2)
becomes u(n+1) = (I − τD) u(n) + τAu(n) or in component form

u
(n+1)
i =

1 − τ
∑

j∈A(i)

cij

 u
(n)
i + τ

∑
j∈A(i)

ciju
(n)
j , i = 1, 2, . . . , |V |. (4)

The diffusion matrix M must have the following properties: nonnegative, sym-
metric and stochastic [2,1]. The eigenvalues of L are 0 = λ1 < λ2 ≤ . . . ≤ λn. In
case cij = constant, the optimum value of τ is attained at [13,15]

τo =
2

λ2 + λn
(5)

and the corresponding minimum value of the convergence factor

γ(M) = max{|1 − τλn|, |1 − τλ2|} (6)

is given by

γo(M) =
P (L) − 1
P (L) + 1

, where P (L) =
λn

λ2
, (7)

which is the P -condition number of L. Note that if P (L) � 1, then the rate of
convergence of the DF method is given by

R(M) = − log γo(M) � 2
P (L)

, (8)

which implies that the rate of convergence of the DF method is a decreasing
function of P (L). In the sequel, we will express the optimum values of the para-
meters involved, in each considered iterative scheme, using the second minimum
and maximum eigenvalues λ2, λn, respectively of the Laplacian matrix. A first
advantage of EDF is that it converges for any positive, real values of the para-
meters cij if τ ∈ (0, 1/||A||∞) [11], whereas in DF it is required that cij must
satisfy the conditions

∑
j∈A(i) cij < 1 for at least one i. The problem of deter-

mining the diffusion parameters cij such that EDF attains its maximum rate of
convergence is an active research area [3,5,11]. Introducing the set of parame-
ters τi, i = 1, 2, . . . , |V |, instead of a fixed parameter τ in 4, the problem moves
to the determination of the parameters τi in terms of cij . By considering local
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Fourier analysis [9,11] we were able to determine good values (near the optimum)
for τi. These values become optimum in case the diffusion parameters are con-
stant in each dimension and satisfy the relation c

(2)
j = σ2c

(1)
i , i = 1, 2, . . . , N1,

j = 1, 2, . . . , N2, where σ2 =
1−cos 2π

N1
1−cos 2π

N2

and c
(1)
i , c

(2)
j are the row and column

diffusion parameters, respectively, of the torus (see Fig. 1).

c
(2)
1 c

(2)
2 c

(2)
3 c

(2)
4

c
(2)
N2

c
(1)
1

c
(1)
2

c
(1)
3

c
(1)
N1

Fig. 1. The diffusion parameters in a 2-D torus

At the optimum stage EDF is twice as fast as DF for stretched torus, that
is a torus with either N1 � N2 or N2 � N1 [11]. Apart from the fact that our
approach produces a monoparametric set of optimum values for the diffusion
parameters it also has the advantage of determining a closed form formula for the
involved parameter τ and the convergence factor γ (see Table 1). These facts have
two consequences. First, we avoid the computation of the second smallest and
largest eigenvalue of the Laplacian matrix for the determination of the optimum

Table 1. Formulae for the optimum τo and γo(M)

N1 N2 Case τo γo(M)

Even Even 1
[
3 + 2σ2 − cos 2π

N1

]−1 1+2σ2+cos 2π
N1

3+2σ2−cos 2π
N1

Odd Odd 2
[
2 + σ2(1 + cos π

N2
) + cos π

N1
− cos 2π

N1

]−1 cos π
N1

+cos 2π
N1

+σ2(1+cos π
N2

)

2+σ2(1+cos π
N2

)+cos π
N1

−cos 2π
N1

Even Odd 3
[
3 − cos 2π

N1
+ σ2(1 + cos π

N2
)
]−1 1+cos 2π

N1
+σ2(1+cos π

N2
)

3−cos 2π
N1

+σ2(1+cos π
N2

)

Odd Even 4
[
2 + 2σ2 + cos π

N1
− cos 2π

N1

]−1 2σ2+cos π
N1

−cos 2π
N1

2+2σ2+cos π
N1

−cos 2π
N1
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value for τ . This is a time consuming process and was an open problem as far
as we know. Second, we were able to study the convergence behaviour of the
EDF method and predict its performance using the expression for γ. In order to
further improve, by an order of magnitude, the rate of convergence of EDF we
can apply accelerated techniques (Semi-Iterative, Second-Degree and Variable
Extrapolation) following [15,13,7,6,12,10].

3 Accelerated Methods

3.1 The Semi-iterative Method

We now consider iterative schemes for further accelerating the convergence of
EDF. It is known [13,15] that the convergence of (2) can be greatly accelerated
if one uses the Semi-Iterative scheme

u(n+1) = ρn+1

[
ρ̄Mu(n) + (1 − ρ̄)u(n)

]
+ (1 − ρn+1)u(n−1) (9)

with

ρ̄=
2

2 − (β + α)
, ρ1 = 1, ρ2 =

(
1 − σ2

2

)−1

, ρn+1 =
(

1 − σ2

4
ρn

)−1

, n = 2, 3, . . . ,

(10)
where

σ =
β − α

2 − (β + α)
, (11)

with
α ≤ µi ≤ β, (12)

where µi are the eigenvalues of M . Because of (3), the eigenvalues of M and the
Laplacian matrix L are related via the following relationship

µi = 1 − τλi, i = 1, 2, . . . , n, (13)

hence
α = 1 − τλn and β = 1 − τλ1, (14)

since τ > 0. Expressing ρ̄ and σ (see (10) and (11)) in terms of λ1 and λn, with
the use of (14), we find that

ρ̄ =
2

τ(λ1 + λn)
and σ =

P (L) − 1
P (L) + 1

, (15)

with
P (L) =

λn

λ1
. (16)

But the optimum value of τ , τo is given by (5) which on substitution in the
expression of ρ̄ in (15) yields

ρ̄ = 1. (17)
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Moreover, for τ = τo, (6) becomes

γo(M) =
P (L) − 1
P (L) + 1

. (18)

By (18) and (15) we have that

σ = γo(M). (19)

Thus expressing (9) in terms of the Laplacian matrix L, using (3) and (17), we
obtain

u(n+1) = ρn+1(I − τoL)u(n) + (1 − ρn+1)u(n−1), (20)

where ρn+1, σ, τo are given by (10), (19) and (5), respectively. It is worth noting
that σ is equal to γo(M) (see (19)), which is the minimum value of the con-
vergence factor of EDF. In addition, γo(M) and τo, for EDF, are given by the
expressions of Table 1 for the corresponding values of N1 and N2. It can be
shown [7,13,15] that

γ(Pn(M)) =
2rn/2

1 + rn
, (21)

where Pn(M) is a certain polynomial in M (which is related to Chebyshev poly-
nomials) and

r1/2 =
σ

1 +
√

1 − σ2
=

√
P (L) − 1√
P (L) + 1

.

In addition, for P (L) � 1, we have

r � 1 − 4√
P (L)

, (22)

thus the asymptotic average rate of convergence for the Semi-Iterative EDF
(SI-EDF) method is given by

R∞(Pn(M)) = −1
2

log r � 2√
P (L)

(23)

as n → ∞. From (8) and (23) the following relationship holds between the
reciprocal rates of convergence1 of SI-EDF and EDF

RR∞(Pn(M)) �
√

RR(M)
2

. (24)

Therefore, the use of Semi-Iterative techniques results in an order of magnitude
improvement in the reciprocal rate of convergence of EDF and in turn in the
number of iterations.
1 RR(.) = 1

R(.) .



228 G. Karagiorgos, N.M. Missirlis, and F. Tzaferis

3.2 The Second Degree Method

An accelerated scheme similar to (9) can be produced by considering constant
iteration parameters throughout the process. It is known as the Second Degree
(SD) method and is given by [15]

u(n+1) = u(n) + (ω̂o − 1)(u(n) − u(n−1)) + ω̂o(Mu(n) − u(n)), (25)

where ω̂o = 2
1+

√
1−σ2 with σ given by (19). Expressing (25) in terms of the

Laplacian matrix L, we obtain

u(n+1) = ω̂o(I − τoL)u(n) + (1 − ω̂o)u(n−1). (26)

If M̂ is the iteration matrix of the SD method, then [15]

γ(M̂) = (ω̂o − 1)1/2 = r1/2, (27)

thus the rate of convergence of the Second Degree EDF (SD-EDF) method is
R(M̂) = − 1

2 log r, which is comparable with the one obtained by semi-iterative
techniques. Also, by (23) and (27) we conclude that the rate of convergence of
semi-iterative and second degree methods depends on the same quantity r. This
implies that (23) and (24) hold also for the SD method.

3.3 The Variable Extrapolation Method

In the previous sections, it was shown how we can find effective iterative processes.
Note that in the new procedures each vector u(n+1) requires the computation of
the two previous vectors u(n) and u(n−1). In case we face memory limitation prob-
lems we can consider another iterative scheme (sometimes called the Richardson
method [13,15]) of accelerating the EDF method, where u(n+1) is computed using
u(n) only. This can be achieved by applying the following iterative scheme

u(n+1) = θn+1Mu(n) + (1 − θn+1)u(n), (28)

where θn+1 = 2

2−(β−α) cos (2n−1)π
2m −(β+α)

. The iteration parameters θn+1 are se-

lected in the cyclic order θ1, θ2, . . . , θm, θ1, θ2, . . . , θm, where m is an integer.
Expressing (28) in terms of L we have

u(n+1) = (I − θ̂n+1L)u(n), (29)

where θ̂n+1 = θn+1τo = τo

1−σ cos (2n−1)π
2m

with σ given by (19). The spectral radius

of the Variable Extrapolation EDF (VE-EDF) method is given by [15]

γ(P�m(M)) =
(

2rm/2

1 + rm

)�

, (30)

where � is an integer determining the number of cycles. It can be seen from (21)
and (30) that as m increases, then the rapidity of convergence tends to the one
given by the semi-iterative method. However, numerical experiments [15] show
that, for large m, numerical instability may occur. Also, it is undesirable to select
m very large because convergence is expected after �m iterations.
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4 Numerical Results and Conclusions

The purpose of the paper is to compare the application of accelerated techniques
to the DF and EDF methods. As expected, both methods produce the same
results in case of square torus [11], whereas for rectangular torus EDF tends to
achieve twice as fast convergence rate compared to DF. In particular,

RR∞(EDF ) � 1
2
RR∞(DF ) (31)

when N1 � N2 or N1 � N2 (stretched torus) [11]. This is shown in columns
DF and EDF of Tables 2 and 3, respectively, where we present the number of
iterations for both schemes to converge using the same criterion. The convergence

criterion for both schemes was
∑|V |

i=1

(
u

(u)
i − ū

)2

< ε, where ū =
(∑|V |

i=1 ui

)
/|V |

and ε = 10−6, while the initial load u
(0)
i = ui was randomly distributed on the

nodes of the graph. For all cases we used the optimum values for the parameters
involved. These values are τo and σ = γo(M), which were obtained by the
formulae of Table 1.

Table 2. Number of iterations for DF, SI-DF, SD-DF and VE-DF methods

N1 × N2 τo γo(M) DF SI-DF SD-DF VE-DF m 


5 × 5 0.232 0.679 40 16 18 18 9 2
5 × 11 0.254 0.919 174 38 41 42 14 3
5 × 21 0.260 0.977 605 74 79 81 27 3
5 × 51 0.262 0.996 3375 182 194 178 30 6
5 × 101 0.262 0.999 13102 366 366 597 30 20

6 × 6 0.222 0.778 60 21 23 22 10 2
6 × 10 0.200 0.908 184 55 38 38 19 2
6 × 20 0.246 0.976 572 73 76 81 27 3
6 × 50 0.249 0.996 3375 182 192 232 29 8
6 × 100 0.249 0.999 12799 366 361 575 34 20

By (24) we have

RR∞(SI − EDF ) � 1
2
(RR∞(EDF ))1/2, (32)

or using (31),

RR∞(SI − EDF ) � 1
2
√

2
(RR∞(DF ))1/2. (33)

But (24) holds also for the DF method, this means that

RR∞(SI − DF ) � 1
2
(RR∞(DF ))1/2. (34)

Therefore, (33), because of (34), yields

RR∞(SI − EDF ) � 1√
2
RR∞(SI − DF ) (35)
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which indicates that the number of iterations of SI-EDF will be approximately
30% less than the number of iterations of SI-DF in case of stretched torus.
Clearly, this result holds for the other two accelerated methods (SD-EDF and
VE-EDF) as both these methods tend to obtain the same rate of convergence
as SI-EDF (see (27) and (30)). In Tables 2 and 3 we also present the number of
iterations for the accelerated versions of DF and EDF methods, respectively. For
the VE version of both methods the value of m was determined experimentaly
such that the number of iterations is minimum. The results of Tables 2 and 3
clearly show that fixing one dimension of a torus and increasing the other, the
number of iterations of the accelerated versions of EDF (SI-EDF, SD-EDF, VE-
EDF) is 30% less than the number of iterations of the corresponding versions
of DF. Similar results were also obtained in the odd/even cases. Therefore, our
theoretical expectation, which is expressed by (35), is verified. Finally, comparing
the accelerated versions of EDF we note that SI and SD have similar behaviour,
which is better than the VE version (Table 3).

Table 3. Number of iterations for EDF, SI-EDF, SD-EDF and VE-EDF methods

N1 × N2 τopt γopt EDF SI-EDF SD-EDF VE-EDF m 


5 × 5 0.232 0.679 40 16 18 18 9 2
5 × 11 0.091 0.874 113 30 32 30 30 1
5 × 21 0.029 0.958 348 54 59 58 29 2
5 × 51 0.005 0.992 1966 133 142 161 27 6
5 × 101 0.001 0.998 7176 264 269 387 30 13

6 × 6 0.222 0.777 60 21 23 22 10 2
6 × 10 0.129 0.870 109 29 32 30 30 1
6 × 20 0.043 0.956 328 53 56 58 29 2
6 × 50 0.007 0.992 1770 130 137 150 30 5
6 × 100 0.001 0.998 6824 261 260 385 26 13
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Abstract. Load balancing is an important issue in parallel numerical

simulations. However, state-of-the-art libraries addressing this problem

show several deficiencies: they are hard to parallelize, focus on small edge-

cuts rather than few boundary vertices, and often produce disconnected

partitions.

We present a distributed implementation of a load balancing heuristic

for parallel adaptive FEM simulations. It is based on a disturbed diffusion

scheme embedded in a learning framework. This approach incorporates

a high degree of parallelism that can be exploited and it computes well-

shaped partitions as shown in previous publications. Our focus lies on

improving the condition of the involved matrix and solving the resulting

linear systems with local accuracy. This helps to omit unnecessary com-

putations as well as allows to replace the domain decomposition by an

alternative data distribution scheme reducing the communication over-

head, as shown by experiments with our new MPI based implementation.

Keywords: Load balancing, graph partitioning, parallel adaptive FEM

computations.

1 Introduction

Finite Element Methods (FEM) play a very important role in engineering for
analyzing a variety of physical processes that can be expressed via Partial Dif-
ferential Equations (PDE). The domain on which the PDEs have to be solved
is discretized into a mesh, and the PDEs are transformed into a set of equa-
tions defined on the mesh’s elements (see e. g. [5]). Due to the sparseness of the
discretization matrices these equations are typically solved by iterative methods
such as Conjugate Gradient (CG) or multigrid.

Since an accurate approximation of the original problem requires a very large
number of elements, this method has become a classical application for par-
allel computers. The parallelization of numerical simulation algorithms usually
� This work is supported by German Science Foundation (DFG) Research Training
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follows the Single-Program Multiple-Data paradigm: Each of the P processors
executes the same code on a different part of the data. Thus, the mesh has to
be split into sub-domains, each being assigned to one processor. To minimize
the overall computation time, all processors should roughly contain the same
number of elements. Furthermore, since iterative solution algorithms perform
mainly local operations, the parallel algorithm mostly requires communication
at the partition boundaries. Hence, these should be as small as possible due to
the very high communication costs involved.

Depending on the application, some areas of the simulation space require
higher resolutions and therefore more elements. Since in many cases the location
of these areas varies over time, the mesh is refined and coarsened during the
computation. Yet, this can cause imbalance between the processor loads and
therefore delay the simulation. To avoid this, the element distribution needs to
be rebalanced during runtime. For this, the application is interrupted and the
repartitioning problem is solved. Although this interruption should be as short
as possible, it is also important to find a new balanced partitioning with small
boundaries that does not cause too many elements to change their processor.
Migrating elements can be extremely costly since large amounts of data have to
be sent over communication links and stored in complex data structures.

In previous work [19,15] we have shown that (re-)partitioning heuristics focus-
ing on the shape of partitions are able to find solutions with a small number of
boundary vertices while also causing little migration. There, we have compared
our method to the state-of-the-art libraries Metis [11] and Jostle [21] regard-
ing solution quality and runtime. It turns out that while the solution quality of
the shape-optimizing approach is usually the best, its main drawback is its long
runtime and high memory consumption. Therefore, in this paper we present a
new parallel implementation based on the message-passing interface MPI that
incorporates several improvements addressing these problems.

The remaining part of the paper is organized as follows. In the next Section
we recapture related work and explain the shape optimizing bubble framework.
Section 3 describes the diffusion scheme applied within this framework as its
growth mechanism and an enhancement to the condition of the involved matrix.
Our parallel MPI based implementation is presented in Section 4. The new con-
cept of solving the linear systems with local accuracy reduces the computation
time as well as the memory requirements. Additionally, it facilitates a new data
distribution scheme decreasing communication. Subsequently, we present some
of our experiments in Section 5 before we give a short conclusion.

2 Related Work

2.1 Graph Partitioning and Load Balancing Heuristics

Balancing an FEM mesh can be expressed as a graph (re-)partitioning problem.
The mesh is transformed into a graph whose vertices represent the computational
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work and the edges their interdependencies. Due to its complexity existing li-
braries for this problem are based on heuristics. State-of-the-art implementations
like Metis [11], Jostle [21] or Party [17] follow the multilevel scheme [7] with a
local improvement heuristic based on exchanging vertices between partitions.
This heuristic reduces the number of cut-edges or the boundary size as well as
balances the partition sizes. Hence, the final solution quality mainly depends
on this method. Implementations are mostly based on the Kernighan-Lin (KL)
heuristic [12], while the local refinement in Party is derived from theoretical anal-
ysis with Helpful-Sets (HS) [8]. To address the load balancing problem during
parallel computations, distributed versions of the libraries Metis [20] and Jos-
tle [22] have been developed. However, due to the sequential nature of the KL
heuristic, their parallelization is difficult. This situation is even worse with the
HS heuristic in Party due to the large overhead for exchanging large vertex sets.

While the global edge-cut is the classical metric that most graph partition-
ers optimize, it is not necessarily the best metric to follow [6] because it does
not model the real communication and runtime costs of FEM computations.
Hence, different metrics have been implemented to model the real objectives
more closely [16,11]. As an example, since the convergence rate of the CGBI
solver in the PadFEM environment depends on the geometric shape of a parti-
tion, its load balancer iteratively decreases the partitions’ aspect ratios by apply-
ing the algorithm“Bubble” [3], whose basic idea appeared already in [23]. Yet, its
implementation contains a strictly sequential part and suffers from some other
difficulties described in [18]. Details about this algorithm and how to overcome
its issues are discussed in the following.

2.2 The Bubble Framework

The bubble framework is related to the k-means algorithm well-known in cluster
analysis [13] and transfers its ideas to graphs: First, one chooses randomly for
each partition one vertex as its center vertex. With this initial set of seed ver-
tices at hand, all remaining vertices are assigned to their closest seed based on
some distance measure. (This resembles the simultaneous growth of soap bubbles
starting at the seed vertices and colliding at common borders.) After all vertices
of the graph have been assigned this way, each sub-domain computes its new
center, which acts as the seed in the next iteration. This can be repeated until a
stable state is reached. Fig. 1 illustrates the three main operations. This frame-
work can be implemented in various ways, but many approaches show some
major disadvantages for our given problem (cf. [14] for a broader discussion).
They can be overcome by the growth mechanism explained next.

3 The Diffusion Based Growth Mechanism

Our implementation of the bubble operations is based on solving diffusion prob-
lems on the input graph. This is due to the fact that diffusion prefers densely
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Fig. 1. The main bubble framework op-

erations: Determine initial seeds for each

partition (left), grow partitions around

the seeds (middle), move seeds to the par-

tition centers (right)

Fig. 2. Schematic view: Placing load on

single vertices (left) or a partition (right),

the diffusion process, and the mapping of

vertices to the partitions according to the

load

connected regions of the graph. Thus, one can expect to identify vertex sets that
tend to possess a small number of boundary vertices.

3.1 The FOS/C Diffusion Scheme

Generally speaking, a diffusion problem consists of distributing load from some
given seed vertex (or vertices) into the whole graph by load exchanges between
neighbor vertices. Standard diffusion schemes like FOS [1] converge to fully bal-
anced load distributions. This is undesired here because the amount of load
should represent a distance between vertices. Hence, we disturb FOS to obtain a
hill-like load distribution with meaningful diffusion distances between vertices.

How this hill-like distribution is interpreted as distance values is illustrated
in figure 2. Given a seed vertex for each partition (left), we place load on the
respective seed and use a diffusive process to have it spread into the graph. This
is performed independently for every partition. After the load is distributed,
we assign each vertex to that partition it has obtained the highest load amount
from (highest load means shortest distance). The next step (right) does not place
load on a single seed vertex only, but distributes it evenly among all vertices of
the given partition. After performing the diffusion process, the resulting load
distribution can either be used as an optional consolidation or for contracting
the partitions to the seed vertices of the next iteration. A consolidation again
assigns the vertices to partitions according to the highest load as in the previous
step. This further improves the partition shapes. During a contraction, for each
partition the vertex containing the highest load becomes its new seed.

We now restate some important properties of the diffusion scheme applied
(for details cf. [14]). Let L be the Laplacian matrix of the unweighted, connected
input graph G = (V,E). Shifting a small load amount δ (drain) from each vertex
back to the seed vertex/vertices (comprised in the set S ⊂ V ) in each iteration by
the drain vector d leads to the desired disturbed diffusion scheme called FOS/C
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with the matrix/vector notation w(i+1) = Mw(i) + d, where M = I − αL is the
diffusion matrix with some suitable constant α > 0, w(i) is the load vector at
iteration i and d the drain vector, whose vector sum is 0, so that d ∈ range(L).

Theorem 1 (Convergence of FOS/C). [14] The FOS/C scheme converges
for any arbitrary initial load vector w(0).

Corollary 1. [14] The convergence state w(∗) of FOS/C can be characterized
as w(∗) = Mw(∗) +d ⇔ (I−M)w(∗) = d ⇔ αLw(∗) = d. Hence, the convergence
state can be determined by solving the linear system Lw = d, where w = αw(∗).

The resulting load vector w represents the hill-like distribution we need in order
to compute diffusion distances between a seed and some other vertex. Therefore,
we have the choice to compute this vector by local operations (e. g. the second
order diffusion scheme [4]) or by generally faster solvers using global knowledge
(such as CG or multigrid), whichever is more appropriate.

3.2 Improving the Matrix Condition

Observe that if load diffuses faster into dedicated regions, then the flow over the
edges directing there must be higher than the flow over edges pointing elsewhere.
Due to [9] and [2] we know that the solution of the FOS/C diffusion problem
is equivalent to a ‖ · ‖2-minimal flow over the edges of the graph. The diffusion
problem can therefore be regarded as a flow problem, too. To make the sink of
the flow unique, we insert an extra vertex into the input graph G of n nodes
as in [15]. This new vertex is connected to every other vertex in G by an edge
of weight φ > 0, which leads to a modified Laplacian matrix Lφ having one
additional row and column whose off-diagonal entries are all −φ. The diagonal
of Lφ contains for each row the weighted degree of the corresponding vertex,
so that it is symmetric positive-semidefinite (spsd) and of rank n. The resulting
linear system is denoted by Lφwφ = dφ with the following drain vector dφ:

dφ(v) =


δ · |V |/|S| : v ∈ S

−δ · |V | : v is the extra vertex
0 : otherwise

Solving this spsd system by iterative methods can be made faster and more
robust to numerical imprecision by fixing entries (as many as the dimension of
the null space of Lφ) of wφ and deleting their corresponding rows and columns
from the matrix [10]. Hence, we improve on previous work [15,14] by fixing the
value of the extra vertex to be zero and delete the row and column appended
to L before. What remains is the addition of φ to the diagonal values of L.
This results in a symmetric positive-definite (spd) matrix whose condition can
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be controlled by the parameter φ (therefore we actually solve L′w′ = d′, where
L′ = L + φI and d′ (resp. w′) equals dφ (resp. wφ) without the entry for the
extra vertex). Note that this simple preconditioning is well-defined by the notion
of the extra vertex.

Using L′ has even more advantages than improving the convergence and ro-
bustness of iterative solvers: the distributions of different seeds are comparable
without post-processing because the extra vertex acts as a common reference
point. Moreover, unlike in [15], the extra vertex is eliminated from the actual
solution process, which makes the use of multigrid/multilevel methods easier and
further speeds up computations.

4 Parallel Implementation of Bubble-FOS/C

In this section we present the Bubble-FOS/C algorithm, its new MPI based
implementation, and show improvements to the algorithm in terms of runtime
and memory consumption. For sake of simplicity we denote the linear system of
our diffusion/flow problem from now on Lw = d, although it has the structure of
L′w′ = d′ from the previous Section. A specific system corresponding to partition
p is denoted by Lwp = dp, p ∈ {1, ..., P}.

4.1 The Bubble-FOS/C Heuristic

Incorporating FOS/C into the

Algorithm Bubble-FOS/C(G, π, l, i)

01 in each loop l

02 if π is undefined π = determine-seeds(G)

03 else parallel for each partition p

04 centers = Contraction(G, π)

05 parallel for each partition p

06 π = AssignPartition(G, centers)

07 in each iteration i

08 parallel for each partition p

09 π = Consolidation(G, π)

10 π = scale-balance(π)

11 π = greedy-balance(π)

12 return smooth(π)

Fig. 3. Sketch of the algorithm

bubble framework results in
the algorithm sketched in Fig-
ure 3. It can be invoked with
or without a valid partition-
ing π. In the latter case, we
determine initial seeds ran-
domly (line 2). Otherwise, we
contract the given partitions
(lines 3-4) by applying the
proposed mechanism based on
solving the P linear systems
Lwp = dp. Then, we determine
a partitioning (lines 5-6) before
performing optional consolida-
tions (lines 7-9). These consol-
idations can also be used for

balancing by scaling the vectors wp (line 10). This approach can quickly find
almost balanced solutions in most cases. If necessary, we perform an additional
greedy balancing operation (line 11) to guarantee a certain partition size.
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Depending on the quality of the initial solution, it is advisable to repeat
the learning process several times. (A multilevel scheme can help to keep the
number of repetitions small [14].) Before returning the partitioning π, vertices
can be migrated optionally if the number of their neighbors in another partition
is larger than the number in their own partition (line 12). This further smooths
the partition boundaries but might lead to a slightly higher imbalance.

4.2 Partial Graph Coarsening

As explained above, one needs to solve P linear systems Lwp = dp with the same
matrix L and a different right-hand side dp for each bubble operation based on
FOS/C. However, since a vertex is assigned according to the maximum load
value, we notice that only a part of the solution is relevant to the vertex assign-
ment due to its hill-like manner. Hence, it is not necessary to compute the exact
solution for all vertices of the graph, but only in the important areas surround-
ing the respective partition, and an approximation elsewhere. This observation
can be exploited to both speed up the computations and reduce the memory
requirements in a parallel implementation:

Before the first computation, each domain creates a local level hierarchy. Sim-
ilar as in state-of the-art graph partitioning libraries, this is achieved by calcu-
lating a 2-approximation of a maximum weighted matching restricted to edges
connecting local vertices. These are then combined to form the vertices of the
next level. After that, the implemented data structure allows us to solve lin-
ear systems that are composed of different levels of the hierarchy, reflecting the
different solution accuracies on the domains.

To solve a linear system, we project the drain vector onto the respective
vertices of the lowest hierarchy level and first compute load values there. Figure 4
(left) illustrates a solution for one partition on the lowest levels. One can see that
the highest solution values can be found close to the originating domain. Since
the matching process preserves the graph structure, the solution on the lowest
level is similar to the expected load distribution in the original graph. Hence, we
are able to use it to determine the most relevant parts of the solution. Important
domains will be switched to a higher hierarchy level while the unimportant ones
remain on the lowest one.

The approximate solution is then interpolated to higher levels where neces-
sary and the system is solved again more accurately. Figure 4 (middle) gives an
example of a load distribution that has been calculated with varying accuracy.
In the important regions of the graph, the linear system is solved on the highest
hierarchy level, that is the original graph, while in areas further away from the
respective domain lower levels are used.

Although we now have to solve two linear systems per partition, a small one
on the lowest hierarchy levels and the second one on the mixed levels, less runtime
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Fig. 4. Vertex loads on the lowest levels (left) and the final solution with local accuracy

on the respective levels (middle). The shown solution has been computed for the pink

domain leading to the displayed partitioning (right). Edges between vertices of different

domains (the initial partitioning) are cut.

is required in total compared to solving one system on the original graph. The
lowest levels of the hierarchy are very small and can be processed quickly. The
additional time spent in this computation is compensated by the reduction of
the system sizes in the second computation.

Note that for each of the P linear systems a different part of the graph is
important. Hence, on each domain a number of hierarchy levels contribute to
the respective solutions. In our implementation, all systems are solved simulta-
neously with a standard CG solver. Therefore, we are able to combine the data
sent by all P instances and reduce the number of necessary messages.

4.3 Domain Decomposition vs Domain Sharing

Usually a domain decomposition is applied to distribute a graph on a parallel
computer. Following this practice, the implemented CG solver requires three
communications per iteration, one matrix communication that updates the halo
values and two scalar products. Hence, the number of messages is proportional
to the number of iterations, which typically grows with the system size.

Since we solve P linear systems concurrently, a second possibility to distribute
the computations onto the processing nodes exists. Instead of letting every node
process the chosen hierarchy level of its own domain for each of the P systems, it
is possible to assemble one complete linear system on each processor. The systems
are then solved locally without any communication, and finally the solution is
sent back to the domains. We call this approach domain sharing.

Domain sharing requires copies of all domains on every other node which
usually is impossible due to the involved memory requirements. However, we
have seen that an accurate solution is not required in many areas of the graph,
especially if the number of partitions is large. Hence, mainly lower levels of the
hierarchy have to be copied which reduces the memory requirements significantly.
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5 Experimental Results

In this Section we present some of our experiments executed on a Fujitsu Siemens
hpcLine2. This system consists of 200 computing nodes, each of which has two
Intel Xeon 3.2 GHz EM64T processors and 4 GB RAM. In our tests, we only
use a single processor per node. We apply the Intel Compiler 8.1 and the Scali
MPI implementation via the Infiniband interconnection. The test set comprises
a number of two- and three-dimensional FEM graphs of different sizes. Since the
results are similar, we only include five of them here.

As mentioned, it has already been shown [15,14] that the Bubble-FOS/C
algorithm is able to produce partitionings with few boundary vertices. Since the
solution quality varies only little in the settings, we focus our attention on the
run-time improvements here.

Table 1 displays the recorded run-times for the five selected graphs. The first
column contains the values for the classical domain decomposition approach
without constructing a level hierarchy. Note that with the number of partitions
the number of linear systems doubles, as well as the number of CPUs. Hence,
in the optimal case of this setting all run-times were roughly the same, slightly
varying due to the different right hand sides of the linear systems and the result-
ing number of CG iterations. Of course, the communication overhead prohibits
this.

The middle column lists the run-times applying the level approach and domain
decomposition. Though we construct the hierarchy and solve the additional small
systems on the lowest levels, usually comparable run-times for 8 processors can
be achieved. Note that with 8 processors it is very likely that every part of the
hierarchy has to be solved on the highest level, especially for three-dimensional
graphs, since almost all domains share a common border. If the number of par-
titions increases, we notice some run-time reduction in contrast to the approach

Table 1. Running times (s) for Bubble-FOS/C algorithm without the level approach

(nolevel, domain decomposition by default), with hierarchy and domain decomposition

(DD), and with hierarchy and domain sharing (DS). The shock9 (|V | = 36476, |E| =

71290, φ = 0.008), ocean (|V | = 143437, |E| = 409593, φ = 0.06), wave (|V | =

156317, |E| = 1059331, φ = 0.07), auto (|V | = 448695, |E| = 3314611, φ = 0.125),

and hermes (|V | = 320194, |E| = 3722641, φ = 0.12) graphs have been repartitioned

on 8, 16, 32, and 64 processors respectively.

nolevel (DD) DD DS

Graph 8 16 32 64 8 16 32 64 8 16 32 64

shock9 2.68 2.97 3.53 4.17 2.49 2.26 1.53 1.74 1.96 1.34 0.99 1.01

ocean 7.27 8.43 8.90 9.61 8.79 6.67 4.90 8.17 8.84 4.75 3.17 3.02

wave 17.93 18.48 20.75 37.02 31.90 25.76 26.79 25.26 43.67 27.40 18.16 10.22

auto 37.92 40.84 48.39 53.08 126.15 106.04 79.08 52.19 141.93 77.88 42.30 24.53

hermes 70.89 74.35 77.63 112.93 191.71 144.11 95.17 87.26 165.75 105.31 54.08 29.08
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without levels. However, for 64 processors the run-times increase again for the
two small graphs, which can be explained with the increasing communication
overhead.

The results of the domain sharing approach can be found in the right column.
Although large messages are sent before and after solving the linear systems,
it turns out that avoiding communication inside the CG solver speeds up the
calculation significantly. This advantage becomes larger with a growing number
of partitions, because the fraction of vertices where no exact solution is required
increases as well. Hence, for larger number of processors (32 and more) this new
scheme shows a clear improvement to the original method regarding run-time.

6 Conclusion

We have presented the parallel load balancing heuristic Bubble-FOS/C and sig-
nificant improvements concerning a parallel implementation. By introducing an
extra vertex, we are able to improve the condition of the involved matrices and
therefore the numerical stability and complexity, without changing the matrix
structure. Constructing local hierarchies and solving the linear systems with par-
tial accuracy reduces the problem size and therefore the memory requirements.
This allows us to solve the linear systems locally and avoid high latency com-
munication inside the solver, which leads to a significant run-time reduction in
case of a larger number of partitions.

In the future, it would be interesting to replace the Conjugate Gradient
method and combine the presented hierarchical approach with a faster alge-
braic multigrid solver instead. Note that the latter is based on hierarchy levels
by default.
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Abstract. Parallel graph partitioning is a difficult issue, because the
best sequential graph partitioning methods known to date are based
on iterative local optimization algorithms that do not parallelize nor
scale well. On the other hand, evolutionary algorithms are highly parallel
and scalable, but converge very slowly as problem size increases. This
paper presents methods that can be used to reduce problem space in a
dramatic way when using graph partitioning techniques in a multi-level
framework, thus enabling the use of evolutionary algorithms as possible
candidates, among others, for the realization of efficient scalable parallel
graph partitioning tools. Results obtained on the recursive bipartitioning
problem with a multi-threaded genetic algorithm are presented, which
show that this approach outperforms existing state-of-the-art parallel
partitioners.

1 Introduction

Graph partitioning is an ubiquitous technique which has applications in many
fields of computer science and engineering, such as workload balancing in parallel
computing, database storage, VLSI design or bio-informatics. It is mostly used
to help solving domain-dependent optimization problems modeled in terms of
weighted or unweighted graphs, where finding good solutions amounts to com-
puting, eventually recursively in a divide-and-conquer framework, small vertex
or edge cuts that balance evenly the weights of the graph parts.

For instance, the obtainment of small and balanced bipartitions is essential to
the reordering of sparse matrices by nested dissection [5]. This method consists
in computing a small vertex set that separates the adjacency graph of the sparse
matrix in two parts, ordering the separator vertices with the highest indices
available, then proceeding recursively on the two separated subgraphs until their
size is smaller than some specified threshold. The smaller and more balanced
the separators are, the smaller the fill-in incurred at the factorization stage, and
thus the number of operations required to factor the matrix (referred to as the
operation count, or OPC), is likely to be.
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Currently, general-purpose sequential ordering software such as Scotch [12]
or MeTiS [9] can handle graphs of about ten million vertices on an average
workstation. However, as the power of parallel machines increases, so does the
size of the problems to handle, and since the large graphs which model these
problems cannot be processed on a single computer without incurring swapping,
it is necessary to resort to parallel graph ordering tools, based on parallel graph
bipartitioning algorithms. Several such tools have already been developed [9],
but their outcome is mixed. In particular, they do not scale well, as partitioning
quality tends to decrease, and thus fill-in to increase much, when the number of
processors which run the program increases.

The purpose of the PT-Scotch software (“Parallel Threaded Scotch”, an
extension of the sequential Scotch software), developed at LaBRI within the
ScAlApplix project of INRIA Futurs, is to provide efficient parallel tools to
partition graphs with sizes up to a billion vertices, distributed over a thousand
processors. Among our target applications is the parallel ordering of large graphs.

PT-Scotch is still under development, but several results have already been
achieved. Section 2 presents a constrained banding technique which, based on
the characteristics of the local optimization algorithms that are used to refine
the partitions, reduces considerably the size of the problem space without loss of
quality, already allowing one to develop semi-parallel programs that can compute
efficient bipartitions of graphs having a billion nodes. Section 3 describes how
this reduction enables us to use genetic algorithms, which are highly scalable but
slow to converge, in a practical way. Some graph ordering results are presented,
using a multi-threaded shared-memory genetic algorithm, which illustrate the
quality of the orderings that can be produced. Then comes the conclusion.

2 Reducing Problem Space in a Multi-level Framework

Experience has shown that best partition quality is achieved when using a multi-
level framework. This method, which derives from the multi-grid algorithms used
in numerical physics, repeatedly reduces the size of the graph to partition by
finding matchings that collapse vertices and edges, computes an initial partition
for the coarsest graph obtained, and projects the result back to the original
graph [2,6,8]. It is most often combined with greedy iterative algorithms, such
as Kernighan-Lin [10] or Fiduccia-Mattheyses [4] (FM), to refine the projected
partitions at every level, so that the granularity of the solution is the one of the
original graph and not the one of the coarsest graph.

Because of the local nature of both the FM and the uncoarsening algorithms,
it is most likely that the refined partition computed at any level will not differ
much from the partition that was projected back to this level, as this latter is
itself the projection of a partition that was a local optimum in the coarser levels.
Therefore, to refine a partition, FM-like algorithms may not need to know more
of the graph topology than a small “band” around the boundary of the projected
partition. The locality of the optimization process is already exploited in many
implementations of FM-like algorithms which, in order to save time and memory,
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Table 1. Some of the test graphs that we use

Graph Size (×103) Average
V E degree

598a 111 742 13.37
aatken 43 88 4.14
auto 449 3315 14.77
bcsstk29 14 303 43.27
bcsstk30 29 1007 69.65
bcsstk32 45 985 44.16
body 45 164 7.26
bracket 63 367 11.71
coupole8000 1768 41657 47.12
m14b 215 1679 15.64
ocean 143 410 5.71
pwt 37 145 7.93
rotor 100 662 13.30
s3dkq4m2 90 2365 52.30
tooth 78 453 11.58

Graph Size (×103) Average
V E degree

audikw1 944 38354 81.28
b5tuer 163 3874 47.64
bmw32 227 5531 48.65
bmwcra1 149 5248 70.55
crankseg2 64 7043 220.64
inline1 504 18156 72.09
mt1 98 4828 98.96
oilpan 74 1762 47.77
ship001 35 2305 132.00
shipsec5 180 4967 55.23
thread 30 2220 149.32
x104 108 5030 92.81
altr4 26 163 12.50
chanel1m 81 527 13.07
conesphere1m 1055 8023 15.21

compute and update vertex swapping gains only for vertices that have to be
considered, that is, the ones that are in the immediate vicinity of vertices that
currently belong to the separator. However, these vertices cannot be known in
advance. Our idea is that, since the FM algorithm is local, we can constrain
it to operate on a small, predefined band of graph vertices without changing
significantly its outcome.

To validate this assumption, we have instrumented our Scotch sequential
partitioning software in order to measure how much refined partitions differ
from projected partitions. Since our current target application requires vertex
separators, we have focused on them for these experiments, but the same kind
of measures could be obtained from edge separation routines as well. The test
graphs we have used in all of our experiments are well-known cases of various
sizes, listed in Table 1.

For every separator computed in a nested dissection process (which stops
when subgraphs are of sizes of about a hundred vertices), we accumulate the
numbers of refined separator vertices that end up at a given distance from the
projected separators. These results are presented in Table 2.

As expected, the overwhelming majority of refined separator vertices is not
located at a distance greater than three from the vertices of the projected sep-
arators. Therefore, it can be assumed that the quality of partitions should not
be impacted if refined partitions are computed on band graphs only. In order
to validate this second assumption, we have developed in Scotch a partition-
ing method which extracts a band subgraph of given width from a given graph
and its given initial separator, applies a FM separator refinement method to
the initial separator of the band subgraph, and projects back the refined band
separator to the full graph. We have then replaced all of our calls to the FM
refinement algorithm by calls to this band FM refinement algorithm.
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Table 2. Distance histogram (in % of the number of separator vertices) of the loca-
tion of refined separator vertices with respect to projected separators. These statistics
have been collected over all separators when performing nested dissection on the given
graphs.

Graph Distance
0 1 2 3 ≥ 4

598a 76.23 23.45 0.32 0.00 0.00
aatken 77.00 20.45 2.27 0.24 0.04
auto 77.89 21.89 0.22 0.00 0.00

bcsstk29 82.04 17.66 0.30 0.00 0.00
bcsstk30 87.17 12.53 0.29 0.01 0.00
bcsstk32 81.91 17.80 0.23 0.03 0.02

body 67.49 30.20 2.08 0.20 0.04
bracket 72.47 26.19 1.08 0.16 0.10

coupole8000 90.23 9.74 0.03 0.00 0.00
m14b 78.65 21.17 0.18 0.00 0.00
ocean 60.43 32.86 4.58 1.29 0.84
pwt 54.35 37.31 6.10 1.56 0.69
rotor 77.09 21.99 0.75 0.11 0.06

s3dkq4m2 78.72 20.34 0.89 0.04 0.00
tooth 69.90 26.82 2.42 0.63 0.24

Graph Distance
0 1 2 3 ≥ 4

audikw1 91.44 8.55 0.01 0.00 0.00
b5tuer 74.18 22.96 1.85 0.42 0.59
bmw32 80.98 18.31 0.50 0.08 0.14

bmwcra1 91.29 8.58 0.13 0.00 0.00
crankseg2 95.80 4.17 0.01 0.02 0.00

inline1 87.57 12.35 0.08 0.00 0.00
mt1 84.79 14.00 0.93 0.25 0.04

oilpan 77.60 20.54 1.20 0.17 0.49
ship001 91.43 8.51 0.05 0.00 0.00
shipsec5 82.29 17.28 0.41 0.03 0.00
thread 91.40 8.53 0.06 0.00 0.00
x104 86.64 12.81 0.51 0.03 0.00
altr4 74.19 24.89 0.80 0.12 0.00

chanel1m 74.65 24.09 1.16 0.10 0.00
conesphere1m 82.16 17.67 0.17 0.00 0.00

The quality criterion that we have chosen is the operation count (OPC) re-
quired to factor the reordered matrix using a Cholesky method; it is an indirect
measurement of the overall quality of all bipartitions, in the practical context of
nested dissection ordering. The results that we obtain for all of our test matri-
ces, using band graphs with a width of three, show only marginal differences in
OPC compared to the original FM refinement algorithm, and no difference on
average. An explanation to this is that, even if the separator cannot move more
than three vertices away at any level, it has the ability to move again at the
next levels to reach its local optimum, therefore compensating on several levels
for the moves it could not do on a single level.

An interesting feature of band FM refinement is that is seems to be more
stable than the classical FM algorithm. In the production version of Scotch,
two runs of multi-level bipartitioning were performed for each subgraph, and
then the best separator of the two was kept. When using band FM refinement,
equivalent results are obtained with only one run, as presented in Table 3. Most
of the time, the quality of band FM lies between the one exhibited by one and two
runs of the classical FM method. In terms of time, we can evidence a moderate
over-cost with respect to a single run of classical FM, because of the computation
of the band graph. It seems that, by “amortizing” the move of the frontier, the
band FM algorithm prevents it from exploring local minima that differ too much
from the “pseudo-global” solution computed at the coarsest level and in which
it could be trapped afterwards. Further experiments are required to investigate
this.
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Table 3. Comparison between band FM and classical FM. Tests have been run on a
375MHz IBM SP3.

Graph Band FM (1 run) FM (2 runs) FM (1 run)
OPC Time (s) OPC Time (s) OPC Time (s)

aatken 1.72e+11 6.17 1.70e+11 10.79 1.73e+11 5.38
auto 5.14e+11 47.09 4.98e+11 75.00 5.27e+11 39.40
bcsstk32 1.40e+9 1.16 1.28e+9 1.65 1.40e+9 1.02
coupole8000 7.57e+10 210.15 7.48e+10 346.81 7.57e+10 183.72
m14b 6.27e+10 21.4 6.31e+10 33.42 6.03e+10 17.56
tooth 6.50e+9 5.66 6.51e+9 9.01 6.71e+9 4.64
audikw1 5.58e+12 59.32 5.48e+12 86.78 5.64e+12 50.33
bmw32 3.15e+10 4.52 2.75e+10 6.51 3.07e+10 4.08
oilpan 2.92e+9 0.73 2.74e+9 0.95 2.99e+9 0.69
thread 4.17e+10 1.62 4.14e+10 2.30 4.17e+10 1.44
x104 1.84e+10 1.97 1.64e+10 2.60 1.80e+10 1.83
altr4 3.68e+8 1.55 3.65e+8 2.52 3.84e+8 1.32
conesphere1m 1.83e+12 122.03 1.85e+12 192.27 1.88e+12 100.19

By using this limitation of problem space, we can already devise a way to
compute high-quality partitions of distributed 3D mesh graphs of up to a billion
vertices: since the expected size of the separator of a n-vertex 3D mesh graph is
in O(n2/3) [14], the order of magnitude of the first separator of a 3D graph of
about a billion vertices should be of about a million vertices, which can be han-
dled by a sequential computer. Therefore, basing on existing parallel coarsening
algorithms such as the one of [13], one can coarsen a distributed graph so as to
get a coarsened graph that fits in the memory of a sequential computer, compute
an initial bipartition of this coarse graph using existing sequential partitioners,
and project back this partition as follows. During each uncoarsening step, once
the separator has been projected back to the finer distributed graph, a central-
ized copy of the distributed band graph surrounding the projected separator is
gathered on every processor. All of the processors can then run independently
a classical sequential FM algorithm on their centralized band graph, leading to
a better exploration of the reduced problem space, after which the best refined
separator found is projected back to the finer distributed graph. This uncoars-
ening process is repeated up to obtain a distributed bipartition of the original
graph. Recursive bipartitioning can then take place on the two parts created,
with separators of smaller sizes.

The above scheme, which may be useful to handle large graphs at the expense
of quite little work on top of existing software, is clearly not fully satisfactory,
since the refinement of the partitions is sequential in nature, and thus not scal-
able. In fact, local optimization algorithms are not well suited, because of their
iterative nature, while global heuristics, although more scalable, are usually not
considered as good candidates because of the size of the problem spaces to ex-
plore. However, taking advantage of the reduction of problem space that we have
evidenced, they could be, as described in the following.
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3 Using Genetic Algorithms in the Reduced Problem
Space

Currently, there exist only few software that do graph ordering in parallel, and
their quality is not equivalent to the one of sequential algorithms. For instance,
ParMeTiS [9] implements a parallel version of a FM algorithm to refine its
bipartitions but, in order to relax the strong sequentiality constraint of the algo-
rithm when moving vertices that have neighbors on other processors, only such
moves that improve the quality of the solution are accepted, therefore limiting
the hill-climbing feature of the FM algorithm and reducing further the qual-
ity of the solutions as the number of processors (and thus, of potential distant
neighbors) increase.

To avoid this intrinsic sequentiality problem, we have decided to turn to a
completely different class of algorithms. Genetic algorithms (GA) are highly
scalable meta-heuristics which allow to solve multi-criteria optimization prob-
lems using an evolutionary method. It is an iterative method that consists in
simulating the evolution of a population of individuals which represent solutions
to the problem, selecting best-fitting individuals as candidates for breeding the
next generation. GA are known to converge very slowly and cannot therefore be
applied to large graphs [1,3], but might be of use in the reduced problem spaces
of band graphs. In the graph separation problem, every vertex can belong to
three different domains: the separator, or any of the two separated parts. There-
fore, every individual in the population is implemented as a linear array, similar
in principle to a chromosome, which associates a number between 0 and 2 to any
graph vertex index.

The reproduction operator is a classical multi-points cross-over operator,
which is applied at a randomly-selected position of two mated individuals, and
swaps one part of their arrays to produce two descendants. The mutation oper-
ator consists in swapping the part of randomly chosen vertices on some individ-
uals. Since these naive operators cannot enforce that the crossed-over and mu-
tated individuals be valid solutions, they are post-processed with a consistency-
checking phase which adds vertices to the separator whenever necessary, and
removes unneeded separator vertices.

Individuals are evaluated by means of a fitness function, which linearly com-
bines dimensionless numbers such as the ratio of graph vertices that belong to
the separator, the imbalance between the two parts, and the ratio of graph edges
that link separator vertices. The first generation is made up of individuals that
are mutations of the projected partition, plus some entirely random individuals
which provide genetic diversity. To select and mate individuals, we have imple-
mented several classical algorithms [7,11]. Although all methods behave quite
similarly, best results were achieved with a mix of the elitism and roulette meth-
ods: the 5% best individuals are kept unconditionally, and each of the remaining
ones is kept with a probability proportional to its fitness. Then, individuals are
mated by pairs of descending fitness, and bred so as to keep constant population.

In order to increase concurrency in the GA algorithm, all of the individuals
that are located on the same processor are considered as an isolated population
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Table 4. OPC of the reordered bcsstk29 matrix when multi-level band GA is used for
all levels of nested dissection. Classical multi-level FM yields an OPC of 3.43e + 8 in
0.74s.

Deme size # Demes Generations OPC Time (s)
40 1 25 5.322334e+08 4.05
80 1 25 5.370016e+08 7.95
80 1 100 4.355475e+08 25.72
40 2 25 4.653384e+08 6.61
40 2 100 4.569806e+08 20.17
80 8 100 3.751443e+08 50.90

(also called “deme”) living on an island [15]. Only occasionally can a few “champi-
ons” move from one island to another, to propagate their successful chromosomes
into other populations which can have been trapped in local optima. In our cur-
rent sequential implementation, every deme is handled by a different thread.
Migration is performed when the variety of the population in some deme de-
creases, i.e. when individuals are too similar to their local champion.

To evaluate the convergence speed of our GA algorithm, we have computed
nested dissection orderings of several test graphs with our multi-level band GA
method. All of our tests were run on the M3PEC machine of the Université Bor-
deaux I, an eleven-node IBM machine with eight 1.5 MHz dual-core processors
and 32 GB of memory per node. Since our current implementation is thread-
based only, timings of tests involving more than sixteen threads (written between
parentheses) are estimated: these tests are still run on a single SMP node, with
as many threads per core as necessary, and the running time is divided by the
appropriate ratio. ParMeTiS, however, uses MPI, and runs fully in parallel.

Table 4 provides some results for graph bcsstk29. These results show that GA
converges quite well, and that quality can be improved by increasing computation
time and/or population size. As expected, running times are high, but GA are
highly scalable, so that computation time can be reduced by adding processors,
and partitioning quality can be increased by giving more time.

The second class of experiments that we have run aimed at evaluating the
scalability of our method in terms of quality and running time. In order to
compare our ordering software to ParMeTiS in similar conditions, we ran our
method on numbers of processors p that are powers of two (while our method
does not require it), and performed band GA on the first log2(p) levels only,
using band FM afterwards; we will refer to this method as “limited GA” (LGA)
in all of the following. When running GA, the population is evenly spread on
all of the threads, with at least 100 individuals on the whole and at least 25
individuals per deme; therefore, above 4 threads, the population doubles along
with the number of threads.

Our results, which are summarized in Table 5, are extremely encouraging. First
of all, partitioning quality is not degraded too much when the number of processors
increases: on our worst case, bmw32, we loose about 60% in OPC quality between
1 and 64 processors, and the quality is almost constant for coupole8000. Above
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Table 5. Comparison between ParMeTiS (PM) and our multi-level limited band ge-
netic algorithm (LGA) for several graphs. CLGA and CPM are the OPC for LGA and
PM, respectively. Dashes indicate abortion due to memory shortage. LGA timings be-
tween parentheses are extrapolated times for cases requiring more than 16 threads, as
we had to run several threads per core on a single SMP node. Timings for ParMeTiS
are provided for graph altr4 to give an idea of its speed, but tPM and tLGA cannot
be compared, because PM is a fully parallel program, while our LGA testbed is the
purely sequential nested dissection routine of Scotch, which has been parametrized
so as to run the multi-threaded LGA algorithm only during the uncoarsening phases
of the first log2(p) stages of the nested dissection process.

CLGA

CPM

tLGA

CLGA

CPM

tLGA

CLGA

CPM

tLGA

CLGA

CPM

tLGA

tPM

CLGA

CPM

tLGA

CLGA

CPM

tLGA

CLGA

CPM

tLGA

8 processors, our results clearly outperform the ones of ParMeTiS, by a factor
greater than two for thread. As expected, the higher the degree of the graph is,
the bigger the difference is, because ParMeTiS can only do gradient local opti-
mizations on nodes which have neighbors on other processors.
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Partitioning times are very good, too. Although the running time of a single
sequential band GA refinement algorithm is between 30 and 80 times higher
than the one of its sequential band FM counterpart, the overall running time
of our LGA ordering program does not increase too much when the number
of processors increase. While a doubling of the number of processors implies
the turning of a whole level of band FM refinements into band GA refinements,
the running time of LGA increases reasonably along with the number of threads,
because when the number of processors increases it is levels of smaller subgraphs
that are passed to the GA, which only results in a limited increase in the overall
running time compared to the time taken by the first GA levels. Much hope is
therefore placed in the development of a fully parallel, distributed-memory LGA
algorithm.

4 Conclusion and Future Work

In this paper, we have presented a constrained banding approach which dramati-
cally decreases problem size during the refinement phase of multi-level partition-
ing schemes. This method, which can be used with any refinement algorithm,
allows us to take advantage of heuristics which are usually too expensive to be
considered, such as genetic algorithms. We have implemented a shared memory
multi-threaded GA, and tried it on numerous test cases. Although our GA is
slower than distributed FM-like algorithms, it is scalable and provides better
results, and its quality can be parametrized more easily (in terms of population
size and of number of generations) to account for eventual time or quality con-
straints.

We are currently developing a distributed memory version of our GA algo-
rithm, based on MPI, which will allow us to run tests on a larger number of
processors, and to investigate the limits of using GA as a band refinement method
for very large graphs. Since the testbed that we will use for this new version will
be the parallel ordering routine of PT-Scotch, we will be able to compare its
running time with the one of other parallel ordering software. Moreover, in order
to have a reference for the quality of orderings, we are also currently completing
the coding in PT-Scotch of the centralized band FM refinement algorithm de-
scribed at the end of Section 2, which will allow us to compute, in a semi-parallel
fashion, high quality orderings of very large graphs.
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Abstract. Scheduling for large parallel systems such as clusters and
grids presents new challenges due to multiprogramming/polyprocessing
[1]. In such systems, several jobs (each consisting of a number of par-
allel tasks) of multiple users may run at the same time. Processors are
allocated to the different jobs either statically or dynamically; further,
a processor may be taken away from a task of one job and be reas-
signed to a task of another job. Thus, the number of processors available
to a job varies with time. Although several approaches have been pro-
posed in the past for scheduling tasks on multiprocessors, they assume a
dedicated availability of processors. Consequently, the existing schedul-
ing approaches are not suitable for multiprogrammed systems. In this
paper, we present a novel probabilistic approach for scheduling parallel
tasks on multiprogrammed parallel systems. The key characteristic of the
proposed scheme is its self-adaptive nature, i.e., it is responsive to sys-
temic parameters such as number of processors available. Self-adaptation
helps achieve better load balance between the different processors and
helps reduce the synchronization overhead (number of allocation points).
Experimental results show the effectiveness of our technique.

1 Introduction

Scheduling for parallel systems is done at two levels. At the first level, jobs
(of different users) are scheduled such that each job receives a fair share of the
resources. On the other hand, tasks of a job are scheduled on different processors
such that the overall completion time (also known as makespan) is minimized.
In context of dynamic scheduling schemes, this also involves minimizing the run-
time scheduling overhead. Processors may be allocated (to a job) either statically
or dynamically. Further, a processor may be taken away from a task of one job
and be reassigned to a task of another job. As a consequence, the number of
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Fig. 1. Variation in the number of processes over an hour on a real multiprogramming
system with 15 nodes (44 CPUs) (http://www.gradea.uci.edu)

processors available to a job varies with time. To validate this, we recorded
the number of user-level processes on a real multiprogrammed system for an
hour (see Figure 1). Clearly, the number of idle processors varies with time, by
as much as 10%, which has a direct effect on the performance of a scheduling
policy. Therefore, a scheduling policy should be designed such that it is aware
of such systemic variations.

In this paper, we address the problem of scheduling parallel tasks of a given
job. Without loss of any generality, we focus on scheduling iterations of a DOALL
loop [2]; note that the proposed technique is general in nature, e.g., it can also
be used for scheduling coarse-grain (function-level) parallel independent tasks.
We model the problem as a task allocation problem wherein at any scheduling
step, given a set of idle processors, one or more iterations are allocated to each
processor. The key consideration in task allocation is the selection of the task
size, i.e., the number of iterations constituting a task. While a small task size
incurs significant scheduling overhead, a large task size results in load imbal-
ance. Thus, the task allocation problem naturally reduces to determining the
optimal task size in order to minimize the total execution time. For this, several
self-scheduling techniques have been proposed for scheduling parallel loops [3].
However, none of the existing techniques account for the variation in the number
of available processors with time. For this, we propose a novel approach, referred
to as Probabilistic Self-Scheduling (PSS), for scheduling of (nested) parallel loops
on multiprogrammed parallel systems. At any scheduling step, the number of it-
erations allocated to an idle processor is determined based on the number of
remaining iterations and the number of processors expected to be available in
future. The latter is determined based on the the number of processors avail-
able in the past. The proposed approach is compatible with the environment
established by auto-scheduling compilers [4].

The rest of the paper is organized as follows. In the next section, we present a
motivating example. Section 3 presents our approach PSS. Experimental setup
and results are presented in Section 4. Previous work is discussed in Section 5.
Finally, in Section 6, we conclude with directions for future research.
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2 A Motivating Example

In this section we illustrate the intuitive idea behind our approach (PSS) with
the help of an example. For comparison purposes, we consider two well known
self-scheduling techniques, viz., guided self-scheduling GSS(1) [5] and factoring
[6]. Assuming identical processors, at a given scheduling step GSS(1) assigns 1

P
of the remaining iterations to an idle processor, where P is the total number of
processors; factoring assigns iterations to the processors in batches of P chunks,
where the batch size is half the number of remaining iterations, for example, given
100 iterations and 4 processors, the initial batch size is 50 (= 100/2) and the
chunk size of the first four chunks is 13 (= �50/4�). Consider a multiprogrammed
system consisting of 4 processors. Let processors P1 and P2 be available for time
t ≥ 0 and t ≥ 22 respectively and let processors P3 and P4 be busy serving
other jobs in the system. For a DOALL loop with 100 iterations (for simplicity of
exposition, we assume that each iteration has a workload of 1 unit), the chunk
sizes for GSS(1) and factoring are shown in Table 1. From the table we note
that GSS(1) and factoring incur large synchronization overhead due to large
number of allocation points. This can be attributed to the fact that GSS(1)
and factoring are oblivious of the number of processors available. In contrast,
PSS assigns 1

E[P ] of the remaining iterations to an idle processor, where E[P ]
is the average number of processors available to the job under consideration. In
the current context, E[P ] = 2, as processors P3 and P4 are never available for
scheduling. The chunk sizes for PSS is shown in Table 1. From the table we see
that PSS reduces the synchronization overhead by 50% w.r.t. GSS(1) and by
65% w.r.t. factoring. Clearly, PSS yields better performance than GSS(1) and
factoring as it incurs far less synchronization overhead.

Table 1. Total number of iterations = 100, P = 4

Scheme Chunk Sizes # of Allocation Points

GSS(1) 25 19 14 11 8 6 5 3 2 2 2 1 1 1 14

Factoring 13 13 13 13 6 6 6 6 3 3 3 3 2 2 2 2 1 1 1 1 20

PSS 50 25 13 6 3 2 1 7

3 The Approach

In this section we present the algorithm for our approach - Probabilistic Self-
Scheduling. Although several models have been proposed, viz., global, local and
hybrid, for work queues in context of self-scheduling, we adopt the model pro-
posed by Polychronopoulos and Kuck in [5] owing to its simplicity. Note that
model selection is orthogonal to the concerns we address in this paper. The algo-
rithm is designed for non-preemptive scheduling, whereby a task once assigned
to a processor may not be removed until it has finished execution. The rest of
the section describes the different phases of our scheduling algorithm.
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3.1 Expected Processor Availability

As discussed in the previous section, the presence of other jobs in a multipro-
gramming environment has direct impact on the performance of a self-schedule.
In order to address the above, at a given scheduling step t, PSS computes the
chunk size (discussed further in subsection 3.2) based on the number of remain-
ing iterations and the expected value of the number of processors available after
step t assuming that it would be the same as the average number of processors
available in the past. Before discussing how to compute the above, we defines
some terms of probability (for a detailed discussion, the reader is referred to the
book by Meyer [7]).

Preliminaries
Let X be a discrete random variable and its range space, denoted by RX , consist
of a countably infinite number of values, x1, x2, . . .. With each possible outcome
xi, we associate a number p(xi) = P (X = xi), called the probability of xi. The
numbers p(xi), i = 1, 2, . . . must satisfy the following:

p(xi) ≥ 0, ∀i
∞∑

i=1

p(xi) = 1.

The function p defined above is called the probability function of the random vari-
able X . The collection of pairs (xi, p(xi)), for i = 1, 2, . . . is called the probability
distribution of X .

Definition 1. The expected value of a discrete random variable X, denoted by
E(X), is defined as:

E(X) =
∞∑

i=1

xip(xi) (1)

if the series
∑∞

i=1 xip(xi) converges absolutely, i.e., if
∑∞

i=1 |xi|p(xi) < ∞. E(X)
is also referred to as the mean value of X.

Processor availability
We model the number of processor available at each scheduling step as a discrete
random variable P . At each scheduling step t, we record the number of available
processors. Also, we determine the expected value of the number of processors
available subsequently. For this, we define a window of width w to compute
the above. The processor availability during this window can be represented as
a histogram, as illustrated in Figure 2(a). From this histogram, the probability
distribution of processor availability is computed [7]. For example, for the window
shown in Figure 2(a), p(xi = 8) = 4/16 = 0.25, as shown in Figure 2(b). Finally,
the expected value is computed using Equation 1.

The window width is parameterized. A larger width increases the accuracy of
the update process, however, it incurs more overhead. It has been shown that
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Fig. 2. An illustration of how to determine the probability distribution from the proces-
sor availability record. a) For a given time t, processor availability in the past; b) prob-
ability distribution of processor availability during the window w. (Total number of
processors in the multiprogrammed system P = 20)

run-time performance measurement via use of hardware performance counters
incurs minimal scheduling overhead [8]. Note that the expected value computed
above is not fixed. This is due to the fact that the processor availability profile
in two different windows need not be the same, as evident from Figure 1. Also,
the expected value cannot be determined statically as the processor availability
profile in a given window is non-deterministic. Hence, under PSS, the expected
value is “updated” at every scheduling step.

3.2 Chunk Size

Under GSS, at a given scheduling step, the chunk size (denoted by Λ) is deter-
mined as follows:

Λ =
⌈
WR

P

⌉
(2)

where, WR is the number of remaining iterations. However, as discussed in [6],
the above may result in allocation of too much work to early chunks; specifically,
two-thirds of the work is assigned to first P chunks in case of identical proces-
sors. It has been shown that 50% of the total number of iterations is sufficient
to even out the finishing times of the processors [6]. Therefore, we introduce a
correction factor to “relax” the exponential decay of chunk size. Assuming iden-
tical processors, the number of iterations remaining after P allocations can be
approximated as (1 − 1

ηP )PWR, where η is the correction factor and P is the
number of processors. From the above, η must satisfy the following:

lim
P→∞

(
1 − 1

ηP

)P

= 0.5

Therefore, η = 1.5. The modified formula for the function Λ is as follows:

Λ =
⌈

WR

1.5 P

⌉
(3)
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Algorithm 1. Probabilistic Self-Scheduling

Input: A DOALL loop with N iterations and P processors.

Output : A near-optimal dynamic schedule w.r.t. load balance amongst the different
processors and schedule length

WR ← N

/* Generate the schedule (assuming implicit loop coalescing [10]1) */

Let Pidle ⊆ P be a set of idle processors at any given scheduling step

repeat
if |Pidle| ! = 0 then

Determine E[P ]
for all pi ∈ Pidle do

/* Compute the chunk size */

Λ = max Wmin,
WR

1.5E[P ]
(5)

Compute index range for each processor

Allocate the iterations corresponding to index range to pi

end for
end if

WR ← WR − |Pidle| × Λ

until WR > 0

where, Wmin is the minimum chunk size (pre-specified by the user).

Based on our discussion in the previous subsection, we adapt Equation 3 for
multiprogramming systems as follows:

Λ =
⌈

WR

1.5 E[P ]

⌉
(4)

So far, the chunk size is computed oblivious of the variation in the number work-
load (execution time) of the different iterations. To account for this, Equation 4
can be further refined as proposed in [9]. A detailed discussion of an integrated
approach is beyond the scope of the paper.

3.3 The Algorithm

In this section we present a formal description of the algorithm for PSS. At each
scheduling step, Algorithm 1 first determines the expected number of available
processors (refer to subsection 3.1). Subsequently, it determines the chunk size
Λ (given by Equation 5), i.e., the number of iterations to be allocated to an idle
processor pi. Next, it determines the range of the iterations to be mapped to
processor and maps the corresponding iterations on to processor pi. Note that
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PSS is an online algorithm as the chunk size is determined at run-time based on
WR and E[P ].

4 Experiments

We obtained traces of processor availability on a real multiprogramming system
with 15 nodes (44 CPUs) (http://www.gradea.uci.edu). Also, we extracted
several kernels (DOALL loops L1, L2, . . . , L10) from SPEC OMP 2001M [11] and
other scientific applications such as LAMMPS [12] and DAKOTA [13]. We used
the above two as inputs to our simulator [14] to compare the performance of
PSS with adaptive self-tuning scheduling [15] (referred to as HLS in the rest
of the paper). For consistency purposes (w.r.t. the task granularity), we only
consider the “upper algorithm” of HLS which does scheduling at the iteration
level. HLS samples the performance of a number of self-scheduling techniques,
such as guided self-scheduling, factoring, trapezoidal self-scheduling et cetera,
at runtime to determine the best scheme for each loop in a given application
program. Thus, HLS is in essence the best of all the self-scheduling techniques
proposed so far. Due to this, we demonstrate the effectiveness of our approach
over HLS only.

4.1 Results

We conducted two sets of experiments: (i) First, we evaluated the effectiveness
of our approach and compare it with HLS for a small multiprogramming system
(http://www.gradea.uci.edu) with 15 nodes (44 CPUs); (ii) Second, assuming
random processor availability, we evaluated the effectiveness of PSS for number
of processors — 2, 068 as in the Bigben [16] and 10, 240 processors such as in
the Columbia supercomputer [17]. Note that the applicability of our approach
is not restricted to any particular processor configuration.
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Fig. 3. a) Number of synchronization points for the different kernels; b) % Reduction
in synchronization

1 Loop coalescing transforms multiply nested DOALL loops into singly nested loops.
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Fig. 4. % Reduction in synchronization (w.r.t. HLS) on systems with 2, 068 and 10, 240
processors

Figure 3 presents a performance (number of synchronization points) compari-
son of PSS with HLS. In order to minimize the effect of uneven start times of the
processors, the number of synchronization points required was computed as an
average of 10 simulation runs. We observe that PSS reduces the synchronization
overhead by a maximum of 46.67% and by 31.67% on an average. The decrease
in synchronization directly increases performance at the application level. The
better allocation of the processors will also tend to increase the performance
at the system level. The latter can be attributed to the reduced contention for
accessing the interconnection network which yields higher throughput.

Next, we evaluated the performance of PSS for large parallel systems, such
as the Bigben [16] and the Columbia supercomputer [17]. Since we did not have
processors availability traces for such systems, we simulated the same using
a random number generator, as in [5]. Figure 4 presents the results for the
performance (% reduction in synchronization) of PSS w.r.t. HLS for 2, 068 and
10, 240 processors. From the figure, we see that PSS reduces synchronization
overhead by a maximum of 29.86% and 22.55% for a system consisting of 2, 068
and 10, 240 processors respectively and by 22.54% and 17.14% on an average
respectively. In case of heavy workloads (i.e., when there are a large number
of jobs of other users running on the system) PSS can potentially yield higher
reduction in the synchronization overhead. This can be explained as follows: in
such cases the expected number of available processors is small which results
in large chunk sizes, see Equation 4. This is in turn leads to reduction in the
synchronization overhead.

5 Previous Work

Early work on scheduling for multiprogrammed parallel systems addressed prob-
lems such as the effect of program concurrency on the throughput of batch
processing systems [18,19]. Later, Ousterhout proposed co-scheduling, where
groups of cooperating processes are assigned processors at the same time [20].
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In order to facilitate sharing of the multiprocessor system amongst several groups
of processors, a group of cooperating processes would execute on the processors
in time-multiplexed fashion. Rommel et al. analyzed the processor sharing disci-
pline in context of parallel jobs running on uniprocessor systems [21]. Approaches
for multiprogramming distributed memory systems are discussed in [22,23]. Poli-
cies for processor allocation in multiprogrammed environments are discussed in
[24,25]. Program characterization and performance evaluation of scheduling al-
gorithms in multiprogrammed systems is discussed in [26,27,28].

Probabilistic scheduling approaches have been proposed in several different
fields of research. In [29], Chandy and Reynolds proposed an approach for
scheduling partially ordered tasks with probabilistic execution times. Bruno and
Downey studied the probabilistic bounds on list scheduling in [30]. Tongsima et
al. [31] proposed confidence-based probabilistic scheduling of data-flow graphs.
In [32], Som et al. presented a probabilistic event scheduling policy for optimistic
parallel discrete event simulation. Burns et al. [33] proposed a scheduling policy
based on probabilistic guarantees for fault-tolerant real-time systems. In [34],
Fujita and Zhou proposed a multiprocessor scheduling problem with probabilis-
tic execution costs. Li and Pan presented a probabilistic analysis of scheduling
precedence constrained parallel tasks on multicomputers with contiguous proces-
sor allocation [35]. Moulin [36] proposed a probabilistic approach for split-proof2

scheduling of parallel jobs to ensure fairness between the different users. Özsoy
[37] investigated the effect of coordinated splitting by several users and pro-
posed that the uniform rule — given n jobs, choose each ordering of the n jobs
(for scheduling) with an equal probability of 1/n! — is the only rule immnue
to coordinated splitting. Recently, Glatard et al. [38] proposed a probabilistic
approach for job partitioning and scheduling on a grid infrastructures. The prob-
lem addressed in each of the aforementioned works is orthogonal to the problem
addressed in this paper (load balancing between the different processors). Fur-
thermore, the techniques proposed in prior work assume that a “fixed” number
of processors are available for scheduling each job. This assumption is not repre-
sentative of the multiprogrammed systems thereby restricting their applicability.

6 Conclusion

In this paper we presented an algorithm for self-scheduling of parallel tasks in
multiprogrammed systems. The key characteristic of our approach is the dy-
namic adaptation of the chunk size based on the variation in the number of
available processors. The approach achieves dual objectives: (i) it achieves load
balance between different processors; and (ii) reduces the synchronization over-
head by reducing the number of allocations points. As future work, we would
like to extend our approach to address other issues such as minimizing maximum
tardiness.

2 Under splitting, a user breaks down his job into multiple smaller jobs under different
aliases. This can potentially reduce the expected wait time if the shortest jobs are
served first.
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Abstract. Extensive use of multi-threaded applications that run on SMP mac-
hines, justifies modifications in thread scheduling algorithms to consider 
threads’ characteristics in order to improve performance. Current schedulers 
(e.g. in Linux, AIX) avoid migrating tasks between CPUs unless absolutely 
necessary. Unwarranted data cache misses occur when tasks that share data run 
on different CPUs, or are far apart time-wise on the same CPU. This work pre-
sents an extension to the Linux scheduler that exploits inter-task data relations 
to reduce data cache misses in multi-threaded applications running on SMP 
platforms, thus improving runtime, memory throughput, and energy consumpt-
ion. Our approach schedules the tasks to the CPU that holds the relevant data 
rather than to the one with highest affinity. We observed improvements in CPU 
time and throughput on several benchmarks. For the Chat benchmark, the im-
provement in CPU time and cache misses is over 30% on average. 

1   Introduction 

The demand for greater computing capacity has lead to an increased use of multi-
processor machines. Symmetric multi-processing (SMP) is a specific implementation 
of multiprocessing in which multiple CPUs are physically connected via a common 
high-speed bus and share resources such as memory, peripherals, and OS. With the 
rise in the number of parallel multi-threaded applications, the popularity of SMP has 
increased as well because it provides a way to utilize the application level parallelism 
for performance gain. 

Schedulers in many operating systems, such as Linux, UNIX and AIX, implement 
variations on processor affinity thread (task) scheduling. The observation behind this 
choice is the desire to reuse data (and instructions) remaining in the processor's cache 
from a previous dispatch of the thread. We observed that in SMP machines unneces-
sary cache misses occur when tasks that share data run on different CPUs. 

Several studies have examined the affinity of a task to a processor based on how 
fast a task can run on a processor in heterogeneous processor environments [4] [7] 
[15]. Those studies provide a variety of algorithms for different timing metrics and 
conditions for scheduling tasks to CPUs. Another type of processor affinity looks at 
the resources bound to processors [8] [15]. These studies attempt to optimize a certain 
metric under constraints, e.g. the task must execute on a processor that has access to 
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the required resource. Another type, which has received far less attention, is based on 
tasks’ affinity to cache contents, i.e., data affinity. The difficulty in utilizing such af-
finity is in its dynamic nature. Our work suggests and measures new methods that 
produce scheduling based on data affinity information. 

The potential for performance improvements from exploiting data affinity is dis-
puted. Squillante's theoretical work and simulations [14] have exhibited promising po-
tential. Conversely, Gupta [6] in his simulations and Vaswani [12] in his measure-
ments and tests have concluded that exploiting data affinity has a negligible effect for 
multi-threaded applications. These results should be rethought in view of architectural 
advances and the ever-growing use of multi-threading in today’s applications. 

We found that most applications can benefit from data affinity, regardless of the 
pessimistic claims mentioned above. Applications consisting of long-living, fre-
quently synchronizing, and memory-intensive threads benefit the most. Moreover, the 
steady growth in cache sizes implies that a large portion of a task's data will reside in 
processor's cache, allowing optimizations to ignore the exact data access patterns of 
threads, thus simplifying data affinity based optimizations. Furthermore, the increase 
in the relative cost of cache misses [1] makes optimizations that reduce them, such as 
ours, attractive. In addition, the likelihood that the instructions and data remain in the 
cache between consecutive dispatching decreases as the number of threads in the sys-
tem grows; this is a problem which can be alleviated by improving data affinity. Our 
scheme, as opposed to CPU affinity, maintains cache hotness within an époque by 
batching together threads that share data. However, data affinity may introduce addi-
tional thread preemption or migration that should be carefully traded-off with the ex-
tra cache misses contributed by CPU affinity.  

We propose an algorithm that endeavors reduction of data cache misses by apply-
ing a paradigm whose essence is ‘run the task on the processor holding the currently 
required data’, as opposed to CPU affinity. This paradigm ignores the processor on 
which the task previously ran and focuses on what data it is about to work on and its 
location. Furthermore, our approach batches together tasks that use the same data and 
runs them in succession to maximize cache hotness utilization. The scheduler main-
tains information on data fragments (DF) shared by multiple tasks. A newly imple-
mented syscall provides DF hints at strategic locations. Hints are generated by the 
compiler, the user, or potentially by the scheduler. A DF can be a set of variables, 
parts of arrays, etc. Based on available hints, the scheduler dynamically batches to-
gether ready-to-run tasks according to their current DF. Each batch is assigned a CPU 
and its tasks run in succession to minimize data cache misses. When a task accesses a 
different DF it is migrated to the appropriate batch. The load balancer attempts to pre-
serve batches during migration. 

We formally defined our optimization problem and implemented our scheduling 
algorithm in the Linux kernel version 2.6. Experiments were conducted on a few 
benchmarks. The results are very encouraging; cache misses were reduced by up to an 
order of magnitude on several tests, throughput in benchmarks such as the Chat 
benchmark [16] doubled in some cases and the total application runtime and cache 
misses were reduced on most tests. 
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2   Model 

The scheduler of an OS handles the lists of running, waiting, and blocked threads. Its 
responsibilities include scheduling threads onto CPUs, determining their execution 
order and load balancing the system. In this section we present a system model and 
use it to describe how threads are dynamically mapped for execution, thereby allow-
ing us to identify sources of overhead incurred by threads contending on the data 
cache. 

2.1   Hardware Model 

Our model of an SMP machine consists of processors and caches. 
 
 
 
 
 
 
 
 
 

Fig. 1. SMP Architecture 

For simplicity, the following assumptions are made on the model: 

• Each processor has a single cache and all caches are of equal size. 
• The hardware’s “snoopy protocol” is ‘write-invalidate’. 
• The cache can contain all the data for the present run of a thread. 

The SMP hardware utilizes some variation of a “snoopy protocol” in order to keep 
the data in caches coherent. Common policies are: Write-invalidate protocols that al-
low multiple readers, but only one writer at a time. Every write to a shared cache line 
(block) must be preceded by the invalidation of all other copies of the same line. Lo-
cal writes to exclusive lines are cheap. Write-update/(broadcast) schemes follow a 
quite an opposite approach. The word to be written to a shared line is distributed to all 
others, and caches containing that block can update it, thus preventing the stale state. 

2.2   System Model 

Threads use the machine resources on a need basis. The threads' running order and 
run time on each époque depend on their resource usage. Once a thread is selected for 
execution on some CPU, it can use all its resources (e.g. memory, caches and bus). 
The scheduling process controls when and on which CPU the thread will execute. 

The following notations are used: 

• Each cache is divided into k lines, which can be individually filled, whereas the 
write back to memory is done for the whole cache by the flush operation. 
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• Time to fill a cache line is tr and tw to write it. Tr and Tw are for whole cache. 
• The execution time of a single thread v is ex(v). 
• Using a cache takes one of the following four forms: 

Read Write Description 

tr = 0 tw = 0 
No writes were done by the previous thread thus cache 
is not dirty, and the needed data is already in cache. 

l·tr tw = 0 
l needed data lines are not present in memory; reading 
the l lines takes l·tr time units; no writes are performed. 

tr = 0 j·tw 
j data cache lines are dirty and flushing them back 
to memory takes j·tw time units. Needed data is in cache. 

l·tr j·tw 
The thread needs to fill the cache with l lines of 
data (l·tr), and flush changed data requiring write (j·tw). 

The following example demonstrates how the cache influences scheduling results. 
To simplify the example, the following assumptions are used: 

• The whole data cache is flushed if the new thread uses different data fragment 
• During execution the thread utilizes all the cache attached to the CPU. 
• Each thread uses a single data fragment. 

Example. Assume a cache with a single cache line. Let t0 be the time in which thread 
v is mapped to processor P with cache CP. The execution of v can start at t1 = t0 + Tr 
when the required data is read to cache, and end at t2 = t1 + ex(v) + Tw. In our 
example: 

• Threads set, TH = {v0, v1, v2, v3, v4}, ex(vn) = 1, 0  n  4, Tr = Tw = 4 
• Number of processors (P) = number of caches (C) = 2 

The following constraints are given for the whole run of the application: 

− v2, v3 and v0 use the same data fragment – DF1. 
− v1 and v4 use the same data fragment - DF2 

Threads’ story: The program starts with thread v0 running. It spawns four addi-
tional threads v1 – v4 and finishes. In a CPU affinity based scheduler, by default v1 – 
v4 are scheduled to run on the same CPU as their parent, v0. Assume v0 ran on P1. 
Since having all four remaining threads run on P1 causes imbalance, the load balancer 
will move two threads to P2. Two possible scheduling scenarios are presented in  
Figures 2 and 3. 

As can be seen from the figures below, not having to read the data for threads v2, v3 
and v4 decreases the total run time from 22 time units, to only 14! Next section pre-
sents a scheduling optimization problem that integrates the parameters in our model. 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
P1 Tr(v0) ex(v0) Tr(v1) ex(v1) Tw(v1) Tr(v2) ex(v2) Tw(v2) 
P2      Tr(v3) ex(v3) Tw(v3) Tr(v4) ex(v4) Tw(v4) 

Fig. 2. Pure CPU affinity based scheduling 
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 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
P1 Tr(v0) ex(v0) ex(v2) ex(v3) Tw(v3)           
P2      Tr(v1) ex(v1) ex(v4) Tw(v4)       

Fig. 3. Data affinity based scheduling following the constraints on data sharing 

3   Scheduling to Reduce Cache Miss Penalty 

Assume a set { }1 2, ,..., nV v v v= of currently running tasks to schedule. The number of 

CPUs available to the scheduler is denoted by m. Since, in our model, every CPU has 
its own cache, m is also the number of caches. DF(vi) is the data fragment used by 
vi. ( , )i jf v v is an asymmetric penalty function for the context switch from vi to vj. Its 

characteristics, in our model, are defined below. l is the number of cache lines read by 
vj, φ  denotes an empty CPU and the times tr and Tw are as defined in Section 2.2. 
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To improve system throughput we seek to minimize the penalty induced by the 
context switches between the tasks of V on m CPUs, based on the data fragment they 
use. We define XW to be the set of all permutations over a subsetW V⊆  and 

let Ww X∈ . ( )F w , the penalty of permutation w is defined by:
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of V into m equal-sized subsets is denoted by ( )VΠ , where each partition in this col-

lection is of size k
m

n =  (switching to padding task costs 0). Given a parti-

tion ( )m vS ∈ Π , the minimal penalty for scheduling the partition is: 
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Solving equation T when the system’s state changes, is impractical. Next we con-
sider a special simplified case where during a thread switch all the cache contents are 
replaced if the new thread uses a different data fragment. The assumptions previously 
made still hold; mainly that each task uses exactly one DF and that fragment fits pre-
cisely into a processor's cache. In the simplified penalty function g we pay a price 
only when switching between tasks that use different data fragments. 
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An optimal algorithm for a single CPU would be: Go over all ready threads and put 
each thread in the bin (batch) corresponding to the DF that it uses (d bins), and then 
schedule the bins in arbitrary order. Changing currently running bin is done only after 
all tasks in the bin finished their quota. The runtime of the algorithm on a set of n 
tasks is O(n). Adding and removing a task to the ready list can be performed in O(1). 

For multiple CPUs an additional step for distributing the bins between CPUs is 
added after partitioning the threads into bins. This general partitioning problem is NP-
complete. However, based on the dynamic programming pseudo-polynomial parti-
tioning by Cieliebak et al. [17] for m=O(1) CPUs our algorithm will run in 
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4   Data Affinity Based Algorithm 

Our scheduler implementation is an enhancement of the Linux 2.6.x scheduler. The 
Linux scheduler allocates a time slice to each thread/task in the system. An époque, 
i.e. the time it takes for all tasks to get a chance to run, may vary due to the many heu-
ristics utilized. Tasks that spend much of their time submitting and waiting on I/O re-
quests (I/O bound) have their time slice enlarged. Tasks that tend to run until pre-
empted, spending most time executing code (CPU bound) receive time slice penalties. 

The scheduler keeps the tasks in run-queues. A run-queue is a list of runnable tasks 
which may run in arbitrary order. There exists one list per processor and each task can 
be on exactly one. It contains two priority arrays; an active and an expired array. Each 
array contains one queue of runnable tasks per priority level. The 2.6.x scheduler can 
locate the next highest priority task and pull it off the priority list in constant time. 

The scheduler is called explicitly by kernel code that is about to yield CPU and 
also whenever a task is to be preempted. The scheduler performs the following steps: 
it recalculates the time slice of the tasks that ended theirs and moves them to the ex-
pired array, determines the next highest priority task in the active array and switches 
to it. 

The load balancer complements the scheduler. It ensures that the run-queues are 
balanced by moving tasks from the busiest run-queue to the relatively under utilized 
one that invoked it. It is invoked when a run-queue is idle and also via timer interrupt. 
An imbalanced run-queue contains 25% more tasks than the one on whose behalf the 
load balancer runs. From the tasks allowed to migrate, the load balancer prefers ex-
pired ones, since these are probably cache cold. It also favors high priority tasks be-
cause of their importance. Tasks are moved as long as an imbalance still exists. 

4.1   The Implemented Algorithm  

The basic idea is to schedule the current set of tasks in a way that will minimize cache 
misses, thus resulting in an overall reduction of execution time. This is done by sup-
plying additional information to the scheduler. The algorithm’s goal is as follows: 
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• Tasks that use the same data fragments (DFs) at some point in time are mapped 
to the same CPU. If a task accesses multiple DFs, it may be reassigned to a dif-
ferent CPU each time it changes DFs; this is done before actually accessing the 
data (i.e. yield and reschedule). 

The mapping of a task to a processor (run-queue) occurs in the following cases: 
when it is first created (parent's processor is the default), whenever the load balancer 
is called, and when it returns from a wait queue. We would also like a mapping to oc-
cur when the task changes DFs. From the initial mapping onward until (if at all) it is 
migrated, the task’s time slice is calculated according to the existing Linux policies.  

The theoretic formulation in the previous section provides optimal scheduling 
when all information is known a priori. Unfortunately, real-life systems are dynamic 
in nature; therefore, there is a need to devise heuristics that use dynamically available 
info. 

The information about which DF each task is using at a given time is passed from 
user space to the scheduler via a syscall. The syscall is called with the application ID, 
current (if any) and next DF IDs when a task is created and whenever it changes DFs.  

Our scheduler works online, holding a list of application descriptors, one for each 
application that provides DF information. Each descriptor contains a map between 
DFs and <CPU, priority group> pairs. At any point in time all the tasks in a priority 
group use the same DF and run in succession on the same CPU. The load balancer is 
used to rectify 'mistakes' made when in the initial state. 

The algorithm consists of several procedures that decide what to do in the follow-
ing situations: a new DF is encountered, a new task enters the system, a task switches 
DFs, a task returns from a wait queue, a task dies, and when the system is imbalanced. 
We next describe those procedures as applied to a single application task. 

• When a task arrives with a new DF, the load is verified for all CPUs, in terms of 
number of currently running tasks. Since the tasks' time-slices are similar in 
length, this constitutes a good measure for selecting the least loaded CPU.  

• Upon arrival of a task with known DF, the scheduler locates its entry in the ap-
plication map, moves it to the DF's CPU (if it is not there already), and places it 
in the priority group for that DF. 

• When a task changes DFs, the scheduler removes it from its old priority group, 
preempting it if necessary (this may actually be cheaper than the cache misses), 
then treats it as if a new thread has arrived with a new or known DF. 

• Upon return from a wait queue, a task’s current DF entry is looked up in the ap-
plication map. From there on, as before, it is handled based on whether or not its 
current DF is known. 

• When a task dies (and when changing DFs), a counter in the DF's structure is 
updated. When it reaches 0, the priority group is flagged as 'may be removed'. 

• When the load balancer is called, it checks if the run-queues are imbalanced. If 
tasks need to be moved, the scheduler tries to identify whether the source of the 
imbalance is in the managed or unmanaged tasks. When managed threads cause 
the imbalance, an attempt is made to move an entire priority group. If this is im-
possible, for example because a group’s task is running, the load balancer re-
verts to unmanaged threads. In rare cases, when the problem is sustained, sepa-
rating a priority group is allowed. 
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5   Experimental Results 

To assess the performance of our scheduler we tested a custom made benchmark and 
a few known multi-threaded benchmarks that utilize shared data; achieving significant 
improvement on the well known Chat benchmark, and a more modest gain on the 
Hack benchmark, which uses processes. The custom benchmark tests scenarios that 
are not exploited by the other benchmarks. Syscalls were added manually to the 
benchmarks. We discuss the results and provide reasons for the large improvements.  

All benchmarks were run on an Intel Xeon, dual processor at 3.2GHz, hyper 
threaded with L1 cache of 8KB, L2 of 256KB, L3 of 2MB and main memory of 1GB. 
The hyper-threading ability was turned off for most tests thus creating a 2-way ma-
chine. All tests were run using the 2.6.4 Linux distribution of the Linux kernel. 

5.1   Chat Benchmark 

The Chat benchmark (http://lbs.sourceforge.net) simulates chat rooms with multiple 
users exchanging messages through TCP sockets. It is based on the Volano Java 
benchmark that was used in prior papers to show limitations of the 2.4 scheduler [9]. 

A room consists of 20 users each sending 100 byte messages to the server, which 
broadcasts them to every other user in the room. Four threads are created per user (80 
per room) two on the client side and two on the server side. 100 messages sent by a 
user translate to 20*100*(1+19)=40,000 transmitted messages per room. At the end of 
a run, the client side reports the total time and the throughput in messages per second. 
A lower run-time and higher throughput indicate a more efficient kernel scheduler. 

The Chat benchmark was tested with all pairs of parameters from these sets: rooms = 
{10, 20, and 30} and messages per room = {500, 1000, and 1500}. The results are 
displayed in Table 1 and represent the average over five runs for each pair. 

Table 1 demonstrates that the total gain increases as the number of messages 
grows. The results for some combinations are less than half the original scheduler 
time with twice the throughput! Another statistic worth mentioning is that the stan-
dard deviation over the five runs of each combination is considerably smaller for the 
new algorithm. 

We further investigated the pairs that exhibited the largest improvement using 
Oprofile to count L2 cache misses. As can be seen from Table 2, there is a strong cor-
relation between the number of cache misses and the runtime/throughput. 

Table 1. Chat benchmark results. Number of messages ranges from 2 million for the 10 rooms 
with 500 messages combination to 18 million for 30 rooms and 1500 messages per room 

Room Number 10 20 30 
Message Number 500 1000 1500 500 1000 1500 500 1000 1500 

Vanilla 5.794 15.303 26.86 11.01 30.7 55.01 16.83 38.93 72.0 Avg. Time 
New 4.954 10.935 15.85 7.89 16.85 24.6 10.81 22.4 35.2 

Vanilla 352281 263621 67594 370625 121874 64336 103133 87981 11559 Avg. Through-
put New 420382 373323 108010 509062 221189 139266 158516 152722 23413 
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Table 2. Chat benchmark Oprofile results averaged over 5 runs; L2 misses divided by 3000 

Room \ Message 10, 1500 20, 1500 30, 1500
Vanilla 49 88 133 Client side 

New 16 34 45 

Vanilla 100 125 206 Server  side 
New 43 58 68 

5.2   Custom Benchmark 

Our benchmark consists of a small, highly configurable, application whose parame-
ters include: number of threads (using pthread), number of distinct data fragments 
(DF), size of those DF, and amount of work done by the threads on the common data. 
Threads are started in a loop and never sleep voluntarily. We used the Oprofile sam-
pling tool to count the L2 and L3 cache misses (L1 ignored because of its size). L3 
may be larger than L2 due to unused pre-fetch into L3. 

Table 3. The effect of the number of threads on runtime and cache misses. All other parameters 
are unchanged; iteration number = 10x106; DF number = 4; Oprofile numbers divided by 3000. 

Thread Number 8 32 128 
DF size 1000 8000 20000 1000 8000 20000 1000 8000 20000 

Vanilla 30.63 31.71 32.18 123.7 128.7 129.5 511 510 509 Avg. Run-
time New 27.84 27.56 27.44 113.5 110.5 110 439 442 439 

Vanilla 11236 6844 8509 72467 50232 48096 334290 247784 219611 Avg. L2 
Miss New 1610 305 95 9934 2445 899 49347 9630 3491 

Vanilla 11247 11648 11015 78941 63422 48697 367062 272297 241738 Avg. L3 
Miss New 1611 334 70 12467 2389 821 48952 9394 3125 

Table 4. The effect of the number of iterations on runtime and cache misses. All other 
parameters are unchanged; DF number = 4; DF size = 8000; Oprofile numbers divided by 3000. 

Iterations Number 1x106
 10x106 100x106 

Thread Number 8 32 128 8 32 128 8 32 

Vanilla 2.94 12.5 51.11 31.71 128.7 510 312 1283 Avg. Runtime
New 2.75 11.1 44.2 27.56 110.5 442 277 1101 

Vanilla 630 5572 25781 6844 50232 247784 2537530 501624 Avg. L2 Miss
New 31 246 965 305 2445 9630 96430 24230 

Vanilla 771 5555 27132 11648 63422 272297 2732690 634042 Avg. L3 Miss
New 32 240 955 333 2389 9394 94145 23910 

The results in Table 3 emphasize the fact that if a system is not conscious of data 
affinity, unnecessary CPU cycles are lost in moving data from one CPU cache to an-
other or during cache replacement. Many scheduling cycles are saved in our method. 
The results in Table 4 are obvious. The longer the threads run repeatedly accessing 
the same DF access, even a tiny gain gradually increases to noticeable size. 
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6   Related Work and Future Enhancements 

Processor affinity scheduling has been extensively studied. Squillante [14] and Gupta 
[6] showed its potential through simulations on several affinity-scheduling algorithms 
and measuring metrics. Vaswani [12] focused on quantifying the effect of processor 
reallocation on performance. Devarakonda [5] revealed a number of problems related 
to exploiting cache affinity in Unix-like systems. 

Affinity based on how fast a task can run on a processor in a heterogeneous proc-
essor environment has been studied in [4] [7] [15]. Affinity that looks at the resources 
that are bound to a processor has been studied in [8] [15]. Affinity based on cache 
contents, closest to our work, was studied by Torrellas et al [3]. 

Linux has been widely used for scheduler experiments, especially in version 2.4 
trying to deal with the queue lock contention bottleneck. For example, [10] proposed 
the multi-queue scheduler to enhance scalability on large scale SMP machines. 
Molloy et al. [11] proposed the ELSC scheduler. There was also Priority Level 
Scheduler (PLS). Yamamura et al [13] tackled the cache miss problem occurring in 
kernel code during the walk over the task structures held in a CPU’s run-queue. 

For practical usage, automatic insertion of the syscall by the compiler is necessary. 
Further study of the tradeoff between task preemption and the saved cache misses, 
and the tradeoff between DF sizes vs. the number of data fragments are needed. 
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Abstract. Standard compilers are incapable of fully harnessing the
enormous performance potential of Blue Gene systems. To reach the
leading position in the Top500 supercomputing list, IBM had to put
considerable effort into coding and tuning a limited range of low-level nu-
merical kernel routines by hand. In this paper the Vienna MAP compiler
is presented, which particularly targets signal transform codes ubiquitous
in compute-intensive scientific applications. Compiling Fftw code, MAP
reaches as much as 80% of the optimum performance of Blue Gene sys-
tems. In an application code MAP enabled a sustained performance of
60 Tflop/s to be reached on BlueGene/L.

1 Introduction

Blue Gene Servers. Top-performing supercomputers are usually based on the
fastest processors available. In their latest hardware development, IBM went a
radically different way, building Blue Gene servers [3] on an embedded-systems
processor with low-power consumption, the IBM PowerPC 440.

To support scientific computing applications efficiently, IBM added a func-
tional unit for double-precision scalar and 2-way SIMD floating-point arithmetic,
extending the existing processor design by an auxiliary processor unit, yielding
the PowerPC 440 FP2.

One node of a Blue Gene server comprises two PowerPC 440 FP2 proces-
sors (one dedicated to communication, the other one to computation), shared
memory, and high-speed network interconnect hardware. The biggest installa-
tion built to date—BlueGene/L—is made up of the unprecedented number of
65,536 nodes integrated into a single distributed memory system. As of Novem-
ber 2005, Blue Gene servers take three out of the ten top positions on the Top500
supercomputing list, including the number one and two.

Automatic Performance Tuning Software. State-of-the-art numerical li-
braries in the field of linear algebra and signal processing are not based upon
predetermined and fixed algorithms for performing the requested calculation,
but utilize automatic performance tuning [4] to search the space of different
algorithms and implementations for members of this set showing optimal run-
time behavior. Rather than relying on formal performance models (covering

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 279–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the utilization of the memory hierarchy, arithmetic operation count, instruction
count, calling overhead of a procedure, and other relevant properties of the tar-
get architecture), they take actual runtime measurements obtained in numerical
experiments to guide the process of automatic self-adaptation.

Automatic performance tuning systems often use automatically generated ker-
nels that are long sequences of straight line code. For achieving high performance,
these libraries heavily rely on the quality of the C compiler.

Experiments have uncovered a number of shortcomings of general purpose
compilers when applying them to long, automatically generated straight line
code, which opens up a performance gap between code generated by general
purpose compilers and assembly code written by a skilled hand-coder.

The MAP Tool Chain. The Vienna MAP compiler tool chain aims at closing
this performance gap, addressing domain-specific straight line codes produced
by special-purpose program generators like genfft [8].

This paper describes a version of the MAP compiler targeting IBM’s Blue
Gene systems. The MAP compiler comprises a set of generic components ar-
ranged in the form of an open tool chain, communicating through a very narrow
human-readable interface, which allows for (i) easy conservation of high-level in-
formation by means of annotation, (ii) introspection and injection of code, and
(iii) easy experimentation with different arrangements of compilation stages.

Synopsis. Section 2 presents and discusses important properties of the target
processor. Section 3 describes a 2-way single-instruction multiple-data (SIMD)
vectorizer extracting parallelism out of basic blocks, Section 4 a versatile peep-
hole optimizer for utilizing fused multiply-add (FMA) instructions, and Section 5
a Blue Gene specific backend that optimizes effective address calculations.

New contributions presented in this paper are improvements of (i) the vec-
torization method and of (ii) address-generation in the backend.

Section 6 demonstrates the impressive effects of the presented components and
techniques on the performance of Fftw [9], the de-facto standard for the com-
putation of discrete Fourier transforms (DFTs), running on Blue Gene servers.

2 The Blue Gene Processor

IBM’s Blue Gene processor, the PowerPC 440 FP2, is a low-frequency (700 MHz)
32 bit processor with 32 integer registers, 32 SIMD floating-point registers, a
short (7-stage) pipeline, large split L1 caches (32 kB for instructions, 32 kB
for data), a fast non-pipelined multiplier, and support for 2-way super-scalar
out-of-order execution. Integer registers are 32 bit, SIMD registers 128 bit wide.

Although the processor is a dual-issue design, not all conceivable pairs of in-
structions may be executed in parallel. Scalar arithmetic, SIMD data-reordering,
and SIMD arithmetic use the same functional unit, and cannot be executed in
parallel. At most one instruction per cycle may access naturally aligned memory.

The PowerPC 440 FP2 supports scalar [17] and 2-way SIMD [2] floating-
point arithmetic, both operating on the same 2-way SIMD register file, with
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scalar instructions working on the lower half of SIMD registers. Floating-point
addition, subtraction, and multiplication are all fully pipelined, and available in
double precision only. Support for single-precision floating-point data is offered
for data loads/stores and by explicit rounding operations. Both for the scalar
and the SIMD case, FMAs are available, which doubles the peak performance
and improves the accuracy of the results by avoiding intermediate rounding.

FP2 offers a huge collection of vertical (inter-operand style) SIMD FMAs,
including instructions that (i) perform different operations on different parts of
the SIMD registers (e. g., addsub), (ii) use one part of a register as input for
both operations, and (iii) combine a swap with an arithmetic operation.

Native support for horizontal (intra-operand style) SIMD is, however, com-
pletely missing in FP2. Emulating horizontal SIMD operations with a sequence
of vertical and data reordering operations is considerably more expensive than
on other SIMD ISAs (Tables 1 and 2).

Table 1. Instruction Count for Horizontal (H) and Vertical (V) Addition and Sub-
traction Operations. Uniform instructions perform two additions or two subtractions,
while mixed instructions perform an addition and a subtraction.

op 3DNow! Ext. 3DNow! SSE2 SSE3 IA64 FP2
H / uniform 1 1 3 1 3 5
H / mixed 2 1 4 2 3 5

V / uniform 1 1 1 1 1 1
V / mixed 2 2 2 1 1 1

Table 2. Instruction Count for Data Reordering Operations. Uniform unpacks (un-
packXX) combine the lower parts of two registers, while mixed unpacks (unpackXY)
combine the lower part of one register with the upper part of another.

op 3DNow! Ext. 3DNow! SSE2 SSE3 IA64 FP2

unpackXX 1 1 1 1 1 2
unpackXY 2 2 2 2 1 2

Scalar computation can only be done in the lower half of the registers and some
data may need to be moved. Mixing scalar and SIMD code is possible, but not
at uniform cost.

The application binary interface (ABI) used in the Blue Gene environment [12]
defines approximately half the registers as callee-saved, which can be a consid-
erable disadvantage for small leaf procedures.

The PowerPC 440 FP2 lacks two important features for calculating effective
addresses efficiently. First, the PowerPC ISA does not offer a combined shift by a
constant and add instruction. Second, FP2 does not support register+immediate
forms [5] for SIMD loads/stores.
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3 The MAP Vectorizer for Blue Gene

Unlike SIMD-style vector computers, SIMD floating-point ISA extensions on
general purpose processors operate on very short vectors. As this allows ex-
pressing parallelism on a very low level, not only loop-based vectorization tech-
niques [19], but also more fine-grained ones, that extract the parallelism already
present within a basic block, can be utilized.

To get the highest possible performance, a basic block vectorizer tries to
maximally cover a scalar DAG with SIMD instructions natively supported by
the target machine.

While our approach has some similarity to existing work like [6, 13, 14], our
work is biased towards different assumptions about the class of input codes and
about the target hardware. (i) As linear transform codes are highly structured,
any divide-and-conquer based vectorization approach incurs high costs when
connecting vectorized sub-graphs. (ii) Unlike SIMD ISAs on some DSPs, SIMD
ISAs present on general purpose microprocessors do not allow scalar and SIMD
to be mixed efficiently. (iii) As numerical kernels used in automatic performance
tuning systems can be very large, finding a compromise between vectorization
runtime and code quality is a key issue. (iv) Accesses to interleaved complex
numbers naturally translate to 2-way SIMD memory instructions, which mas-
sively prunes the search space. However, for some kernels that do not have this
kind of access, e. g., real FFTs, the vectorizer has to consider all combinations
of all possible pairs of DAG inputs and DAG outputs.

Vectorization consists of two major steps, that are alternated until either the
scalar DAG is covered with SIMD instructions or failure is discovered.

First, the vectorizer combines pairs of scalar variables to SIMD variables,
ensuring that no scalar variable occurs in two SIMD variables and that the
producers of the respective variables may be joined into a (pseudo) SIMD in-
struction.

Second, as the vectorizer combines two scalar instructions to one SIMD in-
struction, it propagates the layout requirements of the inputs and outputs of the
newly extracted SIMD instruction, triggering the creation of new pairs.

Non-deterministic choice in this search process is handled by using depth-first
search with chronological backtracking.

In an attempt to prune the search tree, the vectorization engine tries to detect
failure branches early, allowing to traverse a much smaller part of the search
space without missing any relevant part.

To further restrict the search space, pairs of scalar variables that can not
occur as part of any solution are filtered out before vectorization is started.

The scalar DAG traversal order can have a profound impact both on the
solution order and on the vectorization runtime. Earlier versions of the vector-
izer [7, 15] always started at the outputs of the DAG, i. e., store instructions,
traversing the DAG in a bottom-up fashion.

To improve on this, we added a top-down traversal style and borrowed the
concept of domain variables [18] from constraint programming (CP). Domain
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variables allow the vectorizer to keep track of all pairs of scalar variables that may
be formed in the future. When traversing the scalar graph, the scalar variable
that occurs in the smallest number of pairs, is picked as the next node to be
visited (first-fail principle).

The combination of these traversal methods allows finding the optimal vec-
torization even for relatively large codes that use exclusively real arithmetic—a
class of codes notoriously hard to vectorize.

Vectorization may yield more than one solution. A branch-and-bound based
method is used to gradually find better and better solutions, until either opti-
mality is proven or a time limit is reached. Generally, finding an optimal solution
takes much less time than proving its optimality.

While all previous prototypes of the vectorizer have been specifically adapted
to exactly one target architecture, the new version uniformly supports all target
architectures taking target-specific data (as presented in Table 1) as input.

4 The MAP Optimizer for Blue Gene

The MAP optimizer only focuses on improving local structures (peepholes),
rewriting sequences of instructions logically connected by data dependencies.
Because of the locality of the approach, the global structure of the code, deter-
mined by the vectorizer, remains largely unchanged.

Implemented as a committed-choice term rewriting system, the optimizer is
based on one or more sets of rewriting rules, each with a different priority. Out of
all applicable rules, the rewriting engine picks one with the highest priority, and
uses it to substitute instructions within a peephole with a semantically equivalent
sequence of instructions. If no rule is applicable, a fixed-point is reached and the
optimization terminates.

The optimizer uses two kinds of rules working in synergy. (i) Improving rules
aim at an immediate improvement in code quality. Examples include rules for
fusing two neighboring instructions into one, or rules handling horizontal SIMD
instructions with neighboring SIMD swaps. (ii) Assisting rules do not immediate
improve the code, but rather adapt the DAG such that improving rules may
be applied. Examples include rules moving SIMD swaps or multiplications by
constants within the DAG.

Apart from commonplace compiler optimizations [16], the optimizer tries to
(i) shorten path lengths within peepholes, (ii) reduce the number of source
operands by identifying domain-specific code patterns (e. g., the butterfly-ish
code patterns typically occuring in FFT codes), and (iii) reduce the total number
of instructions, both by eliminating superfluous instructions and by hiding some
instructions in other ones, in particular by utilizing variants of SIMD FMAs.

5 The MAP Backend for Blue Gene

Unlike the two previously presented components, the MAP backend consists of
a relatively large number of parts.
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5.1 Effective Address Generation

All integer instructions in the code produced by the MAP compiler are devoted
to either fulfilling the ABI calling convention or to calculating effective addresses.

While the code for fulfilling the calling convention has a constant size (regard-
less of the actual size of the procedure to be compiled) for procedure prolog and
epilog, the code for the calculation of effective addresses may grow linearly with
the number of memory accesses in the procedure to be compiled.

Experiments have shown that the portion of the code needed for the calcu-
lation of effective addresses often has a significant negative performance impact
in case of algorithms having a high ratio of the memory access count compared
to the number of arithmetic operations. All fast algorithms for linear signal
transforms possess this property.

The IBM PowerPC 440 FP2 processor has DSP-like addressing mode limita-
tions for SIMD loads/stores, minimizing the number of integer auxiliary instruc-
tions in of particular importance.

Basic Ideas. The calculation of effective addresses of elements of variably
strided arrays (the actual stride is not known at compile time) can be done
straightforwardly by using integer multiplication instructions. However, these
instructions are expensive (low throughput, high latency) on all general purpose
processors, including the IBM PowerPC 440 FP2.

The common approach to addressing this problem is strength reduction, which
replaces complex instructions with sequences of simpler (high throughput, low
latency) instructions like integer additions, subtractions, and shifts.

Implemented Solution. Doing strength reduction in a hard-coded fashion
implies making instruction selection decisions without properly considering the
temporal context, thereby missing opportunities to (i) reuse already calculated
factors still residing in the register file and (ii) pick factors that could be benefi-
cial for some proximate address calculation to be carried out in the near future.

To produce high-quality code, the MAP backend interleaves integer instruc-
tion selection and integer register allocation, thus removing a classical compiler
optimization barrier.

Premature commitment to one particular factorization or reduction is avoided
by utilizing a blended mixture of well-established search methods, depth-first
iterative deepening (DFID) and dynamic programming (DP).

As exhaustive search for an optimal solution may not be possible for all but the
smallest codes, the backend (i) looks at reasonably sized sub-problems, (ii) solves
these sub-problems optimally, and (iii) combines the respective optima to one
solution of the original problem. The quality of this solution depends on the
amount of overlap of the sub-problems considered and on the size of these sub-
problems.

To control the amount of search performed, the backend offers a set of pa-
rameters to directly control the speed and quality of the search, allowing to
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trade compilation time for code quality, by specifying the size and the amount
of overlap of the sub-problems.

5.2 Register Allocation

The MAP backend performs register allocation for all register files holding non-
integer data in one pass, using the farthest-first policy [1, 10].

5.3 Scheduling

The MAP backend implements a set of various schedulers, covering a wide range
from domain-specific high level scheduling to target-processor specific low level
code reordering.

High Level. Two high level schedulers are part of the MAP backend. Both of
them aim at a minimization of the register pressure.

The first high level scheduler implements an FFT specific topological sort of
the computation DAG, attempting to enhance locality by minimizing variable
life-span. This scheduler is directly derived from the scheduler of genfft, the
program generator of Fftw.

The second high level scheduler performs local code reordering, trying to
further reduce the register pressure for codes exhibiting a non-regular structure,
e. g., SIMD-vectorized FFT codes.

Medium Level. The medium level scheduler reorders instructions taking la-
tencies into account, thereby increasing the register pressure. By avoiding all
dispensable movement, it preserves the original instruction order—obtained by
high level scheduling—as much as possible.

Low Level. The low level scheduler specifically addresses execution properties
of the target processor, implementing a list-scheduling algorithm that provides a
runtime estimation of a given basic block. This scheduler is based on an in-order,
super-scalar execution model of the target processor and handles both pipelined
and non-pipelined instructions (like integer multiplication) well.

Execution models incorporate information about (i) instruction latencies, (ii)
instruction throughput, (iii) issuing and decoding constraints, (iv) the mapping
of instructions to functional units, and (v) register forwarding features.

6 Performance Results

To assess the performance impact of the presented techniques on Blue Gene sys-
tems, we compiled the compute-intensive numerical kernels of Fftw 2.1.5 with
the following setups. xlc scalar uses the XL C compiler without automatic vec-
torization. xlc vect uses XL C with automatic vectorization. xlc mapvect uses the
MAP vectorizer and optimizer, producing C code with SIMD intrinsics compiled
by XL C. map vect uses the MAP vectorizer, optimizer, and backend.
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Fig. 1. Performance of Power-of-two 1D FFTs on the IBM PowerPC 440 FP2
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Fig. 2. Performance of Non-power-of-two 1D FFTs on the IBM PowerPC 440 FP2

Figs. 1 and 2 show the single-processor FFT performance achieved on Blue
Gene systems by using various compilers and settings. All performance data are
displayed in pseudo-Gflop/s, i. e., 5N logN/T .

Performance of Power-of-two Sizes. With very short vectors, calling the
FFTW framework dominates the total cost. For medium sizes (23 to 29), all
data fits into L1 cache, and the performance peaks—the MAP generated code
for length 27 has 2230 pseudo Mflop/s, as opposed to 709 pseudo Mflop/s of the
XL C compiled code. For transform lengths bigger than 210, data no longer fits
into L1 cache, and the performance falls sharply.

Performance of Non-power-of-two Sizes. The performance shown in Fig. 2
is much more uneven than in the power-of-two case, because the chosen vector
lengths have a larger number of different factors, leading to the use of many
relatively small routines.
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Effect of the Backend. We have examined the performance attributed to
the compiler backend used (xlc mapvect vs. map vect), finding that the MAP
backend produces much better code for compilation units consisting of one large
basic block, while XL C profits from being able to perform its optimizations on
units larger than one basic block, e. g., by loop unrolling.

It is noticeable that the backend does not give a significant performance gain
in the non-power-of-two case (Fig. 2). This is due to the fact that FFTW nor-
mally does not include large kernels for non-power-of-two sizes as base cases. A
comparable performance level as in the power-of-two case could be obtained if
large non-power-of-two kernels were included into the library.

Instruction Count. For all codes investigated, the MAP vectorizer and op-
timizer for Blue Gene significantly reduced the instruction count by utilizing
FP2 SIMD instructions. While the biggest part of the gain can be attributed to
vectorization, the optimizer also has its share in code quality, by utilizing FP2
specific instructions, eliminating many SIMD swaps and multiplications.

For SIMD codes, the address generation part of the backend improves the
code quality, by minimizing the number of integer instructions.

As Fftw kernels can be very large, minimizing the instruction count helps
avoid hitting L1 instruction cache capacity limits.

Superior Performance Level. In the best cases, code produced by the MAP
compiler runs at 80% of the performance that the best algorithm known in the
literature could theoretically achieve on the target hardware.

MAP-compiled Fftw codelets enabled the material science code Qbox [11] to
run with a sustained performance of 60 Tflop/s on BlueGene/L, thus reaching
the second highest performance ever achieved by an application code.

7 Conclusion

The MAP compiler tool chain covers all stages of compilation that are important
for achieving high performance in numerical software for linear signal processing
transforms.

First, the code produced by a special purpose program generator, like Fftw’s
genfft, is vectorized, seeking an optimal utilization of the 2-way SIMD floating-
point unit of IBM’s PowerPC 440 FP2 processors.

Next, the MAP optimizer tries to minimize SIMD data reordering overhead
and maximize utilization of FMAs and other FP2 specific idioms.

Finally, the code is compiled down to assembly, using (i) an optimal algorithm
for register allocation for basic blocks, (ii) several levels of scheduling, and (iii) a
clever instruction selection method for dealing with effective address generation
on a processor with DSP-like addressing mode restrictions.

Performance data gathered in experiments with Fftw by itself and in the
context of large application codes demonstrate the impressive performance—up
to 60 Tflop/s—to be obtained by using the MAP compiler tool chain.
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Abstract. Software pipelining is a classic compiler optimization that
improves the performances of inner loops on instruction-level parallel
processors. In the context of embedded computing, applications are com-
piled prior to manufacturing the system, so it is possible to invest large
amounts of time for compiler optimizations.

Traditionally, software pipelining is performed by heuristics such as
iterative modulo scheduling. Optimal software pipelining can be formu-
lated as integer linear programs, however these formulations can take
exponential time to solve. As a result, the size of loops that can be op-
timally software pipelined is quite limited.

In this article, we present the SCAN heuristic, which enables to benefit
from the integer linear programming formulations of software pipelining
even on loops of significant size. The principle of the SCAN heuristic is
to iteratively constrain the software pipelining problem until the integer
linear programming formulation is solvable in reasonable time.

We applied the SCAN heuristic to a multimedia benchmark for the
ST200 VLIW processor. We show that it almost always compute an
optimal solution for loops that are intractable by classic integer linear
programming approaches. This improves performances by up to 33.3%
over the heuristic modulo scheduling of the production ST200 compiler.

1 Introduction

In scientific and multimedia applications, most of the execution time is spent
in loops. In case of instruction-level parallel processors such as superscalar and
VLIW, instruction scheduling of inner loops can significantly increase perfor-
mances, in particular with software pipelining [1]. The mainstream software
pipelining technique is called modulo scheduling [2,3,4].

Modulo scheduling solves a 1-periodic cyclic scheduling problem with the ob-
jective of minimizing the period or initiation interval (II). This is achieved by
computing first a lower bound MinII on the II. Then cyclic scheduling is at-
tempted for increasing II values starting at MinII, until a solution is found. In
general it is NP -hard to know what is the minimum II of a modulo scheduling
problem, but modulo schedules whose II equals MinII are clearly optimal.

The modulo scheduling problem at a given II can be formulated as an in-
teger programming problem [5,6]. The formulation of Eichenberger et al. uses
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a mix of {0, 1} and of integer variables, while the formulation of Dupont-de-
Dinechin only uses {0, 1} variables (but in a larger number). We implemented
the formulation of Dupont-de-Dinechin as it is adapted from the integer linear
programming formulation of resource-constrained project scheduling [7]. Solving
such formulations enables to modulo schedule at the minimum II, an appealing
possibility in cases the compilation time is not severely constrained. However,
the time required to solve these formulations grows exponentially with the size
of the modulo scheduling problem, making classic integer linear programming
approaches intractable beyond a few tenths of instructions.

In this article, we propose a new approach for modulo scheduling that enables
to benefit from integer linear programming formulations even on problems with
a significant number of instructions. The main idea is to restrict the solution
space to the areas where the formulation can be solved in reasonable time. Here
solved means either computing a solution or proving that no solution exists. For
the integer linear programming formulations discussed above, some constants
and the number of variables depend on a parameter called the time horizon of
the loop. Although a theoretical bound exists for the time horizon, it is usually
much higher than required by an optimal solution.

The principle of our approach is to heuristically reduce the time horizon in
order to solve the formulation. The issue with this reduction is that it might
transform a feasible modulo scheduling problem into an infeasible one. Thus,
we have to explore the solution space along two parameters: performance, rep-
resented by the II; the time horizon, that must be kept small enough so the
formulation can be solved. Our approach takes advantage of an empirical knowl-
edge on the general shape of the solution space, which we deduced from a large
set of experiments. We called this approach the SCAN heuristic.

Although reducing the time horizon may eliminate all optimal solutions, our
results show that SCAN reaches the optimal performance (II equals MinII) for
most of the loops of our benchmark, including those that appeared intractable
with the original integer linear programming formulations. For the remaining
loops, we have no way to know if modulo scheduling with II = MinII is feasible,
but the II results of the SCAN heuristic are consistently close to MinII and
better than those of the modulo scheduling heuristic of the ST200 production
compiler. Overall, our approach results in improvements of up to 33.3% for the
most difficult loops as demonstrated by our experiments.

This article is organized as follows. In section 2, we present the modulo
scheduling problem and we review the integer linear programming (ILP) formu-
lation currently used by the SCAN heuristic. In section 3, we develop our findings
about the time horizon and its relations with the ILP formulation. We character-
ize the search space of the initiation interval and the time horizon values. Then
we present how the SCAN heuristic searches for the best tractable initiation
interval by adjusting the time horizon accordingly. Finally, section 4 reports the
experimental results of the SCAN heuristic on a multimedia benchmark.
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2 The Cyclic Scheduling Problem

Cyclic scheduling, also known as software pipelining in the case of instruction
scheduling, is a widely studied problem [1]. Modulo scheduling [4] is a class
of software pipelining techniques that build 1-periodic schedules. This section
introduces our notations for modulo scheduling and presents the integer linear
programming formulation of modulo scheduling we use.

2.1 Cyclic Scheduling Problem Formulation

Consider the problem of scheduling a loop with a possibly large number of it-
erations. The loop can be represented by a finite, directed multigraph G =
(I, Edep, θ, ω). The vertex set I contains the instructions of the loop body and
each instruction Ii ∈ I generates a set of instruction instances {Ik

i |k ∈ N}, one
for each iteration of the loop.

The directed edges Edep model the dependence constraints between instruc-
tions: each edge Ii−→Ij ∈ Edep is labeled with a pair (θj

i , ω
j
i ) ∈ N × N where

θj
i is the dependence latency and ωj

i the dependence distance. Such dependence
expresses the fact that the execution of Ik

i (instance of Ii at iteration k) must

start θj
i cycles before the execution of I

k+ωj
i

j (instance of Ij at iteration k +ωj
i ).

Each instruction Ii is also associated with a execution time pi and a resource
requirements vector

−→
bi of size r. The total availability of the processor resources

is also given by a vector
−→
B . Typical resources are issue width, functional units

and memory ports. Execution time of fully pipelined instructions is pi = 1.
The cyclic scheduling problem is to determine a schedule σ : I × N → N for

the instruction instances Ik
i that respects the dependence constraints:

∀Ii−→Ij ∈ Edep, ∀k ≥ 0 : σk
i + θj

i ≤ σ
k+ωj

i

j (1)

and the resource constraints: at any clock cycle, the sum of resources used cannot
be greater than the available resources

−→
B .

Among all cyclic schedules, the 1-periodic schedules are especially interesting
in instruction scheduling as they enable simple code generation. Such schedules,
also known as modulo schedules, are defined by:

∃II ∈ N, ∀Ii ∈ I,∀k ∈ N : σk
i = σ0

i + k × II (2)

The period of the schedule, usually called the initiation interval in the liter-
ature, is denoted II. This is the performance metric of modulo schedules: the
lower the initiation interval, the greater the execution throughput.

The initiation interval of any modulo schedule is limited by a lower bound
MinII defined as max(MIIRec,MIIRes) [4], where MIIRec (recurrence mini-
mum initiation interval) is related to dependence circuits and MIIRes (resource
minimum initiation interval) is related to resource uses:
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MIIRec
def
= max

C circuit in G


∑

θj
i

Ii→Ij∈C∑
ωj

i
Ii→Ij∈C

 (3)

MIIRes
def
= max

r


∑

pib
r
i

Ii∈I

Br

 (4)

The time horizon is defined as the maximum number of cycles between the
execution of two instruction instances of the same iteration:

H = max
Ii,Ij∈I

(σ(Ii, k) − σ(Ij , k))∀k ∈ N (5)

2.2 Modulo Scheduling by Integer Linear Programming

Integer linear programming (ILP) is a well known technique to formulate and
solve combinatorial problems such as scheduling and routing. Several ILP for-
mulations have been proposed for the modulo scheduling problem [5,8]. Based
on the efficient ILP formulations used in resource-constrained project schedul-
ing, B. Dupont-de-Dinechin recently introduced another formulation for modulo
scheduling [6], which we use for the SCAN heuristic. Compared to the latest for-
mulation of Eichenberger et al. [8], this new formulation only uses {0, 1} variables
and has stronger linear programming relaxations [7].

This new ILP formulation can be summarized as follows. For the sake of
simplicity, we removed the objective function, the equations related to registers
pressure and we assume that instructions have unit execution time, which is the
case for our target processor. The complete formulation is available in [6].

H−1∑
t=0

xt
i = 1 ∀i ∈ [1, n] (6)

H−1∑
s=t

xs
i +

t+θj
i−IIωj

i −1∑
s=0

xs
j ≤ 1 ∀t ∈ [0, H − 1], ∀(i, j) ∈ Edep (7)

n∑
i=1

�H−1
II �∑

k=0

xt+k×II
i

−→
bi ≤ −→

B ∀t ∈ [0, II − 1] (8)

xt
i ∈ {0, 1} ∀i ∈ [1, n], ∀t ∈ [0, H − 1] (9)

Let n denote number of instructions. Each xt
i is a {0, 1} variable that is 1

if the instruction Ii is scheduled at time t, else it is 0. In this formulation, the
equations correspond to: unique scheduling dates (6), dependence constraints
(7) and resource constraints (8).

Any solution of this ILP formulation yields a valid modulo schedule at initia-
tion interval II whose time horizon is at most H . By searching iteratively for the
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minimum II and with a large enough H , we eventually find an optimal solution
of the modulo scheduling problem. Unfortunately, the resolution time of such
integer linear program grows exponentially with the number of instructions.

3 The SCAN Heuristic

The ILP formulation introduced in section 2.2 depends on two parameters: the
initiation interval II, which we want to minimize; the time horizon H , which
bounds the span of the schedule of a given loop iteration. In this section, we
describe how the SCAN heuristic drastically reduces the time to solve the the
integer linear programs, based on a characterization of the solution space on
the parameters H and II. It relies on the observation that, usually, a modulo
schedule exists at a given II with a small time horizon.

3.1 The Search for the Time Horizon

The time horizon H of a solution to a modulo scheduling problem instance at
a given II is not known in advance. A trivial lower bound is deduced from the
longest path in the dependence graph. An upper bound is given in [9], which
roughly equals the number of instructions times the sum of the initiation interval
and the maximal dependence distance: O(n × (II + max(ωj

i ))).

$A_1$ $B_1$ $A_2$
(1,0) (1,0)

(a) Simple instructions graph

resources/cycle 1 2 3 4 5 6 7 8 9 10

A A1,1 A1,2 A2,1 A1,3 A2,2 A1,4 A2,3 A1,5 A2,4

B B1,1 B1,2 B1,3 B1,4 B1,5

(b) cyclic schedule of initiation interval of 2 and time horizon of 4

resources/cycle 1 2 3 4 5 6 7 8 9 10

A A1,1 A1,2 A1,3 A2,1 A1,4 A2,2 A1,5 A2,3

B B1,1 B1,2 B1,3 B1,4 B1,5

(c) cyclic schedule of initiation interval of 2 and time horizon of 6

Fig. 1. A simple instance of software pipelining. Graph of three instructions (1(a)) and
two cyclic schedules (1(b)) and (1(c)) with time horizon 4 and 6.

A main issue is that the number of variables of the ILP formulation of sec-
tion 2.2 directly depends on the value of the time horizon. Given that in most
cases the time horizon of the optimal solution is close to its lower bound [9],
the idea of using the ILP formulation with a small time horizon is natural. The
difficult part is to determine which value of H is sufficient to keep the problem
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solvable at a given II. Unfortunately, this value is highly dependent on the
interference between dependence and resource constraints.

Possible candidate values are difficult to guess as illustrated in figure 1: in
this example, three instructions form a dependence chain and require two type of
resources (type A for instructions A1 and A2 and type B for instruction B). Each
resource type is limited to one instruction at a time. Because of this limitation
and of the dependences, an optimal initiation interval of 2 (the resources lower
bound) is achievable with a time horizon of 4 and 6 but not 5.

3.2 Characterization of the Search Space

An inappropriate choice for the value of H makes the integer linear program
either infeasible or intractable. As appropriate choices of H for a given II are
difficult to guess, we conducted experiments on all our benchmark loops to deter-
mine the shape of this search space. We tried all the possible (H, II) values with
II ranging from the lower bound of the problem to the II found by a modulo
scheduling heuristic and H ranging from the lower bound to the upper bound.
For each possible couple of values, we reported if the problem was infeasible,
feasible or reached a given timeout (in which case we consider it as intractable).

$\Delta II$$I
I_

{I
S}

$
$M

in
II

$

$H_{IS}$
Infeasible

SCAN

Feasible

Time Out

(a) for the general case

$\Delta II$$I
I_

{I
S}

$+5

$M
in

II
$

$H_{IS}$ +5 +10 +15 +64

Feasible

Infeasible Time Out

(b) for a loop of transfo

Fig. 2. Characterization of the search space and the SCAN heuristic

For all the loops, the observed search space has the same general shape: a
timeout area for large H values, an infeasible area for small values of both
II and H and a timeout area between the infeasible area and the rest which
is feasible. This characterization is depicted in figure 2. For some loops, the
infeasibility area reduces to an empty part (along with the timeout border) or
the slope of the separating line might change (at worst this is an horizontal line:
at some point we are not able to find a lower II whatever the H value). This
leads to:

– infeasibility usually results from a too small value for H , in this case the
solution is simply to increase it.

– intractability is more difficult to handle. It might result from a choice of H
which is either too small, in the timeout border on the side of the unfeasible
area, or too large, in the large timeout area.
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Because of the non-predictable location of the timeout points, it is not possible
to use a dichotomy for a given II value to find the appropriate H value. As it
will be shown in the section 4, the value chosen for the timeout does not change
the shape of the solution space. By choosing a smaller timeout value, the feasible
area is just smaller and included in the area found with a larger value.

3.3 The SCAN Heuristic

The main idea of the SCAN heuristic is to change the values for II and H in order
to progress along the line that separates the unfeasible area from the feasible one.
This enables in most cases to reach the part with the lowest initiation interval
while remaining within the feasible area. The algorithm is illustrated by figure 2
and can be described as follows:

1. start from II and H found by a classical modulo scheduling heuristic
2. solve the linear program, there are two cases:

(a) if the program is unfeasible or stopped by the timeout, H = H + 1
(b) if the program is feasible, II = II − 1

3. repeat step 2 until a global timeout or reaches MinII
4. return the best solution (lowest H in the set of lowest II feasible solutions)

4 Experimental Results

We performed experiments using our implementation of the SCAN heuristic in-
tegrated in the production compiler developed by STMicroelectronics for the
ST200 processor. The ST200 is a VLIW processor that executes up to 4 in-
structions by cycle and has clean pipelines (instructions can be viewed as unit
execution time with a latency of either 1 or 3 towards dependent instructions).
The optimal scheduler used by the SCAN heuristic is linked with the cplex9.0
solver from ILOG for the ILP resolution. The compilation is performed on a
cross-compiler running on a Pentium 4 1.8 GHz system with 1 Gb of RAM.

4.1 Space Characterization

The test suite is the multimedia benchmark used internally by STMicroelectron-
ics for its compiler performance validation process. It contains 169 inner loops
taken from speech coding, audio and video applications. These loops vary at the
structural level (from sequential to highly parallel) as well as in the number of
instructions of their body (from 12 to 114 instructions).

We performed an exhaustive search on all the loops of our benchmark to
characterize the (H, II) space described in section 3.2. For this search, we used
a timeout value of 3000 seconds for each point. Overall, the computation of these
results ran for almost two weeks but validated our characterization.

Figure 3 shows the solution space for a difficult loop dbuffer with three dif-
ferent timeout values. We notice on this example that the slope of the timeout
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Fig. 3. Different solution spaces for a loop of dbuffer and behavior of SCAN

area frontier is almost horizontal and that the two timeout areas are connected.
But it still conforms to our characterization whatever the timeout value.

4.2 Performance of the SCAN Heuristic

The ST200 production compiler integrates a heuristic modulo scheduler that
schedules 65.4% of the loops at II equal to MinII. Precisely, among the 169 in-
ner loops of our benchmark, 108 are scheduled optimally by the heuristic modulo
scheduler (106 at the lower bound and 2 proved unfeasible at a lower initiation
interval using an exact resolution). Thus 61 loops could be possibly improved
after heuristic modulo scheduling. For this 61 loops, an exhaustive search on the
initiation interval and horizon was done with a timeout of 3000s. A better solu-
tion was found for 47 loops, the other being unsolvable in 3000s. With a timeout
of 75s by point, the SCAN heuristic is able to find all these better solutions; thus
the SCAN heuristic finds the better known solutions of our benchmark.

The improvements of the SCAN heuristic over the heuristic modulo scheduler
can be significant: for 8 loops the gain is close to 20% and maximum is 33.3%.
Among the noticeable results, the main loop of the fft32x32s 32-bit fractional
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Table 1. Improvements of the SCAN heuristic for different timeout values

timeout SCAN vs. HMS MinII vs. SCAN time for scan MinII vs. ILP time for ILP

5s 4.10% 1.39% 3.36s 2.86% 5.48s
10s 4.21% 1.28% 5.95s 2.78% 8.86s
25s 4.28% 1.20% 9.19s 2.66% 19.75s
75s 4.29% 1.19% 22.10s 2.21% 52.57s
500s 4.29% 1.19% 98.34s 1.59% 277.40s

radix-4 Fourier transform, which appeared intractable using the ILP formulation
because of its 83 instructions, has been improved by 21.4%.

Table 1 illustrates how the SCAN heuristic improves on average the 169 loops
of our benchmark for the different values of the timeout listed in the first column.
The second column contains the average II improvements of the SCAN heuris-
tic over the production heuristic modulo scheduler (HMS). The third column
contains the average II increase of the SCAN heuristic over MinII and the
average time spent per loop in the SCAN heuristic. The fourth column contains
the average II increase of the ILP modulo scheduler over MinII and the average
time spent per loop in the ILP modulo scheduler. From these figures, the SCAN
heuristic appears quite effective even at low timeout values.

5 Conclusions

We presented a heuristic that takes advantage of integer linear programming
formulations of modulo scheduling. Such formulations when solved yield optimal
software pipelines, but resolution times are worst case exponential. In practice,
only loops that comprise less than a few tenths of instructions can benefit from
integer linear programming formulations of modulo scheduling.

The SCAN heuristic we propose makes integer linear programming formula-
tions of modulo scheduling applicable to significantly larger loops, by walking
on the boundaries of the practically solvable solution space. The solution space
we consider is bi-dimensional, one dimension being the software pipeline period
II and the other a heuristic restriction on the schedule time horizon H . The
SCAN heuristic takes advantage of an empirical characterization of the search
space and evolves these parameters towards close to optimal solutions.

We implemented the SCAN heuristic and an integer linear programming for-
mulations of modulo scheduling in the STMicroelectronics production compiler
for the ST200 VLIW processor. The experiments we conducted show that our
space characterization holds for all of the considered loops. Furthermore, the use
of the SCAN heuristic on the difficult loops of a multimedia benchmark produced
results up to 33.3% better than the heuristic modulo scheduler of the produc-
tion compiler. The performance and flexibility of the SCAN heuristic make it
perfectly suitable for production use in embedded code compilation.
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Abstract. This paper presents a novel compiler backend which gener-
ates assembly code for Synchronous Transfer Architecture (STA). STA
is a Very Long Instruction Word (VLIW) architecture and in addition
it uses a non-orthogonal Instruction Set Architecture (ISA). Generating
efficient code for this architecture needs highly optimizing techniques.
The compiler backend presented in this paper is based on Integer Lin-
ear Programming (ILP). Experimental results show that the generated
assembly code consumes much less execution time than the code gener-
ated by traditional ways, and the code generation can be accomplished
in acceptable time.

1 Introduction

Code generation has been the focus of many research works. In order to gener-
ate efficient code for irregular architectures, Integer Linear Programming (ILP)
modelling for code generation has been explored extensively in the recent past.

Kent Wilken et al. [1] developed an instruction scheduling model and efficient
basic block partition. Timothy Kong et al. [4] developed a register allocation
model for regular and irregular architectures. Because the interdependencies
between the phases in code generation may lead to a significant decrease of code
quality, Daniel Kästner et al. [5] built two sets of ILP formulations for phase-
coupled code generation. Besides using some ideas of Wilken and Kästner, our
ILP model is built in order to be aware of the STA features.

This paper is organized as follows: Section 2 gives a brief introduction to the
STA features. Section 3 and 4 explain the compiler backend in detail. The results
of our experimental evaluation are summarized in Section 5. Section 6 concludes
and gives an outlook.

2 Synchronous Transfer Architecture (STA)

Figure 1 gives an overview over the STA concept. STA [6] processors are built
up from modules, each with a set of input and output ports. The output ports
are buffered. The buffer at the output holds the result of the last operation,
until the next operation of the belonging module is executed. The data at an
input port is selected from a set of connected output ports by a multiplexer.
Thus, data can be obtained directly from an output register of connected FU,
which lowers the requirement for additional register strongly. This kind of data

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 299–310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



300 J. Guo et al.

Functional Unit

MUX

O
p

co
d

e
in

p
ut

1
in

pu
t2

Im
m

ed
.

Signal from
output ports

Output ports

Control signals

Input selectionS
T

A
 in

st
ru

ct
io

n
 s

e
gm

en
t

Fig. 1. STA modules

transfer will be called direct data routing (DDR) in the rest of this paper. Di-
rect data routing can dramatically reduce the amount of required registers in a
register file.

For the sake of generality and simplicity, register files and memory read or
write ports are also implemented as STA modules. Each module behavior is
fully qualified by an opcode and multiplexer control lines. The opcode controls
the operation on the module. Multiplexer control lines select the input operands.
The opcodes and multiplexer control lines for all modules are aligned in a VLIW.

Different from common architectures, minimizing register access in STA can
result in much better results. The operands can’t be made available one single
clock cycle after storing them. When a FU uses a value in hardware register, the
value is transferred to the read port of register file in the first clock cycle. In
the next cycle, the FU can select this read port as its input and does operation.
Due to the limited number of register read ports, additional wait cycles may be
introduced, if more operands need to be read than ports are available.

3 Analysis for Integer Linear Programming (ILP)

Our ILP-based compiler backend can be divided into several stages: Firstly, an
ILP model is built, which includes a set of formulations for all possible states.
In a second step the useful data (exact value of the variables in formulations) is
created from Medium-Level Intermediate Representation (MIR). Each kind of
data is used by one or more different formulations in the model. Then the solv-
able formulations are generated and the results will be found by using CPLEX
(a software for solving different kinds of optimization problems). In a final step, a
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program transforms the results of CPLEX into assembly code. The developed
ILP model is restricted to basic block [7]. The proposed process of the data file
generation consists of the following six phases:

3.1 Memory Spill Code Generation

Firstly, we made a global data flow analysis [7] to find the IN and OUT data for
each basic block. Then all the registers are divided into two groups: group I is
used to handle IN and OUT data and group II is used for register operations,
which manipulate the temporary results within one basic block.

Our simulations with many different basic blocks have shown that data di-
rect routing is mostly used in the results of CPLEX, so the number of register
operations used for saving temporary results, which appear only in one basic
block, is very small. Thus in our current implementation, we assigned 80% of all
available registers to group I and the remaining 20% to group II. If the amount
of registers in group I is not enough, memory spill code (load and store) will be
generated in MIR. Otherwise, the remaining registers in addition to the registers
of group II can be used in order to determine an optimal tradeoff between direct
data routing or register access within each basic block.

3.2 MIR Analysis

Suppose instruction i1 and i2 are in the same basic block of MIR, and i1 appears
before i2 and they may have one of the following dependence:

1. i1 writes a location that i2 reads (RAW)
2. i1 reads a location that i2 writes (WAR)
3. i1 writes a location that i2 writes (WAW)
4. i1 reads a location that i2 reads (RAR)

For guaranteeing the correctness of the assembly code, the first two kinds
of dependencies are considered in the scheduling. The third dependence WAW
is avoided by location renaming [7] in our MIR. Assume I is the set of all the
instructions in the MIR, then these two kinds of dependence can be observed as:

1. Set DDR U ⊂ I×I contains for all read after write instruction pairs (possible
to be used for data direct routing of STA)

2. Set U ⊂ I× I contains for all write after read instruction pairs (necessary to
be considered in the scheduling)

In the rest of this paper we refer to these two coupled instructions in a pair of
the first category as a DDR pair.

3.3 Inter-blocks Read and Write Analysis

Since register allocation is done for IN and OUT data in the first step, the
following data sets are defined:



302 J. Guo et al.

1. IN (the input data in registers come from other basic blocks or from itself
in the last iteration)

2. OUT (the data in registers which will be as the input data in the other basic
blocks or itself in the next iteration)

3. UIN ⊂ RI× I (dependence between inter-block register read instructions and
MIR instructions)

4. UOUT ⊂ I × WI (dependence between MIR instructions and inter-block reg-
ister write instructions)

3.4 Inner-blocks Read and Write Analysis

We assume there are always a pair of virtual read instruction ru,v and write
instruction wu,v between DDR pair (iu, iv). There are two possibilities: only one
instruction uses the result of iu (Case 1) and more than one instructions use the
result of iu (Case 2).

In case 2, if we consider these DDR pairs independently, more than one write
instructions may take place. Actually, it is enough to have only one write in-
struction, because the data from iu exists already in the register after the first
write instruction. In this case, only one register write instruction is generated
in our compiler. If a true register write exists, a new read instruction is gen-
erated directly before each instruction which uses iu’s result in our compiler.
Read instructions can be only executed on the read port. If the data is stored in
the register’s read port until last use, this read port cannot perform other read
instructions for several clocks. It may decrease the instruction level parallelism.

3.5 Machine Resource Analysis

One of the key concepts in our model is the execution time of the instructions.
One type of FUs have same execution time. Different operations which can be
assigned to the same type of FU have the same execution time. The following
parameters are predefined:

– Eu: the execution time of instruction iu, iu ∈ I ∪ RI ∪ WI.
– Ew

u,v/ Er
u,v: the execution time of the virtual write/ read in a DDR pair

(iu, iv).

The machine resource is divided into three classes in our model. There are
Functional Units (FUs), the read and write ports of register, and registers.
Each instruction can be explicitly matched into one type of FU in our archi-
tecture. According to the type of FUs, we divided instructions in I into some
FUi sets.

4 Integer Linear Programming(ILP) Model

Let C be the number of clock cycles needed for the execution of all the very long
instruction words in a basic block, then our optimization model is explained as
follows:
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– Objective: minimizing C
– Self Constraint This constraint ensures each instruction is scheduled ex-

actly once in the basic block scheduler.
– Data Routing Constraint It describes the state of each FU with the

consideration of RAW dependence.
– Machine Constraint This constraint guarantees that the scheduling is

performed without exceeding machine resources in each cycle.
– Dependence Constraint It describes the WAR dependence.

4.1 Self Constraint

For an instruction iu ∈ I, we define a series of binary variables x(u, j), j ∈ J,
where J is the set of all clock cycles: 1..C. The value of x(u, j) is 1 when iu is
scheduled to start in cycle j, otherwise 0.

Equation (1) guarantees that each instruction iu must be started and can be
only started once.

C∑
j=1

x(u, j) = 1, ∀iu ∈ I (1)

In the same way, we define the corresponding binary variables for inner-block
read and write instructions: r(u, v, j), w(u, v, j), (iu, iv) ∈ DDR U, j ∈ J. Be-
tween each DDR pair, only one read and one write instruction may start.

4.2 Data Routing Constraint

Observing a DDR pair (iu, iv) ∈ DDR U as shown in Figure 2 and 3. At first,
iv uses the result of iu, so iv should start after iu is finished. Because the data
transfer in our STA architecture is synchronous, iv can also use the result of iu
in the same cycle iu is finished. The equation (2) describes this constraint.

C∑
j=1

x(u, j) ∗ j + Eu ≤
C∑

j=1

x(v, j) ∗ j, (iu, iv) ∈ DDR U (2)

Secondly, the write instruction wu,v must start in the cycle when it can get
the result of instruction iu. The equation (3) describes this constraint.

C∑
j=1

x(u, j) ∗ j + Eu ≤
C∑

j=1

w(u, v, j) ∗ j, (iu, iv) ∈ DDR U (3)

Thirdly, as explained in Section 3.3, the read instruction ru,v is placed directly
before instruction iv. Equation (4) is used to describe this constraint.

C∑
j=1

r(u, v, j) ∗ j + Er
u,v =

C∑
j=1

x(v, j) ∗ j, (iu, iv) ∈ DDR U (4)

With the above three constraints, there are only five possible cases according to
the sequence of virtual write and read instructions:



304 J. Guo et al.

1. wu,v is at least Ew
u,v cycles before ru,v (Fig2.a)

2. wu,v is in the same cycle as iv (Fig2.b)
3. wu,v appears after iv (Fig3.a)
4. wu,v is in one of the cycle from the same cycle of ru,v to one cycle before iv

(Fig3.b)
5. wu,v is before ru,v, but less than Ew

u,v cycles (Fig3.c)
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Because a feasible write operation must save the data in the register before
any read operation can access it, case 1 (Fig2.a) is considered as real and register
is used to transfer the result of iu to iv. Other cases are all defined as unreal,
but only case 2 (Fig2.b) is allowed and direct data routing is used to transfer the
result. Case 3, 4 and 5 (Fig3) are excluded for conciseness of the modelling.

For excluding case 3 (Fig3.a), we further define that the read instruction
can appear at most Er

u,v cycles before the corresponding write instruction.
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Equation (5) is used to represent this constraint. Equation (4) has defined that
ru,v is exactly Er

u,v cycles before iv. So wu,v can not appear after iv.

C∑
j=1

w(u, v, j) ∗ j − Er
u,v ≤

C∑
j=1

r(u, v, j) ∗ j, (iu, iv) ∈ DDR U (5)

Equation (6) and (7) are used to exclude case 4 (Fig3.b) and case 5 (Fig3.c)
respectively.

w(u, v, j) + r(u, v, j + l) ≤ 1, (iu, iv) ∈ DDR U, ∀j ∈ J, l ∈ (0..Er
u,v − 1) (6)

w(u, v, j + l) + r(u, v, j) ≤ 1, (iu, iv) ∈ DDR U, ∀j ∈ J, l ∈ (0..Ew
u,v − 1) (7)

Thus, the occupation of FU can be uniformly expressed with the remaining
two cases by relative concise ILP equations. In K1 cycles (Fig 2.a), the corre-
sponding FU is occupied until a register write instruction for saving the result of
iu appears. If wu,v appears in the same cycle as iv (Fig 2.b), we define that the
result of iu is transferred to iv by direct data routing, and the FU is occupied
until iv appears. Detailed analysis and other machine resource constraints are
discussed in the Section 4.3. The formulations for the case that more than one
instructions use the result of iu are the extension of the above equations. They
will also be explained together with the machine resource in the Section 4.3.

4.3 Machine Resource Constraint

The Constraints for Functional Units
There are two cases that one of the FU is occupied: an instruction is executed
on this FU or the output register of this FU should be kept. We define a new
set of binary variables Dlink(u, j), j ∈ J to represent the occupation of a FU.
Dlink(u, j) takes the value of 1 if the FU is occupied in cycle j, otherwise 0.
Because the coming instruction on the same FU has the same execution time of
iu and STA has pipeline structure, so this FU can be available for this instruction
Eu − 1 cycles before write instruction takes place.

Dlink(u, j) ≥
j∑

k=1

x(u, k) −
j+Eu−1∑

k=1

w(u, v, k) ∀(iu, iv) ∈ DDR U, ∀j ∈ J (8)

Equation (8) can be considered as a stair function with j as X-axis and the
lower bound of Dlink(u, j) as Y-axis. Dlink(u, j) must take the value 1 from the
cycle of iu to Eu − 1 cycles before wu,v takes place, while not restricted in other
cycles. In every cycle, the number of occupied functional units is bounded by the
total available number NFUi in the architecture. Thus, the equation of resource
constraint for each type of FU can be derived:∑

iu∈FUi

Dlink(u, j) ≤ NFUi, ∀j ∈ J (9)
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The Constraints for Register Read and Write Ports
The access of register in each cycle is limited by the read and write ports. In Sec-
tion 4.2, we have defined the real and unreal cases for the read and write instruc-
tions. Then, two sets of binary variables, wreal(u, v, j) and rreal(u, v, j), ∀j ∈ J,
are defined to describe the usage of read and write ports in these two cases. The
value 1 represents a real read/write operation in cycle j, and 0 means no register
operation.

The equation (10) checks if a read instruction takes place before the corre-
sponding write instruction. If so, wreal ≥ 0, there is no restriction for this binary
variable. The constraint wreal ≥ 1 can only occur where w(u, v, j) = 1 and the
read instruction appears after write.

wreal(u, v, j) ≥ w(u, v, j) −
j−Er

u,v∑
k=1

r(u, v, k), ∀j ∈ J, ∀(iu, iv) ∈ DDR U (10)

In the same way, the equation (11) checks if a write instruction appears in
the previous cycle of where the read instruction is.

rreal(u, v, j) ≥ r(u, v, j) −
C∑

k=j+Er
u,v

w(u, v, k), ∀j ∈ J, ∀(iu, iv) ∈ DDR U (11)

If more than one instructions use the result of iu, a set of binary variables
wb(u, j), ∀j ∈ J is introduced to trace the first write instruction (equation
(12) ), and the write instruction should still be placed after the instruction iu
(equation (13)).

C∑
j=1

wb(u, j) ∗ j ≤
C∑

j=1

wreal(u, v, j) ∗ j, ∀(iu, iv) ∈ DDR UB (12)

C∑
j=1

x(u, j) ∗ j + Eu ≤
C∑

j=1

wb(u, j) ∗ j, ∀iu ∈ B (13)

In the above equations, DDR UB is defined as all DDR pairs in case 2 defined
in Section 3.4 and B as the set of all instructions whose result is used by more
than one instructions. We further define DDR US as the set of DDR pairs in
case 1 in Section 3.4. Suppose Nwrite and Nread as the number of available
register ports, then the register port constraints can be formulated with the
following equations:∑

(iu.iv)∈DDR US

wreal(u, v, j) +
∑
u∈B

wb(u, j) ≤ Nwrite, ∀j ∈ J (14)

∑
(iu.iv)∈DDR U

rreal(u, v, j) ≤ Nread, ∀j ∈ J (15)
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The Constraints for Registers
The following formula expresses a stair function expressed by the binary variables
reg(u, v, j), whose lower bound jumps from 0 to 1 in the cycle of the write
instruction, and return to 0 in the cycle of read instruction.

reg(u, v, j) ≥
j∑

k=1

w(u, v, k) −
j∑

k=1

r(u, v, k), ∀j ∈ J, ∀(iu, iv) ∈ DDR U (16)

reg(u, v, j) ≥ 0, ∀j ∈ J, ∀(iu, iv) ∈ DDR U (17)

The meaning is clear in the real case. For the unreal case, because the read
instruction appears before write instruction, the right side of the formula (16)
could be −1 in some cycles. But the reg(u, v, j) is constrained to take non-
negative values. Thus, it can represent the buffer occupation for both real and
unreal cases.

The case 2 defined in Section 3.4 should also be considered here. We have
introduced that after first write instruction is performed, the data exists in a
register. It can be read again and again, and the hardware register can store other
data as soon as the last read instruction takes place. A set of binary variables
rb(u, j) is defined to trace the last read instruction of the branch:

C∑
j=1

rb(u, j) ∗ j ≥
C∑

j=1

rreal(u, v, j) ∗ j, ∀(iu, iv) ∈ DDR UB (18)

Thus, with another set of binary variables regb(u, j), the register occupation
in the case 2 can be calculated:

regb(u, j) ≥
j∑

k=1

wb(u, v, k) −
j∑

k=1

rb(u, v, k), ∀j ∈ J, ∀(iu, iv) ∈ DDR UB (19)

regb(u, j) ≥ 0, ∀j ∈ J, ∀iu ∈ B (20)

Assume Nregister is the available number of hardware registers (group II in
Section 3.1). The constraint for registers is expressed in the following equation:∑

(iu,iv)∈DDR US

reg(u, v, j) +
∑
iu∈B

regb(u, j) ≤ Nregister , ∀j ∈ J (21)

4.4 Dependence Constraint

We introduce this constraint in two categories: First, write after read depen-
dence; Second, instructions in MIR and inter-block read and write instructions.

For the first category, assume instruction im reads a location before instruction
in writes it. Equation (22) represents this dependence.

C∑
j=1

x(m, j) ∗ j + En − 1 ≤
C∑

j=1

x(n, j) ∗ j, (im, in) ∈ U (22)
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For the second category, assume inter-block read instruction yp reads a data
from a register location, then instruction im uses this data, (yp, im) ∈ UIN. For
the instruction yp, we also define a set of binary variables y(p, j), yp ∈ RI, j ∈ J.
The equation (23) expresses the modelling that yp are placed directly before im.
The reason is explained in Section 3.4.

C∑
j=1

y(p, j) ∗ j + Ep =
C∑

j=1

x(m, j) ∗ j, (yp, im) ∈ UIN (23)

Assume inter-block write instruction zp writes the result of im to a register.
Equation (24) represents their dependency.

C∑
j=1

x(m, j) ∗ j + Em ≤
C∑

j=1

z(p, j) ∗ j, (im, zp) ∈ UOUT (24)

These inter block read and write instructions also occupy read/write ports,
so the constraint equations (14) and (15) must be extended to accommodate the
inter block instructions. Equation (25) and (26) describe the constraints. Nread

and Nwrite the numbers of register read port and write port.∑
(iu.iv)∈DDR US

wreal(u, v, j) +
∑
iu∈B

wb(u, j) +
∑

iq∈WI

z(q, j) ≤ Nwrite, ∀j ∈ J (25)

∑
(iu.iv)∈DDR U

rreal(u, v, j) +
∑

ip∈RI

y(p, j) ≤ Nread, ∀j ∈ J (26)

5 Experimental Results

We implemented all the formulations in our compiler by using one user licence
of ILOG CPLEX (9.1 version) on one CPU. Our DSP has SIMD and VLIW
architectural features [9]. The compiler center part performs vectorization for
each application in MIR [10], then compiler backend generates corresponding
assembly code with VLIW instruction set. Table 1 lists all the machine resource
in our experiments. The execution time of decoder is 0; sfpu, sld, sst, vfpu, vldst
are 2 clock cycles; seq is 3 clock cycles; the rest FUs are 1 clock cycle.

Table 2 shows the performance of our code generator for some signal process-
ing benchmarks. According to the different partitions of basic blocks, we did
three groups of tests. Each basic block in three groups contains 10, 15 and 20 in-
structions respectively. E[cycles] shows the execution time of the ILP generated
assembly code in clock cycles. F[%] is the ratio (ILP cycles/trad cycles*100%).
T[s] is the solving time of the CPLEX in seconds. As the length of the basic block
becomes larger, the solving time of the CPLEX has exponential increment.

The execution time of the assembly code can be reduced about 50% in our
experiments. Furthermore, these assembly code use much less memory than the
former code. ILP-based code generator uses output buffers of the FUs very effi-
ciently, that leads to less registers’ requirement and much less memory spill code.
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Table 1. Machine Resource Table

Scalar Unit Vector Unit Scalar MEM Vector MEM Other Unit
name amount name amount name amount name amount name amount
Salu 4 Valu 1 Sld 1 Vldst 1 Icu 1
Smul 1 Vshift 1 Sst 1 Preg 16
Sshift 1 Vif 1 Seq 1

Sif 1 Vfpu 1 Decoder 1
Slogic 1 Vreg 8
Sfpu 1
Sreg 32

Table 2. Performance comparison between ILP and traditional code generator

benchmarks group one group two group three
name E[cycles] F[%] T[s] E[cycles] F[%] T[s] E[cycles] F[%] T[s]

firparallel 114 65.1% 1.44 90 51.4% 2.9 82 46.9% 87.8
iirparallel 133 67.9% 1.73 105 53.6% 2.4 89 45.4% 19
firserial 75 64.1% 0.94 60 51.3% 2.5 55 47% 3.7
iirserial 62 54.9% 0.66 49 43.4% 5.1 43 38.1% 5.9

lmsparallel 1079 89.6% 19.7 904 75.1% 63.5 779 64.7% 842.1
lmsserial 149 50.5% 2.1 129 43.7% 7.9 103 34.9% 45
fft648 922 72.7% 29.7 723 56.9% 330.5 681 53.7% 1558.8
fft1288 1125 78.2% 35.1 890 61.8% 481.8 828 57.5% 1890.6
fft2568 1292 72.5% 44.3 1022 57.4% 555.8 951 53.4% 2092.1
dct2d88 767 59.2% 86.5 667 51.5% 249.8 607 46.9% 708.5

6 Conclusion and Future Work

The advantage of this work is, that it can improve the instruction level paral-
lelism with block partition in acceptable time. Furthermore, the code generation
is very flexible: the number of machine resource and the optimality of the so-
lutions can be easily adjusted by the users. The limitation of such ILP-based
code generator is its scalability. Within acceptable time, it can only optimize
the code in the small basic blocks, and the performance of such code generator
is also related to the block partition. As the future work, we will make better
block partition for our code generator, then some global heuristic algorithms will
also be implemented.
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Abstract. Single-dimension Software Pipelining (SSP) has been proposed as an
effective software pipelining technique for multi-dimensional loops [16]. This
paper introduces for the first time the scheduling methods that actually produce
the kernel code. Because of the multi-dimensional nature of the problem, the
scheduling problem is more complex and challenging than with traditional mod-
ulo scheduling. The scheduler must handle multiple subkernels and initiation
rates under specific scheduling constraints, while producing a solution that mini-
mizes the execution time of the final schedule.

In this paper three approaches are proposed: the level-by-level method, which
schedules operations in loop level order, starting from the innermost, and does not
let other operations interfere with the already scheduled levels, the flat method,
which schedules operations from different loop levels with the same priority, and
the hybrid method, which uses the level-by-level mechanism for the innermost
level and the flat solution for the other levels. The methods subsume Huff’s mod-
ulo scheduling [8] for single loops as a special case. We also break a scheduling
constraint introduced in earlier publications and allow for a more compact kernel.
The proposed approaches were implemented in the Open64/ORC compiler, and
evaluated on loop nests from the Livermore, SPEC200 and NAS benchmarks.

1 Introduction

Software pipelining (SWP) is an important loop scheduling technique that overlaps
the execution of consecutive iterations of a loop to explore instruction-level paral-
lelism [9,8,13,1,7,10]. Traditionally, it is applied to the innermost loop of a loop nest.
The schedule can be extended to outer loops by hierarchical reduction [9,11,17]. Loop
transformations can be performed to the innermost loop before SWP [2,18,12].

Single-dimension Software Pipelining (SSP) [16] is a unique resource-constrained
framework for software pipelining a loop nest. The scheduling technique overlaps the
iterations of any loop in a loop nest that satisfies the dependence constraints. The com-
pilation framework is shown in Fig. 1. First, the loop level deemed the most profitable
is selected and the multi-dimensional data dependence graph (n-D DDG) is simplified
into a one-dimensional DDG (1-D DDG) and sent as input to the scheduler [16]. The
kernel is then computed. If the register pressure is reasonable [5], registers are allo-
cated [14] and the final code is generated [15].
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Fig. 1. SSP Compilation Framework

In this paper, we present for the first time algorithms for the kernel generation step.
The computed kernel must minimize the execution time of the final multi-dimensional
schedule. The problem is complex - as it involves the overlapping of operations from
several loop levels (dimensions) of a loop nest, a challenge not encountered in tradi-
tional modulo scheduling. The kernel is partitioned into subkernels, one per loop level
and each with its own initiation interval. Those subkernels interact with each other and
optimizing one subkernel could have a negative impact on the others. Moreover, when
the scheduler fails and the initiation interval must be increased, which subkernel should
be chosen?

Three approaches are proposed and studied. The level-by-level approach generates
the subkernels in order, starting from the innermost. Once a subkernel has been com-
puted, it cannot be altered. The flat approach does not lock a subkernel once fully sched-
uled. Operations from any loop level may be considered and undo previous decisions
made in a different subkernel. A larger solution space can therefore be explored. Finally,
the hybrid approach schedules the innermost subkernel first and locks it. The other op-
erations are then scheduled using the flat method. It allows for a shorter compilation
time than the flat method while exploring a large solution space and focusing resources
on the innermost loop. The three approaches subsumes Huff’s scheduler [8] as a special
case when the loop nest is a single loop.

We also break an SSP limitation that forced operations from different loop levels
to be scheduled in distinct stages and that may artificially bloat the size of the kernel.
We prove that, with minor modifications to the code generator and without code size
increase, operations other than innermost can actually be scheduled in the same stage
than operations from a different level.

The proposed approaches and heuristics associated with them have been imple-
mented in the Open64/ORC compiler and analyzed on loop nests from the Livermore
and NAS benchmarks. Experimental results show that the hybrid approach avoids the
pitfalls of the two other approaches and produces schedules on average twice faster than
modulo-scheduling schedules. Because of its large search space, the flat approach may
not reach a good solution fast enough and showed poor results.

The rest of the paper is organized as follows. First, the SSP technique is reviewed.
In section 2, the kernel generation problem for SSP is presented. Section 3 explains
how to schedule operations from different levels into the same stage. The next section
presents the scheduling methods in details. The last three sections are devoted toward
experiments, related work, and conclusion, respectively.



Multi-dimensional Kernel Generation for Loop Nest Software Pipelining 313

2 The SSP Kernel Generation Problem

2.1 Single-Dimension Software Pipelining

Single-dimension Software Pipelining (SSP) [16,15,14,5] is a resource-constrained
software pipelining method for both perfect and imperfect loop nests with a rectan-
gular iteration space. Unlike other approaches [9,6,17,11], SSP does not necessarily
software pipeline the innermost loop of a loop nest, but directly software pipelines the
loop level estimated to be the most profitable. From the SSP point of view, the loop
levels enclosing the selected loop are ignored. Therefore, the selected loop becomes the
outermost loop. Within an iteration of the outermost loop, inner loops run sequentially.

Beside being able to software pipeline any loop level and overlap the execution of
the prolog and epilog of the inner loops, the advantage of SSP over modulo-scheduling
(MS) is that instruction-level parallelism or data cache reuse properties present in the
outer loops are now accessible. Without prior iteration space transformations, a faster
schedule with better cache performance can be found. If the innermost loop level is
chosen, SSP is equivalent to classical modulo scheduling. SSP retains the simplicity of
modulo scheduling, and yet may achieve significantly higher performance [16].
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Fig. 2. Generic SSP Kernel

The final SSP schedule is derived from the kernel. Unlike the MS kernel, the SSP
kernel has multiple initiation intervals and is composed of one subkernel Ki per loop
level i in the loop nest. Each subkernel has its own number of stages Si and initiation
interval Ti. We note fi and li the index of the first and last stages of Ki in the full
kernel. Some slots are empty because of the kernel nesting constraints presented next
(Fig. 2).

2.2 Problem Statement

The operations in the kernel must obey the scheduling constraints. A possible conserva-
tive definition of those constraints is given below. The modulo property and the resource
constraints are identical to those used in MS. However, the dependence constraints now
include the number of unused cycles term (uc, defined in Sec. 4), corresponding to the
empty stages. The other constraints only exist in SSP. Let σ(op) be the schedule time
of operation op in the kernel. The constraints are:
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– Modulo Property: operations are issued every T cycles. T is the initiation interval
of the kernel.

– Resource Constraints: at any given cycle of the kernel, a hardware resource is not
allocated to more than one operation.

– Dependence Constraints: σ(op1) + δ ≤ σ(op2) + k ∗ T − uc(op1, op2, k) for all
the dependences from the 1-D DDG from op1 to op2 where δ is the latency of the
dependence and k the distance.

– Sequential Constraints: σ(op)+δ ≤ Sp∗Tn for every positive dependence
−→
d =<

d1, ..., dn > originating from op in the original multi-dimensional DDG and where
dp is the first non-null element in the subvector < d2, ..., dn >.

– Kernel Nesting Constraints: operations from different loop levels cannot be
scheduled in the same stage and a stage cannot be enclosed between stages of
deeper loop levels.

The SSP kernel generation problem can then be formulated as follows: given a
set of loop nest operations and the associated 1-D DDG, schedule the operations so
that the scheduling constraints are honored and the initiation interval of each sub-
kernel is minimized. Even when the loop nest is a single loop, the problem is NP-
hard [19].

2.3 Issues

To satisfy the constraints mentioned above, several issues need to be solved. First, the
kernel is composed of subkernels with different initiation intervals (II) which must be
respected during the scheduling process. In Fig. 3(a), the II of the innermost kernel is
2 and the number of functional units (FUs) is also 2. When inserting op4, op3 must be
ejected to maintain the current II. Also, if a subkernel is rescheduled to a different cycle,
one must make sure that the subkernel is not truncated as shown in Fig. 3(b)
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Fig. 3. Kernel Generation Issues

Then, the multiple II feature raises issues of its own. When the scheduler cannot find
a solution and the II of one subkernel must be incremented, which subkernel should be
chosen? Fig. 3(c) and 3(d) shows examples of inefficient schedules because of poor II
increment decisions.
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3 Breaking the Kernel Nesting Constraints

The kernel nesting constraints were originally introduced for implementation reasons.
We now show that those constraints are unnecessary and can be removed. The advantage
is two-fold. First, it gives more freedom to the scheduler which may be able to find a
more compact kernel as shown in Fig. 4: op1, an operation from the outermost loop can
now be scheduled in the same stage as operations from the innermost level. Second,
because the number of stages may decrease, so may the register pressure.

To produce a correct final schedule from such a kernel, it is sufficient to conditionally
emit the operations of the kernel. During the emission of stages for the execution of loop
level i only operations from level i and deeper are emitted. If operations from other loop
levels are present in the stage, they are simply ignored.

op4
op2
op3 op1 op2

op1
op4
op3

S = 3 S = 2

without level
nesting constraint

Fig. 4. Removal of the Kernel Nesting Constraints

Since the innermost loop is most frequently executed, it is not desirable to put oper-
ations from other levels into the innermost subkernel, in case they artificially increase
its II. Also, the conditional emission of operations in the innermost stages requires code
duplication to be used. Therefore, we will instead enforce a weaker limitation, called the
innermost level separation limitation, that forbids outer loop operations to be scheduled
into the innermost loop stages.

4 Solution

The algorithm framework, shared by the three approaches, is derived from Huff’s al-
gorithm [8,13,1] and shown in Fig. 5. Starting with the minimum legal II [16] for each
loop level, the scheduler proceeds as follows. The minimum legal scheduling distance
(mindist) between any two dependent operations is computed. Using that informa-
tion, the earliest and latest start time, estart and lstart respectively, of each opera-
tion is computed. The difference lstart− estart, called slack, is representative of the
scheduling freedom of an operation. The operations are then scheduled in the kernel
in a heuristic-based order. If the scheduling of the current operation does not cause
any resource conflict, the choice is validated. Otherwise, the conflicting operations are
ejected. In both cases, the estart and lstart values of the ejected or not-scheduled op-
erations are updated accordingly. The process is repeated until all the operations are
scheduled. After too many iterations without success (max op try attempts), the II
of one subkernel is incremented and the scheduler starts over. After max II try II
increments, the scheduler gives up. If a solution is found, the scheduler enforces the
sequential constraints and returns successfully. The different steps are detailed in the
next subsections.

The proposed approaches are correct. As shown in the next subsections, the gen-
erated kernel respects all the scheduling constraints. Because the algorithm is based
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SSP SCHEDULER(approach, priority, II increment, max II try, max op try):
for each loop level i do

set Ti to the minimum legal II for that level
end for
for max II try attempts do

initialize mindist table and modulo resource table
compute slack of operations
for max op try attempts do

choose next operation op according to approach and priority
if no operation left then

enforce sequential constraints
return success

end if
schedule operation op
eject operations violating resource constraints with op
eject operations violating dependence constraints with op
eject operations violating innermost level separation limitation with op
update slack and MRT

end for
choose level i to increase II according to II increment
increment Ti by 1

end for
return failure

Fig. 5. Scheduling Framework

on modulo scheduling, the resource constraints are also honored. Moreover, when ap-
plied to a single loop, the method is Huff’s algorithm and therefore subsumes modulo
scheduling as a special case.

4.1 Scheduling Approaches

Three different scheduling approaches are proposed. With level-by-level scheduling, the
operations are scheduled in the order of their loop levels, starting from the innermost.
Once all the operations of one level are scheduled, the entire schedule becomes a virtual
operation from the point of view of the enclosing level. The virtual operation acts as
a white box both for dependences and resource usage. Operations within the virtual
operation cannot be rescheduled. The method is simple and fast. However, the early
scheduling decisions made in the inner loops might prevent the scheduler from reaching
more beneficial solutions later in the scheduling process. Fig. 6 shows an example where
we assume 2 functional units and a dependence between op1 and op2 with a latency
of 2 cycles. The level-by-level scheduler must increase T1 to 3 in order to schedule
op1 whereas the flat scheduler can reschedule inner operations to obtain a kernel with
T1 = 2.

Flat scheduling considers operations from all loop levels as potential candidates.
When backtracking, conflicting operations from all levels can be ejected from the sched-
ule. The main advantage of this approach is its flexibility. Early decisions can always be
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Fig. 6. Advantage of the Flat Approach over the Level-by-Level Approach

undone. Such flexibility leads to a larger solution space, and potentially better sched-
ules. On the down side, the search space might become too large and slow down the
scheduler.

The hybrid approach embeds the flat scheduling into a level-by-level framework.
The innermost level is scheduled first. Its kernel becomes a virtual operation and the flat
scheduling method is used for the other loop levels. The hybrid approach is intuitively
a good compromise between level-by-level and flat scheduling, as confirmed by the
experimental results. It can find better solutions than the level-by-level method without
the cost in compile time of the flat method.

4.2 Enforcement of the SSP Scheduling Constraints

The dependence constraints, σ(op2) − σ(op1) ≥ δ − k ∗ T + uc(op1, op2, k), is en-
forced through the mindist table. Because the table is generated before scheduling the
operations, uc must be expressed independently of the yet unknown schedule time of
op1 and op2. The following tight upper bound is proposed:

σ(op2) − σ(op1) ≥ T

Tn
∗ (δ + 2 ∗ T − (k + 2) ∗ Tn)

The right-hand side of the equation is the mindist(op1, op2). By construction [4], the
dependence constraints are always enforced.

The sequential constraints are not enforced during the scheduling process, but as a
posteriori transformation once a schedule that satisfies the other constraints has been
found. At that time, empty stages are inserted in the schedule until the sequential con-
straints are verified. The need for extra stages occurs rarely enough to justify such a
technique.

To enforce the innermost level separation limitation without any extra computation
cost, the schedule is conceptually split into three scheduling blocks: before, innermost
and after. Operations that lexically appear before (after, respectively) the innermost
loop are scheduled independently into the ’before’ (’after’) scheduling block (Fig. 7).
Innermost operations are scheduled into the ’innermost’ scheduling block. Within each



318 A. Douillet, H. Rong, and G.R. Gao

Kn K2

1K
after innermost before

kernels may vary
position of inner

length of scheduling
block may vary

empty

Fig. 7. Scheduling Blocks Example

scheduling block, the length of the schedule may vary without breaking the separa-
tion limitation and final length of the full schedule is only known at the very end. The
modulo resource reservation table is shared between the three blocks.

When an operation is scheduled or when an operation is ejected, the slack of depen-
dent operations must be recomputed. Usually, such an update is incremental. However,
a dummy START and a dummy STOP operations are used to mark the boundaries of each
scheduling block. As the slack is computed relatively to the distance between the START

and STOP operations, if a dummy operation of one block is ejected and rescheduled, the
slack of every operation within this block has to be recomputed.

4.3 Kernel Integrity

In the level-by-level approach, the subkernels are computed separately and therefore
the initiation intervals are always respected. Truncation is avoided by forbidding the
subkernels from being scheduled in cycles that would cause it.

In the flat approach, the initiation intervals are enforced by scheduling an opera-
tion first within the current boundaries of its subkernel. If impossible, the operation is
scheduled at some other cycle. The subkernel is then correspondingly moved. All the
operations that are then not within the boundaries of the kernel anymore are ejected.
Therefore, subkernels cannot be truncated.

4.4 Operation Selection

The operation selection order is determined by a two-level priority mechanism. The pri-
mary priority is based on the loop level of the operation. In innermost first order, the op-
erations are scheduled in depth order, starting from the innermost. In lexical order, the
operations are scheduled in the order they appear in the original source code. In block
lexical order, the operations are scheduled in the order of scheduling blocks: before-
innermost-after. In unsorted order, the primary priority is bypassed. Then, 3 secondary
priorities are used to break ties. With slack priority, the operations with a smaller slack
are scheduled first. Critical operations, i.e. operations that use resource used at 90% or
more in the schedule, have their slack divided by two to increase their priority. With
smaller lstart priority, the operations with a smaller latest start time are scheduled first.
The priority can be seen as a top-down scheduling approach. With larger estart prior-
ity, the operations with a larger earliest start time are scheduled first. It is a bottom-up
scheduling approach.
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4.5 Operation Scheduling

The legal range of schedule cycles for an operation selected for scheduling is defined
by [estart, lstart]. If the operation is scheduled for the first time, estart is chosen.
Otherwise, the next value in the legal range since the last scheduling attempt is chosen.
If there is none, the other scheduled operations, the availability of resources, and the
II of the level of the operation are ignored and estart is chosen. Conflicts created by
the decision will be solved by later ejecting the scheduled operations involved in the
conflicts.

4.6 Initiation Interval Increment

Several heuristics are proposed to decide which subkernel should have its II incre-
mented when the scheduler times out. With lowest slack first, the average slack of the
operations of each level is computed. The loop level with the lowest average slack is
selected. With innermost first, the first level (from the innermost to the outermost) in
which not all the operations have been already scheduled is selected. The heuristic is
to be used only with the innermost first scheduling priority, With lexical, the first loop
level in lexical order in which not all the operations have been already scheduled is
selected. The heuristics is to be used only with the lexical scheduling priority.

5 Experiments

The proposed solution was implemented in the Open64/ORC2.1 compiler. 19 loop nests
of depth 2 or 3, extracted from the NAS, SPEC2000, and Livermore benchmark suites,
were software-pipelined at the outermost level and run on an Itanium2 workstation.

5.1 Comparison of the Scheduling Approaches

The best execution time for each approach was measured (Fig. 8). On average, hybrid
and level-by-level schedules are twice faster than MS schedules. In several occasions,
the flat solution is slower. Even when given as much as 10 times more attempts to find
a solution, the flat scheduler fails and had to increment the initiation intervals, resulting
in a slower final schedule. In one case (liv-5), the flat schedule was able to perform
better than the level-by-level approach. As expected, the hybrid approach combined
the advantages of the two other methods and, for all benchmarks but liv-3, produces a
kernel with best execution time. Therefore, the hybrid approach should be the method
of choice to generate SSP kernels.

The register pressure was also measured. On average, the register pressure in SSP
schedules is 3.5 times higher than with MS schedules, in line with results from previous
publications. The hybrid and level-by-level approaches have comparable register pres-
sures, whereas the pressure is lower for the flat approach as the initiation intervals are
higher. For hydro, the register pressure was too high with the level-by-level approach.
It was observed that the register pressure is directly related to the speedup results. The
higher the initiation intervals, the lower the register pressure and the execution time of
the schedules.
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Fig. 8. Execution Time Speedup vs. Modulo Scheduling

5.2 Comparison of the Heuristics

Fig. 9 compares the results of the different operation selection heuristics for each sched-
uling approach. The minimum execution time and register pressures were recorded and
the relative difference of each heuristic to the minimum was computed for each test
case. The average is shown in the figure. The first letter U, L, I, or B stand for the pri-
mary selection method: Unsorted, Lexical, Innermost first or Block lexical respectively.
The second letter S, E, or L for the secondary method: Slack, largest Estart or small-
est Lstart. Level-by-Level scheduling was only tested for the unsorted primary method
because all methods are equivalent when a single loop level is scheduled at a time.

For the flat scheduler, the best heuristic is highly dependent on the benchmark being
evaluated. On average, each heuristic produces schedules 7.5% slower than the best
schedule. Those high variations are explained by the size of the search space. For the
two other methods, the choice of the heuristics have little influence on the execution
time of the final schedule.the quality of the computed solution.

The II increment heuristics were also compared for the two approaches that use them:
flat and hybrid. For the flat scheduler, the slack and lexical order produce the fastest
schedules and are on average below 8% of the best schedule. The innermost order can
produce schedules 30% slower. Because the slack order is not dependent on the opera-
tion selection heuristic used, it is to be preferred. For the hybrid scheduler, the impact of

Fig. 9. Comparison of the Operation Selection Heuristics
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the II increment heuristics is limited. Indeed, the innermost level, which contains most
of the operations, is treated as a special case. Therefore there is not much scheduling
pressure left for the other levels (2 to 3 maximum).

6 Related Work

SSP is not the only method to software pipeline loop nests. But, it is the first that has
performed a complete and systematic study on each of the subjects: scheduling, register
allocation, and code generation [16,14,15].

Modulo-scheduling techniques were extended to handle loop nests through hierar-
chical reduction [9,17,11], in order to overlap the prolog and the epilog of the inner
loops of successive outer loop iterations. Although seemingly similar in idea to the
level-by-level approach proposed here, hierarchical reduction software pipelines every
loop level of the loop nest starting from the innermost, dependencies and resource usage
permitting. The dependence graph needs to be reconstructed each time before schedul-
ing each level, and cache effects are not considered. SSP only tries to software pipeline
a single level and to execute its inner loops sequentially. MS has also been combined
with prior loop transformations [2,18,12].

Finally, there exists other theoretical loop nest software pipelining techniques such
as hyperplane scheduling [3]. Such method not consider fine-grain resources such as
function units and registers.

7 Conclusion

This paper proposed for the first time kernel generation methods and heuristics for the
Single-dimension Software Pipelining framework and break the kernel nesting con-
straints introduced in earlier publications [15]. We proved that each technique enforces
all the SSP scheduling constraints. Experiments demonstrated that, although the level-
by-level and hybrid approaches show comparable schedules in terms of execution and
register pressure, the hybrid method is to be preferred because it outperforms the level-
by-level approach in some cases. The flat method was victim of its own large search
space and could not find good solutions in a reasonable amount of time and had to set-
tle for kernels with larger initiation intervals. The choice of the heuristics have little
influence on the final schedules for the hybrid and level-by-level approach.
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Abstract. Current pointer analysis techniques fail to find parallelism
in heap accesses. However, some of them are still capable of obtaining
valuable information about the way dynamic memory is used in pointer-
based programs. It would be desirable to have a unified framework with
a broadened perspective that can take the best out of available tech-
niques and compensate for their weaknesses. We present an early view
of such a framework, featuring a graph-based shape analysis technique.
We describe some early experiments that obtain detailed information
about how dynamic memory arranges in the heap. Furthermore, we doc-
ument how def-use information can be used to greatly optimize shape
analysis.

1 Introduction

Pointer analysis is a field of study that has drawn a great deal of attention
over the past few years. The problem of calculating pointer-induced aliases must
be solved so that compilers can safely disambiguate memory references. Static
knowledge of pointer-aliasing is key to perform optimizations related to paral-
lelism and locality. While stack-pointer and array aliases allow for successful
techniques to be applied, heap-directed pointers render such techniques ineffec-
tive. Therefore, new approaches must be taken.

We present in this work a pointer analysis framework that can accommodate
several pointer analysis techniques, both existent and new. It is designed as
an extensible framework based in Java. High-level program transformations are
favored with the use of a near-source IR obtained with Cetus [1], a parsing tool
aimed towards source-to-source translations. A key part of the framework is a
newly designed graph-based shape analysis algorithm [2], that can obtain very
detailed information about the arrangement of recursive data structures in the
heap. Section 2 introduces our shape analysis technique in the context of the
overall framework.

To better understand the shape analyzer capabilities, we have conducted some
preliminary tests with typical heap-directed structures. These tests prove that
memory configurations are accurately captured. We even discovered that the
� This work was supported in part by the Ministry of Education of Spain under con-
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analysis times can be greatly reduced by driving the analysis with def-use infor-
mation. Section 3 documents our experiments with the shape analyzer.

On its own, the shape analysis is a great tool for programmer support, as it can
be used by developers to check how dynamic structures are really used in their
programs. Better still, higher-level client analysis modules can be built over the
shape analyzer. In particular, we focus in dependence analysis in the context of
loops that traverse dynamic recursive data structures. Such dependence analysis
is needed for automatic parallelization of pointer-based programs and for locality
exploitation, which are the final goals of our research. As a prerequisite for the
dependence test, we need to automatically detect induction pointers. Section 4
covers the dependence test as a client analysis and how we tackle the automatic
detection of induction pointers.

Finally, Section 5 comments some related work and Section 6 concludes with
the main contributions and ideas for future work.

2 Shape Analysis Within the General Framework

Fig. 1 gives an overview of the general layout for our pointer analysis framework.
First, we take an input program and parse it with the Cetus tool. Cetus is a
compiler infrastructure specially aimed towards the development of compilation
passes of high-level nature. It is written in Java and its source code is publicly
available under a non-restrictive license. Cetus can parse C, C++ and soon
Java, to a unique intermediate representation or IR, where transformations can
be performed. Cetus IR is regarded to be close the source code, which is suitable
for transformations related to pointer analysis.

Within Cetus, we can design compilation passes that are required by the
pointer analysis techniques that follow. Such passes would perform precondition-
ing transformations, like expression simplification, statement reordering, etc., or
would extract information, like data types, CFG, etc., as needed by the subse-
quent analysis. The results of the analysis can then be used to perform optimiza-
tions related to parallelism or locality, modifying the original program to obtain
an optimized version.

Input

program
output

Analysis

Optimized

program
(Cetus)

Pointer Analysis Framework

Parsing and 
preprocessing analysis

Pointer

techniques

Code
transformations

IR

Fig. 1. General layout for the pointer analysis framework

Currently, we are focusing on the preprocessing and analysis phases. They
conform the pointer analysis framework. Later, we can concentrate on using
the results of the different pointer analysis techniques implemented to generate
threaded versions of the programs.
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The shape analyzer tool [2] is a cornerstone of our pointer analysis framework.
Due to space limitations, only the main features and design principles will be
described. It provides detailed information about the arrangement of memory
locations in the heap for pointer-based programs. That information can be used
for several purposes like: (i) data dependence analysis, by determining if two
accesses may reach the same memory location; (ii) locality exploitation, by cap-
turing the way memory locations are traversed to determine when are they likely
to be contiguous in memory; and (iii) programmer support, to help detecting
incorrect pointer usage or documenting complex data structures.

Our shape analyzer works as an iterative data-flow algorithm. It is flow-
sensitive, context-sensitive and field-sensitive, although it lacks proper interpro-
cedural support at the current state (we plan to add complete interprocedural
support in the near future) and thus functions bodies must be inlined. The algo-
rithm works by performing abstract interpretation over the pointer statements
in the program until a fixed-point is reached. As result of the analysis, shape
graphs are generated. Such graphs capture memory configurations arising in the
heap in a conservative way. Fig. 2 shows an outline of the algorithm operation
in the presence of (a) loops and (b) pointer statements, such as ptr = ptr2 or
ptr = ptr2->sel.

(a) Loop statement class

fun run(ShapeGraph sg)
ShapeGraph oldSummary = EMPTYGRAPH;
ShapeGraph newSummary = sg.copy();
while(newSummary != oldSummary)

Statement nextStmt = StatementList.next();
while(nextStmt != NULL)

sg = nextStmt.run(sg);
nextStmt = StatementList.next();

oldSummary = newSummary;
newSummary.join(sg);

return newSummary;
//Return overall effect of loop

(b) Pointer statement class

fun run(ShapeGraph sg)
ShapeGraphSet sgs = sg.splitBySel();
//Breaks into possible graphs
foreach(sg in sgs)

sg.materializeNode();
//Focus over currently accessed node
sg.abstractSemantics();
//Apply semantics of pointer statement
sg.normalize();
//Summarize compatible nodes

foreach(sg in sgs)
sgOut.join(sg);

return sgOut;

Fig. 2. Outline of shape analysis algorithm regarding loops and pointer statements

Shape graphs are formed by nodes, links and CLSs (Coexistent Links Sets),
which codify possibilities of connectivity between memory locations in the pro-
gram. Graphs change according to the abstract semantics of the pointer state-
ments present in the program. Fig. 3 sketches how graph change when analysing
the first five statements in the creation of a singly-linked list. Dynamically allo-
cated memory pieces are represented by nodes, and joined together with links.
The last graph is also accompanied by its CLSs description, showing the combi-
nation of links that are possible for each node.

At compile time, the size and connectivity of recursive data structures is usu-
ally unknown. However, our representation of such structures must be finite,
i.e., we must provide mechanisms to capture all possible memory configurations
arising in the program in a finite number of bounded-size graphs. Graphs are
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Fig. 3. Graphs are modified according to the abstract semantics of each statement

assured to be bounded by the summarization process: whenever nodes are re-
garded as similar enough, they are merged in to a so-called summary nodes.
Similarity is determined by pointer alias relationships and adjustable properties.
In fact, properties are a key instrument to fine-tune summarization decisions
and therefore control how precisely graphs capture the features of the memory
configuration.

Summarizing implies loosing information in favor of a bounded representation.
We provide as well a dual operation to focus over previously summarized nodes:
materialization. This operation can regain precision where pointer accesses are
occurring because it performs strong update [3] [4], discarding unnecessary links
in most situations. However, highly connected and summarized graphs can make
impossible for the materialization operation to recover exactly the intended links,
leaving some conservative ones.

Our analysis computes all possible memory configurations for every statement
in the program. At any point during the analysis, there can be several graphs
per statement to reflect all possible memory configurations that can reach the
statement from different control flow paths. Different graphs represent mutually
exclusive pointer arrangements over memory. Since the number of stack-declared
pointer variables is fixed and known at compile time, the number of graphs per
statement is limited by the different and mutually exclusive combinations of
pointer over nodes and their properties.

The shape analyzer tool has been written in Java, taking in all new features
of the latest Java 1.5 release. A big effort has been spent in making this tool
as robust as it can be, so the object-oriented approach seemed a natural choice.
Developing in such a manner facilitates writing extensions and performing main-
tenance tasks. Besides, a Java design makes it easier to blend with the extended
version of Cetus that serves as front-end for the pointer analysis framework.

Fig. 4 is a simplified view of how elements interact within the pointer analysis
framework: first, the input program is parsed by Cetus, this way we achieve an
IR where we can easily operate; second, our specific preprocessing pass is run
over Cetus IR to translate the program to the format required by the shape
analyzer; third, the shape analyzer outputs the graphs for the program, which
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Fig. 4. Different modules working together within the pointer analysis framework

can be viewed in the companion visualization tool. Finally, client analysis tech-
niques can be added to produce output results based on shape information, like
parallelizable loops, possible bugs, etc. These techniques can drive the analysis
to make it more effective as we will see later.

3 Experimental Results

We present now some early experimental results regarding the shape analyzer.
For these tests we have considered six programs. The first four are typical kernels
of applications that deal with recursive data structures. For the last two tests,
we consider the product of a sparse matrix by a sparse vector, first based on
singly-linked lists, then based on doubly-linked lists. Sparse structures are usually
built with pointers to avoid wasting storage capacity with many empty values.
Table 1 describes the structures tested and displays some metrics for the analysis
performed.

The first column identifies each test, while the second column holds the num-
ber of analyzed statements. All available pointer and flow statements are con-
sidered. The tests that consider linked lists (singly-linked and doubly-linked)
first create the lists, then traverse them. The tests working with trees (n-ary
and binary) perform structure traversing during the trees creation, as each new
element is added as a leave starting from the root. The sparse matrix is created
as a header list (rows), whose elements point to other lists (columns), while the
sparse vectors are created as lists. In the fifth test, the structures are based in
simply-linked lists (s), while on the sixth test, they are based on doubly-linked
lists (d). Regarding the product algorithm, first the input matrix and vector are
created, then the output vector is built as the matrix and input vector are tra-
versed. The output for each test is a graph that captures the structures created
and traversed. The complete codes and resulting graphs are available through
our website1.
1 http://www.ac.uma.es/∼asenjo/research/codes.html
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Table 1. Structures tested in the shape analyzer, number of analyzed statements, time
spent on the analysis, total number of generated graphs, and nodes, links and CLSs
per graph, in average (and maximum) values

Data structure # stmts Time # graphs Nodes, links & CLSs per graph
Singly-linked list 17 0.47 sec 62 2.51 (4) / 3.64 (7) / 4.75 (13)

Doubly-linked list 19 0.52 sec 74 2.59 (4) / 6.90 (13) / 4.55 (13)

N-ary tree 17 0.62 sec 372 2.61 (4) / 6.39 (12) / 9.38 (22)

Binary tree 25 2.02 sec 435 2.73 (4) / 10.58 (20) / 23.84 (65)

Matrix-vector(s) 83 1.14 min 2477 7.56 (12) / 26.10 (40) / 29.34 (50)

Matrix-vector(d) 97 1.55 min 2931 7.60 (12) / 30.95 (48) / 30.37 (50)

The third column shows times for the tests. Only the time for the actual shape
analysis is shown (no parsing or preprocessing), as measured in a Pentium IV
2.4 GHz with 1 GB RAM. We think that times are very reasonable for such a
detailed analysis. Within the first four examples of synthetic codes, the highest
time is that of the binary tree analysis, probably due to its more complex CFG.
It should be noted that more possible flow paths make the analysis more costly,
as it has to consider all possibilities conservatively. On the other hand, the first
three examples run in less than a second. The matrix by vector product takes
longer, clocking at more than 1 minute, which is only reasonable considering
there are quite some more statements to analyze than in previous tests.

The fourth column indicates the total number of graphs generated for each
test. This metric gives an idea about the internal cost of analyzing different
structures and traversals. The numbers range from a few dozens to a few thou-
sands. Next columns show the total number of nodes, links and CLSs per graph,
as average values with the maximum in brackets. The number of nodes per graph
is essentially constant in the first four tests, as it depends mostly on the number
of simultaneously live pointers, which is usually one for the structure handle
and two for navigating it. The matrix by vector test has three times more nodes
because there are three different structures, instead of one. The number of links
depends on the amount of different links that each element has. Typically each
element in a recursive data structure does not have more than two links.

Finally, CLSs are the elements where most of the complexity reside: they
describe how nodes and links can combine to create all possible memory con-
figurations arising in the program. The highest maximum is for the binary tree
among all tests, but the maximum average is attained in the matrix by vector
program based on doubly-linked lists.

To sum up, we can say that the shape analyzer can effectively analyze com-
mon data structures for pointer-based codes. Generated graphs accurately cap-
ture heap structures. Furthermore, we think that such graphs can be obtained
in manageable times, specially for such a complex technique. Let us not forget
that we are performing fixed-point abstract interpretation of pointer and flow
statements to create and modify very detailed graphs. Despite this encouraging



Towards a Versatile Pointer Analysis Framework 329

results, it is clear that this is a costly technique which is not likely to succeed if
used for whole program analysis. Instead it would be better used within a client
analysis module that would focus on local analysis.

In this regard, we discovered that def-use information can be used to identify
the statements directly involved in the creation of the recursive data structures
that are traversed in the segment of code under analysis. A def-use chain estab-
lishes a relationship between the definition point where a value is created and
points where it is used. With that information we can automatically determine
what are the statements that actually define the shape of dynamic memory and
discard all other statements. With this approach we avoid to analyze irrelevant
statements that could slow down the shape analysis.

We have tried this approach on the matrix by vector examples. Let us revisit
them now, having pruned all traversal statements that are not involved in the
output vector creation. The new values for the tests are shown in table 2, where
the original values for the unprocessed versions are also displayed for reference.

Table 2. The matrix by vector product analyzed in original (o) and pruned (p) forms,
based in singly-linked (s) or doubly-linked (d) lists

Data structure # stmts Time # graphs Nodes, links & CLSs per graph
Matrix-vector(o,s) 83 1.14 min 2477 7.56 (12) / 26.10 (40) / 29.34 (50)

Matrix-vector(p,s) 66 7.52 sec 772 5.69 (10) / 19.28 (36) / 19.91 (48)

Matrix-vector(o,d) 97 1.55 min 2931 7.60 (12) / 30.95 (48) / 30.37 (50)

Matrix-vector(p,d) 77 9.22 sec 823 5.45 (10) / 21.29 (42) / 19.68 (48)

The results prove that def-use driven shape analysis works best, as the anal-
ysis time has been reduced dramatically. Pruned tests produce the same output
graphs than their original counterparts, thus capturing memory configuration
without any loss in precision. This example motivates us to tightly integrate
shape analysis within client analysis that focus on the statements of interest.

When trying to include def-use chains generation within the framework, we
realized that their computation is easier in the SSA form of the program. This
led us to implement SSA support as a Cetus extension. The cost of providing
SSA support within the framework is not only justified by its use to drive shape
analysis. It is also a required module for other pointer analysis and optimizations
techniques. In our approach to SSA, we obtain the dominator tree in the first
place. Then a slightly modified version of Cytron’s algorithm [5] is used for
constructing the SSA form. We modified the algorithm to remove unnecessary
φ-functions that could hinder client analysis performance. We also made it more
efficient by renaming each φ-function just once, instead of twice.

4 Dependence Test as a Client Analysis

The shape analysis algorithm is a basic element in our pointer analysis frame-
work. However, we are aware that it is not sufficient as a stand-alone analysis
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technique. In order to take full advantage of its power it must be coupled with a
higher-level client analysis that can determine regions to be analyzed for a given
purpose. One of such client analysis is data dependence analysis for loops that
traverse dynamic recursive data structures. Ultimately, this kind of analysis can
determine what loops can be safely parallelized in an automated basis.

Let us focus now on a common situation. Usually, data structures are created
at the initialization phase of programs and later, they are traversed to perform
certain calculations. Often, most of the execution time of the program occurs at
such traversals, where the structure change no more, but their values do. In such
scenario, a client analysis could identify the statements that create the struc-
ture, call the shape analyzer over those statements to obtain shape information,
and then use that information to look for data dependencies in the loops of
interest.

In fact, the dependence detection can also be performed with the help of the
shape analyzer, by marking or touching traversed nodes with accessing informa-
tion. More precisely, nodes in the graph can be marked as having been read or
written. This is achieved by using the touch property in the context of a loop-
carried dependence test, similarly to [6]. As a prerequisite of such dependence
analysis, induction pointers must be identified for loops that traverse recursive
data structures.

Induction pointers, also called navigator pointers, are used in loops to tra-
verse recursive structures, establishing their traversal pattern. That pattern,
along with the shape of the structure, allows to detect dependencies between ac-
cesses. Of course, induction pointers already introduce an inherent dependence
between different iterations of a loop, something known as the pointer-chasing
problem. However, there are techniques to overcome it, provided that no other
dependencies exist. In the next example, p is the induction pointer.

while (p!= NULL){
p -> x = p -> y * 5;
p = p -> next;

}

Being able to automatically detect induction pointers is a must for our com-
piler analysis framework, because they are needed to identify loops that traverse
recursive data structures, and thus are candidate for parallelization in our ap-
proach. We have chosen Hwang and Saltz’s method [7] for identifying induction
pointers in a program, based on the calculation of def-use chains of statements
that construct and traverse recursive data structures. As commented above, we
have already added def-use chains generation support within our framework, so
including this method comes as a straightforward addition.

5 Related Work

In the past few years pointer analysis has attracted a great deal of attention. A
lot of studies have focused on stack-pointer analysis, like [8] and [9], while others,
more related to our work, have focused on heap-pointer analysis, like [10] and



Towards a Versatile Pointer Analysis Framework 331

[11]. Both fields require different techniques of analysis. Unfortunately, heap-
pointer techniques have failed to achieve aggressive optimizations. We think this
is partly caused by techniques being isolated from other complementary pointer
analysis techniques.

We are particularly fond of the work by Sagiv et al. [4], [12]. Their use of ab-
stract interpretation/abstract semantics, along with materialization, have been
adapted for the development of our framework. It is worth noting though, that
their analysis is much more costly, meaning they can only analyze simple opera-
tions over singly-linked lists. Otherwise, analysis times and memory use become
prohibitive. Also, their technique is only able to correctly analyze simple struc-
tures because they lack the support to handle structures like doubly-linked lists
or heterogeneous trees. In our approach we have strived and achieved to obtain
suitable graph abstractions for this kind of data structures. Besides, we think
the analysis run at manageable times for such a complex technique. Finally,
it should be noted that our technique is able to analyze structures based in
pointer arrays, which is unheard of for a shape analysis technique, as far as we
know.

We have been inspired for this work by existing research compiler frameworks:
Polaris [13], which permitted the development of some noteworthy optimizations
in array-based Fortran programs; ORC [14], which covers the whole compilation
process and targets Itanium processors; SUIF [15], used by many researchers to
implement their compiler techniques; or Soot [16], that features different mod-
ules for bytecode optimizations in Java programs. Polaris and SUIF ended their
life cycle, ORC and Soot seem to concentrate on low level optimizations, and
none of them focuses primarily on pointer analysis. Our plan is not to outdo
these long established frameworks, but to swerve in a more specific direction
where there is still plenty of room for optimizations related to parallelism and
locality.

6 Conclusions and Future Work

As main contribution, we have introduced how a detailed shape analysis tech-
nique can be a valuable tool within a pointer analysis framework. Such a frame-
work can combine different techniques towards better exploitation of parallelism.
We have presented some early experiments that prove that shape analysis can be
greatly improved when combined with information derived from other pointer
analysis techniques, namely def-use chains.

We have also added support for the SSA form and def-use chains in Cetus.
This support is useful in three ways: first, it helps to identify the statements
that must be analyzed for correct shape analysis; second, it allows for automatic
induction pointer recognition in the context of pointer-chasing loops, a key in-
strument for finding parallelism in recursive data structures; third, it allows for
easy implementation of many pointer techniques that require SSA and/or def-use
chains, enhancing the possibilities of the framework.
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Only an early view of the pointer analysis framework has been presented.
Still much work is needed to implement more pointer analysis techniques and
make them work together towards finding unexploited parallelism in pointer-
based programs. Also, we plan to conduct more experiments with benchmarks
programs to fully test the capabilities of the techniques implemented.
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Abstract. Optimistic replication can provide high data availability for
collaborative applications in large scale distributed systems (grid, P2P,
and mobile systems). However, if data reconciliation is performed by
a single node, data availability remains an important issue since the
reconciler node can fail. Thus, reconciliation should also be distributed
and reconciliation data should be replicated. We have previously pro-
posed the DSR-cluster algorithm, a distributed version of the IceCube
semantic reconciliation engine designed for cluster networks. However
DSR-cluster is not suitable for P2P networks, which are usually built
on top of the Internet. In this case, network costs must be considered.
The main contribution of this paper is the DSR-P2P algorithm, a dis-
tributed reconciliation algorithm designed for P2P networks. We first
propose a P2P-DHT cost model for computing communication costs in
a DHT overlay network. Second, taking into account this model, we pro-
pose a cost model for computing the cost of each reconciliation step.
Third, we propose an algorithm that dynamically selects the best nodes
for each reconciliation step. Our algorithm yields high data availability
with acceptable performance and limited overhead.

1 Introduction

Large-scale distributed collaborative applications are getting common as a result
of rapid progress in distributed technologies (grid, P2P, and mobile computing).
Consider a professional community whose members wish to elaborate, improve
and maintain an on-line virtual document, e.g. notes on classical literature or
common bibliography, supported by a P2P system. They should be able to read
and write application data. In addition, user nodes may join and leave the net-
work whenever they wish, thus hurting data availability.

Optimistic replication is largely used as a solution to provide data availability
for these applications. It allows asynchronous updating of replicas such that ap-
plications can progress even though some nodes are disconnected or have failed.
This enables asynchronous collaboration among users. However, concurrent up-
dates may cause replica divergence and conflicts, which should be reconciled.
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W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 337–349, 2006.
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In most existing solutions [11,13] reconciliation is typically performed by a sin-
gle node (reconciler node) which may introduce bottlenecks. In addition, if the
reconciler node fails, the entire replication system may become unavailable.

In [9], we proposed the DSR-cluster algorithm (Distributed Semantic Recon-
ciliation for cluster), a distributed version of the semantic reconciliation engine
of IceCube [6,11] for cluster networks. Tentative actions, stored at action logs,
are reconciled using constraints. Other reconciliation objects, such as clusters,
are also necessary to produce the global schedule. DSR-cluster avoids bottle-
necks, speeds up large scale reconciliation, and provides high data availability
in case of node failures during reconciliation for cluster networks. In addition,
DSR-cluster employs a distributed approach for storing reconciliation objects
(actions, clusters, constraints, etc.) using a distributed hash table (DHT) [12,14]
in order to provide high data availability.

DSR-cluster proceeds in 5 distributed reconciliation steps. However, it does
not take into account network costs during these steps. A fundamental assump-
tion behind DSR-cluster is that the communication costs among cluster nodes
are negligible. This assumption is not appropriate for P2P systems, which are
usually built on top of the Internet. In this case, network costs may vary sig-
nificantly from node to node and have a strong impact on the performance of
reconciliation. Thus, network costs should be considered to perform reconcilia-
tion efficiently and to avoid network overload due to the communication with
far distant nodes.

In this paper, we propose the DSR-P2P algorithm, a distributed reconciliation
algorithm designed for P2P networks. The main contributions of this paper are:
(1) a DHT cost model for computing communication costs of a P2P network
using a DHT overlay network; (2) the DSR-P2P cost model for computing the
cost of each reconciliation step based on DHT cost model; (3) the DSR-P2P
algorithm for selecting the best reconciler nodes based on the DSR-P2P cost
model (4); and experimental results that show that our cost-based approach
yields high data availability with acceptable performance and limited overhead.

The rest of this paper is organized as follows. Section 2 describes the basis
of the DSR-P2P semantic reconciliation solution for P2P networks. Section 3
introduces the DHT cost model. Section 4 describes the DSR-P2P cost model and
the dynamic allocation algorithm for selecting the best reconciler nodes. Section
5 shows implementation and experimental results. Section 6 compares our work
with the most relevant related works. Finally, Section 7 concludes this paper.

2 P2P Distributed Semantic Reconciliation

In this section, we describe the main terms and assumptions we consider for
DSR-P2P followed by the main DSR-P2P algorithm itself.

We assume that DSR-P2P is used in the context of a virtual community
which requires a high level of collaboration and relies on a reasonable number
of nodes (typically hundreds or even thousands of interacting users) [15]. The
P2P network we consider consists of a set of nodes which are organized as a
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distributed hash table (DHT) [12,14]. A DHT provides a hash table abstraction
over multiple computer nodes. Data placement in the DHT is determined by a
hash function which maps data identifiers into nodes.

In our solution, a replica R is a copy of a collection of objects (e.g. copy of a
relational table, or an XML document). A replica item is an object belonging to
a replica (e.g. a tuple in a relational table, or an element in an XML document).
We assume multi-master replication, i.e. a replica R is stored in several nodes
and all nodes may read or write R. Conflicting updates are expected, but with
low frequency.

In order to update replicas, nodes produce tentative actions (henceforth ac-
tions) that are executed only if they conform to the application semantics. An
action is defined by the application programmer and represents an application-
specific operation (e.g. a write operation on a file or document, or a database
transaction). The application semantics is described by means of constraints
between actions. A constraint is the formal representation of an application in-
variant (e.g. an update cannot follow a delete).

On the one hand, users and applications can create constraints between ac-
tions to make their intents explicit (they are called user-defined constraints).
On the other hand, the reconciler node identifies conflicting actions, and asks
the application if these actions may be executed together in any order (commu-
tative actions) or if they are mutually dependent. New constraints are created
to represent semantic dependencies between conflicting actions (they are called
system-defined constraints).

A cluster is a set of actions related by constraints, and a schedule is a list of
ordered actions that do not violate constraints.

With DSR-P2P, data replication proceeds basically as follows. First, nodes ex-
ecute local actions to update replicas while respecting user-defined constraints.
Then, these actions (with the associated constraints) are stored in the DHT using
the replica identifier as key. Finally, reconciler nodes retrieve actions and con-
straints from the DHT and produce a global schedule, by performing conflict res-
olution in 6 distributed steps based on the application semantics. This schedule
is locally executed at every node, thereby assuring eventual consistency [11]. The
replicated data is eventually consistent if, when all nodes stop the production of
new actions, all nodes will eventually reach the same value in their local replicas.

In order to avoid communication overhead and due to dynamic connections
and disconnections, we distinguish replica nodes, which are the nodes that hold
replicas, from reconciler nodes, which is a subset of the replica nodes that par-
ticipate in distributed reconciliation.

We now present DSR-P2P in more details. First, we introduce the recon-
ciliation objects necessary to DSR-P2P. Then, we present the six steps of the
DSR-P2P algorithm.

2.1 Reconciliation Objects

Data managed by DSR-P2P during reconciliation are held by reconciliation ob-
jects that are stored in the DHT giving the object identifier. To enable the
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storage and retrieval of reconciliation objects, each reconciliation object has a
unique identifier. DSR-P2P uses six reconciliation objects:

– Communication costs (noted CC ): it stores the communication costs
to execute each DSR-P2P step, estimated by every replica node, and used to
choose reconcilers before starting reconciliation. These costs are computed
in terms of latency times.

– Action log R (noted LR): it holds all actions that try to update the
replica R.

– Action groups of R (noted GR): actions that manage a common replica
item are put together into the same action group in order to enable the
parallel checking of semantic conflicts among actions (each action group can
be checked independently of the others); every replica R may have a set
of action groups, which are stored in the action groups of R reconciliation
object.

– Clusters set (noted CS): all clusters produced during reconciliation are
included in the clusters set reconciliation object; a cluster is not associated
with a replica.

– Action summary (noted AS): it comprises constraints and action mem-
berships (an action is a member of one or more clusters).

– Schedule (noted S): it is a list of ordered actions.

The node that holds a reconciliation object is called the provider node for
that object (e.g. cost provider is the node that currently holds CC ). Provider
data are guaranteed to be available using known DHT replication solutions [7].
DSR-P2P’s liveness relies on the DHT liveness.

2.2 DSR-P2P Algorithm

DSR-P2P executes reconciliation in 6 distributed steps as showed in Figure 1.

– Step 1 node allocation: a subset of connected replica nodes is selected
to proceed as reconciler nodes.

– Step 2 actions grouping: for each replica R, reconcilers put actions
that try to update common replica items of R into the same group, thereby
producing GR.

– Step 3 clusters creation: reconcilers split action groups into clusters
of semantically dependent conflicting actions (actions that the application
judge safe to execute together, in any order, are semantically independent,
even if they update a common replica item); clusters produced in this step
are stored in the clusters set, and the associated action memberships are
included in the action summary.

– Step 4 clusters extension: user-defined constraints are not taken into
account in clusters creation; thus, in this step, reconcilers extend clusters by
adding to them new conflicting actions, according to user-defined constraints;
the associated action memberships are also included in the action summary.
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Fig. 1. DSR-P2P Steps

– Step 5 clusters integration: clusters extensions lead to clusters overlap-
pings (an overlap occurs when different clusters have common actions, and
this is identified by analyzing action memberships); in this step, reconcilers
bring together overlapping clusters, thereby producing integrated clusters.

– Step 6 clusters ordering: in this step, reconcilers produce the global
schedule by ordering actions of integrated clusters; all replica nodes execute
this schedule.

At every step, the DSR-P2P algorithm takes advantage of data parallelism,
i.e. several nodes perform simultaneously independent activities on a distinct
subset of actions (e.g. ordering of different clusters). No centralized criterion
is applied to partition actions. In fact, whenever a set of reconciler nodes re-
quest data to a provider, the provider node naively supplies reconcilers with
about the same amount of data (the provider node knows the maximal number
of reconcilers because it receives this information from the node that launches
reconciliation).

3 DHT Cost Model

In this section, we propose a basic cost model for computing communication costs
in DHTs. On top of it, we can build customized costmodels (e.g. in the next section
we elaborate a customized cost model for selecting DSR-P2P reconciler nodes).

In our model, we define communication costs (henceforth costs) in terms of
latency times. We assume links with variable latencies and constant bandwidths.
We intend to consider variable bandwidths in a future work.

Most DHT data access operations consist of a lookup, for finding the address
of the node n that holds the requested information, followed by direct communi-
cation with n [5]. In the lookup step, several hops may be performed according
to nodes’ neighborhoods. Therefore, our DHT cost model relies on two metrics:
lookup cost and direct cost. The lookup cost, noted lc(n, id), is the latency time
spent in a lookup operation launched by node n to find the data item identified
by id. Similarly, direct cost, noted dc(ni, nj), is the latency time spent by node
ni to directly access nj .

Node n could easily compute the lookup cost lc(n, id) by executing the
lookup operation and measuring the associated time. However, this approach
overloads the node that replies the lookup operation as it receives a lot of lookup
messages. Furthermore, the network is overloaded. To avoid these problems, we
propose that each node computes its lookup costs by taking advantage of cost
information held by its neighbors. We illustrate this solution with an example.
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In Figure 2a, let n4 be a node that replies lookup operations searching for id=x ;
let arrows indicate the route of a lookup operation (e.g. if n2 looks for x it makes
this route: n2 → n3 → n4); let a number over an arrow be the latency between
the associated nodes. In this example, the lookup cost lc(n2, x) is 100 (i.e. 40
+ 60), and lc(n1, x) is 150 (i.e. 50 + 40 + 60). Instead of executing the lookup
operation to compute lc(n1, x), n1 can ask n2 for lc(n2, x) and add to this cost
the latency between n1 and n2 (i.e. lc(n1, x) = lc(n2, x) + 50). The advantage
of this incremental approach is locality and to avoid network overload.

(a) Before joining (b) After joining

Fig. 2. Computing Lookup Costs

Joins and leaves change the neighborhoods of nodes and, accordingly, the
routes of lookup messages. As a result, lookup costs must be refreshed. However,
we should avoid the refreshment at distant nodes to avoid network overload. To
cope with this problem, we introduce two definitions: cost limit and relevant joins
and leaves. Cost limit is the maximal acceptable cost for looking up an identifier
(it can be a parameter or an adaptively computed value). A join or leave is
relevant for a node n if it changes the cost for looking up an identifier in which n
is interested, such that the old or the new lookup cost does not overtake cost limit.
Thus, we propose that nodes refresh their lookup costs only in the presence of
relevant joins and leaves. We illustrate this approach with an example. In Figure
2b, let cost limit be 110; and consider that n5 joins the DHT of Figure 2a taking
the place of n3 in the route towards id=x. The join of n5 is relevant only to n2

as n2 updates lc(n2, x) from 100 (a value that does not overtake cost limit) to
120. In contrast, the join of n5 is not relevant to n3 and n4 since the associated
lookup costs remain unchanged. This join is not relevant to n1 either, because
both, the old lookup cost (i.e. 150) and the new one (i.e. 170), overtake cost
limit. Thus, n1, n3 and n4 do not participate in the refresh operation.

We now present how we compute direct cost. Node n could easily compute
the direct cost between n and the provider node for id (henceforth home(id))
by measuring the latency between n and home(id). However, this approach may
overload home(id). To avoid this problem, we propose that nodes locally estimate
direct costs. Two equivalent approaches may be used for this estimation: (1) for
DHTs that do not rely on nodes’ physical location for choosing nodes’ neighbors,
the latency between a node n and any other node can be estimated based on
the latencies between n and its neighbors in the DHT; (2) for location-aware
DHTs, where n’s neighbors are supposed to be closer to n than other nodes, the
same estimation can be made based on the latencies between n and some other
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nodes randomly selected from a bootstrap list (list of nodes that are likely con-
nected). The advantage of the estimated approach is locality, and its drawback
is lack of accuracy. In the performance evaluation we compare the estimated and
exact approaches.

The home(id) may change due to joins and leaves. Thus, direct costs must also
be refreshed. In our solution, dc(n, home(id)) is refreshed at node n whenever
home(id) changes and the associated lookup cost (i.e. lc(n, id)) is smaller than
cost limit. To compute the refreshed value, we use the same strategy employed
for computing the initial value. The principle of this approach is to avoid the
execution of refreshment operations at far distant nodes, and its advantage is to
avoid network overload.

4 DSR-P2P Node Allocation Algorithm

In this section, we present a dynamic distributed algorithm for allocating nodes
to DSR-P2P steps using the DHT cost model. We first present the DSR-P2P
cost model for each reconciliation step. Next, we describe how the cost provider
node selects reconcilers based on DSR-P2P cost model. Finally, we present our
approach for managing the dynamic behavior of DSR-P2P costs.

4.1 DSR-P2P Cost Model

The DSR-P2P cost model takes into account each reconciliation step defining
a new metric: node step cost. A node step cost, noted cost(i, n), is the sum of
lookup and direct costs estimated by node n for executing step i of DSR-P2P
algorithm. By analyzing the DSR-P2P behavior in terms of lookup and direct
access operations at every step, we produced a cost formula for each step of
DSR-P2P, which are showed in Table 1. There is no formula associated with
step 1 because it is not performed by reconciler nodes.

Table 1. DSR-P2P Cost Model

i Cost(i,n)
2 lc(n, LR) + 2dc(n, nLR ) + lc(n, GR) + dc(n, nGR )

3 lc(n, GR) + 3dc(n, nGR ) + lc(n, CS) + 2dc(n, nCS) + lc(n, AS) + dc(n, nAS)

4 2lc(n, AS) + 3dc(n, nAS) + lc(n, CS) + 3dc(n, nCS)

5 lc(n, AS) + 3dc(n, nAS) + lc(n, CS) + dc(n, nCS)

6 lc(n, CS) + 3dc(n, nCS) + lc(n, AS) + 2dc(n, nAS) + lc(n, S) + dc(n, nS)

As an example, let us explain cost(2, n). In the second step of DSR-P2P
(i=2 ), node n takes actions from the action log R (LR) and produces the action
groups of R (GR). Thus, the first term in the associated formula (lc(n,LR)) rep-
resents the lookup cost for finding LR provider. The second term (2dc(n,nLR))
corresponds to the direct costs for taking actions from LR provider (request
and reply). The third term (lc(n,GR)) represents the lookup cost for finding GR



344 V. Martins and E. Pacitti

provider, and the last term (dc(n,nGR)) corresponds to the direct cost for storing
groups in GR provider (only request). Similarly, all formulas can be explained.

4.2 Allocating Nodes

Node allocation is the first step of DSR-P2P algorithm. It aims to select for
every succeeding step a set of reconciler nodes that can perform reconciliation
with good performance. In this subsection, we describe how reconciler nodes are
chosen and we illustrate that with an example.

The cost provider, i.e. the node that currently holds the communication costs
reconciliation object, is the node responsible for allocating reconcilers. The al-
location works as follows. Replica nodes locally estimate the costs for executing
every DSR-P2P step, according to the DSR-P2P cost model, and provide this
information to cost provider. The node that starts reconciliation computes the
maximal number of reconcilers per step (noted maxRec), as described in [10],
and asks cost provider for allocating at most maxRec reconciler nodes per DSR-
P2P step. As a result, the cost provider selects the best nodes for each step, and
notifies these nodes about DSR-P2P steps they should execute.

In our solution, the cost management is parallel and independent of reconcilia-
tion. Moreover, it is network optimized since replica nodes do not send messages
to cost provider, informing their estimated costs, if the node step costs overtake
the cost limit. For these reasons, the cost provider does not become a bottleneck.

We now illustrate the allocation algorithm using an example. Table 2 shows
the lookup and direct costs of our example, which were computed using a Chord
DHT [14] with 4 connected nodes (i.e. n0, n1, n4, and n6). In a DHT, a node
that is close to a reconciliation object (e.g. n0 is close to AS (id=1 )) may be far
distant of others (e.g. n0 is far distant of LR (id=5 )). As a result, a node that is
suitable for a DSR-P2P step may not be worth in other steps. For this reason,
every DSR-P2P step has its own set of reconcilers.

Table 2. Lookup and direct costs based on the DHT cost model. Each column has the
identifier of a reconciliation object (id) and the node that holds this object (home(id)).
Reconciliation object identifiers are: CS -0, AS -1, LR-5, GR-6, S -7. Each cell provides
a specific lookup or direct cost, e.g. the cell in the 1st line and 3rd column indicates
that n0 spends 148.8ms to lookup LR (id=5 ) stored in n6 whereas the cell in the 2nd

line and 3rd column indicates that a direct access between n0 and n6 costs 81.8ms.

Node Cost Metric
Reconciliation Objects (id → home(id)
0 → n0 1 → n1 5 → n6 6 → n6 7 → n0

n0
Lookup id 0 0 148.8 148.8 0
Access home(id) 0 37.8 81.8 81.8 0

n1
Lookup id 132.0 0 116.8 116.8 132.0
Access home(id) 37.8 0 66.0 66.0 37.8

n4
Lookup id 35.4 148.8 0 0 35.4
Access home(id) 74.4 58.4 17.7 17.7 74.4

n6
Lookup id 0 163.6 0 0 0
Access home(id) 81.8 66.0 0 0 81.8
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Table 3. Node step costs associated with the DHT considered in Table 2

Node
DSR-P2P steps (i)

2 3 4 5 6
n0 543.0 432.0 113.4 113.4 75.6
n1 431.6 522.4 245.4 169.8 415.2
n4 53.1 444.5 731.4 433.8 634.0

n6 0 393.2 770.6 443.4 622.8

Table 3 shows the estimated costs that the cost provider receives from the
replica nodes. These costs are computed by applying on the DSR-P2P cost model
(Table 1) the lookup and direct costs of the DHT cost model (Table 2). We show
in bold the two less expensive costs associated with each DSR-P2P step. Thus,
in our example, if the maximal number of reconcilers is 2, the cost provider
selects as reconcilers for each DSR-P2P step the nodes of Table 3 whose costs
are in bold (i.e. Step2 = {n4, n6}, Step3 = {n0, n6}, Step4 = {n0, n1}, Step5 =
{n0, n1}, Step6 = {n0, n1}), and notifies its decision to these nodes.

4.3 Managing the Dynamic Behavior of DSR-P2P Costs

The costs estimated by replica nodes for executing DSR-P2P steps change as a
result of disconnections and reconnections. To cope with this dynamic behavior
and assure reliable cost estimations, a replica node ni works as follows:

– Initialization: whenever ni joins the system, ni estimates its costs for exe-
cuting every DSR-P2P step. If these costs do not overtake the cost limit, ni

supplies the cost provider with this information.
– Refreshment: while ni is connected, the join or leave of another node nj

may invalidate ni’s estimated costs due to routing changes. Thus, if the join
or leave of nj is relevant to ni, ni recomputes its DSR-P2P estimated costs
and refreshes them at the cost provider.

– Termination: when ni leaves the system, if its DSR-P2P estimated costs
are smaller than cost limit (i.e. the cost provider holds ni’s estimated costs),
ni notifies its departure to the cost provider.

5 Validation and Performance Evaluation

To validate and study the performance behavior of DSR-P2P, we implemented
it and simulated the overlay P2P network based on Chord (we used SimJava
[4] for simulations). In this section, we present our performance model and the
experimental results.

The performance model takes into account the strategy for selecting recon-
ciler nodes (noted Allocation), the action log size (i.e. the number of actions
to be reconciled, noted Nb-Actions) based on IceCube setup, and the network
topology based on BRITE [2]. We define three strategies for selecting reconcil-
ers: random selection (RDM); cost-based selection using precise costs for direct
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Table 4. Performance Parameters

Parameter Definition Values
Allocation Strategy for selecting reconciler nodes CB/P; CB/E; RDM
Nb-Actions Number of actions to be reconciled 106 - 10000
Nb-Nodes Number of connected nodes 1024; 20000
Bandwidth Network bandwidth 1Mbps; 10Mbps
Avg-Latency Average latency among nodes 51ms - 263ms
Sd-Latency Standard deviation of network latency 15ms - 96ms

communication (CB/P); and cost-based selection using estimated costs for di-
rect communication (CB/E). A network topology is defined by its bandwidth
(noted Bandwidth), the number of connected nodes (noted Nb-Nodes), the aver-
age latency among these nodes (noted Avg-Latency), and the associated standard
deviation (noted Sd-Latency). Latency values follow a uniform distribution. We
produced 3 network instances for every network topology definition. We also
produced 3 action logs for each action log size. By combining action logs with
network instances, we generate several distinct reconciliation scenarios that avoid
over fitted results. Table 4 describes the parameters of the performance model.

The first experiment (Figure 3a) studies the reconciliation performance with
locally estimated direct costs (recall that this approach reduces network load and
avoids the overload of provider nodes, but it is not precise). For this experiment,
we defined 4 network topologies and produced 12 network instances that are
different only wrt. latency parameters (all topologies have Bandwidth = 1Mbps
and Nb-Nodes = 1024). We used 3 action logs with Nb-Actions = 1005. Figure
3a shows the reconciliation performance using precise costs (CB/P), estimated
costs (CB/E), and random allocation (RDM). In 3 topologies, the cost-based
approaches (i.e. CB/P and CB/E) are equivalent and more efficient than the
random approach. In the best case, which corresponds to a real P2P network,
the CB/P reduces the reconciliation time of RDM in 37% whereas CB/E provides
a performance improvement of 30%. Due to the small difference between CB/P
and CB/E (i.e. 7%), we consider the estimated approach worth to avoid overload
problems. Notice that the experimental conditions (i.e. constant bandwidth and
uniform distribution of latencies) are strongly promising for random selection.
We can improve the performance of cost-based approaches by changing these
conditions (i.e. by providing variable bandwidths and distributing latencies in a
way that some nodes are very close to each other making up clusters of nodes).

Due to the lack of space, we describe three additional experiments in a sin-
gle graph, which corresponds to Figure 3b. The goal of these experiments is
to show that the reconciliation time is improved because cost-based selection
is used, and for faster network we have the best improvements compared with
RDM. For instance, for a network of 10 Mbps and 1024 connected nodes us-
ing cost-based selection (CB/P-10-1024) we improved the random approach
(RDM-1-1024) by a factor of 4. Notice that in this case both network band-
widths are different. For equal network bandwidths, the cost-based approach
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(a) Varying network latencies (b) Varying actions, nodes, band.

Fig. 3. DSR-P2P Reconciliation Time

(CB/P-1-1024) still outperforms the random approach. Finally, increasing the
number of connected nodes up to 20000 (CB/P-1-20000) does not degrade the
DSR-P2P performance because it relies on a DHT and due to our allocation
algorithm.

Liveness is an important issue in dynamic systems. DSR-P2P provides a
greater degree of availability, scalability and fault-tolerance than the central-
ized solution. In contrast, since DSR-P2P depends on network communication,
its reconciliation time (e.g. 57s for 10000 actions in a 1Mbps network with aver-
age latency of 229ms) is worse than the centralized counterpart (e.g. about 3s for
10000 actions). However, 57s remains an acceptable time for reconciling 10000
actions in a P2P network. The centralized solution, although more efficient than
DSR-P2P, is unsuitable for P2P networks due to its low availability in dynamic
environments.

6 Related Work

In the context of P2P networks, there has been little work on managing data
replication in the presence of updates. Most of data sharing P2P networks con-
sider the data they provide to be very static or even read-only. Freenet [3] par-
tially addresses updates which are propagated from the updating peer downward
to close peers that are connected. However, peers that are disconnected do not
get updated. P-Grid [1] is a structured P2P network that exploits epidemic algo-
rithms to address updates. It assumes that conflicts are rare and their resolution
is not necessary in general. In addition, P-Grid assumes that probabilistic guar-
antees instead of strict consistency are sufficient. Moreover, it only considers
updates at the file level in a single master-mode. In OceanStore [8] every update
creates a new version of the data object. Consistency is achieved by a two-tiered
architecture: a client sends an update to the object’s inner ring (primary copies)
and some secondary replicas in parallel. Once the update is committed, the inner
ring multicasts the result of the update down the dissemination tree. OceanStore
assumes an infrastructure comprised of servers that are connected by high-speed
links. Different from the previous works, we propose to distribute the reconcilia-
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tion engine in order to provide high availability. Our approach assures eventual
consistency among replicas, which enables asynchronous collaboration among
users. In addition, we provide multi-master replication and we do not assume
servers linked by high-speed links.

7 Conclusion

In this paper, we proposed the DSR-P2P, a distributed algorithm for semantic
reconciliation in P2P networks. Our main contributions are a cost model for
computing communication costs in DHTs and an algorithm that takes into ac-
count these costs and the DSR-P2P steps to select the best reconciler nodes. For
computing communication costs, we use local information and we deal with the
dynamic behavior of nodes. In addition, we limit the scope of event propagation
(e.g. joins or leaves) in order to avoid network overload.

We validated DSR-P2P through implementation and simulation. The experi-
mental results showed that our cost-based reconciliation outperforms the random
approach by a factor of 30% over scenarios that are favorable for the random ap-
proach (constant bandwidth and uniform distribution of latencies). In addition,
the number of connected nodes is not important to determine the reconcilia-
tion performance due to the DHT scalability and the fact that reconcilers are
as close as possible to the reconciliation objects. Compared with the centralized
solution, which is more efficient but lowly available, our algorithm yields high
data availability with acceptable performance and limited overhead. As future
work, we plan to include variable bandwidths in our cost model.
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t.eitrich@fz-juelich.de

2 Applied Computer Science and Scientific Computing Group, Department of
Mathematics, University of Wuppertal, Germany

Abstract. In this paper we describe a new hybrid distributed/shared
memory parallel software for support vector machine learning on large
data sets. The support vector machine (SVM) method is a well-known
and reliable machine learning technique for classification and regression
tasks. Based on a recently developed shared memory decomposition al-
gorithm for support vector machine classifier design we increased the
level of parallelism by implementing a cross validation routine based on
message passing. With this extention we obtained a flexible parallel SVM
software that can be used on high-end machines with SMP architectures
to process the large data sets that arise more and more in bioinformatics
and other fields of research.

1 Introduction

Support vector machines are well-known data mining methods for classification
and regression problems [1]. Their popularity is mainly due to their applicability
in various fields of data mining, such as text mining [2], biomedical research [3],
and many more. Their accuracy is excellent and in many cases they outper-
form other machine learning methods such as neural networks. SVMs have their
roots in the field of statistical learning which provides the reliable generaliza-
tion theory [4]. Several properties that make this learning method successful are
well-known, e.g. the kernel trick [5] for nonlinear classification and the sparse
structure of the final classification function. In addition, SVMs have an intuitive
geometrical interpretation, and a global minimum can be located during the
SVM training phase. In comparison to genetic algorithms or neural networks,
less experience is required for using them, which helps researchers to get started
with SVM software quite fast. The main drawback of current SVM models is
their high computational complexity for large data sets [6]. This can in fact
restrict the applicability of SVMs since the amount of data for classification
modeling increases dramatically. Therefore the development of highly scalable
parallel SVM algorithms is a new important topic of current SVM research.
Some algorithms for parallel SVM learning already do exist, but most of them

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 350–359, 2006.
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are limited to heuristics for distributed training on reduced data sets. These are
not useful as stand-alone systems for high quality learning on large data.

In this paper we propose an efficient parallel support vector machine software
well suited for multi-processor shared memory (SMP) clusters that become more
and more available. Our algorithm can be used in serial and parallel mode. The
parallel implementation provides pure MPI and OpenMP modes as well as a
hybrid mode which combines fine and coarse grained parallelization aspects to
a well scalable SVM learning method.

The remainder of this paper is organized as follows. In Sect. 2 we briefly review
the basic concepts of support vector machine learning and describe the SVM pa-
rameter optimization problem, which leads to the computational challenges we
address in this paper. We limit the discussion to the issues that are essential for
understanding the following sections. Since the field of parallel SVM methods
is quite new and implementations are rare, we give a detailed review of exist-
ing approaches for parallel data mining and support vector machine learning in
Sect. 3. One aim of this paper is therefore to present the current state-of-the-art
in parallel support vector machine design. In Sect. 4 we explain the structure
of our new parallel SVM software HyParSVM. In Sect. 5 we present first ex-
perimental results on the IBM p690 cluster JUMP at Research Centre Jülich.
Finally, Sect. 6 contains a summary and shows directions for future work.

2 Theoretical Background

In this paper we consider the well-known supervised binary classification prob-
lem [7]. Given a training set (reference data) of the form{(

xi, yi

) ∈ IRn × {−1, 1}, i = 1, . . . , l
}

,

where l ∈ IN is the number of given instances and n ∈ IN the number of attributes
in the data set, the task of support vector machine learning is to find a hypothesis
function h : IRn → IRthat can be used to classify unseen data. The hypothesis
function, the sign of which is used to classify a point x, is of the form

h(x) =
∑

i:αi>0

yiαiK(xi,x) + b∗.

It is mainly controlled by the so-called Lagrange multipliers αi (i = 1, . . . , l).
They can be determined via the solution of the quadratic programming (qp)
problem

min
α∈IRl

1
2

l∑
i,j=1

yiyjαiαjK(xi,xj) −
l∑

i=1

αi

s.t.
l∑

i=1

yiαi = 0 , 0 ≤ αi ≤ C (1 ≤ i ≤ l) .


(1)
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Fig. 1. Structure of parameter tuning with a 4-fold cross validation method

The function K : IRn × IRn → IR is known as the kernel [1] and measures
similarity between input vectors. C ∈ IR+ is an SVM internal error penaliza-
tion parameter which controls the trade-off between a large margin and the
corresponding training errors. We refer to [1] for a detailed description of the
SVM learning problem. Usually, for SVM learning either the L1-norm or the
L2-norm approach is used. In this paper we work with the L1-norm approach
(1) and avoid the discussion about SVM internal algorithmics. Our software
is able to handle both methods. All details to our flexible serial implementa-
tion are given in [8] where we presented a comparison between these methods
and observed a superiority of the L1-norm model for unbalanced classification
problems.

One of the main challenges when using SVM-based methods is parameter
selection. Several data dependent parameter values need to be adjusted [9]. Dif-
ferent methods for tuning the parameters have been proposed [10]. One of them
is a search procedure that iteratively creates new parameter values using quality
results from k-fold cross validation. In Fig. 1 we explain this method for k = 4.
A k-fold cross validation includes k SVM training and test stages as well as a
final combination of the results to obtain a quality measure value [9]. We are
working with our implementation of the decomposition method which includes
the fast projection method proposed in [11]. However, a single SVM training is
expensive for large data. Thus, a complete validation takes a very long time. Our
work is aimed at speeding up the SVM parameter optimization time. Please note
that parameter tuning usually means to perform a large number of validation
stages. Efficient and fast methods are of great interest since they allow for an
extensive scan of the parameter space and usage of additional parameters, e.g.
for sensitive classification of highly unbalanced data [9].
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3 History of Parallel Support Vector Machines

Most sequential data mining algorithms have large runtimes, but the volume of
data available for analysis is growing rapidly, i.e. the number of attributes as well
as the number of instances both increase. In addition to improvements of the
serial algorithms the development of parallel techniques may help to avoid com-
putational bottlenecks. This section gives an overview of activities concerning
large scale data mining, particularly the problem of classification using machine
learning techniques like SVMs.

Parallel Data Mining

The first parallel data mining algorithms have emerged a decade ago. In [12]
the general differences between parallel data mining and other numerical par-
allel algorithms are explained. The design of scalable data mining algorithms
requires meeting several challenges, e.g., the enormous memory requirements
have to be supported by the computing system. Various algorithms, especially
for supervised learning methods, have been parallelized.

– A parallel algorithm for data mining of association rules was presented
in [13]. It has been designed for work on shared memory multiprocessors.

– The ScalParC software [14], designed in 1998, was one of the first methods
for parallel decision tree classification. Parallel decision tree applications are
still of interest, mainly in the important field of Grid computing [15].

– Clustering is useful in various fields, i.e., pattern recognition and learning
theory. The runtime complexity of a serial k-means clustering algorithm is
high for problems of large size. Therefore parallel clustering methods have
been developed. We refer to [16] for a master-slave approach.

– K-nearest neighbor methods have received a great deal of attention since
they are applied frequently in bioinformatics, but performance is a serious
problem for many implementations. In [17] a parallel algorithm was intro-
duced to overcome the problem of runtime.

– Artificial neural networks (ANNs) are well-known data mining methods with
high learning cost when the models are large. An approach for speeding up
their implementation by using parallel environments is given in [18].

– Bayesian networks for unsupervised classification tasks include time consum-
ing steps which can be parallelized. A description is given in [19].

– Boosting is a method for improving the accuracy of any given learning al-
gorithm [20] and is often used within the context of supervised learning. A
framework for distributed boosting is presented in [21]. The method requires
less memory and computational time than serial boosting packages.

Parallel Support Vector Machine Approaches

Efficient and parallel support vector machine learning is a young and emerging
field of research, but the number of truly parallel implementations is small.
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Most approaches just try to increase the efficiency of the serial algorithms and
to overcome the problem of large scale applications by dividing the data into
subsets.

– Different approaches for splitting a large data set into small subsets have
been implemented [22]. Usually results of the individual training stages are
merged to finally obtain a single SVM model. The individual optimization
steps can be run in parallel.

– A fast SVM algorithm, which uses caching, digest and shrinking policies is
given in [23].

– The clustering-based SVM [24] is a learning method that scans the data set
before training the SVM. It selects the data which are supposed to maximize
the benefit of learning and is useful for very large problems when a limited
amount of computing resources is available. So far it is only applicable for
linear problems.

In addition, various projects exist where a simple parallelization scheme is used
to speed up the learning process.

– In [25] a parallel optimization step is proposed. It approximates the kernel
matrix by block diagonal matrices and splits the original problem into sub-
problems which can be solved independently from each other with standard
algorithms. This step is used to remove non-support vectors before SVM
training.

– Parallel training of several binary SVMs for solving multiclass problems is
described in [26].

– Parallel cross validation methods do exist for the WEKA machine learning
package [27].

– Parallel parameter optimization techniques such as grid search or pattern
search have been studied for SVM parameter fitting [28].

These approaches can be interpreted as coarse grained parallelization techniques
for SVM methods at a high level which is independent from the inner solver for
the problem (1). However, the computational bottleneck of a single SVM training
on a large data set can be avoided only by implementing a fine grained parallel
support vector machine training. The following methods have been proposed.

– Parallel computation of the kernel matrix for high dimensional data spaces is
implemented in [29]. The speedup is limited because of high communication
costs. Therefore an approximation method that reduces the kernel matrix
was implemented, too. The method is applicable only for commonly used
kernels which are inner product-based and requires changes in the algorithm
for each kernel.

– A distributed SVM algorithm for row-wise and column-wise data distribution
is described in [26], which so far can be used for linear SVMs only.

– A promising parallel MPI-based decomposition solver for training support
vector machines has been implemented recently [30].

– A parallel support vector machine for multi-processor shared memory (SMP)
clusters has been introduced in [31].
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4 A New Hybrid Parallel SVM Software

In [31] we have discussed a mixed library/loop-based shared memory paralleliza-
tion for a single SVM training. We have continued to optimize the parallel code,
i.e., in addition to the mixed parallelization we implemented two versions of the
parallel SVM training that perform library- or loop-based parallelization exclu-
sively (except for the distributed kernel computations). The first one is based
on calls to the shared memory parallel version of the ESSL (Engineering Scien-
tific Subroutine Library) [32], whereas the second one implements OpenMP loop
level parallelism. This scheme was realized for the outer decomposition loop, as
well as the projection method and the inner solver. The settings may be cho-
sen independently for each routine by using C preprocessor macro names. The
code is written in Fortran90, and the IBM XL Fortran compiler is used. We
observed satisfactory speedups for moderate numbers of processors on the IBM
supercomputer JUMP (Juelich Multi Processor) at Research Centre Jülich [33].
For a larger number of processors the speedup values tended to stagnate or even
decreased. The training routine comprises some sequential parts that cannot be
parallelized, e.g., the iterative working set selection scheme. These parts con-
sume approximately 5% of the training time for data sets with more than 10000
points. In addition, the working set size, an important parameter for the de-
composition loop that determines the size of the qp problem (1), which is solved
within the parallel OpenMP mode, is limited by the available memory. Therefore
the ESSLsmp routines have limited scalability for increasing numbers of threads.
All in all, for the data we have analyzed, the attainable speedup was limited to
values between 5 and 10. For a large number of threads (> 12) the speedups
started to decrease. In this paper we present a parallel software which speeds up
the SVM learning process to a greater extent by exploiting an additional level
of parallelism.

So far, the parallel shared memory SVM training had been embedded into
the serial validation loop as it is shown in Fig. 2. At this higher level we added
a new parallelization scheme. A pure extension of the shared memory approach
was not reasonable since usage of more than 32 processors on the JUMP su-
percomputer would mean to assign the validation tasks to different nodes which
do not share the same memory and can communicate with MPI-based func-
tions only. Therefore we implemented a hybrid parallel support vector machine
with an MPI-based cross validation routine. Using a coarse grained paralleliza-
tion scheme the k validation steps for a k-fold cross validation are distributed
to p processes, each of which performs a training-and-testing step for k/p data
sets. Each training may in turn be executed by multiple threads, as shown in
Fig. 2. Since I/O is necessary only at the beginning of the program, we could
use a simple data distribution scheme. A single (“master”) process reads the
complete training data, preprocesses it and then calls MPI collective broad-
cast operations to distribute the validation matrix to the other processes. Inside
the validation loop each process uses the matrix k/p times to extract private
training and test data. Each process accumulates results of the local validation
tests during execution of the program. At the end of the validation loop, MPI
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Fig. 2. Shared memory parallel SVM training as part of the validation loop to be
parallelized

collective reduction operations compute the overall results, and the master
process calculates the overall quality measure. Each validation step consists of a
single SVM training on a data matrix with n features and l · (1−1/k) instances.
It is known that training time is quadratic in the number of instances and lin-
ear in the number of features and does not heavily depend on other parameters
except the outer SVM parameters which do not change during a single valida-
tion process. Due to this relatively balanced load and the fact that variances in
time are data dependent and unpredictable, the assignment of validation jobs to
processes was implemented in a straight forward way. As it can be seen in Fig. 2
each step of the cross validation method previously comprised some non-parallel
parts (dark grey), which we have parallelized now with a distributed memory
approach to increase the efficiency of the overall scheme. The additional speedup
obtained by the hybrid parallelization is particularly useful in the context of pa-
rameter search, since a large number of validation steps may be necessary here.
Sophisticated parameter search is usually performed iteratively and new paths
in the parameter space are defined based on former results. For simple tuning
approaches like grid search, where the validation runs are independent and can
be processed in parallel, the MPI-parallelelism of our hybrid software may be
turned off.

5 Experimental Results

We performed our tests on the Juelich Multi Processor. JUMP is a distrib-
uted shared memory parallel computer consisting of 41 frames (nodes). Each
node contains 32 IBM Power4+ processors running at 1.7 GHz, and 128 GB
shared main memory. The 1312 processors have an aggregate peak performance
of 8.9 TFlop/s. For our tests we have used a QSAR data set from pharmaceutical
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Table 1. Comparison of ( running time in seconds : speedup : efficiency) for 8-fold
cross validation using the L1-norm approach with a Gaussian kernel. A data set with
40000 instances and 50 features was tested.

# processes
1 2 4 8

#
th

re
a
d
s

1 6105 : 1.0 : 1.00 3074 : 2.0 : 1.00 1566 : 3.9 : 0.98 834 : 7.3 : 0.91
2 3157 : 1.9 : 0.95 1599 : 3.8 : 0.95 815 : 7.5 : 0.94 453 : 13.5 : 0.84
3 2168 : 2.8 : 0.93 1109 : 5.5 : 0.92 577 : 10.6 : 0.88 348 : 17.5 : 0.73
4 1641 : 3.7 : 0.93 847 : 7.2 : 0.90 444 : 13.7 : 0.86 284 : 21.5 : 0.67
5 1362 : 4.5 : 0.90 703 : 8.7 : 0.87 366 : 16.7 : 0.84 187 : 32.7 : 0.82
6 1172 : 5.2 : 0.87 609 : 10.0 : 0.83 326 : 18.7 : 0.78 165 : 37.0 : 0.77
7 1054 : 5.8 : 0.83 549 : 11.1 : 0.79 299 : 20.4 : 0.73 155 : 39.4 : 0.70
8 978 : 6.2 : 0.78 518 : 11.9 : 0.74 290 : 21.9 : 0.68 158 : 42.9 : 0.67

industry with 40000 instances and 50 features. We show results for an SVM with
the Gaussian kernel. However, with our flexible implementation any other kernel
function is applicable, since the kernel function itself is not parallelized. The user
may integrate his own kernel function into the software. We believe that this con-
cept of a non-parallel kernel function is crucial for a flexible usage of the parallel
SVM software as it allows for the classification of data sets with widely differing
characteristics. Due to the fact that we focus on a parallelization scheme, no
accuracy results for the data in this paper are given. In our tests we observedm
that parallel computataion of (1) does not change the global solution. Concern-
ing verification and improvement of SVM quality we refer to our work [8,9,28].

In the following we present the results for an 8-fold cross validation task using
the hybrid software with the ESSLsmp-based inner parallelization. The working
set size of the decomposition method was set to the largest possible value of
40000 · 7/8 = 35000, which is the size of the qp problems to be solved in the
validation loop. For the allocation of matrices and vectors during computation
each process needed 12 GB of memory, which was then used by the threads
assigned to each process. In cases where only a smaller amount of memory is
available the working set size may be reduced. This will cause the decomposition
method to optimize the vector α iteratively. As we mentioned in the last chapter,
each validation step is expected to consume approximately the same amount of
time. For our data set the timings were between 751 and 778 seconds with
a mean value of 763. These results were obtained with one thread and a single
process on JUMP. Thus, the time differences between the steps are negligible and
the assignment of steps to the available processes may indeed be implemented
without a special mapping method. In Table 5 we show speedup and efficiency
values for various combinations of processes and threads. The additional level of
parallelism successfully increased the achievable speedup. Most interesting it the
last column. The efficiency decreases from 0.91 down to 0.67 for 32 processors. If
additional 8 processors are added, the efficiency increases to 0.82 and decreases
again for further more processors. For tests with more than 32 processors two
nodes of JUMP are used; all other tests were run on a single node. With using
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two nodes, memory bandwidth limitations become visible. However, our speedup
values are promising – for 64 processors the SVM validation time decreased with
a factor of 43 by using 8 processes with 8 threads each.

6 Summary and Future Work

In this paper we presented the new HyParSVM software for parallel SVM learn-
ing. This software, which is under development at the Research Centre Jülich,
helps speeding up the data mining pipeline in various fields of classification
applications. The hybrid implementation is very flexible and shows promising
results on the JUMP supercomputer. In addition to the hybrid SVM software
the user may increase the level of parallelism even more by using a parallel pa-
rameter tuning method which calls the HyParSVM cross validation routine, e.g.
on different nodes of a SMP cluster.

Our future work will be aimed at further improvement of the HyParSVM
software. The shared memory parallelization of the training routine will be en-
hanced and tested for larger data sets. We will analyze which parallel scheme –
ESSLsmp or OpenMP-based constructs – gives the best speedups. The influence
of the working set size onto the scalability will be investigated.
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Abstract. Increasingly, a number of applications across computer sci-
ences and other science and engineering disciplines rely on, or can poten-
tially benefit from, analysis and monitoring of data streams. We view the
problem of flexible and adaptive processing of distributed data streams as
a grid computing problem. In our recent work, we have been developing
a middleware, GATES (Grid-based AdapTive Execution on Streams),
for enabling grid-based processing of distributed data streams.

This paper reports an application study using the GATES middleware
system. We focus on the problem of intrusion detection. We have created
a distributed and self-adaptive real-time implementation of the algorithm
proposed by Eskin using our middleware. The main observations from
our experiments are as follows. First, our distributed implementation can
achieve detection rates which are very close to the detection rate by a
centralized algorithm. Second, our implementation is able to effectively
adjust the adaptation parameters.

1 Introduction

Increasingly, a number of applications across computer sciences and other sci-
ence and engineering disciplines rely on, or can potentially benefit from, analysis
and monitoring of data streams. In the stream model of processing, data arrives
continuously and needs to be processed in real-time, i.e., the processing rate must
match the arrival rate. There are several trends contributing to the emergence
of this model. First, scientific simulations and increasing numbers of high preci-
sion data collection instruments (e.g. sensors attached to satellites and medical
imaging modalities) are generating data continuously, and at a high rate. The
second is the rapid improvements in the technologies for Wide Area Networking
(WAN). As a result, often the data can be transmitted faster than it can be
stored or accessed from disks within a cluster.

The important characteristics that apply across a number of stream-based
applications are: 1) the data arrives continuously, 24 hours a day and 7 days a
week, 2) the volume of data is enormous, typically tens or hundreds of gigabytes
a day, and the desired analysis could also require large computations, 3) often,
this data arrives at a distributed set of locations, and all data cannot be commu-
nicated to a single site, 4) it is often not feasible to store all data for processing
at a later time, thereby, requiring analysis in real-time.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 360–370, 2006.
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We view the problem of flexible and adaptive processing of distributed data
streams as a grid computing problem. We believe that a distributed and net-
worked collection of computing resources can be used for analysis or processing
of these data streams. Computing resources close to the source of a data stream
can be used for initial processing of the data stream, thereby reducing the vol-
ume of data that needs to be communicated. Other computing resources can be
used for more expensive and/or centralized processing of data from all sources.

In our recent work, we have been developing a middleware for enabling grid-
based processing of distributed data streams [6,5]. Our system is referred to
as GATES (Grid-based AdapTive Execution on Streams). One of the impor-
tant characteristic of this middleware is that it can enable an application to
achieve the best accuracy, while maintaining the real-time constraint. For this,
the middleware allows the application developers to expose one or more adapta-
tion parameters. An adaptation parameter is a tunable parameter whose value
can be modified to increase the processing rate, and in most cases, reduce the
accuracy of the processing. Examples of such adaptation parameters are, rate
of sampling, i.e., what fraction of data-items are actually processed, and size of
summary structure at an intermediate stage, which means how much informa-
tion is retained after a processing stage. The middleware automatically adjusts
the values of these parameters to meet the real-time constraint on processing,
through a self-adaptation algorithm. Self-adaptation algorithms currently imple-
mented in the middleware are described in our earlier papers [6,5].

This paper reports an application study using the GATES middleware system.
We focus on the problem of intrusion detection, which a widely studied problem
in computer security and data mining [1]. We have created a distributed and
self-adaptive real-time implementation of the algorithm proposed by Eskin [3].
This implementation generates local models using data received at each node,
and then combines these local models to create a global model. We use the
functionality of GATES in two different ways. First, as network records typically
arrive at multiple locations, a flexible distributed implementation can avoid high
communication costs associated with a centralized implementation. Second, as
data arrival rates can vary significantly, it is important for an intrusion detection
implementation to choose the right trade-off between accuracy and processing
rate, to continue to meet real-time constraints.

We have carried-out a number of experiments to evaluate our distributed im-
plementation. The main observations from our experiments are as follows. First,
our distributed implementation can achieve detection rates which are very close
to the detection rate by a centralized algorithm. Second, our implementation is
able to adjust the adaptation parameters. When the rate of data arrival is low,
it chooses a small value of the adaptation parameter, EM convergence threshold,
resulting in the best detection rate. On the other hand, when the data arrival rate
is very high, it chooses a larger value of this parameter, resulting in somewhat
lower accuracy, but still maintaining the same rate of processing.
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Input: k, # of EM clusters, D = {d1, d2, . . . , dn}, set of n 10 − dimentional points,
λ, probability for the set of intrusions, c, anomaly detection threshold.

Output: intrusion detection result.
var

Mt = probability distribution for normal elements at time t
At = probability distribution for anomalous elements at time t
Ct = number of intrusions detected at time t

begin
Mt = GMM generated by Expectation Maximization (EM) algorithm on D
At = a uniform distribution
Logistic Regression (LR) on D using 3 categorical attributes
for t = 1 to n

LLt(D) = |Mt|log(1 − λ) + xi∈Mt
log(PMt(xi)) + |At|log(λ) + xi∈At

log(PAt(xi))

Mt = Mt−1 − xt

At = At−1 xt

if (LLt − LLt−1) > c

then
Ct = Ct + 1

else
Mt = Mt−1

At = At−1

if (the result says 0 but LR says 1)
then dt is intrusion
else if (the result says 1 but LR says 0)
then dt is normal
else dt remains the same from the result

endfor
end

Fig. 1. Pseudo-code for the Anomaly Detection Algorithm

2 Anomaly Detection Algorithm

Intrusion detection problem has been extensively studied in recent years. There
are many different approaches for modeling normal and anomalous data, based
on which the detections are carried out. A survey and comparison of anomaly
detection techniques can be found in[1].

Our goal in this paper is to demonstrate that distributed and adaptive versions
of anomaly detection can be implemented using our middleware, GATES. For
this purpose, we have chosen an existing algorithm by Eskin [3]. One reason
for choosing this algorithm is that many other anomaly detection approaches
require training models over clean data. This can lead to problems since online
data is not clean and once the anomalies hidden in the data have been detected
as normal, further detections will also fail. Eskin’s algorithm, in comparison, has
the advantage that it can identify anomalies without clean data.
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We now briefly describe this algorithm. This method identifies anomalies
buried within the dataset. An assumption is made that the number of normal
elements in the data set is significantly larger than the number of anomalous ele-
ments. The pseudo-code for the algorithm is shown in Figure 1. We use Gaussian
Mixture Model (GMM) to represent the distribution of the normal elements in
the dataset. This is because it has the property of being able to represent any
distribution as long as the number of Gaussians in the mixture is large enough[7].
Further details of the use of EM algorithm to generate GMM can be found in
[4]. Once we have the model, anomaly detection begins with first assuming every
element is normal. Motivated by the model of anomalies, we use GMM to test
each element to determine whether it is an intrusion or not. This is based on the
difference of the loglikelihood by treating it as a normal element and as an intru-
sion. As compared to Eskin’s original algorithm, we also use logistic regression[2]
to further improve the performance of the algorithm.

3 GATES Middleware and Distributed Anomaly
Detection Implementation

In this section, we initially describe the GATES middleware system, and then
describe our distributed anomaly detection implementation.

3.1 Overview of the GATES System

GATES (Grid-based AdapTive Execution on Streams) is a middleware that sup-
ports the flexible and adaptive analysis of distributed data streams. A key goal
is to able to allow the most accurate analysis while still meet the real-time con-
straint. For this purpose, GATES applies self-adaptation algorithm. In summary,
GATES has the following features:

– It is designed to use the existing grid standards and tools to the extent
possible. Specifically, GATES is built on the Open Grid Services Architecture
(OGSA) model and uses the initial version of Globus Toolkits (GT) 3.0’s API
functions. Therefore, all components of GATES, including applications, exist
in the form of Grid services.

– It supports distributed processing of one or more data streams, by facilitating
applications that comprise a set of stages. For analyzing more than one data
stream, at least two stages are required. Each stage accepts data from one
or more input streams and outputs zero or more streams. The first stage is
applied near sources of individual streams, and the second stage is used for
computing the final results. However, based upon the number and types of
streams and the available resources, applications can also take more than two
steps. GATES’s APIs are designed to facilitate specification of such stages.

– It flexibly achieves the best accuracy that is possible while maintaining the
real-time constraint on the analysis. To do this, the system monitors the
arrival rate at each source, the available computing resources and memory,
as well as the available network bandwidth. Then it automatically adjusts
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the accuracy of the analysis by tuning the parameter within a certain range
specified by the user.

The self-adaptation algorithm used in GATES has been evaluated using a
number of stream-based data mining applications, including counting samples
and finding frequent itemsets in distributed data streams, using data stream
processing for computational steering, and clustering evolving data streams[6,5].
Results from the evaluation show that GATES is able to self-adapt effectively,
and achieve the highest accuracy possible while maintaining the real-time pro-
cessing constraint, regardless of the resource availability, network bandwidth, or
processing power.

3.2 Real-Time Distributed Intrusion Detection on GATES

The use of GATES middleware can provide two advantages in implementing
intrusion detection. First, it can allow a distributed implementation. Many sce-
narios for intrusion detection involve data arriving at multiple locations. One
possible solution for handling such cases is to forward all data to a single node,
however, this can result in high communication and computation overheads.
Second, it can allow for an adaptive implementation, which can trade-off rate
of processing and accuracy. Therefore, it can allow the implementation to meet
real-time constraints, and allow best accuracy for the given data arrival rate and
available computational resources.

Fig. 2. Communication Topology for the Distributed Intrusion Detection Application

Figure 2 shows the hierarchical structure of the real-time distributed intrusion
detection application built on GATES. Our implementation is composed of three
stages. The entire procedure of the intrusion detection is divided into a data
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preprocessing stage, a stage which performs local model generation and detects
intrusions, and a global model generation stage. We now describe each of these
stages in more details.

Producer is simply the data source, where some initial preprocessing can be
performed. We chose 10 out of 41 attributes (7 continuous and 3 categorical)
for each network data record. The attributes with the most significant variance
are included as they most likely to contain more information for distinguishing
intrusions from normal data. The filtered data is sent to the second stage.
Collector first collects the data from the Producer and applies the EM algorithm
to generate local GMMs. These are then used in the anomaly detection algorithm
we described earlier, for detecting local intrusions. Another function of this stage
is to forward samples, i.e. normal data points which have been detected as local
intrusions, to the final stage. The goal is to allow the global model to capture
their distribution. Finally, once the global model is generated, it is sent back
to this stage. Here, the anomaly detection algorithm is applied again to get the
global intrusions.

Note that the global model is improved iteratively, i.e., we approach closer to
the true probability distribution after each iteration, and have greater accuracy
in intrusion detection.

Combiner generates the global model based on the local model parameters and
samples. For GMM, the local model parameters used are the mean vector, covari-
ance matrix for each Gaussian model, and their weights contributing to the mix-
ture. We use Kullback-Leibler(KL)-divergence [8] as the measurement to decide
how similar two distributions are. KL-divergence is the most natural compari-
son measure since it is linearly related to the average loglikelihood of the data
generated by one model with respect to the other. It is also a well-behaved dif-
ferentiable function of the model parameters, unlike the other measures. Hence,
we combine two local models if the KL-divergence between them is below a user-
defined threshold, in which case, a modification has to be made to the global
model. Otherwise, new models would be added in. The Combiner sends back
the global model to the Collector to end the processing associated with each
iteration.

As we stated earlier, GATES uses programmer declared adaptation parameters
to achieve self-adaptation. In our implementation, we have used two different
adaptation parameters. The first parameter is the rate of sampling between the
Collector and the Combiner. If the Collector sends a very large number of samples
to the Combiner, it increases the communication as well as the computations at
the Combiner stage. On the other hand, a very small number of samples will
result in a less accurate global model. Similarly, the convergence threshold for
the EM algorithm also impacts the accuracy and the processing rate. The smaller
the value of this parameter, the more accurate local model we can get, which
also leads to a better global model. However, a small value of this parameter
also results in more computations for the EM algorithm to converge, making the
Collector overloaded.
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Note that the self-adaptation algorithm in GATES can only adjust one pa-
rameter at a time. Thus, in our experiments, we keep one of them fixed, while
allowing the middleware to adjust the other.

4 Experimental Evaluation

This section presents results from the real-time distributed intrusion detection
application built on GATES. We had several goals in our experiments. First,
we wanted to demonstrate that distributed implementations can achieve high
accuracy. Second, we wanted to evaluate the middleware’s ability to adjust the
two adaptation parameters, under different conditions. Finally, we also evaluate
the improvements in accuracy achieved through logistic regression, which is an
area where we had improved Eskin’s algorithm.

The dataset we used is KDD-CUP’99 Network Intrusion Detection data, which
contains a wide variety of intrusions simulated in a military network environ-
ment. It consists of approximately 4,900,000 network connection records with
more than 80% as intrusions. Each connection record has 41 attributes, including
categorical and continuous ones. According the requirement from the anomaly
detection algorithm[3], the majority distribution should have at least 90% of the
entire dataset. Therefore, we randomly duplicate the normal data and choose
part of the intrusion data, which result in a data set with 335,892 records in
total and only 9.04% are intrusions. Each type of intrusion is evenly distributed
and comes in a burst.

We conducted our experiments in a Linux cluster. Each node has a Pentium
III 933MHz CPU with 512MB of main memory and 300GB local disk space. The
interconnection network is a switched 100Mb/s Ethernet. In all our experiments,
the number of mixtures used in the centralized anomaly detection algorithm is
3 and the distributed version also results in the same number of mixtures.

4.1 Experiment 1: Adjustable EM Threshold vs. Fixed Sampling
Rate

In this experiment, we fix the sampling rates at certain values and let GATES ad-
just the EM threshold. The data production (arrival) rates vary from 100kb/s,
80kb/s, 50kb/s, 30kb/s to 10kb/s. Figure 3 shows how the EM threshold pa-
rameter converges to the ideal values with different data production rates. As
expected, when the production rate is small, EM threshold converges to a smaller
value since it can have enough time to perform the EM algorithm without be-
ing overloaded from its upstream. Also notice that the smallest EM threshold
GATES converges to is 0.000012, which is very close to the EM threshold used
in the centralized algorithm, 0.00001.

The detailed results, including processing time, detection rate, and false pos-
itive rate, are shown in Table 1. A centralized version, with no time constraints,
takes 923 seconds, and is able to detect 97.63% of the intrusions. It also has
a 8.08% rate of false positives. The best accuracy from the distributed version
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Fig. 3. Adaptation of EM Threshold with Different Data Production Rates

Table 1. Intrusion Detection Results

Exe. time(sec) Detection rate False positive

Centralized 923.0 97.63% 8.08%
Sample rate=40% 667.8 82.79% 5.95%

Distributed Sample rate=20% 637.2 91.38% 7.39%
Sample rate=16% 618.7 86.48% 6.35%

Producing rate Sample rate=13% 609.8 83.71% 6.04%
= 100kb/s Sample rate=10% 602.1 82.57% 5.83%

Sample rate=40% 710.1 84.72% 6.22%
Distributed Sample rate=20% 698.9 92.09% 7.57%

Sample rate=16% 674.2 88.69% 6.83%
Producing rate Sample rate=13% 653.3 86.21% 6.32%

= 80kb/s Sample rate=10% 642.9 84.58% 6.17%

Sample rate=40% 766.2 88.07% 6.88%
Distributed Sample rate=20% 738.6 92.44% 7.63%

Sample rate=16% 708.1 90.71% 7.19%
Producing rate Sample rate=13% 692.6 89.00% 6.95%

= 50kb/s Sample rate=10% 680.4 87.85% 6.%

Sample rate=40% 795.6 90.20% 7.22%
Distributed Sample rate=20% 766.7 94.63% 7.78%

Sample rate=16% 732.1 93.13% 7.67%
Producing rate Sample rate=13% 719.8 91.38% 7.55%

= 30kb/s Sample rate=10% 706.9 90.10% 7.10%

Sample rate=40% 862.1 93.74% 7.72%
Distributed Sample rate=20% 798.9 95.36% 7.90%

Sample rate=16% 762.4 95.16% 7.87%
Producing rate Sample rate=13% 741.8 94.29% 7.82%

= 10kb/s Sample rate=10% 728.3 93.50% 7.66%
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is 95.36%, which is quite close to the accuracy of the centralized version. The
best accuracy obtained under other (higher) data rates is at least 91.38%, which
shows that the middleware is able to tradeoff processing rates and accuracy
effectively.

Two other observations can be made from this table. First, the false positive
rate is always a fixed fraction of the detection rate, i.e., the higher the detection
rate, the higher is the false positive rate. The false positive rate is not impacted
by whether the implementation is centralized or distributed, or the value of the
adaptation parameters. Second, the trends between the choice of the sampling
rate and detection rate are quite interesting. Across different data production
rates, best accuracy is achieved when sampling rate is 20%. Both lower and
higher values of sampling rates result in lower detection rates. The reason is as
follows. When the sampling rate is higher, the Combiner takes a longer time to
compute global models. As a result, the collector operates with an older model
for a longer duration of time. On the other hand, when the sampling rate is
lower, a small number of samples at the Combiner results in lower quality global
models.

Table 2. Improvements Through Logistic Regression

without L.R. with L.R.

Detection Rate False Positive Detection Rate False Positive

Centralized 92.36% 8.35% 97.63% 8.08%

Producing rate=100kb/s 86.45% 7.64% 91.38% 7.09%
Producing rate=80kb/s 87.12% 7.82% 92.09% 7.57%
Producing rate=50kb/s 87.45% 7.88% 92.44% 7.63%
Producing rate=30kb/s 89.52% 8.04% 94.63% 7.78%
Producing rate=10kb/s 90.21% 8.12% 95.36% 7.90%

We also now evaluate the benefits of using logistic regression. We have im-
plemented logistic regression using three categorical attributes. The results are
shown in Table 2. The detection rate increases from 92.36% to 97.63% with
the false positive dropping from 8.35% to 8.08% for the centralized version.
Comparing the best results from the real-time distributed intrusion detection
implementation, we can get 95.36% as the detection rate and 7.90% as the false
positive rate, compared with 90.21% and 8.12% without using the logistic re-
gression, respectively. The overall observation is that once a data record fails
anomaly test, i.e. either normal data is detected as intrusion or an intrusion is
detected as being normal, the categorical attributes, namely, the protocol type,
the service information, and the flag, can correct the detection results.

Two other observations from our implementation are shown through Figures 4
and 5. Figure 4 shows that as the processing proceeds, we are having smaller
KL-divergence comparing to the true model, namely, the global model generated
from our algorithm is closer to the true model, as expected. As we can see from
the Figure 5, we are getting better detection rates for each processing round.
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We have used a ROC curve in this Figure, which is a graphical representation of
the false positive rate versus the detection rate. The reason for our observation
is that we have more data to generate the global model.

4.2 Experiment 2: Adjustable Sampling Rate vs. Fixed EM
Threshold

The other experiment we carried out involved a fixed EM threshold, and sam-
pling rate as the adaptation parameter. Again, under different data production
rates, we observed how the middleware is able to converge to a stable value
of the adaptation parameter. The results are shown in Figure 6. As expected,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Time(sections)

S
am

p
lin

g
ra

te

100kb/sec

80kb/sec

50kb/sec

30kb/sec

10kb/sec

Fig. 6. Adaptation of Sampling Rate with Different Production Rates



370 Q. Zhu, L. Chen, and G. Agrawal

higher data production levels result in a smaller sampling rate, and lower data
production levels result in a higher sampling rate.

5 Conclusion

This paper has reported an application study using the GATES middleware,
which has been developed for supporting grid-based streaming applications. We
have focused on the problem of intrusion detection. We have created a distrib-
uted and self-adaptive real-time implementation of the algorithm proposed by
Eskin using our middleware. The main observations from our experiments are as
follows. First, our distributed implementation can achieve detection rates which
are very close to the detection rate by a centralized algorithm. Second, our im-
plementation is able to effectively adjust the adaptation parameters.
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Abstract. There has seen a strong demand for provenance in grid applications, 
which enables users to trace how a particular result has been arrived at by 
identifying the resources, configurations and execution settings. In this paper 
we analyses the requirements of provenance support and discusses the nature 
and characteristics of provenance data on the Grid. We define a new conception 
called augmented provenance that enhances conventional provenance data with 
extensive metadata and semantics. A hybrid approach is proposed for the 
creation and management of augmented provenance in which semantic 
annotation is used to generate semantic provenance data and the database 
management system is used for execution data management. The approach has 
been applied to a real world application, and tools and GUIs are developed to 
facilitate provenance management and exploitation.  

1   Introduction 

The essence of Grid computing is the sharing and reuse of distributed, heterogeneous 
resources for coordinated problem solving in dynamic, multi-institutional virtual 
organizations (VO). In service-oriented grid infrastructures such as OGSA [1] and 
WSRF [2], grid resources are regarded as services, and problem solving amounts to 
the discovery and composition of the required services into a workflow, plus the 
enactment of the workflow. Problem solving on the Grid is dynamic, collaborative 
and distributed, e.g. VOs are formed or disbanded on-demand, and services may be 
published and withdrawn by different stakeholders. In such dynamic environments, it 
is vital to record the problem solving process for later use such as in interpreting 
results, verifying that the correct process took place or tracing where data came from. 

There has seen an increasing demand for provenance in grid applications [3], 
which enables users to trace how a particular result has been obtained by identifying 
the resources, configurations and execution settings. However, current grid 
architectures lack approaches, mechanisms, and tools to deal with this issue. In this 
paper we analyse the requirements of provenance support and discuss the nature and 
characteristics of provenance data on the Grid. We define a new conception called 
augmented provenance that enhances conventional provenance data with extensive 
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metadata and semantics. We propose a hybrid approach for the creation and 
management of augmented provenance by exploiting the emerging Semantic Web 
technologies and the latest database technologies. The cornerstone of the approach is 
the use of ontologies for metadata modeling, and semantic annotations for provenance 
data population. Special emphasis is placed on semantics, i.e. the ontological 
relationships among the diversity of provenance data, which enables deep use of 
provenance data by reasoning. 

The paper is organized as follows: Section 2 introduces the concept of augmented 
provenance. Section 3 describes a hybrid approach for recording and managing 
augmented provenance. We give an application example in Section 4, and discuss 
related work and our experience in Section 5. Section 6 concludes the paper and 
points out some future work.  

2   Augmented Provenance 

Provenance is defined, in the Oxford English Dictionary, as (i) the fact of coming 
from some particular source, origin, derivation; (ii) the history or pedigree of a work 
of art, manuscript, rare book, etc. This definition regards provenance as the derivation 
from a particular source to a specific state of an item, which particularly refers to 
physical objects. For example, in museum and archive management a collection is 
required to have archival history regarding its acquisition, ownership and custody. 

In the context of Grid computing, we focus on electronic data produced by 
computer systems, and we define the provenance of a piece of data as the process that 
led to that piece of data [4]. A process in the service-oriented grid architecture refers 
to the execution of a workflow, which is a specification of a service composition. 
Therefore, the provenance of a piece of data is, in essence, the description of the 
process that resulted in that data item. 

Grids have the characteristics of dynamic provisioning and across-institutional 
sharing. In such environments a workflow consists of services from multiple 
organizations in a dynamic VO. The success of workflow execution depends on 
domain knowledge for service selection and configuration, and mutual understanding 
of service providers and consumers on service functionalities and execution. The 
complexity of problem solving process requires not only the execution data of a 
workflow (e.g. the inputs and outputs of services, the configuration of service control 
parameters), but also rich metadata data about the services themselves (e.g. their 
usages, the runtime environment setting, etc.), in order to validate, repeat and further 
investigate the problem solving process at a later stage. A number of requirements for 
provenance data are identified and described below. 

Firstly, provenance should include metadata at multiple levels of abstraction, i.e. 
process level, service level and data level. For example, an instantiated workflow 
instance is a provenance record for the data derived/generated from it, but the 
workflow instance itself also needs provenance information, e.g. the workflow 
specification it was instantiated from, the reason a particular set of input values were 
chosen, etc. Similar provenance requirement applies to services and data. 

Secondly, provenance should include metadata from multiple categories including 
data, knowledge, decision, conclusion, etc. Each category of provenance has its roles 
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and uses, and different applications have different emphases and requirements for 
provenance. For instance, in biology attention is paid on the transformation process of 
data; in engineering the focus is on the process creation; and in medical information 
system the emphasis is on the underlying decision-making process and results that 
may be more relevant to annotation. As provenance is not only used to validate, 
repeat and analyze previous executions but more importantly to further advance 
investigation and exploration based on present results, we are particularly interested 
in the knowledge and decision provenance, e.g. how a decision was arrived at. 

Thirdly, provenance data should be interoperable, accessible and machine 
processable for sharing among distributed users. This requires provenance data and 
rich relationships among them be formally modeled and represented. Relations can be 
regarded as a kind of knowledge model and be used to encode domain knowledge. 
Appropriate organization of metadata help data retrieval and more importantly, 
discovery of new knowledge or pattern based on reasoning. 

To meet the aforementioned requirements, we face two challenges: the first is how 
to capture all provenance data. While it is desirable to collect provenance data 
automatically, it becomes clear that not all provenance data can be captured 
automatically, especially regarding the rich metadata about services, workflows, 
knowledge and decisions. The second challenge is how to make provenance data 
interoperable, sharable and understandable for both humans and machines on the 
Grid.  

Based on the above analysis and inspired by the Semantic Web technologies, we 
argue that ontologies and semantic annotation should be used for the acquisition, 
modeling, representation and reuse of provenance data. The reasons are  (1) 
ontologies can model both provenance data and their contexts in an unambiguous 
way; (2) provenance data generated via semantic annotation are accessible, shareable 
and machine processable on the Grid; and (3) the Semantic Web technologies and 
infrastructure can be exploited to facilitate provenance data acquisition, 
representation, storage and reasoning. For example, it is straightforward to adopt 
Semantic Web Services for capturing the semantic metadata.   

To differentiate from traditional provenance understanding, we introduce the 
concept of augmented provenance, defined as: the augment provenance of a piece of 
data is the process that leads to the data and its related semantic metadata.  

3   A Hybrid Approach to Augmented Provenance 

Augmented provenance contains execution data, e.g. the values of inputs and outputs 
of services; as well as semantic metadata, e.g. the descriptive information about the 
workflows, services and parameters. The different nature of these two types of data is 
reflected in the way they are captured, modeled, represented and stored. To support 
the heterogeneity of provenance data on the Grid a hybrid approach is proposed, 
which combines the emerging Semantic Web technologies with the database 
technologies to handle a workflow’s semantic metadata and execution data 
respectively. The overall architecture is illustrated in Figure 1. 
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3.1   Managing Semantic Metadata 

Managing semantic metadata for augmented provenance involves the metadata 
creation, semantic enrichment, representation and storage. By using the Semantic 
Web technologies, our idea is to formally model the semantic metadata in ontologies, 
thus their creation and enrichment can be accomplished in one process through 
semantic annotations. The generated metadata can be represented in semantic web 
languages such as RDF or OWL1, and stored in semantic repositories such as 3Store 
[5] or Instance Store [6].  

The above idea is realized in the architecture by a number of components, namely 
the Services, Ontologies, Semantic Metadata Repositories, Workflow Construction 
Environment and Query Tools. Central to the architecture is the Ontologies 
component containing various domain-related ontologies that specify ontological 
concepts, their relationships and constraints. 

The Services component consists of distributed, internet-accessible services. Such 
services are generally described in WSDL1 published in UDDI 2  and invoked by 
SOAP1. However these 
technologies do not provide 
formal support for service 
metadata and semantics. Our 
approach is to generate the 
service-level semantic 
metadata by semantically 
annotating services using 
ontologies, and store them in 
the Semantic Metadata 
Repositories. Composing 
services into a workflow is 
performed in the Workflow 
Construction Environment 
component. Service semantic 
metadata are linked to the workflow and the overall semantic metadata about the 
workflow are created through semantic annotations and stored in the Semantic 
Metadata Repositories as well.  

The Query Tools component is for finding the required semantic metadata and 
execution data of the augmented provenance, as discussed later. 

3.2   Managing Execution Data 

Execution data include the input/output values of services, values of services control 
parameters, and data produced by the workflow.  They have the nature of few 
metadata and semantics attached, but large in volume. For example, the simulation 
result of an aero-engine design could reach multi-gigabytes in size. Therefore, we 
leverage database technologies in the Execution Data Store component to facilitate 
the execution data storage and retrieval.  
                                                           
1 RDF, OWL, WSDL and SOAP are W3C standards. Please refer to www.w3.org 
2 UDDI: www.uddi.org 
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Fig. 1. The architecture for augmented provenance 
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The Workflow Execution Environment component is responsible for extracting the 
execution data from the workflow before executing it.  It analyses a workflow script 
to collect initial default or user-defined input values. During the runtime it interprets 
the workflow script and binds individual constituent services with corresponding 
inputs and invokes the service. Intermediate results may be returned to the 
environment and used as inputs to the successive services. The collected and 
generated data are archived in the Execution Data Store. 

3.3   Querying Augmented Provenance Data  

Augmented provenance consists of semantic metadata and execution data, and they 
are represented and managed using different mechanisms. However, semantic 
metadata and execution data are closely linked and can be cross-referenced. When a 
workflow template is built with attached semantic metadata in the workflow 
construction environment, it is stored in the Semantic Metadata Repositories, together 
with a specifically generated unique ID (UUID, Universally Unique IDentifier [7]) as 
a handle for later reference. An instantiated workflow template creates a workflow 
instance which is executed in the Workflow Execution Environment. The executable 
workflow instance is stored, under its own unique ID, together with associated 
input/output data and possibly some simple metadata (e.g. the instance creation time, 
name of its creator, etc) in the database. The one-to-many relationships between the 
workflow template ID and the workflow instance IDs are also stored in the database, 
so that users can reference the semantic metadata of the workflow instances through 
the workflow template ID.  

We have implemented the Query Tools component to provide dual query 
mechanisms for flexible and efficient provenance data search and retrieval. Semantic 
queries on workflows can be framed using ontologies and are answered through 
semantic matching. Once a workflow template ID becomes available, its executable 
instances can be found easily based on the ID by launching a database query.  

The separation of semantic metadata and execution data has the following 
advantages: Firstly, semantic metadata can be formally modeled using ontologies and 
represented in expressive web ontology languages. This helps capture domain 
knowledge and enhance interoperability. Secondly, workflow execution usually 
produces large volume of data that have little added value for reasoning, but storing 
them in the database made the data searchable and easy to share. Finally, the hybrid 
query mechanism provides flexibility and alternatives – users can perform semantics 
based query or direct database query or a combination of the two to meet application 
requirements. 

4   GEODISE: A Case Study of Augmented Provenance 

Engineering Design Search and Optimisation (EDSO) is a computationally and data 
intensive process whereby existing engineering modeling and analysis capabilities are 
exploited to yield improved designs. An EDSO process usually comprises many 
different tasks. For example, the design optimization of an aero-engine or wing may 
involve: specify the wing geometry in a parametric form; generate a mesh for the 
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design; decide which analysis code to use and carry out the analysis; decide the 
optimisation schedule; and finally execute the optimisation run coupled to the analysis 
code. Apparently a problem solving process in EDSO is a process of constructing and 
executing a workflow. 

The Grid Enabled Optimisation and Design Search in Engineering (GEODISE) 
project [8] aims to aid engineers in the EDSO process by providing a range of Grid 
services comprising a suite of design optimization and search tools, computation 
packages, data management tools, analysis and knowledge resources. Additionally, 
GEODISE also intends to 
manage design provenance so 
that previous designs can be 
validated, repeated and 
further explored to lead to 
better designs. 

We have applied the 
proposed hybrid approach for 
augmented provenance in 
GEODISE to help engineers 
answer provenance-related 
questions in the design process. 
Figure 2 shows the provenance 
management system. 

To formally model EDSO 
metadata, we have developed 
GEODISE domain ontology 
and service ontology. We regard a workflow as a composite service, therefore, the 
service ontology can be used for modelling both service and workflow metadata. The 
GEODISE service ontology is based on OWL-S [9] upper service ontology which is 
an OWL-based Web Service ontology. It further extends OWL-S by incorporating 
EDSO specific metadata such as 
algorithmUsed, reviousService, 
followingService, derivedFrom, 
leadTo, etc., as shown in Figure 
3. The left column displays the 
main concepts while the right 
column lists concept properties.  

Semantic metadata annotation 
API is developed for capturing 
augmented provenance data [10] 
[11]. A front-end GUI is 
provided to help users enrich the 
automatically extracted service metadata using EDSO domain and service ontologies. 
The annotation API is also used to capture and annotate workflow metadata during 
workflow construction. The generated semantic metadata for both services and 
workflows are represented in OWL and stored in the Semantic Metadata Repositories, 
implemented using the Instance Store technology [6]. 
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Fig. 2. Augmented provenance management system 

 

Fig. 3. An example of GEODISE service ontology 
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The execution data are managed by the GEODISE database toolbox [13]. The 
database toolbox exposes its data management capabilities to the client applications 
through Java API, as well as a set of Matlab functions. The Java API has been used by 
the workflow construction environment to archive, query, and retrieve the workflow 
instances for reuse and sharing. As Matlab provides the workflow enactment engine 
in GEODISE, the toolbox’s Matlab function interfaces enable data to be archived, 
queried and retrieved on the fly at the workflow execution time. Data related to a 
workflow instance are logically grouped together using the datagroup mechanism 
supported by the database toolbox. 

Querying augmented provenance in GEODISE is supported through semantic and 
database query tools, as shown in Figure 4. The semantic query GUI utilises the 
description logic based reasoning engine Racer [12] to reason over semantic metadata, 
and the construction of 
query expressions are 
supported by the service 
ontology. Here are two 
examples of using the 
dual query mechanism: 

•  Find the data 
derivation pathway for a 
given design result. 
Actions: querying the 
database to find the 
workflow instance that is 
responsible for the result. 
Additional semantic 
metadata about the 
work- flow instance can 
be obtained using the 
Semantic query GUI 
based on the workflow 
template ID. The retrieved workflow script can be enacted in the enactment engine 
(Matlab) for a re-run if necessary. 

•  Find information about the optimisation service used in the workflow that 
generates the given result. Actions: based on the above search, the workflow template 
ID is available and can be used in the Semantic query GUI to find the information 
about the optimisation service used in the workflow. 

We have also wrapped the semantic query functionalities as web services, thus 
making the provenance management system easy to be integrated into service-
oriented grid applications. 

5   Related Work and Discussion 

Provenance has traditionally been used and explored in museum, library and archival 
management systems where it is mainly referred to the acquisition and creation 
information, and the history of the ownership and custody of a resource. Research on 

Semantic Query GUI

Database Query GUI

Semantic Query GUI

Database Query GUI

 

Fig. 4. Query GUIs for augmented provenance 
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provenance of computer-generated data has been conducted under different banners, 
including audit trail, lineage, dataset dependence and execution trace. Such research is 
mainly undertaken in domain specific applications such as geographic information 
system [15] and satellite image processing [16]. The common features of Chimera 
Virtual Data System [17], CCLRC metadata manager [18] and systems developed in 
[19][20] are that they try to trace the movement of data between data sources and 
obtain information on the where and why of a data item of interest as a result of a 
database operation. 

Recently research on the provenance of service-based problem solving processes 
has attracted more attention with the prevalence of service-oriented computing 
paradigm. An initial attempt has been made in myGrid project [21] in which 
derivation provenance (log files) has been annotated and recorded for experiment 
validation and recreation [22]. Other systems supporting provenance include the 
Scientific Application Middleware [23] and the e-notebook [24]. An on-going 
systematic research is also conducted in EU PROVENANCE project which aims to 
develop a generic architecture for service-oriented provenance system [4] [25]. It also 
intends to propose protocols and standards to formally standardize provenance 
computing in service-oriented architecture.  

Our work differs from the previous work in two aspects: Firstly we extend 
provenance data with rich metadata that is particularly useful in open, distributed and 
dynamic Grid-based problem solving environments. Secondly, we utilize the latest 
Semantic Web technologies for provenance metadata acquisition, modeling, 
representation, storage and reasoning, thus enhancing interoperability, machine 
processability and knowledge reuse. The hybrid approach of managing provenance 
data is innovative, flexible and practically easy to implement and to use.  

The GEODISE case study serves several purposes: (1) it helps identify the generic 
characteristics of the provenance problems, and clarify user requirements in the 
context of service-based applications; (2) it helps to pin down the software 
requirements for a provenance system; (3) the successful design/implementation and 
operation of the provenance system have demonstrated and proved our conception of 
provenance, its design approaches and implementation rationale. Through the case 
study we have learnt two important lessons with regards to the use of provenance 
system, namely, tools should be provided for end users in their familiar working 
environments; and easy-to-use tools should hide as much technical details as possible 
that are not relevant to the end users. 

6   Conclusions 

The complexity of dynamic problem solving in service-oriented grid infrastructure 
requires rich semantic metadata in order to verify and further investigate previous 
results. This gives rise to the conception of augmented provenance, which denotes 
both semantic metadata and execution data. We argue that the Semantic Web 
technologies, i.e. ontologies, semantic annotation, representation and storage, can be 
exploited for augmented provenance management. To this end, a hybrid approach is 
proposed together with an architecture that defines the core components and 
functionalities for realizing augmented provenance systems. We have developed a 
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suite of generic APIs and front end GUIs in the context of GEODISE to implement 
the augmented provenance system. The approach is applicable for broader grid 
application domains.  

The design and implementation of GEODISE provenance system is pioneering in 
many aspects. Firstly, the research provides a proof of concept for augmented 
provenance and provenance systems. Secondly, it provides guidelines towards the 
construction of a basic provenance system. Finally, it demonstrates a possible design 
and implementation pattern for provenance-enabled applications. In the future we 
shall focus on the seamless integration and interaction between provenance systems 
and domain-specific application systems, and in particular the design of a 
straightforward, easy-to-use query interface. We shall also futher investigate the 
security and scalability issues. 
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Grid computing is a major research area with strong involvement from both acad-
emia and the computing industry. The common vision is that Grid computing
represents the culmination of truly general distributed computing across various
resources in a ubiquitous, open-ended infrastructure to support a wide range
of different application areas. Recently the CoreGrid (http://www.coregrid.net)
Executive Committee reached an agreement on the following definition: a Grid
is ?a fully distributed, dynamically reconfigurable, scalable and autonomous in-
frastructure to provide location independent, pervasive, reliable, secure and ef-
ficient access to a coordinated set of services encapsulating and virtualizing re-
sources (computing power, storage, instruments, data, etc.) in order to generate
knowledge?. Although significant progress has been made in the design and de-
ployment of Grids, many challenges still remain before the goal of a user-friendly,
efficient, and reliable grid can be realized. Grid research issues cover many areas
of computer science to address the fundamental capabilities and services that
are required in a heterogeneous environment, such as adaptability, scalability,
reliability and security, and to support applications as diverse as ubiquitous lo-
cal services, enterprise-scale virtual organizations, and Internet-scale distributed
supercomputing.

Therefore, Grid research will greatly benefit from interactions with the many
related areas of computer science, making Euro-Par 2006 an excellent venue to
present results and discuss issues. This years conference will feature 7 papers,
selected from 35 original submissions by using the high quality review process
of Euro-Par. For this endeavor, the chairs assembled a team of 45 experts in
this domain to perform a minimum of 3 reviews per paper. The selected papers
represent work in the area of execution of MPI on the Grid, instant Grids and
virtual private Grids, protocols for distributed shared memory, I/O support,
storage services, resource brokering in Grids, as well as self-healing aspects.

We would like to cordially thank our colleagues, which helped in the review
process, and we invite you to study the papers in this topic on the following
pages.
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Abstract. One of the main goals of the CrossGrid Project [1] is to
provide explicit support to parallel and interactive compute- and data-
intensive applications. The CrossBroker job manager provides services
as part of the CrossGrid middleware and allows execution of parallel
MPI applications on Grid resources in a transparent and automatic way.
This document describes the design and implementation of the key com-
ponents responsible for an efficient and reliable execution of MPI jobs
splitted over multiple Grid sites, executed either in an on-line or batch
manner. We also provide details on the overheads introduced by our
system, as well as an experimental study showing that our system is
well-suited for embarrassingly parallel applications.

1 Introduction

Large-scale Grid computing requires job-management services that address new
concerns arising in Grid environments. This ‘job management’ involves all as-
pects of the process of locating various types of resources, arranging these for use,
utilizing them and monitoring their state. In these environments, job-
management services have to deal with a heterogeneous multi-site computing
environment that, in general, exhibits different hardware architectures, loss of
centralized control, and as a result, inevitable differences in policies. Addition-
ally, due to the distributed nature of the Grid, computers, networks and storage
devices can fail in various ways.

Most systems described in the literature follow a similar pattern of execution
when scheduling a job over a Grid. There are typically three main phases, as
described in [2]:

– Resource discovery, which generates a list of potential resources to be used.
– Information gathering on those resources and the selection of a best set.
– Job execution, which includes file staging and cleanup.

� This work was made in the frame of the ”int-eu.grid” project (sponsored by the
European Union), and supported by the MEyC-Spain under contract TIN 2004-
03388, and partially supported by the NATO under contract EST.EAP.CLG 981032.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 383–392, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Many Grid initiatives follow these scheduling phases by providing the mid-
dleware infrastructure to develop applications on computational grids and to
manage resources. The job management system that we have developed in the
CrossGrid project follows the same approach in scheduling jobs. However, our
system, known as CrossBroker, is targeted to the kinds of applications that have
received very little attention to date. Most existing systems have focussed on
the execution of sequential jobs, the Grid being a large multi-site environment
where jobs run in a batch-like way. Crossgrid jobs are computationally intensive
applications mostly written with the MPICH library using the Globus2 device
[3], taking advantage of being executed on multiple Grid sites.

From the scheduling point of view, support for parallel applications introduces
the need for co-allocation. There are studies [4][5] that evaluate different co-
allocation strategies, although the kind of jobs and grid environment these use
are not applicable in CrossGrid and are focused on simulation.

To the best of our knowledge, only a basic support for running MPICH-G2
jobs is included in the Globus Toolkit by using the globusrun command and
the DUROC services [6]. However this command requires a manual intervention
of the user to discover and select resources, and to stage all necessary files to
the remote sites and it does not support a reliable co-allocation mechanism
to synchronize the start-up of all subjobs. GCM [7] deals with the execution of
multi-site jobs using PACX-MPI [8], but it does not include a mechanism for the
automatic selection of sites. Our job-management service supports MPICH-G2
job execution by performing the three main scheduling phases in an automatic
and reliable way.

The rest of this paper is organized as follows: Section 2 briefly outlines the
overall architecture of our resource-management services, Section 3 describes
the particular services that support submission of MPI applications on a Grid
environment. Section 4 describes some experimental evaluation of our system,
and Section 5 summarizes the main conclusions to this work.

2 General Architecture of the CrossBroker

This section briefly describes the global architecture of our scheduling approach.
A more detailed explanation can be found in [9]. The scenario that we are tar-
geting consists of a user who has a parallel application and wishes to execute
this on grid resources. The user can submit the job in either an on-line or batch
manner. On-line submission is made when the application must start immedi-
ately, i.e. in a period of time very close to the time of submission. This kind
of submission is suitable for interactive applications. It is worth observing that
batch submissions do not require an immediate application start.

When users submit their application, our scheduling services are responsible
for optimizing scheduling and node allocation decisions on a user basis. Specifi-
cally, they carry out three main functions:

1. Select the ”best” resources that a submitted application can use. This se-
lection will take into account the application requirements needed for its
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execution. The most important requirement for on-line jobs is the avail-
ability of free machines at submission time; therefore, if there are no free
machines, the job will be cancelled. In the case of batch submission, the
application can wait for a free slot in the Grid sites and also for resources
where other specified requirements are satisfied.

2. Perform a reliable submission of the application onto the selected resources.
This involves the proper co-allocation of resources when the application is
distributed among multiple sites.

3. Monitor the application execution and report on job termination.

Figure 1 presents the main components that constitute our resource manage-
ment services. A user submits a job to a Scheduling Agent (SA) through a User
Interface, command line or Migrating Desktop. The job is described by a JobAd
(Job Advertisement) using the EU-Datagrid Job Description Language (JDL)
[10], which has been conveniently extended with additional attributes to reflect
the requirements of parallel applications.

Fig. 1. CrossBroker Resource-Manager Architecture

Once the job has reached the SA, the Resource Searcher (RS) is asked for re-
sources to run the application. The main duty of the RS is to perform matchmak-
ing between job needs and available resources. Using the job description as input,
the RS returns as output a list of possible resources within which to execute the
job. The matchmaking process is based on the Condor ClassAd library [11],
which has been extended with a set matchmaking capability, as described in [9].

The SA then selects the best resource (or group of resources) from the list re-
turned by the RS taking into account its current state and the job requirements.
The computing resources (or group of resources), also referred to as Computing
Element (CE) in CrossGrid terminology, are passed to the Application Launcher,
which is responsible for the co-allocation and the actual submission of the job.
Due to the dynamic nature of the Grid, the job submission may fail on that
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particular site. Therefore, the Scheduling Agent will try other sites from the
returned list until the job submission either succeeds or fails.

The Application Launcher is also in charge of the reliable submission of paral-
lel applications on the Grid. Currently, two different launchers are used for MPI
applications, one allowing execution on one site, described in detail in [9], and
one allowing execution on multiple sites, described in the following section.

3 MPICH-G2 Job Management

An MPI application for grid execution has to be compiled with MPICH-G2 [3],
a device which allows the submission to multiple grid sites, thus using the set
matchmaking capability of our Resource Searcher for the automatic search of
resources.

As we have already mentioned, an MPICH-G2 application can be executed
on multiple sites using the globusrun command. The globusrun call performs
subjob synchronization through a barrier mechanism. But when executing jobs
with globusrun, it falls to the users to decide which sites to use, and it is these
same users who should be aware of the need to ask for the status of their own
application, resubmitting the application again if something is amiss, and so
on. Any failure or delay in the startup of a subjob may block permanently the
application given that the remaining subjobs will stay within the synchronization
barrier. As a consequence, resources will be occupied but no progress will be
achieved in application execution.

The lack of reliability exhibited by the globusrun command has been over-
come by Condor-G [12], which constitutes a dependable submission system for
the Grid. Unfortunately, Condor-G only supports sequential applications. We
have modified the submission of MPICH-G2 jobs in such a way that the whole
application is decomposed into a set of independent tasks - submitted to the
Grid - which are submitted to Condor-G (and treated as sequential tasks). Ad-
ditionally, we have included the necessary synchronization actions within each
task so as to generate a reliable co-allocation of all tasks. We can thus react to
the synchronization-related problems experienced by globusrun and avoid any
blocking situation during the launching phase of the job.

Ideally, MPI applications should always run soon after submission. However,
there may be situations in which not all the remote resources involved in an
execution are available, causing the ready resources to stay idle until all subjobs
start. Our job-management service features a special mechanism to deal with
these situations for batch MPI jobs. Whenever a batch MPI-G2 application is
submitted, an agent (rather than the actual application) is submitted to the
remote sites. This agent, based on Condor Glide-In [12], is used to gain control
of remote machines independently of the local-site job scheduler. Each machine
acquired by the agent, is configured as two virtual machines, in order to create a
separate group of dedicated resources for two types of applications: batch MPI
on the one hand, and sequential, on the other hand. From a logical point of view,
MPI batch jobs will then run on one virtual machine and sequential jobs will run
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on the other one. MPICH-G2 subjobs are submitted to the batch virtual machine
and will wait until all subjobs are ready for execution. Meanwhile, the sequential
virtual machine is used to execute other jobs using backfilling scheduling, hence
attaining better utilization of resources. In the case of on-line applications, the
agent submitted does not create two virtual machines, but rather immediately
starts the application to ensure a faster start-up time.

In order to ensure the co-allocation of the different subjobs that make up one
application, the Scheduler Agent launches an MPICH-G2 application launcher
(MPI-AL), through Condor-G. This MPI-AL follows a two-step commit protocol:

– In the first step, all the subjobs (with their agents) are submitted to the
remote sites.

– A second step guarantees that all subjobs have a machine for their execution,
and that they have executed the MPI Init call. Synchronization is achieved
through a barrier released by the MPI-AL. After such synchronization, the
subjobs will then be allowed to run.

In order to avoid blocking situations, the MPI-AL will wait for several minutes
for on-line jobs to execute their MPI Init call. If this call is not performed before
the time is exhausted, the whole job will then be aborted. In the case of batch
jobs, time-out will occur when the site’s local scheduler removes the job.

Figure 2 depicts how execution over the multiple sites of a batch job is per-
formed. In this example scenario, we have N subjobs constituting an MPICH-G2
application. These subjobs will be executed on different sites. For the sake of
simplicity, Fig. 2 only shows 2 sites. The A arrows show subjobs submission to
the remote machines. These subjobs will stage agent executable and will start it
to gain control of the node. Once the virtual machines are available, the actual
application is submitted to the batch virtual machine. This is shown by the B
arrows. Once the subjobs are executing on the remote machines, the MPI-AL
releases the barrier and starts monitoring their execution and writes an applica-
tion global-log file, providing complete information of the jobs execution. This
monitoring is shown by the C arrows in Fig. 2, and constitutes the key point for
providing both reliable application execution and robustness.

In the event of the application ending correctly or of there being a problem
with the execution of any subjob, the MPI-AL records this in a log file that will
be checked by the SA, which will then take the correct action, in accordance with
that information. This provides a reliable once-only execution of the application
without user intervention.

4 Experimental Results

In this section we present an experimental evaluation of our system. First, we
measure the overhead introduced by our software when running MPICH-G2 jobs
and following this, we evaluate the performance of a real application executed
on the Grid.
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Fig. 2. MPI execution on multiple sites

4.1 MPICH-G2 Overhead

Submitting jobs to the Grid by using the CrossBroker incurs an initial overhead
due to the different actions taken before the real job execution. This overhead
depends on whether the MPICH-G2 job will run in an on-line or batch man-
ner. Maximum overhead is incurred in the second case because it requires the
following steps:

1. Submission of the different subjobs to the remote sites. This involves con-
tacting the Globus gatekeeper, which in turns contacts the site job scheduler
to create a basic job that starts our agent in a particular node.

2. Once the basic job has started in the remote site, the agent files are down-
loaded from the CrossBroker to the node that will execute the application.

3. Virtual Machine set-up: the virtual machines are created. The CrossBroker
is notified, which in turn will submit the user application to the agent.

4. Subjob start-up: user application files are downloaded and the job is started
in the remote node.

We have submitted a synthetic MPICH-G2 application in order to measure
the impact of the different steps. The sites used were the following:

– UAB: cluster in Barcelona with 6 heterogeneous CPUs. The CrossBroker
used for these tests is also located in Barcelona.

– FZK: remote cluster with 16 CPUs (4 nodes with 4 CPUs each) located in
Karlsruhe (Germany).

– IFCA: remote cluster with 6 CPUs in 2 dual nodes. This cluster is located
in Santander (Spain).

Figure 3 shows the time (in seconds) from job submission until the application
starts running using different combinations of the above sites. In addition to the
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one-site submission, submissions using CPUs from two and three sites are also
shown. When more than one site was used, CPUs have were distributed equally
among all sites. The time obtained is the sum of the four steps mentioned above.
The figure shows that, in general, overhead mostly depends on the sites used.
With the increase in the number of sites involved in an execution, this overhead
also increases. It should be observed that these measures have been obtained for
a worst-case scenario, in which all the steps would be taken.
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Fig. 3. MPICH-G2 submission overhead for multiple sites

In order to show the real influence of the different steps involved in application
submission, Fig. 4 depicts the first step (submission to the remote sites) and
agent download (second step) for the same scenario. Globus submission depends
on the queue status of the site’s local scheduler. In these tests, submission was
made to sites with empty local queues (PBS, Condor), hence the subjobs start
as soon as possible. As can be seen in Fig. 4, site submission remains almost
constant, despite the number of CPUs used, and depends on the sites used:
UAB and FZK jobs start earlier than those at IFCA. This is the minimum delay
for application execution in our environment, and is similar to that obtained
using globusrun directly or when using the on-line scheduling in CrossBroker
(the second and third step ares not executed in such a case).

Figure 4 also shows how agent download is the most time-consuming step
taken in submitting MPICH-G2 applications. This time depends on the limited
bandwidth between the CrossBroker machine and each of the nodes in which the
jobs is to be executed. As the number of CPUs increases, bandwidth is shared
among all these nodes and the downloading process takes longer. The download
takes longer in sites located at greater distance (FZK), i.e. having less bandwidth
between the site and the CrossBroker. Downloading time is limited to less than
a minute, which is negligible for batch applications intended to run for a much
longer period of time.

The third step, virtual machine set up, is the time elapsed from the agent file
download to the creation of the virtual machines on the remote machines. This
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Fig. 4. Left: Globus submission time. Right: Agent download time

time is usually around one second, immediately after the CrossBroker submits
the actual application to the batch virtual machine. The last step involves down-
loading the application binaries. As in the case of the agent, the downloading
process depends on the sites involved. This step can be avoided if the user spec-
ifies a pre-staged binary in the job description or else makes use of the storage
facilities available in the remote sites.

Although the overall overhead is not significant for batch applications, down-
load times for the agent could be avoided by permanently installing the needed
files in the remote nodes. In such a case, the CrossBroker would therefore only
need to submit a simple job that initiates the agent without any previous down-
load.

4.2 MPICH-G2 Application Execution

MPICH-G2 allows the execution of any MPI application using different-cluster
nodes. Applications making heavy use of collective operations that are fairly sen-
sitive to high-latency links are not suitable for this kind of environments. How-
ever, there are many applications that exhibit a computation/communication
ratio that make them attractive for executiong over multiple sites. Many embar-
rassingly parallel applications are suited to such applications.

As an example, we have used a Master-Worker application developed in the
CrossGrid Project to measure the impact of multiple-site execution. This ap-
plication trains a neural network to find Higgs Boson [13]. The master node
assigns a list of files with input data to each of the workers, and the training is
repeated until the obtained error reaches a certain bound. The needed files are
downloaded from each of the workers using replica management tools [14].

We have executed the application on the same sites used in section 4.1. In Fig. 5
the execution time is shown for the same CPU combination shown in the previous
subsection. Depicted time (in seconds) includes the overhead for on-line schedul-
ing, so implying there is therefore no creation of virtual machines in the remote
nodes. This overhead is around 20 to 30 seconds, depending on the used sites.

The first measure uses two nodes, one master and one worker; for the remain-
ing measures, the number of workers has been increased. Application scalability
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is good for a small number of CPUs (less than 10), but does not scale so well
for greater CPU numbers. However, application behaviour is not greatly affected
when using multiple sites. In general, the use of more sites introduces a some-
wahat larger bigger overhead (around 10 seconds), although it also allows the
use of faster CPUs not available in one-site executon. These results show that
it is possible to exploit such a Grid environment as a large cluster for executing
similar applications, without being limited to the number of CPUs available on
a single site.

5 Conclusions

We have described the main components of the resource-management system
that we have developed in order to provide automatic and reliable support for
MPI jobs over grid environments. The system consists of three main components:
a Scheduling Agent, a Resource Searcher and an Application Launcher.

The Scheduling Agent is the central element that records the job queue sub-
mitted by the user and carries out subsequent actions to run the application
effectively on the suitable resources. The Resource Searcher has the responsi-
bility of providing groups of machines for any MPI job, taking the application
requirements into account. Finally, the Application Launcher is the module that,
in the final stage, is responsible for ensuring reliable application execution and
co-allocation on the selected resources.

The job-management service provides a reliable on-line and batch MPICH-G2
submission to a Grid. It uses agents to take control of remote machines, allowing
the implementation of backfilling scheduling policies for sequential jobs, while
all the MPICH-G2 application subjobs are waiting for the proper co-allocation
of resources. The Application Launcher guarantees execution without blocking
machines, and takes the appropriate decisions in order to guarantee resubmission
of failed parallel jobs (due to crashes or failures with the network connection,
resource manager or remote resources) and exactly-once execution.
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We have tested and evaluated our system, measuring the overhead introduced
by the CrossBroker when submitting MPICH-G2 jobs. This overhead is intro-
duced in the case of batch submission and is less than a minute - a short duration
for the kind of applications that the batch submission is targeted at,- which usu-
ally take much longer to execute. We have also tested system utility by the ex-
ecution of a master-worker application. This application does not make a heavy
use of communications, showing similar scalability both in Grid and in one-site-
only execution. Many embarrassingly parallel applications should behave in a
similar way, and therefore are also suitable for this environment.
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Abstract. Given current complexity of Grid technologies, the lack of
security of P2P systems and the rigidity of VPN technologies make shar-
ing resources belonging to different institutions still technically difficult.
We propose a new approach called ”Instant Grid” (IG), which combines
various Grid, P2P and VPN approaches, allowing simple deployment of
applications over different administration domains. Three main require-
ments should be fulfilled to make Instant Grids realistic: 1) simple net-
working configuration (Firewall and NAT), 2) no degradation of resource
security and 3) no need to re-implement existing distributed applications.
In this paper, we present Private Virtual Cluster, a low-level middleware
that meets these three requirements. To demonstrate its properties, we
have connected with PVC a set of firewall-protected PCs and conducted
experiments to evaluate the networking performance and the capability
to execute unmodified MPI applications.

1 Introduction

Sharing resources in a secure way, over the Internet, is attractive for a broad
range of users and communities. Audio and video over IP, file sharing, file storage
and distributed computing are examples of applications concerning many com-
munities of users. However, despite the continuous progress in Grid, P2P and
VPN technologies, sharing resources over different administration domains still
raises technical difficulties. Grid technologies allow sharing resources between the
participants of virtual organizations [1]. Compared to previously existing tech-
nologies, Grid middleware provides tools for inter-domain security and resource
management, assuming pre-existing local software and policies in every Grid site.
The current trend towards the use of Services [3, 2] responds to the complexity of
managing heterogeneous resources and sharing policies by providing a standard
interface between the user and the resources.

However, installing Grid middleware is still complex and requires the skills of
networking, security and OS experts. Moreover, providing a standard but novel
interface to the users imposes, in many cases, to re-implement or to adapt the
applications. P2P systems allow simple resource sharing between large commu-
nities of users. However, they exhibit two major limitations: 1) the security is
very limited and generally not considered in these systems and 2) they run dedi-
cated applications. Albeit Jxta [4] provides a communication layer to deploy and
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run P2P applications, it has a major limitation by exposing only a Java inter-
face to the application. Installing and using a VPN (Virtual Private Network),
using technologies like VTun [5] or IPsec [6], allows users registered in the VPN
to share their resources as if they were in a LAN. However, VPN’s have their
own limits: 1) installation and maintenance require OS and networking experts,
administrator authorization and 2) they are static.

In fact, existing technologies restrict resource sharing to Grid and VPN ex-
perts or users of unsecured and dedicated P2P systems. This situation motivates
the research presented in this paper towards a more spontaneous and dynamic
Grid approach called ”Instant Grid” (IG), in reference to popular ”Instant Mes-
saging” environments. Three mains requirements should be addressed in an IG
environment: 1) Connectivity. Firewall and NAT settings may preclude the de-
ployment of cross-domain applications. Moreover, the user may have no technical
knowledge on how to setup correctly firewalls and NATs. Thus, an IG envi-
ronment should use a set of firewall and NAT configuration and/or traversing
techniques, transparent to the user and acceptable by domain administrators.
2) Security. Sharing resources across administrative boundaries should not lower
the security level of the hosting sites and the shared resources, 3) Compatibility.
Sharing resources should not imply specific application or runtime developments.

In this paper, we propose PVC (Private Virtual Cluster), an environment for
Instant Grids. PVC design considers the following context: 1) resource sharing is
established when required and 2) security is based on classical OS mechanisms
(currently access rights and sandbox or virtual machines in the near future), used
commonly in LAN’s and clusters. PVC turns dynamically a set of resources be-
longing to different administration domains into a cluster where existing cluster
runtime environments and applications can be run.

The next section presents the related work concerning the three issues.
Section 3 describes the general architecture of PVC and gives details on the
protocol implementation. The evaluation of PVC is presented in Section 4.

2 Related Works

In this section, we present the existing projects and technologies related to the
three main issues of Instant Grids: connectivity, security and compatibility.

2.1 Connectivity, Security

One of the most popular projects providing connectivity among peers in differ-
ent administration domains is JXTA [4]. Based on proxy technologies, JXTA
proposes two communication approaches: a rendezvous and a pipe binding pro-
tocol. The two methods use a relay to forward messages between peers which
results in significant communication overhead. To provide secure communication
between peers, JXTA uses a virtual transport layer based on TLS (Transport
Layer Security). The difficulty of installing and configuring the proxy limits the
usage of JXTA in the Instant Grid context.
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Ibis [7] is another project providing NAT and Firewalls traversing techniques
to connect resources in different administration domains. Several approaches
are successively proposed to bypass Firewall/NAT: a direct connection, a simul-
taneous TCP SYN connection and a proxy connection. For user identification
and secure communication a standard SSL/TLS infrastructure, performing data
encryption and peer authentication over a socket connection.

CODO [8] provides end-to-end connectivity for distributed applications over
firewalls/NAT protected domains in a secure way. It consists in firewall agents
(FAs), placed on the firewall machines and client libraries (CLs) linked with the
application. The FA communicates with CL to dynamically add and delete rules
needed to establish direct connections. Authentication and security are based on
X.509 certificates. The major limitation of CODO is that it currently supports
only firewalls based on Netfilter and it assumes the installation on firewalls of
the FAs that is not always possible.

Another simple and practical NAT traversal technique is UDP/TCP hole
punching [9]. This technique enables two clients behind NAT, to set up a direct
peer-to-peer UDP/TCP session with the help of a rendezvous server. Following
the statistics given in the article describing this technique, about 82% of the
NATs support hole punching for UDP, and about 64% for TCP streams.

With the popularity of DSL network, the use of NAT increases dramati-
cally. Unfortunately, NAT imposes another limitation for the direct connection
of peers. Two projects propose NAT discovery and bypassing techniques. The
first one is STUN RFC [11]. This standard describes the techniques to discover
the NAT type and an UDP protocol to traverse it. The standard classifies NATs
in four classes and the traversing technique works for three of them.

The second one is UPnP [10]. The UPnP Forum proposes an API for commu-
nications with the NAT device allowing opening firewall ports for direct connec-
tion. This technique is particularly suitable for the objectives and constraints of
Instant Grids. Obviously, this method does not work with the NAT devices that
are not UPnP compatible or if the administrator does not enable it.

2.2 Compatibility, Virtualization

To the best of our knowledge, only JXTA provides compatibility and a virtual-
ization layer in addition to connectivity and security. Its approach is based on
unique IDs, by which the network resources can be addressed independently of
their physical address.

Several projects allow the creation of a virtual cluster from independently ad-
ministered domains through machine and network virtualization. A VioCluster
[12] logically moves machines between virtual domains, allowing a cluster to dy-
namically grow and shrink based on resource demand. Network virtualization in
VioCluster is made by a hybrid version of VIOLIN [13] which gives to a machine
the ability to connect to the private network.

Cluster-On-Demand(COD) [14] shares the same objective. COD was inspired
by Oceano [15]. Its main difference is its dynamic resource management between
multiple clusters by reinstalling the base OS on resources. The VNET [16] is a
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virtual private network tool implementing a virtual local area network over a
wide area, for virtual machines in Grids. VNET is a simple proxy scheme that
works entirely at user level and uses the Layer Two Tunneling Protocol (L2TP).

3 General Principles of Private Virtual Cluster

The objective of Private Virtual Cluster (PVC) is to provide, in a transpar-
ent way, an execution environment for existing cluster applications over nodes
distributed on the Internet. The main difference between PVC and VPN is its
capability to dynamically connect firewall protected nodes, without any inter-
vention of domain administrators and without breaking the security rules of the
domains hosting the nodes. Compared to other projects presented in the related
work section, PVC provides a fully integrated environment.

PVC itself is a distributed system working as a) a daemon process (peer)
running on each participating host and b) a brokering service. The role of each
local peer daemon is to establish a secure direct connection between the local peer
and the other participating peers, subsequently leaving the connection control
to the application. The role of the brokering service is to help establishing these
connections by 1) collecting and advertising the peer connection requests and
2) tunneling some communications between peers when direct connections are
not established, 3) translating network addresses from virtual to real and 4)
transporting security negotiation messages. Typically, the brokering service may
also help with failure detection, although this feature is not yet implemented.

application
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Fig. 1. PVC architecture

Figure 1 presents the modular architecture of PVC. The peer daemon en-
capsulates five modules for: 1) operation coordination, 2) communication in-
terposition, 3) network virtualization for the application, 4) security checking
and 5) peer-to-peer direct connection establishment. The modular architecture
offers the possibility to extend and adapt each module to fit with the target
environment. The brokering service is implemented as a set of replicated nodes,
connected to the Internet and accept inbound communications from PVC peers.

All daemon modules are coordinated locally by the coordinator, which also
participates in the global coordination of a PVC deployment. The coordinator
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runs a workflow through the four other modules to establish the direct connec-
tion between the local peer and distant ones. The coordinator also exchanges
messages with the brokering service to implement the global coordination.

The interposition module intercepts the application connection requests and
transfers them to the coordination module. It may be implemented in various
ways (network calls overloading, virtual network interface) offering high adapt-
ability to the system configuration. The intercepted requests are routed on a
virtual network simulated by the PVC virtualization module, which features its
own IP range and domain name service.

In this virtual network, the PVC security module checks the respect of pre-
existing security policies and authenticates the virtual cluster participants. Dif-
ferent security standard and specific methods may be adapted to the PVC ar-
chitecture (SSL certificates, standard security challenges, etc.). The connectivity
module transparently helps the cluster application to establish direct connections
between virtual cluster nodes (peers). Like all the other modules, a variety of
techniques can be used depending on participants host configuration as well as
its local network environment (firewall, NAT). Standard (UPnP) and original
mechanisms (Traversing-TCP, TCP Hole Punching) may be used to establish
direct connection between peers. In the following parts, we will focus three key
modules: virtualization, security and connectivity.

3.1 Domain Virtualization

One of the PVC objectives is to allow the execution of cluster applications with-
out any modification. Cluster applications generally use the socket model as
interface with the communication network. Following this constraint we have
chosen to use a domain virtualization at IP level. The virtualization layer estab-
lishes an IP domain over resources belonging to different administration domains
having public or private (possibly conflicting) addresses. Like in a VPN, an over-
lay network featuring virtual IP addresses is built on top of the actual network.

To avoid the conflict between real and virtual networks used by the resource,
we use a specific IP class defined by a RFC [17] for experimental purposes (class E
ranging between 240.0.0.1 and 255.255.255.254). The use of these IP addresses
guaranties that no real machine uses them (such addresses are actually not
routed on the Internet). A virtual DNS, configurable by the PVC members, is
associated with this experimental IP class.

3.2 Security Policy in PVC

The main objective of the security mechanism is to fulfill the security policy
of every local domain and enforce a cross-domain security policy. Two security
levels are implemented: 1) local to the administration domain and 2) between
domains. The intra and inter-domain security policies could be configured by
local system administrator who could also define the global policy. When a
connection is requested by the application, the local peer first checks that it
can accept inbound and outbound communications with other peers outside the
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administration domain, according to the local policy. Then, it checks that IP
addresses of external peers and the ports to be used are granted by the global
policy.

Without a strong access control mechanism, someone may take advantage of
the brokering service and pretend to take part of the virtual cluster. To avoid
this, every virtual cluster has a master peer (a peer managed by the virtual
cluster administrator) implementing the global security policy. Only the master
peer can dynamically register new hosts. Before opening the connection, every
peer checks that the other peer belongs to the same virtual cluster. The cross
authentication is performed using master information and crossing the brokering
service. A key point in the design is that the security protocol does not need to
trust the brokering service. This protocol ensures that: 1) only the participating
hosts of a cluster can be connected to each other and 2) only trusted connections
are returned to the cluster application.

In the current implementation, each host connected to PVC has its own pri-
vate and public key. Every participant to a virtual cluster knows the public key
of its master before connecting to PVC infrastructure. The master peer registers
the participation of a new peer, asking the brokering service to store its public
key previously encoded with the master’s private key. During the establishment
of the connection, both peers obtain the other side’s public key from the bro-
kering service and decode the received message with the master’s public key.
This mechanism ensures that only the master registers other participants on the
brokering service.

The peer’s mutual authentication consist in a classical security challenge-
response: the client generates a cryptographically random string M, encrypts
it with server public key and sends it to the server; the server decrypts the
message with its private key, encrypts the obtained value using its private key
and returns the result, Es(M), to the client; the client decrypts Es(M) using the
server’s public key, obtaining Ds(Es(M)); if that value is equal to the original
M, the client is satisfied of the server’s identity. Similarly, the server picks a
random string L, encrypts it and sends it to the client, which returns Ec(L) to
the server. The server checks that Dc(Ec(L)) equals L and it thereby satisfied
with the client’s identity. The security is implemented using OpenSSL Crypto
library [23]. The experimental results are presented in Section 4, where we discuss
the overhead of PVC in secure connection establishment.

3.3 Inter-domain Connectivity Techniques

As the major objective of PVC is to establish direct connections between dis-
tributed peers, the connectivity module can host several connection protocols.
In the current implementation, we have integrated three techniques in PVC. In
this section, we present the integration of these techniques.

Integration of a Firewall configuration protocol. In the last two years,
UPnP project became very popular. The principal vendors of domestic network
devices incorporated UPnP in their routers. Using UPnP, a PVC peer can com-
municate with the router and can open the ports for direct connections.
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To guarantee the safety of the local area network, the port forwarding rules
must be erased from the router when they are no longer needed. If during the
connection initialization, the authentication fails, or if the peer detects the end
of the connection, it erases immediately the target rule from the router. If the
PVC peer fails before the end of the connection, the application that starts PVC,
running on the same peer re-launches it. A security issue may occur if the host
running PVC fails before the end of the connection, and another host takes its
private address. In this case, all the rules related to the host should be removed
from the router. We use a distributed architecture to detect node failure and
handle firewall rule deletion. Every node of a domain runs a monitoring daemon.
These daemons periodically check the rules present on the firewall and ping the
corresponding host so that they may delete the rules related to a faulty machine.

TCP hole punching. Widely used for applications such as online gaming and
voice over IP, TCP Hole Punching allows connection establishment between two
hosts behind NATs in different administration domains.

Both clients establish a connection with the broker that observes the public
addresses (given by NAT) and private addresses of the clients and shares this
information between the peers. After this exchange, the clients try to connect to
each other’s NAT devices directly on the translated ports. If NAT devices use
the previously created translation states then a direct connection is possible.

The advantage of using this method is that it does not require special privi-
leges or specific network topology information. However, this technique does not
work with all type of NATs as their behavior is not standardized.

A novel technique: Traversing-TCP. Traversing TCP (TTCP) is derived
from the TCP protocol and it works with firewalls that are not running stateful
packet inspection.
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Fig. 2. Traversing-TCP

It essentially consists in 1) transporting, using
the PVC Broker, the initiating TCP packet (SYN)
blocked by the firewalls or NAT on the server side
and 2) injecting the packet in the server IP stack.

Figure 2 presents in details the TTCP technique.
Plain lines show the packets corresponding to the
TCP standard. Dashed lines correspond to specific
Traversing-TCP messages. A TTCP connection be-
haves as follows:
Definitions: Server node: S, Broker: B, Client
node: C, initializing packet: SYN
1. The peer on S connects to B and waits for new
connection demand;
2. C sends SYN to S. It opens the Firewall of C but
it is stopped by the Firewall of S;
3. The peer on C sends the SYN packet information
to B. B forwards it to the peer on S;
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4. The peer on S injects the SYN packet to the IP stack on S;
5. To this SYN packet S replies with a SYN/ACK packet. The SYN/ACK packet
opens Firewall on S and is accepted by the Firewall on C (previously opened);
6. The initialization of the TCP connection ends with an ACK packet from C
to S: the TCP connection is established.

TTCP works under the following device configurations: 1) The firewall must
authorize the outgoing packets and must accept all packets from established
connections; 2) Following the [11] classification, TTCP should work with all
NAT’s, except symmetric NAT (which maps a port to a quadruplet: the internal
host-port and external host-port).

Note that RST packets sent as rejection notification are also captured by a
PVC client peer and not forwarded to the client IP stack. Following our expe-
rience with the DSL-Lab platform (cf. the evaluation section) and related work
[18], these requirements fit many professional and domestic configurations.

After connection establishment, the communication can continue following
classical TCP operations. The communication between the two peers is direct,
bypassing the broker and ensuring high communication performance.

4 Performance Evaluation

In this paper, we focus on the performance evaluation of the whole workflow for
establishing a virtual cluster. We measure the overhead of PVC and demonstrate
its capabilities by running unmodified MPI applications deployed over a set of
firewall protected PCs, connected to the Internet by ADSL connections.

4.1 Experimental Protocol

PVC was designed to have a minimal overhead for TCP communications. In our
first experiments, we demonstrate this property with two types of tests: the first
one compares network performance with/without PVC, using NetPerf [19]. The
second one evaluates the overhead of PVC for establishing a connection.

The evaluation test for network performance was performed on a local PC
cluster with three different Ethernet networks: 1Gbps, 100Mbps, 10Mbps. We
have used standard PCs with BroadCom TG3 Ethernet interface connected using
Netgear EN106 10Mbps Ethernet switch, a Netgear FS105 100Mbps Ethernet
switch and a D-LINK D65-1216T Gigabit Ethernet switch.

To evaluate the system overhead of establishing a connection, we used the
DSL-Lab [22] platform: a set of resources connected to the Internet by a DSL
network. The same platform was used for the second type of experiments, which
consisted of the execution of real cluster applications. We ran the NAS bench-
marks [20], the MPIPOV program and the scientific application DOT [21] to
evaluate the capability of PVC to establish all the connections required by a
complex distributed environment like the MPICH runtime environment.
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4.2 Evaluation Results

Bandwidth Overhead. Figure 3 presents the bandwidth (in Mbps) of PVC
(with/without firewall) and the reference (without PVC), using NetPerf on
10Base-T, 100Base-T and 1000Base-T Ethernet networks. To simulate the fire-
wall on both sides we used Linux Netfilter Iptables.

Fig. 3. Bandwidth of PVC and reference, as measured by NetPerf, on three ethernet
networks, in Mbps. Values in parenthesis are standard deviations.

Figure 3 demonstrates that the network rates computed by NetPerf are sta-
tistically similar. The difference between the two series of measurements is lower
than the standard deviation for all the tests. We can conclude that PVC does not
reduce the available bandwidth: once the connection is established, PVC does
not interact with the application any more, leaving the network rate unaltered.

Connection overhead. For the establishment of direct connections between
the peers, PVC uses the TCP-Traversing, TCP hole punching techniques or
the firewall configuration protocol UPnP. To compare these three methods, we
evaluated their overhead using a specific test suite. In our test suite, a client
makes 1000 consecutive connections to a server and then tears them down.

Fig. 4. Overhead of Private Virtual Cluster

Figure 4 shows the mean costs for the TCP connection establishment. In
the presence of firewall the overhead of PVC using Traversing-TCP resp. (TCP
Hole punching) technique is 76ms (42ms) and 60ms (40ms) without firewall.
The overhead observed for PVC with UPnP is the same in both cases and is
about 60ms. This overhead encompasses the costs of interception of application
connection attempt and communication with the broker.
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Security overhead. In the current version of PVC, security is implemented
using OpenSSL Crypto library [23]. The first step of the verification (membership
to the same virtual cluster) is coupled with the resolution of the virtual name,
avoiding the substantial increase of overhead. The second step of the security
protocol, which is done after the connection establishment, increases significantly
the overhead. Figure 4 shows the mean costs of authentication in PVC during
connection establishment.

Since PVC intervenes only at the beginning of the end-to-end communica-
tion, the observed overhead remains reasonable in the context of the distributed
applications.

Running MPI applications. We successfully ran several of the NAS bench-
marks class A (EP, FT, CG and BT) on the PVC architecture. However, due to
the network performance between the nodes of the DSL platform, FT, CG and
BT do not scale with the number of nodes. Only EP with its low communication
to computation ratio is scalable.

Fig. 5. Speedup of MPI applications with PVC over a set of DSL connected nodes

Figure 5 presents the performance of EP according to the number of nodes
in the DSL platform. The speedup increases almost linearly with the number of
nodes. The results of the NAS benchmarks demonstrate that PVC successfully
transforms a set of nodes connected to the Internet through Firewall and NAT
into a virtual cluster where MPI runtime environments and applications can be
executed without modification.

The purpose of the DOT [21] program is to compute electrostatic potential
energy between charged molecules. It operates in a master/slave mode. During
the computation, the amount of data communication is low, but at the beginning
and at the end, some large arrays must be communicated. Figure 5 presents the
speedup for the computation of the example provided with the DOT distribution,
using from one to eight workers. The master is running on the first node.

The MPIPOV test measures the execution time for the computation of a
graphical rendering application parallelized with MPI. MPIPOV uses a master-
worker algorithm. Compared to the NAS EP, MPIPOV requires more
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communications of image rendering parameters and results. We perform the
test by splitting the image in 32 sub-images. Figure 5 presents the speedup for
the computation of the same image using from one to seven workers. The master
is running on a separated node.

Over all applications, the speedup evolves in a non-linear way. Obviously, the
scalability of the MPI application performance on DSL networks depends on
the communication to computation ratio of the application and the individual
performance of the heterogeneous platform components. We did not tune the
application in order to improve the performance since the purpose of the ex-
periments is only to demonstrate the capability of PVC to run unmodified MPI
runtime environments and unmodified, non-trivial MPI applications. However,
even without tuning, the test demonstrates that the ADSL platform can provide
significant speedups for some non-trivial MPI applications.

5 Conclusion

In this paper, we have presented and evaluated the performance of a lightweight
middleware called PVC (Private Virtual Cluster) designed to dynamically estab-
lish virtual clusters over resources connected by the Internet and protected by
firewalls and NAT. PVC derives from a mix of Grid, P2P and VPN concepts. It
features three main properties required for ”Instant Grids”: 1) a security model
that does not reduce the security level of the domains and resources to connect,
2) the capability to run cluster applications and runtime environments without
modification, and 3) negligible communication overhead.

PVC is itself a distributed system running as coordinated peer daemons ex-
ecuted on volunteer participants. Its architecture is modular and uses a set of
adaptable modules for its main functions: coordination, security, connectivity,
virtualization, interposition. Modules can be extended or modified to fit with the
target environment (e.g. interposition by virtual network interface or by shared
libraries, firewall-traversing protocols based on UPnP, TCP hole punching or
other.). We have detailed two important mechanisms: the security model and an
original traversing technique called ”Traversing TCP”. TTCP allows establishing
direct connections between resources protected in different administration do-
mains, except if the communicating resources are protected by a firewall running
state-full packet inspection.

Our performance evaluation demonstrates a moderate overhead (60 ms) for
the connection establishment, and a negligible bandwidth and latency reduction
compared to standard TCP communication. By establishing a virtual cluster,
at the IP level, with negligible communication overhead, PVC can be used to
deploy and run unmodified cluster applications and runtime environments. We
demonstrate this capability by running the MPI version of the NAS benchmarks
and the POV-Ray program on a set of PCs connected to the Internet by protected
DSL connections. Altogether, PVC features a set of characteristics allowing non-
OS and network specialists to deploy and run existing cluster applications over
multiple administration domains, with minimal performance overhead.
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Abstract. In this paper we present a new dynamic, cache coherence
protocol for Software Distributed Shared Memory (SDSM) systems that
adopt the scope-consistency model[7]. We initially outline our basic pro-
tocol, called Reduced Message Protocol (RMP), and then propose two
enhancements: the Multiple Home RMP (RMP-MH) and the Lock Mi-
gration RMP (RMP-LM). The experimentation we conducted with the
proposed protocols, exhibits significant improvements by reducing two
of the major latency factors in SDSM platforms: the total communica-
tion messages and the overall number of page faults. To demonstrate the
efficiency and the effectiveness of the RMP protocols, we used SPLASH
as well as synthetic application benchmarks.

Keywords: Cache Coherence Protocols, Memory Consistency Models,
Software DSM Systems, Clusters, Grids.

1 Introduction

The advances of the last two decades in software environments for distributed
and cluster computing, along with the improvement in the networking technol-
ogy, have brought clusters in the proscenium of today’s massive multiprocessor
systems. When it comes to most enterprize and IT applications, cluster com-
puting of today dominates over tightly coupled multiprocessor systems or the
proprietary supercomputer designs of the previous decade. On the other hand,
programming clusters of computational nodes, in order to take advantage of par-
allel execution, is more complex than programming for shared memory systems
(the default model supported by multiprocessors). The communication cost of
message passing implementations has fallen drastically over the years, but re-
mains far higher than shared memory models, especially in the case of fine grain
parallel execution.

Our research builds upon previous approaches which combine the convenience
and low cost of clusters with the programming simplicity of shared memory
systems, hiding away the distributed architecture via efficient communication li-
braries. These libraries provide for the transparent integration of message passing
in a shared memory model as seen by the applications or the programmer. SDSM
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models, have been the subject of significant research in the past two decades and
constitute the underlying framework for our research work.

In this paper we present a new dynamic Reduced Message Protocol (RMP) for
Software Distributed Shared Memory systems (SDSM) which adopts the scope-
consistency model[7]. Our main objective is the improvement of the
SDSMs’ cache coherence protocol, enabling them to function in Wide Area Net-
works as well as improving their performance in small to medium-sized clusters.
Our ultimate goal is to incorporate the proposed cache coherence protocol in
wide area clusters as well as define a computational platform in the Grid for
parallel processing, based on new SDSM platforms with advanced features in
communication and computation mechanisms[13]. Recently there is active re-
search interest in this area, namely, using SDSMs platforms for investigating
and testing new methods for Grids[11][12].

Software DSMs are typically categorized into write-invalidate and write-
update, on the basis of the cache coherence protocol used to inform the proces-
sors for memory page modifications. In write-update protocols the modifications
of a page are sent to the processors and the page copies are updated, while in
write-invalidate protocols only write-notices for a modified page are sent and the
page copies are invalidated. Several protocols have been proposed which adapt
between write-invalidate and write-update. [4], [5] and [6] are some of them.
In this paper, we propose a new adaptive cache coherence protocol, which was
implemented in the Software DSM JiaJia[1]. Our protocol exploits the charac-
teristics of the Scope consistency model[7] used by Jiajia, in order to improve
the system’s performance.

The rest of the paper is organized as follows. Section 2 describes the new pro-
tocol, section 3 presents the experimental evaluation, section 4 describes related
work. Finally, the conclusions of the paper is drawn in Section 5.

2 Cache Coherence Protocol

The proposed protocol is based on the JiaJia protocol and specifically in it’s
write-vector version [1]. The main functions of JiaJia and our protocol have
been analyzed in [14]. The protocol’s objective is the reduction of page faults
inside critical sections and the reduction of the total sent messages. This objec-
tive is achieved by piggybacking to the acq-grant message the modifications of
the pages, expected to be used by the acquirer. Since the information is sent in
existing messages, the number of messages is greatly reduced, although the total
amount of transferred bytes remains the same. This provides for a significant
benefit, since a great part of communication burden is due to message initial-
ization, a cost greatly reduced when the same bytes are sent in fewer messages.
The pages which are piggybacked in the lock grant message are only the pages
which have the same home as the lock, since only these pages are available to
the processor that sends the lock-grant message. Thus, when a processor ac-
quires a lock, it receives within the acq-grant message updates of modified pages
instead of simply write-notices. Consequently, during the next critical section
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The JiaJia Protocol
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Fig. 1. JiaJia - RMP Protocol

requests for the corresponding pages will be facilitated by the local copies in-
stead of resulting in page faults, minimizing the exchange of messages with the
page owner. In order to piggyback to a lock grant message as many pages as
possible, we perform page migrations as follows. When a locks home processor
receives write notices for the lock, it records the pages that were modified. The
pages that are frequently modified during critical sections of one lock migrate to
the locks home processor.

There is a small chance that a page contains two different variables which
are protected by different locks with different homes. In this case the question
that comes up is to which processor the page should migrate. Our protocol
follows a greedy approach according to which the page migrates to the first
processor that asks for it and cannot migrate to any other processor after that. In
addition, we have implemented two alternate approaches to the above problem:
lock-migration and multi-home pages.

– Multi-home Pages: In this protocol variation(RMP-MH), a page is allowed
to have more than one home, so that it can migrate to the homes of multiple
locks associated with it. The additional actions taken in this case are that
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the diffs of a modified page are sent to all the home processors, and that
diffs are also created if a page is modified by one of its home processors.

– Lock Migration: In this protocol variation(RMP-LM), if a page is associated
with two different locks, then the page migrates to the home processor of
one of the locks, and so does the second lock.

A significant further improvement of our protocol, also presented in this paper,
regards the reduction of the diff messages, which are the messages that contain a
page’s modifications from some node. In the initial JiaJia protocol, a node sent
diff messages for the pages modified during the critical section of the lock before
issuing a lock release message. We reduce the diff and subsequently the total
messages as follows. For the pages that have the same home node as the lock,
we do not send extra messages for the page diffs, but piggyback them to the
lock release message. The operations of the JiaJia and our RMP and variations
protocols, are shown in figure 1.

3 Experiments

Our main protocols RMP as well as its two variations, RMP-MH and RMP-
LM have been implemented and compared against the initial protocol of JiaJia
JiaJia and it’s write vector version JiaJiaWV.

Experiments were carried out on two different systems, a 4-processor SMP and
a 4-node cluster. The SMP consisted of four processors 2 of them having 512KB
and the other 2 having 1024KB cache and 512MB total main memory. Each node
of the cluster had two Intel Pentium III processors with 256KB per-processor
cache and 256MB per-node main memory. The nodes were interconnected with
a 1000Mbps Ethernet network. In all systems, the operating system used was
Linux and the application binaries were created with the gcc compiler.

Our protocols were evaluated using four applications, Water and Raytrace
from the SPLASH suite, the TSP problem from the JIAJIA SDSM distribution
and one of our synthetic benchmarks.

Water simulates forces between different molecules. It uses an array of data
structures, each corresponding to a molecule. The array is statically divided into
equal parts, each of which is assigned to a processor. Processors use locks to
protect the update of force values relating to the molecules. Barriers are used to
ensure that all processes perform calculations corresponding to the same time
step, as well as to guarantee global memory consistency at the beginning of each
step.

Raytrace renders a three-dimensional scene using ray-tracing. A hierarchical
uniform grid(similar to an octree) is used to represent the scene, and early ray
termination and antialiasing are implemented. A ray is traced through each pixel
in the image plane, and reflects in unpredictable ways of the objects it strikes.
Each contact generates multiple rays, and the recursion results in a ray tree per
pixel. The image plain is partitioned among processors in contiguous blocks of
pixel groups, and distributed task queues, and the primitives that describe the
scene. In this application the data access patterns are highly unpredictable.
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Table 1. Protocols’ communication variables

Application Variable JiaJia JiaJiaWV RMP RMP-LM RMP-MH

Synthetic

Total Messages 109458 109458 5474 5474 5474
Messages in bytes 399210264 21139224 20552784 20552784 20552784

Getp Requests 48120 48120 700 700 700
Diff Messages 4800 4800 42 42 42

TSP

Total Messages 11399 11341 4212 2527 3921
Messages in bytes 28525052 5422928 5956708 5904940 5771676

Getp Requests 3394 3355 730 312 273
Diff Messages 1503 1510 513 97 838

Water

Total Messages 1986 2000 1916 1921 2058
Messages in bytes 4186660 2402076 2453024 2460712 2613048

Getp Requests 426 433 380 388 233
Diff Messages 189 189 193 201 406

Raytrace

Total Messages 22567 22414 12329 12382 12280
Messages in bytes 33803804 12008220 11785268 11787940 11782188

Getp Requests 3993 4003 1199 1199 1200
Diff Messages 3827 3784 1529 1536 1523

TSP solves the travelling salesman problem using a branch and bound al-
gorithm. The major shared data structures of TSP include a pool of partially
evaluated tours, a priority queue containing pointers to tours in the pool, a
stack of pointers to unused tour elements in the pool, and the current shortest
path. Processors evaluate the partial paths successively and alternately until the
shortest path is found. Locks are used to ensure exclusive accesses to shared
objects.

The last application is a synthetic application which we used to stress the
proposed protocol and evaluate its maximum performance. In this application
there are four locks each of which protects forty variables in forty different mem-
ory pages. For each lock, each processor modifies the forty variables belonging
to the lock and this procedure is repeated one hundred times.

Table 2. Execution Time in SMP

Programming Model Synthetic TSP Water Raytrace

Posix Threads 0,04 14,96 2,92 16
JiaJia 18,8 12,26 5,56 63

In the SMP each application was programmed and executed twice, once using
Posix Threads and once using the SDSM JiaJia. These experiments were made in
order to show the overhead of an SDSM and the communication cost among its
nodes. In table 2 we see the total execution time for each application for each case.

The results show that all the applications besides TSP take more than double
time to execute using JiaJia compared to Posix threads. This clearly indicates
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that the overhead of an SDSM is significant, and therefore there is great need
to make it as efficient as possible.

The main way to improve the SDSM’s efficiency was by reducing the total
amount of messages sent among the SDSM nodes. Our experiments prove that
the cost in time of sending a message is given by the following type:

t(size) = tinit + tsend ∗ size, (1)

which means that the cost of sending a message is analogous to its size plus an
initialization cost. In the SMP system it was measured that tinit is 228,8007 and
tsend is 0,0235, while in the cluster tinit is 121,1614 and tsend is 0,0337. All time
values are measured in microseconds.

Since the initialization cost of sending a message is that big, it is expected that
if we send the same amount of bytes in a smaller number of messages, we can
achieve a performance improvement. Our new protocol was designed to achieve
this goal.

Fig. 2. Messages sent

In Figure 2 we can see for each application and for each protocol the total
number of messages and it’s total execution time, while in table 1 we can more
details about see the messages’ reduction.

All the results shown have been normalized with the JiaJia results.
Checking the number of sent messages, we see a great reduction in our syn-

thetic application. In this application forty pages are modified during a critical
section and these pages must be sent to the other nodes before they are accessed
by them. In our protocol modifications of these pages are piggybacked to the lock
release and lock grant messages and as a consequence the total number of sent
messages is greatly reduced. Tsp uses locks as its synchronization method. Every
key used protects a lot of pages and since modifications of the pages are sent
with the lock release and lock grant messages, the total number of sent messages
of the application is significantly reduced. In Water both locks and barriers are
used for the synchronization, but the most page modifications occur in critical
sections enclosed by barriers. Consequently the number of total sent messages is
little affected by our protocol. Contrary to Water, Raytrace uses only locks for
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the synchronization which produces a reduction in the sent messages as in the
other two applications.

The reduction of sent messages in our protocols lead also to a reduction of
the execution time. In our synthetic application the reduction reaches the 63%
compared to the initial protocol of JiaJia and the 37% compared to JiaJia’s
write vector version. In Raytrace the reduction is 9% and 13%, in TSP 16% and
6% while Water shows a little reduction of the total execution time.

Fig. 3. Overhead breakdown

Another performance metric for the comparison of the protocols is their over-
head, which consists of the synchronization time, the SEGV time and the server
time. The synchronization time is the time spent for barriers, locks and unlocks,
the SEGV time is the time spent due to page faults and the server time is
the time a processor spends to serve other processors requests(i.e. lock or page
requests). The protocol overhead breakdown is shown figure 3.

In general, we can see that the SEGV as well as the server time is reduced,
while the synchronization time is increased. This happens because there are less
page faults which naturally reduces the SEGV time. Subsequently a processor
has less get page requests to serve and the server time is also reduced. On the
other hand, at a lock request, a processor receives larger messages, since in the
lock grant messages, modifications of some pages are piggybacked and as a result
the synchronization time is increased.

If we compare the three new protocols, we see very little variations. Actually,
the cases in which one of the variations needs to be taken are few. In table 3 we
can see in detail for each application how many pages and how many locks mi-
grate. MIpages is the number of pages that migrated to a node, while MOpages
is the number of pages that migrated from a node. These numbers are not equal
in RMP-MH, and for this reason they are given separately. Last, Mlocks is the
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Table 3. Protocols’ migration variables

Applications Variable RMP RMP-LM RMP-MH

Synthetic
MIpages 120 120 120
MOpages 120 120 120
Mlocks - 0 -

TSP
MIpages 35 35 36
MOpages 35 35 35
Mlocks - 1 -

Water
MIpages 7 6 12
MOpages 7 6 6
Mlocks - 5 -

Raytrace
MIpages 0 0 0
MOpages 0 0 0
Mlocks - 0 -

number of the migrated locks, which of course has a value only in the case of
RMP-LM protocol.

By the results, we see that in our synthetic application and in Raytrace the
three protocols show the same behavior, since no page includes variables pro-
tected by different locks. In TSP only one such page exist, and in RMP-MH
this pages obtains two homes, while in RMP-LM one of the locks migrates to
the page’s home. In Water there are quite a few pages with variables protected
by different locks. In RMP-MH six pages obtain two homes, while in RMP-LM,
five locks to migrate. In this application we conclude that the best of the three
variations is the RMP-LM. It manages to include more pages in the lock opera-
tions without any extra burden as in RMP-MH. For this reason, RMP-LM has
a larger speedup compared to the JiaJia protocol. Although the benefits of the
variations are not quite clear, we believe that their benefits will be greater when
applications are run in a different system when nodes are interconnected with a
slower network, as in Grids.

4 RelatedWork

Since the introduction of Ivy [10], the first Software DSM, many techniques have
been proposed to improve SDSM performance. Here we will focus on adaptive
techniques between write invalidate, write update, and prefetching techniques.

In [3], the proposed protocol tries to predict in various ways for each lock
it’s next acquirer(s). At a lock release, diffs of pages modified during the last
critical section are sent to the processors that belong to the set of the locks next
acquirers.

A dynamic adaptation between write invalidation and write update is de-
scribed in [6]. Initially, for one page, the protocol switches from write invalidate to
write update if the most collaborating processes are in need of that page and the
page faults exceeds an experimental threshold. In [4] the pages are categorized
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in migratory, producer/consumer and falsely-shared. Adaptation is based on the
category in which each page belongs. Migratory and producer/consumer pages
are managed in a single-writer mode and may be updated, while falsely-shared
pages are managed in multiple-writer mode and under invalidated protocol.

Three adaptive techniques are proposed in [5]: adaptation between single and
multiple writer, dynamic page aggregation and adaptation between write inval-
idation and write update. The adaptive protocol between the write invalidate
and write update, updates the pages that the processor is expected to access
and invalidates the others but there is a limit so that no more than eight pages
can be updated. For barrier based applications, each processor p records for a
particular page from which processors it has received page requests and sends
updates to these processor and invalidates to the others. For lock based appli-
cations, the pages that are protected by one lock are recorded and updates are
sent for these pages while invalidates for the others.

Finally, in [9] a prefetching technique is proposed, in which the data is in-
validated after a repetitive synchronization pattern and is prefetched at proper
times.

5 Conclusion

In this paper we introduced the RMP cache coherence protocol for SDSM sys-
tems. This protocol in some cases adopts write-invalidate and in some cases
write-update method. The difference with previous adaptive protocols is that
in the new protocol the updates of the pages is done without sending any ex-
tra messages, but rather by piggybacking the information in the existing lock
grant messages. Since the updates are successful, we achieve sending in gen-
eral the same amount of bytes but in significantly less number of messages. We
must also note that the performance improvements are even bigger because the
messages are sent in the beginning of a critical section, while in other previous
protocols, such as in JiaJia, there would be many more page faults and con-
sequently, messages sent during critical sections. Apart from page requests, we
further reduce messages owed to page diffs, which are piggybacked to lock release
messages.

In order to send as many pages as possible in grant lock messages, we associate
a lock with the pages modified during a critical section of the lock and if a page
is associated with only one lock, it migrates to the lock’s home. This happens
in all three proposed protocols. However, in order to include pages that contain
variables protected by different locks, we implemented two additional variations
of RMP. In the first variation, we allowed a page to have more than one homes,
and in the second, we permit, if necessary, a lock to migrate. The second variation
achieves better results than the first since it has no extra burden like sending
modifications of pages to it’s multiple homes. On the other hand, it sends updates
of more pages and achieves even less page faults. The significant reduction of
messages in all three proposed protocols, results respectively in major reduction
in the applications total execution time.
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Abstract. With growing computational power of current supercomput-
ers, scientific computing applications can work on larger problems. The
corresponding increase in dataset size is often correlated to an increase
in needed storage for the results. Current storage area networks (sans)
balance i/o load on multiple disks using high speed networks, but are
integrated on the operating system level, demanding administrative in-
tervention if the usage topology changes. While this is practical for single
sites or fairly static grid environments, it is hard to extend to a user de-
fined per-job basis. Reconfigurable grid environments, where computing
and storage resources are coupled on a per-job basis, need a more flexible
approach for parallel i/o on remote locations.

This paper gives a detailed overview of the abilities of the transparent
remote access provided by tunnelfs, a part of the viola parallel i/o
project. We show how tunnelfs manages flexible and transparent access
to remote i/o resources in a reconfigurable grid environment, supporting
the definition of the amount and location of persistent storage services
on a per-job basis.

1 Introduction

With the enormous increase in computational power of today’s high performance
computers, scientific applications can exceed old boundaries of problem size and
complexity. With the increasing rate at which data can be produced, the question
arises as to where to store the data in an efficient way. Result data will normally
be too large to be kept in memory, while the application continues processing
different data sets. Also, memory-intensive applications often need to swap data
to disk, and reread it at a later point in time. With increasing size of the data
sets to be loaded into memory and stored on persistent storage devices, i/o
can easily become the bottleneck of modern scientific applications. To develop
efficient and portable applications, it is therefore essential for the middleware to
provide efficient i/o mechanisms for scientific application developers.

Almost 10 years after the specification of mpi-2 [1] in 1996, most currently
available mpi implementations support the api for mpi-io. romio [2] is a pub-
licly available mpi-io implementation that easily integrates into the mpich mpi
implementation [3]. romio and mpich are being developed at the Mathematics
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and Computer Science Department of Argonne National Laboratory. The use
of the mpi api for i/o introduces a new layer of abstraction to a process’s i/o
accesses, increasing portability of the application. romio uses the device ab-
straction adio [4] (Abstract Device Interface for i/o) to define multiple special
purpose filesystem devices. In this way the mpi layer can call a generic adio
function to handle a specific kind of i/o operation, with the adio layer choosing
the correct device to use.

When using the mpi api for parallel i/o, it is assumed that all processes par-
ticipating in each i/o call see the same underlying filesystem. In grid environ-
ments, where processes are interacting across inter-cluster boundaries with other
processes, this is rarely the case and a common filesystem can introduce a high
administrative overhead, like common user bases and common security policies.
In static environments, where the status of available nodes in the grid is con-
stant over a longer period of time, this is still feasible, as shown by the deisa
project [5], where a distributed gpfs filesystem is deployed over several super-
computing sites. In reconfigurable grids, where computing resources are added
to and revoked from the resource pool much more frequently, this approach is a
major administrative challenge.

In the viola project [6] several sites with local clusters are connected by a
10 GBit/s dedicated network, while internally using either Gigabit Ethernet or
Myrinet networks [6]. The mpi middleware for connecting the cluster sites is
mp-mpich [7]. mp-mpich is an enhanced version of mpich, providing a process
environment for meta computing. The major advantage of mp-mpich is the
transparent use for different communication devices for inter- and intra-cluster
communication. Thus clusters can still use the usually faster special purpose in-
terconnect for intra cluster communication, instead of having to choose the least
common denominator of all of the available communication devices. While earlier
versions of mp-mpich realize the inter-cluster connection with transparent router
processes, providing a store-and-forward routing for messages between processes
of different clusters, recent prototypes provide a secondary device to each process
to handle intra- and inter-cluster communication by separate devices [8].

Within the parallel i/o subproject of viola, we develop two adio devices for
mp-mpich to support the special needs for efficient parallel i/o in grid environ-
ments [9]. In Sect. 2 we introduce the overall design of the tunnelfs client/server
architecture. Section 3 presents possible i/o distribution strategies, used with
tunnelfs. In Sect. 4 we then state some of our results with the early version
of the prototype using the viola network. Sect. 5 places our current efforts into
the context with other work, involving remote i/o for mpi. Section 6 concludes
with a brief summary and future prospects in our work.

2 Design

To support special aspects of i/o access with different filesystem, romio uses
the adio layer [4] to decouple the implementation of mpi function calls and
filesystem specifics. The mpi-io functions work on driver functions of the adio



Flexible I/O Support for Reconfigurable Grid Environments 417

layer that select the correct adio device to be used for a specific filesystem (e.g.,
ufs, nfs, pvfs2). To integrate transparent i/o for mpi applications, we defined
two new adio devices, tunnelfs and memfs [9]. tunnelfs provides the service
for transparent remote access (see Fig. 1, and memfs creates a multi-node shared
virtual filesystem accessible with mpi-io calls. Together they provide easy and
efficient access to i/o on distributed memory resources.

All client/server communication regarding remote i/o is handled transparently
by the adio device for tunnelfs. The user therefore does not need to deal with
explicit communication calls to the server. In mpi, file namespaces are implemen-
tation depended, as it may be required to provide additional information about
the file, such as the type of the underlying filesystem. romio uses prefixes sep-
arated by a colon, to explicitly identify a filesystem type (e.g., nfs:file.dat).
tunnelfs and memfs use the same prefix scheme for selection of the correspond-
ing adio device (e.g., tunnelfs:file.dat or memfs:file.dat). For tunnelfs
the location of a file is not pinpointed to a specific server but rather to a class
of servers belonging to the same filesystem domain, additionally coded in the
filename. Filesystem domains and their usage are discussed in detail in Sect. 2.4.

2.1 Client/Server Architecture

tunnelfs uses a parallel client/server architecture. As shown in Fig. 1, the user
process, being the i/o client, issues an i/o call, descending through the mpi layers
until the adio device layer is reached. Instead of calling system functions for
disk i/o on the client’s node, the tunnelfs adio device transmits the request
parameters and possible i/o data to the server, using mpi point-to-point commu-
nication. The i/o server receives the request of the client and acts upon it, using
local mpi-io calls. If the request is a read request, the server will issue the call
locally and transfer the data to the client. If the request is a write request it will
wait for the data to be sent by the client in a second message and then issue a
local write call. Communication between clients and servers as well as between
multiple servers is handled with point-to-point communication to avoid dead-
locks and excessive blocking of server processes waiting for messages of other
servers.

To maintain portability, flexibility and efficiency, the tunnelfs i/o server uses
only mpi function calls for communication and file i/o. Request header and data
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Tunnelfs I/O-Server

ROMIO

ADIO

Application

MPI

ROMIO

ADIO

ad_tunnelfs

Client Server

file system

Fig. 1. Layers of the tunnelfs device and i/o server
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buffers are transferred in separate messages, to avoid repacking of buffers before
and after transfer. The client/server protocol defines a single master i/o server
that is derived from the middleware configuration files, common to all processes
started. All client/server and server/server communication is issued upon an
implicitly defined communicator, containing all user processes as well as all i/o
server processes. As the communication involved in i/o requests is hidden from
the user program, the user has no knowledge which server is appropriate for a
specific file. Thus, initial requests are always sent to the global master i/o server,
which either processes the request locally or delegates it to a different server. In
case of request delegation the client is informed of the i/o server now responsible
for this file.

2.2 I/O-Transfer-Staging

Though i/o calls usually handle large amounts of data, allowing arbitrary sized
blocks for tunnelfs is not feasible. The tunnelfs protocol defines a two step
data transfer for i/o calls. In a write call the buffer is transferred to the server
process first, and then written to disk. Keeping large buffer sizes will result
in a serialization of those two operations, maximizing the time needed for the
complete operation. As mpi also defines that buffers involved in ongoing mpi
operations must not be accessed until the operation involving the buffer has
completed, transfers have to be broken down into smaller parts. Therefore the
tunnelfs servers stage data transfers to and from the client with its local i/o
calls, to maximize overlapping of those operations.

For write requests, the client sends a request header, followed by a number of
messages containing the i/o data. The number of i/o data messages is coded in
the request header. After receiving the first i/o data package, the server can start
writing the data to storage, while the rest of the i/o buffer is still in transfer.
The write call is acknowledged by the server through a reply message. For read
requests, the client sends the request header and the server replies directly with
the parameters of the issued call, in particular the number of following i/o data
packages. After the client processes the server reply, it will start receiving the
messages containing the requested i/o data.

2.3 Multiple Distributed Server Support

The first prototype of the tunnelfs and memfs devices supported any number
of clients but only a single i/o server to be used with the application. This was
partly due to the router concept of earlier versions of mp-mpich, where avoidance
of bottlenecks would have meant introducing a router for every i/o server defined.
This would have implied an enormous overhead of additional processes. With
the modification of mp-mpich to support direct process to process inter-cluster
communication without interference from use of router processes [8], multiple i/o
server support becomes feasible for the mp-mpich environment. With multiple
i/o servers present in the application’s mpi environment, i/o load sharing and
i/o request delegation, as well as transparent file access becomes possible. The
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tunnelfs client/server protocol was extended to support the desired flexibility
and transparency with the use of multiple i/o servers.

2.4 Filesystem Domains

As tunnelfs is not a filesystem itself, but an interface to different remote filesys-
tems, it has to provide a means for distinguishing those filesystems at runtime.
The tunnelfs i/o servers need information in addition to the filename, what
the location of that file in the grid is. As nodes are assigned to the user applica-
tion by the scheduling system, it is possible but not always practical, to request
specific resources of a cluster for execution. With a uniform node architecture,
i.e., no special purpose nodes available for reservation, it is not necessary to run
the i/o server on one specific node, but rather on any node which has access to
the desired filesystem. Within the grid, processes can then be assigned to spe-
cific classes, where each class has access to the same filesystem (e.g., the local
filesystem on one cluster of the grid). These classes are called filesystem domains.

mp-mpich defines so-called metahosts to classify all processes of a single clus-
ter sharing a common internal interconnect. These metahosts comprise the nodes
of the global meta computer. As nodes within one cluster usually share a global
filesystem, filesystem domains contain all processes of one or more metahosts.
The identifiers of a filesystem domain are implicitly defined by the user, as they
are derived from the grid configuration defined by the user for this specific job. If
the user defines a metahost with name “metahostA”, clients have remote access
to that filesystem via the prefix “tunnelfs:metahostA:”.

To prevent the clients from governing too much information on data location,
the logic for deciding which server is used for opening a file resides on the global
master i/o server. Thus the client itself does not process the filename any fur-
ther than the first separating colon. The tunnelfs prefix is truncated from the
filename and the rest of the filename is sent to the master i/o server for further
processing. The master i/o server then decides whether the file is to be opened
locally or the open request has to be delegated to a server of a different filesystem
domain.

2.5 Distribution Schemes

During job execution user processes and i/o server processes are distributed in
the grid. The configuration and placement of user processes can have direct
influence on efficient placement of i/o server processes. Additionally i/o server
processes have to be placed according to the required filesystem access of the
application. Each filesystem domain that needs to be accessed during execution
has to define at least one i/o server. During runtime of the application, the
server placement should then be taken into account when clients are assigned to
a specific server. As a part of the transparent access scheme, the distribution is
completely handled by the tunnelfs servers, with only minimal intervention by
the user. The user can define hints in an MPI_Info object, referenced on special
i/o calls like opening or setting a file view. The server will then use the given
information for optimal server assignment.
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Fig. 2. Different placement scenarios for tunnelfs

The servers are assigned to the clients by several different distribution
schemes. The most simple distribution scheme is single server, where all clients
use one server for a specific file. This is very close to the behavior of our first i/o
server prototype, where only a single server was allowed in a job specification.
One difference to having only one server in the system is that even though a sin-
gle file is handled by one server exclusively, other files opened can be handled by
other servers, providing a fairly balanced distribution of files over all available i/o
servers. Another simple distribution scheme is balanced global distribution, where
all defined servers are equally involved in sharing the i/o load. This scheme is
not available for all types of files yet, as it is relying on a global filesystem that
can handle multiple file handles on a single file without interfering with each
other. This distribution scheme is used mostly for the memfs virtual filesystem,
which can handle this efficiently. Figure 2(a) depicts a possible distribution of
i/o servers, where all special i/o processes are started on a single metahost which
is the only one providing i/o services to the compute grid.

A third distribution that might not result in a balanced distribution is filesys-
tem domain distribution, as shown in Fig. 2(b). This is a specialization of the
balanced global distribution, where clients are only assigned to servers of their
filesystem domain. The goal of this distribution is to have an i/o server available
via the faster local interconnect of the local cluster. Especially write operations
can then be handled more efficiently, as the data can be transferred via local
interconnect to a server, where it can be processed without further waiting time
for the client. The user can influence the default mapping of clients to servers by
providing additional information in an MPI_Info object, restricting the mapping
to servers of a specific filesystem domain.

3 Distributed I/O Strategies

The main objective in development of the tunnelfs adio device and server is
efficient support for remote filesystems. The supported filesystems are primarily
dependent on the other adio devices present in the romio library. The memfs
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virtual filesystem is designed to be global over all tunnelfs servers. Addition-
ally, it supports multiple independent file handles on the same file. Colliding
accesses are handled within memfs itself, so tunnelfs can have multiple dis-
tributed handles open at the same time, without the need of collective operations
on the file among all servers. Filesystems on the operating system level usually
do not provide this service to an application, therefore the tunnelfs servers
have to use different strategies to support i/o load sharing among the servers
when working on persistent filesystems.

As stated in Sect. 2.4, the tunnelfs servers assume that every process within
a filesystem domain has equal access to the filesystems of that metahost. Clients
as well as servers are classified into these filesystem domains. Upon first regis-
tration during the initialization of mpi, the clients provide information about
their filesystem domain to the main server. The main server can then use this
information to compute an optimal distribution of clients to servers. For exam-
ple, clients can be assigned to the nearest server. Having a server in reach of
intra-cluster communication can speed up data transfer, as it is used in routed
and cached i/o with intermediary i/o servers. With this filesystem domain dis-
tribution, the tunnelfs servers support two sorts of i/o behavior, in regard to
the configured views on the file.

3.1 Routed I/O

Routed i/o is a transfer of the router concept of mp-mpich [7] from routing
processes to the i/o server processes. Clients are assigned to i/o servers in a
distributed fashion in a way that they are local to their metahost and therefore
reachable via the local, typically faster internal network. After completion of the
data transfer, the intermediary servers reply to the clients and then send the data
to the responsible i/o server for persistent storing of the data. The clients can then
continue with computation much earlier than having to wait for explicit storage
of the data on the remote i/o server. The intermediary server uses the same
file view the client would have used to write to the file, therefore no additional
offset and file view calculation has to be done, and the server simply reuses the
information. While write access is being accelerated by this strategy, read access
is degraded, because of the store-and-forward data transfer and the additional
hop of the intermediary server. Therefore this i/o strategy is not the best for all
kinds of file accesses and is currently only used if MPI_MODE_WRONLY is specified
upon opening the file. The clear benefit is the usability for arbitrary file views
in comparison to cached i/o discussed in the next section. Figure 3(a) shows i/o
message interchange between clients, intermediary servers and the responsible
file server. This i/o strategy is still reasonable for scientific applications, as often
the major i/o load is created by writing intermediary and result data.

3.2 Cached I/O

Cached i/o goes further and speeds up the read access, by keeping a local cache
file of the clients view. This will imply coherence problems, if several clients have
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Fig. 3. Different tunnelfs i/o strategies

access to the same region in a file. To avoid complicated handling of replicated
data, cached i/o is restricted to file views with disjoint access patterns.

When a message passing library like mpi is used, the application problem
domain is often already restricted to algorithms that do not need random ac-
cess on global data, as this can be a big challenge to provide efficiently without
hardware support of some kind. Thus disjoint access to global data is an ac-
cess pattern very common in scientific applications using mpi. In Fig. 3(b) the
message exchange for cached i/o is shown. It is very similar to the routed i/o sce-
nario, but now the intermediary servers only synchronize with the responsible
file server on special i/o requests, such as MPI_File_close, MPI_File_set_view
and MPI_File_sync. This postponed synchronization, in regard to routed i/o, is
illustrated by the dotted lines between the server processes.

4 Status

As the implementation of distributed tunnelfs i/o servers has been completed
recently, we cannot state solid performance data for it yet. With multiple servers
balancing i/o load we expect to significantly exceed the already promising per-
formance data of the single server tunnelfs environment [9] presented in Fig 4.
In this single server test, we are able to deliver i/o rates that are restricted
by the network card of the server (1 GigE) rather than the processing on the

Fig. 4. Bandwidth with 12 i/o client processes and 1 i/o server on a shared file
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server. The data was obtained using an mpi benchmark program that measured 8
different mpi i/o operations (individual/shared fp, explicit offset, collective/non-
collective). Results are given as average bandwidth numbers over these opera-
tions. Two clusters were used, connected with a dedicated 100 km distance 10
GigE fibre network and 1 GigE network cards in each cluster node connected
to a cluster switch. All cluster nodes running tunnelfs i/o server processes are
4-way SMP nodes with 10.000 rpm SCSI disks accessed locally on a node by a
ufs device, and an nfs-mounted RAID-5 based shared filesystem hosted by a
cluster file server.

5 Related Work

Data access to remote locations from within mpi applications has been previously
addressed with the rio device, where the communication for i/o is directly bound
to tcp/ip socket communication. The work was continued with rfs [10], focusing
on client side caching to improve i/o performance. To the best of our knowledge,
efficient remote data distribution using mpi datatypes for optimal placement on
multiple servers has not been extensively addressed yet.

6 Conclusion and Future Work

We defined and implemented a client/server architecture for flexible, transparent
and efficient i/o in grid environments. With our approach to distributed i/o server
support, we have designed a very flexible infrastructure that can be adapted to
applications’ i/o needs on a per-job level. Users can define the number of i/o
processes supporting their application as well as their placement in the grid.
This enables substantial influence of the i/o infrastructure presented to applica-
tions by external configuration prior to runtime. The lifetime of tunnelfs i/o
server processes is limited to the scope of an applications execution time and are
integrated into the application’s mpi environment by the middleware. We intro-
duce the term of filesystem domains to assist the user in a flexible specification
for data location. tunnelfs uses a client/server architecture, using mpi commu-
nication and i/o calls to maintain a maximum of portability and flexibility, while
allowing the use of special purpose mpi devices for inter process communication.

With completion of tunnelfs and memfs prototypes, further efforts will be
aimed at an improved performance and robustness of the implementation, while
using it with simulation applications in the viola testbed.
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Martin Pöppe, Boris Bierbaum and Carsten Clauss of the University of Tech-
nology Aachen for their very close support on mp-mpich.



424 M.-A. Hermanns et al.

References

1. Message Passing Interface Forum (MPIF): MPI-2: Extensions to the Message-
Passing Interface. University of Tennessee, Knoxville (1996)
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

2. Thakur, R., Ross, R., Lusk, E., Gropp, W.: Users Guide for ROMIO: A High-
Performance, Portable MPI-IO Implementation. Technical Report ANL/MCS-TM-
234, Mathematics and Computer Science Division, Argonne National Laboratory
(2004) http://www-unix.mcs.anl.gov/romio/.

3. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-Performance, Portable Imple-
mentation of the MPI Message Passing Interface Standard. Technical report, Math-
ematics and Computer Science Division - Argonne National Laboratory (1996)
http://www-unix.mcs.anl.gov/mpi/mpich/.

4. Thakur, R., Gropp, W., Lusk, E.: An Abstract-Device Interface for Implementing
Portable Parallel-I/O Interfaces. In: Proceedings of the 6th Symposium on the
Frontiers of Massively Parallel Computation. (1996) 180–187

5. The DEISA Project Group: Distributed European Infrastructure for Supercom-
puting Applications (2005) http://www.deisa.org/.

6. The VIOLA Project Group: Vertically Integrated Optical testbed for Large scale
Applications (2005) http://www.viola-testbed.de/.
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Abstract. The Storage Exchange (SX) is a new platform allowing stor-
age to be treated as a tradeable resource. Organisations with varying
storage requirements can use the SX platform to trade and exchange
storage services. Organisations have the ability to federate their storage,
be-it dedicated or scavenged and advertise it to a global storage mar-
ket. In this paper we discuss the high level architecture employed by
our platform and investigate a sealed Double Auction market model. We
implement and experiment the following clearing algorithms: maximise
surplus, optimise utilisation and an efficient combination of both.

1 Introduction

The Internet has proven to be a source of many exciting wide-area distributed
computing applications, enabling its users to share and exchange resources across
geographic boundaries. It is in this context we introduce the Storage Exchange
(SX). Consumers and providers are able to submit their storage requirements
and services along with budgetary constraints to the SX, which in turn employs a
market model to determine successful trades. The motivation and long term goal
behind our research and development of the SX platform has been to achieve
Autonomic [1] management of storage. We envisage Consumers and Providers
will employ brokers which may purchase or sell storage in an autonomic manner
based on the organisations requirements.

The SX platform can be used in a collaborative manner, where participants
use the model to exchange services for credits, or alternatively in an open mar-
ketplace where enterprises trade storage services. Whether in a collaborative or
enterprise environment the incentives for an organisation to use our SX platform
include: (i) monetary gain: Institutions providing storage services (Providers)
are able to better utilise existing storage infrastructure in exchange for mone-
tary gain. Institutions consuming these storage services (Consumers) have the
ability to negotiate for storage services as they require them, without needing to
incur the costs associated with purchasing and maintaining storage hardware.
(ii) common objectives: There may be organisations which may wish to exchange
storage services as they may have a mutual goal such as preservation of informa-
tion [2]. (iii) Spikes in Storage Requirements: Research organisations may require
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temporarily access to mass storage [3] (e.g. temporarily store data generated from
experiments) and in exchange may provide access to their storage services. (iv)
donate: Institutions may wish to donate storage services, particularly if these
services are going to a noble cause.

There are many considerations which need to be made when building a global
scale platform such as the SX: security, high-availability, fault tolerance, reputa-
tion, monetary issues, consistency, operating environment, just to name a few.
We have chosen to focus our efforts on the core components by proposing and
developing a platform upon which we are able to develop a market model and
begin the work necessary to realise the Storage Exchange.

2 Related Work

Applying economic models to manage computational resources has been the
focus of much recent research [4,5,6]. These papers discuss the application of
economic principles to manage the scheduling of jobs in a large scale environment
such as the Grid [7]. Examples of different economic models and systems which
use them include: (i) Commodity Market model (Mungi [8] and NimrodG [9]),
(ii) Posted price model (NimrodG [9]), (iii) Auction model (Spawn [10] and
Popcorn [11]) (iv) Barter model (Stanford Archival Repository Project [2], and
MojoNation [12]).

FreeLoader [3] aggregates unused desktop storage to provide low-cost solu-
tion to storing massive datasets. Its specifically designed for research institutions
which need to store large scientific datasets. This scenario is particularly use-
ful for scientists engaged in high performance computing, where handling large
datasets is common. FreeLoader aims to handle large immutable files (write-
once-read-many). Farsite [13] is another system which demonstrates the resource
potential to be gained from scavenging unused storage. Farsite operates within
the boundaries of an institution providing a storage service logically similar to
a file-server found in corporate environments.

Cooper et al [2] propose a bartering storage system for preserving information.
Institutions which have common requirements and storage infrastructure can
use the framework to barter with each other for storage services. The bartering
model relies on their to be a double coincidence of wants [14]. OceanStore [15] is
a globally scalable storage utility, providing paying users with a durable, highly
available storage service by utilising untrusted infrastructure. Mungi [8] is Single-
address-space operating system which employs economic principles to manage
storage quota. MojoNation [12] uses digital currency (Mojo) to encourage users
to share resources on its network, users which contribute are rewarded with Mojo
which can be redeemed for services.

Freeloader [3] and Farsite [13] both demonstrate the storage potential that
exists by scavenging storage from workstations. The following works [8,9,10,12]
apply economic principles to effectively manage and foster the trade and ex-
change of services. The Storage Exchange aims to combine storage scavenging
and economic principles to create a global platform allowing institutions to fed-
erate, trade, exchange and manage storage services.
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3 System Overview

There are four main components which make up the SX platform, the Storage
Client, Storage Broker, Storage Provider and the Storage Exchange itself (Figure
1). The SX platform has been designed to operate on global network such as the
Internet, allowing organisations across geographic boundaries to trade and utilise
storage services. Organisations have the ability to trade storage based on their
current requirements, if a Storage Broker detects an organisation is running low
on storage it may purchase storage, alternatively if it finds that there is an
abundance of storage it has the ability to lease out the excess storage. The rest
of this section discusses each of the components:
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Storage
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Fig. 1. Storage Exchange: Platform Architecture

Storage Provider: The Storage Provider is deployed on hosts within an or-
ganisation chosen to contribute their available storage. Whilst we envision the
Storage Provider to be used to scavenge available storage from workstations,
there is no reason why it can not be installed on servers or dedicated hosts. The
Storage Provider is responsible for keeping the organisations broker up to date
with various usage statistics and service incoming storage requests from Storage
Clients.

Storage Client: An organisation wishing to utilise a negotiated storage con-
tract will need to use a Storage Client. A user will configure the Storage Client
with the storage contract details. The Storage Client then uses these details to
authenticate itself with the provider’s Storage Broker and upon successful au-
thentication the Storage Client requests a mount for the volume. The provider’s
Storage Broker then looks up the Storage Providers responsible for servicing
the storage contract and instructs them to connect to the Storage Client. Upon
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receiving a successful connection from the Storage Provider, the Storage Client
provides an interface to the user (e.g. local mount point).

Storage Broker: For an organisation to be able to participate in the SX plat-
form they will need to use a Storage Broker. The Storage Broker enables the
organisation to trade and utilise storage services from other organisations. The
Storage Broker needs to be configured to reflect how it should best serve the
organisations interests. From a consumer’s perspective the Storage Broker will
need to know the organisations storage requirements and the budget it is allowed
to spend in the process of acquiring them. From the Provider’s perspective the
Storage Broker needs to be aware of the available storage and the financial goals
it is required to reach. Upon configuration, a Storage Broker will contact the
Storage Exchange (SX) with its requirements.

Storage Exchange (SX): The Storage Exchange component provides a plat-
form for Storage Brokers to advertise their storage services and requirements.
The SX is a trusted entity responsible for executing a market model and deter-
mining how storage services are traded. When requests for storage are allocated
to available storage services the Storage Exchange generates a storage contract.
The storage contract contains a configuration of the storage policy forming a
contract binding the provider to fulfill the service at the determined price. In a
situation where either the provider or consumer breaches a storage contract, the
SX will keep a record of reputation for each organisation which can be used to
influence future trade allocations.

4 Trading Storage

This section covers topics key to making trading storage possible and begins by
covering storage policies; which provide a way to quantify storage being traded.
Followed by a discussion on the Double Auction (DA) market model and clearing
algorithms we have investigated.

Storage Policy: Storage policies provide a way to quantify a storage service,
this is essential regardless of chosen market model. Systems such as the one
proposed in [16] use Storage Policies as a way to specify high-level Quality of
Service (QoS) attributes, effectively abstracting away error prone low-level con-
figurables from the administrator. Our use of Storage Policies allow Storage
Brokers to quantify the service which they wish to lease out or acquire. When a
trade is determined the storage policy will form the basis for a storage contract
containing details of SLA (Service Level Agreement). The attributes which make
up a storage policy are as follows:

1. Storage Service Attributes:
(a) Capacity(C): Storage Capacity (GB) of volume.
(b) Upload Rate (U): Rate (kb/sec) of transfer to the volume.
(c) Download Rate (D): Rate (kb/sec) of transfer from the volume.

2. Duration:
(a) Time Frame (T ): Lifetime (sec) of storage policy.
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Market Model: Decades of research and experiments [17,18,19,20] show that
Double Auctions (DA) are effective and efficient market model. DAs have been
shown to quickly converge towards a Competitive Equilibrium (CE). The CE
is the intersection point of true demand and supply curves, yielding allocations
which are near 100% efficient. From an economic stand point DAs are a sound
and efficient market model. In a Double Auction (DA) [18] both buyers (Con-
sumers) and sellers (Providers) may submit offers to buy and sell respectively.
Providers and Consumers submit asks and bids simultaneously and hence par-
ticipate in a Double-sided auction. The process of clearing determines the way
in which trades are allocated amongst the asks and bids. There are two ways
in which clearing may take place, continuously or periodically. Double Auctions
cleared continuously are refered to as Continuous Double Auctions (CDA) and
compatible bids and asks are cleared instantaneously. The New York Stock Ex-
change (NYSE) and Chicago Commodities market both employ a CDA market
model. Double Auctions may also be cleared periodically, these are refered to
as Clearinghouse (CH) or Call Markets. Bids and Asks are submitted sealed to
a clearinghouse, which periodically processes the queued up bids and asks to
determine a market clearing price. Call Markets are used to determine opening
prices in continuous markets such as the NYSE.

As well as being economically sound there are two attractive features of Dou-
ble auctions which come to our attention, (i) many trades can be cleared in an
instant and using a sealed model (ii) the need to continuously broadcast the
current market status to all participants is removed. Studies comparing Dou-
ble Auctions [21,22] with other auction protocols (Dutch, English, First Price
Sealed bid) found that Double Auctions possess least communication overhead.
These remarkable properties have motivated our research and subsequent ap-
plication of a DA market model in our SX platform. The Storage Exchange
is responsible for executing a Clearinghouse variation of the DA model, which
involves accepting sealed offers from provider and consumer brokers and period-
ically allocating trades amongst the queued up offers using a clearing algorithm.
Consumers submitting bids do so in the form of Storage Request Bids (SRB).
A SRB consists of a Storage Policy detailing the storage service and a bid price
SRB = (C,U,D, T, $). A Provider submits a Storage Service Ask (SSA) repre-
senting the storage service they wish to lease out. An SSA consists of a Stor-
age Policy representing the storage service they are selling, along with a cost
function SSA = (C,U,D, T, CostFunction(C,U,D, T )). The cost function rep-
resents the Providers responsible and determines a cost based on Storage Policy
attributes. The Storage Exchange uses the cost function to determine how much
a Consumers would need to pay based on their Storage Policy. To achieve this
the Storage Exchange substitutes consumers Storage Policy attributes into the
Providers cost function to determine a price.

Clearing Algorithms: Periodically the Storage Exchange allocates trades
amongst queued up SRBs with SSAs, the manner in which it does so is de-
termined by the clearing algorithm it employs. We propose and investigate the
following clearing algorithms in the context of our SX platform:
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1. First fit: SRBs are allocated to SSAs on a first fit basis. An SSA is deemed
to fit if it has the storage resources required by the SSA and the cost function
returns a price within the SSA bid amount. SRBs are processed in the order
which they have been queued up.

2. Maximise Surplus: This clearing algorithm aims to maximise the profit
of the auction. An SRB is allocated to an SSA which results the maximum
difference between Consumers bid price and result of Providers cost function.

3. Optimise Utilisation: This algorithm focuses on achieving better utilisation
by trying to minimize the left overs that remain after an SRB is allocated
to an SSA. A measure of fit is calculated (Algorithm 1) between an SRB
and each SSA. A large measure of fit indicates that the remaining ratios
have a large spread amongst each of the Storage Service Attributes and
therefore would result in an SSA with potentially more waste, whereas a
small population variance would indicate that the remaining Storage Service
Attributes within the SSA would have less waste. Upon calculating a measure
of fit between the considering SRB and each SSA, we allocate it to the SSA
which returned the smallest measure of fit. SRBs are processed in the order
which they have been queued up.

Algorithm 1. MeasureOfFit(S,A)
1: Input: Storage Request Bid S, Storage Service Ask A
2: Output: Measure of Fit F
3: A = {a1, a2, ..., an}//Storage Service Attributes
4: //belonging to Available Storage Policy
5: S = {s1, s2, ..., sn}//Storage Service Attributes belonging to Storage Request
6: // calculate a remaining ratio for each of Storage Service Attributes
7: R = {r1 = a1−s1

a1
, r2 = a2−s2

a2
, ..., rn = an−sn

an
}

8: // calculate the population variance amongst the remaining ratios
9: F = 1

n
n
i=1(ri − uR)2, where uR = 1

n
n
i=1 ri

4. Max-Surplus/Optimise Utilisation: This clearing algorithm (Algorithm 2
incorporates the last two allocation strategies and aims to draw a balance
between the two. Parameter (k) serves to bias the balance, (0.5 < k <= 1)
means that importance will be given to utilisation, whereas a k(0 <= k <
0.5) will give importance to achieving a better surplus. Algorithm 2 is applied
to every SRB, in the order which they have been queued up.

5 Performance and Evaluation

Implementation: The Storage Provider and Storage Client components have
been written in C. The Storage Client utilises the FUSE library [23] to provide
a local mount point of the storage volume in user space. The Storage Broker
and Storage Exchange have both been written in Java. Interactions between
the Broker, Provider and Client have been implemented and tested. We have
been able to successfully mount a replicated storage volume utilising scavenged
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Algorithm 2. Max-Surplus/Optimise Utilisation Algorithm
1: Input: Storage Request Bid S, Storage Service Asks A, Balance k
2: Output: Selected Storage Policy P
3: F ← {∅} // a set to store MeasureOfFit values
4: M ← {∅} // a set to store Surplus calculations
5: for all availableStoragePolicy ∈ A do
6: if availableStoragePolicy has greater resource attributes than S and

S bid price is greater than availableStoragePolicy reserve then
7: F ← F ∪ MeasureOfFit(S, availableStoragePolicy)
8: M ← M ∪ surplus(S, availableStoragePolicy)
9: end if

10: end for
11: minSurplus = min(M), worseF it = max(F )
12: deltaMeasureF it = worseF it − min(F ), deltaSurplus = max(M) − minSurplus
13: currentHighScore = Large Negative Number
14: for all availStoreP l ∈ A do
15: ratioBetterF it = (worseF it − MeasureOfFit(S, availStoreP l))/deltaMeasureF it
16: ratioBetterSurplus = (surplus(S, availStoreP l) − minSurplus)/deltaSurplus
17: score = k ∗ ratioBetterF it + (1 − k) ∗ ratioBetterSurplus
18: if score > currentHighScore then
19: currentHighScore = score
20: P ← {availStoreP l} // assign Storage Policy with max score
21: end if
22: end for

storage made available by Providers. Communication between components is
carried out via TCP socket communication. The Storage Exchange accepts offers
from Storage Brokers and employs a clearing algorithm to allocate trades. Our
performance evaluation focuses on the Storage Exchange and comparing the
different clearing algorithms it employs.

Experiment Setup: We randomly generate a series of bids (SRB) and asks
(SSA) which comply to the posting protocol used by Consumers and Providers.
The cost functions in the SSAs are linear. The parameters we have used to
generate our random set of offers are outlined in Table 1. Each experiment exe-
cuted represents a single clearing period, that is assume the set of bids and asks
generated were queued up over some period of time by the Storage Exchange,
our experiment focuses on the sole process of clearing at the end of that period.
With every experiment the same set of orders are loaded in the same order in the
Storage Exchange to ensure each clearing algorithm is executed in exactly the
same manner. Parameters with ranges are assigned with a randomly generated
numbers within the specified range. Whilst our scenario has many more bids
(600) than asks (50), the asks contain much larger storage service attributes,
which would imply that Providers have a large quantity of storage they wish to
sell to many consumers.

Results: Our experiment results have been broken down into four plots. The
first two plots (Figure 2 and 3) focus on budget aspects while the second set of
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Table 1. Experiment Parameters

Parameter Description Values
SRB Number of Storage Request Bids 600

SRCrange Storage Request Capacity range (GB) 5 - 50

SRUrange Storage Request Up Rate range (kb/sec) 5 - 50

SRDrange Storage Request Down Rate range (kb/sec) 5 - 50

SRDU Storage Request Duration (sec) 20000

SSA Number of Storage Service Asks 50

SACrange Storage Ask Capacity range (GB) 50 - 500

SAUrange Storage Ask Up Rate range (kb/sec) 100 - 1000

SADrange Storage Ask Down Rate range (kb/sec) 100 - 1000

SADU Storage Ask Duration (sec) 20000
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Fig. 2. Results: Auction Surplus

plots (Figure 4 and 5) focus on utilisation achieved. The horizontal axis in all
the plots represents the number of bids that have been processed. We can see
from the Auction Surplus plot that the Maximise Surplus algorithm achieves far
better surplus than either first fit or Optimise Utilisation, but performs poorly in
utilisation plots (Figure 4 and 5) which in turn has a bad impact on Ask budget
met. The Optimise Utilisation algorithm achieves a far better utilisation (Figure
4 and 5) than Maximise Surplus, so much so it achieves the best in percentage
of Ask budget met. Even though it performs well in utilisation it achieves a
poor result in auction surplus. Finally when we apply Max-Surplus/Optimise
Utilisation clearing algorithm we are able to achieve best Auction Surplus (k =
0.75) whilst achieving better utilisation than Maximise Surplus.
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6 Conclusion

The SX platform provides organisations with various storage services and re-
quirements the capability to trade and exchange these services. Our platform
aims to federate storage services, allowing organisations to find storage services
which better meet their requirements whilst better utilising their available in-
frastructure. Organisations are able to scavenge storage services across their net-
work of workstations and with the use of the SX platform lease it out globally.
The Storage Exchange serves as a foundation for further research and develop-
ment into utilising economic principles to achieve Autonomic management [24]
of storage services.

In this paper we discuss our SX platform and apply a sealed Double Auction
market model and evaluate various clearing algorithms which aim to maximise
surplus, optimise utilisation and finally combining the previous two. Our re-
sults show that combining maximise surplus and optimise utilisation algorithms
achieves better utilisation and consequently the best auction surplus. A couple
of areas which require further research include:

1. Determining a clearing price: Whilst determining a clearing price in a double
auction which deals with goods that are homogeneous and divisible abstract
entities such as money and shares is found by looking where supply intersects
demand, this is not applicable when dealing with heterogeneous goods [25]
such as storage policies.
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2. Extending Experiment: Conduct a more detailed assessment of our clearing
aglorithms by varying parameters described in Section 5. Also determining
a theoretically optimal clearing result would allow us to compare and guage
the efficiency of our clearing algorithms.
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Abstract. We consider building a Grid Operating System in order to
relieve users and programmers from the burden of dealing with the highly
distributed and volatile resources of computational grids. To tolerate the
volatility of the nodes, the system should be self-healing, that is continu-
ously adapt to additions, removals, and failures of nodes. We present the
self-healing architecture of the Vigne Grid Operating System through
three of its services: system membership, application management, and
volatile data management. The experimental results obtained show that
our approach is feasible.

1 Introduction

Grids gather large sets of services over a large set of resources provided by many
independent organizations. The nodes of such distributed systems are in essence
volatile: organizations may unilaterally decide to add or remove nodes at any
time, and the failure rate increases with the number of nodes.

We consider building a Grid Operating System (GOS) in order to relieve
users and programmers from the burden of dealing with such highly distributed
and volatile resources. To achieve this goal, a GOS should provide users and
programmers with simple abstractions of physically highly distributed resources,
and transparently handle additions, removals, and failures of nodes.

We consider building self-healing systems. The self-healing property is a vari-
ant of fault-tolerance in which the system proactively maintains its degree of
fault-tolerance. The mechanisms of the system must continuously adapt to ad-
ditions, removals, and failures of nodes. This is an important property since
assuming that human interventions quickly restore failed resources can not scale
to large numbers of nodes. Moreover, no service of the system should depend
on the stability of any set of nodes during the whole system’s lifetime. How-
ever, current approaches like Globus [1] still rely on static hierarchies, defined
by system administrators, and that prevent the system from being self-healing.

In this paper we present the self-healing architecture of the Vigne GOS,
through the design of three of its services. One of the main contributions of
this architecture is the application management service which decentralizes ap-
plication control and provides applications with generic and transparent fault-
tolerance policies. We implemented most of these three services and present in
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this paper experimental results obtained by simulations, which show the feasi-
bility of our approach.

The paper is organized as follows. We precise our model of distributed sys-
tem in Sect. 2 and give an overview of Vigne in Sect. 3. Then we present three
self-healing services of Vigne, namely system membership in Sect. 4, application
management in Sect. 5, and volatile data management in Sect. 6. We present an
experimental evaluation of the self-healing properties of volatile data manage-
ment in Sect. 7, and discuss related work in Sect. 8. Finally, Sect. 9 concludes.

2 System Model

The nodes of the system belong to many independent organizations. For this
reason we consider a (large scale) distributed system composed of nodes which
can fail, recover (or be added), and be gracefully removed (the last two events are
called reconfigurations in the paper). Nodes fail in a fail-stop manner. Failures
can be detected using (unreliable) failure detectors. We do not consider byzantine
failures, as they are relevant to security. We focus our work on the scalability
and self-healing aspects, and expect security issues to be tackled in future work.

Users run distributed as well as sequential applications on this system. Many
users may run many applications simultaneously, using the system as a compu-
tational power provider.

3 Overview of Vigne

We consider building a Grid Operating System (GOS). As any operating system,
a GOS virtualizes the physical resources to provide users and programmers with
simple abstractions. A set of services is depicted in Fig. 1. In this paper we focus
on the self-healing aspect of a GOS.

Fig. 1. Services of a Grid Operating System

The application management service (AMS) is the top-level service of the
system. This service controls applications executions, and is the main service
with which users interact. The AMS runs each application under the control of a
dedicated self-healing agent called application manager. An application manager
acts on behalf of the user to run efficiently the application and to ensure that it
terminates correctly, despite node removals and failures.
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The persistent data management service stores data in logical files that have
location-independent names. The lifetime of these files is independent from
the lifetime of applications. Conversely, the volatile data management service
(VDMS) manages volatile data that is private to applications. The VDMS of-
fers abstractions of shared data to build distributed applications communicating
through the shared-memory paradigm. Since data managed by the VDMS is
volatile and private to a single application, the VDMS can apply fault-tolerance
mechanisms that are less costly in resources and performance than the mecha-
nisms needed for persistent data. The VDMS is based on fault-tolerant consis-
tency protocols allowing to replicate shared data to improve performance [2].

The system membership service (SMS) is the basis on which all other services
are implemented. The SMS connects the nodes of the system in a scalable, de-
centralized, and self-healing manner. The SMS of Vigne is based on a structured
overlay network designed in recent research in the peer-to-peer field [3].

The other services are not discussed in this paper. We briefly describe them.
The synchronization service provides applications with synchronization prim-
itives comprising distributed semaphores and barriers. The high performance
communication service provides applications as well as higher level services with
communication primitives that adapt to parallel communication links and to the
various security policies used on the nodes. The resource access control service
enforces the resource sharing policy defined by organizations for their nodes.

The main principle driving our approach is to simplify as much as possible
the job of users and programmers without restricting the field of applications.
In particular the GOS should relieve users and programmers from dealing with
failures. The next sections describe the self-healing properties of Vigne’s mem-
bership, application management, and volatile data management services.

4 System Membership

The system membership service of Vigne must achieve two goals despite continu-
ous reconfigurations and failures: maintain the nodes of the system in connection,
and deliver accurate membership information to higher level services. The sys-
tem membership service is based on a structured overlay network built using
the structure and routing algorithms of Pastry [3], and the maintenance algo-
rithms of Bamboo [4]. The basic mechanism implemented by the overlay network
is key-based routing, which allows to build self-healing distributed hash tables
(DHT). The keys of such DHTs can be used as location-independent names, as
the overlay network routes a message to a key without needing that the sender
knows which node hosts the key. DHTs are a sound basis to build self-healing
higher-level services. This is illustrated in the next sections for the application
management service and the volatile data management service.

Structured Overlay Network. Pastry connects the nodes of the system in a logical
ring. Nodes have numerical names, called ID and represented in hexadecimal,
and are placed in clockwise order on the ring. Pastry maps a key (also represented
in hexadecimal) to the node having the numerically closest ID (see Fig. 2, left
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part). Pastry routes messages to keys following the logical ring and shortcut
links that allow to limit the average number of routing hops to log16 N with
only O(log N) links per node, where N is the number of nodes connected to the
system. The overlay network is made self-healing using redundant links to the
neighbors in the ring, and gossiping protocols to refill the routing tables [4].

Distributed Hash Tables. On top of this structured overlay network we have
implemented a distributed hash table (DHT) service that provides generic man-
agement of self-healing DHTs. This service allows higher level services to define
any number of DHTs. DHTs are generically made self-healing by automatically
moving and replicating keys using a per-DHT defined replication degree. The
nodes hosting the replicas of a key are the numerically closest neighbors (clock-
wise and counter clockwise) of the node to which the overlay networks maps the
key (see Fig. 2, right part). Automatic replication management of the keys can
be customized by higher level services (for instance application management).

Fig. 2. Basic topology of a Pastry-based structured overlay network and mapping from
keys to nodes (left part). Replication of keys in a self-healing DHT (right part).

5 Application Management

The application management service is the main interface of the system for users.
This service controls the execution of all applications in order to minimize the
execution time and to reliably execute each application, that is to ensure that
the application correctly terminates despite failures. A discussion on minimizing
execution time is out of the scope of this paper. To reliably execute applications,
the application management service of Vigne controls the execution of each ap-
plication through a dedicated self-healing agent called application manager. In
this section we present the design of these application managers.

Application managers have three main features: control applications execution
in a decentralized manner, transparently handle failures and reconfigurations,
and allow to flexibly define fault-tolerance policies for each application.

Decentralized Control of Applications. Decentralization is achieved by placing
application managers as keys in the application manager DHT (which is im-
plemented using the system membership service, see Sect. 4). The keys are
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distributed over the whole system using secure hash functions, like SHA-1, to
define the key’s numerical name. Decentralization not only allows to avoid con-
tention on certain nodes because of the load generated by application control,
but also allows to limit the cost of a node removal or failure to the reconfigura-
tion of few application managers. The cost of a node removal or failure is limited
thanks to the locality properties of DHTs: only the application managers having
a replica located on the removed (or failed) node are affected.

Transparent Handling of Failures and Reconfigurations. To relieve users from
dealing with failures and reconfigurations, application managers transparently
handle failures and reconfigurations from the point of view of users. Indeed, from
the point of view of a user, a running application is represented by its application
manager. To achieve transparency, an application manager is reachable through
a location-independent name (its key in the application manager DHT), is self-
healing by replicating itself using a group communication system and the DHT
service, and, to handle all removals or failures of nodes that host components of
the application, applies a fault-tolerance policy.

A group communication system is used to actively replicate application man-
agers. The messages sent to an application manager are atomically multicast to
the group of replicas of the application manager. Provided that an application
manager can be defined as a deterministic input / output state machine, this
ensures that all replicas output the same sequence of messages. To ensure this
determinism, the failure detection mechanisms used by an application manager
to monitor an application interact with the application manager through the
group communication system (see Fig. 3).

The nodes hosting the replicas are automatically chosen using the DHT ser-
vice, which makes application managers self-replicating and self-healing. How-
ever, to keep the replicas synchronized, creating replicas must be done under
the control of the group communication system. To this end, the DHT service
only informs application managers of the nodes on which they should replicate.
For this reason, we chose to build a group communication system based on the
architecture defined in [5], which offers the required flexibility.

Application Fault-Tolerance Policies. To relieve users from dealing with failures,
an application manager applies a fault-tolerance policy defined for the applica-
tion. Thanks to this feature, application managers are a powerful and flexi-
ble mechanism to provide applications with generic fault-tolerance with mini-
mal efforts from users and programmers. The fault-tolerance policy can be a
generic predefined policy, for instance based on checkpointing and restart, or a
policy specifically designed for the application, for instance make the applica-
tion rebuild lost data using data from a previous computing step [6]. In each
case, the application manager enforces a fault-tolerance policy by reacting to
suspicions of nodes hosting components of the application (see Fig. 3, right
part).
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Fig. 3. Communications between application components, failure detectors, and the
replicas of an application manager, when creating (left) or destroying (center) compo-
nents, or suspecting nodes (right)

6 Volatile Data Management

The volatile data management service (VDMS) helps programmers to build dis-
tributed applications that use the shared memory paradigm to communicate,
offering to these programmers abstractions of shared objects to which processes
can access using location-independent names. To achieve this the VDMS of Vi-
gne includes consistency protocols to provide the programmer with consistency
models on the values of the copies of a shared object.

We have studied two protocols ensuring atomic consistency. These protocols
are based on the write-invalidate scheme, in order to obtain performance (see [2]
for a discussion). Before granting write access rights to a copy, the protocols
ensure that all other copies are invalid. In our protocols, at each time one (and
only one) copy is distinguished as the master copy. Other copies become valid
by retrieving the value of the master copy.

These protocols are based on protocols designed by K.Li [7]. K. Li’s protocols
were designed for a static system having reliable FIFO communication channels.
We improved K.Li’s protocols to handle multiple and simultaneous reconfigura-
tions and failures, and to tolerate unreliable communication channels. To han-
dle reconfigurations and failures, we leverage the application management and
system membership services. We tolerate unreliable communication channels in
order to improve the scalability of memory consumption. We have proved in [8]
that in our approach the amount of memory consumed per node does not depend
on the number of nodes in the system, whereas this cost is linear in the num-
ber of nodes if communication channels are made reliable in the communication
layer.

Both protocols eventually rely on the application manager to ensure fault-
tolerance. However, we also handle reconfigurations and failures in the consis-
tency protocols in order to limit the cost of the fault-tolerance mechanisms used
by the application manager. For instance, in both protocols a copy may become
useless when the node hosting it does not run processes of the application any-
more. The removal or the failure of such nodes should not force the application
manager to react (for instance by restarting the application). However, K.Li’s
protocols and their variants in the literature have to ensure that such copies are
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invalid before granting write access rights to another copy, and for this reason
they block if a copy, even useless, can not send acknowledgments. Using these
protocols without adapting them to dynamic reconfigurations and failures would
force the application manager to perform costly fault-tolerance operations (for
instance, restart the application) when no process of the application is lost.

In the first protocol, called STAT, object managers handle access requests
from copies and redirect them to the master copy. In order to avoid contention,
these object managers are distributed over a DHT. Compared to similar pro-
tocols, this allows the protocol to handle reconfigurations simply since object
managers have location-independent names and remain reachable thanks to the
self-healing management of the structured overlay network and of the DHT.

In the second protocol, called DYN, the copies organize themselves in chains
of references towards the master copy. Compared to the STAT protocol, this
avoids paying the latency of routing a message through the overlay network for
each access request from a copy. However, reconfigurations break these chains.
Therefore we added backup object managers, which are located in a DHT, and
to which the master copy periodically publishes its location. A copy sends an
access request to the backup object manager only when it suspects that its chain
towards the master copy is broken.

7 Experimental Evaluation

We have implemented the membership, application management, and volatile
data management services (VDMS) of Vigne, except advanced fault-tolerance
policies and application manager replication which will be implemented and
evaluated later. Based on this implementation, we present an evaluation of the
self-healing property of the VDMS. An evaluation of the system membership
service figures in [9].

We show the failure resilience of the consistency protocols of the volatile data
management service, using a discrete event simulator coupled to the running Vi-
gne prototype. To do this, we simulated the execution of a single writer multiple
readers application on a set of 2000 volatile nodes. Node additions and fail-
ures were injected using traces collected in the Gnutella peer-to-peer file sharing
application on the Internet [10], which represents an extreme case of volatility
compared to an industrial grid environment (see the right part of Fig. 4 for the
cumulative number of failures injected during the experiment).

Each component of the application runs 1000 loops composed of two phases.
In the first phase, the writer writes a value to a shared object, and in the second
phase all other components (the readers) read the value of the shared object.
With this access pattern, each access from a component to its copy generates an
access request. We ran experiments for 20 to 400 readers.

Upon a failure of a node hosting a component of the application, the appli-
cation was immediately restarted. Coordinated checkpoints were taken before
each iteration. In the simulator, coordinated checkpoints and restarts are done



444 L. Rilling

in null time, which allows us to observe the impact of node volatility on the
other fault-tolerance mechanisms used in the protocols.

Figure 4 (left part) shows the progression of the application for both proto-
cols and sample numbers of readers. The performance of the DYN protocol is
much better than the performance of the STAT protocol. The progression of the
application with the DYN protocol is almost linear even with a high number of
readers (see Fig. 4, center part). In contrast, the performance of the STAT pro-
tocol degrades quickly when the number of readers increases. The nodes routing
tables of the overlay network are continuously damaged and repairing which crit-
ically increases the latencies of the routed messages used in each access request.
We also observe this effect with the DYN protocol each time the application is
restarted, since messages are routed to reset the protocol (see Fig. 4).

These results suggest that the DYN protocol tolerates well frequent failures.
Moreover, these results suggest that DHTs should be used with care in execution
paths which are critical for application performance. These results also suggest
that the STAT protocol is useless, but we showed in [8] that the STAT proto-
col exhibits better performance than the DYN protocol for applications having
access patterns in which many write accesses are concurrent with other accesses.
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Fig. 4. Performance of STAT and DYN in a highly dynamic configuration

8 Related Work

Grid Operating Systems. Many grid infrastructures, including Globus [1], Le-
gion [11], GridOS [12], and 9grid [13], provide operating system-like services.
Globus, Legion, and GridOS are designed as middleware to ease the portability
on heterogeneous operating systems, whereas 9grid is an integrated grid operat-
ing system which design is simple partly because it enforces that all applications
run on top of the services. Between these two extreme approaches, Vigne adapts
existing operating systems to, on the one hand, keep legacy interfaces and run
legacy applications, and on the other hand, enforce resource sharing policies and
provide generic application management.

In all these infrastructures, fault-tolerance is addressed for the services, but
only to a limited extent because the systems rely on static hierarchies defined
by system administrators. In contrast, Vigne’s services are designed to be fully
self-healing in order to continuously tolerate failures of any node in the system,
without needing any action from system administrators.
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In current grid infrastructures, fault-tolerance is not addressed for applica-
tions, the main assumption being that this task should be left to application-
specific services. In contrast, as a true grid operating system should do, Vigne
provides generic application fault-tolerance services that should meet the needs
of most of the use cases, and helps applications to define custom mechanisms for
the other use cases.

Membership. We based our system membership service on a Pastry-like struc-
tured overlay network. Other works, including JXTA [14] and NaradaBroker-
ing [15], aim at providing infrastructures to build high level peer-to-peer ser-
vices. JXTA is built on an hybrid structured peer-to-peer network and provides
a loosely consistent DHT, which model differs from the DHTs we are using.
JXTA’s DHT only stores advertisements for resources bound to peers. In partic-
ular, this DHT does not manage the location and the replication of the objects
for which it stores advertisements.

NaradaBrokering provides a communication infrastructure including scalable
event-delivery and publish-subscribe to build high level services. NaradaBroker-
ing’s features are complementary to the features of our system membership ser-
vice. However, the brokering infrastructure’s design assumes that a set of nodes
remains relatively stable, and the volatility of the nodes is mostly considered for
the clients of the brokering services.

Application Management. Few projects include generic application management
services to execute applications reliably. Chameleon [16] and XtremWeb [17]
provide fault-tolerance mechanisms for a variety of programming models. In
particular, Chameleon provides users with generic mechanisms for various fault-
tolerance policies. In both systems, application management relies on a central-
ized entity (the main fault-tolerance manager in Chameleon, or the coordinator
in XtremWeb), which is itself made reliable by replication on a static set of
nodes. As a major contribution, our application managers decentralize applica-
tion management, which is better to avoid contention and to resist to massive
failures. Moreover application managers are replicated on dynamic sets of nodes,
which allows them to adapt to any reconfiguration in the system.

Shared Data Management. Several projects, like JuxMem [18] or Pastis [19], pro-
vide mutable shared data management in large scale distributed systems com-
posed of volatile nodes. Compared to our volatile data management service, these
systems consider persistent data, which prevents them from providing program-
mers with an integrated fault-tolerance solution taking programs and data into
account. In JuxMem, applications have to adapt to the fault-tolerance mecha-
nisms used for the data, which makes fault-tolerance not fully transparent to the
programmers. In Pastis, the replication degree of the data is maintained to keep
the data available, but no mechanism allows application fault-tolerance mecha-
nisms to synchronize with consistent versions of the data. Fault-tolerant volatile
data management has only been studied in the context Distributed Shared Mem-
ory systems [20], which only consider clusters of workstations composed of at
most a few hundreds of nodes that rarely undergo reconfigurations or failures.
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9 Conclusion

In this paper we have presented the design of three self-healing services of the
Vigne Grid Operating System. The self-healing property is important to ensure
the availability of the system and to relieve users and programmers from dealing
with reconfigurations and failures. This paper brings two contributions. As the
the volatile data management service illustrates, the system membership service
and the application management service that we presented constitute a sound
basis for a grid operating system. In particular, with application managers our
application management service decentralizes application control and provides
applications with generic and transparent fault-tolerance. Thanks to application
managers, the consistency protocols of our volatile data management service are
the first ones based on the write-invalidate scheme for performance and tolerat-
ing multiple simultaneous failures. The experimental results on highly dynamic
configurations suggest that the chosen self-healing architecture is feasible.

Future work includes enhancing the volatile data management service to en-
able programmers to choose between various consistency models, still without
having to handle failures. We will also implement the group communication sys-
tem described in [5]. This will complete the self-healing architecture of Vigne
and will allow us to evaluate the application management service. In particular,
we will be able to evaluate various fault-tolerance policies.
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Abstract. Running workloads in a Grid environment may become a challenging 
problem when no appropriate means are available for resource brokering. Many 
times resources are provided under various administrative policies and 
agreements that must be known in order to perform adequate scheduling 
decisions. Thus, providing suitable solutions for resource management is 
important if we want to cope with the increased scale and complexity of such 
distributed system. In this paper we explore the key requirements a brokering 
infrastructure must meet in large and dynamic Grid environments and illustrate 
how these requirements are addressed by a specialized infrastructure, DI-
GRUBER - a distributed usage service level agreement (uSLA) brokering 
service. The accuracy function of the brokering infrastructure connectivity and 
the performance gains when a client scheduling policy is employed are 
analyzed in high detail. In addition, a performance comparison with a P2P-
based distributed lookup service is performed to illustrate the performance 
differences between two different technologies that address similar problems 
(Grids that focus on federated resource sharing scenarios and P2Ps that focus on 
self-organizing distributed resource sharing systems, in which most of the 
communication is symmetric).  

1   Introduction  

The motivating scenarios of our work are large grid environments in which virtual 
organizations (VOs) and agreements appear and vanish with a high frequency (every 
day or week). Such VOs might be companies requiring outsourcing services over 
short time intervals or scientific communities that want to participate temporarily in 
different collaborations with access to other types of resources. In these environments, 
we distinguish between two types of entities participating: resource providers and 
resource consumers. They may be nested: a provider may function as a middleman, 
providing access to resources to which the provider has itself been granted access by 
some other provider. While sharing policies issues can arise at multiple levels in such 
scenarios, the dynamicity of such an environment is also a problem. Providers want to 
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express (and enforce) various sharing policies (what we call usage service level 
agreements or uSLAs) under which resources are made available to consumers. 
Consumers want to access and interpret uSLA statements published by providers, in 
order to monitor their agreements and guide their activities. Starting from this 
environment and interactions model, our main focus is the identification of 
requirements and the provisioning of the design ingredients for building a scalable 
distributed resource brokering service that supports uSLA expression, publication, 
discovery, interpretation, enforcement, and verification in large dynamic Grid 
environments. We build on much previous work concerning the specification and 
enforcement of resource uSLAs [1-5], information lookup, scheduling and brokering 
services [6-8], the GRUBER broker [9], and the DI-GRUBER version [10].  

The main contributions of this paper are on three dimensions. First, we identify 
several requirements a brokering infrastructure has to meet when deployed in large 
and dynamic Grid environments. We base our judgment on our past experience with 
the GRUBER framework in the Grid3 [11] context and the enhanced version, DI-
GRUBER. Second, we present several novel DI-GRUBER performance 
measurements, namely the brokering accuracy function of infrastructure components’ 
connectivity, and the gains in performance when using automated decision point 
scheduling for the clients.  Third, we realize a performance comparison with a P2P-
based system for file management. The paper also introduces two major technical 
enhancements to the DI-GRUBER two layer brokering infrastructure: WS-Index 
Service-based infrastructure discovery [6] and a specific solution for handling 
infrastructures decision points’ scheduling in order to meet the outlined requirements 
[10]. The first enhancement takes advantage of the WS-Index Service functionalities 
that acts as a lookup service. Each GRUBER decision point registers itself with a 
predefined list of WS-Index Services at startup and it is automatically deleted when it 
no longer provides brokering services. The second enhancement also takes advantage 
of the WS-Index Service to discover the most appropriate decision point (DP).  

2   Brokering Key Requirements for Large and Dynamic Grids 

This work targets Grids (and any large distributed systems in general) that may 
comprise hundreds of institutions and thousands of individual investigators where the 
participants often join or leave the environment [11]. Moreover, each individual 
investigator and institution may participate in, and contribute resources to multiple 
collaborative projects that can vary widely in scale, lifetime, and formality [10, 12]. 
Such globally distributed systems provide several key benefits over large centralized 
solutions, in particular: maintenance costs and upgrade operations are more easily 
handled and there are no single points of failure. Two main environment examples of 
this class are introduced next.  

2.1   Grid Environment Examples  

Open Science Grid (previously known as Grid3 [11]) is a multi-virtual organization 
(multi-VO) environment that sustains production level services required by various 
physics experiments. The Grid3 infrastructure had comprised more than 30 sites and 
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4500 CPUs, over 1300 simultaneous jobs and more than 2 TB/day aggregate data 
traffic. The participating sites were (are) the main resource providers under various 
conditions. Thus, we consider that OSG/Grid is a good example of the kind of 
environments we envisage for the work in this paper. However, with times we believe 
that this infrastructure can grow. For example, the number of sites can increase by 
means of new joins; the rate of jobs can jump when new scientific communities will 
want to solve high computer power consummative applications. Thus, the resource 
management infrastructure we envisage in this paper targets Grid environments ten to 
hundred times bigger than today OSG. 

The other Grid testbed example is the LHC Computing Project (LCG). LCG targets 
to build and to maintain a data storage and analysis infrastructure for the entire high 
energy physics community that will use the LHC (Large Hadron Collider) [13]. The 
data from the LHC experiments will be distributed around the globe, according to a 
four-tiered model. Two of the goals of the LCG project include developing and 
deploying computing services based on a distributed Grid model, and managing 
acquisition, installation, and capacity planning for the large number of commodity 
hardware components. The expected size of the entire community is around 5000 
scientists in 500 research institutes and universities worldwide. The analysis of the 
data, including simulations, requires around 100,000 CPUs. Such a distributed system 
presents a number of significant challenges; the most important one from our point of 
view is the provisioning of controlled resource sharing mechanisms so that different 
groups have fair access, based on their needs and contributions, to the infrastructure.  

2.2   Resource Brokering Key Requirements  

The resource brokering (and scheduling) problem in such Grid environments 
encompasses intertwined requirements, while the most important three ones in our 
vision are: support for brokering of numerous resources, an adequate level of 
accuracy of the brokering infrastructure and fault-tolerant brokering.  

 Support for Brokering of Dynamic and Numerous Resources (scalability): 
dynamicity implies in our view that various communities, providers or VOs might 
join a Grid environment for short (days to weeks) time intervals in order to solve fast 
various problems. This dynamicity imposes certain technical requirements, such as 
rapid propagation of information about available resources in the brokering 
infrastructure and of the new administrative policies under which these resources are 
made available. When the environment is large (composed of hundreds to thousands 
simultaneous providers and more than thousands of consumers), the brokering 
solution must be scalable enough to handle such an infrastructure.  

 Adequate Level of Brokering Accuracy Independent of the Infrastructure: 
regarding management information, an important problem is the accuracy of 
information provided by a brokering service in order to perform adequate scheduling 
decisions. Even more, for a distributed infrastructure, several operations have to be 
considered, such as propagation, reconciliation and removal. These operations may 
occur whenever new decisions are performed and new resources join or leave the 
environment. The entire brokering infrastructure must become aware of these changes 
in a timely fashion manner.  
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 Fault-tolerant Resource Brokering: fault tolerance is important from a client 
point of view. Even when a client cannot contact a brokering decision point, it still 
expects to perform scheduling operations over the Grid with a lower but acceptable 
execution performance. Also, when many clients perform queries, the brokering 
infrastructure must be able to cope with this request load. Even the reader might think 
about the P2P networks and their properties to re-organize, we pursue the path of 
scheduling the brokering decision points as any other resources. Thus, the 
employment of an adequate strategy becomes important in this approach.   

3   Illustrating the Key Requirements in a Concrete Case 

We now introduce the main concepts and tools used in this paper.  We start with the 
WS-Index Service (monitoring and discovery service [6]) used as a supporting tool 
and introduce afterwards our brokering infrastructure (DI-GRUBER [10]) used as a 
vehicle for proving our assumptions.  

3.1   WS-Index Service  

WS-Index Service [6] is a standard component of the Globus Toolkit (one of the Grid 
technologies largely used in science and industry [14]). It provides specialized 
functions for resource and service monitoring and discovery, and it is used as the 
central rendezvous point by our brokering infrastructure. While someone might 
consider the WS-Index Service a bottle-neck, our previous experiments proved that its 
scalability is well beyond our needs. Thus, WS-Index Service's main function in our 
infrastructure is to act as a specialized directory of all DI-GRUBER decision points for 
all clients and the decision points themselves, and for infrastructure management.   

3.2   DI-GRUBER (A Distributed Grid Resource uSLA-Based Broker) 

GRUBER [9] is a prototype Grid V-PEP and S-PEP infrastructure that implements 
the brokering functionalities required for steering workloads in a distributed 
environment based on uSLAs. It is able to perform job scheduling based on notions 
such as sites, VOs, VO groups, and uSLAs at various levels [4]. Currently, GRUBER 
is implemented as a Grid Web Service using the Globus Toolkit (GT4) technologies 
[14]. As an additional clarification, GRUBER does not perform job submission by 
itself, but can be used in conjunction with various grid job submission infrastructures. 
So far, we have interfaced GRUBER for job execution with the Euryale and Pegasus 
planners, largely used on Grid3 [11].  

However, managing uSLAs within environments that integrate participants and 
resources spanning many physical institutions is a challenging problem when a 
centralized infrastructure is employed. A single unified uSLA management decision 
point providing brokering decisions over hundreds to thousands of jobs and sites can 
easily become a bottleneck in terms of reliability as well as performance. DI-
GRUBER, an extension to the GRUBER prototype, was developed as a distributed 
uSLA-based resource broker that allows multiple decision points to coexist and 
cooperate in real-time. DI-GRUBER targets to provide a scalable management service 
with the same functionalities as GRUBER but in a distributed approach [10]. It is a 
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two layer resource brokering service, capable of working over large Grids, extending 
GRUBER with support for multiple brokering decision points that cooperate by 
periodically exchanging status information.  

3.2   DI-GRUBER Enhancements to Meet Previous Requirements  

DI-GRUBER was developed as a distributed uSLA-based grid resource broker that 
allows multiple decision points to coexist and cooperate in real-time. The problem is 
that without support for dynamic discovery of the brokering infrastructure, some of 
the advantages offered by this infrastructure become impractical. Here we outline 
how the interfacing and integration with the WS-Index Service practically fulfills the 
requirements enumerated in Section 2.  

 Transparent Decision Point Bootstrapping: As already described, the ability to 
bring up a decision point is important in a large and dynamic Grid. Our proposed 
solution uses the functionalities offered by the WS-Index Service for various clients 
by employing the notion of rendezvous point. In our implementation, each DI-
GRUBER decision point registers with a predefined WS-Index Service at startup, 
while it is automatically deleted when it vanishes.  

 Transparent Client Scheduling: Further, all decision points and clients can use 
this registry to find information about the existing infrastructure and select the most 
appropriate point of contact. When we use the term most appropriate, we refer to 
metrics such as load and number of clients already connected. The scheduling policy 
employed by each client in selecting a decision point was the least-used (LU) 
strategy. Also, whenever a decision point stops responding, its clients query 
automatically the registry and select a new different decision point to communicate.  

 Failure Handling: While dynamic DI-GRUBER decision point bootstrapping 
might be difficult to automate in a generic environment, the solution we have devised 
is simple. Every time a client fails to communicate or to connect with a decision 
point, it registers with the WS-Index Service a request fault. Such faults can be 
consumed by a specialized entity that based on various policies starts dynamically 
new decision points by means of the WS-GRAM service. 

 Brokering Infrastructure Accuracy Identification: An important aspect of the 
work in this paper is to identify the accuracy of our brokering infrastructure function 
of the connectivity of each decision point to the rest of the network. This analysis falls 
into the same class of scenarios where a decision point has only partial knowledge, 
and is on the same path as the analysis of dealing with stalled information, measured 
and analyzed somewhere else [10].  

4   DI-GRUBER Infrastructure Performance Results  

Here we report on our latest results [10] while also considering some of our previous 
results. We used one to ten DI-GRUBER decision points deployed on the PlanetLab 
nodes [15]. Each decision point maintains a local view of the environment 
configuration and via periodic exchanges (in the experiments that follow every three 
minutes) with other decision points acquires the necessary knowledge about recent 
job dispatch operations or other changes in the system (new resources, new uSLAs).   



 Problems for Resource Brokering in Large and Dynamic Grid Environments 453 

The three metrics employed for analysis are Throughput, Response (or Average 
Response Time) and Accuracy. Throughput is defined as the number of requests 
completed successfully by the service per time unit. Response is defined by the 
following formula (with RTi being the individual job time response and N being the 
number of jobs processed during the execution period): Response = i=1..N RTi / N. 
Finally, we define the scheduling accuracy for a specific job (SAi) as the ratio of free 
resources at the selected site to the total free resources over the entire grid. Accuracy 
is then the aggregated value of all scheduling accuracies measured for each individual 
job: Accuracy = i=1..N (SAi) / N.  

For all the experiments, we used synthetic workloads with a constant arrival rate of 
1 job/s for each client or as soon as the previous scheduling decision was served that 
overlaid work for 60 VOs and 10 groups per VO. The experiment duration was one 
hour in all cases. Each of the 120 submission hosts (“clients”) maintained a 
connection with one decision point; selected either under the random or the least used 
scheduling policy. The emulated environment was composed of 300 sites representing 
40,000 nodes. The entire configuration was based on Grid3’s landscape in terms of 
number of CPUs, disk space, network connectivity, etc., but ten times larger [10].  

4.1   Decision Accuracy with Brokering Network Mesh Connectivity 

First, we measure Accuracy of the brokering infrastructure function of the decision 
points’ average connectivity. We consider practically three cases: full connectivity 
(DPs see each other), half connectivity (each DP collects information only from half 
of all the others), and one-fourth connectivity (each DP collects information only from 
a quarter of all the others).  The results were achieved by means of the DI-GRUBER 
infrastructure in all three above configurations and are captured in Table 1.  

Table 1. DI-GRUBER Accuracy Performance with Mesh Connectivity 

 Connectivity Util Accuracy 
All 35% 75% 

One half 27% 62% 
Requests Handled 

by GRUBER 
One fourth 20% 55% 

All 41% 68% 
One half 30% 60% 

Total Request 

One fourth 21% 50% 

 
We can observe that the performance of the brokering infrastructure drops 

substantially with connectivity degree of each individual decision point. As an 
additional note, the Util parameter is low because jobs do not start all in the beginning, 
but are scheduled every second during the entire execution period. In a nutshell, 
Accuracy drops almost linearly with clients’ connectivity degree, intuitively. 

4.2   Decision Point Scheduling and Performance Gains  

Second, we focus on capturing the gains a client can achieve in term of performance 
when a least-used service selection policy is employed vs. the random scheduling 



454 C.L. Dumitrescu 

policy we employed before. The results for the random scheduling policy are captured 
in Fig. 1 and Fig. 2, while the results for least-used scheduling policy are captured in 
Fig. 3 and Fig. 4. As can be observed in the first two figures, the distributed service 
provides a symmetrical behavior with the number of concurrent machines that is 
independent of the state of the Grid (lightly or heavily loaded). Also, with three 
decision points, Throughput increases slowly to about 4 job scheduling requests per 
second when all testing machines are accessing the service. With 10 decision points, 
the average Response time decreased even further to about 13 seconds, and the 
achieved Throughput reached about 7.5 queries per second [10].  

Next two figures report the experiments performed when using the WS-Index 
Service and LU scheduling policy was employed by each client. We must mention 
that we also used this time a final GT4 release based implementation. As can be easily 
observed, the results show improvement in terms of both Response and Throughput. 
Clients achieved a more stable response time compared with the one in the previous 
set of tests. The Response metric’s value is always less than 30 seconds for 3 decision 
points, and less than 10 seconds for 10 decision points. The Throughput metric’s 
value shows even higher improvements, reaching a constant value of 5 queries per 
seconds for 3 decision points, while going us up as 16 queries per second for 10 
decision points.   
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Fig. 1. DI-GRUBER Throughput (1, 3 and 10 Decision Points) 
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Fig. 2. DI-GRUBER Response (1, 3 and 10 Decision Points) 
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Fig. 3. DI-GRUBER Throughput (3 and 10 Decision Points) 
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Fig. 4. DI-GRUBER Scalability Response (3 and 10 Decision Points) 

However, on average, we find modest improvements for 3 decision points (19% 
higher throughput and 8% lower response time) and significant improvements for 10 
decision points (68% higher throughput and 70% lower response times). From this 
observation we conclude that, practically, the request load was better balanced among 
the decision points and the infrastructure was able to achieve higher Throughput and 
lower Response.  

4.3   Comparison with a FreePastry-Based Lookup Service (PAST) 

For convincing the reader that even though DI-GRUBER's transaction throughput 
seems low compared to 'other transaction processing systems', we have performed 
further performance studies by means of DiPerF [16] on PlanetLab for a pretty well 
know distributed lookup service. The service chosen for testing was the PAST 
application [7], built on top of the PASTRY substrate.  

The chosen setup was very similar to the one used for DI-GRUBER: the same 
PlanetLab nodes (around 120). This time we used five machines for running 
permanent PAST nodes, while the rest ones were brought up dynamically, joining and 
leaving the network in a controlled manner. Again, we used only one of the five nodes 
as the main contact point (a node situated at the University of Chicago). The rest ones 
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were maintained as backup and to mimic the DI-GRUBER network. The length of the 
experiment was again one hour, while each joining node requested a lookup and an 
insert operation every second (or, if the previous operation took more than one 
second, at soon as the previous operation ended).  

Our performance results are presented in Fig. 5. The measurements show that for 
insert and lookup operations, the PAST’s response time is around 2.5 seconds with a 
higher variance in the beginning (the stabilization of the P2P network), while the 
throughput goes as up as 27 transaction per second in average. Also, the message lost 
rate for this ad-hoc network was pretty high compared with the one of DI-GRUBER. 
However, the network stabilization delay is higher for the P2P system (first 18% of 
the experimental time) compared with DI-GRUBER clients’ instantaneous network 
join operation. Our last note is that all operations were performed and measured on 
the local nodes (insertion followed by lookup); each node was responsible to 
propagate the results further (thus the higher response time and lower throughput than 
in the case of employing the continuation).  

 

Fig. 5. PAST Network Response Time (left axis) and Throughput (right axis) for a variable 
Load (left axis * 10) on 120 PlanetLab Nodes 

5   Conclusions  

Resource management within large VOs that integrate participants and resources 
spanning multiple physical institutions is a challenging problem. The main question 
this paper addresses is “what are the key requirements an already existing 
management infrastructure should meet in order to support large and dynamic Grid 
environments?”. The contributions of this paper are represented by results we 
achieved on three dimensions: we have identified three key requirements for 
extending a resource management service for large and dynamic Grid environments 
(and any other distributed systems in general), analyzed these requirements by means 
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of a real infrastructure in a real case scenario, and also compared the performance 
results of the considered infrastructure with the ones of a P2P-based service.  

Our experimental results showed how the brokering accuracy decreases with the 
loss of connectivity for a single decision point instance, while the performance of the 
system almost doubles in the 10 decision points’ case due to the better repartition of 
the clients with the DI-GRUBER’s nodes. The last set of experiments, the comparison 
performance tests, convinced us that even though DI-GRUBER’s performance may 
seem low compared with a cluster resource manager, its performance is comparable in 
a similar environment in terms of response time and throughput with a distributed P2P 
system that, however, employs less functionality than the Grid counterpart 
technology.  

Acknowledgments. I would like to thank Ian Foster, Michael Wilde, Jens-S. Vöckler, 
Yong Zhao, Ioan Raicu and Luiz Meyer for their support and discussions during the 
development of the (DI-)GRUBER infrastructure.  
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Topic 7: Parallel Computer Architecture and

Instruction Level Parallelism

Eduard Ayguadé, Wolfgang Karl,
Koen De Bosschere, and Jean-Francois Collard

Topic Chairs

We welcome you to the two Parallel Computer Architecture and Instruction
Level Parallelism sessions of Euro-Par 2006 conference being held in Dresden,
Germany. The call for papers for this Euro-Par topic area sought papers on
all hardware/software aspects of parallel computer architecture, processor ar-
chitecture and microarchitecture. This year 12 papers were submitted to this
topic area. Among the submissions, 5 papers were accepted as full papers for
the conference (41% acceptance rate).

Three of the accepted papers cover the hardware aspects of this Euro-Par
topic. Ro and Gaudiot present and evaluate the design of hierarchically distrib-
uted dispatch queues, as an alternative to the traditional centralized dispatch
queue. Authors show how their proposal can be designed with small-sized, dis-
tributed dispatch queues which consequently can be implemented with low hard-
ware complexity and lead to high clock rates. Rui, Zhang and Hu present and
describe the necessary hardware infrastructure on chip multiprocessors to sup-
port a hybrid strategy for prefetching that includes dynamic prefetching threads,
automatically constructed, triggered, spawn and managed by hardware, and sta-
tic prefetching threads, statically constructed by a binary-level optimization tool
with the guide of profiling information. Finally, De Dios, Sahelices, Ibez, Vials
and Llabera attack in their paper one of the major performance bottlenecks
in parallel programs: synchronization. Authors present and show an inexpen-
sive implementation of a novel hardware mechanism, named Request Bypass, to
speed-up lock-based synchronizations in DSM multiprocessors.

The two other papers are related with code generation and architecture sim-
ulation. Bednarski and Kessler evaluate and compare two methods for optimal
integrated VLIW code generation that fully integrate all steps of code genera-
tion (instruction selection, register allocation and instruction scheduling). The
techniques are based on integer linear programming and dynamic programming,
both previously proposed by the same authors. Colmenar, Garnica, Lanchares,
Hidalgo and Miana present an architectural simulator able to model asynchro-
nous superscalar architectures, with the aim of studying different architectural
proposals for asynchronous processors. The novelty resides in the use of distrib-
ution functions to describe the probability of delays.

We are grateful to our referees for lending us their expertise and providing
rigorous reviews. We hope that this collection of papers will prove to be inter-
esting and useful to readers, and that the issues raised will stimulate many of
them to further research in topics related to this topic. Enjoy!
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Optimal Integrated VLIW Code Generation with
Integer Linear Programming

Andrzej Bednarski and Christoph Kessler

PELAB, Department of Computer and Information Science,
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Abstract. We give an Integer Linear Programming (ILP) solution that fully in-
tegrates all steps of code generation, i.e. instruction selection, register allocation
and instruction scheduling, on the basic block level for VLIW processors.

In earlier work, we contributed a dynamic programming (DP) based method
for optimal integrated code generation, implemented in our retargetable code gen-
erator OPTIMIST. In this paper we give first results to evaluate and compare our
ILP formulation with our DP method on a VLIW processor. We also demonstrate
how to precondition the ILP model by a heuristic relaxation of the DP method to
improve ILP optimization time.

1 Introduction

We consider the problem of optimal integrated code generation for instruction-level par-
allel architectures such as VLIW processors. Integrated code generation solves simul-
taneously, in a single optimization pass, the tasks of instruction selection, instruction
scheduling including resource allocation and code compaction, and register allocation.

In previous work [8], we developed a dynamic programming approach and imple-
mented it in our retargetable framework called OPTIMIST [9]. However, there may be
further general problem solving strategies that could likewise be applied to the inte-
grated code generation problem. In this paper, we consider the most promising of these,
integer linear programming (ILP).

ILP is a general-purpose optimization method that gained much popularity in the
past 15 years due to the arrival of efficient commercial solvers and effective modeling
tools. In the domain of compiler back ends, it has been used successfully for various
tasks in code generation, most notably for instruction scheduling.

Wilken et al. [12] use ILP for instruction scheduling of basic blocks which allows,
after preprocessing the basic block’s data flow graph, to derive optimal solutions for
basic blocks with up to 1000 instructions within reasonable time.

ILP formulations integrating instruction scheduling and resource allocation are ei-
ther time-based or order-based. In time-based formulations the main decision variables
indicate the time slot when an operation is to be started. In order-based formulations
the decision variables represent the flow of the hardware resources among operations.

Gebotys et al. [5] give a time-based formulation that integrates instruction scheduling
and resource allocation and computes time optimal schedules. Leupers and Marwedel
[10] provide a time-based ILP formulation for code compaction of a given instruction
sequence with alternative instruction encodings.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 461–472, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Zhang [16], Chang et al. [2] and Kästner [7] provide order-based and/or time-based
ILP formulations for the combination of instruction scheduling with register allocation.
Winkel [15] formulates an ILP model for post-pass optimization that can be solved
efficiently for global instruction scheduling, including code motion and predication.

We know of only one ILP formulation in the literature that addressed all three tasks
simultaneously, which was proposed by Wilson et al. [14, 13]. However, their formula-
tion is for single-issue architectures only. Furthermore, their proposed model assumes
that the alternatives for pattern matching in instruction selection be exposed explicitly
for each node and edge of the basic block’s data flow graph (DFG), which would require
a preprocessing of the DFG before the ILP problem instance can be generated.

We provide an ILP formulation that fully integrates all three phases of code genera-
tion and extends the machine model used by Wilson et al. by including VLIW architec-
tures with homogeneous register file. Moreover, our formulation does no longer need
preprocessing of the DFG.

The remainder of this paper is organized as follows: After introducing some notation,
we provide in Section 3 the ILP formulation for fully integrated code generation for
VLIW processors. For a description of the DP approach of OPTIMIST, we refer to a
recent article [8]. Section 4 evaluates the DP approach against the ILP approach, and
draws some conclusions. Section 5 discusses further directions of ILP approach and
Section 6 concludes the article.

2 Notation

We use uppercase letters to denote model parameters and constants provided to the ILP
formulation. Lowercase letters denote solution variables and indexes.

Indexes i and j denote nodes of the DFG. We reserve indexes k and l for instances of
nodes composing a given pattern. t is used for time index. We use the common notation
|X | to denote the cardinality of a set (or pattern) X .

As usual, instruction selection is modeled as a general pattern matching problem,
covering the DFG with instances of patterns that correspond to instructions of the target
processor. The set of patterns B is subdivided into patterns that consist of a single node,
called singletons (B′′), and patterns consisting of more than one node, with or without
edges (B′). That is, B = B′ ∪ B′′ such that ∀p ∈ B′, |p| > 0 and ∀p ∈ B′′, |p| = 1.

In the ILP formulation that follows, we provide several instances of each non-
singleton pattern. For example, if there are two locations in the DFG where a multiply-
accumulate pattern (MAC) is matched, these will be associated with two different in-
stances of the MAC pattern, one for each possible location. We require that each pattern
instance be matched at most once in the final solution. As a consequence, the model
requires to specify a sufficient number of pattern instances to cover the DFG. For sin-
gleton patterns, we only need a single instance. This will become clearer once we have
introduced the coverage equations where the edges of a pattern must correspond to
some DFG edges.

2.1 Solution Variables

The ILP formulation uses the following solution variables:
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– ci,p,k,t a binary variable that is equal to 1, if a DAG node i is covered by instance
node k of pattern p at time t. Otherwise the variable is 0.

– wi,j,p,k,l a binary variable that is equal to 1 if DFG edge (i, j) is covered by a
pattern edge (k, l) of pattern p ∈ B′ (see Figure 1).

– sp,t a binary variable that is set to 1 if a pattern p ∈ B′ is selected and the corre-
sponding instruction issued at time t, and to 0 otherwise.

– ri,t a binary variable that is set to 1 if DFG node i must reside in some register at
time t, and 0 otherwise.

– τ an integer variable that represents the execution time of the final schedule.

In the equations that follow, we use the abbreviation ci,p,k for the following expression∑
∀t∈0..Tmax

ci,p,k,t, and sp for
∑

∀t∈0..Tmax
sp,t.

2.2 Parameters to the ILP Model

The model we provide is sufficiently generic to be used for various instruction-level
parallel processor architectures. Our ILP model requires the following parameters:

Data flow graph:
– G index set of DFG nodes
– EG index set of DFG edges
– OPi operation identifier of node i, representing a given DFG operation.
– OUTi indicates the out-degree of DFG node i.

Patterns and instruction set:
– B′ index set of instances of non-singleton patterns
– B′′ index set of singletons (instances)
– Ep set of edges for pattern p ∈ B′

– OPp,k operator for an instance node k of pattern instance p. This relates to the
operation identifier of the DFG nodes.

– OUTp,k is the out-degree of a node k of pattern instance p.
– Lp is an integer value representing the latency for a given pattern p. In our notation,

each pattern is mapped to a unique target instruction, resulting in unique latency
value for that pattern.

Resources:
– F is an index set of functional unit types.
– Mf represents the amount of functional units of type f , where f ∈ F .
– Up,f is a binary value representing the connection between the target instruction

corresponding to a pattern (instance) p and a functional unit f that this instruction
uses. It is 1 if p requires f , otherwise 0.

– W , is a positive integer representing the issue width of the target processor, i.e., the
maximum number of instructions that can be issued per clock cycle.

– R denotes the number of available registers.
– Tmax is a parameter that represents the maximum execution time budget for a basic

block. The value of Tmax is only required for limiting the search space, and has no
impact on the final result. Observe that Tmax must be greater (or equal) than the
time required for an optimal solution, otherwise the ILP problem instance has no
solution.
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Fig. 1. Example of pattern matching

3 ILP Formulation

To provide the ILP model for fully integrated code generation for VLIW architectures,
we first give equations for covering the DFG G with a set of patterns, i.e. the instruc-
tion selection. Secondly, we specify the set of equations for register allocation. Here we
address regular architectures with general purpose registers, and thus only check that
the register need does not exceed the amount of physical registers at any time. Next,
we address scheduling issues. Since we are working on the basic block level, only flow
dependences are considered. We assure that the schedule never exceeds available re-
sources, and that instructions issued simultaneously fit into a long instruction word.

3.1 Instruction Selection

Our instruction selection model is suitable for tree-based and directed acyclic graph
(DAG) data flow graphs. Also, it handles patterns in the form of tree, forest, and DAG
patterns. The goal of instruction selection is to cover all nodes of DFG G with a set of
patterns. For each DFG node i there must be exactly one matching node k in a pattern
instance p. Equation (1) enforces this full-coverage property. Solution variable ci,p,k,t

records for each node i which pattern instance node covers it, and at what time. Beside
full coverage, Equation (1) also assures a requirement for scheduling, namely that for
each DFG node i, the instruction corresponding to the pattern instance p covering it is
scheduled (issued) at some time slot t.

∀i ∈ G,
∑
p∈B

∑
k∈p

ci,p,k = 1 (1)

Equation (2) records the set of pattern instances being selected for DFG coverage. If
a pattern instance p is selected, all its nodes should be mapped to distinct nodes of G.
Additionally, the solution variable sp,t carries the information at what time t a selected
pattern instance p is issued.

∀p ∈ B′, ∀t ∈ 0..Tmax,
∑
i∈G

∑
k∈p

ci,p,k,t = |p|sp,t (2)

If a pattern instance p is selected, each pattern instance node k maps to exactly one
DFG node i. Equation (3) considers this unique mapping only for selected patterns, as
recorded by the solution variables s.

∀p ∈ B′, ∀k ∈ p,
∑
i∈G

ci,p,k = sp (3)
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Equation (4) implies that all edges composing a pattern must coincide with exactly
the same amount of edges in G. Thus, if a pattern instance p is selected, it should cover
exactly |Ep| edges of G. Unselected pattern instances do not cover any edge of G.
Remark that in our model each pattern instance is distinct, and that we further assume
that there are enough pattern instances available to fully cover a particular DFG.

∀p ∈ B′,
∑

(i,j)∈EG

∑
(k,l)∈Ep

wi,j,p,k,l = |Ep|sp (4)

Equation (5) assures that a pair of nodes constituting a DFG edge covered by a pat-
tern instance p corresponds to a pair of pattern instance nodes. If we have a match
(wi,j,p,k,l = 1) then we must map DFG node i to pattern instance node k and node j to
pattern instance node l of pattern instance p.

∀(i, j) ∈ EG, ∀p ∈ B′, ∀(k, l) ∈ Ep, 2wi,j,p,k,l ≤ ci,p,k + cj,p,l (5)

Equation (6) imposes that instructions corresponding to a non-singleton pattern (in-
stance) p are issued at most once at some time t (namely, if p was selected), or not at
all (if p was not selected).

∀p ∈ B′, sp ≤ 1 (6)

Equation (7) checks that the IR operators of DFG (OPi) corresponds to the operator
OPp,k of node k in the matched pattern instance p.

∀i ∈ G, ∀p ∈ B,∀k ∈ p, ∀t ∈ 0..Tmax, ci,p,k,t(OPi − OPp,k) = 0 (7)

Equation (8) simply checks if the out-degree OUTp,k of node k of a pattern instance
p equals the out-degreeOUTi of the covered DFG node i. As nodes in singleton patterns
are always pattern root nodes, we only need to consider non-singleton patterns, i.e. the
set B′.

∀p ∈ B′, ∀(i, j) ∈ EG, ∀(k, l) ∈ p, wi,j,p,k,l(OUTi − OUTp,k) = 0 (8)

3.2 Register Allocation

Currently we address (regular) architectures with general-purpose register set. We leave
modeling of clustered architectures for future work. Thus, a value carried by an edge
not entirely covered by a pattern (active edge), requires a register to store that value.
Equation (9) forces a node i to be in a register if at least one of its outgoing edge is
active, where N is a large number considered to be infinity.

∀t ∈ 0..Tmax, ∀i ∈ G,

t∑
tt=0

∑
(i,j)∈EG

∑
p∈B

∑
k∈p

ci,p,k,tt −
∑
l∈p

cj,p,l,tt

 ≤ Nri,t (9)

If all outgoing edges from a node i are covered by a pattern instance p, there is no need
to store the value represented by i in a register. Equation (10) requires solution variable
ri,t to be set to 0 if all outgoing edges from i are inactive at time t.

∀t ∈ 0..Tmax, ∀i ∈ G,
t∑

tt=0

∑
(i,j)∈EG

∑
p∈B

∑
k∈p

ci,p,k,tt −
∑
l∈p

cj,p,l,tt

 ≥ ri,t (10)
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Finally, Equation (11) checks that register pressure does not exceed the number R of
available registers at any time.

∀t ∈ 0..Tmax,
∑
i∈G

ri,t ≤ R (11)

3.3 Instruction Scheduling

The scheduling is complete when each node has been allocated to a time slot in the
schedule such that there is no violation of precedence constraints and resources are not
oversubscribed. Since we are working on the basic block level, we only need to model
the true data dependences, represented by DFG edges. Data dependences can only be
verified once pattern instances have been selected, covering the whole DFG. The knowl-
edge of the covered nodes with their respective covering pattern (i.e., the corresponding
target instruction) provides the necessary latency information for scheduling.

Besides full coverage, Equation (1) constrains each node to be scheduled at some
time t in the final solution. We need additionally to check that all precedence constraints
(data flow dependences) are satisfied. There are two cases: First, if an edge is entirely
covered by a pattern p (inactive edge), the latency of that edge must be 0, which means
that for all inactive edges (i, j), DFG nodes i and j are “issued” at the same time. Sec-
ondly, edges (i, j) between DFG nodes matched by different pattern instances (active
edges) should carry the latency Lp of the instruction whose pattern instance p covers
i. Equations (12) and (13) guarantee the flow data dependences of the final schedule.
We distinguish between edges leaving nodes matched by a multi-node pattern, Equa-
tion (12), and the case of edges outgoing from singletons, Equation (13). Active edges
leaving a node covered by a singleton pattern p carry always the latency Lp of p.

∀p ∈ B′, ∀(i, j) ∈ EG, ∀t ∈ 0..Tmax − Lp + 1,∑
k∈p

ci,p,k,t +
∑
q∈P
q �=p

t+Lp−1∑
tt=0

∑
k∈q

cj,q,k,tt ≤ 1 (12)

∀p ∈ B′′, ∀(i, j) ∈ EG, ∀t ∈ 0..Tmax − Lp + 1,∑
k∈p

ci,p,k,t +
∑
q∈B

t+Lp−1∑
tt=0

∑
k∈q

cj,q,k,tt ≤ 1 (13)

3.4 Resource Allocation

A schedule is valid if it respects data dependences and its resource usage does not
exceed the available resources (functional units, registers) at any time. Equation (14)
verifies that there are no more resources required by the final solution than available on
the target architecture. In this paper we assume fully pipelined functional units with an
occupation time of one for each unit, i.e. a new instruction can be issued to a unit every
new clock cycle. The first summation counts the number of resources of type f required
by instructions corresponding to selected multi-node pattern instances p at time t. The
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second part records resource instances of type f required for singletons (scheduled at
time t).

∀t ∈ 0..Tmax, ∀f ∈ F,
∑
p∈B′

Up,f =1

sp,t +
∑

p∈B′′
Up,f =1

∑
i∈G

∑
k∈p

ci,p,k,t ≤ Mf (14)

Finally Equation (15) assures that the issue width W is not exceeded. For each issue
time slot t, the first summation of the equation counts for multi-node pattern instances
the number of instructions composing the long instruction word issued at t, and the sec-
ond summation for the singletons. The total amount of instructions should not exceed
the issue width W , i.e., the number of available slots in a VLIW instruction word.

∀t ∈ 0..Tmax,
∑
p∈B′

sp,t +
∑

p∈B′′

∑
i∈G

∑
k∈p

ci,p,k,t ≤ W (15)

3.5 Optimization Goal

In this paper we are looking for a time-optimal schedule for a given basic block. The
formulation however allows us not only to optimize for time but can be easily adapted
for other objective functions. For instance, we might look for the minimum register
usage or code length.

In the case of time optimization goal, the total execution time of a valid schedule is
derived from the solution variables c as illustrated in Equation (16).

∀i ∈ G, ∀p ∈ P, ∀k ∈ p, ∀t ∈ 0..Tmax, ci,p,k,t ∗ (t + Lp) ≤ τ (16)

The total execution time is less or equal to the solution variable τ . Looking for a time
optimal schedule, our objective function is to minimize τ .

4 Evaluation

First, we provide two theoretical VLIW architectures for which we generate target code.
Secondly we describe the experimental setup that we used to evaluate our ILP formula-
tion against our previous DP approach and summarize the results.

4.1 Target Architectures

In order to compare OPTIMIST’s DP technique to the ILP formulation of Section 3,
we use two theoretical VLIW target platforms (Case I and Case II) with the following
characteristics.

Case I: The issue width is a maximum of two instructions per clock cycle. The architec-
ture has an arithmetic-logical unit (ALU). Most ALU operations require a single clock
cycle to compute (occupation time and latency are one). Multiplication and division
operations have a latency of two clock cycles. Besides the ALU, the architecture has a
multiply-and-accumulate unit (MAC) that takes two clock cycles to perform a multiply-
and-accumulate operation. There are eight general purpose registers accessible from
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CPLEX

.c .asmLCC−IR

.xml

SRC

HW spec.

ILP model

.dat

ILP solution.mod

Fig. 2. Experimental setup

any unit. We assume a single memory bank with unlimited size. A load/store unit (LS)
stores and loads data in four clock cycles.

Case II: The issue width is of maximum four instructions per clock cycle. The archi-
tecture has twice as many resources as in Case I, i.e. two arithmetic-logical units, two
multiply-and-accumulate units, and two load/store units with the same characteristics.

4.2 Experimental Setup

We implemented the ILP data generation module within the OPTIMIST framework.
Currently our ILP model addresses VLIW architectures with regular pipeline, i.e. func-
tional units are pipelined, but no pipeline stall occurs. We adapted hardware specifica-
tions in xADML [1, Chap. 8] such that they fit current limitations of the ILP model.
In fact, the OPTIMIST framework accepts more complex resource usage patterns and
pipeline descriptions expressible in xADML, which uses the general mechanism of
reservation tables [3]. As assumed in Section 3, we use for the ILP formulation the sim-
pler model with unit occupation time and a latency for each instruction. An extension
of the ILP formulation to use general reservation tables is left to future work.

Figure 2 shows our experimental platform. We provide a plain C code sequence as
input to OPTIMIST. We use LCC [4] (within OPTIMIST) as C front-end. Besides the
source code we provide the description of the target architecture in xADML language
For each basic block, OPTIMIST outputs the assembly code as result. If specified, the
framework also outputs the data file for the ILP model of Section 3. The data file con-
tains architecture specifications, such as the issue width of the processor, the set of
functional units, patterns, etc. that are extracted from the architecture description docu-
ment. It generates all parameters introduced in Section 2.2. Finally we use the CPLEX
solver [6] to solve the set of equations.

Observe that for the ILP data we need to provide the upper bound for the maximum
execution time (Tmax). For that, we first run a heuristic variant of DP that still considers
full integration of code generation phases, and provide its execution time (computed in
a fraction of a second) as the Tmax parameter to the ILP data.

4.3 Results

We generated code for basic blocks taken from various digital signal processing bench-
mark programs. We run the evaluation of the DP approach on a Linux (kernel 2.6.13)
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PC with Athlon 1.6GHz CPU and 1.5GB RAM. The ILP solver runs on a Linux (kernel
2.6.12) PC with Athlon 2.4GHz CPU, 512MB RAM using CPLEX 9.

We should mention a factor that contributes in favor of the ILP formulation. In the
OPTIMIST framework we use LCC [4] as C front-end. Within our framework we en-
hanced the intermediate representation with extended basic blocks [11] (which is not
standard in LCC). As consequence, we introduced data dependence edges for resolving
memory write/read precedence constraints. In the current ILP formulation we consider
only data flow dependences. Thus, we instrumented OPTIMIST to remove edges intro-
duced by building extended basic blocks. Removing dependence edges results in DAGs
with larger base, i.e. with larger number of leaves, and in general a lower height. We are
aware that the DP approach suffers from DAGs with a large number of leaves, as OPTI-
MIST early generates a large number of partial solutions. Further, removing those edges
builds DFGs that may no longer be equivalent to the original C source code. However,
it is still valid to compare the ILP and DP techniques, since both formulations operate
on the same intermediate representation.

Table 1 reports our results for the Case I architecture. The first column indicates
the name of the basic block. The second column reports the number of nodes in the
DAG for that basic block. The third and fourth columns give the height of the DAG and
the number of edges, respectively. Observe that the height corresponds to the longest
path of the DAG in terms of number of DAG nodes, and not to its critical path length,

Table 1. Evaluation of ILP and DP fully integrated code generation approaches for the Case I
architecture

DP ILP
Basic block |G| Height |EG| τ (cc) t (sec) τ (cc) t (sec)

1) iir filter bb9 10 4 10 10 0.3 10 0.9
2) vec max bb8 12 4 12 11 0.6 11 1.3
3) dijkstra bb19 16 7 15 14 6.6 14 5.6
4) fir filter bb9 16 3 14 15 61.3 15 7.8
5) cubic bb16 17 6 16 14 15.0 14 5.7
6) fir vselp bb10 17 9 17 16 3.4 16 8.2
7) matrix sum loop bb4 17 8 17 16 4.0 16 8.8
8) scalarprod bb2 17 8 18 17 1.2 17 15.8
9) vec sum bb3 17 8 18 16 1.4 16 11.8

10) matrix copy bb4 18 7 19 16 4.3 16 12.5
11) cubic bb4 21 8 23 17 69.8 17 277.7
12) iir filter bb4 21 6 17 20 3696.4 20 46.5
13) fir filter bb11 22 6 27 19 89.7 CPLEX
14) codebk srch bb20 23 7 22 17 548.8 17 63.1
15) fir vselp bb6 23 9 25 19 40.6 CPLEX
16) summatrix un1 bb4 24 10 28 20 25.4 CPLEX
17) scalarprod un1 bb2 25 10 30 19 14.9 CPLEX
18) matrixmult bb6 30 9 35 23 2037.7 AMPL
19) vec sum unrolled bb2 32 10 40 24 810.9 AMPL
20) scalarprod un2 bb2 33 12 42 23 703.1 AMPL
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whose calculation is unfeasible since the instruction selection is not yet known. The
fifth column reports the amount of clock cycles required for the basic block, and in the
sixth column we display the computation time (in seconds) for finding a DP solution.
Columns seven and eight report the results for ILP. The computation time for the ILP
formulation does not include the time for CPLEX-presolve that optimizes the equations.

In the tables we use three additional notations: CPLEX indicates that the ILP solver
ran out of memory and did not compute a result. AMPL means that CPLEX-presolve
failed to generate an equation system, because it ran out of memory. Where the DP ran
out of memory we indicate the entry as MEM.

For all cases that we could check both techniques report the same execution time (τ ).
It was unexpected to see that the ILP formulation performs quite well and in several
cases with an order of magnitude faster than DP. For cases 4), 12) and 14) in Table 1
the DP takes almost eight times, eighty times and nine times respectively longer than
the ILP solver to compute an optimal solution. Since we removed the memory data
dependence edges (as mentioned earlier) the resulting test cases present two, four and
two unrelated DAGs for case 4), 12) and 14) respectively. We know that DP suffers
from DAGs with a large number of leaves because a large number of selection nodes
is generated already at the first step. For the rest of the test cases, DP outperforms the
ILP formulation or has similar computation times. Observe that we reported for cases
3) and 5) that ILP takes shorter time to compute an optimal solution. But if we include
the time of CPLEX-presolve, which runs for 7.1s in case 3) and 8.3s in case 5), the ILP
times are worse or equivalent. For problems larger than 22 nodes, the ILP formulation
fails to compute a solution. For problem instances over 30 nodes, the CPLEX-presolve
does not generate equations because it runs out of memory.

Table 2 shows the results for the Case II architecture. The notations are the same as
for Case I. We added an additional column in the ILP part, denoted t′, that reports the

Table 2. Evaluation of ILP and DP fully integrated code generation approaches for the Case II
architecture

DP ILP
Basic block |G| Height |EG| τ (cc) t (sec) τ (cc) t (sec) t′ (sec)

1) iir filter bb9 10 4 10 9 0.6 9 1.5 0.4
2) vec max bb8 12 4 12 10 2.4 10 1.6 0.7
3) dijkstra bb19 16 7 15 14 73.5 14 10.7 4.2
4) fir filter bb9 16 3 14 9 2738.9 9 9.1 2.5
5) cubic bb16 17 6 16 12 1143.3 12 CPLEX 3.8
6) fir vselp bb10 17 9 17 14 62.1 14 CPLEX 4.9
7) matrix sum loop bb4 17 8 17 15 90.2 15 CPLEX 10.2
8) scalarprod bb2 17 8 18 15 10.0 — CPLEX CPLEX
9) vec sum bb3 17 8 18 13 11.4 13 CPLEX 4.6

10) matrix copy bb4 18 7 19 14 89.4 14 AMPL 4.1
11) cubic bb4 21 8 23 16 8568.7 — AMPL CPLEX
12) iir filter bb4 21 6 17 — MEM 12 AMPL 7.4
13) fir filter bb11 22 6 27 — MEM — AMPL CPLEX
14) codebk srch bb20 23 7 22 — MEM — AMPL CPLEX
15) fir vselp bb6 23 9 25 16 7193.9 — AMPL AMPL
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ILP computation time when the upper bound Tmax is derived from a run of a heuristi-
cally pruned DP algorithm [1, Chap. 4] (this decreases the number of generated equa-
tions by providing a value of Tmax closer to an optimal solution). The time for this DP
run for preconditioning the ILP (within a fraction of a second) is not included in t′.

For the cases 4) and 12) in Table 2, DP performs worse than ILP. For the case 12)
DP runs out of memory, whereas the ILP could compute a solution within 7.4s if Tmax

is close enough to the optimum. The case II results show that it is beneficial to spend
time on minimizing Tmax. We could gain four additional nodes in ILP problem size.
For Case II, if the ILP computes a solution it outperforms the DP.

5 Future Work

The current ILP formulation lacks several features of the OPTIMIST framework. In this
paper we considered target architectures that suit the ILP model. We plan to extend the
formulation to handle clustered VLIW architectures, such as Veloci-TI DSP variants.
For that, we will need to model operand residences (i.e., in which cluster or register set
a value is located). This will certainly increase the amount of generated variables and
equations and affect ILP performance.

Also, we need to formulate the insertion of spill code. The current ILP formulation
assumes a sufficient number of registers, which is not generally the case.

We also mentioned that the current ILP formulation is based on a simpler resource
usage model that is limited to unit occupation times per functional unit and a variable
latency per target instruction. It would be of interest to have a more general model
using reservation tables for specifying arbitrary resource usage patterns and complex
pipelines, which is already implemented in OPTIMIST’s DP framework.

Finally, we will extend the scope of the optimization beyond the basic block level, in
particular to integrated software pipelining of loops.

6 Conclusions

In this paper we provided an integer linear programming formulation for fully integrated
code generation for VLIW architectures that includes instruction selection, instruction
scheduling and register allocation. We extended the formulation by Wilson et al. [14] for
VLIW architectures. In contrast to their formulation, we do no longer need to preprocess
the DFG to expose instruction selection alternatives. Moreover, we have a working
implementation where ILP instances are generated automatically from the OPTIMIST
intermediate representation and a formal architecture description in xADML.

We compared the ILP formulation with our research framework for integrated code
generation, OPTIMIST, which uses dynamic programming. We evaluated both methods
on theoretical architectures that fit the ILP model restrictions. Where the ILP solver
terminates successfully, the ILP-based optimizer mostly works faster than the dynamic
programming approach; on the other hand, it fails for several larger examples where
dynamic programming still provides a solution. Hence, the two approaches complement
each other. Moreover, the ILP approach profits from preconditioning by a heuristic
variant of DP.
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Currently, our ILP formulation lacks support for memory dependences and for ir-
regular architecture characteristics, such as clustered register files, complex pipelines,
etc. We intend to complete the formulation as part of future work. Further we need to
address insertion of spill code.
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Abstract. Synchronization in parallel programs is a major performance
bottleneck. Shared data is protected by locks and a lot of time is spent
in the competition arising at the lock hand-off. In this period of time, a
large amount of traffic is targeted to the line holding the lock variable.
In order to be serialized, the requests to the same cache line can either
be bounced (NACKed) or buffered in the coherence controller. In this
paper we focus on systems whose coherence controllers buffer requests.

During lock hand-off only the requests from the winning processor
contribute to the computation progress, because the winning processor
is the only one that will advance the work. This key observation leads us
to propose a hardware mechanism named Request Bypass, which allows
requests from the winning processor to bypass the requests buffered in the
home coherence controller keeping the lock line. The mechanism does not
require compiler or programmer support nor ISA or coherence protocol
changes.

By simulating a 32 processor system we show that Request Bypass
reduces execution time and lock stall time up to 35% and 75%, respec-
tively. The programs limited by synchronization benefit the most from
Request Bypass.

1 Introduction

The scalability of shared-memory programs is often limited by highly-contended
critical sections guarded by mutual exclusion locks [1,2], where a large amount
of traffic is generated during the lock hand-off. This traffic increases the time
that the parallel program spends in serial mode, which reduces the benefits of
parallel execution. Thus, optimizing lock transfer among processors is essential
to achieve high performance in applications having highly-contended critical sec-
tions [3,4,5,6,7].

The processor architecture provides specific instructions to perform an atomic
read-modify-write operation on a memory location. A lock is acquired by using
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these instructions and it is released by performing a regular write. A Highly
contended lock hand-off generates a burst of traffic aimed at the same memory
location. This situation may be alleviated by queue-based software [4,8,9,1] or
hardware locks [5,7,10,11]. Software mechanisms have a large overhead per syn-
chronization access, even in the absence of contention. The proposed hardware
mechanisms require modifications in software and/or in the coherence protocol,
they need to handle queue breakdowns, and some of them require a hardware
predictor to identify synchronization operations [11]. Request Bypass, the mech-
anism proposed in our work, does not add a significative overhead, does not use
a predictor, and it does not require changes to cache or directory protocol.

In Distributed Shared-Memory (DSM) multiprocessors a coherence request is
handled by the coherence controller of the node owning the corresponding line
(home node). Moreover, the coherence controller is in charge of serializing all
requests targeted to the same memory address. So, requests coming to a busy
directory entry cannot be attended until the directory entry becomes free. A
directory entry is busy whenever the coherence controller has started a coher-
ence operation on such entry involving a third node whose reply has not been
received yet. Requests to busy entries are handled in three ways in commercial
DSM multiprocessors or in the literature: either bounced [12,13], forwarded to
third nodes [14,15,16] or queued within the coherence controller [17]. Our base
system uses request queuing because it has the potential to reduce network traf-
fic, contention and coherence controller occupancy as it is shown by Chaudhuri
and Heinrich in [17].

In this paper we are concerned with the lock hand-off in a DSM multiprocessor
that queue requests to busy lines within the coherence controller. In order to
speed up lock hand-off we propose to change the order in which the coherence
controller selects the request to be processed once a line leaves the busy state.
Instead of always selecting an already queued request we suggest processing first
the request in the input port, if it exists, a technique we call Request Bypass.
At the acquire phase of the lock hand-off, Request Bypass allows the request of
the winning processor (that which is going to acquire the lock) to bypass the
requests to the same line pending in the queue. A similar bypassing situation can
arise when accessing shared variables inside critical sections and when releasing
a critical section. The implementation we propose of Request Bypass does not
require compiler or programmer support nor ISA or coherence protocol changes.

In Section 2 we use an example to describe a lock hand-off for a highly contended
critical section in a baseline system, and in Section 3 we analyze the same example
under Request Bypass. In Section 4 we present simulation results using Splash-2
benchmarks for 32 processors. We include a comparison of our proposal with Read
Combining [17]. In Section 5 we discuss related work and we conclude in Section 6.

2 Lock-Transfer Contention

We first describe the baseline coherence controller. Next, we elaborate on an
example case of a lock transfer among several processors. This example allows
us to identify inefficiency sources and motivates the main idea of the paper.
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2.1 Coherence Controller Model

The baseline model is based on a CC-NUMA multiprocessor with a MESI cache
coherence protocol similar to the SGI Origin 2000 system [13]. Every memory
line is allocated to one directory entry within a coherence controller which stores
the line state and processes its requests.

Figure 1.a shows a logical view of part of the coherence controller structure.
The coherence controller receives cache requests from the nodes. Requests can
be of three different types: read sh, read own and upgrade. read sh and
read own are used to request a line in Shared or Exclusive state, respectively,
and upgrade is used to change the line state from Shared to Exclusive. Once
the coherence requests are processed, the controller sends three types of replies:
reply sh and reply excl supply a line in Shared or Exclusive state, respec-
tively, and reply upgrade acknowledges the change from Shared to Exclusive.
When needed, the coherence controller sends line invalidation (inv) or cache-
cache transfer (copyback) requests.

Request processing is based on two structures handled by the coherence con-
troller: a Busy State Queue (BSQ) and a Pending Request Queue (PRQ); each
PRQ entry is in turn another queue. The incoming coherence requests are taken
from the input port and processed. If a request requires some third-node reply,
the involved line is flagged as busy and stored in BSQ. Any request targeted to
such a busy line appearing in the meantime is serialized by enqueuing its identity
(originating processor, request type, etc.) into the PRQ entry associated to the
corresponding BSQ entry. Otherwise, a request targeted to a non-busy lines is
processed.

After receiving the last reply a busy line is waiting for, the busy state in
BSQ is cleared and the coherence controller begins processing the list of pending
requests to such a line in PRQ. As before, if during such processing a request
requires a third-node reply, the line is tagged as busy and the coherence controller
stops processing the list. When there are no pending requests in PRQ that can
be processed the controller listens to the input port. Whenever the protocol runs
out of BSQ or PRQ entries the coherence controller resorts to sending NACKs.

2.2 Lock Hand-Off Example

Figure 1.b shows a typical critical section and the code used to acquire and
release a lock variable. If the lock variable is already closed the code spins on a
regular load instruction. Once the lock variable is released, the atomic test&set
instruction tries to acquire it. Releasing is done by a regular store instruction.

Next we make a detailed study of the lock hand-off in a highly contended (n
competing processors) critical section controlled by the lock variable B. Assume
the lock is initially owned by a processor we call Owner, while the other n − 1
processors are spinning on a local copy of B in Shared state. Consider that Owner
is going to execute Release(B) and leave the critical section. After the lock hand-
off is accomplished, one among the n− 1 contending processors, we call Winner,
will enter the critical section. The example in Figure 2.2.a shows such a scenario
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Fig. 1. (a) Logical view of part of the Coherence Controller. (b) Lock-based critical
section skeleton (up), and code to acquire and release a lock variable (down).

of contention, where the Owner, the Winner, the Home node and the remaining
n− 2 contending processors are plotted from left to right, respectively.

When Owner executes Release(B) it sends out an upgrade request to the
Home node, which in turn sends invalidation requests to the n− 1 processors
having the line in Shared state. The n−1 processors invalidate the line and send
invalidation replies to Home, which collects all replies and sends the upgrade
reply to Owner. This upgrade reply is the first activity ploted in Figure 2.2.a.
The example continues as follows:

– The n− 1 processors miss loading variable B and send read sh to Home.
– When Home receives the first read sh request, it sends a cache-cache trans-

fer request to Owner (see (1) in Figure 2.2.a), puts the line in busy state,
and buffers the remaining n− 2 read sh into PRQ.

– The Owner replies (ack) to Home and (reply sh) to Winner.
– The Winner executes test&set instruction and sends an upgrade request

to Home (see (2) in Figure 2.2.a). The upgrade request of the Winner may
be delayed in the input port while PRQ is emptied of read sh requests.

– The Home process the n − 2 read sh sending reply sh (now the lock is
open) to every processor.

– The n − 2 contenders receive the lock open and execute test&set. All they
send upgrade requests to Home (not shown in figure).

– The Home process the upgrade request of Winner and sends invalidation
requests to the Owner and the n− 2 contenders (see (3) in Figure 2.2.a).

– The Home waits for all invalidation ACKs and then sends an upgrade
reply to Winner.

– The lock hand-off has been accomplished and the Winner can execute the
critical section.

When processing the upgrade request of the remaining processors, the Home
invalidates the previous copies of the line and sends it to the requesting processor,
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Fig. 2. Example of how a processor (Owner) frees a critical section and n−1 processors
are contending for it. (a) Without bypassing. (b) With bypassing.

which sees the lock closed and resumes spinning. This line will be invalidated
when processing the next upgrade request, so the processor will generate a
new read sh that will be kept in PRQ to be serialized. While the contenders
are generating the described traffic, the Winner processor is inside the critical
section accessing the shared variables. Therefore, if the shared data and the lock
variable are allocated to the same coherence controller, the accesses to shared
variables may be delayed. This happens as long as the coherence controller is
processing PRQ requests to the lock variable that do not put the lock line in
Busy state.

This is because the coherence controller can be processing PRQ requests to
the lock variable that does not put the lock line in Busy state. Later on, the
winner releases the lock (store B) and generates a read own request. Again, it
is delayed by all requests in PRQ that still contend for the line holding B.

Putting it all together, it can be expected that all of this message overhead
will significantly increase the execution time of small, highly-contended, critical
sections.

3 Bypassing PRQ Requests

From the above example we can stablish the following: whenever several pro-
cessors compete to enter into a critical section, the request traffic originated by
the loosing contenders can delay all the Winner execution phases (lock acquir-
ing, shared data accesses and lock release). In this situation, processing PRQ
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requests before listen to the input port does not contribute to the progress of
the Winner, the only one that will advance the work. In order to favor the Win-
ner progress, we propose that the coherence controller listens to the input port
before attending the pending requests of PRQ directed to non-busy lines. So, a
request in the input port to a non-busy line is going to bypass PRQ requests
directed to non-busy lines.

Notice that by issuing replies in a different order as requests arrive, correctness
is not affected because the serialization order among requests to the same line is
only determined when the coherence controller updates the directory and sends
the reply.

3.1 Request Bypass Implementation in the Coherence Controller

As usual, an input port request targeted to a busy line is stored in PRQ, other-
wise it is processed immediately. However, under a Request Bypass policy after
receiving the last reply a busy line is waiting for, instead of processing PRQ
requests associated to that line, the input port will be attended. Moreover, if a
request appears in the input port while processing a PRQ entry, such a request
will bypass all the outstanding work in PRQ. The Request Bypass policy can be
easily implemented by adding a new state to each BSQ entry: the Ready state,
which indicates the existence of outstanding work in PRQ.

Anyway, a Ready BSQ entry can become Busy if a request (coming either
from the input port or from PRQ) require a third-node communication.

3.2 Lock Hand-Off Example with Request Bypass

Figure 2.2.b shows the previous example under PRQ bypassing. We suppose
that, at the time the Winner’s upgrade reaches Home, the coherence controller
is processing the first read sh request of the remaining contenders (the losers).
When such a request is completed, the coherence controller visits the input port
and processes the upgrade request, bypassing the n-3 read sh requests kept
in PRQ. In our example, processing the upgrade request requires only two
invalidations to be sent out (see (1) in Figure 2.2.b), one to the owner processor
and another one to the single contending processor having a copy of the lock line
(n− 1 invalidations required without bypassing).

Once the Winner’s upgrade completes (see (2) in Figure 2.2.b), all the n− 3
remaining read sh requests that were bypassed will be processed. However, in
contrast with the previous situation, the losers receive the read sh reply with
the lock closed and therefore remain spinning locally, not executing the test&set
instruction nor generating any request (upgrade or read own).

While the coherence controller is servicing read sh requests from PRQ, the
Winner is inside the critical section, sending requests (may be some of them to
the same controller) to access the shared variables, and sending a final request
to release the lock. However, such requests are not delayed because they bypass
PRQ.
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3.3 Forward Progress Warranty

Bypassing PRQ requests can delay execution endlessly. As an example let us
suppose that the code to acquire a critical section spins on a test&set instruc-
tion. In a highly contended critical section the coherence controller is receiving
read own requests continuously. If the owner of the critical section is trying to
release it by sending a read own request, and this request is queued in PRQ,
then the owner stays indefinitely in the critical section. Bypassing read sh has
a similar problem.

In order to warrant forward progress, we suggest limiting the maximum num-
ber of consecutive bypasses. We can implement this idea by incrementing a
counter each time an input port request bypasses PRQ and decreasing the
counter each time a request is processed in PRQ. If the counter has a value
between 0 and Max − 1 then the controller works in Request Bypass mode.
Otherwise, when the counter gets its maximum value the controller switches to
default mode and remains in it until the counter decreases. Our experiments
show good results with a 5-bit counter.

4 Experimental Results

Our simulations have been conducted with RSIM [18,19]. It is an execution-
driven simulator performing a detailed cycle-by-cycle simulation of an out-of-
order processor, a memory hierarchy, and an interconnection network. The
processor implements a sequential consistency model using speculative load ex-
ecution [20]. Coherence is based on a MESI protocol similar to the SGI Origin
2000 system [13]. The network is a wormhole-routed two-dimensional mesh net-
work. Port contention, switches and links are accurately modeled. Table 1.a lists
the processor, cache and memory system parameters.

As a workload we have chosen a SPLASH-II subset [21] having a significant
amount of synchronization, see Table 1.b. In Ocean we use the optimization
suggested in [22]. The applications have been compiled with a test and test&set-
based synchronization library (Figure 1.b) implemented with the RMW instruc-
tion. Barriers are implemented with a simple binary tree.

Our results show execution time broken down into four categories: lock,
barrier, memory and compute. The algorithm used to add a cycle into a given
category works as follows: if the maximum allowed number of instructions can be
committed from the ROB, the cycle is added to compute. Otherwise, the cycle
is added to the stall category to which belongs the oldest instruction that can
not be committed, as suggested in [19].

4.1 Results

In this section we present results for a baseline system without bypassing, and
for a system enhanced with Request Bypass. We also consider a third system,
by enhancing the baseline with Read Combining [17]. Chaudhuri and Heinrich
propose Read Combining in the context of queuing coherence controllers, in
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Table 1. Simulated system parameters and applications

Network
Network width
Switch buffer size
Switch latency

Pipelined point−to−point
8−bytes/flit
64 flits
4−cycles/flit + 4 arbit.

Directory
Cycle
Interleaving
BSQ/PRQ size

SGI Origin−2000 based MESI

64/16−entries
4 controllers per node
16−cycle (without memory)

Processor
ROB
Issue
Branch

Cache

L1 data

L2

L1/L2 bus
Line size

out−of−order issue/commit 4−ops/cyc.
512−entry branch predictor buffer

64−entry, 32−entry LS queue
1 Ghz

L1 inst.
128−Kbyte, direct mapped, write−back
Perfect

1−Mbyte, 4−way associative, write−back
10−cycle access, 16 outstanding misses

64 bytes
Runs at processor clock

2 ports, 1−cycle, 16 outstanding misses

Memory 4−way interleaved, 50−cycle DRAM

L2/Memory Bus Split. 32−bits 3−cycle+1 arbit.

Code
Input

Ocean
130x130

(b) Applications

2K partic.
FMMWater−Spt

512 molec.
Water−Nsq
512 moleculeshead−scaleddown2

Volrend
4K particles
Barnes

(a) Simulated system parameters

order to speed up multiple read requests to the same line. In order to achieve
this, Read Combining dictates that once the controller gets the line, it is stored
in a fast data buffer which is repeatedly used to send out all the read requests
replies. They show that Read Combining also benefits lock transfer by enabling a
faster distribution of the cache line storing the lock variable. Finally, we evaluate
the performance of merging Request Bypass with Read Combining.

Figure 3 shows the parallel execution time break into the former categories
and normalized to the baseline system. From left to right we show, for each ap-
plication, the baseline system (Baseline), the baseline system enhanced with the
Read Combining (RC) [17], the baseline system enhanced with Request Bypass
(Byp) and two ways of merging Request Bypass with Read Combining (RC+Byp
and RC+BypS, see details below). We only show data for 32 processors because
Splash-2 applications have small Acquire-related times with 16 processors [23].

By applying Request Bypass to the Baseline system, the Lock time becomes
greatly reduced, from 12% to 75%. Reductions in the Barrier time can also be
observed, to a greater or lesser extent, for all applications, from 1% to 48%. This
reduction in the Barrier stall time can be explained as follows: when a critical
section executes before a nearby barrier, reducing Lock-related stalls also reduces
Barrier-related stalls, because the Barrier stall time of a given processor starts
from when it reaches the barrier until the slowest processor exits the critical
section and crosses the barrier the last. Summarizing, the overall time reduction
obtained with Request Bypass varies from 1% to 35%.

The Lock time reduction achieved by Request Bypass is greater than Read
Combining for most applications. Read Combining itself does not alleviate the
delay experienced by the Winner processor because it does not acquire the critical
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Fig. 3. Normalized execution time with 32 processors for the Baseline, Read Combining
(RC), and Request Bypass (Byp) systems. RC+Byp (Blind merging) and RC+BypS
(Selective merging) are the merged systems.

section until the contending processor requests kept in the buffer have been
replied. Moreover, Read Combining exposes subsequent delays when accessing
protected data and releasing the lock. Until the contending processors start busy-
waiting on a local copy of the line, their requests will delay the progress of the
Winner processor, firstly by delaying the requests made to the same coherence
controller within the critical section, and secondly by delaying the request to
release the lock.

Next we analyze the interaction between Request Bypass and Read Combining
when applied simultaneously. Figure 3 presents data for two experiments merg-
ing Request Bypass and Read Combining namely Blind (RC+Byp) and Selective
(RC+BypS). Blind merging implements both techniques simultaneously as they
have been defined, resulting in a Lock time increase for all applications. This
is because Read Combining speeds-up the read sh replies to contenders when
a lock is released, and as a consequence, the update request in a Blind merg-
ing system bypasses less read sh requests than with Request Bypass working
alone. So, more processors receive the lock variable opened, execute the test&set
instruction, and have to be invalidated. Moreover, when the Winner wants to
release the lock, its upgrade (or read own) request cannot bypass PRQ be-
cause the lock line is busy most of the time (the coherence controller is servicing
the read own requests of the test&set instructions).

A Selective merging of Request Bypass and Read Combining tries to over-
come the above problem by applying Read Combining only to lines which do
not contain a lock variable. The execution time of Selective merging is similar
to that of Request Bypass alone in our benchmarks. However, we can expect a
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better behavior in programs with a communication pattern where one processor
produces for many consumers.

Finally, we have analyzed the sensitivity of results to the latency of some
key components such as the router, the coherence controller and the memory,
verifying that conclusions hold across the considered design space [23].

5 Related Work

Goodman et al. propose a very aggressive hardware support for locks (QLB -
originally called QOSB) [5]. In their proposal a distributed linked list of pro-
cessors waiting on a lock is maintained entirely in hardware, and the release
transfers the lock to the first waiting processor without affecting the other con-
tending processors. QOLB has proven to offer substantial speed up, but at the
cost of software support, ISA changes and protocol complexity [7].

The DASH project provided a concept of queue locks in hardware for direct-
ory-based multiprocessors [24]. On a release, the lock is sent to the directory
which randomly selects a waiting processor to acquire the lock.

Rajwar et al. propose to predict synchronization operations in each proces-
sor by building a speculative hardware-based queuing mechanism (IQOLB) for
snoop-based and directory systems [10,11]. They use the notion of buffering ex-
ternal requests, applying it to cache lines supposed to contain a synchronization
variable. The mechanism does not require any change to existing software or ISA,
but requires changes in the cache or in the directory protocol in order to make
the intelligent choices needed to implement the mechanism and some additional
bits in directory entries.

The above described hardware queue-based mechanisms need to handle queue
breakdowns (due to line eviction or multiprogramming). The mechanism pro-
posed in our work does not use a predictor and does not require changes to
cache or directory protocol.

The combining pending read request technique as proposed by Chaudhuri et
al. [17], was initially intended to eliminate NACKs, but significantly accelerates
lock acquiring in lock-intensive applications. It is based on buffering pending
requests, so our work requires the same hardware support but uses a different
selection heuristic.

6 Concluding Remarks

In this paper we introduce Request Bypass, a technique to speed-up the lock hand-
off in DSM multiprocessors which use queuing at the coherence controller in order
to serialize requests to busy lines. Under Request Bypass, the requests in the input
port of the coherence controller are attended before the requests queued in the
coherence controllerwhich are directed to non-busy lines. The mechanism does not
require compiler or programmer support nor ISA or coherence protocol changes.

When accessing a highly contended critical section, Request Bypass allows the
Winner processor requests to bypass the queued requests of the contending pro-
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cessors, speeding-up the Winner execution of all critical section phases, namely
lock acquiring, shared data accessing, and lock releasing.

Simulations performed in 32-processor systems show that Request Bypass
reduces the overall execution time to some extent in all our tested benchmarks.
The reduction is noticeable in programs with a large synchronization overhead,
reaching 35% of execution time reduction and 75% of Lock time reduction. Read
Combining also reduces both execution time and synchronization overhead, but
to a lesser extent.

We have also merged naively Request Bypass and Read Combining. In this
merged mode, when Read Combining operates on lock lines, it eliminates some
of the benefits obtained with Request Bypass. This negative effect disappears
when both techniques are applied selectively.
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Abstract. Continuing demands for high degrees of Instruction Level
Parallelism (ILP) require large dispatch queues in modern superscalar
microprocessors. However, such large queues are inevitably accompanied
by high circuit complexity which correspondingly limits the pipeline clock
rates. This is due to the fact that most of today’s designs are based upon
a centralized dispatch queue which depends on globally broadcasting op-
erations to wake up and select the ready instructions. As an alternative
to this conventional design, we propose the design of hierarchically dis-
tributed dispatch queues, based on the access/execute decoupled archi-
tecture model. Simulation results based on 14 data intensive benchmarks
show that our DDQ (Decoupled Dispatch Queues) design achieves per-
formance comparable to a superscalar machine with a large dispatch
queue. We also show that our DDQ can be designed with small-sized,
distributed dispatch queues which consequently can be implemented with
low hardware complexity and high clock rates.

1 Introduction

Reaching high degrees of Instruction Level Parallelism (ILP) through multiple-
instruction issue and out-of-order execution has been an essential part of mod-
ern microprocessor design. During the last decade, superscalar architectures have
dominated the commercial market by adopting a hardwired scheduling logic that
enables dynamic instruction scheduling. However, conventional dynamic schedul-
ing possesses an inherent scaling problem as far as the size of the dispatch queue
is concerned since the wake up and select logic requires a one-cycle operation
and cannot be pipelined [1].

Another important issue is how to solve the dramatically growing speed gap
between processor and main memory. This performance gap causes long access
latencies at cache misses and forces the cache miss instructions to be stalled. It
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three dispatch queues (small and distributed)
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operations

address calculations
+ access operations

data prefeching
operations

instruction (j+N-1)

(a) Dynamic scheduling in superscalar architectures (b) The DDQ architecture 

a sequential instruction stream

Fig. 1. Distributed instruction scheduling on the decoupled dispatch queues

consequently means all the instructions that depend on the cache miss instruc-
tions should stay inside the dispatch queue. In fact, those instructions would
occupy the slots for considerable amounts of time, which would result in a re-
duction of the number of available entries in the dispatch queue. Therefore, the
long memory latency also implies the need for a large dispatch queue. However,
as described earlier, a large queue will eventually cause a scaling problem.

As an alternative to a large dispatch queue, we propose Decoupled Dispatch
Queues (DDQ) which can be implemented with a three small-sized dispatch
queues. It aims at reducing the critical path delay of a large queue. The basic
motivation is to mask the long memory access latencies without increasing the
size of a single dispatch queue. The DDQ enables asynchronous scheduling of
three instruction groups which are separated according to the memory access
role of the instructions (computation instructions, memory access instructions,
and prefetching instructions); this means there is a dedicated dispatch queue for
each of the three instruction groups. Three dispatch queues are, at any given
moment, asynchronously dealing with different points of a sequential instruction
stream. However, it is virturally operating as if we had a large queue (Fig. 1).

Performance evaluation is based on a cycle-time simulator which is developed
from SimpleScalar 3.0 [2]. Compared to a superscalar architecture with a 256-
entry dispatch queue, our DDQ achieves a similar performance (98.5%) with
three 128-entry dispatch queues. When the dispatch queue is reduced by as
much as one fourth (64 entries), the DDQ still performs at 91.3% of the baseline
performance. With 32-entry dispatch queues, the performance still remains as
high as 86.7%. Moreover, reduction in the queue size will eventually contribute
to the higher clock rate.

The rest of the paper is organized as follows. In Section 2, we describe back-
ground research and previous work related to the complexity-effective dispatch
queue design. Section 3 presents the detailed description of the proposed DDQ
architecture. Section 4 includes experimental results and performance analysis.
Conclusions and future work are included in Section 5.

2 Background Research

Access/execute decoupled architecture concepts are not new and we now describe
them in some detail, while several related research projects are surveyed.
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2.1 Access/Execute Decoupled Architectures

Access/execute decoupled architectures have been developed to tolerate long
memory access latencies [3,4,5,6,7,8,9,10]. Latency tolerance is achieved by sep-
arating the original, single instruction stream into two streams: the access stream
and the execute stream. By definition, the access stream includes memory access
operations: load/store instructions and address calculation instructions. Other
remaining instructions (commonly referred to as computation instructions) are
included in the execute stream. Timely data prefetching can be achieved by
running the access stream ahead of the execute stream; any processor stalling
due to data delivery can be eliminated by the early execution of the access
stream. The time difference between the access instruction produces a data ele-
ment and the execute instruction needs the data is called the slip distance. The
two independent instruction streams processed by each processing unit exploit
instruction-level parallelism while providing memory latency tolerance. In gen-
eral, the communications between the two streams are achieved via a set of FIFO
queues.

2.2 Related Work

There have been several research projects which have sought to solve the com-
plexity problem of a large dispatch queue by splitting it into multiple queues.
Palacharla et al. have performed an initial analysis of the potential complexity
of large window superscalar architectures [1]. They have proposed a dependence-
based instruction queue design, in which the instructions are sent to separate
FIFO queues based on the data dependencies. At the issue stage level, only the
head instructions of each FIFO queue are considered for issuing. Their initial
analysis demonstrates the advantage of a small-sized queue and has motivated
further research on the clustered microprocessor design. The clustering is es-
sentially related to the partitioning of a dispatch queue and functional units
[1,11,12,13]. Also, clustered architectures separate the instructions based on reg-
ister dependencies. Furthermore, the speculative multithreading technique has
been developed [14,15] with the idea in mind of focusing on software separa-
tion (thread selection and scheduling) and speculative thread spawning on each
separated processing unit.

Although the distributed queue design has been proposed in many prior re-
search projects, none of them separate the instruction stream based on the
memory access functionality as originally proposed in the early decoupled ar-
chitectures. Actually, the access/execute decoupled architecture model can even
be considered one type of clustered architectures. However, the difference lies in
the separation of the instruction streams; the task separation is done according
to the memory operations in the decoupled architectures and our DDQ.

Several previous projects in decoupled architectures also attempted to solve
the complexity problem of superscalars [3,10]. However, none of them addressed
the problem of the cache misses on the access processor. To the best of our
knowledge, DDQ is the first work which proposes an implementation of data
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prefetching on the access/execute decoupled architectures (except our previous
work in [16]).

3 DDQ: Hierarchically Decoupled Dispatch Queues

This section first describes the problems of traditional decoupled architectures
and presents the idea behind our development of the proposed DDQ architecture.
It also includes the hardware and software descriptions of the design.

3.1 Problems of the Access/Execute Decoupling

Our initial motivation is to solve the complexity problem of a monolithic dispatch
queue in superscalar machines by using access/execute decoupled architectural
concepts. As described earlier, the advantage of decoupled architectures can be
exploited only if the slip distance is larger than the memory access latency.
However, several factors in the current access/execute decoupled architecture
designs prevent the access stream from running far ahead of the execute stream.

First of all, frequent synchronization between the two streams prohibits early
execution of the access stream. In fact, the access stream also requires data from
the execute stream; some control operations as well as data operations need data
from the computation results of the execute stream. Therefore, synchronization
between the two streams can happen at a certain point of the execution. We call
this phenomenon a loss of decoupling event [17].

Secondly, frequent cache misses in the access stream prevent early execution
of the access stream running on the access processor (AP). If a cache miss on the
AP has a sufficient time until any instruction in the EP requires the data, the
latency can be tolerated. However, frequent cache misses may cause the access
processor to lag further behind. For example, two or more consecutive cache
misses on the AP will slow down the execution of the access stream. From the
above observations, we find that the cache misses in the access processor should
be reduced.

3.2 Description of the DDQ Architecture

The DDQ architecture includes one additional processing unit to achieve data
prefetching on the access processor. Consequently, our architecture requires one
more stream separation in addition to the access steam and the execute stream.
An additional stream named the data prefetching stream is intended to run
ahead of the access stream, achieving another hierarchy of the prefetching from
the memory to the L1 data cache. Fig. 2 shows the proposed DDQ architecture.
It has a single fetch unit and separates three streams at the pre-decoding stage.
The stream separation information (which indicates the stream to which the
instruction belongs) is already annotated with each instruction at compile time
(it is described in the following subsection).
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Fig. 2. The DDQ architecture

Three dedicated processing units for each of the execute stream, the access
stream, and the data-prefetching stream are loosely combined; they are respec-
tively the EPU (Execute Processing Unit), the APU (Access Processing Unit),
and the DPPU (Data-Prefetching Processing Unit). The operations of the EPU
and the APU are very similar to that in conventional access/execute decou-
pled architectures. The load data queue (LDQ) and the store data queue (SDQ)
facilitate communications between the EPU and the APU. To guarantee the
correctness of the communication order between the two processors, we use the
indexed data queue concept which is first introduced in the DS (Decoupled Su-
perscalar) architecture [10]. The indexed data queues are implemented to declare
the FIFO order which is assigned at decoding time. However, the queue entries
can be accessed out-of-order.

The basic idea behind the DPPU is similar to the speculative pre-execution
concept [18,19], which extracts the future probable cache miss slices from the
original code and executes them as an additional prefetching thread. The data-
prefetching stream of the DDQ is equivalent to the p-thread in speculative pre-
execution [18]. It contains the future probable cache miss instructions (target
loads) and their backward slice (backward slice includes every instruction upon
which the target loads have data dependencies). Access profiling is used to detect
probable cache miss instructions at compiler time. The DPPU operation is very
loosely coupled with the processor above it since data communications occur
only through the L1 data cache.

The execution of the DPPU is triggered at runtime. When the stream separa-
tor detects the target load instructions, it triggers the execution of the DPPU.
For that purpose, Select and Extract Logic (SEL) is implemented. When the
triggering is initiated by the stream separator, the SEL is enabled and looks into
the instruction fetch queue to select the instructions which are tagged as data-
prefetching stream (those instructions have been pre-detected and tagged by the
stream separator beforehand). After that, SEL extracts and sends those instruc-
tions to the instruction decoder which is dedicated to the data-prefetching dis-
patch queue. The extraction operation is a copy operation of the instruction bits,
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since the AP still needs to hold and execute those instructions. The separation
information for the three streams is defined and embedded on each instruction
by the DDQ binary translator which is described in the next subsection.

The main target of this design is to reduce the size of a single dispatch queue
so that we can reduce the wire delay for the wake up and select logic. Although
the total number of queue entries in the entire processor should be multiplied by
three, the clock rate is only affected by the size of a single, largest dispatch queue.
There are no data bypassing networks or wake up and select logic connected
between two different queues.

3.3 Software Support for the Stream Separation

The DDQ binary code is produced by the DDQ binary translator which directly
works on the SimpleScalar binary code. The tool analyzes the SimpleScalar bi-
nary code and separates it into three streams based on the instruction function-
ality. After that, the annotation field of each instruction of SimpleScalar binary
is used to convey the each stream information (including information on the
target load instructions) down to the hardware.

The separation of the access stream and the execute stream is very similar to
that in conventional decoupled architectures. At the beginning, each load/store
instruction is defined as the access stream. After that, the backward slice of the
load/store instruction is included in the access stream. The remaining instruc-
tions of the code are separated as part of the execute stream. In our design,
additional separation for the data-prefetching stream must be identified for the
DPPU operations. Basically, the data-prefetching stream, which includes the
probable cache miss instructions and their backward slice, is a subset of the
access stream. If an instruction has been detected as a frequently miss-causing
instruction by the access profiling, it is identified as a target load instruction
for prefetching operation and defined as a part of the data prefetching stream.
Finally, its backward slice is chased and included as the data prefetching stream.
More detailed description can be found in our previous work in [16].

4 Experimental Results and Analysis

This section presents the experimental results and the performance analysis of
the DDQ architecture.

4.1 Simulation Environment

The DDQ simulator has been designed based on the sim-outorder simulator
of the SimpleScalar 3.0 tool set [4]. The baseline superscalar architecture for
performance comparison has a 256-entry dispatch queue with 8-way issue and
commit. In the DDQ model, each dispatch queue size is tested from 32, 64, to
128. The issue and commit width is also reduced to 4. The EPU is implemented
with all the functional units except for the load/store units. The APU and DPPU



Design and Effectiveness of Small-Sized Decoupled Dispatch Queues 491

only have integer units and load/store units. In addition, we assume 12 CPU
cycles for L2 cache access latency and 120 cycles for memory access latency.

The set of benchmarks we have selected include 14 applications: six applica-
tions chosen from the Atlantic Aerospace Stressmark suite (pointer, update, field,
neighborhood, transitive closure, and matrix), three benchmarks from the At-
lantic Aerospace Data-Intensive Systems Benchmarks suite (data management,
ray tracing, and fast Fourier transform), and five selected from the SPEC2000
suite (gzip, vortex, bzip2, art, and equake). The SPEC benchmarks have been
compiled at peak optimization level and tested with the reference input set.

We have performed simulations with the above 14 benchmarks for the three
different machine models: superscalar (sus), access/execute decoupled architec-
ture (aed), and our model (ddq). For all simulation results, the performance is
measured in terms of IPC (instructions per cycle) and normalized to the baseline
superscalar models (sus.256.8). Note that the first term specifies the architec-
ture model while the second and the third numbers correspond to the dispatch
queue size and issue width. For example, ddq.32.4 indicates a processor model
for a DDQ configuration with 32-entry dispatch queues and 4-way issue width.

4.2 Performance Results and Analysis

We have simulated three different configurations of the DDQ by using three dis-
patch queue sizes: 32, 64, and 128 entries. They are respectively called ddq.32.4,
ddq.64.4, and ddq.128.4. The performance results for the three configurations
are shown in Fig. 3. The performance of each model is measured in terms of IPC
and normalized to that of sus.256.8. Although we cannot quantify the expected
clock rates of our design at this point, we know that the smaller dispatch queues
in our design would ultimately contribute to higher clock rates. Indeed, as previ-
ous research indicates [1], the critical path delay shows a quadratic dependency
on the dispatch queue size and issue width.

As the results indicate, the ddq.128.4 configuration yields a performance com-
parable to the baseline superscalar model in most benchmarks. However, four
benchmarks (field, tr, fft, and art) show a weak performance compared to the
other benchmarks. Field does not encounter many cache misses with the super-
scalar model and did not benefit from the data prefetching. Also, tr suffers from
a low branch hit-ratio which prevents a successful speculative prefetching. As
for fft, the DPPU has too many instructions in the prefetching stream. It causes
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cache pollution that correspondingly degrades the performance. In addition, art
does not provide good performance since it works too well with the baseline
model which has a 256-entry instruction window. The wide range scheduling is
very beneficial to art and diminishes the advantages of the DDQ approach. The
other 10 benchmarks show very close or even better performance compared to
the baseline architecture.
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Fig. 4. Performance results with 128-entry queues (normalized IPC to sus.256.8)

For a further detailed analysis, Fig. 4 shows how ddq.128.4 improves the per-
formance over a traditional access/decoupled architecture (aed.128.4) and a su-
perscalar (sus.128.4). The results demonstrate that ddq.128.4 performs even
better than the baseline model (sus.256.8) in 6 benchmarks in spite of having
half-sized dispatch queues and half-sized issue width. However, sus.128.4 and
aed.128.4 do not show good performance results in most benchmarks. In partic-
ular, tr and art shows noticeably low performance in the sus and aed configura-
tions. We also performed benchmark simulations with 64-entry dispatch queues;
the results show very similar tendency and characteristic. To avoid including too
many redundant figures, only the average performance for the 64-entry configu-
rations is presented later in this section.

Fig. 5 illustrates the performance of three architecture models with 32-entry
dispatch queues and 4-way issue width; again, all results are normalized to
sus.256.8. In this result, the dispatch queues in DDQ are as small as one eighths
of the baseline model. However, the DDQ still reaches better than 80% of the
baseline performance in 11 benchmarks. In contrast, more than half of the bench-
marks (8 out of 14) cannot achieve 80% of the performance with sus and aed.
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More specifically, it should be noted that tr and art lose about 80% of the
performance in those two configurations. Both models are affected much by the
restriction of the queue size since neither configuration is assisted by prefetching.

The average performance over the 14 benchmarks is shown in Fig. 6. On
average, ddq.128.4 reaches up to 98.5% of the baseline performance with half-
sized dispatch queues and half-sized issue width. However, the aed.128.4 model
experiences a 12.2% performance degradation. These results clearly demonstrate
the advantage of the data prefetching operations of the DDQ. With ddq.64.4, the
average performance still remains above 91%. More over, the ddq configuration
remains in the range of over 86.7% of the baseline performance even for the
smaller configurations such as 32-entry queues. However, sus and aed experience
severe performance degradation when the dispatch queue is small.
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Fig. 6. Average performance with the small dispatch queue models

5 Conclusions and Future Work

The DDQ is based on the simple observation that the partitioning of a dispatch
queue can reduce the complexity of a centralized design as well as the size of each
component. Each processing unit is decoupled and works fairly independently of
the others. The performance results show that the proposed architecture achieves
performance comparable to that of the baseline superscalar architecture which
has a large dispatch queue. In addition, our DDQ can be implemented with a
faster clock since each processing unit has a smaller dispatch queue.

The main feature of the DDQ is having small dispatch queues, so that we can
reduce the complexity and wire delay of the instruction scheduling logic. This
eventually contributes to achieving higher clock rates. Even though the total
number of queue entries over the DDQ grows with the each queue size times
three, the clock rate is only affected by the size of a single dispatch queue. The
three distributed dispatch queues do not require any data bypassing from the
different functional units, nor share any instruction scheduling logic. Consider-
ing the clock rate improvement afforded by the size of a dispatch queue, these
performance results are encouraging.
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Abstract. In this paper we present sim-async, an architectural simula-
tor able to model a 64-bit asynchronous superscalar microarchitecture.
The aim of this tool is to serve the designers on the study of different
architectural proposals for asynchronous processors. Sim-async models
the data-dependant timing of the processor modules by using distribu-
tion functions that describe the probability of a given delay to be spent
on a computation. This idea of characterizing the timing of the modules
at the architectural level of abstraction using distribution functions is
introduced for the first time with this work. In addition, sim-async mod-
els the delays of all the relevant hardware involved in the asynchronous
communication between stages.

To tackle the development of sim-async we have modified the source
code of SimpleScalar by substituting the simulator’s core with our own
execution engine, which provides the functionality of a parameterizable
microarchitecture adapted to the Alpha ISA. The correctness of sim-
async was checked by comparing the outputs of the SPEC2000 bench-
marks with SimpleScalar executions, and the asynchronous behavior was
successfully tested in relation to a synchronous configuration of sim-
async.

1 Introduction

Due to the current integration level and clock frequencies in microprocessor
architectures, synchronization with a single clock source and negligible skew is
an extremely difficult task. Fully asynchronous designs built using self-timed
circuits replace the clock signal by local synchronization protocols. Then, these
systems have no problems associated with the clock signal, and the global circuit
performance corresponds to the performance of the average case because a new
computation starts immediately after the previous has finished [1].

In the field of fully asynchronous systems, designers usually develop general
purpose processors (like those presented in [2,3,4,5]) using high-level description
languages like Occam, Tangram, Balsa or VHDL++. In addition, some works
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like [6,7] have proposed simulators of asynchronous processors, but they are
slightly parameterizables and they do not model the asynchronous behavior at
the architectural level of design. Albeit, these simulators are not able to run
standard benchmarks.

As occurs in the synchronous paradigm, asynchronous systems designers need
infrastructures for computer system modeling that abstract the implementation
of hardware models. These infrastructures must be capable of model the data-
dependant delay of a fully asynchronous system at the architectural level of
abstraction, and also they have to be able to run complete applications. The
main example of such a configurable, flexible and wide-spread toolset in the syn-
chronous world is SimpleScalar [8]. SimpleScalar allows to modify cache, branch
predictor or any other architectural parameter, and is able to run standard
benchmarks in order to get comparable measures for any kind of data related to
performance and also to custom statistics. Up to our best knowledge, such flexi-
ble infrastructures for simulation and architectural modeling of high-performance
fully asynchronous processors have not been reported in literature.

Once argued the necessity of a modeling infrastructure, one of the key ques-
tions is how the tool will model the data-dependant computation delays of the
modules that form an asynchronous processor. Since asynchronous circuits take
distinct amounts of time when computing different values, it is possible to collect
a large set of delays for a given circuit by running low-level simulations using
a representative number of inputs. From that set of delays one may obtain the
distribution function which characterizes the behavior of the circuit. Sim-async
applies this idea inside out, that is, the simulator uses distribution functions (in-
cluded as parameters) to dynamically select the delay for each computation of
each one of the modules of the processor. This solution is introduced in this paper
as a novelty related to the architectural asynchronous processor simulation.

Therefore, in this paper we present sim-async, an architectural simulator for
asynchronous superscalar processor modeling. Sim-async is able to model, at the
architectural level of abstraction, the data-dependant behavior of the modules
of the processor by using distribution functions. In addition, sim-async is able
to execute any test program compiled for the Alpha ISA, as SimpleScalar does.

The rest of the paper is organized as follows: Section 2 is devoted to describe
the simulated processor microarchitecture and the functionality of its stages. In
Section 3 we define the synchronization domains and detail the delays that model
them, the implementation of those delays as input parameters of the simulator,
and the communication protocol between the domains. In Section 4 we show the
validation of the simulator by running the SPEC2000 benchmarks under both
asynchronous and synchronous configurations. Finally, in Section 5 we explain
the conclusions and the future work.

2 Description of the Processor Microarchitecture

Sim-async models the microarchitecture of a 64-bit fully asynchronous super-
scalar processor with out-of-order and speculative execution of instructions, and
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Fig. 1. Schema of the modeled microarchitecture. The logic involved in the communi-
cation between modules is not included within this schema.

this section is devoted to its introduction. The processor consists on five stages:
fetch, issue, exec, write-back and commit. In Figure 1 we show the schema of the
microarchitecture1, where we have illustrated the Exec Unit with higher detail2.

The implementation of the asynchronous processor is identical to the syn-
chronous one, but substituting the clock network by a set of components that
allows the communication of results between modules. For the sake of clarity, we
briefly describe the functionality of each stage in this section.

Fetch. A parameterizable number of instructions is read from the I-cache taking
into account the branch prediction. The instructions are moved to the instruction
queue (IQ), where they wait for the issue stage. If one of the instructions in the
middle of the fetch group is a taken conditional branch or an unconditional
branch, then the subsequent instructions in the fetch group will be discarded.

Issue. As it is well-known, the design of the issue stage is crucial to obtain high
performance on a superscalar processor. We have chosen the implementation
called instruction shelving with reorder buffer (ROB) [9] for the issue stage
because it decouples the instruction issue and the dependency checking. With
shelving, the only fact that will provoke the block of the issue of instructions
is the lack of free entries in the reservation stations (RS, or shelving buffers) or
ROB, not the data dependencies, which are more frequently to appear.

This stage decodes and in-order issues a parameterizable number of instruc-
tions from the IQ to their corresponding RS and to the ROB. The issue is
1 The twelve shadowed areas of the figure represent the different synchronization do-

mains we have defined in the processor, but we postpone its explanation until the
following section.

2 This level of details of the execution unit will be useful in the following sections.
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performed in-order because preserving sequential consistency for out-of-order is-
sue requires a much higher effort than in-order issue does. In addition, due to
the rarely blocking of issue with shelving, implementing out-of-order issue would
only have a marginal benefit [9].

Execution. The RS preserve data dependencies maintaining the tags of the
instructions which will generate the pending operands, and hold values waiting
for the execution into the functional units (FU). As shown in Figure 1, the
microarchitecture is provided with four RS. The dispatch logic decides which
one of the ready instructions from the RS is issued to its corresponding FU
taking into account that as older the ready instruction as sooner it is issued.

Write-back. Once the computation of each FU is finished, the result is held on
its output flip-flop, triggered by a capture signal, till the write-back stage was
completed. In this stage, the selection logic chooses the results to be distributed
to the RS and the ROB through the number of instances (parameterizable) of
the common data bus (CDB), also sending the tag of the instructions which
generated each result. The wake-up logic of each RS compares the incoming
tags with the tags of the pending instructions performing the update of values
wherever a tag matches.

Commit. Each instruction at the ROB holds the result to be written to the
register file or to the memory and the destination register or memory address.
A parameterizable number of instructions is retired from the ROB maintaining
program order, and branch prediction is checked each time this stage executes.
Precise interruptions are also checked and the pipeline is flushed when a mispre-
dicted branch is processed.

3 Modeling the Asynchrony

A synchronization domain consists in all the flip-flops triggered by the same
signal and the combinational logic within their fan-in. In this paper we have
defined twelve synchronization domains (see shadowed areas in Figure 1), where
the communication between them is performed using a four-phase handshake
protocol. The following subsections are devoted to present the temporal modeling
of an individual domain and the assumed communication protocol.

3.1 Temporal Modeling of a Synchronization Domain

We have followed a mixed approach in the asynchronous paradigm to describe
the temporal behavior of the domains. We have used the computation completion
mechanism described in [10] to detect the end of the computation, and we have
employed a bounded delay approach to model the behavior of the control logic.

In the asynchronous systems the delay spent on computing a data, detecting
the computation completion and communicating the result to the receiver mod-
ule through the synchronization protocol takes a different and unpredictable
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value for each input data. That delay comes from the combination of several
other delays that appear during the operation of a module. Let’s examine these
delays, indicated with dotted lines in the scheme of Figure 2 (a).

The computation delay, tc , is the delay spent by the module on computing the
input data and generating the results. It is a variable delay because asynchronous
circuits present a data-dependant behavior. In our simulator, each stage and FU
of the microarchitecture receives its own tc as a distribution function. Then,
whenever the module makes a computation, the simulator randomly selects a
computation delay taking into account the shape of the distribution. Thus, the
actual delay for computing these data is not obtained, but the data-dependant
behavior of the module is maintained.

The completion detection delay, tcompl , corresponds to the time spent by the
completion detection logic (CD) on detecting a valid output and asserting the
compl signal. This delay is included as a constant input parameter on sim-async.

We use a delay insensitive codification and a completion detection logic due to
the variability of tc . Therefore, as Martin showed in [11], the modules alternate
a neutral or synchronization value (S ) which does not mean any Boolean value,
and the encoding of a valid output. The generation of that synchronization value
takes tsync time units (t.u.) and, after that, the module is ready to receive new
incoming data. This delay is also an input parameter of sim-async. The logic that
orders the generation of the synchronization value is omitted in the mentioned
figure for the sake of clarity.

The modeling of the handshake protocol is divided on two delays: request
delay, treq , which is the time spent from the assertion of the compl signal to
the assertion of the request signal, reqi ; and capture delay, tcap , which is the
time spent from the falling edge of the acknowledge signal from the receiver
module, acki+1 , and the assertion of the capture signal. The time spent during
the handshake is an uncertain delay that can be accurately obtained only by
simulation because it mainly depends on the occupation or availability of the
structures of the receiver module at each moment. Both treq and tcap are included
as constant input parameters on sim-async.

Once the protocol is completed, the capture signal is asserted as a pulse.
This assertion does not violate any timing assumptions because we consider
tcompl to be longer than the setup delay of the destination register. In addition,
the width of the pulse of capture, denoted as tcap−up , must be higher than the
hold delay of the register triggered by the capture signal because the generation
of the synchronization value is ordered by the falling edge of that pulse. The
tcap−up delay is included as another constant input parameter of our simulator.

The delay spent from the fall of the capture signal and the assertion of the
acki signal is denoted as tack , also included as an input parameter of sim-async.

3.2 Communication Protocol

The communication between domains is performed through channels implement-
ing a four-phase handshake protocol like the one described in [12]. Figure 2 (b),
shows the chronogram of an example of communication between the domain i
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(a) (b)

Fig. 2. (a) General scheme of a synchronization domain. Dotted lines are referred to
delays. (b) Chronogram showing the delays of the logic involved on one computation
of the module i and the communication of results to the next domain.

and its neighbor. We next explain this communication using the delays defined
in the previous subsection.

The moment when the module starts to compute is the instant in which the
data_ini signal propagates the input data. Then, the module processes these
data and, after a data-dependant delay, tc , the result is propagated through
the data_outi signal. The compl signal is asserted after tcompl t.u. and then the
handshake logic activates the reqi signal in order to start the communication
protocol. The receiver module is ready to process new data because acki+1 is
asserted. At that point, the handshake logic deasserts the request signal and
waits for the fall of acki+1 . The receiver module unsets the acknowledge signal
and the communication protocol ends. After that, the handshake logic generates
a pulse in the capture signal. On the raising edge of capture the destination
register latches the results of the module and, on the falling edge of capture,
the logic of the module return to the synchronization value before the next
computation. In addition, the falling edge of capture also provokes the assertion
of acki , which indicates that the module i is ready to receive new input data.

4 Experimental Results

In order to validate sym-async we have run the SPEC2000 benchmarks on differ-
ent timing configurations of the simulator. Then, we have compared the results
of these executions with those obtained from the original SimpleScalar (sim-safe
flavor) under the same cache and branch predictor configuration. The tests were
run parameterizing fetch, issue, write-back and commit stages to process up to
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Table 1. (a) Architectural configuration of the microarchitecture in the simulations.
(b) Worst case delay of stages and FU operations in the asynchronous simulations.

Branch Predictor: 2-level PAg

Level 1 1024 entr, his 10

Level 2 1024 entr

BTB 4096 sets, 2-way

Instructions queue (IQ) size 100 entries

Integer RS queue size 6 entries

FP Addition RS queue size 3 entries

FP Mul, FP Div/Sqrt RS queue size 2 entries

Memory RS queue size 5 entries

Integer / FP Register File 32 / 32

ROB size 100 entries

(a)

Stage / FU Operation T. U.

Fetch, Issue,
Int/Logic, 1000

WB, Commit

IntMul 7000

MemLoad, FPAdd, FPMul 4000

FPDiv/Sqrt 30000

(b)

four instructions each time they execute. Table 1 (a) shows the architectural
configuration of the microarchitecture.

The first timing configuration tested was the fully asynchronous one. In this
asynchronous configuration we used two distribution functions to characterize
the computation delays of the modules: slow case (SC) and medium case (MC)
functions. These functions were selected from the set of back-annotated gate-
level simulations of related asynchronous circuits, and were normalized to the
same upper bound (the worst case) of 1000 t.u..

The slow case (SC) function, shown in Figure 3 (a), whose average delay is
near the worst delay, represents a slow behavior because the most of the data
take a high delay. We had not made any assumptions about the implementation
of the functional units, so they were individually characterized through the SC
function. However, we considered the use of long-latency non-pipelined FU for
FP operations and integer multiplications, so the normalization of the function
was conveniently corrected to a higher upper bound for these slow non-pipelined
FU, according with the Table 1 (b).

The medium case (MC) function, presented in Figure 3 (b), describes an
asynchronous behavior where the average delay is close to the half of the worst
delay. We have use this function to characterize the rest of the stages: fetch,
issue, write-back and commit.

It is important to remark that the aim of these functions is not to be actual
patterns of the modules of the modeled processor. We present these functions
as typical examples of asynchronous circuit behaviors obtained from previous
low-level simulations.

In order to establish the delays of the control logic, we have considered the
work of Cheng in [10]. In that paper Cheng implemented a circuit for completion
detection and synchronization (reset completion-detection) of data lines using
a four-phase handshake protocol and dual-rail codification. He obtained an av-
erage delay of 0.28 ns for the completion detection circuit and 0.71 ns for the
synchronization (reset). Considering that digital IC performance has tracked
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(a) (b)

Fig. 3. (a) Slow case (SC) and (b) Medium case (MC) distribution functions

Moore’s Law and improved by 30% annually, the delays of that circuit using
current technology could be about 16 ps and 41 ps respectively.

Supposing that the critical path of the modules of the processor will be under
1.25 ns (that means a maximum frequency of 800 MHz in a synchronous version),
which we have normalized to 1000 t.u., the normalized values for tcompl and
tsync taking into account the scaling are 12.8 t.u. and 32 t.u. respectively, which
correspond to average delays. In our simulations we have conservatively doubled
that delays to 26 t.u. and 64 t.u. for all the modules. The rest of the control
logic delays, treq , tcap and tcap−up were fixed to 5, 5 and 10 t.u. respectively,
and tack was considered equal to tsync .

We have checked that the outputs obtained by sim-async running the
SPEC2000 benchmarks under the asynchronous configuration are identical to
those generated by SimpleScalar for all the benchmarks. That is, bzip generates
the same compressed file, gcc returns the same compilation statistics, and so
on. In addition, we have compared the number of instructions committed on
both simulators for the execution of those benchmarks and they only differ in
a negligible range between 0.21% and -0.012% (attributed to the slightly dif-
ferent implementation of the system calls), as shown in Table 2 (a). Therefore,
sim-async performs correct simulations and successfully executes the Alpha ISA.

With the aim of test that sim-async not only executes the Alpha ISA cor-
rectly, but it also correctly models the asynchronous behavior, we have made
the comparison between the former simulations and those resulting from sim-
async parameterized in order to model a synchronous processor. This is possible
because the synchronous behavior is a particular case of the asynchronous one.
That is, in a synchronous processor all the modules spend the same time on
computing a data (the worst case of the slowest stage) and the communication
protocol spends a delay of zero t.u. due to the clock signal.

Then, we set the parameters tcompl , treq , tcap , tcap−up , tsync and tack to
zero t.u., and tc was fixed to a distribution where all the delays were 1000 t. u.
long, the worst case of the asynchronous simulations, but considering the slowest
FU (IntMul, FPAdd and FPMul/Div) as fully-pipelined units. The capture signal
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Table 2. (a) Number of instructions committed for several SPEC2000 benchmarks
on SimpleScalar (sim-safe) and for sim-async under the asynchronous configuration.
(b) Average differences between the instructions executed and the use of modules of
sim-async on synchronous and asynchronous configurations running the SPEC2000.

SPEC SimpleScalar Async Sim-async Diff (%)

ammp 45812883 45810845 -0.004

apsi 197579651 197612776 0.017

bzip 1819780172 1819780267 0.000

crafty 94419973 94420229 0.000

galgel 139306245 139310055 0.003

gap 82873902 82874407 0.001

gcc 2016139124 2016204817 0.003

gzip 601857009 601857104 0.000

lucas 19239488 19242782 0.017

mesa 1608605448 1608410610 -0.012

parser 268979662 269006191 0.010

perlbmk 205853718 205914747 0.030

sixtrack 11699655 11724227 0.210

swim 23557475 23562358 0.021

vortex 453666 454534 0.191

(a)

Async vs. Synch % Avg Diff
# Insn Exec 0.132
Use of Fetch -42.076
Use of Issue -61.993
Use of Int -66.062
Use of IntMul -99.894
Use of FPAdd -95.665
Use of FPMul -97.733
Use of FPDiv -99.921
Use of Addr -79.314
Use of Mem -81.116
Use of WB -52.324
Use of Commit -73.852

(b)

(see Section 3) is only asserted if the receiving module is ready to accept new
input data.

The synchronous simulations were run under the same architectural config-
uration described for the asynchronous simulations, and we obtained identical
outputs and also identical number of committed instructions. In addition, we
took some statistics in order to measure the asynchronous behavior. As shown
in Table 2 (b), the number of instructions executed (including those specula-
tive) is, on average, 0.132 % higher in the asynchronous configuration. This
occurs because the average delays of the asynchronous stages are shorter than
the synchronous worst case. Then, the asynchronous microarchitecture is able
to advance on the execution of instructions faster than the synchronous one.

Albeit, the number of executions of the asynchronous modules is reduced in
relation to the synchronous simulations. The average reduction ranges from the
42.076 % of the fetch stage to the 99.921% of the FPDiv functional unit, which
remains idle almost all the time (see Table 2 (b)). This behavior corresponds to
the one expected for an asynchronous circuit because the modules only compute
when useful work has to be performed.

As an additional statistic, the speedup reached by the asynchronous configu-
ration in relation to the synchronous one is, on average, 1.135 for the SPEC2000.

Thus, this comparison between both asynchronous and synchronous simula-
tions verifies the correct modeling of the asynchronous behavior that sim-async
performs by using distribution functions to characterize the computation delay
of the modules of the microarchitecture.
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5 Conclusions and Future Work

In this paper we have presented sim-async, an architectural simulator able to
correctly model the behavior of a 64-bit asynchronous superscalar microarchi-
tecture at the architectural level of abstraction. To tackle this goal, we have
modified the source code of SimpleScalar by substituting the simulator’s core
with our own execution engine which provides the functionality of a parameter-
izable superscalar architecture adapted to the Alpha ISA.

In order to provide flexibility, we have defined twelve synchronization domains,
and the delays involved on their computation, including them as parameters of
sim-async. Albeit, due to the necessity of modeling a data-dependant behavior
of the modules which form the simulated microarchitecture, we have introduced
the idea of modeling the data-dependant computation delay of the modules by
using distribution functions.

We have verified the correctness of sim-async by comparing the outputs of
the SPEC2000 benchmarks run on the original SimpleScalar with those gener-
ated by sim-async. In addition, we have run simulations of sim-async where the
delays were defining a synchronous microarchitecture. The number of instruc-
tions executed (including those speculative) was, on average, 0.132 % higher in
the asynchronous configuration. This occurs because the average delays of the
asynchronous stages are shorter than the synchronous worst case. In addition,
the number of executions of the asynchronous modules suffered an important
reduction in relation to the synchronous simulations. This behavior corresponds
to the one expected for an asynchronous circuit because the modules only com-
pute when useful work has to be performed. Then, the comparison between the
asynchronous and the synchronous simulations shows that the modeling of the
asynchronous behavior is correct. In addition, the asynchronous configuration of
the processor presented an average speedup of 1.132 in relation to its synchronous
counterpart.

Currently we are working on two ways: on one hand, we are tuning sim-async
with the aim of reducing its execution time, which is still high (about thirty
six hours each set of benchmarks). On the other hand, we are working on the
implementation of the asynchronous modules of the microarchitecture in order
to reach higher performance.
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Abstract. This paper proposes a hybrid hardware/software generated prefetch-
ing thread mechanism on Chip Multiprocessors(CMP). Two kinds of prefetch-
ing threads appear in our hybrid mechanism. Most threads belong to Dynamic
Prefetching Thread, which are automatically generated, triggered, spawn and
managed by hardware; The others are of Static Prefetching Thread, targeting
at the critical delinquent loads which can not be accurately or timely predicted
by Dynamic Prefetching Thread. Static Prefetching Threads are statically gen-
erated by binary-level optimization tool with the guide of profiling information.
Also, some aggressive thread construction policies are proposed. Furthermore,
the necessary hardware infrastructure for CMP supporting this hybrid mecha-
nism are described. For a set of memory limited benchmarks with complicated
access patterns, an average speedup of 3.1% is achieved on dual-core CMP when
constructing basic hardware-generated prefetching thread, and this gain grows to
31% when adopting our hybrid mechanism.

1 Introduction

Advances in integrated circuit technology afford great opportunities for Chip Multi-
processors(CMP). It is really a challenge to utilize multi-cores in CMP to accelerate
sequential programs. Thread-based prefetching technique is a promising approach to
achieve this purpose. It typically uses additional execution pipelines or idle thread con-
texts in a multithreaded processor(CMP or SMT) to execute helper threads that perform
dynamic prefetching for the main thread. Pure hardware-generated prefetching thread
mechanisms[1,3,5,7,8,12,16] are transparent to compiler. However, such mechanisms
might be inaccurate or suffer from higher memory bandwidth because it is difficult
for hardware to observe and analyze the large range runtime execution. Traditional
software-generated prefetching thread techniques[2,4,10,11] are typically accurate due
to the better understandability on program semantics and data structures, but might in-
cur additional instruction overhead and can not observe runtime behaviors.

It is necessary to adopt the advantages of both traditional hardware and software
methods. To the best of our knowledge, this paper firstly proposes a novel hybrid hard-
ware/software generated prefetching thread mechanism on Chip Multiprocessors.

The main contributions of this work are: (1) A hybrid hardware/software generated
prefetching thread mechanism on Chip Multiprocessors is proposed; (2) Two aggressive
thread construction policies, known as “Self-Loop” and “Fork-on-Recursive-Call”, are

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 506–516, 2006.
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presented for Dynamic Prefetching Thread; (3) “Thread Merging” policy is proposed
for Static Prefetching Thread, which also adopts “Multi-Chain” policy; (4) The neces-
sary hardware infrastructure for CMP supporting this hybrid mechanism is designed.

The rest of this paper is organized as follows: Section 2 introduces Dynamic Pre-
fetching Thread. Section 3 describes the challenges to Dynamic Prefetching Thread.
A hybrid hardware/software generated prefetching thread mechanism is proposed in
Section 4. And Section 5 is performance evaluation. Section 6 is conclusion.

2 Dynamic Prefetching Thread

Many researchers found that a small number of static loads, known as delinquent loads,
are responsible for the vast majority of memory stall cycles. Furthermore, not all the
instructions contribute to the address computation of the future delinquent load[2,3,7].
Motivated by these observations, we try to extract these sequence of instructions as
prefetching thread from the executed instruction trace by means of hardware, and uti-
lize idle cores to execute such threads that perform dynamic prefetching for the main
thread. Such threads are called Dynamic Prefetching Thread(DPT), which are automat-
ically generated, triggered, spawned and managed by hardware. It should exit when
meeting exceptions or interrupts. The operating system should make no response to
these exceptions and interrupts except for TLB exception.

2.1 The Hardware Infrastructure Supporting Dynamic Prefetching Thread

Figure 1(a) illustrates the typical CMP architecture with DPT support. The black blocks
are the necessary hardware infrastructure supporting DPT. The “DPT Generator” is in
charge of extracting DPT, located off the pipeline critical path. It has no effects on the
pipeline frequency due to its back-end work mode. The “shadow register” is used for
quickly initializing the context of the new spawned thread.

The organization of DPT Generator is shown in Figure 1(b). The committed load
instructions in original thread and their corresponding execution information(such as L2
hit/miss flag) are sent to the back-end DPT Generator. These load instructions will first
probe the trigger pointer selector, “Spawn Table”. Once a trigger pointer is identified,

Fig. 1. The architecture of CMP with Dynamic Prefetching Thread support
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the corresponding prefetching thread stored in DPT Cache is dispatched on idle core
and run in parallel with original thread to perform dynamic prefetching for the targeted
delinquent loads; otherwise it will query and update the Delinquent Load Table(DLT
Table), which is in charge of identifying the delinquent load.

When any delinquent load is identified, DPT Generator begins to collect the com-
mitted instructions from the main core running original program. This collection does
not stop untill the same delinquent load comes again or the Trace Buffer is full(If Trace
Buffer is full, this mechanism is abort). After this collection, Thread Constructor per-
forms a reverse walk of the trace to extract relevant instructions which contribute to the
address computation of the targeted delinquent load. Then it produces a sequence con-
taining these instructions in program order, oldest (lead) to youngest (candidate load).
For simplicity, we only focus on the register dependence but ignore both memory and
control-flow dependence during this reverse analysis. This policy is similar to Slice
Processor[7], and we adopt it as our basic policy. Meanwhile, the trigger point is cho-
sen for each Dynamic Prefetching Thread. These maps are recorded in DPT Cache.

The current CMP memory hierarchy is utilized to store prefetching results. No mod-
ifications are needed for memory hierarchy in this work.

Identify the delinquent load
The delinquent loads are identified at runtime via DLT Table. It is a PC-indexed table
with 128 entries and each has 5-bit counters. One out-chip cache load miss(L2 Miss
in our simulation) increases the corresponding counter by 4, otherwise decreases it by
1. A delinquent load is selected once the counter value exceeds 31. Predictor entry is
allocated only when an L2 load miss occurs.
“Shadow Register” mechanism
The main core running original thread is to initialize the registers of the idle core when
a DPT is dispatched. “Shadow Register” is for such quick initialization mechanism.
It keeps the same data content with the main core. Some modifications are needed
in pipeline to support this mechanism. The value and logical index of the destination
register are attached with each issued instruction and reserved in ROB entries. Thus this
information can be sent to the “Shadow Register” at commit time. The main core has the
write privilege whereas the other cores running prefetching threads are only be allowed
to read it. During the thread extraction phase, the live-in registers should be analyzed
and used for marking some flags in renaming table of new core so as to differentiate the
“Shadow Register” and local registers. Only the first access about the live-in registers
on prefetching cores should access the “Shadow Register”.
Trigger point and Spawn time
The delinquent load itself is selected as the trigger point. And the commit time is se-
lected as spawn time because it is suitable for the loosely-coupled feature of CMP.
Although choosing decode time as spawn time can spawn the thread earlier, it has prob-
lems in transporting register context among multi-cores. The reason is that the value of
the instruction’s destination register is still unavailable at decode time. Therefore the
commit time is selected as the spawn time. It just needs to copy corresponding registers
to initialize the new thread context at spawn time.
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2.2 Aggressive Thread Construction Policies

(1) “Self-Loop” Policy
In basic policy, one Dynamic Prefetching Thread only prefetches one future instance
of the static delinquent load. In “Self-Loop” policy, the future N instances of the same
delinquent load instruction are prefetched in the same Dynamic Prefetching Thread
at one trigger point(N=10 in our simulation). We accomplish this purpose via adding
loop structure on basic-policy constructed thread code. The framework of new added
loop structure is so stable that hardware implementation has high feasibility. This pol-
icy enlarges the prefetching range and helps the thread speculatively prefetch farther
delinquent loads that are not visible in current pipeline. And it can also decrease the
cost of thread initialization by merging multi-threads into one. Furthermore, “Self-
Loop” policy need not copy register values between consecutive prefetching threads,
since such threads are run on one core in our policy. This policy needs less prefetching
cores(usually 1-4 cores are enough), thus releasing the access contention for “Shadow
Register”.
(2) “Fork-on-Recursive-Call” Policy
Most nodes in tree or graph structures connect two or more sub-nodes. This inherent
memory parallelism can be exploited for prefetching. When the main program accesses
one sub-tree or sub-graph, other idle cores can be utilized to speculatively access the
other sub-tree or sub-graph. What’s more, the recursive function is one of the primary
methods used to access such structures. When any recursive call instruction is executed,
a new prefetching thread is dispatched on one idle core starting from the next instruction
address. Then the idle core begins to speculatively execute the following instructions.
By means of this approach, idle cores are utilized to speculatively access the other sub-
tree or sub-graph for prefetching. This is the “Fork-on-Recursive-Call” policy.

A hardware stack and Recursive Call Table are used for identifying the recursive call
and recording the recursive entries for each recursive call. They work in back-end and
are placed in DPT Generator. Any function call instruction(e.g, jal, jalr in MIPS ISA)
at the top of ROB will trigger the following step:

(a) Looking up the Recursive Call Table to find whether this call is recursive. If some
entry is found, then goto (b), else goto (c).

(b) The following PC of the current call instruction is sent to idle core to be specula-
tively executed. And exits here.

(c) The instruction’s PC enters the hardware stack. It will look up the previous stack
entries before entering the stack. If some entry matches, a recursive call is identified,
and the PC is recorded in Recursive Call Table. Otherwise, it is just stored in the stack.
The stack should be emptied if it is full.

Any return instruction(e.g, jr in MIPS ISA) should update the stack at commit time.
If the stack is empty, nothing is done; otherwise the top stack entry is popped.

The store instructions are considered as nop operation since the speculatively exe-
cuted thread is only used for prefetching and should not modify the architecture state. A
counter is used to control the execution distance of prefetching thread. The prefetching
thread also looks up the Recursive Call Table when any call instruction is executed. If
one recursive call is identified, the counter begins to work and increase one for each
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instruction. In this work, the prefetching thread will not stop untill the counter exceeds
200 or some exception occurs.

3 The Challenges to Dynamic Prefetching Thread

The following three cases are great challenges for Dynamic Prefetching Thread.

(1) The loops with two or more delinquent loads. When there are two or more
delinquent loads in the same loop structure, usually some of them are not timely pre-
fetched by Dynamic Prefetching Threads. The reason is that each such threads usually
targets at only one static delinquent load. If the number of processor core is small,
several Dynamic Prefetching Threads separately targeting at different loads compete for
the scarce idle cores. Thus some of prefetching threads have no chance to be dispatched.

(2) The loops with two or more levels. Larger prefetching range can be expected
at the outer-level loop. Yet it is hard for the hardware to identify and collect the whole
execution trace of the outer loop iterations. Therefore the prefetching timeliness and
range are limited.

(3) The hot regions with complicated control flow. The instruction traces are un-
stable in this case. It is hard for hardware to analyze and conclude all the conditions at
runtime. The prefetching accuracy might be quite low.

4 The Hybrid Hardware/Software Prefetching Thread Mechanism

Although software-generated prefetching thread might incur additional instruction over-
head and can not observe runtime behaviors, it can overcome the challenges to Dynamic
Prefetching Thread. We proposes a hybrid hardware/software generated prefetching
thread mechanism on Chip Multiprocessors. Two kinds of prefetching threads appear in
our hybrid mechanism. Most threads belong to Dynamic Prefetching Thread, which are
automatically generated, triggered, spawn and managed by hardware; The others are
of Static Prefetching Thread(SPT), targeting at the critical delinquent loads identified
by profiling information. SPT is statically generated by binary-level optimization tool.
The software tool can understand the program semantics better, thus higher prefetching
accuracy and larger prefetching range are anticipated for SPT.Furthermore, benefiting
from the concentration on critical delinquent loads, SPT incurs little additional instruc-
tion overhead.

This hybrid mechanism is effectively composed of DPT and SPT where DPT is pre-
dominant. These two kinds of threads are efficiently combined by the identification of
critical delinquent loads. An enhanced compilation flow and the corresponding profil-
ing mechanism are proposed to support the identification of critical delinquent loads
and the SPT construction. By the way, SPT has higher execution priority than DPT. All
such threads are transparent to operating system.

4.1 Compilation in Hybrid Mechanism

The enhanced compilation supporting the hybrid mechanism is illustrated as the fol-
lowing steps:
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(1) The program is compiled by general source-code compiler(e.g, gcc);
(2) The binary is run directly on CMP without Dynamic Prefetching Thread support.

The instruction addresses of the TOP N most frequent load misses are collected via
performance counter. Regarding these instructions, we call the set, which is composed
of (instruction address, the number of cache misses) pairs, as Miss Set0;

(3) The binary is run directly on CMP with Dynamic Prefetching Thread support.
The instruction addresses of the TOP N most frequent load misses are collected via
performance counter. Regarding these instructions, we call the set, which is composed
of (instruction address, the number of cache misses) pairs, as Miss Set1;

(4) Then the set of critical delinquent loads, which can not be accurately or timely
prefetched by Dynamic Prefetching Thread, are identified according to the following
formula:

Critical Set = {x | ∃x, ∃y0, ∃y1,
(x, y0) ∈ Miss Set0,
(x, y1) ∈ Miss Set1,
and (y0 − y1)/y0 < δ}

In this formula, x is instruction address, y0 and y1 are the numbers of cache misses, and
the δ is the assumed threshold for identifying critical instructions.

(5) Targeting at these critical delinquent loads, the binary-level SPT tool can ex-
tract more effective prefetching threads from original binary, attach them in a special
program text segment , and regenerate the final version SPT-enhanced binary.

4.2 The Binary-Level SPT Tool

Firstly, the binary is loaded and disassembled. Guided by the relocation information in
binary head section(e.g, ELF head), all basic blocks and their relationships(functions
and branches) are identified. Then the control flow graph(CFG) is constructed. Sec-
ondly, the loop structures or functions containing critical delinquent loads are located,
and the tool makes analysis on such zones based on several specific thread construction
policies. All the instructions, which contribute to the address computation of the crit-
ical delinquent loads, are extracted. Such extracted instructions are Static Prefetching
Thread, placed in a special program text segment at the bottom of original binary. Dur-
ing these analysis, the register live-ins of Static Prefetching Thread are also attained,
which is helpful to choose a spawn point and insert a spawn instruction in original
binary. Finally, some adjustments are necessary since original binary is modified, and
then we get the SPT-enhanced binary by the SPT tool.

4.3 Thread Construction Policies for SPT

(1) “Thread Merging” Policy
“Thread Merging” policy is proposed to overcome the case where there are several
delinquent loads in the same loop. In this policy, all the static delinquent loads in the
same loop are prefetched by one prefetching thread.
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According to profiling, SPT tool can observe that more than one critical delinquent
loads appear in the same loop structure. Through analyzing the register and control
dependence from the loop header to bottom(still ignoring memory dependence), all in-
structions contributing to the computation of these delinquent loads’ addresses are ex-
tracted. The loop header is selected as the spawn point before which spawn instruction
is inserted. Of course, “Self-Loop” can also be merged with “Thread Merging” policy.
(2) Multi-Chain Policy
Multi-Chain policy is described in [9]. We apply it to deal with the case where there
are delinquent loads in loop structure with two or more levels. Such case is common
in pointer-chasing applications, which tend to traverse composed data structures con-
sisting of multiple independent pointer chains. Multi-Chain policy exploits this inter-
chain memory parallelism. When the original thread accesses one pointer chain, Static
Prefetching Threads simultaneously perform their speculative traversal of other pos-
sible future chains on idle cores. Consequently, the serialized memory latency can be
tolerated by overlapping cache misses across independent pointer-chain traversals.

When SPT tool observes that there are little overlap work between the sequent criti-
cal delinquent loads in the loop with two or more levels, multi-chain policy is adopted
to construct SPT. First, it analyze the inner loop, and extract all instructions contribut-
ing to the address computation of these delinquent load, including the loop induction
variables and corresponding instructions. These extracted instructions are called as sub-
thread. Meanwhile, the register live-ins of sub-thread are attained. Then the outer loop
is analyzed, all instructions related are also extracted. These instructions are located
before the sub-threads. Then the whole SPT is constructed. The spawn instruction is
inserted directly before the entry of the inner loop.

4.4 Hardware Support for Hybrid Mechanism

(1) Extensions to the Instructions Set Architecture
Two additional instructions are needed. One is the spawn instruction. Its format is
“spawn start-of-SPT”. This instruction explicitly indicates one SPT dispatch and regis-
ter context initialization. The other is the stop instruction, indicating that the prefetching
thread is to be finished. It has no operator and is also used for DPT.
(2) Profiling mechanism for the TOP N out-chip load instructions
The critical delinquent loads identification needs to collect the top N most frequent
out-chip loads for the execution of whole program. A hardware/software cooperative
profiling mechanism is designed for such purposed.

A new Performance Counter(PC) is provided to record recent the top N most fre-
quent out-chip load instruction, which is similar to Cache Miss Lookaside Buffer[13]
aiming at releasing the access pressure on L2 cache. The new Performance Counter con-
sists of(process ID, instruction address, counter) tuples with process ID and instruction
address as index. It is implemented as content-indexed array(CAM). The Process ID is
used for distinguishing the instructions from original or prefetching thread, and only the
former is concerned. To improve the accuracy, the tuples are broken into two segments:
HOT and LRU region. Once an out-chip load commits, a lookup in the PC(both the
LRU and HOT segment) is performed. If it doesn’t match, the least-used entry in LRU
segment is replaced by the instruction and the counter is initialized as one; Otherwise,
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the corresponding counter is increased. Furthermore, if it matches the LRU segment
and the counter is larger than the minimum in HOT segment, these two entries are ex-
changed. The size of LRU and HOT segments are important for the profiling accuracy.
We find 32 is suitable in our simulation.

However, the Performance Counter can only record recent out-chip load instruction.
In order to record the top N most frequent out-chip loads for the execution of whole
program, software are needed to record and accumulate the performance counter at
intervals. Such function is implemented in the timer interrupt entry of operating system.
Since PC only works for profiling, this mechanism does not decrease the performance
and has no additional power dissipation.

Table 1. Simulated CMP Processor Parameters

Processor core Memory Hierarchy
Number of cores / Frequency 2core/2GHz Cache sizes 32KB IL1, 32KB DL1, 512KB L2
Fetch / Issue / Commit Width 4 / 4 / 4 Cache associativity 4-way L1, 8-way L2
I-window / ROB / LSQ size 64 / 128 / 64 Cache Hit/Miss latencies L1:2/3 cycles, L2: 9/11 cycles

Int/FP registers 184 Cache line sizes/ports L1:32B,2ports, L2:32B,4ports
LdSt/Int/FP units 2 /4 / 2 L1-L2, L2 cache Store policy write-back

Execution latencies similar to MIPS R10000 MSHRs L1:64 , L2:128
Branch predictor 16K-entry gshare hybrid Memory Bus split transaction, 2words/cycle

RAS entries 16 Main memory latency minimum 200 cycles

Hardware Supporting Hybrid Prefetching Thread
Trace Buffer Size 256 entries

DPT Cache size / associativity 32kB / 2 way
Thread construction time 200 cycles

Thread initiation time 6 cycles
Shadow Register size / port 64*32B / 4w4r ports

δ for Critical Set 0.5

5 Experiments

5.1 Simulation Methodology

The evaluation is performed by a detailed CMP architecture simulator based on SESC
[17] implementing MIPS ISA, which is a cycle-accurate execution-driven simulator.
The CMP cores are out-of-order superscalar processors. Table 1 lists the parameters in
details. To demonstrate the performance potential of our architecture, we just use the
dual core configuration for simplicity.

The memory limited benchmarks are selected from the Olden pointer intensive
programs[6], and SPEC CPU2000. A large number of cache misses in these bench-
marks are due to relatively irregular access patterns involving pointers, hash tables,
tree/graph, indirect or complicated array references, or a mix of them, which are typi-
cally difficult for prefetching. The train sets are used for SPEC benchmarks to achieve
reasonable simulation times. In addition, all benchmarks are compiled with gcc -O3 and
simulated for one billion committed instructions after fast-forwarding the initialization
with cache warmup.

The full mechanisms of Dynamic Prefetching Thread are simulated in details. Yet
Static Prefetching Threads are constructed manually. SPT tool now can read and modify
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the MIPS binaries, while the implementation of SPT thread construction policies is
still in development. These hand-generated Static Prefetching Threads demonstrate the
performance potential of our hybrid mechanism.

5.2 Performance Evaluation

The performance speedup of our hybrid mechanism is illustrated in Figure 2. Since
DPT is predominant in our hybrid mechanism, the speedup of DPT adopting basic and
aggressive polices is also presented to make comparisons, and the speedup of pure SPT
mechanism is ignored in Figure 2. With regards to the DPT mechanism, it can be ob-
served that significant improvements are achieved with aggressive policies. The aggres-
sive policies achieve 21.5% speedup on average while the basic policy only achieves
3.1% speedup. Furthermore, the performance can be further improved by the hybrid
mechanism. SPT can overcome the challenges to DPT(especially for swim, mgrid,
equake, em3d and mst). The performance speedup is increased to 31% on average when
adopting the hybrid mechanism.

To understand the performance speedup, the prefetching coverage and timeliness
information is provided to have a deep insight at the prefetching activity in Figure 3.
Each bar is broken into eight segments according to the fractions of the miss latency
hidden by prefetching, e.g, less than 10 cycles, between 10 and 50 cycles and so on.

For swim, mgrid,art, equake and mcf, most of the speedup benefits from the larger
coverage and better timeliness achieved by DPT with “Self-Loop” policy. Through en-
larging the prefetching range and number per prefetching thread, “Self-Loop” policy
makes the thread generate more timely and more farther prefetching requests illustrated
in Figure 3. For instance, the coverage of swim is about 2% in basic policy, and it
increases to 21% in aggressive policies. And the performance speedup for swim also
increases from 0 to 32% with the improvements of prefetching coverage and timeliness.

The “Fork-on-Recursive-Call” policy stimulates the performance improvements for
treeadd, perimeter and tsp, since these benchmarks access tree-like structures via

Fig. 2. The performance speedup of several prefetching thread mechanisms
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recursive calls. This policy effectively exploits the memory parallelism indicated by the
the kernel data structures and then improves the prefetching coverage and timeliness,
especially for treeadd(31% performance improvement).

Although most benchmarks have been accelerated significantly by Dynamic Pre-
fetching Thread, there are still considerable performance potential to be exploited by
our hybrid mechanism. For swim, mgrid and equake, the “hot” loops always have sev-
eral delinquent loads. Static Prefetching Threads constructed by “Thread Merging” pol-
icy prefetches these delinquent loads using one thread, leading to the significantly im-
proved prefetching coverage demonstrated in Figure 3. For mcf and vpr, there are usu-
ally one delinquent loads in hot loop or thread contentions are scarce, Static Prefetching
Threads almost have no effects. For mst and em3d, most pointer accesses have little
overlap work, so Dynamic Prefetching Threads almost have no effects on them. For-
tunately, it is observed that the kernel data structures are accessed by loops with two
or more levels, “Multi-Chain” policy can effectively accelerate these benchmarks via
higher-level prefetching(the performance improvement for em3d is 20%, mst is 18%).
These phenomenons are demonstrated in Figure 3.

Fig. 3. The prefetching coverage and timeliness analysis. (For each group, the left bar: DPT with
basic policy, the middle: DPT with aggressive policies, the right: hybrid mechanism.)

6 Conclusion

This paper firstly proposes a hybrid hardware/software generated prefetching thread
mechanism on Chip Multiprocessors.This hybrid mechanism is effectively composed
of Dynamic Prefetching Thread and Static Prefetching Thread. The former is predomi-
nant and dynamically generated by hardware, and the latter is complementary and stat-
ically generated by software. These two kinds of threads are efficiently combined by an
enhanced compilation flow and the corresponding profiling mechanism.

For a set of memory limited benchmarks, an average speedup of 3.1% is achieved on
dual-core CMP when constructing DPT with basic policy, and this gain grows to 21.5%
when adopting aggressive policies. Although significant improvements can be achieved
by DPT, the performance can still be further improved by the hybrid mechanism. SPT
is an effective complement to DPT. The performance speedup is increased to 31% on
average when adopting the hybrid mechanism.
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Parallel computing is strongly influenced by the challenges of distributed sys-
tems, such as a need for a Single System Image, resource sharing and allocation,
failures and a need for fault tolerance, long latencies, network partition, dis-
connected operation, demands of users wishing to solve more computationally
and communication demanding problems, and opportunities created by grids
and Web services. Distributed computing is the computing mainstream now; it
is based on different forms of distributed systems: clusters, grids, peer-to-peer
systems, web services, service oriented architectures. This topic provides a fo-
rum for research and practice, of interest to both academia and industry, about
distributed computing and distributed algorithms. Submissions were encouraged
in all areas of distributed systems and algorithms relevant to parallel comput-
ing, with emphasis on design and practice of distributed algorithms, analysis of
the behaviour of distributed systems and algorithms, distributed fault-tolerance,
distributed operating systems and databases, scalability, concurrency and perfor-
mance in distributed systems, resource sharing and load balancing in distributed
systems, distributed algorithms in telecommunications, distributed mobile com-
puting, resource and service discovery, security in distributed systems, and stan-
dards and middleware for the distribution of parallel computations. Twenty
papers were submitted in this topic. The subjects were varied, but a common
theme of many of them is recovery, resource allocation, mutual exclusion, garbage
collection and coordination. Other themes include load balancing, scheduling and
consensus algorithms. Eight papers have been accepted.
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Abstract. This paper presents a distributed algorithm to allocate re-
sources (links of a network) for interconnecting machines (forming a
group) spread in a network. This is what we call a connection struc-
ture for this group of machines. An important innovative feature of our
construction method is that we prove (not just simulate on particular
and restricted cases) the fact that this structure has good properties in
terms of, simultaneously, induced distances (for latency considerations)
and cost (for cost considerations). Hence, we propose a distributed mul-
ticriteria approximation algorithm.

In applications like video-conferences or net-meetings, members of a group spread
in a network, have to communicate with high QoS requirements. A possibility
for a provider selling this service on his network is to allocate/rent resources
(links) for the exclusive use of the members. We call this a connection structure
for the group. We propose here a distributed protocol to construct connection
structure with high guaranty of quality.

Minimizing induced distances in the structure. To optimize QoS require-
ments on latency between members, we want to construct a structure in which
distances are minimized. However, these distances cannot be smaller than those
of the underlying network. Hence, we want to design a structure in which the
induced distances between members are as close as possible to those of the orig-
inal graph. To capture this desired property, we focus in this paper on the min-
imization of two criteria, namely the maximum and average distances between
members.

The cost of the structure. Steiner tree. As a connection structure is a
definitive allocation of links, exclusively reserved for the group, these resources
are not available for others applications during the existence of the group. Hence,
the provider allocating the structure must minimize the total number of links

� Corresponding author.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 519–529, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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used in the structure in order to minimize its exploitation costs and to keep
the maximum number of available links for others services. In this paper, the
number of edges in a graph or in a structure is called its cost. The minimum
cost (weight) tree spanning a given set M of vertices is called the Steiner tree
problem and is NP-complete.

Conflicting parameters. Simultaneous approximation. In the situation
described above, the provider must minimize the distance parameters (to satisfy
the customers) and, simultaneously, the cost of the structure. It was shown in
[1] that it is impossible; the criteria cost and diameter are conflicting. To solve
this conflict we do not strictly minimize the parameters but we approximate
them.

A distributed algorithm. In spite of its interest in the guarantees that can
be offered, this kind of approach generally suffers from a weakness: The meth-
ods to construct the structure are almost all centralized. To exploit them, the
provider needs a global view of the state of its system before applying the al-
gorithms. In general this is not possible in practice. To help him, we propose in
this paper a distributed algorithm. The connection structure is then constructed
by exchanging messages between members, with no centralized node doing all
the job. Members just know local information to process. In this paper, we make
reasonable hypothesis; we suppose that a routing table and an allocating mech-
anism is available in the system (see more details on the distributed model in
section 1).

Another interesting parameter to investigate for our asynchronous protocol
is then the number of exchanged messages (or messages complexity) during its
execution to avoid to overload the network during the construction.

Representation by a graph. We model the network by a graph G = (V,E)
where V is the set of vertices representing the nodes of the network, E is the
set of edges modeling its bidirectional physical links. Graphs considered here are
unweighted, undirected and connected.

Let M ⊆ V be the group of m = |M | members that must be connected by
allocating/renting links. The set of these links form what we call a connection
structure; As the links are reserved for intra-group communications there is no
external traffic disturbing the communications between members. Note that in
terms of graphs a connection structure S = (VS , ES) in a connected subgraph
of G = (V,E) spanning M (M ⊆ VS ⊆ V , ES ⊆ E).

Technically, the latency is represented by distances. For each pair u, v of ver-
tices of V , we denote by dG(u, v) the distance between u and v. This is the
minimum number of edges to cross to go from u to v in G.

Notation 1. Let G = (V,E) an unweighted, undirected graph and M ⊆ V be
the group.

– The diameter of M in G is: DG(M) = max{dG(u, v) : u, v ∈ M}
– The sum of distances of M in G is: CG(M) =

∑
u,v∈M

dG(u, v).
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– The cost of any graph (or structure) G = (V,E) is its number of edges:
W (G) = |E|.

We focus here on sum of distance since it is easy to get average distance from
that. The minimum cost (weight) spanning structure of a group M is the well
known Steiner tree denoted by T ∗(M).

We want to construct a structure S, spanning members of M such that its
diameter DS(M) (resp. its sum of distance CS(M), resp. its cost W (S)) is no
more than ρDDG(M) (resp. ρaCG(M) resp. ρWW (T ∗(M))). The parameter ρD

(resp. ρa resp. ρW ) is the approximation ratio for the diameter (resp. sum of
distances, resp. weight).

Known results. Due to space limitation we focus here on the main related
works to ours. We underline the difference with our own contribution.

In [2] for example, reader can find treatment of approximation algorithms and
of the NP-hard Steiner tree problem. However, classical approximation methods
just deal with the optimization of one criterion: Only the weight is treated for the
Steiner tree for example; the induced distances in such trees are not considered.

At the opposite, works on spanners investigate the problem to construct a
structure of minimum weight, spanning all the vertices and inducing distances
between each pair of vertices at most a given multiplicative factor of the one in
the underlying graph. This approach is very interesting but unfortunately there
are many non approximability results (see [3]). A variant for groups has been
investigated in [4] and was also shown to be hard. Moreover all the existing
methods are centralized.

We can see that the main constraint in spanner is to give guarantees for the
distances between each pair of vertices. In other works, authors relax this con-
straints and investigate the construction of structures in which the maximum
and/or average distance are minimized. For example, one can find in [5,1,6]
approximation algorithms to construct trees spanning a given group with the
objective to approximate simultaneously these parameters. In particular, [6] in-
vestigates exactly the three parameters considered in the present paper. However
the algorithm given in [6] is not distributed. In the present paper we propose an
alternative construction to [6] that allows us to obtain a distributed protocol.
Indeed this version exhibits original local properties that are exploited. We show
in this paper that this new approach leads to an efficient algorithm (in terms
of message complexity) and good approximation ratios. For completeness, we
present here the whole construction and all the proofs.

To finish we can cite [7] surveying several recent works on approximation
distributed algorithms. However, there is no reference on our own subject, works
mentioned focus on the optimization of only one criterion (we are multicriteria)
and the distributed systems under consideration are synchronous (we deal here
with asynchronous systems).

Outline of the paper. In Section 1, we describe our distributed algorithm. We
prove its approximation ratios and number of exchanged messages in Section 2.
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1 Our Tricriteria Approximation Distributed Algorithm

Our tricriteria algorithm proceeds in two phases: In the first phase, we construct
the tree Tp, a ρ-approximation of a Steiner tree T ∗(M) of the group M . In a
second phase, we reduce the induced distances between members in this tree; this
is done by adding appropriated shortest paths without increasing significantly
the weight of the initial tree.

Distributed model: A shortest path routing function is available as in many
current networks. Each node u can use its local copy of the routing table to
determine the distance dG(u, v) between itself and any node v. This routing
function can also be used by node u to send messages by a shortest path of G
to any node v. It can also be used to allocate a shortest path between u and v
(reserve the links of this path). We suppose that these two operations induces
a number of messages equal to the number of links crossed, that is dG(u, v).
Moreover, we consider that each member is awake and knows the m distinct
identities of the members.

1.1 Phase 1: Construction of an Approximated Steiner Tree

Phase 1 constructs a tree TP satisfying W (TP ) = O(log(m)W (T ∗(M))). More-
over, the first phase finds a member with particular properties, called the Median
r of the group M . This particular member is essential for beginning the second
phase.

As the identifiers of members of M are known by each node of M , each
node can create an order. W.l.o.g. we suppose that the members are numbered
M = {u1, u2, . . . , um} and that each member knows this order.

The construction of tree Tp is the following: Each member ui connects itself to
the nearest member in the set {u1, . . . , ui−1} (ui can select this nearest member
using its local routing table). These m−1 connections can be done in any order,
even in parallel. At the end, the (intermediate) obtained structure is composed of
m−1 shortest paths and is connected. It is not necessarily a tree (it may contain
cycles), an appropriated DFS is done twice from node u1 to cut potential cycles
and to prune the structure to obtain the desired tree TP . After this operation,
each node u ∈ M is in the tree TP .

We give now the definition of the median and the way to construct it.

Definition 1 (Median of a group). Let G = (V,E) and M ⊆ V . A vertex
r ∈ M is a median of M (in M) if it satisfies:

∑
u∈M

dG(u, r) = min

{∑
u∈M

dG(u, v) : v ∈ M

}

To do that, u1 starts the process by sending to u2 the pair (S1, u1) where
S1 =

∑
v∈M dG(u1, v). When it receives S1, node u2 can compute its own value
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S2 =
∑

v∈M dG(u2, v). If S1 < S2 then u2 sends (S1, u1) to u3, otherwise it
sends (S2, u2). This process can be continued from node to node, following the
order {u1, . . . , um}. The last node um sends its result to u1 that now knows the
median r (since the minimum sum of distances has been filtered in successive
transfers). It then broadcasts the result to the whole group.

1.2 Phase 2: Distributed Median-Control

The general idea of this phase 2 is to make a DFS from the Median r in TP

(constructed in previous phase). Each time the DFS reaches a member, it makes
a particular test on distances: If the test is positive, it roughly means that the
member is ”too far” from the median in Tp compared to its distance in G (read
in the routing table). In this case, we say that this member vi is added in set
S. This member connects to the Median by allocating a shortest path of the
graph (using the routing mechanism). Note that this set S is not transported
in the message. We only need its cardinality in the protocol; However, in the
proof we will use this implicit set S. At the beginning, when S = ∅, we set
vi = r.

Message: For the protocol, we need to transport several information in the
messages of type: < DFS,DistTP , DistG, cardS >

– DFS is the name of the message.
– DistTP is the distance in tree TP between the last node vi inserted in set S

and the node sending the DFS message. This parameter must be updated
at each node (member or not).

– DistG is the distance in G between vi and the Median node r. This distance
is read by vi in its local routing table. Note that DistG (= dG(r, vi)) does
not change during the construction while vi+1 is not detected.

– Counter cardS is the number of nodes in the current set S.

Local variables: For each node u in TP , the main variables are:

– NTP : set of neighbors identifiers of u in tree TP .
– TBS: (To Be Sent) set of neighbors of u in Tp to which node u has to forward

the DFS message.
– V isited: boolean with value True iff node u has received a DFS message.

Init. at False.
– Parent: node identifier by which node u receives for the first time message

DFS. Init. at NIL.
– Last Card S: integer counter containing the knowledge node u has of the

cardinality of the current set S. Init. at 0.

We suppose in the following that a parameter α is already known by all the
members of M .
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Pseudo-code of the algorithm
Procedure: Executed only by Node Median (node r), at the beginning
Last Card S := 0; DistTP := 0; DistG := 0;
NumConnections := 0; TBS := NTP ;
Do

{Choose any v ∈ TBS; TBS := TBS − {v};
Send < DFS,DistTP , DistG, cardS > to v;
Wait for a message < DFS,DistTP , DistG, cardS > from v;
Last Card S := cardS;
If cardS = 0 then DistTP := 0; else DistTP := DistTP + 1;}

While TBS 
= ∅

/* When Last Card S = NumConnections, the algorithm is finished
and the final connection structure Gf is allocated. */

Procedure: Each time Node Median r receives a connection from a
node v
NumConnections := NumConnections + 1;

Procedure: When a node u 
= Median receives
< DFS,DistTP , DistG, cardS > from node v ∈ NTP

If V isited = False then { /* First visit of the DFS */
V isited := True; Parent := v; TBS := NTP − {Parent};
DistTP := DistTP + 1; Last Card S := CardS;
If u ∈ M and DistTP + DistG > αdG(r, u) Then {

/* A new vi is detected and added in set S */
DistTP := 0; DistG := dG(r, u); cardS := cardS + 1;
Last Card S := CardS;
Connect to Median r by a shortest path;}

}
Else {/* V isited = True */

If Last Card S < CardS then {
/* New vi’s have been discover in the exploration of the subtree of u */

DistTP := DistTP + 1; Last Card S = CardS;}
else DistTP := DistTP − 1;
If TBS = ∅ then a = Parent; /* It is time to backtrack */
else {Choose any a ∈ TBS; TBS := TBS − {a};}
Send < DFS,DistTP , DistG, cardS > to a;

}

2 Proofs and Correctness

We express and prove in Section 2.1 a generic result giving the three approxi-
mation ratios obtained by our algorithm. In Section 2.2 we use this result to give
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the real approximation ratios obtained by our method and an upper bound on
the number of exchanged messages.

2.1 Three Simultaneous Approximation Ratios

Theorem 1. Let G = (V,E), M ⊆ V (m = |M |), Gf be the connect structure of
M returned (in the second phase Median-Control) with TP a ρ-approximation
of the Steiner tree T ∗(M) of M , constructed in phase 1. The three simultaneous
properties of our algorithm are the following:

1. A 2α-approximation for the sum of distances: CGf
(M) ≤ 2αCG(M).

2. A 2α-approximation for the diameter of M : DGf
(M) ≤ 2αDG(M).

3. A ρ
(
1 + 2

α−1

)
-approximation for the weight:

W (Gf ) ≤ ρ

(
1 +

2
α − 1

)
W (T ∗(M)).

For the clearness of the proof we will use Lemmas.

Lemma 1. Let G = (V,E), M ⊆ V (|M | = m) and r be any vertex of V . Let
A be any subgraph of G, spanning M and r, satisfying dA(u, r) ≤ αdG(u, r) for
all u ∈ M for some α ≥ 1. We have:

CA(M) ≤ 2αm
∑
u∈M

dG(u, r)

Lemma 1 is an extension of a result of [8].

Proof. We upper bound CA(M) by using triangular inequality.

CA(M) =
∑

u,v∈M

dA(u, v) ≤
∑

u,v∈M

(dA(u, r) + dA(r, v))

=
∑
u∈M

∑
v∈M

(dA(u, r) + dA(r, v))

=
∑
u∈M

(
mdA(u, r) +

∑
v∈M

dA(r, v)

)
= 2m

∑
u∈M

dA(u, r) ≤ 2αm
∑
u∈M

dG(u, r)

The last inequality follows from the property of distance in A. �
Lemma 2. Let G = (V,E), M ⊆ V and r ∈ M a median of M . We have:

CG(M) ≥ m
∑
u∈M

dG(u, r)

Proof. CG(M) =
∑
v∈M

(∑
u∈M

dG(u, v)

)
≥ m

∑
u∈M

dG(u, r) �
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We suppose here that a tree TP spanning M is given, constructed in Phase 1.
This is an approximation of the Steiner tree T ∗(M). Graph Gf in the following
is the final connection structure constructed by our algorithm. The techniques
used here and related proofs are adaptations and modifications of the ones of
[5,6] for the distributed context.

Lemma 3. For all u ∈ M we have: dGf
(r, u) ≤ αdG(r, u)

Proof. Let us consider the step where the DFS reaches vertex u ∈ M for the
first time. At this particular moment, let vi be either the last vertex put in
set S or vertex r (if set S is still empty). Two cases must be examined, de-
pending on the test treating u in the algorithm. Note that dTP (vi, u) (resp.
dG(r, vi)) is transported by the incoming DFS message in parameter DistTP

(resp. DistG).

1. If dG(r, vi) + dTP (vi, u) > αdG(r, u) then u is put in set S and after the
DFS a shortest path between r and u is added in Gf and in this case
dGf

(r, u) = dG(r, u).
2. Otherwise, dG(r, vi) + dTP (vi, u) ≤ αdG(r, u). As Gf contains a shortest

path between vi and r in G and also contains the whole tree TP , by using
the triangular inequality we have:

dGf
(r, u) ≤ dGf

(r, vi) + dGf
(vi, u) ≤ dG(r, vi) + dTP (vi, u) ≤ αdG(r, u) �

Lemma 4. W (Gf ) ≤
(

1 +
2

α − 1

)
W (TP )

Proof. Let S = {v1, . . . , vk} be the k vertices added in set S during the al-
gorithm. Let v0 = r (median of M). A new vertex vi is added in S by the
algorithm when: dG(r, vi−1) + dTP (vi−1, vi) > αdG(r, vi). Making the sum on

i, we obtain: α

k∑
i=1

dG(r, vi) <

k∑
i=1

dG(r, vi−1) + dTP (vi−1, vi). But, as v0 = r we

get dG(r, v0) = 0 and:
k∑

i=1

dG(r, vi−1) ≤
k∑

i=1

dG(r, vi). By combining we have:

(α − 1)
k∑

i=1

dG(r, vi) <

k∑
i=1

dTP (vi−1, vi). As v1, . . . , vk is a prefix order of a sub-

set of M visited in a DFS visiting exactly twice each edge of tree TP we

have:
k∑

i=1

dTP (vi−1, vi) ≤ 2W (TP ). Hence,
k∑

i=1

dG(r, vi) <
2

(α − 1)
W (TP ). But,

W (Gf ) ≤ W (TP ) +
k∑

i=1

dG(r, vi) ≤
(

1 +
2

(α − 1)

)
W (TP ). �
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Proof. (Theorem 1)

1. Result for the sum of distances: Lemma 2 shows: m
∑
u∈M

dG(u, r) ≤ CG(M)

with r ∈ M a median of M . With Lemma 1, and Lemma 3 we obtain:
CGf

(M) ≤ 2αm
∑
u∈M

dG(u, r). Hence: CGf
(M) ≤ 2αCG(M).

2. Result for the diameter. With the triangle inequality, with Lemma 3 and
with the fact that r ∈ M , for all u and v in M we have:

dGf
(u, v) ≤ dGf

(u, r) + dGf
(r, v) ≤ α(dG(u, r) + dG(r, v)) ≤ 2αDG(M).

Hence DGf
(M) ≤ 2αDG(M).

3. Result for the weight. Lemma 4 gives the result since W (Tp) ≤ ρW (T ∗(M)).

�

2.2 Total Number of Exchanged Messages and Induced
Approximation Ratios

In this Section we use all the previous analysis to compute the performance
of our algorithm in terms of approximation ratios (Theorem 2) and number of
exchanged messages (Theorem 3).

Theorem 2. If α is a constant then our algorithm is a distributed, constant
approximation for diameter and sum of distances parameters and a O(log(m))
approximation for cost.

Theorem 3. If α is a constant and m = |M | then our algorithm uses at most
O(m log(m)DG(M)) messages.

To prove these final results we need some Lemmas.

Lemma 5. W (TP ) = O(log(m)W (T ∗(M)))

Proof. The process of construction of our tree TP can be viewed as another equiv-
alent version of the online algorithm proposed in [9]. The authors show that if a
Steiner tree is constructed step by step by connecting a new member to the near-
est member already connected, then, the final tree is a O(log(m))-approximation
of the Steiner tree. This is in fact what we do here, by ”simulating” this pro-
cess. �
Proof. (Theorem 2) Apply Lemma 5 and Theorem 1 with ρ = O(log(m)) �
Lemma 6. Phase 1 uses at most O(m log(m)DG(M)) messages (m = |M |).
Proof. The construction of the initial substructure requires at most (m−1)DG(M)
messages. The message complexity of the pruning process of this structure to ob-
tain TP is linear in the number of edges in TP and, from Lemma 5, it is at most
O(log(m)W (T ∗(M))). As W (T ∗(M)) ≤ (m − 1)DG(M), the construction of TP

requires at most O(m log(m)DG(M)) messages. Determining the median of M
just requires at most O(mDG(M)) messages by the presented process. �



528 F. Baille, L. Blin, and C. Laforest

Lemma 7. Phase 2 uses at most 2ρ
(

1 +
2

α − 1

)
W (T ∗(M)) messages.

Proof. During phase 2, a DFS of tree TP is performed and each edge of TP is
crossed exaclty twice. Moreover, some direct connections (by the routing func-
tions) are made between some elements of M and the Median r. All the edges
crossed by messages is exactly the set of edges of the final structure Gf . Hence,
at most 2|E(Gf )| messages are exchanged during phase 2. As |E(Gf )| = W (Gf ),
approximation ratio on the cost of Theorem 1 shows the desired result. �
Proof. (Theorem 3) Lemma 6 shows that phase 1 uses O(m log(m)DG(M))
messages. Lemma 5 shows that ρ = O(log(m)); combined with Lemma 7 and
the fact that W (T ∗(M)) ≤ mDG(M) we get the result. �
Theorem 3 just gives an estimation, an upper bound on the number of messages.
In particular, each time a member sends a message to another member, in the
worst case the number of messages is equal of the diameter DG(M). In practice
many pairs of members are closer; this reduces the expected complexity. Each
message transports three data: two distances and one cardinal. Each value is smaller
than the numbers of vertices of G, thus can be represented on O(log n) bits.

3 Conclusion

In this paper we have proposed a tricriteria distributed algorithm for the con-
struction of a connection structure for interconnecting a group of machines
spread in a network modelled by a graph. This connection structure is allocated
for the group and is optimized in terms of induced delays and total cost.

We proved the quality of the structure by approximation ratios and we pro-
posed and proved an upper bound on the number of exchanged messages. This
last parameter was evaluated by a worst case analysis. It could be refined by
simulations for example. Moreover, our construction and proofs are parametric:
We used two separated phases and parameters α and ρ; Hence, if a better dis-
tributed algorithm 1 to construct the initial approximation Steiner tree exists
then it can directly be “plugged” in our method and its impact can easily be
evaluated by using our analysis.
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Abstract. This paper presents rVsMR rollback-recovery protocol for
distributed mobile systems, guarantying Monotonic Reads consistency
model, even in case of server’s failures. The proposed protocol employs
known rollback-recovery techniques, however, while applying them, the
semantics of session guarantees is taken into account. Consequently,
rVsMR protocol is optimized with respect to session guarantees require-
ments. The paper includes the proof of safety property of the presented
protocol.

Keywords: rollback-recovery, safety, mobile systems, Monotonic Reads
session guarantee.

1 Introduction

Applications in mobile domain usually tend to be structured as client-server
interactions. In such applications, clients accessing the data are not bound to
particular servers, but they can switch from one server to another. This switching
adds a new dimension of complexity to the problem of consistency and makes the
management of data consistency from client’s perspective very attractive. There-
fore, in [TDP+94] a new class of consistency models, called session guarantees
(or client-centric consistency models), has been proposed to define properties
of the system, observed from client’s point of view. Client-centric consistency
models define four session guarantees: Read Your Writes (RYW), Monotonic
Writes (MW), Monotonic Reads (MR) and Writes Follow Reads (WFR). RYW
expresses the user expectation not to miss his own modifications performed in
the past, MW ensures that order of writes issued by a single client is preserved,
MR ensures that the client’s observations of the data storage are monotonic and
finally, WFR keeps the track of causal dependencies resulting from operations
issued by a client.

In this paper we focus our attention on MR session guarantee. Below we give
a couple of examples that demonstrate the usefulness of MR. First, let us imag-
ine a mailbox of a traveling user, who opens the mailbox at one location, reads
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emails, and afterwards opens the same mailbox at different location. The user
should see at least all the messages he has read previously, which is impossi-
ble without MR. Further, imagine that user’s appointment calendar is stored
on-line in replicated database, and can be updated by both: the user and auto-
matic meeting scheduler. The calendar program periodically refreshes its display
by reading appointments from the database. The recently added (or deleted)
meetings can not appear to come and go, which is ensured, when copies of the
database held by servers are consistent with respect to MR [TDP+94]. Finally,
consider a Web page replicated at two different stores S1 and S2. If a client first
reads the page from S1 and later again from S2, then the second copy should be
the same, or newer as the one read from S1.

MR session guarantee is provided by appropriate consistency protocols
[TDP+94, BSW05b]. In order to construct effective solutions, adjusted to real ap-
plication requirements, these protocols should provide MR also in situations, when
servers holding replicated data brake down. Unfortunately, as far as we know,
none of the proposed consistency protocols preserving session guarantees, con-
siders such a possibility; they generally assume non-faulty environments. Such
assumption might be considered not plausible and too strong for certain mobile
distributed systems, where in practice failures do happen. Therefore, this paper
addresses a problem of providing MR session guarantee in case of server’s failures.

We introduce the rollback-recovery protocol rVsMR for distributed mobile
systems, which combines fault–tolerant techniques: logging and checkpointing
with coherence operations of a formerly proposed VsSG consistency protocol
[BSW05b]. As a result, the rVsMR protocol offers the ability to overcome the
servers’ failures, at the same time preserving MR session guarantee. Because of
client’s orientation, in rVsMR protocol run-time faults are corrected with any
intervention from the user. The main contribution of this paper is a presentation
of rollback-recovery protocol rVsMR of MR session guarantee and formal proof
of its safety.

2 Related Work

Session guarantees have been introduced in the context of Bayou replicated stor-
age system [TDP+94] to allow mobile clients to implicitly define sets of writes
that must be performed by servers. Since in Bayou each server’s state is main-
tained in the database, adding a persistent and crash resisting log is enough to
provide fault–tolerance in case of server’s failure. CASCADE — a caching service
for distributed CORBA objects [CDFV00], is another system using consistency
conditions based on session guarantees. In CASCADE it is assumed that pro-
cesses do not crash during the execution and all communication links are even-
tually operational. The Globe system [KKST98] follows the approach similar to
CASCADE, by providing a flexible framework for associating various replica-
tion coherence models with distributed objects. Among the coherence models
supported by Globe are also client-based models, although they are combined
with object-based consistency models in a single framework. Finally, Pastis —
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a highly scable, multi-user, peer-to-peer file system [PBS05] implements a con-
sistency model based on RYW session guarantee. In Pastis it is assumed that at
least one replica is not faulty and all users allowed to write to a given file trust
one another regarding the update of that file.

3 System Model, Basic Definitions and Notations

Throughout this paper, a replicated distributed storage system is considered.
The system consists of a number of unreliable servers holding a full copy of a
shared objects and clients running applications that access these objects. Clients
are mobile, i.e. they can switch from one server to another during application
execution. To access the shared object, clients select a single server and send
a direct request to this server. Operations are issued by clients sequentially,
i.e. a new operation may be issued after the results of the previous one have
been obtained. In this paper we focus on failures of servers, and assume the
crash-recovery failure model, i.e. servers may crash and recover after crashing
a finite number of times [GR04]. Servers can fail at arbitrary moments and
we require any such failure to be eventually detected, for example by failure
detectors [SDS99].

The storage replicated by servers does not imply any particular data model
or organization. Operations performed on shared objects are basically divided
into reads and writes. The server, which first obtains the write from a client,
is responsible for assigning it a globally unique identifier. Clients can concur-
rently submit conflicting writes at different servers, e.g. writes that modify the
overlapping parts of data storage. Operations on shared objects issued by client
Ci are ordered by a relation Ci⇁ called client issue order. A server Sj performs

operations in an order represented by a relation
Sj

�. Operations on objects are
denoted by w, r or o, depending on the operation type (write, read or these
whose type is irrelevant). Every server maintains the set CRSj of indexes of
clients from which it has directly received write requests and table RWSj , where
the number of writes performed by Sj before read from Ci was obtained, is kept
in position i. Relevant writes RW (r) of a read operation r is a set of writes that
has influenced the current state of objects observed by the read r. Formally, MW
session guarantee is defined as follows [BSW05b]:

Definition 1. Monotonic Reads (MR) session guarantee is a property meaning
that:

∀Ci ∀Sj

[
r1

Ci⇁ r2|Sj =⇒ ∀wk ∈ RW (r1) : wk

Sj

� r2

]
In the paper, it is assumed, that data consistency is managed by the VsSG
consistency protocol [BSW05b]. The formerly proposed protocol VsSG [BSW05b]
uses a concept of server-based version vectors for efficient representation of sets
of writes required by clients. Server-based version vectors have the following
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form: Vsj =
[
v1 v2 ... vNS

]
, where NS is a total number of servers in the system

and single position vi is the number of writes performed by server Sj . Every
write w in the VsSG protocol is labeled with a vector timestamp, denoted by
T (w) (T : O  → V ) and set to the current value of the vector clock VSj of server
Sj performing w for the first time. During writes, performed by server Sj , its
version vector VSj is incremented in position j and a timestamped operation is
recorded in history HSj . OSj is a set of all writes performed by the server in the
past. The writes that belong to OSj come from direct requests received by Sj

from clients or are incorporated from other servers during the synchronization
procedure. The VsSG protocol eventually propagates all writes to all servers.
At the client’s side, vector RCi representing writes relevant to reads issued by

the client Ci is maintained. The linearly ordered set
(
OSj ,

Sj

�
)

of past writes is

denoted by HSj and called history [BSW05b]. During synchronization of servers,
their histories are concatenated. The concatenation of histories HSj and HSk

,
denoted by HSj ⊕ HSk

, consists in adding new operations from HSk
at the end

of HSj , preserving at the same time the appropriate relations [BSW05b].
Below, we propose formal definitions of fault-tolerance mechanisms used by

the rVsMR protocol:

Definition 2. A log LogSj is a set of triples:{ 〈i1, o1, T (o1)〉 〈i2, o2, T (o2)〉 ... 〈in, on, T (on)〉} ,

where in represents the identifier of the client issuing a write operation on ∈ OSj

and T (on) is timestamp of on.

Definition 3. Checkpoint CkptSj is a couple
〈
VSj , HSj

〉
, of version vector VSj

and history HSj maintained by server Sj at the time t, where t is a moment of
taking a checkpoint.

In this paper we assume, that log and checkpoint are saved by the server in
a stable storage, able to survive all failures [EEL+02]. Additionally, we assume
that the newly taken checkpoint replaces the previous one, so just one checkpoint
for each server is kept in the stable storage.

4 The rVsMR Protocol

For every client Ci that requires MR session guarantee when executing read r,
results of all writes, which have influenced the read issued by a client before r
cannot be lost. Unfortunately, at the moment of performing the operation, the
server does not possess the knowledge, whether in the future the client will be
interested in reading results of its writes or not. So, to preserve MR, the recovery
protocol should ensure that outcomes of all writes performed by the server are
not lost in the case of its failure.

In the proposed rVsMR protocol, we introduce a novel optimization that
reduces the number of saved operations: we propose that every server Sj saves
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Upon sending a request 〈o〉
to server Sj at client Ci

1: W ← 0
2: if (not iswrite(o)) then
3: W ← max (W,RCi)
4: end if
5: send 〈o, W 〉 to Sj

Upon receiving a request 〈o, W 〉
from client Ci at server Sj

6: while
(
VSj �≥ W

)
do

7: wait()
8: end while
9: if iswrite(o) then

10: CWSj ← CWSj ∪ i
11: VSj [j] ← VSj [j] + 1
12: timestamp o with VSj

13: LogSj ← LogSj ∪ 〈i, o, T (o)〉
14: perform o and store results in res
15: HSj ← HSj ⊕ {o}
16: nWrites ← nWrites + 1
17: end if
18: if not iswrite(o) then
19: if i ∈ CRSj then
20: secondRead ← TRUE
21: else
22: CRSj ← CRSj ∪ i
23: RWSj [i] ← nWrites
24: end if
25: if (RWSj [i] > 0) and secondRead

then
26: CkptSj ← 〈VSj , HSj 〉
27: LogSj ← ∅
28: CRSj ← ∅
29: secondRead ← FALSE
30: nWrites ← 0
31: RWSj ← 0
32: end if
33: perform o and store results in res
34: end if
35: send

〈
o, res, VSj

〉
to Ci

Upon receiving a reply 〈o, res, W 〉
from server Sj at client Ci

36: if iswrite(o) then
37: RCi ← max (RCi , W )
38: end if
39: deliver 〈res〉

Every ∆t at server Sj

40: foreach Sk �= Sj do
41: send

〈
Sj , HSj

〉
to Sk

42: end for

Upon receiving an update 〈Sk, H〉
at server Sj

43: foreach wi ∈ H do
44: if VSj �≥ T (wi) then
45: perform wi

46: VSj ← max
(
VSj , T (wi)

)
47: HSj ← HSj ⊕ {wi}
48: end if
49: end for
50: signal()

On rollback-recovery
51: 〈VSj , HSj 〉 ← CkptSj

52: CRSj ← ∅
53: secondRead ← FALSE
54: nWrites ← 0
55: RWSj ← 0
56: Log�

Sj
← LogSj

57: vrecover ← 0
58: while { o�

j : T (o�

j)>vrecover}�= ∅ do
59: 0choose 〈i�, o�

i, T (o�

i)〉 with minimal
T (o�

j) from Log�

Sj
where T (o�

j) > VSj

60: VSj [j] ← VSj [j] + 1

61: perform o�

j

62: HSj ← HSj ⊕ {
o�

j

}
63: CWSj ← CWSj ∪ i�

64: vrecover ← T (o�

i)
65: nWrites ← nWrites + 1
66: end while

Fig. 1. Checkpointing and rollback-recovery rVsMR protocol
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only operations obtained directly from clients. Although only some of operations
performed by Sj are saved, we prove that MR is fulfilled in case of Sj failure.

The server that obtains the write request directly from client Ci, logs the
request to stable storage (Figure 1, l. 13), and only afterwards performs it (l. 14).
The moment of taking a checkpoint is determined by obtaining a read request r2,
which follows another read r1 issued by the same client. The server, which obtains
operation r2 from a client, checks first, whether such a read can be performed
(by comparing the values of vectors VSj and W - l. 6). When performing read
r2 is possible, the server checks if it has already performed, since the latest
checkpoint, any write operation that influenced the state of objects observed
by the read r1 (l. 25). When at least one such write has been performed, the
server checkpoints its state (l. 26), performs the read operation (l. 33) and sends
a reply to the client (l. 35). Otherwise, the new checkpoint need not be taken.
After the checkpoint is taken, server logs are cleared (l. 27). Saving the state of
server earlier would be unnecessary, as when write request is not followed by a
read one, it does not violate MR. Essential is the fact, that first the checkpoint
is taken, and only afterwards the content of log LogSj is cleared. (l. 27). After
the failure occurrence, the failed server restarts from the latest checkpoint (l.
51) and replays operations from the log (l. 58-65) according to their timestamps,
from the earliest to the latest one. Writes received from other servers during
update procedure, and missing from the local history of Sj , are performed, but
not logged (l. 45-47). Thus, such writes are lost after the failure occurrence.
However, those writes are saved in the log or in the checkpoint of servers, which
received them directly from clients. Hence, lost writes will be eventually obtained
again in consecutive synchronizations.

5 Safety of rVsMR Protocol

Lemma 1. Every write operation w issued by client Ci and performed by server
Sj that received w directly from client Ci, is kept in checkpoint CkptSjor in log
LogSj .

Proof. Let us consider write operation w issued by client Ci and obtained by
server Sj .

1. From the algorithm, server Sj before performing the request w, saves it in the
stable storage by adding it to log LogSj (l. 13). Because logging of w takes
place before performing it (l. 14), then even in the case of failure operation
w is not lost, but remains in the log.

2. Log LogSj is cleared after performing by Sj the second read request issued
by the same client. However, according to the algorithm, read operations
cause storing the information on writes by checkpointing the server’s version
vector VSj and history HSj in CkptSj (l. 26). The checkpoint is taken before
clearing log LogSj (l. 27). Therefore, the server failure, which occurs after
clearing the log, does not affect safety of the algorithm because writes from
the log are already stored in the checkpoint.
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Lemma 2. The rollback-recovery procedure recovers all write operations issued
by clients and performed by server Sj that were logged in log LogSj in the moment
of server Sj failure.

Proof. Let us assume that server Sj fails. The rollback-recovery procedure re-
covers operations remembered in the log (l. 58), after recovering VSj and HSj

from a checkpoint (l. 51). The recovered operation updates version vector VSj (l.
60), is performed by Sj (l. 61) and added to the server’s Sj history HSj (l. 62).

Assume now, that failures occur during the rollback-recovery procedure. Due
to such failures the results of operations that have already been recovered are
lost again. However, since log LogSj is cleared only after the checkpoint is taken
(line 27) and it is not modified during the rollback-recovery procedure (l. 56),
the log’s content is not changed. Hence, the recovery procedure can be started
from the beginning without loss of any operation issued by clients and performed
by server Sj after the moment of taking checkpoint.

Lemma 3. Operations obtained and performed in the result of synchronization
procedure and required by MR, are performed again after the failure of Sj, before
processing a new read from a client.

Proof. By contradiction, let us assume that server Sj has performed a new read
operation r obtained from client Ci before performing again operation w, re-
ceived during a former synchronization and lost because of Sj failure. According
to VsSG protocol, before executing r the condition VSj ≥ RCi is fulfilled (l. 6) .

Further assume, that w issued by Ci before r, has been performed by server Sk.
According to the protocol, after the reply from Sk is received by Ci, vector RCi is
modified: RCi ← max (W,RCi) . This means that vector RCi is updated at least
at position k: RCi [k] ← k + 1. (l. 37). Server Sj , during synchronization proce-
dure with Sk, performs w and updates its version vector: VSj ← max

(
VSj , T (w)

)
,

which means that VSj has been modified at least in the position k (l. 46). How-
ever, if failure of Sj happens, the state of Sj is recovered accordingly to values
stored in the checkpoint CkptSj (l. 51) and in the log LogSj (l. 58-65). From
the algorithm, while recovering operations from the log, the vector VSj is up-
dated only at position j. Thus, if operation w1 performed by Sj in the result of
synchronization with server Sk is lost because of Sj failure, the value of VSj [k]
does not reflect the information on w. Hence, until the next update message is
obtained, VSj [k] < RCi [k] , which contradicts the assumption.

Lemma 4. The recovered server performs new read operation issued by a client
only after all writes performed before the failure and required by MR are restored.

Proof. By contradiction, let us assume that there is a write operation w per-
formed by server Sj before the failure occurred, that has not been recovered
yet, and that the server has performed a new read operation issued by client Ci.
According to original VsSG protocol [BSW05b], managing only consistency not
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reliability issues, for reliable server Sj that performs new read operation, the
condition VSj ≥ RCi is fulfilled (l. 6-7).

Let us consider which actions are taken when a write operation is issued by
client Ci and performed by server Sj. On the server side, the receipt of the
write operation causes the update of vector VSj in the following way: Vsj [j] ←
V Sj [j] + 1 and results in timestamping w with the unique identifier (l. 12). The
server that has performed the write sends a reply containing the modified vector
VSj to the client. At the client side, after the reply is received, vector RCi is
modified: RCi ← max (W,RCi) (l. 37). This means that vector RCi is updated
at least at position j: RCi [j] ← max[j] + 1. If there is a write operation w
performed by server Sj before the failure that has not been recovered yet, then
VSj [j] < RCi [j], which follows from the ordering of recovered operations (l. 59).
This is a contradiction with VSj ≥ RCi . Hence, the new read operation cannot
be performed until all previous writes are recovered.

Theorem 1. MR session guarantee is preserved by rVsMR protocol for clients
requesting it, even in the presence of server failures.

Proof. It has been proven in [BSW05b] that VsSG protocol preserves MR ses-
sion guarantee, when none of servers fails. According to Lemma 1, every write
operation performed by server Sj is saved in the checkpoint or in the log. After
the server’s failure, all operations from the checkpoint are recovered. Further, all
operations performed before the failure occurred, but after the checkpoint was
taken, are also recovered (according to Lemma 2). According to Lemma 4, all re-
covered write operations are applied before new reads are performed. Moreover,
operations obtained by Sj during synchronization procedure and lost because
of Sj failure, are also performed once again before new reads from Ci (from
Lemma 3). Hence, for any client Ci and any server Sj , MR session guarantee is
preserved.

Full versions of the theorems and proofs can be found in [BKS05].

6 Conclusions

Although our implementation of rollback-recovery protocol is based on the known
techniques of operation logging and checkpointing of server’s state, it is never-
theless unique in exploiting properties of Monotonic Reads session guarantee
while applying these techniques. This results in checkpointing only the results
of write operations, which are essential to provide MR. Furthermore, we have
designed novel optimisations that reduce the number of saved operations. We
believe that rVsMR protocol can be applied to other systems (Section 2), where
it is required to maintain consistency for mobile clients.

Our future work encompasses the development of rollback-recovery protocols,
which are integrated with other consistency protocols. Moreover, appropriate
simulation experiments to quantitatively evaluate overhead of rVsMR protocol
are being carried out.
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Abstract. This paper is motivated by a need of practical asynchronous
network systems, i.e., a wait-free distributed mutual exclusion algorithm
(WDME). The WDME algorithm is very appealing when a process runs
on asynchronous network systems and its timing constraint is so re-
stricted that the process cannot perform a local-spin in a wait-queue,
which forces it to abort whenever it cannot access the critical region im-
mediately. The WDME algorithm proposed in this paper is devised to
eliminate the need for processes to send messages to determine whether
the critical region has been entered by another process, an unfavorable
drawback of a naive transformation of the shared-memory mutual exclu-
sion algorithm to an asynchronous network model. This drawback leads
to an unbounded message explosion, and it is very critical in real network
systems. Design of the WDME algorithm is simple, and the algorithm
is practical enough to be used in current distributed systems. The al-
gorithm has O(1) message complexity which is suboptimal between two
consecutive runs of critical section.

1 Introduction

The mutual exclusion (ME) problem is a classical problem in distributed com-
puting, and it is crucial in the design of distributed systems, especially concur-
rent systems. Although a large number of researchers have delved into devising
efficient shared-memory mutual exclusion (SME) algorithms, true masterpieces
on distributed mutual exclusion (DME) algorithms on practical asynchronous
networks are few and far between due to the more complex features of real
asynchronous networks, such as communication delay. Therefore, this paper is
concerned with a distributed mutual exclusion algorithm that is efficient enough
to be used in real asynchronous networks. The proposed algorithm works in a
wait-free manner, but it does not incur unnecessary communication messages.

Spin-wait algorithm. The mutual exclusion problem, which originally takes
into consideration a spin-wait algorithm, has been studied for many years.
Numerous solutions have been proposed, including a notable one proposed by
Peterson in [12]. In Peterson’s paper, a two-process solution is presented and then
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generalized to be applicable to an arbitrary number of processes. A refinement
of Peterson’s algorithm in which only single-writer variables are used was later
presented by Kessels in [9]. Although Kessels’ algorithm is more fine-grained
than Peterson’s, it still employs multi-reader shared variables.

The first local spin-wait algorithms were queue-lock algorithms in which read-
modify-write primitives are used to enqueue blocked processes onto the end of
a spin queue [1,6,11]. The most recent work that showed good results in the
shared memory environment was made by Yang [13], which is refined further by
Anderson in [2,3,4]. Through their works, they presented several results for the
upper bound of remote memory reference (RMR) time complexity under the
assumption of various memory access operations.

Wait-free algorithm. The wait-free DME algorithm, unlike the spin-wait ver-
sions, does not have to consider the time spent waiting in the contention area,
which most traditional algorithms have been concerned about, because contend-
ing processes that fail to access the critical section will just escape from the
contention area and try again later to gain access privilege. A closely related
work is presented in Jayanti [8]. Jayanti considers nondeterministic timeouts to
occur in real systems in a practical way. His algorithm, a shared memory mu-
tual exclusion algorithm, achieves an appealing function to meet the demands of
practical fields. A pure wait-free access behavior is comparable to the situation
using Jayanti’s algorithm where all processes except the one in the critical region
abort.

However, the abortive algorithm, if it is deployed in asynchronous networks,
generates unbounded remote memory references (or explicit messages) when
a process keeps aborting because of its strict timing constaint on a waiting
period, and this leads us to conclude that the abortive algorithm is not adequate
for asynchronous network systems which have a definite message delay and a
strict deadline on waiting time. In fact, the message delay affects the algorithm’s
efficiency significantly and makes the time spent waiting to enter a critical section
a considerable factor in the algorithm’s performance.

In this paper, we are mostly focused on designing a practical WDME algorithm
which (1) guarantees mutual exclusion in asynchronous networks, (2) solves the
problem arising from unbounded message complexity of unnecessary access mes-
sages under the wait-free access behavior, and (3) is simple and efficient enough
to be deployed in real distributed systems. The WDME algorithm has some useful
applications. An implementation of a wait-free distributed shared-data structure
has an important advantage compared to the wait-version counterpart: a process
does not need to perform spin-wait, which leads to a cycle consuming activity in
local machines and unnecessary remote messages in asynchronous networks. If
a distributed shared data structure can be constructed in a wait-free manner, it
can improve the overall system efficiency in many kinds of practical distributed
systems. Fraser [5] attempted to validate the practical usability of wait-free al-
gorithms by implementing a wait-free shared data structure using his algorithm.
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2 Preliminaries

The full definition of the problem can be found in other literatures, so only a gen-
eral description is provided here. One is presented with n (n > 2) processes that
communicate with each other through explicit messages, not shared variables.

The difference we insist on is the wait-free manner in accessing the critical
section. We assume that shared variables are accessed using an asynchronous
network. This causes another critical issue due to the potential data race problem
that can be ignored in SMP environments in which processes can read and write
shared variables in an atomic manner. The wait-free way of accessing the critical
section causes a crucial problem due to unbounded message complexity, which
has been optimized quite successfully in wait algorithms, but not in wait-free
algorithms.

The program code of each process is largely divided into two parts: a critical
section and a non-critical section. All that is known is that after entering the
critical section, a process will eventually leave it and return to the noncritical
section within a finite amount of time. Processes start execution at a specified
location in the non-critical part with all of the variables set to initial values. If we
describe the state of the program in a fine-grained form, during the computation,
each process Pi is in one of the following four states: the try state, in which it
attempts to enter the critical section, the critical state, in which it runs in the
critical section, the exit state, in which it leaves the critical section, and the
normal state, in which it does other local computations.

The standard properties of mutual exclusion algorithm are as follows.

Mutual exclusion. At any time t there is at most one process in the critical
section.

Deadlock freeness. If the critical section is open and there is a process trying
to enter the critical section, then some process eventually enters the critical
section.

Progress. For each time t, if there is a process Pi not in the normal state
at time t, there exists a time t′ (t′ > t) in which Pi makes progress to the next
stage.

In addition to these standard conditions, we have to define other important
condition that has immense importance in wait-free algorithms. A new condition
is based on the criterion of message complexity, which has been proven to be the
most crucial factor in determining an algorithm’s performance on asynchronous
networks, especially, the traffic it generates on the process-to-process intercon-
nect. According to the RMR time complexity measure, a new condition is stated
by the following question: How can a process reduce or eliminate the remote
memory reference to figure out whether the current winner has exited the critical
section?. The question is closely related to the RMR time complexity and is
of utmost importance because the phenomenon entails excessive message traffic
under the wait-free behavior. Within the framework of this condition, we mainly
concentrate our effort upon devising a simple and novel algorithmic solution.
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3 Algorithm

The WDME algorithm, proposed in this paper, is mainly based on the asyn-
chronous shared memory model. This base algorithm is then partly transformed
into an asynchronous network model.

3.1 Architecture

This section presents the architecture of the system in which the WDME algo-
rithm works, and we give an explanation for each automaton we adopt. In Lynch
[10], a shared memory model can be transformed into a network model by adding
proper automata. This enables many asynchronous shared memory algorithms to
be adapted to be run in asynchronous networks. We use this property to make our
algorithm efficient by transforming the part of our algorithm originally designed
to run on asynchronous shared memory into an asynchronous network algorithm.
The premise underlying this strategy is that the asynchronous shared memory
model is easier to design and faster to run than the asynchronous network model.

Figure 1 shows the architecture of the WDME algorithm for the special case
of n processes and a single variable which supports a compare-and-swap (CAS)
operation on the register. Since most of today’s modern processor architectures
support CAS operations, our assumption is very feasible. The architecture is
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largely composed of two models: an asynchronous network model on the left
side and a shared memory model on the right side. Since we assume that all pro-
cesses run on distributed systems, the asynchronous network model is required to
represent our problem domain. In addition to the asynchronous network model,
the shared memory model is also used in our architecture because of the fa-
vorable features it provides, such as design straightforwardness and algorithmic
efficiency. Therefore, we embed the shared memory model into the asynchronous
network model to achieve our goal. This simple embedded asynchronous network
model resolves the drawback of naive transformations easily.

Automaton 3.1. Automaton Ai

Signature:
Input:

tryi, a try invocation of process Pi

exiti, an exit invocation of process Pi

receive(v)i , a response from automaton Bi

reset(v)j,i, an invocation of a lock release
from Bj

Output:
oki, a response for tryi

faili, a response for tryi

send(v)i, an invocation of automaton Bi

States:
state ∈ {yes, no}, a state of automaton Ai

turn ∈ {yes, no}, an asynchronous release of turn

Transitions:

1: tryi

2: Effect:
3: if state = yes or
4: turn = yes then
5: send(“try”)i

6: else
7: faili
8:
9: exiti

10: Effect:
11: state := no
12: send(“exit”)i

13:
14: send(v)i

15: Precondition: none
16: Effect: none
17:
18: receive(v)i

19: Effect:
20: if v = “ok” then
21: state := yes

22: oki

23: else
24: if turn = yes
25: state := yes
26: else
27: state := no
28: faili
29:
30: reset(v)j,i

31: Precondition: none
32: Effect:
33: turn := yes
34: state := yes
35:
36: oki

37: Precondition: none
38: Effect: none
39:
40: faili
41: Precondition: none
42: Effect: none

Tasks:
none

We have three automata in our embedded asynchronous network model, in-
cluding process Pi in the asynchronous network model and automaton Bi in the
shared memory model. Two automata Pi and Ai work in the asynchronous net-
work model since they should simulate distributed processes. Automaton Bi,
which mainly simulates the non-blocking mutual exclusion algorithm, is de-
scribed in the shared memory model with other automata Bk, (k ∈ {1, 2, .., n}).
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The WDME algorithm designed in this paper uses a single register to synchronize
competing processes, and a single register is powerful enough to be suitable for
practical purposes. For that purpose, we allow the register to support the CAS
operation, which has an infinite consensus number as presented in Herlihy [7].
Then, we transform the algorithm into our model, which is message-suboptimal.

The reason we design the WDME algorithm as a hybrid model, in other words,
adopt a shared memory model in a network model, is simply for algorithmic
efficiency. If we design the architecture purely in a network model, then every
access to shared variables must entail corresponding communication messages
and message delay. This degrades the algorithm’s performance severely. So, we
transform a pure mutual exclusion algorithm, which requires heavy accesses to
shared variables, into a shared memory algorithm. The remaining part of the
WDME algorithm is concerned with the issues we mentioned previously, and
the detailed explanation is presented in a later section.

3.2 Automaton

We can express that each process represented as Pi is the composition of an
I/O automaton Ai, which is responsible for simulating process i of A and han-
dling the front-end portion of the WDME algorithm, and an I/O automaton Bi,
which is responsible for simulating the shared memory mutual exclusion algo-
rithm, the back-end portion of WDME. Various input and ouput interactions
are described in Figure 1. The code for every automaton is expressed in I/O
automaton format[10].

Automaton Ai. First, we present the code for automaton Ai. The code for
Ai is shown in Automaton 3.1. Automaton Ai has inputs tryi, exiti, reset(v)j,i,
and receive(v)i, and outputs oki, faili, and send(v)i. Automaton Ai is mainly
responsible for handling the front-end part of the WDME algorithm. It uses
inputs tryi and exiti, and outputs oki and faili to interact with process Pi.

Ai needs a couple of state variables to work correctly. Each variable has ob-
vious meanings. The state variable indicates states of Ai, yes or no. When it is
in the yes state, automaton Ai, upon the arrival of a new try request from Pi,
can send a trial message to automaton Bi (line 3-5). But, if it is in the no state,
automaton Ai responds with a faili whenever it receives try from automaton Pi

(line 6-7). This immediate reply does not incur any messages, and this local, fast
response continues until state is released by an asynchronous input invocation
of reset(v)j,i, which is invoked by the winner process’ automaton Bj upon the
“exitj” invocation. Because our assumed model is asynchronous networks, this
invocation can precede the response from automaton Bi. In this case, whenever
a “fail” response is received from automaton Bi, we first check if turn has al-
ready been set by some fast process. If turn is yes, we simply set state to yes,
otherwise, leave it. This is why we set both turn and state as yes.

This enables process Pi to send only a single message between the periods of
each trial, and it eliminates the unbounded number of checking messages. There-
fore we can assert that each waiting process has a O(1) message suboptimal
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bound in each period of trial. This suboptimal message complexity can be
achieved only by using our hybrid architecture.

Automaton 3.2. Automaton Bi

Signature :
Input:

receive(v)i , an invocation of Ai

Output:
send(v)i, a response
reset(v)i,j , an invocation of Bj by Bi

Shared variable:
turn ∈ {0,1,2,..,n}

States:
state ∈ {wait, done}
result ∈ {success, fail}

Transition

1: receive(“try”)i

2: Effect:
3: if turn = 0 then
4: if CAS(0,&turn,i) then
5: result := ok
6: send(“ok”)
7: else goto fail
8: else
9: fail:
10: send(“fail”)
11:
12: receive(“exit”)i

13: Effect:

14: turn := 0
15: for every j, j ∈ {1,2,..,n}
16: reset(v)i,j

17: send(“ok”)i

18:
19: reset(v)i,j

20: Precondition: none
21: Effect: none
22:
23: send(v)i

24: Precondition: none
25: Effect: none

Tasks:
none

Automaton Bi. The code for automaton Bi is shown in Automaton 3.2. Au-
tomaton Bi has input receive(v)i and outputs send(v)i and reset(v)i,j . Automa-
ton Bi is responsible for handling the back-end part of the WDME algorithm,
which checks turn, a local shared register, and performs a CAS operation on
the turn register. If it succeeds in CAS, it replys ok to automaton Ai (line 4-6).
Otherwise, it sends a fail message (line 8-10). As we mentioned previously, the
CAS operation has an infinite consensus number, so the WDME algorithm works
very efficiently even with a large number of competing processes.

Automaton Bi needs a single locally shared register turn and a couple of state
variables to work properly. The code is quite straightforward, so we do not give
much detail about the code. The key feature we note in automaton Bi is the
input receive(”exit”)i. If Bi receives an exit message from automaton Ai, it
flips the turn register value, before propagating its exit state to all processes in
a non-blocking manner through the invocation of reset(v)i,j , which leads each
automaton Ak, k∈{1,2,..,n}, to set its turn and state variables to yes (line 14-
17). Finally, every waiting process is informed that the turn register has been
released.
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4 Proof of Correctness

In this section, we show that the WDME algorithm preserves an important
property which must be satisfied to be considered a mutual exclusion algorithm.

Lemma 1. Automaton Bi preserves mutual exclusion.

Proof. We will prove the lemma by contradiction. Assume that two automata
Bi and Bj , i 
= j, are simultaneously allowed to execute in a critical section,
which means that both automata consider the turn has been set by its process
identifier. Let’s assume there exists an execution that leads to this state. Accord-
ing to the code in Automaton 3.2, both automata perform CAS before setting
the turn register to their identifiers. However, the CAS operation, which is an
atomic read-modify-write with an infinite consensus number, allows only a single
automata to set turn to its identifier. Therefore, there can be no legal execution
which allows concurrent entrances into the critical section.

Next, we prove the message complexity of each process in our algorithm to be
less than one message between any two consecutive runs of the critical section,
i.e., O(1) message suboptimal algorithm.

Theorem 1. The WDME algorithm has at least one process which executes in a
critical section between two consecutive “tryi” invocations of Bi by process Pi(i
∈ {1,2,..,n}). The algorithm has O(1), i.e., less than one, message suboptimal
complexity between two consecutive runs of the critical section.

Proof. The theorem above consists of two sentences, but both have the same
meaning. Therefore, we need to prove just one of the two statements. We prove
by contradicting the first sentence. Suppose the first part of theorem is false and
consider an execution in which no process executes in the critical section between
two consecutive “tryi” invocations of Bi by any process Pi. First, we can easily
note that if the same automaton Ai sends a “tryi” message to automaton Bi

consecutively, then the first “tryi” is failed by some other process Pj , j 
= i,
and the state variable of Ai is released later by the process Pj . Otherwise, Ai

can not send a second “tryi” message to Bi. Second, even though automaton Ai

of process Pi is released by process Pj , we can not know when Pi will attempt
to access the critical section again. The only thing we can guarantee is that
there are more than zero trials by other processes until process Pi sends the
second “tryi” message to Bi. Therefore, we conclude that there is at least one
process which executes in the critical section because Pi can not send a second
“tryi” message until it has been released through a reset()k,i invocation by the
winner process Pk. This is a contradiction. Since the first statement is true, we
can easily note that any waiting process Pi’s “tryi” message cannot be sent to
automaton Bi more than two consecutive times. Otherwise, this contradicts the
first sentence, which proved that there exists at least one process in the critical
section between two consecutive “tryi” messages.
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5 Conclusion

In this paper, we present a wait-free distributed mutual exclusion algorithm.
The WDME algorithm preserves important properties that every correct mutual
exclusion algorithms should obey. It successfully overcomes the drawback of
naive transformations of shared memory algorithms into asynchronous network
models, that is, unbounded message complexity of checking messages. The main
features of the WDME algorithm are that (1) it eliminates unnecessary remote
memory references that would have been generated by an asynchronous network
algorithm and (2) it provides O(1) message complexity between two consecutive
trials to access the critical section.

We are working on developing a practical distributed system to work on dis-
tributed shared data structures. The WDME algorithm plays a crucial role in
the prototype distributed system. We hope it will work very efficiently.
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Abstract. In this paper we introduce two new WAB-based consensus
algorithms for the crash-recovery model. The first one, B*-Consensus,
is resilient to up to f < n/2 permanent faults, and can solve consensus
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1 Introduction

The consensus problem is a fundamental building block in fault-tolerant dis-
tributed systems. In a seminal paper, Fischer, Lynch, and Patterson have shown
that consensus cannot be deterministically solved in a completely asynchronous
distributed system subject to process failures [1]. This result implies that any
consensus algorithm requires extensions to the pure asynchronous model if at
least one process may crash during the execution.

Motivated by this theoretical bound, several approaches have been proposed to
solve consensus by strengthening the asynchronous. Dolev et al. [2] and Dwork et
al. [3] studied the minimum synchronization requirements needed by consensus.
In [4], Chandra and Toueg introduced the concept of unreliable failure detec-
tors, oracles that provide possibly incorrect information about process failures.
Unreliable failure detectors encapsulate the synchronous assumptions needed to
solve consensus and provide abstract properties to processes. The authors clas-
sified failure detectors in eight classes and showed that �W encapsulates the
minimal assumptions needed to solve consensus [5]. Some proposals have also
considered solving consensus using a leader election oracle Ω [6,7]. Intuitively, a
leader election oracle ensures that nonfaulty processes eventually agree on the
identity of some nonfaulty process, the leader.

Another way to circumvent the consensus impossibility result is to use ran-
domization. The algorithms presented in [8,9] use a random number generator to
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guarantee that with probability one processes will reach a decision. Algorithms
similar to those in [8,9] were presented by Pedone et al. [10]. Instead of relying on
randomization, however, progress is ensured using weak ordering oracles. Such
oracles provide message ordering guarantees but, as unreliable failure detectors
and Ω, they can make mistakes. More specifically, the algorithms in [10] use
the weak atomic broadcast (WAB) oracle. WAB ensures that if processes keep
exchanging broadcast messages, then some of these messages will be delivered in
the same order by all nonfaulty processes. Weak ordering oracles are motivated
by Ethernet broadcast, present in many clustered architectures.

Lower bounds on what consensus algorithms can achieve have been also con-
sidered in the literature. Lamport summarizes previous results (e.g., [11,12]) and
presents new ones in [13]. These bounds show a tradeoff between resilience and
time complexity (i.e., the number of communication steps needed to solve con-
sensus). Briefly, the following results are stated: (a) To ensure progress, at least
a majority of processes needs to be nonfaulty. (b) To allow a decision to be
reached in two communication steps when more than one process is allowed to
propose, more than two-thirds of the processes should be nonfaulty.

Despite the great interest that consensus has attracted and the multitude of
algorithms that have been proposed to solve it, most works have considered sys-
tem models which are of more theoretical than practical interest. This is mainly
reflected in two aspects: the failure behavior of processes and the reliability of
communication links. From a practical perspective, processes should be capa-
ble of re-integrating the system after a crash. Moreover, algorithms capable of
tolerating message losses can make better use of highly-efficient communication
means (e.g., UDP messages). We call such algorithms practical.

In this paper we introduce practical WAB-based consensus algorithms. Dif-
ferently from those in [10], our protocols assume that processes can recover after
failures and messages can be lost. The first one, B*-Consensus, is resilient to up
to f < n/2 permanent failures; it solves consensus in three communication steps
when the WAB oracle works. The second algorithm, R*-Consensus, is f < n/3
resilient and can solve consensus in two communication steps. Therefore, besides
practical, our algorithms are also optimal regarding the time complexity versus
resilience tradeoff.

The rest of the paper is organized as follows. We introduce our computa-
tional model and some definitions in Section 2. In Section 3 we present the
B*-Consensus and the R*-Consensus algorithms. Correctness proofs for both
algorithms can be found in [14]. In Section 4 we compare B*-Consensus and
R*-Consensus to other practical consensus algorithms, and relate them to other
works. Section 5 concludes the paper.

2 Model and Definitions

2.1 Processes, Communication, and Failures

We consider an asynchronous system composed of a set Π = {p1, . . . , pn} of
processes, n ≥ 3. Processes communicate by message passing. Messages can
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be lost or duplicated but not corrupted. Processes can crash and recover an
unlimited number of times but do not behave maliciously (i.e., no Byzantine
failures). To ensure liveness we assume that eventually a subset of processes
remains up forever. Such processes are called stable.

In the following sections we provide a definition of the consensus problem and
then augment the asynchronous model with further assumptions to consensus
solvable.

2.2 The Consensus Problem

Processes executing consensus can propose a value, interact to accept a single
value, and learn the decision. Similarly to [13], we consider that these roles can
be played independently by each process. Characterizing processes as proposers,
acceptors, and learners allows us to simplify the algorithm’s presentation. It also
better models some real systems, e.g., it adequately matches a system where
clients propose values to servers and then, without participating in the decision
protocol themselves, learn the value accepted.

Using the decomposition of roles, consensus is defined as follows:

Nontriviality: only a proposed value may be learned.
Consistency: any two values that are learned must be equal.
Progress: for any proposer p and learner l, if p, l and n−f acceptors are stable,

and p proposes a value, then l must learn a value.

2.3 Weak Ordering Oracles

Weak ordering oracles provide message ordering guarantees [10]. A WAB is
a weak ordering oracle defined by the primitives w-broadcast(k,m) and w-
deliver(k,m), where k ∈ N defines a w-broadcast instance, and m is a message.
The invocation of w-broadcast(k,m) broadcasts message m in instance k; w-
deliver(k,m) w-delivers a message m w-broadcast in instance k. WAB satisfies
the following property:

– If w-broadcast(k,–) is invoked in an infinite number of instances k, then
(Fairness) for every instance k there is an instance k′ ≥ k in which every
stable process w-delivers a message and (Spontaneous Order) the first w-
delivered message in instance k′ is the same for every process that w-delivers
a message in k′.

For example, consider an instance k in which processes p and q w-broadcast
messages mp and mq respectively. If all non crashed processes in the system
execute w-deliver(k, ), and their first invocation of w-deliver returns the same
message m ∈ {mp,mq}, then the property is satisfied in k. If, otherwise, some
non crashed process does not execute w-deliver, or if one process w-delivers mp

while another w-delivers mq, the property is not satisfied in i.
WABs are motivated by empirical observation of the behavior of IP-multicast

in some local-area networks (e.g., Ethernet). In such environments, IP-multicast
ensures that most broadcast messages are delivered in the same order to all
network nodes.
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3 B*-Consensus and R*-Consensus

In this section we introduce two WAB-based consensus algorithms for the crash-
recovery model: B∗-Consensus and R∗-Consensus. These protocols were inspired
by those in [10] but, differently from them, tolerate an unbounded number of fail-
ures and message losses without losing consistency. For example, any process can
crash and recover an unbounded number of times. To ensure progress, however,
a certain number of processes is required to be stable: B∗-Consensus requires
f < n/2 stable processes, and R*-Consensus requires f < n/3. By requiring
more stable processes, R*-Consensus may reach a decision in two communica-
tion steps, while B*-Consensus needs at least three steps. Therefore, they have
optimal time complexity [13]. To the best of our knowledge, these are the first
WAB-based algorithms to consider crash-recovery failures and message loses.

As the two algorithms share some behavior, in the following sections we ini-
tially describe their commonalities and then describe their particularities.

3.1 General Overview

R*-Consensus and B*-Consensus execute a sequence of rounds. In each round,
proposers can propose a value, acceptors try to choose a value proposed in the
round, and learners try to identify whether a decision has been made in the
current round or if a new round must be started.

In a deciding round r, (i) a proposer w-broadcasts a value v, that is, it ex-
ecutes w-broacast(r, v); (ii) acceptors w-deliver some proposed value, possibly
interact to accept a value, and notify the learners; and (iii) the learners, after
gathering enough acceptance messages, learn that a value was decided and tell
the application. The main difference between the algorithms lies in the mean-
ing of enough; in order to decide with fewer messages, increasing the resilience
from f < n/3 to f < n/2, acceptors in B*-Consensus must execute an extra
communication round before accepting a value.

The algorithms are divided in blocks of statements, each one executed until
completion and one at time. The Initialization block runs when the algorithm
is started. If the process is recovering from a crash, the Recovery block is run,
instead. The other blocks have clauses triggered by message arrivals (receive and
w-deliver), and only run after Initialization or Recovery have run.

In both algorithms, every process p keeps a variable rp with the highest-
numbered round in which p took part, and a variable propp that either has the
proposal for round rp or ⊥, meaning that any value can be proposed. Variables
propp and rp are always logged together (see Algorithms 1 and 2), ensuring that
processes replay rounds consistently, after recovering from a crash.

Skipping rounds. When a process p in round rp sees a message sent in round
rq > rp, p immediately jumps to rq without performing rounds rp+1..rq−1. This
allows processes that were down for a long time to rapidly catch up with the most
advanced processes. Not every value is a valid proposal for every round: after
deciding rounds, for example, only the decided value can be proposed. As only



Optimal and Practical WAB-Based Consensus Algorithms 553

processes that finished round rq −1 initially know which values can be proposed
in rq, processes in earlier rounds must learn, maybe indirectly, which values
are valid in rq from processes in later rounds. This is accomplished by having
each process’ proposal attached to every message it sends (the last field of each
message in the algorithm). The Round Skipping Task, presented in Algorithms 1
and 2, lines 8-16, runs on every message received/w-delivered before other clauses
handle them. The algorithms in [15] can also skip rounds, but the procedure is
more complicated than the one we present.

Proposers. Proposers are given a value by the application and try to pass it
as the instance’s decision. Due to message losses and process crashes, a consensus
instance may not terminate in the first attempt, and may have to be retried.
At any time, proposers can retry a consensus instance if they believe that the
previous attempt has failed; consistency is kept even if the previous attempt is
actually still running. To be able to learn that a round of the algorithm has

Algorithm 1. The B∗-Consensus Algorithm
1: Initialization:
2: rp ← 0
3: propp ← est1p ← est2p ← ⊥
4: Cset ← Sset ← ∅

5: Recovery:
6: retrieve(rp, propp, est1p, est2p)
7: Cset ← Sset ← ∅
8: Round Skipping Task:
9: before executing receive( , rq, . . .)

or w-deliver(m, rq)
10: if rp > rq

11: send (SKIP,rp, propp) to q
12: if rp < rq

13: rp ← rq

14: propp ← propq

15: est1p ← est2p ← ⊥
16: Cset ← Sset ← ∅
17: To propose value vp do as follows:
18: if propp = ⊥
19: propp ← vp

20: w-broadcast (first,rp, propp)
to acceptors

21: Acceptors execute as follows:
22:upon w-deliver (first, rp, propq)
23: if est1p = ⊥
24: est1p ← propq

25: log (est1p, rp, propp)
26: send (check, rp, est1p, propq)

to acceptors

27:upon receive (check, rp,est1q ,propq)
28: Cset ← Cset ∪ {(check, rp, est1q, propq)}
29: if |Cset| = �(n + 1)/2�
30: if ∀(check, rp, est1q, −) ∈ Cset :

est1q = v
31: est2p ← v
32: else
33: est2p ← �
34: log (est2p, rp, propp)
35: send (second, rp, est2p, propp)

to learners

36: Learners execute as follows:
37:upon receive (second, rp, est2q, vq)
38: Sset ← Sset∪{(second, rp, est2q, vq)}
39: if |Sset| = �(n + 1)/2�
40: if ∀(second, rp, est2q, ) ∈ Sset :

est2q = v �= �
41: decide v
42: if ∃(second, rp, est2q, ) ∈ Sset :

est2q = v �= �
43: propp ← v
44: rp ← rp + 1
45: est1p ← est2p ← ⊥
46: Cset ← Sset ← ∅
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terminated we assume that each proposer is also a learner. So, if a proposer
does not learn the decision of the consensus it has initiated after some time, it
re-starts its execution by proposing in its current round. Proposers execute lines
17-20 of the algorithms.

3.2 The B∗-Consensus Algorithm

Algorithm 1 presents the B∗-Consensus algorithm.

Acceptors. In the B∗-Consensus algorithm, every acceptor p will accept the
first proposal w-delivered. That is, p takes this proposal as its first estimative
(est1p), and logs it together with the current round number (rp) and a valid
proposal. Then, p exchanges its estimative with other acceptors using check
messages, collecting �(n+1)/2� estimatives. p uses them as its second estimative
(est2p) if they are all equal, or $, otherwise. p then logs est2p and rp and sends
them both to the learners in second messages.

Learners. Once a learner has received �(n+1)/2� second messages, it checks
whether all carry the same estimative v. If that is the case, a decision has been
reached and v is delivered to the application. Otherwise, p looks for at least one
v 
= $ in second messages to be used as a proposition for the next round, so
that any future rounds will only be able to decide v.

Algorithm 2. The R∗-Consensus Algorithm
1: Initialization:
2: rp ← 0
3: propp ←, est1p ← ⊥
4: Sset ← ∅

5: Recovery:
6: retrieve(rp, propp, est1p)
7: Sset ← ∅
8: Round Skipping Task:
9: before executing receive( , rq, . . .)

or w-deliver(m, rq)
10: if rp > rq

11: send (SKIP,rp, propp) to q
12: if rp < rq

13: rp ← rq

14: propp ← propq

15: est1p ← ⊥
16: Sset ← ∅
17: To propose value vp do as follows:
18: if propp = ⊥
19: propp ← vp

20: w-broadcast (first,propp)
to acceptors

21: Acceptors execute as follows:
22:upon deliver (first,rp, propq)
23: if est1p = ⊥
24: est1p ← propq

25: log (est1p, rp, propp)
26: send (second, rp, est1p, propp)

to learners

27: Learners execute as follows:
28:upon deliver (second,rp, est1q, vq)
29: Sset ← Sset ∪ {(second, rp, est1q, vq)}
30: if |Sset| = �(2n + 1)/3�
31: if ∀(second, rp, est1q, ) ∈ Sset :

est1q = v
32: decide v
33: if ∃vmaj , for �(n + 1)/2� (second, rp, v, )

∈ Sset : v = vmaj

34: propp ← vmaj

35: else
36: propp ← ⊥
37: rp ← rp + 1
38: est1p ← ⊥
39: Sset ← ∅
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3.3 The R∗-Consensus Algorithm

Algorithm 2 presents the R∗-Consensus algorithm.

Acceptors. In the R∗-Consensus algorithm, as in B∗-Consensus, every ac-
ceptor p accepts the first proposal it w-delivers, and logs it together with rp and
propp, so that these values will not be forgotten in case of crash. p then sends
these values to all learners in second messages.

Learners. Learners gather �(2n+1)/3� second messages and check whether
they contain the same estimative v. If that is the case, v is decided and deliv-
ered to the application. Otherwise, learners check if at least a majority of the
estimatives are equal to v′ in which case propp is set to v′, locking the value for
future decisions. In any case, rp is incremented.

4 Related Work

WAB-based consensus algorithms were introduced in [10]. This work assumed
crash-stop failures and reliable channels. Here we presented WAB-based consen-
sus algorithms that allow processes to recover and messages to be lost.

The problem of consensus in the crash-recovery model was previously studied
in [7,15,16,17,18,19]. These approaches considered either a leader-election oracle
or unreliable failure detectors (UFD) as extensions to the asynchronous model.
In [15], Aguilera et al. showed that if the number of processes that never crash
(“always-up processes”) is bigger than the number of processes that eventually
remain crashed or that crash and recovery infinitely many times, then consen-
sus is solvable without stable storage; without this assumption stable storage
is needed. As we do not bound the number of processes that are allowed to
crash, our algorithms must use stable storage, although this is done sparingly.
Differently from our approach, the algorithms in [16,19] keep all their variables
in stable storage and cannot be considered practical.

In [13] some lower bounds on how fast, in terms of communication steps, a
consensus algorithm can be are given. Roughly, if any value proposed by two
or more proposers can be decided within two communication steps, then no
more than f < n/3 processes can be unstable; to be able to decide in three
communication steps, no more than f < n/2 processes can be unstable. Some
algorithms found in the literature may decide in two communication steps and
still be f < n/2 resilient. In these algorithms, however, only the value proposed
by the coordinator1 can be decided in two steps; deciding on a value proposed by
other processes requires at least one message step more. As this extra step is im-
portant in several practical situations, e.g., when using consensus to implement
atomic broadcast, in the following analysis we consider this extra step whenever
it applies. Since WAB-based algorithms do not have the role of a coordinator,
they do not suffer from this shortcoming.

The Paxos algorithm [7,18] relies on an Ω leader election oracle to solve con-
sensus. In its normal form, Paxos needs at least four (plus one) communica-
1 Leader and initiator are also names commonly used.
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tion steps to decide on a value. By omitting the first phase of the algorithm, a
simple optimization for good runs, two communication steps can be saved. An-
other variation of Paxos, Fast Paxos [20], eliminates the extra step by having
any proposer proposing on behalf of the leader. In good runs, a decision can
be reached in two communication steps. Since Paxos is f < n/2 resilient and
Fast Paxos is f < n/3, they are optimal. Just like Paxos and Fast Paxos, the
WAB-based algorithms we presented here are also optimal.

Hurfin et al. [17] presented an algorithm that has the same message pattern
as Paxos in optimized mode, i.e., two (plus one) communication steps. Because
it uses the rotating coordinator paradigm, the decision may be delayed when
coordinators, elected deterministically, crash.

The algorithm relying on stable storage in [15] is f < n/2 resilient. In best-
case runs, processes access stable storage twice in a round and reach decision
within three (plus one) communication steps. B*-Consensus writes in disk twice
in a round, while R*-Consensus writes only once. In Paxos, disk writes happen
once per round in the optimized mode, and twice in the normal mode, that is,
in each mode it has the same cost as one of our algorithms. Fast Paxos writes
once per round, as does the algorithm in [17].

Table 1 summarizes consensus algorithms in terms of communication steps
(i.e., expected latency), number of messages, their resilience, number of disk
writes, and the oracle needed for termination. δ denotes the expected network
delay assumed for the analysis of the algorithms. We consider both point-to-
point and multicast communication, and assume that either one or the other
is used at each configuration, but not both at the same time. Notice that we
consider messages sent from a process to itself, as these messages also impose
some processing cost at each machine.

Table 1. Consensus algorithms in the crash-recovery model

Protocol Expected Number of Messages Resilience Oracle Disk
Latency Unicast Broadcast Writes

B∗-Consensus 3δ 2n2 + n 2n + 1 f < n/2 WAB 2
R∗-Consensus 2δ n2 + n n + 1 f < n/3 WAB 1

Fast Paxos 2δ n2 + n n + 1 f < n/3 Ω 1
Paxos (optimized) 3δ n2 + n + 1 n + 2 f < n/2 Ω 1
Paxos (normal) 5δ n2 + 3n + 1 2n + 3 f < n/2 Ω 2

Aguilera et. al 4δ 3n + 1 n + 3 f < n/2 UFD 2

Hurfin et. al 3δ n2 + n + 1 n + 2 f < n/2 UFD 1

From Table 1, the optimized version of Paxos takes the same number of com-
munication steps as B*-Consensus but, due to its centralized nature, needs nearly
half the messages. Two more communication steps are required when Paxos
runs the first phase. Although the number of messages is half of B*-Consensus
with point-to-point communication, it becomes almost the same when broad-
cast is available. Moreover, if the proposer is the current leader, then one com-
munication step and one message can be saved in Paxos. When compared to
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R*-Consensus, the optimized version of Paxos uses the same number of mes-
sages, and trades one communication step for better resilience: f < n/2 instead
of n < n/3. Finally, notice that Paxos always degenerate to the normal case
after the first try to achieve consensus fails using the optmized version of the
protocol. Fast Paxos equals R*-Consensus in all criteria but the oracle. Aguilera
et al.’s algorithm has the same resilience, latency and number of disk writes
as B*-Consensus, but is more efficient in terms of messages. Hurfin et al.’s al-
gorithm is just as efficient as R*-Consensus, but has better resilience. If it is
important for more than one proposer to be able to have its proposal decided,
then the WAB-based consensus algorithms become one communication step more
efficient. Moreover, in our analysis we do not count the messages needed to im-
plement the Ω and UFD abstractions.

5 Conclusions

In this paper we introduced B*-Consensus and R*-Consensus, two WAB-based
algorithms that assume the crash-recovery model and tolerate message losses.
Both algorithms can cope with any number of process failures without violating
safety. B*-Consensus takes three communication steps to reach a decision and
requires a majority of stable processes to ensure progress. R*-Consensus can
decide in two communication steps, but requires more than two thirds of stable
processes for progress. Both algorithms are optimal in terms of communication
steps for the resilience they provide.

We compared our algorithms to other well-known consensus algorithms in
the crash-recovery model. Due to their decentralized fashion, when using these
protocols, any proposer may have its value decided within the minimal latency.
This comes at the cost of resilience or extra messages. In the case of Fast Paxos,
the only difference is the oracle used, Ω, and the number messages needed to
implement it.
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Abstract. This article introduces a self-stabilizing deadlock-detection
algorithm for the OR model. The algorithm is complete, because it de-
tects all deadlocks, and it is correct, because it does not detect false
deadlocks. Because of the self-stabilization property, the algorithm sup-
ports dynamic changes in the wait-for graph on which it works, and
transient faults; also, it can be started in an arbitrary state. Previous
deadlock-detection algorithms for the OR model are not guaranteed to
recover from transient faults, nor can they be started in an arbitrary
state. Once the algorithm terminates, each process knows if it is or not
deadlocked; moreover, deadlocked processes know whether they cause or
only suffer from deadlock.

1 Introduction

One of the main motivations to build distributed systems is the possibility of
sharing resources among several processes. A process can acquire and release
resources in a sequence that is unknown beforehand. The deadlock problem
arises in this setting; being able to detect deadlocks is the first step to take
actions and resolve them. A set of processes is said to be deadlocked when each
process in the set is blocked, waiting for resources assigned to other processes
in the same set. The presence of a deadlock is a stable property of a system;
once a set of processes becomes deadlocked, it will remain in that state unless a
resolution action is taken.

Knapp classified the deadlock-detection problem in six models, according to
the type of requirements a process can make [1]; for most models, deadlock-
detection algorithms have been proposed. Under the single-outstanding-request
model, a process can request only one resource at a time [2]. Under the AND
model, a process can request multiple resources simultaneously; requirements are
satisfied when all the requested resources are assigned [2,3]. Under the OR model,
a process also can request multiple resources simultaneously, but requirements
are satisfied when any of the requested resources is assigned [4,5,6,7]. Under the
AND/OR model, a process can request any number of resources in an arbitrary
combination of AND and OR requirements [8]. Under the n-out-of-k model, a
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requirement for n resources is satisfied when k of them are assigned [9]. Under
the unrestricted model, no assumption is made about the way in which a process
makes its requirements.

Since Dijkstra introduced the concept of self-stabilization in 1974 [10], sev-
eral self-stabilizing algorithms have been proposed, to solve many problems in
distributed systems. Mutual exclusion and leader election are among the classi-
cal problems solved with this approach. Schneider wrote an early survey on the
subject [11]. In general, a system is said to be self-stabilizing if, regardless of
its initial global state, it reaches a legitimate global state in a finite number of
steps [10]. The global state of a distributed system is the cartesian product of the
local states of every process in the system. The definition of legitimate and ille-
gitimate global states depends on the context of the problem being solved. The
ability of regaining a legitimate global state that these systems present, makes
them able to support transient faults. A transient fault is one that occurs once,
and ceases to occur. Furthermore, self-stabilizing systems can be started in an
arbitrary global state, even illegitimate ones, since they will reach a legitimate
state nonetheless.

The dynamic nature of resource competition, in which processes are involved
in a distributed system, makes the deadlock-detection problem suitable to be
treated from a self-stabilizing perspective. In addition, transient-fault tolerance
is a desirable property for a distributed deadlock-detection algorithm.

2 The OR Model

This article presents a self-stabilizing deadlock-detection algorithm for the OR
requirement model. A process can make an OR request, for example, in a repli-
cated distributed database system, where a read request for a replicated element
is satisfied when any copy is read [1]. Also, in a store-and-forward communica-
tions network, packets can be forwarded whenever any buffer at the destination
node is free [5]. In a similar way, in a message-routing system based on wormhole
routing, a router can forward a received message to a neighbor router through
one of several channels [12]; a requirement for an output channel is satisfied
when any of them becomes available.

A useful way to represent resource requirements is by means of a directed
graph, known as Wait-For Graph (WFG). In a WFG, each node represents a
process in the system. Nodes with outgoing edges represent blocked processes,
waiting for resources. On the contrary, nodes without outgoing edges represent
active processes. An edge from node i to node j means that process i is waiting for
a resource assigned to process j. In general, the deadlock-detection problem can
be reduced to that of detecting cyclic structures on this graph. For example, the
presence of a directed cycle in the WFG is a necessary and sufficient condition for
the existence of deadlock under the AND model [1]. In Fig. 1(a), processes 1, 2,
and 3 form a cycle, and are deadlocked.

Under the OR requirement model, the presence of a cycle in the WFG is a
necessary — but not sufficient — condition for a deadlock to exist. If the edges
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Fig. 1. Examples of deadlock. (a) Processes 1, 2, and 3 form a cycle, and are deadlocked
under the AND model. (b) Processes 1, 2, 3, and 4 form a knot, and are deadlocked
under the OR model. Processes 5, 6, 7, and 8, only suffer from deadlock.

represent OR requirements, there is no deadlock in Fig. 1(a), in spite of the
cycle, because process 1 is waiting for the resource assigned to process 2 or the
resource assigned to process 4.

Under the OR requirement model, a process is blocked if it has a pending OR
requirement. A set of processes is deadlocked, if they form a tie in the WFG, and
all of them are blocked. A tie in a graph is a set of nodes with no directed edges
going to nodes outside the set. Another important notion is that of a knot in
the WFG [13]. A node v is in a knot, if all nodes that are reachable from v by a
directed path, can reach node v by a directed path; in that case, the knot is the
set of nodes that are reachable from v. That is, a knot is a strongly connected
component; moreover, a knot is a tie of blocked processes of which any subset is
not a tie. Also, any tie of blocked processes contains at least one knot [5]; there
is a path from every node in that tie to at least one knot.

Under the OR requirement model, deadlocked processes can be sorted into
two groups. A process suffers from deadlock if it is in a tie. A process causes a
deadlock if it is in a knot. According to these definitions, a process that causes
a deadlock also suffers from deadlock. For example, in Fig. 1(b), all processes
form a tie of blocked processes. Processes 1, 2, 3, and 4 form a knot, they are
deadlocked, and they all cause deadlock. Processes 5, 6, 7, and 8, on the other
hand, are not in a knot; they do not cause deadlock, but they are deadlocked
nonetheless; they only suffer from deadlock. The distinction is important when
trying to resolve the deadlock. In order to resolve all deadlocks, a process from
each knot must be terminated; it would not help to kill processes that only suffer
from deadlock.

Chandy, Misra, and Haas have proposed an algorithm to detect deadlocks un-
der the OR model, based on the technique known as diffusing computations [4].
In their proposal, a process starts the algorithm when a request is not granted.
Upon termination, a process is guaranteed to know that it is deadlocked only if it
was deadlocked when the algorithm started. Nonetheless, in a set of deadlocked
processes, at least one of them is able to report it. Cidon, Jaffe, and Sidi [5] pro-
posed an algorithm based on detecting cycles of connected components, which
they call clusters, and merging them into bigger clusters until a knot is found.
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All processes that cause deadlock are detected. In the algorithm proposed by
Lee and Lee [6], the initiator builds a reduced WFG locally, through receiving
the paths from its successors. The initiator uses this graph to decide whether
there is deadlock or not. The algorithm proposed by Natarajan [7] is based on
the same principle as the one by Chandy, Misra, and Haas, but uses a periodic
protocol that allows the choice of exactly one process from a deadlocked set of
processes to report the deadlock. Some of these algorithms are dynamic, because
they support changes in the WFG; however, they are not guaranteed to recover
from transient faults, nor can they be started in an arbitrary state.

In the algorithm proposed in this paper, processes gather enough information
about their successors to detect deadlocks. A process that is not deadlocked
when the algorithm starts, but becomes deadlocked later, is able to report the
deadlock. Thus, in a set of deadlocked processes, every process is able to report it.
Additionally, each deadlocked process can decide if it is deadlocked because it is
part of a knot, or because it only suffers from deadlock. The algorithm supports
dynamic changes in the WFG; furthermore, it supports transient faults and can
be started in an arbitrary state.

3 Self-stabilization

In a distributed system, processes are connected to each other according to some
underlying network topology, which may be defined by virtual connections on
top of a transport protocol. Each process has its own set of local variables, and
can communicate with any other process through those connections. The local
variables define the state of a process. A process might decide to change its local
state depending on its current state and the state of some other processes. In
a distributed system, a process can learn the state of other processes through
message passing. The ability to change state is called a privilege; a process that
has a privilege is called a privileged process. In a step, a privileged process changes
its local state.

The cartesian product of the local states of every process defines the global
state of the system. Global states can be sorted into two sets: legitimate and
illegitimate. A self-stabilizing system converges in a finite number of steps to a
legitimate global state, regardless of whether its initial global state is legitimate
or not. It is because of this property that self-stabilizing systems can support
transient faults. A transient fault is one that changes the local state but not the
behavior of a process, and does not continue to occur. Even if a transient fault
puts the system in an illegitimate global state, the system will eventually regain
a legitimate global state. In addition, it is not necessary to define an initial global
state, that is, local variables can be initialized arbitrarily.

In the system defined by the algorithm proposed in this paper, legitimate
global states are characterized by the absence of privileges, and by the fact that
a process decides that it is deadlocked if and only if it is really deadlocked. In
a legitimate global state, every resource request that is not granted and every
release of a resource pushes the system into an illegitimate global state, because
new privileges appear in the system every time the WFG changes.
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Flatebo and Datta [2], and Karaata and Line [3], have proposed self-stabili-
zing algorithms to solve the deadlock-detection problem under the AND model.
Deadlocks are detected by finding cycles in the WFG; each node propagates the
information about its predecessor nodes to its successors [3], or the information
about its successors to its predecessors [2]. If a predecessor of a node is also a
successor of the node, or viceversa, then there is a cycle in the WFG and a dead-
lock in the system. In both proposals, a global state is legitimate when a process
knows that it is deadlocked if and only if it is deadlocked. In both proposals,
a change in the WFG puts the system in an illegitimate state; the algorithms
support changes produced by the processes that share resources. Moreover, the
algorithm proposed by Karaata and Line [3] supports transient faults and arbi-
trary initialization; on the other hand, the algorithm proposed by Flatebo and
Datta [2] does not.

Schneider provided a formalism to prove that a system is self-stabilizing with
respect to a predicate over the global states of the system [11]. This state predi-
cate identifies the correct operation of the system, by defining legitimate states.
Every state that satisfies the predicate is legitimate, and states that do not
satisfy the predicate are illegitimate. According to Schneider, a system is self-
stabilizing with respect to a state predicate P , if it satisfies two properties: clo-
sure and convergence. The closure property says that, once the system reaches a
state satisfying P , it cannot reach an illegitimate state through execution of the
program. The convergence property says that, starting from an arbitrary global
state, the system will reach a state satisfying P in a finite number of steps. In
this paper, this formalism is used to prove the property of self-stabilization.

4 Self-stabilizing Deadlock Detection

The proposed algorithm is shown in Fig. 2.
Processes make requests for a resource to a distributed component called

resource allocator. Whenever a resource allocator receives a request, the resource
is assigned locally if it is available. In the other case, the request can not be
satisfied.

The algorithm starts at a process, when a request is not granted. The request-
ing process blocks, and control is transferred to a thread that runs the detection
algorithm. These threads maintain exact, up-to-date information about their
neighbors in the WFG. The set of neighbors of a node v changes when one of
them releases a resource, which is then reallocated to some waiting node. If it
is reallocated to v, v is no longer blocked; otherwise, it has a different set of
neighbors. The resource allocator can inform the detection-algorithm thread of
these changes through atomic updates of the local variables Succ and Pred. No
other event can change the set of neighbors, since the process is blocked.

4.1 Variables

Each process mantains eight local variables when executing the algorithm: Succ,
Pred, Succ∗, Pred∗, Deadlocked∗, Knot, Tie, and deadlocked, which it can read
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For node i:

(0.1) if Succ = ∅ ∧ (Succ∗ �= ∅ ∨ Deadlocked∗ �= ∅ ∨ Knot �= ∅ ∨ T ie �= ∅)
then Succ∗ := ∅; Deadlocked∗ := ∅; Knot := ∅; T ie := ∅

(1.1) if Succ∗ �= (∪j∈SuccSucc∗
j ) ∪ Succ

then Succ∗ := (∪j∈SuccSucc∗
j ) ∪ Succ

(1.2) if Pred∗ �= (∪j∈PredPred∗
j ) ∪ Pred

then Pred∗ := (∪j∈PredPred∗
j ) ∪ Pred

(2.1) if Succ∗ �= ∅ ∧ Knot �= {i} ∧ Succ∗ ⊆ Pred∗

then Knot := {i}
(2.2) if Knot �= ∅ ∧ Succ∗ �⊆ Pred∗

then Knot := ∅
(2.3) if Succ∗ �= ∅ ∧ T ie �= {i} ∧ Succ∗ ⊆ (Deadlocked∗ ∪ Pred∗)

then T ie := {i}
(2.4) if T ie �= ∅ ∧ Succ∗ �⊆ (Deadlocked∗ ∪ Pred∗)

then T ie := ∅
(2.5) if Succ∗ �= ∅ ∧ Deadlocked∗ �= ((∪j∈SuccDeadlocked∗

j ) − {i}) ∪ Knot ∪ T ie
then Deadlocked∗ := ((∪j∈SuccDeadlocked∗

j ) − {i}) ∪ Knot ∪ T ie
(3.1) if Succ∗ �= ∅ ∧ (Succ∗ ⊆ Deadlocked∗) �= deadlocked

then deadlocked := (Succ∗ ⊆ Deadlocked∗)

Fig. 2. The deadlock-detection algorithm

and write. Also, it is assumed that each process has read-only access to the local
variables Succ∗, Pred∗, and Deadlocked∗ of its neighbors. Since the algorithm is
self-stabilizing, there is no need to set specific initial values for the variables.

Variable Succ represents the set of successors of the node i that is executing
the algorithm, while variable Pred represents the set of its predecessors. Variable
Succ∗ represents the set of nodes that are reachable from the node i that is
executing the algorithm, while variable Pred∗ represents the set of nodes that
reach node i. Variable Deadlocked∗ represent the set of reachable nodes that
are probably deadlocked. Variables Knot and Tie are sets, and by execution
of the algorithm can get two values: empty, or the identifier of the node that
is executing the algorithm. Boolean variable deadlocked indicate whether the
process that is executing the algorithm is deadlocked or not.

Transient faults can change the value of any variable but Succ and Pred, which
are kept up to date by the resource allocator, and represent the view that a node
has of the local connections on the WFG.

4.2 Notation

Each step of the algorithm is written as a guarded command. The guard is a
predicate over the variables that the process can read: its own local variables
and the ones from its neighbors. If the predicate is true, then there is a privi-
lege in the system, and it is possible to execute the associated action. Actions
are executed atomically until there are no more true guards at the node, with
the non-local variables being read once, before evaluating the guards. When there
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are more than one true guard at a node, the action executed is always the one
with minor number.

In Fig. 2 variable i represents the identifier of the process that is executing
the algorithm. The local variables of neighbor j are represented as Succ∗j , Pred∗

j ,
and Deadlocked∗

j .

4.3 The Algorithm

The algorithm begins at a node i when the process blocks waiting for resources
and, therefore, it acquires a set of successors. Step (1.1) locally computes the
set Succ∗, using the information available in variable Succ and the information
in variable Succ∗ of every successor. Because of this step, any change in the
set Succ is reflected in the local variable Succ∗, and propagated to predeces-
sors nodes. In a symilar manner, step (1.2) computes the set Pred∗ using the
information available in variable Pred and the information in variable Pred∗ of
every successor.

Step (2.1) sets the local variable Knot to a set with i as its only element, when
all successors of i are also its predecessors. Step (2.2) sets the local variable Knot
to empty when i has at least one successor node that is not a predecessor at the
same time.

Step (2.3) sets the local variable T ie to a set with i as its only element, when
all successors of i are deadlocked, or can reach i back. If that is not the case,
step (2.4) sets the local variable T ie to empty.

Step (2.5) includes in local variable Deadlocked∗ the information in variables
Knot and T ie, and the information in variables Deadlocked∗ of every successor,
and propagates this information to predecessor nodes.

Step (3.1) allows a node to decide whether it is deadlocked or not, setting
boolean variable deadlocked accordingly.

When a blocked process becomes active, step (0.1) reset all variables that
depend on Succ back to empty.

5 Properties of the Algorithm

This section proves the main theorem of this paper, which states that the pro-
posed algorithm is complete, correct, and self stabilizing.

Lemma 1. Once there are no privileges in the system, the following three state-
ments are equivalent:

1. There is a path from node i to node j in the WFG
2. j ∈ Succ∗i
3. i ∈ Pred∗j

Proof. (1⇒2) Assume there are no privileges in the system, and there is a path
x0, x1, . . . , xn−1, xn in the WFG, with x0 = i and xn = j. The local resource
allocator ensures that j ∈ Succxn−1. If j 
∈ Succ∗xn−1

then node xn−1 would be
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privileged; the guard from step (1.1) would be true. Since there are no privileges
in the system, j ∈ Succ∗xn−1

. Following the same reasoning, j ∈ Succ∗xn−2
, or else

xn−2 would be privileged. The same is true for all nodes in the path, including i.
(1⇒3) The proof is similar to the one given for (1⇒2). The local resource

allocator ensures that i ∈ Predx1 , so i ∈ Pred∗x1
or else x1 would be privileged.

The same is true for all nodes in the path, including j.
(2⇒1) Let j ∈ Succ∗i . Then, j ∈ Succi or j ∈ Succ∗k for some k ∈ Succi, or

else i would be privileged. If j ∈ Succi then there is a path of length 1 from i to
j in the WFG. Otherwise, if j ∈ Succ∗k then j ∈ Succk or j ∈ Succ∗k′ , for some
k′ ∈ Succk. If j ∈ Succk then there is a path of length 1 from k to j, and a
path of length 2 from i to j. When there is a node m such that j ∈ Succm, it is
possible to find a path from i to j in the WFG. Note that there is always a node
m such that j ∈ Succm, or else j would never be included in a variable Succ∗.

(3⇒1) The proof is similar to the one given for (2⇒1). �
Lemma 2. Once there are no privileges in the system, if node i causes deadlock
then deadlockedi = true.

Proof. If node i causes deadlock, then it is in a knot. All nodes that are reachable
from i by a directed path in the WFG are in variable Succ∗i (by Lemma 1). All
nodes that reach i by a directed path in the WFG are in variable Pred∗i (by
Lemma 1). Since i is in a knot, all reachable nodes from i can reach i back. Then
Succ∗i ⊆ Pred∗i and, after one execution of step (2.1), Knoti = {i}. This is also
true for all nodes in the knot, that is, Knotj = {j} for all j in Succ∗i .

Because of step (2.5), j ∈ Deadlocked∗j for all nodes j such Knotj = {j}.
The information that each node keeps in variable Deadlocked∗ is propagated
backwards in the graph in step (2.5), just like the information in variable Succ∗

in step (1.1).
Once there are no privileges in the system, all nodes in Succ∗i are also in

Deadlocked∗i . Therefore, Succ∗i ⊆ Deadlocked∗i and, after one execution of step
(3.1), variable deadlockedi = true. �

Theorem 1 (Completeness). Once there are no privileges in the system, if
node i suffers from deadlock then deadlockedi = true.

Proof. If node i suffers from deadlock, then it is in a tie of blocked processes in
the WFG. Let dik be the length of the longest simple path from i to a reachable
knot k that does not include edges in k. There is at least one reachable knot.
Let di be the maximum dik over all k. If di = 0 then i belongs to a knot and
deadlockedi = true by Lemma 2. If di = n > 0 then for all successors v of i,
dv < n or there is a path from v to i. For if dv ≥ n and there is no path from
v to i, there would be a longer path from i to a knot through v, and di would
be strictly larger than n. Inductively, if dv < n then deadlockedv = true and
v ∈ Deadlocked∗v. Because of step (2.5), the information in variable Deadlocked∗

is propagated backwards in the WFG so, in time, v ∈ Deadlocked∗i . If dv ≥ n,
then v ∈ Pred∗i by Lemma 1. Hence, at some time, every successor v of i belonged
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to Deadlocked∗i or v ∈ Pred∗i . Thus, the guard of step (2.3) had to be true and
after the execution of the step, T iei = {i}. This is true for all nodes in the tie.

Since all nodes j in Succ∗i are in the tie, T iej = {j}. Because of step (2.5), j ∈
Deadlocked∗j and, in time, j ∈ Deadlocked∗i . Therefore, Succ∗i ⊆ Deadlocked∗i
and, after one execution of step (3.1), variable deadlockedi = true. �
Theorem 2 (Correctness). Once there are no privileges in the system, if
deadlockedi = true then node i suffers from deadlock.

Proof. Let deadlockedi = true and suppose that i does not suffer from deadlock.
Since i does not suffer from deadlock, then it reaches a node j that is not blocked.
Thus j ∈ Succ∗i (by Lemma 1). Since j is not blocked, Succj = ∅. Because of step
(0.1), Deadlocked∗j = ∅, Knotj = ∅ and T iej = ∅. Because of step (2.5), no other
node appart from j can include j in its own variable Deadlocked∗, and j can not
execute step (2.5) because Succ∗j = ∅. Thus, j can not be included in variable
Deadlocked∗ at any node, in particular i. Then, j /∈ Deadlocked∗i and j ∈ Succ∗i ,
that is Succ∗i 
⊆ Deadlocked∗i . Because of step (3.1), variable deadlocked can not
be true, or i would be privileged. Since there are no privileges, deadlockedi must
be false, leading to a contradiction. �
Lemma 3. A privileged node looses its privilege in a finite number of steps.

Proof. A privileged node has at least one true guard. After the execution of one
step, the guard associated to that step becomes false.

If the execution of a step could make true guards associated to later steps
then, in the worst case, each step will be executed once and, eventually, the
privilege will be lost.

In the proposed algorithm all steps can only make true guards associated to
later steps. The only exception is step (2.5) which could also make true the guard
of step (2.3) or the guard of step (2.4). Note that the guards of steps (2.3) and
(2.4) can not be both true at the same time.

If after one execution of step (2.5) the guard of step (2.3) becomes true, then
Succ∗ ⊆ Deadlocked∗ ∪ Pred∗. After the execution of step (2.3), T ie = {i}
and the guard of step (2.5) could become true again. If step (2.5) is executed
again, the value of variable T ie does not change, and variable Deadlocked∗ now
includes i. The guard of step (2.3) can not become true again, because variable
T ie has not changed. The guard of step (2.4) can not become true because
Succ ⊆ Deadlocked∗ ∪ Pred∗ still holds.

On the other hand, if after one execution of step (2.5) the guard of step (2.4)
becomes true, then Succ∗ 
⊆ Deadlocked∗ ∪ Pred∗. After the execution of step
(2.4), T ie = ∅ and the guard of step (2.5) could become true again. If step
(2.5) is executed again, the value of variable T ie does not change, and variable
Deadlocked∗ now does not includes i. The guard of step (2.4) can not become
true again, because variable T ie has not changed. The guard of step (2.3) can
not become true because Succ 
⊆ Deadlocked∗ ∪ Pred∗ still holds.

Since the execution of one step can only make true a finite number of guards,
then a privileged node looses its privilege after a finite number of steps. �
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When a privileged node changes its state and produces privileges in neighbour
nodes, it is called a propagation of privilege in this paper.

A node can propagate privileges only when it changes its local variables
Deadlocked∗, Succ∗, and Pred∗. These variables can change initially when the
WFG is modified.

Changes in variables Deadlocked∗ and Succ∗ can only propagate privileges
to predecessor nodes; changes in variable Pred∗ can only propagate privileges
to successor nodes. These privileges can not be propagated indefinitely, because
once a node has received the privilege and updated its local variables, it will not
receive the privilege because of the same change again.

A transient fault can generate privileges at a node. These privileges will be
used locally (by Lemma 3) and will not be propagated. Thus, the effects of
transient faults are always corrected locally by the algorithm.

This observation along with Lemma 3 conclude the following theorem.

Theorem 3 (Extintion of privileges). Privileges produced in the system are
eventually lost.

An algorithm is said to be self-stabilizing with respect to a state predicate P if it
satisfies the properties of closure and convergence, as defined by Schneider [11].
In the system defined by the proposed algorithm, legitimate states are defined
by the following predicate:

P: There are no privileges in the system and, for every node i,
deadlockedi = true if and only if i forms part of a tie in the WFG.

The following two lemmas show that P satisfies both the closure and convergence
properties.

Lemma 4 (Closure). Once P is established, it is not falsified by execution of
the algorithm.

Proof. When P becomes true, there are no privileges in the system; therefore, no
actions are executed and the state remains the same. Hence P is not falsified. �
Lemma 5 (Convergence). Starting from an arbitrary initial state, once tran-
sient faults cease to occur, the system reaches a global state satisfying P within
a finite number of steps.

Proof. By Theorem 3, privileges eventually disappear from the system. There-
fore, the first part of P is satisfied. Once there are no privileges in the system,
by Theorems 1 and 2, the second part of P is satisfied. Hence P holds after a
finite number of steps, once transient faults cease to occur. �
Lemmas 4 and 5 prove the following theorem.

Theorem 4 (Self-stabilization). The proposed algorithm is a self-stabilizing
deadlock-detection algorithm under the OR requirement model.
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6 Deadlock Resolution

In order to resolve a deadlock, at least one of the deadlocked processes must
be terminated. Therefore, once a deadlock is detected, it becomes necessary to
choose a victim to terminate. Terminating just any process does not necessarily
resolve the deadlock. In Fig. 1(b), if process 5 were terminated, there would still
be deadlock, because the knot in the WFG remains. To resolve a deadlock, it is
not enough to kill a process that only suffers from deadlock; it is necessary to
terminate one process from each knot.

Once there are no privileges in the system, each process knows whether it is
deadlocked or not. And, in addition, deadlocked processes also know whether
they are part of a knot or not. Variables Knot and Tie compute precisely that
information. Processes that are part of a knot can start an algorithm to choose
a victim such that, when terminated, the knot disappears.

Processes that are part of a knot have the same set of successors, formed by
all processes in the knot. Thus, if all the nodes in the knot apply a rule —like
victim = min(Succ∗)— it is possible to choose exactly one victim to terminate
from each knot.

No special actions need to be taken once a deadlock has been resolved. The
immediate predecessors of the terminated processes would see a change in their
variable Succ, and the detection algorithm would recompute for the new WFG.

7 Concluding Remarks

This article presents a self-stabilizing deadlock-detection algorithm for the OR
requirement model. The algorithm is self-stabilizing, that is, it supports changes
to the WFG, transient faults, and arbitrary initialization; previous algorithms
for the OR model are not guaranteed to recover from transient faults or arbi-
trary initialization. The algorithm is complete and correct since it detects all
deadlocks and it detects no false deadlocks, respectively. Hence, every process
knows whether it is deadlocked or not and, moreover, deadlocked processes know
whether they cause or only suffer from deadlock. In addition, the algorithm pro-
vides enough local information to implement actions and resolve the deadlocks
detected.
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Abstract. Most modern middleware systems like Java Beans and .NET provide 
automatic garbage collection (GC). In spite of the many distributed solutions 
proposed in literature collection is typically limited to a single node and simple 
leasing techniques are used for remote references. In this paper we present a 
new incremental multistage GC. It has been implemented in the Plurix operat-
ing system but might easily be applied to other platforms. The scheme works 
incrementally and avoids blocking remote nodes. The reverse reference tracking 
scheme efficiently detects acyclic garbage and is also used for finding cyclic 
garbage without precomputing a global root set. To minimize network commu-
nication cycle detection splits into a local and a global detection part. Keeping 
the object markers in a separate stack avoids invalidation of replicated objects. 
Performance measurements show that the proposed distributed GC scheme 
scales very nicely.  

1   Introduction 

Garbage Collection (GC) relieves the programmer of explicit memory management 
and avoids memory leaks and dangling pointers. This is important on a single node 
system and almost indispensable in a distributed and persistent environment. As a 
consequence most modern middleware systems such as Java Beans and .NET provide 
automatic GC. These commercial GCs are typically based on scanning algorithms 
(mark and sweep) for a single node and fall back to a leasing scheme for remote ref-
erences in distributed programs. In the literature numerous more sophisticated distrib-
uted GCs have been proposed [6].  

Efficient GC for a distributed environment is more of a challenge than for a single 
machine. Basic scanning algorithms can not detect concurrent manipulation of point-
ers during the execution of the GC task and require suspending all other execution. 
Unfortunately in a distributed environment this means stopping all processing in the 
cluster. Incremental GC algorithms solve this problem, but often require read or write 
barriers and introduce programmed synchronization between the nodes in the cluster. 
Furthermore, in a distributed system all changes to objects including those introduced 
by the GC (e.g. temporary markers) must be propagated to remote object replicas. 
Hence small changes made on a single node may affect the entire cluster and decrease 
overall cluster performance.  

In this paper we propose a reverse reference tracking scheme to collect 
incrementally all types of garbage – local or remote, cyclic or acyclic. Objects which 
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are no longer referenced are called acyclic garbage. Garbage cycles consist of at least 
two objects referencing each other but neither of these objects is referenced from the 
root set.  

The acyclic GC phase is a simple reference counting scheme with local and global 
parts of the computation. Unlike other scanning algorithms our reverse reference 
tracking avoids an atomic precomputation of the global root set and scales smoothly 
to larger clusters. The second phase collects cyclic garbage in an incremental fashion. 
Invalidation of remote replicates is avoided by storing the temporary marks separate 
from the candidate objects in small tables. 

The remainder of the paper is organized as follows. In section 2 we briefly present 
relevant parts of the Plurix architecture followed by a discussion of related work in 
section 3. In section 4 we present our GC scheme which uses reverse reference track-
ing. Subsequently, we present the measurement results indicating the scalability of the 
proposed approach. The conclusions and an outlook on future work is given in the last 
section 6. 

2   Plurix Architecture Aspects 

Plurix is a native cluster operating system (OS) which simplifies distributed and par-
allel programming [3]. The entire OS is written in Java (with some minor language 
extensions for device drivers) and works in a type safe and object-oriented language 
framework continuing the OS development which was convincingly demonstrated by 
the Oberon system [2].  

Distributed Shared Memory (DSM) in Plurix offers an elegant solution for distrib-
uting and sharing data in a cluster of loosely coupled PCs [8]. Applications running 
on top of the DSM are unaware of the physical location of objects. Remote objects are 
automatically transferred to an accessing node by the runtime system. Plurix imple-
ments a distributed heap (DHS) on top of the DSM which hosts language objects, 
kernel objects, code segments and device drivers.  

Tracking references to objects is a requirement both for the GC scheme and for the 
object relocation facility. The latter is needed to compact the heap, to resolve false 
sharing (page thrashing) situations, and to support type evolution. We have developed 
the so-called backpack scheme to track all references to an object. The basic idea is 
that each object can track up to three references in its own header accommodating the 
majority of all reference situations (in-line backlinks). The reverse tracking links are 
called backlinks. If more than three references are tracked backpacks are created on 
demand. These are separate hash tables containing additional backlinks. A detailed 
description of backlinks and backpacks can be found in [1]. 

Any heap object may be registered and then looked up in the directories and subdi-
rectories of a cluster-wide name service. This corresponds to the directory structure of 
traditional file systems but the functionality of the name service is extended to store 
symbol tables, configuration information, and to cover all naming issues occurring in 
the OS. Any heap object reachable from the name service root is not garbage and thus 
persistent. 

The Plurix DHS detects memory access using the Memory Management Unit 
(MMU) of the CPU thus implementing a page-based DSM. Since individual pages 
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and the allocated objects get replicated a distributed consistency protocol is necessary. 
Plurix uses a strong consistency model, called transactional consistency [3]. All ac-
tions in Plurix regarding the DHS are encapsulated in restartable transactions (TA) 
combined with an optimistic synchronization scheme. Before a page is modified by a 
TA the OS creates a shadow image. During the commit phase the addresses of all 
modified pages are multicast and the receiving nodes will invalidate these pages. 
Those nodes that detect a collision, abort themselves voluntarily.  

In case of an abort all modified pages in a TA are discarded. Shadow images are 
used to reset the DHS is to the state before this conflicting TA. A token mechanism 
guarantees that only one node at a time can enter the commit phase. Currently, the 
token is passed according to a first wins strategy, but improved fairness strategies are 
currently being investigated. For a more detailed discussion about consistency man-
agement, fault tolerance, and persistence see [3]. 

3   Related Work 

In this section we briefly discuss GC algorithms which were designed for distributed 
environments or whose ideas inspired our implementation. An excellent summary of 
basic GC algorithms is found in [6]. 

Copying Algorithms 
These schemes copy all live objects (reachable from the root object set) from one part 
of the address space to another and the garbage objects are left in the source portion. 
After the “copy” action heap fragmentation is eliminated but copying many small 
objects (even if only logically) may be time consuming and expensive invalidations of 
live remote objects are unavoidable.  

LeSergent and Berthomieu [5] have developed an copying algorithm for a distrib-
uted GC. Each process in the system has a uniform view of the DSM. The memory is 
divided into parts with equal size, e.g. physical pages. A single page may be dynami-
cally assigned to one or more processes at a time. If a process tries to access a page 
which is not present the page is fetched across the network and locally assigned. For 
this algorithm it is necessary to lock pages if a process needs write access to it. As a 
consequence nodes may be blocked during the GC cycle.  

Mark-and-Sweep Algorithms 
These algorithms mark each object reachable from the root set. Unmarked objects are 
garbage. Setting marks within an object may lead to many invalidations of remote 
objects. It is preferable to store marks outside of the objects, e.g. in bitmap- or hash-
tables. Hash-tables consume less physical memory than the bitmap approach but are 
still expensive in a scenario with many small objects (e.g. 32-64 byte) that are com-
mon in object-oriented languages.  

A mark-and-sweep algorithm for a distributed system was developed by Yu and 
Cox [10] in 1996. They designed a GC scheme for the Treadmarks DSM system [4]. 
Here the heap is divided into blocks in which each process can allocate its own ob-
jects. After allocation, the process gains ownership of the object. Objects can be either 
“local“ meaning that the process is owner of this object or “remote“. “local“ objects 
which are used by other nodes are marked as “exported”. Remotely owned objects are 
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“imported”. Both kinds of objects are tracked using import-/export tables. References 
to “remote“ objects are handled using weighted reference counters without using 
indirection objects i.e. the weight of an object may be less than the weight of all refer-
ences to it. The GC itself is divided into a local and a global part. The local part is a 
mark-and-sweep scheme examining entries in the export table, but it is unable to 
detect distributed cyclic garbage. The global GC part will stop the cluster. All objects 
reachable from a local root are marked; references to other nodes are recorded and 
afterwards sent to the associated node, which continuous marking. These steps are 
repeated until no more references to other nodes exist.  

Reference Counting Algorithms 
These GC algorithms depend on a counter for each object, recording the number of 
existing references. The placement of the reference counter raises a problem similar to 
the placing of the marks of a mark-and-sweep algorithm. Although the GC is simple 
and does not block the cluster it cannot detect cyclic garbage without special provi-
sions. Detecting cyclic garbage mostly depends on marking algorithms or removing 
internal counts (i.e. the reference counter is decremented for each pointer which po-
tentially references another object from the same garbage cycle) [11]. This modifies 
all checked objects and hereby causes unwarranted invalidations.  

Traditionally, the reference counter is included in the object and this forces a modi-
fication of the object each time a reference to it is created or destroyed. Invalidation 
of an object during the creation of a reference can be avoided by using weighted ref-
erence counting. But objects can not always be identified as garbage and are modified 
when a reference is deleted. 

Reference counting GC faces additional problems if a node crashes. In this case 
references to an object are lost but the reference counter is not decremented. Now the 
reference counter never reaches 0 and the object will not be collected.  

David Bacon [11] has presented a GC strategy which is based on reference count-
ing but also collects cyclic garbage. In a separate structure (a so called RootBuffer) 
the algorithm remembers all objects which could potentially be cyclic garbage. Sepa-
rate from the traditional reference counting mechanism, the GC scheme contains a 
second phase in which cyclic garbage is detected traversing all reachable objects 
starting with the objects included in the RootBuffer. During this computation the 
reference counter of reached objects is decremented to remove internal reference 
counts (references which points from one potentially cyclic garbage object to an-
other), and the objects are marked. The algorithm is able to collect cyclic garbage in 
linear time but it needs to modify the traversed objects. Objects are cyclic garbage 
candidates if their reference counter is decremented but does not reach zero and is not 
incremented before the cyclic detection part of the GC is started. This condition may 
be true for many live objects leading to a large number of invalidations of replicated 
objects. 

Algorithms Basing on an Inverse Reference Graph 
The first GC depending on the inverse reference graph was made in 1991 by Piquer 
[13]. The algorithm uses Indirect Reference Counting based on a diffusion tree which 
eliminates the need for increment and decrement messages to adjust the reference 
counter of an object. This avoids race conditions which can lead to incorrect behavior 
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of distributed reference counters. Shapiro [9] extended this approach. Scion-Stub 
Pointer Chains uses parent pointers to track where references to an object are located.  
These pointers build the inverse reference tree from an object to its accessors. The GC 
works similar to traditional reference counting and is not able to collect cyclic garbage.  

A similar approach was presented by Birrell [7]. The algorithm eliminates the ref-
erence chains by maintaining a set of identifiers for processes with references to an 
object. To determine this ID-set the transfers of object references to another process 
are handled by a remote procedure call. Premature collection of objects is prevented 
by forcing the sender of a reference to keep its copy until receipt is verified. 

Another GC strategy depending on the inverse reference graph was presented by 
Matthew Fuchs [12]. The described algorithm solves the problem of discovering the 
distributed root set for a mark- and-sweep GC by starting with any object and travers-
ing inverse pointers. The algorithm uses a three color marking to determine whether 
an object is garbage. An object is live, if the inverse pointer graph contains at least 
one root object. Root objects are separately marked so that they can be identified. The 
algorithm is interesting as it can collect garbage without knowledge of the current 
cluster state and because it is not necessary to know each root object, but it sets marks 
in shared objects and thus invalidates replicated objects.  

4   Garbage Collection Using Reverse Reference Tracking 

Plurix is designed for both distributed and parallel computing but also for cooperative 
working. Hence its GC must be capable to collect all types of garbage and run concur-
rently with other applications and without significantly degrading cluster perform-
ance. To achieve this goal, the GC should neither utilize excessive network capacity 
nor block the cluster during execution. The objective of keeping network traffic low 
requires that write access to objects must be kept to a minimum within the GC, as this 
would lead to invalidations of replicated objects or of 4 KB pages that could store 
dozens of objects within Plurix. 

Non-cyclic Garbage Collection Using Reference Counting 
Reference Counting is conceptually simple but in a distributed environment it is im-
portant to avoid frequent modification of objects. Piquer [13] has shown that instead 
of a reference counter backward references can be used, too.  

In Plurix the bookkeeping of references is primarily used for relocation of objects 
but it can also used for GC at little additional cost. We merely count the number of 
references stored in backlinks within the object itself and in associated backpacks. An 
object is garbage if all backlink entries from the object are empty. Special root objects 
which are never garbage are marked by a special non-garbage flag by the OS. 

The bookkeeping of references modifies objects only when the “in-line” backlinks 
are changed. The respective backpack table-object is deleted if the last object refer-
ence is removed. The memory management makes sure that backpacks do not co-
reside with normal objects on a page, i.e. aborts of other TAs may only occur if both 
TAs try to modify a reference to an object.  

Reference counting schemes also need to consider stack references and CPU regis-
ters. Because of the transactional processing in Plurix this can be done elegantly. The 
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GC runs as a separate TA thus seeing only committed and valid state of objects. Most 
TAs (e.g. processing an event) commit with an empty stack and with empty registers. 
Some TAs (e.g. for parallel computing) may commit with a non-empty stack that is 
consolidated during commit time including CPU registers - all references on the stack 
are recorded in backpacks during commit time. Postponing stack reference tracking is 
recommended because not all applications need this feature. Often the stack shrinks 
before commit and only the references from a small residual stack need to be tracked 
and only once during commit.  

Plurix will find all objects in the heap by stepping from one object to the next. The 
reference counting algorithm can run concurrently on several nodes. The GC only has 
to check objects which are present locally, as each object must be present on at least 
one node. The backlinks of each such object are checked, and it is collected in case of 
garbage.  

Acyclic GC can be run without causing additional network traffic during detection 
of garbage objects, as only local objects are inspected and the internal backlinks con-
tain sufficient information about the state of an object. Network traffic and collisions 
only occur if a garbage object and all its references to remote objects are deleted. 

Cyclic Garbage Collection Using Inverse References 
The major challenge for a GC in a distributed system is to detect and collect cyclic 
garbage. After collecting non-cyclic garbage the remaining objects are either alive or 
part of cyclic garbage. Cyclic GC is used to break the cyclic structure of garbage 
objects so that these objects can be collected during the next execution of the non-
cyclic GC. We have developed an incremental variation of mark-and-sweep to detect 
cyclic garbage. The marks are kept outside the objects to avoid invalidations. Back-
packs provide all information for inverse reference tracking.  

In traditional systems the set of root objects must be determined by obtaining the 
root subset from each node or running the GC simultaneously on each node. More 
easily our algorithm starts at an arbitrary object which is locally present and traverses 
the inverse reference graph searching for a root object. If none is found, the object is 
part of cyclic garbage and should be deleted. Thereby all references included in this 
object are removed. Other objects which were traversed during this GC scan are not 
yet collected because the remaining members of this cycle will be detected by the 
non-cyclic GC if the cycle is broken at an appropriate place. Otherwise the cyclic GC 
will identify the next candidate and so forth.  

It is necessary to mark each traversed object to avoid endless loops during the exe-
cution of the GC. These marks must not be located inside the objects to reduce invali-
dations. Unlike traditional mark-and-sweep algorithms not all objects in the cluster 
need to be marked, therefore it is possible to place the marks in a separate “marking 
table” (MT, hashed or otherwise). As all objects in Plurix are located on 4 Byte bor-
ders, the least significant 2 Bits of each address or backlink are 0. These bits in the 
MT are conveniently used to remember whether an object has already been checked. 
In addition to the MT there is another table (i.e. an integer array) used during the GC 
which is organized as a stack. All encountered backlinks which are not already 
checked are placed on top of this handle stack (HS).  
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At the start of a GC TA the MT and HS are created unless older tables can be re-
used. Both tables are not shared so that TAs on other nodes are not affected by modi-
fications of these tables. Additionally, the memory management allocates the HT and 
MS on a 4kB border and with a size of a multiple of 4 KB to avoid false sharing so 
that modifications do not cause invalidations of unconcerned objects. The size of both 
tables is limited by a configurable value, given to the GC TA at start time. This de-
fines the maximum depth of cycles which might be detected by this TA but does not 
reduce the capability of the algorithm. If the GC is terminated due to an exhausted 
MT or MS, the GC can be restarted with a larger one. In contrast to the tables needed 
for general mark-and-sweep, the tables for cyclic garbage detection are very small. 
The GC has successfully detected a cyclic structure if the HS is empty and no root 
object has been found. In this case at least the object at which the GC has been started 
should be de-allocated. References from this object to another one are deleted. De-
pending on the remaining time, other objects in the MT may be deleted since they are 
not reachable from the root set.  

The steps of the algorithm are described below and an example is shown in fig. 1:  
 
1. The flag field of the object is checked. If it is marked as non-garbage the GC 

terminates because the object is a root object. The chosen object is reachable 
and not garbage. 

2. The address of this object is inserted into MT. If the MT is exhausted go to step 
7. 

3. All backlinks of the object are inserted into the MT and pushed onto the HS; du-
plicates are ignored. If the MT or HS is exhausted go to step 7. 

4. The MT entry for the object is marked. This object is now completely handled. 
5. If the HS is not empty get next address of an object from the HS and go to step1. 
6. If the HS is empty, the chosen object is part of cyclic garbage and can be de-

leted. MT and HS can be cleared and the algorithm will terminate. 
7. The GC terminates without being able to detect a root object. The chosen object 

is treated to be non-garbage. 
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Processing object A
Start: Push A onto HS
1.  Get next object from the top
     of HS (C)
2.  Push all Backlinks from A not
     in MT onto HS (B,C)
3.  Insert all Backlinks from A
     not in MT into MT (B,C)
4.  Mark A as handled
5.  If HS is empty: finished

Processing object C
1.  Get next object from the top of
     HS (C)
2.  Push all Backlinks from C  not
     in MT onto HS (D)
3.  Insert all Backlinks from C not
     in MT into MT (D)
4.  Mark C as handled
5.  If HS is empty: finished

Processing object D
1.  Get next object from the top
     of HS (D)
2.  Push all Backlinks from D not
     in MT onto HS (none)
3.  Insert all Backlinks from C
     not in MT into MT (none)
4.  Mark D as handled
5.  If HS is empty: finished

Processing object B
1.  Get next object from the top
     of HS (B)
2.  Push all Backlinks from B not
     in MT onto HS (none)
3.  Insert all Backlinks from B
     not in MT into MT (none)
4.  Mark B as handled
5.  If HS is empty: finished

 

Fig. 1. Cyclic Garbage Detection Example 
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Because cyclic garbage detection can be a time consuming operation depending on 
the size of the cycle and the distribution of the affected objects, the cycle GC comes 
in two variants: local and global cyclic GC. Both variants may be aborted at any time 
without affecting the cluster state. Which variant and which parameters of the cyclic 
GC are started is configurable reflecting CPU load of the node, network load, and low 
memory, etc. 

The local part of the cyclic garbage detection checks only those objects which are 
locally present. This can be determined by the flags (set by the MMU) in the page 
tables. For each candidate object the backpack or respectively the backlinks are in-
spected and the inverse reference tree is built. As soon as a backlink references a 
remote object the cyclic garbage detection stops and the object is regarded to be live. 
The GC will choose the next candidate object until the configured time slot if any 
expires. Since even in a distributed environment many objects are locally used the 
local phase is useful – effectively reducing network traffic. 

The second part of the cycle detection GC works on the entire cluster. Again objects 
which are locally present are used as a start for cycle detection but all backlinks are 
checked. To reduce network traffic, the cluster wide cycle detection algorithm tries to 
detect a local root object before remote objects are transferred to the node. Remote 
pages are not requested until all local references are checked and no root object was 
yet found, hence the GC does not cause network traffic for objects which are reach-
able from the local root subset. To distinguish between local and remote the inverse 
reference stack of the GC is duplicated. One stack is used for objects locally present 
and the other for remote ones. When the local stack is exhausted and no root object 
was found, the backlinks preserved in the remote stack are inspected. If such a remote 
object contains backlinks to locally present objects these are checked before other 
remote backlinks are observed. This ensures, that remote pages are only requested if it 
is inevitable. In most cases a local root object is found, if the chosen object is not part 
of cyclic garbage, before all remote backlinks have been checked. 

5   Measurements 

Measurements were made on a cluster of 16 nodes (AthlonXP 2500+ with 512 MB 
RAM) using a switched FastEthernet. We compare our GC with a traditional blocking 
mark-and-sweep GC (BMSGC). Since blocking GCs are faster than the corresponding 
incremental solutions the execution time of BMSGC can be viewed as the lower 
bound. In the first part the measurements only use a single node. We allocated 13’800 
objects whereof 1’600 were acyclic and 1’200 cyclic garbage. The cyclic garbage was 
spread over 36 cycles each containing between two and eight objects. Table 1 shows 
the execution times of different steps of the Plurix GC (PGC) and for the BMSGC. 
Times shown are an average of 10 independent runs.  

The measurements show that the detection of acyclic garbage is much faster in PGC 
than in BMSGC whereas the situation is reversed for cyclic garbage on a single node. 
But BMSGC requires marking all objects each time the GC is called to determine if 
an object is garbage or not - and of course it represents a lower execution bound if we 
can afford to block all nodes. 
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Table 1. Execution times of PGC and BMSGC on a single node 

Action exec. time (ms) #objects processed 
PGC: acyclic garbage 6,03 2’653’000 
PGC: cyclic garbage (detection only) 54,00 252’000 
PGC: cycle detection & removal 55,00 251’000 
BMSGC: remove marks 3,27 4’220’000 
BMSGC: mark phase  18,07 763’600 
BMSGC: delete objects 4,12  3’349’0004,12 

In the second part we evaluated the performance of PGC in cluster operation. For 
these measurements we have allocated 61’600 objects whereof 12’000 are acyclic and 
9’600 cyclic garbage. The latter included 4’000 objects having references to remote 
nodes. As the acyclic GC stage is able to check individual objects it can be executed 
concurrently on all nodes. Inter-node communication is necessary only if an object 
with a reference to a remote object is deleted because this requires deleting the asso-
ciated backlink on the remote node. In this case the object deletion is increased by 
784 µs - reflecting network latency. Of course this will be less significant for faster 
networks. In the best case there are no remote references and the acyclic GC will 
scale almost linearly with the number of nodes. 
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Fig. 2. Performance in cluster operation PGC & BMSGC 

The performance of the cyclic garbage detection in cluster mode depends on the 
number of objects that need to be checked and the number of page requests to remote 
objects to be performed. If all local objects are referenced by some object that is part 
of the root set, no network communication is necessary. In that best case the scalabil-
ity of the GC depends only on the distribution of objects in the cluster. For the appli-
cations we use (distributed and parallel ones) this is true for approximately 90% of all 
objects. This is the reason why PGC outperforms BMSGC in the cycle detection in 
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cluster operation. Fig. 2 shows the scalability for the acyclic and cyclic stages of PGC 
and BMSGC. The throughput given in 106 objects per second has been computed 
using measurements with the example with 61’600 objects described above. Although 
for this example BMSGC offers a better performance on a single node PGC outper-
forms the BMSGC for four and more nodes and scales quite well. As we assume 
concurrent execution of PGC on all nodes periodically this is a very nice result. 

Further measurements might be beneficial and we do not claim that there won’t be 
a special case where the one or other sophisticated GC will be faster than the one we 
propose. But generally speaking we find that our approach scales well in a distributed 
DSM environment and that it is an interesting option for other distributed scenarios as 
well. 

6   Conclusion 

In this paper we have proposed an incremental multistage GC built on reverse refer-
ence tracking and keeping the reverse references in so-called backpack/backlinks. The 
proposed GC approach is easily be adapted to other distributed systems and does not 
limit the GC to a special environment. The first stage of our GC detects non-cyclic 
garbage and is basically a reference counting GC evolving directly from the backpack 
concept and scaling very nicely. 

The cyclic phases deal with cyclic garbage and can be executed concurrently with-
out blocking the cluster. There is one stage only working on local objects (avoiding 
network traffic) and a second stage working at the cluster level if necessary. Marks 
are stored outside objects in small tables avoiding invalidations of remote replicas. 
Furthermore, computation of the global root set and contacting all nodes is not re-
quired because of the reverse reference tracking scheme.  
The GC algorithm is used in our Plurix OS and has been successfully tested in a clus-
ter with 16 nodes concurrently running distributed and parallel applications. In the 
future we plan to study different types of applications and to develop heuristics to find 
good candidates as a starting point of the cyclic GC. 
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Abstract. Total order broadcast protocols are a fundamental building
block in the construction of many fault-tolerant distributed applications.
Unfortunately, total order is an intrinsically expensive operation. More-
over, there are certain algorithms that perform better in specific scenar-
ios and given network properties. This paper proposes and evaluates an
adaptive protocol that is able to dynamically switch between different
total order algorithms. The protocol allows to achieve the best possi-
ble performance, by selecting, in each moment, the algorithm that is
most appropriate to the present network conditions. Experimental re-
sults show that, using our protocol, adaptation can be achieved with
negligible interference with the data flow.

1 Introduction

A total order broadcast protocol is a fundamental building block in the construc-
tion of many distributed fault-tolerant applications [1]. Informally, the purpose
of such a protocol is to provide a communication primitive that allows processes
to agree on the set of messages they deliver and, also, on their delivery order.
Uniform total order broadcast is particularly useful to implement fault-tolerant
services by using software-based replication [2].

Unfortunately, the implementation of such a primitive can be expensive both
in terms of communication steps and number of messages exchanged. This prob-
lem is exacerbated in large-scale systems, where the performance of the algorithm
may be limited by the presence of high-latency links. Several total order protocols
have been proposed that use different strategies to offer good performance [3].
There is no protocol that outperforms all others in all scenarios: each protocol
offers best results under different load profiles and/or network conditions.

In this paper we describe and evaluate a total order protocol that combines
different algorithms and adapts itself to the running environment. The protocol
allows a fluid transition between algorithms, never stopping the flow of appli-
cation messages. Such feature can be very useful in fault-tolerant safety- and
mission-critical systems, like air traffic or nuclear plant control, where stoppages
and/or significant delays imposed by adaptive mechanisms may be unacceptable.
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Table 1. Regular total order properties

TO1 - Total order: Let m1 and m2 be two messages that are TO-broadcast. Let pi

and pj be any two correct processes that TO-deliver(m1) and TO-deliver(m2). If pi TO-
delivers(m1) before TO-delivers(m2), then pj TO-delivers(m1) before TO-delivers(m2),
and we note m1 < m2.

TO2 - Agreement: If a correct process in Ω has TO-delivered(m), then every correct
process in Ω eventually TO-delivers(m).

TO3 - Termination: If a correct process TO-broadcasts(m), then every correct pro-
cess in Ω eventually TO-delivers(m).

TO4 - Integrity: For any message m, every correct process TO-delivers(m) at most
once, and only if m was previously TO-broadcast by some process p ∈ Ω.

We evaluate the performance of an implementation of the protocol and show
how it can be optimized to induce a low overhead in resource consumption.
Finally, we discuss how the protocol can be configured to operate using different
classes of failure detectors.

The rest of the paper is structured as follows. Section 2 clarifies the prop-
erties of total order broadcast services. Section 3 describes the adaptive pro-
tocol. Performance evaluation results are presented in Section 4. Section 5 dis-
cusses optimizations that have been applied in the protocol implementation.
Failure detection issues are addressed in Section 6. Section 7 concludes the
paper.

2 Total Order Broadcast

Informally, total order broadcast is a group communication primitive that en-
sures that messages sent to a set of processes are delivered by all those processes
in the same order. Such a primitive is useful, for example, in the implementa-
tion of fault-tolerant services [1], for instance, using the state machine approach
(active replication) [4].

Total order broadcast is defined on a set of processes Ω by the primitives (1)
TO-broadcast(m) which issues message m to Ω, and (2) TO-deliver(m) which is
the corresponding delivery of m. When a process pi executes TO-broadcast(m)
(resp TO-deliver(m)), we say that pi “TO-broadcasts m” (resp “TO-delivers
m”). The total order primitive characterized by the properties listed in Table 1
is known as regular total order. A stronger version, called uniform total order [3],
can also be defined. The difference among these definitions is not relevant for
understanding our adaptive protocol, thus we will not delve further in this topic.

Many algorithms exist to implement total order. To give the reader an insight
on the possible alternatives, we briefly introduce two of the most used ones,
namely the sequencer-site [5] and the symmetric [6,7] approach. Both methods
have advantages and disadvantages.
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In the sequencer-site approach one site is responsible for ordering messages
on behalf of the other processes in the system. Sequencer-based protocols are
appealing because they are relatively simple and provide good performance when
message transit delays are small (they are particularly well suited for local area
networks). However, in these protocols, a message sent by a process that is not
the sequencer experiences a delivery latency close to 2D, where D is the message
transit delay between two system processes (i.e., the time to disseminate the
message plus the time to obtain an order number from the sequencer process).
Thus, sequencer-based approaches are inefficient in face of large network delays.
Note that it is possible to design solutions where the sequencer role is rotated
among processes [8].

In the symmetric approach, ordering is established by all processes in a decen-
tralized way, using information about message stability. This approach usually
relies on logical clocks [9] or vector clocks [10,6]: messages are delivered according
to their partial order and concurrent messages are totally ordered using some
deterministic algorithm. Symmetric protocols have the potential for providing
low latency in message delivery when all processes are producing messages. In
fact, symmetric protocols can exhibit a latency close to D + t, where t is the
largest inter-message transmission time [11]. Unfortunately, this also means that
all (or at least a majority [7]) processes must send messages at a high rate to
achieve low protocol latency.

Several other alternatives exist. For a comprehensive survey, the reader is
referred to [3]. However, from the two examples above, it should be clear that it
is interesting to have a protocol that can dynamically adapt to changes in the
operation envelope by switching, in run-time, from one algorithm to another.

3 An Adaptive Protocol

We now present a protocol that is able to switch from a total order algorithm to
another total order algorithm in response to changes in the operation envelope
(such as changes in the workload, network conditions, number of participants,
etc). In this paper we do not focus on the conditions that trigger adaptation, as
these are highly application dependent (for a concrete scenario, see [12]). Instead,
we are interested in finding a generic switching procedure that can switch from
one algorithm to the other with minimum interference in the data flow.

Such protocol can be built from scratch using a monolithic approach where
all the functionality of every total order algorithm is embedded in a single unity.
A more modular (and generic) way of reaching the same goal is to (re-)utilize
independent implementations of total order algorithms and build the adaptive
behavior on top of them. In steady-state, the adaptive protocol would simply
receive TO-broadcast/TO-deliver requests/indications and forward them to the
most appropriate algorithms.

To our knowledge, there is little work in the literature on how to efficiently
perform this transition. Previous works on dynamic adaptation require messages
to be buffered during the reconfiguration [13,14], the message flow to be stopped
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1: Initialization:
2: deliv ← ∅
3: undeliv ← ∅
4: curAlg ← TO-A {current algorithm}
5: newAlg ← ∅ {next alg.}
6: switching ← false
7: check[1..n] ← false

8: upon changeAlgorithm(newTO) do
9: rBroadcast(switch,newTO)

10: upon rDeliver(switch,newTO) do
11: newAlg ← newTO
12: switching ← true
13: TO-broadcast(curAlg,(flag,null,myself))

14: upon TO-deliver(curAlg,(flag,null,sender))
do

15: check[sender ] ← true

16: upon check[1..n] = true do
17: endSwitch()

18: upon TO-broadcast(msg) do
19: TO-broadcast(curAlg,msg)
20: if switching = true then
21: TO-broadcast(newAlg,msg)

22: upon TO-deliver(alg,msg) do
23: if alg = curAlg ∧ msg /∈ deliv then
24: deliver(msg)
25: deliv ← deliv ∪ {msg}
26: else if msg /∈ deliv then
27: undeliv ← undeliv ∪ {msg}

28: procedure endSwitch()
29: for all msg ∈ undeliv ∧ msg /∈ deliv do
30: deliver(msg)
31: deliv ← deliv ∪ {msg}
32: undeliv ← ∅
33: check[i..n] ← false
34: curAlg ← newAlg
35: switching ← false

Fig. 1. Adaptive Total Order algorithm

in the current protocol [15], or some communication delay to be imposed during
the transition between protocols [16]. Here we describe a generic transition proto-
col that does not require the traffic to be stopped, allowing a smooth adaptation
to changes in the underlying network.

To be able to effectively transition from one algorithm to the other, all nodes
need to agree on the point in the message flow where they switch. Also, both
algorithms must provide FIFO ordering of messages (which is the most common
case). The rational behind our proposal is to start broadcasting messages using
both total order algorithms, during the switching phase, until a safe point is
reached in every process. By using both algorithms simultaneously, no stoppage
in the message flow is necessary. The protocol is listed in Figure 1.

Let us assume that the adaptation protocol is using algorithm TO-A to or-
der messages and wants to switch to algorithm TO-B. The transition protocol
works as follows. A control message is broadcast to all processes to initiate the
reconfiguration (lines 8–9). When a node receives this message (line 10) it starts
broadcasting messages using both total order algorithms. Also, the first message
it broadcasts using algorithm TO-A is flagged. If no message is to be sent, then
a flagged special null message is broadcast using TO-A, to allow faster protocol
termination (flagged first message is not represented in the algorithm to preserve
clarity). When a process starts receiving messages from both TO algorithms it
performs the following steps (lines 22–27): messages received from TO-A are de-
livered as normally; messages received from TO-B are buffered in order. As soon
as a flagged message is received from each and every node (line 15) the transi-
tion is concluded using the following “sanity” procedure (lines 28–35). Firstly,
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all messages received from TO-B that have not yet been delivered by TO-A are
delivered in order. Finally, from this point on, all messages received from TO-A
are simply discarded and no further message is sent using TO-A (until a new
reconfiguration is needed). The TO-B algorithm is then used to broadcast and
receive all the messages to be delivered.

Note that, after the transition is concluded, messages received from TO-B are
delivered only if they have not been already received and delivered from TO-A
(line 23). This is a necessary safeguard as the two total order algorithms do not
necessarily deliver messages in the same order, nor at the same time. So there
is a possibility that a message that has already been delivered from TO-A is
received after the termination of the reconfiguration procedure from TO-B.

Also, the protocol presented does not allow concurrent adaptations. For one
adaptation to happen, the previous (if any) should always have concluded.

4 Performance Evaluation

We evaluate the performance of our adaptive protocol from two different per-
spectives. First, we evaluate the overhead of the switching procedure. Then, we
provide a comparative analysis on how different switching strategies interfere
with the traffic flow during the reconfiguration.

4.1 Switching Overhead

To evaluate the switching overhead of our adaptive protocol we compare the
performance of a system that always uses the same total order algorithm, with
that of a system that is periodically switching between two algorithms. To make
the comparison as fair as possible, we made our protocol switch between two
instances of the same total order algorithm, which is also used as the non-
adaptive protocol. Also, the network topology and working conditions did not
change during the tests. In this way, we can isolate the cost of the switching
procedure given that all the remaining factors remain unchanged.

The adaptive protocol was implemented in Java using the Appia [17] protocol
composition and execution framework. The experiments were conducted in the
SSFNet [18] network simulator and the scenario consists of a five node cluster,
where all nodes are connected to each other by 100Mbps bi-directional links.

Two runs of the same experiment were performed: (A) one using a single total
order protocol (non-adaptive), (B) and another using the proposed adaptive total
order protocol, which is forced to switch periodically. Each run consists of every
node broadcasting 5000 messages of 5KB in total order. The experiment ends
when all nodes receive all the broadcast messages. The values presented are
averages of the measurements conducted in each node.

Figure 2 presents the overall throughput results when the send rate is made
variable. As depicted, both total order algorithms perform the same until they
reach approximately 400 msg/s. After this point, the throughput of the non-
adaptive protocol continues to grow while its value stabilizes for the adaptive
protocol. This behavior is explained by the overhead introduced by the switching
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Fig. 2. TO throughput in non-adaptive,
adaptive and optimized algorithms
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Fig. 3. TO throughput in adaptive and
stop algorithms

phase in the adaptive protocol. During this phase, the same set of messages is
being broadcast by two total order algorithms at the same time, leading to an
increase (approximately double) in the bandwidth usage. If the send rate is
too high, the available bandwidth can be exhausted, leading to the stagnation
observed in the throughput.

Thus, we can conclude that our switching protocol offers negligible over-
head as long as there is enough network bandwidth to support the transmis-
sion of data in parallel during the reconfiguration. When the protocol operates
close to the available bandwidth, the switching procedure introduces an over-
head. This limitation can be addressed at the implementation level, by sending
the payload of the messages using just one of the two algorithms. This opti-
mization is described in Section 5 and its switching overhead is also depicted
in Figure 2.

4.2 Comparative Analysis

As we noted in Section 1, most switching protocols require the message flow to
be stopped in order to terminate the reconfiguration process. By not imposing
a gap in the message flow, our protocol provides smooth transitions between
algorithms, thus allowing applications that rely in its services to normally exe-
cute, even during the switching phase. Therefore, it should offer better overall
throughput, as long as enough bandwidth is available to cope with the demand
imposed by the transmission of messages using two algorithms at the same time.
The same experiment described in 4.1 was conducted using a protocol that stops
the message flow. This protocol operates by sending a stop request to all nodes
and awaiting for a confirmation from each of these nodes. After confirming the
stop request a node does not send further messages until the switch is com-
plete. The performance of such protocol when compared to our proposal can
be observed in Figure 3, which clearly shows that our approach always performs
better.

Other protocols that try to minimize the cost of switching between algorithms
have also been proposed. A previous work [16], proposes a solution that has some
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Fig. 7. Inter-arrival time in RABP

similarities with our protocol, but differs from it by not requiring every node to
wait for a “special” (in our algorithm the term is “flagged”) message from every
other node, and also for not making any assumptions about the failure model
where it is executing (see Section 6). In [16], a special reconfiguration message is
broadcast in total order. When a node receives such message, it stops the flow
in the current algorithm, and re-issues all his undelivered messages in the next
algorithm. It then starts using it to broadcast messages in total order. We will
refer to this protocol by RABP (Replacement of the Atomic Broadcast Protocol).

The RABP strategy has the advantage of requiring less bandwidth during the
switching phase. However, some delay is imposed to the message flow during
the retransmission of the undelivered messages. To observe this side effect, the
experiment was now conducted using our protocol and the RABP protocol. In
Figures 4 and5 we can observe how both compare in terms of latency. The spikes
depicted correspond to the switching phases, in the time-line of the experiment.
The inter-arrival time of messages was also measured and its evolution is shown
in Figures 6 and 7. Finally, the number of messages delivered by a fixed period
of time (10 ms) was also observed and the comparative results are depicted in
Figures 8 and 9.

This experiment clearly showed that our proposal is able to keep a sustained
delivery rate during the switching phase and performs similarly to RABP during
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the remaining time. By not significantly delaying the message flow, our proto-
col can best suit environments where application stoppage, due to significant
communication delays, is not desirable.

5 Implementation Optimization

When enough bandwidth is available, the (non-optimized) version of our proto-
col already implements the switching procedure with negligible overhead in the
message flow. However, the experimental results provided in Section 4 showed
that during the switching phase, when both protocols are being used to broad-
cast the same set of messages, the available bandwidth can be exhausted when
the send rate and/or message payload is too high.

To overcome this problem we now describe an optimization to reduce the
amount of data being transmitted by the adaptive protocol during this phase.
The optimization consists of broadcasting using the first (and current) algorithm
only the identifiers of the messages being transmitted. The messages payload is
only transmitted using the second algorithm. In this manner, the amount of
redundant information transmitted over the wire is reduced substantially. This
optimization has a minor drawback: the protocol cannot deliver a message to
the application until it is received by both total order algorithms. However, since
both algorithms are executed in parallel, the impact of this feature is negligible.

Figure 2 shows that the optimization allows the protocol to continue increas-
ing its throughput after the point where the non-optimized version stabilizes
(approximately 400 msg/s), showing a behavior similar to the non-adaptive pro-
tocol (note that the lines for the optimized and the non-adaptive algorithms
overlap in the figure).

6 On Failure Detection

To simplify the description of our protocol, in Section 3 we have not addressed
the issue of failure detection during the switching protocol. Namely, we have
stated that the protocol moves to the sanity step when it receives a flag from
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every participant (Figure 1, line 16). Without further changes, the protocol
would simply block in the presence of a single failure. We now discuss how our
protocol can be adapted to operate in the presence of faults. Our algorithm can
operate in asynchronous systems augmented with failure detectors [19].

We start by discussing the operation of the protocol in a system augmented
with a Perfect Failure Detector (P) [19], i.e., a system where processes fail by
crashing and crashes can be accurately detected by all correct processes. In this
model, the transition condition should be set to “a flag is received by all correct
processes”. This model is actually used in all of our implementations, where the
failure detection is encapsulated by a view-synchronous interface [20].

The protocol can also be modified to operate in an asynchronous system
augmented with an unreliable failure detector (such as the %S failure detector
proposed in [19]) as long as a majority of processes do not fail (naturally, in this
case, the underlying total order algorithms, must also be designed for such a
model). In this model, the transition condition should be set to “a flag is received
by a majority of processes”. However, in this configuration, correct processes that
do not belong to the majority may be required to retransmit some messages. It
is interesting to observe that the strategy proposed before for the P detector
(perform the switch when a flag is received from all correct processes) and the
strategy proposed in [16] (perform the switch when the first flag is received) can
be seen as extreme point of a spectrum. Between these extreme cases, there is a
range of alternative switching points, from which the “majority of processes” is
the one that ensures less disruption in %S model.

7 Conclusions and Future Work

Several total order protocols exist that use quite different strategies. Such strate-
gies may perform better in specific environments and/or working conditions. We
presented an adaptive total order protocol that is able to switch in run-time be-
tween different total order algorithms. When the environment is dynamic, this
allows the system to use the ordering strategy that is most favorable.

If one is not careful, the procedure to switch between algorithms can disrupt
the message flow. Our work tackles this issue by proposing a novel switching
strategy that performs the reconfiguration with negligible impact on the observed
delivery rate. Evaluation results of an implementation of the protocol showed
performance improvements in regard to competing approaches.

Planned future work on this subject will aim at embedding the resulting pro-
tocol in a database replication service based on the state machine approach [4].
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Abstract. In the paper we consider distributed algorithms for greedy
graph coloring. For the largest-first (LF) approach, we propose a new
distributed algorithm which is shown to color a graph in an expected
time of O(∆ log n log ∆) rounds, and we prove that any distributed LF-
coloring algorithm requires at least Ω(∆) rounds. We discuss the quality
of obtained colorings in the general case and for particular graph classes.
Finally, we show that other greedy graph coloring approaches, such as
smallest-last (SL) or dynamic-saturation (SLF), are not suitable for ap-
plication in distributed computing, requiring Ω(n) rounds.

1 Introduction

Problem definition. We discuss the vertex coloring problem in a distributed
network. Such a network consists of a set V of processors and a set E of bidi-
rectional communication links between pairs of processors. It can be modeled
by an undirected graph G = (V,E). We denote n = |V |, m = |E| and for each
vertex v define its open neighborhood N(v) = {u : {u, v} ∈ E} and vertex de-
gree degG v = |N(v)|. In order to distinguish neighbours of higher degree, we
will use the symbols N>(v) = {u ∈ N(v) : deg(u) > deg(v)} and similarly
N≥(v) = {u ∈ N(v) : deg(u) ≥ deg(v)}.

To color the vertices of G means to give each vertex a positive integer color
value in such a way that no two adjacent vertices get the same color. If at most k
colors are used, the result is called a k-coloring. In many practical considerations,
such as code assignment in wireless networks [1], it is desirable to minimise the
number of used colors. The smallest possible positive integer k for which there
exists a k-coloring of G is called the chromatic number χ(G). This value is
bounded from above by ∆ + 1, where ∆ denotes the maximum vertex degree of
the graph.

Model of computation. We assume the common model used widely in pre-
vious research on the subject [3,11,16]. Moreover, we assume neither any global
parameters known a priori for any vertex in a graph, nor unique identifiers. We
allow each vertex of the graph to know only its own local state and local states
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of neighboring vertices. To measure time complexity we use the number of syn-
chronized rounds as such a measure is used in most cited material, even though
the algorithms discussed here may be adapted for the asynchronous model.

When evaluating the performance of a random distributed coloring algorithm
A on a graph G there are at least two random variables of interest: CA(G), the
number of colors used by the algorithm to color the graph G, and TA(G), the
number of rounds used to color G.

A good distributed algorithm is one where CA(G) is close to χ(G), the chro-
matic number of G, and where TA(G) is small relative to the number of vertices
in G. The difference CA(G) − χ(G) can be viewed as a measure of the effective-
ness of the algorithm. It has to be remembered though, that in the general case
approximating χ(G) within a factor of n1/7−ε is an NP-hard problem, for any
ε > 0 [2].

1.1 Preliminaries: Greedy Graph Coloring in a Distributed Context

For a given graph G and the sequence of vertices K = (v1, v2, . . . , vn), we
will use the term greedy coloring to describe the following procedure of color
assignment:

algorithm Greedy-Color(G,K):
for v := v1 to vn do

give vertex v the smallest possible color;

Definition 1. A sequential coloring algorithm is an algorithm which determines
a sequence K of vertices of G, and then colors G using the procedure Greedy-
Color(G,K).

Below we briefly recall the basic principles of the most common sequential algo-
rithms; for a more detailed analysis of sequential coloring see [8,9].

– S algorithm: no assumptions are made concerning sequence K.
– LF algorithm: sequence K is formed by arranging the vertices of graph G in

non-ascending order of degrees,
– SL algorithm: sequence K is formed by iteratively removing a vertex of

minimal degree from the graph and placing it at the end of K.
– SLF (DSATUR) algorithm: sequence K is formed by dynamically arranging

the vertices of graph G in non-ascending order of saturation degrees, where
the saturation degree is the number of neighboring vertices which have al-
ready been colored (ties are broken by choosing the vertex of greater degree).

For some sequential algorithm A, we will call a coloring of a graph an A-coloring
if it may be obtained by coloring the graph greedily using a sequence of vertices
K legal for algorithm A. In particular, it is easy to observe that an S-coloring of
graph G is equivalent to a Grundy coloring [5] of G, i.e. such a coloring, that no
single vertex may have its color value decreased without affecting the color of
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some other vertex. All other sequential algorithms also produce Grundy color-
ings and may also have other, stronger properties (see [9,14,17] for an extensive
characterisation).

Definition 2. A distributed graph coloring algorithm DA is said to be a dis-
tributed implementation of sequential algorithm A (or simply: a distributed A-
coloring algorithm) if all possible results of algorithm DA are correct A-colorings.

1.2 Summary of Main Results

State-of-the-art results. For the general graph coloring problem some ex-
tremely fast algorithms have been described. Linial in [11] gave an algorithm
working in O(log∗ n) time but using O(∆2) colors. This result was improved
later on by De Marco and Pelc [13]. The algorithm given in the paper uses O(∆)
colors and O(log∗(n/∆)) rounds, but local computations are not even polynomi-
ally bounded. On the other hand, a very simple algorithm for coloring arbitrary
graphs with (∆ + 1) colors was given by Johansson [7]. It was proved to run in
O(log n) time, but the number of colors used by the algorithm is close to ∆ even
if the graph is bipartite. This is not surprising, since Johansson’s algorithm has
no mechanism for economizing on the number of colors. Further improvements
were proposed in [4]. In that paper a very similar technique was used to compute
a coloring of triangle-free graphs using O(∆/ log ∆) colors, but the algorithm can
fail for some instances of the problem.

To the best of our knowledge, the first greedy distributed approach to graph
coloring was studied by Panconesi and Rizzi [15]. The authors used a forest
decomposition technique to achieve O(∆2 log∗ n) time. Recently an algorithm
motivated by sequential LF-coloring was described in [6]. Analysis shows that it
runs in O(∆2 logn) time. However, it sometimes leads to colorings which are not
LF-colorings, so the described algorithm is not a distributed implementation of
the LF algorithm according to the Definition 2.

Our contribution. In Section 2 we describe a new approach to distributed
LF-coloring, showing an algorithm based on iterated maximal independent set
construction with O(∆ log n log∆) expected runtime, which is shown to be nearly
optimal and improves earlier results from [6,15]. In Subsection 2.3 we briefly dis-
cuss the quality of colorings obtained using the proposed algorithm and compare
it to its sequential counterpart. In Section 3 we show that every distributed im-
plementation of the LF algorithm requires Ω(∆) time, whereas the SL and SLF
approaches may in fact for some graphs require Ω(n) rounds to color.

2 A Distributed Implementation of the LF Algorithm

Before discussing the details of the distributed implementation of the LF algo-
rithm, we present an equivalent characterization of a correct LF-coloring. For a
given coloring of G, let IS(d,c) ∈ V denote the independent set of vertices of G
of degree d and colored with color c.
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Lemma 1. An assignment of colors to G is a correct LF-coloring iff for all
1 ≤ d, c ≤ ∆ + 1 the set IS(d,c) is a maximal independent set in the subgraph
H(d,c) of G induced by the set of vertices

(⋃
ci≥c IS(d,ci)

) \ N
(⋃

di>d IS(di,c)

)
.

Proof. (⇒) Consider a coloring obtained by an arbitrary sequence of the LF al-
gorithm. Clearly, IS(d,c) is an independent set. By contradiction, suppose that
the set IS(d,c) is not maximal and can be extended by some vertex v of H(d,c).
This implies that v is of degree degG v = d and has some color c(v) > c, which
means that it is adjacent in G to a vertex u previously colored by the LF algo-
rithm with color c, i.e. such that v ∈ N(u) and degG u ≥ d. Hence we either
have v ∈ N(IS(d,c)) or v ∈ N

(⋃
di>d IS(di,c)

)
, a contradiction.

(⇐) It suffices to observe that if a coloring of G fulfills the right hand side of the
lemma, then it may be obtained by using the LF algorithm with the sequence of
vertices: K = (IS(∆,1), IS(∆,2), . . . , IS(∆,∆+1), IS(∆−1,1), IS(∆−1,2), . . . , IS(∆−1,∆),
. . . , IS(1,1), IS(1,2)), where the elements of each independent set may be enumer-
ated in arbitrary order. �

We now propose a distributed algorithm in which each vertex v is characterised
by three principal local state variables: c(v) which will store the color of vertex
v at the end of the coloring, d(v) which constantly stores the degree of v in G,
and a binary flag f(v) which specifies whether v has already reached its final
color. Using the terminology from Lemma 1, at any point of the execution of the
algorithm we classify the vertices of G into three categories, depending on the
information currently available to the vertex from its own local state and the
local states of its neighbours:

– v is correctly colored, if v can determine that it will belong to IS(d(v),c(v)) at
the end of the coloring,

– v is actively uncolored, if v can determine that it will not belong to any of the
sets IS(d(v),1), . . . , IS(d(v),c(v)−1), N

(⋃
di>d IS(di,c)

)
, but cannot infer whether

it will belong to set IS(d(v),c(v)) at the end of the coloring.
– v is passively uncolored, if v can determine that it will not belong to any of

the sets IS(d(v),1), . . . , IS(d(v),c(v)−1), but cannot infer whether it will belong
to the set N

(⋃
di>d IS(di,c)

)
at the end of the coloring.

Theorem 1. There exists a distributed graph coloring algorithm using local state
variables c(v), d(v), f(v), such that at any stage of execution each vertex belongs
to exactly one of three categories: correctly colored, actively uncolored and pas-
sively uncolored. Moreover, a correctly colored vertex will remain correctly colored
throughout the rest of the execution.

Proof (sketch). Let us assume the interpretation of the state variables as in the
earlier description. Initially, let c(v) := 1 and f(v) := false. The value f(v) will be
set to true when vertex v becomes correctly colored. Let us assume that through-
out the algorithm the value c(v) will never decrease and may only increase when
f(v) = false and it is certain that v will not belong to set IS(d(v),c(v)).

We will show that under these assumptions it is possible to construct an
algorithm such that a vertex v with f(v) = false is actively uncolored if there
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does not exist a vertex u ∈ N>(v) such that c(u) ≤ c(v) and f(u) = false, or
passively uncolored in the opposite case. Indeed, it suffices that the algorithm
repeatedly performs the following two actions in successive rounds:

1. For each vertex v, if there exists a correctly colored vertex u ∈ N≥(v) such
that c(u) = c(v), increase c(v) by 1 and repeat the step if necessary.

2. For each actively uncolored vertex v, attempt to include v in the independent
set IS(d(v),c(v)). If successful, mark v as correctly colored (f(v) := true).

The inclusion of v in the independent set IS(d(v),c(v)) performed in Action 2 may
only fail if two neighbouring vertices attempt to join the same set simultaneously,
thus implying the need for a separate tie-breaking mechanism. It is easy to see
that Action 1 is performed only for actively uncolored vertices directly after
losing a tie in action 2 and for passively uncolored vertices. Simple inductive
reasoning shows that the earlier assumed condition for identifying passively and
actively uncolored vertices is indeed correct, which completes the proof. �

Assuming that the actions of the algorithm presented in the proof of Theorem 1
are understood as rounds in the distributed model, we observe that during ac-
tion 2 all actively uncolored vertices with the same value of variables d and c
attempt to join the same independent set IS(d,c). For instance, directly after the
initialisation of the algorithm the set of actively uncolored vertices is equal to
the set of vertices of degree ∆, all of which attempt to join independent set
IS(∆,1). The number of such vertices may be arbitrarily large (even equal to n
in the case of ∆-regular graphs), thus necessitating an efficient approach to the
distributed independent set problem, described in detail in Subsection 2.1.

2.1 Tie-Breaking in the Distributed Independent Set Problem

The problem of constructing a maximal independent set IS by adding subsets of
candidate vertices in successive rounds, encountered in the proof of Theorem 1,
has no deterministic solution in the distributed model. The first efficient prob-
abilistic approach was proposed by Luby [12] for a parallel processing system,
but due to its nature the algorithm may also be applied in a distributed setting.
For a given graph G, let S ⊆ V denote an independent set of vertices and let
Pi ⊆ V \ (S ∪ N(S)) be the set of candidates for inclusion into S in the i-th
stage of the algorithm. The algorithm divides set Pi into three disjoint subsets,
Pi = Wi ∪ N(Wi) ∪ Pi+1, where Wi denotes the independent set of vertices
merged with S at the end of the stage (known as winners, S := S ∪Wi), N(Wi)
is the neighborhood of Wi which will never enter S (known as losers), and Pi+1

is the set of candidates remaining for later consideration. The process continues
until for some k we have Pk = ∅, then IS := S is a maximal independent set,
with respect to the set of all candidate vertices.

The details of the i-th stage of the algorithm may be written as follows. Let
Hi denote the subgraph of G induced by set Pi and let Ei be its edge set. First,
each vertex v ∈ Pi is either assigned local state value r(v) = 0 and transferred
to Pi+1 with probability 1 − 1/(2 degHi

v), or contends for a place in Wi with
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probability 1/(2 degHi
v). Next, each of the contending vertices v draws a random

number with uniform distribution. A contending vertex v becomes a winner if
r(v) > maxu∈N(v) r(u), and becomes a loser in the opposite case. Luby showed
that the described algorithm fulfills the following property.

Theorem 2 ([12]). Let Di denote the random variable given as the ratio Di =
Ei+1/Ei. Then the mean value of Di is bounded by E[Di] ≤ 7/8.

Observe that for obvious reasons the value of variable Di lies within the range
Di ∈ [0, 1]. Consequently, from the above theorem we obtain the following con-
clusion.

Corollary 1. In each stage of the algorithm, the number of edges in the can-
didate set decreases by not less than 1/16-th part with probability at least 1/15,
Pr[Di ≥ 1/16] ≥ 1/15.

Let us now consider the random variable T describing the number of rounds per-
formed by the maximum independent set algorithm before its completion. Let
random variable Li be defined as Li = log16/15 Ei. Initially, L0 = log16/15 E0 ∈
O(log m) = O(log n). In each stage of the algorithm (which may easily be imple-
mented in the form of three rounds), the value Li −Li+1 is always non-negative
and, by Corollary 1, not less than 1 with probability at least 1/15. Hence we
obtain the following statement.

Corollary 2. The number of rounds T performed before the candidate set is
empty has a probability distribution with mean value E[T ] ∈ O(log n) and prob-
ability mass function fT (x), bounded from above for x ∈ Ω(log n) by that of the
negative binomial distribution with a probability parameter of 1/15.

In further analysis it is important to remember that the probability distribution
of variable T is understood in terms of randomly drawn local variables, and is
independent of the structure of sets S and Pi.

2.2 An Algorithm for LF-Coloring in O(∆ log n log ∆) Rounds

A formal description of the proposed LF-coloring algorithm is obtained by com-
bining the approach from the proof of Theorem 1 with the results of consider-
ations from Subsection 2.1. For the values 1 ≤ d, c ≤ ∆ + 1 we will in parallel
be constructing the maximal independent sets IS(d,c). At a given stage of con-
struction of set IS(d,c), the set S(d,c) of known elements will consist of vertices
v having c(v) = c, d(v) = d, f(v) = true, while the set P(d,c) of candidates will
consist of actively uncolored vertices having c(v) = c, d(v) = d, f(v) = false. The
complete pseudocode of distributed LF-coloring algorithm DLF is given below.
Implementation details of independent set tie-breaking follow Subsection 2.1,
and we assume that function rnd[a, b] returns an integer with uniform distribu-
tion from the range [a, b]. Note that when implementing the process of contention
for independent set IS(d,c), at most d neighbours contend for one place in the
independent set, thus it is sufficient to assume [0, d4] as the range from which
random values r(v) are drawn, without escalating the number of ties.
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IS(∆,1) ��

��

IS(∆,2) ��

��

IS(∆,3) ��

��

IS(∆,∆) ��

��

IS(∆,∆+1)

IS(∆−1,1) ��

��

IS(∆−1,2) ��

��

IS(∆−1,3) ��

��

IS(∆−1,∆)

IS(2,1) ��

��

IS(2,2) ��

��

IS(2,3)

IS(1,1) �� IS(1,2)

Fig. 1. Illustration of worst-case time ordering of independent set construction

algorithm DLF(G):
Round 0:

f(v) := false; d(v) = degG(v);
Round 3k + 1:

if f(v) = false
then while ∃u∈N≥(v)(c(u) = c(v) ∧ f(u) = true)

do c(v) := c(v) + 1;
Round 3k + 2:

r(v) := 0;
if f(v) = false∧c(v) < minu∈N>(v){c(u) : f(u) = false}

then if 1 = rnd[1, 2 · |{u ∈ N(v) : d(u) = d(v) ∧ c(u) = c(v)}|]
then r(v) := rnd[0, d(v)4];

Round 3k + 3:
if r(v) > max{u∈N(v):d(u)=d(v)∧c(u)=c(v)} r(u)

then f(v) := true;

Theorem 3. Algorithm DLF determines an LF-coloring of G in O(∆ log n log∆)
rounds.

Proof. The proof of correctness is complete when we observe that by Lemma 1
finding a correct LF-coloring of G is equivalent to determining maximal indepen-
dent sets IS(∆,1), IS(∆,2), . . . , IS(∆,∆+1), IS(∆−1,1), IS(∆−1,2), . . . , IS(∆−1,∆), . . . ,
IS(1,1), IS(1,2). It is a direct conclusion from Theorem 1 that the DLF algo-
rithm does indeed determine these independent sets through the local variables
(d(v), c(v)) of the vertices.

Careful analysis of algorithm DLF shows that for any fixed d and c, the process
of construction of set IS(d,c) is dependant only on the construction of sets IS(di,ci),
for di ≥ d, ci ≤ c. Moreover, vertices once added to an independent set are
never removed from it. Without any time gain we may therefore assume that
the construction of independent set IS(d,c) starts directly after the construction
of sets IS(d+1,c) and IS(d,c−1) is complete. This would result in a time depen-
dency diagram as shown in Figure 1, where a pointer denotes flow of control
after completion of the preceding action. Let T(d,c) denote the random variable
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describing the number of rounds used for the construction of set IS(d,c). From
Figure 1 it is easy to observe that the anticipated completion time TDLF of the
DLF algorithm is bounded by the expression:

TDLF ≤ (∆ + 1) · E
[

max
1≤d,c≤∆+1

T(d,c)

]
However, a characterisation of the mass function of the distribution of T(d,c) is
given by Corollary 2. Moreover, this distribution remains the same regardless
of the nature of the constructed independent set, thus making the family of
variables T(d,c) pairwise independent. By bounding the negative binomial distri-
bution from above by the exponential distribution and performing a number of
technical transformations (which we leave out), we obtain the following result:

E
[

max
1≤d,c≤∆+1

T(d,c)

]
∈ O(log n log∆)

Thus, we may finally write TDLF ∈ O(∆ log n log∆), which completes the proof.�

2.3 Quality Characteristics of Distributed LF-Colorings

As a natural consequence of Lemma 1, algorithm DLF produces worst-case col-
orings which never use more colors than the worst-case colorings given by a
sequential implementation of LF. It is for instance known that any LF-coloring
is optimal or near optimal for numerous graph classes, e.g. complete k-partite
graphs, caterpillars, crowns, bipartite wheels [9]; as a result, algorithm DLF also
performs well for all these graph classes. As a matter of fact, it is easy to observe
that the worst case performance of DLF is exactly the same as that of LF, by
the following fact (which we leave without proof).

Corollary 3. A coloring of graph G is an LF-coloring iff it is a DLF-coloring.

However, the sequential LF and distributed DLF algorithms may have a differ-
ent probability of achieving a given coloring, thus affecting their average-case
performance. Here we confine ourselves to an experimental comparison of the
average number of colors used by LF and DLF for random graphs of different
order, edge density and average vertex degree, the results of which are presented
in Table 1. It can be clearly seen that the number of colors used by both algo-
rithms is nearly identical, though as a rule marginally smaller for the sequential
algorithm. Both LF and DLF clearly outperform all non-greedy algorithms based
on the assignment of random colors from the range [1, ∆ + 1].

3 Complexity Bounds on Distributed Greedy Coloring

We will now show that the most popular sequential coloring algorithms impose
strong lower bounds on the expected computational time in a distributed setting.
First, consider the SL and SLF algorithms. Both of them exactly color paths
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Table 1. An experimental average-case comparison of the sequential and distributed
LF-coloring algorithms. The tests were conducted for a sample of 100 uniform edge
probability random graphs of fixed order n and edge density ϕ = m/(n

2 ) (left table) or
mean vertex degree � = 2m/n (right table), each of which was colored 10 times.

n ϕ ∆ CLF CDLF TDLF

100 0.001 1.21 2.00 2.00 9.67
0.005 2.81 2.09 2.11 12.14
0.025 7.00 3.42 3.48 15.68

500 0.001 3.63 2.44 2.52 15.57
0.005 8.43 3.95 3.97 19.21
0.025 24.24 7.67 7.71 33.73

2500 0.001 9.61 4.00 4.00 22.59
0.005 26.51 7.99 8.00 37.67
0.025 91.73 21.07 21.02 91.21

n � ∆ CLF CDLF TDLF

1000 4 11.79 4.63 4.68 22.87
20 35.83 10.06 10.08 44.47

100 132.38 29.49 29.61 117.57
5000 4 13.23 4.99 5.00 26.71

20 38.53 10.25 10.30 48.88
100 138.22 29.28 29.30 127.54

25000 4 14.44 5.00 5.00 29.92
20 41.51 10.73 10.88 51.40

100 142.71 29.82 29.82 134.81

and rings, hence all distributed implementations of SL and SLF have the same
property. Linial [11] proved that the exact coloring of a ring requires Ω(n) rounds,
so we obtain the following conclusion.

Corollary 4. Any distributed implementation of SL or SLF requires Ω(n) time.

Now, let us consider the LF algorithm. We will show that any distributed imple-
mentation of LF algorithm requires Ω(∆) rounds. To achieve this, we construct
a family of graphs Gd with diam(Gd) = d and ∆(G) = 2d. A representative of
such a family is depicted in Figure 2. Vertices v0, v1, . . . , vd induce a path of
length d. Some additional components are connected to particular vertices to
ensure that vertex vi obtains a color d− i + 1 in each LF-coloring of Gd, that is
component Kr depicts a complete graph with r vertices and a bold line between
such a component and vi illustrate that each of the vertices of Kr is connected
to vi. Similarly, when two components Kr1 and Kr2 are connected, each vertex
from Kr1 is connected to each vertex from Kr2 , thus forming a clique Kr1+r2 .
We have deg vi = d+ i and |N>(vi)| = d− i, hence it is easy to observe that the
only possible color for vi in any LF-coloring is d − i + 1. However, if vertex vd

were to be removed from the graph, the colors of all other vertices of the path
would decrease by 1. Thus we have shown that color of v0 depends on the value
of the length of the path, d ∈ Ω(∆). As information in our model can propagate
only at the speed of one vertex per round we have the following.

Corollary 5. Any distributed implementation of LF requires Ω(∆) time.

Final conclusions. Taking into account the above corollaries, the proposed
O(∆ log n log∆) implementation of LF presented in Section 2 may be considered
not far from optimal among distributed LF-coloring algorithms, and to have lower
complexity than any possible implementation of an SL-coloring or SLF-coloring
algorithm. For graphs of bounded degree, the proposed distributed LF-coloring
algorithm is, to the best of our knowledge, the first of the well known graph
coloring heuristics running in O(log n) rounds.



On Greedy Graph Coloring in the Distributed Model 601

K2d−1 K2d−3 K2d−5 K5 K3 K1

K1 Kd−4 Kd−3 Kd−2 Kd−1

vd vd−1 vd−2 v3 v2 v1 v0

K2K4K6K8K2d−2

Fig. 2. A graph which requires Ω(∆) time to LF-color in the distributed model
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Topic 9: Parallel Programming: Models,

Methods and Languages

José C. Cunha, Sergei Gorlatch, Daniel Quinlan, and Peter H. Welch

Topic Chairs

This topic provides a forum for the presentation of research results and practical
experience in the development of parallel programs. Advances in algorithmic
and programming models, design methods, languages, and interfaces are needed
to produce correct, portable parallel software with predictable performance on
different parallel and distributed architectures.

The topic emphasizes results that improve the process of developing high-
performance programs, including high-integrity programs that are scalable with
both problem size and complexity. Of particular interest are novel techniques
by which parallel software can be assembled from reusable parallel components
without compromising efficiency. Related to this is the need for parallel software
to adapt, both to available resources and to the problem being solved.

This year, 13 papers were submitted to this topic. Each paper was reviewed by
four reviewers and, finally, we were able to select 7 papers. Globally, the accepted
papers discuss methods and programming language constructs to promote the
development of correct and efficient parallel programs.

The approaches based on higher-order skeletons are discussed in two papers,
for computations on two-dimensional arrays, and for dynamic task farming. Data
parallel programming is discussed in another paper concerning the automatic
parallelisation of ”for-each” loops for grid and tree algorithms. Shared mem-
ory parallel programming is discussed in two papers that propose extensions to
OpenMP, for handling irregular parallel algorithms, and for improved control
and synchronisation of multiple threads. Improved support for multithreading
models is also discussed in another paper that proposes a methodology towards
more efficient memory management for threading libraries that are based on non-
preemptive models. Distributed termination detection is discussed in a paper
that proposes the concept of ”partial quiescence” as a construct of a distributed
programming language.

We would like to thank all the authors who submitted papers to this topic,
and the external referees, for their contribution to the success of this conference.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, p. 603, 2006.
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Abstract. Computations on two-dimensional arrays such as matrices and images
are one of the most fundamental and ubiquitous things in computational science
and its vast application areas, but development of efficient parallel programs on
two-dimensional arrays is known to be hard. To solve this problem, we have
proposed a skeletal framework on two-dimensional arrays based on the theory
of constructive algorithmics. It supports users, even with little knowledge about
parallel machines, to develop systematically both correct and efficient parallel
programs on two-dimensional arrays. In this paper, we apply our framework to
the matrix-convolutions often used in image filters and difference methods. We
show the efficacy of the framework by giving a general parallel program for the
matrix-convolutions described with the skeletons, and a theorem that optimizes
the general program into an application-specific one.

1 Introduction

Computations on two-dimensional arrays, such as matrix computations, image process-
ing, and difference methods, are both fundamental and ubiquitous in scientific computa-
tions and other application areas [7, 15, 11]. However, development of efficient parallel
programs on two-dimensional arrays is known to be a hard task due to the necessity of
considering data allocation, synchronization and communication between processors.
Skeletal parallel programming is one promising solution to the situation [5, 16]. In this
model, users build parallel programs by composing ready-made components (called
skeletons) implemented efficiently in parallel for various parallel architectures. Since
low-level parallelism is concealed in the skeletons, users can obtain a comparatively ef-
ficient parallel program without needing technical details of parallel computers or being
conscious of parallelism explicitly.

We have proposed a skeletal framework on two-dimensional arrays [9], based on the
theory of constructive algorithmics (also known as Bird-Meertens Formalism) [2, 4].
Our framework provides users, even with little knowledge about parallel machines, with
a concise way to describe safe and efficient parallel computations over two-dimensional
arrays, and theorems for deriving and optimizing parallel programs. The main features
of our framework are: (1) a novel use of the abide-tree representation [2] in develop-
ing parallel programs for manipulating two-dimensional arrays; (2) a strong support
for systematic development of both efficient and correct parallel programs in a highly
abstract way; (3) an efficient implementation of basic skeletons in C++ and MPI on PC

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 605–614, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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clusters, guaranteeing that programs composed with these parallel skeletons can run ef-
ficiently in parallel. To develop parallel programs in our framework, users construct a
simple and general program that covers a class of problems, derive its efficient version
using general techniques such as fusion, tupling and generalization, and then instantiate
the general program to solve concrete problems. Usually, this derivation is summarized
as a theorem (tool).

In this paper, we give a domain-specific tool and show the efficacy of the framework.
We focus on computations known as matrix-convolutions [12], in which each element
in the resulting array depends on its surrounding elements. This set of computations
includes important and fundamental problems such as image filters, difference methods
and the N -body problem (although this last problem seems more difficult than the oth-
ers, it merely refers to not only the nearest neighbors but all the surrounding elements).
The most general form mconv is described with three components:

mconv f shrink = map f ◦ map shrink ◦ surrounds .

Here, surrounds gathers all the surrounding elements for each element, shrink picks
the necessary parts up from those gathered elements, and f calculates the resulting el-
ement from them. This general form is parameterized by the two functions shrink and
f , and users can solve many problems by specifying suitable ones. For example, users
can develop a sharpen-filter by choosing the function shrink that reduces the surround-
ings into a 3× 3 matrix, and the function f that calculates the weighted sum of the nine
values. We can further optimize instances of the general program to application-specific
ones with the surrounding theorem. The main contributions of this paper are as follows.

– We show the general parallel program for the matrix-convolutions described with
parallel skeletons. Users can solve their problems as its instance.

– We give the surrounding theorem that enables users to get an efficient program
easily. The experimental results show that the derived program can be executed
efficiently in parallel.

Technical details of this paper are available in the master’s thesis [8].

2 Notations

Notation in this paper follows that of Haskell [3], a pure functional language that can
describe both algorithms and algorithmic transformation concisely.

Function application is denoted by a space and the argument may be written without
brackets. Thus, f a means f(a) in ordinary notation. Functions are curried, i.e. func-
tions take one argument and return a function or a value, and the function application
associates to the left. Thus, f a b means (f a) b. The function application binds more
strongly than any other operator, so f a⊗b means (f a)⊗b, but not f (a⊗b). Function
composition is denoted by ◦, so (f ◦g)x = f (g x) from its definition. Binary operators
can be used as functions by sectioning as follows: a⊕ b = (a⊕) b = (⊕b) a = (⊕) a b.
Two binary operators � and � are defined by a � b = a, a � b = b. Pairs are
Cartesian products of plural data, written like (x, y). A function that applies functions
f and g respectively to the elements of a pair (x, y) is denoted by (f × g). Thus,
(f × g) (x, y) = (f x, g y).
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3 Skeletal Framework on Two-Dimensional Arrays

In this section, we introduce our parallel skeletal framework on two-dimensional ar-
rays [9] based on the theory of constructive algorithmics [2, 4].

3.1 Abide-Trees for Two-Dimensional Arrays

To represent two-dimensional arrays, we define the abide-trees, which are built up by
three constructors |·| (singleton),−◦ (above) and − ◦ (beside) following the idea in [2].

data AbideTree α = |·| α
| (AbideTree α)−◦ (AbideTree α)
| (AbideTree α) − ◦ (AbideTree α)

Here, | · | a, or abbreviated as |a|, means a singleton array of a, i.e. a two-dimensional
array of a single element a. For two-dimensional arrays x and y of the same width, x−◦y
means that x is located above y. Similarly, for arrays x and y of the same height, x − ◦ y
means that x is located on the left of y. Moreover,−◦ and − ◦ are associative operators and
satisfy the following abide (a coined term from above and beside) property.

Definition 1 (Abide Property). Two binary operators ⊕ and ⊗ are said to satisfy the
abide property or to be abiding, if the following equation is satisfied:

(x ⊗ u) ⊕ (y ⊗ v) = (x ⊕ y) ⊗ (u ⊕ v) .

In the rest of the paper, we will assume that x has the same width as y when x−◦ y
appears, and that u has the same height as v for u − ◦ v.

Note that one two-dimensional array may be represented by many abide-trees, but
these abide-trees are equivalent because of the abide property of−◦ and − ◦. For example,
we can express the following 2×2 two-dimensional array by two equivalent abide-trees.(

1 2
3 4

)
⇒

{
(|1| −◦ |2|)−◦ (|3| −◦ |4|)
(|1|−◦ |3|) − ◦ (|2|−◦ |4|)

This is in sharp contrast to the quadtree representation of matrices [10], which does not
allow such freedom.

From the theory of constructive algorithmics [4], it follows that each constructively
built-up data structure (i.e., algebraic data structure) is equipped with a powerful com-
putation pattern called homomorphism.

Definition 2 ((Abide-tree) Homomorphism). A function h is said to be an abide-tree
homomorphism, if it is defined as follows for a function f and binary operators ⊕,⊗.

h |a| = f a
h (x−◦ y) = h x ⊕ h y
h (x − ◦ y) = h x ⊗ h y

For notational convenience, we write (|f,⊕,⊗|) to denote h. When it is clear from the
context, we just call (|f,⊕,⊗|) homomorphism. Note that ⊕ and ⊗ in (|f,⊕,⊗|) should
be associative and satisfy the abide property, inheriting the properties of−◦ and − ◦.
Intuitively, a homomorphism (|f,⊕,⊗|) is a function to replace the constructors | · |,−◦
and − ◦ in an input abide-tree by f , ⊕ and ⊗ respectively.
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Fig. 1. Intuitive Definition of Parallel Skeletons on Two-Dimensional Arrays

Table 1. Parallel Complexity of the Skeletons for a Two-Dimensional Array of n × n

P processors n2 processors
map, zipwith O(n2/P ) O(1)

reduce O(n2/P + log P ) O(log n)

scan, scanr O(n2/P +
√

n2/P log P ) O(log n)

3.2 Parallel Skeletons on Two-Dimensional Arrays

We introduce the parallel skeletons map, reduce, zipwith, scan and scanr for manip-
ulating two-dimensional arrays. In the theory of constructive algorithmics [2, 4], these
functions are known to be the most fundamental computation components for manip-
ulating algebraic data structures and for being glued together to express complicated
computations. Intuitive definitions of the skeletons are shown in Fig. 1. All the skele-
tons are implemented efficiently in parallel and their costs are shown in Table 1.

The skeletons map and reduce are two special cases of homomorphism. The skele-
ton map applies a function f to each element of a two-dimensional array while keeping
the shape of the structure. The skeleton reduce collapses a two-dimensional array to
a value using two abiding binary operators ⊕ and ⊗ . They are defined formally as
map f = (||·| ◦ f,−◦, − ◦ |), and reduce(⊕,⊗) = (|id,⊕,⊗|).

The skeleton zipwith, an extension of map, takes two arrays of the same shape,
applies a function f to corresponding elements of the arrays and returns a new array of
the same shape. The skeletons scan and scanr, extensions of reduce, hold all values
generated in reducing an array by reduce. The scan generates the result of reducing
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Fig. 2. C++ Code of the Sharpen Filter (Sequential Program)

Fig. 3. An Image of the Sharpen Filter in the General Program

the upper-left subarray, while the scanr generates that of the lower-right subarray. We
omit the formal definition of zipwith, scan and scanr for the space limitation.

4 Developing Parallel Programs for Matrix-Convolutions

In this section, focusing on the matrix-convolutions such as image filters and difference
methods, we give the general form described with parallel skeletons, and then give the
theorem to get optimized program from the general form.

The matrix-convolution is computation in which each element of the resulting array
depends on the surrounding elements. For example, the sharpen-filter that sharpens the
input image is one instance of the matrix-convolution. A pixel of the resulting image is
the weighted sum of the surrounding pixels of the input image. Similarly, the difference
method is another instance of matrix-convolution since it calculates the new value of
each point from the old values of the surrounding points. We show a code in C++ for
the sharpen-filter in Fig. 2, to give a concrete image of the problems dealt with here.

4.1 A General Form Described with Parallel Skeletons

As argued in the introduction, the most general form of this kind of computation is
thought to consist of three components: gathering all the surrounding elements of each
element to it, shrinking those to the necessary amount, and applying a function to get a
new element from them. Thus, the program is described as follows:

mconv f shrink = map f ◦ map shrink ◦ surrounds .
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The idea of our general from is illustrated in Fig. 3 that shows an image of execution of
the sharpen-filter: (1) surrounds gathers all the surrounding elements for each element,
(2) shrink picks the necessary parts up from those gathered elements, and (3) f cal-
culates the resulting element from them. This general form has clear correspondences
to the code in Fig. 2. The function f corresponds to f of the code, shrink corresponds
to which elements are the arguments passed to f , and surrounds corresponds to for-
loops. Thus, users can easily write their programs using the general form.

This general form is parameterized by the two functions shrink and f , and users
can solve many problems by specifying application-specific ones, as shown below. The
function surrounds, which is commonly used in those problems, has two-phase calcu-
lation as follows: (1) calculation of the parts of the northwest (i.e. c, n, w and nw) by
scan, and (2) that of the other parts by scanr. Its definition is as follows.

surrounds = scanr(⊕r,⊗r) ◦ map fr ◦ scan(⊕f ,⊗f ) ◦ map ff
where
ff a = (a,Nil ,Nil ,Nil)
(ca, na, wa, nwa) ⊕f (cb, nb, wb, nwb) = ( cb︸︷︷︸

c

, na−◦|ca|−◦nb︸ ︷︷ ︸
n

, wb︸︷︷︸
w

, nwa−◦wa−◦nwb︸ ︷︷ ︸
nw

)

(ca, na, wa, nwa) ⊗f (cb, nb, wb, nwb) = ( cb︸︷︷︸
c

, nb︸︷︷︸
n

, wa − ◦ |ca| −◦wb︸ ︷︷ ︸
w

, nwa − ◦na − ◦nwb︸ ︷︷ ︸
nw

)

fr (c, n, w, nw) = (c, n,Nil ,Nil , w,Nil , nw,Nil ,Nil)
(ca, na, sa, ea, wa, nea, nwa, sea, swa) ⊕r (cb, nb, sb, eb, wb, neb, nwb, seb, swb)
= ( ca︸︷︷︸

c

, na︸︷︷︸
n

, sa−◦ |cb|−◦ sb︸ ︷︷ ︸
s

, ea︸︷︷︸
e

, wa︸︷︷︸
w

, nea︸︷︷︸
ne

, nwa︸︷︷︸
nw

, sea−◦ eb−◦ seb︸ ︷︷ ︸
se

, swa−◦ wb−◦ swb︸ ︷︷ ︸
sw

)

(ca, na, sa, ea, wa, nea, nwa, sea, swa) ⊗r (cb, nb, sb, eb, wb, neb, nwb, seb, swb)
= ( ca︸︷︷︸

c

, na︸︷︷︸
n

, sa︸︷︷︸
s

, ea − ◦ |cb| −◦ eb︸ ︷︷ ︸
e

, wa︸︷︷︸
w

, nea − ◦ nb − ◦ neb︸ ︷︷ ︸
ne

, nwa︸︷︷︸
nw

, sea − ◦ sb − ◦ seb︸ ︷︷ ︸
se

, swa︸︷︷︸
sw

)

Here, Nil is a special value to indicate that there is no value, and we treat it as an
identity of−◦ and − ◦ for simplification of the notation. Thus, Nil −◦ x = x, x−◦ Nil = x,
Nil − ◦ x = x, and x − ◦ Nil = x. Each element of the resulting array is a tuple of
nine elements. The meaning of each element of the tuple is as follows: c is the center
element; s is an array of the elements on the south of the element; similarly n, e and w
are arrays of the elements on the north, east and west respectively; ne, nw, se and sw
are arrays of the elements on the northeast, northwest, southeast and southwest. Note
that this surrounds needs O(n4) memory space for a matrix of n× n.

We show some examples written with the general form.

imagefilter ker = mconv (conv ker) shrink1

FDM n ker = iter n (mconv (conv ker) shrink1)
where
shrink1 = id × B × T × L × R × BL × BR × TL × TR
B =(| |·|,�, − ◦ |), T =(| |·|,�, − ◦ |), L =(| |·|,−◦,� |), R =(| |·|,−◦,� |),
BL=(| |·|,�,� |), BR=(| |·|,�,� |), TL=(| |·|,�,� |), TR=(| |·|,�,� |)

The function imagefilter ker is an image filter with the coefficient matrix ker,
which is used to compute weighted sum of the surrounding pixels. The shrink1 reduces
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each part of the gathered surrounding elements to the element closest to the center, and
the function conv ker calculates the weighted sum of them. The functions B and T
take the bottom row and the top row of the input array respectively. Similarly, each of
L, R, BL, BR, TL and TR takes corresponding part of the input array. Figure 3 shows
an image of execution of the sharpen-filter by the above general program. The function
FDM n ker performs the finite difference method, where iter is an iteration function
and each iteration step is the same as image filters with specific coefficients.

The following example calculates the array of which element at (i, j) is the maxi-
mum in the i-th row and the j-th column, i.e. the maximum in the cross. The shrinkmax

reduces each part of the gathered surrounding elements to the biggest element in the
part, where the binary operator ↑ takes the bigger element. The function max 5 takes the
maximum of the column and the row including the center element.

crossmax = mconv max 5 shrinkmax

where shrinkmax = max × · · · × max
max = (|id , ↑, ↑ |)
max 5 (c, n, s, e, w, , , , ) = c ↑ n ↑ s ↑ e ↑ w

As shown in this example, shrink is allowed not only to shrink the shape of the sur-
roundings but to perform some calculation.

4.2 Surrounding Theorem

In this section, we give the theorem to optimize the general form by fusing shrink to
surrounds.

Image filters and difference methods usually have the shrink of the fixed size win-
dow that takes the fixed-size rectangle region (window) of the surrounding elements.
The function that takes a fixed number of columns (rows) can be written as a homo-
morphism. For example, the function right = (| |·|,−◦,� |) takes the right-most column,
which is used in the examples in the previous section. Thus, we here consider the gen-
eral shrink that consists of homomorphisms. It is defined as follows.

shrink = gc × hn × hs × he × hw × hne × hnw × hse × hsw

where
hn = (|gn,⊕n,⊗n|) , hs = (|gs,⊕s,⊗s|) , he = (|ge,⊕e,⊗e|)
hw = (|gw,⊕w,⊗w|) , hne = (|gne,⊕ne,⊗ne|) , hnw = (|gnw,⊕nw,⊗nw|)
hse = (|gse,⊕se,⊗se|) , hsw = (|gsw,⊕sw,⊗sw|)

Here, ⊕X and ⊗X are extended to satisfy the following equations: Nil ⊕X x = x,
x ⊕X Nil = x, Nil ⊗X x = x, and x ⊗X Nil = x. The general form using this shrink
uses O(n4) operations for a two-dimensional array of n× n.

Then, we give the result of the optimization by fusing shrink to surrounds.

Theorem 1 (Surrounding). Let the function shrink be defined by homomorphisms as
above. Then, there exist a projection function proj and operators ⊕′

f , ⊗′
f , ⊕′

r and ⊗′
r,

whose complexity is bounded by the largest of ⊕X and ⊗X , and the program

mconv f shrink
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is optimized to the following program.

map (f ◦ proj ) ◦ scanr(⊕′
r,⊗′

r) ◦ map fr ′ ◦ scan(⊕′
f ,⊗′

f ) ◦ map ff ′

Proof. The theorem is proved by the promotion of map shrink with extending the
tuples. See the master’s thesis [8] for details .

The resulting program uses O(n2) operations for a two-dimensional array of n × n ,
while the original general form uses O(n4) operations. The parallel complexity of the
resulting program is O((n2/P +

√
n2/P logP )T(⊕X ,⊗X)) for P processors, provided

that the calculational complexity of ⊕X and ⊗X in the homomorphisms are T(⊕X,⊗X) .
All the examples shown in the previous section have the shrink functions described

with homomorphisms. Thus, we can apply this theorem to all of them, and they are
executed in O(n2/P +

√
n2/P logP ) complexity using the skeletons.

As mentioned above, the function that takes a fixed number of columns (rows) can
be written as a homomorphism. Thus, this theorem holds for the shrink of the fixed
size window that shrinks the surrounding elements to a fixed size, which is often seen
in image filters and difference methods.

Corollary 1 (Fixed Size Window). Let the function shrink be the fixed size window.
Then, the program mconv f shrink is optimized to that of O(n2) operations.

Note that the homomorphism taking h×w subarray of a two-dimensional array has the
operators of O(wh) complexity. Thus, the total complexity of the program of fixed size
window is O(n2wh).

Finally, we note that we may perform more optimizations by using the shifting of the
edges instead of butterfly computations for the global computations of scan and scanr,
provided that the operators influence only a fixed number of elements [8]. This leads to
the parallel complexity of O((n2/P +

√
n2/P )T(⊕X ,⊗X)) for P processors.

5 Experimental Results

We implemented the program1 using our parallel skeleton library [14] and did our ex-
periment on a cluster (distributed memory). Each of the nodes connected with Gigabit
Ethernet has a CPU of Intel R© Xeon R©2.80GHz and 2GB memory, with Linux 2.4.21
for the OS, gcc 2.96 for the compiler, and mpich 1.2.7 for the MPI.

Figures 4 and 5 show the speedups and the calculation times of the sharpen-filter.
The program is an optimized one from the general form (an equivalent of the program
in Fig. 2). The inputs are images of 1000 × 1000 and 2000 × 2000. The computation
times of the program on one processor are 0.70s and 3.85s respectively.

The result shows programs described with skeletons can be executed efficiently in
parallel, and proves the success of our framework. The program achieves almost linear
speedups , and the total computational complexity of the optimized program is O(n2)
(thus, its parallel complexity is O(n2/P ) for small P ). However, the serial performance

1 The source code of the test program as well as the skeleton library are available at the web
page http://www.ipl.t.u-tokyo.ac.jp/sketo/.
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Fig. 4. Speedup of Image Filter Fig. 5. Calculation Time vs. Size of Image

is rather poor due to the overhead of using general skeletons (i.e. scan and scanr). We
think this problem can be solved by replacing the general skeletons with those special-
ized for this domain, and it can be automatically done by compilers (future work).

6 Related Work

SKiPPER [17] is a skeleton-based parallel programming environment for real-time im-
age processing. It has skeletons specialized for image processing, while we use general
skeletons on two-dimensional arrays. Thus, a program developed with SKiPPER may
be faster than that written with our skeletons, but, the latter program can be easily
composed with other programs and be optimized by fusion due to generality and solid
foundation of our skeletons.

There are several other skeletal parallel approaches (libraries), such as eSkel [1],
Muesli [13] and P3L [6]. Their formalizations of skeletons on two-dimensional arrays
are not enough (e.g. they have no scan skeletons, and the reduction takes only one op-
erator) to deal with matrix-convolutions suitably. Our skeletons have a solid foundation,
so that we can easily deal with matrix-convolutions and perform optimizations.

7 Conclusion

In this paper, we proposed a general theorem, called surrounding theorem, for optimiza-
tion of a general skeleton program into an efficient application-specific program. It can
deal with a wide class of matrix-convolution problems including image filters and dif-
ference methods. The experimental results show that the optimized program can be ex-
ecuted efficiently in parallel. We are now working on making an automatic mechanism
for translating the sequential code to our general form with skeletons, and further an
optimization mechanism for the application-specific program with respect to its global
communication and sequential performance.
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Abstract. Within a classical workpool skeleton a master process em-
ploys a set of worker processes to solve tasks contained in a task pool. In
contrast to the usual statically fixed task set some applications generate
tasks dynamically. Additionally often the need for dynamic task pool
transformation arises, for example to combine newly generated partial
tasks to form full tasks. We present an extended workpool skeleton for the
parallel Haskell dialect Eden which provides both features and employs
careful stream-processing and a termination detection mechanism. We
also show how to nest the skeleton to alleviate the bottleneck a single
master presents. Furthermore we demonstrate its efficiency by its fruitful
use for the parallelisation of a DNA sequence alignment algorithm.

1 Introduction

Uneven task sizes arise naturally from many problems and are often an obstacle
for parallelisation. Within parallel dialects of Haskell [1] the classical static dis-
tribution schemes (like parallel map) can hardly establish load-balance given
unevenly sized tasks; therefore dynamic task distribution schemes are used.
The well-known workpool scheme (also known as farm, master-worker, or client-
server) [2] is mostly used to compensate for such irregularly sized tasks: A master
administrates a statically fixed task pool out of which tasks are gradually as-
signed to currently idle workers, leading to a balanced workload. Such a scheme
is often expressed as a high-level code template, known as a skeleton [3,4].

Some applications however expose their full task set only successively as the
computation proceeds and need therefore a more general workpool skeleton
whose worker processes are allowed to generate new tasks dynamically. Then
a task will not only produce a result, but possibly also a set of new tasks for the
global task pool. This introduces the problem of termination detection, which
was not a problem before since a statically fixed task number makes it easy to
determine termination. Now special care has to be taken to account for a dy-
namically growing and shrinking task pool. Emptiness of the the task pool does
no longer mean that there is no more work to do, since new work may still be
created by active workers.
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To make things even more complicated, dynamically created tasks may be
incomplete (e. g. due to limited local data) and need to be combined with other
incomplete tasks before submission to a worker. Therefore means have to be pro-
vided for traversing and transforming the task pool on the fly. But since the task
pool is often modelled as a lazy list and woven into a network of interdependent
streams, one has to be extra careful during a transformation. When combining
partial tasks, deadlocks can easily occur by searching for not yet existent partial
partner tasks; additionally, all usual techniques (like delayed pattern matching
and incremental functions) when dealing with lazy lists have to be considered.

All this means extra work for the master process, which worsens the bot-
tleneck it already presents. One way to alleviate this is exchanging the single
master process by a tree of master and submaster processes distributing the ad-
ministration load. This corresponds to a nested workpool, in which a workpool
is given other workpools as worker processes.

Contributions
– We present a new workpool skeleton for the parallel Haskell dialect Eden

[5] which firstly enables worker processes to dynamically generate additional
tasks for the task pool (together with the needed termination detection)
and secondly permits dynamic transformation of the task pool (Sect. 2.2).
A function aiding safe task pool transformation is also described.

– Via folding the workpool skeleton is then nested to reduce the administrative
load of the master process (Sect. 2.3).

– We show the usefulness of the new workpool by applying it to the parallel
alignment of DNA sequences (Sect. 3).

2 The Workpool Skeleton for Eden

2.1 A Short Glance at Eden

Eden extends Haskell with means for relocating the evaluation of a function ap-
plication to other network nodes, enabling the evaluation of multiple expressions
in parallel. A function embedded in a process abstraction by applying
process :: (Trans a, Trans b) => (a -> b) -> Process a b

can be run in parallel to the continuing evaluation of its parent expression on
another processor by applying its arguments to a special application operator
(#) :: (Trans a, Trans b) => Process a b -> a -> b

New processes are placed round-robin on available nodes. There is no shared
memory, all data exchanges happen via communication based on PVM [6] mes-
sage passing within Eden’s implementation. The Trans context ensures that
only those values can be communicated for which corresponding low-level com-
munication routines exist. Not only finite values but also infinite lists (known as
streams) can be transmitted. These are sent piecewise with each stream element
being demanded strictly. For merging a set of streams into a single stream a
nondeterministic merge :: [[a]]->[a] function is predefined. Stream commu-
nication plays a vital part in the following workpool skeleton.
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2.2 The Workpool Skeleton

Now we present a workpool skeleton which provides dynamic task generation
and task pool transformation. The basic scheme works as follows: A master
process keeps a pool of tasks which are distributed to a set of worker processes
on request. When a worker receives a task, it solves it and sends back the result
together with a request for new work. This way each worker is busy most of the
time and load balance is kept as tasks are assigned depending on the current
work distribution.

We extend the basic scheme by two new features, dynamic task generation
and task pool transformation: Firstly, when a worker processes a task new tasks
may arise. These will be sent back to the master and appended to the global
task pool, preserving task order. Secondly, sometimes it is helpful to be able
to process and transform the task pool. A given transformation function tt
will be applied to the task pool to combine incomplete tasks and replace them
by complete ones, possibly changing task order. The resulting basic interac-
tion scheme is shown in Fig. 1. All connections shown are stream connections;
the thick pointers touching the worker processes �W are interprocess connec-
tions while all others reside within the master process. The full code for the
extended workpool is shown in Fig. 2. Parameters are: The number of pro-
cessors available, the number of advance requests for each worker, the worker
function, the transformation function for the task pool, and finally a set of ini-
tial tasks. At first, the workpool demands the first cons of the list of worker
processes via touch to trigger their creation using the predefined parallel zip
function eagerInstList, then the results are given back. The main body is
divided into two parts:

The stream part defines the parallel stream network according to Fig. 1. A
set of workerProcs is created, which apply the worker function f to their input
and attach their id number to the result as a request for new work. Their input
toWorkers is a list of streams, each of which contains tasks for the corresponding
worker according to its requests. The initialRequests are built based on an
interleaved sequence (each of size prefetch) of worker numbers and provides
an initial supply of tasks for each worker. The worker’s outputs are merged to

��
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��
��
W
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toWorkersfromWorkers

concDistr�����
�����

����
����merge�spread

results
�newTasks�merge �
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�
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�
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�
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Fig. 1. Stream interconnections of workpool (seen from master process)
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wpool :: (Trans t, Trans r) =>
Int -> Int -> ([t] -> [(r, [t])]) ->
(([t],[t],[t],Int) -> ([t],[t],[t],Int)) ->
[t] -> [r]

wpool np prefetch f tt initialTasks =
(touch fromWorkers) ‘seq‘ results
where touch [] = () -- Demand first constructor to

touch (_:_) = () -- initiate worker creation

-- 1) Stream ----------------------------------------------
fromWorkers = eagerInstList workerProcs toWorkers
workerProcs = [process (zip [n,n..] . f) | n<-[1..np]]

toWorkers = concDistr requests [1..np] tasks
requests = initialReqs ++ newReqs
initialReqs = concat (replicate prefetch [1..np])

taskpool = initialTasks ++ (merge newTasks)
(_, _, tasks, _) = tt (taskpool, [], [], 0)
workerstream = merge fromWorkers
(newReqs, (x, newTasks)) = spread workerstream

-- 2) State -----------------------------------------------
([], _, results, _) = terminate

([], length initialTasks, [], 0)
workerstream

terminate (is,t,rs,r) ( (_,(res,ntasks)) :ws)
| t’ > r’ = terminate (is’, t’, res:rs, r’) ws
| t’ == r’ = (is’, t’, reverse (res:rs), r’)
| t’ < r’ = error ("Will never happen.")
where ([], is’, _, n) = tt (is++ntasks, [], [], 0)

t’ = t + n
r’ = r + 1

terminate _ []
= error "Workerstream empty!"

concDistr :: Eq a => [a] -> [a] -> [b] -> [[b]]
concDistr unsortedKeys allKeys vals =
where vals’ = zip unsortedKeys vals

result = [ [v | (uk,v) <- vals’, uk == k] | k <- allKeys]

-- TH splice creates: spread :: [(a,(b,[c]))] -> ([a], ([b], [[c]]))
$(do let empty = ListE []

let structure = TupE [empty, TupE [empty, empty]]
let spread_fct = mkSpread structure
return spread_fct)

Fig. 2. Workpool with dynamic task generation and task pool transformation
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-- Call in Fig.2 spread [] = ([], ([], []))
-- creates two spread ((a,(b,c)):rest) = (a:as,(b:bs,c:cs))
-- clauses: where (as,(bs,cs)) = spread rest
mkSpread :: Exp -> [Dec]
mkSpread struct = [FunD "spread" clauses] where
clauses = [Clause pat1 body1 [], Clause pat2 body2 [ValD pat b []]]
pat1 = [ListP []]
body1 = NormalB (buildE struct (repeat (ListE [])))
pat2 = [ConP "GHC.Base::" [pat2’, VarP "rest"]]
pat2’ = buildP struct [VarP [c] | c <- [’a’,’b’..]]
body2 = NormalB (buildE struct lists)
lists = [AppE (AppE (ConE "GHC.Base::") (VarE [c]))

(VarE [c,’s’]) | c <- [’a’,’b’..]]
pat = buildP struct [VarP [c,’s’] | c <- [’a’,’b’..]]
b = NormalB (AppE (VarE "spread") (VarE "rest"))

buildE :: Exp -> [Exp] -> Exp; buildP :: Exp -> [Pat] -> Pat
buildE (TupE vs) ls = TupE (fst (traverse vs ls)) where
traverse ((ListE []):rest) (l:ls) = (l : r, ls’)

where (r, ls’) = traverse rest ls
traverse ((TupE ws):rest) ls = ((TupE rec):r,ls’’)

where (rec, ls’) = traverse ws ls
(r, ls’’) = traverse rest ls’

traverse [] ls = ([], ls)

Fig. 3. Template Haskell generation of spread for any tuple nesting (buildP omitted)

a single workerstream which is spread to yield a tuple of streams instead of a
stream of tuples. Fig. 3 shows how Template Haskell [7] is used to flexibly create
the needed version of spread. New requests are appended to the list of pending
requests while new tasks are added to the task pool which gets transformed by
tt. One could in principle also extract the results out of spread via x; but
this would result in non-termination since after processing all tasks the master
would wait forever for further worker messages containing new tasks.

Therefore the state part has been introduced to care for termination detection
and result accumulation. The terminate function carries a state consisting of
a set of incomplete tasks, the number of complete tasks in the task pool, the
accumulated results, and the number of accumulated results. In addition to the
continuous evaluations in the stream part, terminate traverses workerstream
a second time in a stepwise fashion. For every answer from a worker process,
terminate will run tt on the incomplete tasks extended by the received new
tasks and update its t counter accordingly. The result counter r is incremented
by 1, as every answer delivers exactly one result. If then the new counters t’ and
r’ are equal, which means that for every complete task issued to the task pool
a result has been received, the workpool terminates giving back the reversed list
of results. If, on the other hand, t’ > r’, then the remaining incomplete tasks
together with the new counters and the result list will be used for a tail-recursive
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call to terminate. The remaining case t’ < r’ can never happen since every
step will yield only one result.

When constructing a proper task pool transformation function tt for the
workpool one has to be careful because:

– In the stream part tt is applied once to a stream of tasks while in the state
part it is applied many times to a finite task pool. It has to behave correctly
in both situations.

– As interdependent task and result streams are used it is necessary to produce
as much output as possible with as few inputs as possible. Therefore delayed
matching (via the lazy matching operator ~ or selection functions head and
tail) and the earliest possible production of results should be used.

– Transformation often means combination or comparison which implies
searching the task pool. As the task pool is potentially infinite one runs
the risk of searching for (and then blocking on) not yet existent tasks.

As tt will often in some way have to combine incomplete tasks to complete ones,
we present in Fig. 4 a predefined function ttransform for doing this while taking
some care of the aforementioned dangers. One has to provide only two arguments
to ttransform to get a full version of tt: Firstly, a predicate cp, which checks
whether a given task is complete or not. Secondly, a function co which takes
a set of mixed complete and incomplete tasks and tries to combine as many
incomplete tasks as possible. Its results are the already complete tasks together

ttransform,ttransform2 :: (t -> Bool) -> -- complete, cp
([t] -> ([t],[t],Int)) -> -- combine, co
([t], [t], [t], Int) -> ([t], [t], [t], Int)

ttransform cp co old@(tasks, incomplete, complete, n) -- Step 1
= if (not (null incomplete))

then let (ct,it,d) = co incomplete
in if (not (null ct))

then ttransform cp co (tasks,it,ct++complete,n+d)
else ttransform2 cp co old

else ttransform2 cp co old

ttransform2 cp co (t:ts, incomplete, complete, n) -- Step 2
| cp t = (tts1,iis1, t:ccs1, d1+1)
| otherwise = (tts2,iis2,ct++ccs2, d2+d)

where (tts1,iis1,ccs1,d1) = ttransform cp co
(ts, incomplete, complete, n)

(ct,it,d) = co (t:incomplete)
(tts2,iis2,ccs2,d2) = ttransform cp co (ts, it, complete, n)

ttransform2 cp co ([],incomplete, complete, n) = ([], it, ct, n+d)
where (ct,it,d) = co incomplete

Fig. 4. Higher-order function ttransform for task pool transformation
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with the newly completed tasks, the currently not combinable incomplete tasks,
and the number of newly generated complete tasks.

To avoid the above mentioned danger of blocking when trying to find partners
for incomplete tasks we will make only a single traversal over the task list and
use an accumulator to carry not yet combined tasks with us. For that purpose
ttransform carries a state argument consisting of the remaining task stream,
the accumulator, a stream of complete tasks (its result), and the number of new
complete tasks (needed to correct termination detection counters). ttransform
is divided in two steps: The first step postpones any matching on the input task
stream and tries to combine incomplete tasks inside the accumulator as long
as possible. Only if that fails, it matches the first task of the task stream and
acts depending on its completeness. Complete tasks are immediately passed to
the output stream while incomplete ones are tried to be completed. By con-
sidering data dependencies the user has to make sure that enough complete or
completable tasks are generated in the right order by his application.

2.3 The Nested Workpool

A growing number of workers or tasks induces heavy traffic at the master process
which then apparently quickly becomes a bottleneck for the whole workpool
scheme. This can be avoided by having more independent workers which manage
a buffer of tasks for themselves. In other words: We will replace each worker by
another workpool for local task distribution. Fig. 5 shows the code for such a
nested workpool with an even arbitrary nesting depth ≥ 1. For depth 1 the
previously defined workpool is returned. The depth is controlled by the (equal)
length of the first three argument lists which contain the number of workers (or
submasters respectively), the prefetch, and the task transformation function for
each level of the workpool tree. The nesting itself works by folding the zipped
arguments for each level with the wpool function. The worker function f is used
to close the workpool tree with a set of worker leafs. Note the use of repeat:
No submaster will migrate tasks to masters above him, therefore newly created
tasks will only be sent by the worker leafs to their respective master processes.
Fig. 6 shows an example call of the nested workpool together with the resulting
process tree; additionally for each argument it is shown to which level it applies.
The termination detection of wpool fits smoothly into this nesting.

wpN :: (Trans t, Trans r) =>
[Int] -> [Int] -> -- #workers, prefetches
[(([t],[t],[t],Int) -> ([t],[t],[t],Int))] -> -- transformations
([t] -> [(r,[t])]) -> -- worker function
[t] -> [r] -- tasks, results

wpN ns pfs tts f initTasks = results where
(results,_) = unzip ((foldr fld f (zip3 ns pfs tts)) initTasks)
fld (n,pf,tt) wf = \ts -> zip (wpool n pf wf tt ts) (repeat [])

Fig. 5. Nested workpool
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M | |tt1| |tasks
/ \ | | | |

wpN [2,3] [6,2] [tt1,tt2] w tasks M M 2|6|tt2| |
/|\ /|\ | | | |

W W W W W W 3|2| |w|

Fig. 6. Two-level example call of wpN with process tree and argument distribution

3 Case Study: Parallel Sequence Alignment

We have used the extended workpool of Sect. 2.2 to parallelise the alignment of
DNA sequences via the linear Needleman-Wunsch [8] algorithm. Although not
being very efficient, the algorithm serves as a good example for wavefront paral-
lelism [9]: Within a matrix structure the algorithm exhibits diagonal wavefront
dependencies (see Fig. 7) which can be expressed as tasks for execution via the
extended workpool. More specifically: Each block depends on its two left and
upper neighbours in the matrix. Therefore each result produces incomplete tasks
for its right and lower (not yet computed) neighbours. Two of these incomplete
tasks will then be combined in the task pool to form a new complete task. Only
elements of the first row and the first column can be computed given only one
of their respective neighbours.

Fig. 8 shows on the left the relative speedup of the parallel sequence align-
ment algorithm using the extended workpool. All measurements were taken on
a cluster of nine Linux PCs connected via 100 Mbit ethernet. The PCs are not
completely identical, but this is compensated by the dynamic task distribution
of the workpool. Sequences of length 10.000 have been tested with a varying
block partitioning. The figure shows that a medium task granularity (block size
500) has paid off the most in our experiments. Larger tasks result in task short-
age, while smaller tasks induce too much administrative overhead due to their
large number. The nested workpool cannot be used to reduce that overhead,
since tasks of different subworkpools would have to be combined. We are aware
that our unoptimised implementation of a suboptimal algorithm is slower than
modern imperative alignment solutions; it nevertheless serves as a good example
of wavefront parallelism for our workpool.

Fig. 8 shows on the right an activity diagram for the execution of the parallel
sequence alignment on nine processors (length 10.000, block size 500). Each row
represents the activity of one processor during execution, starting on the left
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Fig. 8. Relative speedups and activity diagram (sequences of length 10.000, 9 nodes)

and ending on the right at around 45 seconds. White areas represent phases of
inactivity or blocking on not yet available data (combined for better visibility),
while black areas represent active computation or communication. The lowest
row (processor 1) contains the master process which shows constant activity in
distributing and combining tasks. The remaining rows show the activity of the
worker processes. These are evenly loaded with tasks. Both start and end phase
of the computation show clearly the growing and shrinking task availability
induced by the diagonal wavefront traversal of the matrix described in Fig. 7.

4 Related Work

An older survey by Stephens [10] describes approaches to stream programming
in general. Kahn et al. already described in [11] a model of functional processes
communicating via streams. Also the big complex of Dataflow languages [12]
has to be mentioned in the context of stream programming. In [2] we have
already shown a basic workpool skeleton for Eden which we have extended by
dynamic task creation, task pool transformation, and termination detection in
this work. Mart́ınez and Peña describe in [13] another workpool scheme for
including dynamic task creation. Their approach also introduces state for the
master and worker processes aiming at branch-and-bound algorithms which is
not covered by our approach. However, only the master is allowed to create new
tasks; furthermore they implement the scheme via continuous state updates and
do not offer task pool transformation. Regarding our application we have not
been able to find another application of parallel functional languages to DNA
sequence alignment. A non-parallel application of Haskell, however, has been
described in [14].

5 Conclusion

We have developed a new generalised workpool skeleton for the parallel Haskell
dialect Eden by adding two features for dynamic task handling: Firstly, worker
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processes can generate tasks and insert them into the global task pool dynam-
ically. This requires a more complicated termination detection which we have
solved by a counting mechanism. Secondly, the master process is enabled to tra-
verse and to transform the task pool to cope e. g. with incomplete tasks. To ease
the definition of such functions we have given a function for task pool trans-
formation. We then presented a way to nest the workpool skeleton to lower the
administrative load of the master process by introducing additional submasters.
Finally we have applied the skeleton to parallel DNA sequence alignment which
yielded good relative speedups.

Acknowledgments. The author thanks Rita Loogen for carefully reading the
paper and Hans-Philipp Annen, Simon Göbel, and Simon Wiesler for their work
on the parallel sequence alignment.
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Abstract. The data parallel programming language construct of a “for-
each” loop is proposed in the context of hierarchically nested arrays
and unbalanced k-ary trees used in high performance applications. In
order perform an initial evaluation, an implementation of an automatic
parallelization system for C++ programs is introduced, which consists
of a preprocessor and a matching library for distributed memory, shared
memory and mixed model parallelism. For a full compile time dependence
analysis and a tight distributed memory parallelization, some additional
application knowledge about alignment of arrays or indirect data access
can be put into the application’s code data declarations. Results for a
multigrid and a fast multipole benchmark code illustrate the concept.

1 Introduction

High performance computing should be about a single application of large scale
such that both memory size and computing time of a parallel computer limit
the precision of the solution computable. A single algorithm operates on a large
data set, distributed over the local memories of the parallel processors. Data
structures may be uniform or unstructured grids, cells or trees, that is large
containers of relatively small, numerical data. It is usually not a good idea to
move a substantial amount of data to another local memory or even to redistrib-
ute data during computation. Hence a data parallel programming style seems
to be natural with operations performed on all elements of the large container.
Further, the operations have to operate almost on a local neighborhood only,
to be efficiently parallelizable. The “owner computes” paradigm guarantees lo-
cal memory store operations, such that non-local load operations are the main
source of inter process communication.

Parallelization of a sequential code can be done in several steps. First, local
and global data dependence analysis can be applied. However, currently they
fall short for more complicated data structures and require additional specifi-
cation [1]. The second step of parallelization is a scheduling and mapping step.
Independent operations have to be combined to larger blocks which are mapped
to processes or threads. The mapping problem can be far more serious, because
again global dependence analysis of the code is required. Once the data structures
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are instantiated, scheduling and mapping can be written as a large graph prob-
lems.However, at compile time the graph is unknown and solutions are available
only in very simple cases such as arrays and uniform grids with regular access
patterns. This is implemented in numerous data parallel array constructs.

Global dependence analysis of imperative sequential codes is unlikely to solve
the scheduling and mapping problem at compile time in general. However, there
often is application knowledge, such as geometric properties within a grid or tree,
sufficient to enable an efficient parallelization by hand. It is not very economic,
however popular to create a full featured parallel programming language for each
application area and to incorporate this knowledge. On the other hand, standard
library design for common languages is not able to forward this knowledge to
an optimizing/parallelizing compiler. Hence there is a current trend to combine
library and compiler or some kind of optimizing preprocessor in order to allow
for application specific knowledge for parallelization in an abstract programming
environment. Such effort include the use of expression templates and extensible
source-to-source compilers/optimizers and tools like Rose [2]. A more general
concept of application specific code optimization are telescoping languages [3].

The goal of the article is to discuss a preprocessor/library system for par-
allelization of array and more complex tree data structures common in high
performance computing. The sequential programming language is extended by
a single data parallel “foreach” construct together with data iterators defined
by the library. Data structure dependent parallelization knowledge is confined
to the library, application specific parallelization knowledge such as alignment
or non-local references can be specified in the application code.

A model implementation uses C++ class libraries and a set of perl scripts,
the m4 macro processor and the Gnu g++ compiler to do the local dependence
analysis and the source-to-source transformations. Targets currently are distrib-
uted memory computers with MPI message passing, shared memory computers
with pthreads and hybrid systems with MPI on processes and pthreads to spawn
several threads per process. Hierarchies of grids in a multigrid code and unbal-
anced k-ary trees in a fast multipole code are used to demonstrate the concept.
The emphasis of this paper is on the parallel programming style, especially for
parallel tree algorithms, rather than its model implementation, which can eas-
ily be improved. We do acknowledge a large number of alternative solutions for
parallel array style programming, which again is not the main subject here. We
do not advocate the use of scripts and preprocessors for parallel computing,
but would like to foster the development of more general and easier ways to
incorporate domain specific knowledge into the parallelization of codes. How-
ever, even more sophisticated solutions will never be able to perform automatic
parallelization of all possible codes.

2 Data Parallel Programming Paradigms

We consider different target architectures. The current preprocessor scans stan-
dard C++ code augmented by the “foreach” construct and emits multi-threaded
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code for shared memory computers with pthreads, message passing code for dis-
tributed memory computers with library calls based on MPI 1, and a combi-
nation of message passing between processes and multi-threading within. The
message passing calls and parts of the data iterators are encapsulated in a C++
run-time library.

The strategy for distributed memory computing is based on the following
considerations:

– Distribute large data structures. Each element is mapped to one process
(owner), which is the only process to modify it: “owner computes”. The
mapping is implemented in the library and is application specific.

– Replicate small data structures and small numbers of operations thereon for
each process instead of sending data.

– Use as few send and receive operations as possible. transfers.
– Transfer only data necessary. Perform a dependence analysis at compile-time

to determine which data needs to be sent.

Basic message passing operations needed are matching point-to-point send/
receive and global reduction operations. The overall performance of the par-
allel code relies on the pre-computed minimal communication pattern compared
to dynamic distributed-shared-memory and related techniques.

Shared memory versions with global address space are easier to implement.
The parallel iterator on large data structures with static mapping first cuts the
data into several pieces of similar size, and then starts a thread which executes
the iterator on each piece and finally waits for the threads to finish. Data is
partitioned according to memory layout. Each thread is allowed to modify its
own piece of data only, with the exception of global reduction of scalars. Such
reductions are done locally for each thread, with a final reduction over all threads.

3 Array Operations

For illustration purposes only we begin with well known for-loops and distributed
arrays. We use a block distribution and restrict ourselves to the important part of
nearest neighbor communication. This occurs for Finite Difference discretizations
on cartesian grids. Each element of an array is associated to a grid point which
itself represents a geometrical location. The resulting compact difference stencils
represent a finite geometric interaction distance between grid points. Hence it
is a good idea to decompose the geometric domain for parallelization, which is
done by an array block distribution. Of course, a parallel compiler is not able to
figure this out without global code analysis. Hence, the application programmer
provides the geometric interpretation implicitly for parallelization through the
specification of a block distribution.

3.1 Sequential Semantic

We begin with a code snippet in C++ creating a one dimensional grid, an iterator
for all interior grid points and two arrays on the grid. The grid is defined by an
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index set, the interval (0, n+1(. Arrays are allocated according to this index set.
Further we introduce an iterator on a subset of the grid, here (1, n(, in order to
treat boundary indices separately.

int n = 64;
Grid1 *g = new Grid1(0, n+1);
Grid1IteratorSub it(1, n, g);
DistArray1<double> x(g), y(g);
double e = 0.;
ForEach(int i, it, x(i) += ( y(i+1) + y(i-1) )*.5; e += sqr( x(i) ); )

The “foreach” loop based on the index set of the iterator expands to the
sequential code

for(int i=1; i<n; i++) {x(i) += (y(i+1) + y(i-1))*.5; e += sqr(x(i));}

but provides the semantic of independent operations, and consists of arbitrary
(reentrant) C++ code including nested function calls. The result is guaranteed
to be independent of the sequence. For the reduction of the variable e this
is only true up to floating point rounding. A two dimensional grid example
including different iterators inside and on the boundary reads like this. The grid
is represented by a set of index tuples, here (0, n+1(×(0, n+1(. Iterator ita visits
all tuples in (1, n(×(1, n( and iterator ita all tuples except for (1, n(×(1, n(.

Grid2 *g2 = new Grid2(0, n+1, 0, n+1);
DistArray2<double> z(g2), a(g2);
Grid2IteratorSub ita(1, n, 1, n, g2);
ForEach(‘int i, int j’, ita, ‘z(i,j) = ( a(i-1,j-1) + a(i+1,j+1) +

a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1) )/6.;’)
Grid2IteratorOutside itb(1, n, 1, n, g2);
ForEach(‘int i, int j’, itb, ‘z(i,j) = 0.;’)

Basically, the nesting of the i and j loops and the execution order is not
specified. The “foreach” syntax including comma separator and ‘ ’ quotation
marks are due to an m4 preprocessor step and could be changed to semicolon
and {} brackets for more C style. Of course there are many different ways to
express this including array operations.

3.2 Code Analysis

In the current implementation a sequence of preprocessing steps identifies the
variables and types used in the “foreach” loop, checks for data and loop depen-
dence (including inter procedure analysis) and issues warnings if the code does
not seem to be parallel, emits communication operations such as send/receive
and reduce, transforms loop code and finally creates C++ source code. The code
can be compiled with a run-time library which provides the implementations of
grids, arrays and the remaining parts of the iterator. We briefly comment on
some rationales.

Replicated data, i.e. scalars and small data structures allocated on each pro-
cess can either be read-only (store is disallowed) in a loop or a reduction variable
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(simple load is disallowed). In the case of a reduction, special code is created for
thread and/or message passing environments.

Distributed data container and iterators ought to match. Assume that the
iterator and the arrays involved share the same index space and distribution.
Then it is easy to detect the disallowed cases of non-local store (violates the
owner-computes-rule), references to elements more distant than direct process
neighbors (violates nearest neighbor communication) and loop carried depen-
dence (non-local load together with local store). Only output-dependence for
global objects (e.g. file descriptor cout) is allowed with non deterministic out-
put order. Non-local load operations trigger appropriate send/receive message
passing code, which is executed prior to the “foreach” loop.

The model can be generalized to non-neighbor communication, which raises
the questions of appropriate data distributions. For indirect addressing see the
following chapter on trees.

3.3 Arrays of Different Shapes

The computational model for arrays so far can be extended relaxed to arrays
and iterators based on different grids. We are aiming at the multigrid application
with a set of nested grids to be discussed later. A notation of grid alignment is
used which is slightly different than the HPF guarantees a relationship between
the distributions of the arrays. In order to use a fixed communication scheme, a
finer grid is created aligned to a coarser one using a mapping function. Further,
to be able to compute the communication patterns at compile time, the mapping
is also passed to the “foreach” loop as a C++ template type.

To be more precise, assume two one dimensional arrays, a base array with
integer index space [n0, n1) ⊂ ZZ and another, possibly larger array with index
space [m0,m1). We define a (truncated) affine monotone mapping π : ZZ → ZZ,
which can be written as π(i) = �(i− k)/m	 with constant m ∈ IN, k ∈ ZZ. Each
index i ∈ [n0, n1) of the base array is mapped uniquely to process p(i) ∈ IN0. A
grid [m0,m1) is said to be aligned, iff index j ∈ [m0,m1) is mapped to process
p(π(j)). The mapping and an example code, simplified versions of the following
application multigrid code’s restriction and prolongation operations, looks like
this:

class fine { public: int map(int i) {return i / 2;} } f;
Grid1 *gf = new Grid1(0, 2*i+1, g, &f);
DistArray1map<double, fine> z(gf);
ForEach(int i, it, x(i) = z(2*i)*.5 + ( z(2*i-1) + z(2*i+1) )*.25; )
ForEach(int i, it, z(2*i) = x(i);

z(2*i+1) = ( x(i) + x(i+1) )*.5; )

The first “foreach” loop triggers a left process fetch for the array z on the
finer grid, while the second one triggers a right fetch for array x, while still being
a local store operation under transformation π.
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4 Tree Operations

Now we consider the main target of the paper, namely algorithms on tree data
structures with the same “foreach” loop syntax. For alternative ways to write
tree iterators see [4]. With a fast multipole summation of particle-particle in-
teractions in mind, a k-ary tree represents a hierarchical decomposition of the
computational domain with particles at the leafs of the tree according to their
geometrical location. The tree can be written as a directed acyclic graph start-
ing from a root node. A useful data partition in distributed memory starts with
a coarse sub-tree from the root node which is replicated on each process. The
remaining nodes form a forest of trees, with each tree mapped to one process.
The mapping may combine trees geometrically or by some graph partitioning
scheme, see [5].

4.1 Communicationless Tree Traversal

The following code snippet shows part of the tree declaration, but hides the
library’s tree implementation.

class tree : public KAryTree<class tree, 2> {
public: // generic binary tree provides tree* child(int);
complex<double> m, l, f, x;

... };
tree *root = new tree;

Tree creation proceeds by (parallel) insertion of particles or (parallel) sort-
ing according to some partitioning scheme, where algorithms of different types
are involved. Geometric domain decomposition, graph partitioning, space-filling
curves and other techniques [5] are available to partition the data in an initial
step or after a number of (time-) steps e.g. in a particle simulation. We consider
iterators for tree traversal only.

TopDownIterator<tree> down(root);
ForEach(tree *b, down, b->f = b->l; )
ForEach(tree *b, down, ‘
for (int i=0; i<2; i++)

if (b->child(i)) b->child(i)->l += b->l; ’)

The order of execution is no longer arbitrary, but partially ordered, in this
case top down from root to the leaves, such that lots of parallelism is exposed.
Operations on the replicated coarse tree are executed on all processes and op-
erations on the remaining trees are executed by the respective owners. The first
“foreach” loop shows a local assignment completely independent of the execution
order. The second one performs a local store at the child nodes, such that a strict
parent before child order has to be enforced. Different orders of load and store
operations which lead to loop carried dependence trigger warning messages of
the preprocessor using path matrix dependence analysis [1]. Except for possible
global reduction operations no parallel communication is needed.
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4.2 Bottom-Up Communication

A bottom up, leaf to root execution order is shown in the next example.

BottomUpIterator<tree> up(root);
ForEach(tree *b, up, ‘
for (int i=0; i<2; i++)

if (b->child(i)) b->m += b->child(i)->m; ’)

Now, the processes first execute the operations on their own sub trees in a
children before parent order. A communication step at the replicated coarse
tree’s leaf nodes is necessary to update them, which currently uses a global mes-
sage passing gather operation. Afterwards the operations can be executed on
all processes on the coarse tree. The preprocessor determines variables to be
transferred (here: m). The library does the packing and un-packing. Additional
communication would be needed for global reduction operations. Non-local store
or different load operations leading to loop dependence would again trigger warn-
ing messages. The shared memory implementation performs a synchronization
step instead of the communication, with coarse tree operations done by a single
thread.

4.3 Communication Within a Geometrical Neighborhood

Besides parent to child and children to parent data flow, fast summation tech-
niques also rely on neighborhood data on all tree levels. However, the nodes
actually needed are a small fraction of the full tree and are often determined geo-
metrically. Assume that the operation on node i requires data of ‘neighbor’ node
j, which we denote by relation i ∧ j. Each fine tree node i is mapped to process
p(i). In a communication step, data of nodes

⋃{j| i∧j, p(i) = p1, p(j) = p2} has
be send from p2 to p1. In order to do this efficiently, a hierarchical hull relation
i � j is needed with i∧ j ⇒ i � j and i � j ⇒ parent(i) � j and i � parent(j). Using
relation � on the coarse tree representation of the data partition is sufficient
and each process is able to compute a superset of nodes to be transferred. Such
relations are available for many tree codes and one might try to construct them
based on more abstract specifications [6].

The following statements within class tree declaration define the relation �
fetch, which guards all accesses to nodes pointed to by elements of the interac-
tion list inter.

Require( list<tree*> inter, fetch );
double x0, x1;
int fetch(tree *b) { return (x0==b->x1) || (x1==b->x0); }

Statement ‘require’ both declares the variable inter and attaches the relation
fetch to it. The following code shows a tree iterator using indirect addressing.

ForEach(tree *b, down, ‘
for (list<tree*>::const_iterator i = b->inter.begin();

i != b->inter.end(); i++)
b->l += log(abs(b->x - (*i)->x)) * (*i)->m; ’)
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Each process collects all nodes defined by � on the coarse tree’s leafs and may
be needed by another process and forwards these. The preprocessor determines
the variables actually needed (here: x and m) and looks for loop dependencies.
The implementation proceeds with the tree traversal. During the creation of the
interaction list for example, no data except for the tree structure is needed.

5 Applications

Basically we want to demonstrate the feasibility of the proposed way of express-
ing parallelism in numerical array and tree codes. It is essential to see some test
cases can be written and translated to lower-level parallel code this way. The
communication patterns, the number and volume of messages and the placement
of thread synchronization points are identical to hand written code based on the
same parallelization strategy. Since such a parallelization is known to be efficient
for the given applications, we do not explore in detail the scalability for large
numbers of processors or different hardware platforms. A direct comparison to
a hand written parallelization is not expected to give new insight at this stage
of development.

First we consider a test example for hierarchical arrays. The NAS multigrid
benchmark code Fapin [7] implements a geometric multigrid V0,1-cycle with one
post-smoothing step for a Poisson equation on a set of nested three-dimensional
cartesian grids with constant coefficients. The Fortran77 code was ported C++
using the distributed array classes and run for larger data sets (fine grid 5133)
than originally conceived. All message passing and multi-threaded timings are
reported for an eight-processor (4 dual-core) AMD64 at 1.8GHz with Scientific
Linux 4.1 and Gnu g++ compiler 3.4.3 in 64bit address mode binaries, opti-
mization ‘O3’. Compared are timings for Mpich (shmem device) and the native
pthread library, see Table 1 left. The mapping of MPI processes and shared
memory threads onto the four physical processors and their two processing cores
is done dynamically by the operating system.

The parallel speedup on eight processor cores indicate that both different
strategies, message-passing (shown vertically) and threads (shown horizontally)
work almost equally well with slight advantages for the local address space
message-passing. This advantage is probably due to a strong processor to MPI-
process binding compared to an arbitrary mapping of processors at each syn-
chronization point of the multi-threaded implementation with effects on access
to and caching of local memory banks. This seems to outweigh message passing
overhead, which is limited to the transfer of a small fraction of all data. Parallel
efficiencies are well above 70% and seem to be limited by the memory bandwidth
rather than less efficient coarse grid computations. The measured times for two
and four processors involved showed larger variations in different runs due to
operating system scheduling, with minimum times shown in the table. Without
idle processors the effects vanish. Additional slackness due to more jobs than
processors does not improve the numbers significantly, with slight improvements
for additional message-passing processors.
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Table 1. Parallel speedups of the message-passing (> 1 processes), multi-threaded
(> 1 threads), and hybrid (> 1 processes and > 1 threads) program versions on
8 processor cores. Multigrid test case on a nested set of 3D arrays (left) and 2D adaptive
fast multipole test case (right).

threads per process 1 2 4 8

no. of processes 1 1 1.50 2.44 5.27

2 1.92 2.51 5.58 5.70
4 2.38 5.77 5.57 5.67
8 5.91 5.63 5.76 5.80

1 2 4 8

1 1 1.85 3.59 6.71

2 1.94 3.63 6.80 2.87
4 3.91 7.64 6.79 4.28
8 7.79 7.76 7.78 7.73

The second test case covers a hierarchical tree algorithm. Based on parts of
the two-dimensional adaptive fast multipole C code FMM of the shared memory
Splash-2 benchmarks [8], a C++ implementation using the distributed quad-tree
was developed. For reasons of simplicity we consider only at most one particle
per leaf cell, using a multipole Laurent series and a local polynomial with 20
complex coefficients each. The tree is partitioned on balanced coarse trees both
for message-passing and for multi-threading, although the tree populated with
2 · 106 particles is unbalanced and the tree implementation works for arbitrary
partitions. Measured are the times of one field evaluation by the fast multipole
method. Parallel load-balancing and tree creation like in [5] could be inserted
here additionally, at an initial step and after a couple of multipole evaluations,
but involve algorithms of different types (e.g. parallel sorting or embarrassingly
parallel) not discussed here. A parallel Barnes-Hut algorithm could be imple-
mented similar to the fast multipole method, but is of higher complexity. The
timings were made on the eight-processor system like before. The results are in
Table 1 right.

We see again efficient parallelization both for message-passing and for multi-
threading with larger advantages for local address space message-passing. Ex-
tremely high 97% parallel efficiency are obtained for 8 processes and any num-
ber of threads per process. Due to irregular memory access patterns, the shared
memory version is slightly slower. Again we obtain large variations in measured
times for the partially loaded computer with less than 8 jobs. For the 8 thread
case in message passing (2 and 4 processes) we obtain some reproducible timing
anomalies. The overall parallel efficiency of the tree code is extremely good as
to be expected for large trees of this type.

6 Outlook

We have demonstrated that automatic parallelization does work even for hier-
archical algorithms and data structures in high performance computing with a
parallelization strategy similar to the ones used for parallelization by hand. How-
ever, domain or application specific language extensions were necessary, which
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in this case were provided by a combination of a source-to-source preprocessor
and a dedicated library.

The parallelism detected so far has been used for coarse grain parallelism.
Within a job it is currently not used further. A possible extension would be to
exploit the dependence analysis also for code optimization of memory access pat-
terns for hierarchical memory, instruction level parallelism, software-pipelining
and for techniques like hyper-threading.

The “foreach” loops and data parallel iterators may also be implemented by
a fully fledged C++ source-to-source translator instead of the current scripting
solution, which would certainly be an improvement. The concept of telescoping
languages would include to have the parallel iterator programming style inter-
operable with other (parallel) libraries and language extensions. Furthermore,
we would like to see easier ways to exploit application specific knowledge for the
parallelization in the future.

We would like to thank the anonymous referees for their helpful comments.
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Wilhelmshöher Allee 73, D-34121 Kassel, Germany

{msuess, leopold}@uni-kassel.de

Abstract. Writing irregular parallel algorithms with OpenMP has been
rarely practised in the past. Yet it is possible, and in this paper we will
use a simple breadth–first search application as an example to show a
possible stepping stone and deficiency of the OpenMP specification: It
is very difficult to cancel the threads in a parallel region. A way to work
around the issue within the existing OpenMP specification is sketched,
while our main contribution is a proposal for an extension of OpenMP
to solve the issue in an easier way.

1 Introduction

OpenMP[1] is a parallel programming system that aims to be powerful and
easy to use, while at the same time allowing the programmer to write high
performance programs. Its initial focus was on numerical applications involving
loops written in Fortran or C/C++, but it includes the necessary constructs to
deal with more kinds of parallel algorithms.

Irregular parallel algorithms involve subcomputations whose amount of work
is not known in advance, and hence the work can only be distributed at runtime.
Important subclasses include algorithms using taskpools, as well as speculative
algorithms. We are concentrating on the first type, although the problem and
solutions we present apply to other types as well. Examples for irregular algo-
rithms are search and sorting algorithms, graph algorithms, and more involved
applications like volume rendering.

According to Mattson [2], one of the initial designers of the OpenMP specifi-
cation, OpenMP was never meant for irregular applications (where an irregular
application in this context is one containing irregular algorithms as sketched
above). Other people have tried to use OpenMP for this kind of applications,
though, and have gotten mixed results [3,4,5]. This paper explores an impor-
tant issue in developing irregular parallel algorithms with OpenMP, which is the
missing ability to cancel threads in a parallel region. While a (not completely
functional) workaround for the issue is suggested in Sect. 2, the main contribu-
tion of this paper is a proposal for new functionality to solve the problem in a
convenient and easy to use way on the language level (in Sect. 3). The suggested
additions to OpenMP are previewed in Fig. 1. A working implementation can
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# pragma omp cancelregion: request cancellation of parallel region
# pragma omp exitregion: take current thread to end of parallel region
int omp get cancelled (void): has the current region been cancelled ?
# pragma omp barrier oncancel: execute scope if thread is cancelled in barrier
# pragma omp onbarriercancel: execute scope if thread is cancelled in

implicit barrier

Fig. 1. Thread cancellation in a nutshell

be found in a special version of the OMPi compiler[6], which is available from
the authors on request.

As a running example, we use breadth–first search on a labyrinth. The al-
gorithm and its implementation are explained shortly in Sect. 2, where we will
also explain why thread cancellation is a problem. Furthermore, a workaround
for the issue is presented in this section, while a more advanced solution on the
language level is described in Sect. 3. At the end of the paper, Sect. 4 summarizes
our findings and shows some prospects for future work.

2 Problem Description

In labyrinth search, the objective is to find the shortest path through a labyrinth,
from a given entry to a single exit. This problem is not merely a theoretical one,
but has practical relevance e. g. for mapping electrical circuits on a chip. We
consider a breadth-first search algorithm, which is not necessarily the fastest
choice, but is simple enough to serve as an example here and to still include
all the problems we want to illustrate. A very broad sketch of the algorithm is
presented in pseudocode in Fig. 2.

The algorithm starts by putting the entry position of the labyrinth into the
taskpool (not shown in the pseudocode). Afterwards, it spawns a parallel region
(line 1). Then, one of the threads takes a position out of the taskpool (line 4),
marks it on a map as processed (line 5), evaluates all neighbours by checking
the four possible directions for walls (line 6), and checks if an exit is found on
any of them. If no exit was found and the neighbour-positions have not been
evaluated before (this check is not shown in our pseudocode), the neighbours
are put into the taskpool to be processed in the next step (line 7), possibly by
a different thread. If an exit is found, a flag is set that indicates this fact (line
9). We need to be careful with the different positions in the taskpool, since only
positions with the same distance to the start should be evaluated together, or
else the breadth-first search will degenerate. Therefore, only positions with the
same distance to the entry are kept in the taskpool, while the neighbours are
put into a different one (called next taskpool). As soon as the taskpool is empty,
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1 #pragma omp p a r a l l e l
2 {
3 while ( ! e x i t f ound ) {
4 while ( ( task = pop ( taskpoo l ) ) != NULL) && ( ! ex i t f ound ) ) {
5 mark ( labyr inth , task ) ;
6 i f ( ! i n s p e c t f i e l d f o r e x i t ( task ) ) // inspec t a l l neighbours
7 push ( ne ighbours ( task ) , nex t ta skpoo l ) ; // no e x i t was found
8 else
9 ex i t f ound = true ; // an e x i t was found

10 #pragma omp f l u s h ( ex i t f ound )
11 }
12 #pragma omp ba r r i e r
13 #pragma omp s i n g l e
14 {
15 taskpoo l = next ta skpoo l ; // switch the taskpoo l s
16 next ta skpoo l = NULL;
17 } // imp l i c i t barr i e r ( inc ludes f l u s h )
18 }
19 } // end of p a r a l l e l region with imp l i c i t bar r i e r

Fig. 2. Parallel breadth first search, using a flag for thread cancellation

both taskpools are switched by a single thread, and the computation proceeds
with the former next taskpool (lines 15–16). When the algorithm depicted in
Fig. 2 is done, a single thread follows the marks set in the labyrinth (line 5)
from the exit point back to the entry point and identifies the shortest way.

In the figure, a flag is used to indicate when the threads in the parallel region
should finish their work, because an exit was found (indicated by exit found ==
true). We know of no other way in OpenMP to indicate that the threads should
end their work in a parallel region. In Sect. 2.1, we will point to problems with
this approach. Section 3 will present an extension of OpenMP that leads to an
easier solution, which we will discuss in Sect. 3.5.

2.1 The Problem with Flags

When using flags to indicate that the parallel region should be aborted, great care
has to be taken with checking these flags by the programmer. In our example,
it might happen that one thread enters the while loop (line 3), finds an exit,
sets the appropriate flag, and afterwards hangs in the barrier (line 12), because
another thread does not enter the next iteration of the while loop at all, as the
flag is indicating now that an exit was found! The program will exhibit undefined
behaviour in this case (most likely a deadlock), because in OpenMP the sequence
of barrier constructs encountered must be the same for every thread in the team.
Thus, the code in Fig. 2 is not correct, and it is not safe to use without further
adjustments that would make it even harder to read and explain!

Flags that indicate when a parallel region is to be cancelled give rise to yet
another problem: Due to the OpenMP memory model, the flags have to be
updated with a flush directive before their values are guaranteed to be up to date.
This step is frequently missed by inexperienced OpenMP programmers [7]. The
consequence is similar as sketched above: the program will potentially deadlock,
because the thread which set the cancel flag has got its current correct value
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and will exit the loop, whereas other threads might still use the old value and
continue with it1.

Let us summarize the problems we have identified so far with thread cancel-
lation in OpenMP:

– there is no easy way to branch out of a parallel region, the only possible
workaround is to use flags

– it is difficult to work with flags indicating that a region should end, at least
as soon as barriers come into play

– if one forgets to flush a flag, a deadlock may arise

While we have presented a workaround for the main problem (flags manually set
and checked by the programmer), it is still cumbersome and error-prone. There-
fore we will present another possible solution in Sect. 3, based on a proposal to
add thread cancellation to OpenMP. The proposal is also useful for the following
common scenarios, which could benefit from thread cancellation:

– a cancel button from a user interface was pressed
– a solution has been found in a speculative algorithm

3 Thread Cancellation

This section shows a possible way to extend OpenMP with thread cancellation
support. Sect. 3.1 shortly introduces a few basic terms often used when talking
and writing about thread cancellation. An actual specification of the new func-
tionality is given in Sect. 3.2, followed by the rationale for some of our design
decisions in Sect. 3.3 and a short discussion on implementation and performance
issues in Sect. 3.4. Sect. 3.5 puts the specification in perspective, by applying it
to the labyrinth example.

3.1 Terms

We speak of forceful cancellation when a thread has the ability to cancel another
thread from the outside. The cancelled thread may get the opportunity to clean
up after itself, yet it does not have the power to decide when to be cancelled, nor
to prevent cancellation at all. Asynchronous cancellation in POSIX Threads is an
example of forceful cancellation. Deferred cancellation is an important subcase
of asynchronous cancellation, in which the cancelled thread is not terminated
immediately, but only at certain predefined cancellation points. Deferred can-
cellation is supported in POSIX Threads as well. With cooperative cancellation,
in contrast, a thread can only ask for the cancellation of another thread. The
cancelled thread has the opportunity to honor this request and cancel itself, to
process the request at a later time, or even to ignore it altogether. Java threads
support cooperative cancellation.
1 This is not an issue in our example, as there is a flush included in many OpenMP

directives (e. g. in the implicit barrier on line 17). Nevertheless, when the code is
only slightly altered, the problem may surface.
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3.2 Specification

The following directives to support cooperative thread cancellation in OpenMP
are proposed:

#pragma omp cancelregion
This directive asks all threads in the team to stop their work and go to the end
of the parallel region, where only the master thread will continue execution as
usual. The emphasis here is on asks. The threads in the team are not cancelled
immediately, but merely an internal cancel flag is set. The threads are not inter-
rupted in any way and have to poll the flag using one of the directives described
below. An exception is the thread that called the directive: it is cancelled imme-
diately by an implicit call of the exitregion directive (explained below). Invoking
the cancelregion directive on an already cancelled region has no effect except for
the implicit call to exitregion. It is the task of the programmer to check if the
cancel flag has been set, using a new OpenMP runtime library function:

int omp get cancelled (void)
This function returns 1 (true) if the cancellation of the enclosing parallel region
was requested, and 0 (false) otherwise.

#pragma omp exitregion
This directive is not only useful for thread cancellation, but can be invoked at
any point in a parallel region to immediately end the execution of the calling
thread. This is accomplished by jumping to the end of the present parallel region,
right into its closing implicit barrier (which is of course honored).

There is a problem with the proposal so far: barriers. If a region containing
barriers is cancelled, at least one thread (the one calling the cancelregion direc-
tive) will never reach that barrier. Without further adjustment, one or more of
the other threads in the region could hang in the barrier and never recover, since
the barrier is not completed.

#pragma omp barrier oncancel
A solution to this problem is proposed in the form of the oncancel clause for
the barrier directive. A new scope is optionally added to the barrier directive by
specifying the oncancel clause. The commands in this scope are carried out only
if the present parallel region has been or is being cancelled while the thread is
waiting on the barrier. This can be seen on line 12 of Fig. 3.

It is now possible to use barriers in combination with thread cancellation.
It remains the task of the programmer to do the right thing when a thread
waiting on a barrier is cancelled, although most of the time he will just free
the resources associated with the thread and exit the parallel region afterwards
(using the newly proposed exitregion directive). Note that if the thread is not
finalized with exitregion, it will hang in the barrier again (or phrased differently:
there is an implicit barrier at the end of the oncancel clause). The reasons for
this design decision are given in Sect. 3.3. The oncancel code is carried out at
most once per barrier and thread. Furthermore, if the region is already cancelled
when a thread enters the barrier, it will immediately proceed with the oncancel
code.
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For implicit barriers (at the end of worksharing constructs), a similar construct
is proposed:

#pragma omp onbarriercancel
The usage of this directive is similar to the oncancel clause suggested above,
except that onbarriercancel is a standalone construct and must be specified im-
mediately after the implicit barrier it references. This is shown on line 21 of
Fig. 3.

If the directive is present, all commands in its scope are carried out if the region
is cancelled before or while the thread is waiting on the barrier. A nowait clause
on the referenced worksharing construct and the onbarriercancel directive cannot
be specified together. The directive also cannot be specified after a combined
parallel worksharing construct (e. g. #pragma omp parallel for), the reasons for
this design decision are also given in Sect. 3.3.

OpenMP allows for nested parallelism, i.e., when a member of a team inside
a parallel region encounters a new parallel construct, a new subteam is formed.
Our proposed extensions apply to nested parallelism as follows: Cancellation re-
quests from inside the subteam only cause members of the subteam to have their
cancellation flag set. If another member of the original team requests cancella-
tion however, the cancellation flags for all members of all subteams are set as
well, although technically they are not in the same team.

3.3 Rationale

Some of the suggested changes could be emulated manually by the experienced
OpenMP programmer (such as keeping track of the cancel state of each thread).
As has been explained in Sect. 2, this is, however, an unnecessary burden and
gets difficult when barriers are involved at the latest. Therefore, our proposal
introduces the new functionality on a language level.

The exitregion directive can be seen as a convenient shortcut, but even without
thread cancellation, it is useful as soon as one gets into deeply nested functions
inside parallel regions. It allows the programmer to jump to the end of the parallel
region immediately, thereby potentially saving many lines of code of conditional
statements. If barriers are involved in the parallel region, care has to be taken
with exitregion for the reasons described in Sect. 3.2, or else the program might
deadlock.

We have decided against forceful cancellation as in POSIX Threads. On one
hand, asynchronous cancellation makes resource deallocation practically impos-
sible. Since one never knows when a thread is cancelled, there is no place to put
cleanup code. POSIX Threads solves this problem by utilizing cleanup stacks,
but these are difficult to handle and keep track of. The concept of having cancel-
lation points and deferred cancellation in OpenMP, on the other hand, seemed
like overkill, as the amount of functions which are cancellation points is diffi-
cult to handle for programmers. Therefore, this proposal suggests cooperative
cancellation, which can be found in a similar way e.g. in Java threads. Other
good arguments for the use of cooperative cancellation can be found in the Java
documentation [8].
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A major problem with cooperative cancellation are the barrier constructs. The
suggested solution (oncancel clause, onbarriercancel directive) may seem like a
lot of overhead to cope with barriers, but the proposal is still easier and more
natural than the possible alternatives (such as disallowing barriers with thread
cancellation, putting the burden on the programmer to carefully work around
them with flags, cancelling barriers forcefully).

We have also decided against automatically including an exitregion directive
at the end of an oncancel or onbarriercancel scope. The main reason for this is
consistency, as automatically including the directive would cancel the threads
waiting on barriers forcefully. This would be inconsistent with the rest of the
proposal, where cooperative cancellation is employed. Another reason is nested
parallelism. We have specified in Sect. 3.2 that cancelling a parallel region will
cancel all subregions as well. But as a subregion might be presently doing unin-
terruptible work and may contain barriers, the decision not to cancel on barriers
automatically allows these subregions to complete their work when interrupted
from threads in the upper parallel region, while properly shutting down when
cancelled from inside their subregion.

The reason for not allowing the onbarriercancel directive after combined paral-
lel worksharing constructs is that the two main reasons for applying the directive
are not valid after a combined directive. There is no need to take care of left over
threads hanging in the implicit barrier at the end of the combined construct, as
these threads are exactly where they would be if an exitregion clause was spec-
ified. There is also no need to clean up any resources, as the programmer must
have already done this before the end of the parallel region.

During our internal discussions on the topic of thread cancellation, we have
worked out a checklist that each and every proposal we came up with had to
pass. This checklist and some explanations of why our proposal passes it are
spelled out here to make our design decisions yet more clear:

1. Backwards Source Compatibility
Old code must run unchanged, when translated with a compiler that un-
derstands thread cancellation. This is the case, as the behaviour of existing
OpenMP–constructs is not changed, but only new clauses or directives are
added.

2. Nested Parallelism
Each proposal must clearly state how thread cancellation and nested paral-
lelism play together. Our proposal does so, by declaring that when a parallel
region is cancelled, all parallel regions that were created by a thread from
the cancelled region have their cancel flag set as well.

3. Barriers
Each proposal must cope with the case that a region is cancelled while one
or more threads are waiting on a barrier (including implicit barriers), with-
out producing deadlocks. Our proposal does so with the introduction of the
oncancel clause and the onbarriercancel directive.
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4. No Resource Leaks
The programmer must have the option to free any resources before a thread
is cancelled. Our proposal takes care of this by advocating cooperative can-
cellation, where the programmer checks if a cancellation request has been
put up and can therefore deallocate / free all of his resources before exiting
from a thread. Even resource deallocation while waiting on barriers is al-
lowed with the introduction of the new oncancel clause and onbarriercancel
directive.

5. C / C++ / Fortran Compatibility
Each proposal must apply to all three supported languages of the OpenMP
specification. Although our proposal only spells out the C syntax of the
proposed changes, we believe that these are adaptable to C++ and Fortran
as well.

6. Simplicity
Each proposal must be as simple and easy to understand as possible, stay-
ing in line with the original OpenMP philosophy. Especially the barrier con-
structs made this a difficult task, but we think to have met that goal with the
introduction of only three new directives, one new runtime library function
and one new clause.

3.4 Implementation and Performance Issues

We have used the Ompi compiler [6] as a testing ground for our implementation.
One of the benefits of employing cooperative cancellation is ease of implemen-
tation, and most of our changes were straightforward:

– adaptation of the compiler frontend to the new directives
– addition of new runtime library functions for exitregion, cancelregion, on-

barriercancel and omp get cancelled
– a few more minor and locally restricted changes in the runtime library

The most difficult part was the implementation of exitregion, which must be
able to jump out of deeply nested functions to the end of the parallel region.
This was solved using setjmp / longjmp. The second difficulty was adapting the
barriers to the oncancel clause. A total rewrite of the runtime support function
for barriers was required.

Great care was taken not to impact performance with our changes. Our choice
of cooperative cancellation enabled us to implement thread cancellation without
any measurable impact on performance. None of our test applications showed
any notable slowdown. Neither did the OpenMP Microbenchmarks [9], which we
used to measure performance of our adapted barrier implementation.

3.5 Application

In this section, we apply the thread cancellation functionality to our labyrinth
search example from Sect. 2. We had isolated three main problems there:
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– there is no easy way to branch out of a parallel region, the only possible
workaround is to use flags

– it is difficult to work with flags indicating that a region should end, at least
as soon as barriers come into play

– if one forgets to flush a flag, a deadlock may arise

All these issues have been solved, as can be seen in Fig. 3. Firstly, it is easy
now to branch out of a parallel region, as the cancelregion directive is a natural
fit for the problem (see line 9). Just one directive, and the code will branch to
the end of the parallel region on line 26. If barriers are involved like in our case,
oncancel clauses have to be added (line 12), as well as an onbarriercancel clause
at the end of the single worksharing construct (line 21). The second problem
is also solved, as there is no need to work with programmer-managed flags to
indicate that a parallel region should be finished. Last but not least, the third
issue has been made obsolete: there is no need anymore to flush any cancel
flags, as they are managed automatically by the OpenMP runtime system. We
believe that this change alone will make errors less common in irregular parallel
applications.

1 #pragma omp p a r a l l e l
2 {
3 while ( ! omp get cance l l ed ( ) ) {
4 while ( ( task = pop ( taskpoo l ) ) != NULL) && ! omp get cance l l ed ( ) ) {
5 mark ( labyr inth , task ) ;
6 i f ( ! i n s p e c t f i e l d f o r e x i t ( task ) ) // inspec t a l l neighbours
7 push ( ne ighbours ( task ) , nex t ta skpoo l ) ; // no e x i t was found
8 else {
9 #pragma omp canc e l r e g i on // an e x i t was found

10 }
11 }
12 #pragma omp ba r r i e r oncance l
13 {
14 #pragma omp ex i t r e g i o n
15 }
16 #pragma omp s i n g l e
17 {
18 taskpoo l = next ta skpoo l ; // switch the taskpoo l s
19 next ta skpoo l = NULL;
20 } // imp l i c i t barr i e r
21 #pragma omp onba r r i e r c an c e l
22 {
23 #pragma omp ex i t r e g i o n
24 }
25 }
26 } // end of p a r a l l e l region with imp l i c i t bar r i e r

Fig. 3. Parallel breadth first search in a labyrinth, using new language constructs for
thread cancellation

4 Concluding Remarks and Perspectives

In this paper, we have discussed a major problem with parallelizing irregular
applications in OpenMP: lacking support for thread cancellation. A workaround
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and an extension to OpenMP have been suggested, whose main part is the
cancelregion directive that enables cooperative cancellation.

A reference implementation of the extended OpenMP functionality can be
found in a special release of the OMPi Compiler [6] that is available from the
authors on request. In the future, we plan to explore more applications with
OpenMP, trying to find ways to improve the specification in the process. Our
progress will be visible in the UKOMP project [10]. The project will serve as our
testing ground for new functionality we discover to be useful, and also enables
other developers to give feedback on how they like our changes. Additionally,
the proposals are being sent to the OpenMP ARB, for consideration of inclusion
into the official OpenMP specification.
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Abstract. OpenMP provides a portable programming interface for shared mem-
ory parallel computers (SMPs). Although this interface has proven successful for
small SMPs, it requies greater flexibility in light of the steadily growing size
of individual SMPs and the recent advent of multithreaded chips. In this pa-
per, we describe two application development experiences that exposed these
expressivity problems in the current OpenMP specification. We then propose
mechanisms to overcome these limitations, including thread subteams and thread
topologies. Thus, we identify language features that improve OpenMP applica-
tion performance on emerging and large-scale platforms while preserving ease of
programming.

1 Introduction

OpenMP supports portable, high-level shared memory parallel programming and has
been successfully deployed on small-to-medium shared memory systems (SMPs) and
large-scale distributed shared memory platforms (DSMs). Its current version 2.5 [14]
merges C/C++ and Fortran bindings and clarifies some concepts, especially with regard
to the memory model. OpenMP 3.0 is expected to follow, and to consider a variety
of new features. Among the many open issues are some tough challenges including
extending OpenMP to SMP clusters and supporting other new architectures.

Several architectural trends to which we collectively call Chip MultiThreading
(CMT) provide support for the simultaneous execution of two or more threads within
one chip. It may be implemented through several physical processor cores in a chip
(Chip MultiProcessor, CMP) [13], a single core with replication of features to maintain
the state of multiple threads simultaneously (Simultaneous multithreading, SMT) [17]
or their combination [9,10]. A hierarchical multithreading architecture results from
using several of these chips in a single SMP. OpenMP was not designed for such hierar-
chical parallelism, nor to enable a programmer to assign different workloads to sibling
threads in order to avoid resource contention. Traditionally, OpenMP targets compu-
tationally intensive, loop-based applications. CMT will probably dramatically increase
the usage of OpenMP. Programmers will need language mechanisms that facilitate scal-
able parallel programming for these hierarchical systems, including flexibility in the
assignment of work to threads.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645–654, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we describe two application development experiences from different
domains that exposed problems with the expressivity of the current OpenMP specifica-
tion. The first example involved porting an industrial seismic data processing applica-
tion to OpenMP in order to create an easy-to-maintain version that exploited SMPs with
hyperthreading. The language extensions we designed based on this effort turned out to
have a much wider applicability. The second example comes from experiences gained
while building scalable scientific applications on a large distributed shared-memory
platform. Here too, the extensions facilitated an appropriate mapping of work to threads
and led to a scalable parallel code. In each case, our inability to assign work to subsets
of threads in the current thread team, and to orchestrate the work of different threads,
in OpenMP 2.5 artificially limited performance. To overcome this, we propose a new
clause for worksharing constructs that assigns the work to a subteam of the existing
threads. Further, we introduce the notion of a topology, which gives a subteam a shape,
and library routines to support these concepts. Finally, we also propose new constructs
for improved work coordination between threads. We outline these applications and our
proposed OpenMP extensions that facilitate programming them in the next two sections.
Then, we discuss related work briefly before summarizing our findings.

2 Thread Subteams

Our experiences with commercial seismic data processing software initially motivated
our thread subteam concept. Kingdom Suite from Seismic Micro-Technology, Inc. is
an integrated geosciences interpretation software package for Windows systems used
by the energy industry in the search for oil. OpenMP was applied to TracePak, an I/O-
intensive module of Kingdom Suite to analyze and to process two-dimensional (2-D)
and three-dimensional (3-D) post-stack seismic data [16]. Our goal was a parallel ver-
sion for Windows-based SMPs with hyperthreading enabled. This version must be as
close as possible to the original sequential code to simplify its maintenance, a common
industrial requirement. Although our example could be programmed in a low-level style
using thread IDs explicitly, this would require significant changes in the source code.
In contrast, the suggested directives require only a minimal, localized modification of
the source code and maintain the ease of programming that makes OpenMP a desired
programming model. The subteam concept proposed here has been implemented in the
OpenUH compiler [15]. It is comparatively straightforward, requiring less implementa-
tion effort than nested parallelism. WE are currently implementing our other proposals.
Due to space limitations, implementation details will be addressed in a separate paper.

2.1 Seismic Data Processing on an SMT Platform

Fig. 1 shows the structure of the sequential program. This code iteratively reads data
from an input file, processes it using different transform functions in a specified order,
and then writes the results to an output file. The amount of seismic data typically han-
dled in a job is quite large, ranging from 100MB to 100GB, and reading and writing
consume considerable time.

Since OpenMP does not support parallel I/O, we decided that the best strategy to
parallelize the code of Fig. 1 is to overlap the sequential I/O operations (lines 2 and 7)
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1. for (i=0; i<N; i++) {
2. ReadFromFile(i,...);
3. for (j=0; j<ProcessingNum; j++)
4. for (k=0; k<M; k++) {
5. ProcessData(); //processing involves several

//different seismic functions
6. }
7. WriteResultsToFile(i);
8. }

Fig. 1. A sequential pseudo-code fragment for seismic data processing

with the parallelized computation (line 5), as illustrated by the timeline view in Fig. 2.
A simple way to parallelize the computation is to enclose the innermost loop (k-loop)
between threads in an “omp parallel for” directive. This approach, however, does not
overlap the computation and I/O, and moreover, frequently entering and leaving paral-
lel regions degrades performance. A dependence between the seismic data processing
functions prevents parallelization of the outer loop (j-loop). In order to overcome these
deficiencies, we enclose the entire loop nest in a parralel region as shown in Fig. 3. This
version preloads the data needed for the first iteration of the i-loop (line 6). Then, we
use “omp single nowait” and “omp for schedule(dynamic)” to enclose and to overlap
the I/O operations and computation. One thread reads the data for the next iteration and
another thread writes the results to an output file. The remaining threads share the work
of the j loop (line 11 of Fig. 3). The dynamic schedule enables the threads performing
I/O to subsequently join the computation.

The innermost, work-shared loop includes an implicit barrier at its end. Unfortu-
nately, we cannot simply remove it since the data processing functions must follow a
specific sequential order: each iteration uses results from the previous one. Thus al-
though plenty of computation remains, the computing threads must wait at the implicit
barrier until the I/O has completed, as shown in Fig. 4. Thus I/O operations and compu-
tation are not fully overlapped. Unfortunately, exchanging the order of the loops in the
nest would, if possible, require a complete rewrite. However, a parallelization strategy
that requires major code reorganization is unacceptable, as previously discussed.

2.2 Performance Improvement

In a normal run, the ratio of I/O and computation is about 1.2:1, where the I/O takes
slightly longer than the computation. Thus, including the I/O threads in the barrier limits
the overlap of I/O with computation. To determine how much removing this limitation

Process
Data

Save Data:

Process Data:

Load Data:

Load Data

Save Data

Timeline

Fig. 2. Overlapping I/O with computation in the parallel seismic program
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1. #pragma omp parallel
2. { #pragma omp single
3. { //preload data to be used in the first iteration of the i-loop in line 6
4. ReadFromFile(0,...);
5. }
6. for (i=0; i<N; i++) {
7. #pragma omp single nowait
8. { //preload the data for next iteration of the i-loop
9. ReadFromFile(i+1...);
10. }
11. for (j=0; j< ProcessingNum; j++)
12. #pragma omp for schedule(dynamic)
13. for(k=0; k<M; k++) {
14. ProcessData(); //user configurable data processing functions
15. } //here is the barrier
16. #pragma omp single nowait
17. {
18. WriteResultsToFile(i);
19. }
20. }
21. }

Fig. 3. The OpenMP code for seismic data processing kernel
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Fig. 4. Execution behavior of OpenMP seismic code
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would improve performance, we combined OpenMP with Windows threads for reading
and writing files and achieved much greater overlap than with pure OpenMP. Fig. 5
shows results on an HP XW8200 with dual Xeon 3.4 GHz CPUs, 1MB L2 cache, 3GB
memory, Intel extended memory 64, and hyperthreading technology. The compiler used
was Microsoft Visual C++ in Visual Studio 2005 with OpenMP support. The hybrid
version was 25% faster than standard OpenMP on four threads.

To achieve similar results with pure OpenMP, we require mechanisms to separate the
computational threads from the data handling threads, and to synchronize their activities
in the desired manner. We can achieve this with three parallel sections: read, write,
and computation. The computation section would create a nested parallel region and
share the work among its threads. We either prefetch data in the previous iteration,
as in the code of Fig. 3, or use critical regions and arrays of variables. Unfortunately,
each iteration of the outer i-loop requires a new parallel region if we are to retain the
sequential program structure and the overheads for these are potentially high.
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2.3 Thread Subteam as a Solution

Nested parallelism can dynamically create, exploit and terminate teams of threads and
is well-suited to codes with needs that change over time. Our code structure is static.
The relative amount of data and computation does not vary, and we expect the number
of participating threads and their roles to remain the same. Nested parallelism is more
powerful than we require. Thus, we propose a simpler mechanism that allows us to bind
the execution of a worksharing or barrier construct to a subset of threads in the current
team. Only the threads in the specified subteam participate in its work, including any
barrier operations encountered. To synchronize the actions of multiple subteams, we
may use existing OpenMP constructs and take advantage of the shared memory.

To realize this idea, we define an “onthreads” clause for worksharing and barrier di-
rectives. In contrast to nested parallelism, it refers only to existing threads. This clause
permits us to specify that a worksharing directive is applied to a subteam of threads:
participation in the associated work is restricted to the specified members. In particular,
implicit and explicit barriers within the code it encloses do not block threads that are
not part of the subteam. This clause would require minimal change to the current speci-
fication. In addition we can define an “onthreads” directive that could enclose arbitrary
structured block of code within a parallel region. Work in the block would be carried
out by the specified subteam of threads.

Using the thread subteam notation, we can rewrite the example code in Fig. 3 to that
in Fig. 6. Line 5 and line 14 use the “onthreads” clause to limit the I/O to individual
threads, while line 7 defines a subteam of threads to process the data. The integer ex-
pressions in parentheses use OpenMP’s thread-ids and array section notation to specify
the desired subset of threads. The implicit barrier at line 12 applies only to the threads
defined in the subteam from line 7.

Additional syntax could enable the programmer to name these subsets. New run-time
library routines would be provided to get the number of threads in a (named) subteam
and a subteam-internal consecutive thread number. A programmer might also want to
permute the order of threads in a subteam to specify schedules that enforce a certain
work distribution, e.g. to support data reuse. Although none of these (except possibly the

1. #pragma omp parallel
2. { #pragma omp single
3. ReadFromFile(0,...); //preloads data for first iteration of i-loop
4. for (i=0; i<N; i++) {
5. #pragma omp single onthreads(0)
6. ReadFromFile(i+1...); //preload data for next iter. of i-loop
7. #pragma omp onthreads ( 2:omp get num threads()-1 )
8. for (j=0; j< ProcessingNum; j++)
9. #pragma omp for schedule(dynamic)
10. for (k=0; k<M; k++) {
11. ProcessData(); //user configurable data processing functions
12. } //here is the group-internal barrier
13. #pragma omp barrier //this ensures we are ready for next iter.
14. #pragma omp single onthreads(1)
15. WriteResultsToFile(i);
16. }
17. }

Fig. 6. OpenMP seismic data processing kernel with the “onthreads” directive
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library routines) are essential, they would greatly increase the expressive power of this
construct. Interactions between subteams could be made explicit by providing notation
for communication between subteams. This might help a programmer reason about
the structure of this communication and avoid programming errors such as deadlock.
The same construct might also enable point-wise synchronization between threads in a
single subteam to avoid barriers. In the code fragment of Fig. 7, a post-wait notation
does this succinctly and we have named the thread team, whose order is a permutation
of the original thread numbers (used here only to illustrate the concept).

#pragma omp parallel
{

#pragma omp team CompthreadsReordered = threads(omp get num threads()-1:2:-1)
for (i = 0; i < N; i++) { //executed by all threads

#pragma omp single onthreads(0)
{ ReadFromFile(i);

#pragma omp post (dataready[i]) //signals reading is complete
} //thread(0) independently does this reading and posting
........
#pragma omp on CompthreadsReordered
{ //subteam starts to work

#pragma omp wait (dataready[i]) //after data is ready

Fig. 7. Excerpt from OpenMP code with named subteam and post/wait

The ability to divide work among subteams of threads, and thus to have different
subteams working concurrently and independently, seems to be a fairly natural exten-
sion to the current API and it has a variety of potential uses. It would likely simplify the
use of OpenMP within third party libraries. It also enables the specification of multi-
disciplinary code ensembles and permits components written in traditional program-
ming languages to interact without the need to provide external file-based interactions.
It supports the simpler case of multilevel parallelism with a fixed team of threads with-
out the extra overheads and burden of nested parallelism.

3 Worksharing and Synchronization Across Loop Nests

Scientific and engineering computations must exploit large numbers of threads, not only
in emerging, very large shared-memory systems, but also in smaller SMPs with CMPs.
Writing scalable code requires special care. Two of the authors previously proposed a
set of language features to enable the parallelization of multiple levels of loop nests
[8]. These features specify an appropriate execution schedule and assign threads to
loop levels, as well as additional synchronization that enables a pipelined execution
scheme in the LU benchmark from the NAS Parallel Benchmarks [2]. They addressed
scalability limitations in several applications despite the presence of sufficient inherent
parallelism.

3.1 The LU Example

The LU application benchmark uses the symmetric successive over-relaxation (SSOR)
method to solve a seven band block-diagonal system. Figure 8 illustrates its lower
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triangular phase. References to values of elements of array v in line 4 create depen-
dences between loop iterations that prevent straightforward parallelization. However, a
wave-front or a pipelined technique can enable considerable levels of parallelism to be
exploited, since the value of an element of v can be computed once the new values are
available from the previous iteration in each of the three dimensions.

A wave-front restructuring of the code reveals parallelism that can be expressed with
the existing OpenMP parallel directive to update points on a diagonal plane concur-
rently. However, this method suffers from poor cache utilization. A pipelined approach,
in which data are partitioned as blocks in selected dimensions, usually gives better
cache performance. We illustrate the differences between wave-front and pipelined par-
allelism in Fig. 9. Expression of the parallelism in two dimensions would reduce the
cost of pipeline startup and shutdown, and support good cache performance for this
kernel. However, OpenMP currently can only successfully exploit parallelism in one
dimension. Parallelization in multiple dimensions requires nested parallelism, which
results in multiple one-dimensional pipelines and incurs high overheads [7].

1. for (k = 1; k < nz; k++) {
2. for (j = 1; j < ny; j++) {
3. for (i = 1; i < nx; i++) {
4. v[k][j][i] =

v[k][j][i] +
a*v[k][j][i-1] +
b*v[k][j-1][i] +
c*v[k-1][j][i];

5. . . .
6. }
7. }
8. }

Fig. 8. The LU computational kernel
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Fig. 9. Wave-front and pipelined algorithms. j,k
are data dimensions. l in the left panel indicates
a diagonal plane. Numbers in the right panel indi-
cate data blocks mapped to different threads.

3.2 Thread Topology

We introduce the notion of a thread topology to support pipelined algorithms. A thread
topology does not create new threads; instead, it reshapes the thread (sub)team and
associates a new naming scheme with existing threads. We can use the topology to
specify a variety of new schedules for worksharing directives. Our syntax requires the
programmer to provide the number of dimensions in the topology and the coordinates
in each dimension. We will also need a default strategy for mapping the linearly num-
bered threads to a Cartesian grid. The basic syntax of specifying a topology is:

#pragma omp topology name(ndim,start,stop,stride,fixedorder)

where name defines a name of the topology. The ndim argument specifies the num-
ber of dimensions. The arguments start, stop, and stride are arrays with one
entry per dimension to specify the topological shape. fixedorder is a Boolean vari-
able that tells the compiler whether or not the default strategy for associating these
threads with the linear thread numbers must be applied. If not, the system can choose
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any mapping of threads to the topology. For example, if 16 threads exist, the directive
can reshape threads into a 4 × 2 × 2 grid with coordinates from start[]=(0,0,0) to
stop[]=(3,1,1) and stride[]=(1,1,1) or any other numbering scheme we desire that
has 16 threads. We can associate a defined topology with a worksharing construct using
the “onthreads” clause. We use standard section notation to specify the target of the
worksharing directive in each topological grid dimension. We use “:” to denote the en-
tire dimension of an array. Dimensions not involved in the worksharing are marked via
a dummy “*” and the computation is replicated in those dimensions. A runtime function
“omp get coord(name,idim)” can obtain coordinates of a thread in the grid topology.

We illustrate the use of our topology notation in Fig. 10 for the LU computational
kernel. We introduce a 2-D logical grid of threads with the same number of threads in
each dimension. Our thread subteam clause maps the iterations of two different loops to
threads using our grid topology through two worksharing constructs (this notation does
not conform to current OpenMP rules). The 2-D topology is used to distribute the work
in the i and j loop nests among threads.

Finally, we need a way to define synchronization between threads in a topology. We
cannot use existing features of OpenMP, since the interaction required is not between
iterations but threads. This is achieved here using post and wait directives with our
2-D thread-ids. In our example, each thread of the topology must wait for its neighbors
to the left and below it to finish their computation except for where the thread does
not have a neighbor. For instance, thread 0 does not have a neighbor and can start
right away. Once its work is done, a thread signals its neighbors to the right and above
that they can continue. The ability to synchronize between threads is very important for
implementing the pipelined approach in the LU algorithm. In general, it enables loosely
synchronous algorithms [12].

mystart[0] = 0; mystart[1] = 0; ... // assign values to mystart[:] and mystop[:]
#pragma omp parallel {
#pragma omp topology grid(2,mystart,mystop,mystride,1)

// arrange threads logically into a square called grid
iam1 = omp get coord(grid,1);
iam2 = omp get coord(grid,2); // my coords in grid

1. for (k = 1; k < nz; k++) {
#pragma omp wait grid (iam1-1,iam2) // wait for thread below to complete its portion
#pragma omp wait grid (iam1,iam2-1) // wait for thread on left to complete its portion
#pragma omp for nowait onthreads(grid(:,*)) // share out to first dimension of grid

2. for (j = 1; j < ny; j++) {
#pragma omp for nowait onthreads(grid(*,:)) // share out to second dimension of grid

3. for (i = 1; i < nx; i++) {
4. v[k][j][i] = v[k][j][i] + a*v[k][j][i-1] +

b*v[k][j-1][i] + c*v[k-1][j][i];
5. . . .
6. }
7. }

#pragma omp post grid(iam1,iam2+1) // indicate to thread on right that it is ready
#pragma omp post grid(iam1+1,iam2) // indicate to thread above that it is ready

8. }
}

Fig. 10. The multilevel LU computational kernel using thread topology
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4 Related Work

The NanosCompiler team has proposed groups of threads in association with paral-
lel regions [5,6]. Their notation permits the user to specify the number of independent
teams of threads that will be created. Since these thread groups are associated with the
parallel region, additional notation is required to assign work to the individual groups.
They also propose extensions to express the precedence relations in pipelined computa-
tions. These extensions are also valid in the scope of nested parallelism and are based on
the ability to name worksharing constructs and to specify a predecessor-successor rela-
tionship between them to support synchronization. Our topology simplifies specifying
the desired target sets and is more intuitive than the predecessor-successor relationship.
Furthermore, it does not rely on nested parallelism and the associated overhead.

There have been a variety of proposals for multilevel loop parallelism. The SGI com-
piler for the Origin [11] provides the SGI NEST clause on the OMP DO directive. The
NEST clause requires at least two variables as arguments to identify indices of subse-
quent DO-loops, which must be perfectly nested. It informs the compiler that the entire
set of iterations across the identified loops can be executed in parallel. The compiler can
then linearize the iteration space and divide it among the threads. Intel has proposed a
new directive to enable wavefront execution schema. Although this might sometimes
be appropriate, we expect that it will be hard to achieve good data locality in most
cases. Our proposal explicitly enables control of work distribution and, thus, enables
the expression of data locality.

New programming languages [1,3,4] are being proposed to facilitate high end ap-
plication development in a multithreading environment. These languages address prob-
lems faced by levels of scaling that are far from those currently envisaged for hierar-
chical SMPs, and they provide a wealth of new ideas related to correctness, locality,
efficiency of shared memory updates, and more. We will explore these ideas in the
context of OpenMP.

5 Conclusions

OpenMP is a widely deployed shared memory programming API that offers the pro-
mise of performance and ease of use. It seems possible that the judicious addition of
language features that increase the power of expressivity might also improve the achiev-
able performance of a variety of OpenMP codes. In this paper, we introduced a unified
notation for sharing work among subteams of threads and for flexibly executing multi-
ple levels of loop nests in parallel. Table 1 lists the proposed new OpenMP constructs
and clauses in the paper. This approach fits in well with existing features of the API.
As our future work, we will conduct more detailed performance study of the proposed
subteam concept implemented in the OpenUH compiler.

Table 1. Proposed new OpenMP Constructs and Clauses

Proposed OpenMP Directives/Clauses Description
omp onthreads / onthreads (clause only) Defines thread subteams for work sharing

omp topology name Defines the thread topology
omp post / omp wait Uses for point-wise synchronization
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Abstract. The global quiescence of a distributed computation (or dis-
tributed termination detection) is an important problem. Some concur-
rent programming languages and systems provide global quiescence de-
tection as a built-in feature so that programmers do not need to write
special synchronization code to detect quiescence. This paper introduces
partial quiescence (PQ), which generalizes quiescence detection to a spec-
ified part of a distributed computation. Partial quiescence is useful, for
example, when two independent concurrent computations that both rely
on global quiescence need to be combined into a single program. The pa-
per describes how we have designed and implemented a PQ mechanism
within an experimental version of the JR concurrent programming lan-
guage. Our early results are promising qualitatively and quantitatively.

1 Introduction

In distributed programs, multiple processes cooperate to perform some task and
communicate via messages to exchange information. One important, and well-
studied, problem for such programs is to determine when the program’s com-
putation has completed, i.e., it has terminated normally or deadlocked. This
quiescence problem is challenging because each process has only local informa-
tion, but to solve the problem requires information about all processes (i.e.,
global state information). More formally, global quiescence (GQ) is defined as
the state in which each process has terminated or deadlocked and there are no
messages in the communication channels [14]. Quiescence detection, then, is the
mechanism used to detect such a state in a distributed system.

Some programming languages and systems provide GQ detection as a built-
in feature. That is, programmers do not need to write special synchronization
code to detect quiescence. Instead, they can focus on writing application code.
When quiescence is reached, the program can perform various actions such as
simply terminating the program, outputting final results, gathering statistics
from the overall computation, or initiating a new phase of the program, which
might involve a new, corresponding phase of quiescence detection.
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Although useful, GQ is limited to dealing with the state of all processes in
a program. A more general, but more difficult to detect, property would define
when a specified part of the program has become quiescent. For example, suppose
we have two programs that use GQ and we want to combine them into a single
program in which we want to perform different actions when each part of it
becomes quiescent. This motivation led us to explore partial quiescence (PQ).

This paper proposes possible ways of defining PQ. It then discusses the par-
ticular definition selected and implemented in an experimental version of the JR
concurrent programming language. (JR extends Java with a richer concurrency
model [7,18,6].) The paper also shows how PQ leads to a different programming
style for some problems. We compare the performance of using PQ detection and
GQ detection. PQ might be a useful feature for other languages and libraries
that define process or thread groups, as many do, and especially useful for those
languages and libraries that already provide GQ detection.

Our work involves detecting quiescence (GQ or PQ) dynamically, i.e., during
the actual execution of a concurrent program. An alternative approach involves
statically determining various properties of concurrent programs, e.g., determin-
ing whether a concurrent program is deadlock-free. For example, [13] describes
how to statically determine whether a given Ada program is deadlock-free and
[9,16,17] describe how to statically verify that a program in notations such as pro-
cess calculus with communication channels or timed automata with shared vari-
ables is partial-deadlock free. Partial deadlock means that a specified part of the
program deadlocks. For example, [9] places restrictions on how processes commu-
nicate over channels and shows that the part of the program that uses “reliable”
communication channels does not deadlock. The key difference between our ap-
proach and the static approaches, besides when the checking is performed, is that
our approach treats quiescence as a normal part of program execution; the pro-
gram itself is aware of its own quiescence and can react to quiescence as it desires.

The rest of this paper is organized as follows. Section 2 provides background
on the general definition of GQ and how it has been incorporated as a built-
in feature in some programming languages and systems; it describes how GQ
is defined and implemented in JR and presents examples of programs that use
GQ. Section 3 discusses the different ways of defining PQ. Section 4 discusses
the definition of PQ we chose to provide in JR and gives examples of programs
that use PQ. Section 5 presents an overview of our implementation and discusses
its performance. Finally, Section 6 concludes. Further details appear in [12].

2 Background

2.1 Distributed Termination Detection (DTD)

As noted in Section 1, detecting the termination of a distributed computation is
an important and challenging problem. A nice survey [14] describes DTD as fol-
lows. A distributed system consists of a collection of processessuch that processes
communicate with each other by sending activation messages via some commu-
nication channels. An activation message is used not only for communication
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purposes among processes, but also for creation of a new process. A process is
active if it is working on some computation or processing activation messages
addressed to it. A process is passive if it is waiting for an activation message or
termination. All processes in the system behave based on the following rules:

1. Activation messages can be generated only by active processes.
2. An active process may change its state to passive at any time.
3. A passive process may change its state to active only if it receives an acti-

vation message.

The above rules ensure that no further activation messages can be created in a
system where all processes are passive: messages cannot be generated sponta-
neously. When the system has reached such a state, i.e., all processes are passive
and no activation messages are in transit, then the system is quiescent. Quies-
cence detection is defined as the mechanism used to detect the state in which
there are no messages in transit and all processes are waiting [14]. This definition
generalizes that of DTD to both detecting termination as well as deadlock: i.e.,
sensing when the system is in a state from which it can no longer continue. Two
main categories of DTD algorithms, as classified in [14], are wave algorithms
(e.g., [3,4,19]) and credit distribution and recovery algorithms (e.g., [15]).

2.2 Tools and Systems with Support for Termination Detection

In some languages and systems (e.g., Ada, Java, MPI, and Pthreads), programs
that reach a deadlock state wait indefinitely for the user to terminate them
manually. However, in some cases, tools can assist in such detection. For example,
Umpire [20] and MPI-CHECK 2.0 [11] detect deadlocks for MPI programs.

Some other programming languages or systems provide GQ detection as a
built-in feature. GARLIC [8] extends Ada 95 with distributed programming
features; it detects termination based on the algorithm proposed in [5]. JR [7,18],
SR [2,1], and Charm [19] allow a quiescent program to output final results, gather
statistics from the overall computation, or simply terminate the program. In this
regard, JR and Charm are similar: when a program quiesces, it can initiate new
computation, for which the quiescence feature can be used again. SR’s quiescence
feature is not as powerful: it is intended only for the program to clean up and
terminate, and programs cannot use quiescence repeatedly.

Implementation of a Quiescence Feature in JR and SR. The implemen-
tation uses an approach that differs from the general DTD algorithms described
in Section 2.1 because of their particular model of computation. A distributed
program consists of a group of “virtual machines” (VMs). Each VM represents
an address space, or unit of program distribution, and contains several pro-
cesses, which can share variables within that address space or send message to
other processes on that VM or to processes on other VMs. Typically, the number
of VMs is not very large, but it varies as the program executes. The implemen-
tation uses a centralized manager to record information about all VMs in one
place so as to make it easy to implement various services, such as an explicit
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exit (stop) from the program code, which needs to shut down all VMs. The im-
plementation of DTD involves the RTS (run-time system) on each VM and the
centralized manager. When a VM can make no further progress (i.e., all of its
processes have terminated or are waiting to receive a message), it sends an idle
message to the manager. This message contains the number of messages this
VM has sent to each other VM and the number of messages this VM has re-
ceived from each other VM. If the manager has received an idle message from
each VM, it checks that no messages are in transit, specifically: for each VM
V Ma, the number of sends from V Ma to each other VM, V Mb, matches the
number of receives from V Ma reported by V Mb, If so, then the system is glob-
ally quiescent.

Example JR Program Using GQ. The program in Figures 1 and 2 (from [18])
performs matrix multiplication. Its MMMain class reads in two N × N matrices, in-
stantiates a MMMultiplier object, and registers the operation done as the quies-
cence operation.1 Its MMMultiplier class contains the processes that perform the
actual computation. These processes begin execution after MMMultiplier’s con-
structor completes its execution. GQ is used to determine when these compute
processes have finished their tasks. Once GQ has been detected, the registered
operation done is invoked and its code outputs the resulting matrix. Without GQ
detection, the programmerwould need to write additional code to determine when
the computation has terminated.

public class MMMain {
private static MMMultiplier m;
public static void main(String [] args) {

double [][] A, B; int N; // A and B are NxN
// read in NxN arrays A and B
...
m = new MMMultiplier(A, B, N);
// register done as the quiescence operation
JR.registerQuiescenceAction(done);

}
private static op void done() { m.print(); }

}

Fig. 1. Matrix multiplication using GQ – MMMain class

public class MMMultiplier {
double [][] A, B, C; int N; // A, B, and C are NxN
public MMMultiplier(double [][] A, double [][] B, int N) {

this.A = A; this.B = B; this.N = N; C = new double [N][N];
}
process compute ( (int r = 0; r < N; r++), (int c = 0; c < N; c++) ) {

// compute the inner product for C[r,c]
C[r][c] = 0.0; for (int k = 0; k < N; k++) { C[r][c] += A[r][k] * B[k][c]; }

}
public void print() { /* output C */ ... }

}

Fig. 2. Matrix multiplication using GQ – MMMultiplier class

1 Technically, the registration needs to be within a try/catch block.
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If no GQ operation is registered, then the program simply terminates when it
quiesces. The quiescence operation can initiate new activity and can re-register
the GQ operation (either the same or different operation), which will be invoked
when the newly initiated activity quiesces.

3 Definition of Partial Quiescence (PQ)

Although GQ is useful, it restricts the detection to determine the quiescent state
of all processes in a given program. Some notion of PQ, which addresses the
quiescence of part of the program, would be useful. We want, for example, to
combine two programs (i.e., two independent concurrent computations) that use
GQ into a single program in which we want to perform different actions when
each part of it becomes quiescent.

The first step is to define what PQ means. A natural approach is to apply
quiescence to a group of processes in a program. Modifying the definition of
quiescence from Section 2.1 to apply to a specific group of processes yields:

Quiescence of group A is defined as the state in which (1) there are no
messages in the system in transit to group A and (2) all processes in
group A have terminated or are waiting for a message.

Because PQ deals with the interactions of groups of processes, it is, in gen-
eral, more difficult to detect. This definition fits well if the process group is
“closed” [10], i.e., only processes in group A send messages to processes in group
A. However, this definition is not realistic if the process group is “open” [10],
i.e., a message for a process in group A can be generated by a process outside
of the group; such a message appears, from within group A, to have been gen-
erated “spontaneously”. More concretely, a detection mechanism could detect
that all processes in group A are passive and no message in transit is destined
for group A, and so it would decide that group A is partially quiescent. However,
that decision could be followed by a process outside group A sending a message
to a process in group A. (In contrast, such spontaneous message generation is
not possible for GQ (Section 2.1).)

A definition of PQ can deal with this spontaneous generation problem in var-
ious ways. One way would be to alter the above definition with a third clause,
e.g., “and (3) no process outside of group A can possibly send to a process in
group A”. However, such a definition might not be useful: just because a pro-
cess outside of group A can send a message to a process in group A does not
guarantee that it ever actually will. Moreover, in general, keeping track of such
information in a system where communication paths between processes is de-
termined dynamically would be costly.

Therefore, we choose a weaker definition of partial quiescence, namely one
that modifies (1) from the earlier definition:

Quiescence of group A is defined as the state in which (1) there are no
messages in the system from group A in transit to group A and (2) all
processes in group A have terminated or are waiting for a message.
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This definition fits well for closed process groups; the next sections illustrate
that it is practical for open process groups.

4 JR Extended for Partial Quiescence

We have extended JR to support PQ. Now, JR programs can define groups of
related processes and can register, for each process group, a partial quiescence
operation. This section begins with examples to illustrate how PQ in the ex-
tended JR works and then discusses key aspects of the various mechanisms.

4.1 Expository Examples of PQ in JR

Multiple Matrix Multiplications. The main program in Figure 3 shows how
to use PQ to perform two simultaneous matrix multiplications. A nice attribute
of our PQ approach is that the same MMMultiplier class from Figure 2 works
here. The main program creates two process groups, one for each matrix multi-
plication. It uses JR.changeCreationGroup to specify the group in which newly
created processes will be placed for each new matrix computation. (There is one
default process group.) The main program then registers the PQ operation for
each process group. When either group quiesces, its PQ operation will be in-
voked and that code outputs the results.

In contrast, consider a variant of the original main program in Figure 1 that
starts two matrix multiplications and that uses GQ. It would wait for both com-
putations to finish before outputting the result from either.

In Figure 3, two process groups might quiesce at about the same time, in
which case the outputs from their quiescence operation might be interleaved.
Their outputs can be serialized by deleting the present code for done1 and done2
(but keeping their op declarations) and adding the code in Figure 4 to the end
of the main method. This code uses JR’s multi-way receive statement (inni) to

public class MMMain {
private static MMMultiplier m1, m2;
public static void main(String [] args) {

double [][] A1, B1, A2, B2; int N; // A1, B1, A2, B2 are NxN
// read in NxN arrays A1, B1, A2, B2
...
ProcessGroup m_g1 = new ProcessGroup("Multiply Group1");
ProcessGroup m_g2 = new ProcessGroup("Multiply Group2");
JR.changeCreationGroup(m_g1); // processes within m1 will be in m_g1
m1 = new MMMultiplier(A1, B1, N);
JR.changeCreationGroup(m_g2); // processes within m2 will be in m_g2
m2 = new MMMultiplier(A2, B2, N);
// register partial quiescence operation for each process group
JR.registerPartialQuiescenceAction(m_g1, done1);
JR.registerPartialQuiescenceAction(m_g2, done2);

}
private static op void done1() { m1.print(); }
private static op void done2() { m2.print(); }

}

Fig. 3. Multiple matrix multiplications using PQ – MMMain class
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for (int i = 0; i < 2; i++) {
inni void done1() {m1.print();}
[] void done2() {m2.print();}

}

Fig. 4. Code to serialize output from the multiple matrix multiplications

wait for an invocation of either of the PQ operations; it services one at a time,
thus serializing their outputs.

Barrier Synchronization. PQ, as noted earlier for GQ, allows JR programs to
re-register a quiescence operation. Consider the program in Figure 5 (from [18]).
It shows a group of worker processes synchronizing their iterations via a barrier,
implemented with semaphores.2 The program also contains a coordinator pro-

public class Barrier {
private static final int N = 10; // number of workers
private static sem done = 0;
private static cap void () proceed[] = new cap void()[N];
static { for (int i = 0; i < N ; i++) { proceed[i] = new sem; } }
private static process worker( (int i = 0; i < N; i++) ) {

while (...) { // iterations remain
// code to implement one iteration of task i
...
// barrier
V(done); // tell coordinator "I did iteration i"
P(proceed[i]); // wait for coordinator to say "continue"

}
}
private static process coordinator {

while (...) { // iterations remain
for (int w = 0; w < N; w++) { P(done); }
for (int w = 0; w < N; w++) { V(proceed[w]); }

}
}
public static void main(String [] args) {
}

}

Fig. 5. Barrier synchronization using semaphores

cess that controls when workers begin their next iteration. The program uses
an array of semaphores, proceed (one for each worker), rather than a single
semaphore, to prevent a fast worker from “stealing” the message intended for a
slow worker. With a single semaphore, a slow worker might be context switched
after V(done) and before the P(proceed), which would allow a fast worker to
finish its iteration and get past the P(proceed). (See [18] for details.)

This program can be rewritten using PQ and fewer semaphores, as shown
in Figure 6. Worker processes no longer need to tell the coordinator that they
are done (via the done semaphore); instead PQ will detect that. The role of
the coordinator is no longer performed by a separate process. It is now the PQ
operation that is invoked when all worker processes quiesce. Also, the proceed
array of semaphores is now replaced with a single proceed semaphore: a fast
2 In JR, the semaphore primitives P and V are just special cases of the message pass-

ing primitives receive and send.
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public class Barrier {
private static final int N = 10; // number of workers
private static sem proceed;
private static ProcessGroup WG;
static {

WG = new ProcessGroup("Worker Group");
JR.changeCreationGroup(WG); // all worker processes will belong to process group WG.

}
private static process worker( (int i = 0; i < N; i++) ) {

while (...) { // iterations remain
// code to implement one iteration of task i
...
// barrier
P(proceed); // wait for coordinator to say "continue"

}
}
private static op void coordinator() { // no longer a process -- it’s invoked on PQ.

for (int w = 0; w < N; w++) { V(proceed); }
if (...) // iterations remain

JR.registerPartialQuiescenceAction(WG, coordinator); // re-register PQ op.
}
public static void main(String [] args) {

JR.registerPartialQuiescenceAction(WG, coordinator); // register PQ op.
}

}

Fig. 6. Barrier synchronization using partial quiescence

worker cannot overtake a slow worker since all workers must quiesce before the
coordinator operation is invoked and tells any worker it may proceed.

4.2 Key Aspects of Partial Quiescence

As seen in the examples in the previous section, process groups allow the pro-
grammer to specify parts of the program for separate PQ detection. The names
of process groups, specified by the string argument to the ProcessGroup con-
structor, are in a global namespace. For example, in a multi-VM program (Sec-
tion 2.2), processes created in process group "A" on two different VMs are in the
same process group. The programmer can also create a process group specific
to a VM by using a per-VM unique identifier in the name.

PQ detection for a process group does not begin until the PQ operation has
been registered. This avoids the following “startup problem”. Suppose a process
group has just been created, but no processes have yet been created within that
group, for example, if the main program in Figure 3 registered its PQ operations
before instantiating the MMMultiplier objects. Then, PQ detection would de-
tect that the group has quiesced, which would not be too useful for the pro-
grammer. Just as in GQ, the PQ operation can start up new activity and can
re-register another PQ operation.

The precise definition of PQ for JR differs slightly from that given in Sec-
tion 3. The reason is that in JR a message is sent to an operation, which can
be serviced by processes that might belong to different process groups. The PQ
definition for JR, therefore, says “(1) there are no messages in the system that
are serviceable by a process in group A from group A in transit to group A”.

A program that uses PQ can be nondeterministic. For example, a message
from outside a process group might be sent either before or after PQ is detected
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for that process group, thus affecting program behavior. However, such nonde-
terminism does not occur in the examples in this paper (or other practical exam-
ples we have written so far). It remains to be seen whether such nondeterminism
is a problem in further practice.

PQ is an extension to, not a replacement for, GQ. A program is globally qui-
escent when all parts of it have become partially quiescent and the remaining
processes not associated with any group have terminated or deadlocked, and no
messages are in transit. Also, the extended JR has four additional PQ features
for more complicated programming situations as illustrated in [12]. First, the
program can disable or enable PQ detection features during execution. Second,
an optional argument to the process group constructor can specify the number
of processes expected in the group; quiescence of the group occurs when that
number of processes have terminated or deadlocked. Third, process groups can
be hierarchical. A parent group is defined to have become partially quiescent
only when all of its child process groups have become quiescent. Fourth, a pro-
cess can change its process group in the middle of execution.

5 Implementation and Performance

We have an initial implementation of PQ in an extension of JR version 1.00061
(based on Java 1.4). We are presently porting it to JR version 2.00001 (based
on Java 1.5).

5.1 Implementation

The implementation of PQ adapts the centralized manager implementation of
GQ described in Section 2.2. (The implementation of PQ for closed process
groups (Section 3) could follow the GQ implementation rather directly, but with
message counts specific to process groups.) When a process group is created
on a VM, the RTS (run-time system) on the VM sends a message to the man-
ager. The manager uses the process group name as the key into a hashtable;
the hashtable entry contains the list of VMs on which the process group has
been created and a capability for the PQ operation. When the PQ operation
is registered, it is sent by the RTS to the manager. The manager then creates
a thread to handle quiescent messages for this group (if such a thread has not
already been created). The thread executes until the group becomes quiescent
(as described in the following paragraph), at which point the thread invokes the
PQ operation and terminates. If the PQ operation is re-registered, a new thread
is created (Exactly when the thread is created is important so that the thread
does not detect quiescence before the operation has been (re-)registered, i.e., to
avoid the “startup problem” mentioned in Section 4.2.)

When the RTS on a VM detects that a process group on that VM becomes
quiescent (i.e., all of its processes have terminated or are waiting to receive a
message), it sends an idle message to the manager, where it is handled by the
thread that is managing the process group. If the manager has received an idle
message for the process group from each VM, it then sends a message to each
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VM to confirm that the VM is indeed idle. If the manager receives such confir-
mation, then the process group is quiescent. Otherwise, it waits for idle messages
from those VMs who reported they were not idle before it attempts confirma-
tion again. This second, confirmation phase is necessary to account for one VM
reporting that the process group is idle just after it sends a message to another
process within the same process group on another VM that already reported
that it was idle, i.e., to implement the modified PQ definition in Section 4.2.

5.2 Performance

Because PQ is a new language feature, we have no direct basis of comparison to
assess the performance of our implementation. However, we have compared the
performance of PQ in several programs with the performance of GQ in roughly
comparable programs. Specifically, we compared the PQ matrix multiplication
program (Section 4.1) with a variant of the original main program in Figure 1
that starts two matrix multiplications (GQ). The results show that over a range
of different sized matrices PQ required 0%–1.5% additional time; the multi-VM
versions of those programs required 0.4%–4.1% additional time. We also com-
pared the (single VM) PQ and GQ versions of the barrier programs (Figure 6).
The times for the two versions over a range of different numbers of workers were
always within 3% of each other; the times for a multi-VM barrier program were
always within 7% of each other. The PQ version of Figure 6 took 4-10% more
time than the (GQ) program in Figure 5. We ran these tests on various PCs
(1.4GHz and 2.0GHz uniprocessors; 2.4GHz and 2.8GHz dual-processors) run-
ning Linux; specific results, of course, varied according to platform. The actual
code and execution times, and further results and explanations appear in [12].

6 Conclusion

This paper introduced the notion of partial quiescence and showed how it can be
incorporated into a programming language. Having such a PQ mechanism can
lead to a different style of programming, which in some cases is simpler as seen,
for example, in the barrier example in Section 4.1. This paper also discussed
the implementation of PQ and its performance, which differs only slightly from
GQ’s performance. Although our early results are promising, further experience
is needed with using PQ mechanisms and measuring their costs. In particular,
we plan to investigate further concurrent applications and see which might ben-
efit from using PQ mechanisms. We plan to include PQ in the standard JR lan-
guage release [6].
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Abstract. Stand-alone threading libraries lack sophisticated memory
management techniques. In this paper, we present a methodology that
allows threading libraries that implement non-preemptive parallel pro-
gramming models to reduce their memory requirements, based on the
properties of those models. We applied the methodology to NthLib,
which is an implementation of the Nano-Threads programming model,
and evaluated it on an Intel based multiprocessor system with Hyper-
Threading and on the SMTSIM simulator. Our results indicate that not
only memory requirements drop drastically, but that execution time also
improves, compared to the original implementation. This allows more
fine-grained, but also larger numbers of parallel tasks to be created.

1 Introduction

Efficiency of parallel programming models has traditionally been measured in
terms of two important metrics. On the one hand, execution time is used to indi-
cate whether threading libraries and parallel applications have been implemented
effectively. On the other hand, the amount of resources that are required to ex-
press and execute parallel tasks has also been of great importance. Especially
usage of memory, which might be a scarce resource on some parallel systems,
has been carefully analyzed in several cases. Work conducted towards this direc-
tion, mainly targets threading libraries that support multithreaded languages,
i.e., parallel languages that support dynamic thread creation. This is due to the
fact that the accompanying compilers are able to perform powerful analysis of
memory requirements per function and propagate this information to the library.

In contrast, stand-alone threading libraries lack the knowledge about the
memory requirements of an application and must therefore be pessimistic about
them. Due to this fact, two different paths to implement such libraries have
emerged. The basic requirement of the first one is to reduce execution time at
all costs. Libraries implemented under this scheme, which we will refer to as
Descriptor on Stack (DOS), usually allocate a large region of memory during
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thread creation. This region is logically divided into two parts, one describing
the parallel task (Descriptor) and the other being the stack of the task during
execution. Although common sense suggests that this is a fast method to cre-
ate threads, memory requirements are often excessive. Taking into account that
contemporary stand-alone threading libraries set the default stack size some-
where between 1 and 4MB, makes it obvious that those libraries cannot support
large numbers of threads. In order to overcome this problem, supporters of the
second implementation strategy suggest that the first priority should be to min-
imize memory requirements, even if execution time suffers. In this case, during
thread creation time, only a small descriptor is allocated and initialized, whereas
a larger stack is assigned to the task when it is selected to run. We will refer to
this strategy as Lazy Stack Allocation (LSA). Effectively, stacks are traded in
favour of smaller descriptors.

Current developments in computer architecture, such as Simultaneous Multi-
Threading (SMT) [1], HyperThreading [2] and multicore processors, allow effi-
cient execution of more fine-grained parallelism, in addition to a larger number
of parallel tasks. This allows applications to express more of their inherent par-
allelism, creating a number of threads that might exceed the number of available
execution contexts (ECs). Our view is to create an infrastructure that will allow
stand-alone threading libraries to efficiently support the above execution scheme.
In addition to these observations, taking into account that the above architec-
tures usually have a lower memory per EC ratio, leads us to the conclusion that
the LSA implementation strategy is more appropriate for such systems. How-
ever, those libraries are usually slower, thus invalidating the means provided by
modern processors to efficiently execute parallel tasks. Hence, it becomes obvi-
ous that a new approach to tackle this problem is necessary, which will combine
the benefits of both approaches.

In this paper we present a methodology that allows stand-alone threading li-
braries that implement non-preemptive parallel programming models to reduce
their memory requirements. This is accomplished by taking into consideration
the properties of this specific parallel programming paradigm. A prerequisite,
however, is that threading libraries should be LSA enabled. Firstly, we present a
method to convert a DOS into a LSA enabled library. In addition, this method
takes into account an important factor that greatly affects speed of DOS en-
abled libraries, i.e., their self-identification mechanism. Based on this, we take
a step further, compared to previous approaches, introducing two methods that
reduce memory requirements even more. The first one allows us to compute a
priori the total number of stacks that are required to run an application. The
second one improves on LSA, by directly handing the stack of a terminating
thread to the next one that should run on a processor. We will refer to this
method as Direct Stack Reuse (DSR). We demonstrate for the first time, to the
best of our knowledge, that LSA and DSR enabled libraries can actually out-
perform DOS enabled libraries, in terms of both, execution time and memory
requirements.

The rest of this paper is organized as follows: Section 2 presents related
work, with respect to memory management techniques under several parallel



668 I.E. Venetis and T.S. Papatheodorou

programming models. Section 3 presents how to apply our methodology to con-
vert DOS into LSA enabled libraries. In Section 4 and Section 5 we present how
to further reduce memory requirements. In Section 6 we experimentally evaluate
our approach. Finally, in Section 7 we conclude our paper.

2 Related Work

As already mentioned, much work has been done to reduce memory requirements
in threading libraries that support multithreaded languages. For example, in the
Lazy Task Creation [3] model, a thread is implemented as a serial call to a
function, which allows it to run in the stack of the parent. If, however, the
child suspends execution or more parallelism is required, the recorded return
address of the parent is assigned to another processor and the corresponding
stack frames are copied, in order for the parent to continue execution. The Lazy
Threads [4] model employs several representations of parallelism and makes the
compiler responsible for selecting the most efficient in each case. Accordingly,
the compiler decides which is the best representation of a stack, after statically
analyzing each function. For serial execution, a conventional stack is used, for
threads with small and medium sized data a structure know as a stacklet is used,
whereas for larger data sets a separate memory region is allocated. The usual case
is to use a stacklet, which is a memory region that can hold more stack frames.
However, initialization and release of a stacklet are quite expensive operations.
The Capriccio [5] threading library also uses data from static analysis of the
compiler. Similarly to the previous model, more stack frames are put in each
memory region, with the associated management cost. A new region is allocated
at the check points that the compiler inserts, according to the performed analysis.
However, Capriccio implements an 1:N model, where more user-level threads are
executed on top of only one kernel-level entity. Hence, true parallelism cannot
be exploited and some of the optimizations are not valid in M:N models.

An interesting approach, that tries to simplify development of compilers for
multithreaded languages, is the one proposed in StackThreads [6]. It provides
basic functionality to compilers, in order to map the execution model of multi-
threaded languages to the execution model of the C programming language. More
advanced management of stack frames can be built on top of this functionality.
Memory is managed in the library, through the information that the compiler
has to pass to it. Although generality is an important concern in StackThreads,
that work targets a different set of threading libraries than our work.

With respect to stand-alone threading libraries, TiNy Threads [7] targets
the Cyclops64 system, which has extremely limited memory. Only 4800KB are
available for 150 ECs. It uses the DOS model and due to increased memory
requirements has to limit the number of threads that can be created, actually
invalidating the objective of the architecture. In threading libraries that are
preemptive, such as POSIX threads, threads are usually created and immediately
put into a ready queue for execution. In these cases, more threads than there
are processors are usually active. This, in turn, implies that a large number of
stacks must be available, in order to keep the state of threads that have run but
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are currently preempted. As a consequence, separation of descriptors and stacks
can only be applied to efficiently recycle objects in such cases and not reduce
usage of memory. In this paper, however, we target non-preemptive threading
libraries, which have well defined entry and exit points for a thread. Exploiting
this property, is what differentiates our work from previous approaches.

3 Retaining a Fast Self-identification Mechanism

DOS enabled libraries are thought to be fast for two reasons. Firstly, no stack
has to be assigned to each thread before execution, because it has already been
allocated at thread creation time. Secondly, the allocated memory region, that
is split between the descriptor and the stack, is usually aligned at the region’s
size. This allows a thread to quickly perform self-identification, i.e., find the
starting address of it’s own descriptor and acquire important information about
it’s status. For example, if a 1MB(=220 bytes) memory region is allocated, the
starting address should have it’s 20 last bits zero. Self-identification is performed
in this case by reading the current value of the Stack Pointer and clearing the
last 20 bits. The result is always the starting address of the memory region.
Adding the size of the memory region and subtracting the size of the descriptor,
returns the starting address of the latter. By dereferencing this value, all the
information contained in the descriptor can be obtained. For a more detailed
description of the mechanism, including figures, we refer the reader to [8].

Our first requirement, while switching to a LSA model, is to retain a fast
self-identification mechanism. In order to achieve this goal, our methodology
requires us to follow two steps. Firstly, stacks should be aligned as in the DOS
model. We must point out that the stack under LSA is actually the same as the
memory region in the DOS model, whereas descriptors are allocated separately.
Secondly, after a thread has been selected to run and a stack has been assigned
to it, a pointer to the descriptor (instead of the descriptor itself) should be put
at the top of the stack. Thus, self-identification is performed almost in the same
manner as in DOS enabled libraries. The difference lies in the last step, where
the size of a pointer is subtracted from the computed value, instead of the size of
a descriptor. This returns a pointer to the descriptor, which can be dereferenced,
as in the DOS case. Hence, this mechanism is as fast as the original one.

4 Direct Stack Reuse

DOS requires a large memory region for each thread. If more threads than pro-
cessors are created, this leads to unnecessarily high memory consumption. In
contrast, LSA, in combination with the fact that a non-preemptive model guar-
antees that a thread will not be interrupted, allows the stack of a terminating
thread to be inserted into a recycling queue and another stack to be assigned to
the next thread. The same process is repeated for every thread that terminates,
on each processor. Hence, LSA requires only two stacks per processor. If, how-
ever, only one thread is created for each processor, LSA will use the recycled
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stack when a new thread finally arrives, thus the number of stacks will be equal
to the DOS case, in addition to a number of small descriptors.

LSA is a widely used method to reduce memory usage. However, with non-
preemptive models more improvements can be achieved. Our second require-
ment, when switching to a LSA model, is to reduce the time required to assign
a stack to a thread that is ready to run. When a context-switch occurs, under
a non-preemptive model, a thread is actually terminating and it’s stack is not
needed anymore. Due to this observation, it is obvious that the stack of that
thread can be directly reused by the new thread, without accessing queues or
allocating a new one. This reduces time to find a stack for the new thread. Set-
ting up the stack in this case, is as expensive as in the DOS case. The difference
is that initialization just happens at a different point in the execution path.

Two important points have to be made clear, the first being that DSR can
only be applied if LSA is also active. The second point is that DSR is a com-
plementary mechanism to the recycling queues. Someone could conclude that
recycling queues could be dropped from a library, since each thread directly
uses the stack of the previous thread. However, there are cases where recycling
queues are necessary. For example, a thread might block and voluntarily release
the processor it is running on. In this case, the user-level scheduler selects a new
thread for that processor. Obviously, the stack of the thread that blocked must
be preserved, in order for it to be able to resume execution. Hence, the newly
selected thread needs a new stack, which it will request from the queues.

5 Calculating the Number of Required Stacks

Although LSA already contributes to reduced memory requirements and DSR
improves on that, eliminating one stack per processor for switching to a new
thread, the non-preemptive nature of the programming models that are con-
sidered allow us to go even further. Specifically, it is possible to calculate a
priori the number of required stacks that are necessary to run an application.
To demonstrate this, we will use as an example NthLib [9], a threading library
that implements the Nano-Threads programming model [10]. However, this spe-
cialization has an effect only in the initialization phase of a library. During
context-switches, the following reasoning applies to every threading library.

Suppose that initially only LSA is enabled and that an application requests P
processors. In this case, the library must create P − 1 Virtual Processors (VPs)
more, since the first VP is the one that started the application. Currently, the
requirements for the initialization phase are one stack for the first VP and two
for each other, giving a total of 2 · P − 1. If DSR is also enabled, then there
is no need for additional stacks. If not, then as soon as a VP, except of the
first one, receives the first user-level thread for execution, one of the stacks is
recycled, as it is thought to be the stack of the previous thread. Therefore, only
one more stack is required per VP to perform context-switches, which sums up
to (2 · P − 1) + (P − 1) = 3 · P − 2. Finally, one more stack is required for the
main thread, because it voluntarily blocks and joins the other VPs in the parallel
phase. Therefore, the final sums are 3 · P − 1 for LSA and 2 · P for DSR.
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This information can be used by threading libraries. During initialization,
allocation of all stacks can be performed at once. In order to enforce the memory
alignment requirements of the library, some additional pages of memory must be
allocated. However, after the first stack has been correctly aligned, all subsequent
stacks in that memory region will also be aligned. This is in contrast to DOS,
where additional memory has to be allocated for each new thread, which is
wasted. If we were to free that memory, execution time would suffer. Since the
application is still in a serial phase, stacks can be put into the corresponding
recycling queues without using any locking mechanism. This has two advantages.
Firstly, the library requests only once memory for stacks. Memory allocators are
usually slow when large memory areas are requested. Under DOS, this cost
is paid for every thread. Under LSA and DSR, the cost is amortized among
all threads that will run on the allocated stacks. Secondly, each processor is
assigned the total number of stacks it requires during execution. This reduces
contention on the recycling queues of the stacks to the minimum. Finally, it is
a priori known that all allocated stacks will be used and no memory will be
wasted.

Although the number of stacks can be predicted, the number of descriptors
cannot. Despite that fact, we propose a similar pre-allocation technique for them.
The first time a descriptor is requested, a larger area of memory is allocated.
However, in contrast to stacks, all descriptors that fit into this area are not di-
rectly put into queues, due to the fact that mutual exclusion would be necessary.
In addition, only the main thread of an application usually creates threads, hence
spreading descriptors among all recycling queues would be inefficient. Therefore,
each time a descriptor is needed, and none can be found in a recycling queue,
we atomically increase the base address of the allocated area by the size of a
descriptor and return the previous address. Since contention is very low, due to
the fact that usually only one thread creates others, this atomic operation is very
likely to complete very fast. Only when the allocated area is exhausted, does the
library request more memory for descriptors. Currently, 2 ·P descriptors can fit
into the area that is each time allocated in the new implementation of NthLib.
In combination with the fact that a descriptor is only 512 bytes large, one can
conclude that this is an effective method to reduce the number of expensive
memory allocation requests, without actually sacrificing memory.

6 Experimental Evaluation

In order to evaluate the efficiency of our methodology, we applied it to NthLib.
The original implementation of NthLib is DOS based. The new implementation
has been developed so as to support all designs that were described, i.e., DOS,
LSA and DSR. The one that is each time used is defined during compilation of
the library. Supporting all designs was intentional, in order to make comparison
among them easier. Having only one library, makes our results independent of
other differences and details that two separate implementations would have.

The first system we used to evaluate our approach is a 4-processor, Hyper-
Threading enabled system, running Linux 2.6.8. The second one is SMTSIM [1],
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Table 1. Hardware configuration of the experimentation platform

Intel processor based system SMTSIM

Processors 4 Intel Xeon MP HTs, 2 GHz, 1 Alpha based,
2 execution contexts/processor 8 execution contexts

L1 Data Cache 8KB shared, 4-way assoc. 32KB, 2-way assoc.,
10-cycle miss latency

L1 Inst. Cache 12KB shared execution trace 32KB, 2-way assoc.,
10-cycle miss latency

L2 Cache 512KB shared, unified, 256KB, 2-way assoc.,
8-way assoc. 15-cycle miss latency

L3 Cache 1MB shared, unified, 2MB, 2-way assoc.,
8-way assoc. 125-cycle miss latency

D-TLB 64 entries 128 entries

I-TLB 2x64 entries 48 entries

DRAM 2GB Depends on host system

a simulator that implements an Alpha processor with 8 ECs. More detailed hard-
ware characteristics for both systems are summarized in Table 1. The compiler
used is gcc 4.0.2 for both platforms, at the highest optimization level (-O3).

Due to space limitations, we present results for only one benchmark. We refer
the reader to [8], for a more detailed description of applying our methodology to
NthLib and a more thorough evaluation. The benchmark that we used, which we
will refer to as Empty, follows the fork/join model. The master thread creates one
million empty nano-threads, whereas the slave processors dispatch and execute
them. The master thread blocks after it has created all threads, hence calling
the user-level scheduler and joining the other processors to execute threads. This
benchmark is appropriate for estimating the pure run-time overhead of thread
management in NthLib. Moreover, it can be used to determine the number of
stacks that an application requires and to estimate the minimum number of
descriptors that must be allocated. This is due to the fact that nano-threads
perform no computation in this benchmark. Therefore, they are consumed as
fast as possible by the slave processors and are immediately recycled.

Fig. 1 summarizes the results for this benchmark. They are normalized with
the time of the slowest benchmark, which is when LSA is enabled and the bench-
mark is run on one EC. The absolute execution times in this case were 2,56
seconds for the Intel based system and 643,5 million simulated clock cycles for
SMTSIM. The stack size used for each nano-thread was set in all runs to the
quite small size of 32KB, in order to allow the benchmark to successfully com-
plete in most cases under the DOS scheme. If either LSA or DSR is enabled,
pre-allocation of stacks and descriptors is also enabled. For SMTSIM, the hori-
zontal axis represents the number of ECs used. For the Intel based system, the
numbers of physical processors and ECs used on each one of them are mentioned.
For example, (4, 1) means that 1 EC was used on each one of the 4 physical pro-
cessors. A special case is the one denoted with (4, 1/2), where 2 ECs were used
on 2 physical processors and 1 EC on the other 2 physical processors. Finally,
notice that the benchmark could not complete when DOS was enabled and it
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Fig. 1. Normalized execution time for Empty on the Intel based system and SMTSIM

was run on one processor, due to excessive memory requirements. The master
thread must first create all threads in this case, before blocking to execute them.

The results indicate that LSA and DSR are from 2,65% (DSR, (4,1)) up to
12,54% (DSR, (2,1)) faster than DOS, on the Intel platform. For SMTSIM, the
range is between 14,66% (DSR, 4) and 21,82% (LSA, 8). The exception occurs
when two ECs are used on only one processor. In this case, DSR is 3,49% and
LSA 40,41% slower than DOS, for the Intel platform, whereas for SMTSIM
the difference is 2,48% and 12,38% respectively. More detailed measurements
revealed that the cause of this inefficiency is the contention on the recycling
queues of both, the stacks and the descriptors. Under LSA and DSR, nano-
threads are created and also start executing faster after they have been selected
to run. This means that both ECs try to acquire access to the queues in smaller
time intervals. In combination with the fact that resources of the processor are
shared between the ECs and one of them may stall, if a resource is not available,
explains this odd behavior. DSR is faster than LSA in this case, due to the fact
that stacks are not recycled but directly reused. This alleviates the queueing
system significantly. Moreover, the differences for SMTSIM are smaller, com-
pared to the Intel platform. Additionally, we observe that execution time rises,
as more ECs are used, although with a smaller pace in the case of SMTSIM.
The fact that SMTSIM exhibits better behaviour in all cases can be attributed
to the following facts. Firstly, SMTSIM simulates 8 ECs on one processor. The
Intel platform, in contrast, is a SMP system, where communication costs among
processors are quite higher. Secondly, resources of the simulated processor in
SMTSIM are dynamically shared among ECs. In the second system, however,
resources of a processor are statically divided between both ECs. Therefore, even
if a resource is available on one of them, the other cannot take advantage of it.
Lastly, SMTSIM uses a very efficient hardware implementation of locks, based
on the concept of a lockbox [1], which is exploited in our library and significantly
reduces synchronization time among threads.

The other important factor that our implementation tries to minimize, apart
from execution time, is usage of memory. Table 2 summarizes the memory re-
quirements of our benchmark. Starting with the results for the Intel platform,
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Table 2. The number of required Stacks (S) and Descriptors (D) for Empty

Intel processor based system
DOS LSA DSR

S S D S D

(1,1) - 3 1000003 2 1000003

(1,2) 13012 6 284877 4 204662

(2,1) 9602 6 176701 4 107078

(2,2) 7342 10 104896 8 76378

(4,1) 10909 10 80893 8 73132

(3,2) 9993 16 73760 12 86505

(4,1/2) 8558 16 70684 12 76668

(4,2) 10496 22 65270 16 73812

SMTSIM
DOS LSA DSR

S S D S D

1 - 3 1000003 2 1000003

2 8 5 31 3 15

4 9 7 14 7 14

6 11 11 16 11 15

8 13 13 17 12 16

it becomes obvious that savings in memory are significant. The biggest difference
between DOS and LSA appears when both ECs are used on each one of the
physical processors and is 90,07%. The biggest difference between DOS and
DSR appears when one EC is used on all physical processors and is 89,45%. The
smallest difference appears in both cases when one EC is used on each of two
physical processors and is 65,75% for LSA and 75,39% for DSR.

Different results are acquired for SMTSIM, where memory requirements for all
cases are almost identical. This difference, compared to the Intel platform, can
be explained, if we take into consideration that SMTSIM does not run an OS and
delays that origin from it are not accounted for. As an example of the importance
of this fact, we mention that on the Intel platform, a thread is created in about
30000 clock cycles, under the DOS scheme, whereas the time required to insert it
into a ready-queue is only about 250. Almost all of the time to create the thread is
spent in the OS, in order to allocate the required memory. In SMTSIM, however,
this time is not measured and a thread is created in 60 cycles and inserted
into a queue in 100. Therefore, we believe that for fine-grained benchmarks,
that frequently interact with the OS, SMTSIM is not as accurate as required.
Consequently, we believe that the results obtained on the Intel platform, with
respect to memory requirements, reflect better reality. Furthermore, we believe
that differences in execution time between DOS and both, LSA and DSR, would
be higher for SMTSIM, if the time for memory allocation had been taken into
account. However, SMTSIM gives a good estimation of execution times in all
cases and can be used more reliably for applications where each thread has to
perform more computations [8].

7 Conclusions

In this paper we presented a methodology that can be applied to non-preemptive
parallel programming models, in order to reduce their memory requirements.
We used a widely known methodology to convert a DOS into a LSA enabled
library, demonstrating that it is possible to retain a fast self-identification mech-
anism. Furthermore, taking into account the fact that most contemporary high
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performance threading libraries implement non-preemptive parallel program-
ming models, we introduced two more methods to reduce memory requirements.
Those are based on the properties of non-preemptive programming models, which
is what differentiates our work from previous approaches. Specifically, we intro-
duced a mechanism that allows the stack of a terminating thread to be directly
reused by the thread that is next to be run. In addition, we demonstrated how
it is possible to calculate a priori the total number of stacks that an applica-
tion requires. The latter can be exploited to reduce the amount of memory that
would otherwise be wasted, due to the alignment requirements of memory re-
gions and stacks. Finally, our performance evaluation proved that combining all
of the above techniques, not only drastically reduces memory requirements to
represent parallelism in threading libraries, but that it can also be faster than
the traditional DOS approach, in contrast to general belief.
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Since the early days of supercomputing, numerical routines have caused the
highest demand for computing power anywhere, making their efficient paral-
lelization one of the core methodical tasks in high-performance computing. And
still, many of today’s fastest computers in the world are mostly used for the
solution of huge systems of equations as they arise in the simulation of complex
large scale problems in engineering and science.

Despite this long tradition, parallel numerical algorithms did not lose anything
of their relevance. The efficient implementation of existing schemes on state-
of-the-art parallel systems (such as clusters or hybrid systems), the challenges
resulting from massively parallel systems, the design of easy-to-use portable
software components, the recent endeavours to tackle optimization, control, and
interactive steering scenarios, too – all this clearly shows that progress in com-
putational science and engineering strongly depends on progress with parallel
numerical algorithms. This crucial importance of parallel numerical algorithms
certainly justifies to again having devoted a special workshop to this topic at
Euro-Par, in addition to the discussion of special aspects of high-performance
and grid computing in Topic 16.

Overall, fourteen papers were submitted to our Topic. With authors from
Denmark, France, Germany, Greece, Lithuania, Spain, and Switzerland, Europe
is the dominant male (as expected at Euro-Par), but three papers are authored
by scientists from the United States, Australia, and China. Out of these fourteen
submissions, eight were accepted as regular papers.

Both devising new parallel algorithms for numerical tasks and adapting ex-
isting ones to state-oft-the-art parallel systems are vigorously flourishing and
still developing fields of research. Hence, it is no surprise that the eight research
articles presented in this section cover a wide range of topics arising in the
various subdomains of parallel numerical algorithms. At the conference, the pre-
sentations were arranged into three sessions on PDE-Related Topics, ODE- or
Particle-Related Topics, and Miscellaneous Topics. This structure also reflects
in the following part of the conference’s proceedings.

In the PDE-Related Topics section, Raimondas Čiegis addresses a parallel
locally one-dimensional scheme for the numerical solution of three-dimensional
parabolic problems with nonlocal boundary conditions. Vincent Heuveline and
Andrea Walther discuss online checkpointing strategies for parallel adjoint com-
putations as they occur in the optimization or control of time-dependent flow
problems. Finally, fault tolerance is the topic of Hatem Ltaief, Marc Garbey, and
Edgar Gabriel. In their contribution, they study parallel fault tolerant algorithms
for parabolic problems.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 677–678, 2006.
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Ordinary differential equations and particle methods are the central topics
of the second section. José M. Bad́ıa, Peter Benner, Rafael Mayo, and Enrique
Quintana-Ort́ı deal with generalized algebraic Riccati equations, especially par-
allel schemes for large-scale and sparse ones. Load balancing strategies and their
applicability to data-parallel embedded Runge-Kutta integrators are studied by
Matthias Korch and Thomas Rauber. The third presentation, given by a team
of eight scientists from ETH Zürich, focuses on a software framework for the
portable parallelization of particle-mesh simulations, the combination of particle-
and mesh-based methods.

The final third session gathers the two remaining papers of Topic 10. Rita
Zrour, Pierre Chatelier, Fabien Feschet, and Rémy Malgouyres study the par-
allelization of a numerical and computationally intense problem from computer
graphics: discrete radiosity methods for global illumination. Finally, an interdis-
ciplinary team of five researchers from chemistry and computer science at TU
München addresses the parallelization of matrix operations as a typical building
block from numerical linear algebra, as they appear in optimal control-based
quantum compilers.

Altogether, the contributions to Topic 10 at the 2006 Euro-Par in Dresden
show once more the great variety of interesting, challenging, and important issues
in the field of parallel numerical algorithms. Thus, we are already looking forward
to the new results submitted to and presented at next year’s Euro-Par conference.
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Abstract. A parallel LOD algorithms for solving the 3D problem with
nonlocal boundary condition is considered. The algorithm is implemented
using the parallel array object tool ParSol, then a parallel algorithm
follows semi-automatically from the serial one. Results of computational
experiments are presented.

1 Problem Formulation

Boundary conditions are important part of any mathematical model. Recently
new types of boundary conditions are proposed and investigated. Many physical
and technological processes are described by mathematical models consisting
of elliptic or parabolic problems with non-local boundary conditions. A review
of such applications and mathematical results for analysis of one-dimensional
problems is presented in the recent survey paper of Dehghan [9]. Numerical
algorithms for solving linear and nonlinear parabolic problems with nonlocal
boundary conditions are investigated in [5,7,8,11,12].

In this paper we consider parallel numerical algorithms for solving 3D parabo-
lic problem with the additional integral boundary condition. Let QT = Ω×[0, T ],
Ω = (0; 1) × (0; 1) × (0; 1) be a domain with the boundary ∂Ω. This boundary
is split into two parts ∂Ω = ∂Ω1 ∪ ∂Ω2, ∂Ω2 = {X : (x1, x2, 0), 0 ≤ xj ≤ 1, j =
1, 2}. In QT we consider a parabolic equation

∂u

∂t
=

3∑
α=1

∂

∂xα

(
kα(X, t)

∂u

∂xα

)
− q(X, t)u + f(X, t), (1)

subject to boundary conditions:

u(X, t) = µ1(X, t), X ∈ ∂Ω1 × (0, T ],

u(X, t) = µ0(t)µ2(X), X ∈ ∂Ω2 × (0, T ],

initial condition:

u(x1, x2, x3, 0) = u0(x1, x2, x3), X ∈ Ω ∪ ∂Ω ,
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and the additional nonlocal condition:∫ 1

0

∫ 1

0

∫ 1

0

ρ(X, t)u(X, t) dx3 dx2 dx1 = M(t). (2)

Here kα, q, d, ρ, f, u0,M, µj , j = 1, 2 are given continuous functions, and the func-
tions u(X, t), µ0(t) are unknown. Thus the initial-boundary problem (1)–(2) is
over-specified, and the integral condition is used to identify the boundary condi-
tion function µ0(t), i.e. we solve an inverse problem. When this boundary value is
obtained, we can use any efficient method to solve a standard three-dimensional
parabolic boundary value problem.

The existence and uniqueness of the solution of 2D problem is studied in
[2]. The analysis of the forward Euler method and a modified Locally One Di-
mensional (LOD) scheme is presented in [10,16]. At each splitting step of the
LOD scheme one-dimensional problems were approximated by the forward Euler
method, thus the obtained LOD method was only conditionally stable.

The analysis of new finite difference schemes (including the LOD method)
is presented in [3,4]. It is proved that integral (2) can be approximated by the
trapezoidal rule, if the initial condition is approximated in consistent way.

High-performance computers with massive parallel processors are developing
very fast and parallel numerical algorithms play an important role in large-scale
scientific and engineering computations. Three groups of methods are widely
used for solving multidimensional parabolic initial-boundary value problems:
a) explicit algorithms, b) fully implicit approximations, c) splitting methods.
In splitting methods the multidimensional problem is reduced to a sequence
of one dimensional implicit difference systems with tridiagonal matrix. Special
parallel versions of the serial factorization algorithm are used to implement LOD
algorithms on multiprocessor computers. A reduction of communication costs is
the second main problem in developing efficient parallel splitting algorithms for
parallel computers with distributed memory.

In this paper we consider the LOD parallel algorithm for solving three di-
mensional problem (1)–(2) with the nonlocal boundary condition. The rest of
the paper is organized as follows. In Section 2, we formulate the LOD finite-
difference scheme. In Section 3 the parallel LOD algorithm is proposed. The
parallel array object tool ParSol is used for its implementation. Then a parallel
algorithm follows semi-automatically from the serial one. The complexity and
scalability analysis of the parallel LOD algorithm is done. In Section 4 results of
computational experiments are presented to test the accuracy and the efficiency
of the parallel algorithm.

2 Locally One Dimensional Method

In QT we define a uniform grid Qhτ = ωh × ωτ :

ωh =
{
(x1i, x2j , x3k) : xα,i = ih, h =

1
J

, 0 < i < J
}
,

ωτ =
{
tn : tn = nτ, n = 1, 2, . . . , N, Nτ = T

}
.
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Let γh be a boundary of ωh, we split it into two parts γh = γ1h ∪ γ2h. Let
Un

ijk = U(x1i, x2j , x3k, t
n) be a discrete approximation to the exact solution of

differential problem (1)–(2).
We propose unconditionally stable LOD scheme, which approximates 3D par-

abolic problem and the integral condition:

Un+j/3 − Un+(j−1)/3

τ
= AjU

n+1/3 + δ1jf
n+1, j = 1, 2, 3, X ∈ ωh,

U
n+1/3
ijk = (I − τA2)(I − τA3)µn+1

1 , X ∈ γ1h(x1 = 0) ∪ γ1h(x1 = 1),

U
n+2/3
ijk = (I − τA3)µn+1

1 , X ∈ γ1h(x2 = 0) ∪ γ1h(x2 = 1),

Un+1
ijk = µn+1

1 , X ∈ γ1h,

Un+1
ijk = µn+1

0 µ2, X ∈ γ2h,

ShU
n+1 = M(tn+1) .

(3)

Boundary conditions are approximated consistently with the approximation of
the differential equations [17]. Here we use the following difference operators:

AαU =
(
aαUx̄α

)
xα

− 1
3
q(X, tn)U, α = 1, 2, 3,

an
α, ijk = kα

(
x1i − h

2
δ1α, x2j − h

2
δ2α, x3k − h

2
δ3α

)
,

Ux1 =
Ui+1,jk − Uijk

h
, Ux̄2 =

Uijk − Ui,j−1,k

h
.

Integral condition (2) is approximated by the trapezoidal rule

ShU
n+1 :=

J∑
i,j,k=0

cicjck ρn+1
ijk Uijk h3 = M(tn+1), (4)

c0 =
1
2
, cl = 1, l = 1, . . . , J − 1, cJ =

1
2
.

We propose to change the simplest approximation of the initial condition

U0 = u0(X), X ∈ ωh ∪ γh

by the following one, which exactly satisfies the discrete nonlocal condition:

U0 =
M(t0)u0(X)

Shu0
, X ∈ ωh ∪ γh . (5)

Then the truncation error of the discrete initial condition is given by

|U0 − u0(X)| = O(h2) ,
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but this error is not propagating in time due to the stability of the LOD method
with respect to the initial condition. This new discretization of the initial condi-
tion is mass conservative, therefore the accuracy of approximation of the bound-
ary condition µn is increased to the second order.

The LOD scheme is implemented as follows. The first two subproblems for
j = 1, 2 are standard: we solve (J − 1)2 systems of linear equations, the matrix
of each system is tridiagonal. Total costs of these two steps are O(J3) floating
point operations.

The serial implementation algorithm of the third step was proposed in [3]. By
using the Dirichlet boundary condition at γ1h(x1 = 1) and discrete 1D equations
with operator A3 we obtain the factorization coefficients α̃n+1, β̃n+1 such that:

Un+1
ijk = α̃n+1

ijk Un+1
i,j,k−1 + β̃n+1

ijk , 0 < i, j < J, k = J, . . . , 1.

Then the solution is expressed in the following form:

Un+1
ijk = αn+1

ijk Un+1
ij0 + βn+1

ijk , i, j = 0, . . . , J, (6)

αn+1
ijk = α̃n+1

ijk αn+1
i,j,k−1, k = 1, . . . , J, αn+1

ij0 = 1,

βn+1
ijk = α̃n+1

ijk βn+1
i,j,k−1 + β̃n+1

ijk , βn+1
ij0 = 0.

By using the discrete non-local condition we find the function:

µn+1
0 =

M(tn+1) − Shβ
n+1

Sh(C)
, Cijk = αn+1

ijk µ2ij .

After determination of µn+1
0 solution Un+1 is computed by using (6). The com-

plexity of the third step of LOD scheme is equal to O(J3).

3 Parallel Algorithm

Let us assume that we have p processors, which are connected by three dimen-
sional mesh, i.e. p = p1 × p2 × p3. The grid ωh (a data set) is decomposed into a
number of 3D subgrids by using a block distribution scheme. Then each subgrid
ωhp has

(J + 1)
p1

× (J + 1)
p1

× (J + 1)
p1

=
(J + 1)3

p

computational points of the grid ωh and it is assigned to one processor, which is
responsible for all computations of the local part of vector U .

Since the sub-domains are connected at their boundaries, processors dealing
with neighbouring sub-domains have to exchange boundary information with
each other at every time-step. More exactly, the update of vector Un+1 at grid
points which lie beside cutting planes (i.e. boundary nodes of the local part of
the vector U) needs a special attention, since information from the neighbouring
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processors is required to compute new values of Un+1. Such information is ob-
tained by exchanging data with neighbour processors in the specified topology
of processors. The amount of exchanged data depends also on the grid stencil,
which is used to discretize the PDE model. A star-stencil of seven points is used
in (3), therefore local subgrids are enlarged by two ghost points in each dimension
of the subgrid.

In the parallel algorithm the implementation of the third step of the LOD
scheme is modified to the following one:

Un+1 = V n+1 + γn+1Wn+1 ,

where V n+1 is a solution of the discrete boundary value problem
V n+1 − Un+2/3

τ
= A3V

n+1, X ∈ ωh,

V n+1 = µ1(X, tn+1), X ∈ γ1h,

V n+1 = µn
0 µ2(X, tn+1), X ∈ γ2h .

(7)

Function Wn+1 is a solution of the auxiliary problem
Wn+1/τ = A3W

n+1, X ∈ ωh,

Wn+1 = 0, X ∈ γ1h,

Wn+1 = µ2(X, tn+1), X ∈ γ2h .

(8)

Then we find µn+1
0 by using the discrete nonlocal condition:

γn+1 =
M(tn+1) − ShV

n+1

ShWn+1
.

Thus during implementation of the parallel LOD algorithm we solve 4(J − 1)2

systems of linear equations with tridiagonal matrix.
The complexity of solving one tridiagonal system of J equations by the serial

factorization algorithm is equal to 8J arithmetical operations.
For two processors the Gaussian elimination process is started simultaneously

at the first and last equations and it goes in opposite directions. Processors
exchange two factorization coefficients at the end of the first stage of the factor-
ization algorithm. The total complexity of this modified algorithm is equal to
8J arithmetical operations.

For the case when a system is distributed between p1 > 2 processors, we use
the Wang parallel factorization algorithm [14]. It solves the tridiagonal system
by using 17J arithmetical operations. The main idea is to reduce the given
system to a new tridiagonal system of p1 equations, where each processor has
only one equation. Such small system is solved by using the serial factorization
algorithm. The total costs of the parallel Wang algorithm in the worst case when
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the simplest algorithm is used to broadcast data to the master process can be
estimated as

Tp(J) =
17J
p1

+ 8p1 + p1(α + β).

4 Complexity and Scalability Analysis

We will estimate the complexity of the LOD algorithm by counting basic oper-
ations. At each time step the following amount of work is done:

1. Coefficients of the LOD scheme (3) are computed. The complexity of this
step is J3.

2. 3(J −1)2 systems with tridiagonal matrix are solved. The complexity of this
step is aJ3.

3. Discrete approximations of integrals Sh(V n+1), Sh(Wn+1) are computed.
The complexity of this step is bJ3.

4. The values of the solution on boundary γ2h are updated with a known func-
tion µn+1

0 . The complexity of this step is cJ2.

As a result, the total complexity of the serial LOD algorithm can be expressed as

W = (1 + a + b)J3 + cJ2 = (1 + a + b)J3 + O(J2) . (9)

The communication step is implemented before updating vectors Un+j/3, j =
1, 2, 3 and only neighbouring processors are communicating with each other.
Each processor exchanges with its six neighbours vector elements corresponding
to boundary points of the local subdomain. A total amount of data, exchanged
between two processors, is equal to J2/p2/3 elements. This can be done in

T1,p(J) = α + β
J2

p2/3

time, by using the odd–even data exchange algorithm. Here α is the message
startup time and β is the time required to send one element of data.

When the required information is exchanged, processors compute in parallel
coefficients of local part of the matrix. The complexity of this step is given by

T2,p(J) =
J3

p
.

Parallel computation of integrals Sh(V n+1) and Sh(Wn+1) requires global
communication among all processors during summation of local parts of inte-
grals. The complexity of reduce operation depends strongly on the architecture
of the parallel computer (see [13]). We will estimate the time required to reduce
local values of integrals between p processors by B(p) = R(p)(αb + βb), where
R(p) depends on the algorithm used to implement the MPI ALLREDUCE operation
and the architecture of the computer. For the simplest reduce algorithm, when
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every processor sends its result to the master processor, who finishes computa-
tion of the integral and broadcasts the global sum to all processors, R(p) = p.
Thus the complexity of parallel computation of both integrals and updating
boundary values on γ2h is given by

T3,p(J) = 2R(p)(αb + βb) + b
J3

p
+ c

J2

p2/3
.

The time required to solve all 4(J − 1)2 systems of linear equations is
estimated as

T4,p(J) =
4
3

17aJ3

8p
+ 4J2

(
8p1/3 + p1/3(α + β)

)
.

Summing up all obtained estimates we compute the complexity of the parallel
LOD algorithm

Tp(J) =
(
1 +

17a
6

+ b
)J3

p
+ 6

(
α + β

J2

p2/3

)
+ c

J2

p2/3
+ 2R(p)(αb + βb). (10)

According to the definition of the isoefficiency function, we must find the rate
at which the problem size W needs to grow with p for a fixed efficiency of the
algorithm. Let H(p,W ) = pTp−W be the total overhead of a parallel algorithm.
Then the isoefficiency function W = g(p,E) is defined by the implicit equation
(see [14]):

W =
E

1 − E
H(p,W ) .

The total overhead of the parallel LOD algorithm is given by

H(p,W ) =
11
6

aJ3 + 6αp + (6β + c) p1/3J2 + 2pR(p)(αb + βb)

=
11a

6(1 + a + b)
W + 6αp +

(6β + c)p1/3

(1 + a + b)2/3
W 2/3 + 2pR(p)(αb + βb).

The first term defines a range of possible values of E. This term in H(p,W )
arises due to the fact the parallel algorithm does not coincide with the serial
LOD algorithm. For simplicity of notation we take E such, that

11aE
6(1 + a + b)(1 − E)

=
1
2

.

Since it is impossible to get the isoefficiency function in a closed form as a
function of p, we will analyze the influence of each individual term. The compo-
nent that requires the problem size to grow at the fastest rate determines the
overall asymptotic isoefficiency function. After simple computations we get the
following three isoefficiency functions

W = O(p), W = O(p), W = O(
pR(p)

)
.
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Thus the the overall asymptotic isoefficiency function is defined by the overheads
of the global reduction operation. Let us assume that processors are connected by
three–dimensional mesh p1/3×p1/3×p1/3. Then the global reduce and broadcast
operations can be implemented with R(p) = p1/3. Thus the problem size W has
to grow as O(p4/3) to maintain a certain efficiency. For a hypercube mesh we have
smaller costs of the global reduction operation R(p) = log p, then isoefficiency
function is close to linear W = O(p log p).

We note, that in the case of a moderate number of processors p = O(J), the
costs of global reduction operation can be ignored and the isoefficiency function
W = O(p) depends linearly on p.

Parallel numerical objects. Special tools are developed to simplify paralleliza-
tion of sequential algorithms, e.g. Diffpack tool [15] and PETSc toolkit [1]. We
have developed new tool ParSol of parallel numerical arrays, which can be used
for semi–automatic parallelization of data parallel algorithms, that are imple-
mented in C++. Such algorithms are usually constructed for solving PDEs and
systems of PDEs on logically regular rectangular grids. ParSol is a library of
parallel array objects, a functionality of which is similar to Distributed Arrays
in PETSc. We list the following main features of ParSol (see [6]): a) created for
C++ programming language, b) based on HPF ideology, c) the library heavily
uses such C++ features as OOP and template, d) MPI 1.1 standard is used to
implement parallelization.

ParSol arrays have a number of advantages for programming mathematical
algorithms, such as virtual indexing, built-in array operations, automated man-
agement of dynamically allocated memory, periodic boundary conditions. ParSol
arrays simulate numerical objects of linear algebra and many useful basic vector
operations are supported within the ParSol library, e.g. parallel computation of
vector norms, the inner product of two vectors, scaling of vectors.

The LOD algorithm can not be described as a simple data parallel algorithm,
but ParSol library is used to implement the algorithm (3) and only the Wang
algorithm requires a special treatment.

5 Results of Computational Experiments

In this section we present some results of computational experiments. Compu-
tations were performed on IBM SP5 computer at CINECA, Bologna. We have
solved problem (1)–(2) with the following coefficients and the exact solution:

kα(X, t) = 1 + (x2
1 + x2

2 + x2
3)t, q(X, t) = (x1 + x2 + x3)t2,

M(t) = et(A3 + B3), A = 2(e0.5 − 1), B = 2(2 − e0.5),

ρ(X, t) = 1 + x1x2x3, u(X, t) = exp
(
0.5(x1 + x2 + x3) + t

)
.

In order to scale the computation time for different space steps h = 1/(J − 1),
a solution was computed in time intervals [0, T (J)], where

T (40) = 0.4, T (80) = 0.04, T (120) = 0.005, T (160) = 0.001.
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In Table 1 we present the values of experimental speedup Sp(J) =
T1(J)
Tp(J)

and

efficiency Ep(J) =
Sp(J)

p
coefficients for different sizes of the discrete problem.

Table 1. The speedup and efficiency coefficients for the LOD method. CPU time
of the sequential algorithm (in s): T1(40) = 64.8, T1(80) = 105.2, T1(120) = 94.98,
T1(160) = 131.0.

p Sp,40 Ep,40 Sp,80 Ep,80 Sp,120 Ep,120 Sp,160 Ep,160

2 1.979 0.990 2.001 1.000 2.115 1.058 1.955 0.978
4 3.880 0.970 4.062 1.016 4.236 1.059 4.662 1.166
8 7.043 0.880 7.684 0.961 8.284 1.036 9.388 1.173

16 11.54 0.721 14.30 0.894 15.23 0.952 18.10 1.131
32 18.72 0.585 26.73 0.835 29.67 0.927 34.77 1.087

It follows from results, presented in Table 1, that the parallel LOD algorithm
scales well.

Remark 1. We see that a superlinear speedup of the parallel algorithm is ob-
tained, when more processors are used. This effect is due to special properties
of cash memory usage in SP5 processors. We implemented a simple test, where
matrix operations A := A + B, C := C − D were performed many times. The
dimension of matrix is taken to be 160 × 160 × 160. The following results were
obtained:

T1 = 35.3, T2 = 15.3, T4 = 7.18, T8 = 2.83, T16 = 1.29, T32 = 0.65.
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Abstract. The computation of derivatives for the optimization of time-
dependent flow problems is based on the integration of the adjoint differ-
ential equation. For this purpose, the knowledge of the complete forward
solution is required. Similar information is needed for a posteriori error
estimation with respect to a given functional. In the area of flow con-
trol, especially for three dimensional problems, it is usually impossible
to store the full forward solution due to the lack of memory capacities.
Additionally, adaptive time-stepping procedures are needed for efficient
integration schemes in time. Therefore, standard optimal offline check-
pointing strategies are usually not well-suited in that framework.

We present a new online procedure for determining the checkpoint
distribution on the fly. Complexity estimates and consequences for stor-
ing and retrieving the checkpoints using parallel I/O are discussed. The
resulting checkpointing approach is integrated in HiFlow, a multipurpose
parallel finite-element package with a strong emphasis in computational
fluid dynamic, reactive flows and related subjects. Using an adjoint-based
error control for prototypical three dimensional flow problems, numerical
experiments demonstrate the effectiveness of the proposed approach.

1 Introduction

In time-dependent flow control as well as in the framework of goal-oriented a
posteriori error control, the calculation of adjoint information forms a basic in-
gredient to generate the required derivatives of the cost functional (see e.g. [8]).
However, the corresponding computations may become extremely tedious if pos-
sible at all because of the sheer size of the resulting discretized problem as well
as its nonlinear character, which requires keeping track of the complete forward
solution to be able to integrate the corresponding adjoint differential equation
backwards. This fact still forms a main bottleneck in the overall optimization
process despite the ever-growing size of memory devices. For that reason, several
checkpointing techniques have been developed. Here, only a few intermediate
states are stored as checkpoints. Subsequently, the required forward informa-
tion is recomputed piece by piece from the checkpoints according to the adjoint
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calculation. Hence, checkpointing methods seek for an acceptable compromise
between memory requirements and run time increase due to re-computations
that cannot be avoided.

If the number of time steps for integrating the differential equation describ-
ing the state is known a priori, one very popular checkpointing strategy is to
distribute the checkpoints equidistantly over the time interval. However, it was
shown in [18] that this approach is not optimal. One can compute optimal check-
pointing schedules in advance to achieve for a given number of checkpoints an
optimal, i.e. minimal, run time increase [7]. This procedure is referred to as off-
line checkpointing and implemented in the package revolve [7]. However, in the
context of flow control, the partial differential equations to be solved are usually
stiff, and the solution process relies therefore on some adaptive time stepping
procedure. Hence, the number of time steps performed is known only after the
complete integration. This fact makes an offline checkpointing intractable. In-
stead, one may apply a straightforward checkpointing by placing a checkpoint
each time a certain number of time steps has been executed. This transforms
the uncertainty in the number of time steps to a uncertainty in the number of
checkpoints needed. This approach is used by CVODES [17]. However, when the
amount of memory per checkpoint is very high one certainly wants to deter-
mine the number of checkpoints required a priori. For that purpose, we propose
a new procedure for online checkpointing that distributes a given number of
checkpoints during the integration procedure. This new approach yields a time-
optimal adjoint computation for a given number of checkpoints. The present
paper focus on practical aspects, i.e. the specific online checkpointing algorithm
and the consequences for the computation of adjoint information on parallel
computers. Furthermore, it describes the coupling of the presented online check-
pointing software with the package HiFlow (see www.hiflow.de) for the parallel
computation of adjoints. A companion paper [10] concentrates on the theoretical
aspects of the goal-oriented adaptivity and the online checkpointing algorithm.

The outline of this paper is as follows. Section 2 is dedicated to the derivation
of adjoint-based a posteriori error control for flow problems and its link to flow
control. The new online checkpointing strategy is presented in Section 3. Here
also complexity estimates for the resulting checkpointing strategy and the usage
of the algorithm on parallel computers are addressed. First numerical experi-
ments are presented in Section 4. Finally, conclusions are drawn in Section 5.

2 Adjoint Based Techniques for Error Estimation

2.1 Problem Formulation

Let u denote the state variables, g the control variables, J(u, g) the objective
functional, and G(u, g) = 0 the constraints. A standard formulation for the
related optimization problem reads

Problem 1: Find controls g and states u such that J(u, g) is minimized subject
to G(u, g) = 0.
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Our goal in this paper is to address the case where the constraints are de-
fined by means of time-dependent partial differential equations. Even though
the derived method is very general, we concentrate on the case of instationary,
incompressible, viscous flows modeled by means of the Navier-Stokes equations,
i.e., ignoring the controls g we have

∂u

∂t
− ν∆u + u · ∇u + ∇p = f in (0, T )× Ω, (1)

∇ · u = 0 in (0, T )× Ω, u|t=0 = u0, (2)

where u ∈ Rd describes the velocity field and p ∈ R the pressure. We assume
that the velocity field is subject to adequate boundary conditions. A standard
approach to solve such problems is based on the solution of an adjoint system
backward in time to compute the gradient of the functional J(u, g) (see e.g. [8]).
The state variables appear in the coefficients and right-hand sides of the adjoint
equations and must be available as the solver marches backward in time. Gener-
ally for flow control problems the storage of the state variables for every time step
results in a huge amount of data. Therefore, we propose a checkpointing technique
that relies on the storage of a few selected time steps. One then recomputes the
information required by the adjoint calculation time step per time step.

Similarly to Problem 1, the proposed framework for checkpointing can be used
in the context of goal-oriented a posteriori error estimation for time-dependent
problems. Again one considers a state equation defined by partial differential
equations F (u). We suppose that these equations are discretized by means of a
Galerkin method (e.g. finite-element method) and that the corresponding dis-
crete solution is denoted by uh. The goal is to determine the discretization error
with respect to some functional J(·), i.e. J(u) − J(uh). This problem can be
formulated as a control problem similar to Problem 1. In the remainder of this
paper we will consider this setup for the derivation of the proposed checkpointing
strategy.

2.2 A General Paradigm for Dual-Based a Posteriori Error
Estimation

In this section, we outline the concepts related to dual-based error estimation
following the general paradigm introduced in Eriksson et al. [3]. We refer to
Machiels et al. [13], Oden and Prudhomme [14], and Giles [6] for related ap-
proaches to goal-oriented error estimation.

Let A(·; ·) be a differentiable semi-linear form and F (·) a linear functional
defined on some function space V . For u ∈ V , A′(u; v)(·) denotes the directional
derivative of A(u; ·) in the v direction. The second derivative of A(u; ·) is refereed
to by A′′(·; ·)(·, ·). We seek a solution u ∈ V to the variational equation

A(u;ϕ) = F (ϕ) ∀ϕ ∈ V. (3)
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This problem is approximated by a Galerkin method using a sequence of finite
dimensional subspaces Vh ⊂ V parameterized by a parameter h. The correspond-
ing discrete problem seeks uh ∈ Vh satisfying

A(uh;ϕh) = F (ϕh) ∀ϕh ∈ Vh. (4)

We assume that equations (3) and (4) possess unique solutions. A key feature of
the discrete problem (4) is the property of Galerkin orthogonality, which reads
in the general nonlinear case

A(u;ϕh) − A(uh;ϕh) = 0 ∀ϕh ∈ Vh. (5)

Suppose that the quantity J(u) has to be computed, where J(·) is a differentiable
functional defined on V . To control the error with respect to the functional J
we introduce the following dual problem

A′(uuh;ϕ)(ẑ) = J ′(uuh)(ϕ) ∀ϕ ∈ V, where (6)

A′(uuh;ϕ)(ψ) =
∫ 1

0

A′(su + (1 − s)uh;ϕ)(ψ) ds,

J ′(uuh)(ϕ) =
∫ 1

0

J ′(su + (1 − s)uh)(ϕ) ds.

We assume that (6) possesses a solution. Based on the dual solution ẑ and due
to the Galerkin orthogonality (5), we obtain the following error representation

J(u) − J(uh) = A′(uuh; e)(ẑ) = A(u; ẑ) − A(uh, ẑ)
= A(u; ẑ − ẑh) − A(uh; ẑ − ẑh)
= F (ẑ − ẑh) − A(uh; ẑ − ẑh) = ρ(uh, ẑ − ẑh)

for any ẑh ∈ Vh, where ρ(uh, ·) = F (·) − A(uh; ·) describes the primal residual,
and e := u − uh. In practice, the previously derived error representation cannot
be used directly since the adjoint problem (6) involves the unknown solution u.
One alternative is to replace the exact solution u by its approximation uh in the
adjoint problem (6). The resulting adjoint problem reads

A′(uh;ϕ)(z) = J ′(uh;ϕ) ∀ϕ ∈ V. (7)

One can show that the following modified error representation holds

J(u) − J(uh) = ρ(uh, z − zh) + R, (8)

for any zh ∈ Vh, where the remainder term R depends on the second order
derivatives of A(·; ·) and J(·). The remainder term vanishes if A(·; ·) and J(·)
are linear.

From now on, we consider procedures based on the error representation (8)
for the a posteriori error control with respect to the functional J . The remainder
term is neglected since, in our context, it involves higher order terms with respect
to the discretization parameter h which can be omitted for h small enough.

The solution of the dual problem (7) needed for the error representation re-
lated to (8) corresponds in our context of time-dependent problems to the adjoint
problem which has to be solved backward in time.
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2.3 Galerkin Discretization in Time and Space

We consider a discretization of the problem (1)-(2) using a Galerkin finite ele-
ment discretization simultaneously in space and in time. This setup allows us
to rely on the error representation (8) for the error control. Following the lines
of Eriksson and Johnson [4,5] we consider the dG(r)-method for the time dis-
cretization, i.e. we allow discontinuous functions in time. This discontinuity can
be used to decouple the considered system on each subinterval In = (tn−1, tn] of
the time interval (0, T ], where 0 = t0 < · · · < tn < · · · < tN = T, kn = tn− tn−1.
For simplicity, we consider for each time step tn a unique regular spatial mesh.
Then, we can write the solution process as a standard time-stepping scheme.
For r = 0, the corresponding dG(0)-method is equivalent to the backward-Euler
scheme.

The Galerkin space discretization using conforming mixed finite elements with
continuous pressure is based on a variational formulation of the Navier-Stokes
equations (1)-(2). For this purpose, we employ standard Hood-Taylor finite ele-
ments [12] for the trial and test spaces (for a detailed description see, e.g., [1]).
This choice for the trial and test functions guarantees a stable approximation of
the pressure since the Babuska-Brezzi inf-sup stability condition is satisfied uni-
formly in h (see [2] and references therein). The advantage, when compared to
equal order function spaces for the pressure and the velocity, is that no additional
stabilization terms are needed.

Based on this space discretization, the arising nonlinear algebraic systems are
then solved implicitly in a fully coupled manner by means of a damped Newton
method. The linear subproblems are solved by the Generalized Minimal Residual
Method (GMRES) (see [15]) preconditioned by means of a geometric multigrid
iteration (see [19]). Two specific features characterize the scheme we consider:
varying orders of the FEM ansatz on the mesh hierarchy and a Vanka-type
smoother. This somewhat technical part is described in full detail in [9].

3 Online Checkpointing Algorithms

Having a fixed number of checkpoints to store intermediate states but an un-
known number of time steps for which the adjoint has to be computed on the
base of the forward trajectory, one has to decide on the fly, i.e., during the
forward integration, where to place the checkpoints. Hence, without knowing
how many time steps are left to perform, one has to analyze the current distri-
bution of the checkpoints. Depending on the time steps performed so far, one
may then discard the contents of one checkpoint to store the current available
state. Obviously, one may think that this procedure could not be optimal since
it may happen that one reaches the final time just after replacing a checkpoint,
in which case another checkpoint distribution may be advantageous. A surpris-
ing efficient heuristic strategy to rearrange the checkpoints is implemented by
the online procedure arevolve [11]. Here, a checkpoint distribution is judged by
computing an approximation of the overall re-computation cost caused by the
current distribution. This number is compared with an approximation of the
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re-computation cost if one resets a checkpoint to the currently available state.
Despite the fact that significant simplifications are made for approximating the
required re-computations, the resulting checkpointing schemes are comparatively
cheap. Naturally, the optimal cost can be computed only afterwards when the
number of time steps is known.

3.1 Optimal Online Checkpointing

However, a main drawback of arevolve is that it is not possible to prove an
upper bound on the deviation from the optimal checkpointing schedule because
a heuristic is used to judge the current checkpointing distributions. In this paper,
we present online checkpointing strategies for an a priori unknown number l of
time steps and a given number of checkpoints c under the assumption that

l ≤
(
c + 2

c

)
=

(c + 2)(c + 1)
2

=
c+1∑
i=1

i ≡ bc . (9)

Hence, the upper bound bc on the number of time steps is directly determined
by the number of checkpoints c. Let Fl(x) denote the execution of the lth time
step corresponding to the discretized PDE. Using p as a pointer to the next
state where a checkpoint is set and s as a flag if a checkpoint has to be set, the
proposed online checkpointing procedure reads as follows:

Algorithm 1. Online Checkpointing Algorithm

Start: Set i = 0, o = c, p = c, s = 1
for l = 0, 1, . . .

1. Evaluate xl+1 = Fl(xl)
2. If termination criterion fulfilled then start reversal

If s = 1 then
Store state xl in checkpoint i
i = i + 1
If i > o then i = 1

3. If l + 1 = p then s = 0
4. If l = p then

p = p + o, o = o− 1, i = o
If o > 0 then s = 1 else s = 0

5. If l = p and o = −1 then error: l > bc

For a given value of c, this algorithm stores the states 0, . . . , c− 1 in the check-
points 0, . . . , c−1. Subsequently, the state c+1 is copied to the checkpoint c−1.
Then the states c+2, . . . , 2c−1 are stored in the checkpoints 1, . . . , c−2 by over-
writing the information already contained in these memory pads. This process
continues until either the termination criterion is fulfilled or the number of time
steps exceeds the upper bound bc. If a reversal is started in step 2, the optimal
offline checkpointing provided by revolve is applied. Analyzing the described on-
line checkpointing in more detail, we can prove the following complexity result:
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Table 1. Upper bound bc

c 10 20 40 80 160 320

bc 66 231 861 3321 13041 51681

Theorem 1 (Optimal Online Checkpointing). Let the number of available
checkpoints equal c. Then the online checkpointing procedure given by Algorithm 1
ensures a time-minimal adjoint computation storing no more than c checkpoints
at any time for any number l of time steps if l satisfies the inequality l ≤ bc.

Proof. See [10].

Hence, provided that the number of time steps does not exceed the upper bound
bc one can compute the adjoint of a time step sequence with an a priori unknown
length using up to c checkpoints at any time with the optimal, i.e. minimal, run
time. This minimal run time is given by the number of time step evaluations in
addition to the evaluations of adjoint time steps. Since each adjoint time step
has to be executed exactly once, only the number of time steps performed can
vary for different checkpointing approaches. In [7], checkpoint strategies were
studied for an a priori known number l of time steps the adjoint of which has to
be calculated. It was shown that the minimal number of time step executions is
given by an explicit formula in the following way: Let t(c, l) denote the minimal
number of time steps evaluated to compute the adjoint of l time steps storing
up to c checkpoints at any time. Then t(c, l) has the explicit form

t(c, l) = rl − β(c + 1, r − 1) + 1, (10)

where r is the unique integer satisfying β(c, r − 1) < l ≤ β(c, r) ≡ (
c+r

c

)
. Sur-

prisingly, the checkpoint algorithm proposed in this paper reaches this minimal
number of time steps even for an unknown number l of time steps as long as l
does not exceed the upper bound bc. The constant bc grows quadratically in the
number of checkpoints as illustrated by Table 1. Therefore, already a moderate
number of checkpoints ensures an optimal run time for a reasonable number of
time steps to be reversed. For example, usually no more than 200 checkpoints
are required for the problems considered in this paper.

3.2 Online Checkpointing on Parallel Computers

The optimal online checkpointing of Algorithm 1 has been implemented as an
extension of the optimal offline checkpointing software revolve [7]. It is planed
for a future version of revolve to incorporate the heuristics of arevolve in the case
of online checkpointing and l > bc. Here, one would perform the optimal online
checkpointing as long as l ≤ bc. If l exceeds bc the heuristics of arevolve will be
applied to avoid a break down of the overall adjoint computation.

Applying the checkpointing routine revolve on a parallel computer, one faces
two very different situations: The first possibility is that all checkpoints can
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be kept in main memory. Then the access time to all checkpoints is negligible
as assumed in the theoretical analysis contained in [7]. However, the maximal
number of checkpoints may be considerably limited due to this approach. Taking
advantage of new features of parallel IO filesystems such as Lustre allows to
extend the number of checkpoints by storing checkpoints also on disc. Then the
access cost of the checkpoints is no longer negligible for all checkpoints because
of the parallel I/O. Hence, one has to take the memory access costs into account
resulting in a so-called multi-stage checkpointing. For this purpose, we present
the following result:

Theorem 2 (Number of Checkpoint Writes). Let l > c + 2 be the number
of time steps the adjoint of which is computed using c checkpoints and the online
checkpointing Algorithm 1. If wi denotes the number of times data is written
onto the checkpoint i during the first integration to state xl, then one has for

l =
j∑

i=1

(c + 2 − i) + q ∈
{

j∑
i=1

(c + 2 − i), . . . ,
j+1∑
i=1

(c + 2 − i) − 1

}

if q ∈ {0, 1} : w0 = 1, wi = j 0 < i ≤ c− j, wi = c− i + 1 c − j < i < c

if q = 2 : w0 = 1, wi = j 0 < i < c− j, wi = c− i + 1 c − j ≤ i < c

if q > 2 : w0 = 1, wi = j + 1 0 < i < min{q − 1, c− j},
wi = j q − 2 < i < c − j,

wi = c − i + 1 c − j ≤ i < c.

Proof. For l ≤ c + 2, the checkpointing schedule is trivial. Therefore, we do not
consider this case here. For c + 2 < l ≤ bc, one can divide the range {0, . . . , bc}
into the c ranges

Rj ≡ {lj, . . . , uj} ≡
{

j∑
i=1

(c + 2 − i), . . . ,
j+1∑
i=1

(c + 2 − i) − 1

}
0 ≤ j < c − 1

Rc−1 ≡ {lc−1, . . . , uc−1} ≡ {bc − 3, . . . , bc}.
This separation is based on the definition of bc. Applying Algorithm 1, checkpoint
0 stores the initial state x0 and is not overwritten afterwards. Furthermore, the
states 1, . . . , c − 1 are stored in the checkpoints 1, . . . , c − 1 since l > c + 2.
Then, for each range Rj with j > 0 and l̃ < l for all l̃ ∈ Rj , the checkpoint
c − j stores the state lj and is not overwritten afterwards. Furthermore, the
states lj + 1, . . . , lj + c− j − 1 = lj + 1, . . . , uj − 1 are stored in the checkpoints
1, . . . , c − j − 1. For ju with l ∈ Rju , lju ≤ l ≤ uju , one has that l = lju + q
with q ≤ c − j + 1. Then, the checkpoint c − ju stores the state lju if q > 1. If
q > 2, additionally the states lju +1, . . . , lju + q−2 are stored in the checkpoints
1, . . . , q − 2. Summarizing these observations proves the assertion.

The checkpoint write counts proved in the last theorem form a first step to allow
larger checkpoint numbers based for example on parallel IO filesystems such as
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Lustre. The remaining part is an analysis of the checkpoint write and read counts
for the reversal process initiated by revolve. This topic is currently investigated
to allow an overall minimization of the access time to the checkpoints. From
the results obtained so far in this direction, a suitable strategy seems to be that
one assigns the more expensive checkpoints, i.e., the checkpoints distributed on
the file system to the checkpoints with higher numbers and to assign the less
expensive checkpoints, i.e., the checkpoints in main memory to the checkpoints
with lower numbers.

4 Numerical Experiments

The HiFlow package is a multipurpose parallel finite-element package with a
strong emphasis in computational fluid dynamic, reactive flows and related sub-
jects. It is developed in C++, and its design takes great advantage of the object-
oriented concepts and of the generic programming capabilities offered by this
language. The overall design of this project is highly modular and allows an
interplay of its different submodules. The computations presented in this paper
rely especially on two submodules: HiFlowOpti and HiFlowNavierStokes. The
HiFlowOpti submodule contains generic solvers for optimal control and parame-
ter identification as well as experimental design. This module has been extended
by means of the checkpointing strategy described in the previous section. The
HiFlowNavierStokes module contains the solvers related to the resolution of the
instationary Navier-Stokes equations. In both modules all methods are available
for both sequential and parallel platforms. The numerical experiments presented
in this paper have been performed on the high performance computer HP XC
6000 at the Computing Center of the University Karlsruhe. This parallel com-
puter is based Itanium2 processors with a frequency of 1.5 GHz. On each node
8 GB RAM are available.

4.1 Three Dimensional Benchmark Channel Flow

In order to validate the proposed checkpointing strategy we consider the three
dimensional benchmark configuration proposed by Schäfer et al. [16]. The pro-
posed setup consists of a flow channel around a cylinder with squared crossed
section. The height and width of the channel are H = 0.41m, and the diameter
of the cylinder is D = 0.1m. The goal of this benchmark is to compute accurately
the drag and lift forces acting on the cylinder, where the cost functional is the
averaged value of the drag over the interval I = [50, 100].

We stress that our aim in this section is to illustrate the capabilities of the
proposed checkpointing strategy. The exact analysis of the impact of such a
technique in relation with adjoint-based a posteriori error estimation is beyond
the scope of this paper and is described in more detail in [10].

In Table 2, results of the proposed checkpointing scheme are presented. For a
fixed amount of available memory, we consider three different levels of refinement
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Table 2. Results for the proposed checkpointing scheme for various computational
setups with l time steps. The amount of available memory capacity is equal for all
configurations and results in c checkpoints.

# Unknowns (space) l c Nnew Nold

global refinement 1.2 106 912 600 310 1222

global refinement 1.0 107 702 36 664 1366

local refinement 8.2 105 854 715 137 991

in space. For these three configurations the discretization in space is so fine that
the full storage of the forward solution in main memory would be impossible
even on the considered parallel platform. For this application, the number of
available checkpoints in main memory is a priori fixed due to the enormous
amount of memory needed for each checkpoint but the number of time steps
is a priori unknown. Therefore, one alternative checkpointing strategy would
be to first perform a pure function evaluation without adjoint computations to
determine the number of time steps to perform and then to apply revolve for the
distribution of the checkpoints. The required number of additional time steps
needed by this alternative is given by Nold in the last column of Table 2. Using
the new optimal online checkpointing proposed in this paper, the number of
additional forward steps can be reduced significantly, as shown by the column
Nnew in Table 2. As can be seen, the equation Nold = Nnew+l holds since the new
checkpointing approach does not require an extra integration to determine the
value of l. For the most memory consuming case of the 3D-channel with global
refinement leading to 107 unknowns we impose the number of checkpoints to be
equal to c = 36. The performances which are measured in Table 2 with respect
to the number of extra forward steps clearly show the high efficiency of the
proposed scheme.

5 Conclusion

We present a provable optimal, i.e., time-minimal, online checkpointing proce-
dure. In the present paper, we focus on the practical aspects, that is the specific
application of revolve and its coupling with the parallel finite-element package
HiFlow for solving optimal control problems and goal-oriented error estimation
on parallel machines. The main advantage of the presented online checkpointing
is that it guarantees a time-minimal run time for an a priori unknown number
of time steps as long as this number does not exceed a given upper bound. Due
to the semi-implicit time stepping applied, this upper bound is only a very weak
restriction. Additionally, we proved an explicit formula for the number of times
data is written onto the checkpoints during the generation of the checkpoint dis-
tribution. This forms the first step to allow an improved checkpointing strategy
if parallel IO filesystems such as Lustre are used.
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Abstract. With increasing number of processors available on nowadays
high performance computing systems, the mean time between failure of
these machines is decreasing. The ability of hardware and software com-
ponents to handle process failures is therefore getting increasingly impor-
tant. The objective of this paper is to present a fault tolerant approach for
the implicit forward time integration of parabolic problems using explicit
formulas. This technique allows the application to recover from process
failures and to reconstruct the lost data of the failed process(es) avoiding
the roll-back operation required in most checkpoint-restart schemes. The
benchmark used to highlight the new algorithms is the two dimensional
heat equation solved with a first order implicit Euler scheme.

1 Introduction

Today’s high performance computing (HPC) systems offer to scientists and en-
gineers powerful resources for scientific simulations. At the same time, the reli-
ability of the system becomes a paramount key: systems with tens of thousands
of processors face inherently a larger number of hardware and software failures,
since the mean time between a failure is related to the number of processors
and network interface cards (NICs). This is not necessarily a problem for short
running application utilizing a small/medium number of processors, since re-
running the application in case a failure occurs does not waste a large amount
of resources. However, for long running simulations requiring many processors,
aborting the entire simulation just because one processor has crashed is often not
an option, either because of the significant amount of resources being involved
in each run or because the application is critical within certain areas.

Nowadays, a single failing node or processor on a large HPC system does not
imply, that the entire machine has to go down. Typically, the parallel application
utilizing this node has to abort, all other applications on the machine are not
affected by the hardware failure. The reason that the parallel application, which
utilized the failed processor, has to abort is mainly because the most widespread
parallel programming paradigm MPI [1], is not capable of handling process fail-
ures. Several approaches how to overcome this problem have been proposed, most
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of them relying on some forms of checkpoint-restart [2,3]. While these solutions
require few modifications of the application source code, checkpoint-restart has
inherent performance and scalability limitations. Another approach suggest by
Fagg et. all [4] defines extensions to the MPI specification giving the user the
possibility to recognize, handle and recover from process failures. This approach
does not have built-in performance problems, requires however certain changes
in the source code, since it is the responsibility of the application to recover the
data of the failed processes.

In the last couple of years, several solutions have been proposed how to extend
numerical applications to handle process failures on the application level. Geist
et al. suggest a new class of so-called naturally fault tolerant algorithms [6]
based on mesh-less methods and chaotic relaxation. In-memory checkpointing
techniques [7] avoid expensive disk I/O operations by storing regular checkpoints
in the main memory of neighbor/spare processes. In case an error occurs, the data
of the failed processes can be reconstructed by using these data items. However,
the application has to roll-back to the last consistent distributed checkpoint,
loosing all the subsequent work and adding a significant overhead for applications
running on thousands of processors due to coordinated checkpoints. Further,
while it is fairly easy to recover numerically from a failure with a relaxation
scheme applied to an elliptic problem, the problem is far more difficult with the
time integration of a parabolic problem. As a matter of fact the integration back
in time is a very ill-posed problem. Further time integration of unsteady problem
may run for very long time and are more subject to process failures.

In this paper, we concentrate on the heat equation problem that is a rep-
resentative test case of the main difficulty and present a new explicit recovery
technique which avoid the roll-back operation and is numerically efficient.

The paper is organized as follows: section 2 defines our test-system and de-
scribes two different fault tolerant algorithms. Section 3 discusses implementa-
tion issues with respect to the communication and checkpointing scheme applied
in our algorithms. Section 4 presents some results for the recovery operation. Fi-
nally, section 5 summarizes the results of this paper and presents the ongoing
work in this area.

2 Description of the Fault Tolerant Algorithms

The work presented in this paper is based on the Fault Tolerant MPI (FT-MPI)
framework developed at the University of Tennessee. FT-MPI extends the MPI
specification by giving applications the possibility to discover process failures.
Furthermore, several options how to recover from a process failure are speci-
fied: the application can either continue execution without the failed processes
(COMM MODE BLANK) or replace them (COMM MODE REBUILD). The
current implementation of the specification is based on the HARNESS frame-
work [5]. HARNESS provides an adaptive, reconfigurable runtime environment,
which is the basis for the services required by FT-MPI. While FT-MPI is capable
of surviving the simultaneous failing of n− 1 processes in an n processes job, it
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remains up to the application developer to recover the user data, since FT-MPI
does not perform any (transparent) checkpointing of user-level data items.

2.1 Definition of the Problem

The model problem used throughout the paper is the two dimensional heat
equation as given by

∂u

∂t
= ∆u+F (x, y, t), (x, y, t) ∈ Ω×(0, T ), u|∂Ω = g(x, y), u(x, y, 0) = uo(x, y).

(1)
We suppose that the time integration is done by a first order implicit Euler
scheme, Un+1−Un

dt = ∆Un+1 + F (x, y, tn+1), and that Ω is partitioned into N
subdomains Ωj , j = 1..N .

For the sake of simplicity, the explanations in the paper will be restricted to
the one dimensional heat equation problem Ω = (0, 1), discretized on a regular
cartesian grid, which leads to

Un+1
j − Un

j

dt
=

Un+1
j+1 − 2Un+1

j + Un+1
j−1

h2
+ Fn+1

j . (2)

Furthermore, we assume that dt ∼ h. In case process j fails, the most recent
values for Uj are not available for continuing the computations, assuming that
the runtime environment can survive process failures. On each up and running
process the last computed solution is still available. The goal of the approach
presented in the paper is therefore to design an algorithm which reconstructs
the solution of the failed process(es) efficiently based on the checkpointed data.

The general fault tolerant approach is based on periodic checkpoints of the
local data, e.g. to persistent disks or spare processes. Furthermore, processes
are not coordinated for the checkpointing procedure for performance reasons,
e.g. each process might save its local data at different time steps. As soon as a
process failure occurs, the runtime environment will report it through a specific
error code to the application. The application initiates the necessary operations
to recover first the MPI environment and replace the failed process(es). In a
second step, the application has to ensure, that the data on the replacement
processes is consistent with the other processes. For this, the last checkpoint
of the failed processes has to be retrieved. However, since the checkpoint of
each process might have been taken at a different time step, this data does not
yet provide a consistent state across all processes. Therefore, we discuss two
mathematical methods based on time integration for constructing a consistent
state from the available, inconsistent checkpoints. This difficulty is characteristic
of a time dependent problem with no easy reversibility in time.

Figure 1 gives an example for the status of different process(es) after re-
spawning a failed process and retrieving the last available checkpoint for this
process. The thick lines represent the available data from which the recovery
procedure will start. The circle lines correspond to the lost solution which we are
trying to retrieve mathematically. The dashed lines are the boundary interfaces
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Fig. 2. Reconstruction procedure in
one dimension using forward time in-
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between subdomains. In the following, we will review two numerical methods to
reconstruct a uniform approximation of UM at a consistent time step M on the
entire domain Ω.

2.2 The Forward Implicit Reconstruction

For the first approach, the application process j has to store every K time
steps its current solution U

n(j)
j . Additionally, the artificial boundary conditions

Im
j = Ωj ∩ Ωj+1 have to be stored for all time steps m < M since the last

checkpoint. The solution UM
j can then be reconstructed with the forward time

integration (2). Figure 2 demonstrates how the recovery works. The vertical thick
lines represent the boundary data that need to be stored, and the intervals with
circles are the unknowns of the reconstruction process.

The major advantage of this method is that it is using the same algorithm as
in the standard domain decomposition method. The only difference is, that it
is restricted to some specific subsets of the domain. Thus, the identical solution
UM

j as if the process had no failures can be reconstructed. The major disad-
vantage of this approach is the increased communication volume and frequency.
While checkpointing the current solution U

n(j)
j is done every K time steps, the

boundary values have to be saved each time step for being able to correctly
reconstruct the solution of the failed process(es).

2.3 The Backward Explicit Reconstruction

This method does not require the storage of the boundary conditions of each
subdomain at each time step, but it allows to retrieve the interface data by
computation instead. For this, the method requires the solution for each subdo-
main j at two different time steps, n(j) and M , with M − n(j) = K > 0. The
solution at time step M is already available on each running process after the
failure occurred. The solution at time step n(j) corresponds to the last solution
on subdomain j saved to the spare memory before the failure happened. This is
the starting point for the local reconstruction procedure. In this approach, only
the replacement of the crashed process and its neighbors are involved (figure 3)
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in the reconstruction. The reconstruction process is split in two explicit numer-
ical schemes. The first one comes from the Forward Implicit scheme (2) which
provides an explicit formula when going backward in time:

Un
j = Un+1

j − dt
Un+1

j+1 − 2Un+1
j + Un+1

j−1

h2
− Fn+1

j . (3)

The existence of the solution is granted by the forward integration in time. Two
difficulties arise: first, the numerical procedure is instable, and second, one is
restricted to the cone of dependence (Step 1 in figure 4). We have in Fourier
modes Ûn

k = δk Ûn+1
k , with δk ∼ − 2

h (cos(k 2 π h) − 1), |k| ≤ N
2 . The

expected error is at most in the order ν
hL where ν is the machine precision and

L is the number of time steps which we can compute backwards. Therefore, the
backward time integration is still accurate up to time step L with ν

hL ∼ h2 ⇐⇒
L ∼ log ν

log h − 2. Then, the precision may deteriorate rapidly in time. Thus, to
stabilize the scheme, one can use an hyperbolic regularization such as on the
telegraph equation. Further details regarding this result can be found in [9,10].

To construct the solution outside the cone of dependencies and therefore to
determine the solution at the subdomain interface, we used a standard procedure
in inverse heat problem, the so-called space marching method [8] (Step 2 in
figure 4). This method is second order but may require a regularization procedure
of the solution obtained inside the cone using the product of convolution ρδ ∗
u(x , t), where ρδ = 1

δ
√

π
exp(− t2

δ2 ). The space marching scheme is given by:

Un
j+1 − 2 Un

j + Un
j−1

h2
=

Un+1
j − Un−1

j

2 dt
+ Fn

j . (4)

Equation 4 is unconditionally stable, given that δ ≥
√

2 dt
π . The neighbors of

the failed processes apply these two methods successively. At the end of the
procedure, these processes are able to provide to the replacement of the crashed
process the artificial boundary conditions. Then, the respawned process can re-
build its lost data using the forward time integration as shown in section 2.2
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(Step 3 in figure 4). The backward explicit time integration is well known to be
an ill-posed problem and works only for few time steps. Indeed, for example if
we assume ν = 10−12 and h = 0.05, the solution computed may blow up for
L > 7. This would be equivalent to set at most the frequency of backup time
step to K = 9. We refer to [9] for more details on the accuracy of our numerical
scheme. Let us mention also that neither the backward explicit scheme nor the
space marching scheme are limited to Cartesian grids.

In the following, we would like to compare the communication and check-
pointing overhead imposed by the two methods described up to now.

2.4 Performance Comparison of the Checkpointing Operations

The two methods described in the sections 2.2 and 2.3 have different require-
ments with respect to what data has to be checkpointed by each process. While
the backward explicit scheme requires only the storage of the domain of each
process every K time steps, the forward implicit scheme requires additionally
saving the boundary values in every time step.

For the performance comparison between both methods, two different codes
have been evaluated, one based on a two dimensional domain decomposition and
a code using a three dimensional domain decomposition. For the two-dimensional
tests (1), we tested three different problem sizes per processor ( 50∗50, 100∗100
and 200 ∗ 200) on four different processor configurations ( 9, 16, 25 and 36
processes). The processes are arranged in a regular two dimensional mesh. Each
column of the processor-mesh has a separate checkpoint processor assigned to
it. The data each checkpoint process receives is stored in their memory, avoid-
ing therefore expensive disk I/O operations. More details to the checkpointing
scheme are given in the section 3.

The cluster used for the 2-D testcase consisted of 154 Intel Itanium 2 proces-
sors with 4 GB of main memory and a Gigabit Ethernet interconnect. The results
for the configuration described above are displayed in figures (5-8). The abscissa
gives the checkpointing frequency in number of time steps between each check-
point, while the ordinate shows the overhead compared to the same code and
problem size without any checkpointing. As expected, the overhead is decreas-
ing with increasing distance between two subsequent checkpoints. Furthermore,
saving the boundary conditions each time step adds only a negligible overhead,
especially for the largest test case with 36 processes and 200 ∗ 200 problem size
per process. However, for higher dimension problem, saving at each time step
the artificial boundary conditions slows the code execution down significantly.
While interface conditions are one dimension lower than the solution itself, the
additional message passing is interrupting the application work and data flow.
Figure 9 and 10 shows the checkpointing time cost on the 3D version of the
model problem defined in (1) for a small (50 ∗ 50 ∗ 50) and a larger problem size
(102 ∗ 102 ∗ 102). For the large problem, saving the boundary conditions with
a backup frequency of ten time steps slows the application down dramatically on
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Fig. 5. Asynchronous checkpointing
overhead with 9 processes
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Fig. 6. Asynchronous checkpointing
overhead with 16 processes
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Fig. 7. Asynchronous checkpointing
overhead with 25 processes

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Back up Frequency

%
 ti

m
e 

us
ed

 in
 s

av
in

g

Save U −− 50*50 per process

Save U+BC −− 50*50 per process

Save U −− 100*100 per process

Save U+BC −− 100*100 per process

Save U −− 200*200 per process

Save U+BC −− 200*200 per process

Fig. 8. Asynchronous checkpointing
overhead with 36 processes
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Fig. 9. Asynchronous checkpointing
overhead for the small 3-D test case
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an Intel EM64T cluster with a Gigabit Ethernet network. As shown in 10, the
overhead compared to the method not requiring to store the boundary condition
can double in the worst case. Figure (5-6-7-8) for the two dimensional problem
and figure (9-10) for the three dimensional problem make us confident, that
saving the local solution each 9 time steps brings a small overhead (between
5% and 15%) on the overall execution time. Moreover, such numerical methods
are very cheap in term of computation and very fast. Therefore, the focus of
the following sections is on the implementation aspects of the backward explicit
scheme.

3 Implementation Details

As described in section 2.4, the checkpointing infrastructure utilized in the 2-
D test case is implemented by using two groups of processes: a solver group
composed by processes which will only solve the problem itself and a spare group
of processes whose main function is to store the data from solver processes using
local asynchronous checkpointing and non-blocking communications.

The communication between the solver processes and the checkpointing pro-
cesses is handled by an inter-communicator. Since it does not make sense to
have as many checkpointing processes as solver processes, the number of spare
processes is equal to the number of solver processes in the x-direction. Thus, while
the solver processes are arranged in the 2-D cartesian topology, the checkpoint
processes are forming a 1-D cartesian topology.

Figure 11 gives a geometrical representation of the two groups with a local
numbering. This figure shows furthermore, how the local checkpointing is ap-
plied for a configuration of 16 solver processes and 4 spare processes. Each spare

n(0)=n(1)=n(2)=n(3)
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n(8)=n(9)=n(10)=n(11)
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Fig. 11. Scheme of the local checkpointing
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process is in charge of storing the data of a single subgroup, depicted by the
ellipses in figure 11. To further improve the performance, asynchronous check-
pointing has been used. Thus, each spare process stores the solution of only few
solver processes of its subgroup at each time step. This approach further reduces
the load on the network. As an example, suppose the backup time step is set
to 10. The solver processes j = [0 − 1 − 2 − 3] with floor(j/4) = 0 will send
to the checkpoint process [0 − 1 − 2 − 3] respectively their solution at the 1st

time step and then at the 11th, at the 21st time step and so one. The solver
processes j = [8 − 9 − 10 − 11] with floor(j/4) = 2 will send it to the spare
process [0− 1− 2− 3] respectively at the 3rd time step and then at the 13th, at
the 23rd time step etc... Before starting the numerical reconstruction procedure
discussed in section 2.3, the spare process(es) will send the last local solution(s)
of the failed process(es) to their replacement process(es). Additionally, the last
checkpoint of all neighbors of the failed process(es) will be distributed to them,
since this data is required in the algorithm presented previously as well. From
that on, the three step local reconstruction procedure can start and only the
crashed process(es) and its neighbors will be involved.

4 Results

In the following, we would like to present the costs of a recovery operations in
case a process failure occurs. Using the 2-D testcase described in section 2.4
we simulated a process failure and measured the execution time required for
respawning the failed process and to reconstruct the data of this process using
the backward explicit scheme. Two testcases using 9 and 16 solver processes
have been analyzed. The recovery time for both cases was in the order of 2% of
the overall execution time of the same simulation for the same number of time
steps. For the 9 processor case, the average recovery time of the application was
0.16 seconds for the small problem size and 0.2 seconds for the largest one. The
recovery time for the 16 processes test cases was in the same range, the recovery
operation after a process failure took up to 0.34 seconds. These results show,
that while the recovery time is increasing with the number processes used, its
overall effect is still negligible.

5 Summary

This paper discusses two approaches on how to handle process failures for
parabolic problems. Based on distributed and uncoordinated checkpointing, the
numerical methods presented here can reconstruct a consistent state in the par-
allel application, despite of storing checkpoints of various processes at different
time steps. The first method, the forward implicit scheme, requires for the recon-
struction procedure the boundary variables of each time step to be stored along
with the current solution. The second method, the backward explicit scheme,
only requires checkpointing the solution of each process every K time steps.
Performance results comparing both methods with respect to the checkpointing
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overhead have been presented. We presented the results for recovery time of a
2-D heat equation. Currently ongoing work is focusing on the implementation of
these explicit methods for a 3D Reaction-Convection-Diffusion code simulating
the Air Quality Model [11].
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Abstract. We discuss a parallel algorithm for the solution of large-scale
generalized algebraic Riccati equations with dimension up to O(105). We
survey the numerical algorithms underlying the implementation of the
method, in particular, a Newton-type iterative solver for the generalized
Riccati equation and an LR-ADI solver for the generalized Lyapunov
equation. Experimental results on a cluster of Intel Xeon processors il-
lustrate the benefits of our approach.

Keywords: generalized algebraic Riccati equation, Newton’s method,
generalized Lyapunov equation, LR-ADI iteration, parallel algorithms.

1 Introduction

Consider the (generalized) algebraic Riccati equation (ARE)

0 = ATXE + ET XA− ETXBR−1BT XE + CTQC =: R(X), (1)

where A, E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, R ∈ Rm×m is symmetric posi-
tive definite, and Q ∈ Rp×p is symmetric positive semidefinite. Under certain
conditions, the ARE (1) has a unique symmetric positive semidefinite solution
X ∈ Rn×n [17,19]. This particular solution is usually required in applications.

Solving the ARE (1) is the key step in many computational methods for model
reduction, filtering, and controller design of dynamical linear systems (see, among
many, [10,13,14,15,19,20,24] and the references therein). In general, numerical
methods for solving AREs have a computational cost of O(n3) floating-point
arithmetic operations (flops) and require storage for O(n2) numbers [17,19,24].
While current desktop computers provide enough computational power to solve
problems with state-space dimension n in the hundreds using libraries such as
SLICOT (http://www.slicot.org) or the Matlab control-related toolboxes,
large-scale applications clearly require the use of advanced computing techniques.

Over the last few years we have developed a library of parallel algorithms for
the solution of (dense) AREs on parallel architectures [6]. The library, PLiCOC,
employs the kernels in LAPACK, BLAS, and ScaLAPACK [3,8], enabling the

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 710–719, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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solution of equations with n in the order of a few thousands. However, this
approach is still insufficient for very large-scale AREs arising in weather forecast,
circuit simulation, VLSI chip design, and air quality simulation, among others
(see, e.g., [4,9,11,12]). Dynamical systems leading to AREs with dimension n as
high as O(104) − O(105) and sparse matrix pairs (A,E) are common in these
applications.

In this paper we consider a different method that exploits the sparse structure
of the matrix pair (A,E) in (1), and thus allows the solution of much larger
AREs. (Throughout the paper the term “sparse” will refer to both unstructured
sparse matrices and structured ones, such as banded matrices.) The codes employ
the parallel kernels in ScaLAPACK [8]. Depending on the specific structure of
A and E, the (unstructured) sparse linear system solvers in MUMPS [2] or the
banded linear system solver in ScaLAPACK are also employed.

The rest of the paper is structured as follows. In Section 2 we review a spe-
cialized formulation of Newton’s iterative method for the solution of large-scale
sparse AREs. The major computational task in this method is the solution of
a large-scale sparse (generalized) Lyapunov equation. A variant of the iterative
Lyapunov solver introduced in [18,22], based on a low-rank alternating direction
implicit (LR-ADI) method, is then summarized in Section 3. Following the de-
scription of the numerical methods, in Section 4 we offer some details on the
parallelization of the corresponding algorithms. In Section 5, experiments on a
cluster of Intel Xeon processors report the potential of the ARE solver. Finally,
we give some concluding remarks in Section 6.

2 Newton’s Method for the ARE

In this section we review a variant of Newton’s method, described in [23], which
delivers a full-rank approximation of the solution of large-scale sparse AREs.
Here we focus on the implementation details relevant to an efficient (parallel)
implementation.

Starting from an initial solution X0, Newton’s method for the ARE [16] pro-
ceeds as follows:

Newton’s method
1) Compute the Cholesky factorization Q = Q̄Q̄T

2) Compute the Cholesky factorization R = R̄R̄T

3) C̄ := Q̄TC
4) B̄ := E−1BR−1 = ((E−1B)R̄−T )R̄−1

repeat with j := 0, 1, 2, . . .
5) Kj := ETXjBR−1 = ET XjEB̄

6) Ĉj :=
[

C̄
R̄TKT

j

]
7) Solve for Xj+1:

0 = (A − BKT
j )TXj+1E + ETXj+1(A − BKT

j ) + ĈT
j Ĉj

until ‖Xj − Xj−1‖ < τ‖Xj‖
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Provided (A−BR−1BT X0, E) is a stable matrix pair (i.e., all its eigenvalues lie
on the open left half plane), this iteration converges quadratically to the desired
symmetric positive semidefinite solution of the ARE [16], X∞ = limj→∞ Xj . In
practice, (A,E) is often a stable matrix pair, so that setting X0 := 0 is enough
to guarantee the convergence of the iteration. Thus, no globalization strategy is
required to guarantee convergence. Note that a line search procedure in [7] can
be used to accelerate initial convergence, though.

In real large-scale applications, m, p � n, and both A and E are sparse, but
the solution matrix X is in general dense and, therefore, impossible to construct
explicitly. However, X is often of low-numerical rank and thus can be approxi-
mated by a full-rank factor R̂ ∈ Rn×r, with r � n, such that R̂R̂T ≈ X . The
method described next aims at computing this “narrow” factor R̂ instead of the
explicit solution.

2.1 Exploiting the Rank-Deficiency of the Solution

Let us review how to modify Newton’s method in order to avoid explicit refer-
ences to Xj . Note that all but one of the computations in Steps 1–4 of Newton’s
method involve matrices of small dimensions and therefore can be performed
employing dense linear algebra kernels even if the matrices are sparse. In partic-
ular, the cost of the two Cholesky factorizations in Steps 1 and 2 is m3/3+ p3/3
flops, and obtaining C̄ ∈ Rp×n from there in Step 3 requires n2p additional flops.
On the other hand, computing B̄ ∈ Rn×m in Step 4 requires 2m2n flops plus
the cost of solving the system E−1B. The cost of this latter operation (via, e.g.,
a direct method) strongly depends on the sparsity degree and pattern of the
coefficient matrix E, and the solver that is employed. For unstructured sparse
matrices, this cost is difficult to determine a priori.

Assume for the moment that, at the beginning of the iteration, we maintain
R̂j ∈ Rn×rj such that E−T R̂jR̂

T
j E−1 = Xj . Then, in the first step of the

iteration, we can compute Kj as

Kj := ETXjEB̄ = R̂j(R̂T
j B̄),

which initially requires a (dense) matrix product, M := R̂T
j B̄, at a cost of 2rjmn

flops, and then a (dense) matrix product, R̂jM , with the same cost. Even for
large-scale problems, as m is usually a small order constant, this represents at
most a quadratic cost. In practice, rj usually remains a small value during the
iteration so that this cost becomes as low as linear.

The matrix product R̄TKT
j needed in the second step of the iteration for the

construction of Ĉj presents only a moderate cost, 2m2n flops, and therefore does
not require any special action.

The key of this approach lies in solving the Lyapunov equation in the third step
for a full-rank factor R̂j+1, such that E−T R̂j+1R̂

T
j+1E

−1 = Xj+1. We describe
how to do so in the next section.
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3 Low Rank Solution of Lyapunov Equations

In this section we introduce a generalization of the Lyapunov solver proposed
in [18,22], based on the cyclic low-rank alternating direction implicit (LR-ADI)
iteration.

Consider the Lyapunov equation to be solved at each iteration of Newton’s
method

0 = (A − BKT )T Y E + ETY (A − BKT ) + ĈT Ĉ, (2)

where, for simplicity, we drop all subindices in the expression. Here, A, E ∈
Rn×n, B,K ∈ Rn×m, and Ĉ ∈ R(p+m)×n. Recall that we are interested in
finding a full-rank factor S ∈ Rn×s, with s � n, such that SST ≈ Y . Then, in
the jth iteration of Newton’s method, R̂j := S and rj := s.

A generalization of the LR-ADI iteration, tailored for equation (2), can be
formulated as follows:

LR-ADI iteration
1) V0 := ((A − BKT )T + σ1E

T )−1ĈT

2) S0 :=
√−2 α1 V0

repeat with l := 0, 1, 2, . . .
3) Vl+1 := Vl − δl((A − BKT )T + σl+1E

T )−1Vl

4) Sl+1 := [Sl , γlVl+1]
until ‖γlVl‖1 < τ‖Sl‖1

In the iteration, {σ1, σ2, . . .}, σl = αl+βl , is a cyclic set of (possibly complex)
shift parameters (that is, σl = σl+t for a given period t), γl =

√
αl+1/αl, and

δl = σl+1 + σl, with σl the conjugate of σl. The convergence rate of the LR-
ADI iteration strongly depends on the selection of the shift parameters and is
super-linear at best [18,22,26].

At each iteration the column dimension of Sl+1 is increased by (p+m) columns
with respect to that of Sl so that, after l̄ iterations, Sl̄ ∈ Rn×l̄(p+m). For details
on a practical criterion to stop the iteration, see [5,22]. Note that the LR-ADI
iteration does not guarantee full colum rank of the Sl. This could be achieved
using a column compression based on a rank-revealing LQ factorization. As the
full-rank property is irrelevant for the approximation quality, we will not discuss
this any further. Possible positive effects on the efficiency of the algorithm will
be reported elsewhere.

From the computational view point, the iteration only requires the solution
of linear systems of the form

((A − BKT )T + σET )V = W ⇔ ((A + σE) − BKT )T V = W, (3)

for V . Now, even if A and E are sparse (and therefore, so is Ā := A + σE), the
coefficient matrix of this linear system is not necessarily sparse. Nevertheless,
we can still exploit the sparsity of A, E by relying on the Sherman-Morrison-
Woodbury (SMW) formula

(Ā − BKT )−1 = Ā−1 + Ā−1B(Im − KT Ā−1B)−1KT Ā−1.
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Specifically, the solution V of (3) can be obtained following the next five steps:

SMW formula
1) V := Ā−T W
2) T := Ā−T K
3) F := Im − BT T
4) T := TF−1

5) V := V + T (BTV )

Steps 1 and 2 require the solution of two linear systems with sparse coefficient
matrix Ā. The use of direct solvers is recommended here as iterations l and
l + t of the LR-ADI method share the same coefficient matrices for the linear
system. The remaining three steps operate with dense matrices of small-order;
specifically, F ∈ Rm×m, T ∈ Rn×m so that Steps 3, 4, and 5 only require 2m2n,
2m3/3 + m2n, and 4mn(m + p) flops, respectively.

4 Parallel Implementation

The numerical algorithms described in the previous two sections for Newton’s
method and the LR-ADI iteration are composed of a few dense linear algebra
operations (Cholesky factorizations, matrix products, and linear systems) in-
volving dense matrices of relatively small order, and the solution of sparse linear
systems (via direct methods) with large-scale coefficient matrices.

Our approach for dealing with these matrix operations is based on the use
of existing parallel linear algebra and communication libraries. In Fig. 1 we
illustrate the multilayered architecture of libraries employed by our ARE solver
included in SpaRed (a parallel library for model reduction of large-scale sparse
linear systems; http://www.pscom.uji.es/modred/SpaRedW3/SpaRed.html).

The solver employs the parallel kernels in ScaLAPACK. Depending on the
structure of the state matrix pair (A,E) the banded linear system solver in
ScaLAPACK or the sparse linear system solvers in MUMPS are also invoked.
Table 1 lists the specific routines employed for each one of the major operations in
the algorithm. In the table we do not include the operations required to compute
the shift parameters for the LR-ADI iteration as that part of the algorithm was
not described. The shifts are currently obtained using an Arnoldi-type iteration.
The implementation employs PARPACK, and requires the solution of sparse
linear systems and the sparse matrix-vector product. For the first operation,
depending on the structure of the coefficient matrix we again use ScaLAPACK
or MUMPS. The sparse matrix-vector product is parallelized as a sequence of
dot products with the matrix cyclically distributed by rows.

5 Experimental Results

All the experiments presented in this section were performed on a cluster of np =
16 nodes using ieee double-precision floating-point arithmetic (ε ≈ 2.2204 ×
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Table 1. Parallelization of the major matrix operations that appear in the ARE solver

Newton’s method
Step Operation Structure of Parallel Routine

matrices library

1 Factorize Q All dense ScaLAPACK p potrf
2 Factorize R All dense ScaLAPACK p potrf
3 Compute Q̄T C All dense PBLAS p gemm
4.1 Solve E−1B Sparse E/ MUMPS or mumps c or

dense (BR−1) ScaLAPACK p gbsv
4.2 Solve ((E−1B)R̄−T )R̄−1 All dense PBLAS p trsm×2

5 Compute R̂j(R̂
T
j B̄) All dense PBLAS p gemm×2

6 Compute R̄T KT
j All dense PBLAS p gemm

7 Solve Lyapunov eq. Sparse E, A/ SpaRed LR-ADI iter.
dense B, Kj

LR-ADI iteration
Step Operation Structure of Parallel Routine

matrices library

1 Compute V0 Sparse E, A/ SpaRed SMW formula

dense B, K, Ĉ
3 Compute Vl+1 Sparse E, A/ SpaRed SMW formula

dense B, K, Vl

SMW formula
Step Operation Structure of Parallel Routine

matrices library

1 Solve Ā−T W Sparse Ā/ MUMPS or mumps c
dense W ScaLAPACK p gbsv

2 Solve Ā−T K Sparse Ā/ MUMPS or mumps c
dense K ScaLAPACK p gbsv

3 Compute Im − BT T All dense PBLAS p gemm
4 Solve TF −1 All dense ScaLAPACK p gesv
5 Compute V + T (BT V ) All dense PBLAS p gemm×2

10−16). Each node consists of an Intel Xeon processor@2.4 GHz with 1 GByte of
RAM. We employ a BLAS library specially tuned for this processor that achieves
around 3800 MFLOPs (millions of flops per second) for the matrix product (rou-
tine DGEMM from Goto BLAS, http://www.tacc.utexas.edu/resources/
software/). The nodes are connected via a Myrinet multistage network and the
MPI communication library is specially developed and tuned for this network. The
performance of the interconnection network was measured by a simple loop-back
message transfer resulting in a latency of 18 µsec. and a bandwidth of 1.4 Gbit/s.

In order to evaluate the performance of our ARE solvers we employ two
different examples:

Example 1. This standard system is obtained from a finite difference dis-
cretization (with equidistant grid) of a 2-D heat equation. The dimension
of the system is given by the number of grid points, n0, in one direction,
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MUMPS

ScaLAPACK
PBLAS

Parallel model reduction

linear algebra libraries

library

linear algebra libraries
Parallel dense/banded

MPI LAPACK
BLAS

Communication and dense/banded

SpaRed

PARPACK Sparse linear algebra

Fig. 1. Multilayered architecture of the ARE solver

so that n = n2
0. The system is single-input, single-output (SISO); that is,

m = p = 1.
Example 2. This model arises in a manufacturing method for steel pro-

files [21,25]. The goal is to design a control that achieves moderate tem-
perature gradients when the rail is cooled down. The mathematical model
corresponds to the boundary control for a 2-D heat equation. A finite ele-
ment discretization, followed by adaptive refinement via bisection results in
a generalized systems of order n=79841 with 7 inputs and 6 outputs.

In both examples we employ weight matrices Q = Ip and R = Im.
We next report the execution times of the sparse ARE solver in Table 2 using

np = 16 processing nodes. For ScaLAPACK a logical 4×4 grid was selected with
the distribution block size equal 32. Other logical topologies/block sizes did not
offer significative differences. A modest number of shifts is used for the LR-ADI
iteration due to the need of storing the LU factors in the current implementa-
tion of the algorithm. We could overcome this restriction by recomputing the
factorization at each iteration. However, doing so would produce a notable raise
in the execution time. A different approach would be that of maintaining the
factors stored on disk. The LR-ADI iteration was stopped after 100 iterations
for Example 2. Although more iterations were strictly necessary according to
the convergence criterion employed for the LR-ADI iteration, stopping the iter-
ation at this point for this particular example guaranteed Newton’s method to
converge to the desired stabilizing solution of the equation.

Table 2. Execution times of the ARE solver on np=16 nodes

n #iter. #shifts Avg. #iter. r Ex. time
Newton LR-ADI LR-ADI

Example 1 160000 11 10 80 160 1h 25m 5s

Example 2 79841 5 20 100 1300 1h 4m 30s



Parallel Solution of Large-Scale and Sparse Generalized AREs 717

The parallel performance of the ARE solver is highly dependent on the ef-
ficacy of the underlying parallel sparse linear system solver and the sparsity
pattern of the matrix pair (A,E). Due to the problem dimensions and structure,
the number of shifts selected for each example, the numerical tools that were
employed (MUMPS for the solution of the sparse linear systems in both cases),
and the specifications of the hardware resources (1 Gbyte of RAM per node),
virtual memory was required to solve the problems using less than np=16 nodes;
in those cases where the problem could still be solved using storage on disk, I/O
resulted in much larger execution times.

6 Concluding Remarks

We have presented a solver for large-scale generalized algebraic Riccati equations
with sparse matrix pair (A,E). The method involves the solution of large-scale
linear systems, with sparse coefficient matrix, and well-known dense linear alge-
bra operations on small-scale matrices. These operations are available in parallel
linear algebra libraries such as ScaLAPACK, PLAPACK, MUMPS, SuperLU,
etc. The experimental results on a cluster of moderate dimensions illustrates
a parallel efficacy that enables the solution of equations with dimension up to
O(105) in a relatively short time. Using these parallel algorithms, the solution of
large-scale optimal control problems and model reduction of large-scale systems
via relative error methods become thus feasible.
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Abstract. Embedded Runge-Kutta methods are among the most popular meth-
ods for the solution of non-stiff initial value problems of ordinary differential
equations (ODEs). We investigate the use of load balancing strategies in a data-
parallel implementation of embedded Runge-Kutta integrators. Since the paral-
lelism contained in the function evaluation of the ODE system is typically very
fine-grained, our aim is to find out whether the employment of load balancing
strategies can be profitable in spite of the additional overhead they involve.

1 Introduction

In this paper, we consider the parallel solution of initial value problems (IVPs) of ordi-
nary differential equations (ODEs) defined by

y′(t) = f(t,y(t)), y(t0) = y0, y : IR → IRn, f : IR × IRn → IRn. (1)

The numerical solution of large IVPs is a computationally intensive task. Therefore,
efforts have been taken to find efficient parallel solution methods, e.g., extrapolation
methods [1], waveform relaxation techniques [2], and iterated Runge-Kutta methods
[3]. Most of these approaches develop new numerical algorithms with a larger potential
for parallelism, but with different numerical properties.

Non-stiff ODE systems can be solved efficiently by embedded Runge-Kutta (ERK)
methods with stepsize control. Popular methods are, for example, DOPRI5(4) and DO-
PRI8(7) [4]. An ERK method with s stages which uses the argument vectors w1, . . . ,
ws to compute the two new approximations ηκ+1 and η̂κ+1 from the two previous ap-
proximations ηκ and η̂κ is represented by the computation scheme

wl = ηκ + hκ

l−1∑
i=1

alif(tκ + cihκ,wi), l = 1, . . . , s,

ηκ+1 = ηκ + hκ

s∑
l=1

blf(tκ + clhκ,wl), η̂κ+1 = ηκ + hκ

s∑
l=1

b̂lf(tκ + clhκ,wl).

(2)
The coefficients ali, ci, bl, and b̂l are determined by the particular ERK method used.

Because, in general, all coefficients aij may be non-zero and an evaluation of the
right hand side function f(t,w) may access all components of the argument vector w,
the stages l = 1, . . . , s have to be computed sequentially. However, ERK methods pos-
sess a large potential for data-parallelism across the ODE system, since the function

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 720–729, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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evaluations of individual ODE components can be performed in parallel. Experiences
from earlier experiments (e.g., [5,6], cf. [2]) suggest that this type of parallelism can be
exploited efficiently only if the ODE system is sufficiently large and the communication
network of the parallel computer system is fast in relation to the speed of the processors
or the function evaluations of the ODE components are computationally intensive. In
general, the obtainable performance strongly depends on the characteristics of the IVP
(cf. Section 5). But if these conditions are fulfilled, general ERK solvers can work effi-
ciently on small or medium-sized shared-memory multiprocessors (SMMs). However,
on larger SMMs and on most modern distributed-memory multiprocessors (DMMs) the
speedups obtainable with current implementations are not yet satisfactory [6].

Therefore, it is desirable to find new implementations that can deliver a higher effi-
ciency. Two possible approaches take advantage of special properties of either the ERK
method [7] or the ODE system [5,6]. In this paper, we follow a different approach which
requires no assumptions about particular properties of the method or the ODE system.
We investigate if an improvement in performance can be achieved by the application
of dynamic load balancing strategies. We show that if the load balance can be achieved
with only little overhead, a higher performance can be obtained if the right hand side
function of the problem is irregular and also in other situations where a load imbalance
limits scalability, while the performance for regular problems is still competitive with
solvers with a static work distribution.

2 Motivation and Computational Structure

Knowing from previous experiments that the communication costs of general ERK
solvers on DMMs are to high for most problems to achieve satisfactory speedups, we
concentrate our initial investigations of load balancing strategies on SMMs, because on
such machines load balancing strategies with little overhead can be realized.

The computational kernel of a data-parallel implementation of a general ERK solver
with a static blockwise data distribution can be realized as shown in Fig. 1. Since the
evaluation of the right hand side function f cannot start before the parallel computation
of the corresponding argument vector has been completed, a barrier operation must be
executed before each stage. Since no further synchronization operations are used, the
scalability is mainly determined by the efficiency of the barriers, the waiting times due
to memory operations and the waiting times of the processors at the barriers.

In practice, the processors may not arrive at the barriers simultaneously for several
reasons: (1) The function f can be irregular, i.e., a different number of instructions is
required to evaluate the individual components. Examples are shown in Section 3. (2) A
parallel computer can be heterogeneous, i.e., the processors work at different speeds.
(3) The operating system scheduler may temporarily suspend threads of the ERK solver
to execute other processes. (4) On systems with non-uniform memory access times
(NUMA), the latency of memory operations can vary between one and several thou-
sands of cycles. (5) On systems with simultaneous multithreading (SMT) support, the
threads of the ERK solver compete for the functional units of the processors.

Considering these facts, asynchronous techniques that adaptively assign work to the
participating processors might be able to improve the performance. Therefore, based on
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1: me := my thread id;

2: barrier();
3: for (j := first component[me]; j ≤ last component[me]; j++)
4: v := hfj(t + c1h, η);
5: for (i := 2; i ≤ s; i++) wi[j] := η[j] + ai1v;
6: ηκ+1[j] := b1v; η̂κ+1[j] := b̂1v;

7: for (l := 2; l ≤ s; l++)
8: barrier();
9: for (j := first component[me]; j ≤ last component[me]; j++)

10: v := hfj(t + clh,wl);
11: for (i := l + 1; i ≤ s; i++) wi[j] += ailv;
12: ηκ+1[j] += blv; η̂κ+1[j] += b̂lv;

Fig. 1. Computational kernel of a data-parallel ERK implementation for shared address space
using a static blockwise data distribution

our experience with load balancing of task-based irregular applications [8,9] we have
implemented different strategies that realize a dynamic work distribution and apply
them to several test problems. Our aim is to investigate if and under which conditions a
performance improvement can be achieved on modern SMMs, and which performance
bottlenecks still remain to be resolved.

3 Test Problems

We consider four test problems which exhibit different characteristics and are therefore
suitable for the investigation of different aspects of our load balancing strategies. Fig-
ure 2 shows the number of instructions and the number of cycles required to evaluate
the individual components of these problems on a Pentium 4 processor.

– EMEP [10] is the chemistry part of the EMEP-MSC-W ozone chemistry model.
The dimension of this problem is 66. This problem exhibits the most irregular struc-
ture of all problems in our testset because the equations that model the concentra-
tions of the individual species have a widely varying complexity.

– MEDAKZO [10]. The medical Akzo Nobel problem has been derived from two 1D
partial differential equations (PDEs) which describe the penetration of antibodies
into a tissue that has been infected by a tumor. The dimension of this system n =
2N depends on the discretization parameter N . The number of instructions required
to evaluate the ODE components differs between odd and even components. But if
a blockwise data distribution is used, the load is nearly evenly balanced.

– STARS [11,12] describes a 3D n-body problem. The original second order ODE
system has been transformed into a first order system by substitution of the first
derivative. The system dimension is 6N , where N is the number of stars. We con-
sider two orderings of the components: STARS-CON uses a consecutive ordering
of the first and second derivative and leads to a very uneven load balance. STARS-
MIX interleaves the two derivatives and thus balances the load more evenly.
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Fig. 2. Number of instructions and number of cycles required to evaluate the individual compo-
nents of some test problems on a Pentium 4 processor. (a) EMEP, (b) MEDAKZO, N = 200,
(c) STARS-CON, N = 25, (d) BRUSS2D-ROW, N = 10.

– BRUSS2D [13] results from a 2D PDE system that describes the chemical reaction
of two substances. We consider two orderings: a row-oriented ordering, BRUSS2D-
ROW, where the concentrations of the two substances are stored consecutively,
and a mixed row-oriented ordering, BRUSS2D-MIX, where the components of the
two substances are interleaved. The evaluation costs of the components of the two
substances are slightly different. Elements at the boundary of the discretization
grid require a special treatment. The balance of the decision tree used to identify
boundary elements influences the regularity of the ODE system. The decision tree
realized for BRUSS2D-MIX is more evenly balanced than that of BRUSS2D-ROW.

4 Load Balancing Strategies

The realization of a load balancing strategy for an ERK solver leads to the problem of
scheduling the iterations of the irregular loops in lines 3 and 9 of Fig. 1 dynamically.
The problem of loop scheduling has been considered previously by several authors, e.g.,
[14,15]. We have implemented three different load balancing strategies that pay regard
to the special context of the loops within the ERK solver. All strategies start with the
same blockwise work distribution as the static implementation. But after a processor
has finished its own range of components, it ‘steals’ work from other processors and
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1: me := my thread id;
2: for (l := 1; l ≤ s; l++)
3: next work unitl[me] := first work unit[me];

4: for (l := 1; l ≤ s; l++)
5: barrier();
6: loop
7: work unit := FETCH AND INC(
8: next work unitl[me]);
9: if (work unit > last work unit[me])

10: me := NEXT THREAD ID(me);
11: if (me = my thread id) break;
12: else
13: PROCESS WORK UNIT(l,

work unit);

Fig. 3. Load balancing strategy ‘Simple’

Table 1. Overview of the load balancing im-
plementations

Name Strategy Granularity Synchronization
SCIL simple/increment components lock
SPIL simple/increment cache lines lock
SCIA simple/increment components atomic operations
SPIA simple/increment cache lines atomic operations
SCRA simple/random components atomic operations
SPRA simple/random cache lines atomic operations
TC task queue components lock
TP task queue cache lines lock
IC interval queue components lock
IP interval queue cache lines lock

thus ‘helps’ these processors that would otherwise arrive late at the next barrier. The
load balancing strategies differ by the data structures used to represent tasks, i.e., work
units and by the policies used to steal work. All strategies have been implemented in C
with POSIX Threads in two versions that support two different task granularities: single
components and a group of components that fit into one cache line. Table 1 shows an
overview of all load balancing implementations discussed in this article.

Strategy ‘Simple’. As a simple but effective load balancing strategy with small over-
head we have realized a strategy that was also used in the volrend application [16] in-
cluded in the SPLASH-2 benchmark suite. Every thread provides a counter that points
to the next work unit to be processed in the range initially assigned to the thread. During
execution, each thread fetches and increments the counter corresponding to its thread
ID. As long as the counter points to a work unit that lies within the range assigned to
its thread ID, the thread processes the corresponding work unit and then fetches and
increments the counter again. If the value of the counter leaves the range assigned to
the thread ID, the thread changes its thread ID and continues with the corresponding
counter. The pseudocode of this algorithm is displayed in Fig. 3.

We have implemented two strategies for changing the thread ID: ‘Increment’ com-
putes the new ID as in [16] by ((old id + 1) mod #threads). ‘Random’ reduces the
probability that many threads work on the same counter simultaneously by changing
the thread ID according to an initially generated random permutation.

Since the counters can be accessed by several threads simultaneously, we must en-
sure that the threads are not preempted when they read and increment the counters.
We achieve this by either using locks or atomic Fetch & Inc. The lock based imple-
mentations use mutex variables of type pthread spinlock t if available, e.g., on
Linux-based systems, or pthread mutex t on other systems. The implementations
based on atomic Fetch & Inc currently support the following platforms:

– IA64: Fetch & Add is available as a machine instruction.
– x86: We emulate Fetch & Inc by a loop using Compare & Swap.
– AIX: The operating system kernel provides the function fetch and add().
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Strategy ‘Task Queue’. This is a more sophisticated strategy than ‘Simple’ that re-
duces contention but requires a higher sequential overhead. It realizes one task queue
per thread with FIFO (first in, first out) access order. The tasks are represented by in-
teger values specifying the index of the associated work unit. Hence, the FIFO queues
can be implemented by fixed size arrays of integers with head and tail pointers. Locks
(pthread mutex t or pthread spinlock t if available) are used to avoid race
conditions when the queues are accessed by several processors simultaneously.

The load balancing algorithm based on the ‘Task Queue’ strategy is shown in Fig. 4.
At the beginning of each stage the queues are initialized according to the same block-
wise work distribution as used in the static implementation. But the size of the queues
is not revealed to the other threads before the barrier has been executed, so that no other
thread that still works on the preceding stage will steal work from a queue during this
initialization phase. After the initialization, the threads fetch tasks from the head of their
local queues until their local queues get empty. When a thread finds no more tasks in its
own queue, it tries to ‘steal’ work from another thread, i.e, it tries to move tasks from
another thread’s queue into its own queue. The stealing heuristics tries to steal half of
the average queue size tasks from the tail of the queue with the largest size. The stolen
tasks are appended at the tail of the target queue. But before the tasks are removed from
the source queue, the size of the source queue is decreased by the number of tasks to
be stolen, so that it appears less attractive to other threads searching for work. The new
size of the target queue is hidden to the other threads, thus pretending it were still empty
until all tasks have been transferred. Therefore, no thread will try to steal work from the
target queue during the task transfer.

Strategy ‘Interval queue’. Analyzing the behavior of the ‘Task Queue’ strategy we
observe that the queues always store consecutive intervals of work units. A different
data structure, called interval queue, can provide similar operations as the task queue
but stores only the lowest and the highest index of the range of work units contained in
the queue. It therefore leads to a significantly lower overhead. To fetch a work unit, the
local thread only needs to increment the start index of the interval by 1; m tasks can be
stolen at once in time O(1) by decrementing the end index of the interval by m. Hence,
the load balancing algorithm based on the interval queue can be realized similarly as in
Fig. 4 by replacing lines 4–6 by

REWIND(my queue, first work unit[me], last work unit[me]);

and lines 21–28 by

work unit := STEAL(queue[index], my queue, work units to steal);
UNLOCK(queue[index]);

where REWIND(Q, A, B) initializes the interval stored in queue Q to [A,B] and
STEAL(QS, QT , m) decreases the end of the interval of the source queue QS by m,
initializes the target queue QT with the stolen interval of size m and returns the first
element of this interval.
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1: me := my thread id;
2: my queue := queue[me];

3: for (l := 1; l ≤ s; l++)
4: REWIND(my queue);
5: for (j := first work unit[me]; j ≤ last work unit[me]; j++)
6: HIDDEN APPEND(my queue, j);
7: barrier();
8: REVEAL SIZE(my queue);
9: loop

10: LOCK(my queue);
11: if (EMPTY(my queue))
12: UNLOCK(my queue);
13: loop
14: sum :=

∑ #threads
k=1 SIZE(queue[k]);

15: index := argmax1≤k≤#threadsSIZE(queue[k]);
16: if (sum = 0) goto Stage Complete;
17: if (TRYLOCK(queue[index]))
18: if (SIZE(queue[index]) > 0) break;
19: UNLOCK(queue[index]);
20: work units to steal := STEAL HEURISTICS(SIZE(queue[index]), sum);
21: PREPARE STEALING(queue[index], work units to steal);
22: work unit := STEAL(queue[index]);
23: REWIND(my queue);
24: for (k := 1; k ≤ work units to steal; k++)
25: HIDDEN APPEND(my queue, STEAL(queue[index]));
26: FINISH STEALING(queue[index], work units to steal);
27: UNLOCK(queue[index]);
28: REVEAL SIZE(my queue);
29: else
30: work unit := FETCH(my queue);
31: UNLOCK(my queue);
32: PROCESS WORK UNIT(l, work unit);
33: label Stage Complete;

Fig. 4. Load balancing strategy ‘Task Queue’

5 Runtime Experiments

Runtime experiments with the implemented load balancing strategies have been per-
formed on three symmetric multiprocessors (SMPs): a 4-way 2.0 GHz Opteron 270
SMP, a 4-way 1.5 GHz Itanium 2 SMP, and an IBM p690 with 32 POWER4+ cores at
1.7 GHz. As a basis for the assessment of the implementations we use the average exe-
cution time per step measured by executing a limited number of time steps and dividing
the resulting execution time by the number of steps executed. As a reference for the
speedup calculation and the evaluation of the overhead we use a sequential implemen-
tation similar to Fig. 1, which contains no synchronization operations. All experiments
presented in the following have been performed using the ERK method DOPRI5(4).

Sequential Overhead. First, we investigate the sequential overhead of the parallel
implementations, that is the percentage of time they run slower than a sequential im-
plementation when executed on one processor. As an example, Table 2 shows the se-
quential overhead measured for BRUSS2D-ROW with N = 1000. For this problem the
highest overheads have been observed.
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Table 2. Overhead of the parallel implementations for BRUSS2D-ROW with N = 1000 in %

Target system static IC IP SCIA SCIL SCRA SPIA SPIL SPRA TC TP
Opteron 270 SMP 0.4 37.7 7.7 41.5 40.7 41.1 9.0 9.3 9.1 53.1 9.8
Itanium 2 SMP 4.7 29.6 6.2 10.9 29.8 10.9 5.0 6.1 4.9 35.0 6.8
IBM p690 5.1 274.4 37.4 131.6 266.8 124.7 10.8 21.5 6.4 299.2 42.2

Comparing the different target systems, the highest overheads have been measured
on the IBM p690. On this system, pthread spinlock t is not available and we
have to use pthread mutex t instead. Further, we used an AIX kernel function to
realize atomic Fetch & Inc instead of inline assembler instructions as on the other two
systems. Comparing the Itanium 2 and the Opteron SMP, we observe lower overheads
on the Itanium 2 system. Hence, it appears that the spinlocks require less instructions on
the Itanium 2 than on the Opteron. Also, the implementations that use atomic operations
to realize Fetch & Inc run more efficiently on the Itanium 2 since on this machine only
one machine instruction needs to be executed while on the Opteron more instructions
are required to emulate Fetch & Inc by Compare & Swap. Only the overhead of our
reference implementation based on a static work distribution is higher on the Itanium 2
than on the Opteron. This is due in part to cache effects caused by interferences between
memory accesses to data and instructions.

In general, on all machines the overhead of the load balancing implementations is
higher than that of the static implementation. The highest overhead was observed for
the implementations that use single components as work units. The lowest overhead of
the load balancing implementations is obtained by the implementations based on the
‘Simple’ strategy which use atomic operations to realize Fetch & Inc.

Scalability on the Itanium 2 SMP. In this section, we give a detailed discussion on
the results measured on the Itanium 2 SMP. Because on this system the overhead of the
load balancing implementations is lower than on the other two systems, we can observe
relatively high improvements over the static work distribution. The speedup diagrams
for the problems discussed in the following are shown in Fig. 5.

The most irregular test problem is EMEP. Due to its low dimension, only small
speedups can be obtained. The best speedup of the static work distribution is 1.14
obtained on two processors. The implementations of ‘Simple’ that use cache lines as
work units obtain a slightly better speedup of up to 1.17 on three processors. Using
MEDAKZO with N = 2400 we obtain significantly better speedups. Except for TC
and SCIL, all implementations obtain their maximum speedup on four processors. Us-
ing the static work distribution, a speedup of 2.74 is possible. But all load balancing
implementations that use cache lines as work units obtain higher speedups. The best
speedups between 3.02 and 3.06 are achieved by IP, SPRA, and SPIA. For STARS-CON
and STARS-MIX we use N = 1000 stars. The load balancing implementations obtain
nearly perfect speedups between 3.95 and 3.99 for STARS-CON and between 4.00 and
4.01 for STARS-MIX. With the static work distribution, only a speedup of 2.00 can
be obtained for STARS-CON due to the severe load imbalance, but for STARS-MIX a
speedup of 4.01 has been measured. For BRUSS2D with N = 1000 the speedups of the
two orderings are similar. The static implementation obtains speedups of 3.32 and 3.30,
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Fig. 5. Speedups measured on the Itanium 2 SMP. (a) EMEP, (b) MEDAKZO, N = 2400,
(c) STARS-CON, N = 1000, (d) STARS-MIX, N = 1000, (e) BRUSS2D-ROW, N = 1000,
(f) BRUSS2D-MIX, N = 1000.

respectively, for the two orderings on four processors. Since BRUSS2D-MIX is nearly
evenly balanced, the best load balancing implementations, SPRA and SPIA, only obtain
a slightly worse speedup of 3.29 for this ordering. But for BRUSS2D-ROW these two
implementations obtain a better speedup than the static implementation of 3.36.

Scalability on Other Systems. The speedups measured on the Opteron 270 SMP and
the IBM p690 are summarized in Table 3. On the Opteron system the load balancing
implementations are similarly successful as on the Itanium 2 SMP. Thus, except for
MEDAKZO, for every problem, at least one load balancing implementation obtains a
higher speedup than the static work distribution. But on the IBM p690, due to a higher
overhead, the load balancing implementations cannot obtain a higher performance than
the static work distribution for most problems. Only for STARS-CON, which is char-
acterized by a severe load imbalance, a significantly better speedup can be achieved.

Table 3. Summary of the speedups measured on the Opteron 270 SMP and on the IBM p690

Opteron 270 SMP IBM p690
Static Load balancing Static Load balancing

Problem Parameter Speedup Speedup Best implementation Speedup Speedup Best implementation
EMEP 1.37 1.50 SPIA 1.35 1.35 TP
MEDAKZO N = 2400 3.17 3.07 SPIA 3.23 2.88 SPRA
STARS-CON N = 1000 1.97 3.98 IC, IP, TC, TP 15.65 30.13 SCRA
STARS-MIX N = 1000 3.94 3.98 all except SCIL 30.60 30.24 SCIA
BRUSS2D-ROW N = 1000 2.10 2.11 IC, IP 27.19 25.33 SPRA
BRUSS2D-MIX N = 1000 2.26 2.28 IP 25.03 23.54 SPRA
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6 Conclusions

Our results show that load balancing strategies can successfully be applied to data-
parallel ERK solvers even though they require a larger sequential overhead than a static
work distribution. They are particularly successful for ODE systems which lead to a se-
vere load imbalance, but if special machine instructions are exploited to reduce the over-
head, an improvement can be obtained even for some problems with a well-balanced
right hand side function. However, our current load balancing implementations leave
room for improvements, and a further investigation of load balancing strategies might
lead to new insights.
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2 DTU, Mechanical Engineering, DK-2800 Lyngby, Denmark

Abstract. We present a software framework for the transparent and
portable parallelization of simulations using particle-mesh methods. Par-
ticles are used to transport physical properties and a mesh is required
in order to reinitialize the distorted particle locations, ensuring the con-
vergence of the method. Field quantities are computed on the particles
using fast multipole methods or by discretizing and solving the governing
equations on the mesh. This combination of meshes and particles presents
a challenging set of parallelization issues. The present library addresses
these issues for a wide range of applications, and it enables orders of
magnitude increase in the number of computational elements employed
in particle methods. We demonstrate the performance and scalability of
the library on several problems, including the first-ever billion particle
simulation of diffusion in real biological cell geometries.

1 Introduction

A large number of problems in physics and engineering can be described by par-
ticles. Examples include Molecular Dynamics (MD) simulations of nano-devices,
Smooth Particle Hydrodynamics (SPH) simulations of astrophysics, and Vor-
tex Methods (VM) for fluid dynamics. The dynamics of particle methods are
governed by the interactions of the N computational elements, resulting in an
N -body problem with a nominal computational cost of O(N2). For short-ranged
particle interactions, as in simulations of diffusion [1], the computational cost
scales linearly with the number of particles. In the case of long-range interac-
tion potentials such as the Coulomb potential in MD or the Biot-Savart law
in VM, Fast Multipole Methods (FMM) [2] reduce the computational cost to
O(N). Alternatively, these long-range interactions can be described by the Pois-
son equation which, when solved on meshes, results in the hybrid Particle-Mesh
(PM) algorithms as pioneered by Harlow [3,4]. The computational cost of hybrid
methods scales as O(M), where M denotes the number of mesh points used for
resolving the field equations. Due to the regularity of the mesh, PM methods
are one to two orders of magnitude faster than FMM [5].

The parallelization of PM and FMM techniques is complicated by several
factors:

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 730–739, 2006.
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– the simultaneous presence and spatial distribution of particles and meshes
prohibits a single optimal way of parallelization,

– complex-shaped computational domains and strong particle inhomogeneities
require spatially adaptive domain decompositions,

– particle motion may invalidate the existing domain decomposition, causing
rising load imbalance and requiring additional communication in multi-stage
ODE integration schemes,

– exploiting the symmetry of the particle interactions requires sending back of
ghost contributions to the corresponding real particle,

– inter-particle relations constrain decompositions and data assignment,
– the global nature of the tree data structure hampers the parallel implemen-

tation of FMM methods.

Many of the available domain decomposition, load balancing, solver, inter-
polation, and data communication methods are applicable to a wide range of
particle or PM algorithms, regardless of the specific physics that are being sim-
ulated [6]. In this paper we present the newly developed Parallel Particle Mesh
library ppm [5] and its extension to FMM. The ppm library provides a generic,
physics-independent infrastructure for simulating discrete and continuum sys-
tems, and it bridges the gap between general libraries and application-specific
simulation codes.

The design goals of ppm include ease of use, flexibility, state-of-the-art paral-
lel scaling, good vectorization, and platform portability. The library is portable
through the use of standard languages (Fortran 90 and C) and libraries (MPI)
and it was successfully compiled and used on distributed memory, shared mem-
ory, and vector architectures on 1 to 512 processors. Computational efficiency is
achieved by dynamic load balancing, dynamic particle re-distribution, explicit
message passing, and the use of simple data structures.

2 Particle Concepts and Particle-Mesh Techniques

The use of the ppm library requires that the simulated systems are formulated in
the framework of PM algorithms [6]. The field equations are solved using struc-
tured or uniform Cartesian meshes. As a result, the physical and computational
domains are rectangular or cuboidal in two or three dimensions. Complex ge-
ometries are handled by immersed boundaries, through the use of source terms
in the corresponding field equations, or through boundary element techniques.
Adaptive multi-resolution capabilities are possible using mapping concepts as
adapted to particle methods [7].

The simultaneous presence of particles and meshes requires different concur-
rent domain decompositions. These decompositions divide the computational
domain into a minimum number of sub-domains with sufficient granularity to
provide adequate load balancing. The concurrent presence of different decom-
positions allows to perform each step of the computational algorithm in its
optimal environment with respect to load balance and the computation-to-
communication ratio. For the actual computations, the individual sub-domains
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are treated as independent problems and extended with ghost mesh layers and
ghost particles to allow for communication between them. Ghosts are copies of
true mesh points or particles that either reside on a neighboring processor or
account for periodic boundary conditions.

The ppm library supports connections and relations between particles, such as
particle pairs, triplets, quadruplets, etc. These relations may describe a physical
interaction, such as chemical bonds in molecular systems, or a spatial coherence,
such as a triangulation of an immersed boundary or an unstructured mesh.

2.1 Topologies

A topology is defined by the decomposition of space into sub-domains with the
corresponding boundary conditions, and the assignment of these sub-domains
onto processors. Multiple topologies may coexist and library routines are pro-
vided to map particle and field data between them as described below. Fields are
defined on meshes, which in turn are associated with topologies. Every topology
can hold several meshes.

In order to achieve good load balance, the SAR heuristic [8] is used in the
ppm library to decide when problem re-decomposition is advised, i.e. when the
cost of topology re-definition is amortized by the gain in load balance. Moreover,
all topology definition routines can account for the true computational cost of
each particle, for example defined by the actual number of its interactions, and
the effective speeds of all processors.

The ppm library provides a number of different adaptive domain decomposi-
tion techniques for particles, meshes, and volumes, the latter defining geometric
sub-domains with neither meshes nor particles present [5]. The sub-domains can
be assigned to the processors in various ways. The ppm-internal method assigns
contiguous blocks of sub-domains to processors until the accumulated cost for
a processor is greater than the theoretical average cost under uniform load dis-
tribution. The average is weighted with the relative processor speeds to account
for heterogeneous machine architectures. In addition, four different Metis-based
[9] and a user-defined assignment are available.

At the external boundaries of the computational domain, Neumann, Dirichlet,
free space, symmetric, and periodic boundary conditions are generally supported,
but depend on the particular mesh-based solver that is being employed. More
involved boundary conditions and complex boundary shapes are represented
inside the computational domain by defining connections among the particles,
or by using immersed interfaces.

2.2 Data Mapping

ppm topologies implicitly define a data-to-processor assignment. Mapping rou-
tines provide the functionality of sending particles and field blocks to the proper
processor, i.e. to the one that “owns” the corresponding sub-domain(s) of the
computational space. Three different mapping types are provided for both par-
ticles and field data:
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– a global mapping, involving an all-to-all communication,
– a local mapping for neighborhood communication, and
– ghost mappings to update the ghost layers.

The global mapping is used to perform the initial data-to-processor assign-
ment or to switch from one topology to another, whereas the local mapping
is mainly used to account for particle motion during a simulation. Commu-
nication is scheduled by solving the minimal edge coloring problem using the
efficient approximation algorithm by Vizing [10], and connections between par-
ticles are appropriately accounted for. Ghost mappings are provided to receive
ghost particles or ghost mesh points, and to send ghost contributions back to
the corresponding real element, for example after a symmetric particle-particle
interaction or a particle-to-mesh interpolation.

All mapping types are organized as stacks. A mapping operation consists of
four steps: (1) defining the mapping, (2) pushing data onto the send stack, (3)
performing the actual send and receive operations, and (4) popping the data
from the receive stack. This architecture allows data stored in different arrays to
be sent together to minimize network latency, and mapping definitions to be re-
used by repeatedly calling the push/send/pop sequence for the same, persisting
mapping definition.

3 Particle-Particle Interactions

The evaluation of Particle-Particle (PP) interactions is a key component of PM
algorithms. The overall dynamics of the system may be governed by local particle
interactions, sub-grid scale phenomena may require local particle-based correc-
tions [11], or differential operators can be evaluated on irregular locations [12].
The ppm library implements symmetric and non-symmetric PP computations
using a novel type of cell lists [5], Verlet lists [13], and the full O(N2) direct
method. The last is based on distributing the particles among processors in
equal portions, irrespective of their location in space.

4 Particle-Mesh Interpolation

All hybrid PM methods involve interpolation of irregularly distributed particle
quantities from particle locations onto a regular mesh, and interpolation of field
quantities from the grid points onto particle locations. These interpolations are
utilized for two purposes, namely: (1) the communication of the particle solver
with the field solver, and (2) the reinitialization of distorted particle locations
(“remeshing”). The ppm library provides routines that perform these operations.
The interpolation of mesh values onto particles readily vectorizes: interpolation
is performed by looping over the particles and receiving values from mesh points
within the support of the interpolation kernel. Therefore, the values of indi-
vidual particles can be computed independently. The interpolation of particle
values onto the mesh, however, leads to data dependencies as the interpolation
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is still performed by looping over particles, but a mesh point may receive values
from more than one particle. To circumvent this problem, the ppm library imple-
ments the following technique [14]: when new particles are created in the course
of remeshing, we assign colors to the particles such that no two particles within
the support of the interpolation kernel have the same color. Particle-to-mesh
interpolation then visits the particles ordered by color to achieve data indepen-
dence. In combination with appropriate directives, this coloring scheme enables
the compiler to safely vectorize the loops, as confirmed by a test on a NEC SX-5
vector computer. The wall-clock time for interpolating 2 million particles onto
a 1283 mesh using the M ′

4 interpolation kernel [15] decreases from 30 s to 2.7 s
when using the present coloring scheme, and the vector operation ratio increases
from 0.4% to 99%.

5 Mesh-Based Solvers

In ppm, meshes can be used to solve the field equations associated with long-
range particle interactions [4], or to discretize the differential operators in the
governing equations of the simulated physical system. A large class of pair inter-
action potentials in particle methods can be described by the Poisson equation as
it appears in MD of charged particles via electrostatics (Coulomb potential), fluid
mechanics in stream-function/vorticity formulation (Biot-Savart potential), and
cosmology (gravitational potential). The ppm library provides fast parallel Pois-
son solvers based on FFTs and geometric Multi-Grid (MG) in both two and three
dimensions. The library architecture is however not limited to Poisson solvers.

6 ODE Solvers

Simulations using particle methods entail the solution of systems of ODEs [6].
The ppm library provides a set of explicit integration schemes to solve these
ODEs. Parallelism is achieved by mapping the integrator stages of multi-stage
schemes – i.e., the intermediate function evaluations – along with the other par-
ticle quantities. The set of available integrators currently includes forward Euler
with and without super time stepping [16], 2-stage and 4-stage standard Runge-
Kutta schemes, Williamson’s low-storage third order Runge-Kutta scheme [17],
and 2-stage and 3-stage TVD Runge-Kutta schemes [18].

7 Parallel File I/O

File I/O in distributed parallel environments exist in distributed and central-
ized modes. By distributed we denote the situation where each processor writes
its part of the data to its local file system. Centralized I/O on the other hand
produces a single file on one of the nodes, where the data contributions from
all processors are consolidated. The ppm library provides a parallel I/O module
which supports both binary and ASCII read and write operations in both modes.
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Write operations in the centralized mode can concatenate or reduce (sum, re-
place) the data from individual processors; read operations can transparently
split the data in equal chunks among processors, or send an identical copy to
each one. To improve performance of the centralized mode, network communi-
cation and file I/O are overlapped in time using non-blocking message passing.

8 Parallel FMM

The ppm library uses FMM to evaluate Dirichlet and free-space boundary con-
ditions for the computationally more efficient MG solver. The implementation of
the parallel FMM module is based on the topology, tree, and mapping routines
provided by the library core. Hereby, the FMM module creates multiple tem-
porary topologies. The first topology comprises the sub-domains defined at the
level of the tree that holds at least as many sub-domains as there are processors.
Subsequent levels of the FMM tree structure are also declared as ppm topologies.
By means of the user-defined assignment scheme, individual processors operate
on disjoint sub-trees to minimize the amount of communication. The particles
are then mapped according to the finest topology, which contains all the leaf
boxes as sub-domains. The ppm tree directly provides index lists to the particles
in each box. This allows straightforward computation of the expansion coeffi-
cients on the finest level, without requiring communication. The computed leaf
coefficients are shifted to parent boxes by recursively traversing the tree toward
its root, cf., e.g., [19]. Since the topologies are defined such that each processor
holds a disjoint subtree, the expansions can be shifted without communication.

To evaluate the potential at the locations of a set of target particles, these
particles are first mapped onto the finest-level ppm topology. A pre-traversal
of the tree then decides which expansion coefficients and source particles are
needed for each target point. This is done by traversing the tree from the root
down to the leafs using a stack data structure. On each level, we check if the
corresponding box is already far enough away from the target particle. This is
done by comparing the distance (D) between the target particle and the center
of the box to the diameter (d) of the box. If the ratio D/d > θ, the expansion
of that box is used and the traversal stops.

When evaluating the potential, expansion coefficients or particles from other
processors may be needed. Before evaluating the potentials, the expansion co-
efficients from all processors are thus globally communicated. This can be done
since the data volume of the coefficients is much smaller than the original par-
ticle data. Required particles are received on demand as additional ghosts using
the regular ppm ghost mapping routines.

9 Benchmarks Results

Benchmark results are presented for the ppm FMM, for a remeshed SPH (rSPH)
client application [20,5] for the simulation of compressible fluid dynamics, and for
simulations of diffusion in the Endoplasmic Reticulum (ER) of live cells [21,22].
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In addition, preliminary results with a simple ppm MD client have shown it to
reach the same performance as the dedicated MD program FASTTUBE [23].

The benchmarks for the FMM are collected on a Linux cluster of 16 2.2GHz
AMD Opteron 248 processors, connected by standard gigabit Ethernet. This
architecture is chosen since it provides the most stringent test for the communi
cation-intense tree data structure of the FMM. To have access to larger numbers
of processors, the subsequent application benchmarks are preformed on the IBM
p690 computer of the Swiss National Supercomputing Centre (CSCS). The ma-
chine consists of 32 Regatta nodes with 8 1.3GHz Power4 processors per node.
The nodes are connected by a 3-way Colony switch system. Furthermore, code
vectorization is assessed on the NEC SX-5 computer of CSCS.

9.1 The Fast Multipole Method

The test cases for the ppm FMM involve 105 source points with a uniformly
random distribution in a cubic box. The potential induced by these points is
computed at the locations of 105 target points, also uniformly randomly dis-
tributed in the same cube. Fig. 1(a) shows the wall-clock time as a function of
the number of particles. The acceptance factor θ for the tree traversal is set to
1.5, and we vary the expansion order (l). The scaling of the FMM is compared to
the O(N2) scaling of the direct evaluation method. Fig. 1(b) shows the parallel
speedup of the ppm FMM on up to 16 processors of the Linux cluster. The wall-
clock time is 452 seconds on 1 processor and 36.8 seconds on 16. The observed
loss in efficiency is mainly caused by the global communication of the expansion
coefficients.

9.2 A Remeshed Smooth Particle Hydrodynamics Application

The first application benchmark considers an rSPH client for the simulation of
three-dimensional compressible flows. For the parallel performance to be inde-
pendent of the particular flow problem, we consider a computational domain
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Fig. 1. Performance of the Fast Multipole Method (FMM) implementation in the ppm
library. (a) Serial performance of the FMM as function of number of particles and the
order (l) of the expansion: -+-: direct calculation; -�-: l = 9; -∗-: l = 5; -×-: l = 1.
(b) Parallel speedup using 105 particles and l = 5 on up to 16 nodes of the 2.2 GHz
Opteron Linux cluster. —: linear scaling; +: measurement.
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fully populated with particles. The speedup and parallel efficiency of the rSPH
client are shown in Fig. 2. The maximum number of particles considered for this
test case is 268 million with a parallel efficiency of 91% on 128 processors and also
91% on 32 processors. This compares well with the 85% efficiency of the GAD-
GET SPH code by Springel et al. [24] on 32 processors of the same computer
model (IBM p690). One time step of a fixed-size simulation using 16.8 million
particles takes 196.9 seconds on 1 processor and 7.3 seconds on 128 processors.
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Fig. 2. Parallel speedup and efficiency of the ppm rSPH client for a scaled-size prob-
lem starting with 2 million particles on one processor. Each point is averaged from 5
samples, error bars indicate min-max span. Timings are performed on the IBM p690.

9.3 Diffusion in the ER

We present a client application for the simulation of three-dimensional diffusion
in the ER, an organelle of live cells. This test demonstrates the capability of the
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Fig. 3. (a) Visualization of the simulated concentration distribution inside a real ER
as reconstructed from a live cell. The volume indicated by the cube is initially empty
and we simulate the diffusive influx. The solution at time 0.25 is shown. The edge
length of the box is 50, and the computational diffusion constant is 7.5. (b) Parallel
efficiency of the ppm diffusion client for a fixed-size problem with 3.4 million particles
distributed inside the ER. Each point is averaged from 5 samples, error bars indicate
min-max span. Timings are performed on the IBM p690.
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library in handling complex-shaped domains with irregular load distribution.
The problem size is fixed at 3.4 million particles, distributed inside the ER.
Using an adaptive recursive orthogonal bisection, the complex ER geometry is
decomposed, and the sub-domains are distributed among 4 to 242 processors.
Fig. 3(a) shows a visualization of the solution, and Fig. 3(b) shows the parallel
efficiency of the present ppm client. The simulations sustain 20% of the peak
performance of the IBM p690, reaching 250 GFlop/s on 242 processors at 84%
efficiency. The load balance is 90 to 95% in all cases, and one time step takes 14
seconds on 4 processors. This client was used to perform simulations of diffusion
using up to 1 billion particles on 64 processors, thus demonstrating the good
scaling in memory of the ppm library.

10 Summary

The lack of efficiently parallelized and user friendly software libraries has hin-
dered the wide-spread use of particle methods. We have initiated the develop-
ment of a generic software framework for hybrid Particle-Mesh simulations. The
ppm library described in this paper provides a complete infrastructure for parallel
particle and hybrid Particle-Mesh simulations for both discrete and continuum
systems. It includes adaptive domain decompositions, load balancing, optimized
communication scheduling, parallel file I/O, interpolation, data communication,
and a set of commonly used numerical solvers, including a parallel FMM.

We have demonstrated the library’s parallel efficiency and versatility on a
number of different problems on up to 242 processors. All applications showed
parallel efficiencies reaching or exceeding the present state of the art, and favor-
able run-times on large systems.
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Rita Zrour, Pierre Chatelier, Fabien Feschet, and Rémy Malgouyres
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Abstract. In this paper we present three different parallelizations of
a discrete radiosity method achieved on a cluster of workstations. This
radiosity method has lower complexity when compared with most of the
radiosity algorithms and is based on the discretization of surfaces into
voxels and not into patches. The first two parallelizations distribute the
tasks. They present good performance in time but they did not distribute
the data. The third parallelization distributes voxels and required the
transmission of small part of the voxels between machines. It improved
time while distributing data.

1 Introduction

The radiosity method has been widely used in different fields concerned with
the exchange of energy. It is mainly used in computer graphics (3D rendering)
and in image synthesis to simulate global illumination and lighting effects. Most
radiosity methods require large memory and time computation. This leads re-
searchers to parallelize radiosity algorithms trying to minimize both time and
memory.

Many parallelizations of different radiosity algorithms have been proposed
[10,14,3,2,13,9,4,11,7,12,8,16]. These algorithms are characterized by their mem-
ory system and their parallelization procedure that contribute together to the
final parallelization. The memory system can be a shared memory system [8] or
a distributed memory system. The distributed memory system can be divided
into two branches: the cluster of workstations and the distributed shared mem-
ory. The cluster of workstations is composed of many machines where the ex-
changes between the machines is done via the message passing strategy [2,10,14].
The distributed shared memory system uses shared variables for communication
[3,12,13,16]. As for the parallelization procedure, radiosity algorithms are not
easy to parallelize because the radiosity equation contains form factor calcula-
tion or visibility information that put restrictions and dependencies when divid-
ing the data among a distributed memory system. Many parallel methodologies
tried to find some local characterizations that can minimize these interdepen-
dencies. In [3] the environment is split into sub-environments and a visibility
mask is used for the transfer of light. In [4] an idea of group iterative approach
was used to split the radiosity solving between a master and slaves.

The purpose of this paper is to parallelize the discrete radiosity method pro-
posed by Chatelier and Malgouyres [1]. This method is different from most ra-
diosity methods because it is based on discretization of surfaces into voxels and

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 740–750, 2006.
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not into patches. In terms of complexity the method is quasi-linear in time and
space and has a lower complexity than other methods for large scenes containing
a lot of details. The parallelizations presented in this article have been tested on a
distributed memory system, a cluster of workstations composed of bi-processors
hyperthreaded Xeon Pentium processors.

The paper is organized as follows. Section 2 explains the sequential algorithm
and its complexity. Section 3 presents the distribution of tasks which includes two
parallelizations, the local parallelization and the distribution of the computation.
Section 4 details the data distribution. Finally Section 5 states some conclusions
and perspectives.

2 Sequential Algorithm

2.1 Discretization of the Radiosity Equation

Radiosity is defined as the total power of light leaving a point. The continuous
radiosity equation has been discretized in [6]. The voxel-based radiosity equation
is the following:

B(x) = E(x) + ρd(x)
∑
−→σ ∈D

B(V (x,−→σ ))
cos θ(x, V (x,−→σ ))

π
Â(−→σ ) (1)

This equation shows that the total power of light B(x) leaving a voxel x depends
on two terms, the first is the proper emittance of this voxel as a light source (the
E(x) term), and the second is some re-emission of the light it receives from
its environment (the sum). The term B(·) that is present in both sides of the
equality, reflects interdependence between a point and its environment ; it does
not consider any outgoing direction, so it supposes that each point emits light
uniformly in every direction (diffuse hypothesis). The factor ρd(x) indicates that
a point re-emits only a fraction of the light that it receives. D is a set of discrete
directions in space. V (x,−→σ ) is a visibility function, returning the first point y
seen from x in the direction of −→σ . The term Â(−→σ ) is the fraction of a solid angle
associated to the direction −→σ it quantifies how much of an object is seen from a
point, we call it a direction factor. The cos θ(x, V (x,−→σ )) expresses that incident
light is more effective when it comes perpendicularly to the surface. Finally the
π factor is a normalization term deriving from radiance considerations.

This equation is usually solved using Gauss-Seidel relaxation requiring thus
many iterations to obtain a convergence to the correct radiosity solution [15].

2.2 Computing Visibility Using Discrete Lines

The space can be partitioned into parallel 3D discrete lines, along a given di-
rection. It means that a voxel belongs to one and only one of these lines which
can be easily computed. In [1] Chatelier and Malgouyres relied on this space
partition concept, that can allow with some constraints, to reflect the visibility
between the voxels. So, given a voxel (x, y, z) ∈ Z3, this voxel belongs to the
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discrete line Li,j where (i, j) are two integers calculated from both the coordi-
nates of the voxel and the directing vector of the direction. The set of all Li,j ’s
represents the space partition into 3D discrete lines.

An important information in the radiosity equation is the visibility factor,
reflecting the visibility between the voxels. Given a direction, a voxel belongs to
one and only one line characterized by a couple of integers (i, j). Putting each
voxel in its line (i, j) does not ensure voxels visibility ; to ensure the correct
visibility between the voxels, a possible solution consists in doing a precompu-
tation step that sorts the voxels according to different lexicographic orders ;
usually eight lexicographic orders are needed but four are sufficient because of
symmetries.

2.3 Algorithm and Complexity

The sequential algorithm of the radiosity comprises the following steps:

1. Discretize the scene into voxels.
2. Sort the voxels according to the four lexicographic orders.
3. Choose the set of directions.

For each iteration, traverse all the directions and for each direction the following
steps are done:

1. Choose from the four pre-computed lexicographic orders the one that is
suitable depending on the directing vector of the direction.

2. Traverse the voxels and put each one in the list (i, j) to which it belongs.
3. Propagate light between successive voxels of the same list.

The sequential algorithm requires 2 parameters, the number of iterations “I”
and the number of directions “D”. If N is the number of voxels of the scene, the
time complexity is: 4 × O(NlogN) + I × D × (O(N) + O(N)). The term 4 ×
O(NlogN) represents the four lexicographic sorting of the voxels. It is negligible,
because the four sorting are pre-computed once. The term I×D×(O(N)+O(N))
reflects the dispatch of the voxels in their lists and the propagation of the light in
the lists. Note that “I” is a small constant. “D” is a constant that is independent
of the number of voxels ; it depends on the intensity of the light sources. It is
increased to avoid aliasing effects when the sources are small but having high
intensities. As for the space complexity, we just need to store the voxels in
memory. More details about the complexity can be found in [1].

3 Distribution of the Tasks

3.1 Local Parallelization

The first parallelization is local and uses threads. Our radiosity method contains
two major computations that are expensive for large scenes and that can be
locally parallelized using threads. These computations are the dispatching of the
voxels and the propagation of the light in the lists.
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Fig. 1. Distributing the voxels in their
lists using threads. There is a risk of
loosing the correct lexicographic order.

Fig. 2. Distributing the voxels in their
lists using threads. Distinct data struc-
tures are created for each thread.

Multithreaded Voxels Dispatch. The distribution of the voxels in their lists
consists in traversing the voxels in the lexicographic order and putting each
voxel in the list (i, j) it belongs to. The partition of this work among the threads
consists in giving each thread an equal consecutive part of the voxels ordered in
the lexicographic order (see Fig. 1). The threads then start the distribution of
the voxels in their lists. If one data structure is created, a problem of priority will
appear when the threads begin to work on the same lists. The problem arises
from the fact that the distribution should respect the lexicographic order, thus
giving priority to one thread on the others. For example for Fig. 1 thread 1 has
priority on thread 2 and thread 3. The voxels “a”, “d” and “e” belonging to the
same list but to different threads may not be in the correct lexicographic order
if thread 2 puts its voxel “d” before thread 1 has put its voxels “a”. A sorting of
the lists in the lexicographic order after the threads finish their work is possible
however this sorting has a complexity O(NlogN), N being the number of voxels.
This sorting can be avoided by creating distinct data structures for each thread
in which it will put its voxels in their lists (Fig. 2).

Multithreaded Light Propagate. The propagation of light in the lists con-
sists in propagating light between consecutive voxels of the same list. The lists

Fig. 3. Propagating light in the lists
using threads
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created by the threads in Sect. 3.1 are not complete lists since each thread cre-
ates its own lists. Gathering the partial lists to propagate light in them is an
expensive step in time and it should be avoided. A complete list is the concate-
nation of partial lists, so each thread can propagate light inside its partial lists
of voxels. Then an additional propagate is performed to propagate light between
the partial lists (see Fig. 3).

Results. The local parallelization tests are done on a living room scene com-
posed of 17 × 105 voxels. The results with 6 iterations and different number
of directions without threads (sequential algorithm) and using two threads are
shown on Fig. 4. The time improvement varies between 12 and 30 percent. It is
important to note that tests are done with 2 threads because it was noticed that
when the number of threads increases time improvement decreases. Fig. 5 tests
the effects of increasing the number of threads for the living room scene using
≈ 5000 directions and 6 iterations, the optimal time is obtained with 2 threads.
This is normal since the work is tested on bi-processors machines.

3.2 Distribution of the Computation

The discrete radiosity method is linear with respect to the number of directions,
so it is possible to divide the summation done on all the directions in Equa-
tion (1), into several summations. Each machine of the cluster of workstations
will take an equal set of directions. This parallelization requires the presence of
all the voxels on the machines, so voxels should be duplicated on the machines.
It offers two major advantages:

– It minimizes the communication between the machines via the message pass-
ing interface ; the exchanges are done at the end of each iteration when all
the machines have accomplished the radiosity computation for the set of
directions given to them. These exchanges consist in adding the radiosity
value gained by each voxel duplicated on the machines.

– It offers the ability of using threads to increase the parallelization.
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Figure 6 shows the results of this parallelization for the living room scene with 6
iterations and 2000 directions. The time has been almost divided by the number
of machines when no threads are used and it decreases even more with the
use of threads. The efficiency of this parallelization can reach 98 percent. This
parallelization showed good execution times but its main limitation is that it
cannot be used for large scenes that do not fit in the RAM.

4 Data Distribution

The local parallelization as well as the distribution of the computation improve
the time, however they do not distribute the voxels. For complex scenes that do
not fit into the main memory, it is important to exploit a parallelization capable
of distributing the voxels together while minimizing the time. In this section, a
complete parallelization is proposed.

4.1 Principle

The data distribution dispatches the lists of voxels. Distributing lists of voxels
has not the same implication as distributing the voxels. It guarantees having
complete lists on one machine i.e. a set of all the voxels included in the lists.
Having complete lists on each machine offers the advantage of propagating light
in the lists belonging to one machine without having to exchange radiosities
between voxels of another machine.

The distribution of the lists among the machines is done by assigning to
each machine a distinct set of (i, j). However the (i, j) of each voxel are not
constants, they change with the direction. This may splits the complete lists
into non-complete ones necessitating some transmission of voxels between the
machines to rebuild complete lists. Figure 7 illustrates the method principle.
When changing the direction, the lists present on the machines may not be
complete: for example the list number (6,7) is present on 2 different machines
which requires the exchange of voxels to build one complete list.

The major steps of this parallelization are detailed in next sections and can
be summarized as follows:

For each iteration, traverse all the directions and for each direction:

1. Find (iteration equal to 1) or load (iteration different than 1) from memory
the suitable list distribution that guarantees the presence of complete lists
on each machine and establishes as well a load balancing.

2. Depending on the (i, j) of each voxel decide if it will stay or leave the ma-
chine, if it will leave fill it in the corresponding data structure.

3. Exchange data i.e. send and receive implicated voxels.
4. Merge the received voxels with the voxels already present on the machine.

The merge is necessary for keeping the voxels sorted in their lexicographic
order (see Section 4.4)

5. Dispatch the voxels in their lists.
6. Propagate light in the lists.
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4.2 Sorting the Directions

The Lexicographic Order. When changing the direction, we may need to
change the lexicographic order that is used to sort the lists. In the sequential
algorithm, a precomputation step sorting the voxels according to the four dif-
ferent lexicographic orders was done [1]. When parallelizing the lists, voxels are
exchanged between the machines, so this precomputation step can not be done.
To solve this problem, a sorting of the direction according to their directing vec-
tor (a, b, c) is done ; we can distinguish eight possibilities according to different
signs of a, b, and c. For each of these eight sorting will correspond a set of direc-
tions satisfying the sign of the directing vector and leading thus to a particular
lexicographic order. This will maintain the lexicographic order stable for many
directions and will lead to just eight changes in the lexicographic order during
an iteration ((x ↑, y ↑, z ↑), (x ↑, y ↑, z ↓), (x ↑, y ↓, z ↑), (x ↑, y ↓, z ↓), (x ↓, y ↓
, z ↓), (x ↓, y ↓, z ↑), (x ↓, y ↑, z ↓), (x ↓, y ↑, z ↑)).

Close Directions. Minimizing the exchanges of voxels between the machines
is an interesting aspect that could minimize the rate of exchange as well as the
time wasted for sending and gathering data to or from other machines. It has
been noticed that close direction would generate small changes in the value of
(i, j) which will insure that most of the voxels stays in the machine and only a
small amount will leave to another machine. Sorting the directions in such a way
they are close to each other can be done by a special traversing of the discrete
sphere as shown on the Fig. 8.

Final Sorting. Two sorting for the directions were needed. The best way to
achieve these two sorting can be done by traversing every 1/8 quadrant of the
discrete sphere using the traversing mentioned in Fig. 8.

4.3 Filling Data and Load Balancing

Filling Data. At every direction, each machine should traverse all of its voxels
and calculate the new value of (i, j) (space partition to discrete lines) of each
of them to decide whether it should be kept or send. The voxels to be sent are
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stored in a data structure labelled with respect to the destination they should
go to facilitate the filling and the sending steps. The lexicographic order of the
voxels is maintained in order to avoid resorting at the reception.

Load Balancing. The exchanges of voxels between the machines at each direc-
tion may cause an unbalance in the number of voxels between the machines. To
achieve good performance and avoid having one machine waiting for the others
to finish their work, it was important to find a suitable lists distribution that
can establish load balancing by giving to each machines the appropriate interval
((i1..in), (j1...jn)) of lists to be treated. A static distribution was not efficient
since the distribution changes with the direction so a dynamic load balancing
was needed. The following steps are done by each cluster machine to obtain the
appropriate lists distribution:

– Count the number of voxels belonging to each list in one machines ; lists are
not build yet however the number of voxels in each list can be calculated by
calculating the (i, j) of each voxel.

– Exchange the voxels number and do the summation between the same (i, j)
lists on different machines so that each machine will have a global (i, j)
distribution of the whole scene.

– Find the (i, j) distribution that distribute lists among the machine giving
each machine almost the same number of voxels ; for this the elastic algo-
rithm [5] is done. This algorithm finds the suitable distribution depending on
the number of processors. It is achieved by summing rows to find the suitable
row distribution, then summing column to find the column distribution.

It should be stated that it is desirable to have a load balance at every direction
however doing it is expensive in terms of time because counting the number
of voxels in each list for large scenes is expensive. Exchanging these numbers
between the machines to do the summation is also expensive. One interesting
solution equivalent to doing the load balance at every direction consists in taking
advantage of having the same directions in the same order for all the iterations.
So it is possible to do the load balance for all the directions for the first iteration,
memorize the distribution found for each direction then for the rest of iterations
reload the correct distribution from the memory. Keeping the distribution in
memory is not expensive because it maintains (numberMachines)3/2 integers
at every directions. Figure 10 shows the importance of increasing the frequency
of doing the load balancing. Tests are done for the cabin room composed of 3
millions voxels, using four machines, ≈ 5000 directions and 6 iterations. It is
clear that the best time is obtained at the value 100 i.e. when doing the load
balance at every direction.

4.4 Exchanging and Merging Data

The exchange and the merge are two important operations that should handle
the sent and received voxels according to the data structures of each machine.
The exchange consists in sending and receiving the set of voxels between the
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machines just after the filling operation terminates. The Merge operation merges
the voxels owned by the machine (ordered in their lexicographic order) together
with each of the packs received (also ordered in their lexicographic order) from
other machines ; it is expensive, however most of the time the exchanges are of
small size (10 percent of voxels owned by the machines) and between limited
number of machines (the direction are close, the couple (i, j) varies slowly), so
it becomes less expensive.

4.5 Results

The data distribution tests were examined for a cabin room composed of 3
millions voxels. The tests are done for ≈ 5000 directions and 6 iterations. The
speed-up are shown on Fig. 9. A speed-up of 2.7 is achieved with 8 machines.
In the sequential algorithm we had just two important times, the dispatch and
the propagate of light in the lists, however in the parallel version we still have
the dispatch propagate time that is divided by the number of machines and in
addition, we have four operations that are added by the parallelization (Filling,
Load balancing, Exchange, Merge). The time study for these four operations
is viewed in Fig. 11. It can be seen that the filling process is an expensive
operation in time but it decreases with the number of machines and its time is
divided by this number. The load balancing time does not vary a lot and it is
almost constant with respect to the number of machines. As for the exchange

Fig. 8. Directions ordering on 1/8 of
the sphere to minimize the exchange of
voxels
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time, it is negligible when compared to other times since only small percentage
of voxels (10 percent) is usually exchanged between the machines. Finally the
merging time depends on the quantity of exchanges between the machines and
it does not vary too much.

5 Conclusion and Perspectives

In this paper we have examined three parallelizations. The first parallelization is
just a local one that can help to minimize the time of the other parallelizations.
The parallelization of the computation has shown good results, but it is limited
to scenes that fit in the main memory. The data distribution has improved the
sequential time ; it has a low speed-up because it demanded the construction of
complete lists on each machine and necessitated though many additional opera-
tions that are added to the sequential operations. Despite its low speed-up, it has
distributed the data, which is important when dealing with large scenes that do
not fit in memory. As for the perspectives and further works, many tests are also
needed to minimize the time of the data distribution. We also intend to apply
the data distribution proposed in this paper with the computational distribu-
tion to exploit different levels of parallelizations ; this is expected to increase the
speed-up and to minimize the time even further. Preliminary experiments have
confirmed those hypotheses.

Acknowledgments. The authors wish to acknowledge the support of Conseil
Regional d’Auvergne within the framework of the Auvergrid project.
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Abstract. Quantum control plays a key role in quantum technology,
e.g. for steering quantum hardware systems, spectrometers or supercon-
ducting solid-state devices. In terms of computation, quantum systems
provide a unique potential for coherent parallelisation that may expo-
nentially speed up algorithms as in Shor’s prime factorisation. Translat-
ing quantum software into a sequence of classical controls steering the
quantum hardware, viz. the quantum compilation task, lends itself to
be tackled by optimal control. It is computationally demanding since
the classical resources needed grow exponentially with the size of the
quantum system. Here we show concepts of parallelisation tailored to
run on high-end computer clusters speeding up matrix multiplication,
exponentials, and trace evaluations used in numerical quantum control.
In systems of 10 spin qubits, the time gain is beyond a factor of 500 on
a 128-cpu cluster as compared to standard techniques on a single cpu.

We are currently in the midst of a second quantum revolution. The
first one gave us new rules that govern physical reality. The second
one will take these rules and use them to develop new technologies.

Dowling and Milburn, 2003 [1]

Scope

For exploiting the power of quantum systems, one has to steer them by classi-
cal controls such as voltage gates, radio-frequency pulses, or laser beams. Here
the aim is to provide computational infrastructure for doing so in an optimal
way, because the shapes of these controls critically determine the performance
of the quantum system in terms of overlap of its actual final states with the
desired target states. Standard engineering methods solve related problems for
systems of classical physics. For quantum control, however, the calculations of
optimal shapes become more complicated (on conventional classical computers):
the quantum states have to be represented by matrices, the dimensions of which
grow exponentially with system size.

Here we present the adaptation of a number of matrix operation routines to
high-end parallel computer clusters while using the symmetry of quantum spin

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 751–762, 2006.
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Program, Module Quantum Algorithm, Module

Compiler

2 2 Precompiler

2 2
Assembler Code “direct” Universal Gates by optimal control

Assembler

2 2 Assembler

2 2
Machine Code Machine Code of Quantum Controls

Fig. 1. Compilation in classical computation (left) and quantum computation (right).
In the quantum scenario, the machine code has to be time-optimal or dissipation-
protected, otherwise decoherence wipes out the coherent superpositions the quantum
bits (qubits) build upon. By assembling universal quantum gates timeoptimality is in
general not reached, while compilation by quantum control lends itself to minimise
losses.

systems to minimise computational and communication effort as well as storage
costs.

These methods of using classical computer clusters are tantamount to exploit-
ing the power of present and future quantum resources.

1 Algorithms on Parallel Clusters for Quantum Control

1.1 Quantum Parallelism

Controlling quantum systems also offers a great potential for performing com-
putational tasks or for simulating the behaviour of other quantum systems [2,3].
This is because the complexity of many problems [4] reduces upon going from
classical to quantum hardware. It roots in Feynman’s observation [2] that the
resources required for simulating a quantum system on a classical computer in-
crease exponentially with the system size. In turn, he concluded that using quan-
tum hardware might therefore exponentially decrease the complexity of certain
classical computation problems. Coherent superpositions of quantum states used
as so-called ‘qubits’ can be viewed as a particularly powerful resource of quan-
tum parallelism unparalleled by any classical system. Important applications are
meanwhile known in quantum computation, quantum search and quantum sim-
ulation: most prominently, there is the exponential speed-up by Shor’s quantum
algorithm of prime factorisation [5,6], which relates to the general class of quan-
tum algorithms [7,8] solving hidden subgroup problems in an efficient way [9].

1.2 Quantum Compilation as Control Problem

Moore’s Law of increasing classical computing power concomitant to miniatur-
ising microchips is often quoted to make a strong case for predicting that within
the next decade computer hardware scales will reach sizes that inevitably have to
include quantum effects. Among the generic tools needed for advances in quan-
tum technology (see e.g. Ref. [1] for a survey), quantum control plays a major



Parallelising Matrix Operations on Clusters 753

2 3 4 5 6 7
0

10

20

30

40

50

60

70

number  of  qubits

nu
m

be
r 

 o
f  

el
em

en
ta

ry
  g

at
es

2 3 4 5 6 7
0

10

20

30

40

50

60

70

number  of  qubits

tim
e 

 [1
/J

]

(a) (b)

Fig. 2. (a) Gate complexity of the qft in linear spin chains. Standard-gate decomposi-
tion (•) [13] and optimised scalable gate decomposition (�) [14]. (b) Time complexity
of the qft in linear spin chains. Upper traces give analytical times associated with the
decompositions of part (a): standard-gate decompositions (•) [13] and optimised scal-
able gate decompositions (�) [14]. Lowest trace: speed-up by time-optimal control with
shortest numerical realisations obtained (◦) rounded to 0.01 J−1. Details in Ref. [12].

role. As illustrated in Fig. 1, this may be exemplified by envisaging the process of
compiling a quantum module into the machine language of a concrete quantum
hardware device as an instance of quantum control. To this end, there are two
different approaches: one may either use (i) universal elementary quantum gates
[10] to synthesise a quantum computational module from prefabricated standard
building blocks, the so-called universal quantum gates, or (ii) one may prefer to
generate the quantum module directly from the experimentally available controls
with the help of gradient-flow based numerical algorithms implementing tools of
optimal control [11,12]. While decomposition into universal gates is inspired by
discrete level permutations, direct compilation exploits the differential geometry
of smooth manifolds for governing unitary quantum dynamics in an optimal way.
Recently we have shown that one may thus obtain dramatic speed-ups, e.g. for
the Quantum Fourier Transform (qft) in spin systems (see Fig. 2 and [12]) or
for realising multiply controlled gates in solid-state devices. Here the speed-up
translates into a gain of some two orders of magnitude in approaching the error-
correction threshold [15]. The approach is very general and holds for spin and
pseudo-spin systems whose dynamics are Lie-algebraically closed.

1.3 Gradient Flow Algorithms for Quantum Control

Our algorithmic tools of optimal quantum control [11] for obtaining these results
are based on gradient flows [16,17] tailored to the unitary group of Hamiltonian
quantum evolution [18,19,20]. Let UG denote the unitary representation of a
quantum gate, i.e. the target matrix. On the other hand, define by U(T ) :=
e−itM HM · · · e−itkHk . . . e−it1H1 the propagator brought about by a sequence of
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1. set initial controls u
(0)
j (tk) for all times tk with k = 1, 2, . . . M

at random or by guess;
2. starting from U0 = 1l, calculate the forward-propagation for all

t1, t2, . . . tk (for simplicity ∆t := tk+1 − tk uniform)

U (r)(tk) = e−i∆tH
(r)
k e−i∆tH

(r)
k−1 . . . e−i∆tH

(r)
1 ;

3. likewise, starting with T = tM and λ(T ) = const · UG, compute
the back-propagation for all tM , tM−1, . . . tk ;

λ(r)(tk) = ei∆tH
(r)
k ei∆tH

(r)
k+1 . . . ei∆tH

(r)
M λ(T ) ;

4. calculate ∂h(U(tk))
∂uj

= Re tr{λ†(tk)(−iHj)U(tk)} ;

5. with u
(r+1)
j (tk) = u

(r)
j (tk)+ε ∂h

∂uj

∣∣
t=tk

update all the piece-wise

constant Hamiltonians to H
(r+1)
k and return to step 2.

Fig. 3. Top trace: updating the vector of control amplitudes uj by the gradients (ar-
rows) evaluated via the iterative scheme, the grape-algorithm [11] in the box below.
Gradients are calculated in step 4, while the controls are updated as in step 5.

evolutions of the quantum system under M piece-wise constant Hamiltonians
Hk. Then the optimal control problem can be cast into the tasks:

maximise f(U(T )) = Re tr{U †
GU(T )}

subject to U̇(t) = −iHU(t) ,
(1)

where the Hamiltonian H comprises drift and control terms H = Hdrift +∑
j ujHj with uj as element of the (real) control-amplitude vector. As usual,

the boundary condition may be included by a Lagrange parameter λ so that one
may finally exploit the corner stone of control theory, Pontryagin’s maximum
principle, in a quantum setting (for details see, e.g, [21,11]) to require for the
real-valued function h that ∂h

∂uj
= Re tr{λ†(−iHjU)} → 0 at all times tk. So the

task can readily be solved by gradient flows iteratively improving the classical
controls driving the quantum system into maximal overlap with the target.

1.4 Computational Tasks: Previous Performance and Goals

As sketched in Fig. 3, from a computational point of view, the grape-algorithm
makes heavy use of (1) matrix multiplication, (2) matrix exponentials, (3) trace
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Fig. 4. Redistribution of matrices is needed between steps of the grape algorithm

evaluation, and (4) step-size optimisation in conjugate gradients. The standard
C++ code with cblas matrix-matrix multiplication [22,23,24] could deal with
quantum systems up to 7 spins on an amd Athlon Processor with 2.13 GHz and
1 mb ram, taking months of cpu time. With the cpu time roughly growing by
a factor of 8 per additional spin qubit, 10-spin systems are clearly out of reach
unless one could speed up the calculations some 500 times.

In the present work we set out to reach this benchmark on a high performance
cluster. The employed system consists of 128 amd Opteron 850 cpu (2.4 GHz),
four on each node; the nodes are connected with an Infiniband network1. For
parallel programming the mpi standard was used.

In order to exploit the power [25] of high-end computer clusters, here we
address features of distributed matrix multiplication, concepts of broadcasting
no more than the necessary information to the nodes of processors, reducing
communication effort between different processors as well as exploiting symme-
tries of the matrix representations of the pertinent quantum mechanical system
Hamiltonians for speeding up matrix exponentials. Some of the symmetries are
not coincidental: fully controllable quantum systems are Lie-algebraically closed
[19]. They are thus largely confined to finite-dimensional spin- or pseudo-spin
systems, whose representations in terms of Kronecker or tensor products of Pauli
matrices often entail persymmetric matrices (vide infra).

2 Parallel Matrix Multiplication

This section compares the implementation of two algorithms for multiplying a
series of matrices (“propagation”), as needed in steps 2 and 3 of the grape
algorithm. The algorithms differ in run-time and, as will turn out to be most
decisive, in memory demand. For comparing performance in terms of run-time,
just considering the time required in the propagation step does not suffice; as we
will see, it is also important to understand how it is embedded into the whole
of the grape algorithm. To this end, consider Fig. 4: the propagation (step 3 in
this figure) is preceded by the computation of the exponential matrices e±i∆tH

(r)
k

(step 1). The exponentials of all the matrices (k = 1 . . .M) are distributed over
1 http://www.lrr.in.tum.de/Par/arch/infiniband/
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Fig. 5. (a) Slice-wise matrix multiplication provides a simple way of parallelisation.
U0k denotes the (k + 1)-fold product UkUk−1 · · · U0 according to step 2 in the grape-
algorithm (Fig. 3). The resulting complexity is O(M · N3/p). Communication between
the processors P is needed solely for broadcasting the matrices Uk prior to propagation.
(b) Scheme for tree-like propagation. In this example, propagation is carried out in three
steps. Red lines indicate communication between processors P0 through P3.

all the processors. However, in step 3 it is not granted every processor exactly
needs those matrices it computed in step 1. For this very reason an intermediate
redistribution of matrices among processors is required not only in step 2 but
also upon proceeding from step 3 to step 5 (gradient computation).

2.1 Slice-Wise Propagation

The matrix matrix multiplication AB can most easily be split into jobs dis-
tributed to different cpus by taking say the rows a� of A separately as

AB = (a1; a2; . . . aN)B = (a1B; a2B; . . . ; aNB) . (2)

This scheme is readily extendible to k out of the M matrices in step 2 and 3 of the
grape-algorithm above (see Fig. 5(a)). However, each processor then refers to
k−1 matrices, which means that they have to be broadcasted in step 2 of figure
4. Also, the workspace required by each processor is of the order of O(M ·N2).
The time complexity in this straightforward scheme can easily be evaluated,
because the total number of operations is evenly distributed among the available
processors. So the order of operations is O(M · N3/p), where N := 2n denotes
the dimension of the matrix and p is the number of processors.

Moreover, here there are no stability concerns, as unitary matrices are known
to allow for numerically stable algorithms [26,27]: the computation of the product
of two unitary matrices is well-conditioned and this clearly extends to multiple
products in general. However, Section 2.2 will reveal this is not necessarily the
case in all other schemes.

For further acceleration some simplifying features can be used: step 4 of the
grape-algorithm, for instance, takes the trace Re tr{λ†HU}, where λ and U
are fully occupied, but H is a sparse matrix representation of the spin-control
Hamiltonian, which acts by permutation and scalar multiplication on the rows
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Fig. 6. Comparison of performance against system size with (a) 32 and (b) 64 parallel
processors under slicewise (—) and tree-like (- -) propagation. Note the difference in
broadcasting time (red lines). Steps 2-5 refer to the numberings as in Fig. 4.

of U . Thus, instead of two matrix-matrix multiplications λ†H and (λ†H)U , a
multiplication of λ† with a row-transformed U suffices.

As shown in Fig. 6, all these considerations result in valuable speed-ups for
quantum systems of up to 9 spin qubits. In larger systems, though, workspace
becomes limiting, as every processor requires M matrices. A way of compensation
would be to compute the exponential matrices on demand, i.e. at forward and
backward propagation respectively. However, this would be a really bad solution
because computing the exponential takes most of the computation time already.
Therefore system sizes beyond 9 spins cannot be computed with the slice-wise
propagation and require alternative methods as described next.

2.2 Tree-Like Propagation: The Parallel Prefix Algorithm

A different approach for computing the propagation is the parallel prefix algo-
rithm [28] depicted in Fig. 5(b). In general, it is applicable to arbitrary com-
binations of number of processors p and digitisation M . Yet in this article we
confine ourselves to p = M/2, which is also the maximum reasonable num-
ber for p. Our code performs forward and backward propagation simultaneously
thus increasing the overall number of processes to M . Under the assumption
that p = M/2, the computation time of the algorithm is O(log2 M ·N3). In con-
trast to slice-wise propagation, parallel prefix requires communication during the
propagation (red lines in Fig. 5(b)): they sum up to

∑log2 M
l=2 [Broadcast(N3, p =

2l−1) + (l − 1) · Send(N3)], provided the times for Broadcast and Send are not
influenced by other ongoing communication. Recalling the computation time of
O(M · N3/p) for the slice-wise propagation and assuming p = M/2, parallel
prefix should never be faster (neglecting effects like memory prefetching). Fig. 6
shows this is indeed true. On the other hand, parallel prefix does not require all
the matrices U(tk) in all processes, which eliminates the broadcast time prior
to the propagation step (see Fig. 4). It is this advantage that is large enough to
outweigh the slower propagation time.
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Even more important is yet another gain from this property: reduced memory
demand. In our current implementation the maximum number of matrices stored
at a single process is O(log2 M) [P0 produces one result in every level], which
is already much less than the O(M) of the slice-wise propagation. In case this
should be inacceptable, the number can be reduced to O(1) by implementing a
slightly different communication pattern from the one used here.

The stability of parallel prefix-matrix multiplication deserves a closer look
[29]: following Mathias [30], in the general case, this multiplication is numerically
unstable. He derives the following first-order upper bound to the error

∣∣ rd(U1 · · ·UM ) − (U1 · · ·UM )
∣∣ ≤ 2(N − 1) ε

M−1∑
k=1

|Bk| + O(ε2) , (3)

where |Bj | stands for the product of absolute values of the largest matrix ele-
ments within the factors Uk. However, with all these matrices being unitary in
our case, the same error estimate turns into the “well-behaved” form∣∣ rd(U1 · · ·UM ) − (U1 · · ·UM )

∣∣ ≤ 2(N − 1)Mε + O(ε2) . (4)

In coincidence with the linearity in M , we observed ||Utree − Ureg||2 increasing
linearly with the propagation step, where at k = M = 128, a value of 1.5 × 10−13

was reached in a nine-qubit system (not shown). This underpins the computation
is numerically stable for unitary matrices used in quantum dynamics.

3 Optimising Matrix Exponentials

Computing matrix exponentials numerically is a notoriously intricate problem
[31,32]. Here we compare the standard Padé-approximation with the generic qr-
approach and a symmetry-adapted qr-variant thus allowing optimised lapack
routines [33,34] to be employed. With controllable qubit systems permitting
pseudo-spin representations in terms of Pauli matrices, their Hamiltonian gen-
erators of the exponential map often show ‘persymmetry’ [26,35], i.e., a matrix
representation that is symmetric with respect to the anti-diagonal and which
may be induced by the Pauli matrices (vide infra). Defining JN as the N × N
reversal matrix (obtained by reversing the columns of the identity matrix), the
persymmetry of a matrix A is equivalent to the condition JNAJN = AT .

Lemma 1. (1) A (finite) Kronecker or tensor product of persymmetric matrices
is again persymmetric. (2) The same is true in the tensor product of an even
number 2r of matrices that are themselves ‘anti-persymmetric’ due to the sign
change JNAJN = −AT .

Proof. Assertion (1) simply follows from the fact that forming the tensor prod-
uct and taking the transpose with respect to the anti-diagonal commute. Part
(2) is due to the construction JN = J2 ⊗ J2 · · ·J2 ⊗ J2, since one finds
JN (A1 ⊗ · · · ⊗Ak)JN = (J2A1J2 ⊗ · · · ⊗ J2AkJ2) = (−1)2r(AT

1 ⊗ · · · ⊗AT
k ). �
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Remark. Let {σx, σy , σz} =
{
( 0 1

1 0 ) ,
(

0 −i
i 0

)
,
(

1 0
0 −1

)}
be the Pauli matrices. By

(2), the drift term comprises the persymmetric terms σz⊗σz+α(σx⊗σx+σy⊗σy)
for any real α, while the control terms are tensor products of the unit matrix
with σx, σy, which in turn are persymmetric by (1).

Moreover, we can write the Hamiltonian H in the form H = D + C with a
real diagonal matrix D and a multilevel matrix C of the recursive form C =
C1 ⊗ · · · ⊗ Cn with 2 × 2 matrices

Ck :=
(

0 γk

γ∗
k 0

)
. (5)

Each of the small matrices Ck can be transformed into a real circulant matrix by
the unitary diagonal matrix Vk := diag(1, γk/|γk|). Therefore, by the Kronecker
products of the small matrices Vk we can transform the entire matrix H to a
real symmetric persymmetric matrix H̃ of the form

H̃ =
(
A1 r1l
r1l A2

)
(6)

with real r, symmetric A1 and A2, and the identity matrix 1l. Now, the persym-
metry leads to the relation A2 = JA1J and thereby to the similarity transform(

1l 1l
J −J

)(
A1 r1l
r1l A2

)(
1l J
1l −J

)
=

(
A1 + A2 + 2r1l 0

0 A1 + A2 − 2r1l

)
. (7)

Consequently, the computation of the eigenvalues of H for the matrix exponential
exp(iτH) can be reduced to solving the same problem for two real matrices of
half the size. For the exponentials we have been using two different methods:

1. classical scaling and squaring algorithm based on the Padé approximation;
2. finding the eigendecomposition of persymmetric τH = UDU−1 for

exp(iτH) = exp(iUDU−1) = U exp(iD)U−1 = U diag
(
exp(i · dj)

)
U−1 ;

with H being hermitian, this method is numerically stable [31,32]; moreover,
using persymmetry, the eigendecomposition then reduces to real symmetric
matrices of just half the size.

The major disadvantage of the classical scaling and squaring method with full-
sized matrices can be circumvented by a series expansion instead of the Padé
approximation, because then only sparse matrix matrix products arise. Expand-
ing in terms of Chebychev polynomials is superior to a Taylor expansion [36,37].
Moreover, the error δ for approximating exp(iτH) by a Chebychev series with
m terms can asymptotically be estimated by the Bessel function of the first kind
|J(m, ||τH ||)| ≈ δ given the norm of the effective Hamiltonian ||τH ||. Thus one
can predict the number of steps required for a given accuracy. Unfortunately,
due to the control amplitudes sometimes ||τH || ≥ 100; then the Chebychev ex-
pansion only pays if low accuracy suffices. Yet in future code this approximation
will be included as an option for matrices of small norm or cases not demanding
high accuracy.
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Table 1. Contributions of Parallelised Matrix Operations to Overall Speed-up

Subroutine Fraction of cpu Time Weighted
with 1 cpu with 128 cpus Speed-up

maxStepSize 0.9 0.713 521
getGradient 0.091 0.287 52.6

expm 0.075 0.049 43.0
propagation 0.01 0.194 6.0
gradient 0.006 0.044 3.5

optimiseCG 1 1 576

4 Conclusions and Outlook

We have shown how using the potential parallelism inherent in coherent quan-
tum superpositions relies on methods of classical control theory in order to steer
the quantum systems. By the nature of quantum matrix mechanics, this re-
quires powerful matrix calculations backed by architecture-adapted redistribu-
tion (Fig. 4). Here we demonstrated a speed-up by more than a factor of 500
for a 10 spin system by way of various matrix-operation techniques (see Tab. 1):
slice-wise propagation is advantageous in systems up to 9 spin qubits, while
tree-like propagation pays for systems from 10 qubits onwards. Moreover, by
making use of the symmetry properties induced by the pseudo-spin structure of
controllable spin-qubit systems, faster matrix exponentials are feasible. To fur-
ther improve gradient-flow algorithms, sparse Hamiltonians will be exploited for
matrix multiplications along the lines of Ref. [38] or by using Strassen’s method.

By the current extensions, larger spin-qubit systems are in reach thus allow-
ing a broader numerical basis for deducing quantum computational complexity
measures. Related symmetry properties can be used in wider classes of quantum
systems therefore making the presented tools broadly applicable in quantum
technology and control. From a general point of view of numerics, the partial
problems of computing the exponential exp(iH) for a hermitian matrix H and
furthermore the task of evaluating a sequence of products of unitary matrices
are of broader interest and important far beyond the grape-algorithm. Here,
the special case of unitary matrices may lead to improved stability and allow
algorithms that are fast but usually known to be unstable or only weakly stable.
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Topic 11: Distributed and High-Performance

Multimedia

Geoff Coulson, Harald Kosch, Odej Kao, and Frank Seinstra

Topic Chairs

It is increasingly common for information - whether it be scientific, industrial,
or otherwise - to be composed of multiple media items, e.g., video-based, image-
based, linguistic, or auditory items. As digital video may produce over 100
Mbytes of data per second, and image sets routinely require Terabytes of stor-
age space, traditional resource management techniques in both end-systems and
networks are rapidly becoming bottlenecks in the handling of such information.
Moreover, in emerging multimedia applications, the generation, processing, stor-
age, indexing, querying, retrieval, delivery, shielding, and visualization of multi-
media content are fundamentally intertwined processes, all taking place at the
same time and - potentially - in different administrative domains.

As a result of these trends, a range of novel and challenging research questions
arise, which can be answered only by applying techniques from the parallel, dis-
tributed, and Grid computing fields. The scope of this topic therefore embraces
issues from high-performance processing, coding, indexing, and retrieval of mul-
timedia data over parallel architectures for multimedia servers, databases and
information systems, up to highly distributed architectures in heterogeneous,
wired and wireless networks.

This year 7 papers were submitted to this topic area. We thank all the authors
for their submissions. All the papers were reviewed by 4 referees, and 4 papers
were ultimately selected (although unfortunately one paper was subsequently
withdrawn, leaving 3 papers to be presented). The quality of the submissions
was extremely high. In the resulting session you will find two particularly dis-
tinguished papers each of which was in the best 10 papers conference-wide.
These are: “Supporting Reconfigurable Parallel Multimedia Applications”, and
“Providing VCR in a Distributed Client Collaborative Multicast Video Deliv-
ery Scheme”. Our third paper, which was also highly rated, is entitled: “Linear
Hashtable Predicted Hexagonal Motion Estimation Algorithm for Parallel Video
Processing”.
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Abstract. Programming multimedia applications for System-on-Chip (SoC) ar-
chitectures is difficult because streaming communication, user event handling, re-
configuration, and parallelism have to be dealt with. We present Hinch, a runtime
system for multimedia applications, that efficiently exploits parallelism by run-
ning the application in a dataflow style. The application has to be implemented as
components that communicate using streams. Reconfigurability is supported by
a generic component interface. Measurements have been performed on a Space-
Cake SoC architecture simulator. Hinch can easily be ported to other shared-
memory architectures.

1 Introduction

The problem we address in this paper is the complexity of programming embedded
System-on-Chip (SoC) architectures with multiple processing units operating in paral-
lel. These architectures are becoming more and more popular in the field of consumer
electronics, especially in the area of multimedia applications. This trend, which is al-
ready visible, is likely to become even more important in the future for several rea-
sons. First, media applications increasingly require complex processing, for example
new coding algorithms and dynamic picture-in-picture. Second, the processing is ap-
plied to increasing amounts of data per time-unit, such as multichannel HDTV. Third,
media applications often exhibit much potential parallelism. Fourth, hardware vendors
have already opted for multi-core processors as the key to speed, partly because it is
hard to crank up clock speeds at the same rate as in the past (e.g., Cell[1], Network
processors[2], Xeon, and Opteron). Unfortunately, programming such parallel hardware
is challenging and very much an open research problem.

In this paper, we present a solution that facilitates application development for SoC
architectures. While our target domain includes a broad range of applications, we fo-
cus our examples and discussion on TV sets, for ease of explanation. The SpaceCake
SoC architecture[3], developed by Philips, is used as the experimentation platform. For
testing purposes, the applications can also run natively on Linux.

By careful observation of several applications, we obtained a core set of properties
that a multimedia run time system should cater for. We used these properties to derive
requirements for our system. Our system, named Hinch, exploits the following proper-
ties of typical multimedia applications:

1. The application consists of several kernels that perform a specific operation, such as
motion estimation. To manage large numbers of kernels, we should be able to group

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 765–776, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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them into components, which in turn can be grouped into higher-level components.
The resulting application will be organized hierarchically like a tree with kernels at
the leaf nodes.

2. The configuration of kernels changes as a result of asynchronous user inputs and
other events. For example, by pressing a button a user may add a picture-in-picture
to the television screen. Hinch supports events and allows the kernel configuration
to change at run time. As we typically do not want to stop the complete applica-
tion as reconfiguration occurs, we allow subtrees in the tree-based hierarchy to be
reconfigured without interfering with user experience.

3. Individual nodes in the tree communicate either via streaming channels (e.g., a
motion estimator kernel calculates motion vectors that are used by a motion com-
pensated de-interlacer kernel), or via events (e.g., a component sends an event that
a sub-program has started). Hinch supports both streaming and events.

4. Multimedia applications exhibit both task- and data-parallelism. Hinch is able to
map the tree-based component hierarchy on hardware such that both forms of par-
allelism are exploited. For task parallelism this implies that different kernels are
mapped on different functional units. For data parallelism, multiple instances of a
kernel have to run concurrently.

While it is well known how to support the individual properties, to the best of our
knowledge, Hinch is the first system that supports all, while greatly simplifying the
SoC programmers’ task. Moreover, measurements show Hinch incurs only little over-
head and achieves a parallelization efficiency of about 95 % with 9 processors. The
major difficulties we encounter are combining task- and data-parallelism[4], support-
ing dynamic reconfiguration and handling asynchronous events. Hinch can be used as
a lower layer in a programming environment for building multimedia applications. We
plan to combine Hinch with higher level layers such as SPC-XML[5].

The remainder of this paper is organized as follows. In Section 2 we will explain
reconfigurability requirements. In Section 3 we will describe the design of Hinch. In
Section 4 we will show the results of using Hinch on the SpaceCake architecture. Re-
lated work is discussed in Section 5. Finally, the paper is concluded in Section 6.

2 Reconfigurability

Many multimedia applications need support for reconfiguration. This can be due to
user input (e.g., the user wants to add a picture-in-picture), or to available resources
(e.g., scaling down quality when less bandwidth is available). Reconfiguration can be
performed by adjusting parameters of application components (component reconfigu-
ration) or by adding and removing components while the application is running (appli-
cation reconfiguration). In this section, we give two examples of reconfigurable appli-
cations. Both applications are used for the experiments described in Section 4.

2.1 Add/Remove Components

In a dynamic Picture-In-Picture (PiP) application, the user can add or remove small
subpictures (of different TV channels) on the screen. The structure of this application is
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shown in Fig. 1. The downscale components reduce the size of their inputs and the blend
component merges the downscaled images into the main background image. When a
picture is added, input and downscale components are created and connected to the
blender. The blender is then notified that it has to blend one more picture into its output.
When a picture is deleted, the blender is notified, the connection to the blender is re-
moved and the picture-in-picture input and downscale components are destroyed. The
notifications to the blender are an example of component reconfiguration.

Main Input

Blend Output
DownscalePiP Input

Fig. 1. Picture-in-Picture application

2.2 Replace Components

Temporal upscaling (increasing the frame rate) of a movie can be done at different
quality levels that have different computation requirements. A trivial temporal upscaler
simply copies existing images to create new images. An advanced temporal up scaler
can perform motion estimation and use the motion vectors to compute the new
images.

We have created an application (’Tups’) that performs temporal upscaling of an im-
age sequence by a given factor. Copy mode and motion estimation mode are both sup-
ported. The application layout for both modes is shown in Fig. 2. The application can
dynamically switch between the two modes by replacing the middle component, for
instance depending on available resources.

Estimator
Motion

Upscaler
Motion−aware

Output

Input

Copier

Output

Input

(a) (b)

Fig. 2. Tups application: copy mode (a) and motion estimation mode (b)
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3 Run Time System

In this section we explain the design of Hinch and the model for applications that use it.
Hinch, as well as the applications that use it, are written in C. Hinch consists of several
modules that provide functionality to the application and/or to other Hinch modules.
These modules are also described below.

3.1 Application Layout

A Hinch application consists of components that are actors in a dataflow process net-
work[6]. The application is run by executing iterations of the dataflow graph, in which
each actor is fired one or more times. One firing corresponds to running one iteration
of the component. A graph iteration begins by scheduling the initial component(s). The
other components are scheduled as soon as their predecessors in the dataflow graph
have finished. There is no restriction on the shape of the dataflow graph. For a video
processing application, the components typically contain image processing kernels. One
iteration then consists of processing one image frame from the video stream.

Dataflow graphs can be nested using special grouping components. Grouping com-
ponents contain child components and connect these into a dataflow graph. When an
iteration of a grouping component is run, an iteration of the dataflow graph inside the
grouping component is run. When this ’inner’ iteration has finished, the successors of
the grouping component in the higher level dataflow graph are scheduled.

All components have a generic interface, which provides an abstraction of the com-
ponent. This interface contains functions to create, configure and destroy instances of
the component, to get its properties, and to run an iteration of the component. A group-
ing component has extra functions to add, remove, replace, and (dis)connect its con-
tained children. All functions except the run function are used to configure the appli-
cation, at the start of the application. An application can also be reconfigured at run
time using these functions. The connections between children correspond to dataflow
dependencies. Connections can also include a data stream, as will be explained in the
next subsection.

A central job queue in shared memory is used to accomplish automatic load balanc-
ing. To enable usage of Hinch on distributed memory machines, we plan to scale the job
queue to a distributed version using the algorithms of [7]. A parallel program consists of
multiple threads that continuously execute jobs from the queue, and add new jobs to the
queue that are ready to run. We avoid expensive context switches by running a single
thread per processor. A job in Hinch consists of running an iteration of a component.
When a job has finished, the dataflow graph is used to find the successors of this job.
These are added to the job queue if they are ready to be run.

To build a parallel program, the programmer only has to build components, specify
the connections between these components, and call some initialization routines. Using
the job queue, Hinch makes sure that the program runs in parallel. We plan to add an
XML layer on top of Hinch for specifying the component connections. This XML layer
can then also be used for performance prediction using PAM-SoC[8].
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The Hinch application model resembles that of Koala[9]. A Hinch component iter-
ation corresponds to the execution of a Koala task. As in Koala, Hinch components
can only be coupled if their interfaces match and components can be grouped recur-
sively.

3.2 Streams

Components can communicate in a streaming fashion using a stream module. This mod-
ules provides similar streaming functions as the StreamIt[10] language and a commu-
nication abstraction similar to Space-Time Memory[11]. A component does not know
with whom it is communicating. It merely has to read and write the appropriate streams,
which are parameters to the run function. This way, a component can easily be reused
in another part of the application or in a different application.

Streams are implemented using an efficient zero-copy protocol. The producer can
write to the stream after allocating a write buffer. When it is finished writing, it com-
mits the buffer. The consumer can then read the data from the same buffer. The zero-
copy protocol is only possible at shared memory machines. For distributed memory
machines, a different implementation must be used.

Multicast streams are also supported by Hinch. These streams are shared by multiple
dataflow connections. There is also support for reading a fixed amount of old data,
which has been used in previous iterations, from the stream. This is similar to the peek
functionality in StreamIt[10].

3.3 Task Parallelism

Task parallelism is supported by Hinch in two ways, as shown in Fig. 3. The circles in-
dicate components, and the arrows indicate connections between them. We assume one
iteration of the application processes one image frame using multiple image process-
ing components. The first type of task parallelism is running multiple iterations con-
currently in a pipeline style. When component A has finished frame 1, A could be
processing frame 2 while B is processing frame 1. The second type of task parallelism
is running independent tasks concurrently. Components V and W have no dependency
so they can be concurrently active in the same iteration. Both types of task parallelism
can be combined. For example, if V and W both have finished frame 2 they can start
processing frame 3 while X is processing frame 2.

U
V

W
X

(b)

A B C

(a)

Fig. 3. Task parallelism. Pipeline-style (a) and independent tasks (b)
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3.4 Data Parallelism

Normally, a component iteration processes the data it gets by reading its input streams
once (say one image frame). However, often this processing can be done in parallel, in
which case a component iteration consists of processing a slice (multiple lines) instead
of a frame. Hinch has slicing helper functions for components, which contain common
code needed to code slicing. These functions tell the component which slice of which
frame is to be processed, do the appropriate stream reading and writing, and handle
out-of-order execution of sliced iterations. By using these functions, exploiting data
parallelism becomes easy.

One might argue that data parallelism can also be obtained by reducing the stream
granularity from a frame to a slice. However, processing a slice usually requires the
data in the previous and next slice for the pixels at the boundary, for example with
convolution kernels. Programming a component is more difficult in this case because
boundary conditions have to be dealt with. In our approach, this is not necessary since
the whole frame is in a continuous memory area.

3.5 Reconfiguration and Event Handling

Reconfigurability is supported by the general component interface. Components can
be dynamically created, destroyed, grouped, and connected at run time. To avoid race
conditions, the application parts that are to be reconfigured are made idle before recon-
figurating.

The replace function in the grouping component interface can replace a child com-
ponent by a component that has the same I/O interface. Without the replace function,
this has to be accomplished by removing all connections to the old child, removing the
child, adding the new child, and creating the connections to the new child. With the
replace function, removing and creating the connections is not necessary because the
new child has the same interface.

Asynchronous events can easily be handled by buffering them in an event queue, as
shown in Fig. 4. The event queue is periodically emptied by the manager component,
which is run at the end of every iteration. It regulates the number of concurrent active
iterations in the application using the control flow connection to the start of the appli-
cation. The manager component can halt the program for reconfiguration by lowering
the number of active iterations to zero.

ManagerApplication

control flow

async event Event queue
event

Fig. 4. Event queue (Application overview)
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4 Experiments

To verify the usefulness of Hinch, we measured parallelization efficiency and reconfig-
urability overhead for the picture-in-picture (PiP) and temporal up scaler (Tups) appli-
cations. The temporal up scaler doubles the amount of image frames in its input stream
by inserting a new image frame after each image. All measurements were done using
720x576 video files. I/O (reading the files and writing the final result) is not included in
the measurements.

Since SpaceCake[3] hardware is not yet available, all experiments are run using sim-
ulation software, which simulates a tile with multiple TriMedia cores. A TriMedia is
a VLIW processor aimed at multimedia applications. At a tile, each TriMedia has its
own level 1 cache. The level 2 cache is shared between all TriMedias. The SpaceCake
architecture allows multiple tiles to be combined. We plan to add support for multiple
tiles in the future.

The TriMedia cycle counter is used for all measurements. For the experiments on
a single processor, we turned off all inter-processor synchronization, e.g., locking of
shared variables. All other measurements use a parallel version. The number of slices
is set to 4 for the picture-in-picture applications and 9 for the temporal up scaling ap-
plications. These settings yielded the best results.

4.1 Parallelism

Figure 5 shows the speedup of processing 96 image frames with four variants of the PiP
application. These variants (PiP-0, PiP-1, PiP-2 and PiP-3) process zero, one, two, and
three pictures-in-picture, respectively. PiP-0 does not exhibit much speedup because it
is a trivial application that merely copies its input to its output. However, the speedup
stays constant when run at a larger number of nodes, which shows that the overhead of
Hinch does not increase with the number of nodes. PiP-1 reaches maximum speedup at
8 nodes. There is no more parallelism to exploit when PiP-1 is run at 9 nodes.

Figure 6 shows the speedup of the Tups application in copy mode (tups-copy), mo-
tion estimation mode (tups-me), and in a reconfigurable mode (tups-reconf). Tups-copy
creates the newly inserted images by copying the previous image. Tups-me generates
the newly inserted images from the two adjacent images using motion estimation tech-
niques. Tups-reconf is a mixture of tups-copy and tups-me and will be explained in the
next subsection. These applications process 68 image frames. Again, the trivial appli-
cation (tups-copy) does not exhibit a good speedup and its speedup stays constant when
run at a larger number of nodes.

Both Fig. 5 and Fig. 6 show that Hinch provides the means to efficiently parallelize
these multimedia applications. At nine nodes, the efficiency of PiP-2 and tups-me are
94,2 % and 95,8 %, respectively.

4.2 Reconfigurability

We have created four reconfigurable applications. Three of these are variants of the PiP
application, the other is a variant of the Tups application. These applications process an
equal amount of frames as their non-reconfigurable counterparts. The four variants are:
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Fig. 5. PiP application speedup
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Fig. 6. Tups application speedup

1. PiP-01. Half of the frames have no pictures-in-picture, the other half have one
picture-in-picture.

2. PiP-12. Half of the frames has one picture-in-picture, the other half has two pic-
tures-in-picture.

3. PiP-012. One third of the frames has no pictures-in-picture, one third has one
picture-in-picture, and one third has two pictures-in-picture.

4. Tups-reconf. Half of the generated frames is generated in copy-mode. For the other
half motion-estimation mode is used.

All reconfigurations are matched by their inverse to cancel out latency differences.
Because we are interested in average reconfiguration latency, multiple reconfiguration
pairs are performed at regular intervals. The PiP variants perform eight reconfigurations
in total. Tups-reconf performs four reconfigurations.

Overhead. To measure reconfigurability overhead, we compared the run time of these
applications to the run time of equivalent static applications. For example, the run time
of PiP-01 is compared to the average run time of PiP-0 and PiP-1.

Figure 7 shows the overhead of the reconfigurable applications using one to eight
processors. We have omitted measurements at 9 processors due to the result of PiP-1
at 9 processors. (PiP-1 does not scale beyond 8 processors, and all PiP overheads are
(partly) based on the performance of PiP-1.) An overhead factor of 1.01 means the
reconfigurable program is 1 percent slower than the corresponding static applications.

Although reconfiguration occurs very often (once every 12 frames for the PiP appli-
cations, once every 17 frame for Tups-reconf), the overhead is at most 8 %. When the
application is stopped for reconfiguration, the amount of parallelism in the application
drops until the application is run sequentially. Thus, on average there is less parallelism
to exploit in the reconfigurable applications and the reconfigurable applications will
perform relatively worse on larger numbers of nodes. This causes the reconfigurability
overhead to increase with the number of nodes, which is is clearly visible in Fig. 7.
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Latency. We have measured the latency of reconfigurations. This is the time between
the occurrence of the asynchronous event and the completion of the reconfiguration. The
latency includes waiting until the application is idle and performing the reconfiguration.

Figure 8 shows the average reconfiguration latency. Because anomalies occur at 1
and 2 nodes, we have not included measurements at 1 and 2 nodes. These anomalies
occur when the event is generated just before or after many computations. For example,
in a sequential application it can happen that all active iterations are about to start the
manager (see Fig. 4). When an event occurs at this point, there are no computation jobs
in the job queue (only small manager jobs) and the application quickly becomes idle.
On the other hand, latency will be high if many computation jobs have been scheduled
when the event occurs. When the applications are run at higher number of nodes this
effect becomes less visible and the average latency goes to 40 ms which is a single
image frame in a 25 Hz video stream.

The individual latency measurements show that the latency depends on the complex-
ity of the program before reconfiguration. This is because the complexity determines
the (average) number of outstanding computations and thereby the time before the ap-
plication is idle. For example, in the Tups-reconf application, the latency of going from
copy-mode to motion-estimation mode is 10 ms (at 3 or more nodes). The latency of
going from motion-estimation mode to copy-mode varies between 56 and 85 ms at 3 or
more nodes.
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5 Related Work

There are many other systems that simplify programming multimedia applications for
embedded architectures by providing abstractions. Often these systems include hard-
ware design. Some systems mainly focus on hardware design, like Cheops[12] and
Imagine[13].

At Philips Research many of these systems have been developed, e.g., TTL[14],
YAPI[15] and C-HEAP[16]. These systems model an application as a Kahn Process
Network (KPN)[17], which is a number of independent tasks that communicate using
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FIFO channels. These tasks and FIFO channels can be implemented in hardware or
software, using shared or distributed memory. Task parallelism is supported this way,
however, data parallelism is not. Load balancing is mostly done statically by mapping
the tasks to fixed resources. C-HEAP has the most advanced reconfiguration support of
these systems.

The SmartCam project[18] aims at simplifying building image processing applica-
tions for use in smart camera’s. Skeletons[19] are used to provide an implementation
abstraction and to exploit data parallelism. Tasks can be mapped on different hardware
in different (heterogeneous) hardware architectures. Memory is distributed in these
architectures. Unlike Hinch, SmartCam does not do reconfiguration or dynamic task
scheduling. User events are absent in the SmartCam application domain.

The Model Integrated Real-Time Imagine Processing System[20] is a programming
environment for building image processing applications, which are run on a network of
DSPs. MIRTIS generates a parallel image processing application from sequential kernel
code, data dependencies and the application graph. The generated application includes
a run time system for a distributed computing platform. MIRTIS supports both data and
task parallelism. The mapping of the application to the parallel hardware is done stati-
cally. Dynamic load balancing and runtime reconfiguration are therefore not supported.
User events do not occur in the applications MIRTIS supports. MIRTIS deliberately
does not have support for (designing) specialized hardware.

The Nizza framework[21] has a similar structure as Hinch. It also processes stream-
ing multimedia applications in dataflow-style, allowing task parallelism. Data paral-
lelism can be exploited using ’combinatorial’ modules. The application can stop Nizza
if it wants to perform reconfiguration and restart Nizza afterwards. Unlike Hinch, Nizza
targets desktop applications instead of embedded applications. Therefore, Nizza does
not have support for (designing) specialized hardware and distributed memory. To our
knowledge, Nizza does not support handling user events.

Various projects are dealing with programming SoC architectures in the domain of
network processing. Among these projects are NP-Click[22], NEPAL[23], Shangri-
La[24], the system described in [25], and Netbind [26]. Like multimedia applications,
network processing applications also process streams of data (network packets) by mul-
tiple kernels. However, these kernels are much smaller than multimedia kernels. To
exploit this fine grained parallelism, the systems cooperate closely with the hardware.

Table 1 provides a summary of the features of the mentioned multimedia program-
ming systems and Hinch. The first two columns indicate the presence of support for

Table 1. Comparison of related work. ‘+’ = excellent support, ‘o’ = supported, ‘-’ = bad / no
support, ‘N/A’ = not applicable

Feature Task par. Data par. Load balancing Dist. mem Reconfigurability Events Hardware
C-HEAP + - o o + o o
SmartCam + + o o - N/A o
MIRTIS + + o o - N/A -
Nizza + o + - o - -
Hinch + + + - + + -
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task- and data-parallelism, respectively. The load balancing column indicates the qual-
ity of the load balancing features of the system. The Dist. mem column indicates if the
system targets distributed memory architectures. A ‘-’ in this column means the sys-
tem targets shared memory architectures. The events column indicates if the system has
support for handling asynchronous user events. Finally, the hardware column shows if
the system has support for specialized acceleration hardware in the target architecture.
Table 1 shows that distributed memory and special hardware are currently not supported
by Hinch. We plan to include support for this in the future.

6 Conclusion

We have presented Hinch, a runtime system for multimedia applications. Hinch has
support for streaming, event handling, reconfiguration, data parallelism and task paral-
lelism, amongst others. Hinch also provides automatic load balancing of the application
when run on a shared-memory architecture, by running the application in a data-flow
style. Experiments show that applications using Hinch can be efficiently parallelized
and the overhead of reconfigurating a running program is low.

Future work includes building a layer on top of Hinch that provides a simple in-
terface for specifying multimedia applications. This layer will automatically generate
optimized applications that use Hinch. We plan to include performance prediction in
this layer. Other future work tracks are adding support for specialized hardware and
more complex memory architectures, such as multiple SoC tiles.
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Abstract. In order to design a high scalable video delivery technol-
ogy for VoD systems, two representative solutions have been developed:
multicast and P2P. Each of them has limitations when it has to imple-
ment VCR interactions to offer true-VoD services. With multicast de-
livery schemes, part of system resources has to be exclusively allocated
in order to implement VCR operations, therefore the initial VoD sys-
tem performance is considerably reduced. The P2P technology is able
to decentralize the video delivery process among all the clients. How-
ever, P2P solutions are for video streaming systems in Internet and do
not implement VCR interactivity. Therefore, P2P solutions are not suit-
able for true-VoD systems. In this paper, we propose the design of VCR
mechanisms for a P2P multicast delivery scheme. The new mechanisms
coordinate all the clients to implement the VCR operations using mul-
ticast communications. We compared our design with previous schemes
and the results show that our approach is able to reduce the resource
requirements by up to 16%.

1 Introduction

Recent advances in high-performance network and video codification technology
have made it feasible for the Video on Demand (VoD) server to implement the
interaction capabilities of a classic Video Cassette Recorder (VCR), offering the
true-VoD service. However, VCR interactions, such as pause or fast forward,
increase the resource requirements in the delivery process and reduce the VoD
system performance.

Certain researchers have proposed delivery policies that take advantage of the
multicast feature. A multicast scheme allows clients to share delivery channels
and decrease the server and network resource requirements. Patching multicast
policy [3], for example, dynamically assigns clients to join on-going multicast
channels and patches the missing portion of video with a unicast channel. The
disadvantage of a multicast solution is the complexity of implementing interac-
tive operations, because there is not a dedicated channel per client.
� This work was supported by the MCyT-Spain under contract TIC 2004-03388.
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In [2], the authors introduce techniques to implement jump operations. The
techniques are able to join the client with another on-going multicast channel (B-
Channels), after a jump operation. The B-Channel has to be delivering the de-
sired new playback point of the client. Emergency channels (I-Channels) are used
in case no such B-Channel exists. Split and Merge (SAM) in [7], is a protocol
to merge I-Channels with B-Channels, reducing the cost of a VCR operation.
In SAM, the merge process is performed by synchronized buffers that are stat-
ically allocated in the central access nodes. The centralized buffer management
of SAM is not scalable (the VCR request blocking probability grows linearly
in accordance with the VCR frequency). In [1], the authors decentralize buffer
among clients to reducing the merging time and the VCR operation resource
requirements. In [4], the authors analyze the optimal number of I-Channels that
a multicast VoD system has to allocate in order to implement VCR operations.
Despite the fact that multicast policies are able to offer true-VoD with VCR,
part of the server resource is, exclusively, allocated for VCR interactions. Con-
sequently, VCR operations considerably reduce the system global performance.

Most recently, the peer-to-peer (P2P) paradigm has been proposed to decen-
tralize the delivery process to all clients. Delivery schemes like Chaining, Di-
rectStream o P2Cast [6] are the most representatives. In these schemes, clients
cache the most recently received video information in the buffer and forward
it to the next clients using unicast channels. Other P2P architectures such as
CoopNet and PROMISE[5] assumes that a single sender does not have enough
outbound-bandwidth to send one video and use n senders to aggregate the neces-
sary bandwidth. All previous P2P schemes use unicast communications between
clients producing a high network overhead. Furthermore, since a client just sends
data to only one client, the unicast P2P schemes achieve poor client collaboration
efficiency. In [9], we proposed a P2P delivery scheme, called DDCM. In DDCM,
each client (one peer) is able to send video information to a set of m clients using
only one multicast channel. Furthermore, the DDCM is able to synchronize a
set of clients (n peers) to create one collaboration group to replace the server
in order to send video information to m peers, providing a collaboration mecha-
nism from n-peers to m-peers. In [10], the collaboration mechanisms of DDCM
are incorporated in a distributed VoD architecture with multiple service nodes.
Each service node is able to create an independent P2P system to extend the
global scalability.

In this paper, we propose mechanisms to implement VCR operations in the
DDCM scheme. In our design, any client actively collaborates with the server to
implement the join-back process of VCR operations. The new mechanisms are
able to create local channels to send different playback points of one video. The
jump operations could be implemented by the local channels without requiring
the server resource. In a pause operation, a client extends the service time and,
consequently it also extends the collaboration time. The mechanisms are able
take advantage of pause operations to increase the client collaboration efficiency
and reduce the system resource requirement. The reduced resource requirement
by pause operations is used implement fast-forward and reverse operations.
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In our study, we evaluated DDCM performance with new VCR mechanisms,
compared with Patching policy. With a normal VOD system workload and with
new VCR mechanisms, the experimental results show our approach is able to
reduce the requirement up to 16%.

The remainder of this paper is organized as follows: we dedicate the section 2
to show the key ideas behind our VCR operation mechanisms. Performance
evaluation is shown in section 3. In section 4, we indicate the main conclusions
of our results and future studies.

2 P2P VoD Architecture to Provide VCR Operations

Our VoD architecture is based on multicast communications and client collab-
orations that decentralize the video information delivery process. Our design
is not a server-less P2P architecture; the server has every video in the service
catalogue. The server is responsible for establishing every client collaboration
process. The collaboration scheme is designed as two policies: Patch Collabora-
tion Manager (PCM) and Multicast Channel Distributed Branching (MCDB).
The objective of PCM is to create multicast channels to service groups of clients,
and allows clients to collaborate with the server in the delivery of portions of
video. The objective of MCDB, however, is to establish a group of clients to
eliminate on-going multicast channels that have been created by PCM.

In the explanation, we assume that video is encoded with a Constant Bit-
Rate (CBR). The video information is delivered with invariable size network
packets and a video is composed by L video blocks. Furthermore, we assume
that each client has local buffers to cache a limited number of video blocks.

Different VCR operations, such as slow motion, are considered in [1], but
we concentrate our explanation on jump forward, jump backward, fast forward,
fast reverse and pause which are the most typical VCR operations. We will first
explain the jump operation and then we will comment on other VCR opera-
tions that could be implemented with jumps. The explanation of our new VCR
mechanisms consists of 4 points. We dedicate first two points (Section 2.1 and
2.2) to overview the client collaboration mechanism, third point to presenting
details about the jump operation and the last point to discuss remaining VCR
operations.

2.1 New Client Admission by PCM

Fig.1a shows the main idea of PCM. When the server is sending video block
3 to the channel Ch3, the client (C4) sends a control message to the server,
indicating the video of interest and the size of the local buffer. The PCM tries to
find an on-going multicast channel that is sending the requested video to service
the client. Only on-going multicast channels (Ch3) with offset (O(C3h)) smaller
than client-buffer size could be used to service the client request. The O(Ch3) of
channel Ch3 is the number of the video block that the channel Ch3 is currently
sending. The multicast channel is called Complete Stream. The client will not
receive the first portion of the video from the Complete Stream, since these
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Fig. 1. a) PCM Collaboration Process. b)MCDB Collaboration Process.

video blocks (1, 2 and 3) have already been delivered by the server; therefore the
server needs another channel to send the first portion of the video (the channel
is called Patch Stream). In order to create the Patch Stream, the server finds a
collaborator and requests the client’s collaboration. The collaborator(C3) has to
have the desired video blocks and enough bandwidth to create the Patch Stream.
If there is no any available collaborator, the server creates the Patch Stream
using server resources. Finally, the client joins the Complete Stream, establishes
communication with the collaborator and starts receiving video blocks.

In the establishment of client collaboration by PCM, the policy needs informa-
tion about clients’ availability for collaboration. In our design, the server uses
a table structure (Collaborator Table) to register the information about video
blocks that are cached by each client in its buffer. Each client is responsible
for announcing their availability to collaborate with server. The announcement
message is sent only once after the client admission or after a VCR operation;
the network overhead is therefore negligible.

2.2 Branching Process of MCDB Policy

Fig.1b shows the main idea behind the MCDB. The MCDB periodically checks
the Collaborator Table in order to find out if there are enough collaborators to
replace some on-going multicast channels. Every channel having another channel
that is sending the same video, but with a larger offset, is a candidate to be
replaced by MCDB. The MCDB replaces an on-going multicast channel (Ch2)
with a local multicast channel Ch2. In order to create the local channel, a group
of collaborative clients are synchronized to cache video blocks from another
multicasting channel (Ch1). The cached blocks are delivered by the collaborative
clients to generate the channel Ch2. When Ch2 is replaced by Ch2, we say that
Ch2 is branched from Ch1 and Ch2 is a branch-channel of Ch1.
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Fig. 2. Jump Operation: Serviced by a) the Client Buffer. b) by PCM. c) by MCDB.

In the example of Fig.1b, we have two channels (Ch1 and Ch2) that are
separated by a gap of 2 video blocks1. In order to replace channel Ch2, MCDB
selects clients C1 and C2 to create a group of collaborators. Clients C1 and C2
are both able to cache 2 blocks and a total of 4 video blocks can be cached by
these two collaborators. The C1 caches every block of Ch1 whose block-number
is 4i+ 1 or 4i+ 2, being i = [0..L/4− 1]. For example, C1 has to cache blocks 1,
2, 5, 6 and so on. C2 caches every block of Ch1 whose block-number is 4i+ 3 or
4i+4 (3, 4, 7, 8 and so on). All the cached blocks have to be in the collaborator’s
buffer for a period of time. In this case, the period of time is the playback time
of 2 video-blocks. After the period of time, the cached blocks are delivered to
channel Ch2 which is used to replace Ch2. It is not difficult to see that the
MCDB is able to create multiple local multicast channels with different offsets
to collaborate the delivery process of several points of a video. In the case of
Fig.1b, the offset of the local multicast channels (Ch2) is 2 video-blocks lower
than Ch1’s.

In the branching process, two parameters are determined by the MCDB: 1)
The client collaboration buffer size (BCi). It is the buffer size of client Ci used
by MCDB. 2) Accumulated buffer size (BL) is the total size of the collaborative
buffer (

∑
Ci∈CG BCi , being CG the group of clients). The value of these two

parameters is determined by MCDB under 2 constraints: a) A client cannot use
more buffer than it has. b) A client only uses one channel in the collaboration
process. For more details, see [9].

2.3 Jump Forward/Backward Operation

The Fig.2a shows how the server delivers minute 30 of a video with a multicast
channel (Ch1). The branch-channel (Ch2) is created by MCDB and is delivering

1 The separation or gap (G(Ch2, Ch1)) between two channels is calculated as
O(Ch1) − O(Ch2), being O(Ch1) ≥ O(Ch2).
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minute 20 of the video. The local multicast channel (Ch3) is branched from Ch2.
There are 3 situations depending on the new playback position after a jump.

Situation 1: The client wants to jump to a position whose information is
already in the client buffer. In Fig.2a, client C1 is receiving information from
Ch2 and has cached video information from 17 to 20 in the buffer. Client C1
is playing minute 17 when it performs a jump forward operation to minute 19.
In this case, the video information in the buffer is enough to perform the jump
operation. The client skips minute 17 and 18 and immediately starts playing
minute 19.

Situation 2: In this case, the information in the buffer is not able to perform
the jump operation, so the client contacts with the server and the server uses the
PCM policy to service the jump operation. The PCM policy finds an on-going
multicast channel in which the offset is bigger than the new playback point, and
finds a collaborator to send the Patch Stream. Fig.2b shows the delivery process
after the jump forward operation of C2 to minute 27. In this example, the client
will join multicast Ch1 to receive information from minute 30. A collaborator
will send the video of minute 27, 28 and 29. If the server is not able to find a
collaborator, the server creates a unicast channel to deliver the Patch Stream.

Situation 3: In this case, the PCM policy is not able to service the client
with a new playback position. The server opens a new multicast channel to send
the video information and triggers the MCDB policy. The MCDB policy forms
a new collaborative group and the new multicast channel will finally be replaced
by a local branch-channel. Fig.2c shows C3’s jump backward action to minute 12.
Notice that the PCM is not able to service the jump action because we assumed
that C3 is not able to cache more than 5 minutes of video.

In three situations, a client could need the portion of buffer that is currently
collaborating with the server. In such a case, the client notifies the server and
stops the collaboration. Furthermore, if the buffer is not completely used in the
VCR operation, the client starts caching the video information from the new
playback point. Once the buffer is filled, the client sends a control message to
the server to announce the new collaborative buffer capacity.

2.4 Pause and Fast Forward/Reverse Operations

The behaviour of the pause operation is quite similar to a jump. In this case,
the new playback position is determined by the time that the client makes the
pause. During a pause, the client continues buffering the video information. If
the client is collaborating with the server, the client stops the collaboration and
use all the buffer to cache more video information. However, the client-buffer
could eventually overflow. In such a situation, the client temporarily stops the
service. After the pause operation, the client consumes all the video blocks in
the local buffer and then performs a jump action to the point where the video
information is no longer in the local buffer. The jump action is then managed
as a normal jump operation.

In order to implement fast forward and reverse, we assume that the server has
a VCR-version for each video. The VCR-version of a video requires the same
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bit-rate as a normal video but with a shorter playback time and lower frame
rate. In the case of fast reverse, the video is encoded in the reverse order. The
advantage of this technique is its flexibility to implement any speed of fast play-
back and it does not need more client network incoming bandwidth. However,
it has more storage requirements. When a client issues a fast forward, the client
contacts with the server to start the delivery process of the VCR-version of the
video. After the VCR operation, the new playback point of the normal video is
calculated and the client issues a jump operation.

3 Performance Evaluation

In this section, we show the simulation results. We have designed and imple-
mented an object-oriented VoD simulator. Patching and PCM+MCDB with
new VCR mechanisms are incorporated in the simulator that is also used in [10].
The experimental study, we evaluated VCR operations’ influence and calculated
the resource requirements to offer a true-VoD service. We took into account dif-
ferent type as well as the frequency and the duration of VCR operations. The
comparative evaluation is based on the Server Stress and Client Stress. They
are defined as the average amount of server and client bandwidth (Mbps) used
to service all client requests.

3.1 Workload and User Behaviour Model

We assumed that the inter-arrival time of client requests follows a Poisson ar-
rival process with a mean of 1

λ , where λ is the request rate. We used Zipf-like
distribution to model video popularity. The probability of the ith most popular
video being chosen is 1

iz ·∑N
j=1

1
jz

where N is the catalogue size and z is the skew

factor that adjusts the probability function. For the whole study, the default
skew factor and the video length were fixed at 0.729 (typical video shop distri-
bution) and 90 minutes, respectively. We assumed that each video was encoded

Fig. 3. Client Behaviour Model
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in MPEG-2 and requires 1.5 Mbps and the service time is fixed at 24 hours. We
assumed that each client is able to cache 5 minutes of the MPEG-2 video.

We assumed that the client interaction behaviour follows the model in Fig.3
which was used in [8]. The model does not try to reflect reality but includes
the most common VCR operations and is able to capture two parameters: 1)
VCR operation frequency. 2) the duration of each VCR operation. The VCR
operation frequency is modelled by Pi’s and the duration is evaluated by Mi’s.
The value of Mff and Mfr indicates the average time, in seconds, that a client
uses Fast Forward/Reverse. The amount of original video, in units of time, that
is visualized in a Fast Forward/Reverse action depends on the fast visualization
speed and the duration of the VCR operation. We assumed that the speed of
any fast visualization is 2X. In the case of Jump Forward and Jump Backward,
the value of M indicates the average length of video, in seconds, that will be
skipped. Following this model, a client starts to visualize the video during a
mean of Mplay seconds, after this, the client issues a VCR operation with a
probability of 1− Pplay or continues with playback. We assumed that the client
always returns normal playback after a VCR action and that the duration of
each VCR action is uniformly distributed in the interval [Mi × 0.5 − Mi × 1.5].

3.2 VCR Interaction Effect

In this section, we evaluate PCM+MCDB performance with VCR operations. All
the probabilities (Pi) of the clients behaviour model are fixed at 0.1 except Pplay ,
which is 0.5. The time of each VCR interaction is set at 5 minutes, including
playback. With these values of Pi and Mi, each client could perform an average
of 18 VCR operations during playback. We changed the client request rate from
1 to 40 requests per minute. The video catalogue is fixed at 200 videos.
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Fig. 4. VCR Interaction Effect on: a) Server Stress. b) Client Stress.

Fig.4a shows the server stress in servicing 200 videos. Without any VCR op-
eration, the Patching policy demands 1818Mbps in order to serve 30 requests
per minute. Compared with a Patching policy, PCM+MCDB reduces it by
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29% (1282Mbps vs. 1818Mbps). With VCR operations and with Patching, the
server stress increase up to 3117Mbps. With our mechanism, the server stress is
reduced to 2654Mbps; 15% lower.

Fig.4b shows the client stress generated by PCM+MCDB policy. The Patch-
ing policy does not introduce any local overhead. With VCR operation, the
client stress of our approach reduce about only 59Mbps(10%).These results in-
dicate that the VCR operations do not affect the client collaboration capacity
to decentralize the system load. The explanation for this result is:

1. The pause operations increase the service time of clients and, consequently,
the time of the collaboration.

2. With jump forward operations, client service time is lower, so the client will
reduce the collaboration time. However, part of the video information is also
skipped, requiring less server resource.

3. In jump backward operations, the increase in server resource due to the re-
play of part of the video information could be rewarded with an increase in
collaboration time.

4. The same explanation of jump forward/backward is applicable to fast for-
ward/reverse. Even though, these VCR operations require extra server stress
to send VCR-version of video.

3.3 VCR Interaction Frequency and Duration Effect

In this section, we evaluate the effect of VCR frequency and duration on server
stress. We set the client request rate at 20 requests per minute.
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Fig. 5. a) VCR Interaction Probability Effect. b) VCR Interaction Duration Effect.

Fig.5a shows server stress in accordance with the Pis value. Different lines
indicate the different durations of each VCR operation (5, 10 and 15 minutes).
The value of Pi determines the number of fast forward/reverse operations that
introduce extra server stress. As we can see, the server stress increases accord-
ing with the VCR frequency. However, the increase also depends on the VCR
durations. With Mi = 15Min the value of Pi does not affect the server stress.
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These results suggest that when the duration of fast view operations is long, our
approach is able to create client collaborations to decentralize these operations.

Fig.5b shows server stress in accordance with the Mis value. Different lines
indicate different VCR interaction frequencies. The duration of VCR operations
affects the server resource requirements for implementing VCR operations and
client collaboration times. On the one hand, a longer duration of VCR operations
means that the server has to send more VCR-version of video information to
implement fast forward and reverse. On the other hand, a longer duration of
a pause operation increases the client collaboration time, thus reducing server
stress. As we can see in Fig.5b, there are two different tendencies. The first
tendency is when the duration is longer than buffer size. In this case, a longer
duration means less server stress and suggests that the VCR mechanism is able
to efficiently use the increase in client collaboration time to reduce server stress.
The second tendency happens with Mi < 5Min. In this case, a longer duration
increases server stress because the short jumps could be implemented with local
buffer of the clients.

4 Conclusions and Future Works

We have proposed and evaluated distributed VCR mechanisms to provide true-
VoD in a P2P architecture. Our mechanisms enable clients to efficiently collab-
orate with VoD servers to implement VCR operations.

Offering multiple videos, experimental results show that PCM+MCDB P2P
delivery scheme achieves a reduction in server resource of up to 29%, compared
with Patching. Several common VCR operations are analyzed in the experimen-
tal study. The experimental results show our mechanisms are very suitable to
implement VCR operations with long durations because PCM+MCDB P2P de-
livery scheme is able to take advantage of the extra client collaboration time,
introduced by VCR operations. Comparing with the Patching policy, our mech-
anisms are able to reduce server resource requirements up to 16%.

We have started several future research projects. First, we are developing a
VoD system prototype with the P2P VCR mechanisms. Even though the par-
tial experimental results in laboratory with the prototype have demonstrated
the validity of the simulation results, we have to continue working on its im-
plementation. Secondly, we are studying a mechanism to encourage clients to
collaborate with the server even they are not playing any video.
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Abstract. This paper presents a parallel Linear Hashtable Motion Estimation 
Algorithm (LHMEA). Most parallel video compression algorithms focus on 
Group of Picture (GOP). Based on LHMEA we proposed earlier [1][2], we 
developed a parallel motion estimation algorithm focus inside of frame. We 
divide each reference frames into equally sized regions. These regions are going 
to be processed in parallel to increase the encoding speed significantly. The 
theory and practice speed up of parallel LHMEA according to the number of 
PCs in the cluster are compared and discussed. Motion Vectors (MV) are 
generated from the first-pass LHMEA and used as predictors for second-pass 
Hexagonal Search (HEXBS) motion estimation, which only searches a small 
number of Macroblocks (MBs). We evaluated distributed parallel 
implementation of LHMEA of TPA for real time video compression.  

Keywords: Parallel Algorithm, Distributed Computing, Distributed Video 
Coding, Linear Hashtable, Motion Estimation. 

1   Introduction 

In this paper, a parallel Linear Hashtable Motion Estimation Algorithm (LHMEA) for 
the Two-Pass Algorithm (TPA) constituted by LHMEA and Hexagonal Search 
(HEXBS) to predict motion vectors for inter-coding [1] is proposed. The objective of 
the motion estimation scheme is to achieve good quality video with very low 
computational time and low transmission rate. It is hard to find software solutions that 
efficiently code high-quality video in real-time or faster. We propose and evaluate 
distributed parallel implementations of the LHMEA of TPA on clusters of 
workstations for real time video compression as test. It discusses how distributed 
video coding on load balanced multiprocessor systems can help, especially on motion 
estimation. The software platform used for these is the Parallel Virtual Machines 
(PVM) programming model and C respectively. The effect of load balancing for 
improved performance will also be discussed. This paper is only concerned with the 
Block Matching Algorithms (BMA), which is widely used in MPEG2, MPEG4, and 
H.263. In BMA, each block of the current video frame is compared to blocks in 
reference frame in the vicinity of its corresponding position. It is highly desired to 
speed up the process of compression without introducing serious distortion. The 
HEXBS is a widely accepted fast motion estimation algorithm [2]. The Linear 
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Algorithm and Hexagonal Search Based Two-Pass Algorithm (LAHSBTPA) 
previously proposed has an improvement over the HEXBS on compression rate, 
PSNR and compression time. In the last 20 years, many fast algorithms have been 
proposed to reduce the exhaustive checking of candidate Motion Vectors (MV). Such 
as Two Level Search (TS), Two Dimensional Logarithmic Search (DLS) and 
Subsample Search (SS) [3], the Three-Step Search (TSS), Four-Step Search (4SS) [4], 
Block-Based Gradient Descent Search (BBGDS) [5], and Diamond Search (DS) [6], 
[7] algorithms. A very interesting method called HEXBS has been proposed by Zhu, 
Lin, and Chau [8]. The fast BMA increases the search speed by taking the nature of 
most real-world sequences into account while also maintain a prediction quality 
comparable to Full Search. Most algorithms suffer from being easily trapped in a non-
optimum solution. LHMEA based TPA sorts out this problem. Normally video 
encoders are very effective reducing the size of the video stream, but the processing 
cost is very high for high quality video sequences. Although there are hardware video 
encoders available, they have severe restrictions (resolution, coding options, etc). A 
more flexible choice is to use distributed parallel implementations. Processing video 
with high performance distributed computing has great potential and good future, but 
the studies in these fields mainly concentrated on Group of Pictures (GOP) separation. 

To take advantage of the potential processing power of distributed computing, we 
use distributed programming techniques based on message passing. We have used 
PVM because there are free implementations available and it is a widely accepted 
standard.  

Various image and video compression algorithms use parallel processing. 
Approaches used can largely be divided into four areas. The first is the use of special 
purpose architectures designed specially for image and video compression. An 
example of this is the use of an array of DSP chips to implement a version of MPEG. 
The second approach is the use of VLSI techniques. The third approach is algorithm 
driven, in which the structure of the compression algorithm describes the architecture, 
e.g. pyramid algorithms. The fourth approach is the implementation of algorithms on 
high performance parallel computers. 

The TPA which we have proposed has achieved best result in all the algorithms in 
the survey. To further improve the result and speed, the most suitable and easiest way 
is using parallel algorithm to implement the algorithm on high performance parallel 
computers. In the first-pass coding of TPA, LHMEA is employed to search all 
Macroblocks (MB) in the picture. Because LHMEA is based on a linear algorithm, 
which fully utilizes optimized computer’s structure based on addition, so it is easy to 
be paralleled. Meanwhile HEXBS is one of the best motion estimation methods to 
date. The new method proposed in this paper achieves the best results so far among 
all the algorithms investigated on compression rate, time and PSNR. 

Contributions from this paper are: 

1.   The TPA achieves the best results among all investigated BMA algorithms.  
2.   Improved Hashtable is used in video encoding. 
3.   The parallel algorithm improves LHMEA of TPA. It implements and shows better 

compression speed, and fair compression rate and PSNR than original TPA. 
4.   Work load balancing algorithm is implemented in the hashtable image encoding 

process. 
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The rest of the paper is organized as follows. Section 2 continues with an 
introduction to improved LHMEA and TPA and gives experimental result showing 
TPA’s advantage over other algorithms. The proposed parallel algorithm and its 
implementation for LHMEA are introduced in Section 3. Experimental results 
showing paralleled hashtable compared with the original are also included in 
Section3. The paper concludes in Section 4 with some remarks and discussions about 
the proposed scheme. 

2   Sequential and Parallel Implementation of Linear Hashtable 
Motion Estimation Algorithm (LHMEA) 

Our method attempts to predict the motion vectors using linear algorithm.[1][2] It uses 
hashtable method into video compression. After investigating of most traditional and 
on-the-edge motion estimation methods, we use latest optimization criterion and 
prediction search method. Spatially MBs’ information is used to generate the best 
motion vectors[8]. We designed a vector hashtable lookup matching algorithm which 
is more efficient method to perform an exhaustive search: it considers every 
macroblock in the search window. This block-matching algorithm calculates each 
block to set up a hashtable. It is a dictionary in which keys are mapped to array 
positions by a hash function. We try to find as few variables as possible to represent 
the whole macroblock. Through some preprocessing steps, “integral projections” are 
calculated for each macroblock. These projections are different according to different 
algorithm. The aim of these algorithms is to find best projection function. The 
algorithms we present here has 2 projections. One of them is the massive projection, 
which is a scalar denoting the sum of all pixels in the macroblock. It is also DC 
coefficient of macroblock. The other is A of Y=Ax+B ( y is luminance, x is location.) 
Each of these projections is mathematically related to the error metric. Under certain 
conditions, the value of the projection indicates whether or not the candidate 
macroblock will do better than best-so-far match. 

2.1   Sequential Implementation of LHMEA 

The followings are the pseudo code, theory time, practical time calculation of linear 
hashtable motion estimation algorithm. The algorithm is used in pre-computation part 
of in MPEG codec and implemented in both sequential and parallel ways. In the 
program, we try to use polynomial approximation to get such y=mx+c; y is luminance 
value of all pixels; x is the location of pixel in macroblocks. The way of scan y is from 
left to right, from top to button. Coefficients m and c are what we are looking for. As 
shown in the figure below. 

 

Fig. 1. Linear algorithm for discrete algorithm 
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In this function y=f(x), x will be from 0 to 255 in a 16*16 pixels macroblock, 
y=f(x)=mx+c. 
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Here we state the pseudo code to calculate the hashtable function: The function to 
implement the algorithm is encapsulated in MyMotionSearchPreComputation Mpeg-
Frame *frame) 

 
 

MB is transferred by hash function to hash coefficients, M,C,X,Y generated are 
added into hashtable. 

In previopous research methods, when people try to find a block that best matches a 
predefined block in the current frame, matching was performed by SAD (calculating 
difference between current block and reference block). In Linear Hashtable Motion 
Estimation Algorithm (LHMEA), we only need to compare two coefficients of two 
blocks. In current existing methods, the MB moves inside a search window centered on 
the position of the current block in the current frame. In LHMEA, the coefficients 
move inside hashtable to find matched blocks. If coefficients are powerful enough to 
hold enough information of MB, motion estimators should be accurate. So LHMEA 
increases speed and accuracy to a large extent. 

From the pseudo code above, we can get calculation time in theory: 

The precomputation complexity is the function (3) 

seqseqseqseqseqseqseq snsnT φφ ××=),,(  (3) 

Sequential Code: 
Step 1: if (( psearchAlg == VECTOR_HASH || psearchAlg == HEX_VECTOR_HASH || 

psearchAlg == HEX) && (frame->type == I_FRAME || frame->type == P_FRAME )) 
Step 2:  EnterTimeCount(0) 

Step 3, Paral: if (IsSetUpHashTablePVM ) { call PVM Motion Search PreComputation;} 
else{ 

Step 4:  if(HashTableSearchType) InitMHashTable(); 
Step 5:      for (y = 0; y < Fsize_y - 16; y++)  { 
Step 6:          for (x = 0; x < Fsize_x - 16; x++)  
Step 7:            { call different hashtable setup functions } 
Step 8:if (use HashTable) { add M,C,X,Y into hashtable }}}} 
Step 9: LeaveTimeCount(0); 
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The variables inside the function are 

1. seqn  : reference frame number, which is also number of I, P frames 

2. seqs  : frame size, which in the program is 

                     )_()_( framelengthframewidth ×  (4) 

3. seqφ  : the complexity to calculate the hash function per macroblock, which will 

be explained later. 

So the complexity of the linear hashtable motion estimation algorithm depends on 
the three variables. 

To demonstrate the complexity of calculation, the following example is given: 
The video sequence used in the experimentation is three YUV (352x240 pixels) test 

sequence, which is known as Flower Garden sequence. There are 150 frames in the 
original sequences, which sub sampled to the 4:1:1 format in the YUV color space. 
The video sequence was divided into several sections (GOPs), each of which contained 
15 frames to be compressed and a reference frame. A frame pattern of 
IBBPBBIBBPBBPBB was used. The average time is defined as the overall execution 
time of the group, including the I/O time, the computation time and the 
communications time. The motion vector search algorithm used is the LHMEA based 
TPA and produces integer pixel motion vectors.  

We calculate it in details here to demonstrate how it is working. 

seqn  =50 out of 150 frames. 

=seqs )__()__( sizeMBframelengthsizeMBframewidth −×−   =75264. 

According to the complexity of calculate Macroblock,  

seqφ  depends on the hash function calculation method. 

For the coefficients m and c we mentioned earlier: 
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In the C codec, We only calculate 
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before calling the function. 

In the codec, pseudo code decides the complexity of seqφ  is as following: 

so seqφ =16*16*[ 1 (*)+5 (+) ]+ 4 (*)+2 (+) 

 

In this example total sequential time in theory is  

),,( φsnTseq  

      = )( dim_
2

ensionframeseqseq Msn × tyoncomplexihashfunctiensionMBseq N γφ ×× dim_
2( ) (5) 

      = tyoncomplexihashfunctiensionMBensionframeseq NMn γ××× dim_
2

dim_
2  (6) 

  =50*[(Fsize_x-MB_size)*(Fsize_y-MB_size)]*{16*16*[1 (*)+5 (+) ]+ 4 (*)+2 (+)} 
  =978432000 (*)+4824422400 (+) 

Practical sequential time counting: ),,( φsnTseq =7.2763(s) 

2.2   Parallel Implementation of LHMEA 

In the parallel implementation, to parallelize an encoder, we divide each reference 
frames (which can be I or P frame) into equally sized regions. Current frames are also 
divided into non-overlapped regions. These regions are going to be processed in 
parallel to increase the encoding speed significantly. Each region is divided into non-
overlapping range blocks. Each region will be sent to corresponding slaves and 
generates its own hashtable table. The slave will be alive until encoding finishes. 
Slaves will generate its own hashtable and Motion Vectors table, sending MVs table 
back to the master. However, there is an upper limit on the number of PEs that can be 
used due to the limited spatial resolution of a video sequence. Also a massive spatial 
parallel algorithm usually needs to tolerate a relatively large communication over-head. 
In our approach of spatial parallelism, load balancing was implemented to ensure an 
equal distribution of the frame data among the processors. 

Here we state the pseudo code to calculate the hashtable function in parallel. The 
function to implement the algorithm is encapsulated in PreComputation() 

for(iy=0;iy<MB_size;iy++){ 
   for(ix=0;ix<MB_size;ix++){ 

temp1= frame->ref_y[y+iy][x+ix]; 
 sum_yi += temp1; 
 sum_xiyi += count* temp1; 
 count ++;  } } 
 (*pnowBuildTable)[y][x].B = 0.125*sum_yi;  

(*pnowBuildTable)[y][x].A 
=(12*sum_xiyi-6*(total_size+1)*sum_yi)>>10; 
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The structure of the algorithm can be demonstrated in the figure 2.  
The reference frame are divided into several parts, 

owssearchwindPCsNMBwidthframewidthrows +−= _/)__(  

are sent to clients. 

 

Fig. 2. The Parallel Structure of Hashtable 

From the pseudo code above, we can get calculation time in theory: 
The precomputation complexity is function 

paralparalparalparalparalparalparal snsnT φφ ××=),,(  (7) 

The variables inside the function have similar meaning as in sequential function 

1,    paraln = seqn  

2,    parals : frame size, which is whole frame divided by Number_PCs 

)_(*)_/)__(( framelengthowssearchwindPCsNMBwidthframewidth +−  (8) 

3,    per macroblock. pseudo code decides the complexity of paralφ = seqφ  

 

Parallel Code: 
Input: part of reference frame from master 
Output: part of hashtable 

 
Step 1: rcode=pvm_upkint (FrameData,Fsize_X*(rows),1); /*Get Data from Master*/ 
Step 2: /*Give Data from buffer to Reference Frame, */ 

for(i=0;i< Fsize_X *(rows);i++) 
{prevFrame.ref_y[tempy][tempx] = FrameData[i];} 

Step 3: For (i=0;i< rows;i++) 
Step 4:      for (k=0;k< Fsize_x-16; k++){ 
Step 5:         for(iy=0;iy<16;iy++){ 
Step 6:             for(ix=0;ix<16;ix++) 

  {calculate sum_xi*yi and sum_yi for each Pixel;}} 
Step 7:             calculate M and C for each Pixel;}}} 
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Start, Allocate processes 

Master process (1) Slave process (N) 

Interaction, gain setup 

information 

Initialize environment and 

allocate memory 

Broadcast setups Scatters 

the data of the frames 

Gain the current frame data and 

reference frame to be encoded 

Setup own part of hashtable based on 

reference frame . Size: 

((Frame_Size_X/N)+window)* 

((Frame_Size_Y/N)+window)  

Search in own part of hashtable and 

build own part of MV table. Size: 

(Frame_Size_X/N)* 

(Frame_Size_Y/N)  

Send MV table to the master process 
Collect data for following 

process

Finish? Finish?

Video output Kill slaves 

End  

Fig. 3. Process of parallel LHMEA setup 

Using the same example sequences of frames and number of slaves equal to 4, if 
we use 2 slaves, each slave will get rows=352/2 + search window=216 for each. If 
we use 4 slaves, each slave will get rows=352/4 + search window, 108,128,128,108 
for each. We use biggest one to calculate totally time for slaves.  

In this case:  
When the number of PCs=2: 

paralparalparalparalparalparalparal snsnT φφ ××=),,(  

=

)()( dim_
2

dim_
2

tyoncomplexihashfunctiensionMBparalensionframeparalparal NMsn γφ ×××
 

(9) 

 = tyoncomplexihashfunctiensionMB
ensionframe

paral N
PCsN

M
n γ××× dim_

2dim_
2

_
 (10) 

=50*[(rows-MB_size)*(Fsize_x-MB_size)]*{16*16[1(*)+5(+)]+4(*)+4(+)} 
50*[124*336]*[260(*)+1284(+)] 
= 541632000 (*)+2674828800 (+) 
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Speedup:
),,(

),,(

paralparalparalparal

seqseqseqseq

snT

snT

φ
φ

τ = =

)( 2674828800(*) 541632000
)( 4824422400(*) 978432000

++
++

=1.8065 

Practical sequential time counting: ),,( φsnTseq =7.2763(s) 

The figure 4& 5 below are Time Spent, Actual Speed Up, Theory Speed Up 
comparison for parallel LHMEA based on the 150 Flower Garden Sequences. PSNR 
and compression rate remain the same as sequential algorithm [1][2].  

 

Fig. 4. Time cost decrease with Number of PCs 

 

Fig. 5. Actual Speed Up, Theory Speed Up comparison 

In theory, the speedup should be in linear increasing with number of PCs. The 
reason why it does not match a linear model is that we are not sending exact 
Frame/Number_PCs data to slaves, instead, we send Fsize_y/Number_PCs plus 
search windows size rows data to slaves. Also it is limited by resolution of images. 
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More data ( widthFramesizewindow __2 ×× ) will be calculated than the 

original frame. In theory, the larger number of PCs, the more redundant data. The 
curve of speedup-Number PCs will have less descent when the PCs number increases. 

Time cost also depends on the speed of PCs. We use a network of workstations 
comprises similar workstations linked together by a common network e.g. Ethernet. 
When CPU clock is counted, the faster the PC, the less time it takes. 

3   Conclusion 

In the paper, a parallel Linear Hashtable Motion Estimation Algorithm (LHMEA) and 
Hexagonal Search Based Two-Pass Algorithm (TPA) in video compression is 
proposed based on the LHMEA. The hashtable is used in video compression and 
implemented with parallel computing in motion estimation. The algorithm searches in 
the hashtable to find the motion estimator in-stead of by full search algorithm in whole 
frame. Then the LHMEA was implemented in parallel algorithm. The speedup of 
paralleled LHMEA is compared to the original sequential LHMEA. The parallel video 
coding is implemented inside frame rather than between frames. The key point in the 
method is to find suitable hash function to produce the hashtable.  
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Parallelism exists at all levels in computing systems from circuits to grids. Ef-
fective use of parallelism crucially relies on the availability of suitable models
of computation for algorithm design and analysis, and on efficient strategies for
the solution of key computational problems on prominent classes of platforms.
The study of foundational and algorithmic issues has led to many important
advances in parallel computing and has been well represented in the Euro-Par
community over that past two decades. A distinctive feature of this topic is the
variety of results it as reported over the years that address classical problems as
well as the new challenges posed by emerging computing paradigms. This year
was no different.

Thirteen papers were submitted to the topic of which five were accepted as
full papers for the conference. The resulting papers run the gamut from low-
level architectural issues to high-level algorithmic analysis. What they have in
common is the same basic theoretical approach to problem-solving. The topics
covered include: a hierarchical version of the Craig, Landin and Hagersten (CLH)
queue lock which achieves locality while maintaining many of the desirable per-
formance properties of CLH locks and overcoming the fairness issues of previous
approaches; the first competitive analysis for the age or freshness of state re-
turned by algorithms for maintaining wait-free data objects in multiprocessor
and real-time systems; a new parallel algorithm for the two dimensional cutting
stock problem; an on-line adaptive solution to the problem of performing parallel
prefix operations on a set of processors running at different and possibly chang-
ing speeds; and an efficient algorithm in the Bulk Synchronous Parallel model of
computing for the problem of finding all the maximal contiguous subsequences
of a sequence of numbers.
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A Hierarchical CLH Queue Lock

Victor Luchangco, Dan Nussbaum, and Nir Shavit

Sun Microsystems Laboratories

Abstract. Modern multiprocessor architectures such as CC-NUMA ma-
chines or CMPs have nonuniform communication architectures that ren-
der programs sensitive to memory access locality. A recent paper by
Radović and Hagersten shows that performance gains can be obtained
by developing general-purpose mutual-exclusion locks that encourage
threads with high mutual memory locality to acquire the lock consec-
utively, thus reducing the overall cost due to cache misses. Radović and
Hagersten present the first such hierarchical locks. Unfortunately, their
locks are backoff locks, which are known to incur higher cache miss rates
than queue-based locks, suffer from various fundamental fairness issues,
and are hard to tune so as to maximize locality of lock accesses.

Extending queue-locking algorithms to be hierarchical requires that
requests from threads with high mutual memory locality be consecutive
in the queue. Until now, it was not clear that one could design such locks
because collecting requests locally and moving them into a global queue
seemingly requires a level of coordination whose cost would defeat the
very purpose of hierarchical locking.

This paper presents a hierarchical version of the Craig, Landin, and
Hagersten CLH queue lock, which we call the HCLH queue lock. In this
algorithm, threads build implicit local queues of waiting threads, splicing
them into a global queue at the cost of only a single CAS operation.

In a set of microbenchmarks run on a large scale multiprocessor ma-
chine and a state-of-the-art multi-threaded multi-core chip, the HLCH
algorithm exhibits better performance and significantly better fairness
than the hierarchical backoff locks of Radović and Hagersten.

1 Introduction

It is well accepted that on small scale multiprocessor machines, queue locks
[1,2,3,4] minimize overall invalidation traffic by allowing threads to spin on sep-
arate memory locations while waiting until they are at the head of the queue.
Their advantage over backoff locks [5] is not only in performance, but also in the
high level of fairness they provide in accessing a lock.

Large scale modern multiprocessor architectures such as cache-coherent non-
uniform memory-access (CC-NUMA) machines, have nonuniform communica-
tion architectures that render programs sensitive to memory-access locality. Such
architectures include clusters of processors with shared local memory, commu-
nicating with each other via a slower communication medium. Access by a pro-
cessor to the local memory of its cluster can be two or more times faster than
access to the remote memory in another cluster [6]. Such machines also have

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 801–810, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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large per-cluster caches, further reducing the cost of communication between
processors on the same cluster. A recent paper by Radović and Hagersten [6]
shows that performance gains can be obtained by developing hierarchical locks:
general-purpose mutual-exclusion locks that encourage threads with high mu-
tual memory locality to acquire the lock consecutively, thus reducing the overall
level of cache misses when executing instructions in the critical section.

Radović and Hagersten’s locks are simple backoff locks: test-and-test-and-
set locks, augmented with a backoff scheme to reduce contention on the lock
variable. Their hierarchical backoff mechanism allows the backoff delay to be
tuned dynamically so that when a thread notices that another thread from its
own local cluster owns the lock, it can reduce its delay and increase its chances
of acquiring the lock. The dynamic shortening of backoff times in Radović and
Hagersten’s lock introduces significant fairness issues: it becomes likely that two
or more threads from the same cluster will repeatedly acquire a lock while threads
from other clusters starve. Moreover, because the locks are test-and-test-and-set
locks, they incur invalidation traffic on every modification of the shared lock
variable, which is especially costly on CC-NUMA machines, where the cost of
updating remote caches is higher.

We therefore set out to design a hierarchical algorithm based on the more
advantageous queue-locking paradigm. A queue lock uses a FIFO queue to reduce
contention on the lock variable and provide fairness: if the lock is held by some
thread when another thread attempts to acquire it, the second thread adds itself
to the queue, and does not attempt to acquire the lock again until it is at the
head of the queue (threads remove themselves from the queue when they execute
their critical section). Thus, once a thread has added itself to the queue, another
thread cannot acquire the lock twice before the first thread acquires it. Several
researchers have devised queue locks [1,2,3,4] that minimize overall invalidation
traffic by allowing threads to spin on separate memory locations while waiting
to check whether they are at the head of the queue. However, making a queue-
lock hierarchical implies that requests from threads with high mutual memory
locality be consecutive in the queue. To do so one would have to somehow collect
local requests within a cluster, integrating each cluster’s requests into a global
queue, a process which näıvely would require a high level of synchronization
and coordination among remote clusters. The cost of this coordination would
seemingly defeat the very purpose of hierarchical locking.

This paper presents a hierarchical version of what is considered the most
efficient queue lock for cache-coherent machines: the CLH queue lock of Craig,
Landin, and Hagersten [2,4]. Our new hierarchical CLH queue lock (HCLH) has
many of the desirable performance properties of CLH locks and overcomes the
fairness issues of backoff-based locks. Though it does not provide global FIFO
ordering as in CLH locks—that is, FIFO among the requests of all threads—it
does provide what we call localized FIFO ordering: lock-acquisitions of threads
from any given cluster are FIFO ordered with respect to each other, but globally,
there is a preference to letting threads from the same cluster follow one another
(at the expense of global FIFO ordering) in order to enhance locality.
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The key algorithmic breakthrough in our work is a novel way for threads to
build implicit local queues of waiting threads, and splice them to form a global
queue at the cost of only a single compare-and-swap (CAS) operation.

In a bit more detail, our algorithm maintains a local queue for each cluster,
and a single global queue. A thread can enter its critical section when it is at
the head of the global queue. When a thread wants to acquire the lock, it adds
itself to the local queue of its cluster. Thus, threads are spinning on their local
predecessors. At some point, the thread at the head of the local queue attempts
to splice the entire local queue onto the global queue, so that several threads from
the same cluster appear consecutively in the global queue, improving memory-
access locality. This splicing into the global queue requires only a single CAS
operation, and happens without the spliced threads knowing they have been
added to the global queue (except, of course, for the thread doing the splicing):
they continue spinning on their local predecessors. The structure of our lock
maintains other desirable properties of the original CLH queue lock: It avoids
extra pointer manipulations by maintaining only an implicit list; each thread
points to its predecessor through a thread-local variable. It also uses a CLH-like
recycling scheme that allows the reuse of lock records so that, as in the original
CLH algorithm, L locks accessed by N threads require only O(N + L) memory.

We evaluated the performance of our new HCLH algorithm on two nonuni-
form multiprocessors: a large-scale Sun FireTM E25K[7] SMP (E25K ) and a Sun
FireTM T2000, which contains a UltraSPARC R© T1[8] 32-thread 8-core multi-
threaded multiprocessor (T2000 ). In a set of microbenchmarks, including one
devised by Radović and Hagersten [6] to expose the effects of locality, the new
HCLH algorithm shows various performance benefits: it has improved through-
put, better locality, and significantly improved fairness.

In Section 2, we describe our algorithm in detail, in Section 3, we present and
discuss the experimental results and we conclude and touch on future work in
Section 4.

2 The HCLH Algorithm

In this section, we explain our new queue-lock algorithm in detail. We assume
that the system is organized into clusters of processors, each of which has a
large cache that is shared among the processors local to that cluster, so that in-
tercluster communication is significantly more expensive than intracluster com-
munication. We also assume that each cluster has a unique cluster id, and that
every thread knows the cluster id of the cluster on which it is running (threads
do not migrate to different clusters). An HCLH lock consists of a collection of
local queues, one per cluster, and a single global queue.

As in the original CLH queue lock [2,4], our algorithm represents a queue by an
implicit linked list of elements of type qnode, as follows: A queue is represented
by a pointer to a qnode, which is the tail of the queue (unless the queue is
empty—see below for how to determine whether the queue is empty). Each
thread has two local variables, my qnode and my pred, which are both pointers
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to qnodes. We say that a thread owns the qnode pointed to by its my qnode
variable, and we maintain the invariant that at any time, all but one qnode is
owned by exactly one thread; we say that one qnode is owned by the lock. For any
qnode in a queue (other than the head of the queue), its predecessor in the queue
is the qnode pointed to by the my pred variable of its owner. This is well-defined
because we also maintain the invariant that the qnode owned by the lock is either
not in any queue (while some thread is in the critical section) or is at the head
of the global queue. A qnode consists of a single word containing three fields: the
cluster id of the processor on which its current owner (or most recent owner, if
it is owned by the lock) is running, and two boolean fields, successor must wait
and tail when spliced. The successor must wait field is the same as in the
original CLH algorithm: it is set to true before being enqueued, and it is set
to false by the qnode’s owner upon exit from the critical section, signaling the
successor (if any) that the lock is available. Thus, if a thread is waiting to acquire
the lock, it may do so when the successor must wait field of the predecessor of
its qnode is false. We explain the interpretation of tail when spliced below.

Threads call the procedure acquire HCLH lock() when they wish to acquire
the lock. Briefly, this procedure first adds the thread’s qnode to the local queue,
and then waits until either the thread can enter the critical section or its qnode
is at the head of the local queue. In the latter case, we say the thread is the
cluster master, and it is responsible for splicing the local queue onto the global
queue. We describe the algorithm in more detail below. Pseudocode appears in
Figure 1.

A thread wishing to acquire the lock first initializes its qnode (i.e., the qnode
it owns), setting successor must wait to true, tail when spliced to false,
and the cluster id field appropriately. The thread then adds its qnode to the
end (tail) of its local cluster’s queue by using CAS to change the tail to point
to its qnode. Upon success, the thread sets its my pred variable to point to the
qnode it replaced as the tail. We call this qnode the predecessor qnode, or simply
the predecessor.

Then wait for grant or cluster master() (not shown) is called, which
causes the thread to spin until one of the following conditions is true:

1. the predecessor is from the same cluster, the boolean flag tail when spliced
is false, and the boolean flag successor must wait is false, or

2. the predecessor is not from the same cluster or the predecessor’s boolean
flag tail when spliced is true.

In the first case, the thread’s qnode is at the head of the global queue, signify-
ing that it owns the lock and can therfore enter the critical section. In the second
case, as we argue below, the thread’s qnode is at the head of the local queue, so
the thread is the cluster master, making it responsible for splicing the local queue
onto the global queue. (If there is no predecessor—that is, if the local queue’s tail
pointer is null—then the thread becomes the cluster master immediately.) This
spinning is mostly in cache and hence incurs almost no communication cost. The
procedure wait for grant or cluster master() (not shown) returns a boolean
indicating whether the running thread now owns the lock (if not, the thread is
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qnode* acquire_HCLH_lock(local_q* lq, global_q* gq, qnode*
my_qnode) {

// Splice my_qnode into local queue.
do {
my_pred = *lq;

} while (!CAS(lq, my_pred, my_qnode));
if (my_pred != NULL) {
bool i_own_lock = wait_for_grant_or_cluster_master(my_pred);
if (i_own_lock) {

// I have the lock. Return qnode just released by previous owner.
return my_pred;

}
}

// At this point, I’m cluster master. Give others time to show up.
combining_delay();

// Splice local queue into global queue.
do {
my_pred = *gq;
local_tail = *lq;

} while (!CAS(gq, my_pred, local_tail));

// Inform successor that it is new master.
local_tail->tail_when_spliced = true;

// Wait for predecessor to release lock.
while (my_pred->successor_must_wait);

// I have the lock. Return qnode just released by previous owner.
return my_pred;

}

void release_HCLH_lock(qnode* my_qnode) {
my_qnode->successor_must_wait = false;

}

Fig. 1. Procedures for acquiring and releasing a hierarchical CLH lock. The
acquire HCLH lock() procedure returns a qnode to be used for next lock acquisition
attempt.

the cluster master). It is at this point that our algorithm departs from the origi-
nal CLH algorithm, whose nodes do not have cluster id or tail when spliced
fields, in which only the first case is possible because there is only one queue.
The chief difficulty in our algorithm is in moving qnodes from a local queue to
the global queue in such a way that maintains the desirable properties of CLH
queue locks. The key to achieving this is the tail when spliced flag, which is
raised (i.e., set to true) by the cluster master on the last qnode it splices onto
the global queue (i.e., the qnode that the cluster master sets the tail pointer of
the global queue to point to).

If the thread’s qnode is at the head of the global queue, then, as in the
original CLH algorithm, the thread owns the lock and can enter the critical
section. Upon exiting the critical section, the thread releases the lock by call-
ing release HCLH lock(), which sets successor must wait to false, passing
ownership of the lock to the next thread, allowing it to enter the critical section.
The thread also swaps its qnode for its predecessor (which was owned by the
lock) by setting its my qnode variable.
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Otherwise, either the predecessor’s cluster id is different from mine or the
tail when spliced flag of the predecessor is raised (i.e., true). If the prede-
cessor has a different cluster id, then it cannot be in the local queue of this
thread’s cluster because every thread sets the cluster id to that of its cluster
before adding its qnode to the local queue. Thus, the predecessor must have al-
ready been moved to the global queue and recycled to a thread in a different clus-
ter. On the other hand, if the tail when spliced flag of the predecessor is raised,
then the predecessor was the last node moved to the global queue, and thus, the
thread’s qnode is now at the head of the local queue. It cannot have been moved
to the global queue because only the cluster master, the thread whose qnode is
at the head of the local queue, moves qnodes onto the global queue.

As cluster master, a thread’s role is to splice the qnodes accumulated in the
local queue onto the global queue. The threads in the local queue are all spinning,
each on its predecessor’s qnode. The cluster master reads the tail of the local
queue and then uses a CAS operation to change the tail of the global queue
to point to the qnode it saw at the tail of its local queue, and sets its my pred
variable to point to the tail of the global queue that it replaced. It then raises
the tail when spliced flag of the last qnode it spliced onto the global queue,
signaling to the (local) successor of that qnode that it is now the head of the local
queue. This has the effect of inserting all the local nodes up to the one pointed to
by the local tail into the CLH-style global queue in the same order they were in in
the local queue.1 To increase the length of the combined sequence of nodes that
is moved into the global queue, the cluster master waits a certain amount of time
for threads to show up in the local queue before splicing into the global queue.
We call this time the combining delay. With no combining delay, we achieved
little or no combining at all, since the time between becoming cluster master
and successfully splicing the local queue into the global queue was generally so
small. By adding a simple adaptive scheme (using exponential backoff) to adjust
the combining delay to current conditions, we saw combining rise to the level we
hoped for.

Once in the global queue, the cluster master acts as though it were in an or-
dinary CLH queue, entering the critical section when the successor must wait
field of its (new) predecessor is false. The threads of the other qnodes that were
spliced in do not know they moved to the global queue, so they continue spinning
as before, and each will enter the critical section when the successor must wait
field of its predecessor is false. And as in the case above, and in the original
CLH algorithm, a thread simply sets its qnode’s successor must wait field to
false when it exits the critical section.

1 Note that in the interval between setting the global tail pointer and raising the
tail when spliced flag of the last spliced qnode, the qnodes spliced onto the global
queue are in both local and global queues. This is okay because the cluster master
will not enter the critical section until after it raises the tail when spliced flag of
the last spliced qnode, and no other thread from that cluster can enter the critical
section before the cluster master, since all other threads from that cluster are ordered
after the cluster master’s in the global queue.
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Fig. 2. Lock acquisition and release in a hierarchical CLH lock

Figure 2 illustrates a lock acquisition and release in a hierarchical CLH lock.
The successor must wait flag is denoted by 0 (for false) or 1 (for true) and
the raised tail when spliced flag by a T . We denote the thread’s predecessor,
local or global (they can be implemented using the same variable), as my pred.
The local queue already contains a qnode for a thread A that is the local cluster
master since its my pred is null. In part (a), thread B inserts its qnode into the
local queue by performing a CAS operation on the local queue’s tail pointer. In
part (b), thread A splices the local queue consisting of the qnodes of threads A
and B onto the global queue, which already contains the qnodes of threads C and
D, spliced at an earlier time. It does so by reading the local queue pointer, and
using CAS to change the global queue’s tail pointer to the same qnode it read
in the local queue’s tail pointer, and then raising the tail when spliced flag of
this qnode (marked by a T ). Note that in the meantime other qnodes could have
been added to the local queue but the first among them will simply be waiting
until B’s tail when spliced flag is raised (marked by T ). In part (c), thread
C releases the lock by lowering the successor must wait flag of its qnode, and
then setting my qnode to the predecessor qnode. Note that even though thread
D’s qnode has its tail when spliced flag raised, and it could be a node from
the same cluster as A, A was already spliced into the global queue and is no
longer checking this flag, only the successor must wait flag.

As can be seen, the structure of the HCLH algorithm favors sequences of local
threads, one waiting for the other, within the waiting list in the global queue.
As with the CLH lock, additional efficiency follows from the use of implicit
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Fig. 3. Traditional microbenchmark performance, measured for each lock type. Results
for the T2000 are on the left; those for the E25K are on the right. Throughput is
measured in thousands of lock acquire/release pairs per second.

pointers which minimizes cache misses, and from the fact that threads spin on
local cached copies of their successor’s qnode state.

3 Performance

In this section, we present throughput figures using the same two microbench-
marks suggested by Radović and Hagersten[6]. For lack of space, we present
only a subset of the relevant results. A full version of the results can be found in
http://research.sun.com/scalable/pubs/hclh-main.pdf. In particular, we
omit locality data and fairness data (both of which show our algorithm in a good
light), along with uncontested-performance data (in which area our algorithm
suffers as compared to the others).

These experiments were conducted on two machines: a 144-processor Sun
FireTM E25K[7] SMP (E25K ) with 4 processor chips per cluster (two cores per
chip), and a prototype Sun FireTM T2000 UltraSPARC R© T1[8]-based single-
chip multiprocessor (T2000 ) with 8 cores and 4 multiplexed threads per core.
We compared the following locking primitives:

TACAS-nb: The traditional test-and-compare-and-swap lock, without backoff.
TACAS-b: The traditional test-and-compare-and-swap lock, with exponential

backoff.
CLH: The queue-based lock of Craig, Landin, and Hagersten[2,4].
HBO: The hierarchical backoff lock of Radović and Hagersten[6]. The HBO

backoff mechanism allows the backoff parameters to be tuned dynamically
so that when a thread that notices that another thread from its own cluster
owns the lock, it can reduce the delay between attempts to acquire the lock,
thus increasing its chances of acquiring the lock.
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Fig. 4. New microbenchmark performance, measured for each lock type. Results for the
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HCLH: Our hierarchical CLH lock. We choose cluster sizes of 8 for the E25K
and 4 for the T2000, which make the most sense for the respective architec-
tures.

Results omitted due to lack of space show that HBO’s locality is considerably
better than random, and HCLH’s is considerably better than HBO’s for large
numbers of (hardware and software) threads. Performance results for the tradi-
tional microbenchmark are presented in Figure 3 as run on each platform. This
is a variant of the simple loop of lock acquisition and release used by Radović
and Hagersten [6] and by Scott and Scherer [9]. As one might expect given its
locality advantage, HCLH outperforms all other candidates on both platforms.
On the T2000, this superiority asserts itself on tests of 12 or more threads; on
the E25K, the effect of improved locality doesn’t really assert itself until around
80 threads, and even from there on up, the separation between HCLH, HBO and
(somewhat surprisingly) CLH is minimal.

Performance results for our version of Radović and Hagersten’s new mi-
crobenchmark are presented in Figure 4. In this microbenchmark, each software
thread acquires the lock and modifies critical work cache-line-sized blocks of
shared data. After exiting from the critical section, each thread performs a ran-
dom amount of noncritical work. On the E25K, HCLH outperforms the others
along the entire range, with HBO close behind, and CLH and TACAS-b not far
back. (In fact, CLH slightly outperforms HBO for small critical work values.)

4 Conclusions

Hierarchical mutual-exclusion locks can encourage threads with high mutual
memory locality to acquire the lock consecutively, thus reducing the overall level
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of cache misses when executing instructions in the critical section. We present
the HCLH lock—a hierarchical version of Craig, Landin, and Hagersten’s queue
lock—with that goal in mind.

We model our work after Radović and Hagersten’s hierarchical backoff lock,
which was developed with the same ends in mind. We demonstrate that HCLH
produces better locality and better overall performance on large machines than
HBO does when running two simple microbenchmarks.

Compared with the other locks tested (including HBO), the HCLH lock’s
uncontested performance leaves something to be desired. We have achieved some
preliminary success in investigating the possibility of bypassing the local queue
in low-contention situations, thus cutting this cost to be near to that of CLH,
which is only slightly worse than that of HBO and the others. This is a topic for
future work.
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Abstract. Wait-free concurrent data objects are widely used in multiprocessor
systems and real-time systems. Their popularity results from the fact that they
avoid locking and that concurrent operations on such data objects are guaranteed
to finish in a bounded number of steps regardless of the other operations interfer-
ence. The data objects allow high access parallelism and guarantee correctness of
the concurrent access with respect to its semantics. In such a highly-concurrent
environment, where many wait-free write-operations updating the object state
can overlap a single read-operation, the age/freshness of the state returned by
this read-operation is a significant measure of the object quality, especially for
real-time systems.

In this paper, we first propose a freshness measure for wait-free concurrent
data objects. Subsequently, we model the freshness problem as an online problem
and present two algorithms for it. The first one is a deterministic algorithm with
asymptotically optimal competitive ratio

√
α, where α is a function of the execu-

tion-time upper-bound of wait-free operations. The second one is a competitive
randomized algorithm with competitive ratio ln α

1+ln 2− 2√
α

.

1 Introduction

Concurrent data objects play a significant role in multiprocessor systems, but also cre-
ate challenges on consistency. In concurrent environments like multiprocessor systems,
consistency of a shared data object is guaranteed mostly by mutual exclusion, a form
of locking. However, mutual exclusion degrades the system’s overall performance due
to lock convoying, i.e. other concurrent operations cannot make any progress while
the access to the shared object is blocked. Mutual exclusion also contains risks of
deadlock and priority inversion. To address these problems, researchers have proposed
non-blocking algorithms for shared data objects. Non-blocking methods do not involve
mutual exclusion, and therefore do not suffer the problems that blocking can cause.
Non-blocking algorithms are either lock-free or wait-free. Lock-free [11] algorithms
guarantee that regardless of both the contention caused by concurrent operations and
the interleaving of their sub-operations, always at least one operation will progress.
However, there is a risk for starvation as progress of other operations could cause one
specific operation to never finish. Wait-free [10] algorithms are lock-free and moreover
they avoid starvation. In a wait-free algorithm every operation is guaranteed to finish
in a limited number of steps, regardless of actions of other concurrent operations. Non-
blocking algorithms have been shown to be of big practical importance [7,8,18], and
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recently NOBLE, which is a non-blocking inter-process communication library, has
been introduced [23]. As a result, many aspects of concurrent data objects have been
researched deeply such as consistency conditions [1,9,20], concurrency hierarchy [6]
and fault-tolerance [17].

In this paper, we look at another aspect of concurrent data objects: the freshness
of the object states returned by read-operations. Freshness is a significant property
for shared data in general and has achieved great concerns in databases [3,12,19] as
well as in caching systems [13,15,16]. Briefly, freshness is a yardstick to evaluate how
fresh/new a value of a concurrent object returned by a read-operation is, when the
object is updated and read concurrently. For concurrent data objects, although read-
operations are allowed to return any value written by other concurrent operations, they
are preferred to return the freshest/latest one of these valid values, especially in re-
active/detective systems. For instance, monitoring sensors continuously concurrently
input data via a concurrent object and the processing unit periodically reads the data
to make the system react accordingly. In such systems, the freshness of data influences
how fast the system reacts to environment changes.

However, there are few results on the freshness problem in the literature. Simp-
son [21,22] suggested a freshness specification for a single-writer-to-single-reader asyn-
chronous communication mechanism, which is different from atomic register suggested
by Lamport [14]. Simpson’s communication model with a single writer and a single
reader is not suitable for fully concurrent shared objects that many readers and many
writers can concurrently access.

These issues motivate us to define and attack the freshness problem for wait-free
shared objects. We model the problem as an online problem and then present two al-
gorithms for it. The first one is a deterministic algorithm, which is a natural adapta-
tion from an online search algorithm called reservation price policy [5]. The algorithm
achieves a competitive ratio

√
α, where α is a function of execution-time upper-bound

of wait-free operations. Subsequently, we prove that the algorithm is optimal by prov-
ing that

√
α is the best competitive ratio for deterministic algorithms. The second is a

new competitive randomized algorithm with competitive ratio ln α
1+ln 2− 2√

α

. The random-

ized algorithm is nearly optimal since our results [4] from an elaboration on the EXPO
search algorithm [5] showed that O(lnα) is an asymptotically optimal competitive ratio
for randomized freshness algorithms.

The paper is organized as follows. Section 2 describes the freshness problem and
models it as an online problem. Section 3 presents the optimal deterministic algorithm.
Section 4 presents the randomized algorithm. The competitive ratio in this case is the
expected value against an oblivious adversary. (We presume that the reader is familiar
with competitive analysis of online algorithms, cf. [2].)

2 Problem and Model

Linearizability [9] is the correctness condition for concurrent objects. It requires that
operations on the objects appear to take effect atomically at a point of time in their
execution interval. This allows a read operation to return any of values written by con-
current write operations, which is illustrated by Figure 1.
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W(0) A W(1) B

R(0 or 1) C

Freshness problemConcurrent reading & writing

W3

p2
W2 W4

W1

e3

e2

e1
p3

p4
s0

R0

e0 e0 +De0 + d

p1

Fig. 1. Illustrations for concurrent reading/writing and freshness problem

We use “W(x) A” (“R(x) A”) to stand for a write (read) operation of value x to
(from) a shared register by process A. It is correct for C to return either 0 or 1 with
respect to linearizability. However, from freshness point of view we prefer C to return
1, the newer/fresher value of the register. The freshness problem is to find a solution for
read operations to obtain the freshest value from a shared object. Intuitively, if a read
operation lengthens its execution interval by putting some delay between the invocation
and the response, it can obtain a fresher value but it will respond more slowly from
application point of view. Therefore, the freshness problem is to design read-operations
that both respond fast and return fresh values.

The freshness problem is especially interesting in reactive systems, where monitor-
ing sensors continuously and concurrently input data for a processing unit via a concur-
rent data object. The unit periodically reads the data from the object and subsequently
makes the system react to environment changes accordingly. In order to react fast, the
read-operation used by the unit must both respond fast and return a value as fresh as
possible. If the read-operation responds immediately at time e0 and an environment
change occurs at time e0 + ε, the system must wait for a period T until the next read
in order to observe the change. In this scenario, the system will react faster if the read-
operation delays a bit to return the fresh value at e0 + ε. The system will subsequently
react according to the change at time e0 + ε instead of waiting until time e0 + T to be
able to observe the change, where ε << T (Assume that processing time is negligible.).

The freshness problem is illustrated by Figure 1. In the illustration, a read operation
R0 runs concurrently to three write operations W1, W2 and W3 on a concurrent shared
object. In this paper, read/write operations imply operations on the same object. The
actual execution interval of a operation i is defined from the time si the operation starts
to the time ei it takes effect (i.e. linearization point [9]). A time axis is from left to
right. The value returned by R0 becomes fresher if there are more end-points ei appear
in the interval [s0, e0]. In the illustration, if R0 delays the time-point e0 to e′0 = e0 + d,
the execution interval [s0, e

′
0] will include two more end-points e1 and e2 and thus the

value returned is newer. However, the delay will also make the read-operation respond
more slowly. This implies that R0 needs to find the time delay d so as to maximize
the freshness value fd = k(|wed|)

h(d) , where |wed| is the number of new write-endpoints
earned by delaying R0’s read-endpoint an interval d and k, h are increasing functions
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that depend on real applications. The k and h functions should be increasing in order
to model progressive systems. Each application may specify its own functions k and h
according to the relation between the latency and freshness in the application.

Assume that the shared object supports a function for read operations to check how
many write operations (with their timestamp) are ongoing at a time1. A write-timestamp
wt shows the start-point of the corresponding write operation whereas a read-timestamp
rt shows the end-point of the corresponding read operation. The timestamp objective
is to help R0 ignore W4 due to rt0 < wt4. Note that R0 only needs to consider write-
endpoints of write operations that occur concurrently to R0 in its original execution
interval [s0, e0], e.g. R0 will ignore W4. Therefore, in the freshness problem, the num-
ber of concurrent write operations that have not finished at the original read-endpoint
e0 is known and is called M . This number is also the total number of considered write-
endpoints, i.e. |wed| ≤ M .

The most challenging issue in the freshness problem is that the end-points of concur-
rent write operations appear unpredictably. In order to analyze the problem, we consider
it as an online game between a player and an oblivious adversary where the malicious
adversary decides when to place the write-endpoints ei on-the-fly and the player (the
read operation) decides when she should stop and place her read-endpoint e′0. The on-
line game starts at the original read-endpoint e0 and the player knows the total number
of write-endpoints M that the adversary will use throughout the game. At a time t, the
player knows how many of M end-points have been used by the adversary so far, i.e.
|wet|, (by comparing M with the number of ongoing write operations that ran con-
currently with the original read operation) and computes the current freshness value
ft = k(|wet|)

h(t) . For each ft observed, without knowledge of how the value will vary in
the future, the player must decide whether she accepts this value and stops or waits for
a better one. In this online game, the player’s goal is to minimize the competitive ratio
c = fmax

fchosen
, where fchosen is the freshness value chosen by the player and fmax is the

best value in this game, which is chosen by the adversary. The duration of this game D
is the upper bound of execution time of the wait-free read/write operations and is known
to the player. This implies that all the M write-endpoints must appear at a time-point in
the interval, i.e. |weD| = M .

In summary, we define the freshness problem as follows. Let M be the number of
ongoing wait-free write operations at the original read-endpoint e0 of a wait-free read
operation and D be the execution-time upper-bound of these wait-free read/write op-
erations. The read operation needs to find a delay d ≤ D for its new end-point e′0 so
as to achieve an optimal freshness value fd = k(|wed|)

h(d) , where |wed| is the number of
write-endpoints earned by the delay d and k, h are increasing functions that reflect the
relation between latency and freshness in real applications. The read-operation is only
allowed to read the object data and check the number of ongoing write-operations. The
write-operation is only allowed to write data to the object. We assume the time is dis-
crete, where a time unit is the period with which the read operation regularly checks the
number of ongoing write operations on the shared object. The extended read operation
is still wait-free with an execution-time upper-bound 2D.

1 The assumption is practical since this can be done by adding a list of timestamps of ongoing
write operations to the shared object.
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The rest of this paper presents two competitive online algorithms for the freshness
problem. The first one is an optimal deterministic algorithm with competitive ratio

√
α,

where α = h(D)
h(1) . The second one is a nearly-optimal randomized algorithm with com-

petitive ratio ln α
1+ln 2− 2√

α

. Note that the competitive ratios do not depend on k and M ,

which are related to the number of end-points.

3 Optimal Deterministic Algorithm

Modeling the freshness problem as an online game, we observe that the freshness prob-
lem is a variant of online search [5]: In that problem, a player searches for the maximum
(minimum) price in a sequence of prices that unfolds daily. For each day i, the player
observes a price pi and must decide whether to accept this price or to wait for a better
one. The game ends when the player accepts a price, which is also the result.

Inspired by an online search algorithm called reservation price policy [5], we sug-
gest a competitive deterministic algorithm for the freshness problem. In addition to the
fact that the player is searching for the best in a sequence of freshness values that un-
folds sequentially in a foreknown range, there are more restrictions on the adversary.
Freshness values ft at time t must fulfill:

ft−1 ∗ h(t − 1)
h(t)

=
k(|wet−1|)

h(t)
≤ ft =

k(|wet|)
h(t)

≤ k(M)
h(t)

(1)

The restrictions come from the fact that the adversary cannot remove the end-points
she has placed, i.e. |wet−1| ≤ |wet| ≤ M , where |wet| is the number of end-points
that have appeared until a time t, and the freshness value at the time t is ft = k(|wet|)

h(t) ,
where k, h are increasing functions. The restrictions make the adversary in the freshness
problem weaker than the adversary in the online search problem, and intuitively the
player in the freshness problem should benefit from this. However, we will prove that
this is not the case for deterministic algorithms (cf. Theorem 2).

Before presenting the deterministic freshness algorithm, we need to find upper/lower
bounds on freshness values ft. Since 1 ≤ t ≤ D, from Equation (1) it follows ft ≤
k(M)
h(1) . On the other hand, since M ongoing write-operations must end at time-points in

the interval D, the player is ensured a freshness value fmin = k(M)
h(D) by just waiting

until t = D. Therefore, the player considers to stop at a freshness value ft only if
ft ≥ k(M)

h(D) . We have k(M)
h(D) ≤ ft ≤ k(M)

h(1) .

Deterministic Algorithm: The read operation accepts the first freshness value that is not
smaller than f∗ = k(M)√

h(1)h(D)
.

Indeed, let f∗ be the threshold for accepting a freshness value and fmax be the high-
est value chosen by the adversary. The player (the read operation) waits for a value
ft ≥ f∗. If such a value appears in the interval D, the player accepts it and returns it as
the result. Otherwise, when waiting until the time D, the player must accept the value
fmin = k(M)

h(D) .
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Case 1: If the player chooses a big value as f∗, the adversary will choose fmax < f∗,
causing the player to wait until the time D and accept the value fmin = k(M)

h(D) . The

competitive ratio in this case is c1 = fmax
k(M)
h(D)

< f∗
k(M)
h(D)

.

Case 2: If the player chooses a small value as f∗, the adversary will place f∗ at a time
t, causing the player to accept the value and stop. Right after that, the adversary
places all M end-points, achieving a value fmax = k(M)

h(t) ≤ k(M)
h(1) (equality occurs

when the adversary chooses t = 1). The competitive ratio in this case is c2 =
k(M)
h(1)

f∗ .

The player chooses f∗ so as to make c1 = c2, which results in f∗ = k(M)√
h(1)h(D)

and the

competitive ratio c = c1 = c2 =
√

h(D)
h(1) . This leads to the following theorem.

Theorem 1. The suggested deterministic algorithm is competitive with competitive ra-
tio c =

√
α, where α = h(D)

h(1) .

We now prove that no deterministic algorithm can do better.
We use a logarithmic vertical axis for freshness. Let LF denote the logarithm of fresh-

ness. More specifically, we normalize the LF axis so that freshness k(M)
h(D) corresponds

to point 0 and freshness k(M)
h(1) corresponds to point ln h(D)

h(1) = lnα. One unit on the LF
axis multiplies the freshness by factor e (Euler’s number).

We also introduce some parameters that characterize the status of a game. Let t be
the time, initially t = 1. At any moment, let f be the maximum LF the adversary
has already reached during the history of the game, and g the maximum LF the adver-
sary can still achieve at a given time. LF value g(t) at time t corresponds to freshness
k(M)/h(t), unless f is already larger, in which case we have g = f . However in the
latter case the game is over, without loss of generality: The adversary cannot gain more
and would therefore decrease the freshness as quickly as possible, in order to make the
player’s position as bad as possible, hence an optimal player would stop now. (The dot-
ted polyline in Figure 2 illustrates the case f = g(t) in which the player should stop at
time t.)

The horizontal axis is for the logarithm of h(t). We normalize it so that h(1) corre-
sponds to point 0 and h(D) corresponds to point ln h(D)

h(1) = lnα). Note that, in these
logarithmic coordinates, g simply decreases at unit speed, starting at point lnα. Finally,
let c denote the current LF. We remark that c can decrease at most at unit speed but can
jump upwards arbitrarily as long as c ≤ g.

Theorem 2. The optimal deterministic competitive ratio is asymptotically (subject to
lower-order terms)

√
α, where α = h(D)

h(1) .

Proof. We only need to show an adversary strategy that enforces the claimed competi-
tive ratio. Our logarithmic coordinates make the argument rather simple: The adversary

starts with c = ln α
2 =

ln h(D)
h(1)

2 . Then she decreases c at unit speed until the player stops.
Immediately after this moment, c jumps to g if c > 0 at the stop time (Case 1), otherwise
c keeps on decreasing at unit speed (Case 2). Clearly, we have constantly g − c = ln α

2
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until the stop time. Let p be the player’s value of LF. In Case (1) we finally get f = g,
hence f − p = g − c = ln α

2 (cf. the dashed polyline c1 in Figure 2). In Case (2), f has
still its initial value ln α

2 whereas p ≤ 0, hence f − p ≥ ln α
2 (cf. the line c2 in Figure 2).

Thus the competitive ratio is at least e
ln α
2 =

√
α. �

We have shown that a deterministic player cannot benefit from the constraints on the
behaviour of freshness in time (compared to the unrestricted online search problem).
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Fig. 2. Illustrations for Theorem 2 and the randomized algorithm

4 Competitive Randomized Algorithm

Next we present a randomized algorithm for the freshness problem, against the oblivi-
ous adversary [2]. It achieves a competitive ratio c = ln α

1+ln 2− 2√
α

, where α = h(D)
h(1) .

As discussed in the previous section, our problem is a restricted case of online search.
We model the problem by a game between an (online) player and an adversary. The ad-
versary’s profit is the highest freshness ever reached. The player’s profit is the freshness
value at the moment when she stops. Note that for a player running a randomized strat-
egy, the profit is the expected freshness value, with respect to the distribution of stops
resulting from the strategy and input. We shall make use of a known simple transforma-
tion of (randomized) online search to (deterministic) one-way trading [5]: The player
has some budget of money she wants to exchange while the exchange rates may vary
over time. Her goal is to maximize her gain. The transformation is given as follows: The
budget corresponds to probability 1, and exchanging some fraction of money means to
stop the game with exactly that probability. Note that a deterministic algorithm for
online search has to exchange all money at one point in time. For the freshness prob-
lem, it is possible to apply a well-known competitive randomized algorithm EXPO [5].
Applying the EXPO algorithm on the freshness problem achieves a competitive ratio
� 2�−1+1/ ln 2

2�−1+1/ ln 2− 1
ln 2

, where � = log2 α. That means for the freshness problem our random-

ized algorithm is better than the EXPO algorithm by a constant factor 1+ln 2
ln 2 when α

becomes large.
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Theorem 3. There is a randomized algorithm for the freshness problem with expected
competitive ratio ln α

1+ln 2− 2√
α

against an oblivious adversary, where α = h(D)
h(1) .

Proof. We start with some conventions. We imagine that the money, both exchanged
and non-exchanged, is “distributed” on the LF axis. Formally, the allocation of money
on the LF axis at any time is described by two non-negative real density functions S and
T , where S(x) is the density of not yet exchanged money in point x of the LF axis, T (x)
is similarly defined for the money that has been already exchanged. What functions S
and T specifically are, and how they are modified by the opponents’ actions, will be
described below. Let the total amount of money be lnα by convention. (Recall that
scaling factors do not influence the competitive ratio.)

The value of every piece of exchanged money is the freshness value of its position on
the LF axis. Note that the total value of exchanged money defined in this way, i.e. the
integral over the value-by-density product, is the player’s profit in the game. Moreover,
the player can temporarily have some of the money in her pocket.

The idea of the strategy is to guarantee some concentration of exchanged money
immediately below the final f , either some constant minimum density of T or, even
better, a constant amount at one point not too far from f . We want to keep T simple in
order to make the calculations simple. (The well-known δx symbol used below denotes
the distribution with infinite density at a single point x but with integral 1 on any interval
that contains x. We also use the same notations f, g, c as earlier.) Locating much money
instantaneously is risky because c may jump upwards, and then this money has little
value compared to the adversary’s. On the other hand, since c decreases at most with
unit speed, the player may completely abstain from exchanging money as long as c is
increasing, and wait until c goes down again. These preliminary thoughts lead to the
following strategy.

In the beginning, let the not-yet-exchanged money be located on the LF axis on
interval [0, lnα] with density 1, that is, we have S = 1 on this interval. Remember that
g decreases at unit speed. The player puts the money above g in her pocket. Whenever
f increases, she also puts the money below the new f in her pocket. Hence we always
have S = 1 on [f, g], and S = 0 outside. The player continuously locates exchanged
money on the LF axis, observing the following rule: If you have money in your pocket
and c is positive and decreasing, and T (c) < 2 at the current c, then set T (c) := 2. If
the game is over (because of f = g) and not all money is exchanged yet, put the rest r
on the current c. Note that the adversary must set the final c nonnegative.

Filling-up density T to 2 is always possible: The player uses the one unit of money
from S that she gets per time unit from the region above the falling g, and the money
from S that she got directly from the current points c when f went upwards.

Obviously, the player produces a density function T that is constantly 2 on certain
intervals and 0 outside, plus some component rδc. We make some crucial observations
regarding the final situation: (1) T has density 2 on interval (c, f ], or we have c = f .
(2) The gaps with T = 0 between the “T = 2 intervals” have total length at most r.

These claims follow easily from the strategy: (1) Either c begins decreasing, starting
from the last f , and T is filled up to 2 all the time when c > 0, as we saw above, or
the final c equals the final f . (2) Whenever f went upwards, the player has taken from
S the money corresponding to the increase of f , and later she has transferred it to T
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and located it at the same points again. Hence, only on intervals not “visited” again by
c we have T = 0, and the money taken from S on these intervals is still in the player’s
pocket and thus contributes to r.

Figure 2-(A) illustrates the player’s behavior. The dashed line represents a variation
of c in a game; point c is the final value of c when the game ends, i.e. f = g(t). For all
values v on the LF axis between f and a and between a and c, the player sets T (v) = 2.

Using (1),(2) we now analyze the profit the player can guarantee herself. Remember
that the value of exchanged money located on the LF axis decreases exponentially. Let
x = f−c (final values). Both r and x depend on the input, i.e., the behavior of c in time.
The total amount of money is fixed, it equals lnα. For any fixed r, x, the worst case is
now that the gaps in T sum up to the maximum length r and are as high as possible
on the LF axis, that is, immediately below point c, because in this case all exchanged
money outside [c, f ] has the least possible value. That is, T has only one gap, namely
interval [c − r, c].

Figure 2-(C) illustrates the worst case corresponding to an instance -(B), where solid
lines represent ranges on the LF axis with T = 2. In the worst case, the adversary shifts
all solid lines except for [c, f ] to the lowest possible position so as to minimize the
player’s profit.

Hence, a lower bound on the player’s profit, divided by the value at f , is given by

min
r,x

(
2
∫ x

0

e−tdt + re−x + 2
∫ (r+lnα)/2

x+r

e−tdt

)
,

where we started integration (with t = 0) at point f and go down the LF axis (cf.
Figure 2-(C)). Verify that, in fact,

∫
Tdt = lnα. The above expression evaluates to

2 + (r − 2 + 2e−r)e−x − 2e−(r+lnα)/2 > 2 + (r − 2 + 2e−r)e−x − 2/
√

α.

For any fixed x, this is minimized if 2e−r = 1, that is, r = ln 2. Since now r − 2 +
2e−r = ln 2 − 2 + 1 < 0, the worst case is x = 0, which gives 1 + ln 2 − 2/

√
α. The

adversary earns lnα times the value at f . �
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Abstract. Cutting Stock Problems (CSP) arise in many production in-
dustries where large stock sheets must be cut into smaller pieces. We
present a parallel algorithm - based on Viswanathan and Bagchi al-
gorithm (VB) - solving the Two-Dimensional Cutting Stock Problem
(2DCSP). The algorithm guarantees the processing of best nodes first
and does not introduce any redundant combinations - others than the
already present in the sequential version. The improvement is orthogo-
nal to any other sequential improvements. Computational results of an
OpenMP implementation confirm the optimality of the algorithm. We
also produce a new syntactic based reformulation of the 2DCSP problem
which leads to a concise representation of the solutions. A highly efficient
data structure to store subproblems is introduced.

1 Introduction

Cutting Stock Problems (CSP) arise in many production industries where large
stock sheets (glass, textiles, pulp and paper, steel, etc.) must be cut into smaller
pieces. CSP can be classified [1,2] attending to several characteristics: the number
of dimensions (1D, 2D, 3D), the number of available surfaces and patterns, the
shape of the patterns (regular or irregular), the orientation, etc.

The Constrained 2 Dimensional Cutting Stock Problem (2DCSP) is one of
the most interesting variants of CSP and targets the cutting of a large rectangle
S of dimensions L×W in a set of smaller rectangles using orthogonal guillotine
cuts. That means that any cut must run from one side of the rectangle to the
other end and be parallel to the other two edges. The produced rectangles must
belong to one of a given set of rectangle types D = {T1 . . . Tn} where the i-th
type Ti has dimensions li ×wi. Associated with each type Ti there is a profit pi

and a demand constraint bi. The goal is to find a feasible cutting pattern with
xi pieces of type Ti maximizing the total profit:

max
∑n

i=1 xipi subject to xi ≤ bi and xi ∈

Though a large number of heuristics have been proposed [3,4,5,6], the num-
ber of exact algorithms is not so extensive. The optimal algorithms fall in two

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 821–830, 2006.
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categories: depth-first searches [7] and best-first search methods [8,9,10]. To our
knowledge, not many parallel exact algorithms have been devised [11,12].

Wang [13] was the first to make the observation that all guillotine cutting
patterns can be obtained by means of horizontal and vertical builds of pieces
(Figure 1). Her idea was exploited by Viswanathan and Bagchi [8] to propose a
brilliant best-first search algorithm (VB) which uses Gilmore and Gomory [14]
dynamic programming solution - for the unbounded version of the problem -
to build an upper bound. The algorithm resembles A* algorithms and uses two
lists OPEN and CLIST to yield the set of feasible solutions. At each step, the
best build of pieces (or meta-rectangle) from OPEN is chosen and combined
with the already found best meta-rectangles (elements in CLIST) to produce
horizontal and vertical builds. Later, Hifi [9] and Cung, Hifi and Le-Cun [10]
proposed a modified version of VB algorithm (called MVB) introducing an initial
lower bound and rules to find in constant/time duplicated/dominated patterns.
The efficiency of MVB is also a consequence of other two novelties: CLIST is
represented by a bidimensional data structure and VB upper bound is reduced
combining it with the solution of a One-Dimensional Knapsack Problem. The
Knapsack Problem results from mapping the 2DCSP bidimensional constraints
onto one dimensional area constraints (similar proposals were made by Tschöeke
and Holthöfer in [11]).

Niklas et al. in [12] proposed a parallel version of Wang’s approximation al-
gorithm [13]. Unfortunately, Wang’s method does not always yield optimal so-
lutions in a single invocation and is slower than VB algorithm [8]. Tschöeke and
Holthöfer parallel version [11] starts from the original VB algorithm and uses
the Paderborn Parallel Branch-and-Bound Library (PPBB-LIB [15]). Due to the
asynchronous nature provided by the PPBB-LIB skeleton, the algorithm does
not guarantee the processing of best subproblems first. Another consequence is
the generation of unwanted duplicates which aren’t produced by the sequential
version. In the worst case an exponential growth of elements may result. The au-
thors proposed a stamp-based mechanism to hinder the generation of duplicates.

Though the next section is devoted to introduce VB algorithm, it contains
some contributions. Namely, it emphasizes a new syntactic based reformulation
of the problem and proposes a concise representation of the solutions. More
important, a highly efficient data structure to store subproblems is introduced.
In this section we also present an improvement to avoid unwanted repetitions of
computations which are common to the two parallel loops. The parallel algorithm
is presented in section 3. On each step the best subproblem from OPEN is all-to-
all reduced and combined with each of the elements in CLIST. The design of the
parallel algorithm was suggested by the bidimensional data structure proposed
by Cung and others [10,11] to hold VB CLIST. The bidimensional structure
leads to two traversing loops which can be parallelized. The performance gain is
compatible with any other sequential improvements. Some computational results
are shown in section 4. Finally, the conclusions and future works are given in
section 5.
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2 A Sequential Algorithm

Reformulating the 2DCSP. Given two meta-rectangles α and β of dimen-
sions (αl, αw) and (βl, βw) the vertical build α|β is a meta-rectangle of dimen-
sions (max{αl, βl}, αw + βw). The horizontal build α− β is a meta-rectangle of
dimensions (αl + βl,max{αw, βw}). Using this idea, a feasible solution can be
represented by a formula like (T2|T3)|(T1 −T2). Even better, we may use postfix
expressions avoiding the need for parenthesis, i.e. T2T3|T1T2 − |, and leading to
a compact representation of the syntax tree (see Figure 1).

T1 T2 T3 T1 T2 - T2 T3 - T1T2 | T2T3 |

T1 T2 | T2T3 | - T1 T2 - T2T3 - | T2 T3 - T1T2 | - T2 T3 | T1T2 - |

Fig. 1. Examples of vertical and horizontal builds, shaded areas represent waste

Figure 2 presents a context free grammar G and the associated semantic rules
defining the attributes value (g), length (l), width (w) and number of used pa-
tterns (i) associated with meta-rectangles α ∈ L(G). Given the aforementioned
syntax directed definition the 2DCSP can be reformulated as:

max{αg such that α ∈ L(G), αl ≤ L, αw ≤ W and αi ≤ bi for any pattern i}
Being L(G) the language generated by the grammar G. Observe how semantic
geometrical properties can be embeded into the syntactic structure easing the
expression of constant-time dominance rules as described in [10]. Moreover, this
notation makes possible to easily build new patterns compositions and to manage
and represent the problem (partial) solutions.

Syntax Semantic Rules

S → S1S2|
Sg = Sg

1 + Sg
2

Sl = max{Sl
1, S

l
2}; Sw = Sw

1 + Sw
2

Si = Si
1 + Si

2

S → S1S2−
Sg = Sg

1 + Sg
2

Sl = Sl
1 + Sl

2; Sw = max{Sw
1 , Sw

2 }
Si = Si

1 + Si
2

S → Ti for each Ti ∈ D Sg = ci; Sl = li; S
w = wi; Si = Si + 1

Fig. 2. Syntax Directed Definition for the 2DCSTP. Si is initialized to 0.



824 L. Garćıa et al.

1 OPEN := {T1, T2, . . . , Tn}; CLIST := ∅; f ’ := UpperBound();
2 BestSol := Heuristic(); B: = BestSolg;
3 repeat
4 choose α meta-rectangle from OPEN with higher f ′ value;
5 return(Bestsol) if B = f ′(α);
6 insert α in CLIST at entry (αl, αw);
7 for x := 0 to L - αl do {
8 forall β ∈ CLISTx such that βi ≤ bi − αi do {
9 γ = αβ−; γl = αl + βl; γw = max(αw, βw); /* horizontal build */
10 γg = αg + βg; γi = αi + βi ∀i;
11 if (γg > B) then { free OPEN from B to γg; B = γg; BestSol = γ; }
12 if (f ′(γ) > B) then {insert γ in OPEN at entry f ′(γ); }
13 }
14 }
15 for y := 0 to W - αw do {
16 forall β ∈ CLISTy such that βi ≤ bi − αi do {
17 γ = αβ|; γl = max(αl, βl); γw = αw + βw; /* vertical build */
18 γg = αg + βg; γi = αi + βi ∀i;
19 if (γg > B) then { free OPEN from B to γg); B = γg; BestSol = γ; }
20 if (f ′(γ) > B) then { insert γ in OPEN at entry f ′(γ); }
21 }
22 }
23 return(Bestsol) if OPEN = ∅;
24 forever;

Fig. 3. Modified Version of Viswanathan and Bagchi Algorithm (MVB)

The Modified Viswanathan and Bagchi Algorithm. In VB original ver-
sion the combination is achieved traversing the whole CLIST, discarding non
feasible solutions. To alleviate this, Cun and others [10] introduced the skillful
data structure depicted in Figure 4. This way using two loops (see Figure 3), one
for the horizontal combinations (lines 7-14) and another for the vertical combi-
nations (lines 15-22) only problems holding the geometry constraints are visited.
There is one loss however. Observe that (αβ−)i = (αβ|)i and (αβ−)g = (αβ|)g

for any α and β and any pattern i. When using the original list data struc-
ture these common values are computed only once. The decoupling on two loops
implies the repetition of such calculus (lines 10 and 18). We can reduce this
overhead as follows: During the horizontal loop (lines 7-14) we save a pointer
to α inside the data structure representing the meta-rectangle β (for that we
use an extra field, let us call it current). On a second field (call it horizontal)
we store a pointer to αβ−. Now if during the vertical loop (lines 15-22) the
meta-rectangle β (line 16) has its current field pointing to α we can recover the
values αi + βi stored in αβ− using the horizontal field of β.

Data Structure to Represent the Upper Bounds. On any best-first search
algorithm, subproblems are sorted by the value of their upper bounds. Main-
taining this usually very large set is often cause for performance degradation.
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0

L

0

W

Fig. 4. Data Structure to store CLIST

Since along the execution of any branch-and-bound the lower bounds keep as-
cending and the upper bounds descending we can state that during the search
all the upper bounds fall in the interval [best0, upper0]. We denote by best0 the
initial heuristic value and by upper0 the upper bound of the initial problem.
That suggest a natural solution: to have an array [best0 . . . upper0] of pointers
to linked lists of subproblems. Subproblems with the same upper bound go to
the same linked list. Insertion then can be done in constant time. Notice that
insertion using the classical list approach [8,13] leads - for the VB algorithm but
it is also the general case for branch-and-bound - to O(2n) time since in the
worst case the list grows exponentially with the number of patterns. The other
main operation involved, choosing/extracting the subproblem with the largest
upper bound consists now in descending the interval searching for a non void
pointer. Full segments of memory can be freed any time the lower bound im-
proves (line 19). When memory is an issue and there is no space to afford storing
the whole interval [best0, upper0] the data structure becomes a tree-of-intervals
(Figure 5). The root node is now a smaller interval [0, C] where C = upper0−best0

d .
Each item in [0, C] is a pointer to an interval of size C

d = upper0−best0
d2 and so on.

upper

best 0

0

0

C

u

0

d

Fig. 5. Data Structure to store OPEN

The idea is extremely simple - but as far as we know it is the first time
that it is proposed - and it can be applied to any best-first search branch-and-
bound algorithm and therefore to algorithmic skeletons [15,16,17] supporting this
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technique. Taking advantage of this structure we have sorted the subproblems
with same uppers by their lower values. This can change the search order and
cause the exploration of more nodes but the best solution value will increase
more quickly and we will be able to discard more subproblems.

3 The Parallel Algorithm

In order to improve the sequential scheme, we propose a parallel algorithm that
introduces a parallel generation of subproblems (meta-rectangles or builds) from
a certain best subproblem. The general operation of this parallel scheme follows
the same structure than the sequential scheme presented before (Figure 3). The
main difference appears in the subproblem generation loops. Each processor in-
volved in the resolution of the problem works on a section of the bidimensional
CLIST. It combines the current best subproblem with the subproblems con-
tained in its matrix section. The work distribution will depend on the processor
characteristics. It can be a dynamic or static (cyclic, block) distribution.

Each processor keeps a replicated copy of CLIST. Meanwhile, OPEN will be
distributed and only contains the subproblems generated by its owner processor.
These structures allow the processors to work independently in the generation
of new subproblems. After every combination of the current subproblem with
the previous best ones, each processor has its own best current subproblem. To
determine which is the global best current subproblem, it is necessary to add
an all-to-all reduction point. Once all processors have the new best subproblem,
they can begin with the generation work. The same reduction point is used to
update the best solution current value.

A brief description of the OpenMP implementation is given below:

1. Each thread initializes its OPEN and CLIST variables. The master thread
creates the initial subproblems and inserts them into its OPEN list.

2. At every iteration of the search loop, the global best subproblem must be
identified. Each thread makes public its best subproblem by updating the
corresponding entry at a shared static structure. The master thread deter-
mines the thread identifier having the best current subproblem and writes
it to a shared variable. Then the slave threads are able to access the best
global subproblem and copy it to a private variable. The owner of the best
global subproblem must remove it from its OPEN list.

3. If the subproblem is not the solution and is not dominated/duplicated, it
is inserted in each local CLIST (notice that operations for the detection of
dominated/duplicated builds are not included in the pseudocode of Figure 3).
If the subproblem is discarded, go to the previous step.

4. The horizontal new builds are generated in a first loop and in the second loop
are generated the vertical ones. These loops have a parallel-for pragma, so
each thread will do combinations of the subproblem with certain sections of
the CLIST matrix. The new subproblems are inserted into the corresponding
thread OPEN list.
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5. Once all the new subproblems have been created and inserted into the lists,
each thread must find its current best subproblem and copy it to the static
shared array. The same is done with the best solution.

6. These steps must be followed until the solution is found.

The main problem of the implementation done on shared memory deals with
the use of dynamic linked lists. These lists have to be modified by all threads
and there is no mechanism available to ensure the integrity of data. OpenMP
compilers usually ensure the integrity of the static structures, that is, arrays or
structs stored in the static segment or in the execution stack. But this is not the
case when dealing with data structures allocated in the heap. By this reason,
some additional operations are necessary to update the shared dynamic data
structures used by our implementation.

The exposed parallel algorithm can be easily implemented on a distributed
memory scheme. As in this case, each processor would have its own OPEN and
CLIST variables. A barrier point would be necessary to do the reduction of the
best subproblem and send it to every processor in the team.

4 Computational Results

For the computational study, we have selected some instances from the ones
available at [18]. From the instances proposed at [19] we have selected problem 1
from category 1 (cat1 1) and problem 2 from category 3 (cat3 2). The algorithms
have been also tested with the problem instances exposed in [9]. Tests have
been run over La Laguna University cluster (tarja). The cluster provides a Bull
NovaScale 6320 SMP server that consists of 32 Intel Itanium 2 processors at
1.5GHz. The compilers used are: gcc 3.3.3 and Intel C/C + + 8.1.20.

Table 1 presents the results for the sequential algorithms. Columns labelled
“Time” show execution times in seconds and the labelled “Gen.”, “Comp.” and
“Ins.” show the number of average generated, computed and inserted nodes res-
pectively. Notice that the generated nodes are the nodes that represent any build
created during the search process. Nodes removed from OPEN to be combined
with all the previous best subproblems are the computed nodes. Inserted nodes
represent the non duplicated generated nodes that can be inserted into OPEN.
The results grouped under the name “Initial Version” are for an initial im-
plementation based on VB algorithm. Sequential times for the modified version
described in section 2 are also shown in the table under the label “Improved Ver-
sion”. As we can see, the modified sequential implementation introduces great
improvements over the original version. The differences are due to the new data
structures. They make possible to easily sort elements in OPEN and find du-
plicated/dominated nodes. But, when the number of generated nodes increases,
the insertion of subproblems into OPEN turns too heavy for the first imple-
mentation. By this reason, large problem instances are not approachable by this
version.

Table 2 shows the results for the parallel implementation of the improved
algorithm. The columns labelled “Ins.” and “Gen.” show the number of nodes,
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Table 1. Sequential Results - Original and Improved Versions

Problem Instance Original Version Improved Version

G
e
n
.

C
o
m

p
.

In
s.

T
im

e

G
e
n
.

C
o
m

p
.

In
s.

T
im

e

cat1 1 71631356 80575 124683 329,054 71631356 42842 122307 74,031

cat3 2 5073790 10968 146468 437,434 5067565 10966 145802 29,698

CL 10 24 01 1142805 4533 24654 2,714 1136429 3116 25335 1,042

CL 10 24 03 3547161 9551 32554 6,146 3544239 6625 33535 2,908

CL 10 24 09 1699757 7051 31819 4,873 1685099 4908 32049 1,580

CL 10 51 01 825620 2359 30913 4,582 848216 1732 31703 1,068

1 652 48 198 0,001 825 42 266 0,001

1 27543 974 1979 0,017 35694 578 2555 0,079

2 11014 240 5804 0,171 11142 161 6011 0,017

2 4414 136 2571 0,021 4586 91 2745 0,008

3 29935 1120 1868 0,046 31467 628 2141 0,038

3 282 44 182 0,002 290 32 194 0,002

A1 21757 688 4031 0,061 25026 440 4057 0,104

A2 184186 5813 11749 0,694 172684 2511 9642 0,238

A3 24331 379 4188 0,069 24538 262 4384 0,036

A4 64866 558 27373 3,303 68394 374 29002 0,174

Table 2. Improved Version - Parallel Results

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8

In
s.
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.
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.
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.
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.
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G
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n
.

C
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m

p
.

T
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e

cat1 1
Th 1 122 71631 42 112.09

Th 2 72 35551 52 36079 50 73.49

Th 4 39 18896 28 19874 35 18093 26 17515 56 73.96

Th 8 20 11443 16 13898 14 8216 15 9427 18 7068 10 5657 20 9503 10 7894 57 68.99

cat3 2
Th 1 145 5067 10 32.08

Th 2 43 2621 44 2919 11 5.59

Th 4 32 175 31 179 23 148 23 110 3 0.77

Th 8 30 200 19 126 21 184 17 128 25 172 28 228 12 112 22 117 5 1.01

in thousands, inserted and generated by every thread. The number of computed
nodes during the process is shown (also in thousands) in column “Comp.”. Com-
putational time, in seconds, invested in the search process is presented in column
“Time”. Parallel speedups strongly depend on the particular problem. That is a
result of changing the search space exploration order when more than one thread
is collaborating in the resolution. Even in worse cases (cat1 1) we can improve
sequential times. A fair work load distribution between threads is difficult to ob-
tain since it is not only needed to fairly distribute the subproblems to generate
but also the ones to be inserted. Before doing a certain combination we are not
able to know if a build will be valid or not (to be inserted).
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5 Conclusions

An exact algorithm for the resolution of the Two-Dimensional Cutting Stock
Problem has been presented. The implementation is based on VB and MVB
algorithms. First of all, we have presented a new reformulation of the problem.
A new syntax is introduced for the representation of the solutions. This notation
helps in the detection of similar properties between different subproblems, mak-
ing possible to efficiently detect duplicated combinations. By these representa-
tions we also are able to easily build the solution found. New data structures have
been designed in order to efficiently manage insertions, combinations and domi-
nance/duplication detections. The new data structure to manage subproblems in
OPEN allows to do insertions in constant time independently of the number of
nodes in the lists. The idea can be easily extend to any best-first search, branch-
and-bound or algorithmic skeletons giving support to these techniques. In order
to avoid the unnecessary recomputation of some subproblems, we have added a
mechanism to store subproblems related to a particular element in CLIST. All
these new features introduce an important improvement in the sequential exact
algorithm. For being able to afford larger problem instances, we have presented
a general parallel algorithm. The algorithm proposes a parallelization of the new
build generation loop. On most space search algorithms, the slightest changes
in the search order may cause dramatic consequences on the execution time.
Super and sublinear speedups may occur since the parallel algorithm alters the
sequential order. A first parallel implementation has been developed over shared
memory. Porting an existing C application to OpenMP even if the algorithm
is straightforwardly parallel can be sometimes a nightmare due to the lack of
support to qualify dynamic memory variables as shared or private.

Future work targets improvement of both, the upper bound and the initial
heuristic lower bound. This improvement in the bounds will allow to highly
reduce the search space. In relation to the parallel algorithm we would like to
develop a message passing implementation in order to compare with the one
presented. A deep study of the work load distribution is also required.
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Abstract. Given a sequence A of real numbers, we wish to find a list
of all non-overlapping contiguous subsequences of A that are maximal.
A maximal subsequence M of A has the property that no proper sub-
sequence of M has a greater sum of values. Furthermore, M may not
be contained properly within any subsequence of A with this property.
This problem can be solved sequentially in linear time. We present a
BSP/CGM algorithm that uses p processors and takes O(|A|/p) time
and O(|A|/p) space per processor. The algorithm uses a constant number
of communication rounds of size at most O(|A|/p). Thus the algorithm
achieves linear speed-up and is highly scalable.

1 Introduction

Given a sequence of real numbers, the maximum subsequence problem finds the
contiguous subsequence with the maximum sum [1]. A more general problem is
the all maximal subsequences problem [2] which finds a list of all non-overlapping
contiguous subsequences with maximal sum. These two problems arise in several
contexts in Computational Biology. Many applications are presented in [2], to
identify transmembrane domains in proteins expressed as a sequence of amino
acids and to discover CpG islands. Csuros [3] mentions other applications that
require the computation of such subsequences, in the analysis of protein and
DNA sequences, determination of isochores in DNA sequences, etc.

Linear time sequential algorithms are known to solve both problems [1,2]. Wen
[4] presents a EREW PRAM algorithm that solves the maximum subsequence
problem of n given numbers in O(log n) time using O(n/ logn) processors. For
this same problem, Alves, Cáceres and Song [5] present a BSP/CGM parallel
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algorithm on p processors that requires O(n/p) computing time and constant
number of communication rounds. Dai and Su [6] present a PRAM EREW work-
optimal algorithm that solve the all maximal subsequences problem in O(log n)
time with O(n) operations.

In this paper we present a BSP/CGM algorithm to solve the all maximal sub-
sequences problem. Given a sequence A of numbers, this algorithm uses p proces-
sors and finds all the maximal subsequences in O(|A|/p) time, with O(|A|/p)
space per processor, and requires a constant number of communication rounds
in which at most O(|A|/p) data are transmitted. Unlike the parallel solution for
the basic maximum subsequence problem, it is not at all intuitive that one can
find a parallel algorithm for this problem that requires only a constant number
of communication rounds. In this sense, this is also an important result in a
theoretical viewpoint. Finding a BSP/CGM algorithm with constant number of
communication rounds for a problem with linear sequential complexity is not
always possible, as shown by the list ranking problem where the best known
BSP/CGM algorithm requires O(log n) communication rounds [7].

2 Preliminary Definitions and Results

Given a sequence A of real numbers, denote its elements by ai, 1 ≤ i ≤ |A|.
Subsequences of A are indicated as Aj

i = (ai+1, ..., aj). The superscript indicates
the rightmost position in the subsequence, and the subscript is one less than the
leftmost position. If the subscript and the superscript are equal, the subsequence
is empty. A particular subsequence of A can be denoted by some other upper-
case letter, but all indices will refer to sequence A. To indicate the indices of
the first (leftmost) and last (rightmost) positions of a sequence X we use L (X)
and R (X). For coherence with the previous notation we have X = A

R(X)
L(X) =

(aL(X)+1, ..., aR(X)). Notice that L (X) indicates one position to the left of the
actual beginning of X . The concatenation of sequences X1, X2, ... Xn will be
denoted by 〈X1, X2, ...Xn〉. The sum of the values of a subsequence X will be
denoted by Score(X). If X is empty, then we define its score to be zero. As the
sum of prefixes of A is very important in this paper, we use PS (j) to denote
Score(Aj

0). We consider PS (0) = 0. Notice that Score(Aj
i ) = PS (j) − PS (i).

For a subsequence X = Aj
i , the minimum and the maximum among all values

of PS (k), for i ≤ k ≤ j, will be denoted by Min(X) and Max (X), respectively.
We consider the BSP/CGM (Bulk Synchronous Parallel/Coarse-Grained

Multicomputer) model [8,9], with p processors each with O(n/p) local mem-
ory, where n is the input size of the problem. A BSP/CGM algorithm consists of
alternating local computation and global communication rounds. In each commu-
nication round, each processor can send/receive messages with at most O(n/p)
data. A BSP/CGM algorithm attempts to minimize the number of communica-
tion rounds as well as the total local computation time.

A maximum scoring subsequence of X is one with the largest score among
all scores of subsequences of X . When ties occur, we choose the subsequence
of minimum length. If there is no positive number in X , we assume that there
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is no maximum scoring subsequence. It is easy to see that prefixes and suffixes
of a maximum subsequence always have positive scores, because the deletion of
a prefix or suffix with non-positive score would lead to a better subsequence.
The problem of finding all maximal subsequences of A is more complicated.
Ruzzo and Tompa [2] define the set of maximal subsequences recursively, as
follows.

Definition 1. Given a sequence A of real numbers, the set of maximal subse-
quences of A is empty if A has no positive values. Otherwise, let 〈A1,M,A2〉 be
a decomposition of A in three subsequences where M is the maximum scoring
subsequence of A (A1 and A2 may be empty sequences). Then the set of maximal
subsequences of A is the union of the set {M}, the set of maximal subsequences
of A1, and the set of maximal subsequences of A2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ai 5 -3 -1 5 -9 0 3 3 7 -9 3 -6 3 -1 0 3 -3 0 7 -4 0 -6

Fig. 1. Example sequence to be used throughout the text

Consider the sequence A = (a1, a2, . . . , a22) of Figure 1. The maximal subse-
quences are A4

0 = (5, -3, -1, 5), A9
6 = (3, 3, 7), A11

10 = (3), and A19
12 = (3, -1, 0,

3, -3, 0, 7), with respective scores of 6, 13, 3, and 9.
Ruzzo and Tompa also give two necessary and sufficient properties that a

subsequence X must have to be maximal in sequence A. They are stated in the
following theorem. For a proof, see [2].

Theorem 1. A subsequence X is maximal in A iff it has both properties below:

Property Pr1. For any proper subsequence Y of X, Score(Y ) < Score(X).
Property Pr2. There is no proper supersequence of X that has Property Pr1.

Notice that the score of a sequence with property Pr1 must be positive. Sub-
sequences of A that have property Pr1 will be called Pr1-subsequences. We
can restate the definition of a maximal subsequence in terms of these
properties.

Definition 2. Given a sequence A of real numbers, the list of maximal subse-
quences of A, denoted MList (A), is the list of all subsequences that have Prop-
erties Pr1 and Pr2, ordered with respect to L (.). This list is indexed starting at
1 with the leftmost subsequence.

Property Pr1 can also be stated in terms of prefix sums, by the following lemma.
In this paper we omit all the proofs. They can be found in [10].

Lemma 1. A subsequence Aj
i is Pr1-subsequence iff for all m, i < m < j,

PS (i) < PS (m) < PS (j).
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5 −3

−1

5
−9

0
3

3

7 −9

3

−6
3

−1

0

3 −3

0

7
−4

0 −6

Fig. 2. Sequence A = (5, −3, −1, . . . , 0, −6) and some Pr1-subsequences

In Figure 2, we plot the function PS (.), so that positive (negative) values in
the sequence are represented by ascending (descending) line segments. A Pr1-
subsequence X is indicated by a rectangular box with (L (X), PS (L (X))) and
(R (X), PS (R (X))) as lower-left and upper-right corners, respectively. The plot-
ted curve touches the box only in these corners. Notice that the first three Pr1-
subsequences in Figure 2 are maximal subsequences of A, but the last three are
not (they are subsequences of the same A-maximal, namely A19

12).
We say that Aj

i , i < j, is a Pr1-prefix if PS (i) < Min(Aj
i+1) and it is a

Pr1-suffix if Max (Aj−1
i ) < PS (j). A Pr1-subsequence is both a Pr1-prefix and

a Pr1-suffix.

Corollary 1. If P is a Pr1-prefix and S is a Pr1-suffix, 〈P, S〉 is a Pr1-subse-
quence iff Min(P ) < Min(S) and Max (P ) < Max (S).

One can observe [2] that (i) any Pr1-subsequence of a sequence A is contained
in a maximal subsequence of A (maybe not properly), and (ii) given a sequence
A, any two distinct maximal subsequences of A do not overlap or touch each
other. The parallel algorithm is based on finding lists of maximal subsequences in
segments of the original sequence A. Consider a subsequence X of A. We will say
that a subsequence is an X-maximal subsequence, or just an X-maximal, if it is
maximal in X , that is, it is a Pr1-subsequence and has no proper supersequence
that is a Pr1-subsequence of X . (As an abuse of our notation we write the plural
of X-maximal as X-maximals.) Thus we want to find the set of all A-maximals.

Lemma 2. Let Z = 〈X,Y 〉 for some non-empty X and Y . Then there is at
most one Z-maximal M that overlaps both X and Y . If there is such M , it has
an X-maximal as a prefix and a Y -maximal as a suffix. The X-maximals to the
left of M and the Y -maximals to the right of M are also Z-maximals.

This lemma shows that it is possible to build MList (A) working incrementally.
Ihis is important for the proposed parallel algorithm, where the sequence A
is divided into subsequences that are treated separately. Their maximal sub-
sequences are used later to find the A-maximals. The parallel algorithm deals
with the following subproblem: given a subsequence X of A and its list of max-
imal subsequences MList (X), find, if possible, an X-maximal that is a prefix
(or suffix) of a larger A-maximal. This clearly involves MList (X) and the rest
of sequence A. However, some X-maximals need not be considered as possible
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suffix�candidates
prefix�candidates

Fig. 3. A sequence X, MList (X), PList (X) and SList (X). The first (last) maximal
is not a suffix (prefix) candidate because of the first condition of the definition. The
other maximals that are not candidates fall in the second condition - observe the
bottom of the prefix candidates and the top of the suffix candidates. The descending
lines represent sequences of non-positive numbers.

prefixes or suffixes of larger A-maximals, regardless of what is outside X . The
efficiency of our algorithm is based on this important notion, so we formalize it
in the following definitions and lemmas. We deal with prefix candidates first.

Definition 3. Given a subsequence X of A, PList (X) is the ordered list of all
X-maximals, with the exception of those X-maximals M for which one of the
two conditions are satisfied: (1) Min(M) ≥ PS (R (X)), or (2)there is an X-
maximal N to the right of M such that Min(M) ≥ Min(N). (The elements of
PList (X) are indexed starting at 1 with the leftmost subsequence.)

Informally, PList (X) gives us the list of all X-maximals that are potential candi-
dates to be merged to the right to give larger maximals. Notice that we excluded
from PList (X) those X-maximals (satisfying conditions 1 and 2) that can never
give larger maximals. Consider X = A14

0 of the example sequence (see Figure 1
and Figure 2). There are four X-maximals, namely A4

0, A9
6, A11

10, and A13
12 (in-

dicated by the first four boxes of Figure 2). A4
0 does not belong to PList (X)

because of condition 1. A11
10 does not belong to PList (X) because of both con-

ditions 1 and 2. Thus PList (X) = (A9
6, A13

12).
We have following properties [10]: (i) If X is a subsequence of A, PList (X)

contains all X-maximals that can be a proper prefix of an A-maximal, (ii) if
M is a sequence in PList (X) and i ∈ ]L (M) ,R (X)] then Min(M) < PS (i),
that is, A

R(X)
L(M) is a Pr1-prefix, and (iii) if M is a sequence in PList (X) and

i ∈ ]R (M) ,R (X)] then Max (M) ≥ PS (i). A consequence of these properties
is that PList (X) is in a non-increasing order of Max (.) and a strictly increasing
order of Min(.). Figure 3 illustrates PList (X) (and SList (X), defined shortly).

We also a need similar definition for possible suffixes of A-maximals. The
associated properties are given below. Notice the exchanging roles of Max (.)
and Min(.), “left” and “right”, etc.

Definition 4. Given a subsequence X of A, SList (X) is an ordered list of all
X-maximals, with the exception of those X-maximals N for which one of the
two conditions below are satisfied: (1) Max (N) ≤ PS (L (X)), or (2) there is a
X-maximal M to the left of N such that Max (N) ≤ Max (M). (The elements of
SList (X) are indexed starting at 1 with the rightmost subsequence.)
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Properties: (i-a) If X is a subsequence of A, SList (X) contains all X-maxi-
mals that can be a proper suffix of an A-maximal, (ii-a) if N is a sequence in
SList (X) and i ∈ [L (X) ,R (N)[ then PS (i) < Max (N), that is, A

R(N)
L(X) is a

Pr1-suffix, and (iii-a) if N is a sequence in SList (X) and i ∈ [L (X) ,L (N)[
then PS (i) ≥ Min(N). Notice that at most one X-maximal may belong to
both PList (X) and SList (X), namely a maximum subsequence of X . Any other
element of SList (X) must be to the left of any element of PList (X). See Figure 3
for an illustration of PList (X) and SList (X) (when these lists are disjoint).

3 The Parallel Algorithm

Consider p processors P1, P2, . . . , Pp. Assume that the input sequence A is di-
vided into p subsequences, each of size l = �|A|/p� except the last one, which
may be smaller. We call these subsequences AP i = Ali

l(i−1). At the beginning,
each AP i is already stored in the local memory of processor Pi. At the end,
processor Pi will contain the information (position and score) of all A-maximals
that start or end within AP i. Lemma 3 shows how to find the local maximals.

Lemma 3. In O(|A|/p) time and space and with one communication round of size
O(p), each processor Pi may obtain: (i) its local lists of maximals (MList (AP i)),
prefix candidates (PList (AP i)) and suffix candidates (SList (AP i)), and (ii)
PS (L (AP j)), Min(AP j) and Max (AP j) for all j ∈ [1, p].

We now consider a basic procedure to join lists of maximals. We will see how
MList (Z) may be obtained from MList (X), MList (Y ), PList (X) and SList (Y )
when Z = 〈X,Y 〉. The following lemma states the condition for two local maxi-
mal subsequences to be merged to form a larger one.

Lemma 4. Given M ∈ PList (X) and N ∈ SList (Y ), A
R(N)
L(M) is a Pr1-subse-

quence iff Min(M) < Min(N) and Max (M) < Max (N).

Properties (i) and (i-a) state that we may search for a Z-maximal that overlaps
X and Y using only PList (X) and SList (Y ). Algorithm 1 does this. We use Pl =
PList (X) and Sl = SList (Y ) for short, indexing them as stated in Definitions 3
and 4. The algorithm returns the indices of the chosen candidates for prefixes
and suffixes of the new Z-maximal.

Algorithm 1. Joining Two Lists of Maximals
Require: Lists Pl and Sl, with |Pl| and |Sl| candidates, respectively.
Ensure: Flag f that indicates if a new maximal was found, indices ip and is of

the candidates that define this maximal.
1: ip ← 1, is ← 1, f ← false
2: while ip ≤ |Pl| and is ≤ |Sl| and not f do
3: if Max (Pl[ip]) ≥ Max (Sl[is]) then
4: ip ← ip + 1
5: else if Min(Pl[ip]) ≥ Min(Sl[is]) then
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6: is ← is + 1
7: else
8: f ← true
9: end if

10: end while

It can be shown that, given Z = 〈X,Y 〉, Pl = PList (X) and Sl = SList (Y ),
Algorithm 1 finds the only Z-maximal that overlaps X and Y , if it exists, in
O(|Pl| + |Sl|) time and O(1) additional space.

The parallel algorithm performs a single joining step, using a constant number
of communication rounds, involving all the local maximals found in the local
step. This step is based on the simple observation that a non-local maximal
must start inside some AP i and end in some AP j with 1 ≤ i < j ≤ p, so it must
have some sequence in PList (AP i) as prefix and some sequence in SList (APj)
as suffix. The problem is to find a relevant set of Pr1-subsequences of A that
cross processor boundaries. By relevant we mean all the A-maximals that cross
processor boundaries must be contained in this set.

We say that a prefix candidate and a suffix candidate match if they define a
Pr1-subsequence of A. The following definition states the conditions for a match.

Lemma 5. For M ∈ PList (AP i) and N ∈ SList (AP )j, 1 ≤ i < j ≤ p, A
R(N)
L(M)

(the sequence that has M as prefix, N as suffix and contains APk, i < k < j)
is a Pr1-subsequence iff Min(M) < Min(N), Max (M) < Max (N), Min(M) <
mini<k<j Min(APk) and Max (N) > maxi<k<j Max (APk).

After the local step described in Lemma 3 the processors cannot determine
which candidates match because they have access only to their own lists of
candidates. However, given a particular prefix or suffix candidate, the extra
conditions of Lemma 5 allow the determination of the processors where a match
for this candidate may be found. So the first step in the global joining operation
is to tag each candidate with the number of the processor(s) that may contain
a match for it.

Lemma 6. For i ∈ [1, p] it is possible to tag all the elements of PList (AP i) and
SList (AP i) based on the values of Max (AP j) and Min(AP j) for all j ∈ [1, p].
Each tag indicates which processor may contain a match for a particular candi-
date. Each candidate is tagged at most once, with two exceptions per processor
at the most. The time required is O(|A|/p) and the space required is O(p).

Algorithm 2 presents the tagging process, based on a case by case study [10]. This
algorithm contains the tagging procedure for the prefix candidates ofPList (AP i),
called Pl for short. PTagList (i) is called T l for short. Figure 4 illustrates the tag-
ging of prefix candidates.

Algorithm 2. Tagging a List of Prefix Candidates
Require: Lists Pl and T l, with |Pl| and |T l| elements, respectively.
Ensure: Tagging of the elements of Pl.
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1: ip ← 1, it ← 1, f ← false
2: while ip ≤ |Pl| and it ≤ |T l| and not f do
3: if Max (Pl[ip]) ≥ Max (T l[it]) then
4: ip ← ip + 1
5: else if Min(Pl[ip]) ≥ Min∗(T l[it]) then
6: it ← it + 1
7: else
8: tag Pl[ip] with tag(T l[it])
9: if Min(Pl[ip]) < Min(T l[it]) then

10: f ← true
11: end if
12: end if
13: end while

1 2 3 4 5 5

8
5

3,2

4 - 3 2 - 1

AP2AP3AP4AP5AP6AP7AP8

Fig. 4. We consider the tagging of elements of PList (AP1), represented as shaded bars
on the left. The darkened bars in the right represent the data from other processors.
The numbers below the bars represent the indices in PList (AP i) and PTagList (1).

After the tagging procedure, each prefix/suffix candidate may be associated
with two other processors: the one which contains it and the one specified in
the tag. Some candidates have no tags and may be ignored. A few candidates
have two tags and have to be duplicated for the next phase. The next phase
involves checking the existence of cross-processors Pr1-subsequences of A, that
is, Pr1-subsequences that start within AP i and ends within AP j for some pair
(i, j), 1 ≤ i < j ≤ p. This is done by checking the elements of PList (AP i) that
are tagged with j and elements of SList (APj) that are tagged with i. These
elements must be in the local memory of one single processor for verification by
Algorithm 1. The rule to choose which processor does the verification is simple:
the one whose list of candidates is larger receives the data from the other one.
In case both lists have the same size, a deterministic rule is used to break the
tie. For example, if i + j is even then Pi does the job, otherwise Pj does it.

The following lemma summarizes the complexity of the tagging process.

Lemma 7. After tagging the prefix and suffix candidates, all cross-processors
Pr1-subsequences that may be A-maximals can be found in O(|A|/p) time and
space and two communication rounds of sizes O(p) and O(|A|/p). The number
of sequences is at most 2p.
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It should be noticed that some of the new Pr1-subsequences may not have Prop-
erty Pr2. The important thing here is that the procedure just described does not
miss any possible A-maximal. The next step is to find the Pr1-subsequences that
are really A-maximals. All processors broadcast the information about the new
Pr1-subsequences found. Every processor then eliminates the Pr1-subsequence
that are contained in another Pr1-subsequence. The presented procedure does
not generate two Pr1-subsequences that overlap, unless one is contained in the
other. That is because if two Pr1-subsequences overlap then their union is also a
Pr1-subsequence. Each Pr1-subsequence is related to a different pair of proces-
sors. All that must be verified is which pairs generated new sequences, done by
Algorithm 3. It takes O(p) time and space.

Algorithm 3. Removing Pr1-subsequences that not A-maximals
Require: List L (with |L| elements) of pairs of processors for which there is a

cross-processor Pr1-subsequence.
Ensure: List N (with n elements) of pairs of processors for which there is a

cross-processor A-maximal.
1: for k ← 1 to p do
2: V [k] ← k
3: end for
4: for k ← 1 to |L| do
5: i ← smallest component of L[k]
6: j ← largest component of L[k]
7: if j > V [i] then
8: V [i] ← j
9: end if

10: end for
11: n ← 0, k ← 1
12: while k < p do
13: if V [k] > k then
14: n ← n + 1
15: N [n] ← (k, V [k])
16: k ← V [k]
17: else
18: k ← k + 1
19: end if
20: end while

A final step is done locally by each processor. By examining the list of new
A-maximals, processor Pi verifies if there is an A-maximal that contains its
entire local subsequence AP i, which means that its own local set of maximals
MList (AP i) should be discarded. This can be done in time O(p). If there is
a cross-processors A-maximal that starts or ends within AP i, a final scan of
MList (AP i) will eliminate the local maximals that are contained in a larger
A-maximal. This final scan can be done in time O (log(|A|/p)).
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Theorem 2. Using a BSP/CGM with p processors, all maximal subsequences
of a sequence A (already distributed in the p local memories) can be found in
time O(|A|/p), using O(|A|/p) local space and O(1) communication rounds.

4 Conclusion

We have presented a parallel algorithm that finds all maximal subsequences of
a sequence A with linear speed-up and high scalability. The size of the com-
munication rounds is bounded by O(|A|/p). communication rounds should be
much lower than |A|/p. Experimenting with a sequence X of random numbers
we conjecture that the average size of PList (X) is O(log(|X |)). The running
time of the whole algorithm is dominated by the time of the first step to find the
local maximal subsequences. To derive this parallel O(|A|/p) time and O(|A|/p)
space per processor algorithm, requiring a constant number of communication
rounds, we explored the properties of those local maximals that are potential
candidates to be merged together to form larger maximals, as well as an efficient
merge process to join candidate local maximals.
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Abstract. We consider parallel prefix computation on processors of dif-
ferent and possibly changing speeds. Extending previous works on identi-
cal processors, we provide a lower bound for this problem. We introduce
a new adaptive algorithm which is based on the on-line recursive coupling
of an optimal sequential algorithm and a parallel one, non-optimal but
recursive and fine-grain. The coupling relies on a work-stealing schedul-
ing. Its theoretical performance is analysed on p processors of different
and changing speeds. It is close to the lower bound both on identical
processors and close to the lower bound for processors of changing speeds.
Experiments performed on an eight-processor machine confirms this the-
oretical result.

1 Introduction

Given x0, x1, . . . , xn, the prefix problem is to compute the n products πk =
x0◦x1◦. . .◦xk for 1 ≤ k ≤ n, where ◦ is an associative operation. Prefix computa-
tion is a common operation in many algorithms including the evaluation of poly-
nomials and modular additions [1], packing problems, loop parallelization [2].

The iterative sequential prefix computation requires n operations ◦. However,
any parallel prefix circuit of depth d contains at least 2n − d operations ◦ (see
section 3). The minimal parallel time is Ω(logn) on a machine without concur-
rent write. Ladner and Fischer [3] proposed a parallel algorithm which takes a
time of 2 logn and 2n operations. Fich [4] proved that any algorithm of time
logn requires 4n operations. Then Ladner-Fisher’s algorithm is fine grain and
asymptotically optimal on n

log n processors . It can be scheduled on p < n
log n

identical processors in time 2n
p + O(log n). Since it carries out 2n operations,

it is not optimal for a fixed p. Nicolau and Wang [2] showed that a strict lower
bound for the parallel time on p identical processors is

⌈
2n

p+1

⌉
for n ≥ p(p+1)

2 .
They provided an algorithm, based on a cutting in (p + 1) blocks and a pipeline
between blocks, which reaches this lower bound. Most implementations either on
dedicated distributed architectures or circuits [1] are based on an off-line block
partitioning, with a block size depending on p.
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The drawback of such optimal algorithms for a fixed number p of processors
is that the number of operations is at least 2 p

p+1 times greater than the number
n of operations performed by an optimal sequential algorithm. Thus, although
optimal on p processors, those algorithms are not efficient on a machine with
processors of different and possibly changing speeds. This is the practical case
for a multi-processor machine concurrently used by several users, since the load
of the processors varies during the execution. In this case, the scheduling must
be on-line.

To resolve this problem, we use an on-line work-stealing (see section 2) im-
plemented in Kaapi [5,6]. Bender and Rabin [7] extended this work-stealing to
processors of changing speeds: they analyze the time of an algorithm with re-
spect to Πave, the average speed per processor. On this model, we provide in
section 3 a lower bound 2n

p·Πave+Πmax
for computation time of parallel prefix,

where Πmax is the maximal speed of a processor during execution. We prove
this bound is tight on uniform processors: for n � p, a block algorithm –with
an off-line partitioning based on the relative speeds of the processors– reaches it.

In order to suit to processors with changing speeds, section 4 presents our
new adaptive algorithm that performs an on-line block partitioning without
assumption on the processor speeds. It is based on the recursive coupling of a
sequential optimal algorithm and a fine grain parallel one which is scheduled by
work-stealing. Its execution time, including on-line scheduling overhead, is Tp ≤

2n
(p+1)·Πave

+ O
(

log n
Πave

)
which is close to the lower bound, and asymptotically

optimal when processors are identical.
Finally, in section 6, we present experimental comparisons on a eight-processor

machine between this algorithm and an optimal one with off-line static parti-
tioning. Two cases are considered: dedicated processors and processors disturbed
by additional processes. Even for small values of n (100) and of p (1 to 8), our
adaptive algorithm has performances analogous to the optimal one when the
machine is dedicated to the computation, and it is faster when the machine con-
currently executes other processes (multiuser case), which is the practical case
that motivates this work.

The coupling of two algorithms, a sequential one and a parallel one, is inspired
by Daoudi et al [8] where it is applied to algorithms with the same number of
operations on identical processors. However, its use for processors with differ-
ent and possibly changing speeds, as well as the technique used to analyze its
complexity are original. This technique is very general, we think that it can be
applied to other problems.

2 Notations and On-Line Scheduling by Work-Stealing

Let W∞ be the critical-path in number of operations for an execution on an
unbounded number of processors; W is the total number of arithmetic operations
performed (work) by a given execution of the parallel algorithm. Note that W
does not include scheduling operations but may depend both on the number
of processors and the scheduling used for the considered execution. Let Tp be
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the execution time of the algorithm when scheduled on p physical processors,
including scheduling overhead;

Cilk [9] and Kaapi [5,6] are parallel programming interfaces that support
recursive parallelism and implement an on-line work-stealing scheduling based on
the work first principle. The principle of work-stealing is simple. Each processor
serially executes the tasks it has locally created according to a depth-first order.
When a processor Pv becomes idle, it steals the oldest ready task (breadth
first order) on a non-idle processor Pw, randomly chosen. For any series-parallel
program with critical path W∞ and work W on p identical processors, a work-
stealing schedule ensures with high probability that Tp ≤ W

p + O(W∞) [9,7].
Bender and Rabin [7] extended this theorem to heterogeneous processors of

different and possibly changing speeds. The authors proposed a model that en-
compasses the practical use of a parallel architecture concurrently shared by
various processes and users. Let Πi(t) be the instantaneous speed of proces-
sor i at time t, measured as the number of operations ◦ per unit of time. For
a computation with duration T , let Πave be the average speed by processor:
Πave =

T
t=1

p−1
i=0 Πi(t)

p·T . In [7], a high utilisation schedule of factor β is used
which is defined by the following property: if there are i < p idle processors,
then the fastest idle processor is at most β times faster than the slowest busy
processor. The parameter β can be tuned to optimize the performances of the
system by reducing the number of migrations. Indeed, it is not even necessary
to define a particular value of β [7] and in the sequel, we will assume β = O(1).

To implement such a high utilisation schedule, the previous work-stealing is
only modified in [7] when a processor Pv steals a work on an active processor
Pw that has no ready work to be stolen in its local queue. Then, if Pw is slower
than Pv by at least a β factor, then the work in progress on Pw is preempted
and migrated on Pv. In the case when the processors speeds do not change too
much, the following theorem bounds the execution time Tp.

Theorem 1. (see theorem 6 and 8 in [7]) With high probability, the number of
successful steal operations is O(p ·W∞) and the execution time Tp is bounded by

Tp ≤ W

p · Πave
+ O

(
W∞
Πave

)
.

The next section stands a lower bound for parallel prefix on this model.

3 Lower Bound for Parallel Prefix on Processors with
Varying Speeds

In this paragraph, a lower bound is first given for p processors with varying
speeds. Then, an off-line algorithm is provided that proves this lower bound is
tight on p processors with constant and known speeds Πi. The next theorem
stands the lower bound with respect to Πave and also to the maximal speed
Πmax of all processors: Πmax = maxi=0,...p−1;t=1,...T Πi(t).
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Theorem 2. A lower bound on the time Tp of any parallel prefix computation
on p processors with average speed Πave and maximal speed Πmax is

Tp ≥ 2n
p ·Πave + Πmax

.

Proof. Let G be the computation DAG representing the execution of the parallel
algorithm. G has n+1 leaves corresponding to the inputs (xi)i=0,n; each internal
node matches an operation ◦ with two inputs. Let A be the predecessor graph of
a node that computes the output πn. In πn, each input xi is operand of exactly
one operation ◦; then A is a binary tree with n + 1 leaves. Thus A contains
exactly #A = n operations ◦. Besides, let d be the depth of G and B be the
complementary DAG of A in G. Since any prefix πi is a successor of the leaf xo

and the depth of A is at most d, at most d prefixes are computed in A; thus B
computes at least n−d prefixes and then contains at least #B = n−d operations
◦. As a consequence, the number #G = #A + #B of nodes ◦ in G is at least
2n− d (note that this first part of the proof is similar to the one established in
[4], theorem 2, for restricted prefix circuits of depth d = logn).

During Tp, at most p · Πave operations ◦ are computed; then, p · Πave · Tp ≥
2n − d. Besides, since G has a critical path with d operations ◦, Πmax.Tp ≥ d.
Putting things together gives (p ·Πave + Πmax).Tp ≥ 2n. �
To prove that this lower bound is tight, we now introduce a parallel algorithm
that reaches it in the restricted case where processors have uniform known
speeds.. For the sake of simplicity, the algorithm is first explicited in the case of
p identical processors, and after extended to processors with uniform speeds. On
p identical processors (Pi)i=0,...,p−1, the algorithm is based on a partitioning of
the n+1 entries (xi)i=0,...,n in p+1 blocks B0, . . . , Bp of approximately the same
size. To simplify, we suppose that each block Bi contains K = n

p+1 consecutive
elements.

Step 1. In parallel for i = 0, . . . , p−1, we compute on processor i the sequential
prefix of the block Bi. Let αi denote the last prefix of the block Bi. We notice
that the prefixes (πj)j=1,...,K of the block B0 are thus computed.

Step 2. We compute the p − 1 prefixes β0 = α0, β1 = α0 ◦ α1, . . . , βp−1 =
α1 ◦ . . . ◦ αp−1 of values α0, . . . , αp−1.

Step 3. On processor 0, we compute the product by βp−1 of each element of
the block Bp to obtain the prefixes πpK , . . . , πn. And, in parallel for i =
1, . . . , p− 1, we compute on processor i the product by βi−1 of each element
of the block Bi. We notice that these products are independant, even if they
are made sequentially. All the prefixes πi thus are obtained.

The execution time of this algorithm is 2K + p − 1 � 2n
p+1 , thus asymptotically

optimal. Its number of operations 2n− (2k+ p− 1) is strictly optimal because it
reaches the lower bound 2n− d. Moreover, we notice that by taking K = 2 and
by executing step 2 in a recursive way, it is the algorithm of Ladner and Fisher
[3] which takes W = 2n operations ◦ with a critical path W∞ = 2 log2 N .
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We now extend the previous algorithm to the case of p processors with uni-
form speeds Πmax = Π0 ≤ Π1 ≤ . . . ≤ Πp−1 by tuning the block sizes in the
partitioning. Let n0 = n

1+p·Πave·Π−1
max

. Blocks B0 and Bp, each of size n0, are
assigned to processor 0. For 1 ≤ i ≤ p − 1, the processor i is assigned a block
Bi of size n0

πi

Πmax
. We also have 2n0 +

∑p−1
i=1 ni = n. Step 1 and 3 takes a

time n0
Πmax

= ni

Πi
= n

Πmax+p·Πave
. So the whole time is 2n

Πmax+p·Πave
+ p, then

asymptotically equal to the lower bound of theorem 2.
However, this algorithm assumes that relative speeds of the processors are

known. It is not suited to the case of processors with varying speeds. In the next
section, we present an on-line parallel algorithm that adapts automatically to
the speeds of the processors by work-stealing.

4 Parallel Adaptive Algorithm

Our parallel algorithm with adaptive grain is based on the coupling of two algo-
rithms: a sequential process Ps which sequentially computes prefixes and mini-
mizes the number of operations and a variant of the preceding parallel algorithm,
but with fine grain and scheduled by work-stealing on the p− 1 other processes.
Initially, the process Ps starts the prefix computation of 1 to n . Let a = n

p+1

and b = p
p+1n, the prefixes of 1 to a and b to n will be computed by this process

Ps. However, the interval of indices [a, b] can be stolen and cut out recursively
by processes Pv that become inactive. The algorithms for Ps and processes Pv

are as follows:

Sequential algorithm on process Ps

1. Ps sequentially computes the prefixes starting from index 1 (i.e. π1), until
an index u1 such that the interval [u1, u2] of indices was stolen by a process
Pv.

2. Ps preempts Pv and recovers the last index k ≤ u2 computed by Pv, which
thus already computed ru1 = xu1 , ru+1 = ru1 ◦ xu1+1, . . . , rk = rk−1 ◦ xk. Ps

sends the value πu1−1 to Pv and starts again Pv (see below).
3. Ps computes πk = πu1−1◦rk. Then it takes again the sequential computation

of the prefix of k + 1 to n starting from k + 1 while returning at step 1.
We speak about jump operation. For each jump operation, Ps makes an
operation ◦.

4. Ps stops when it computed πn (the prefixes of indices of b to n cannot be
stolen). After having computed πn, it becomes a thief process and executes
the algorithm Pv.

Parallel algorithm on p− 1 processes Pv

– When it is preempted by Ps (see algorithm of Ps), Pv already computed
partial prefix locally ru1 , . . . , ruk

of interval [u1, uk]. It then receives the
value of the last prefix β = πu1−1 computed by Ps. It then finalizes the
interval [u1, uk] by computing the products πi = β ◦ ri for u1 ≤ i ≤ uk.
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These products are parallel. On inactivity of another process thief, a half of
these computations remaining to be made on Pv in this interval can then be
stolen.

– When it is inactive, process Pv chooses a processor until finding an active
process Pw. It can be either Ps or another thief process. If the victim is Ps,
the steal is possible only if Ps has a remaining interval of indices ranging
between a and b.
1. Pv cuts the stealable interval on Pw in two parts. Pv extracts the right

part [u1, u2] of the interval and steals it. The left part remains on Pw.
2. Pv starts computation on the stolen interval [u1, u2]. It can be either a

computation of a local prefix (i.e. ru1 = xu1 , ru1+1 = ru1 ◦ xu1+1, . . .) or
the finalization of computations of prefixes starting from already com-
puted values rk (i.e. πu1+1 = πu1 ◦ ru1+1, πu1+2 = πu1 ◦ ru1+2, . . .).

The program stops when all the processors are inactive. The main point of
this algorithm is that a process that become slow will be preempted by the
sequential process or will be stolen by a parallel process. The following section
analyzes the complexity of this adaptive algorithm.

5 Asymptotic Optimality of the Adaptive Algorithm

We use the modified work-stealing schedule (theorem 1) to execute the adaptive
algorithm for the computation of parallel prefixes on p processors of changing
speed. As in [7], we assume that the speed of the processor vary within a constant
factor: there is a constant c ≥ 1 such that maxi,t Πi(t) ≤ c.mini,t Πi(t).

Theorem 3. With high probability,

Tp ≤ 2n
(p + 1)Πave

+ O

(
logn

Πave

)
∼n→∞

2n
(p + 1)Πave

.

Proof. For the analysis, we cut out the execution in two successive phases, φ1

and φ2. The phase φ1 is until Ps has computed πn. Then, the phase φ2 starts
when Ps becomes a work-stealer. Let nseq (resp. j) be the number of prefixes
(resp. jumps) computed by Ps during φ1. Let x (resp. y) be the number of final
prefix computed by the other processes (work-stealers) in φ1 (resp. φ2). Then
n = nseq + j + x+ y and W = nseq + 2j + 2x+ 2y. Let I1 (resp. I2) be the total
number of operations performed by idle processors during φ1 (resp. φ2).

1. During the phase φ1 of time Tp(φ1), the sequential prefix algorithm is always
executing on a processor and makes nseq + j operations ◦. We note Πseq the
average speed of this algorithm: Πseq = nseq+j

Tp(φ1) .
At each unit of time, the p − 1 others processors make the parallel part

of the adaptative algorithm and make in total 2x + y + j operations ◦ and
I1 inactivity operations. During φ1, the average speed per processor for this
part of the algorithm is Πave(φ1) = 2x+y+j+I1

(p−1).Tp(φ1)

The total number of operations ◦ in the phase φ1 is W (φ1) = nseq + 2j +
2x + y.
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2. During the phase φ2, the sequential part of the adaptative algorithm is fin-
ished. The p processors finalize the y prefix computations that were antic-
ipated in parallel and not finished in the phase φ1. During the phase φ2,
the p processors make thus y operations ◦ and I2 inactivity operations. The
average speed per processor during φ2 is Πave(φ2) = y+I2

p·Tp(φ2) .

For the sake of simplicity, we assume Πseq = Πave(φ1) = Πave(φ2) = Πave

(without loss of generality, since they are within a constant factor c). During φ2,
the processors which don’t execute the sequential algorithm (i.e. p−1 at each unit
of time) make 2x + y + J operations ◦ with a critical path W∞(φ1) ≤ 2. log2 n
related to recursive cutting. By applying the theorem 1, we obtain Tp(φ1) ≤

2x+y+j
(p−1)Πave

+O( log n
Πave

). Thus, Tp(φ1) = nseq+j
Πseq

= nseq+j
Πave

. And then, (p+1)Tp(φ1) =

(p− 1)Tp(φ1) + 2Tp(φ1) ≤ 2nseq+2x+y+3j
Πave

+ O
(
(p− 1) log n

Πave

)
. As n = nseq + x +

y + j, We obtain: (p + 1)ΠaveTp(φ1) ≤ 2n− y + j +O((p− 1)logn). In addition,

by applying theorem 1 to φ2, we obtain Tp(φ2) ≤ y
pΠave

+ O
(

log n
Πave

)
Thus,

(p+1)ΠaveTp = (p+1)ΠaveTp(φ1)+(p+1)ΠaveTp(φ2) ≤ 2n+j+ y
p +O (p logn).

The number j of jumps is lower than the number of successful stealing i.e.
O(log n) since W∞(φ1) ≤ 2 logn (theorem 1). Moreover, by using (p− 1)(nseq +
j) = (2x + y + j + I1) and nseq ≥ 2n

p+1 , we obtain y ≤ I1 ≤ (p− 2) logn. Finally,
we have: (p + 1)ΠaveTp ≤ 2n + O(p log n). �
We can note that the proof and the theorem remain valid in the more gen-
eral and realistic case where Πseq ≥ Πave(φ1) (the sequential algorithm is al-
ways executed by a processor faster than the average of the processors) and
Πave(φ2) ≥ Πave(φ1) (the sequential processor added in phase 2 is faster than
the average of the other processors).

6 Experimental Results

We implemented the algorithms on a eight-processor SMP machine, with 31
GB of memory (Intel’s Itanium-2 at 1.5 GHz) and in the multi-user context
under the GNU/Linux 2.6.7 system. The adaptive and parallel algorithms are
implemented with Kaapi [5,6].

The experiments consist in the computation of prefixes of 10000 elements
(double) with a time of 1ms per operation ◦ while varying p the number of
processors from 1 to 8. The optimal sequential time of reference is 10s.

Tables 1 and 2 give the execution times obtained by the two parallel algorithms
(with fixed grain on p processors and adaptive grain). For each experiment, we
made 10 measurements and we kept the times of the fastest and the slowest
execution and the average time of the 10 executions.

Table 1 compares the execution times when there are no other computations
in progress on the processors. We notice that measurements of time are stable
(variation between minimum and maximum lower than 6% for the algorithm
with fixed grain and lower than 8% for the algorithm than adaptive grain). We
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Table 1. Comparison of the times of the three algorithms on p identical processors

Sequential Static Adaptive
p=2 p=4 p=6 p=8 p=2 p=4 p=6 p=8

Lower bound 2n
(p+1)Πave

10.00 6.67 4.00 2.86 2.22 6.67 4.00 2.86 2.22

Min 10.087 6.73 4.04 2.89 2.82 6.73 4.03 2.88 2.23

Avg 10.09 6.74 4.05 2.93 2.87 6.73 4.04 2.89 2.24

Max 10.09 6.75 4.06 3.00 2.99 6.73 4.04 2.89 2.25

Table 2. Comparison of the times of the algorithms on p perturbated processors. Each
column reports, the minimal, average and maximal times of 10 executions. For each of
those 10 executions, the adaptive algorithm is the fastest.

Static Adaptive
p=2 p=4 p=6 p=8 p=2 p=4 p=6 p=8

Lower bound 2n
(p+1)Πave

7.49 4.50 3.22 2.50 7.49 4.50 3.22 2.50

Min 8.34 7.33 4.97 3.67 7.55 6.03 3.77 2.94

Avg 9.97 8.15 5.60 4.05 9.21 7.23 4.47 3.34

Max 10.41 8.57 5.77 4.31 10.28 8.12 5.23 3.86

check the optimality of the algorithm with fixed grain whose time is with less
than 8% of the lower bound. Moreover, we check the optimality of the adaptive
algorithm which is also less than 5% of the lower bound.

In table 2, additional processes of load are injected to disturb the load of the
machine and to simulate the behavior of a real machine, disturbed by other users.
In the aim of reproducibility, each experiment on p ≤ 8 processors is disturbed
by 9− p artificial processes of duration larger than 10s. We can check in table 2
that the adaptive algorithm is at least 7% faster.

We note that the time are very changing but we observe that in the case of the
minimum time, the adaptive algorithm is not so far from the lower theoretical
bound (Πave = 8

9 ). We think this is due to the scheduling of the system.
In conclusion, the adaptive algorithm brings a guaranteed performance when

the machine is divided between several users, while adapting automatically to
the available resources during the execution. Moreover its performance remains
close to optimal even in the ideal case where the processors are all dedicated
to the application. It thus appears to be more powerful than the sequential
algorithm or than a fixed parallel algorithm.

This is confirmed by another experimentation where each elementary test
corresponds to simultaneous launching in competition of the nine programs:
adaptive algorithm on eight processors, sequential algorithm and the fixed par-
allel algorithm for the seven values p = 2, . . . , 8 processors. Table 3 summarizes
the results on a 10 test campaign. For 10 executions, the adaptive algorithm is
always the fastest.
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Table 3. Comparison of the times of the 9 algorithms simultaneously launched – On
the 10 executions of each test, the adaptive algorithm was the fastest

Sequential Static Adaptive
p=2 p=4 p=6 p=7 p=8 p=8

Min 20.53 18.70 16.41 13.93 13.54 12.25 10.79

Max 22.96 20.04 17.23 15.86 14.56 13.66 13.06

Avg 21.69 19.24 16.89 15.13 13,89 13.16 12.09

Median 22.00 19.26 16.96 15.12 13.76 13.12 12.18

Its average time of execution is on average 19% times shorter than that of the
optimal fixed parallel algorithm on 8 processors, with variations to 40% on one
of the tests.

7 Conclusion

Motivated by the use of multi-processor machines shared between several users,
we introduced a new parallel algorithm for the prefix computation which adapts
automatically and dynamically to the available processors. This algorithm per-
forms an asymptotically optimal number of operations. It is equivalent to that
of the sequential algorithm when only one processor is available and to that of
an optimal parallel algorithm when p identical processors are available. In the
case of p variable processors speeds, its time is equivalent to that of an optimal
algorithm on p identical processors speed equal to the average speeds. These
theoretical results are validated by the experiments made on a SMP machine
with 8 processors. A first perpsective is to validate it on the national French
heterogeneous grid GRID’5000 within the ANR BGPR-Safescale project.

More generally, our adaptive algorithm is based on the recursive and dynamic
coupling of two algorithms, a sequential one, optimal in terms of number of op-
erations, and a parallel one with a maximum degree of parallelism. Both the
algorithm and its analysis are applied to the prefix computation, for which any
parallel algorithm requires more operations than the sequential algorithm. How-
ever, we think that both this scheme and its theoretical analysis are more general
and may apply to other problems, in particular for the resolution of exact linear
systems.
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Abstract. Advanced Switching (AS) is a switching fabric architecture based on 
the PCI Express technology. In order to support high availability, AS includes 
important features, such as device hot addition and removal, redundant path-
ways, and fabric management failover. This work presents an AS model devel-
oped in OPNET. The contribution of this tool is that it can help researchers to 
design and evaluate management mechanisms for this new technology. It can 
also be used to analyze other key aspects of the architecture, such as routing, 
congestion, and quality of service.  

Keywords: Advanced switching, modeling, network management, network 
availability. 

1   Introduction 

The Advanced Switching specification [1] has been developed by the Advanced 
Switching Interconnect Special Interest Group (ASI-SIG). It is a chip-to-chip and 
backplane interconnect switched fabric architecture. Unlike similar technologies, such 
as InfiniBand [5] and Quadrics [9], AS can be seen as the last step in the evolution of 
the traditional PCI bus [6]. In particular, AS inherits most of the physical and link 
characteristics of PCI Express [8]. However, it offers a bigger application space, in-
cluding multiprocessing and peer-to-peer communications. The first commercial AS-
compliant products have just started to appear in the marketplace [11]. 

To guarantee network availability, AS provides a fabric management mechanism, 
which basically configures and monitors the status of the network. Consider, for ex-
ample, the occurrence of a failure in a network device. The management mechanism 
must detect that failure, discover the resulting topology, and finally obtain and dis-
tribute to the endpoints a new set of routes for packet delivery. All these tasks are 
performed by the fabric manager (FM), a software entity running on one or more AS 
endpoints.  
                                                           
*  This work is supported by the following projects: TIC2003-08154-C06-02 (Ministerio de 

Ciencia y Tecnología), PBC05-007-1 (Junta de Comunidades de Castilla-La Mancha), and 
PCTC0622 (Universidad de Castilla-La Mancha). 
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The internal behavior of the management mechanism is currently an open issue for 
vendors and researchers. The AS specification only considers a set of configuration 
data structures –called capabilities–  into each device, and the management packets –
called PI-4 packets– used to exchange them among devices. 

This paper presents a simulation model that provides the necessary support –
capabilities and PI-4 packets– to develop management mechanisms. In order to be 
able to evaluate future proposals, our simulator allows measuring accurately control 
overhead and the time expended by the management process. 

Our AS model is an evolution of a previous model [2] developed for the InfiniBand 
technology [5]. There are many differences between both technologies, such as source 
routing instead of distributing routing, and passive instead of active switches. These 
differences completely justify the development of a new tool to design specific man-
agement mechanisms for AS.  

The AS model has been developed using the OPNET Modeler software [7]. This 
tool provides support to model and analyze communication networks and distributed 
systems. In OPNET, network devices are modeled through node models, which are 
built using basic modules. Fig. 1 shows an example. Each module can generate, send, 
receive, and consume packets from other modules. The behavior of a module is pro-
grammed via its process model. It consists of a finite state machine (see Fig. 4) con-
taining blocks of C/C++ code and calls to the OPNET API.  

The remainder of this paper is organized as follows. The next section describes the 
way we have modeled the AS network devices. Then, Section 3 introduces the model-
ing of the fabric management support. After that, we revise some tasks in the man-
agement mechanism that we plan to develop in the future. Finally, Section 5 gives 
some conclusions and future work. 

2   Modeling the AS Architecture 

Our model1 is made up of AS x1 links, 16-port switches, and fabric endpoints. This 
section presents the way in which these network devices are modeled and it details 
some architectural issues closely related to the fabric management process, as flow 
control and the port state machine. 

2.1   Network Components 

We have defined AS links starting from the basic OPNET point-to-point bidirectional 
link model. The specified bandwidth for these links is 2.5 Gbps. However, bandwidth 
is reduced by 8b/10b encoding to 2.0 Gbps. So far, we have not considered transmis-
sion errors. To implement cut-through switching, we have programmed the link 
model in such a way that the receiver port can process a packet once the header has 
been received. 

We have also modeled a multiplexed virtual cut-through switch [4]. Fig. 1 shows 
the modules implementing two switch ports –numbered as 7 and 8–, the switch arbi-
tration unit, and the crossbar. 
                                                           
1  The source code of our AS model will be freely available for the OPNET community, at the 

"Contributed Models" depot of the OPNET support center [7]. 
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Fig. 1. A detail of the switch model 

Each input channel contains a point-to-point receiver (rcv module in Fig. 1) con-
nected to the link. A selector (ingress_sched module) delivers flow control packets 
(DLLP, data link layer packet) to the flow control unit. The rest of packets (TLP, 
transaction layer packet) are sent to the ingress_CSQs module. 

AS defines three types of virtual channels: unicast bypassable VCs (BVC), unicast 
ordered VCs (OVC), and multicast VCs (MVC). Each BVC implements an ordered 
queue and a bypass one. Packets marked as “bypassable” (the OO field in Fig. 2 is 
unset) are delivered to the bypass queue if they cannot progress due to lack of credit. 
Packets at this queue can be “bypassed” by other packets at the ordered queue. On the 
other hand, OVCs and MVCs only support ordered queues. In our model, the number 
of virtual channels of each type and the size of the associated input and output buffers 
are defined as switch attributes. 

A traffic class (TC) mechanism allows the grouping of traffic flows for similar 
treatment. The traffic class of a packet is defined at the source endpoint. When a 
packet reaches a port, the Traffic Class field at the header is used to obtain the corre-
sponding VC, by using a set of fixed TC/VC mapping tables. The ingress_CSQs mod-
ule in Fig. 1 performs this mapping, and stores the packet at the tail of the input buffer 
associated with the corresponding virtual channel. 

In order to simplify the hardware, AS states that unicast packets use source routing. 
Endpoints include path information into the packets, by filling up the Turn Pool, Turn 
Pointer, and D (direction) fields in the packet routing header (shown in Fig. 2). These 
values are used at each intermediate switch to obtain the output port. In our model, 
unicast packets are routed when they reach the header of the input buffers. On the 
other hand, multicast packets require to look up into a specific forwarding table. 
These tables are stored at the switches and are defined by the management process. 
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Fig. 2. AS routing header 
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The arbitration unit (arbitration_unit module in Fig. 1) receives requests from the 
input buffers and configures the crossbar, taking into account the space available at 
the output buffers (egress_CSQs) and the status of the internal channels. 

AS defines several mechanisms for congestion management. First, it uses the 
credit-based flow control defined by the PCI Express architecture. The flow control 
unit (DLLP queue module in Fig. 1) processes incoming DLLPs and acti-
vates/deactivates the transmission of TLPs through the output channels. It must also 
inject periodically new DLLPs, in order to update the credit information at the 
neighbor port. The behavior of this module will be detailed in the next section. 

Additional optional congestion mechanisms defined in AS are status-based flow 
control, minimum bandwidth scheduler, and endpoint source injection rate limiting. 
These mechanisms are not currently implemented in our simulator. 

To conclude the description of the switch model, the output channel arbitration unit 
(egress_sched module in Fig. 1) receives requests from the port flow control unit and 
output buffers, and decides the packet that will be finally delivered to the physical 
link, through the transmitter module (xmt). Before sending a TLP, this module must 
consider the credit available at the corresponding neighbor input buffer, which is 
periodically notified by the flow control unit. 

The endpoint model (not shown here) incorporates a communication port, includ-
ing exactly the same modules as a switch port. There is also an application module 
which generates and consumes upper-level packets. Parameters for traffic generation, 
such as packet size and injection rate, are defined as simulation attributes. 

2.2   Port Behavior and Flow Control Unit Model 

Fig. 3 shows the set of possible states for a port, as defined in the AS specification. 
This behavior has been considered in our model. Once the device is powered-on, a 
port initialization phase starts. Each port tries to synchronize with a potential neighbor 
device. To do that, the port transits from DL_Inactive to DL_Init, and sends DLLPs 
through the link. If the port does not receive a response, it returns to the DL_Inactive 
state. After some time, it will try to synchronize again. 

If the port receives a response from the neighbor, they must negotiate the number 
of virtual channels they are going to use in the communication. When the negotiation 
process finishes, the port transits to the DL_Protected state. In this state, the transmis-
sion of certain management packets (PI-0:0, for FM election, and PI-4, for device 
discovery and configuration) is allowed. 

 
DL_InitDL_Inactive DL_ActiveDL_Protected

Reset

DL_InitDL_Inactive DL_ActiveDL_Protected

Reset

 

Fig. 3. Port state machine 
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Fig. 4. (left) Flow control unit behavior and (right) a DLLP with credit information for two 
successive OVCs 

The FM can order the port to transit to the DL_Active state by means of a PI-4 
packet. In this state, the port is completely operational, allowing the transmission of 
all packet types. In the same way, the FM can order a transition from DL_Active to 
DL_Protected. Finally, the port will return to DL_Inactive if the link or the neighbor 
device is taken down, and DLLPs are not received during a period of time. 

The flow control unit (DLLP queue module in Fig. 1) models the port behavior we 
have just described. Moreover, it implements the flow control tasks enumerated in the 
previous section. Fig. 4(left) shows the finite state machine in the corresponding 
OPNET process model. 

The init state performs some initialization tasks. In the idle state, the process model 
is waiting for the occurrence of some simulation event. Periodically, the machine 
enters the link_check state and begins the port initialization phase. 

In order to inform the neighbor port about the credit available at the local input 
buffers, the process enters the fc_update state periodically. In this state, the corre-
sponding DLLPs are generated and injected. Fig. 4(right) shows the format of an 
FC_Update DLLP defined in OPNET. 

The buffer_notif state is reached when the flow control unit receives a notification 
from the ingress_CSQs module, reporting about a variation in the occupation of an 
input buffer. 

When a DLLP arrives to the flow control unit, it is processed at the incom-
ing_DLLP state. According to its type, the flow control unit either continues the ini-
tialization process, or communicates the available neighbor credit to the egress_sched 
module. 

Finally, the process model returns to the init state if for a certain time interval the 
flow control unit has not received DLLPs with information about the neighbor 
credit. 
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Fig. 5. Example of validation 

2.3   Flow Control Validation 

Several tests have been conducted in order to validate the AS model. As an example 
of this process, the topology in Fig. 5(a) has been used to check the correct implemen-
tation of the credit-based flow control mechanism. In this scenario, the six endpoints 
on the left side inject packets to the endpoint located on the right, assuming the exis-
tence of only one OVC in each device. 

We have run several simulations varying the packet injection rate at the source 
endpoints. Fig. 5(b) shows the link utilization at each level in the topology. We can 
see that the maximum link bandwidth (2 Gbps) is never exceeded on the link connect-
ing switch 12 and endpoint 6. 

Additionally, results for the other two series show that the flow control is correctly 
working. Note that the utilization of the link connecting switch 10 and switch 12 is 
exactly half of the utilization at the next hop, and the utilization of the link connecting 
endpoint 0 and switch 10 is the third part of the previous one. 

3   Fabric Management Model 

We are interested in the development of fabric management mechanisms for the AS 
technology. This section describes the aspects of the specification that provide sup-
port for this purpose, and how they have been modeled into the simulator. These fea-
tures are the configuration space in each device, and the protocol that allows the FM 
to access it. 

3.1   Device Configuration Space 

The device configuration space is a storage area that contains a set of fields to specify 
device characteristics as well as fields used to control the device. This information is 
presented in the form of structures called capabilities. Each capability structure de-
fines a specific characteristic of the device. 
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Fig. 6. Structure of the baseline device capability 

The configuration space is made up of up to 16 blocks of 4 Gbytes of storage, 
called apertures. All the capability structures reside at the aperture 0. Additional data 
associated with the capabilities may be stored in any aperture.  

Our model allows defining any AS capability. Currently, it includes the baseline 
and the spanning tree capabilities. The reason is that these capabilities are needed by 
several management processes, such as the topology discovery and the FM election. 

In particular, the baseline capability includes device control and status information. 
Fig. 6 shows part of the contents of this capability. Each register is marked with the 
corresponding offset inside the aperture 0. The offsets could be different to the ones 
shown in this figure. The first six 32-bit blocks in the baseline capability contain 
general information for the device, such as its type –endpoint or switch– and serial 
number, the number of ports supported, and the maximum packet size. Next (from 
offset 118h in Fig. 6), we can find up to 256 32-bit blocks that point to the informa-
tion about each particular port in the device. This information includes link speed and 
width, and current port state. In the Fig. 6 we only show the information correspond-
ing to ports 0 and 1. 

3.2   PI-4 – Node Configuration and Control Protocol 

A device_manager module in the endpoint and switch models is defined. Its function 
consists of receiving requests from the FM, accessing to the capabilities in the device 
configuration space –by means of read and write operations–, and, if necessary,  
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generating and injecting the corresponding responses. This interaction is implemented 
by means of the protocol for node configuration and control. 

The protocol defines PI-4 read request packets to obtain information from a capa-
bility into a device. A PI-4 read completion with data packet is returned by the device 
manager to the FM, containing the requested information. The path (in the opposite 
direction) and the traffic class used by the response is the same as those used by the 
request. If the read operation was not successful, a PI-4 read completion with error 
packet is returned. 

Apart from read packets, the PI-4 protocol defines write packets that allow to the 
FM to modify any data in the device configuration space. However, in this case the 
specification does not define a response packet.  

Our model incorporates all these management packets, and the support for their 
transmission through the fabric. As an example, Fig. 7 shows a PI-4 read request 
packet defined in OPNET. PI-4 read packets start with the common AS routing 
header (shown in Fig. 2). In the request packet, the Apperture and Offset fields deter-
mine the position of the information in the configuration space of the destination 
device that the FM is requesting for. In this packet, the Req Code field specifies the 
amount of data to read (up to eight 32-bit blocks). The Transaction Number field 
allows the FM to match completions with requests. Finally, in the completion packet, 
the Data Payload field contains the requested information. 

Fig. 8 shows an example. The FM –located at the endpoint 7– repeatedly accesses 
the baseline capability in switch 12, in order to obtain information about the activity 
of its ports. Fig. 9 shows some of the packets exchanged between the FM and the 
device manager during this process. 

The FM sends a first PI-4 read request packet to the device manager in switch 12 
to get general information about this device (located at Offset=100h in Fig. 6). The 
corresponding response indicates that the destination device is a switch implementing 
a total of 16 physical ports. Then, the FM injects two request packets (Offset=118h 
and Offset=138h respectively) to obtain the pointers to every port information. Each 
response packet will contain a block of 8 pointers. 

After receiving the pointers, the FM generates sixteen new requests to access to the 
information about the corresponding ports. The Link State field in each response 
packet reports about the activity of the corresponding port. In this case, the state of 
 

 

Fig. 7. PI-4 read request packet 
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Fig. 8. Example of irregular fabric topology composed of 4 switches and 5 endpoints. Small 
numbers at link ends represent port numbers. 

port 0 is DL_Inactive (we can see in Fig. 8 that it is unconnected) and the state of port 
1 is DL_Protected (it is connected to switch 11). 

To sum it up, the FM has generated 19 PI-4 read request packets, and it has re-
ceived 19 PI-4 read completion with data packets. 

4   Fabric Management Tasks 

The model described provides support to develop and evaluate management mecha-
nisms for the AS technology. Network management involves a wide set of different 
tasks. Our work will be focused on those tasks related to network topology monitor-
ing, computation of paths among devices, and their distribution to the source end-
points. In this section, we briefly describe the entire management process, and how it 
is modeled into our simulator. 

As we have seen in Section 2.2, when a fabric device is powered-on, it enters to an 
initialization phase, exchanging credit information with potential neighbors and nego-
tiating the available amount of virtual channels. When this negotiation concludes, it 
can transmit and receive management packets through its active links (DL_Protected 
state in Fig. 3). 

If the device runs a FM driver, it triggers a FM election process. This process 
elects the primary and secondary fabric managers, the only endpoints that can config-
ure the fabric. If the primary FM fails, the secondary one takes over. The FM election 
process is completely defined in the AS specification. 

The first task of the (primary) FM is to discover the fabric topology. The discovery 
process is performed by using the PI-4 read packets described in the previous section. 
The particular implementation of this task is not detailed in the specification, and can 
be performed in either a centralized or distributed way [10].  
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FM sends a packet to discover a device 
 Turn Pointer: 8  Turn Pool: ECh  Direction: 0  Transaction Number: 0  
 Aperture: 0  Offset: 100h  Request Scale: 1  Request Code: 6 

FM receives a packet from switch 12 
 Turn Pointer: 8  Turn Pool: ECh  Direction: 1  Transaction Number: 0 
 Next Capability Offset: 900h  CapVersion: 0  ID: F000h 
 Type: SWITCH   Block Write: 1   Block Read: 1  Loopback: 1    
 MVC MPS Support: 0  OVC MPS Support: 8  BVC MPS Support: 8   
 BVC MPS Active: 8  OVC MPS Active: 8  MVC MPS Active: 0 
 # of Ports: 16  # of Turn bits: 4  Rev Act: 0  Rev Cap: 0  Port Number: 1 

FM sends a packet to obtain the pointer block 1 
 Turn Pointer: 8  Turn Pool: ECh  Direction: 0  Transaction Number: 1  
 Aperture: 0  Offset: 118h  Request Scale: 1  Request Code: 8 
FM sends a packet to obtain the pointer block 2 
 Turn Pointer: 8  Turn Pool: ECh  Direction: 0  Transaction Number: 2  
 Aperture: 0  Offset: 138h  Request Scale: 1  Request Code: 8 

FM receives a packet including the pointer block 1 
 Turn Pointer: 8  Turn Pool: ECh  Direction: 1  Transaction Number: 1 
 Port 0 Configuration Record Pointer: 10000h  AP: 0      
 Port 1 Configuration Record Pointer: 10200h  AP: 0   
 ... 

FM receives a packet including the pointer block 2 
 Turn Pointer: 8  Turn Pool: ECh  Direction: 1  Transaction Number: 2 
 Port 8 Configuration Record Pointer: 11000h  AP: 0      
 Port 9 Configuration Record Pointer: 11200h  AP: 0   
 ... 
FM sends a packet to obtain port 0 information 
 Turn Pointer: 8  TurnPool: ECh  Direction: 0  Transaction Number: 3  
 Aperture: 0  Offset: 10000h  Request Scale: 1  Request Code: 6 

FM sends a packet to obtain port 1 information 
 Turn Pointer: 8  Turn Pool: ECh  Direction: 0  Transaction Number: 4  
 Aperture: 0  Offset: 10200h  Request Scale: 1  Request Code: 6 
... 
FM receives a packet including port 0 information 
 Turn Pointer: 8  TurnPool: ECh  Direction: 1  Transaction Number: 3  
 Timeout: -1  VLink: 0  MaxLink Width: 1  MaxLink Speed: 1   
 Peer Link State: DL_Inactive   Training Prog: 0  TError: 0   Link Width: 1 
 Link Speed: 1  Link State: DL_Inactive  Retrain Link: 0   Disable Link: 0 

FM receives a packet including port 1 information 
 Turn Pointer: 8  TurnPool: ECh  Direction: 1  Transaction Number: 4  
 Timeout: -1  VLink: 0  MaxLink Width: 1  MaxLink Speed: 1   
 Peer Link State: DL_Protected   Training Prog: 0  TError: 0   Link Width: 1 
 Link Speed: 1  Link State: DL_Protected  Retrain Link: 0   Disable Link: 0 
... 

Fig. 9. Sequence of PI-4 packets to obtain topological information about switch 12 in Fig. 8 

After discovery, the FM configures fabric devices. This task includes, for example, 
the distribution of paths to endpoints. Moreover, fabric ports must be activated in 
order to allow the reception and transmission of all packet types (DL_Active state in 
Fig. 3). In this case, PI-4 write packets are used. 

Once the network has been configured and activated, the FM remains monitoring 
its state. The specification provides an event-reporting mechanism to notify topology 
changes. In particular, the device manager in a detecting device can report the FM 
about a change in the state of a local port, through a PI-5 packet. After detecting a 
change, the FM must update again the set of fabric routes. 

In our model, we have defined a FM module at the endpoint model, which models 
the behavior of a centralized fabric manager. At this moment, the election process has 
not been modeled. We indicate the endpoint that hosts the primary FM by activating a 
particular node attribute. In the remaining endpoints, the FM module is inactive. 

The FM module handles several data structures to store the fabric topology, the set 
of paths between endpoints, and other configuration information. At this moment, it 
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can discover the configuration information about a particular device, and detect a 
topological change (i.e. the addition or removal of any fabric component) by means of 
the event-reporting mechanism. Currently, we are developing a discovery algorithm 
which can obtain the entire fabric topology. Later, we will focus on the path computa-
tion and dynamic distribution tasks, without stopping upper-level traffic. 

5   Conclusions and Future Work 

The model presented in this paper embodies key physical and link layer features of 
Advanced Switching. Unlike classical simulation tools, our model incorporates the 
fabric management entities defined in the specification and the packets that allow the 
fabric manager to access to the configuration information in fabric devices. It also 
includes the behavior of a port upon a change in its neighbor. At this moment, a basic 
fabric management mechanism is being developed. As future work, we plan to im-
prove each management task, in order to optimize the performance of the entire proc-
ess. In particular, we plan to reuse previous proposals [3], and to design specific pro-
tocols for this architecture.  
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Abstract. Fat-tree topology has become very popular among switch manufactur-
ers. Routing in fat-trees is composed of two phases, an adaptive upwards phase,
and a deterministic downwards phase. The unique downwards path to the desti-
nation depends on the switch that has been reached in the upwards phase. As
adaptive routing is used in the ascending phase, several output ports are possi-
ble at each switch and the final choice depends on the selection function. The
impact of the selection function on performance has been previously studied for
direct networks and has not resulted to be very important. In fat-trees, the deci-
sions made in the upwards phase by the selection function can be critical, since
it determines the switch reached in the upwards phase, and therefore the unique
downwards path to the destination. In this paper, we analyze the effect of the se-
lection function on fat-trees. Several selection functions are defined, compared
and evaluated. The evaluation shows that selection function has a great impact on
fat-trees.

Keywords: selection function, adaptive routing, fat-tree, interconnection
networks.

1 Introduction

Clusters of PCs have grown in popularity in the last years due to their excellent cost-
performance ratio. The interconnection network has a great impact in the performance
of these systems. Several switch-based point-to-point commercial networks are
currently available. As long as high degree switches are available, multistage networks
(MINs) have become very popular. Among them, the fat-tree topology is the preferred
choice (e.g.: Mellanox [13], Myricom [15], Quadrics [14]). Routing is one of the most
important design issues of interconnection networks. The routing strategy determines
the path that each packet follows between a source–destination pair. Routing is deter-
ministic if only one path is provided for every source–destination pair, or adaptive, if
several paths are available. Adaptive routing better balances network traffic, thus allo-
wing the network to obtain a higher throughput. The routing algorithm is implemented
by means of the routing and selection functions [3]. The routing function supplies a set
of suitable routing options to reach the destination. A choice from this set is made by
the selection function based on network status.
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Many works [1], [2], [3] has pointed out the great influence that the routing function
has on network performance especially for direct networks. There are also some papers
[10], [8], [6] that analyze the influence of selection function, showing that it has some
small impact on performance. In these networks, the routing function is adaptive along
the whole path. However, this is not the case of fat-trees topologies. Routing in fat-trees
is performed in two phases, an upwards adaptive one and a downwards deterministic
one. The unique path to follow in the downwards phase is determined by the selected
upwards path. So, in fat-trees the selection made in the upwards path is responsible of
balancing network traffic. Thus, we expect that the selection function will have a greater
influence on interconnection network performance.

The rest of the paper is organized as follows. Section 2 presents some background
on the fat-tree topology. Section 3 contains references to related work. In Section 4,
we propose several selection functions for fat-trees, analyzing their performance in
Section 5. Finally, some conclusions are drawn.

2 Fat-Trees

A multistage interconnection network (MIN) is a regular topology in which switches are
identical and organized as a set of stages. Each stage is only connected to the previous
and the next stage using regular connection patterns. Depending on the interconnection
scheme employed between two adjacent stages, several MINs have been proposed. In
this paper, we focus on the fat-tree topology.

A fat-tree topology is based on a complete tree. Unlike traditional trees, fat-trees get
thicker near the root. A set of processors is located at the leaves and each edge of the tree
corresponds to a bidirectional channel. However, the degree of the switches increases as
we go nearer to the root, which makes the physical implementation unfeasible. Hence,
some alternative implementations have been proposed in order to use switches with
constant degree, as the k-ary n-trees. A k-ary n-tree is composed of N = kn processing
nodes and nkn−1 switches, with k input and k outputs ports. In what follows, we will
use either the term fat-tree or k-ary n-tree to refer to k-ary n-trees.

Each processing node is represented as a n-tuple {0, 1, ..., k − 1}n, and each switch
is defined as a pair 〈s, o〉, where s is the stage where the switch is located at, that is s ∈
{0..(n− 1)}, and o is a (n − 1)-tuple {0, 1, ..., k − 1}n−1. Figure 1.(a) shows a 2-ary
3-tree, with 8 processing nodes and 12 switches. We consider stage 0 as the closest one
to the processing nodes.

In a fat-tree, two switches 〈s, on−2, ..., o1, o0〉 and 〈s′, o′n−2, ..., o
′
1, o

′
0〉 are connec-

ted by an edge if s′ = s + 1 and oi = o′i for all i 
= s. On the other hand, there is an
edge between the switch 〈0, on−2, ..., o1, o0〉 and the processing node pn−1, ..., p1, p0

if oi = pi+1 for all i ∈ {n−2, ..., 1, 0}. Descending links will be labeled from 0 to k-1,
and ascending links from k to 2k − 1 (see Figure 1.(b)).

In fat-trees, minimal routing from a source to a destination can be accomplished by
sending packets forward to one of the nearest common ancestors of both source and
destination and, from there, backward to destination. When crossing stages in the for-
ward direction, several paths are possible, so adaptive routing is provided. Each switch
can select any of its upward output ports. Then, the packet is turned around and sent
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Fig. 1. a) The four possible paths from source 0 to destination 7 in a 2-ary 3-tree. (b) Link num-
bering in switches of a k-ary n-tree.

backwards to its destination. Once the turnaround is crossed, a single path is available
up to the destination node. The stage up to which the packet must be forwarded up
is obtained by comparing the source and destination components beginning from the
n − 1 (the most significant one). The fist pair of components that differs indicates the
last stage to forward up the packet. For instance, in order to send a packet from the node
pn−1, ..., p1, p0 to the node p′n−1, ..., p

′
1, p

′
0, the packet must be sent up to the stage i, if

pj = p′j for j ∈ {n− 1..i + 1} and pi 
= p′i. Once at stage i, the descending path is de-
terministic. At each stage, the descending link to choose is indicated by the component
corresponding to that stage in the destination n-tuple. In the example, from stage i, the
packet must be forwarded through the p′i link; at stage i − 1 through link p′i−1, and so
on.

For instance in Figure 1.(a), a packet generated at node 0 whose destination is node
2 will be forwarded up to stage number one (through switch 0,00 and choosing either
path to 1,00 or 1,01). From any of these switches, the remaining bits of the destination
node (10 in our example) correctly forwards the packet.

3 Related Work

Although there is not any work about the impact of selection function in fat-trees, there
are some previous works about this issue on other topologies. In [4], Duato proposed
a time-dependent selection function for hypercubes, which prevents a message from
using certain virtual channels until the time a message has been waiting exceeds some
threshold value. In [1], Badr and Podar showed that the zigzag selection function is op-
timal for meshes, in the sense that it maximizes the probability of a message reaching
the destination without delay. In [2], [5], and [6] the authors, analyzed the impact of
the selection function in the routing algorithm performance in meshes and tori. In [9],
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Koibuchi et al. evaluated a selection function that is not specific to any topology. Fi-
nally, in [10] Martı́nez et al. analyzed the impact of selection function in the context of
irregular topologies.

4 Selection Functions

An adaptive routing algorithm is composed of the routing and selection functions. The
routing function supplies a set of output channels based on the current and destina-
tion nodes. The selection function selects an output channel from the set of channels
supplied by the routing function.

All the selection functions proposed in this paper take into account the state of the
output physical link offered by the routing function and then applies some criteria to
select one of them. Virtual cut-trough switching with credit-based flow control is as-
sumed. Notice that, if virtual channel multiplexing is available, the selection function
does not select the virtual channel of the physical link that will store the packet. The
virtual channel will be selected when the packet is transferred through the link, and the
first virtual channel with a free buffer will be selected.

The selection functions presented below provide a preferred ascending link (i). When
this link is not free, it performs a linear rotative search starting at link i+1 until it finds
a free link, if any.

We propose a possible hardware implementation for each selection function. Unless
said otherwise, all the selection functions can be implemented in two steps: the first one
will obtain the preferred link, and the second implements the linear rotative search by
using a programmable priority encoder which takes the preferred link as an extra input.
The encoder will give the highest priority to the input represented by this value. The
first step changes according to the particular selection function to implement. Taking
into account the set of physical links and the physical link that is preferred, it changes
the order of the set of physical links in order to put the preferred one in the first position.

We have tested the following selection functions:

First Free (FF). The FF selection function selects the first physical link which has
free space. It uses a lineal search, starting at the first ascending physical link ( the
kth, port according to our notation). FF can be implemented by using a plain priority
encoder.

Static Switch Priority (SSP). In a given stage, the SSP selection function assi-
gns the highest priority to a different ascending link at each switch. The idea is to
create a disjoint high priority ascending path for each switch of the first stage. Hence,
packets coming from different switches at the first stage will reach different swit-
ches at the last one, thus balancing the traffic. The high priority physical link for the
switch 〈s, on−2, ..., o1, o0〉 is the ascending link labeled k+os. SSP needs the hardware
mentioned above, connecting the switch component 〈os〉 to the programmable priority
encoder.

Static Destination Priority (SDP). The SDP selection function assigns priorities
to physical links at each switch depending only on the packet destination. The prefer-
red physical link is given by the least significant component of the packet destination,
which represents the port that the destination is attached to in the first stage. That is,
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Fig. 2. Preferred links for each destination in SADP for a 2-ary-3-tree

a packet sent to processing node pn−1, ..., p1, p0 has as the preferred link the k + p0

link. Thus the ascending paths of two packets with destination nodes pn−1, ..., p1, p0

and p′n−1, ..., p
′
1, p

′
0 are not disjoint only if p0 = p′0. SDP uses the last component of

the packet destination to control the programmable priority encoder.
Static Origin Priority (SOP). The SOP selection function assigns priorities to phy-

sical links depending only on the packet source. The preferred physical link is given by
the least significant component of the packet source (which represents the port that the
origin is attached to in the first stage). That is, for a packet sent from processing node
pn−1, ..., p1, p0, it is k + p0. The hardware implementation of SOP is the same as SDP,
but connecting the last component of the packet source to the programmable priority
encoder.

Stage And Destination Priority (SADP). The SADP selection function takes into
account both the stage at which the switch belongs to and the component of the packet
destination corresponding to that stage, (i.e., a switch located at stage s considers the
sth component of the destination address). That is, at the switch 〈s, on−2, ..., o1, o0〉,
the highest priority physical link for a packet with destination pn−1, ..., p1, p0 will be
k + ps. As a consequence, each switch located at the top of the tree concentrates traffic
destined to all processors whose id differ only by the most significant digit. Indeed, the
paths to these destination are disjoint, as each one is reachable through different output
ports of the switch. Figure 2 illustrates this selection function.

Packets are classified according to their destination considering all the components
and not only the last one component as SDP does. The main difference between SADP
and SDP is that in SDP packets destined to different nodes can have the same preferred
links if their destination nodes have the same least significant component (p0). On the
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other hand, in SADP, only those packets that share the first switch and are destined to
the same node will share all the preferred links along the complete upwards phase.

To implement SADP, we need an additional multiplexer to select a different compo-
nent of the packet destination at each stage. The output of this multiplexer is connected
to the programmable priority encoder.

Cyclic Priority (CP). The CP selection function uses a round robin algorithm to
choose a different physical link each time a packet is forwarded. The implementation
of CP needs a counter that is incremented each time a packet is routed. The counter is
connected to the programmable priority encoder.

More Credits (MC). Since we use credits to implement the flow control mechanism,
the MC selection function selects the link which has the highest number of credits
available. This number is determined by the sum of the credits available in the all the
virtual channels of the physical link. The implementation of MC is more complex, as it
needs several comparators to select the link with more available credits.

Random Priority (RP). It selects a random physical link each time a packet is trans-
mitted. This function obtained similar performance results as CP. This is due to the fact
that with a high number of packets to transmit, CP and RP selects each physical link the
same number of times without considering the source or destination of the packets. The
implementation of RP is complex, because it is difficult to obtain by hardware a truly
random number. As it obtains similar results to CP, we finally decide to not to consider
this selection function in this paper.

5 Performance Evaluation

5.1 Network Model

To evaluate the different selection functions proposed below, a detailed event-driven
simulator has been implemented. The simulator models a k-ary n-tree with adaptive
routing and virtual cut-through switching. Each router has a full crossbar with queues
both at the input and output ports. We assumed that it takes 20 clock cycles to apply the
routing algorithm and the selection function, and switch and link bandwidth has been
assumed to be one flit per clock cycle and fly time through the link has been assumed
to be 8 clock cycles. These values were used to model Myrinet networks [7]. Credits
are used to implement the flow control mechanism. Each physical input port can be
multiplexed into up to 3 virtual channels, with space to store two packets. Also, each
output port link has a two-packet output buffer.

Packet size is 8 Kb and packet generation rate is constant and the same for all the
processors in the network. We have evaluated two different traffic patterns: uniform
and complement. In the uniform traffic pattern, message destination is randomly cho-
sen among all the processors in the network, while in the complement traffic pattern
each processor sends all its messages to the opposite node. Thus, in a network with N
processors the processor i sends messages to the processor N − i− 1. The complement
traffic patterns has two interesting properties in fat-tree networks. The first one is that
all the packets have to reach the upper stage in order to arrive to their destination, hence,
the selection function must be applied several times. The second one is that each pro-
cessor node only sends messages to one destination. This proves useful because with a
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good selection function, the preferred ascending path of two packets should not cross
each other.

5.2 Evaluation Results

We have evaluated a wide range of k-ary-n-tree topologies. We have evaluated from 2-
ary-2-tree (4 nodes) to 2-ary-8-tree (256 nodes), from 4-ary-2-tree (16 nodes) to 4-ary-
6-tree (4096 nodes), from 8-ary-2-tree (64 nodes) to 8-ary-4-tree (4096 nodes), from
16-ary-2-tree (256 nodes) to 16-ary-3-tree (4096 nodes) and for a 32-ary-2-tree (1024
nodes). Due to space limitations, we show here only a subset of the most representative
simulations.

Figure 3.(a) shows results for a very small network (4-ary 2-tree, 16 nodes). The
behavior of the selection functions is not very different, with the exception of FF. FF
always returns the same preferred ascending link, therefore an ascending path needs
to be saturated before another one is selected. Hence, there is a really unbalanced link
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Fig. 3. Average message latency versus traffic with uniform traffic pattern. (a) 4-ary-2-tree. (b)
4-ary-4-tree.
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Fig. 4. Average message latency versus traffic with uniform traffic pattern. (a) 4-ary-6-tree with
one virtual channel. (b) 4-ary-6-tree with three virtual channels.
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utilization as those that belong to the preferred ascending paths always have a higher
utilization than the others. On the other hand, due to the fact that there are only 2 stages,
the rest of selection functions have almost the same performance, because with a low
number of stages there is a low number of different paths that can be chosen to reach
any destination.

Figure 3.(b) shows the results for a 4-ary 4-tree (256 nodes). As it can be seen, with 4
stages there are more differences in packet latency for the different selection functions.
Despite SOP and SDP achieve a better performance than FF, they still have a high
network latency. Their main drawback is that they select paths based only on the p0

component of the packet origin (SOP) or destination (SDP). Therefore, the probability
of obtaining disjoint paths and, thus, an even network utilization is quite low. On the
other hand, CP, SSP and MC have almost the same performance, because they do a
good job balancing the network utilization. However, in CP and MC there is not any
mechanism to try avoiding that the ascending paths of packets cross each other. In SSP,
each switch at each stage tries to send the ascending traffic to a different switch, but
it does not take into account the destination of packets. Hence, the ascending paths
of packets with different origin and destination processing nodes may cross. SADP
achieves the best performance because, assuming that the preferred ascending path is
free, only the ascending paths of packets sent to the same destination will cross each
other.

Figure 4.(a) shows results for a larger network. In this case, the differences among
selection functions are higher. This is due to the fact that with more stages, there are
more different ascending paths to choose from, therefore more opportunities to balance
traffic. On the other hand, the selection functions with a poor traffic balance achieve
even worse results than in the previous examples.

Figure 4.(b) shows the effects of using virtual channel multiplexing. The use of vir-
tual channels reduces the effect of the head-of-line blocking. By using three virtual
channels, all the selection functions have a better performance, but it is also important
to balance network traffic. Although all the selection functions benefits from the use of
virtual channels, the ones that have a balanced use of the links give better results than
the other ones.

We have also analyzed the impact of the arity (k) of the tree on performance (not
shown). The difference among the evaluated selection functions keeps qualitatively the
same. This is due to the fact that the impact of any selection function is greater when
there is a high number on stages.

Figure 5 shows the utilization of network links for uniform traffic when injecting
traffic at the saturation rate of each selection function. As can be expected, the selection
functions that better balances traffic are the ones that obtains the best performance.

Figure 4 show the performance of the selection functions for a medium sized network
4-ary 4-tree (256 nodes). As expected, FF has the worst performance. SOP and SDP
with complement traffic have worse performance than the one obtained with uniform
traffic, because they concentrates in the same switch of the last stage all the packets
with the same least significant component of the packet source or destination, and in
the complement traffic pattern all the packets reach the last stage. SSP with complement
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traffic also shows worse performance, as in SSP the chosen link does not depend on the
source or destination node. Therefore, packets with different destinations crosses each
other.

Both CP and MC achieve a good performance with complement traffic. MC has a
better performance than CP because it takes into account the current number of credits
of the link, and this allows MC to select the links that are less saturated. SADP shows
the best performance of all. Remember that, with SADP, the preferred ascending path
of two packets only can cross each other if the packets have the same destination and in
the complement traffic pattern, every packet sent from a different node has a different
destination. As a consequence, it achieves a good balance on link utilization.

We have also analyzed the hot spot traffic pattern. As we expected, all the selection
functions proposed here obtain a very low performance, because we do not use any
congestion control mechanism. On the other hand, other traffic patterns have been also
analyzed (like perfect shuffle and bit reversal) and the overall results are qualitatively
similar to the ones presented in this paper.

6 Conclusions

The selection function in fat-trees has a strong impact on network performance. As
in the descending phase routing is deterministic, it is very important to choose the
ascending path correctly. In this paper, we have proposed several selection functions
for fat-trees, which use one of the two following strategies: the first one is to give al-
ways priority to one ascending path; the second one is to dynamically balance the link
utilization without the use of preferred paths. FF, SDP, SOP, SSP and SADP use the
first approach, while MC and CP use the second one. From the results of all the simu-
lations we have performed, we can say that it is important to balance the utilization of
the links, that is what CP and MC basically do. But an alternative way of achieving this
good traffic balance is by correctly choosing ascending paths (SADP).

SADP provides the best results, because it chooses the preferred path in a manner
so that the ascending paths of two packets only can cross each other if the packets have
the same origin switch or destination node. This provides a balance of link utilization
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even better than the one provided by MC. For example, a 4-ary-6 with uniform traffic
using SADP as selection function reaches, for a medium network load, a 24.53% lower
latency than the same fat-tree using MC and the latter has a more complex implemen-
tation. If we compare SADP with the naivest selection function (FF), SADP decreases
latency by a factor of 8.9.
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Abstract. Scalability of Cluster-Computers utilizing Gigabit-Ethernet
as an interconnect is limited by the unavailability of scalable switches
that provide full bisectional bandwidth. Clos’ idea of connecting small
crossbar-switches to a large, non-blocking crossbar – wide-spread in the
field of high-performance networks – is not applicable in a straight-
forward manner to Ethernet fabrics. This paper presents techniques
necessary to implement such large crossbar-switches based on available
Gigabit-Ethernet technology. We point out the ability to build Gigabit-
Ethernet crossbar switches of up to 1152 ports providing full bisectional
bandwidth. The cost of our configuration is at about e125 per port,
with an observed latency of less than 10µsec. We were able to find a bi-
directional point-to-point throughput of 210 MB/s using the ParaStation
Cluster middle-ware[2].

1 Introduction

Sophisticated software accelerators enable Gigabit-Ethernet[1] to act as an al-
ternative in the field of interconnects for Cluster-Computing[2]. Since small- and
medium-sized switches are available economically priced, this technology is able
to serve as an inexpensive network for Clusters with up to ∼ 64 nodes – as long
as the communication requirements of the applications allow to disobey high-
end technologies like Myrinet, InfiniBand, InfiniPath or Quadrics. Nevertheless,
in this role Gigabit Ethernet suffers from the unavailability of large, reasonably
priced switches. Thus, for large Clusters one either has to purchase one expensive
monolithic switch providing full bisectional bandwidth or is forced to accept the
handicap imposed by cascaded, medium-sized switches. The latter configuration
is afflicted with decreasing accumulated bandwidth from stage to stage.

In the early 50’s Clos already proposed a way out of this dilemma[3]. Originally
in the field of telephony networks he suggested to set up a special topology of
cascaded crossbar-switches providing full bisectional bandwidth. This idea is
widespread in the field of high-performance networks. Actually this scheme is
used by e.g. Myrinet or InfiniBand.

In order to solve the problem discussed above at least in principle, it is pos-
sible to use a similar setup with Gigabit Ethernet switches, too. Unfortunately,
some specific features of the Ethernet protocol inhibit to actually exploit the
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bandwidth provided by this topology to a large extent. This work will present a
way out of this dilemma.

The abilities of the switch building-blocks play an essential role for the con-
structions of Ethernet Clos-switches. On the one hand, they have to support vir-
tual LANs (VLAN)[9]. On the other hand, it is necessary to modify the switches
routing tables on the level of MAC addresses. Switches fulfilling these conditions
are usually called to be “level 2 manageable”.

This paper is organized as follows: In the next section, Clos ideas are briefly
reviewed. The following two sections discuss some essential features and exten-
sions of the Ethernet protocol, namely spanning trees, VLANs and multiple
spanning trees. Based on this fundament we will sketch the setup of cascaded
Ethernet crossbar switches in section 5. This includes presenting our testbed
and discussing the need for explicit routing tables. Section 6 displays the results
produced using the testbed. We end with conclusions and give a brief outlook
on further work done in the context of the ALiCEnext project in Wuppertal.

1.1 Related Work

The idea of extending the basic fat tree Ethernet topology is wide-spread. Never-
theless, all projects targeting the improvement of the accumulated bandwidth of
a Cluster’s Ethernet fabric do not implement full bisectional bandwidth. Instead,
special network topologies are developed which are well suited for the commu-
nication pattern of a specific class of applications the corresponding Cluster is
dedicated to. Good examples of this philosophy are the network of the McKenzie
Cluster[12] dedicated to astrophysics or the flat neighborhood networks[13] of
the KLAT2 and KASY0 machines used for computational fluid dynamics.

Another approach getting along without any switch is the ALiCEnext mesh
network dedicated to lattice QCD[14]. This network only supports pure nearest
neighbor communication.

All these concepts prove to be efficient only as long as communication pat-
terns are used they were specifically tuned for. As soon as other applications
with different communication patterns are involved, either the fabric has to be
re-cabled or a significant performance penalty has to be accepted. In particular
such concepts are not feasible for general purpose Clusters running various appli-
cations with diverse communication patterns, using different numbers of nodes,
serving many users in parallel, etc.

The Viking project[11] pursues a concept similar to the one presented in this
paper. I.e. it uses VLANs to create many independent spanning trees. Since
the main target of Viking are metropolitan area networks, a static configuration
like the one proposed in the present work is not feasible. Instead, they use so
called node controller and manager instances in order to adapt the configuration
of the Ethernet fabric dynamically to the constraints of the current hardware
configuration and the needs of the actual communication load. Furthermore,
since full bisectional bandwidth is not the main goal of the Viking project, the
proposed network topology is not the one presented by Clos but a grid like.
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Fig. 1. Example of a full 3-stage Clos-network based on 8-port switches. The full
hierarchical switch provides 8 × 4 ports with full bisectional bandwidth.

2 Clos-Switches

In 1953 Clos[3] introduced the concept of multiple cascaded switches intercon-
nected in a mesh like topology. Originally having telephone networks in mind the
idea behind this topology was twofold: Make the network more fault tolerant,
i.e. more robust in the case of the loss of one or more switches and increase the
scalability of the accumulated bandwidth of such systems substantially.

At last, Clos’ idea paved the way for multi-stage crossbar networks providing
full bisectional bandwidth. The maximum size of a fully connected network is no
longer limited by the number of ports offered by the biggest switch available. Of
course, with increasing number of ports more switching hierarchies are necessary,
each adding to the switching latency.

Today, actually all switched high performance networks (e.g. Myrinet[4],
Quadrics[5] or InfiniBand[6]) make use of Clos’ idea in order to provide full con-
nectivity to large fabrics. This is necessary since the atomic crossbars available
for these technologies typically offer not more than O(32) ports.

The basic topology of a 3-stage Clos-network is sketched in figure 1. It is easy
to prove that at any level the same number of connections are available and
full bisectional bandwidth is provided in this sense. In order to maximize the
usable connectivity, an appropriate routing strategy has to be introduced. The
main result of this work is a technique devising a routing strategy for a hierarchy
of Gigabit-Ethernet switches. Furthermore figure 1 serves as an introduction of
some terminology used in the course of this work:

– Switches connected to nodes are called level-1 (or L1) switches. In the ex-
ample of figure 1 these are the switches 0, 1, 2, 3, 8, 9, 10 and 11.

– Switches connecting level-1 switches are called level-2 (or L2) switches.
Switches 4, 5, 6 and 7 are the example’s L2 switches.
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Fig. 2. Basic loop appearing in Clos-switch topologies marked by fat lines. In order to
suppress such loops, STAs will switch off the dashed links.

3 Spanning Trees

Trying to construct Clos’ topology based on Ethernet technology, a first limita-
tion origins in the use of spanning trees. These are needed to avoid loops within
the network fabric. While this feature is inevitable for an Ethernet fabric to
work at all, it prevents from using the multiple paths between two switches in
parallel. This leads to an accumulated bandwidth found to be identical to the
one delivered by cascaded switches.

The very importance of the absence of loops within an Ethernet fabric lies
in the fact of missing restricted lifetimes of packets on Ethernet level. This will
enable packets to live forever, if the routing-information within the switches
creates loops due to misconfiguration. Furthermore – even if the routing is set
up correctly – the existence of broadcast packets within the Ethernet protocol
provokes packet storms inside the fabric: Whenever a switch receives a broadcast
packet on a given port, this packet will be forwarded to all other ports irrespective
of available routing information. If there are at least two connections between
two switches, a broadcast package sent from one switch to another via a first
connection will be sent back to the originating one using the second connection.
Once the first switch is reached again, the packet will be sent on its original way
again and a loop is created.

Unfortunately, Ethernet broadcast packets play a prominent role within the
Internet protocol family, since ARP messages at least on Ethernet hardware are
implemented using this type of communication[7]. Thus, every time the MAC-
address corresponding to a destination’s IP address is unknown, broadcast mes-
sages are sent on Ethernet level. Consequently, it is almost impossible to prevent
this kind of Ethernet packets in practice.

To beware an Ethernet fabric of this vulnerability, spanning trees were intro-
duced [8]. The main idea here is the detection of loops within a given network
fabric and the selective deactivation of such connections, which would eventually
close loops. Unfortunately, this will happen on a quite fundamental level of the
switch’s functioning and thus prevent this link from carrying any data at all.
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Investigating Clos-switch topology one can find loops even within the simplest
example. Figure 2 sketches one loop in a setup of 2 × 4 switches1. In fact, even
this simple setup hosts many loops each of them preventing it from working
correctly. On the other hand, the spanning tree algorithm detects these loops
and – at the same time – disables all the additionally introduced bandwidth.
In figure 2 all connections deactivated by an assumed spanning tree algorithm
(STA) are depicted as dashed lines.

4 Virtual LANs and Multiple Spanning Trees

Particularly important for our purposes is the concept of virtual local area net-
works (VLAN)[9]. This implements multiple virtually disjunct local area net-
works (LAN) on top of a common Ethernet hardware layer. In order to realize
this feature a new level of indirection is introduced by explicitely tagging ev-
ery native Ethernet packet – including broadcasts – as a member of a distinct
VLAN.

This creates a twofold benefit: The topology of the network fabric can be
rearranged remotely just by reconfiguration of the switches without physically
touching any hardware at all. Additionally – if supported by the operating system
– it is possible to assign a given computer to different VLANs at the same time
without the need of extra communication hardware.

This technology is widely used in order to map a company’s organization
virtually onto an uniform physical network fabric in a very flexible way. Thus, it
is not surprising that many so-called department switches support this feature.

In this context the idea of spanning trees has to be extended. The reason for
providing each VLAN with its own spanning tree is threefold:

– For security reasons broadcast messages have to be restricted to the VLAN
they were created in. Otherwise, depending on the high-level protocol2 the
possibility is given to spoof data between different VLANs.

– Within each VLAN there might be loops. These loops would compromise
the functionality of the fabric as a whole if they are not eliminated.

– As long as a physical connection is available, the connectivity within each
VLAN has to be guaranteed, even if the different VLANs as a whole would
build loops. Configurations with physical connections inevitable for the cor-
rect functioning of one VLAN but closing a loop within another can easily be
constructed. Such dichotomy can only be cured by spanning trees assigned
to each VLAN separately.

In order to meet this constraints the STA discussed above was extended to
the concept of multiple spanning trees (MST)[10].

1 Actually, loops already appear in 2×2 setups. Since figure 2 also sketches the effects
of STAs, the 2 × 4 setup was chosen.

2 Here everything above Ethernet protocol level is seen as high-level.
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Fig. 3. Crossbar configuration with virtual switches. Each VLAN is depicted with a
different line-mode. Lines connecting nodes and L1 switches are only in node → switch
direction exclusively used by one VLAN; in switch → node direction each link is used
by any VLAN.

5 Configuration Setup

Putting together the technologies described in the last sections the problem of
loops can be eliminated without loosing the additional bandwidth of the Clos-
topology at the same time. We proceed as follows:

– Setup various VLANs, each forming a spanning tree.
– As many VLANs as nodes attached to a single L1 switch are needed. This

fixes the number of VLANs to half the number of ports a switch provides.
– Configure node-ports (i.e. ports with nodes attached) to use – depending

on the port – a specific VLAN whenever receiving inbound traffic. This
implements the required traffic shaping.

– Configure all the node-ports to send outbound traffic from every VLAN3.
I.e. data from every VLAN (and thus from every node) can be sent to any
other node, irrespective of the VLAN the sending node is mapped to.

It is essential that all traffic sent from switches directly to a node is not spoiled
by any VLAN information4. Hence, from the nodes’ point of view the complex
network topology is completely transparent and no modification has to be done
to the nodes’ configuration. Even nodes not supporting the VLAN technology
at all can be used within this setup.

Figure 3 sketches the typical setup of the crossbar configuration. Here VLANs
are depicted by line styles, i.e. L2 switches with a distinct border only carry

3 This “port overlapping” is a feature marked as optional in the VLAN standard[9].
4 This might introduce additional overhead on the L1 switches; in practice this proved

to be negligible.
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traffic sent by nodes with the same border into the corresponding VLAN. On
the other hand, nodes receive data irrespectively of the sending node’s VLAN.
Traffic shaping is implemented as follows:

– Traffic sent from one node to another connected to the same L1 switch does
not touch any other switch. E.g. node6 will talk directly to node4.

– The sending node’s switch port chooses the L2 switch used to emit data to
other L1 switches. This ensures efficient use of the whole fabric.

Assuming node0 to node3 try to send data to the nodes connected to switch2
concurrently, node0 will send via switch4, node1 via switch5, etc. Hence, there
are 4 independent routes between any two L1 switches in the example. This
assures the bisectional bandwidth of the setup.

Figure 3 shows an additional detail. switch4 and switch5 are only logical and
assumed to share the same hardware. Because of 4 L1 switches only 4 ports of a
logical L2 switch are occupied. Thus, another logical switch can use the remaining
4 ports. Again, the configuration is realized via the VLAN mechanism. This
guarantees the absence of data-exchange between ports of a physical L2 switch
dedicated to different VLANs. Since both – logical and physical L2 switches –
have to handle the VLANs anyhow no further effort is introduced.

5.1 The ALiCEnext Testbed

Our testbed used to implement this configuration consists of 144 dual-Opteron
nodes of the ALiCEnext[15] Cluster located at Wuppertal University. They are
connected via 10 SMC 8648T Gigabit-Ethernet switches[16]. Providing 48 port,
each L1 switch serves 24 nodes leading to 24 VLANs. Thus, 6 L1 switches are
needed. The other 24 ports are connected to the 4 remaining switches. Every L1
switch is connected via 6 lines to each of the 4 L2 switches. Thus, each physical
L2 switch hosts 6 virtual L2 switches leading to a total of 24 logical ones as
implied by the number of VLANs and the number of nodes connected to each
L1 switch5.

Unfortunately, at least the implementation of the MST algorithm the SMC
8648T provides is not robust enough to detect the – admittedly very special
– setup of our Clos-switch topology correctly. In fact, the switches locked up
and the network was unusable6. Consequently, automatic loop detection and
elimination provided by the MST mechanism was switched off explicitely. This
enforces special care when setting up VLANs and cabling. In particular, the
default VLAN which includes all ports of the different switches and thus contains
countless loops has to be eliminated from the fabric.

5 In principle 3 L2 switches are sufficient to build a 144 port crossbar fabric. The extra
ports in our setup were used to implement a connection to the outside world.

6 Interestingly, plugging the 144 cables between L1 and L2 switches one after the other
worked out. This leads to the assumption that switches cannot handle the flood of
Hello BPDUs. Of course, plugging all cables whenever a switch restarts is no viable
solution.
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With this a first prove of concept was obtained by assuring that complete
connectivity between the nodes is seen: pings were send from every node to
any other node. Furthermore services like ARP7 and multicasts work out of the
box.

Nevertheless, a detailed investigation of the fabric unveiled a problem buried
deeper in this setup. In fact, communication between nodes attached to the same
VLAN, i.e. connected to the same port number of different switches, worked as
expected. Communication from one VLAN to another worked in principle, too,
but we observed significantly reduced performance.

5.2 Routing Tables

Investigating the dynamic routing tables of the L2 switches the problem was
disclosed. These are created on the fly while listening to network traffic between
the nodes. Since all inbound traffic is sent via specific VLANs, a L2 switch
will never see traffic of nodes sending into different VLANs. In figure 3 e.g.
switch5 will never see any traffic from node0. On receiving traffic addressed to
yet unknown nodes, switches will start to broadcast to all ports. This introduces
a plethora of useless traffic. Due to congestion this leads to packet loss and
significantly reduced throughput.

To prevent congestion one has to harness the switches with static routing
tables. They will shape the traffic addressed to a distinct node in a given VLAN
to a specific port. One has to keep in mind that the size of such routing tables is
proportional to both, the number of VLANs and the number of nodes connected
to the fabric. Thus the tables needed for the testbed will have 24 × 144 = 3456
entries. Correspondingly, the routing tables of the entire ALiCEnext machine
(528 ports) will contain 12672 entries. Switches providing such numbers of static
entries are available; e.g. the SMC 8648T allows up to 16k entries8.

The sheer number of routing entries entail that programming the switches
cannot be done in a manual way. Instead, we wrote programs that collect the
required data and create the corresponding configuration files. Furthermore, the
collected data allow some automatic debugging of the cabling between the nodes
and the L1 switches as well. The deployment of configuration files to the switches
is automated, too.

6 Results

First we determined the basic parameters of the involved building-blocks. The
measurements were carried out on two nodes of the ALiCEnext Cluster with
their Gigabit-Ethernet ports directly connected, i.e. no switch in between. The
very efficient ParaStation protocol was used in order to reduce the message

7 Since ARP is based upon Ethernet broadcasts these work, too. Interestingly, request
and response might use different VLANs and, thus, different spanning trees.

8 This limits scalability for this building-blocks to actually ∼ 680 nodes.
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Table 1. Performance results

Back-to-back single switch 3-stage crossbar

Throughput / node [MB/s] 214.3 210.2 210.4

Latency [µsec] 18.6 21.5 28.0

latencies as much as possible9. As a high-level benchmark the Pallas MPI Bench-
mark suite (PMB)[17] was employed. We applied two tests, pingpong for latency
determination and sendrecv for bandwidth measurements.

Performance numbers for directly connected ports are in the left column of
table 1. Latency is half-round-trip time of 0 byte messages as determined by
pingpong. The low latency found is due to the ParaStation protocol10. Through-
put is for 512 kByte messages. Larger messages give slightly less throughput
(∼ 200MB/sec) due to cache effects when accessing the main memory. The mes-
sage size for half-throughput was found to be 4096 Byte for all tests.

To determine the influence of a single switch stage the benchmark was re-
peated using two nodes connected to the same switch. The corresponding results
are marked as “single switch” in table 1. Obviously, there is almost no influence
of the switch on the throughput. Since the total latency rises from 18.6µsec
to 21.5µsec, each switch stage is expected to introduce an additional latency
of 2.9µsec. We anticipate a total latency of ∼ 27.5µsec when sending messages
through all three stages of the testbed. This corresponds to a latency of ∼ 9µsec
from the switch alone. Throughput is expected to be unaffected.

The above tests were done using a single pair of processes. In order to show
bisectional bandwidth we have to concurrently employ as many pairs as possible.
Furthermore, the processes have to be distributed in a way that communicating
partners are connected to disjoint L1 switches, forcing all traffic to go via the
L2 switches and stress the fabric to the hilt. At the time we ran our benchmarks
140 processors were accessible to us, leading to 70 pairs.

The numbers for the 3-stage crossbar presented in table 1 are worst case
number. I.e. the result for the pair showing the least throughput is displayed
there. Looking at the average value of all pairs, throughput is ∼ 5% bigger. The
best performing pair even gives a result of ∼ 218MB/sec. The total throughput
observed is larger than 15 GB/s.

Based on an observed latency of 28.0µsec the latency actually introduced by
the crossbar-switch was found to be 9.4µsec, i.e. in the expected range. This
is well below the numbers available for many big, monolithic Gigabit-Ethernet
switches with full bisectional bandwidth – at a much lower price! We expect this
number to be constant up to 1152 ports11.

9 ParaStation uses a fine-tuned high-performance protocol in order to reduce the over-
head of general-purpose protocols like TCP.

10 On the same hardware a fine-tuned TCP-setup will reach about 28µsec on MPI-level;
out of the box the MPI latency over TCP is often in the range of 60 − 100µsec.

11 Which is a theoretical limit since size of routing tables restricts us to ∼ 680 ports.
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7 Conclusion and Outlook

We presented a new way to set up a scalable crossbar switch based on of-the-
shelf Gigabit-Ethernet technology. The switch itself is completely transparent to
the node-machines. Using the ALiCEnext Cluster at Wuppertal University we
showed the concept to work as expected. Full bisectional bandwidth could be
achieved at a price of less than e125 per port12 even with more expensive level
2 manageable switches13. In this work we demonstrated our concept to actually
work for 144 ports14.

We submitted an international patent for our approach which is pending[18].

Acknowledgments. We thank the ALiCEnext team in Wuppertal for patience
and kind support.
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A. Mart́ınez1, P.J. Garćıa1, F.J. Alfaro1, J.L. Sánchez1, J. Flich2,
F.J. Quiles1, and J. Duato2

1 Departamento de Sistemas Informáticos, Escuela Politécnica Superior
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Abstract. Congestion management and quality of service (QoS) pro-
vision are two important issues in current network design. The most
popular techniques proposed for both issues require the existence of spe-
cific resources in the interconnection network, usually a high number of
separate queues at switch ports. Therefore, the implementation of these
techniques is expensive or even infeasible. However, two novel, efficient,
and cost-effective techniques for provision of QoS and for congestion man-
agement have been proposed recently. In this paper, we combine those
techniques to build a single interconnection network architecture, pro-
viding an excellent performance while reducing the number of required
resources.

1 Introduction

High-speed interconnection networks have become a major issue on the design
of several computing and communication systems, including systems for parallel
computing since they provide the low-latency and high-performance demanded
by parallel applications. Unfortunately, the network is also becoming the most
expensive and power consuming part of these systems.

On the other hand, networks have been traditionally overdimensioned in order
to avoid high link utilization, but currently this is an expensive practice. There-
fore, new and clever solutions for the problems related to high link utilization
are needed.

One of these problems is network congestion. If not managed, congestion
dramatically degrades network performance because it leads to blocked packets1

� This work was partly supported by the Spanish CICYT under grant TIC2003-08154-
C06, by Junta de Comunidades de Castilla-La Mancha under grant PBC-05-005, by
the Spanish State Secretariat of Education and Universities under FPU grant, and
by UPV under Grant 20040937.

1 We are considering lossless networks like InfiniBand, Quadrics, or Myrinet.
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that prevent the advance of other packets stored in the same queue, even if they
are requesting free resources further ahead. Moreover, a high utilization of the
links may also degrade the performance observed by the users, which leads to
the necessity of techniques to provide the traffic with quality of service (QoS).
In this case, it is necessary to avoid interferences from best-effort traffic, which
only demands a “deliver when possible” service, and guarantee that traffic with
strict requirements is properly served.

Many techniques have been proposed both for provision of QoS and for conges-
tion management. Unfortunately, most of them rely on the use of a considerable
number of queues at the switches. For instance, the use of virtual output queues
has been proposed for handling congestion, but it requires as many queues per
switch port as end-points in the network. This increases switch cost due to the
silicon area required for implementing such number of buffers.

Regarding QoS provision, the use of virtual channels (VCs) is a common so-
lution, but, although current interconnect standards propose 16 or even more
VCs, most commercial components do not offer so many VCs because it is too
expensive in terms of silicon area. In fact, the trend followed nowadays by in-
terconnect manufacturers in their new products is to increase the number of
switch ports instead of increasing the number of VCs per port [1]. Note that
for high-speed, single-chip switches, proposals requiring many queues could be
considered if external DRAM is available for implementing the buffers. However,
in this case, the low latencies demanded by QoS-requiring traffic could not be
provided.

Recently, two novel, efficient, and cost-effective techniques both for provision
of QoS and for congestion management have been proposed. The first one [2]
consists in a full QoS support with only two VCs. The RECN [3,4] congestion
management strategy is the second one. The implementation of both proposals
requires a very small number of queues per port, while they offer the same
effectiveness as other more silicon-requiring techniques.

In this paper, we study in detail how these two techniques can be combined
to form a single architecture that uses a reduced number of queues per port.
We also show the performance achieved by the resulting switch architecture in
comparison with the performance reached by more expensive solutions.

The rest of this paper is structured as follows. In Section 2, we review the
techniques proposed for congestion management and, in particular, the RECN
mechanism. Next, in Section 3 we review the proposals for QoS support in inter-
connection networks and specially the proposal that uses only two VCs. Section 4
presents the proposed interconnection network architecture, whose performance
evaluation is presented in Section 5. Finally, in Section 6 some conclusions are
drawn.

2 Dealing with Congestion in Interconnection Networks

The risk of congestion in interconnection networks is a well-known problem,
and many strategies have been proposed to deal with it. The simplest of those
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strategies are the network overdimensioning and the dropping of packets in con-
gestion situations. However, none of them are suitable for modern interconnec-
tion networks: Overdimensioning the network implies a high cost and power
consumption, while the dropping of packets implies packet retransmission that
increases packet latency, so current interconnection networks are usually lossless.

Other more elaborated techniques have been specifically proposed for avoid-
ing or eliminating congestion. For instance, proactive strategies are based on
reserving network resources for each data transmission, requiring a traffic plan-
ification based on network status [5]. However, this status information is not
always available, and the resource reservation procedure introduces significant
overhead. On the other hand, reactive congestion management is based on no-
tifying congestion to the sources contributing to its formation, in order to cease
or reduce the traffic injection from those sources [6]. Unfortunately, these solu-
tions are not quite efficient due to the delay between congestion detection and
notification.

Other congestion management strategies focus on eliminating the main neg-
ative effect of congestion: The head-of-line (HOL) blocking. This phenomenon
happens when a blocked packet at the head of a FIFO queue prevents the ad-
vance of other packets at the same queue, even if those packets require avail-
able resources. This effect may degrade network performance dramatically, since
data flows not contributing to congestion may advance at the same speed than
congested flows. In fact, an effective HOL blocking elimination would turn con-
gestion harmless. In that sense, many HOL blocking elimination strategies have
been proposed: virtual output queues (VOQs) [7], dynamically allocated multi-
queues (DAMQs) [8], congestion buffers [9], etc. Most of these techniques rely on
allocating different buffers for storing separately packets belonging to different
flows.

In general, traditional HOL blocking elimination techniques are scalable or
efficient, but not scalable and efficient at the same time. For instance, the use
of VOQs at network level requires as many queues at each port as end-points
in the network, being so an effective but not scalable technique. A variation of
VOQ uses as many queues at each port as output ports in a switch [10]. So, this
technique is scalable, but it does not eliminate completely HOL blocking, only
the switch’s internal HOL-blocking.

Recently, a new HOL blocking elimination technique has been proposed:
RECN [3,4]. RECN eliminates HOL blocking in a scalable and efficient way.

2.1 RECN Description

RECN (Regional Explicit Congestion Notification)[3] is a congestion manage-
ment strategy that focuses on eliminating HOL blocking. In order to achieve it,
RECN detects congestion and dynamically allocates separate buffers for each
congested flow, assuming that packets from non-congested flows can be mixed
in the same buffer without producing significant HOL blocking. Therefore, max-
imum performance is achieved even in the presence of congestion.
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RECN requires the use of some source deterministic routing in order to address
a particular network point from any other point in the network. In fact, RECN
has been designed for PCI Express Advanced Switching (AS) [11], a technology
that uses source routing2. AS packet headers include a turnpool made up of
31 bits, which contains all the turns (offset from the input port to the output
port) for every switch in a route. Thus, a switch, by inspecting the appropriate
turnpool bits, can know in advance if a packet that is coming through one of its
input ports will pass through a particular network point.

In order to separate congested and non-congested flows, RECN adds a set
of additional queues (set aside queues, SAQs) to the standard queue at ev-
ery input and output port of a switch. While standard queues will store non-
congested packets, SAQs are dynamically allocated and used to store packets
passing through a congested point. Every set of SAQs is controlled by means of
a CAM (Content Addressable Memory). Every CAM line contains information
required for identifying a congested point and for managing the associated SAQ.

Whenever an input or output standard queue receives a packet and fills over
a given threshold, RECN detects congestion3. Then, a congestion notification is
sent upstream to the packet sender port (an input port of the same switch or
an output port of an upstream switch). These notifications include the turnpool
required to reach the congested point from the notified port. Upon reception of
a notification, a port allocates a new SAQ and fills the corresponding CAM line
with the received turnpool. Since that moment, every packet received in this port
will be stored in the allocated SAQ if it will pass through the associated congested
point (this can be deduced from the packet turnpool). As non-congested packets
are stored in different queues (the standard ones), congested packets cannot
cause HOL blocking.

Furthermore, if any SAQ becomes congested, another notification will be sent
upstream, and the receiving port should allocate a new SAQ. This procedure
can be repeated until the notifications reach the sources. Therefore, there will be
SAQs for storing congested packets at every point where otherwise these packets
could produce HOL blocking. Moreover, congested packets cannot fill the port
memory completely as RECN uses a SAQ-specific Xon/Xoff flow control.

RECN also detects congestion vanishment at any point, in such a way that
the SAQs assigned to this point can be deallocated and later re-allocated for
new congested points. This allows RECN to eliminate HOL blocking while using
a reduced number of SAQs. Further details about RECN can be found in [3,4].

3 QoS Support in Interconnection Networks

During the last decade, several switch architectures with QoS support have been
proposed. Among the most recent proposals are the industry standards Infini-
2 However, note that RECN could be applied on any network technology if it allows

the use of source deterministic routing.
3 Actually, in order to detect at input ports which output port is congested, RECN

divides each standard queue into several small detection queues [4].
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Band and PCI Express Advanced Switching (AS). The InfiniBand standard [12]
considers up to 16 VCs, while the AS specification [11] incorporates up to 20
VCs (16 unicast, 4 multicast). However, the implementation of such number
of VCs would require a significant fraction of silicon area and it would make
packet processing a time-consuming task. Consequently, as far as we know, no
implementation of these standards includes the full number of proposed VCs.

Several proposals have been presented in order to reduce the hardware re-
quired for QoS provision, some of them using only two VCs. For instance, the
Avici TSR [7] is able to segregate premium traffic from regular traffic. However,
it is limited to this classification and cannot consider more categories. Also, the
architecture proposed in [13] maps multiple priority levels onto two queues. How-
ever, this proposal is aimed at a single-stage router based on a single buffered
crossbar with small buffers at the crosspoints that are split into two VCs.

In contrast, the technique proposed in [2] uses two VCs while being simpler
and more generic, as it is shown in the next section.

3.1 Full QoS Support with 2 VCs

The key idea of the proposal explained in [2], is quite simple: Assuming that the
links are not oversubscribed, all the traffic flows through the switches seamlessly.
Therefore, it is possible to use only two VCs at the switch ports. One of these
VCs is used for QoS packets and the other one for best-effort packets. In [2], a
connection admission control (CAC) is used to guarantee that QoS traffic will
not oversubscribe the links.

Another cornerstone of this proposal is to reuse at the switches the scheduling
decisions taken at the network interfaces regarding the injection of traffic from the
different classes. Specifically, it is assumed that packets are ordered at network
interfaces according to a static priority criterion. In this way, every packet would
be stamped with a priority (or service) level (typically, 8 or 16 levels). This is
necessary because packets arriving at the switches come in the order specified by
the interfaces, and the switch must merge these packet flows at the output ports.
The ordering established at network interfaces does not need to be changed at
any switch in the path because queuing delays for QoS traffic will be short.

Although it is assumed that QoS traffic does not oversubscribe any link, no
assumption is made about best-effort traffic. However, network interfaces are
still able to assign the available bandwidth (the fraction not consumed by QoS
traffic) to best-effort traffic in the configured proportions. In this way, switches
can still take into account the modest QoS requirements of this kind of traffic.
Obviously, this is a coarse-grain QoS provision.

Note that this proposal does not aim at achieving a higher performance but,
instead, at drastically reducing buffer requirements while reaching the same lev-
els of performance and behavior as systems with many more VCs. In this way,
an effective QoS support could be implemented at an affordable cost.

Note also that some aspects of this proposal could be simplified or improved
if it is combined with the RECN strategy. For instance, instead of the CAC ap-
plied to QoS traffic in [2], the RECN mechanism could detect if some traffic flows
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start producing congestion, and immediately segregate these flows from the non-
congested ones. Moreover, regarding best-effort traffic, RECN can make impor-
tant contributions. Specifically, it can guarantee the maximum throughput for
best-effort traffic, avoiding also that congested flows affect non-congested traffic.

As RECN also requires a reduced number of resources, the combination of
both techniques would allow to provide effective QoS support and congestion
management at a low cost in terms of silicon area. The architecture we propose
for combining both techniques is explained in the following section.

4 Proposed Interconnection Network Architecture

Our proposal consists in a interconnection network architecture able to sup-
port QoS and to cope with congestion while requiring reduced resources. The
strategies we propose affect both network interfaces and switches.

(a) Switch organization (b) Input port organization

Fig. 1. Proposed architecture

Figure 1 (a) shows a logical view of the switch organization, which consists in a
combination of input and output buffering. Note that all the switch components
are intended to be implemented in a single chip. This is necessary in order to
offer the low cut-through latencies demanded by current parallel applications.

The innovations of our proposal are in the port design. The organization of
an input port can be seen at Figure 1 (b). There are only two VCs: VC 0 is
intended for QoS traffic, while VC 1 is intended for best-effort traffic. As can be
seen, each VC is further divided into 16 queues. The first 8 queues of each VC
are the detection queues, so each queue corresponds to each switch output port.
The next 8 queues of each VC are the SAQs, where congested traffic is stored.

We include an additional field in the CAM lines used for managing the SAQs:
The service level (SL). This new field will be used, in addition to the turnpool,
for assigning a SAQ to a specific point and to a specific SL. Therefore:

– When a standard queue reaches the detection threshold, the corresponding
congestion notification includes now, in addition to the turnpool, the SL of
the packet responsible of the detection.

– Each allocated SAQ contains traffic of a single SL.
– A single turnpool may be replicated for several SAQs, with different SLs.
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So, the congestion detection process is slightly different than in RECN without
QoS support. As a detection queue may reserve several SAQs (each for a different
SL), a bit mask is required to control which SLs have reserved a SAQ.

The output ports of the switch replicate the structure of the inputs, with two
main differences. There is no need to decode the messages and detection queues
refer to the outputs of the next switch. The network interface design would be
very similar to this, although, in this case, a VC exists for each SL.

The scheduling at the switches goes as follows. There is a strict precedence
of VC 0 (QoS traffic) over VC 1 (best-effort traffic): As long as there are ready
packets of VC 0, no one from VC 1 is eligible. Among the queues inside each VC,
a simple round-robin algorithm is applied. Note that RECN ensures that none of
the SAQs will occupy all the buffer space and, therefore, this simple scheduling
is sufficient.

The area requirements study for this design is based on the process detailed at
[14]. We do not have yet a detailed Verilog switch design, but we can obtain good
estimations by considering the area consumption of each individual component.

Table 1. Area consumption by components

Module Area 0.18 µm Area 0.13 µm

Buffers (32 × 16Kbytes) 64 mm2 32 mm2

Crossbar and datapath 10 mm2 5 mm2

Scheduler 5 mm2 3 mm2

Total 79 mm2 40 mm2

In Table 1, the aforementioned estimations can be found. The memory area
consumptions are taken from memory datasheets [15]. The number of buffers in
the switch comes from 8 ports × 2 VCs × input and output. Keep in mind that
at the placement and routing phase of the design process, the wiring introduced
could increase these figures. Therefore, this design would take 100-150 mm2

using 180 nanometers technology.

5 Performance Evaluation

We have evaluated the proposed architecture by means of simulations. In this
section, we will detail the simulated scenarios and we will offer results showing
the behavior of our proposal in comparison with the one of traditional switches.

5.1 Simulated Architecture

We have supposed a workload of 8 SLs, with decreasing priority, such that SL
0 has the highest priority and SL 7 has the lowest. We have also assumed that
SLs from 0 to 3 are QoS-requiring traffic, and share the same VC in the two-
VC architecture. Moreover, we also suppose that SLs from 4 to 7 are best-effort
traffic, and share the other VC in the two-VC scheme.
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We have run simulations for three architectures. First, we have tested the
performance of the ideal architecture, using VOQ at the network level combined
with a VC per SL (VOQ Net). Also, we have tested a more realistic architecture,
using VOQ at the switch level and as many VCs as SLs (VOQ Switch). Finally,
our proposed architecture, combining the use of only 2 VCs at the switches with
the use of RECN (RECN 2 VCs).

The network used in the tests is a folded (bidirectional) butterfly multi-stage
interconnection network (MIN) with 128 ports (3 stages). We have chosen a MIN
because it is a usual topology for computer clusters and IP routers. However, our
proposal is valid for any other network topology, including direct networks. Other
assumptions are based on the AS specifications [11]. For instance, maximum
packet size is 2 Kbytes and link bandwidth is 8 Gb/s. Another assumption is
the use of source routing, since it is needed by RECN.

The VOQ Switch and RECN 2 VCs architectures consider 8 ports and 32
Kbytes of buffer space per port. Note that the buffer space per VC in the RECN
2 VCs case is bigger than in the VOQ Switch case in a factor of 4. Also note that
the scheduler considers 64 queues per port in the VOQ Switch design (8 VCs ×
8 VOQs), while in the RECN 2 VCs case 32 queues (8+8 from each VC) are
considered. For the sake of clarity, we do not consider in this study the saving
in silicon area and the gain in scheduler speed due to these facts.

The VOQ Net architecture assumes a space of 2 maximum size packets per
VC. This is the minimum required to assure a full throughput under a full
load between two ports (one packet size plus a round-trip time, rounded to full
packets). In a 128 end-points network, it requires 128 × 8 VCs × 4 Kbytes =
4 Mbytes per port of buffering. It is clearly too much for a single chip, and it
should be implemented in external DRAM, but in that case the cut-through
latency of the switch would be much higher. Nevertheless, in order to provide a
reference of the ideal performance, we have not considered this additional delay
in the VOQ Net simulations.

5.2 Traffic Model

In all the tests we have used self-similar traffic. This traffic is composed of bursts
of packets heading to the same destination. The packets’ sizes are governed by
a Pareto distribution, as recommended in [16]. In this way, many small size
packets are generated, with an occasional large size packet. The periods between
bursts are modelled with a Poisson distribution and the distribution of the bursts
destinations is uniform. If the burst size is long, there is a lot of temporal and
spatial locality and should show worst-case behavior because at a given moment,
many packets are grouped going to the same destination. Regarding burst length,
we have used a long one of 30 Kbytes for the four best-effort classes and a shorter
one of 5 Kbytes for the QoS classes.

5.3 Simulation Results

We have considered two traditional QoS metrics in the performance evaluation:
Throughput and latency. Packet loss is not considered because no packets are
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dropped due to the use of credit-based flow control. However, note that inappro-
priate results of latency may lead to dropped packets at the application level.
For this reason, we also consider maximum latency.

We first analyze the results for the best-effort traffic classes, which are more
likely to suffer from congestion. Figure 2 shows the global throughput of the
network for the unregulated traffic. It can be seen that our RECN 2 VCs pro-
posal, from an input load of 80% on, offers a 25% improvement over the VOQ
Switch architecture and only losses a 5% from the ideal, infeasible VOQ Net
architecture.

Figure 3 depicts the detailed throughput results for each one of the best-
effort classes (SLs 4 to 7). While our proposal offers results very close to those
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Fig. 3. Detailed throughput results for best-effort SLs
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Fig. 4. Average latency results for QoS SLs
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of the ideal architecture, VOQ Switch offers a very poor performance for SLs
6 and 7.

The next part of the evaluation deals with the QoS traffic. In this case, the
three architectures offer 100% throughput for QoS traffic (not shown). Figure 4
shows the interesting average latency results for the QoS SLs. Note that these
results are very similar for all the architectures. Although our proposal offers
slightly worse results for the SL 0, the SL 3 benefits from the RECN technique.
Almost identical results have been obtained for maximum latency (Figure 5).
Due to space constraints maximum jitter results are not shown, but are also
similar to those of latency.

These results show that QoS-requiring flows get the performance they need
when using our architecture, although they are sharing a single VC. Therefore,
our proposal is able to offer QoS support at the same level as a proposal that
doubles the required number of queues (VOQ Switch) and even at the same
level as an ideal and expensive architecture (VOQ Net). Moreover, in the case
of heavy congestion in the QoS SLs, the VOQ Switch case will suffer strong
degradation while the RECN mechanism included in our architecture would
solve the problem.

6 Conclusions

Due to cost and power consumption constraints, current high-speed interconnec-
tion networks cannot be overdimensioned. Therefore, some solutions are needed
in order to handle the problems related to high link utilization. In particular,
both QoS support and congestion management techniques have become essen-
tial for achieving good network performance. However, most of the techniques
proposed for both issues require too many resources for being implemented.

In this paper we propose a new network architecture able to face the chal-
lenges of congestion management and, at the same time, QoS provision, while
being more cost-effective than other proposals. Our proposal is based on the
combination of two novel techniques that provide congestion control and QoS
support while requiring a reduced number of resources.

According to the results presented in this paper, we can conclude that our
proposal can provide an adequate QoS while properly dealing with congestion.
We provide advanced techniques for the buffer management, which allow a good
performance under heavy and unbalanced load, while still providing appropriate
QoS levels. Since all this is achieved with a reduced number of resources, this
architecture would also reduce network cost.
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Abstract. In a multirate wireless network such as IEEE 802.11 WLAN,
the connection having a good channel condition uses a high transmission
rate and the connection having a poor channel condition uses a low trans-
mission rate. However, this coexistence of different transmission rates
degrades the total system performance of the network. In order to elim-
inate this performance abnormality and improve protocol capacity, we
propose a new packet transmission algorithm, the RAT (Rate-Adapted
Transmission) scheme. The RAT scheme distributes the wireless channel
fairly based on the channel occupancy time. Moreover, it efficiently trans-
mits packets even in a single station using rate-based queue management.
Therefore, the RAT scheme obtains not only the inter-rate contention
gain among stations but also the intra-rate contention gain among con-
nections in a single station. By simulation, we show that the proposed
RAT scheme is superior to the default IEEE 802.11 MAC DCF access
method and the modified OAR (Opportunistic Auto Rate) scheme.

1 Introduction

Recently, WLAN (Wireless LAN) has achieved tremendous growth and has be-
come the prevailing technology for wireless access for mobile devices. WLAN
has been rapidly integrated with the wired Internet and has been deployed in
offices, universities, and even public areas. Moreover, the IEEE 802.11 WLAN
standard is considered as the most popular wireless access method for ad-hoc
mobile communications.

The wireless channel condition varies over time and space due to the dy-
namic features of the wireless environments such as mobility, interference, and
location. To cope with this channel variation, the physical specifications of the
IEEE 802.11 WLAN provide multiple transmission rates by employing different
channel modulation and coding schemes. The IEEE 802.11b standard [1] pro-
vides four different physical transmission rates from 1Mbps up to 11Mbps. The
IEEE 802.11a [2] and 802.11g [3] standards provide eight different transmission
rates from 6Mbps up to 54Mbps. This multiple rate capability enables a wire-
less station to dynamically choose a physical transmission rate depending on the
channel condition.

The efficient selection of the physical transmission rate affects the WLAN
performance significantly. To choose the best rate among multiple transmission
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rates at a given time, numerous rate control algorithms have been proposed
[5,6,7,8,9,10,11,12]. These algorithms enhance the WLAN performance by dy-
namically changing transmission rates according to the variable channel con-
ditions. However, problems still exist. Although these rate control algorithms
efficiently utilize the wireless medium, there is consider-able performance degra-
dation when some connections transmit data at lower physical rates than oth-
ers. This performance degradation with mixed transmission rates is due to the
CSMA/CA protocol, which is used in the IEEE 802.11 MAC DCF (Distributed
Coordination Function) channel access method [4].

Therefore, in this paper, we investigate this performance abnormality. We then
propose a novel packet transmission strategy for improving protocol capacity in
multi-rate wireless networks.

2 Background and Motivation

2.1 Performance Abnormality with Multiple Transmission Rates

For investigating the performance abnormality, twelve mobile stations send data
frames to wired stations over the WLAN AP (Access Point). The default trans-
mission rate is set as 11Mbps. We started the experiments without low transmis-
sion rate nodes and thereafter increased the number of low rate nodes gradually.

Fig. 1(a) displays the result of the experiments with multiple transmission
rates. When there is no low transmission rate node, the total system through-
put is 5.253 Mbits/s. However, the throughputs are degraded drastically when
the number of low rate nodes is increased. In particular, the throughput is de-
graded by almost half even when only one 1Mbps rate node is involved in the
transmissions.

Fig. 1(b) shows he channel occupancy time when 11Mbps and 1Mbps rates are
mixed in the same experiment. On average, about 77 % of the total time is used

(a) Throughput degradation (b) Channel occupancy time

Fig. 1. Performance degradation with multiple transmission rates
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for actual data transmission and the other time is idle. In the figure, the portion
of 1Mbps data is increased as the number of 1Mbps rate nodes is increased.
However, the time portion used by 1Mbps nodes increases exponentially corre-
sponding to the number of 1Mbps nodes. This nonlinearity is because the IEEE
802.11 MAC DCF channel ac-cess method, which is founded on the CSMA/CA
protocol, equally distributes the wireless channel based on access probability.
The uniform channel access probability guarantees long term fairness when all
connections use the same transmission rate. However, if the transmission rates of
connections are different, the low rate connection requires more channel resources
than the high rate connection to send the same amount of data. Consequently,
if the channel access probability is equal, the low rate connection captures the
channel much longer than the high rate connection and the fairness is broken.
In this situation, the wireless medium is not fully utilized and the total system
throughput is considerably degraded even when only few low rate connections
are involved in transmissions [13].

2.2 Related Works

In efforts to improve the performance of the IEEE 802.11 WLAN, many re-
searchers have studied the WLAN protocol and have proposed new algorithms.
They analyzed system throughput of IEEE 802.11 DCF MAC protocol [13,14,15]
and proposed numerous new algorithms to improve the WLAN performance
from many points of view such as fairness, service differentiation, and system
throughput [5,6,7,8,9,10,11,12].

As noted earlier, all IEEE 802.11 physical specifications support variable data
transmission facility at multiple rates. A simple way to select the best physical
transmission rate is to change the rates based on the history of successes or
failures of previous packet transmissions. The representative algorithm based
on this proactive approach is the ARF (Auto Rate Fallback) scheme [5]. The
ARF scheme is simple and easy to implement. However, it does not prevent per-
formance degradation when the transmission rates are mixed. Furthermore, the
ARF scheme cannot react quickly when the wireless channel condition fluctuates.

The RBAR (Receiver-Based Auto Rate) scheme [6] is another rate adaptation
algorithm for improving WLAN system performance. RBAR uses feedback in-
formation from the receiver to sense the wireless channel conditions. Due to the
more accurate channel estimation, the RBAR scheme yields significant through-
put gains compared to the ARF scheme. However, the RBAR scheme also fails
to cope with the performance degradation with multiple transmission rates. It
does not consider the throughput degradation arising from data transmission of
low rate connections.

The OAR (Opportunistic Auto Rate) scheme [7] attempts to maximize the
system performance by exploiting a good quality channel via burst packet trans-
missions. The OAR scheme opportunistically transmits multiple packets in a
burst whenever the channel quality is good. Due to the opportunistic gain, the
OAR scheme outperforms the RBAR and is enable to handle the performance
degradation arising from multiple transmission rates. However, in the OAR, a
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burst packet transmission is only possible when the packets queued in the net-
work interface have the same destination. There is little performance gain when
most stations have packets destined for more than one station such as down-
stream traffic in an infrastructure topology and all traffic in an ad-hoc topology.

The RBAR and the OAR schemes require a modified RTS / CTS mechanism
for channel estimation. Instead of the signal quality of the RTS frames, the
SNR (Signal to Noise Ratio) scheme [8] estimates the channel quality using
the received signal strength measured from the received frames. Accordingly,
the SNR scheme does not require the RTS / CTS mechanism or any change
in the current IEEE 802.11 WLAN standard. However, the SNR scheme is a
link adaptation scheme only. It does not consider the performance degradation
arising from multiple transmission rates.

A simple solution for solving the performance abnormality problem is to com-
bine the OAR and the SNR schemes. By simply combining the OAR and SNR
schemes, we can arrive at a new feasible solution for preventing the performance
degradation with-out modification of the existing standard. We call this solu-
tion the MOAR (Modified OAR) scheme. However, the MOAR scheme still has
limitations originated from the original weaknesses of the OAR scheme. Even
though the MOAR scheme avoids the performance abnormality with multiple
transmission rates, it is only effective when the station transmits packets to only
one destination and the serialized packets in the queue head to the same station.
This limitation restricts the performance gain considerably in dynamic wireless
networks such as ad-hoc networks. Therefore, we propose a new packet transmis-
sion strategy for improving IEEE 802.11 WLAN protocol capacity in a multiple
rate network.

G. Tan and J. Guttag have proposed TBR (Time Based Regulator) scheme
[16] that removes the performance degradation in multiple destined packet envi-
ronments. However, the TBR scheme does not work in ad-hoc networks. It only
runs on the AP and matches just with infrastructure topology. It cannot improve
performance when distributed nodes content each other to transmit packets. In
addition, the TBR scheme requires the slight modification of the existing MAC
standard in case of only existing upstream one-way traffic such as UDP. There-
fore, we propose a new packet transmission strategy for improving IEEE 802.11
WLAN protocol capacity in a multiple rate network.

3 Rate-Adapted Transmission Scheme

When multiple stations contend for a channel in the IEEE 802.11 WLAN, the
default DCF MAC access method probabilistically gives an equal chance for
channel access to all stations. This channel distribution method, however, de-
grades the system performance severely when stations use multiple transmis-
sion rates together. In multiple rate transmissions, the packet transmission at
a low rate occupies the channel too long in comparison to packet transmis-
sion at a high rate. Therefore, the RAT scheme at-tempts to share the channel
based on the occupancy time rather than access opportunity. Accordingly, when
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multiple stations with different transmission rates contend to obtain the chan-
nel, the RAT scheme grants the stations constant channel occupancy time. Thus,
the stations at a high rate multiply transmit as many packets as possible within
the granted occupancy time. We call this capacity improvement the inter-rate
contention gain.

Even in a single station, performance degradation occurs when multiple con-
nections with different rates contend to transmit packets. In the IEEE 802.11
WLAN, a station transmits packets sequentially based on the arrival sequence
order. However, when multiple packets at different rates are transmitting in a
station, the packet at a low transmission rate occupies the channel for a long
time and blocks fast packet transmissions at high transmission rates. As a re-
sult, the high rate connection is deprived of its share by the low rate connection
and the total system performance of the WLAN is degraded. To avoid this per-
formance degradation, the RAT scheme adopts rate-based queues. Through the
rate-based queues, the RAT scheme sends packets adaptively depending on the
physical transmission rates in a station. When a packet comes into the network
interface, the RAT scheme classifies the packet according to the physical trans-
mission rate of its connection and inserts the packet into one of the rate-based
queues. Then, when the station obtains the channel, the RAT packet scheduler

01:    while (the data queue is non-empty) {

02:        // Tunit is allowed occupancy time per connection

03:        Tused := 0;        // used occupancy time

04:        rqs := select_ rate_queue();

05:        nc := number_of_connections(rqs);

06:        ratetx := trasmission_rate(rqs);    // transmission rate of rqs

07:        do {

08:            fd := dequeue(rqs);

09:            Tused += (fd.length / ratetx);

10:            enque(quetx, fd);

11:            if (head_frame(rqs).dst != fd.dst) {

12:                while (quetx is non-empty) {

13:                    ftx := dequeue(quetx);

14:                    do {

15:                        result := transmit(ftx);

16:                    } while (result != success);

17:                    if (quetx is non-empty) {

18:                        idle(tSIFS);

19:                    }

20:                    else {

21:                        idle(tDIFS);

22:                    }

23:                }    // end of while

24:            }    // end of if

25:        } while (Tused < Tunit  * nc);

26:   }

Fig. 2. The RAT scheduler algorithm
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selects the appropriate rate queue and transmits multiple packets in the queue
up to the channel occupancy time. Consequently, the high rate connection is not
interfered with by the low rate connection. We call this capacity improvement
the intra-rate contention gain. Fig. 2 describes in detail the RAT algorithm.

4 Simulation Experiments

Through simulations, we compared our RAT scheme with the default DCF MAC
access method and the MOAR scheme in the simulations. We modified an NS
simulator [17] to follow the IEEE 802.11b WLAN parameters.

4.1 Network Topologies

First, we evaluated the system performances according to the network topolo-
gies, an infrastructure topology and an ad-hoc topology, shown in Fig. 3. The
infrastructure topology has one AP and many mobile nodes. The AP is located
in the center of the mobile nodes and functions as a centralized controller. Thus,
the downstream traffic is delivered from the AP to the mobile nodes and the
upstream traffic is delivered from the mobile nodes to the AP.

In the infrastructure topology, we measured the total system throughputs with
mixed physical transmission rates. For the experiment, the AP connects with 20
mobile nodes. The default rate of each connection is 11Mbps, the highest physical
transmission rate. The rate for the low connection is 1Mbps, the lowest physical
transmission rate. Each connection sends 300Kbits UDP data per second. The
unit of channel occupancy time for the MOAR and RAT schemes is 8ms.

Fig. 4(a) depicts the system throughput for upstream traffic in the infras-
tructure topology. In the figure, the vertical axis represents the total system
throughput and the horizontal axis represents the ratio of the number of low
rate nodes to the number of total nodes. As the results indicate, the default
DCF MAC access method degrades system throughputs severely in proportion
to the number of low rate nodes. This drastically decreases the system perfor-
mance even when only a few nodes send data at 1Mbps. However, the MOAR and

Fig. 3. Network topologies
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(a) Upstream traffic (b) Downstream traffic

Fig. 4. System throughput in infrastructure topology

RAT scheme are not seriously affected by the low rate nodes. They yield smooth
degradation of the system throughput depending on the number of 1Mbps rate
nodes. This is because, when multiple stations with different rates contend for
the channel, the MOAR and RAT schemes extract the inter-rate contention gain
by distributing the channel based on the occupancy time.

Fig. 4(b) displays the system throughput for downstream traffic in the infras-
tructure topology. In this experiment, the AP transmits packets to all mobile
nodes. Similar to the upstream experiment, the default DCF method does not
have good performance in the downstream traffic. Moreover, the MOAR scheme
shows poor performance corresponding with that of the default DCF method.
However, the RAT scheme displays good performance in comparison to the other
two schemes. As noted earlier, the MOAR scheme distributes the channel based
on the occupancy time. Thus, it has good performance when faced with inter-
rate contention. The MOAR scheme, however, does not consider the case where
the multiple connections at different rates contend to send packets in a single
node. It does not improve system performance at all when connections in a single
station contend to send packets with multiple transmission rates. On the other
hand, the RAT scheme adaptively transmits packets based on the physical trans-
mission rates. It sends multiple packets for high rate connection using rate-based
queue management even in a single station. Accordingly, the RAT scheme im-
proves protocol capacity when faced with an intra-rate contention environment
as well as an inter-rate contention environment.

For the next simulation, we evaluated the system performance in the ad-hoc
net-work topology. In the ad-hoc topology, the mobile node transmits data to
other mobile nodes in distributed manner without the centralized AP. Thus,
every node simultaneously sends packets to multiple nodes at different rates.
Fig. 5 shows the results of total system throughput in the fully connected ad-hoc
network topology. As can be seen in the figure, the results are similar to those of
the downstream traffic in the infra-structure topology. The default DCF method
and the MOAR scheme show poor performance. However, the RAT scheme shows
better performance than the other schemes even in the ad-hoc network topology.
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Fig. 5. System throughput in ad-hoc network topology

4.2 TCP Traffic

In this section, we evaluated the system performance with TCP traffic type using
FTP. Fig. 6(a) shows the system throughputs for the upstream TCP traffic in the
infrastructure network topology. Hence, the mobile nodes transmit TCP DATA
packets to the AP in upstream and the AP transmits TCP ACK packets to the
mobile nodes in down-stream. Similar to the UDP experiment, the throughputs
of the default DCF method sink rapidly in proportion to the increase of low rate
nodes. However, contrary to the upstream UDP experiment, the upstream TCP
throughput of the MOAR scheme is poor and similar to that of the default DCF
method. This is because TCP is a bidirectional protocol and the throughputs of
both directions influence the total TCP performance mutually. In TCP, a TCP
ACK packet is generated by successfully transmitted a TCP DATA packet, and
the next TCP DATA packet is also generated by successfully transmitted a TCP
ACK packet. Thus, in order for a mobile node to transmit multiple TCP DATA
packets in a burst for upstream, the AP should transmit multiple TCP ACK
packets at once to a mobile node in downstream. However, when we use the
MOAR scheme, the AP generally transmits TCP ACK packets one by one to
all mobile nodes. This is because the TCP ACK packets from the AP differently
head to multiple destinations in downstream. Consequently, a mobile node in the
MOAR scheme does not receive multiple TCP ACK packets simultaneously and
does not send multiple TCP DATA packets using the burst packet transmission
mechanism. As a result, the throughput of the MOAR scheme fails to exceed
that of the default DCF method. However, the throughput of the RAT scheme
is much better than that of the MOAR scheme and the default DCF method.
This is because the RAT scheme makes it possible for the AP to transmit mul-
tiple TCP ACK packets even in multiple destined connections. Therefore, TCP
DATA packets are also delivered efficiently using the burst packet transmission
mechanism for an upstream TCP traffic environment.

Fig. 6(b) depicts the system throughputs for the downstream TCP traffic.
Similar to the UDP experiment, the throughputs of the default and the MOAR
scheme sink rap-idly in proportion to the increase of low rate nodes. However,
the RAT scheme shows relatively good throughput in all cases. The total system
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(a) Upstream traffic (b) Downstream traffic

Fig. 6. System throughput for TCP traffic in infrastructure topology

throughput is slightly de-graded in comparison to that of the UDP case. This is
because the TCP ACK consumes a portion of the network resources.

5 Conclusion

In this paper, we proposed a new rate control algorithm, the RAT scheme. The
RAT scheme distributes channel resources based on the channel occupancy time.
It gives equal time shares to all stations. In addition, the RAT scheme guarantees
the channel occupancy time even in a single station by adopting rate-based queue
management. As a result, the RAT scheme improves protocol capacity in the face
of intra-rate contentions as well as inter-rate contentions.

Through simulations we showed that the RAT scheme is superior to the de-
fault DCF method and the MOAR scheme. The RAT scheme displays good
performance in all network topologies. Moreover, it uniquely enhances the TCP
performance among the compared schemes. In addition, the RAT scheme is prac-
tical and easy to implement. This is because the RAT scheme does not require
modification of the existing IEEE 802.11 specification. Consequently, the RAT
scheme is suitable for multiple rate networks, especially ad-hoc networks where
topologies dynamically change.
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Abstract. Next location prediction anticipates a person’s movement
based on the history of previous sojourns. It is useful for proactive ac-
tions taken to assist the person in an ubiquitous environment. This paper
evaluates next location prediction methods: dynamic Bayesian network,
multi-layer perceptron, Elman net, Markov predictor, and state predic-
tor. For the Markov and state predictor we use additionally an optimiza-
tion, the confidence counter. The criterions for the comparison are the
prediction accuracy, the quantity of useful predictions, the stability, the
learning, the relearning, the memory and computing costs, the modelling
costs, the expandability, and the ability to predict the time of entering
the next location. For evaluation we use the same benchmarks containing
movement sequences of real persons within an office building.

1 Introduction

Can the movement of people working in an office building be predicted based
on room sequences of previous movements? In our opinion people follow some
habits, but interrupt their habits irregularly, and sometimes change their habits.
Moreover, moving to another office fundamentally changes habits too. Thus loca-
tion prediction methods need to exhibit some features: high prediction accuracy,
a short training time, retention of prediction in case of irregular habitual inter-
rupts, but an appropriate change of prediction in case of habitual changes.

Location predictions with such features could be used for a number of appli-
cations in ubiquitous and mobile environments.

– Smart doorplates that are able to direct visitors to the current location of
an office owner based on a location-tracking system and predict if the office
owner is soon coming back [14].

– Similarly, next location prediction within a smart building can be used to
prepare the room which is presumably entered next by a habitant, e.g. by
phone call forwarding.

– Outdoor movement patterns can be used to predict the next region a person
will enter.

– Elevator prediction could anticipate at which floor an elevator will be needed
next.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 909–918, 2006.
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– Routing prediction for cellular phone systems may predict the next radio cell
a cellular phone owner will enter based on his previous movement behaviour.

We considered the first application in more detail and used benchmarks with
movement data of four persons over several months. The benchmarks are called
Augsburg Indoor Location Tracking Benchmarks. They are publicly available
[9], and are applied to evaluate several prediction techniques and to compare
the efficiency of these techniques with exactly the same evaluation set-up and
data.

Our aim is to investigate how far machine learning techniques can dynami-
cally predict room sequences and time of room entry independent of additional
knowledge. Of course the information could be combined with contextual knowl-
edge as e.g. the office time table or personal schedule of a person, however, in
this paper we focus on dynamic techniques without contextual knowledge.

Time of arrival at the predicted location depends on the sojourn time at the
current location plus the rather constant time to move to the predicted location.
The sojourn time was modelled into the presented Bayesian network. We tested
also a time prediction which calculated the mean and the median of the previous
sojourn times within a location. The best results were reached by the median.
The time prediction is independent of the location prediction method and can
easily be combined with any of the regarded methods. Therefore we restrict this
comparison to location prediction only.

Several prediction techniques are proposed in literature — namely Bayesian
networks, Markov models or Hidden Markov models, various neural network ap-
proaches, and the state predictor methods. The challenge is to transfer these
algorithms to work with context information. In this paper we choose five ap-
proaches, a dynamic Bayesian network, a multi-layer perceptron, an Elman net,
a Markov predictor, and a state predictor. In the case of the Markov predic-
tor and the state predictor we use additionally a version which is optimized by
confidence estimation.

There are a lot of methodological problems for a fair comparison of such
diverse methods. The models are different and hard to compare. We chose the
same set-up to model all methods and for each method the best model that
we could find. Moreover we had the choice either to combine all persons within
a single model thus potentially making improvements by detecting correlations
between person movements or to model each person separately. We chose the
latter simpler model because simulations with the combined model using the
Augsburg Benchmarks showed no improvements.

The main criterion for comparison is the average prediction accuracy of the
different methods. Another question concerns the model and the modelling costs
of the technique. Which parameters exist and influence the model? What hap-
pens if one parameter is changing? We call this the stability of the techniques.
Can the model simply be extended by more or other locations? The answer to
this question allows to assess how well the model can be transferred to other
applications.



Comparison of Different Methods for Next Location Prediction 911

Further interesting questions concern the efficiency of training of a predictor,
before the first useful predictions can be performed, and of retraining, i.e. how
long it takes until the predictor adapts to a habitual change and provides again
useful predictions. Predictions are called useful if a prediction is accurate with
a certain confidence level. Moreover, memory and performance requirements
of a predictor are of interest in particular for mobile appliances with limited
performance ability and power supply.

The next section states related work on context prediction. Section 3 intro-
duces shortly the five approaches and the applied location models. For detailed
information about the basic techniques use the stated references. Section 4 gives
the evaluation results. The paper ends with the conclusions.

2 Related Work

The Adaptive House project [7] of the University of Colorado developed a smart
house that observes the lifestyle and desires of the inhabitants and learned to
anticipate and accommodate their needs. Occupants are tracked by motion de-
tectors and a neural network approach is used to predict the next room the
person will enter and the activities he will be engaged. Patterson et al. [8] pre-
sented a method of learning a Bayesian model of a traveller moving through an
urban environment based on the current mode of transportation. The learned
model was used to predict the outdoor location of the person into the future.

Markov chains are used by Kaowthumrong et al. [5] for active device selection.
Ashbrook and Starner [1] used location context for the creation of a predictive
model of user’s future movements based on Markov models. They propose to
deploy the model in a variety of applications in both single-user and multi-user
scenarios. Their prediction of future location is currently time independent, only
the next location is predicted. Bhattacharya and Das [2] investigate the mobility
problem in a cellular environment. They deploy a Markov model to predict future
cells of a user. An architecture for context prediction was proposed by Mayrhofer
[6] combining context recognition and prediction. Active LeZi [4] was proposed
as good candidate for context prediction.

There are several publication of our group which present next location predic-
tion in an office building. In [10] we proposed the basic state predictor technique
which is similar to the Markov predictor, but an automaton is used for the
prediction. In [11] an enhancement by confidence estimation techniques is pre-
sented. Vintan et al. [15] applied a multi-layer perceptron and Petzold et al. [12]
proposed a dynamic Bayesian network to predict indoor movements of several
persons.

The contribution of this paper is the comparison of five different prediction
methods including the new Elman net approach and the confidence estimation
applied to the Markov predictor. According to our knowledge no comparative
studies of different methods with the same evaluation setups and benchmarks
exist.
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3 Prediction Methods

Figure 1 shows the next location prediction principle which is used by each
investigated model. The input consists only of the sequence of the last visited
locations and the entry time of these locations. The output is the possible next
location and the appropriate entry time.

(L1, t1)
(L2, t2)
. . .
(Ln, tn)

�� �� (Ln+1, tn+1)

Fig. 1. Next location prediction

Dynamic Bayesian Network

In order to predict the next location of a person, a dynamic Bayesian network
was chosen. Additionally the time is predicted when the person is probably
entering the next location. In different simulations we looked for the best settings
[12]. We detected that the prediction of next location is independent of the time
parameter like the time of day and the weekday. Therefore we chose this proposed
dynamic Bayesian network without these time dependencies for the comparison.
As history we elected 2 for a better comparison based on similar memory costs.

Multi-Layer Perceptron

For next location prediction we chose the simplest multi-layer perceptron with
one hidden layer and used a modified back-propagation algorithm for learning
[15]. In principal each location would be represented by a single input and a single
output neuron. However, we chose a binary encoding because it saves comput-
ing costs. This fact is interesting for mobile devices which must achieve some
energy and real-time restrictions. The optimal parameter values for the network
structure and the learning algorithm were determined by many simulation runs
and are summarized in table 1.

Table 1. Optimal parameter values of the multi-layer perceptron

parameter investigated values optimal value

network structure
history [1;6] 2

number of hidden neurons {5;7;...;15} 9

learning algorithm
threshold {0.1;0.3;...;0.9} 0.1

learning rate [0.05;0.30] 0.10

number of backward steps [1;5] and unlimited 1
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Elman Net

The Elman net is another neural network method which expands the multi-layer
perceptron by another hidden layer – the context layer. The context neurons
provide storage for the activation states of the hidden neurons. This generates a
dependency between two propagations within the net, since the hidden neurons
get information from the input and the context neurons across the weighted
connections to perform the next step. The number of the context neurons cor-
responds with the number of hidden neurons. To find the optimal parameters
of the net many simulations were performed. Table 2 shows the investigated
and the optimal values of the parameters separated in parameter of the network
structure and the learning algorithm. Since the Elman net is a recurrent net-
work, the information about previous locations is modelled in the context cells.
Therefore the history consists only of the current location.

Table 2. Optimal parameter values of the Elman net

parameter investigated values optimal values

network structure
encoding binary, one to one one to one

number of hidden neurons [5;20] 5

history [1;5] 1

learning algorithm
initialization random, fix fix

activation function tanh(x), 1
1+exp(−x) tanh(x)

learning cycles [5;150] 31

learning rate η [0.1;0.7] 0.1

momentum α [0.00;0.05;...;0.95] 0.00

Markov Predictor

Markov models seem a good approach for the next location prediction based on
location histories. A Markov model regards a pattern of the last visited locations
of a user to predict the next location. The length of the regarded pattern is called
the order. Thus a Markov model with order 3 uses the last three visited locations.
For all patterns the model stores the probabilities of the next location which is
calculated from the whole sequence of the visited locations by the user. A simple
Markov model is the Markov predictor [3,13]. A Markov predictor stores for every
pattern the frequencies of the next locations. For the comparison we chose an
order of 2. Furthermore we will compare a Markov predictor which is optimized
by confidence estimation [11].

State Predictor

A disadvantage of the Markov predictor is its bad relearning capability because
of the frequency counter. After a habit change the new habit must be followed as
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often as the previous habit before the prediction is changed. The state predictors
[10] prevent this problem. They use a finite automaton which is called two-state
predictor for every pattern thus replacing the frequency counter of the Markov
predictor. A state predictor with order 2 is used in the comparison.

The basic state predictor method can be significantly improved by some con-
fidence estimation techniques [11]. One of the proposed methods, the confidence
counter method, is independent of the used prediction algorithm. This method
estimates the prediction accuracy with a saturation counter. Figure 2 shows a
two-bit counter that consists of 4 states.

11c
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c��

01
c��

i
�� 00 i
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Fig. 2. Confidence counter

The initial state is state 10. Let s be the current state of the confidence
counter. If a prediction result is proved as correct (c) the counter will be incre-
mented, that means the state graph changes from state s into the state s + 1.
If s = 11 the counter keeps the state s. Otherwise if the prediction is incorrect
(i) the counter switches into the state s − 1. If s = 00 the counter keeps the
state s. If the counter is in the state 11 or 10 the predictor is assumed as con-
fident, otherwise the predictor is unconfident and the prediction result will not
be supplied.

For the state predictor the prediction accuracy will be considered separately
for every pattern. The confidence counter can also be applied with other tech-
niques, in the evaluation a Markov predictor using the counter will be
considered.

4 Evaluation

To evaluate the five techniques we chose the Augsburg Indoor Location Tracking
Benchmarks taken from the Context Database of the University of Linz [9].
These benchmarks consist of two sets, the summer and the fall data. The used
benchmarks contain the movements of four persons in an office building. The
prediction accuracy is calculated for every person for all predictions from all
rooms except the own office. For our comparison we tried to use models with
similar memory costs. Therefore we didn’t always choose the best setting for
every technique. In fact we elected history 2 for the Markov predictor and the
state predictor, which perform better with longer history but at the expense of
large tables.

In the following we will compare all techniques on the basis of different crite-
rions. The results are summarized in table 3.
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Table 3. Comparison on the basis of the criterions

Bayesian
network

multi-
layer
percep-
tron

Elman
net

Markov
predictor

state
predictor

Markov
predictor
with
counter

state
predictor
with
counter

accuracy (%)
(quantity (%))

78.82
(89.89)

76.45
(≈ 100)

79.68
(100)

76.53
(90.47)

70.89
(90.47)

81.14
(78.40)

81.88
(74.38)

stability (%) 29.67 32.59 71.57 24.67 29.97 24.95 23.99

learning fast slow slow fast fast fast fast

relearning slow slow slow slow fast slow fast

memory (bit) 6,500 3,880 7,215 36,960 2,730 37,380 3,150

computing
costs

inefficient
chain
rule

training
until
E < t,
other-
wise one
propa-
gation

training
over
many
learning
cycles,
other-
wise one
propaga-
tion

table
look-up

table
look-up

table
look-up

table
look-up

modelling
costs

medium high high low low low low

expandability yes no no yes yes yes yes

time predic-
tion

integra-
ted

parallel parallel parallel parallel parallel parallel

Prediction accuracy. The prediction accuracy is calculated with the fall
data; the summer data is used for the training. We assume that a prediction
is needed after every location change. That means the number of requested
predictions p is equal to the number of location changes. The Bayesian network,
the Markov predictor and the state predictor cannot predict the next location if
the current pattern occurs the first time. The number of predictions which cannot
be delivered by these three techniques were denoted by pn. In contrast the neural
networks deliver a prediction if the code of the output vector corresponds to a
location. Thus the Elman net predicts always a location (pn = 0). Now we can
determine the number of deliverable predictions pd = p−pn. Let c be the number
of correct predictions then the prediction accuracy a is calculated as follows:

a =
c

pd

It isn’t essential to make a prediction in our application, rather a prediction is
an added value. Therefore we consider in the calculation of the accuracy only
predictions which provide a result.

Table 3 shows the average prediction accuracy of the four persons for all
techniques. If we consider the five techniques without confidence counter en-
hancement, the Elman net reaches the highest average prediction accuracy. If we
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consider the state predictor and Markov predictor using the confidence counter
and compare them with all other methods, the state predictor with confidence
counter delivers now the best accuracy.

Quantity. The number of deliverable predictions pd is smaller than the num-
ber of requested predictions p. This gap can be determined by the quantity q:

q =
pd

p

The Elman net reaches a quantity of 100% because the net produces always
an output vector. The quantity of the multi-layer perceptron is nearly 100%
since not every code of the output vector corresponds with a location. The
Bayesian network, the Markov predictor and the state predictor reach nearly the
same quantity. With an optimization like the confidence estimation the quantity
decreases.

Stability. The stability shows the impact of the change of a parameter. For
the Bayesian network the history and the time parameters are a possibility to
optimize the prediction accuracy. The multi-layer perceptron and the Elman
net hold a multitude of parameters which can influence the prediction accuracy.
Therefore the Elman net shows the worst stability. The Markov predictor and
the state predictor give only the possibility to choose the order. Table 3 shows as
stability the difference between the minimum and the maximum of the prediction
accuracies reached with different parameters.

Learning. The learning phase of the neural networks takes a long time since
the networks must be trained before they can be effectively used. The Bayesian
network, the Markov predictor and the state predictor with and without confi-
dence counter could make a prediction already after the second occurrence of a
pattern.

Relearning. The neural networks, the Markov predictor without and with
confidence counter need a long time for relearning. The Bayesian network re-
learns also slow. The state predictor with and without confidence counter re-
learns after two changes the new habit.

Memory costs. For the memory costs we calculated the minimal number of
bits which will be needed to store the current state of the technique. For the
evaluation all models were chosen to exhibit similar memory costs. In general,
the memory costs of both neural networks are very low and independent from the
number of location changes of a person. The Bayesian network needs only a small
memory space, but the memory depends on the number of location changes. The
state predictor requires the least memory. Against this the Markov predictor has
the highest memory costs since the Markov predictor stores all frequencies. The
costs of both predictors are dependent on the number of location changes. The
confidence counter arises the costs insignificantly. Table 3 shows the memory
costs for an upper limit of 500 location changes.

Computing costs. Because of the training process the computing costs of
the neural networks are very high. The Elman net needs many learning cycles
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and the multi-layer perceptron will be trained until the error is less than a thresh-
old. The computing costs during the use of both neural networks are low because
both execute only one backward propagation. The Bayesian network calculates
the probabilities by the chain rule resulting in relatively high computation costs.
The computing costs of the Markov predictor and the state predictor with and
without the confidence counter consist of one table look-up.

Modelling efforts. For modelling the Bayesian network possible dependen-
cies of the used variables must be extracted from the available data. Both neural
networks require a high effort for modelling generated by the search for the op-
timal parameters. The costs for modelling the Markov predictor and the state
predictor are low. A decision will only be needed concerning the length of the
order. If a confidence counter is used the number of the counter states and the
barrier must be determined.

Expandability. The expandability means the possibility to use the model
with more locations. In the used benchmarks there are 15 locations. If we use
a scenario with locations like the cells in a mobile network, the neural net-
work models cannot be reused. A new modelling process with search for the
optimal parameter is necessary. That means the neural network models cannot
be reused without additional costs in another application. The Bayesian net-
work, the Markov predictor and the state predictor with and without confidence
counter can be expanded for more context without additional costs.

5 Conclusion

The paper compared five prediction techniques on the basis of different criterions.
The comparison of the different techniques showed that there isn’t an ultimative
prediction technique. The user must decide which is the most important criterion
for the application.

The Elman net reached the highest prediction accuracy, since it is a recurrent
neural network which is affected by previous inputs. But both neural networks
require high modelling costs, additional costs to expand for more contexts, and
show the lowest stability. If the time prediction is the most important criterion
the Bayesian network must be chosen. The state predictor should be applied
if the prediction accuracy or the memory costs are the main facts. Compared to
the Markov predictor, the state predictor relearns faster and uses less memory.
The use of the confidence counter improves the prediction accuracy of state and
Markov predictors.

Next step could be the test of a hybrid predictor which uses different tech-
niques in parallel. A selector within the hybrid predictor selects the estimated
best prediction among these different predictors. With the hybrid predictor the
advantages of the different methods can be joined. A further question is: can
the confidence estimation also improve the prediction accuracy of the other ap-
proaches. In this paper we considered only next location prediction. A further
investigation should be to expand the techniques to predict locations at a certain
time in future.
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Abstract. In Mobile Ad Hoc Networks (MANETs), broadcasting is
widely used to support many applications. Several adaptive broadcast
schemes have been proposed to reduce the number of rebroadcasting, and
can consequently reduce the chance of contention and collision among
neighboring nodes. In practice, broadcasting is power intensive especially
in dense networks. Thus, a good energy-efficient relay scheme should
be able to further maximize the system lifetime without sacrificing the
reachability of broadcasting. In this paper, we propose two Scalable En-
ergy Efficient Relay (SEER) schemes that use probabilistic approaches
to achieve higher performance and to prolong the system lifetime. In the
schemes, each node uses some energy-based heuristic method to inde-
pendently determine an appropriate rebroadcast probability. Nodes with
more residual energy are responsible for forwarding more broadcast mes-
sages. One important feature is that such heuristic knowledge is obtained
by self-contained local operation. To further improve the effectiveness of
broadcasting, we also study how to dynamically adjust the rebroadcast
probability according to node mobility. The simulation results show that
our proposed approach outperforms the related scheme when the num-
ber of broadcast messages, broadcast reachability, and system lifetime
are taken into consideration altogether.

1 Introduction

A mobile ad hoc network (MANET) is defined as a collection of mobile nodes
where each node is free to move around. In a MANET, broadcasting is an im-
portant communication operation for route discovery, address resolution, and
many other network services. For instance, on-demand routing protocols such
as AODV [9] and DSR [4] use the broadcast operation to disseminate control
packets (e.g., the request of discovering a new route to a destination) for main-
taining routing-related information at each node. The most straightforward way
of broadcasting is by flooding. However, the radio signals are likely to overlap
with each other in a geographical area. Broadcasting by blind flooding suffers
from the increasing of serious redundancy, contention, and collision, which is
known as a broadcast storm problem [8].

Some works [2], [8], [11] have investigated to improve the effectiveness of
broadcasting in MANETs. Despite the optimization effort to reduce rebroad-
cast messages, the approaches mentioned above fail to take energy issues into
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consideration. The following requirements concerning how to consume energy in
an efficient way are important in broadcast protocols. First, it should minimize
the number of rebroadcast messages on one hand, while still maintaining good
latency and reachability on the other hand. Then, energy consumption situation
should be considered at each node when making decisions about whether to re-
broadcast the received messages. A simple idea is that nodes with more battery
power should be responsible for forwarding more data in behalf of its neighbors.
This implies that nodes with lower residual energy can decide to sleep to save
their precious energy.

In this paper, we address three important issues on designing an energy-
efficient broadcast protocol based on probabilistic schemes. First, the knowledge
of global network energy consumption should be available for reference at each
node. Here, we use self-contained local operations to approximate the average
network energy. Note that nodes should not need to know information about
neighbors multiple hops away for our calculating process. Second, each node can
compare its residual energy with such maintained energy-based knowledge to
determine an appropriate rebroadcast probability based on the principle that
nodes with more residual energy are responsible for forwarding more broadcast
messages. Third, the rebroadcast probability at a node can be adjusted according
to node distribution and node mobility to further improve the effectiveness of
broadcasting.

The remainder of this paper is organized as follows: Section 2 gives a brief
review of related work. Section 3 presents a detailed description of our SEER
schemes. Section 4 provides simulation results to compare the performance of
our methods with that of other existing scheme. Finally, conclusions are drawn
in Section 5.

2 Related Work

The efficiency of broadcasting protocol can significantly affect the performance
of many applications in MANETs. Some works [2], [8], [11] have investigated
the inefficiency problem of broadcasting by blind flooding. When node density is
high, blind flooding approach may cause (1) redundant transmissions, (2) higher
collision rate, and (3) congestion of wireless medium that seriously impair the
performance of the entire network. In this section, we briefly review some adap-
tive broadcast techniques that attempt to minimize the number of rebroadcast
messages while maintaining good latency and reachability. These methods can
be categorized into three groups: probabilistic, counter-based, and area-based
methods.

In simple probabilistic method [8], a mobile node rebroadcasts received mes-
sages with a fixed probability P . Clearly, when P = 1, this method is equivalent
to flooding. [2] follows from results in percolation theory [7] that probabilistic
approaches exhibit a certain type of bimodal behavior in sufficiently large net-
works: in some executions, the broadcast message dies out quickly and hardly
any node gets it; in the remaining executions, a substantial fraction of the nodes
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gets the message. It is also demonstrated that the optimal rebroadcast probabil-
ity is around 0.65. [11] argues that this value is not likely to be globally optimal
and attempt to dynamically adjust the rebroadcasting probability with the node
distribution and node movement.

Besides probabilistic methods, Ni et al. [8] introduced a counter-based ap-
proach, in which a counter is used to record the number of receiving the same
message. A mobile node inhibits the rebroadcast when the counter is larger than
a given threshold. The more copies a node receives indicates the higher chance
of its neighbors having already received the same message, and more likely it is
a rebroadcast redundant. In their approach, a random assessment delay (RAD)
is initiated for counting the number of received copies of the current message.
It is obvious that this approach is not suitable for delay-sensitive applications.
Ni et al. [8] also discussed area-based schemes, including distance-based and
location-based approaches. In distance-based approach, a node may hear the
same message several times. If the distance to the nearest node is smaller than
some distance threshold D, the rebroadcast transmission is canceled. In location-
based approach, GPS (Global Positioning System) receivers [5] is used to assist
for calculating an additional area. This value is compared to a predefined cov-
erage threshold A(0 < A < 0.61) to determine whether the rebroadcast should
be carried on or not.

Although many broadcast protocols have been proposed to reduce redun-
dant rebroadcast messages, most of them do not take energy consumption into
account. When several nodes drain of power due to unbalanced energy consump-
tion, it may lead to network partition and shorten the network lifetime. In this
paper, we address this problem by combining the probabilistic approaches and
energy consumption balancing to maximize the system lifetime while maintain-
ing a high reachability. Our energy-efficient relay schemes adopt the strategy that
nodes with more residual energy are responsible for forwarding more broadcast
messages. Besides, we also utilize neighbor connectivity information to dynam-
ically determine an appropriate rebroadcasting probability for various network
topologies.

3 SEER Design

One solution to maximize long-term network lifetime for frequent broadcast op-
eration over entire network is to inhibit some nodes with lower residual energy
from unnecessary rebroadcasting. We present two schemes to do so. In the first
scheme, we accumulate a network-wide energy-related knowledge to assist its
rebroadcast decision. And, the second scheme further exploits neighbor connec-
tivity information to improve the overall broadcast throughput.

3.1 Network-Wide Energy-Related Heuristic

Intuitively, for energy conservation purpose, nodes with relatively higher resid-
ual energy should be responsible for forwarding more broadcast messages. This
implies that nodes with relatively lower residual energy can decide to sleep to
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save their precious energy. However, in fact, it is hard for a node to accurately
determine whether its residual energy is relatively higher or lower than most
others. Hence, it is desirable if some network-wide energy-related heuristic can
be maintained at each node to help independently distinguish its relative energy
level from others. To satisfy the above requirement, we propose an energy-based
diffusion algorithm in which each node uses a local operation to approximate
the average energy of the entire network, which is called system energy approx-
imation (SEA). A node is called a sub-critical node if its residual energy is less
than the SEA value; otherwise, it is called a super-critical node. The algorithm
shown below is executed in each node.

Algorithm 1. The Energy-based Diffusion Algorithm

Initially SEA := residual energy level and received SEA list is
empty

1: for every periodic time interval t do
2: if received SEA list is not empty then
3: compute new SEA by averaging all SEA values from

received SEA list and its residual energy level
4: send <SEA> to all neighbors

5: upon receiving <SEAi> from a neighbor ni

6: if <SEAi, ni> is not in received SEA list then
7: add <SEAi, ni> to received SEA list with an expiration

time
8: else
9: replace it with new <SEAi, ni> and reset its

expiration time

10: when an entry <SEAi, ni> has expired
11: remove this <SEAi, ni> from received SEA list

In Algorithm 1, SEA is initially equal to its own residual energy level and the
received SEA list is set to empty. In lines 1 to 4, each node sends the <SEA>
message to all neighbors within every time interval t. If the received SEA list was
not empty before sending <SEA> message, the SEA value will be recomputed by
averaging all SEA values from received SEA list and its residual energy. Upon
receiving <SEA> message from a neighbor ni, the <SEA, ni> entry will be
added to received SEA list with an expiration time if the <SEA, ni> entry has
not been added yet. Otherwise, replace it with new <SEA, ni> entry and reset
its expiration time (lines 5 to 9). We use the expiration time field to guarantee
that the SEA value of this entry is fresh. If a node moves away and does not send
its SEA value before a pre-determined expiration time, its SEA value is removed
from received SEA list. To reduce protocol overhead, a node can periodically
piggyback <SEA> value on the data packet by forwarding.
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Initial result about the average-based diffusion algorithm was provided in [6],
which gave the convergence proof in mobile environment. The correctness of our
energy-based diffusion algorithm follows in the same manner as in the average-
based diffusion algorithm, since they have the same averaging operation to ap-
proximate a network-wide knowledge. Different from the average-based diffusion
algorithm, we feedback the residual energy level to each averaging operation
to guarantee the new SEA value can adjust according to the current energy
consumption situation of entire network.

3.2 Original SEER Scheme

Our first scheme is based on the basic gossiping protocol proposed by [2]. Our
scheme is different from the original gossiping in that only the super-critical
nodes need to rebroadcast messages to its neighbors with probability p and
discard the received messages without further forwarding with probability 1−p.
A super-critical node rebroadcasts a given message at most once. Hence, if the
message has been received again, it is dropped. Note that the sub-critical nodes
do not participate in the message forwarding to save the precious energy. This
simple scheme is called SEER-1 (p).

Following the results in percolation theory [7], SEER-1(p) exhibits a certain
type of bimodal behavior. We assume that all nodes have been initialized their
residual energy in a uniform distribution with a given range and let the for-
warding probability p of super-critical nodes be equal to 1. As mentioned before,
the SEA value obtained at each node approaches to the actual average network
energy. The rebroadcast probability of a node in SEER-1(1) is equal to the prob-
ability that its residual energy is greater than the SEA value, which is about 0.5.

One problem of SEER-1(p) scheme is how to set the rebroadcast probability p.
In SEER-1(1), the rebroadcast probability of each node is around 0.5. Intuitively,
this value is not likely to be the globally optimal. For instance, in a denser
area, each node has more neighbors whose coverage areas overlap significantly.
Rebroadcast messages from nodes in a dense neighborhood will reach the same
nodes many times. To reduce such redundancy, the rebroadcast probability in
these areas should be set lower. On the contrary, the rebroadcast probability
should be set higher in sparse areas to achieve better reachability.

3.3 Adaptive SEER Scheme

As mentioned earlier, only selecting nodes with higher residual energy to par-
ticipate message forwarding is our primary aim for SEER-1(p). However, using
predefined fixed probability p falls in a dilemma between reachability, the num-
ber of rebroadcasting messages, and the system lifetime as node movement. It
is desirable if the nodes, including both super-critical and sub-critical nodes,
can dynamically adjust its rebroadcast probability on-the-fly. In the remainder
of this section, we discuss how to optimize the SEER-1(p) scheme by taking
connectivity with neighbors into account.



924 L.-F. Sung et al.

Neighborhood Detection. To dynamically adjust the rebroadcast probability
as neighbor connectivity changes, we propose a packet-monitoring-based neigh-
bor detection algorithm to estimate the number of neighbors on-the-fly. Different
from the mechanism using periodical HELLO messages, there is no extra mes-
sage overhead in our algorithm. The pseudocode is shown in Algorithm 2. In
lines 1 to 5, each node continuously monitors the incoming broadcast packets
and record the number of packets received. For every periodical time interval t
at each node, if no broadcast packet pi is received within t, it updates nbr count
with the counter of pi and removes the entry of pi from received packet list.

Algorithm 2. The Packet-monitoring-based Neighbor Detection Algorithm

Initially nbr count := Nd and received packet list is empty

1: upon receiving a broadcast packet pi

2: if pi is not in received packet list then
3: add pi to received packet list with an expiration time
4: else
5: increase the received packet list[pi].counter by 1

// record the number of packet pi received

6: for every periodic time interval t do
7: if no broadcast packet pi is received within t then
8: nbr count := received packet list [pi].counter
9: remove the entry of pi from the received packet list

The packet-monitoring-based neighbor detection algorithm takes time to grad-
ually approach the accurate value of the number of neighbors. If the initial value
is set closer to the accurate value, the algorithm will converge to the nbr count
faster. Here, we utilize the average network degree to be a basis for initializing
the nbr count. Let A be the area of a MANET, N be the number of mobile nodes
in the network, and R be the communication range. The average network degree
Nd can be obtained by the following formula:

Nd = N(
πR2

A
) − 1 . (1)

A Three-level Adaptation. The SEER-1(p) uses a fixed rebroadcast proba-
bility p for super-critical nodes. According to percolation theory [7], there exists
a threshold Pc < 1, such that by using Pc as the rebroadcast probability, almost
all nodes can receive a broadcast message, and there is no much improvement
on reachability for p > Pc. Therefore, SEER-1(p) does not work well in various
MANET topologies. To give some intuition, we make three observations below.

Observation 1. In a sufficiently large network, only selecting super-critical nodes
to rebroadcast received messages suffice to fulfill reachability requirement while
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achieving higher energy-efficiency, even though all sub-critical nodes decide to
sleep to save their precious residual energy.

Observation 2. In a sparse network, a node has fewer neighbors. Some sub-critical
nodes are more likely to play a critical role for forwarding messages in order to
maintain the connectivity of the network. If they fail to do so, the network
is partitioned. Therefore, in addition to super-critical nodes, sub-critical nodes
should increase its rebroadcast probability to avoid reachability degradation.

Observation 3. In a dense network, if the neighborhood of a node is crowded
enough, we can not only inhibit the sub-critical nodes from forwarding messages
but also further decrease the rebroadcast probability of super-critical nodes to
reduce redundant transmissions without sacrificing the reachability.

To resolve the dilemma between reachability, the number of rebroadcasting
messages, and the system lifetime, we propose a three-level adaptation scheme
in which each node can independently adjust its rebroadcast probability accord-
ing to its residual energy level and the neighborhood status. We extend the
fixed probability p into two probability functions Psuper-critical(n) and Psub-
critical(n) for super-critical nodes and sub-critical nodes respectively as

Psuper−critical(n) =
{

1, if n < n2,
H(n), if n ≥ n2,

(2)

Psub−critical(n) =
{

0, if n ≥ n1,
L(n), if n < n1,

(3)

where n is number of neighbors maintained by our packet-monitoring-based
neighbor detection algorithm, H(n) a decrease function within an area [pl, 1],
and L(n) a decrease function within an area [0,1]. Following Observations 1,
2, and 3, Fig. 1 shows an abstract shape of three-level adaptation. With few
neighbors (n ≤ n1), not only all super-critical nodes need to rebroadcast but
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sub-critical nodes should gradually increase their rebroadcast probability if n
becomes smaller and smaller. When n is close to 0, we force all nodes to partic-
ipate messages forwarding for the behalf of reachability. Between n1 and n2, no
sub-critical nodes need to forward received messages. Only super-critical nodes
taking over messages forwarding suffices the broadcasting operation to reach
equilibrium state, balancing reachability and power saving. After n ≥ n2, a de-
crease function H(n) is used to gradually decrease the rebroadcast probability of
super-critical nodes to pl. Note that pl is a fixed lower bound for the rebroadcast
probability of super-critical nodes to guarantee the reachability requirement.
This optimization is called SEER-2(n1, n2, H(n), L(n)). In section 4.3, we will
derive n1 and n2 values through experiments.

4 Performance Evaluation

In this section, we first evaluate the performance of our SEER-1(p) scheme and
observe the partition ratio of our energy-based diffusion algorithm with different
network parameters. Following the experiment results in SEER-1(p) scheme,
we derive exact n1 and n2 values to set up our SEER-2(n1, n2, H(n), L(n))
scheme. We compare our SEER-2 scheme with a simple flooding algorithm and
the dynamic probabilistic broadcasting (DPB) algorithm [11]. We implement
all the four algorithms and study the following performance metrics, including
reachability, saving ratio, the number of message rebroadcasts with different
initial energy levels, and extended lifetime.

4.1 Simulation Model

Our simulation is performed in the GloMoSim network simulator [10] (version
2.03). The mobility model used in each of simulations is known as random di-
rection. The transmission range of each node is held constant at 250 meters.
The radio frequency at the physical layer is 2.4 GHz of the ISM band. The raw
network bandwidth is 2 Mbps and the MAC layer protocol is IEEE 802.11 [3].
One source node is responsible for sending constant bit rate (CBR) flows and
each CBR flow consists of 128 byte packets. Our energy consumption model
is based on Chen et al. which measured the Lucent 2Mb/s WaveLAN 802.11
cards, observing power consumption cost of 1.4W(transmit), 1.0W(receive), and
0.83W(idle) [1].

4.2 Partition Ratio

Fig. 2 shows the partition ratio vs. the number of diffusion rounds with different
node mobility models: 0 km/h, 30 km/h, and 60 km/h. We simulate 200-node
networks in a 1500m × 1500m area. Each node has a random initial energy,
uniformly distributed over the interval [300 J, 2000 J]. Partition ratio is defined
as |Nsuper−Nsub|

N , where Nsuper and Nsub are the number of super-critical nodes
and sub-critical nodes respectively after each diffusion round, and N the total
number of nodes in the network. We force each node to execute the energy-based
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diffusion operation once in each round. In Fig. 2, we can see that mobility does
not affect our energy-based diffusion algorithm very much. After round 5, the
partition ratio is very close to 0, especially for static MANETs. In other words,
the ratio between the number of super-critical nodes and the number of sub-
critical nodes approaches to the desirable ratio 1:1. This implies that, after few
diffusion rounds, half of total nodes can independently classify themselves into
the sub-critical group and decrease their rebroadcast probability to save precious
residual energy.

4.3 Reachability and Forwarding Ratio

Here we study the performance indicated by the following two metrics, of which
the first was studied in [8]:

– REachability (RE ): the number of mobile node receiving the broadcast mes-
sage divided by the total number of mobile nodes that are reachable, directly
or indirectly, from the source node.

– Forwarding Ratio (FR): The ratio of the nodes that retransmit the packets
at least once to the total number of nodes in the network in a broadcast.

We use a fixed area size with different average number of neighbors n. Fig. 3
shows our simulation results for SEER-1(p) with p = 1. It can be seen that the
results follow the Observations 1, 2, and 3 discussed earlier. Remember that
sub-critical nodes do not forward messages in this scheme. When n ≤ 15, a situ-
ation that a node has fewer neighbors, RE obviously degrades because some sub-
critical nodes are more likely to be located in a critical position to maintain the
network connectivity. The fact that sub-critical nodes do not forward messages
thus incurs the problem of network partition. When 15 < n < 21, super-critical
nodes suffice to achieve high reachability (RE > 0.83). When n ≥ 21, the chance
of receiving the same messages from other neighbor super-critical nodes raises.
We can decrease the rebroadcast probability of super-critical nodes to reduce
FR. Intuitively, more redundant transmissions can be saved without sacrificing
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the reachability. From the results in Fig. 3, we let n1 = 15 and n2 = 21 re-
spectively to evaluate the performance of our SEER-2 scheme. As Fig. 4 shows,
RE and FR of SEER-2(15, 21, H(n), L(n)) are as good as those of DPB. This
demonstrates that utilizing energy-based knowledge to determine rebroadcast
probability can produce satisfying broadcast performance.

4.4 Rebroadcasts

In our experiments, the initial power of nodes is set to be a uniform distribution
between 300J and 2000J. In Fig. 5, each diamond symbol along the horizontal
axis represents an individual node with initial power of various levels. Fig. 5
shows the relationship between the number of relays and the total 200 nodes
of different initial energy. In this experiment, a source node generates a total of
12000 broadcast packets at the packet rate of 20 packets per second. In DPB, the
number of relays of each node falls roughly between 5000 to 8000 times. This
means that even a node with very low energy still has the same rebroadcast
probability as a node with very high energy. As expected, our SEER-2 scheme
dramatically divides all nodes into super-critical nodes and sub-critical nodes
and most rebroadcasting load is shared about evenly by the super-critical nodes.
The number of relays of sub-critical nodes is less than 2000 times. It can be
noticed that some sub-critical nodes never participate message forwarding. This
is because the sub-critical nodes tend to drop the received messages except when
the number of its neighbors is less than n1.

4.5 Network Lifetime

This section shows how much more our SEER-2 scheme can extend network
lifetime compared with simple flooding and DPB. We define network lifetime
as the time interval from network initialization to the instant of the first node

Average number of neighbors
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failure due to battery depletion. We assume that the source node has unlimited
energy for generating data traffic, and that the remaining 200 nodes start with
random initial energy uniformly distributed over the interval [300 J, 2000 J].

Following the results in section 4.3, Fig. 6 shows that the extend network life-
time of SEER-2 scheme is about a factor of 2 and 4 better than DPB and simple
flooding respectively for various node density. This is because we concentrate the
load of messages forwarding on super-critical nodes. A sub-critical node in this
scheme decreases its rebroadcast probability to save energy and can thus extend
the system lifetime. Especially in a denser network when the average number of
neighbors is greater than the parameter n2 of SEER-2 scheme, no sub-critical
nodes need to participate in rebroadcast.

5 Conclusion

In this paper, we present two energy-efficient relay schemes namely SEER-1 and
SEER-2 respectively. Both schemes utilize a localized energy-based diffusion al-
gorithm to estimate a system energy approximation (SEA), with which each
node can independently determine an appropriate rebroadcast probability. To
optimize the energy efficiency, and to extend network lifetime without sacrific-
ing the reachability, we also study how to dynamically adjust the rebroadcast
probability by using neighbor connectivity information. Simulation results show
that the reachability and forwarding ratio of our SEER-2 scheme are as good as
those of DPB. This demonstrates that utilizing energy-based knowledge to de-
termine rebroadcast probability can efficiently reduce redundant transmissions
without sacrificing reachability. Besides, our SEER-2 scheme dramatically con-
centrates the greater part of message forwarding load on the nodes with higher
residual energy. Following the results, extended network lifetime of SEER-2 is
about a factor of 2 and 4 better than that of DPB and flooding scheme respec-
tively. We expect this performance improvement to become even more significant
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in denser networks. In the future work, we plan to apply these schemes to current
MANETs protocols, such as multicast or routing protocols.
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Abstract. In this work we study the dynamic one-to-one communica-
tion problem in energy- and capacity-constrained wireless ad-hoc net-
works. The performance of such networks is evaluated under random
traffic generation and continuous energy recharging at the nodes over an
infinite-time horizon. We are interested in the maximum throughput that
can be sustained by the network with the node queues being finite and in
the average packet delay for a given throughput. We propose a multicost
energy-aware routing algorithm and compare its performance to that of
minimum-hop routing. The results of our experiments show that gener-
ally the energy-aware algorithm achieves a higher maximum throughput
than the minimum-hop algorithm. More specifically, when the network
is mainly energy-constrained and for the 2-dimensional topology consid-
ered, the throughput of the proposed energy-aware routing algorithm is
found to be almost twice that of the minimum-hop algorithm.

1 Introduction

In this work we study the dynamic one-to-one communication problem in energy-
and capacity/interference-constrained wireless ad-hoc networks. In the model we
consider, packets are generated at each network node according to a random pro-
cess, over an infinite time horizon. All packets have equal length, and require one
slot in order to be transmitted over a link. Each packet transmission consumes
an equal amount of energy E. Time is slotted, and a new packet is generated
at each node with probability p during a slot. Packet destinations are uniformly
distributed over all nodes. In addition to the usual capacity and interference con-
straints, the network is also assumed to be energy constrained. More specifically,
we assume that energy is generated at each node of the network at a recharging
rate of X units of energy per slot, over an infinite time horizon. We propose a
multicost energy-aware algorithm for routing the packets in an ad hoc network,
and compare its performance to that of minimum-hop routing.

During our comparisons, we are interested in two performance criteria: a)
the maximum stability region, which is defined as the maximum throughput
that can be sustained by the network with the node queues being finite and
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Fig. 1. The infinite-time horizon problem. Packets are generated at each node of the
network with probability p during a slot, and have uniformly distributed destinations.
Energy is also generated at each node at a rate X units of energy per slot.

b) the average delay suffered by the packets for a given throughput, which is
defined as the average time that elapses between the generation of a packet at
a node and the time it is received at its destination. We obtain results on the
way the maximum stability region of the routing protocols examined changes
as a function of the energy generation rate X at steady-state. We also obtain
results for the average packet delay as a function of the packet generation rate,
when the network is both energy and capacity/interference constrained. Figure 1
summarizes the definition of the problem.

Most previous works [7] studied the performance of ad-hoc networks in the
context of the evacuation problem, where the network starts with a certain num-
ber of packets that have to be served and a certain amount of energy per node,
and the objective is to serve the packets in the smallest number of steps, or to
serve as many packets as possible before the energy at the nodes is depleted. This
is different from the dynamic one-to-one communication problem considered in
this paper where packets and energy are generated at each node continuously.

In the simulations performed for a specific network topology, we find the
maximum packet generation probability pmax at the network nodes for which
the network is stable, and the average delay for a given packet generation prob-
ability p < pmax in the stability region. In our experiments we examined two
routing algorithms: a multicost energy-aware routing algorithm and the tra-
ditional minimum-hop algorithm. The results obtained show that the multi-
cost energy-aware algorithm outperforms the minimum-hop algorithm, achieving
larger maximum throughput pmax for all recharging rates tested, and a smaller
average delay for a given p < pmax. More specifically, we found that for the 2-
dimensional topology considered and in the region where the network is energy-
constrained, the throughput of the energy-aware algorithm is almost twice that
of the minimum-hop routing algorithm. We also obtain results on the way the
average packet delay changes as a function of the traffic load for energy and
capacity/interference limited ad hoc networks. We find that the average delay
increases with the traffic load more abruptly when the traffic reaches its maxi-
mum limitation due to the energy constraint, while it increases more smoothly
when the traffic reaches its maximum limitation due to the capacity/interference
constraint. We also discuss the effect certain network characteristics, such as the
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node density, the geographical distance, and the transmission range play on net-
work performance. We argue, for example, that the transmission range of the
nodes plays a more important role on performance for energy-limited networks
than it plays for capacity/interference-limited networks.

The remainder of the paper is organised as follows. In Section 2 we discuss
the impact of the capacity and energy constraints on network performance.
In Section 3 we describe the routing algorithms tested in our experiments. In
Section 4 we outline the environment under which our experiments were con-
ducted. Section 5 presents the simulation results obtained.

2 Capacity and Energy Limitations

The traffic load that can be inserted in a network is restricted by capacity and
interference limitations, and by the energy recharging rate at the nodes. Sev-
eral works have examined the effect these limitations have on the maximum
achievable throughput, for a variety of assumptions on the network topology,
the routing algorithm, and the traffic pattern [8],[5]. Energy and its best use has
also been the subject of several works; see e.g. [10][2] and [4] where the energy
reserves at the nodes are among the criteria that the routing algorithms consider.

Capacity/Interference Limitation: According to the IEEE 802.11 protocol under
the RTS/CTS mechanism a node before transmitting using a transmission range
R, reserves a transmission floor of area at least equal to πR2 and at most equal
to 4

3πR2 around it (depending on the relative distance of the transmitter and
the intended receiver) and the nodes located in this area cannot transmit. Ad
hoc networks that do not use 802.11 often use busy tones [3] to avoid the hidden
terminal problem. If the node density is high, then all nodes at a distance of
approximately 2R from a transmitting node (therefore a total area of 4πR2) are
prevented from transmitting. Therefore, the number of other nodes forbidden
from transmitting when a given transmission takes place is similar (within a
constant factor) when a busy tone mechanism or an RTS/CTS mechanism is
used, and is proportional to R2 (Fig. 2).

Following [1], we define a collision free set as a set of links that can be used si-
multaneously without causing collisions or excessive interference at the receiving
nodes. The number of simultaneous transmissions the network structure permits,
is upper bounded by the maximum cardinality C of the collision-free sets. From
the preceding discussion and a simple ”sphere packing” argument we infer that
C is upper bounded by A

kR2 , where A is the area covered by the network and
k is a constant between π and 4π that depends on the MAC protocol used and
the relative location of the nodes.

Assume now that packets are generated at each node of an N -node network
with probability p during each slot, and a packet requires an average of h(p)
transmissions to arrive at its destination. All transmissions have a transmission
range R and require energy E. The mean number of transmissions per slot is
given by the product N ·p ·a(p) ·h(p), where a(p) is the ratio of the total number
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Fig. 2. The division of the network into collision-free sets

of packet transmissions over the number of successful transmissions required to
get the packets to their destinations over the paths chosen. Therefore, for the
network to be stable the following inequality must hold:

N · p · a(p) · h(p) ≤ C ≤ A

kR2
(1)

The number of hops of the paths h(p) is roughly inversely proportional to
the transmission range R of the nodes, and we have h(p) ≥ L

R , where L is the
average physical source-destination distance (with the inequality being closer to
equality for dense networks and shortest distance routing). Assuming we are in
the stable region and there is no buffer limitation, no packets are lost, and we
have a(p) ≥ 1. Consequently, a limit on the packet generation rate p posed by
the capacity/interference constraints is given by

p ≤ A

kRNL
=

1
kρL

· 1
R

, (2)

where ρ =N/A is the area node density

Energy Limitation: For a wireless ad-hoc network with energy rechargeable
nodes to be stable, the mean energy expended at each time slot must be at
most equal to the energy inserted in the network in the same period. The aver-
age energy expended in each slot is equal to N · p · h(p) · a(p) · E. We assume
that all nodes use the same transmission radius R and expend energy equal to E
for each packet transmission. The average energy inserted in the network during
each slot is equal to N ·X , where X is the energy recharging rate at each node
per slot. Consequently a necessary condition for the network to be stable is

N · p · h(p) · a(p) · E ≤ N ·X (3)

The energy expended E for a packet transmission can be expressed as k′Rα, for
some constant k′ (which depends on the channel, the sensitivity of the receiver,
and the desired BER), where α is between 2 and 4 depending on the power-loss
model. Working in the same manner as in the previous paragraph, and using the
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inequality h(p) ≥ L
R , we find that a necessary condition for stability due to the

energy constraint is

p ≤ X

k′L
· 1
Rα−1

(4)

The inequalities (2) and (4) show that the energy limitation depends more
strongly on R than the network capacity/interference limitation. The stability
region shrinks as R increases, showing that using small transmission range is
beneficial both for capacity/interference-constrained and energy-constrained ad
hoc networks. That is, the amount of traffic that can be served by the network
increases when we decrease the transmission range of the nodes, both due to
increasing network capacity (better reuse factor) and due to lower spending of
the energy reserves. Since in most wireless environments a > 2 (a is close to
4 for urban environments), we conclude (at least for dense networks) that for
R sufficiently small the network throughput is mainly constrained by capacity/
interference limitations, while for R sufficiently large it is constrained by energy
limitations.

Equations (2) and (4) show that the energy limitation and the capacity/
interference limitation depend in similar ways on the average physical distance L
in the network, with the achievable throughput per node falling as L increases.
Another conclusion drawn from the above discussion is that even though the
capacity/interference limitation decreases as the area node density ρ increases,
the energy limitation is independent of ρ. In summary, we expect networks that
are sparse or that have a small recharging rate X , or that use a large transmission
radius R to be mainly energy-limited as opposed to capacity/interference limited.

Fig. 3. The case of a linear ad hoc network using the RTS/CTS mechanism

Case of linear ad hoc networks: The preceding discussion assumes a 2-dimen-
sional network. It is worth also studying briefly the case of linear (1-dimensional)
ad hoc networks. Depending on whether busy tones or the RTS/CTS mechanism
is used, each transmission prevents other nodes in a segment of length k ·R from
transmitting, where k is a constant between 2 and 4, depending on the MAC
scheme used and the distance between the transmitter and receiver (Figure 3
illustrates the case where the RTS/CTS mechanism is used). If L is the length
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of the linear network, at most L
kR transmissions can take place simultaneously

during a slot and a necessary condition for stability is

N · p · a(p) · h(p) ≤ L

kR
(5)

Using h(p) ≥ L
R and a(p) ≥ 1 and defining ρ = N

L on the linear node density of
the 1-dimensional network, we infer that

p ≤ 1
kN

=
1

kρL
(6)

for some constant k.
The energy limitation can be formed by arguing in a similar way to the 2-

dimensional case obtaining again (4).
From (4) and (6) it can be seen that the capacity/interference constraint for

linear networks is largely independent of the transmission range R used by the
network nodes. Thus, networks of this kind that use a large R are expected to be
energy-limited. The dependence of the throughput upper bounds on the physical
dimension L of the 1-dimensional network is similar to that of the 2-dimensional
case. We also expect, as in the case for 2-dimensional networks sparse linear
networks (small ρ) to be mainly energy-limited.

3 Routing Strategies

The behavior of the network in the context of the infinite-time horizon problem is
evaluated under two routing algorithms: the traditional minimum-hop algorithm
and a multi-cost routing algorithm, to be referred to as the energy-aware algo-
rithm, which takes energy considerations into account. The multi-cost routing
approach is fully described in [6].

Multi-cost Routing: The multi-cost energy-aware routing algorithm considered
in this paper uses two cost metrics: The residual energy Ri, and the transmission
power Ti at the transmitting node i of a link (i, j). These cost metrics are com-
bined using the ”min” and the ”+” operators, to obtain the minimum residual
energy R = mini∈P Ri on the nodes of path P and the total energy T =

∑
i∈P Ti

consumed on path P , respectively. The optimization function f used in order to
produce the final scalar path cost is

Energy-Aware: f(T,R) =
∑

i∈P Ti

mini∈P Ri
, (7)

where the index i runs over all the nodes on path P .

4 Simulation Environment

In our experiments we used the Network Simulator [9] to simulate a wireless mul-
tihop network of 49 nodes arranged in a 7x7 grid topology. Neighboring nodes
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at the grid were placed at a distance of 50m from each other. The transmission
range of the nodes is variable and follows a uniform distribution between 50
and 100 meters. We assume Bernoulli arrivals, where a packet is generated at
each node during each slot with probability p. The duration of the slot is 0.08
seconds, while the packet transmission time is 0.016576 seconds, for the 2000
bytes sized packets we use in our experiments. We chose this slot time in or-
der for the RTS/CTS handshake mechanism and packet transmission to have
been completed by the time the next packet is generated. Each node has zero
initial energy, and the recharging rate X is the same for all nodes. Finally we
assume that every node has full knowledge of the network topology and all other
information needed for the route computation.

Furthermore, we define a threshold on the residual energy of a node, and
when the energy at a node falls below this threshold, the node stops forwarding
packets and starts storing them in its queue. The same holds when the next-hop
node’s residual energy is below this threshold. Each node periodically checks its
energy reserves and those of its neighbors, and if they both exceed the threshold
the node starts forwarding its packets, decreasing its queue.

5 Results

The performance of the minimum-hop and the energy-aware algorithms was eval-
uated in the context of the infinite-time horizon problem, for varying recharging
rates and packet generation probabilities. We are interested in the steady-state
performance of the proposed schemes; the network was assumed to be in steady
state when the variance in the packet delivery delay was below some threshold.

The performance metrics of interest were the largest packet generation prob-
ability pmax for which the network remains stable (maximum throughput) and
the average packet delivery delay for a given packet generation probability. By
stability we mean that the volume of the incoming traffic can be served appro-
priately: with small average packet delivery delay and high packet delivery ratio.
When either of these conditions is broken, the network is assumed to enter an
unstable region, so there is no point in further studying it.

In Fig. 4 the average packet delay is depicted for X = 5·10−3 and X = 9·10−3

Joules per slot1 with respect to the packet generation rate p, for both the
minimum-hop and the energy-aware routing algorithms. For both recharging
rates, the energy-aware algorithm outperforms the minimum-hop algorithm,
by enabling the network to remain stable for heavier traffic loads. For the 2-
dimensional topology considered, the traffic generation probabilities that the
energy-aware algorithm is able to handle with adequately small packet delivery
delay are nearly twice those of the minimum-hop algorithm for both recharging
rates considered. Figure 5 illustrates the received-to-sent packets ratio for both
recharging rates and routing schemes.

1 To be more specific energy equal to 0.005 joules and 0.009 joules was offered every
10 seconds in the experiments.



938 C.A. Papageorgiou, P.C. Kokkinos, and E.A. Varvarigos

Recharging Rate X = 5*10-3

0
10

20
30

40
50
60

70
80

90
100

0 0,0005 0,001 0,0015 0,002 0,0025

packet generation probability

av
er

ag
e 

p
ac

ke
t 

d
el

iv
er

y 
d

el
ay

(s
lo

ts
)

Minimum-Hop Energy-Aw are

Recharging Rate X = 9*10-3

0

10
20

30
40

50
60
70

80
90

100

0 0,001 0,002 0,003 0,004 0,005

packet generation probability

av
er

ag
e 

p
ac

ke
t 

d
el

iv
er

y 
d

el
ay

(s
lo

ts
)

Minimum-Hop Energy-Aw are

Fig. 4. The packet delay (in slots) for recharging rates X = 5 · 10−3 and X = 9 · 10−3

Joules per slot

The transition of the network to the unstable region as indicated by the rise
in the average packet delay in Fig. 4 is extremely steep for the minimum-hop
algorithm for both recharging rates X = 5 · 10−3 and X = 9 · 10−3 Joules per
slot: from values of the delay around 4 or 5 slots in the stable region, there is
an almost instant increase to practically infinite values above 100 slots. This is
because when the minimum-hop algorithm is used, the network for both values
of the recharging rate X is energy constrained; when the energy at some nodes
gets depleted, the energy of many other nodes also start getting depleted soon
afterwards, and the rise in the delay is very abrupt. In this state the connectivity
of the network is weakened and the delivery of the incoming packets becomes
difficult (large delays) or impossible (dropping of packets).

When the energy-aware algorithm is used and for X = 5 ·10−3 Joules per slot
the network is again energy-constrained, but because it uses energy more effi-
ciently, the rise in the delay is less abrupt than with the minimum-hop algorithm.
When the energy-aware algorithm is used and the recharging rate is relatively
high, X = 9 · 10−3 Joules per slot, the network is mainly capacity-constrained
and the rise in the delay is rather smooth.

Figure 5 shows the number of received packets with respect to the number of
packets that were sent, for X = 9 ·10−3 and X = 15 ·10−3 Joules per slot2. It can
be observed that the energy-aware algorithm achieves a higher throughput than
the minimum-hop algorithm, since the degration of the received to sent packets
ratio begins later than with the minimum-hop algorithm. For both algorithms,
the number of packets delivered to their destination grows linearly, initially, with
the number of packets that enter the network, since for relatively light traffic
they are nearly identical. For probabilities greater than pmax, however, there is
a steep decline in the ratio. The number of packets successfully delivered to their
destinations not only stops increasing as the number of incoming packets grows,
but it even declines after the network enters the unstable region.

Figure 6 illustrates the maximum packet generation probability (that is, the
maximum throughput) pmax for which the network remains stable as a function
of the recharging rate X at the network nodes, for both the minimum-hop and
2 To be more specific energy equal to 0.009 joules and 0.015 joules was offered every

10 seconds in the experiments.
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Fig. 5. The number of the packets received versus the number of packets sent for
recharging rates X = 9 · 10−3 and X = 15 · 10−3 Joules per slot

the energy-aware routing algorithm, along with a detail of the figure for smaller
recharging rates. pmax is taken to be the highest packet generation probabil-
ity for which the network manages to serve the incoming traffic appropriately,
meaning with small average packet delivery delay and high packet delivery ratio.
The thresholds set for these two metrics used for detecting experimentally when
the network enters the unstable region (above 100 slots for the average packet
delivery delay and under 80% for the delivery ratio) are not important quali-
tatively for the results obtained, since we found that a different setting of the
thresholds only causes a small shifting in the values presented without altering
any of the conclusions drawn.
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Fig. 6. The maximum traffic generation probability pmax versus network nodes’
recharging rate X (Joules per second) for the Minimum-Hop and Energy-Aware al-
gorithms and a detail for smaller recharging rates

Figure 6 shows that the energy-aware algorithm outperforms the minimum-
hop algorithm, achieving significantly larger pmax for all recharging rates con-
sidered. The maximum throughput pmax seems to depend on the recharging rate
almost linearly until the very end, for both routing algorithms. This verifies that
the network in this region is energy-constrained since its performance, expressed
by pmax, increases proportionally with the energy that is offered to it. When
the recharging rate increases beyond some point, the network starts getting con-
strained by capacity/interference limitations, and the rate at which pmax grows
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with respect to the recharging rate is slowed, until it reaches a plateau indicating
that the capacity/interference limitation has been reached.

The performance difference between the energy-aware and the minimum-hop
algorithm is larger for low energy recharging rates, and the difference is gradually
reduced as the limitation posed by the network capacity is approached. The
detail part of Fig. 6 highlights the difference between the two algorithms. It
can be observed that for the whole range of recharging rates presented in the
detail part of Fig. 6, the pmax achieved by the energy-aware algorithm is nearly
twice that of the minimum-hop algorithm. This is because the further away
the network is from the capacity-constrained region, the more important energy
efficiency becomes. When energy is the factor defining the ability of the network
to serve incoming traffic, the energy-aware algorithm performs better. However,
as energy becomes abundant and the capacity limitation starts constraining
network performance, the performance gap between the energy-aware and the
minimum-hop algorithm is narrowed.
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Abstract. This paper proposes a new self-organization protocol for sen-
sors with low-power battery in wireless sensor networks. In our protocol,
sensor networks consist of a hierarchical architecture with a sink, which
is a root node, using the spanning tree algorithm. Our protocol utilizes
some control messages to construct a hierarchical architecture, and by ex-
changing the messages between nodes, maintains adaptively the network
topology by reorganizing the tree architecture as the network evolves.
We perform the simulation to evaluate the performance of our protocol
over wireless sensor networks. We provide simulation results comparing
our protocol with the conventional approaches. The results show that our
protocol outperforms other protocols over a broad range of parameters.

1 Introduction

Sensor technology is one of the most challenging technical issues in ubiquitous
networks. As sensors have currently the functions of sensing, data processing
and communication, a wide range of monitoring applications, such as temper-
ature, pressure, noise and so on, has been commonly studied in the literature
[3-6]. Wireless sensor networks have characteristics as follows. A wireless sensor
network consists of a large number of sensors, which may be very close to each
other, and has a multi-hop wireless topology. Sensors are able to communicate
directly in the transmission range. However, to send data to the destination
beyond the transmission range, they have to communicate through some inter-
mediate sensors. In addition, they have the constrained batteries, which cannot
be recharged or replaced. That is, wireless sensor networks have the different
environment than other wireless networks. Therefore, the conventional network
protocols are not well applied to the application of wireless sensor networks. To
accomplish the above functions, sensors must have capabilities to perform sig-
nal processing, computation, and network self-organizing capabilities to achieve
scalable, robust and long-lived networks [1,2,7]. Specifically, the low power con-
sumption of sensors is one of the most important requirements of network pro-
tocol in wireless sensor networks. The conventional wireless network protocols

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 941–950, 2006.
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focus on high quality of services, but wireless sensor network protocols aim pri-
marily to achieve power conservation owing to consisting of sensors with limited,
irreplaceable batteries.

Several network protocols have been studied to extend network lifetime in
wireless sensor networks. Direct communication protocol [5] is that each sensor
transmits directly data to the sink. In this type of protocol, transmit power of
each sensor is different due to the distances from the sensor to the sink. If the
sensor is far away from the sink, it will quickly dissipate its power. On the other
hand, it close to the sink can transmit data using a relative low transmit power.
Minimum transmission energy (MTE) routing protocol [4] is designed each sen-
sor to send data for next node by using minimum power. In this type of protocol,
the sensors route data destined for the sink through intermediate sensors. Inter-
mediate sensors act as routers for other sensors’ data and are chosen such that
the transmit power is minimized. The drawback of using this protocol is, due to
relaying data, sensors closest to the sink die out first, whereas sensors furthest
from the sink die out latest. Another power aware communication protocol is
clustering protocol [5,6], where sensors are organized into clusters. In each clus-
ter, a head exists in order to aggregate data from sensors and transfer them to
the sink. The head can be decided by static or dynamic methods. For relaying
other sensors’ data, the head consumes its power more than others, so it would
die quickly out.

In this paper, we propose a new self-organization protocol to extend the sys-
tem life by solving the draws of the conventional protocols and reducing the
power consumption of all sensors in the network system. Our protocol is de-
signed by being based on the spanning tree algorithm and makes use of extra
control messages to maintain the tree architecture. As all sensors send data des-
tined for the sink by consuming minimum power and dissipating uniformly the
power of all sensors, the lifetime of sensor networks is extended.

2 Our Protocol

For analyzing and evaluating the fundamental performance of our protocol, we
first describe the power conserving behavior of the protocol. In wireless sensor
networks, all sensing nodes have the maximum transmission range, and they
send data to the sink directly or through intermediate nodes in this range. In
our protocol, if the sink exists in the maximum transmission range of nodes,
the nodes directly send data to the sink. Otherwise, they send data to the sink
through intermediate nodes closest to the sink.

We first define notations used in our protocol before describing the detail
operation of our protocol. A sink and all nodes have a level. The level of the
sink is initially set to zero and that of all nodes is set by an infinite value.
To distinguish a node with others, each node has a unique identification (ID),
which is generally its MAC address. The operation of our protocol consists of
the join and rejoin phases. The join phase is a process that each node joins
the network when it powers on. In our protocol, each node is initially set by a
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Fig. 1. An example of the join phase in our protocol. Node A is marked with •, and a
dashed line is the maximum transmission range of node A. Labels (x, x+1 and x+2)
on nodes are their level. (a) node A sends a JOIN REQUEST message to neighbors.
(b) neighbors reply node A with a JOIN RESPONSE message. (c) node A sends a
JOIN CONFIRM message to the parent. (d) network links after the join phase for
node A.

constant threshold value, and if its energy is less than this value, it is unable
to act as intermediate node for other nodes. Suppose a node sends data to the
sink through an intermediate node. If energy of the intermediate node is less
than the threshold value, the intermediate node cannot relay data to the sink.
To maintain the connection with the sink, the node must join the network again
by choosing new intermediate nodes, which is called the rejoin phase.

Initially, when each node powers on, it operates the following procedure to join
a wireless sensor network, as shown in Fig. 1. To simply describe the operation,
suppose a node A powers on right now. Node A first sends a JOIN REQUEST
message to the neighbors, which are sensors or the sink. This message includes
node A’s ID and level. Upon receiving the message, the neighbors compare their
level with node A’s level. If their level is lower than node A’s level, they send
a JOIN RESPONSE message to node A. This message includes the sender’s
ID, node A’s ID, the sender’s level and the number of children of sender. If node
A receives the JOIN RESPONSE messages, node A chooses the node sending
the message with the lowest level as its parent, and replaces its level by parent’s
level plus one. For example, node A receives the message from the sink, the sink
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is parent of node A and node A’s level becomes to one. If more than nodes with
the lowest level can be chosen, node A chooses a node, whose number of children
is the lowest, as its parent. In addition, if there are chosen some parent, then
node A randomly chooses one of the nodes as its parent. The main reason using
this approach is because each node can send data to the sink using minimum hop
count and we can balance the number of child of intermediate nodes. Therefore,
the advantages of our protocol is that it minimizes the energy consumption in
each node, so prolong network lifetime. On selection of the parent, node A sends
a JOIN CONFIRM message to the parent. This message includes node A’s
and parent’s IDs. Finally, the parent records node A’s ID and increments the
number of children in its memory. However, if node A does not receive any
response messages from neighbors, node A fails to join the network because no
neighbor exists in the transmission range of node A.

After completely joining the network, if node’s energy is lower than threshold,
the rejoin phase is operated, as shown in Fig. 2. Suppose the energy of node A’s
parent is below threshold. Node A’s parent sends a RELEASE REQUEST
message to node A, its child. Node A receiving the message, in order to find
a new parent, sends a PROBE REQUEST message its own ID and level to
neighbors. Neighbors, except parent and childen of node A as well as the nodes
with energy lower than threshold, send a PROBE RESPONSE message to
node A. The message includes the sender’s ID, node A’s ID, the sender’s level
and the number of child of sender. Upon receiving the message, node A chooses
a node with lowest level as new parent, and replaces its level by the parent’s level
plus one. If more than nodes with the lowest level can be chosen, node A chooses
a node having the lowest number of child as new parent. If more than nodes with
the lowest number of child can be chosen, then node A randomly chooses one of
the nodes as new parent. On selection of new parent, node A sends a PROBE
CONFIRM message to the parent. This message includes node A’s and parent’s
ID. Finally, the parent records node A’s ID and increments the number of child
in its memory, and finally the rejoin phase is accomplished. However, if node
A does not receive any PROBE RESPONSE messages from neighbors, node
A reset its own level as infinite and must carry out the join process again. In
addition, node A sends a RELEASE REQUEST message to children.

During this phase, if node A’s level is changed by other value, node A must
inform children. Thus it sends a CHANGE LEV EL message with its own ID
and level to children. Upon receiving the message, each child replaces its level
by node A’s level plus one, and if it has children, it also sends a CHANGE
LEV EL message to children.

Intermediate nodes relaying data between nodes and the sink play a role in our
protocol such like the head in the clustering protocol. In the clustering protocol,
the head is generally chosen without respect to a distance from the sink and
aggregates data from nodes, thus the head dies out quicker than other nodes.
However, in our protocol, each node sends data to the intermediate node closest
to the sink, and changes the intermediate node having low energy with a new
intermediate node having highier energy. Thus, our protocol can reduce energy
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Fig. 2. An example of the update phase in our protocol. (a) node A’s parent sends a
RELEASE REQUEST message to node A. (b) node A sends a PROBE REQUEST
message to neighbors. (c) neighbors reply a PROBE RESPONSE message to node
A. (d) node A sends a PROBE CONFIRM message to new parent. If node A’s level
is changed, node A sends a CHANGE LEV EL message to children.

dissipated from nodes and solve the problem, that specific nodes die out quickly.
In addition, in the direct communication protocol, nodes furthest from the sink
die out first, but this problem also can be solved by using our protocol.

As a media access control protocol to transmit data and control messages,
we use the IEEE 802.11 power saving mechanism [8]. In IEEE 802.11 power
saving mechanism, power management is done based on Ad hoc Traffic Indication
(ATIM). Time is divided into beacon intervals, and every node in the network
is synchronized by periodic beacon transmissions. However, since our protocol
maintains the hierarchical tree structure, after synchronization between parent
and child is carried out only once at first, then all nodes in this structure do
not need to synchronize more. So every node will start and finish each beacon
interval almost at the same time. At the start of each beacon interval, there exists
an interval called ATIM window, where every node should be in awake state and
be able to exchange messages. If a node A joins or rejoins neighbor, it sends
a corresponding message to the node during this interval. On the other hand,
if node A has data destined for sink, it sends an ATIM packet to intermediate
node during this interval. If the intermediate node receives this message, it will
reply back by sendig ATIM-ACK to node A, and both nodes will stay awake for
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that entire beacon interval. If the intermediate node has not sent or received any
messages or ATIM packets during the ATIM window, it enters doze mode and
stays until the next beacon time. This allows the radio component of each node
to be turned off at all times except during its transmit times, thus minimizing
the energy dissipated in the individual sensors.

3 Performance Evaluation

We carried out the computer simulation to evaluate the performance of our pro-
tocol. In this section,we describe performance metrics, simulation environment
and simulation results.

3.1 Performance Metrics

In order to compare the performance of our protocol and the conventional pro-
tocols, the performance metrics that we are interested in are

a) network lifetime (T ),
b) number of nodes alive (N), and
c) total energy dissipated in the network (E).

3.2 Simulation Environment

The network model for simulation consists of randomly placed nodes in a con-
stant size square area. Let s denote the network diameter and n denote the total
number of nodes in the network. We assume that there are n nodes distributed
randomly in a s×s region, and a sink is positioned at the center of the network.
For example, if the network has a 100×100 meter area, the coordination of the
sink is positioned at (x=50, y=50). Simulations are performed in wireless LAN
environment. The data rate is 11Mbps, and the transmission range of each node
is 15 m. In addition, beacon interval is set to 100 ms, and ATIM windows are
200 ms. We assume that each node has 2000 bits data packets and 160 bits
control packets, and energy and threshold of each node were assigned 0.5 J and
0.5, respectively. We also assume that if a node dies out, it is not recharged
or replaced by a new battery, and the event sensing by nodes is exponentially
distributed with rate λ.

In a wireless sensor network, the energy of nodes is mainly dissipated in trans-
mit and receive modes. In order to measure the energy dissipation of nodes, we
use a radio model developed in [5]. In this model, nodes have the transmitter
and receiver circuitries, which operate independently. The transmitter circuitry
consists of a transmit electronics and a transmit amplifier, and the receiver
circuitry consists of a receive electronics. Let Ee be the energy dissipated in
transmit and receive electronics and Ea be the energy dissipated in transmit
amplifier. We assume that Ee = 50 nJ/bit and Ea = 100 pJ/bit/m2. We also
assume that the energy loss happens according to a distance between source and
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destination. Therefore, transmit energy, Et(k,d), and receive energy, Er(k), dis-
sipated to send a k bit data packet to a destination apart a distance d are as
follows:

Et(k, d) = Ee ∗ k + Ea ∗ k ∗ d2. (1)

Er(k) = Ee ∗ k. (2)

3.3 Simulation Results

Using some results obtained by simulation, we compare our protocol with the
MTE and clustering protocols. In the simulation, according to s, n and λ over
a network maintained by a sink, we obtained some performance results, which
are T , N and E.

We first experiment on different diameters of the network. We measure the
network lifetime for our protocol, the MTE and clustering protocols. The result
is in Fig. 3. In this simulation, there are a sink and 200 nodes in the network.
In this figure, we can see that our protocol performs better than other protocols
over all ranges of parameters. If s<60 m, the lifetime of our protocol is on average
1.5 times longer than that of the clustering protocol and average 2 times longer
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than that of the MTE protocol. If s>60 m, the lifetime of our protocol is also on
20 ∼ 50 % longer than that of both. The reason is because all nodes constantly
dissipate their energy and they use the optimized transmission path in order to
send data to the sink.

Fig. 4 shows the network lifetime according to number of nodes in the net-
work. In this simulation, we used the network with a 200 m diameter. For all
the cases we clearly see that as n increases, T for all protocols increases accord-
ingly. Specially, our protocol achieves 2 or 3 times extension in network lifetime
compared with other protocols.

Fig. 5 shows network lifetime as we increase λ of nodes for s=200 m and
n=200. As like the above results, our protocol outperforms more than other
protocols. Note that increase of λ causes to increase an amount of data destined
for the sink. As shown in Fig. 5, as λ increases, T for all protocols exponentially
decreases but our protocol outperforms other protocols by a slight difference.

Fig. 6 shows the number of nodes alive for various simulation times, t. In
this simulation, 200 nodes are deployed in 200×200 meter environment with
rectangular topology. In this figure, we see nodes using the MTE protocol die
out earlier than other protocols. To send data to the sink, the number of nodes
in the MTE protocol need more than in other protocols. Therefore, since the
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intermediate nodes dissipate their energy more, the nodes become to die out
quickly. Similar to the above reason, in the clustering protocol, the head in each
cluster dies out quicklier than other nodes. In this simulation, we do not consider
the battery recharge or replacement of nodes. Note that as the number of die-
out nodes increase, remained active nodes will dissipate their battery more than
previous. Therefore, in Fig. 6, the MTE and clustering protocols decrease faster
than our protocol.

Fig. 7 shows the total energy dissipated in the network for different values
of s and n=200. In this figure, we see all the protocols increase accordingly the
dissipated energy. If s<100 m, plot of the MTE protocol increases the different
pattern than other protocols. Although a distance between nodes and the sink is
close, they use an optimal path to send data to the sink. Thus the hop count is
increased and the dissipated energy of the nodes on the path will be increased.
On the contrast, if the network size is small, our protocol sends data to the sink
directly. In addition, if the network size increases, our protocol establishes the
optimal path for all nodes and thus can increase the energy efficiency.

4 Conclusions

In this paper, we have presented a new self-organization protocol to maintain
efficiently the energy of sensors in wireless sensor networks. The basic idea of
our protocol is to establish an optimal path of each node destined for a sink,
and balance the energy of all nodes in wireless sensor networks. To achieve our
protocol, each node has its level related to a distance between the node and the
sink, and chooses a node with the lowest level and the lowest number of child
as its parent. Each node also adaptively changes the parent with another node
using the threshold and node’s level, If intermediate node, which relays data
destined for the sink, has its energy less than the threshold, another node, which
has energy more than the threshold, is chosen as new parent. Therefore, we are
able to maintain the optimal path of nodes continuously and reduce the number
of die-out nodes. Moreover, we can extend network lifetime to balance the energy
of all nodes without respect to a distance between the node and the sink. Using



950 K.-W. Jang and B.-S. Kim

the simulation, we evaluated the performance of our protocol in terms of the
network lifetime, the number of node alive and the energy dissipated in the
network. The simualtion results illustrated that our protocol outperformed the
conventional protocols over various range of parameters.
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Abstract. Typical sensor nodes are composed of cheap hardware be-
cause they have to be affordable in great numbers. This means that
memory and communication bandwidth are small, CPUs are slow and
energy is limited. It also means that all unnecessary software components
must be omitted. Thus it is necessary to use application specific commu-
nication protocols. As it is cumbersome to write these from scratch every
time a configurable framework is needed. Copra provides such an archi-
tectural framework that allows the construction of application specific
communication protocol stacks from prefabricated components.

1 Introduction

Sensor networks are collections of small sensor nodes with wireless neighbour-
hood broadcast facilities. Since sensor networks shall be deployed in large scales
(possibly thousands of nodes [1,2]), the overall cost dictates the use of cheap
but simple radio transceivers for communication. The latter lack most of the
common capabilities of WLAN or bluetooth networks. Even typical tasks like
medium access control or the addressing of individual nodes in the direct radio
neighbourhood are entirely left to software layers [3]. To make things worse the
scarce CPU/memory resources of the sensor nodes do not allow to waste much
space and processing power to process complex communication protocols [4].
Thus the designer of the communication software is stuck between a hard place
and a rock: the simplicity of the radio requires much more work to be done by
the CPU while the processing resources that are needed for this job are scarce.
Consequently, communication protocols must be designed as close as possible to
their intended use and the processing of the protocol stack must be dedicated
to a specific user profile. However, designing application specific protocol stacks
from scratch is always cumbersome and error prone.

This paper introduces Copra1, an architectural framework for the construc-
tion of application specific communication protocols in wireless networks. In
Copra often recurring protocol processing tasks are encapsulated in reusable
components (so-called Protocol Processing Stages, PPSs) that can be composed
to application specific protocol processing engines (PPEs). Thus application spe-
cific protocols do not need to be designed from scratch but can be composed from
prefabricated elements.
1 Copra is part of the Cocos Project which is supported by the German Research

Foundation (DFG) in the SPP 1140.
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The following sections are structured as follows: section two looks into Co-
pra’s structure, section three shows implementation details and section four
briefly outlines other attempts in this area. We finish with a look at current
status and future work in section five and the conclusion in section six.

2 The Copra Framework

Copra is a library of protocol processing stages (PPSs) and a few already defined
protocol processing engines (PPEs). A PPS is a special task in communication
such as medium access, a PPE is a concatenated set of PPSs. By concatenating
only the needed PPSs into a special PPE a lot of memory is saved. Each PPE
can again be a part of a larger PPE. In figures one to three you will see examples
of PPEs. The PPE seen on Figure 1 includes transceiving, medium access con-
trol and error checking, which normally is done by hardware. In case of sensor
networks this part must also be managed by Copra because the cheap radios
do not supply such functionality. The example on Figure 2 uses the broadcast
PPE from Figure 1 as basis and adds address management. Note that the type
of address is entirely configurable. It can be a number or a geographic location or
even some property on the node, e.g. the value of the last temperature sampling.
The third example on Figure 3 adds multi hop functionality to the PPE.

MAC
stage

access control

stage
TX

stage
RX

transceiving

TX

error checking

RX

broadcast PPE

stage

error
detection

encoding
stage

Fig. 1. A single hop broadcast PPE

In the following sections we take a closer look at the two important parts of
PPS and PPE.

2.1 A Protocol Processing Stage (PPS)

Most of Copra’s PPSs have a predecessor and a successor, with the exception
of the end pieces of a PPE which have only one of them. PPSs normally con-
sist of two parts which represent the direction the data flows: From the upper
layers to the lower ones which is the transmitting (Tx) path and the opposing,
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RX

TX labeling
stage

filter
stage

addressing unit

broadcast PPE
single  hop 

unicast PPE

Fig. 2. A single hop unicast PPE

stage

RX

TX
labeling

routing unit

demulti−
plexer

routing PPE

unicast PPE

Fig. 3. A routing PPE

receiving (Rx) path. To take this into account we provide the classes RxStage
and TxStage from which a PPS has to be derived. An example for an end piece
is the radio which does not have a successor because it transmits the data via
hardware drivers. The data is represented as the data structure stack with the
well known methods a stack supplies, the type of the stack is configurable as
template parameter.

2.2 The Protocol Processing Engine (PPE)

A protocol processing engine consists of a number of PPSs or other PPEs which
are linked together. These links represent the transmitting and receiving chains
which were already mentioned. Note that the layout is freely configurable. The
end pieces of a PPE connect to the application on one side and the hardware
drivers on the other. The Radio stage does not have a successor in the TxChain
but uses the interfaces provided by the hardware drivers to transmit the data
packets to another node. On the other node the Radio stage is the beginning of
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Fig. 4. A complex PPE which is used in our project

the RxChain and fills a stack with the data it receives from the hardware. The
radio then forwards the stack along the RxChain.

Figure 4 shows the largest PPE we have constructed yet. You might notice
that the lower half of the picture which contains physical (radio), mac, error
correction (crc) and compression follows the scheme mentioned before, where
only rxForward and txForward are used. The upper half splits with the general
concept as cross-layer issues arise. The Retransmission stage for example shares
a data structure with the Transport stage. This is necessary because they use
the same sequence numbers. The cross-layer issue between the Retransmission
stage and the Routing stage arises from the fact, that retransmissions may fail
repeatedly. Then, the Routing stage is informed that it has to find new routes.
Because of all these issues we tend to see the upper half of the picture as a single
entity.

3 Applying the Copra Framework

When we want to use Copra we configure it for a specific application. Lets
assume that for this application we need to create a new PPE as none of the
existing PPEs fits. Lets also assume that there is one particular PPS we need
that does not exist either. For this reason we will now take a look at how a PPS
is build.
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3.1 Implementing a PPS

As example for a PPS the FilterStage is discussed here. Its job is only to
forward incoming data packets on the RxChain if they are addressed to this node
(including broadcast). Note that we are using reference counting to determine
if the memory can be reused so we only decrement the reference count if the
stack is unwanted. Please note also that the address is configurable as template
parameter. This way it is up to the user to decide whether to use numbers,
geographical identities ore even sensor values for addressing. As the FilterStage
is a member of the RxChain it has to be derived from RxStage. In the accept()
method the address of the destination is taken from the stack and compared to
this node’s id and the broadcast address. Only if one of these matches the stack
is forwarded along the RxChain.

template <typename Address >
class FilterStage : public RxStage <Stack > {
...
// called by previous stage in the RxChain

virtual void accept(Stack* stack)
{
Address id;
// get destination address

stack ->pop(id);

// test if the packet is addressed to this node or the

broadcast address

if((id == myID) || (id == broadcastID ))
rxForward (stack); // send stack to the next stage

else
stack ->downRef (); // free memory

}
}

In this example it is easy to see what a user has to do to construct a PPS.
To build a member of the Rx-/TxChain the PPS has to be derived from Rx-
/TxStage. The method in which all the work is done is called accept() in the
RxChain and deliver() in the TxChain. This is the only method the designer
of the PPS has to fill. When all work is done the method rx-/txForward()
has to be called, which delivers the stack to the next stage by calling accept()
(deliver()) on it. The forwarding methods are inherited so there is no need
for the designer to touch these. They hide the identity of the succeeding stage.

Now that we have build the PPS lets take a look at how a PPE is constructed.

3.2 Composing a PPE

To build a PPE we need to have PPSs. As we have already build these we now
have to connect them in the desired order. The following example is a datagram
network (DtgNet). In this example you will notice that there are not a RxRadio
and a TxRadio but only one Radio that works as both. The rxMac is omitted,
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because all a receiving MAC-layer would do is removing the MAC Header and
we do not use any. This is because the data sampled by sensor nodes is normally
small and we do not want to waste bandwidth and energy on unnecessary over-
head. This PPE enables the application to use the standard way of sending by
simply giving an address, a pointer and a length to the PPE’s send() method.
It also provides the method receive(), which allows the application to receive
messages in the standard form. To receive a message the application supplies a
buffer which should be filled with the message. After this is done, the number of
received bytes is returned.

The connecting of the PPSs is done in the constructor of the PPE. First
the receiving chain is built, then the corresponding transmitting chain follows.
The methods receive() and send() are called by the application and offer the
services mentioned above. They take care of memory management by selecting
stacks from a pool and returning them once they are not needed anymore.

For simplicity reasons we omitted a few details, e.g. the check whether the
buffer is big enough.

class DtgNet {

// the elements of the PPE

Pool pool; RcxRadio radio;
TxMac txMac; RxCRC rxCRC; TxCRC txCRC;
LabelingStage <Address > labeling ;
FilterStage <Address > filtering ;
MessageQueue msgQueue ;

// Constructor .

// Here all parts of the PPE are assembled .

DtgNet()
{

// build receiving chain

radio.rxConnect (& rxCRC);
rxCRC.rxConnect (& filtering );
filtering .rxConnect (this);

// build sending chain

labeling .txConnect (& txCRC);
txCRC.txConnect (& txMac);
txMac.txConnect (& radio);

}

int receive(char* buf , int size)
{
Stack* stack = msgQueue .get ()
if(! stack) // no message in the queue

return 0;
int used = stack ->used (); // determine needed memory

memcpy(buf , stack ->tos(), used); // copy message
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stack ->downRef (); // free memory

return used; // return size of message

}

void send(char* msg , unsigned size , Address address)
{
// try to get a new stack from pool

Stack* stack = new (pool) Stack();
if (stack) {
void* buf = stack ->alloc(size); // allocate memory

memcpy(buf , msg , size); // copy message

labeling .deliver(stack , address); // forward stack

}
}

As you see it is very easy to construct a PPE. By calling rx-/txConnect on a
PPS we connect it with its successor on the receiving (transmitting) chain. These
methods are inherited from Rx-/TxStage so again there is no need to care for
them. Also, in this example the great benefit of Copra’s modularity can be seen.
Lets assume that the MAC Layer used above uses TDMA. Now we may need a
different MAC for a different environment but all the rest should stay the same.
We then replace the txMac with txCSMAMac. Now all we have to do is connect
this stage instead of the original one and we are done. Another possibility to
change this PPE would be to remove one unit, e.g. the addressing unit as seen
in figure 2. All this is up to the user to configure. By supplying a variety of
stages for all Layers we give the users an easy way to configure individual PPEs
according to their needs.

3.3 Writing an Application

Now that we have PPSs and a PPE lets take a final look at the application. What
the application does is of course up to the user but the easiest way to use a PPE
will be discussed here. There are in fact two ways for an application to use a
PPE. One possible way is for the application to be the end piece of the receiving
chain or the beginning of the transmitting chain. This way the application needs
to inherit from RxStage or TxStage or both. This may seem a little drawback
but it enables the application to use txForward() and work with the accept()
method. It also has another advantage which will be seen when the second way
is discussed. The second way is for the application to use a PPE with a special
end piece, which allows the usage of standard communication interfaces. This
end piece would offer a send() method which gets a pointer to the message and
its size. In this method it would allocate a stack, copy the data and forward
the stack. The advantage of this method is clear. The application does not need
to worry about stacks, it does not even need to know it is using a PPE. The
disadvantage lies in the end piece of the PPE. It has to copy the message to a
stack which takes time. It also costs additional memory on the sensor nodes. An
application would use the PPE seen above like this:
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DtgNet net(myID);
Message msg;
...
// sending

net.send (4711, &msg , sizeof(msg));
...
// receiving

int size = net.receive (&msg , sizeof(msg));
...

Please note again that while in this example the address is a number it is
entirely up to the user what type of address is being used.

Now that we have seen how the Copra framework can be used, lets take a
look at the cost of using it.

3.4 Code Size

As mentioned above sensor nodes are limited in memory and have slow CPUs.
In this section we take a closer look at the size of our framework. There are
two figures which go into the code size. First, the size of the code which is
independent of Copra as it would exist even if the framework was not used.
Second, the overhead of using the framework. This overhead can be determined
as follows:

Each stage has a pointer to its successor, the connecting method and the
forwarding one. Also a vtable is needed for the inherited functions and the calls
to the connecting methods must be made. Finally the call to the constructor of
the PPE in which the connections are made needs to be considered.

Two things are included for every PPS, the pointer to the next stage and the
vtable. The size of these depends upon the CPU in use. In our experiments we
use Lego RCX robots [5] which include a Renesas H8/300 processor. This is a 16
Bit processor with a clock frequency of 16 MHz. On a 16 Bit processor the size
of a pointer is two bytes which means that the overhead for one PPS includes
2 bytes for the pointer to the next stage, 2 bytes for the pointer to the vtable
and 6 bytes for the vtable itself. Altogether this means an overhead of 10 bytes
per PPS.

There are also the inlined connecting and forwarding methods and the con-
structor of the PPE. As these exist only once for the framework they are not
taken into account here.

The next figure shows code sizes of two selected PPEs. The sizes were mea-
sured on the RCX robots we used for our experiments. As these sizes are depen-
dent on the CPU in use they may vary on different systems.

PPE buffer pool radio mac crc addressing size (bytes)
broadcast x x x x 3400
unicast x x x x x 3848



COPRA – A Communication Processing Architecture 959

4 Related Work

In sensor networks the communication cost is reduced by replacing part of the
communication with local computation. While this is a great improvement in
battery lifetime it also means that the communication must be done in an appli-
cation specific way. The authors of [6] call for a family of protocols for general
purpose sensor nets. With Copra such a family exists, as the framework re-
presents a lot of different communication protocol stacks that can be configured
according to the applications needs.

Copra is partly inspired by CORBA and .NET. The channel sink chains in
.NET are configurable, meaning that the user can insert whatever sink he needs.
These chains are reflected in Copra’s Rx-/TxChains. An important difference is
however, that Copra’s chains starts where .NETs sinks end. The lowest of .NETs
sinks is the TransportSink, whereas Copra is a communication framework.
The portable interceptors in CORBA were also an inspiration, as it is possible
to insert additional interceptors into a chain. This is reflected in Copra’s PPSs
which are connected in a PPE. While CORBA has a predefined order, the PPSs
in Copra can be inserted anywhere in a PPE.

In [7,8] the lack of an overall sensor network architecture is remarked. The
authors describe the need for a sensor network protocol which should be located
lower than the IP-Layer in the internet. While this so called SP should provide
a set of functionalitys it should still stay configurable and be open to cross-layer
issues. Copra offers the configurability and openness required.

5 Current Status and Future Work

At the moment we have 14 different PPSs and 8 PPEs. While this number
may not seem very large, it is not necessary for it to become much larger. We
are experimenting with some of our PPSs and PPEs on modified RCX robots.
These Robots have been additionally equipped with an easy radio ER400TRS
radio module which we use instead of the included infrared module (IR). To
enable this, a serial port has been inserted which allows us to connect either the
IR or the radio module. The IR is still needed to boot the RCX robots but once
they are booted we switch to the radios. Copra is independent of the operation
system used, but we decided to use our self developed miniature OS Reflex[9]
as basis. Reflex supports pre-emptive scheduling and provides hardware drivers
which we use in some of or PPSs.

In the near future we will need to implement a few more different PPSs for each
layer. Once we have these there could be more PPEs and application examples.
But it is not our focus to find new applications for sensor networks, only to
offer an easier way to build them. Also it is not our goal to build lots of PPEs.
That is not necessary as the users will build their own ones. Right now we are
using the RCXs only but we are going to equip these with ScatterWeb[10] sensor
nodes. This is necessary because the RCXs have only three input channels and
the additional serial port, which are connected to touch sensors and the radio.
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When we connect the ScatterWeb sensor nodes with the serial port we will be
able to use their radio and have their additional sensors.

6 Conclusion

Copra is an easy to use framework which allows a user to plug and run com-
munication protocols for sensor nodes without having to rewrite the application
each time a different hardware is used or the environment is different. Developers
can now focus their attention entirely on the application. Copra performs well
in our experimentation environment and we are positive that it will work equally
well in the next experiments using the ScatterWeb sensor nodes.
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Abstract. Data sharing in a large scale and for high volatility tolerance
requires peer-to-peer solutions where traditional multiprocessor shared
memory systems are not applicable. Efficiency of those P2P shared mem-
ory systems depends, in particular, on scale, dynamics, and concur-
rent write accesses. We have developed a P2P shared memory solu-
tion, DAEDALUS, based on SUN’s JXTA framework, and integrated
an efficient stochastic locking protocol, proper resource clustering, and
semi-hierarchical grouping of nodes. We evaluated the applicability under
heavy load, scale, and node mobility. Here, DAEDALUS outperformed
a client/server system and solved its inherent scalability problem.

1 Introduction

Shared memory systems provide the foundation for efficient development of dis-
tributed applications. A lot of mature shared memory solutions for multiproces-
sor systems exist. However, data sharing in a large scale and for high volatility
tolerance – typically occurring in ubiquitous computing scenarios – is still unac-
complished and has become an active field of research. Under such conditions,
peer-to-peer architectures provide advantages over traditional distributed ar-
chitectures with classical shared memory approaches. On the other hand there
are numerous shared memory systems that are well designed for large amount of
write accesses, but those are usually intended for supercomputers or cluster com-
puting. However, none of these systems fully cover issues arising in ubiquitous
computing scenarios where network topology and quality of service parameters
are subject to frequent changes. Providing a synchronized and consistent view
on the shared data for all participants with reasonable communication overhead,
accordingly, is challenging and requires proper utilization of caching, routing,
grouping, data compression, cryptography, forwarding, and consensus.

Therefore, we have developed DAEDALUS, a platform-independent and light-
weight framework for peer-to-peer communication. It enables mobile/embedded
devices to easily and efficiently share their data. Data may be distributed among
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thousands of peers and subjected to permanent updates, while further dynamics
induced by mobility or environmental changes remain transparent to users or
application developers. Devices may join or leave groups in an ad-hoc manner
and can be members of an arbitrary number of groups at the same time, while
our framework keeps the data stochastically in sync and consistent among all
members of any group even in case of numerous concurrent write accesses. Our
approach therefore uses stochastic locking and semi-hierarchical grouping. The
implementation is based on SUN’s JXTA Java classes for peer-to-peer communi-
cation. As a case study, we have integrated it in MagicMap, a cooperative WLAN
positioning system. The client/server communication here did not scale well and
required reliable connectivity. Both problems could be successfully solved using
DAEDALUS, which achieved significant improvements regarding dependability,
scalability and performance.

2 The MagicMap Application Scenario

MagicMap is a cooperative context aware computing application we introduced
in [1,2,3]. Every node senses its environment and uses the observed data to calcu-
late its location and situation. From that, location/situation specific actions can
be triggered. The system works cooperatively, i.e., nodes exchange their mea-
surements among each other. Calculations can be done redundantly on multiple
nodes to improve fault tolerance, in particular, to prevent a minority of malicious
nodes to affect system stability. In our current implementation we use WLAN
equipped Laptops, PDAs, and Smartphones that exploit WLAN signal strength
to sense the environment and calculate their positions (see Fig. 1). Nodes sense
the WLAN received signal strength (RSSI) of neighboring nodes (access points,
other clients, or previously measured reference points) and estimate the physical
distance. A spring layout algorithm moves the nodes with unknown positions
such that length of edges best match the calculated physical distance. Thus, the
graph converges to a ”magic map”, where nodes are located approximately at
their true physical position.

Since different nodes may calculate devices positions, the calculating nodes
need access to signal strength measurements. Consider the following scenario
shown in Fig. 2. Node C wants to know the position of node B. Node C, as well as
node B, has low processing capabilities. Node A has high processing capabilities
and therefore calculates the position of node B. Node E, being sufficiently capable
as well, does that calculation too for redundancy reasons. All WLAN-aware
nodes sense signal strength (1) and forward it to the nodes where calculation is
done (3).

Note, that in this scenario we assume the mobile clients A, B, and C to sense
the signal in a symmetric manner, i.e., A senses signal strength from B and
symmetrically, B can sense signal strength from A. Some nodes may not sense
the signal, in our case node D, which might be an access point or a peer node
without MagicMap installed. However, given D is using its WLAN interface, its
radio signals can be sensed by other nodes (2).
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Fig. 1. MagicMap screenshot

Fig. 2. Example scenario with high-performance nodes A and E and low performance
nodes B and C

Finally, the calculated positions are sent to node C (4) who then can use,
for example, the mean value of both calculations as best position estimation. In
case C receives three or more independent position estimations, it could employ
elaborated voting algorithms for improved fault tolerance and resilience against
malicious behavior. To provide a real-time picture, signal strength measurement
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and position recalculation is done periodically at least every 10 seconds. Obvi-
ously, this scenario implies significant performance and real-time demands: all
measured values need to be on time at the nodes calculating the positions, and
finally, all calculated positions need to be on time at those nodes, that have
interest in this information.

3 Peer-to-Peer Data Sharing Concepts

Several research projects emerged in the last years investigating efficient data
updates in peer-to-peer systems. However, they impose limitations that reduce
their usefulness in ubiquitous computing scenarios. Systems like Freenet [4],
OceanStore [5], or P-Grid [6] assume no conflicting writes, going as far as lim-
iting updates to the original author of a data item in Freenet. Ivy [7] requires
application-level programming to cope with conflicting manipulations of data
objects and only provides some tools to detect those conflicts. These systems do
not provide any locking mechanisms or other concurrency protocols since their
main purpose is to provide high scalability – at the costs of sacrificed consistency.
Systems such as JuxMem [8] take the opposite approach: they provide locking
mechanisms while limiting the size of the network.

3.1 Concurrency Control – Pessimistic and Optimistic Approaches

There are two opposed approaches for concurrency control, the pessimistic and
the optimistic one. The first assumes that conflicting write accesses to a data
item might cause intolerable inconsistency and thus have to be avoided anyway
(conflict prevention). To guarantee that no other node is performing a concurrent
write access to any replica of a data item, a node has to lock that item to prevent
it from other concurrent manipulations. In a distributed scenario, this requires
two-phase locking, i.e., the node has to wait for all item replicas to confirm the
lock request. After the write has been performed, all replicas have to be updated
accordingly to obtain a consistent state. Meanwhile, since the data might be
temporarily inconsistent, additional write or read accesses to it are not allowed.

Pessimistic locking, hence, is not applicable in highly dynamic networks where
typically presumed latencies cannot be guaranteed.

Therefore, an optimistic approach, in contrast, assumes that temporary in-
consistency resulting from concurrent writes to a data item is tolerable. It em-
ploys conflict resolution instead of the above conflict prevention. Optimism is
accounted for the assumption that the number of actual conflicts and resolving
them will be manageable and temporary inconsistencies will be rare. If, however,
a conflicting update occurs, nodes have to use roll back or roll forward mecha-
nisms to resolve inconsistency and recover a consistent system state. An example
is Ivy, which stores the history of operations that have been performed on the
items. It does not resolve conflicting updates, but it detects them and provides
application-level means to resolve them.

Instead of pessimistic or optimistic conflict handling, its also possible to create
a disjoint global storage space, such that conflicts cannot occur. Freenet, for
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example, combines keys for files with a private key, specific to a user, and thereby
creates a global name space with private subspaces. This however, would result
in unmanageable network traffic and does not fit the MagicMap scenario where
every device can publish estimates of other devices’ positions.

Since none of the above approaches seem appropriate for our purpose, we have
employed a hybrid approach (see Section 4.2).

3.2 Considering Different Node Capabilities

All above systems assume the peers to possess comparable capabilities. This as-
sumption, although it might be acceptable in workstation environments, is un-
realistic in heterogeneous networks of ubiquitous computing. Therefore, caching
a snapshot of the overall storage system as required by Ivy is only feasible for
very small distributed file systems. OceanStore does allow multiple nodes to
change a single data item. To prevent faulty nodes from publishing wrong ver-
sion information, a Byzantine agreement is formed between all primary replicas.
OceanStore however, as well as P-Grid, does not offer means to prevent or re-
solve conflicting write accesses to the same data item. Since MagicMap updates
position information rather frequently, such peer-to-peer systems are likewise
not appropriate.

4 The DAEDALUS Peer-to-Peer Shared Memory System

The system architecture is divided into platform dependent and platform inde-
pendent components, see Fig. 3. Measurements of signal strength and collection
of other sensor data is highly dependent on particular hardware, operating sys-
tem, and drivers. The platform independent components – in particular the
DAEDALUS shared memory and the normalization and calculation of position
estimations – are written in Java. All components are freely available via our
website www.magicmap.org.

4.1 Peer Groups

The basic idea of our shared memory system is to assign every data item a specific
peer group. Peers that have interest in this data item join the related group and
serve as a replica. The advantage of this approach is scalability. Thereby, the
amount of messages send does not depend on the number of nodes participating
in the entire system, instead it depends on the number of peers interested in
this data item. While the number of nodes in a network could become rather big
in real world scenarios, the number of peers interested in a specific data item
is limited. The idea, however, has a downside: once no peer is interested in a
data item, it will be lost. To prevent this, nodes having enough resources to join
multiple groups in parallel will be asked to join this group, in case the number
of member nodes is decreasing below certain threshold. As these groups still can
grow rather big, a further differentiation is needed. A percentage of all nodes in
this group acts as a manager. Managers act as replicas, vote on locking requests,
and keep track of the group size.
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Fig. 3. System architecture with platform dependent and platform independent com-
ponents communicating via the DAEDALUS peer-to-peer shared memory

4.2 Stochastic Locking – A Hybridization of Pessimistic and
Optimistic Concurrency Control

Since both, pessimistic and optimistic approaches are not feasible in our scenario,
we pursue a hybrid approach. We use a locking mechanism but we do not require
all nodes to answer a lock request. Instead, only a relatively small number of
nodes has to answer and broadcast their decision to all managing nodes in a
group as shown in Fig. 4. The requesting node has successfully locked a data
item, if a majority of those answers is positive. This approach is optimistic, as it
assumes that enough nodes receive the lock request messages and there are only
a few faulty nodes that give an insane answer regarding a request. It is as well
pessimistic to a certain degree, as it reduces the number of conflicts by locking a
resource before updating it. While this stochastic locking cannot guarantee that
no conflict occurs, it does provides a high probability of conflict prevention.

4.3 Scalability Considerations

As only a fixed number of managers is required to answer a client request, the
expected traffic for each update process is limited and known. However, in order
to ensure that the number of managers answering a request does not exceed the
threshold, the managers have to keep track how much of them are in a group.
Therefore, every peer joining a group broadcasts a hello packet to all managers.
A fixed number of managers will provide the new member with all necessary
information, such as group size and a list of managers. Every peer node joining
the group starts as a manager. If the peer later discovers that there are already
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Fig. 4. The locking process. Node A sends a lock request to all manager nodes. Of those
manager nodes B and C respond and broadcast their decision to all other managers.

enough managers it can alter its status and become a regular client. Additionally,
managers check whether there are still enough managers in the group, and ask
clients of the group to become managers, if the number falls below the threshold.
On the other hand, if a manager detects that there are not enough members in
its group, they call other nodes that still have enough resource capacity available
to enter the group.

While the load of a client is independent from the number of nodes in the
group, the load of managers does grow with the size of the group. For a single
process the load is constant. However, as only the request for data items can be
balanced over all managers, the load for writing, locking and counting is not.
Therefore, the number of messages a manager has to process increases linear
with the number of nodes in the group. This however does not compromise the
original goal of low load for small computing devices. As the chance for such a
device to be a manager decreases with group size, the load for small devices will
not grow beyond a point which depends on the ratio of small and large nodes
within it.

4.4 Integration into MagicMap

We implemented the peer-to-peer shared memory system as a Java application
which communicates with any local application via UDP datagrams. It supports
calls to read the data item of a given name, to store a new version and to lock
and unlock the data item. Additionally, we included calls to search for groups
and peers. As group names are the same as their data item’s name, a search for
all groups will result in a list of all available data items. By applying a name
scheme an application can easily search for all data items it needs. We have
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developed one call specifically for MagicMap: joining a specific group. We use
this call to create a hierarchical tree that stores all nodes and their positions.

4.5 Data Clustering

To keep management overhead reasonable, the data items have to be clustered
appropriately. One clustering option is to subsume all external measurements
according to each node and store it in a single data item. This would allow
the position calculating nodes to easily discover the relevant data. However, it
would increase the number of groups that each node has to join and would cause
frequent locks and updates to data items.

This made the alternative option – aggregating all values measured by the
same node – most promising to us. As only a single node will change the data
item, no locking is required. However, now the calculating node has to find all
other nodes that have measured the signal strength of the node to be located.
To make the discovery process feasible, we decided to add a data item for each
node to store a list of the nodes having measured its signal strength. Thus, the
calculating node can scan the list and find all the data items required to calculate
the node’s position. As this node list has to be updated by different nodes, locking
is required. Fortunately, the number of updates to the list typically remain in a
manageable amount.

The position values for each node are stored in a single data item. As there
are typically less than five nodes actually updating this data item, this does not
cause heavy load. We end up with three data items for every MagicMap node. For
a node A there are A-Measurements where this node stores all signal strengths it
sensed, A-See stores all nodes that sense signals from A and A-Position contains
the calculated position of this node. A node that wants to know the position of
node A accesses A-Position. If no other node has yet calculated the position and
the data item is empty, this node may want to calculate the position itself. To
do so the node first reads A-See and then accesses all measurement data items
of the nodes in this list.

5 System Evaluation

We conducted our tests using the MagicMap application as a case study and com-
pared the delay of data item updates in the client-server setup to the DADALUS
peer-to-peer setup at different numbers of participating nodes (see Fig. 5).

In the client-server setup, updates were done via a centralized server us-
ing Web Service communication. The peer-to-peer setup utilized JXTA broad-
cast/unicast and comprises locking the data item, updating it, and finally re-
leasing the lock.

For both setups we employed 8 Dell PDAs as ”low capable” nodes and 8
desktop computers as ”high capable” nodes and simulated further nodes. The
ratio of low to high capable nodes was kept at constantly 1:1. We tested each
setup for a period of 6 hours and repeated the measurement three times at
different days. While we consider the obtained result quite realistic, true real
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C/S Avg. C/S Standard P2P Avg. P2P Standard
#Nodes Delay Deviation Delay Deviation

10 2.5 s 11 s 1.0 s 461 s
20 3.5 s 12 s 1.6 s 810 s
40 7.5 s 13 s 2.9 s 1,103 s
80 12.5 s 14.5 s 4.1 s 1,221 s
120 - - 4.2 s 1,069 s

Fig. 5. Comparing the data update delay of the standard client-server and the
DAEDALUS peer-to-peer setup

world measurement with heterogeneous devices in a magnitude of hundreds or
even thousands of nodes have to remain for future work.

6 Conclusion and Outlook

We have proposed a peer-to-peer shared memory system designed for ubiquitous
computing scenarios. It provides stochastic locking and data clustering to arrive
at reasonable performance even at high scale and dynamics. In our WLAN posi-
tioning case study implementation we used relatively well equipped Dell PDAs
and measured performance parameters. Using these measurements, we further
investigated scalability and other quality of service issues by simulation. The
results indicate that, regardless of group size, 95% of all data updates will not
take longer than 6 seconds, provided that no conflicting writes occure.

Future work may integrate a way to preserve multiple versions of a single data
item. Also a privacy scheme has to be developed to protect data and improve
system acceptance – since user locations are definitely very sensitive information.
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Abstract. Computer mobility allows people to use computers in var-
ied and changing environments. This variability forces applications to
adapt thus requiring awareness of the computational and physical en-
vironment (e.g. information about power management, network connec-
tions, synchronization opportunities, storage, computation, location-ba-
sed services, etc.).

An important application for mobility is hoarding, i.e. automatic file
replication between devices. To be accurate and not obstructive to the
user, the hoarding mechanism requires both context awareness (e.g. a-
mount of usable storage) and estimation of future environment conditions
(e.g. network connection, tasks to be performed by the user in the near
future, etc.). However, making applications context-aware is hindered
by the complexity of dealing with the large variety of different modules,
sensors and service platforms, i.e. there is no middleware supporting such
applications and their development in a uniform and integrated way.

This paper presents the architecture for an environment awareness
system (EAS) and how it applies to hoarding. EAS is a middleware com-
ponent that acts as an intermediary between applications and all mecha-
nisms that assess the surrounding environment. It lets applications query
and combine environment properties in a standardized way. Crucial for
the success of automatic file hoarding is the EAS’s capability of sup-
porting environment prediction based on simple reasoning and pattern
detection. Thus, applications may advise users accordingly or even make
decisions on their behalf.

1 Introduction

Mobile computer technology has led people to use their computers in a wide
variety of environments, e.g.: a PC at the office, a laptop at the airport, a PDA in
a taxi, etc. Users want to work continuously in this data ubiquitous world taking
advantage of available resources and not worrying about any system problem
that may occur (such as missing files).

Achieving such ubiquity is hard and depends on many applications. Automatic
file replication between devices, i.e. hoarding, is a solution for the fundamental
problem of data availability in mobile environments. To be accurate while not
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obstructive to the user, the hoarding mechanism requires both context aware-
ness (e.g. knowing the amount of available memory) and estimation of future
environment conditions (tasks to be performed in the future, etc.).

However, creating or adapting applications, like file hoarding systems, is en-
cumbered by the variety of different modules, sensors and service platforms.
This is due to the absence of middleware supporting such applications and their
development in a uniform and integrated way.

Furthermore, users want to take advantage of any resources as they move
around (for example cheap wireless connections). Therefore, the increasing ge-
ographical mobility of devices and the mobility of data among devices require
applications to be aware of the environment around them and its risks and op-
portunities. An optimal evaluation of the context should include not only current
conditions but also conditions that may be found in the future. For example, if
a user is leaving her office, she wants to take along on her laptop all files needed
in order to keep on working on her ongoing tasks. But, if her personal computer
knew that she is leaving for a meeting related to a specific task, it would only
transfer files related to that task.

Power management is another domain where knowing resource availability is
highly relevant: if a device were aware of how long its batteries are supposed to
last, it could adjust its energy consumption accordingly.

Fulfilling the above mentioned users expectations raises two major problems
for application development and execution:

– The heterogeneity of networks, sensors, platforms and services increases the
difficulty of building such applications, making a middleware layer support-
ing applications and their development in a uniform way clearly desirable;

– Current approaches don’t take into account users’ past habits and future
actions. Thus, developers of context-aware applications and users in general
must take a large number of decisions concerning the best usage of compu-
tational and physical resources.

Existing methods to provide applications with structured context informa-
tion [1,2], either limit the information provided to applications to specific do-
mains (relative location, user/device identification) or require programmers to
modify their applications each time they want to query a new environment prop-
erty.

This paper presents the architecture for an environment awareness system
(EAS) and how it applies to automatic file hoarding. EAS is a middleware com-
ponent that supports the interaction between applications and any computer-
based mechanism able to provide clues regarding the surrounding environment.
It lets applications query and combine environment properties in a standardized
way by means of an API providing access to the device’s context sensors in a
uniform way. Each sensor is represented by an environment perception module
(EPM), which is a software component capable of polling and/or forecasting a
specific environmental property.

In addition to providing a framework for existing and future EPMs, the EAS
enables many synergies between EPMs by aggregating and/or applying logic
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expressions over data from several EPMs. Most important, an EAS is able to
forecast future conditions and/or user actions by detecting patterns in the time
series of past conditions and maintains a history of past, scheduled and forecast
environment conditions. The EAS analyzes personal information manager data
and the history of past events to estimate future location, future user activities,
etc... For instance, in the case of automatic file hoarding, the EAS is designed
to compare the subject of a user’s meetings and the file access patterns during
previous meetings with the keyword on her files to determine which files need to
be replicated to a user’s laptop for the meetings on her immediate schedule.

In summary, managing personal files effortlessly is one of the major problems
raised by an environment where users have multiple mobile devices. Automati-
cally replicating files among devices, hoarding, can be greatly aided by an EAS
because it enables a comparison between users’ file accesses and specific environ-
ment conditions. Additionally, since the EAS provides an estimation of future
conditions, this can be used to decide which data will be most useful in the
predicted future.

In the rest of this paper, we begin by presenting the architecture of the EAS.
Then, we list a number of EPMs that could currently be integrated into an
implementation of an EAS. We show how the EAS is applied to file hoarding
and compare our design with existing systems. Finally, we present some of our
conclusions and future work.

2 Architecture

The environment awareness system (EAS) is a middleware component, which
provides applications with a simple and structured mechanism to query a device’s
computational and physical environment.

Applications can perform queries on the current situation or request callbacks
when certain conditions are met. Queries return an indication of whether an
environment property is within a certain range of values.

An EAS event is a timestamped set of property-value pairs representing a
change in environment properties. Each property, such as ”AbsoluteLocation”
or ”NetworkConnectivity”, is detected by a particular sensor. Each attribute
has a domain describing the values it can assume, e.g. ”NetworkConnectivity”
can be ”None”, ”Poor”, ”Medium” or ”Good”. A value describes the status of a
property such as ”443.23N 217.98W” (a possible value for ”AbsoluteLocation”)
or ”45 min” (a ”BatteryTime” value). Queries and callbacks can be directed to
the local device or to a remote device.

Additionally, the EAS lets programmers specify that certain conditions are
to be associated with a particular label: for example, assigning GPS positions
to known locations (”home”, ”office”, etc.) or particular circumstances to spe-
cific activities (being in room 13 on Monday morning means the person is in a
”Staff Meeting”). Users can submit these labeled situations, which are stored by
the system and can be referred to in subsequent queries. The hierarchical orga-
nization of environment properties and events combines on one hand a simple
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way of manipulating information about the hardware and, on the other hand,
an expressive mechanism to describe situations to which applications want to
respond.

The EAS (Fig. 1) is composed of:

– An API layer accessible to applications,
– A callback registry,
– A schedule of EPM probe actions,
– A repository of past, scheduled and forecast events,
– A forecasting model for calculating probable future conditions,
– Several environment perception modules (EPMs),
– A remote invocation interface.

Fig. 1. A file hoarding application on top of the EAS (dark gray boxes were imple-
mented in the prototype of Sec. 3)

Callbacks. Callbacks allow applications to be notified of future conditions.
They are associated to changes in the values of one or more environment proper-
ties. Callbacks are stored in a data structure indexed by environmental property
and remain active until they expire. Whenever a change occurs in an environ-
ment property, e.g. ”PowerSupply”, all callbacks that refer to that property are
reviewed to check whether all necessary conditions have been met and the ap-
plication, which submitted them should be notified.

Probe Scheduler. The EAS periodically probes the physical devices that pro-
vide environment property values. Many environment properties are machine
characteristics that don’t change frequently, if at all. Therefore, they can be
stored in the EAS and only be recalculated when the local hardware is reconfig-
ured. There is a schedule of the next moment when each of the available devices
must be probed in order to update the properties it detects. Probe actions may
be disabled during periods for which there are no registered callbacks.
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Event Repository. The event repository stores all changes in environment
properties that are detected by the EAS. Observed events are the result of actual
probes of EPMs (see Sec. 2.1) whereas forecast events are calculated by the
forecasting model. Scheduled events are explicitly inscribed in personal organizer
information.

Forecasting Model. A forecasting model was included in order to be able
to forecast future situations and to allow applications to perform proactive ac-
tions regarding future environment conditions. Many future conditions can be
deducted from personal organizer schedules but frequently that leaves a signifi-
cant amount of time with unknown occupation. This can be complemented with
future events forecast based on past recurring conditions. This is performed by
an ARIMA[3] forecasting model for discrete variables, which periodically ana-
lyzes the event log and tries to detect temporal patterns for each of the detected
environment variables and stored labeled situations and inserts new events, ad-
equately tagged as ”forecast” into the event repository.

Remote Invocation Interface. An EAS provides a remote service that en-
ables queries between different devices. This opens up the possibility of sharing
information among a group of devices so that in some cases other trusted devices
can work as extensions of a device. In general, the remote interface is used for
queries that refer to neighbouring devices and are most useful to allow applica-
tions to take advantage of available resources around it.

2.1 Environment Perception Modules

Environment Perception Modules (EPMs) are the EAS components that inter-
act with physical devices and assess current environment properties. Building
them is the greatest challenge in implementing an EAS due to hardware and OS
heterogeneity. Each EPM has to include code to assess its properties by probing
different devices in different OSs. Currently many of the OS modules and de-
vices that provide environment properties are accessible through standard APIs,
which may simplifies the EPM code greatly.

Personal Information Manager. Many computer users run personal orga-
nizer software, which can be a source of valuable information regarding the
device’s future environment. This information isn’t presently taken into account
by computing systems.

For example, Microsoft’s personal organizer, Outlook, provides automation
objects APIs, which can be used to programmatically acquire information and
store it into a future location table in the EAS. This information could also be
acquired from other similar software with a specific EPM.

Once integrated in the EAS, this information can be used to feed the fore-
casting model. A schedule can be further processed to provide applications with
hints and to determine, of those events stored in the event repository, the ones
whose corresponding callbacks should be invoked invoked. Thus applications can,
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asynchronously, send results to hardware not present, assured that data will be
sent to it when it connects to the network and becomes available.

Whenever a location is provided by a personal organizer appointment, the sit-
uation hierarchy is scanned to check whether that location has been submitted
as a situation label. If so, for each of the attributes contained in that situa-
tion, scheduled events are inserted into the event repository. Naturally, events
scheduled in the personal organizer override forecast events.

Location is a particularly important characteristic of the environment. There-
fore, a index of previous locations, and of the corresponding values of the en-
vironment properties, is kept in order to derive more information about future
locations which are known from scheduled events (see 3.7). Moreover, events,
which have a high probability of occurring at a scheduled events location, are
added to the event repository as probable events.

Local Computing Environment. This EPM allows applications to obtain
information about the software environment in the device, such as, which ap-
plications are running, which is the current foreground application and which
files and folders are being accessed. Knowing which files and applications are
accessed by a user at each device is fundamental in order to configure devices
which will be used in the future. A good example of this form of adaptation is
the hoarding application described in Sec. 3.

Other. Naturally, the EPMs that were presented above are a fraction of those
that will exist and be of interest to applications in the future. Important envi-
ronment properties we did not discuss are, for instance:

– Absolute location: This EPM would provide GPS coordinates to applications
or confirm previously provided labelled locations;

– Relative location and tagging: Currently, there are many ways to provide
relative location within a restricted space (WiFi, Bluetooth, RFID). The
EAS can uniformly inform applications of their location or of the presence
of other device or persons.

– Services: EAS can also be used to integrate and standardize existing service
location infra-structures;

– Processing power: CPUs can be benchmarked and classified for applications
using a simple description domain;

– Power supply: Time and percentage estimates of battery time are available
on most computers today. They can be easily represented as an environment
property within the EAS and be used to adjust energy consumption and/or
CPU speed.

We can envisage many situations were other environment information and
services become relevant: assessing lighting to manage solar charged batteries,
using voice processing services at nearby devices, etc. As the EAS’ implemen-
tation evolves it will incorporate such novelties as new attributes in its event
repository.
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3 Context-Aware File Hoarding

We chose to use the EAS to address the problem of hoarding, i.e. automatically
select the relevant files to be replicated when a user moves from one computer
to another (as described in Sec. 1). Automatic file management is an relevant
requirement in mobile environments because more and more users have several
devices (PC, laptop, mobile phone, PDA) and the storage and bandwidth be-
tween them is not constant and unlimited.

The ability to keep a user’s files updated on her current device requires first of
all that the relevant files be present at that device. It isn’t feasible to transfer all
of a person’s files because many devices have limited storage and bandwidth is
often a bottleneck for large transfers. It is impossible to rely on transferring files
on demand because network connections aren’t constantly available. And finally,
selecting files to be replicated manually is time consuming and error prone.

SEER[4] has shown that hoarding files based on the history of most recently
used files is the best known heuristic. However, it should be pointed out that this
results from a small scale exploration of the parameter space of their algorithms
and from assuming that people use only one type of computing device. There are
many situations where more sophisticated information is needed. For example,
many users do different tasks depending on where they are (at home, commuting,
in the office, at a meeting, etc.) and which device they are using (PC, laptop,
mobile phone, etc.). Letting users’ habits and access patterns determine which
files will be hoarded hasn’t been tried and can be achieved using the EAS. This
would, for example, enable a user to leave her office to do a presentation else-
where, without worrying about her slides, because the EAS on her PC would have
detected that it was necessary to transfer them to the PDA she carries with her.

The first step of hoarding is clustering files so that semantically related files are
moved together. Detection of file accesses is performed by the Local Computing
Environment (LCE) EPM. Detecting past patterns automatically by correlating
file access and environment properties is the job of EAS’s forecasting model.
Forecasting future actions is essential for a hoarding algorithm that is more
sophisticated than just hoarding the most recently used files.

We have implemented a file hoarding application on top of a EAS proto-
type(Fig. 1). This application monitors user activity and clusters and selects
data that should be hoarded in case a user decides to move to another device.
Users can assign folders, extensions filenames and applications to any given task.
Using that information, the hoarding applications clusters accessed files accord-
ing to the user’s preferences. Only when it is unclear which task a file belongs
to, the application then asks whether the file is to be assigned to the current
or some other task. This EAS prototype was implemented in C# on Microsoft
Windows XP. The local computing environment EPM is composed by a Win-
dows installable file system that intercepts all file system accesses and a monitor
of GUI events. So far our experience has shown that the disturbance caused by
asking the user to organize her files, quickly fades away. Currently, we log all
accesses to selected folders enabling the detection of time patterns in the history
of file (and consequently task) accesses. Additionally, personal calendar data
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allows the EAS to compare the subject of scheduled activities with task and file
keywords, thereby improving our hoarding estimates.

4 Related Work

We have been witnessing a trend towards integrating several kinds of devices in
an increasingly network-centric manner. Research work developed to deal with
the issues raised by this shift have been divided in a number of fields. The most
relevant efforts have been made in the areas of location awareness, device/object
identification and service location.

Regarding location awareness, in [5] routing efficiency and quality of service is
maximized in ad-hoc wireless networks, i.e., networks composed of dynamically
repositioning mobile hosts. In this work, location awareness is used at a lower
level than in our work. It is used to improve routing algorithms and packet for-
warding. Our approach aims at providing applications broader information about
their computing environment, its host and its neighbourhood i.e., information
about every capability their execution environment supports, and noticing them
when these capabilities are subject to temporary or permanent changes.

In the Xerox ParcTab[6] experience, broad work about location and context-
awareness, for proximate selection and automatic reconfiguration, ranging from
hardware design, user interface customization based on context, and location in-
formation is also presented. Context information is based on information about
neighbouring hosts. A specially developed predicate language was included for
programming context-triggered actions. The system is highly dependent on out-
side information like responses to homing beacons and positioning devices.

Naturally, these notifications about the execution environment, in the case of
network centric applications running in mobile hosts, must include information
about nearby devices that may be consulted to obtain such information. This
must be implemented with some kind of distributed event processing. There
are several approaches to this issue[7,8,9,10]. Bates[7] defends a framework for a
federation of heterogeneous components connected, transparently, by distributed
events in a publisher-subscriber model. There is an event taxonomy based on
event sub-classing. There is an event composition algebra that allows some degree
of control over dependency checks between different sets of events and to enforce
certain event sequences. Events are logged for future replay or querying.

In Jini[8] the emphasis is put on resource and service discovery. There is only
one event class so it lacks expressiveness although each event may contain an
arbitrary data object.

This architecture was further refined and extended in Rio[9] with extended
event description, capabilities detection for proxy execution, operational strings
to represent resources and services and quality of service matching between de-
vice capabilities and application requirements.

The Universal Plug and Play[10] approach aims at very similar goals than the
previous two but is also centered on remote device and service detection, and
data exchanging without any sort of code download. It is supported in a series
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of standards that makes it more platform independent though less flexible in
the dynamic code download aspect. It supports dynamic IP addressing, device
and service discovery; control actions are based on SOAP URL invocations and
received events are implemented in XML messages defined in GENA.

All these technologies try to take advantage of some form of awareness about
the computing environment in some specific way. None of them, though, compre-
hensively attends to all the properties mentioned in this paper or aims to stan-
dardize the representation of environment properties in an extensible manner.

There have also been attempts to create generic context-awareness platforms
[11,2,1,12,13,14]. Our decision to design the EAS, came from the realization
that some of these platform either were aimed at specific context properties
(relative location and user/device identification as in [11,2]), while others require
programmers write specific code for each new environment property [1] and that
none of them considered knowledge of future conditions as relevant input for
device adaptation[13,14]. For example, Gaia[2] results in modified applications
that interact with an omni-present infra-structure whereas we would simply like
applications to become aware of encircling resources.

5 Conclusions and Future Work

This paper presents an architecture for an integrated environment awareness sys-
tem (EAS) that allows applications to assess and adapt to the computational,
network and physical environments. The system can anticipate future user be-
haviour based on past patterns in order to take full advantage of the resources
available in the future.

We also demonstrate how an EAS can aid the task of automatic file man-
agement, in particular file hoarding. Making well informed hoarding decisions
requires complex information about users’ habits and patterns and these can
be acquired and structured by an EAS. We present a prototype of a hoarding
application based on a EAS which collects information from the local comput-
ing environment in order to perform file clustering and estimates future user
file needs by comparing the keywords of accessed user tasks and the subject of
calendar scheduled activities.

As future work, we are currently obtaining performance and user experi-
ence [15] results on the EAS main features (queries, callbacks) and on the hoard-
ing prototype. We are also refining the design of the EAS architecture modules
that weren’t implemented for the prototype.
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Abstract. Interactive 3D environments have been studied for years and
represent an important application area of computer graphics. However,
high quality virtual environment interaction requires powerful computers
equipped with expensive graphics accelerator cards. The high 3D data
volume and the dynamic nature of bandwidth pose significant challenges
when providing a smooth virtual navigation on thin mobile devices over
wireless ad hoc networks. In this paper, we show that it is possible to
provide a virtual environment walkthrough on mobile devices through
a client-server approach. Although mobile devices have low processing
power and memory, they can still render images with relative ease. Based
on this fact, instead of using traditional geometry-rendering techniques
and locally rendering complex scenes, we employ an image-based mech-
anism on the client that uses images, which are provided by a remote
server through an interactive streaming transport protocol. In this pa-
per, we propose a bandwidth feedback algorithm together with a rate
control and virtual user path prediction to better adapt the system to
the changing bandwidth. We also discuss our ideas and show an extensive
set of simulations in order to evaluate the performance of our solutions.

1 Introduction

The fast developments of computer graphics technologies such as fast geome-
try rendering algorithms and hardware implementation of graphics primitives,
and the advances in communication networks and protocols have enabled the
creation of a vast number of interesting applications related to navigating in a
remote virtual environment, e.g. games, virtual tours, training, virtual shopping,
etc. However, complex 3D models have been created for powerful computers, not
for thin mobile devices such as cell phones and PDAs. In addition, downloading
complex virtual environments requires both high bandwidth and storage capa-
bility. The high volume of 3D data and the dynamic nature of bandwidth pose
significant challenges in terms of providing smooth virtual navigation on thin
mobile devices over wireless ad hoc networks: a mobile device can only hold a
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fraction of the entire virtual environment; the 3D rendering engine is not able
to process complex scenes in real-time, the bandwidth is always changing and
because the wireless communication channel is highly susceptible to error. A
possible approach to these problems is rendering the complex 3D geometry on a
graphics workstation server and transmitting only images to the remote client,
depending on the user’s position within the virtual environment. Instead of em-
ploying the traditional 3D geometry rendering mechanism on the client side, the
approach can make use of an inexpensive image-based rendering (IBR) tech-
nique. IBR uses images as input and the rendering cost does not depend on the
scene complexity, but on the final image resolution. As mobile devices usually
provide small displays, IBR methods perfectly fit on these types of devices as
the image size and therefore the bandwidth required to transmit the images will
be small. Lately, there has been a great deal of interest in IBR algorithms lately.
For instance, the view morphing [1] technique, which requires low processing as
it renders novel views based on a collection of sample images. IBR algorithms
are based on the plenoptic function [2]. View morphing is the simplest IBR algo-
rithm as it relies on a certain amount of geometric information about the scene,
whereas lumigraph [3] and lightfield [4] use implicit geometry or no geometry at
all; this requires more processing. Basically, as the user walks through the 3D
environment, the client device sends its position and orientation to the server,
which will update the virtual camera position, render a reference image, and
send this image back to the client. The client can use certain reference images to
render novel views through the IBR while it is waiting to receive new reference
images from the server.

Providing a less expensive rendering technique to the client device is not
sufficient to solve all of the problems related to remote interaction on mobile
devices. In order to cope with the dynamic bandwidth, efficient transport proto-
cols, which take into consideration the user’s behavior in a virtual environment,
must be developed. In this paper, we propose a client/server architecture to
enhance the user experience in a remote virtual environment through a hybrid
rendering system, which uses traditional 3D geometry rendering on the server
and an IBR method, such as view morphing [1], on the client. In order to im-
prove the frame rate, or the number of images that the device can display per
second, a virtual user path prediction algorithm is proposed, allowing the server
to pre-fetch certain images to the client when enough bandwidth is available.
The bandwidth feedback mechanism and rate control are designed to optimize
the pre-fetching scheme, as its goal is to avoid starvation of images at the client
side. The interactive streaming protocol is designed over the Real-Time Proto-
col (RTP) [5] and the Real-Time Streaming Protocol (RTSP) [6], which provide
end-to-end delivery services for data with real-time constraints. For instance,
audio and video.

This paper is organized as follows: Section 2 gives an overview of related work.
Section 3 presents the proposed system architecture. The algorithms are described
in Section 4. Simulation experiment results are shown and discussed in Section 5.
Finally, in Section 6 the reader can find our conclusions and future work.
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2 Related Work

In this Section we discuss some of the existing 3D rendering mechanisms on
mobile devices. We also give the reader a brief review of image-based rendering
and provide a discussion about interesting similar solutions to remote virtual
environments.

OpenGL ES API [7] is used by several 3D applications on mobile and em-
bedded devices. However, the rendering quality is still poor, or has a very low
level of detail. The Mobile 3D Graphics API (M3G), defined in Java Specifi-
cation Request (JSR 184) [8], is another industry effort to create a standard
3D API for Java-enabled thin devices. A solution to visualize more complex
3D scenes on mobile devices is made possible through Image-Based Rendering
(IBR). IBR methods are categorized based on the geometry information they
require to render novel views. Some image-based rendering techniques do not
require geometric information. For instance, Lightfield [4] renders a new view
by interpolating a set of samples without any geometric information such as a
depth map. The problem with IBR methods that do not rely on geometric in-
formation is the huge storage capacity required to hold all of the pre-acquired
image samples.

Our remote interactive system is based on View Morphing [1], which is able
to render any novel image by morphing two or more reference images. The basic
principle is depicted in Figure 1. Morphing parallel views is the simplest image
morphing algorithm. As depicted in Figure 1, images I0 and I1 are acquired at
points C0 and C1 respectively, with focal lengths f0 and f1. Novel image In, with
focal length fn, at point Cn, is rendered by the interpolation of images I0 and I1.
There is also an image cache on the client in order to reuse a previously received
image, significantly improving system performance and reducing network traffic.

Fig. 1. View morphing with parallel views

QuickTime VR [9] is the most popular image-based rendering system. How-
ever, it is limited to panoramic scenarios, and the client device must download
the entire environment in order to start the navigation. Our solution offers a
higher level of freedom, as a user can walk through the environment and there
is no need to download the entire environment as it is being rendered while the
user moves through different areas.
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A client-server approach to image-based rendering on mobile terminals is pre-
sented in [10]. The objective of this solution is to make it possible to render
complex scenes on mobile devices through an IBR method and a client/server
architecture. However, its main contribution concerns how to place the cameras
in order to avoid problems such as exposure and occlusion when using IBR. Thus,
the camera placement solution works only for urban scenes, thereby limiting the
applications of this solution.

The work presented in [11] aims at the protection of copyrighted 3D models
when manipulated by remote users. The server owns the entire 3D environment
and sends certain images to the client on demand. The client renders a low-
polygon model of the scene as the user manipulates it. When the user stops, the
client sends a request to the server, which will send back a high-resolution image
of the scene. This approach is different from ours as the client is capable of 3D
geometry rendering. This feature is not well suited to low-capacity devices such
as PDAs. The reader can refer to [12,13,14] for detailed information on other
solutions to remote virtual environments using IBR methods.

Unlike the presented solutions, we propose a system that can make better use
of the available bandwidth, which is crucial to applications involving wireless
communication and thin devices. To the best of our knowledge, the solutions
found in the literature do not address the problem of dynamic bandwidth. Our
approach uses a virtual user’s path prediction together with bandwidth moni-
toring and rate control algorithms to adapt the protocol and pre-fetch images
to the client when bandwidth permits.

3 The Proposed Streaming System

Our proposed system is organized in the following modules: a modified JPEG
codestream, new RTP payload format for view morphing, streaming protocol,
bandwidth feedback mechanism, rate control scheme, and path prediction and
pre-fetching algorithms.

3.1 The Packetization and Streaming Schemes

We specified a new JPEG codestream to cope with wireless channel errors.
Figure 2 shows this new JPEG codestream. A packetization scheme was de-
veloped to avoid the errors that a corrupted packet propagate to other packets;
it keeps the packetization items independent from one another. A packetiza-
tion item is an atomic component such as the main header, the layer header,
or a pixel block. The image codestream is split into packetization items and is
encapsulated in RTP packets, and is then sent to the client.

Streaming multimedia compressed data over wired or wireless networks over
RTP requires new payload formats such as H.26x over RTP [15,16] and G.7xx
over RTP [17,18]. We introduced a new payload format for view morphing over
RTP, as well as a new packet header for view morphing, which are depicted in
Figures 3(a) and 3(b) respectively.



A Client-Server Approach to Enhance Interactive Virtual Environments 985

Fig. 2. Structure of the new JPEG codestream

(a) (b)

Fig. 3. (a) Structure of a RTP packet for View Morphing. (b) View Morphing payload
header.

The modified RTP fields are shown below.

Payload Type: according to the RTP standard, this field specifies the format
of the RTP payload and determines its interpretation by the application [17].
Because our payload type is not specified by the RTP profile, the payload type
for the View Morphing codestream is not assigned through RTP means; the
upper layer defines the payload code;

Number of Video Unit (NVU): If the current packet is the first fragment of a
video unit or if it is the whole video unit, then check if this is the first packet for
that session. If it is the first packet, the field NVU and timestamp in the RTP
header receive a random value; this will be the first value of a sequence number.

Timestamp: The View Morphing stream has no strict sampling instance.
Unlike other media types, the timestamp for View Morphing does not indicate
the sampling instance. Nevertheless, it is significant for calculating synchroniza-
tion and jitter when other media streams are associated with View Morphing.
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All RTP packets for the same video unit will set the same timestamp. The packet
header fields for view morphing over RTP are described below:

The payload header extension (X) is a bit flag that is activated when supple-
mentary information follos the payload header. The twin images (T) bit field
is set to inform the renderer to process two images; otherwise the rendering al-
gorithm can render the image directly. The number of images in a video unit
(NoV) field informs the renderer whether the packet contains zero, one, or
two images. The number of an image in the streaming (NoS) field works as a
sequence number to make sure that all image fragments were received by the
client. The (X,Y) fields are the viewpoint coordinates and (VD) is the view
direction angle. Viewpoint and view direction identification (P-id and D-id)
help identify the viewpoint and view direction when data is corrupted or lost.
The (header-id) field helps recover the main header when data is corrupted.
The field (Priority) indicates the layer priority when sending different quality
layers. The fragment offset field is used to reassemble the codestream. We also
have the reserved field for future use. Finally, the CRC field detects whether or
not the payload header is corrupted, which part is corrupted and tries to correct
certain bits. Basically, the assembly of an RTP packet begins with the assign-
ment of the payload type field for the Morphing-JPEG. If the current packet is
the first fragment of a video unit or if it is the entire video unit, then check if
this is the first packet for that session. If it is the first packet, the field NVU
and timestamp in the RTP header receive a random value; this will be the first
value of a sequence number. If it is not the first packet, NVU is incremented by
one. All other fields are set according to the specification. For instance, field X
is set to 1 if an optional payload follos the payload header; the field NoV is set
according to the images the client will have to process; for instance, it will be
set to 00 so as to instruct the client to process the first image on that video unit,
10 for the second, and 11 for the final one.

On the client side, the algorithm is a simple parser for the server codestream.
First it checks if the payload type field is set to Morphing-JPEG, then checks the
NVU field to see if it is different from the last one. If it is different, it instructs
the application layer to render the image at that moment. The algorithm then
gets the timestamp to calculate the synchronization and jitter. If field X is set to
1, the algorithm will locate the optional payload header, parse the codestream,
and send it to the application. For the CRC scheme, the algorithm verifies if the
viewpoint and direction are correct. If they are correct, the algorithm proceeds
by checking the priority and the remaining fields. If the viewpoint and direction
are not correct, algorithm approximate values from P-id and D-id, and runs the
CRC on them. The final step is to check the offset field. If the offset is equal to
the last offset plus the length of the packetization data, then it merely appends
the packetization data to the previous one. If this is not the case, the algorithm
waits for a short timeout period. If the delayed packet does not arrive during
this period, the algorithm informs the server that an RTP packet was lost. This
will adjust the parameters according to the bandwidth feedback mechanism.
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3.2 The Pre-fetching Mechanism

Based on the path prediction mechanism, the server will pre-fetch certain images
to the client. The pre-fetching algorithm takes advantage of available bandwidth
to send images in advance to the client, saving some requests and network traf-
fic, and improving the image quality and perhaps the frame rate on the client
because the reference images will be available in the client’s local cache. The pe-
riodic transmission of control packets conducted by RTCP is enough to control
the adaptive encodings and the speed of data distribution in wireless network
scenarios. Our proposed bandwidth feedback mechanism involves sending ACKs
for every received RTP packet. The server can establish the network status by
keeping track of these ACKs. An ACK packet is composed of its type, a sequence
number for ordering, and a timestamp. We use the timestamp to calculate the
round trip time (RTT) of RTP packets. Missing acknowledgments are inter-
preted as dropped RTP packets. When the server receives an ACK, it will parse
the RTP packet and extract the sequence number and timestamp. Then, the
server adds the sequence number to a list of successfully transmitted packets.
The server then calculates the RTT and adds it to the list of recently transmit-
ted packets. For each recently transmitted packet, if the sequence number does
not exist in the list of successfully transmitted packets, and if the RTT of the
previous packet minus the RTT of the next packet is greater than the acceptable
variation value, the number of packets lost is incremented by one. If the number
of packets lost is greater than 0, the network status is set to congested. Other-
wise, if the RTT of the last received packet minus the RTT of the first received
packet is greater than the threshold, the status is congested. If the RTT of the
first received packet minus the RTT of the last received packet is greater than a
threshold, the status is unloaded. Otherwise network status is constant.

The path prediction mechanism is based on the virtual user’s previous and
recent movement within the environment. There are two navigation modes: linear
and rotational. For instance, if the user is moving along a straight line, the path
prediction can determine that based on his/her previous movements, the user
will continue along the same path. In the case of rotation within the virtual
environment, the path prediction will obtain the nearby positions based on a
threshold angle.

Our rate control mechanism is based on the reports from the bandwidth feed-
back mechanism. If the network status is congested, the rate is decreased. If the
status is unloaded, the rate is increased; and if the status is constant, the rate is
left unchanged. The increment value is crucial for the performance of our proto-
col. Upon receiving a request, the server will determine the network status. If the
network is unloaded or congested, the rate is increased or decreased respectively
by an amount corresponding to one image.

4 Simulation Experiment Results

We have implemented and simulated our approach on the NS-2 [19] network sim-
ulator. We performed a set of simulations in different ad hoc network scenarios.
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They consist of one server and 15 to 60 mobile nodes moving at 5m/s to 20m/s
in an area of 500x500 m2. An 802.11b MAC layer was utilized during the simula-
tions. We used the following metrics to evaluate our proposed interactive stream-
ing system: system throughput, end-to-end delay, burst length and burst dura-
tion. The average number of images in the cache versus the number of requests
was used to evaluate the performance of the pre-fetching algorithm.

As depicted in Figure 4, when only one client is connected to the server,
the amount of images in the clients cache is 315 for only 150 requests. The
rate control was aware of the bandwidth status, and the server could utilize
the available bandwidth to pre-fetch additional reference images. With the pre-
fetching feature turned off, the number of images in the clients cache would not
exceed 150 (1 image per request). As we increased the number of clients, the
bandwidth dropped. The rate control mechanism was able to adjust to the new
scenario and reduce the streaming rate. For instance, the server sent 181 images
for 150 requests.
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Fig. 4. Pre-fetching mechanism performance

The number of successfully sent packets per second is represented by the
system throughput. As depicted in Figure 5(a), the system shows a reasonable
scalability. Increasing the number of nodes leads the number of packets per
second to increase from 25 to 45.

End-to-end delay is critical to our interactive system, because the system relies
on quick response times. As can be seen in Figure 5(b), delay is less than 10ms
when 35 nodes are employed and increases along with node density because the
number of nodes in a path will most likely be higher.

Burst is a temporary connection lost that occurs when packets cannot reach
the destination due to broken paths. Burst length is the number of packets
that are dropped during a burst duration. As can be seen in Figures 5(c) and
5(d), burst length and duration depend on node density. With higher densities,
routing paths are quickly restored. When a burst occurs, the bandwidth feedback
mechanism is aware of the network status and immediately decreases the packet
rate. Thus, the client renders novel views based on reference images stored on
its cache, with a significant image quality depreciation, until it receives new
reference images.
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(a) (b)

(c) (d)

Fig. 5. (a) System throughput. (b) End-to-end delay. (c) Burst length. (d) Burst
duration.

5 Conclusions and Future Work

In this paper, we proposed a client/server approach, which consists of a new
payload format for RTP, an interactive streaming algorithm, the packetization
scheme, and the pre-fetching mechanism, for remote interaction in virtual 3D
environments for mobile devices over ad hoc networks. We addressed some issues
of remote interactive virtual environments on mobile devices and focused on
optimizing bandwidth usage and maximizing user experience. To the best of
our knowledge, the related work did not tackle the dynamic bandwidth issue of
mobile ad hoc networks. Pre-fetching images when there is available bandwidth
has proven to be beneficial to the rendering system because the client does
not need to request and wait for the images, which implies long delays. The
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simulation experiments demonstrated satisfactory performance results. As future
work, the virtual user path prediction will be improved using a probabilistic
virtual path prediction so as to optimize the tradeoff between sending reference
images and the real use of them at the client side. We are also working on system
prototype in order to evaluate the proposed algorithm.
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Topic Chairs

Peer-to-peer (P2P) systems have become a major area of research in the past few
years. Their potential was first revealed by the hugely popular P2P file sharing
applications, which allow any computer (as a peer), anywhere in a large scale
distributed computing environment, to share information and resources with
others. The computing environments promoted by P2P systems and technology
are decentralized in nature, exploring a symmetric pairwise interaction model.
They are self- organized and self-coordinated, dynamically adapted to peer ar-
rivals and departures, and highly resilient to failures. As P2P research becomes
more mature, new challenges emerge to support complex and heterogeneous dis-
tributed environments for sharing and managing data, resources, and knowledge,
with highly volatile and dynamic usage patterns. This topic provides a forum
for researchers to present new contributions on P2P technologies, applications,
and systems, identifying key research issues and new challenges.

Eleven papers were submitted to this topic and four were accepted. These
papers address various aspects of P2P overlays and search protocols. In “Top k
RDF Query Evaluation”, the authors describe a P2P backtracking search strat-
egy for finding the largest k values in large RDF databases. The second pa-
per, “Roogle: Supporting Efficient High-Dimensional Range Queries in P2P Sys-
tems”, presents a mechanism to index data in a distributed hash table (DHT) and
look it up using high-dimensional queries. In “Creating and Maintaining Replicas
in Unstructured Peer-to- peer Systems”, the authors describe an approach for
optimal replication of data in unstructured P2P systems based on square-root
replication. Finally, “DOH: A Content Delivery Peer-to-Peer Network” presents
a scalable content distribution scheme for Web sites, which involves a load bal-
ancing component and a content retrieval mechanism based on DHT lookup and
caching.
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Abstract. Berners-Lee’s vision of the Semantic Web describes the idea
of providing machine readable and processable information using key
technologies such as ontologies and automated reasoning in order to cre-
ate intelligent agents.

The prospective amount of machine readable information available
in the future will be large. Thus, heterogeneity and scalability will be
central issues, rendering exhaustive searches and central storage of data
infeasible. This paper presents a scalable peer-to-peer based approach to
distributed querying of Semantic Web information that allows ordering of
entries in result sets and limiting the size of result sets which is necessary
to prevent results with millions of matches. The system relies on the
graph-based W3C standard Resource Description Framework (RDF) for
knowledge description. Thereby, it enables queries on large, distributed
RDF graphs.1

1 Introduction

The Semantic Web [3] envisions to make the huge information resources of the
Web available for machine-driven evaluation. Electronic agents are supposed to
locate information necessary for their objectives, process them, generate conclu-
sions and new information, and finally present the results to either a human user
or to other electronic agents.

The Resource Description Framework (RDF, [11]) has been proposed by the
W3C in order to formally describe resources. In combination with RDF Schema
(RDFS, [4]) it provides sufficient expressibility to describe taxonomies of classes
and properties and to infer information from taxonomies described with different
schemas.

Query languages like SPARQL [15] with implementations like ARQ of Jena
[2] (see http://esw.w3.org/topic/SparqlImplementations for other imple-
mentations) allow to query and infer information from RDF databases. These
implementations, however, assume that all RDF triples are located in a cen-
tral data repository, which is a questionable assumption given the growth of
information available on the web.
1 Partially supported by the EU within the 6th Framework Programme under contract

001907 “Dynamically Evolving, Large Scale Information Systems” (DELIS).

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 995–1004, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In [9] we have presented a scalable P2P based RDF querying strategy, which
allows for distributed storage of information and selective collecting of RDF
triples necessary to answer RDF queries. As current search engines of the web
demonstrate, it is conceivable that RDF queries on real-world data will some-
time deliver millions of results as well. Therefore, an evaluation procedure which
retrieves every matching subgraph is neither desirable nor scalable. Typically,
the user is not interested in an exhaustive collection of every matching result,
but rather seeks for some matches which are good for her.

In this paper, we restrict to problem to finding the k best results (called Top k
results) with respect to a single optimization criterion. I.e., the user might specify
single variables in an ORDER BY clause of the query, but no complex expressions,
and limit the number of results k by the LIMIT clause.

A simple solution would be to adapt the exhaustive search so that the results
are ordered and filtered after the evaluation. However, a main goal of the Top k
search is to enhance the scalability. Thus, we have to move away from the strategy
to exhaustively collect all candidates before starting the final evaluation. We will
rather start the final evaluation immediately, and fetch the candidates from the
network step by step as needed. This avoids retrieving parts of the model graph
which are never used during the query evaluation, when only k matches are of
interest.

In the following section, we will provide an overview of the Top k query
algorithm using an example. After that, section 3 describes the algorithm in
detail and explains the caching strategies. The evaluation is given in section 4.
Section 5 presents related work and section 6 concludes the paper.

2 Overview

In order to locate the RDF triples of various sources that are relevant to a query,
we insert each triple three times into a distributed hash table (DHT) which is
realized with Pastry [16]. Each triple is inserted into the hash map using the
subject, the predicate, and the object as a key to the actual triple. That way,
it is possible to look up all triples with a common subject for example and to
perform the query processing by starting with one triple that has a URI in either
subject, predicate, or object and to proceed from there on, fetching new triples
and checking that their values to not contradict previous variable assignments.

Figure 1 shows an example query which consists of the following three triples:
t1 = 〈v1, U1, v2〉, t2 = 〈v1, U2, v3〉, t3 = 〈v3, v1, v2〉. U1 and U2 are fixed URIs,
whereas v1, v2, and v3 are variables. Assume that the user expects the value of
v2 to be a floating point value, and that she looks for matches with values of v2

to be as large as possible.
As t1 and t2 have a bound value (the predicate) – a precondition for DHT

lookups – either one can serve as a start for the query evaluation and we choose t1
arbitrarily. By using U1 as a DHT index and asking the responsible node to send
triples with predicate U1, we receive candidates for the variables v1 and v2. As
the number of possible values of v1 and v2 can be very large, it is not desirable to
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Fig. 1. Example RDF Query

fetch a complete list of matching triples. We rather need a way to query chunks
of triples so that we can retrieve more candidates later, in case the first chunk
did not deliver a sufficient number of matches. Thus, we ask the node to deliver
the triples in order, so that we can later specify the highest known candidate to
retrieve the next chunk. Because of scalability reasons, the target nodes do not
store any state information. Therefore, the client node has to know the current
chunk position and send it later to the other node to fetch the next chunk.

Assume the first chunk of five candidates gets retrieved and stored in a table
as depicted in figure 2a. By selecting the first candidate, v1 gets bound to A and
v2 to 10. As t2 has a bound subject and predicate now, we can choose this as
the next triple to proceed recursively. Here, we have to fetch candidates which
respect the current variable bindings. As the predicate is bound to U2, we can
use U2 as DHT index, and retrieve all triples with predicate U2 which have the
subject A. We sort the results by ascending order of v3.

Assume that the result are two triples, 〈A,U2, X〉 and 〈A,U2, Y 〉. These triples
are stored as candidates for t2 and the first one is selected in the backtracking
procedure.

t1

v1 U1 v2

A U1 10

C U1 9

B U1 8.5

A U1 7

B U1 7

t2

v1 U2 v3

t3

v3 v1 v2

(a) Candidate Lists.

t1

v1 U1 v2

A U1 10

C U1 9

B U1 8.5

A U1 7

B U1 7

t2

v1 U2 v3

A U2 X

A U2 Y

t3

v3 v1 v2

X A 10

(b) First match.

Fig. 2. Query evaluation

Finally, we fetch candidates for the last triple. As it consists only of variables,
we have to use the current binding of one of the variables as DHT index. We
choose v1, and thus use A as DHT index. The remaining two variables are already
bound to v3 = X and v2 = 10. That means that we ask for the existence of the
triple 〈X,A, 10〉. As the triple exists, we have generated the first match (see
figure 2b). Afterwards, we backtrack to t2, select the second candidate, and ask
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for the existence of 〈Y,A, 10〉 (see figure 3). By this procedure, we generate the
top matches step by step, only retrieving the candidates as needed. After having
generated the requested number of matches, the procedure stops.

However, as we can see e.g. from the last step, it might be useful to have a
kind of look-ahead when fetching the candidates. We have contacted the node
for URI A twice in short succession to ask for the existence of triple 〈X,A, 10〉
and then 〈Y,A, 10〉. During the first lookup, the second candidate for t2 was
already known, and therefore, it should have been possible to ask directly for
the existence of the second triple in order to save one communication step.

t1

v1 U1 v2

A U1 10

C U1 9

B U1 8.5

A U1 7

B U1 7

t2

v1 U2 v3

A U2 X

A U2 Y

t3

v3 v1 v2

X A 10

Y A 10

Fig. 3. Second match

3 Top k algorithm and Caching Strategy

In this section we present an evaluation strategy with look-ahead caches that
efficiently reduce the amount of information transferred over the network and
the number of messages passed between nodes.

The evaluation function, as we can see in figure 4, resembles the basic back-
tracking strategy as described in the previous section. Its parameters nr matches
and k specify the number of matches found already and the number of matches
to be delivered in total respectively. The ordered list of triples (Ti) describes
the query and i represents the recursion depth, as query triples are matched to
RDF graph triples with backtracking. We follow the notation of [9] by denoting
with L the set of labels (XML literals and URI references) and with B the set of
blank nodes. With this notation, we can describe the binding of variables {vi}
to their actual nodes in the RDF graph as a partial function

B : {vi} → L ∪ B. (1)

Similarly, we maintain a set of candidates that can possibly be assigned to vari-
ables, with

C : {vi} → Pow(L ∪ B). (2)

Finally, we define a set of caches that allow retrieving candidates for the RDF
query triples. Each triple in the query has one individual cache, but we employ
different kinds of caches as we will see later on.

The general idea of the evaluation function is to iterate over all possible as-
signments to triples (variable j serves as an index for the iteration), assume one,
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function eval(nr matches , k, (Ti), i, B, C, Caches)
if i = |(Ti)| + 1 then

record B as a match found; /* all triples are bound */
return nr matches + 1;

end if
j := 0; /* counter of inspected candidate triples for Ti */
loop

t := Caches .getCache(Ti).getNextCandidate(B, C, j);
/* the candidate will respect the bindings in B */

j := j + 1;
if t = null then

break; /* no more candidates available */
end if
/* update bindings and candidates: */
B′ := B ∪ Bindings of t;
C′ := C ∪ Candidates of t;
nr matches := eval(nr matches , k, (Ti), i + 1, B′, C′, Caches);
if nr matches ≥ k then

break;
end if

end loop
return nr matches ;

end function

Fig. 4. Evaluation algorithm

and proceed to a recursive evaluation until we encounter contradictions, find a
complete match, realize that we have found a sufficient number of matches, or
until we cannot assign any more triples. The caches allow to perform this search
efficiently even though data are distributed among the peers of the network.

We will describe the strategy of the caches with the example of fetching can-
didates for triple t3 = (v3, v1, v2) in figure 2b. As described before, we use the
predicate v1 = A as the DHT key and have two remaining components of the
triple to look up; v3 and v2. These variables are already bound to the valued
v3 = X and v2 = 10. If the cache knows whether the resulting triple 〈X,A, 10〉
exists or does not exist, it can return this answer. Otherwise it has to retrieve
the information of the node that is in charge of triples with predicate A. Instead
of fetching just one triple it queries this and a chunk of additional queries, antic-
ipating that they will be requested later. As we know from the first occurrences
of v1 and v3 in columns of figure 2b, the candidates of v1 are {A,C,B}, and the
candidates of v3 are {X,Y }. The cross product of both candidate sets defines a
super set of values of possible interest. The cache asks not only whether the triple
〈X,A, 10〉 exists but also asks for additional c − 1 unknown triples of the cross
product, where c is the chunk size. That way, we hope to retrieve information
that will be requested later.

Each triple can be split into one component which defines the key of the DHT
and two remaining components. If possible, we choose a fixed URI as DHT key,
otherwise we iterate over all possible candidates of a variable. In the previous



1000 D. Battré, F. Heine, and O. Kao

example, the predicate served as DHT key, and subject and object served as the
remaining components. The latter ones were both bound variables, but this does
not need to be the case. In general we can encounter six different cases, where
the two remaining components are:

1. two unbound variables,
2. an unbound variable plus a bound variable,
3. an unbound variable plus an fixed URI or literal,
4. two bound variables,
5. a bound variable plus an fixed URI or literal, and
6. two URIs / literals

A component is bound if it consists of a variable that was seen before in a higher
recursion level, unbound with a variable that occurs for the first time, or fixed
if it is a URI or literal. The binding of a variable is the known candidate set,
where the variable was found the first time. For each of these cases we define a
specially optimized type of cache. These caches are depicted in figure 5.

F
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U1

U2

(a) fixed/fixed

F
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�
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�

�
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U1

(d) fixed/unbound
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U3

U2

U1

(e) bound/unbound

U

U

(f) unbound/unbound

Fig. 5. Cache Types

The caches have to query the next chunk of up to c triples for a query. They
deliver these chunks triple by triple. For scalability reasons, the peer who will
process the query, does not store any state information, so the requesting peer
is in charge of submitting the state along with the actual request. The state can
consist of the set of triples we want to gather information about (first three cases
below) or of a set of markers, which define the last triples for which we know
information already (last three cases below).
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The simplest cache for fixed/fixed components (see fig. 5a), which occur if a
RDF query contains a triple with three URIs, does a simple lookup without look-
ahead. The state of the cache can be “triple exists in RDF graph” (represented
by a check mark in the figure), “triple does not exist in RDF graph” (cross), or
“unknown whether triple exists in RDF graph” (circle).

For fixed/bound component pairs (see fig. 5b) the caching is simple as well.
A peer requests a chunk of triples by specifying the fixed component and a set
of candidates for the bound component for which it wants to retrieve the state.

For bound/bound components (see fig. 5c) we build up a request containing
a set of unknown combinations of already known values for the bound variables.

The fixed/unbound cache (see fig. 5d) is similar to the fixed/bound cache,
except that it is sufficient to request the next c elements starting after a given
position. Therefore, we submit the fixed element and the last inspected value for
the unbound element as the request.

The bound/unbound cache (see fig. 5e) extends this by storing and submitting
markers for the last known elements in several rows. The peer who processes a
request starts sending triples at the first marker until c triples have been sent or
continues at the next marker if the row (candidates) do not provide c triples.

For the unbound/unbound cache (see fig. 5f) it is again sufficient to submit a
single marker which determines the next triples to be delivered.

4 Evalution

For the evaluation of the strategy described we have generated random resource
descriptions that follow the data guide of the JSDL specification [7]. The gener-
ation was based on rough but arbitrary estimations (e.g.: of the many operating
systems available, the first three will account for the majority of offers and re-
quests). The data generation approach is very similar to the Lehigh University
Benchmark (LUBM), see for example [8]. The resource descriptions consist of
11.3 RDF triples on average (standard deviation: 2.6). Queries are less specific
than resource descriptions and consist of 3.9 RDF triples on average (s.d.: 1.8).
This ensures big result sets which are focus of the Top k strategy.

We have evaluated the Top k strategy for k = 10 with a look-ahead of 10
triples against an optimized exhaustive search described in [9]. This exhaustive
search employs sophisticated means based on Bloom filters to fetch a minimal
set of triples necessary to do a full evaluation locally. For the evaluation, we
have processed 100 queries on databases of 100,000, 500,000, and 1,000,000 RDF
triples, spread on a P2P network of 64 nodes.

Our main goals were to reduce the number of triples sent over the network
and to reduce the number of messages sent over the network.

Figure 6a shows the aggregated number of queries each individual peer had
to sent to process all 100 queries on the database of 100,000 triples. We see
that some nodes were not involved at all, when trying to find just the first 10
matches. On average, each peer sent 634.7 triples in 308.2 messages for a Top 10
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Fig. 6. Empirical analysis

evaluation, while the exhaustive evaluation sent an average of 31485 triples in
18886 messages per node.

We further hypothesize that restricting the number of results gets increasingly
important the larger the database is. Therefore, we have analyzed the ratio of
triples sent over the network with Top k strategy devided by the number of
triples sent with optimized exhaustive search for all three databases. In two of
one hundred test queries, the exhaustive search was slightly faster than the Top k
search on 100,000 triples because the triple ordering strategy in the Top k search
is less optimized. These two queries had very small result sets. In all 98 other
test queries, the Top k strategy was superior. In order to disregard these outliers,
we describe the median values for the ratios instead or the mean values.

The experimental results support our hypothesis (see fig. 6b). The median
ratio of triples sent over the network for Top k divided by the the number of
triples sent for an exhaustive search of 100 queries was just 0.89% for a database
of 100,000 triples, 0.13% for 500,000 triples, and 0.05% for 1,000,000 triples. The
mean ratios were 5.7%, 2.8%, and 0.87% respectively. We see that the Top k is
on average significantly faster than the optimized exhaustive search if result sets
are big.

Decreasing the look-ahead from 10 triples to 1 increases the total number of
triples sent over the network by a factor of 1.61 and the total number of messages
by a factor of 1.95 on the database of 100,000 triples.

5 Related Work

The general idea of the semantic web [3] paints the vision of a web where infor-
mation can be automatically processed by software. The Resource Description
Framework (RDF) together with RDF Schema [11,4] is one of the upcoming
standards which will help to make this vision a reality.
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Kokkinidis and Christophides describe in [12] a P2P based middleware for
evaluating queries in the RDF Query Language (RQL) using RDF Schema
knowledge. They focus on the construction and optimization of query plans.
Their basic approach is different from ours as they require mandatory schema
information encoded in RDFS. In our approach, schema information is not re-
quired for query processing.

In [5], dynamic query execution for schema-based P2P networks in the con-
text of the Edutella project [14] is described. This work focuses on dynamic
query planning and execution. Queries are evaluated in a distributed fashion;
the optimizer tries to evaluate operators local to the data.

Kokkinidis et al. do not address Top k evaluation explicity. Nejdl et al. propose
a Top k evaluation strategy in [13] but this is fundamentally different from our
approach as it is based on a P2P network with super-peer architecture.

The idea of using URIs as the key to distribute information over an DHT-
based P2P network has been described in several papers. We have used it in
[10] to distribute knowledge based on Description Logics and it has been used in
BabelPeers [9], the GridVine project [1], and RDFPeers [6] to distribute RDF
triples. The distribution of triples used in this paper is similar to these ideas.

6 Conclusion

In this paper, we have focussed on querying large amounts of distributed
RDF-based knowledge. While the Semantic Web is a prominent use case for
our algorithm, we argue that other applications like Grid resource discovery are
important as well. In most use cases, only a small fraction of the results are
relevant for the user. Thus, we devised a Top k query algorithm which delivers
only the k best results according to a sorting attribute. The algorithm operates
on RDF data distributed over an DHT-based P2P network. It uses caching and
look-ahead strategies to reduce both the number of messages and their size.

In the evaluation, we showed that the algorithm indeed reduces network usage
significantly compared to an exhaustive evaluation. We further showed that the
positive effect increases the larger the underlying RDF knowledge-base grows.
Thus our strategy is efficiently increasing scalability of RDF-based P2P data
management systems.
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Abstract. Multi-dimensional range query is an important query type
and especially useful when the user doesn’t know exactly what he is
looking for. However, due to improper indexing method and high routing
latency, existing schemes cannot perform well under high-dimensional sit-
uations. In this paper, we propose Roogle, a decentralized non-flooding
P2P search engine that can efficiently support high-dimensional range
queries in P2P systems. Roogle makes improvements on both indexing
and routing. The high-dimensional data is indexed based on the max-
imum or minimum value among all dimensions. This simple indexing
method performs rather well under high-dimensional situations and tol-
erates data points with missing values or different dimensionality. To
speed query routing, Roogle is built on top of our proposed structured
overlay - Aurelia, which has better routing performance by exploiting
node heterogeneity. Aurelia also guarantees the data locality and effi-
ciently support range queries. Experimental results from simulation val-
idate the scalability and efficiency of Roogle.

1 Introduction

To fully exploit the gigantic amount of structured data (e.g., multimedia data,
computation resources, scientific dataset, etc) shared in the P2P systems, which
are inherently spatial, it is expected that advanced query types could also be
efficiently supported.

Among advanced queries, the multi-dimensional range query 1 is an impor-
tant query type and particularly useful for discovery purposes. When the user
doesn’t know exactly the properties of desired objects, range queries on mul-
tiple attributes can be issued to perform search. For instance, in order to lo-
cate the movies published in recent two months and with the size smaller than
400MB, one 2-dimensional range query can be issued: (20060101≤ PublishDate<
20060201) AND (0M< FileSize < 400MB))?. However, it should be noticed that
the query dimensionality varies with different data types, and may be very high
in some scenarios (e.g., color histogram, stock dataset).

To date, there have been quite a few schemes (e.g., [1],[2],[3],[4],etc) being
proposed to enable multi-dimensional range queries in P2P systems, but most
1 Also known as multi-attribute range query.
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of them can only function well under the low-dimensional situations. In case of
high dimensionality, their performance will deteriorate greatly due to the “curse
of dimensionality” [5]. Additionally, their query routing is also inefficient. Many
approaches are built on top of traditional structured overlays (e.g., Chord, CAN),
which can only provide O(logN)-hop routing performance. Considering the large
query range of high-dimensional queries, the latency will be intolerable for users.

In this paper, we address the above issues by proposing Roogle, a decentralized
non-flooding P2P search engine that can efficiently support high-dimensional
range queries. Due to the characteristics of high-dimensional data, it is safe to
index data simply based on the maximum or minimum values among all di-
mensions. Such indexing method performs rather well under high-dimensional
situations, and also tolerates data points with missing values or different di-
mensionality. At the same time, a locality-preserving structured overlay called
Aurelia is proposed as the underlying overlay. The routing performance of Aure-
lia is greatly improved by exploiting node heterogeneity. The size of routing table
on each node is proportional to the node capacity, and multicasting is adopted
for scalable routing table maintenance. The size of data index on each node is
also adaptive to node capacity, and the data key is allowed to be registered into
multiple nodes to guarantee the reliability. Finally, the performance of Roogle
is evaluated via simulation, and the experimental results confirm the scalability
and efficiency of our design.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 describes the detailed design of Roogle. Experimental
results are presented and analyzed in Section 4. Section 5 concludes the paper.

2 Related Work

In unstructured P2P systems, flooding-based approaches are widely adopted for
multi-dimensional range queries, but huge traffic will be incurred. Therefore,
most of the existing non-flooding schemes are built on top of structured P2P
systems in order to limit the traffic.

In [1], a wide-area resource discovery engine called SWORD is implemented
to answer multi-attribute range queries so as to locate computation resources.
In SWORD, nodes participate in multiple DHTs, one per attribute. A query
is routed in the DHT overlay corresponding to its most selective attribute. In
MAAN [2], order-preserving hash is adopted to preserve data locality, and query
selectivity is used to identify the relevant DHT for query routing. Similar schemes
also include Mercury [4], PHT [6], etc. They all require prior knowledge of at-
tribute selectivity, which is a kind of drawback in the design.

In Squid [3] and SCRAP [7], Space-Filling Curves(SFC) is introduced for
dimension reduction. Multi-dimensional data is mapped to single-dimensional
data and then is range-partitioned across peers. However, the data locality of
SFC will become worse with the increase of dimensionality. To improve the data
locality, MURK [7] and SkipIndex [8] adopt KD-tree to partition the multi-
dimensional space into hypercuboids, each of which is assigned to a node. They
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use hashless CAN [9] and SkipGraph [10] as the underlying overlay respectively.
However, in dynamic environments, both of them suffer from the problem of load
balancing. Additionally, it is hard for them to index data points with missing
values in some dimensions, or with different dimensionality.

Different from the above approaches, our proposed Roogle doesn’t require
prior knowledge of attribute selectivity, and works efficiently under the high-
dimensional situation. It avoids the poor performance of range queries caused
by awkward DHT-based designs. By exploiting node heterogeneity and guaran-
teeing data locality, both indexing robustness and routing performance are much
improved in Roogle.

3 System Design of Roogle

In this section, we will introduce Roogle from four aspects: overlay structure,
data indexing, query processing and load balancing.

3.1 Overlay Structure

The underlying overlay provides the basic routing function for uplevel applica-
tions. To improve routing performance, Aurelia is proposed as the underlying
overlay structure to support Roogle.

Like Chord, Aurelia organizes nodes into a circular ring that corresponds to
the ID space [0, 2128 − 1]. Initially, each node is assigned a unique node ID by
uniform hashing, which consists of three parts: RangeID, LevelID and Random-
Bits. For example, for the node 001010...1010, its RangeID and LevelID are 001
and 10 respectively, and the bits in between are RandomBits.

The RangeID is the first r-bit prefix of the node ID, which defines the value
range that the node is responsible for. Aurelia abandons the using of hashing
to distribute the data objects across the nodes, for hashing destroys the data
locality. Instead, Aurelia simply maps the data object to the node according to
its normalized value. All the data keys whose first r-bit prefix is the same as
the RangeID will be placed on that node. The length of RangeID determines
the size of data index if the objects are uniformly distributed. The nodes can
choose a suitable length of RangeID based on its capacity. Formally, supposing
the range of the ring is mapped to [0, 1], the node with RangeID of b0b1 . . . br−1

will take charge of the range:

Range(b0b1 . . . br−1) =

[∑r−1
i=0 bi × 2r−i−1

2r
,

∑r−1
i=0 bi × 2r−i−1 + 1

2r

)

The LevelID is the l-bit suffix of the node ID, which determines the routing
table size together with “Routing Regions”. Here, “Routing Region” refers to the
region where the routing pointers take effects. Under uniform node distribution,
there is only one routing region, i.e., the whole ID space. In case of non-uniform
node distribution, the whole ID space is divided into multiple routing regions
based on the node density. The node can have different LevelIDs for different
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routing regions. For a node A, only the nodes whose node ID is within the routing
region and the last l bits are the same as A’s LevelID appear in the routing table
of node A. The shorter the LevelID, the bigger the routing table.

In case of uniform node distribution in the ring, the routing scheme of Au-
relia will be similar to SmartBoa [11]. However, with node dynamism or load
balancing reasons(e.g., under-loaded nodes quit their current position and rejoin
the heavy-loaded region), the node distribution in the ring may become non-
uniform. In such scenarios, SmartBoa’s routing scheme will become inefficient.
For the region with dense node distribution, more hops will be required than
expected(as illustrated in Fig. 1)). This drawback leads to the design of Aurelia.

Fig. 1. Routing under non-uniform node distribution (a) SmartBoa’s routing pointers;
(b) Aurelia’s routing pointers

The basic idea of Aurelia is to adjust the density of routing pointers so as
to adapt to the node distribution. In the sparse routing region, fewer routing
pointers are allocated; while in the dense region, more routing pointers will
be allocated for fast routing. The density of routing pointers is controlled by
adjustment of LevelID. The node seems like hosting multiple virtual nodes with
LevelID in different lengths, each of which corresponds to a different routing
region. By adjusting the length of LevelID in different routing region, we can
make the density of routing pointers congruous to the node distribution. Note
that all these virtual nodes share the same node ID.

As to the routing strategy, Aurelia performs in a greedy-like style. Given
a target key, the node always selects the nearest one in the routing table for
forwarding. For the powerful nodes, the large routing table enables them to
complete the routing even in 1 hop.

To build such kind of routing table, a big challenge is to maintain the node-
count distribution in a decentralized way. Aurelia adopts the technique of sam-
pling to collect the statistical information and build the approximate node-count
histogram locally. In addition to producing local estimate, the node also period-
ically makes sampling uniformly in the ring. According to the collected informa-
tion, the node chooses the most recent statistical data to produce the node-count
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histogram. After the histogram is built and normalized, the node can adjust its
routing pointers in the following way:

Each block in the histogram represents a continuous region with the size of
1/2k of the whole ID space. Based on the ratio between the block’s density
level and the average density level, the length of virtual nodes’ LevelID will
be increased or decreased accordingly. Such adjustment will impact the density
of routing pointers in different routing regions. For sparse routing region, fewer
routing pointers are needed, so the LevelID of the virtual node in that region can
be extended. On the contrary, for dense routing region, more routing pointers
are included by shortening the LevelID. However, the extension and reduction
of the LevelID cannot deviate too much from its real level.

To maintain the routing pointers in a scalable fashion, Aurelia adopts multi-
casting to distribute the events of node join, leave or status change. The multicast
tree doesn’t require explicit management. It is based on the LevelID and rout-
ing region to disseminate the event from high-level nodes to low-level nodes. The
details of the multicast algorithm are as follows: Each node maintains a list of
“top nodes”, whose levelID is the shortest suffix of current nodes’s levelID. “Top
nodes” are often powerful nodes that hold more routing pointers. When a node
joins or changes its status, it first forwards the event with the node ID to one
of its top nodes randomly. Then this top node disseminates the event to all the
nodes whose levelID is the suffix of the reported node ID. But for the virtual
node, if an announced node ID is not within the routing region it wants to be
notified, the event is ignored. In every step of the multicast process, the node
that receives the event first sends the event to the next lower level, then notifies
the other nodes with the same levelID. By this approach, we can guarantee the
event to be exactly delivered from the high-level nodes to the low-level nodes.
When a node leaves, its predecessor will detect the event and help to notify the
top nodes and propagates the change information to all the related nodes.

3.2 Data Indexing

Generally, for a multi-dimensional range query, all values of all dimensions must
satisfy the query range along each dimension. If any of them fails, the data
point will not be qualified. Therefore, a straightforward approach is to index on
a small subset of the dimensions. However, the effectiveness of such an approach
depends on the data distribution of the selected dimensions and requires prior
knowledge.

To avoid this drawback, we index the data based on the maximum or minimum
value among all dimensions of the data point. As the proportion of data points
with a very big or small value in one dimension will increase with dimensionality,
so it is safe to index the data points based on their edges. The feasibility of such
indexing method has been validated by [12] in traditional database field.

The transformation process is a simple mapping, which is computationally
inexpensive. Let xmin and xmax be respectively the smallest and biggest values
among all the d dimensions of data point < x1, x2, ..., xd >, xj ∈ [0, 1], 1 ≤
j ≤ d. Let the corresponding dimensions of xmin and xmax be dmin and dmax
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respectively, then the high-dimensional point x can be mapped to a point y in
the single-dimensional space through the following function,

y =
{

dmin × c + xmin, if xmin + θ < 1 − xmax;
dmax × c + xmax, otherwise.

where c is a positive constant to stretch the range of index keys(normally assigned
the value 1) and θ is the tuning parameter to adjust the data distribution. In
case of distributed systems, the value θ should be negotiated among peers. By
random sampling, the “top nodes” collect the information of data distribution.
Periodically, they negotiate the value of θ through distributed voting [13] and
then multicast the decision to the low-level nodes.

Through the above transformation, we get an 1-dimensional value y, y ∈
[1, d + 1], which can be further normalized as a binary string b0b1...bn−1 (n is
the maximum ID length). The string b0b1...bn−1 is the key of the data object to
be published in the Aurelia overlay.

The key is registered into all of the Aurelia nodes whose RangeID is a prefix
of that key. In this way, one data object has multiple replicas and makes the
indexing service more robust. Even when some nodes that host the data key
leave the system, the lookup may still be successful.

The detailed publishing process is as follows: Besides “top nodes”, every node
also maintains a list of “top index nodes”, whose RangeID is the shortest among
nodes whose RangeID is a prefix of the current node’s RangeID. During data
publishing, the registration message is firstly routed to the node whose node ID
is nearest to the data key; then the node will select a “top index node” ran-
domly and forward the message to this “top index node”, which is responsible
for multicasting the message to all the nodes whose index range is covered by
it. The multicast algorithm is similar to the above-mentioned multicast algo-
rithm for routing table maintenance, except that it is based on the RangeID for
multicasting.

During implementation, although the index key is only single-dimensional, the
index entry can contain the complete d-dimensional data point. Accordingly, if
the query also contains the full original query, then the results can be directly
filtered at the side of index nodes. Only the qualified results are returned to the
query initiator. In this way, the network traffic is further reduced.

3.3 Query Processing

To perform query, the d-dimensional query in the original data space should be
transformed into 1-dimensional queries first. For a d-dimensional range query
q = ([x11, x12], [x21, x22], ..., [xd1, xd2]), it will be mapped to d subqueries sqj =
[lj , hj], 1 ≤ j ≤ d, in the single dimension, with:

sqj =


[j + maxd

i=1xi1, j + xj2], if mind
i=1xi1 + θ ≥ 1 − maxd

i=1xi1;
[j + xj1, j + mind

i=1xi2], if mind
i=1xi2 + θ < 1 − maxd

i=1xi2;
[j + xj1, j + xj2], otherwise.
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The union of the answers from all subqueries provides the candidate answer
set from which the query answers can be obtained. Among the d subqueries, some
subqueries are not necessary to be evaluated. The subqueries will be eliminated
from the query set if any of the following conditions is satisfied:

(i) mind
i=1xi1 + θ ≥ 1 − maxd

i=1xi1 and hj < maxd
i=1xi1

(ii) mind
i=1xi2 + θ < 1 − maxd

i=1xi2 and lj > mind
i=1xi2

In this way, at most d subqueries are required to be evaluated. Suppose that
the subquery [lj , hj] corresponds to the ID range [lkeyj, hkeyj]. To perform range
query, the query initiator should first compute the common prefix lr of lkeyj and
hkeyj, and then check whether there exists a node in the routing table whose
RangeID is a prefix of lr. If existing, the range query is directly forwarded to
that node. To avoid causing too much traffic on the powerful nodes, the prefix
matching is based on the best-matching rule. If no entry exists, the node selects
the nearest node ID to lkeyj for forwarding.

The node that receives the query checks whether its range intersects with
the query range, if its responsible index range covers the whole query range, it
returns the results directly; otherwise, the node answers the part it knows and
forwards the left part to the node whose ID is nearest to the lowest bound of
the range.

In case that the query initiator wants to get the complete answer, all the
subqueries should be executed. There are two approaches for execution: sequen-
tial or parallel. In the former, the subqueries are executed sequentially from the
lowest bound to the highest bound. With each range query being answered, the
whole range is increasingly reduced. In the latter, the subqueries are sent in par-
allel. For efficiency, before issuing subqueries, some subqueries can be combined
into one if one node whose index range can answer them all is found.

3.4 Load Balancing

The problem of load balancing is a big issue in case of non-uniform query
distribution. Roogle achieves system-wide load balancing through node self-
adaptation.

When a node feels overloaded, it randomly selects one node from the uplevel
index entries and forwards the later incoming queries to that node. Since the
index range of up-level index node covers the range of low-level nodes, the queries
can also be resolved. If the node itself is already the “top index node”, it will
firstly try to probe an underloaded node, and request this underloaded node
to leave its current position and rejoin the “hot” region, so that the load can
be partitioned; however, in case that the probe fails within a time limit, the
node reduces its responsible range by extending the RangeID. After making
changes, the node should notify its predecessor and successor. At the same time,
it should also multicast the event to all the low-level nodes. The low-level nodes
then change their top index entries accordingly.
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4 Experimental Evaluation

Currently, the performance of Roogle is validated by simulation. The hardware
platform is a Sun Enterprise E4500 server with 12 UltraSPARC-II 400MHz
CPUs, 8GB RAM and 1Gbps network bandwidth.

Two datasets are used to evaluate the query performance of Roogle: one
is Corel Image Features dataset [14], which contains 32-dimensional color his-
togram vectors extracted from 68,040 photo images; another is Movies dataset
[15], which contains 11,435 30-dimensional movie records. In the Movies dataset,
missing values are common. The node capacity distribution follows the measure-
ment results of Gnutella in [16]. To simulate system dynamics, each node is
associated with a lifetime satisfying Pareto distribution (α = 2.1, β = 2) and the
peer arrival follows a Poisson process.

The metric in use is the average number of nodes visited per query. For the
purpose of comparison, we also simulate another three schemes: MAAN [2], Squid
[3] and Roogle with SkipGraph [10] as the underlying overlay. The simulation
results are illustrated in Fig. 2.
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Fig. 2. (a) Effect of dimensionality on query performance; (b) Effect of query selectivity
on query performance; (c) Effect of network size on query performance; (d) Query load
level of nodes with different capacities
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Fig. 2(a) depicts the effect of the dimensionality on query performance. All the
schemes perform worse with increasing of dimensionality. When the dimensional-
ity is bigger than 10, the performance of MAAN and Squid is almost degraded to
sequential scan, while Roogle has a slower decreasing rate no matter what kind
of overlay structure is adopted. But Aurelia further improves the performance
by exploiting the node heterogeneity.

In Fig. 2(b), we show the effect of query selectivity on query performance.
By varying the query selectivity, we can observe that Roogle has better data
locality compared with MAAN and Squid. The locality of MAAN and Squid
deteriorates greatly with the increasing of query selectivity. The poor locality
of MAAN/Squid is caused by bad indexing performance of locality-preserving
hashing and Space-Filling Curve (SFC), in which nearby points in original data
space are dispersed to a large region in the single-dimensional space.

We also measure the effect of network size on query performance (as shown
in Fig. 2(c)). For a given query, it is observed that Roogle scales well with the
increase of network size. On the contrary, for MAAN and Squid, the number of
nodes required to visit in order to solve the query increases almost linearly with
the network size. When the system size is bigger than 10,000, their performance
degrades in exponential speed.

Fig. 2(d) depicts the query load distribution on nodes with different capacity
levels. we find that, due to the large routing table and index range, high-level
nodes are likely to have more query traffic. But they also enjoy quicker routing
and querying than low-level nodes, thus the above cost gets well compensated.
The results also show that load balancing is mostly achieved in the system, and
all the nodes take a fair portion of load corresponding to their capacity.

5 Conclusion

Our focus in this paper is to efficiently support high-dimensional range queries in
P2P systems. The problem is addressed from two aspects: indexing and routing.
To overcome the curse of dimensionality, we index P2P shared data simply based
on the maximum or minimum value along all dimensions. By exploiting the node
heterogeneity, we speed up the query routing. Compared with previous schemes,
the performance of our design is much improved.

The next step is to investigate additional query optimization and system re-
silience to failures, and deploy Roogle in PlanetLab [17] to verify its performance
under more realistic environments.
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Abstract. In peer-to-peer systems, replication is an important issue as it im-
proves search performance and data availability. It has been shown that optimal
replication is attained when the number of replicas per item is proportional to the
square root of their popularity. In this paper, we focus on updates in the case of
optimal replication. In particular, we propose a new practical strategy for achiev-
ing square root replication called pull-then-push replication (PtP). With PtP, after
a successful search, the requesting node enters a replicate-push phase where it
transmits copies of the item to its neighbors. We show that updating the repli-
cas can be significantly improved through an update-push phase where the node
that created the copies propagates any updates it has received using similar pa-
rameters as in replicate-push. Our experimental results show that replicate-push
coupled with an update-push strategy achieves good replica placement and con-
sistency with small message overhead.

1 Introduction

The popularity of file sharing systems (such as Napster and Gnutella) has resulted in
attracting much current research in peer-to-peer (p2p) systems. Peer-to-peer systems
offer a means for sharing data among a large, diverse and dynamic population of users.
An issue central in such systems is resource location, i.e. given a user query for data, to
discover the peers with matching data items.

There are two basic approaches for building p2p systems for efficiently locating data.
In structured p2p systems, data items are assigned to specific peers using some form
of distributed hashing. Locating peers with matching data is then guaranteed to take
place by visiting a bounded number of peers, normally logarithmic to the total num-
ber of peers in the system. In unstructured p2p systems, there is no assumption about
the placement of data items. New nodes connect to some other nodes in the p2p sys-
tem randomly. When compared with structured p2p systems, unstructured p2p systems
usually provide no guarantees for search performance but do not suffer from the cost
induced from maintaining the structure and from load balancing procedures necessary
in structured p2p systems.

In this paper, we focus on the problem of replication in unstructured p2p systems.
Replication improves the performance of search as well as data availability. Availabil-
ity issues are especially critical in p2p systems, since peers leave the system very often,
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thus making their data unavailable. Previous work on the topic [1,2] showed that opti-
mal (with respect to search performance) replication is achieved when the number of
copies per data item is proportional to the square root of their popularity. Here, we pro-
pose a new practical strategy for achieving square root replication called pull-then-push
replication (PtP). With PtP replication, after a successful search for a data item, the node
that posed the query enters a replicate-push phase during which it pushes copies of the
item to its neighbors.

We also propose consistency maintenance protocols for copies created using the opti-
mal replication strategy. We show that updating the copies can be significantly improved
through an update-push phase where the node that created the copies propagates any
updates it receives to its neighbors. Although, replica consistency protocols have been
previously proposed (e.g., in [3]), our main contribution is that we study the problem in
conjunction with the strategy used to create the copies. Our experiments show that the
best results are achieved when update-push uses similar parameters with replicate-push.

2 Optimal Replication

Suppose there are in total m different data items in the network, and that, collectively,
the peers have capacity for storing R items1. Also, assume that the query rate for item i
is qi, i = 1, . . . ,m. Cohen and Shenker [1] developed a theory for optimally replicating
the data items in unstructured peer-to-peer networks, given the restriction of R. In par-
ticular, they studied different replication strategies and showed that the expected search
cost is minimized when the ith item has ri replicas, where ri is proportional to

√
qi.

In their analysis the authors assumed a theoretical random probes (RP) search me-
thod: the inquiring node repeatedly probes peers in random and asks for the item, until
the item is found. As the authors argued, the RP method captures the essential behav-
ior of the blind search strategies (such as flooding) usually employed in p2p systems
because in unstructured networks the topology is unrelated to the location of data. The
problem with square-root (SR) replication is that it requires knowledge of the query
rate for each item. To alleviate this, the following scheme was proposed: after each suc-
cessful search, the item is copied to a number of nodes equal to the number of probes.
It was shown that, with an analogous rate of item removals, this scheme leads to SR
replication.

However, even this scheme is not easily implementable. Keeping track of the number
of queried nodes is simply impractical when the usual flooding-based search algorithms
are used, due to the excessive number of messages required. But even if a practical way
of counting the queried nodes existed, this number would not be equal to the number
of random probes that would have been required. The reason is that the theoretic RP
strategy stops immediately after locating the item. All practical strategies, however,
unleash parallel search paths — if the item is found in one of the search paths, the rest
might continue querying nodes until, for example a time-to-live (TTL) parameter was
exhausted.

In conclusion, practical strategies for approximating the number of probes are re-
quired. In [2], the authors examined a number of such algorithms, namely

1 Data items can be actual copies of the data or just pointers to them.
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owner-replication, path-replication and random-replication. In owner-replication, the
inquiring node is the only one that makes a copy of the resource — leading clearly to
suboptimal replication. In the other two strategies, the node that provides the resource
creates a number of replicas, equal to the distance (in hops) between the inquiring and
the offering node. The last two strategies differ only in where the replicas are placed.
Path and random replication approach SR replication but not quite accurately. The rea-
son is that if the distance between the inquiring and the offering node is t hops, the RP
strategy may not have located the item within just t probes, unless a single path was
used for the search. The authors used multiple random walkers, which naturally visit a
multiple of t nodes. We next propose a simple but effective scheme.

2.1 Pull-Then-Push Replication

The proposed scheme is based on the following idea: the creation of replicas is dele-
gated to the inquiring node, not the providing node. The scheme consists of two phases.
The pull phase refers to searching for a data item. After a successful search, the in-
quiring node enters a push phase, whereby it transmits the data item to other nodes
in the network in order to force creation of replicas. We call this the Pull-then-Push
(PtP) replication. One can conceive variations of the PtP strategy by utilizing differ-
ent algorithms for the pull and push phases. Path replication as suggested in [2] could
be considered as a type of PtP replication, where the pull phase uses multiple random
walkers, while the push phase uses a single path.

In order to reach SR replication, we need to create a number of replicas equal to the
number of probed nodes. Consequently, one should utilize the same algorithm for the
push and the pull phases, so that the push phase visits approximately the same nodes the
pull phase visited. For example, if a random BFS search algorithm is used for the pull
phase, the same algorithm should be used to broadcast the item during the push phase.

All practical search strategies produce multiple search routes, and utilize some form
of TTL to limit the search space (and the resulting message overhead). If during the
pull phase the item was found at distance t hops from the inquirer, then the push phase
should also stop after t hops. This means that the TTL utilized for the push phases
should not be set according to the TTL used during pull, but rather according to t.

However, because of the multiple search routes produced, the tth step may contact
quite a large number of nodes. In [4], it was shown that for pure flooding, the number of
messages grows exponentially with the TTL; most of those messages are sent in the last
step of the search. For example, assume a random network with each peer connected to
d other nodes, and a pure flooding strategy, where each peer propagates the query to all
its neighbors. If a search returned an item at the 3rd step, approximately d + d2 + d3

different peers would have been visited, although only one node at distance 3 had the
item. This means that d+d2+1 probes could be enough and as a result, the best strategy
for the push phase would be to use a TTL of 2, not 3. In general, the TTL used for the
push phase should be equal to the hop distance at which the item was found minus one.

Recapping, our proposed PtP strategy adheres to the following rules: (a) After a
successful search, the requester pushes the item back to the network; (b) The same
algorithm is used for both pull (search) and push; (c) The TTL for push is equal to
t− 1, where t is the hop distance where the resource was found; (d) All peers receiving
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the push message create a replica of the item. In the next section we provide simulation
results which confirm that this simple PtP strategy does indeed lead to SR replication.

2.2 Experimental Results

The PtP strategy has been evaluated through extensive simulations. In our simulator,
we construct a network of peers/nodes, where each peer is connected to d other peers
in random, called its neighbors. Each peer offers a number of data items and also has
a fixed number of slots for replicating other items. Initially, all replica slots are empty.
Then, we continuously perform searches originating at random peers, for random items.
After each search, a push phase occurs, where replication is forced according to the
strategy used. If a peer has to replicate an item and has no available slot, a uniformly
random slot is emptied so that room is created for the new replica. Results are collected
after a sufficiently large number of searches; the single most important metric we extract
is the number of replicas, ri, for each item.

The simulator is capable of utilizing a number of different search (pull) strategies.
In all these strategies, a peer that receives a query for a data item, first checks whether
it knows about the item; if not, it propagates the query to its neighbors. The strategies
differ in the set of neighbors where the queries are propagated, and include [2,4,5]:

– Pure flooding. Peers propagate the query to all their neighbors.
– Random walkers or random paths. For a single random path, each peer propagates

the query to exactly one of its neighbors, in random. Multiple walkers searching in
parallel is a variation to decrease the average number of hops: the inquiring node
sends the query to a number of its neighbors, each one unleashing a random walker.

– Random BFS or teeming. Peers propagate the query to each of their neighbors with
some fixed probability φ. A decay parameter may be utilized so that φ decreases
with the distance from the inquiring node. If a node is in distance t from the inquir-
ing peer, then the probability of contacting a neighbor is given by: φt = φ(1 − c)t,
where φ0 = φ and c is the decay parameter. For c = 0 we have simple teeming,
while if in addition φ = 1, the strategy is pure flooding.

The same algorithms are used for the push phase. Of course, in this case the peers do
not receive queries but just items to propagate immediately to some of their neighbors.

In Fig. 1, we present results for a random network of 1000 peers, each with 4 neigh-
bors on average. A peer has storage space for 10 items, out of a total of R = 100 differ-
ent items. The replication strategies employed are owner, path and PtP replication. For
PtP we experimented with all the algorithms presented above and with different param-
eters. In Fig. 1, we show the results for two of them, one with 5 random walkers and
TTL = 10 and one with teeming, TTL = 5 and a decay parameter of c = 0.4. The other
algorithms exhibited the same behavior, and were omitted for clarity. The plot shows
the normalized number of replicas (ri/R) for each of the items. To make the square-root
trend clearer, for this particular plot, we have assumed query rates proportional to the
id of the item, so the x-axis could also be named ‘query rate’. The plot includes the op-
timal square-root distribution (SR), drawn with a thick line. We have also experimented
with other query rates, including Zipf-like ones, and the results were identical.
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Fig. 1. Distribution of replication ratios under various replication strategies

It should be clear from Fig. 1, that owner replication is far from the optimum. Path
replication is better, but does not result in SR replication. Both PtP strategies, although
different by nature, led to almost perfect SR replication. This also comes to confirm
our intuition that the exact strategies used for the pull/push phases of PtP are not very
important, as long as they are the same in both phases. Here we only show PtP’s ability
to approximate SR replication. Results on PtP’s performance and the achieved search
gains can be found in [6].

3 Consistency Maintenance

Replication induces the need for consistency maintenance, that is, keeping the replicas
up to date whenever changes occur. For the discussion that follows, we assume that each
data item has a single owner, which is also the single peer that is allowed to modify the
item. Upon modification, the replicas which have been spread over the network must be
made consistent with the most recent version of the data item.

The problem of consistency maintenance appears in many contexts [7,8]. In [3,9],
various strategies were proposed in the context of peer-to-peer systems. In general, up-
dates of a data item are broadcast by the owner and/or are searched for by the peers that
have the replicas. Thus, solutions to the consistency maintenance problem utilize (a)
owner-initiated update push, so that peers with replicas are communicated the update,
(b) replica holder-initiated pull, either when needed or periodically, so as to discover
new updates, if any, or (c) a combined push/pull scheme.

It has been shown that usually a combined push/pull strategy (P/P for short) con-
stitutes the best tradeoff between consistency levels and message overhead [9,5]. The
owner performs a limited push of the updates and the peers pull periodically, just in
case the owner-initiated push did not reach them.

A basic problem in these P/P protocols is when should a peer pull. Pulling too often
creates substantial message overhead. Pulling infrequently may result in missing im-
portant updates. Adaptive pull strategies try to minimize the communication overhead,
while maintaining good consistency levels by having each replica holder pull at specific
intervals. These intervals are determined by a time-to-refresh (TTR) parameter, which
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is adaptively adjusted depending on the previous pull results. If after the last pull the
item was found unchanged, TTR is increased so as to pull less frequently; otherwise,
TTR is decreased so as to check for updates more often.

Our premise is that efficient consistency maintenance can be achieved only in con-
junction with efficient replication. If the number of replicas and their placement is well-
planned, then the algorithms for maintaining them under updates can be much more
effective. To this end, we propose a novel push/pull update strategy that utilizes knowl-
edge about replica creation so as to improve update efficiency. Our experiments have
shown that consistency maintenance can be achieved quite efficiently when replication
is done in the optimal way, using the PtP strategies. Optimal replication not only mini-
mizes the average search costs but also reduces the average update costs when combined
with a suitable update strategy.

3.1 Updates Under Optimal Replication

From now on we assume that items have been replicated in the network and that replica-
tion has been done using the PtP strategy. As discussed earlier, the PtP strategy requires
that, after a successful search, the peer that found the item creates a number of replicas,
through a replicate-push phase, or R-push for short, with an appropriate TTL value.
The basic idea now is to let this peer be held “responsible” for updating the replicas
it created, as explained next. With respect to a particular data item, the nodes in the
network fall into one of the following three categories:

– owner: the single peer that produces new versions of the data item
– responsible: a peer that searched for the item in the past (and thus forced the cre-

ation of replicas of the item)
– indifferent: a peer that was forced to hold a replica of the item.

The strategy, which we call PtPU, is a combination of push/pull. The owner broad-
casts new updates to the network, through an update-push, or U-push for short. When-
ever a “responsible” peer receives a new version of the item (either through an update-
pull that it itself performed or an U-push that the item owner initiated), it undertakes the
task of updating the replicas it created. In other words, it performs a U-push itself for
the new version of the item. Moreover, this U-push should employ the same TTL pa-
rameter as the one used in the R-push, thereby reaching approximately the same nodes
that were previously reached in order to create replicas.

This scheme has the potential of reducing the overhead of consistency maintenance
significantly. A peer that is “responsible” for a resource should check (pull) frequently
for newer updates of the item, using a smaller TTR value. Peers which were forced to
have replicas of this item (“indifferent” peers) do not need to pull (or, they could pull
quite infrequently; cf the discussion in Section 4), relying on some “responsible” peer
to provide an update for them. Summarizing, our strategy behaves as follows:

– The owner pushes the new versions of the item
– “Responsible” peers pull periodically, and push any updates they become aware of

to their neighborhood exactly as when they created the replicas (i.e. with the same
parameters as in the push phase of PtP).
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– The other peers do nothing; they rely on “responsible” peers to keep them updated.

For the periodic pulls of the “responsible” peers, we follow an adaptive scheme [9],
whereby the time-to-pull-next (TTR) is decreased or increased according to the per-
ceived version of the item. If the last pull did not return a newer version, the estimate
for the next TTR will be increased by some constant: TTRe = TTR+C. If, on the other
hand, a more recent version of the item was found, the next TTR should be decreased. It
should be decreased in proportion to the difference, D, in versions between the pulled
item and the one the peer had — the higher the difference D, the more the missed up-
dates, and hence the more frequent the pull should be. Thus, the estimate for the new
TTR is: TTRe = TTR/(D + β), where β is a parameter that provides some reduction
in TTR in the case of D = 1. The next TTR is a weighted average of the current TTR
and the estimate:

TTR ←− wTTRe + (1 − w)TTR,

where, w is a parameter determining the rate of change — smaller values of w make
TTR change very slowly, while larger values make TTR adapt quickly to variations.

3.2 Experimental Evaluation

We have evaluated the performance of both the P/P and the PtPU strategies through
extensive simulations. The network of peers is constructed and the data items are repli-
cated using the PtP strategy as described in Section 2.2. After creating the replicas, we
initiate simulation sessions. Each session runs for a number of rounds (turns). During
each turn, the owner of an item creates a new version of the item with a given update
probability pu (update rate) and pushes it to the network. In the P/P strategy, all peers
with replicas pull for new versions using adaptive pull. With PtPU, only the “responsi-
ble” peers pull using, again, adaptive pull. In addition, the “responsible” peers push any
received updates to their neighbors using exactly the same strategy used when the repli-
cas were created (for example, using teeming with the same decay and TTL values).

We evaluate the performance of the update strategies with respect to two parameters:
the achieved consistency and the associated message overhead. The consistency level is
measured as the percentage of replicas that are up-to-date. We experimented with differ-
ent strategies for propagating the updates (i.e., pure flooding, random walkers, teeming
and teeming with decay). The results attained were qualitative the same, thus, we re-
port here only the results obtained when using teeming with decay, which is the method
that gives us the most flexibility in terms of tuning the extend of the propagation. In
particular, we present results when using three variations of teeming as summarized in
the table that follows. Wide teeming visits more peers, while narrow teeming produces
smaller message overhead.

Extend of teeming c (decay) TTL

Wide 0.1 5
Medium 0.3 5
Narrow 0.4 4

Regarding the adaptive pull, the tuning of its parameters is beyond the scope of this
paper. A set of values that were found to work well in adapting the TTR is: w = 0.8,
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b = 0.5, and C = 10 turns, and those are the values that were used in all the experiments
presented here. The reader is referred to [10,7] for a detailed discussion of the topic.

Performance with respect to the update rate. The goal of the first set of experiments
is to depict the behavior of plain P/P and PtPU under different update rates. We consider
two cases: frequent updates (pu = 0.1), and infrequent updates (pu = 0.025). The
owner pushes the updates using narrow teeming. The reason for using such a rather
limited push is to make the effect of pull more clear. To discover a general trend, we let
both strategies utilize exactly the same pull characteristics (i.e. the same variations of
teeming) and see how they compare with each other.

The results are shown in Fig. 2 for high update rates and in Fig. 3 for infrequent
updates. Each strategy is simulated for pulling with wide, medium and narrow teeming.
In the case of high update rates, peers are forced to a high pull overhead in the P/P
strategy so as to be frequently updated. In the PtPU case, though, pull is limited. Push
messages are more since the “responsible” peers also propagate any updates they re-
ceive. For a low update rate, it is easier for any strategy to keep good consistency levels,
utilizing fewer messages. Even in this case, though, PtPU achieved consistency levels
above 92%, while plain P/P is, at best, a little above 80%. PtPU consistently outper-
forms P/P by any measure. It results in better consistency levels and, at the same time,
fewer messages.

Comparison of the two update policies. In this set of experiments, we compare fur-
ther the two methods. In particular, we show (i) the level of consistency achieved when
the two methods produce the same number of messages and (ii) the number of messages
required by each method for achieving the same consistency level. Here, we consider a

Fig. 2. Performance of the two strategies under high update rates
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Fig. 3. Performance of the two strategies under low update rates

Fig. 4. Number of messages when all strategies result in consistency levels of approximately 82%

medium update rate (pu = 0.05). For each strategy we repeatedly alter the pull parame-
ters until we achieve the same value for the metric of interest (i.e. the consistency level
or the number of messages) among all strategies.

The results are presented in Figures 4–6. In the plots, we also consider the perfor-
mance of P/P and PtPU, for the case where the creation of replicas does not follow
the PtP strategy. Instead, after the replication phase, the replicas get scattered across
the network. Our goal is to show that loosing the locality induced by the PtP strategy
results in worsening the performance of both the P/P and PtPU strategies. Note that the
number of replicas is kept the same; what differs is their placement in the network. The
strategies under random placement of the replicas are marked with an “(R)” in the plots.

In Fig. 4 the owner uses a narrow push to propagate the updates. We run the sim-
ulator tuning the pull parameters until all strategies achieved approximately the same
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Fig. 5. Number of messages when all strategies result in consistency levels of approximately 95%

Fig. 6. Consistency quality when all strategies generate the same number of messages

consistency level of 82%. The resulting message counts show that plain P/P required
43% more messages than PtPU to achieve the same consistency. In Fig. 5 the owner uses
a medium push to propagate the updates, so as to make it easier for the inferior strate-
gies to achieve higher consistency levels (but, of course, with higher message overhead).
The achieved consistency levels where approximately 95%. Once again, plain P/P re-
quired 46% more messages than PtPU. In Fig. 6 all strategies generated approximately
62000 messages. PtPU required a narrow pull while P/P’s adaptive pull resulted in a
wider teeming. The superiority of the PtPU strategy is shown vividly, as it managed to
achieve more than 90% consistency.

Another conclusion from these plots is that, indeed, the random placement of replicas
makes the performance of P/P and PtPU worse. This validates our intuition that the
inherent locality of replica creation through PtP results in more efficient updates.

4 Discussion

In this paper, we consider replication in unstructured p2p systems. The idea behind
our approach is that developing protocols for consistency maintenance which utilize
knowledge about the strategy used to create the copies increases the efficiency of such
protocols. Based on this, we develop a simple strategy for achieving square-root replica-
tion, which was previously proved to be optimal for unstructured peer-to-peer systems,
and a consistency maintenance protocol that is tuned for our replication strategy.
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Our experimental results show that our protocols achieve significantly better consis-
tency for a smaller communication cost than protocols that do not exploit knowledge of
the underlying replication strategy. A more detailed version of this work can be found
in [6].

In our experiments we have assumed that the network does not change during the
replication and update phases. We are currently studying the behavior of our strategies
in more dynamic settings where peers enter or leave the system at will. In such envi-
ronments the PtPU strategy may encounter the following problem: a “responsible” peer
could depart from the network, leaving thus a number of “indifferent” nodes without
anybody to update their replicas for them. Thus, it is almost imperative that “indiffer-
ent” peers should pull, too, just in case the “responsible” node is not near them anymore.
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Abstract. Many SMEs and non-profit organizations suffer when their
Web servers become unavailable due to flash crowd effects when their web
site becomes popular. One of the solutions to the flash-crowd problem
is to place the web site on a scalable CDN (Content Delivery Network)
that replicates the content and distributes the load in order to improve
its response time.

In this paper, we present our approach to building a scalable Web
Hosting environment as a CDN on top of a structured peer-to-peer sys-
tem of collaborative web-servers integrated to share the load and to im-
prove the overall system performance, scalability, availability and ro-
bustness. Unlike cluster-based solutions, it can run on heterogeneous
hardware, over geographically dispersed areas. To validate and evaluate
our approach, we have developed a system prototype called DOH (DKS
Organized Hosting) that is a CDN implemented on top of the DKS (Dis-
tributed K-nary Search) structured P2P system with DHT (Distributed
Hash table) functionality [9]. The prototype is implemented in Java, us-
ing the DKS middleware, the Jetty web-server, and a modified JavaFTP
server. The proposed design of CDN has been evaluated by simulation
and by evaluation experiments on the prototype.

1 Introduction

The major focus of our research presented in this article is to design and evaluate
a scalable Content Delivery Network (CDN) built on top of a structured P2P
system that provides the Distributed Hash Tables (DHT). Such CDN can be used
as a Web-hosting environment that allows improving the overall performance and
storage capacity, scalability and availability of hosted Web sites.

As a motivational scenario, assume a small company has a web server on
a 10 Mbit broadband line, which usually serves it well. One day a large news
portal reviews and recommends the company site to the portal users. Since
the site becomes a ”hot object”, it starts generating a huge amount of hits.
Subsequently, the company’s web server will not be able to cope with the strain,
and, eventually, its bandwidth will be totally consumed, making the company’s
Web-pages unavailable. The situation described above is called the flash crowd
effect (also known as the SlashDot effect[1]), when a sudden increase in traffic
makes a web site completely unavailable.
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One solution for a company to survive a flash crowd is to pay for joining a
proprietary CDN like the one owned by Akamai[2] that offers services in dis-
tributing the load of heavily trafficked web sites for companies with an extensive
web presence. For SMEs and organizations without the need for a CDN on a
daily basis, the incurred costs of placing their web-sites on a proprietary CDN
might be considered too high.

In our view, one of the cost-efficient approaches to building high-performance
and scalable web-sites, CDNs and Web-hosting systems, is to integrate several
(open-source) web-servers in a scalable structured P2P system with DHT func-
tionality. A (part of the) URL of a Web-page can be used as a key to determine
a web-server on which the page is (to be) stored. The P2P system of web-servers
should support content replication in order to improve performance and avail-
ability of hosted Web-sites. We believe that this approach should make it possible
for SMEs and small organizations to obtain at an affordable price the same host-
ing services that have been available to big companies for years. CoralCDN[10]
is an existing P2P CDN that are already deployed, but while CoralCDN is de-
signed to be an overlay network for handling the flash crowd effect DOH aims for
more: to be a low cost, transparent, web-hosting service with a built in ability
to handle a flash crowd.

Extensive research has been done in building efficient DHTs on top of struc-
tured P2P overlay networks, see e.g.[3], [11], [19], [20], and [21]. A DHT provides
a distributed indexing service based on hashing and like an ordinary centralized
hash-table, a DHT, whose buckets are distributed among peers, can be used for
storing of different kind of information. Note that the DHT should be ”open”:
in the case of a hash collision, when different entries are hashed to the same
bucket, a single bucket can contain multiple entries, which should be searched
sequentially.

In this paper, we present our approach to building a scalable Web Hosting
environment as a CDN on top of a structured P2P system with DHT functional-
ity. In our design, several Web-servers are organized in a structured P2P system
in order to share their load and to improve the overall system performance,
scalability and storage capacity, as well as availability of hosted web-sites. The
underlying P2P overlay network provides an efficient and scalable lookup mech-
anism needed for DHT, replication and ability to automatically self-organize
when nodes join/leave the network.

The DHT is used for fetching and storing web pages. Each of the web-servers
is responsible for a region of DHT buckets used to store Web pages, referenced by
URLs. Even though the worst-case lookup latency in a structured P2P system
with N peers is O(log N), building a Web-hosting environment as a structured
P2P system allows improving overall performance and scalability of Web-hosting
due to multiple access points, well-balanced load distribution and content repli-
cation, increase in overall storage and computational capacity of the P2P CDN.
In our design, we use a sophisticated content replication mechanism, called sym-
metric replication [13], in order to even more improve the system performance,
availability and reliability.
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To validate our approach, we have developed, implemented and evaluated a
system prototype called DOH (DKS Organized Hosting) that is a content de-
livery network implemented on top of the DKS (Distributed K-nary Search)
structured P2P system with DHT functionality [9]. DOH provides the same fea-
tures as a corporate CDN at the same cost as a regular low-end web server.
The system prototype is implemented in Java, using DKS[3], the Jetty[12] web
server, and a modified JavaFTP[6] server package. We have evaluated our pro-
posed CDN design by simulation and by performing evaluation experiments on
the developed prototype.

The remainder of the paper is organized as follows: Section 2 describes the
DOH architecture. Section 3 presents our DOH prototype. Section 4 presents
results of preliminary performance evaluation. Section 5 discusses some related
work. Conclusions and future work are given in Section 6.

2 DOH Design

When designing the DOH content delivery network, two different types of users
should be considered: a regular user (called User) browsing the Web; and a
content provider (called here Publisher) publishing content of a web-site in DOH.
As shown in Figure 1, DOH consists of two types of nodes: Translators and DOH-
Nodes (or shortly Nodes).

The DOH-Nodes are connected by the DKS P2P middleware in a structured
P2P network. Each DOH-Node contains an FTP server, a web server, and is
connected to the DKS overlay network (see Figure 1). It serves HTTP requests
submitted by Users; confirms identity, inserts, and removes content provided by
Publishers.

Translator nodes handles interaction between the User and the system before
an HTTP request is sent to a DOH-Node. A Translator redirects the User’s
browser to DOH-Nodes based on a load-balancing strategy. Each Translator
maintains a cache for storing information about other Translators and DOH-
nodes including their load status and RTT times, referred to as the Translator-
cache. This information is used for redirection decisions, and when Nodes join.
Servicing of an HTTP request arrived to one of the DOH Translator nodes,
passes the following steps:

1. Redirection from the old home to a Translator. This step is performed when
the DNS entry for the requested web page has been updated;

2. Redirection from a Translator to a DOH-node based on current load of the
DOH nodes and network congestion;

3. Retrieval of the requested file (replica) from the Translator-cache of the node
or, if the cache misses, from the DHT of the DKS P2P system.

4. Unwrap, assemble, and write the file to the disk (cache) of the requested
Node;

5. Sending the requested file to the requesting client.
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Fig. 1. Architecture of the DKS-based Hosting (DOH) P2P Content Delivery Network

2.1 Translator

A web-hosting system like DOH allows storing (and replicating) content of sev-
eral web sites in one hosting system. As the content is referenced to by URLs,
the system needs to direct a HTTP request to one of DOH-Nodes that serve as
access points to the content, i.e. it needs to translate a requested URL to a new
URL that redirects a requesting client to one of the DOH-Nodes. To perform
this URL-to-URL translation, the DOH system includes Translator nodes that
are Users’ initial access points to the DOH content delivery network. Translators
serve as mediators that redirect web clients to one of the DOH-nodes based on
their current load and network congestion. Thus, the URL-to-URL translation
performed by Translators aims at load balancing in order to improve availability
and performance of the DOH content delivery network.

To perform load balancing, each Translator maintains a cache of information
on DOH-nodes: IP-addresses, load, and RTT values; and information on other
Translators it knows. This cache is called Translator-cache. When a Translator
receives an HTTP request, it checks the Translator-cache to find the currently
”best” DOH-node that can service the request. To redirect the client to a DOH-
node, the Translator issues an HTTP code 302 message that is used to respond
on requests for temporarily moved pages, and adds the IP address of the Node
to the new URL when forming the 302-code response to redirect the requesting
client. E.g., if the riginal URL is http://www.url.com/a/b/index.html, then
the translated URL is http://192.168.2.23/www.url.com/a/b/index.html,
where 192.168.2.23 has been chosen as the currently ”best” DOH node to
service the request.

Information in the Translator-cache is periodically updated by the Nodes. The
data collected in the Translator-cache are used to calculate Nodes’ load and net-
work congestion over time. The Translator-cache is also used for bootstrapping,
as it contains information on Nodes and Translators that are known to be up and
running. There are three levels of the caching structure: (1) level 1 keeps a list of
other known Translator-caches, (2) level 2 is the local Translator-cache level, and
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(3) level 3 is a Translator-cache-entry that stores data on an actual Node. When
a new Node joins DOH, it first contacts the Translator-cache (if any) it used
last time. If that cache is down, the Node queries a cache list for online caches.
The queried Translator-cache may respond with several valid entries, and the
new (booting) Node contacts one of these Nodes to join the system. The same
mechanism is used when a Publisher wants to find a Node to upload its content
on DOH.

2.2 DOH-Node

In DOH, web content and its replicas are stored in a hash table distributed among
the DOH-nodes. The content is replicated in DHT according to the symmetric
replication mechanism used in DKS[13].

Each DOH-Node includes three subsystems which are the DKS middleware
that connect the Node to the P2P DKS overlay network, an FTP server, and a
web server. When a client requests a file, the web server searches the file locally,
and if the file does not exist locally, or the local replica is considered too old,
the web server will perform a lookup operation in the DKS DHT to retrieve the
requested file. The FTP server of a DOH-node is used when Publishers upload
content.

Granularity of content stored in DHT
To store contents (or content references) of hosted web sites, the DOH CDN
uses a Distributed Hash Table (DHT) provided by the DKS P2P middleware[3].
When content of a web site is stored to or fetched from the DHT, either the
entire URL or a part of the URL is considered as a key. The hashed key value
determines a DOH-node responsible for the DHT-bucket in which the content is
(to be) stored.

There are three strategies of placement of web-site content identified by URLs
to the DHT, that differ in the granularity of a web-site content stored in a
bucket of the DHT: (1) file-wise placement (uses the entire URL as a key, e.g.
http://www.url.com/a/b/index.html); (2) directory-wise placement (uses the
directory part of the URL as a key, e.g. http://www.url.com/a/b/); (3) site-
wise placement (uses the web-sire part of the URL as a key, e.g. http://www.
url.com/).

With the file-wise placement, files that belong to the same web-site can be
stored in different DHT buckets and distributed among the DOH-nodes.

With the directory-wise placement, all files of the same directory are hashed
to the same bucket, i.e. stored on the same DOH-node. Even though the files are
hashed directory-wise it does not mean they have to be returned directory-wise
on a DHT get request. The DKS API allows a file name to be sent along with
the DHT get request as an additional parameter to retrieve specific entry (the
requested file).

The web-site-wise placement is a coarse-grained placement and is similar to
the directory-wise placement described above. The site-wise placement causes
the entire content of a web-site to be stored in the same DHT bucket.



DOH: A Content Delivery Peer-to-Peer Network 1031

The coarser the placement is, the lower is the level of content distribution.
In our DOH prototype, we support all three different levels of granularity. Pre-
liminary evaluation of file-wise and directory-wise distribution shows that the
system performance is not very sensitive to the granularity of the content dis-
tribution in the DHT but rather to prefetching and caching. One can expect
that the file-wise and directory-wise distribution allows improving performance
in the case of intensive concurrent accesses to a web-site, as well as improving
its availability in the case of node failures. We leave more detailed evolution of
the distribution strategies to our future work.

Symmetric Replication and Adaptive Caching
DKS builds on symmetric replication, which is built on-top of the DHT layer.
Symmetric replication of DHT content enables parallel lookups, which increase
the responsiveness of the system, while keeping the number of messages needed
for restoring the replication degree after dynamism low. In addition to the sym-
metric replication for reliability and higher performance, DOH also implements
an adaptive caching of requested content at DOH-nodes. The caching algorithm
has been devised based on a combination of the Directory scheme defined in [14]
with the entry caching scheme of DNS. We assume that whenever an object (a
file) is requested, it is likely to be requested again from the same or another
access point. Therefore it makes sense to cache the object on its way to the node
that originates the lookup operation. In DKS, the return path of passing the
object to the requesting node is recursive; therefore the object can be cached in
the nodes along the return path. Consistency of copies is weak and can be kept
by using the if-modified-since field built-in to the header of the HTTP protocol.
When a cache is full, the Least Recently Used (LRU) algorithm or some other
caching policy, could be used for deciding which objects to evict.

3 A System Prototype

We have implemented the DOH prototype in Java, using the DKS P2P middle-
ware with the DHT API[3], the Jetty[12] web server, and a modified JavaFTP[6]
server.

In the DOH-Node prototype, the web server functionality has been imple-
mented by modifying the Jetty web server, which is licensed under the Apache
license[4]. For uploading, downloading and removing content in DOH, we use
the modified JavaFTP server package, also licensed under the Apache license.
The DOH-Nodes are peers in the P2P DKS network, and the DKS DHT API
is used to store and retrieve content of web sites hosted in DOH. In order to
integrate the Jetty server in our prototype, we have extended the server so that
it creates a special handler that searches the DKS DHT if a requested file is not
found locally in the web server’s cache.

JavaFTP server is a package that implements the FTP standard We have
modified the server so that it allows a content provider to upload the files in the
DHT rather than to the host’s local file system. In order for the DOH system
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prototype to handle large objects, it uses data fragmentation that, we believe,
allows better control over memory usage and to avoid running out of memory
on a low-end server.

When a file is stored to the DHT the following steps are performed:

1. The key (it can be either the file name or the directory name or the web-site
name) is hashed to get a hash table index using SHA-1, shortened to 64 bits.

2. If necessary (it depends on the file size), the file is fragmented;
3. Each of the fragments or the entire file is put in the DHT entry defined by the

hash-table index. The put operation is based on the DKS lookup operation
that finds a DOH node responsible for the target bucket. placed.

When retrieving a file from DHT, a DOH node performs the following steps:

1. The key is hashed to obtain a hash table index;
2. A DHT get operation based on the DKS lookup operation is performed that

returns an array of entries (all the files) stored in the target DHT entry;
3. If fragmented, the requested file is assembled by combining the fragments.

Copies of the file are stored in the web-caches of the nodes involved in the
operation.

3.1 Implementation of a Translator

A Translator is a stand-alone node that serves as a web server for web-clients
accessing web-sites hosted in DOH. Translator receives HTTP requests and redi-
rects the clients to DOH-nodes. Translator provides the following functionality:
(1) maintains a cache of information on DOH nodes (IP addresses, load and RTT
times) and on other Translators (to retrieve information from their caches); (2)
provides load balancing so that it redirects HTTP requests to DOH-Nodes based
on their load and network congestion; (3) displays Node information to Publish-
ers in a human-readable format.

Each Translator redirects the clients to DOH nodes as described above except
of a special case when the requested URL refers to doh webcache.xml indicat-
ing that a Publisher asks for an IP address of a Node to upload content. In this
case, Translator replies with an XML page that contains information on Nodes
from its own Translator-cache. From this file the Publisher can choose a node to
connect to.

4 Preliminary Evaluation

In this paper, we present results of preliminary evaluation of the approach, leav-
ing more detailed evaluation to our future work. The DOH prototype has been
used to evaluate small-scale configuration mostly in order to verify the design,
whereas a specially developed DOH simulator has been used to evaluate impact
of different design choices (such as the use of content caches, the granularity of
content distribution) on the system performance and reliability of DOH with
varies (large) configurations.
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In our experiments and simulation, the performance is measured as a service
time that is the time from receiving a request to sending a reply. A single stand-
alone Jetty web-server (without DHT), has been chosen as a baseline. We assume
the synthetic workload formed of streams of HTTP requests issued by the num-
ber of concurrent independent clients, each of which sends a random sequence
of requests to retrieve different randomly selected files from different randomly
selected sites with a specified intensity. To generate random sequences of re-
quests, we assume the Zipf distribution, as suggested in [8] for the distribution
of incoming page requests in the Web.

4.1 Preliminary Evaluation of the DOH Prototype

We used the prototype mostly in order to validate the DOH design. The evalua-
tion testbed included several Pentium 3, 500 MHz computers with 256 MB RAM
running Linux (Red Hat 9.3). We report results of two series of experiments. In
the first series, 50 files of the mean size of 10Kb of 6 web-sites were uploaded
to a DOH-node. In the second series, the content was ”heavier”: 18 domains, 47
directories, and 503 files (mean size is still 10Kb). The number of nodes varied
from 1 to 6 nodes.

As expected, our experiments have shown that the DOH performance is very
sensitive to the use of file caches in DOH-nodes when increasing the number
of nodes, i.e. increasing the level of distribution of web-sites in DOH. These
results suggest that it is worth to make more efforts to find an caching strategy.
Evaluation of the prototype has also shown that the performance of DOH heavily
depends on the performance of the underlying DKS network: over 90% of the
time used by the system consumed by DKS-related activities when the file size
is increased to 4Mb.

We have also preliminary evaluated three different strategies of storing files
in DHT: file-, directory-, and site-wise - in order to see whether the system
performance is sensitive to the strategy used, and which of the strategies is the
best with respect to performance. Remind that the three placement strategies
use different parts of a URL as a key to determine a DOH-node responsible for
the content pointed to by the URL. Unfortunately, the evaluation results for
small-scale system configurations show that there is no clear best candidate to
use in all cases studied. If published web pages are changing rapidly or if the
load of the network is small, then the file-wise approach yields the best results.
If there are seldom changes in the stored sites or the load is high, then the
directory-wise or even the site-wise approaches are better to use. The system
can perform even better if it can support a combination of at least two of the
placement strategies, and DKS indeed supports this kind of flexibility.

A full-scale evaluation of the prototype should be done on configurations larger
than the setups we could afford for now. In our future work we intend to evaluate
large more realistic configurations of the prototype (with large number of nodes
and clients). Our future plans also include further performance optimization of
the prototype.
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4.2 Performance Evaluation Using the DOH Simulator

As we continue improving and optimizing performance of the DOH prototype
and, in particular, the DKS P2P middleware, we have developed an accurate
simulator of DOH in order to evaluate the impact of different design choices
(such as the use of caches in nodes, different strategies of storing files in DHT:
file-, directory-, and site-wise, prefetching, different replication schemes and the
number of replicas) and system changes (nodes leave the network, new nodes join
the network) on the overall system performance and reliability. The simulator
is based on timing estimates obtained from experiments on the DOH prototype
and a stand-alone Jetty web-server.

In our simulation, we assume the following workload: a random sequence of
requests with the predefined rate (1000-5000 requests/sec) is issued by several
clients to retrieve different randomly selected files from different randomly se-
lected sites; the content stored in DOH includes 18 sites, i.e. about 100 directories
with about 10 files in each directory; the average file size is assumed to be 30
Kb (concurring with the average file size in the Web, as shown in [5]); the ratio
of TTL for files in node caches varies from 0% (no cache) to 100% (always in
the cache) of the simulation time. The cache TTL defines how long a file stays
in a cache before it’s removed from the cache.

The average service time has been computed based on timing estimates ob-
tained from experiments on the DOH prototype with smaller configurations and
the Jetty web-server. We assume that there are three major factors that affect
the service time: (1) the current load of the server, (2) the size of the requested
file, and (3) whether the file is cached or not. The service time was computed as
follows:

Ts = 2 + Load× 0.85 + Miss× (15 + 2 × fileSize + H × 100 × log2 N)

Here Ts is the service time in ms; Load is the number of parallel requests served;
Miss ∈ 0, 1 indicates whether the cache misses (Miss = 1) or hits (Miss = 0);
fileSize is the size of the requested file in Kbytes; H ∈ 0, 1 indicates whether
the file is stored locally in one of the local DHT buckets (H = 0) or remotely
(H = 1) and a number of hops is required to find and fetch the file from DHT-
the probability that H = 1 is f/N , where f is the number of replicas per file in
DKS; N is the number of nodes. Numeric constants (in ms) in the formula are
average times obtained from experiments on the prototype and the stand-alone
Jetty web-server.

We have evaluated the effect of different design choices on the performance
of DOH. Figure 2 shows plots of the service time as the function of the number
of nodes for different TTL of cached content and different strategies of place-
ment of content to the DHT. As expected, it has been observed that the service
time is sensitive to the use of caches: the service time is shorter if cached con-
tent stays longer in the cache (i.e. the higher cache hit ratio). The service time
degrades as the number of nodes increases because of the increase in the DKS
lookup latency. However the service time degrades slower when TTL of cached
content is high. This result suggests that it is worth to make more efforts to
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(a) file-wise placement in DHT (b) directory-wise placement in DHT

Fig. 2. Effect of the use of caches on performance of DOH with different number of
nodes, different TTL ratio and different DHT placement strategies. Request rate is
2500 req/sec.

find (more) efficient caching strategies. Plots in Figure 2 also show that DOH
with the directory-wise placement (Figure 2 (b)) serves faster than DOH with
the file-wise placement (Figure 2 (a)) because the directory-wise placement is
combined with prefetching: when a file is fetched from DHT the entire directory
is prefetched to the cache of the requesting node.

We have compared performance of DOH with different number of nodes and a
stand-alone web server (indicated in plots as cases where the number of nodes is
1). Figure 3 shows plots of the service time for different request rates in DOH with
the directory-wise placement and different number of nodes. The TTL of cache
content is assumed to be 30 sec. Even though the DOH performance degrades as
the number of nodes increases, the service time of DOH with the large number of
nodes scales better than the service time of a single server for high request rates.
As expected, in the case of low workload, DOH with the small number of nodes
performs slower than a stand-alone Jetty server because of an extra overhead
introduced by the DKS middleware, that causes increase of the average service

(a) (b)

Fig. 3. Performance of DOH with the directory-wise DHT placement strategy. The
cache TTL ratio is 30% of 100 sec of the simulation time (i.e. a file stays in the cache
30 sec).
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time in DOH as the number of nodes increases. However, as the request rate
increases, DOH shows better performance scalability than a stand-alone Jetty
server: the DOHs service time does not increase as fast as the service time of
the stand-alone Jetty. For example, at the request rate 600 req/sec (100 parallel
requests), the average response time for Jetty is 87ms compared to 110ms for
DOH. However at service rate of 1170 req/sec (200 parallel requests), the average
response time for Jetty is 171ms compared to 135ms for DOH.

It has been observed that for each request rate there is a certain number
of nodes, at which the system shows minimum response time, i.e. there is no
improve in service time when increasing the number of DOH nodes beyond a
certain value. We believe that this effect depends on the distribution of content
in DHT and on how the content is cached in DHT nodes. We intend to study
this in our future work.

The simulator suggests that DOH will do well with service times under 300ms,
with request rates smaller than approximately 1200 requests per second per node.

Thus, our preliminary evaluation has shown that DOH would be able to handle
a flash crowd; however the price users would pay is that the page retrieval under
normal workloads would be sligthly slower than in the case of a stand-alone web
server.

5 Some Related Work

Many P2P systems, like those proposed in [18], [20], [15], [19], and [21], have been
used for creating DHTs. There are two main arguments for choosing DKS. First,
DKS provides local atomic joins and leaves that guarantees that the DHT will
never be in an inconsistent state. Second, DKS uses symmetric replication that
allows to improve lookup time as well as reliability of the DHT. It also allows
the client to get more than one result when doing a lookup. This feature can be
used in a voting protocol, making sure that the retrieved object not has been
tampered with. To our best knowledge, no other P2P overlay network provides
these features.

Globule[16], SCAN[7] and CoralCDN[10], all propose P2P CDN similar to the
one presented in this paper. The authors of Globule[16] make the observation
that local web space is cheap, and therefore it could be traded for non-local
space, creating replicas on different other servers (called slaves [16]) over the
world. In Globule, negotiation for the replication space, configuration, and man-
agement are not handled automatically but rather by a human, whereas DOH is
autonomous and has the ability to self-organize when a node joins/leaves. SCAN,
which is a P2P CDN proposed in [7], uses Tapestry[21] as an underlying P2P
network. One of the main goals of SCAN is to keep the number of replicas at a
minimum to reduce overhead. This may cause sites to be unavailable whenever
the master copy is unavailable. CoralCDN[10] uses the Coral[11] implementa-
tion of a Distributed Sloppy Hash Table to keep references to the master copy
(or valid cached copies) on different nodes. In CoralCDN, like in SCAN, if the
master copy of a site becomes unavailable for Coral, the site will soon become
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unreachable. In contrast to SCAN and CoralCDN, DOH uses symmetric replica-
tion to improve availability of hosted web-sites. Furthermore, in CoralCDN the
URLs need to be ”coralized” (see [10]) to be a part of the overlay network, i.e.
CoralCDN is not even initally transparent to the end-users, which is one of the
major design goals of DOH. DotSlash[22] is described by the authors as being a
rescue system for web servers during hotspots. The authors of DotSlash do share
the same motivation for developing a P2P CDN as in this paper: to help web
servers survive a flash crowd. DotSlash does not store content globally (i.e. does
not distribute and/or replicate a web-site among nodes as it is done in DOH) but
all servers will store their own content. When a flash crowd occurs, an overlay
network with rescue servers will be created, and the ”hot objects” will be cached
at these servers during the flash crowd. This network will be abandoned when
workloads are back to normal. In contrast to DotSlash, DOH allows to distribute
content of a web-site and its replicas among nodes making the web site more
available for intensive concurrent requests.

6 Conclusions and Future Work

In this paper we have presented an approach to building a content delivery net-
work as a structured P2P system of web-servers. This approach allows improving
availability and scalability of a web site due to the load distribution, multiple ac-
cess points, and replication. Such content delivery P2P network of collaborative
web-servers can be used as a Web-hosting environment to host several web-sites.
This approach can also be considered as one inexpensive solution for surviving
of a flash crowd[1].

To validate, and preliminary evaluate our approach we have developed a sys-
tem prototype called DOH (DKS Hosting system) based on the DKS P2P mid-
dleware that integrate the Jetty web-servers in a scalable content delivery net-
work (web-hosting system). Each node in the DOH network is a DKS-node, i.e.
is a part of the DKS overlay network, has a web server (to retrieve files) and an
FTP server (to download/upload files). The network also includes Translators
which are client contact points to the DOH network. Translators are used to
distribute requests among DOH nodes to achieve load balancing. A Translator
redirects web clients to DOH nodes based on the nodes load and network conges-
tion. Each Translator maintains a cache of information about nodes (including
their load and RTT times) that are known to the system. The Translator-cache
is also used to help a content provider to find nodes , when uploading content
using FTP.

DOH stores files in a Distributed Hash Table (DHT) provided by DKS so each
node is able to retrieve the requested files from the DHT and cache them locally
for future requests. Thus when a sudden traffic surge occurs, there will not only
be one server (DHT-node) serving all the requests but a network of cooperating
web servers helping each other by dividing the load.

We have evaluated the prototype for small-scale DOH configurations. To pre-
liminary evaluate medium- and large-scale setup we have developed a DOH
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simulator based on timing estimates obtained from the performance experiments
on the prototype. Evaluation results show that DOH performs better than a
stand-alone web-server in the case of the high request rate (a large number of
simultaneous requests) and the response time in DOH scales better than the
response time in a single web-server, so the approach is valid for solving the
intended problem of a flash crowd. However, as expected, with a low request
rate, the single web-server outperforms DOH. Experiments also show that per-
formance of DOH is very sensitive to the use of caches. We can also expect that
explicit replication supported in DKS will improve performance of the prototype.

Two scenarios of performance has thus been identified: during low and high
request rate, and both needs to be addressed in our future work which also
includes more detailed performance evaluation, including assessment of impact
(if any) of replication on service time; improving the caching mechanism in order
to improve system performance; extending the system design to support dynamic
contents (web-based applications). There are many issues to be considered when
extending the system for dynamic contents, e.g. how to deploy and replicate
applications, how to handle transactions, states, and failures; how to store the
state to achieve failover. We leave answering all these questions to our future
work.
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The use of high performance and grid computing has spread rapidly, revolution-
ising the ability of scientists and engineers to tackle the challenges they face.
Driven by commoditisation and open standards: the widespread availability of
parallel computers, large data storage, fast networks, maturing Grid middleware,
and distributed service-oriented technologies have led to the development and
deployment of large scale distributed simulation and data analysis solutions in
many areas. The papers in this topic highlight recent progress in applications
of all aspects of distributed computing technologies with an emphasis on suc-
cesses, advances, and lessons learned in the development, implementation, and
deployment of novel scientific, engineering and industrial applications on high
performance and grid computing platforms. Today’s large computational solu-
tions often require access to or generate large volumes of data- indeed today
seamless data access and management can be as important to the underlying
computational algorithm as raw computing power. Papers in the sessions high-
light data intensive applications which couple together High Performance/ Grid
computing with large-scale data access/ management.
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Abstract. We consider the use of task pool teams in implementation
of the master equation on random Sierpinski carpets. Though the ba-
sic idea of dynamic storage of the probability density reported earlier
applies straightforward to random carpets, the randomized construction
breaks up most of the simplifications possible for regular carpets. In
addition, parallel implementations show highly irregular communication
patterns. We compare four implementations on three different Beowulf-
Cluster architectures, mainly differing in throughput and latency of their
interconnection networks. It appears that task pool teams provide a pow-
erful programming paradigm for handling the irregular communication
patterns that arise in our application and show a promising approach
to efficiently handle the problems that appear with such randomized
structures. This will allow for highly improved modelling of anomalous
diffusion in porous media, taking the random structure of real materials
into account.

1 Introduction

Random fractal structures are used to model the random structural properties
found in many real materials such as aerogels, porous rocks or cements. There
we find a fractal structure on certain length scales (spanning about two or three
decades) [1], while on larger scales the structure looks rather homogeneous. One
feature of these materials is that diffusion is anomalous and the behaviour is
very well modeled by random walk processes on regular fractals like Sierpinski
carpets [2]. But, these regular fractal structures do not exhibit the transition to
normal diffusion found in the real materials. This transition could be captured
by performing the Sierpinski carpet construction only to some finite stage and
repeating the resulting structure, thereby obtaining a crystal like structure with
fractal unit cells. However, this does not capture the randomness of the local
fractal structure present in real materials, which has quite an influence on the
diffusion properties [3]. This randomness in local structure can be modeled by
using newly generated carpets instead of repeating one randomly generated unit
cell. While in regular (crystal) structures added disorder usually leads to a de-
crease in diffusion or transport properties, we find here that disorder can also
enhance diffusion on these structures. This is also observed in experiments on
ionic conduction in solid electrolytes [4].
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In this paper we report how a master equation approach to simulating random
walks on random Sierpinski carpet structures may be implemented efficiently.
This method is an elegant way to calculate the evolution of the probability den-
sities of random walkers on such structures from a given initial distribution.
This initial distribution is assumed to have finite support, usually chosen to be
a delta distribution. Though we can apply some concepts developed for regular
Sierpinski carpets [2] in a straightforward manner, the randomness of the result-
ing structures poses some challenges not apparent when considering the simpler
regular case. This article describes strategies that can be used for an efficient
parallel implementation. An important problem that needs to be solved in order
to obtain an efficient parallelization is to develop a strategy for handling the ir-
regular communication patterns that arise due to the random, dynamic growth
of the carpet structure covered by the probability distribution. We show that the
concept of task pool teams [5] provides a suitable framework for handling these
issues.

2 Random Sierpinski Carpets

Given a set of M×M black-and-white patterns (the generators) and a probability
distribution for the choice among these patterns, the algorithm to construct
random Sierpinski Carpets described by Reis [6] and ben-Avraham [7] is as
follows:

1. start from a square (level 0).
2. divide each square into M × M subsquares.
3. choose a generator pattern at random (according to its probability)
4. remove the subsquares corresponding to white markings in the selected gen-

erator
5. for the next level, repeat steps 2 – 4 for each remaining subsquare.

Figure 1 shows an example of the first two refinement steps for a set of three
different generators. Note that with just a single generator we obtain regular
Sierpinski carpets as a subset of random Sierpinski carpets. The construction
procedure can be repeated ad infinitum, where the resulting structure is a ran-
dom Sierpinski carpet [6]. If we stop at some level l, the resulting pre-carpet
pattern of size M l × M l is referred to as an iterator of level l.

These pre-carpet structures give a good model for the (in a statistical sense)
self-similar micro-structure of porous materials. We therefore use iterators as
basic unit in our algorithm to build larger structures by connecting single it-
erators. For instance, repeating a given iterator in all directions, we obtain a
‘crystal’ with random unit cell. Extending the carpet in all directions by ap-
pending newly created random iterators, we obtain a structure with the same
properties as real porous materials. The last method is certainly the most dif-
ficult to implement, as virtually no savings can be made in the description of
the structure. We therefore discuss an algorithm that allows efficient simulation
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level 1 level 2

p1 = 1
3

p3 = 1
3

p2 = 1
3

Fig. 1. The first two construction steps for a random Sierpinski carpet constructed
from three different generators with equal probability

for the last, most demanding case. However, it can easily be modified to handle
other cases well.

In order to iterate the master equation on the resulting structure, we introduce
the following terms and notations: Consider a random walker is allowed to hop
between the midpoints of the tiles (black subsquares) in a carpet. In one discrete
time step, the walker can move to one of the neighbouring tiles. De Gennes [8]
introduced the analogy of a random walker as an “ant in a labyrinth” and with
the so called myopic ant or blind ant algorithms, we obtain the probabilities Wi j

for a walker to arrive at tile i coming from tile j. Given some probability p(t, i)
to find a walker on tile i at time t, we can calculate the probability p(t+1, i) by
accounting for the gain and loss of probability by walkers crossing the boundaries
as

p(t + 1, i) = (1 − Li) p(t, i) +
∑

j∈<i>

Gi j p(t, j) . (1)

The sum is over the set of all neighbours < i > of tile i, Gi j = Wi j are
the gain factors and Li =

∑
j∈<i> Wj i is the overall loss of tile i. By iterating

the master equation (1) starting with a delta distribution at the starting point
we obtain a new distribution for every time t. This distribution determines the
mean square displacement accurately, free of the fluctuations pertinent to direct
simulation methods. From this, not only the random walk dimension of the
fractal can be determined, but also can this probability distribution be compared
with theoretical descriptions of anomalous diffusion, e.g. by fractional diffusion
equations.

Iteration of the master equation, however, requires a large amount of computer
RAM, as for every point in the carpet that can be reached by a random walk
in the considered time t, memory to store two probability values need to be
allocated. This memory requirement grows considerably with simulation time t,
thus an efficient way of storing and updating these probability values is needed.
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Fig. 2. Two adjacent iterators of level 3 with their body tiles (squares), boundary tiles
(small squares) and halo tiles (outlines)

3 Data Structures and Implementation

In [2] we have already reported on an efficient algorithm for regular carpets.
Though the basic idea of dynamic storage of p(t, i) applies straightforward to
random carpets, the randomized construction breaks up most of the simplifica-
tions possible for regular carpets. For instance, with a regular carpet an iterator
pattern of some level determines the whole carpet structure. This is not the case
for randomized carpets where each iterator is different. Also, with a dynami-
cally growing data structure the connections to neighbour iterators cannot be
predicted in advance of the simulation from analysis of the iterator. Instead, it
can only be determined once the carpet has actually been constructed and all
neighbour iterators are known.

Our basic unit of processing remains an iterator of level l. We start with
one iterator that contains the tile with the non-zero part of the initial delta
distribution. The carpet is described by a linked list of iterator descriptions,
that store topological information and the probability values at the current and
next time step. In every time step this list is traversed once in order to calculate
the probability values for the next time step. Within an iterator we have to
distinguish the following types of black tiles: body tiles are inside the iterator but
not adjacent to a boundary, boundary tiles are inside the iterator and adjacent
to a boundary, halo tiles are outside the iterator adjacent to a boundary tile.
Figure 2 illustrates this situation showing two iterators with their body ( ),
boundary ( ), and halo ( ) tiles.

For body tiles we can perform the update calculation without any additional
information other than that stored for the iterator required. For boundary tiles,
we do not know the surrounding carpet topology in the beginning. Furthermore
we need to know the probability value(s) at the adjacent halo tile(s) in order to
perform the update for a given tile. Fortunately, the corresponding terms in (1)
vanish initially because we have zero probability that walkers are at those posi-
tions. Only as soon as the master equation predicts a non-zero probability value
at a boundary tile for the next iteration step we need to make sure the neigh-
bouring iterators are present and the data structures are consistent. Halo tiles
are not updated according to (1) but by copying the values after updating the
corresponding boundary tiles from the neighbour iterator. Doing so allows the
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task of iterating the master equation to be distributed among multiple processes
by distributing the iterators.

4 Parallel Implementation

For the parallel implementation we use a master-worker scheme. The master
is responsible of overall program control as well as to keep track of the global
carpet topology. With the data structures described above, the workers receive
a number of iterator descriptions for the iterators they have to process. Thus
the global list of iterators to process is split among the workers and each worker
has its local list. A load balancing mechanism is implemented by assigning new
iterators to the least-busy workers where load is determined by the number of
tiles that need to be updated per iteration.

The processing of one time step is organized in three phases:

1. The master informs all workers to start processing their local list of iterators
for updating the probability values of the body and boundary tiles. How-
ever, it may happen that workers arrive with non-zero probability at bound-
ary tiles, thereby making a carpet extension necessary. If this happens, the
worker reports this event to the master and processes the next iterator until
it has finished traversing its local list. The master collects messages about
carpet extensions necessary.

2. After all workers have finished processing their local iterator list, the master
extends the carpet as necessary by assigning newly created iterators to the
workers and notifying the workers of the changed carpet topology.

3. Finally, as the last phase in every iteration the boundary values are ex-
changed. Once this has been finished, results may be collected or a new
iteration is started.

For the simulation of about 32000 time steps, the runtimes of the three phases
for a straightforward implementation are shown in Figure 3. The carpet increases
up to about 2300 iterators, each of size 53×53. The implementation uses MPI to
send the various control and data messages. The master and every worker process
is assigned to a single cluster node. Measurements have been performed on three
different Beowulf-type clusters: (A) the Chemnitzer Linux Cluster CLiC with
512 nodes with single Pentium III/800MHz CPUs, 512MB RAM and FastEth-
ernet interconnect and a Xeon cluster with dual Xeon/2GHz CPUs, 1GB RAM
and either (B) GigabitEthernet or (C) SCI interconnects. For the Fast- and
GigabitEthernet interconnects, the LAM-MPI implementation and for SCI in-
terconnect the optimized SCAMPI implementation has been used.

As can be seen from Figure 3, the amount of wall-time spent in the first
phase decreases as the number of nodes is increased. The carpet extension phase
has a fairly constant and rather small amount of execution time, because the
carpet extension is handled by the master only. The longest time, however, is
spent in the third phase performing the boundary update. While with the SCI
interconnect (cluster C) a slight speedup can be observed, the amount of time
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Fig. 3. Runtimes (in wall-time seconds) of the three phases of the main loop: 1) iter-
ation of (1) for each iterator, 2) carpet extension and fixup where new iterators are
appended, 3) update of boundary values (possibly between processors)

spent in boundary update remains fairly constant for GigabitEthernet (cluster
B). For FastEthernet (cluster A) communication time actually increases with
the number of nodes. This is because the communication scheme used in the
reference implementation results in many short messages, resulting in high la-
tency times adding up. Another drawback is the highly irregular communication
scheme arising from sending and receiving the boundary updates. Because for
a single-threaded worker the resulting irregular communication protocol cannot
be proven deadlock-free, the third phase is serialized: each worker either sends
messages to other workers or waits for incoming messages. The best improve-
ment can therefore be achieved with a better implementation of the boundary
update phase.

4.1 Optimized Boundary Updates

For parallelizing the boundary update phase by handling the irregular commu-
nication we use task pool teams. The task pool concept uses a decomposition of
the computational work into tasks. A task pool stores the tasks and threads
are responsible for the execution of tasks. Task pool teams are an approach for
extending the idea of task pools to the use of parallel platforms with distributed
memory. They combine task pools on single cluster nodes with explicit communi-
cation. We use the implementation of task pool teams for SMP cluster presented
in [5], which uses Pthreads for SMPs and MPI for communication between SMP
nodes. A specific communication thread and a number of worker threads run on
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each SMP node. Thus, each worker of the master-worker scheme is now actu-
ally realized as a collection of internal worker threads and one communication
thread. An advantage of task pool teams is to support irregular communication
requirements.

In order to speedup the boundary updates we focused on three additional
implementations:

– As a first implication from the strong impact of the latency, we start to
collect single boundary update messages for each worker until a sufficiently
large message can be sent. This avoids many small messages in favour of
larger messages thereby reducing the high impact of the latency to start
communication. We will refer to this as the boundary collect mechanism.

– To achieve a parallel update with task pool teams we use the communi-
cation thread to handle update requests from other workers. At the same
time a worker thread is able to process the local iterator list performing the
boundary updates. The messages are sent using the specific asynchronous
communication which is mapped to MPI operations by the task pool teams
implementation. This provides individual point-to-point communication be-
tween pairs of workers whenever messages need to be transferred. We will
refer to this as the asynchronous parallel update.

– Another method for parallel update with task pool teams uses the specific
communication for notifying the workers to perform a boundary update.
After this notification all workers participate in sending their messages syn-
chronous by all-to-all communication operation. We refer to this method as
the synchronous parallel update.

Both parallel update methods use the boundary collect mechanism for sending
larger messages instead of many small ones.

As can be seen from Figure 4, the boundary collect mechanism provides a
saving in runtime of about an order of magnitude. This is caused by avoiding
many small messages between nodes handling adjacent iterators. Especially for
the high latency Fast- and GigabitEthernet (on clusters A and B) this provides
the most substantial savings. The additional use of the parallel update scheme
leads to different results with the different architectures. For the uniprocessor
cluster (A) using only a small number of nodes the runtimes remain fairly un-
changed. However, with an increasing number of nodes there is a slight saving in
runtime. These rather fair improvements can be attributed to the use of multi-
threaded programming on uniprocessor architectures. Using the asynchronous
and synchronous method makes no difference. Much better results are obtained
with the SMP cluster (B and C). Using the parallel update we observe a gain
of another order of magnitude in execution time. This is achieved by using the
task pool teams concept for handling the irregular communication. Additional
benefits are achieved by overlapping of communication and computation through
the parallel execution of communication and worker thread. The results for the
asynchronous parallel update are shown only for the SCI interconnect (cluster
C). In comparison with the synchronous method the savings in execution time
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Fig. 4. Runtimes of various implementations of the boundary update phase: reference
implementation, boundary collect mechanism and task pool teams with asynchronous
and synchronous parallel boundary updates

are rather small. The runtime results for the GigabitEthernet interconnect with
the LAM-MPI implementation in the multi-threaded environment are diverse
and not shown in the diagram.

4.2 Optimized Iterator Updates and Overall Runtimes

Due to the good results using the task pool teams with the SMP cluster, we ex-
tend their usage to another computational expensive part of the simulation. The
processing of the local iterator list in the first phase can easily be split into inde-
pendent tasks. These tasks are executed in parallel by different worker threads.

As can be seen from Figure 5, the multi-threaded implementation of the task
pool teams leads to another saving in runtime. For the multiprocessor archi-
tecture this is the expected behaviour. However, for the uniprocessor cluster
there appears also a slight decrease in execution time as the number of nodes in-
creases. On the multiprocessor cluster no additional benefits are achieved using
more worker threads than CPUs per node available.

Finally, in Figure 6 we compare the overall runtimes of the optimizations using
task pool teams and the reference implementation. On three different clusters
the reference implementation shows a different behaviour in parallel execution.
Savings in runtime with an increasing number of nodes are only achieved with
the SCI interconnect (cluster C) while using Fast- and GigabitEthernet (cluster
A and B) the runtimes increase or remain constant. With the optimizations this
behaviour completely change and first of all becomes more independent from the
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using task pool teams
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different interconnects. The most significant results are achieved using task pool
teams on multiprocessor clusters (B and C). For those an increased number of
nodes still leads to a decrease in execution time.

5 Conclusions

We have considered an implementation of the master equation approach to sim-
ulating diffusion on random Sierpinski carpets. As iterating the master equation
requires a huge amount of computer RAM, we have favoured a parallel imple-
mentation. However, due to the randomness in the construction of the struc-
tures, a parallel implementation shows highly irregular communication patterns
that demand adequate strategies for implementing efficient boundary updates.
In comparison with a reference implementation that uses MPI communication
operation directly, we have analyzed four implementations. The first introduces
the boundary collect strategy, collecting small messages and sending them as
one large MPI message. The second two use the concept of task pool teams to-
gether with synchronous and asynchronous communication operations. The last
extends the use of task pool teams to a more computational expensive part of the
algorithm. We observe that on high latency communication networks, such as
Fast- and GigabitEthernet, the savings due to the boundary collect strategy are
most important. However, with an increasing number of nodes and taking SMP
clusters into account, the use of task pool teams can result in a further reduction
of the boundary update time of about an order of magnitude. Altogether, using
the task pool teams concept we achieved a highly efficient implementation for
the utilization of multiprocessor clusters.
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Abstract. The memory usage of sparse direct solvers can be the bottleneck to
solve large-scale problems. This paper describes a first implementation of an out-
of-core extension to a parallel multifrontal solver (MUMPS). We show that larger
problems can be solved on limited-memory machines with reasonable perfor-
mance, and we illustrate the behaviour of our parallel out-of-core factorization.
Then we use simulations to discuss how our algorithms can be modified to solve
much larger problems.

1 Introduction

The solution of sparse systems of linear equations is a central kernel in many simula-
tion applications. Because of their robustness and performance, direct methods can be
preferred to iterative methods. In direct methods, the solution of a system of equations
Ax = b is generally decomposed into three steps: (i) an analysis step, that considers
only the pattern of the matrix, and builds the necessary data structures for numeri-
cal computations; (ii) a numerical factorization step, building the sparse factors (e.g.,
L and U if we consider an unsymmetric LU factorization); and (iii) a solution step,
consisting of a forward elimination (solve Ly = b for y) and a backward substitution
(solve Ux = y for x). For large sparse problems, direct approaches often require a large
amount of memory, that can be larger than the memory available on the target platform
(cluster, high performance computer, . . . ). In order to solve increasingly large problems,
out-of-core approaches are then necessary, where disk is used to store data that cannot
fit in physical main memory.

Although several authors have worked on sequential or shared-memory out-of-core
solvers [1,2,3], sparse out-of-core direct solvers for distributed-memory machines are
less common. In this work, we aim at extending a parallel multifrontal solver (MUMPS,
for MUltifrontal Massively Parallel Solver, see [4]), in order to enable the solution of
larger problems, thanks to out-of-core approaches. Recent contributions by [5] and [6]
for uniprocessor approaches pointed out that multifrontal methods may not fit well an
out-of-core context because large dense matrices have to be processed, that can repre-
sent a bottleneck for memory; therefore, they prefer left-looking approaches (or switch-
ing to left-looking approaches). However, in a parallel context, increasing the number of

� This work was done during an INRIA post-doctoral position at ENSEEIHT-IRIT, Toulouse,
France.
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processors can help keeping such large frontal matrices in-core. Note also that another
type of approach is based on virtual memory and system paging, that can be controlled
by low level mechanisms [7] in relation with the application and provide better per-
formance than default LRU mechanisms. However, such approaches are very closely
related to the operating system and are not adapted when designing portable codes.

This paper is organized as follows. After a quick description of the memory manage-
ment in multifrontal methods (Section 2), we present in Section 3 an approach to store
the sparse factors L and U to disk. We will observe that this allows us to treat larger
problems with a given memory, or the same problem with less memory. In Section 3.4,
both a synchronous approach (writing factors to disk as soon as they are computed)
and an asynchronous approach (where factors are copied to a buffer and written to disk
only when the buffer is full) are analyzed, and compared to the in-core approach on
a platform with a large amount of memory. Finally, in order to process much larger
problems, we present in Section 4 simulation results where we suppose that the active
memory of the solver is also stored on the disk and study how the overall memory can
further be reduced. This study is the basis to identify the bottlenecks of our approach
when confronted to arbitrarily large problems.

2 Memory Management in a Parallel Multifrontal Method

In multifrontal methods, the task dependencies are represented by a so-called assembly
tree [8,9], that is processed from bottom to top during the factorization. At each node
of the tree is associated a so-called frontal matrix, or front, and a task consisting in the
partial factorization of the frontal matrix. The partial factorization produces a Schur
complement, or contribution block, which will be used to update the frontal matrix of
the parent node (see [10], for example, for more details). This leads to three areas of
storage, one for the factors, one for the contribution blocks, and another one for the cur-
rent frontal matrix [10]. The active memory (as opposed to the memory for the factors)
then corresponds to the sum of the contribution blocks memory (or stack memory) and
the memory for the current active matrix. During the factorization process, the memory
required for the factors always grows while the stack memory that contains the contri-
bution blocks varies: when the partial factorization of a frontal matrix is performed, a
contribution block is stacked which increases the size of the stack; on the other hand,
when the frontal matrix of a parent is formed and assembled, the contribution blocks of
the children nodes can be discarded and the size of the stack decreases1.

From the parallel point of view, the parallel multifrontal method as implemented in
MUMPS uses a combination of static and dynamic scheduling approaches. Indeed, a first
partial mapping is done statically (see [11]) to map some of the tasks to the processors.
Then, for parallel tasks corresponding to large frontal matrices of the assembly tree, a
master task is in charge of the elimination of the so-called fully summed rows, while
dynamic scheduling decisions are used to select the processors in charge of updating the
rest of the frontal matrix (see Figure 1). Those decisions are taken to balance workload,
possibly under memory constraints (see [12]).

1 In parallel, the contribution blocks management may differ from a pure stack mechanism.



A Preliminary Out-of-Core Extension of a Parallel Multifrontal Solver 1055

3 Out-of-Core Multifrontal Approach

3.1 Preliminary Study

In the multifrontal method, the factors produced during the factorization step are not re-
used before the solution step. It then seems natural to first focus on writing them to disk.
Thus, we present a preliminary study which aims at evaluating by how much the in-core
memory can be reduced by writing the factors to disk during the factorization. To do so,
we simulated an out-of-core treatment of the factors: we free the corresponding memory
as soon as each factor is computed. Of course the solution step cannot be performed as
factors are definitively lost, but freeing them allowed to analyze real-life problems on a
wider range of processors (in this initial study).

We measure the size of the new peak of memory (which actually corresponds to
the active memory peak) and compare it to the one we would have with an in-core
factorization (i.e. the total memory peak). In a distributed memory environment, we are
interested in the maximum peak obtained over all the processors as this value represents
the memory bottleneck.

For a small number of processors, we observe that the active memory is much smaller
than the total memory. In other words, if factors are written to disk as soon as they
are computed, only the active memory remains in-core and the memory requirements
decrease significantly (up to 80 % in the sequential case).

On the other hand, when the number of processors increases, the peak of the active
memory decreases more slowly than the total memory as shown in Figure 2. For ex-
ample, on 64 processors, the active memory peak reaches between 50 and 70 percent
of the peak of total memory. In conclusion, on platforms with small numbers of pro-
cessors, an out-of-core treatment of the factors will allow us to process significantly
bigger problems; the implementation of such a mechanism is the object of Section 3.2.
Nevertheless, either in order to further reduce memory requirements on platforms with
only a few processors or to have significant memory savings on many processors, we
may have to treat both the factors and the active memory with an out-of-core scheme.
This will be studied in Section 4.
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3.2 Out-of-Core Management of the Factors

The performance of I/O mechanisms are essential and impact directly the performance
of the whole application. Neither MPI-IO [13] (because files are not shared by proces-
sors in our case) nor FG [14] (our I/O threads do not interfere with each other) match
our purpose. Both AIO, an asynchronous I/O mechanism optimized at the kernel level,
and the recent Fortran 2003 asynchronous I/O layer were not available on our target
platform (see Section 3.3). We finally used the standard C I/O routines fread/fwrite and
read/write (or pread/pwrite when available) which are known to be efficient low-level
kernels.

In the synchronous I/O scheme, the factors are directly written with a synchronous
scheme using the standard I/O subroutines (either fread/fwrite or read/write). In the
asynchronous I/O scheme, we associate with each MPI process of our application an I/O
thread in charge of all the I/O operations. This allows us to overlap the time needed by
I/O operations with computations. The I/O thread is designed over the standard POSIX
thread library (pthread library). The communication and the synchronization between
the computational thread and the I/O thread are designed using semaphore mechanisms.
The communication scheme between the two threads is described in Figure 3. Each time
an I/O operation has to be performed, the computational thread posts an I/O request
and inserts it into the queue of waiting requests. Concerning the I/O thread, it treats
the I/O requests in the queue of waiting requests using a FIFO strategy. Once an I/O
request is finished, it is inserted in the queue of finished requests by the I/O thread.
The computation thread can then remove it from this queue when checking for the
completion of the request.

Together with the two I/O mechanisms described above, we designed a buffered I/O
scheme (that can be either synchronous or asynchronous). This approach relies on the
fact that we want to free the memory occupied by the factors as soon as possible without
necessarily waiting for the completion of the corresponding I/O. Thus, and in order to
avoid a complex memory management in a first approach, we added a buffer where
factors are copied before they are written to disk. The buffer is divided into two parts
so that while an asynchronous I/O operation is occurring on one part, factors that are

Computational
 thread

I/O thread

Queue of 
waiting requests 

Queue of 
finished requests

Disk

Semaphore

I/O

Semaphore

Fig. 3. Thread communication scheme
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being computed can be stored in the other part (double buffer mechanism allowing the
overlap of I/O operations with computation).

3.3 Experimental Environment

In order to study the impact of the proposed mechanisms, we now experiment with them
on several problems (see Table 1) extracted from either the PARASOL collection2 or
coming from other sources. The tests have been performed on the IBM SP system of
IDRIS3 composed of several nodes of either 4 processors at 1.7 GHz or 32 processors
at 1.3 GHz. On this machine, we have used from 1 to 128 processors with the following
memory constraints: we can access 1.3 GB per processor when asking for more than
128 processors, 3.5 GB per processor for 17-64 processors, 4 GB for 2-16 processors,
and 16 GB on 1 processor.

Table 1. Test problems

Matrix Order NZ Type Description
AUDIKW 1 943695 39297771 SYM 1368.6 Automotive crankshaft model (PARASOL)
CONESHL mod 1262212 43007782 SYM 790.8 provided by SAMTECH; cone with shell and solid el-

ement connected by linear constraints with Lagrange
multiplier technique

CONV3D64 836550 12548250 UNS 2693.9 provided by CEA-CESTA; generated using AQUILON
(http://www.enscpb.fr/master/aquilon)

ULTRASOUND80 531441 330761161 UNS 981.4 Propagation of 3D ultrasound waves, provided by M.
Sosonkina, larger than ULTRASOUND3

By default, we used the METIS package [15] to reorder the matrices and thus limit
the number of operations and fill-in arising in the subsequent sparse factorization.
The results presented in the following sections have been obtained using the dynamic
scheduling strategy proposed in [12].

The I/O system used is the IBM GPFS [16] filesystem. With this filesystem it was not
possible to write files on disks local to the processors and some performance degrada-
tion was observed when several processors write/read an amount of data simultaneously
to/from the filesystem: we observed a speed-down between 5 and 50 from 2 to 64 pro-
cessors when each processor writes a block of 800 MBytes. Finally, it is important to
note that we chose to run on this platform because it allows us to run large problems
in-core and thus compare out-of-core and in-core approaches (even if the behaviour of
the filesystem is not optimal for performance).

3.4 Experiments

First, we have been able to observe that for a small number of processors we use signifi-
cantly less memory with the out-of-core approach: the total memory peak is replaced by
the active memory peak, with the improvement ratios of Figure 2. Thus the factorization
can be achieved on limited-memory machines.

2 http://www.parallab.uib.no/parasol
3 Institut du Dveloppement et des Ressources en Informatique Scientifique.
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Fig. 4. Execution times (normalized with respect to the in-core case) of the synchronous and
asynchronous I/O schemes

We now focus on performance issues and report in Figure 4 a comparative study of
the in-core case, the synchronous out-of-core scheme and the asynchronous buffered
scheme, when varying the number of processors.

Note that for the buffered case, the size of the I/O buffer is set to twice the size of
the largest factor block (to have a double buffer mechanism). As we can see, the per-
formance of the out-of-core schemes is indeed close to the in-core performance for the
sequential case (note that we were not successful in running the CONV3D64 matrix on
1 processor with the in-core scheme because the memory requirements are larger than
16 GB). The out-of-core schemes are at most 20% slower than the in-core case while
they need an amount of memory that can be 80 percent smaller as shown in Figure 2
for one processor. Concerning the parallel case, we observe that with the increase of
the number of processors, the gap between the in-core and the out-of-core cases in-
creases. The main reason is the performance degradation of the I/O with the number
of processors that we mentioned at the end of Section 3.3. In order to avoid this prob-
lem, we have experimented with the smallest of our large test problems on a machine
with local disks. In this case, we do not have such a performance degradation, as shown
in Figure 5; on the contrary, the out-of-core schemes perform as well or even better than
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the in-core one (cache effects resulting from freeing the factors from main memory and
using always the same memory area for active frontal matrices). Finally, concerning
the comparison of the out-of-core schemes, we can see that the asynchronous buffered
approach performs better than the synchronous one. However, it has to be noted that
even in the synchronous scheme, the system allocates data in memory that also allows
to perform I/O asynchronously, in a way that is hidden to the application. Otherwise,
the performance of the synchronous approach would be much worse.

We artificially decreased the size of the I/O buffer on the matrix CONESHL MOD
on 32 processors (default size was 9.5 million reals for this matrix). We can see from
Figure 6 that the factorization time decreases when the size of the buffer increases.
Indeed, in our strategy, the nodes that cannot fit into the buffer are written synchronously
to disk, slowing down the factorization. (Note that in all cases the size of the buffers
ensures a sufficient granularity for the performance of I/O.)

Concerning the solution phase, the size of the memory will generally not be large
enough to hold all the factors. Thus, factors have to be read from disk, and the I/O
involved increase significantly the time for solution. Note that we use a basic demand-
driven scheme, relying on the synchronous low-level I/O mechanisms from Section 3.2.
We have observed that the performance of the out-of-core solution step is often more
than 10 times slower than the in-core case. Although disk contention might be an issue
on our main target platform in the parallel case, the performance of the solution phase
should not be neglected; it becomes critical in an out-of-core context and prefetching
techniques in close relation with scheduling issues have to be studied. This is the object
of current work by the MUMPS group in the context of the PhD of Mila Slavova.

4 Simulation of an out-of-core Stack Memory Management

In Section 3, we presented a first out-of-core approach for the parallel multifrontal fac-
torization, consisting in writing factors to disk as soon as possible. The results ob-
tained have shown the potential of the approach and how larger problems can be treated.
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However this approach also has certain limitations and the stack memory now becomes
the limiting factor. Therefore, the next step is to manage the stack of contribution blocks
with an out-of-core scheme, where a contribution block may be written to disk as soon
as it is produced, and read from disk when needed (either with a prefetching mechanism
or with a demand-driven scheme).

With the objective to assess the potential of such an approach, we perform in this
section simulations with various scenarios for the stack management:

– All-CB out-of-core stack memory. In this scheme, we suppose that during the as-
sembly step of an active frontal matrix, all the contribution blocks corresponding to
its children have been prefetched in memory. Thus, the assembly step is processed
as in the in-core case.

– One-CB out-of-core stack memory. In this scheme, we suppose that during the
assembly step of an active frontal matrix, only one contribution block correspond-
ing to one of its children is loaded in memory, while the others stay on disk. Thus
we interleave the assembly steps with I/O operations.

– Only-Parent out-of-core stack memory. In this scheme, we suppose that dur-
ing the assembly step of an active frontal matrix, no contribution block is loaded
in memory. Thus, the assembly step is done in an out-of-core way. Note that the
implementation of such a strategy will not be efficient at all since the assembly
steps are not very costly and there is no way to overlap I/O operations with com-
putations. This strategy corresponds to an ideal scenario concerning the size of the
in-core memory.

Note that for the three scenarios, we suppose that a contribution block is written to
disk as soon as it is computed. In addition, we assume that all the active frontal matrices
remain in memory until the end of their factorization.

Results and discussion. Although we experimented with several matrices, we only
illustrate in Figure 7 the memory behaviour using the different out-of-core memory
management strategies and in-core case for two test problems on different numbers of
processors.

As expected, we see that the strategies for managing the stack out-of-core provide
a reduced memory requirement. We also observe that the Only-Parent out-of-core
stack memory management is the one that best decreases the memory needed by the
factorization. Although this strategy might not be good for performance, it is here to
provide some insight on the best we can do with our assumptions and with the current
version of the code. One interesting phenomenon we observed is that the out-of-core
stack memory management strategies give better results with symmetric matrices (see
Figure 7(a)) than with unsymmetric ones (see Figure 7(b)). For unsymmetric matrices
and on large numbers of processors, the bottleneck is very often due to the treatment
of master tasks (holding the variables that need to be factored when the frontal matrix
is parallelized) that are bigger for unsymmetric matrices (see [4]). Since we prefer to
keep these tasks in core, a variant of the splitting algorithm of [4] could be applied in
a parallel context, to limit the size of those tasks. In addition, we have observed that
with our assumption that an active frontal matrix (or part of it if it is distributed over
several processors) has to stay in memory while being factored, it would be beneficial to
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Fig. 7. Memory behaviour with different memory management strategies on different numbers of
processors for two large problems (METIS is used as reordering technique)

reduce as much as possible the number of simultaneous active tasks on a processor. This
can be done by modifying the scheduling strategies currently existing in the parallel
multifrontal method.

These results illustrate that the One-CB approach could be a good way to design an
out-of-core stack memory management strategy with reasonable performance. With the
modifications discussed above to further decrease the memory peaks, it seems that the
intrinsic limits of the sequential multifrontal method become much less critical thanks
to parallelism.

5 Future Work

We presented in this paper a first implementation of an out-of-core extension of the
parallel multifrontal solver MUMPS. The selected approach was to drop factors from
memory as soon as they are computed and to overlap the I/O operations as much as
possible with computations. We illustrated the good behaviour of this approach on a
small number of processors and its limitations on larger ones, while first experiments
on machines with local I/O showed no significant I/O overhead during the factorization.
Nevertheless we noticed that low-level I/O mechanisms have to be designed with care
as the system is not tuned to I/O-intensive and large memory applications.

One key point that must be studied is the design of efficient out-of-core stack mem-
ory management schemes based on the results presented in Section 4. In this context,
the contribution blocks can be considered as read-once/write-once data accessed with
a near-to-stack mechanism (for the parallel case the accesses are more irregular). With
asynchronous I/O, prefetching algorithms have to be designed. In addition, the num-
ber of contribution blocks (for the parallel case) that a processor has in memory is
closely related to the scheduling decisions made; both the static and dynamic aspects
of scheduling could limit the I/O volume that each processor has to perform and drive
some dynamic decisions with the data that are available in memory (for example, give
a priority to tasks that depend on/consume contribution blocks already in memory).
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In order to treat larger problems where both the factors and the stack memory are
out-of-core, we have to determine more accurately which type of tasks are responsible
for the peak of memory and then to limit their size and/or the number of such tasks that
are active at the same time. We have already identified some critical cases in Section 4
and should now modify our algorithms when memory usage becomes a strong priority.
Furthermore, adapting the techniques described in [17] could further reduce the stack
memory requirements.

We believe that in a parallel context, this study shows that there is still room before
reaching intrinsic memory limits of multifrontal methods. Although it is true that large
frontal matrices can be problematic in sequential (need for an out-of-core assembly and
factorization), this is less the case in a parallel environment.
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Abstract. In this paper, we present a parallel multigrid PDE solver
working on adaptive hierarchical cartesian grids. The presentation is re-
stricted to the linear elliptic operator of second order, but extensions are
possible and have already been realised as prototypes. Within the solver
the handling of the vertices and the degrees of freedom associated to them
is implemented solely using stacks and iterates of a Peano space–filling
curve. Thus, due to the structuredness of the grid, two administrative
bits per vertex are sufficient to store both geometry and grid refinement
information. The implementation and parallel extension, using a space–
filling curve to obtain a load balanced domain decomposition, will be
formalised. In view of the fact that we are using a multigrid solver of
linear complexity O(n), it has to be ensured that communication cost
and, hence, the parallel algorithm’s overall complexity do not exceed this
linear behaviour.

1 Introduction

An important issue of a finite element code is to implement it in an efficient way.
We want to examine four different aspects of efficiency: First of all the numerical
efficiency covering all mathematical aspects, from modelling and discretization
up to the solver. Second, there is the process integration efficiency, representing
classical front– and back–end application integration tasks, such as adding a
geometry input or embedding a flow solver into a fluid–structure interaction
application. Furthermore, we distinguish between the implementation efficiency,
regarding everything influencing the actual execution speed of a given program
on a given platform, and parallel efficiency. The latter three often suggest the
usage of cartesian grids, since then several implementation tasks are simplified.
However, cartesian grids are not competitive for any real world application if they
do not support adaptivity. On the other hand, with adaptivity the development
of a well–suited traversal order, appropriate data structures, and a data access
scheme is not a trivial task anymore.

In fact, many multigrid — i.e. numerically efficient — codes suffer from an
inefficient implementation, integration, and parallelisation. We want to address
� This work has partially been funded by DFG’s research unit FOR493 and the DFG

project HA 1517/25-1/2.
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this problem and, in the following, will derive a traversal and data management
algorithm working on adaptive cartesian grids alike [7,12]. This algorithm then
is parallelised using a domain decomposition approach based on [6]. Although
the results are presented for a three–dimensional Poisson problem on an a priori
refined grid only, we are able to solve any d–dimensional problem that can be
discretised by a 3d–point stencil. This is an important subtask of many more
complex problems (the pressure Poisson part in the Navier–Stokes equations,
e.g.) and starting point for the implementation of more difficult operators, such
as the diffusion–convection operator or the diffusion operator for jumping ma-
terial parameters.

The remainder is organised as follows: In Section 2, we introduce the adaptive
cartesian grid our algorithm is based on. Section 3 is concerned with defining
a traversal order (a linearisation) for the cells of this grid and exposing a ver-
tex handling scheme, proving that two extra administrative bits per vertex are
sufficient, both to store the complete grid structure including the geometry and
to solve the equation system. Afterwards, in Section 4, we apply a hierarchical
domain decomposition technique to end up with an algorithm whose commu-
nication data scales linearly with regard to the maximum number of vertices
on the boundary of any partition. In Section 5, we present an upper bound for
the corresponding constant, showing it is quasi–optimal. Finally, in Section 6,
some numerical results for the Dirichlet Poisson problem are given, showing the
efficiency with respect to both memory access and the parallelisation. Some final
remarks in Section 7 conclude the discussion.

2 The Adaptive Grid

We create our grid using a hypercube [0, 1]d and embed the computational do-
main into it. Then, the grid is refined in a recursive way, splitting up each cell
into three parts along every coordinate axis. The depth of recursion and, hence,
the resolution depends on both the boundary approximation and the numerical
accuracy to be obtained. Following the notion of a spacetree (e.g. [1]) for a binary
substructuring, we call these trees Peano spacetrees. A more formal definition
as well as a reason for the division into three will be given later on.

On this grid, we use a nodal generating system [4] for the operator evaluation,
that is a nodal basis on every grid level. Hereby the support of any shape function
(hat), suitably scaled and dilated on a level k, shall be [0, 2

3k ]d. Consequently,
a strictly element–wise assembly of the operators [1] is feasible, whereas within
every geometric element only the element’s vertices are needed. Since one degree
of freedom is assigned to every vertex in this paper, the terms vertex and degree
of freedom are used equivalently. Before implementing a solver on such a grid,
one has to mention five important facts:

– If the values of an approximation are stored as hierarchical coefficients of the
generating system û on the vertices, the inverse hierarchical transform (map-
ping from the hierarchical representation into a nodal basis representation
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Fig. 1. An adaptive Peano grid and Peano spacetree of height three with corresponding
cell order in two dimensions

of the finest level) u = P û can be done within one top–down traversal of the
cell tree.

– If a value r is given on a vertex of the fine grid, the Galerkin hierarchical
transform (mapping the other way round) r̂ = PT r of this value may happen
during one bottom–up traversal.

– If a matrix–vector operation Au = r with A generated by a 3d−1 stencil
is given on any grid level, the result can be computed element–wise. Thus,
all elements of this level have to be traversed once. Furthermore, the result
value can be stored within the vertices directly, such that an explicit setup
of matrix A is not needed at any time.

– Because of the last issue, both a residual computation and a Jacobi update
step on any level can be done traversing all geometric elements of this level
only once:

u
(n+1)
level k = u

(n)
level k + ω diag−1(A)

(
b − Au

(n)
level k

)
. (1)

– Combining equation (1) with the top–down–bottom–up arguments given
above, one is able to implement an additive multigrid scheme with addi-
tive smoother [4], doing one depth–first sweep on the cell tree per iteration:

û(n+1) = û(n) + ω diag−1(PTAP )PT
(
b − APû(n)

)
=: û(n) + ω diag−1(PTAP )r̂(n). (2)

A detailed description of the actual realisation of such a solver can be found in
[7,13]. In the following, we will focus on the development of a well–suited depth–
first traversal of the grid, on the vertex management, and on the parallelisation.
Thereby, regarding the operator evaluation, we focus on a strict element–wise
evaluation scheme, where only the 2d vertices of the current element have to be
available at any time. As a result, every vertex is used 2d times per iteration.

3 Grid Traversal Using a Peano Curve

Space–filling curves [15] are well known to simplify a lot of different tasks, due
to their good locality properties ([3,5,6,7,8,10,12,13] e.g.). Their recursive, self–
similar definition implies a depth–first traversal of the corresponding cell tree
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and, therefore, an enumeration of the cells of all levels. We are using the Peano
curve as illustrated in Figure 1.

A Peano spacetree is a tree corresponding to a d–dimensional adaptive carte-
sian grid, where each node has either 0 or 3d children. There is an order on the
tree nodes (i.e. the geometric elements / grid cells) defined top–down by the
Peano space–filling curve. Note that, if one inverts the Peano curve on the root
level, the order on the child nodes on every level also is inverted. The resulting
tree is again a Peano spacetree, which means this set of trees is closed under the
invert–traverse operation.

Now, as a result of choosing this hierarchical grid and the Peano traverse,
we have to provide a data structure such that the traversal algorithm is able
to access the elements’ vertices within every node for element–wise operator
evaluation. This is not a new problem, e.g. [5] uses a hash function derived from
the space–filling curve to access the vertices and shows some nice properties of
such a scheme with respect to parallelisation and load balancing. We chose a
different approach, exploiting the properties of the curve as well. Here, this idea
is explained for the two–dimensional case. The recursive extension to arbitrary
dimensionality is very technical, but is based on exactly the same ideas [7,9].
Where necessary, the basic construction ideas for d > 2 are presented:

First of all, one can observe that every continuous traverse splits up all vertices
of the grid into left and right ones (in terms of their position with respect to the
Peano traverse). This is formalised by a left–right classifier function

cLR2 : vertices  → {L,R} = {0, 1} in IR2. (3)

Given a d ≥ 2 there are d−1 mappings of both the vertices and the space–filling
curve onto the planes (x1, x2), (x1, x3), . . .. For the Peano curve, the projection
property holds [15], i.e. every projection onto the subplanes given before is a
Peano curve again (see Figure 2). Thus, on each plane one can evaluate cLR2

and combine the d − 1 classifiers resulting in a d − 1–dimensional left–right
classifier function

cLR : vertices  → {0, 1}d−1. (4)

Fig. 2. On the left–hand side one can see the projection property, i.e. the projections of
the Peano curve are again Peano curves. In the middle the alternating edge colouration
is illustrated (even/odd indicated by dotted/solid), whereas on the right–hand side one
can observe the palindrom / stack property (fat arrows). To some vertices their classifier
value c is added.
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The second idea is to have a look at the chronology a vertex is needed on a
two–dimensional grid: If a ”left” vertex is needed before another ”left” vertex,
the next time, the vertex is needed for operator evaluation, it is the other way
round. Figure 2 shows this fact using grey arrows. Our idea is to use stacks, since
they meet the resulting requirements: put a record (vertex) on the top of a stack
after using it the first time, and pop a record from the stack when it is needed
the second time. In addition to the left and right stack, one has to add a third
idea, the stack colouring, within a hierarchical grid as pointed out first by [6],
to avoid access conflicts due to the top–down bottom–up steps of the traverse
in the generating system since there might be more than one degree of freedom
per vertex.

So, the third idea is to colour the edges of a two–dimensional grid alternating
along every axis in an even–odd manner. For example the left and the bottom
edge of the root element are coloured. On any refinement level first of all the
colours of the edges of the parent element are inherited, then the other edges are
coloured again alternating (see Figure 2). Since every vertex is element of two
edges, we get an additional qualifier

ccol : vertices  → {0, 1}2 in IR2 (5)

defining the colour of a vertex. Combining (4) and (5), we end up with a classifier
function

c : vertices  → {0, 1}3 c = cLR ◦ ccol in IR2 (6)

for every vertex.

Lemma 1. For d = 2 one is able to implement the whole vertex handling using
23 + 2 stacks only.

Assume there is a vertex stream, the vertices being ordered according to the
very first vertex access. The first time a vertex v is required, it is read from the
input stream. After the first usage, the vertex is stored on a stack c(v). Next
time it is needed for element–wise evaluation, it lays on top of stack c(v). After
the fourth usage, it is written to an output stream. As soon as one iteration is
done, you can invert the Peano spacetree traversal order and switch input and
output stream using them as stacks. For d > 2 this access scheme is extended in
a recursive way regarding the axes, and the whole vertex handling can be done
using 22d−1 + 2 stacks [9].

Implementing this algorithm, every vertex is augmented by two administrative
bits: The first bit describes whether the vertex is inside or outside the domain.
On the second bit we define an or–refinement semantic: An element is refined,
if at least the refinement bit of one of the 2d element’s vertices is set. Thus, if
n′ is the number of vertices of the Peano spacetree, only 2n′ bits are required
for both the geometry and the grid description. During depth–first traversal, the
whole traversal order can be reconstructed, evaluating the bits of the vertices of
the current element and the current traversal state.

Using stacks is the first key for the high cache efficiency reported in [7,9],
since for them the data access is highly local (no jumps within the memory),
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which is often named spatial locality. Using the Peano curve, the spatial locality
[11] of the traverse results in very small temporary stacks and, therefore, good
temporal locality of the stack access, which is the second key.

4 Domain Decomposition

Space–filling curves are well known within the parallel community for their good
load–balancing and good spatial locality properties, i.e. ratio of surface divided
by partition volume. For the Peano spacetree, we define a tree partition, based
on an existing fine–grid domain decomposition, in a bottom-up manner.

We assume that we have a Peano domain decomposition of a fine grid into
disjoint partitions. A Peano spacetree partition is a Peano spacetree minimal
with respect to the number of tree nodes. Within this tree, all nodes of the given
fine–grid partition as well as their fathers are contained and are called active.
All vertices adjacent to the active elements are called active, too. Besides the
active elements, the Peano spacetree partition contains all elements of the global
tree, which are adjacent to the active vertices. The additional elements are called
passive. As a result, every vertex a degree of freedom is assigned has again 2d

adjacent geometric elements within each spacetree partition it is contained.

Fig. 3. The left–hand side shows a domain decomposition into two hierarchical par-
titions. The grey cells are held on a processor, but not evaluated since they do not
belong to the processor (passive elements). The example on the right–hand side just
gives an idea how a three–dimensional partitioning might look like.

Figure 3 shows two Peano spacetree partitions belonging together: Only the
sets of active fine–grid elements are disjoint. For coarse grid elements this may
not hold. Now, every processor has to traverse its Peano spacetree partition,
whereas on the passive elements no calculation is done. In our additive multi-
grid algorithm, the restriction part of equation (2) is done on every processor
autonomously without any master process. As we added the passive elements to
the partition, the vertex management does not have to be modified and all the
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vertices, even those for which the process computed only a part of the residual,
are transferred to the output stack:

r̂(n) = PT (b − APû(n))
= PT (bp0 − (APû(n))p0)︸ ︷︷ ︸

processor 0

+PT (bp1 − (APû(n))p1)︸ ︷︷ ︸
processor 1

+ . . . (7)

When implementing the algorithm, we split up the output stream into two
streams, one holding only vertices other processors are interested in. Either of
them contains a subset of the global vertex stream that would correspond to
a single processor run, and the global order of the vertices is preserved on all
the output streams. Every vertex, with at least two processors interested in, has
got a set of processors needing its residual contribution. This contribution might
be sent to the other processors immediately, before the vertex is stored on the
output stack, resulting in an asynchronous communication scheme. It is shown
in [12] how to compute the set of interested computers on the fly. Furthermore,
it is a good idea to buffer the elementary messages, depending on the hardware
used.

After one iteration, all the residual contributions received and the own data,
stored on one output stream, have to be merged. Since the order on the vertices
is preserved, this can be done in O(s), where s is the number of vertices that
had to be sent. Furthermore, this does not have to be done within a dedicated
merge phase, but can be done during the next top–down traversal.

5 Efficiency of the Parallel Algorithm

Prior sections have shown how to implement an algorithm, linear in the number
of unknowns n, in a (technically) efficient way on a parallel machine with p
nodes without any major intrinsic serial part. According to [5], the performance
of our algorithm, where the results have to be synchronised after every iteration,
solely depends on the amount of data s′k to be sent by a node k, such that the
computational time per iteration is given by

t(n, p) = Csolver
n

p
+ Cstartup + Ccomm max

k
{s′k}, (8)

if one is not able to do the communication in an asynchronous way. The algorithm
becomes quasi–optimal [5] for

max
k

{s′k} ≤ C

(
n

p

)1−1/d

, C ≥ d

√
2dd−1πd/2

Γ (d/2)
, (9)

reflecting the continuous Hölder continuity with parameter 1
d of a continuous

space–filling curve [5,15].
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In our case, the amount of data depends on the tree’s height and the surface
s of the fine–grid partition. There is a lot of published work on the interfaces
of space–filling curves’ partitions (e.g. [3,8]). Since most of this work deals with
Hilbert and Lebesgue curves only, the proofs given there have to be transfered
into the Peano curve case and have to be augmented by the tree issue.

In the following, we examine regular refined grids with n ∈ (3d)IN geometric
elements using p processors. The workload (number of geometric elements) is
distributed equally among them.

Fig. 4. Construction of a trivial upper bound of the surface of a partition induced by
the Peano space–filling curve (grey), and the star shaped domain used in Section 6

Lemma 2. The number of boundary vertices — vertices adjacent to passive
geometric elements — on the fine grid of any partition is bounded by

s′ ≤ 4d
1 − 31−d

3d−1

(
n

p

)1−1/d

. (10)

Proof. The proof follows the argumentation of [8]: Let M be the maximal tree
depth, and m be the maximal tree level one would be able to embed the n

p cells of
the partition into one geometric element. On level m, the partition is contained
in at most two elements, such that the bounding box of the two neighbouring
geometric elements sm is an upper bound for the continuous surface, if the do-
main was represented in the level’s resolution (compare to Figure 4). On the
finer levels k > m, there might be at most two appendices (cells containing not
only active subcells), since the space–filling curve used is compact and contin-
uous (therefore, all the children of a node are visited, before the next node is
processed). Their boundary box surface is already considered, but the possibly
resulting concave surface parts sk have to be added to the result. This surface is
bounded by the bounding box of an element of level k. Finally, the continuous
surface s(n, p) is divided by the fine grid element face size, which is 3−M(d−1),
giving the number of fine–grid vertices up to a small constant:(

3d
)M

= n
(
3d

)M−m−1 ≤ n

p
≤ (

3d
)M−m

(11)

s(n, p) ≤ 2
M−1∑
k=m

sk ≤ 2
M−1∑
k=m

2d
(

1
3

)(d−1)k

≤ 4d
1 − 31−d

3(1−d)m
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s′ ≤ 4d
1 − 31−d

3(1−d)m+M(d−1) ≤ 4d
1 − 31−d

3d−1

(
n

p

)1−1/d

. (12)

The amount of data sent by one processor is bounded by a geometric series
with argument

(
1
3

)d−1 for the grid levels m to M scaled by s′, as the number of
vertices decreases with this factor for each coarsening step. For the levels 0 . . .−1
the number of active cells enclosing the partition is bounded by two. Therefore,
the number of boundary vertices is bounded by 3 · 2d−1 for each level.

s = s′
M∑

k=m

(
1
3

)(d−1)k

+ m
3
2
2d ≤ 3d−1

1 − 31−d
p1/d−1︸ ︷︷ ︸

≤1

s′ + 3 · 2d−1 log3
d
√

p. (13)

6 Results

Figure 5 gives the parallel behaviour of the code presented in this paper for three
dimensions. This code is not optimised yet, but already shows all the properties
stated in this paper for a Dirichlet–Poisson problem on the cube, a sphere, or a star
domain (see Figure 4), as well as the excellent cache behaviour (see [6,7,9,10,12,13],
e.g.). The star domain experiment suffers from the lack of dynamic load balancing
not implemented yet: Since the ratio of inner cells to cells outside the domain,
where no operator evaluation is necessary, is unfavourable, a simple equidistant
curve partitioning fails. The same reasoning holds for the sphere.

cube 7293 sphere 7293 star 2433

real
dofs ≈ 4.0 · 108 ≈ 2.4 · 107 ≈ 4.3 · 105

S(2) 1.95 1.95 1.94
S(4) 3.9 3.77 3.58
S(8) 7.66 7.04 6.45
S(16) 14.92 13.65 11.11

L2
CHR 99.96% 99.94% 99.95%

Fig. 5. Some parallel performance results for d = 3 on a Myrinet cluster of Dual
Pentium III 800 MHz with 2GByte RAM per node [12]. S(p) denotes the speedup on
p processors, L2 CHR abbreviates level 2 cache–hit rate.

7 Concluding Remarks

In this paper, we have presented a parallel multigrid PDE solver based on the
Peano spacetree, handling all the vertices solely using stacks. Since this approach
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has proven to be of value with respect to memory requirements, parallelisation,
and cache efficiency, it is our strategy to use this algorithm within a more com-
plex environment. In fact, we have already used exactly the same approach to
prototype a Navier–Stokes solver [14]. Furthermore, it has been shown that our
algorithmic approach is well–suited for a posteriori refinement [13]. Since we are
working on trees, dynamic load balancing can be implemented in a very nat-
ural way by forking trees [10]. Right now we are integrating all these aspects
into one d–dimensional PDE solver, embedded into a fluid–structure interaction
application framework [2].

It is work in progress, how to extend the scheme to higher order stencils
and to provide better estimates on the amount of data to be communicated.
Furthermore, the behaviour on a massively parallel cluster and different load
balancing strategies have to be evaluated.

Special thanks to Markus Pögl and Markus Langlotz, for doing a first imple-
mentation of the algorithm presented and solving many implementation issues.
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Abstract. The paper focuses on a parallel implementation of a simu-
lated annealing algorithm. In order to take advantage of the properties
of modern clustered SMP architectures a hybrid method using a combi-
nation of OpenMP nested in MPI is advocated. The development of the
reference implementation is proposed. Furthermore, a few load balancing
strategies are introduced: time scheduling at the annealing process level,
clustering at the basic annealing step level and suspending—inside of the
basic annealing step. The application of the algorithm to VRPTW—a
generally accepted benchmark problem—is used to illustrate their posi-
tive influence on execution time and the quality of results.

Keywords: Simulated annealing, parallel processing, load balancing,
MPI, OpenMP, hybrid parallelization.

1 Introduction

The paper presents a time scheduled algorithm for parallel simulated annealing—
a heuristic method of optimization—that is intended to run on modern clusters
of shared-memory (SMP) nodes. While clusters of SMPs with numbers of proces-
sors ranging into hundreds are becoming more and more popular, the question of
how to use them efficiently for parallel simulated annealing, knowing its sequen-
tial character, is still open. One of popular programming styles for clustered
systems uses different communication environments for their separate compo-
nents, combining the benefits of both shared and distributed memory systems
at the same time. The communication method discussed in the paper adopts such
a hybrid approach for simulated annealing and is called a hybrid communication
method (HC).

The research described in this work is a continuation of the efforts reported
in [9], where the reference HC method was introduced. It proved to be the most
effective compared with the other tested methods, when solving a bicriterion op-
timization problem. The paper presents a modification of the reference method,
namely the hybrid communication method with a single data exchange, which is

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1075–1084, 2006.
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the way to improve quality of results for the second optimized criterion. The
time scheduling aspects for both methods are discussed. A constrained cost is
assumed, which means that searching for the optimal solution is performed with
a given pool of processors available for a specified period of time. This approach
produces linear speed-up.

Simulated annealing (SA) is a heuristic optimization method used when the
solution space is too large to explore all possibilities within a reasonable amount
of time. The vehicle routing problem with time windows (VRPTW) is an example
of such a problem. Other examples are school bus routing, newspaper and mail
distribution or delivery of goods to department stores. Optimization of routing
lowers distribution costs and parallelization allows a better route to be found
within given time constraints.

The SA bibliography focuses on the sequential version of the algorithm (e.g.,
[2,17]), however parallel versions are investigated too, as the sequential method is
considered to be slow when compared with other heuristics [18]. In [1,3,10,12,13]
and many others, directional recommendations for parallelization of SA can be
found. VRPTW, formally formulated by Solomon [16], who also proposed a suite
of tests for benchmarking, also has a rich bibliography [18]. Additionally, a few
works discussing parallel SA to solve the VRPTW are known, namely [6,7,4,8].
Nevertheless, in contrast to the constraints applied in the current research, i.e.,
limited time, the first two take advantage of the parallel algorithm to achieve
higher accuracy of solutions, while the others define different stopping criteria
for the algorithm.

The plan of the paper is as follows: section 2 presents the theoretical basis of
the sequential and parallel SA algorithm. Section 3 describes the two variants
of the hybrid communication method, while section 4 presents practical issues,
leading to load balanced execution. The results of the experiments are described
in section 5. Conclusions follow.

2 Sequential and Parallel Simulated Annealing

In simulated annealing, one searches for the optimal state, i.e., the state that
gives either the minimum or maximum value of the cost function. It is achieved by
comparing the current solution with a random solution from a specific neighbour-
hood. With some probability, worse solutions could be accepted as well, which
can prevent convergence to local optima. However, the probability of accepting
a worse solution decreases over the process of annealing, in synchronisation with
the parameter called temperature. An outline of the SA algorithm is presented in
Figure 1, where a single execution of the innermost loop step is called a trial. The
final solution which is returned is the best one ever found. Simulated annealing
can be also modelled by using the theory of Markov chains. The algorithm is
formed by a sequence of Markov chains where each chain consists of a sequence
of trials for which the acceptance criterion with a fixed value of temperature was
applied.
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01 S ← GetInitialSolution();
02 T ← InitialTemperature;
03 for i ← 1 to NumberOfTemperatureReduction do
04 for j ← 1 to EpochLength do
05 S′ ← GetSolutionFromNeighbourhood();
06 ∆C ← CostFunction(S′) − CostFunction(S);
07 if (∆C < 0 or AcceptWithProbabilityP(∆C, T ))
08 S ← S′; {i.e., the trial is accepted}
09 end if;
10 end for;
11 T ← λT ; {with λ < 1}
12 end for;

Fig. 1. SA algorithm

Since in SA each new state contains modifications to the previous state, the
process is often considered to be inherently sequential and its parallelization
is not trivial. However, a few strategies for designing a parallel SA algorithm
exist, e.g., based on different types of applied decomposition. In the research
the creation of trials is decomposed among processors. Additionally, the chain
length is fixed, meaning that the number of trials performed within the chain is
the same for both the sequential and parallel algorithms.

3 Hybrid Communication—Nesting OpenMP in MPI

Clustered SMP systems support two parallelization levels: the outer paralleliza-
tion for communication between SMP nodes and the inner parallelization for
the shared memory environment within nodes. The HC method tries to exploit
the features of the parallel SA approach that can be supported by the architec-
ture: intensively communicating parts can be realised inside the inner level with
OpenMP [15], while parts with infrequent communication can be realised at the
outer level with MPI [11,14].

3.1 The Reference Method

Outer-level parallelization. Following previous research [9], in the algorithm for
the outer level each Markov chain of SA optimization is divided into sub-chains.
Their length is equal to the length of the original chain divided by the number
of sub-chains. The main idea is to assign a separate sub-chain to each individual
cluster node and thus to let nodes generate different sub-chains simultaneously.
In this way the computation for generating a Markov chain is divided over all the
available nodes. After generating the first Markov chain, the process of generat-
ing every consecutive chain is performed without communication between nodes.
For each node the outcome of the last trial of the preceding sub-chain is the start-
ing point for the subsequent sub-chain. At the end, the best solution found is
picked up as the final one. The usage of multiple sub-chains allows intensive
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exploration of the search space. However, excessive shortening of the sub-chain
length negatively affects the quality of results, so the maximum number of nodes
used is limited by reasonable shortening of the sub-chain length.

Inner-level parallelization. Within a node a few threads can communicate to
build one sub-chain of the length determined at the outer level. Negligible dete-
rioration of quality is a key requirement for the inner-level algorithm. The idea
of parallelization is to divide the total number of trials of each sub-chain into
short sets of trials. The size of the sets equals the number of threads, so each
thread generates one trial at a time, independently of the others. After complet-
ing a set, the master thread selects one solution among all the accepted ones
and the others are discarded. The selected solution is common for all threads
and becomes the starting point for further computation.

3.2 The Method with a Single Data Exchange

Tracing the process of finding solutions one can conclude, that incorporating
lightweight communication between nodes could improve the quality of results.
During the optimization all processes working on cluster nodes explore the search
space, but after the first stage, which is characterized by “long jumps” and large
changes of position, it is likely that only a few processes will be working in
the “right” area of the global minimum. The rest of them may perform useless
computations. One can speculate that global selection of the best result found
during the stage of heavy exploration would let all the processes move into these
“right” areas, leading to significant improvement of the quality of results. The
ratio between durations of the two, above mentioned stages should be carefully
selected. The optimization process should be able to use an adequate period of
time during the first stage to explore the search space precisely enough to reach
the area of the global minimum. On the other hand, the duration of the second
stage should be long enough to let the processes exploit the promoted area and
further approach the minimum.

4 Load Balancing in the Hybrid Communication Methods

4.1 Outer Level Load Balancing

The major drawbacks to obtain balanced computational load and acceptable
speed-up are differences in the execution times of the trials, because the effort
of performing them depends on the current configuration. This leads to sub-
stantial idle times when stopping the algorithm after generating a number of
sub-chains. This is shown in Figure 2, where the times for generating 8 separate
sub-chains are presented, based on an example run of the investigated problem
(see section 5). To overcome this difficulty a real time limit is set for computa-
tion. It derives from the average time needed by the sequential algorithm and is
calculated so as to assure linear speed-up.
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Fig. 2. The times for generating 8 sub-chains based on a run for the investigated
problem. Left: scheduling by a fixed number of temperature levels with idle times
marked with arrows. Right: time-based scheduling, where communication is scheduled
after the same amount of time on all processes.

A time-based scheduling is also suitable when defining the way for announc-
ing the moment of a single data exchange. Specifying the time limit for the
computation by measurements of the elapsed time, gives a new opportunity to
determine the exact moment of data exchange. Setting the number of data ex-
changes is straightforward as well. Therefore the proposed method forces one
data exchange when a specific percentage of time limit (e.g., after 50%, 70% or
90%) elapses. After selecting and broadcasting the best solution found so far, all
processes starts their computation from this agreed solution. The method results
in much better balancing than an alternative with a fixed number of tempera-
ture levels (i.e., sub-chains) (Figure 2 (left)) and makes more efficient use of the
given time limit. In Figure 2 (right) the moment of simultaneous communica-
tion is marked on the time axis. This can be individually determined by working
processes irrespectively of the number of performed trials.

4.2 Inner Level Load Balancing

To achieve an acceptable inner-level speed-up a few optimization stages were
necessary for the OpenMP parallelization with loop worksharing. The need for
optimization stems from extremely varying execution time for each trial. In the
presented example these differences were within a factor of 100. Consequently,
where the number of trials equals the number of threads, i.e., each thread gen-
erates one trial at a time, a theoretically calculated speed-up, based on a com-
parison of the execution times, does not exceed 2 with the use of 4 threads.
The average execution times of trials within a set, accumulated throughout the
whole example run, are presented in Figure 3 (left). A case of one trial per a
thread is marked white. The distance from the average is visible. The white bars
show the average execution time of the fastest (left most bar) trial in a set of 4
trials, up to the slowest trial (right most bar). In Figure 3 (right) the histogram
of trials with timings that falls into 25 ranges is presented. It also proves their
imbalanced distribution.

The first optimization step was to increase the size of a set of trials to make
each thread generate a few trials at a time without any communication. In
this way the load imbalance was substantially decreased. Nevertheless, in order
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R108 from Solomon’s benchmark set.
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Fig. 4. Trials after the reconfiguration. Left: average execution times of the trials within
a set. Right: the histogram of execution times. Example: Solving VRPTW, test R108
from Solomon’s benchmark set.

to maintain quality, the size of the set of trials should be as small as possi-
ble, because it affects the number of accepted but discarded trials. The aver-
age execution times of so called “clustered” trials within a set of the size 20
(= 4 threads × 5 trials/thread), as well as the histogram of execution times are
also presented in Figure 3, but marked black. The scale for “clustered” trials was
normalised to the scale of “separate” trials to indicate more clear their smaller
deviations from the average value and changed distribution.

The second optimization step was the redefinition of a trial, in order to im-
prove load balancing and simultaneously to decrease the number of discarded
trials. Hence, the speed-up as well as a quality of results can be increased. As
the execution time of each trial is determined by the time for finding a new
valid solution S′ in the neighbourhood of S, one can limit the number of actions
taken within GetSolutionFromNeighbourhood() (see Figure 1). If after only a few
disturbances of the current configuration no new solution can be created, the al-
gorithm produces a transitional status “no answer” and suspends the process of
completing a trial. After the selection has been made over the set by the master
thread, all uncompleted trials are continued. The influence of the redefinition
can be seen in Figure 4, where the time scale is the same as in Figure 3. The
average execution time of a trial is shortened but better balanced than before
the redefinition.
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The third optimization step was to choose an appropriate moment for forking
as well as for joining parallel threads. As the execution time for a set of trials
can be short compared to the OpenMP fork-joined overhead, the parallel loop
should comprise a wider region, i.e., the whole temperature step.

5 Experimental Results

In the vehicle routing problem with time windows it is assumed that there is
a warehouse, centrally located to customers. There is a road between each pair
of customers and between each customer and the warehouse. The objective is
to supply goods to all customers at the minimum cost. The solution with fewer
route legs (the first goal of optimization) is better then a solution with smaller
total distance travelled (the second goal of optimization). Each customer as
well as the warehouse has a time window. Each customer has its own demand
level and should be visited only once. Each route must start and terminate
at the warehouse and should preserve maximum vehicle capacity. As already
mentioned, previous work [9] focused on the first goal of optimization, while this
paper focuses on the second one, i.e., optimizing the final distance when the
minimum number of route legs is already achieved. The sequential algorithm
from [5] was the basis for parallelization.

Experiments were carried out on a NEC Xeon EM64T Cluster installed at the
High Performance Computing Center, Stuttgart (HLRS). Additionally, for tests
of the OpenMP algorithm, a NEC TX-7 (ccNUMA) system was used. The nu-
merical data were obtained by running the program 100 times for Solomon’s [16]
R108, R111, RC105 and RC108 tests with 100 customers and the same set of
parameters. The number of OpenMP threads was 4 and the size of the set of tri-
als was 20, this giving the best combination of efficiency and quality. Due to the
lack of access to a genuine clustered SMP machine with 4 CPUs per each node
(the NEC Xeon EM64T consists of dual CPU nodes), the usage of 4 OpenMP
threads per cluster node was emulated. The emulation was carried out by ex-
tending the applied time limit by the speed-up factor coming from a separate
set of experiments. Such an extension can be thought as undoing the speed-up
to be observed on a cluster of nodes having 4 CPUs instead of 2.

Time results. At the outer level both versions of the hybrid algorithm give lin-
ear speed-up, since a real time limit is applied. However, in case of the method
with a single data exchange one should consider the additional communication
overhead. In investigated examples the time needed for selecting and broad-
casting the best solution between nodes was between 0.4ms (2 nodes) to 0.8ms
(30 nodes), which is substantially shorter than the execution time. At the inner
level the average speed-up factor obtained empirically was 2.7, which gives the
efficiency of OpenMP parallelization as 67%.

Quality results. A few parameters for controlling the data exchange were inves-
tigated, namely after reaching 50%, 70% and 90% of the time limit. The results
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Fig. 5. Comparison of quality results for hybrid communication methods

of experiments are presented in Figure 5. Generally, selecting a common solution
after 50% (HC4-0.5) or 70% (HC4-0.7) of the time limit was much better than
other tested possibilities. It should be noted that both HC4-0.5 and HC4-0.7
give better results than the reference method (HC4) almost for all investigated
numbers of processors (with only one exception). Nevertheless, when compared
to the sequential results (SEQ) it can be observed that the quality of the hybrid
parallelization depends on a test. E.g., for R108 up to 40 processors, R111 with
8 processors and RC108 (excluding 400 processors) the results of HC4-0.7 are
better than for the sequential version, but in other cases, i.e., RC105, R108 with
more than 40 processors and R111 (excluding 8 processors) they are worse.

To verify these observations one can incorporate test statistics. Statistical hy-
potheses H0 : xi = xj versus alternative hypotheses H1 : xi < xj or H ′

1 : xi 
=
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xj can be tested, where x denotes the mean value of the total travel distance,
i, j - populations that are compared (HC4-0.7 with HC4, HC4-0.7 with SEQ,
HC4-0.5 with SEQ, respectively). Let s denote the standard deviation, and n,
the population size, then u, the test statistic is given by:

u =
xi − xj√

s2
i

ni
+

s2
j

nj

The significance level is set as 0.05. When comparing HC4-0.7 with HC4 the
calculated values u indicate that H0 should be rejected in favour of H1 in 64%
of tested cases. This means HC4-0.7 gave statistically shorter total distance than
HC4. Besides, when comparing HC4-0.7 with SEQ, although for the tests R111
and RC105 H0 can not be rejected in favour of H ′

1 up to 20 processors, for R108 it
can not be rejected up to 100 processors. In other words there is no evidence that
HC4-0.7 gave statistically different results for these cases, compared to the se-
quential algorithm. Additionally, application of similar reasoning indicates, that
for test RC108, statistically HC4-0.7 allowed to achieve solutions with smaller
travel distances than its sequential equivalent for numbers of processors up to
200. For test R108, HC4-0.5 compared favourably to the sequential version with
up to 40 processors.

6 Conclusions

In this study the implementation of parallel SA algorithm that is intended to
run on clusters of SMP nodes is considered. The development of the reference
method, based on performing time scheduled data exchange was proposed. Ad-
ditionally, the paper provides detailed analyses of factors influencing the speed-
up and efficiency, e.g.: defining the moment for terminating the optimization
process, as well as time dependencies between randomly generated trials of SA
algorithm. A few optimization strategies were introduced, that resulted in better
balancing of the algorithm.

Based on experiments one can conclude that the quality of results for the
modified method outperforms the reference one. When compared to sequential
results, it needs to be stated that with proposed load balancing strategies it
is possible in many cases to achieve better or comparable quality, always with
linear speed-up. This observation is valid even up to 200 processors.
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Abstract. The grid computing technology permits the coordinate, ef-
ficient and effective use of (geographically spread) computational and
storage resources with the aim to achieve high performance throughputs
for intensive CPU load applications.

In this paper we describe the development of a virtual laboratory for
environmental applications. The software infrastructure, and the related
interface, are developed for the straightforward use of shared and dis-
tributed observations, software, computing and storage resources. The
user can design and execute his experiments building up and assembling
data acquisition procedures, numerical models, and applications for the
rendering of output data, with limited knowledge of grid computing,
thereby focusing his attention to the application.

Our solution aims at the goal of developing black-box grid applications
for earth observation, marine and environmental sciences.

1 Introduction

Numerical modeling plays a main role in the earth sciences, filling in the gap be-
tween experimental and theoretical approach. Now, the computational approach
is widely recognized as the complement to the today scientific analysis. Mean-
while, the huge amount of observed/modeled data, and the need to store, process
and refine them, often makes the use of high performance parallel computing the
only effective solution to ensure the real usability of numerical applications, as
in the case of the atmospheric/oceanography field, where the development of the
Earth Simulator supercomputer is just the edge [1].

The grid computing is a key technology in the field of the computational
sciences, allowing the use of inhomogeneous and geographically-spread compu-
tational resources, shared across a virtual laboratory. Moreover, this technology
offers several invaluable tools, ensuring the security, the performance and the
availability of applications [2].

A great amount of simulation models have been successfully developed in the
past, but a lot of them are poorly engineered and built following a monolithic
programming approach, unsuitable for a distributed computing environment.
The use of the grid computing technologies is limited to domain specialists,
because of the complexity of grid itself and of its middleware complexity. Another
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source of complexity resides on the use of coupled models, as, for example, in
the case of atmosphere/sea-wave/ocean dynamics. The grid enabling approach
could be hampered by the grid software and hardware infrastructure complexity.
In this context, the buildup of a grid-aware virtual laboratory for environmental
applications is a “grand challenge” for computer scientists.

In this paper we describe the implementation and application of a grid-enable
virtual laboratory for environmental simulations. This application is built on the
componentization of different environmental models: atmospheric circulation, air
quality and ocean related models. The grid-enabling approach is described in
the next section, while in section 3, we give an example of a grid application
providing on-demand or operational weather and sea forecasts.

2 The Grid-Enabling Approach

For our grid infrastructure development, we use the middleware Globus Toolkit
[3] version 4.x (GT4), developed within the Globus Alliance and the Global Grid
Forum (GGF) with a wide support of institutions belonging to the academia,
the government and the business area. The GT4 has been chosen because it
exposes its features via web services using common W3C standards as the Web
Service Description Language (WSDL), the Standard Object Access Protocol
(SOAP), and the Hyper Text Transfer Protocol (HTTP). Complex features, as
the service persistence, the state and stateless behavior, the event notification,
the data element management and the index services tools are implemented in
the respect of this standards. The GT4 also offers support to pre-web services
features as the GridFTP protocol, an FTP enhanced version, capable of massive
parallel striping and reliable file transfer.

In our grid virtual laboratory we coupled several environmental models: the
MM5 (Mesoscale Model 5) [4], the STdEM (Spatio-temporal distribution Emis-
sion Model) [5], and the PNAM (Parallel Naples Airshed Model) air quality
model [6]. Our grid enabling approach also integrates marine-related environ-
mental models, such as the POM (Princeton Ocean Model) [7], and the WW3
(WaveWatch III) sea-wave propagation model [8]. We enhanced the computa-
tional capabilities of the POM model, developing a parallel version with nesting
capabilities (POMpn) [9]. Moreover, we recently integrated the WRF (Weather
and Research Forecasting model) [10] and the CAMx (Comprehensive Air qual-
ity Model with eXtensions) air quality models [11], while we are working on the
integration of the sea-wave propagation model SWAN [12].

The grid-enabled version of each model is based on three files: the model
package, the launching script and the RSL job description file.

We configured and packaged each model, in order to be independent on the
software and hardware configuration of the local machine. A framework ap-
proach was used to abstract different model configuration, by exploiting an ob-
ject oriented programming-like methodology. We standardized the model pack-
ing/unpacking, configuring and setup defining which methods, implemented as
shell scripts or Java class code, have to be called to perform operations as
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namelist placeholder, processor configuration and packing and unpacking of in-
put/output data. Each model runs in a private custom environment, so that
several instances of the same software from the same or different user can be
concurrently executed. This approach is based on a repository where model
packages are stored and from where they can be retrieved as instance template
at each run.

A job launcher, invoked as a grid job on a remote machine set up the virtual
private environment doing all needed data file stage in and stage out operations.
In this way all implementation details are hidden and a Resource Specification
Language (RSL) file can be used to describe each grid operation to the globusrun-
ws job submitter. The launching script is deployed with a stage in file transfer
operation on the target machine and represents the job executable file to be
run on the remote machine. This scripts unpack the model package eventually
downloaded from a repository or copied from a local directory, unpack and inflate
the input data, run the model and the pack and deflate results. The script
communicates with the job submitter via the standard output and the standard
error.

A RSL (Resource Specification Language) file [13] describes the job to be
submitted in a very detailed way, specifying the executable path, the current
working directory, the files to be staged in before the execution and staged
out after the job run, and any additional argument. Job submission is managed
through the Grid Resource Allocation Manager (GRAM) tool. All files are named
using URL, with protocol details from the target machine point of view and
specifying the gridFTP high performance parallel striping transfer protocol when
referring to a remote machine.

In the RSL evolution from the Globus Toolkit version 3 to version 4 some
operations were simplified, making the RSL less verbose and more expressive;
on the other hand, some features, as the automatic management of scratch di-
rectories, disappeared, so that we implemented a custom RSL pre-processor for
the easy and straightforward definition of jobs, introducing an advanced method
of labeling and placeholders parsing and evaluation, macro-based code explosion
and late binding capabilities.

The Globus Toolkit 4.x grid middleware provides job submission tools via web-
services and pre-webservices infrastructure without any kind of support for job
flow scheduling and resource broking, while different grid technologies, such as
the Condor [14] and Unicore [15] middleware offer a full support of direct acyclic
graph job workflow with conditional branches, recovery features and graphical
user interfaces. Our custom software solution was developed with the aim to
provide domain scientists of a full configurable, really straightforward grid com-
puting tool minimizing the impact of the grid infrastructure.

As in many grid applications, the final result is obtained by assembling differ-
ent components executed as jobs on remote machines. Each component could be
related to its previous/next component as data producer or data consumer, defin-
ing the so-called computational pipeline in which we have one job for one compo-
nent. For example, consider this simple application: a regional-scale atmospheric
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model waits until data can be downloaded from a specified service, then ac-
quires the boundary and initial conditions from a global-scale forecast, runs for
a specified time period; when data are ready to be processed, another job, en-
capsulating an ocean circulation model, uses the atmospheric data as boundary
conditions; when this second job finishes, the produced data is consumed by
another job simulating the wind-driven sea wave propagation and forecasts the
wave height/period and direction fields. At last, the user retrieves all pipeline
outputs produced by all models. This simple grid application can be implemented
via shell scripts and RSL files specifying the target submitting machine in the
script itself.

This approach, though operatively correct, presents many disadvantages. The
user needs to know the details about the script programming language, the job
submission technical details related to a specific middleware and the to system
environment setup. The developed code is tightly coupled to its application: any
change to the job behavior or model configuration affects the entire application.
In case of complex job fluxes, like in a concurrent ramification context, for ex-
ample when the weather simulation model forces both wave propagation and
oceanic circulation models, control code grows in complexity and data consum-
ing/production relationships could be hard to implement, since synchronization
issues may arise. Moreover, this kind of approach is potentially insecure because
the user must be logged-in to the system to run a script, and this scenario is not
applicable in the case of an interactive application on web portal.

In order to enhance the flexibility and to minimize the impact on the grid
configuration, we implemented a custom job flow scheduler (JFS). Using this tool
the entire complex, multi branch, grid application could be configured through
a XML file. The JFS takes care of submitting jobs to computing nodes. JFS
integrates itself in the Globus Toolkit environment both as a web service and a
command tool with very few configuration needs. It uses a customized version
of the Job Description Language (JDL), developed under the Condor project. In
this way, every job is described through its RSL file and built in a XML file, which
describes the activation order and relationships between jobs. The description
language implemented has been defined as Job Flow Definition Language (JFDL)
with a suitable XML schema. The following JFDL file implements the coupled
use of the MM5/WW3 models:

<jfdl:jfs project="experiment01">
<!-- Job definition -->
<jfdl:jobs>
<jfdl:job name="downloadConditions"

target="dgric.uniparthenope.it"
rsl="downloadConditions.rsl"/>

<jfdl:job name="runMM5"
target="dgbeobi.uniparthenope.it"
rsl="runMM5.rsl"/>
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<jfdl:job name="runWW3"
target="dgbeobe.uniparthenope.it"
rsl="runWW3.rsl"/>

</jfdl:jobs>

<!-- Job Relationship Definition -->
<jfdl:nodes>
<jfdl:node job="downloadConditions">
<jfdl:next>runMM5</jfdl:next>

</jfdl:node>
<jfdl:node job="runMM5">
<jfdl:prev>downloadConditions</jfdl:prev>
<jfdl:next>runWW3</jfdl:next>

</jfdl:node>
<jfdl:node job="runWW3">
<jfdl:prev>runMM5</jfdl:prev>

</jfdl:node>
</jfdl:nodes>

</jfdl:jfs>

The file describing the experiment could be divided in two parts: inside the
element 〈jfdl:jobs〉 each job belonging to the grid application is described
specifying its symbolic name, the computing node where it will be submitted
and the name of the RSL file specifying all needed resources. Inside the element
〈jfdl:nodes〉 the jobs activation order is described using a direct acyclic graph.
In this section, each job node is characterized by the reference to all previous
jobs, the 〈jfdl:prev〉 element, by the way the jobs that have to be finished
before the start of the current job, and by a reference to all next jobs which will
be submitted after the current job finishes using the 〈jfdl:next〉 element.

The described experiment is a typical example of a simple virtual laboratory
grid application, but our JFS could submit very complex application graphs,
thanks to its Java multithread implementation (Fig. 1).

The Jobflow Scheduler was implemented using the Java language using a
class framework encapsulating all described features including XML file parsing
based on the StaX [16] package, graph setup and application runtime support.
The most interesting class is Job derived from Thread, implementing the job
submission in its run method using a clear, effective and efficient algorithm: if the
job is to be started, make a join to each thread-related jobs using the previously
defined dependence graph. In this way the thread waits until all prerequisite
data are successfully produced. Then the job is submitted to the grid using
the globusrun-ws service specifying the target factory and the job RSL file. The
class Job is an item of the collection Jobs composing the JobFlow class, providing
methods for graph setup, management and run. The Jobs run method starts all
jobs belonging to the collection with no previous job dependence. For example,
more data providers have to download initialization data to feed a consuming
job.
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Fig. 1. A GUI for interactive JFDL files editing with direct grid interfacing capabilities
via MyProxy

The described grid application is classifiable as a grid-enabled application be-
cause it uses the grid to submit a job to the best computing node, but this
association is statically performed at the design time. On the other hand a grid-
aware application could be adapted in relation to the grid status using a Resource
Broker [17] component, designed to submit a job to the best fitting node, based
on needed computational and storage requirements. Our JFS automatically ac-
tivates this feature if no target machine is specified in the 〈jfdl:job〉 element.
The Resource Broker algorithm is straightforwardly configurable, changing the
behavior of the implementation class in a properties file.

3 Laboratory Components

The Jobflow scheduler and the Resource Broker implement the core of the grid
based virtual laboratory. The domain scientist can configure and run his exper-
iments using the JFDL and RSL files, or through a web portal, or an under
development Java user interface, selecting and assembling each component from
a palette.

Actually our virtual laboratory provides several grid components for data ac-
quisition: the NCEPDataProvider performs the data download from the NOAA-
NCEP [18] for the initialization of the meteorological model, thanks to a daemon
component, completely decoupled from the grid; the ECMWFDataProvider [19]
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performs the on-demand download of historical data for scenario and “what if ”
analysis; the DSADataProvider performs the on-demand download of processed
data.

Numerical models are grouped in atmospheric circulation models, such as
the gWRF and the gMM5 suites, whose components (gTERRAIN, gPREGRID,
gREGRID, gINTERPF and gMPP) have been ported to our grid environment;
air quality related models as gSTdEM, gPNAM, gCAMx and ocean related mod-
els as the gPOMpn, gWW3, gSWAN. We provided our virtual laboratory with
a suite of tools for model coupling, data conversion, classification and graphics
rendering software. Thanks to our packaged framework for grid enabling legacy
software components, adding more grid components is straightforward.

User Request

Initial and boundary condition

data file collecting

MM5 weather simulation

WW3 wave watch model

Visualization Tools

NOAA

Operational

On Demand

ECMWF

POM ocean circulation model STdEM - PNAM air quality model

Scheduled

Request

Fig. 2. The grid application building blocks

We used the Jobflow Scheduler (JS) and the Resource Broker (RB) to de-
velop a grid application aiming at producing weather and marine forecasts in
both operational and on demand mode, by coupling several simulation models,
data acquisition, conversion, and visualization software (Fig. 2). The application
workflow is easy to understand: the starting event is produced by the on demand
user request, or by the availability of initial data in the case of an operational
production environment. Then, the weather forecast model is initialized, and the
output data is rendered by a presentation software and concurrently consumed
by other models, as ocean dynamics, sea wave propagation or air quality models.
Each application branch proceeds on separate thread. This workflow could be
represented by an acyclic direct graph into a JFDL file, while each job to be
submitted is described by the RSL file and its launching script. Our JS permits
the implementation using a single XML self describing file, while the RB makes
grid-aware the application with any kind of constrain and without the need to
use a storage element as intermediate files repository because of our late bind-
ing reference approach. This application run in operational mode with a few
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maintenance operations, except components or grid middleware upgrades. All
performed results are interactively published at the Department web portal and
used by several scientists, local institutions and citizens [20] (Fig. 3).

Fig. 3. Weather forecast grid application in operational mode: an output example

4 Conclusions and Future Development

In this paper we described some of our results in the field of grid computing
research. The virtual laboratory for earth observation and computational envi-
ronmental sciences based on the grid computing technology is a tool used both for
research and application-oriented uses, running a complex grid application dedi-
cated to operational weather, marine and air quality forecasts on nested domains
from the Mediterranean Europe to the Bay of Naples area. Comparison tests be-
tween a grid and non-grid implementation, performed using a simple benchmark
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weather forecast application, affected by networking capabilities, demonstrates
that with the number of simulated hours increasing from 72 to 144 the efficiency
of the grid implementation rise with clear evidence.

The JS and the RB realized the primary goal of our research providing the
power of the computing grids and the high performance computing with the sim-
plicity and the flexibility of a local XML configurable application demonstrating
the grid technology features.

The Globus Tooklit middeware version 4 is stable enough to perform produc-
tion activities in the range of our needs, but some points have to be improved.
The JS engine works very well, but it have to be enhanced offering more expres-
sion power to the JFDL especially regarding conditional branches and resume
features. The RB algorithm have to be well tested and improved.
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Abstract. There is a large range of image processing applications that
act on an input sequence of image frames that are continuously received.
Throughput is a key performance measure to be optimized when execu-
ting them. In this paper we propose a new task replication methodology
for optimizing throughput for an image processing application in the field
of medicine. The results show that by applying the proposed methodo-
logy we are able to achieve the desired throughput in all cases, in such a
way that the input frames can be processed at any given rate.

1 Introduction

There is a large range of emerging applications in which data generated in a
given external environment is pushed asynchronously to servers that process
this information. These applications are characterized by the need to process
different instances of an input data stream in a timely and responsive fashion.
Hereafter, we refer to such applications as streaming applications [1] [2] [3] [4].

There are two distinct criteria for judging the quality of an execution for
these streaming applications: latency and throughput. Latency is the time taken
to process individual data, while throughput is the aggregate rate at which
the instances of the input data stream are processed. Throughput can also be
measured in terms of its inverse, the Iteration Period (IP), which corresponds to
the interval of time existing between the execution of two consecutive instances
of data.

In this paper, we deal with image-processing applications executing in a
streaming manner. These applications are typically composed of a set of com-
putation stages performing different functions. The usual computations in the
stages of these kinds of applications are blurring, filtering, interpolation, etc. As
they are independent functions, they can be arranged in a set of consecutive
stages that at a given time can be simultaneously processing different image
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frames in pipeline fashion. The sequence of input frames is continuously re-
ceived. Thus, throughput is a key performance measure to be optimized in these
executions [2] [5].

In this context, we address the problem of maximizing the throughput of
an image processing application in the field of medicine. The application under
study is devoted to the detection of the real arterial structure from a sequence of
Intra-Vascular Ultrasound (IVUS) images, captured by a transducer at a specific
rate. Real-time constraints must be met in order for images to be processed at
the same rate as that at which they are captured [6].

We first define the task model of the IVUS application by capturing its salient
computational features. Based on this model, we propose a methodology that
performs an innovative task replication technique for those tasks that can process
independent input frames in such a way that a given throughput can be achieved.
Then, the replicated application is executed in a simulation framework using a
task mapping mechanism that considers its iterative behaviour.

We show through experimentation that the task replication technique allows
us to reach the given throughput constraint in all cases. Additionally, we show the
effectiveness of the whole strategy of replication and mapping in the optimization
of processor utilization, as well as the speedup that is achieved.

The rest of the paper is organized as follows. Section 2 exposes the main
characteristics and the steps that are performed in the IVUS imaging applica-
tion. Section 3 describes the proposed methodology of task replication to exploit
throughput. Section 4 outlines the main contributions of the literature in rela-
tion with the optimization problem that is undertaken in this paper. Section 5
shows the experimentation results that are obtained for the application under
study. Finally, Section 6 outlines the main conclusions.

2 The IVUS Imaging Application

This is a study of an image processing application, in the field of medicine,
for the detection of the real arterial structure (called adventitia) [7]. The input
of the application is a sequence of IVUS frames that are captured by a radio-
frequency transducer installed in a catheter. The captured data are sent out to
be processed and then converted to images.

Tissue characterization is a fundamental tool for studying and diagnosing the
pathologies and lesions associated to the vascular tree. This is an arduous job
that requires specialists to manually identify the tissues and visualise them. IVUS
imaging is a highly suitable visualization technique for the task as it provides
a cross-section of the coronary vessel, revealing its histological properties and
tissue organization [6].

As it is so time consuming and due to the subjectivity of the classification de-
pending on the specialist, there is an increasing interest among the medical com-
munity in using automatic tissue characterization procedures. These automatic
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Fig. 1. Stages of the IVUS imaging application

procedures are time-critical, and consequently should provide answers in a mini-
mum time. Figure 1 shows the main stages of the process that are explained below.

1. Characterization of the interest zone. Because the original image of adven-
titia is circular, it is transformed to polar coordinates. In this coordinate
system, the adventitia appears as a dark horizontal line. By means of a dif-
fusion method, the image is de-noised and the target structure is enhanced.
Then, the band of interest is determined in order to reduce computational
cost.

2. Adventitia characterization. The three following filters are applied to the
image: horizontal edges, radial standard deviation and mean accumulative
radial. The three filtered images provide the necessary information for dis-
criminating between four different sets: adventitia, calcium, fibrous struc-
tures and the remaining pixels.

3. Anisotropic contour closing (ACC). The previous step characterizes the ad-
ventitia with a collection of fragmented curve segments. These segments are
interpolated using ACC to join them.

4. B-Snake. Since the above interpolation process still presents gaps in side
branches and calcium sectors, a parametric B-snake is used on the ACC
closure in order to close it and obtain a compact and explicit representa-
tion. Finally, the identified adventitia is returned to cartesian coordinates to
visualize its original circular shape.

3 The Optimization Problem

One of the key problems that arise when executing image-processing applications
that act on an input sequence of image frames is having enough throughput to
permit their processing at a given rate. We address the optimization of the
throughput of these applications by considering the definition of computation
stages that can run in pipeline.
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The proposed methodology is based on two steps: in the first, the task graph
model of the application is obtained. Based on this model, in the second step
we apply the convenient replication of tasks that makes it possible to reach a
desired throughput.

3.1 The Task Model

To exploit parallelism in streaming image processing applications, the main issue
is to identify the sequence of different functions (steps) that are carried out for
each input frame. Then, a parallel design of the application can be undertaken
in such a way that the different functions are implemented as tasks that can run
overlapped in pipeline for different image frames of the input stream.

The task model that we extracted for the IVUS imaging application is com-
posed of 12 tasks that can be modeled using the directed acyclic graph (DAG)
structure, G(V,E), illustrated in Figure 2(a). The graph is composed of a set
of nodes V, each node representing a task. Each task Ti∈V has an associated
computation time µ(T i). E is the set of arcs representing task precedences. Each
arc (Ti,Tj)∈E has an associated communication volume c(Ti,Tj), in bytes, to be
transferred between tasks.

Fig. 2. (a) Task graph model of IVUS imaging application. (b) Functionality and com-
putation time of each task.

Each step of the application can have several tasks performing different func-
tions as indicated in the graph. Figure 2(b) shows the different functions that
were identified and their correspondence with the tasks in the graph, together
with the task execution time, in seconds. To obtain these task execution times we



Exploiting Throughput for Pipeline Execution 1099

profiled the execution of the different functions that conform a task in the IVUS
sequential algorithm. We also computed the data structures that are shared be-
tween functions to determine the communication volume of data that has to be
transferred between tasks. The sequential application was programmed in Mat-
lab and executed on a Pentium IV processor at 3GHz with 512 Mb of RAM
running windows.

3.2 Task Replication Method

In this subsection, we expose the methodology that is proposed in this paper to
achieve a given throughput for streaming applications running in pipeline. We
assume that the instances of the input stream have no temporal dependencies
between themselves, as is the case with IVUS imaging. Thus, different image
frames can be processed concurrently in the same step with replicated tasks.
Consequently, throughput is improved, since multiple images are processed in
parallel. We propose this methodology instead the typical data parallel approach
at the application level, in order to exploit the task parallel capacity without
penalizing latency.

Given an IP to be achieved, the replication problem consists of determining
the tasks that should be replicated and the number of replications for each. It is
established in the literature that the optimum IP in a pipeline execution is given
by the maximum computation time µ(T i), considering that communications are
performed concurrently [4][8]. We enhance this model by taking into account
the fact that on several platforms communications cannot be overlapped. Thus,
the optimum IP is also influenced by the global amount of communications that
are transferred from one task. With these considerations in mind, we propose a
replication methodology that consists of the two following steps:

1. Determine the tasks to be replicated
All the tasks are evaluated to decide whether they have to be replicated
or not. Each specific task Ti∈V with a communication to Tj∈V, will be
replicated if it has accomplished one of the following two conditions: (a) The
computation time of Ti is greater than IP or, (b) the communication time
to transfer volume c(Ti,Tj) is greater than IP. Taking these conditions for
replication into account, the algorithm shown in Figure 4 determines the
tasks to be replicated, joined in subgraphs (replicable subgraphs). Starting
from the DAG graph of the application, for each task Ti∈V it calls the
recursive procedure group(T i), which returns the set of successor-replicable
tasks that form the replicable subgraph to which Ti belongs.

From the identified subgraph, it ascertains whether there is an intersection
with the previously found subgraphs that are stored in subgraph set. Should
the subgraph have a task in common with another, these are joined into a
single subgraph. Then, the subgraph of replicable tasks is the chosen entity
to which replication will be applied in the next step.

2. Calculate the number of replications
In this step the number of copies is calculated for each replicable subgraph
and the number of copies for each task inside the subgraph. This provides
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us with the most appropriate number of replications for each task, instead
of replicating the same number of copies for all the tasks, which, in some
cases, would be an excessive replication.

To illustrate this step consider the example of Figure 3(a) where we can see
a replicable subgraph with tasks Ti and Tj, along with 2 and 4 replications
respectively. Figure 3(b) shows the result that would be obtained if the tasks
were replicated individually, which leads to a large amount of dependencies.
This could lead to an excessive overhead when communication from the
same tasks is serialized as we have considered. Figure 3(c) illustrates the
replication result applied on the subgraph level as proposed.

Figure 5 shows the algorithm to be applied to each replicable subgraph,
which proceeds as follows. For each task Ti in the subgraph, the correspon-
ding number of replications is calculated as the maximum between compu-
tation and communication, divided by the given IP. To calculate the number
of replications of the graph we identify its initial tasks. Among these initial
tasks, we chose the one with the lowest number of replications assigned. This
determines the number of the replications of the whole subgraph.

Fig. 3. (a) Replicable subgraph. (b) Result of replication if it was applied on a task
level. (c) Result of replication with our method.

subgraph set=∅ function group(T i)
non evaluated tasks={Ti; Ti∈V} adjacent set=∅
for each Ti ∈ non evaluated tasks non evaluated tasks=non evaluated tasks-{Ti}
subgraph=group(T i) if is replicable(Ti)
if subgraph �= ∅ adjacent set={Ti}

for each H ∈ subgraph set for each task successor task Tj ∈ V and
if H

⋂
subgraph �= ∅ then is replicable(Tj)

subgraph = subgraph
⋃

H adjacent set=adjacent set
⋃

group(Tj)
end for end for
subgraph set= end if
=subgraph set

⋃
subgraph return adjacent set

end if end function group
end for

Fig. 4. Algorithm for identifying replicable subgraphs of tasks
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function replication
for each subgraph ∈ subgraph set

for each Ti ∈ subgraph
number replications[Ti]=�max(µ(Ti),max(∀Tj successor of Ti comm(Ti→Tj)))

iteration period
�

end for
Tinit = initial task of subgraph with lowest number replications[Ti]
number replications subgraph = number replications[Tinit]
for each Ti ∈ subgraph

number replications[Ti]= � number replications[Ti]
number replications[Tinit] �

end for
end for

end function replication

Fig. 5. Algorithm for determining the number of replications of the subgraphs and
their internal tasks

Table 1 shows the development of the replication method when it is applied
to the task graph of the IVUS application for a desired throughput of 214 ms. In
this case, we identify three replicable subgraphs (two with a single task). Figure
6 graphically shows the result of this replication method in IVUS application.

Table 1. Development of the replication method for IVUS application

Rep.subgraphs n rep.[Ti] n rep. inside subgraph n rep subgraph

T2 → T3 T2:2 2/2=1 2
T3:8 8/2=4

T10 T10:2 2/2=1 2

T12 T12:3 3/3=1 3

Fig. 6. Ivus replicated graph
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4 Related Work

The optimization of throughput in streaming applications running in pipeline
has been undertaken by several proposals in the literature. Some authors provide
generic solutions to exploit throughput under different constraints without con-
sidering replication. Hoang and Rabey in [2] propose an algorithm that solves a
resource-optimization problem and maximizes throughput. Hoang and Rabey’s
proposal was later improved by Yang et al in [3]. This starts the task assign-
ment with the ETF algorithm that is based on a classic DAG heuristic [9]. From
the obtained assignment, it processed additional reassignment steps in order to
exploit the iterative behaviour of applications. In all these approaches, the ma-
ximum throughput is given by the maximum computation time of the tasks in
the application, which also indicates the minimum IP achievable.

In order to improve throughput there are approaches that introduce the con-
cept of replication to their techniques, dividing the input frame into several parts
and applying data parallelism to each [4] [8]. Lee et al in [5] apply a replication
technique where the tasks of the same stage have to be identical. Unlike these
previous works, our approach considers the possibility of replication on the task
level for applications with arbitrary task structure and without constraints on
the kind of tasks within each stage. The replicated tasks perform the same com-
putation for different frames of the input stream. This facilitates the applicability
of the replication method as the code of the task does not need to be modified
and provides a more feasible solution for improving throughput.

5 Experimentation Results

In this section, we conducted an experiment to show both the applicability and
the benefits provided by the proposed approach of task replication when used to
execute the IVUS imaging application in a cluster environment.

From the obtained IVUS task graph model, we executed the application in
the simulation framework pMAP [10], which simulates the execution of message-
passing applications in distributed systems. The underlying system was modelled
by defining a set of homogeneous nodes with the same characteristics as those
used in the sequential execution. The network was modelled as a Gigabit Ether-
net.

The replication method was evaluated for a desired IP that is based on µ(T 3),
which is the highest computation time in the graph and consequently indicates
the maximum throughput that is achievable. Thus, we replicated the application
tasks using our methodology in order to increase throughput by 2, 3, 4, 8 and
16 times, indicated as x2, x3, x4, x8 and x16 respectively. The tasks of the repli-
cated graph were assigned to the processors using a specific mapping mechanism
for pipeline applications [11] that makes it possible to exploit throughput and
optimize the number of processors.

Figure 7 shows the throughput, in frames/second, that was obtained for the
application using our methodology, compared with the maximum throughput
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that can be theoretically obtained for the different number of replications. As
can be observed, we obtained significant similarities for both values. Thus, the
replication method is able to achieve the given throughput constraints for the
IVUS imaging application.

Fig. 7. Throughput

As the number of processors that are used is increased due to task replication,
we evaluated the processor utilization in the executions. For each experiment,
Figure 8(a) shows the number of required processors with the corresponding
average utilization. As can be observed, the worst case is an average utilization of
68% when 4 replications were applied. In all the remaining cases, the percentage
utilization is greater that 70%. Thus, the mapping mechanism applied after
replication is able to optimize resource utilization.

Finally, we evaluated the speedup in order to analyse the influence of the
increase in the number of tasks and processors due to replications. As shown in
Figure 8(b), the obtained speedup has the same tendency as the maximum, and
the difference between both becomes more significant only when 36 processors
were used in the x16 experiment.

Fig. 8. (a) CPU utilization. (b) Speedup.
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6 Conclusions

Optimization of throughput is a key performance measure for optimization in
image processing applications that act on an input sequence of image frames. In
this work, we addressed the exploitation of throughput based on a real applica-
tion, IVUS imaging, in the field of medicine.

We have proposed a task replication methodology that consists of two steps:
(a) obtaining the task graph model of the application and, (b) applying the
convenient replication of tasks to enable the desired throughput.

The effectiveness of the proposed approach was evaluated for the IVUS ima-
ging application. For different values of throughput to be obtained, we applied
replication, and the replicated application was executed through simulation in
a cluster environment using a task mapping mechanism that considers its ite-
rative behaviour. The results show that the proposed replication method fol-
lowed by the mapping mechanism is able to achieve the desired throughput for
the application under study while maintaining good utilization of resources.
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Abstract. In 2007, the most challenging high energy physics experi-
ment ever, the Large Hardon Collider(LHC), at CERN, will produce a
sustained stream of data in the order of 300MB/sec, equivalent to a
stack of CDs as high as the Eiffel Tower once per week. This data is,
while produced, distributed and persistently stored at several dozens of
sites around the world, building the LHC data grid. The destination sites
are expected to provide the necessary middle-ware, so called Storage El-
ements, offering standard protocols to receive the data and to store it
at the site specific Storage Systems. A major player in the set of Stor-
age Elements is the dCache/SRM system. dCache/SRM has proven to
be capable of managing the storage and exchange of several hundreds of
terabytes of data, transparently distributed among dozens of disk storage
nodes. One of the key design features of the dCache is that although the
location and multiplicity of the data is autonomously determined by the
system, based on configuration, cpu load and disk space, the name space
is uniquely represented within a single file system tree. The system has
shown to significantly improve the efficiency of connected tape storage
systems, by caching, ’gather & flush’ and scheduled staging techniques.
Furthermore, it optimizes the throughput to and from data clients as well
as smoothing the load of the connected disk storage nodes by dynami-
cally replicating datasets on the detection of load hot spots. The system
is tolerant against failures of its data servers which enables administra-
tors to go for commodity disk storage components. Access to the data
is provided by various standard protocols. Furthermore the software is
coming with an implementation of the Storage Resource Manager pro-
tocol (SRM), which is evolving to an open standard for grid middleware
to communicate with site specific storage fabrics.

1 Contributors

dCache/SRM is a joined effort between the Deutsches Elektronen-Synchrotron[1]
in Hamburg and the Fermi National Accelerator Laboratory[2] near Chicago
with significant distributions and support from the University of California, San
Diego, INFN, Bari as well as from the GridPP people at Rutherford Appleton
Laboratory, UK[4] and CERN[3].

� For the dCache team.
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2 The LHC Computing Grid and the Storage Element

The worlds largest installation of a High Energy Physics Particle accelerator,
using superconducting magnets, is the Large Hardron Collider[5] at CERN, next
to Geneva in Switzerland. A 27 Km tunnel holds two ring pipes equipped with
supercooling magnets, accelerating bunches of protons to nearly the speed of
light and letting them collide at an energy of 14 TeV. This is the highest energy
achieved ever by any accelerator in the world as well as the most intense beam.
At four locations within the ring structure, huge detectors are placed, detecting
particles produced during beam collisions. Knowing that those collisions will
happen at a rate of 800 million times a second and that one bunch crossing may
produce up to 20 physical events, it becomes clear that computer science faces
the challenge of processing and storing data two orders of magnitude larger than
they did for known physics experiments. This in mind, the LHC Computing Grid
Group, LCG[6] was formed, targeting computing challenges common to all LHC
experiments. Although other computing patterns may have solved the upcoming
challenges as well, a Tier approach had been chosen. Within this design, the raw
data source, namely CERN, builds the Tier 0 centre surrounded by only very few
Tier 1 centres per country. Those, in turn, deliver data to some dozens of Tier 2
centers. Most of those centres have already been in place far before agreeing to
join the LCG Tier tree and consequently are running their own compute farms
and storage fabrics. So, sufficiently flexible interfaces to compute and storage
systems had to be defined, allowing interoperability of the tier tree without
forcing the local sites to change their existing software stack. In LCG terms, the
abstraction of a storage system is called a Storage Element, SE if it complies
with a certain set of interfaces allowing interoperability with the LCG middle
ware [32].

3 Technical Overview

The intention of this publication is to describe features, behaviour and applica-
tions of a storage middleware system, called the dCache/SRM[12][10][27][31].

The core part of the dCache has proven to combine heterogenous disk storage
systems in the order of several hundred tera bytes and let its data repository
appear under a single filesystem tree. It takes care of data hot spots, failing
hardware and makes sure, if configured, that at least a minimum number of
copies of each dataset resides within the system to ensure full data availability
in case of disk server maintenance or failure. Furthermore, dCache supports a
large set of standard access protocols to the data repository and its namespace.

If dCache is connected to a Tertiary Storage System, it optimizes the access
to such a system by various technics. Currently Enstore[7], the Open Storage
Manager (OSM), the High Performance Storage System (HPSS) and the Tivoli
Storage Manager (TSM)[9][29] are supported by the dCache middleware.

Moreover, dCache/SRM supports all interfaces of the LCG storage element
definition.
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4 Technical Specification

4.1 File Name Space and Dataset Location

dCache strictly separates the filename space[33][24] of its data repository from
the actual physical location of the datasets. The filename space is internally
managed by a database and interfaced to the user resp. to the application pro-
cess by the nfs2[16] protocol and through the various ftp filename operations.
The location of a particular file may be on one or more dCache data servers as
well as within the repository of an external Tertiary Storage Manager. dCache
transparently handles all necessary data transfers between nodes and optionally
between the external Storage Manager and the cache itself. Inter dCache trans-
fers may be caused by configuration or load balancing constrains. As long as a
file is transient, all dCache client operations to the dataset are suspended and
resumed as soon as the file is fully available.

4.2 Maintenance and Fault Tolerance

As a result of the name space and data separation, dCache data server nodes,
subsequently denoted as pools, can be added at any time without interfering
with system operation. Having a Tertiary Storage System attached, or having
the system configured to hold multiple copies of each dataset, data nodes can
even be shut down at any time. In both setups, the dCache system is extremely
tolerant against failures of its data server nodes.

4.3 Data Access Methods

In order to access dataset contents, dCache provides a native protocol (dCap),
supporting regular file access functionality. The software package includes a c-
language client implementation of this protocol offering the posix open, read,
write, seek, stat, close as well as the standard filesystem name space operations.
This library may be linked against the client application or may be preloaded
to overwrite the file system I/O. The library supports pluggable security mech-
anisms where the GssApi (Kerberos) and ssl security protocols are already im-
plemented. Additionally, it performs all necessary actions to survive a network
or pool node failure. It is available for Solaris, Linux, Irix64 and windows. Fur-
thermore, it allows to open files using an URL like syntax without having the
dCache nfs file system mounted. In addition to this native access, various FTP
dialects[27] are supported, e.g. GssFtp (kerberos)[15] and GsiFtp (GridFtp)[14].
An interface definition is provided, allowing other protocols to be implemented
as well.

4.4 Tertiary Storage Manager Connection

Although dCache may be operated stand alone, it can also be connected to
one or more Tertiary Storage Systems. In order to interact with such a sys-
tem, a dCache external procedure must be provided to store data into and
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retrieve data from the corresponding store. A single dCache instance may talk
to as many storage systems as required. The cache provides standard meth-
ods to optimize access to those systems. Whenever a dataset is requested and
cannot be found on one of the dCache pools, the cache sends a request to the
connected Tape Storage Systems and retrieves the file from there. If done so,
the file is made available to the requesting client. To select a pool for staging
a file, the cache considers configuration information as well as pool load, avail-
able space and a Least Recently Used algorithms to free space for the incoming
data. Data, written into the cache by clients, is collected and, depending on
configuration, flushed into the connected tape system based on a timer or on
the maximum number of bytes stored, or both. The incoming data is sorted, so
that only data is flushed which will go to the same tape or tape set. Mechanisms
are provided that allow giving hints to the cache system about which file will
be needed in the near future. The cache will do its best to stage the particular
file before it’s requested for transfer. Space management is internally handled
by the dCache itself. Files which have their origin on a connected tape storage
system will be removed from cache, based on a Least Recently Used algorithm,
if space is running short. Less frequently used files are removed only when new
space is needed. In order to allow site administrators to tune dCache according
to their local tape storage system or their migration and retrieval rules, dCache
provides an open API to centrally steer all interactions with Tertiary Storage
Systems.

4.5 Pool Attraction Model

Though dCache distributes datasets autonomously among its data nodes,
preferences may be configured. As input, those rules can take the data flow
direction, the subdirectory location within the dCache file system, storage in-
formation of the connected Storage Systems as well as the IP number of the
requesting client and the data transfer protocol, the client is able to support.
The cache defines data flow direction as getting the file from a client, delivering
a file to a client and fetching a file from the Tertiary Storage System. The sim-
plest setup would direct incoming data to data pools with highly reliable disk
systems, collect it and flush it to the Tape Storage System when needed. Those
pools could e.g. not be allowed to retrieve data from the Tertiary Storage Sys-
tem as well as deliver data to the clients. The commodity pools on the other
hand would only handle data fetched from the Storage System and delivered
to the clients because they would never hold the original copy and therefore a
disk resp. node failure wouldn’t do any harm to the cache. Extended setups may
include the network topology to select an appropriate pool node. Those rules
result in a matrix of pools from which the load balancing module, described
below, may choose the most appropriate candidate. The final decision, which
pool to select out of this set, is based on free space, age of file and node load
considerations.
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4.6 Load Balancing and Pool to Pool Transfers

The load balancing module is, as described above, the second step in the pool
selection process. This module keeps itself updated on the number of active data
transfers and the age of the least recently used file for each pool. Based on this set
of information, the most appropriate pool is chosen. This mechanism is efficient
even if requests are arriving in bunches. In other words, as a new request comes
in, the scheduler already knows about the overall state change of the whole
system triggered by the previous request though this state change might not
even have fully evolved. System administrators may decide to make pools with
unused files more attractive than pools with only a small number of movers, or
some combination. Starting at a certain load, pools can be configured to transfer
datasets to other, less loaded pools, to smooth out the overall load pattern. At
a certain point, pools may even refetch a file from the Tertiary Storage System
rather than an other pool, assuming that all pools, holding the requested dataset
are too busy. Regulations are in place to suppress chaotic pool to pool transfer
orgies in case the global load is steadily increasing. Furthermore, the maximum
numbers of replica of the same file can be defined to avoid having the same set
of files on each node.

4.7 File Replica Manager

The Replica Manager Module[26] enforces that at least N copies of each file,
distributed over different pool nodes, must exist within the system, but never
more than M copies. This approach allows to shut down servers without affecting
system availability or to overcome node or disk failures. The administration
interface allows to announce a scheduled node shut down to the Replica Manager
so that it can adjust the N ¡ M interval prior to the shutdown.

4.8 Data Grid Functionality

In order to comply with the definitions of a LCG Storage Element the storage
fabric must provide the following interfaces :

There must be a protocol for locally accessing data. dCache provides this by
nfs mounting a server for file name operations but transferring the actual data via
faster channels. Local Storage Elements, including dCache, hide this mechanism
by being integrated into a local filesystem wrapper software provided by CERN,
the Grid File Access Layer, GFAL[20].

A secure wide-are transfer protocol must be implemented which, at the time
being, is agreed to be GsiFtp, a secure Ftp dialect. Furthermore dCache offers
kerberos based FTP as well as regular and secure http access.

To allow central services to select an appropriate Storage Element for file
copy or file transfer requests, each Storage Element has to provide sufficient
information about its status. This includes its availability as well as its total
and available space. Currently this information is provided via the ldap protocol
but this, for scalability reasons, is in process of being redesigned. In order to
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be independend of the actually distribution mechanism, dCache provides an
interface to the Generic Information Provider, GIP. GIP[23] is responsible to
make this information available to the connected grid middle ware.

The forth area, defining a LCG Storage Element, is a protocol which makes a
storage area a manageable. The interface is called the Storage Resource Manager,
SRM[10]. Beside name space operations, it allows to prepare datasets for trans-
fers directly to the client or to initiate third party transfers between Storage
Elements. SRM takes care that transfers are retried in case they didn’t succeed
and handles space reservation and management. In addition, it protects storage
systems and data transfer channels from being overloaded by scheduling trans-
fers appropriately. The SRM doesn’t do the transfer by itself, instead it allows
to negotiate transfer protocols available by the data exchanging parties.

5 Performance Considerations and Future Plans

The core design of dCache has been avoiding central components to be involved
in data transfers. Therefor, because of the fact that CPU speed is increasing
faster than disk system access speeds or even network transfer speeds, dCache
data mover components are always limited by either the performance of the
underlying RAID system or by the network components. Consequently dCache
data transfer performance turned out to be as good as the hardware it’s build
upon. This is different for name space operations and the initial open time for
datasets. These tasks are processed within central components. Further evalu-
ation on dCache systems beyond 100 TByes of disk space and a frequency of
opening files above 10 Hz let us believe that the file system name space sim-
ulation software builds the actual bottleneck. To overcome this limitation, the
name space module has been revised and will be replaced by Chimera[33][24], a
fully database based system specially tuned for this kind of access. Chimera is
currently in the extended testing phase.

6 Dissemination

At the time of this publication, dCache is in production at various locations in
Europe and the US. The largest installation is, to our knowledge, the CDF sys-
tem at FERMI [2]. More than 150 Tbytes are stored on commodity disk systems
and in the order of 50 Tbytes have been delivered to about 1000 clients daily
for more than a year. FERMI dCache installations are typically connected to
ENSTORE[7], the FERMI tape storage system. CDF is operating more than 10
tape-less dCache installations outside of FERMI, evaluating the dCache Replica
Manager. The US devision of the LHC CMS[19] experiment is using the dCache
as Grid Storage Element and large file store in the US and Europe. At DESY,
dCache is connected to the Open Storage Manager (OSM) and serving data out
of 100 Tbytes of disk space. The German LHC Grid Tier 1 center in Karlruhe
(GridKa,[18]) is in the process of building a dCache installation as Grid Stor-
age Element, connected to their Tivoli Storage Manager[9] installation. End of
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2005 and beginning of 2006 the majority of sites participating in the LCG data
challenges have been transferring and storing their data under the control of
dCache/SRM storage elements.

Furthermore dCache is a component of the german D-Grid[21][25] e-science
initiative.

References

1. DESY : http://www.desy.de
2. FERMI : http://www.fnal.gov
3. CERN : http://www.cern.ch
4. Rutherford Appleton Laboratory : http://www.cclrc.ac.uk/
5. Large Hadron Collider : http://lhc.web.cern.ch/lhc/
6. LHC Computing Grid : http://lcg.web.cern.ch/LCG/
7. Fermi Enstore http://www.fnal.gov/docs/products/enstore/
8. High Performance Storage System : http://www.hpss-collaboration.org/hpss/
9. Tivoli Storage Manager : http://www-306.ibm.com/software/tivoli/products/

storage-mgr/
10. SRM : http://sdm.lbl.gov/srm-wg
11. CASTOR Storage Manager : http://castor.web.cern.ch/castor/
12. dCache Documentation : http://www.dcache.org
13. dCache, the Book : http://www.dcache.org/manuals/Book
14. GsiFtp http://www.globus.org/ datagrid/deliverables/gsiftp-tools.html
15. Secure Ftp : http://www.ietf.org/rfc/rfc2228.txt
16. NFS2 : http://www.ietf.org/rfc/rfc1094.txt
17. Fermi CDF Experiment : http://www-cdf.fnal.gov
18. GridKA : http://www.gridka.de/
19. Cern CMS Experiment : http://cmsinfo.cern.ch
20. Grid GFAL http://lcg.web.cern.ch/LCG/peb/GTA/GTA-ES/Grid-File-

AccessDesign-v1.0.doc
21. D-Grid, The German e-science program : http://www.d-grid.de
22. Patrick Fuhrmann et al. dCache, the Upgrade. Spring 2006, CHEP06, Mumbai,

India
23. Lawrence Field et al. Grid Deployment Experiences: The path to a production

quality LDAP based grid information system. Spring 2006, CHEP06, Mumbai,
India

24. Tigran Mkrtchyan et al. Chimera. Spring 2006, CHEP06, Mumbai, India
25. Lars Schley, Martin Radicke et al. A Computational and Data Scheduling Archi-

tecture for HEP Application. Spring 2006, CHEP06, Mumbai, India
26. Alex KULYAVTSEV et al. Resilient dCache: Replicating Files for Integrity and

Availability Spring 2006, CHEP06, Mumbai, India
27. Timur Perelmutov et al. Enabling Grid features in dCache Spring 2006, CHEP06,

Mumbai, India
28. Abhishek Sinh Rana et al. gPLAZMA : Introducing RBAC Security in dCache

Spring 2006, CHEP06, Mumbai, India
29. Patrick Fuhrmann et al. The TSM in the LHC Grid World Sep 2005, TSM Sym-

posium , Oxford, UK
30. Patrick Fuhrmann, dCache, the commodity cache. Spring 2004, Twelfth NASA

Goddard and Twenty First IEEE Conference on Mass Storage Systems and Tech-
nologies. Washington DC, USA



dCache, Storage System for the Future 1113

31. Timur Perelmutov, Storage Resource Managers by CMS,LCG. Spring 2004,
Twelfth NASA Goddard and Twenty First IEEE Conference on Mass Storage
Systems and Technologies. Washington DC

32. Michael Ernst et al. Managed Data Storage and Data Access Services for Data
Grids. Sep 2004, CHEP04, Interlaken, Switzerland

33. Tigran Mkrtchyan et al. Chimera, the commodity namespace service. Sep 2004,
CHEP04, Interlaken, Switzerland

34. Patrick Fuhrmann et al. dCache, LCG SE and enhanced use cases. Sep 2004,
CHEP04, Interlaken, Switzerland

35. Michael Ernst, Patrick Fuhrmann et al. dCache. March 2003, CHEP03, San Diego,
USA

36. Patrick Fuhrmann et al. dCache. Sep 2001, CHEP01, Bejing, China



Computing the Diameter of 17-Pancake Graph

Using a PC Cluster

Shogo Asai, Yuusuke Kounoike, Yuji Shinano, and Keiichi Kaneko

Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
asai@al.cs.tuat.ac.jp, {kounoike, yshinano, k1kaneko}@cc.tuat.ac.jp.

http://opt.cs.tuat.ac.jp/

Abstract. An n-pancake graph is a graph whose vertices are the per-
mutations of n symbols and each pair of vertices are connected with an
edge if and only if the corresponding permutations can be transitive by
a prefix reversal. Since the n-pancake graph has n! vertices, it is known
to be a hard problem to compute its diameter by using an algorithm
with the polynomial order of the number of vertices. Fundamental ap-
proaches of the diameter computation have been proposed. However, the
computation of the diameter of 15-pancake graph has been the limit in
practice. In order to compute the diameters of the larger pancake graphs,
it is indispensable to establish a sustainable parallel system with enough
scalability. Therefore, in this study, we have proposed an improved algo-
rithm to compute the diameter and have developed a sustainable parallel
system with the Condor/MW framework, and computed the diameters
of 16- and 17-pancake graphs by using PC clusters.

1 Introduction

In this paper, let us consider a problem in which a stack of pancakes whose sizes
are completely different is rearranged so that the pancakes form a pile where
the sizes of pancakes increase from the top to the bottom. As operations of rear-
rangement, reversing several pancakes from the top of the stack is possible. The
problem to obtain the largest number of operations to rearrange the worst-case
stack of n pancakes as a function of n is called the pancake sorting problem[1].
This problem is also called the prefix reversal problem.

A pancake graph is a graph whose vertices are the permutations of n symbols
from 1 to n and its edges are given between permutations transitive by prefix
reversals. Since the graph topology is dependent on n, it is called an n-pancake
graph. An n-pancake graph is a regular graph that has n! vertices and its degree
is n−1. The pancake sorting problem and the problem to obtain the diameter of
the pancake graph is equivalent. Since the pancake graphs have many merits such
as the symmetric and recursive structures, and the small degrees and diameters
against the sizes, much attention is paid to them as a model of interconnection
networks for parallel computers[2,3,4]. When we regard the pancake graphs as
the model of the interconnection networks, the diameter of the graph is a measure
that represents the delay of communication[5,6].

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1114–1124, 2006.
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Table 1. The diameters of n-pancake graphs

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Diameters 0 1 3 4 5 7 8 9 10 11 13 14 15 16 17

To obtain the diameter of an n-pancake graph, it is sufficient to obtain the
shortest distances from one vertex to all the vertices. However, the algorithms
that depend on the numbers of vertices and/or edges cannot solve the problem
practically because the computational time and the memory space increase expo-
nentially. Hence, Kounoike et al.[7] proposed a method that restricts the number
of vertices for which the shortest distances must be obtained by taking advan-
tage of the recursive structure of the pancake graphs. This method is based on
the method by Heydari et al.[8] to obtain the diameter of the 13-pancake graph
and is extended not to execute the unnecessary search. Kounoike has applied the
method to give the diameters of 14- and 15-pancake graphs that were unknown
so far. Table 1 shows the known diameters of the pancake graphs. Some atten-
tions are paid to the sequence of diameters mathematically, and the sequence
up to n = 13 is listed in the ‘On-Line Encyclopedia of Integer Sequences’[9]
as ‘Sorting by prefix reversal.’ However, no sequence for n ≥ 14 is listed there.
Hence, obtaining the diameters of the larger pancake graphs also contributes the
study of the sequences.

In this study, we have improved the method by Kounoike et al. when they
obtained the diameter of 15-pancake graph so that it computes the diameters of
the larger pancake graphs and implemented it as a parallel computing system.
In addition, we made use of the implemented system to obtain the diameters of
16- and 17-pancake graphs that have been unknown.

2 Definitions of Terminology and Symbols

In this section, we define the terminology and symbols used in this paper. Re-
fer [7] for the detailed explanations.

Let Sn be the set of all the permutations of n symbols from 1 to n, and let
the symbols 1 to n correspond to the smallest size of pancake to the largest one.
Then assume that a permutation π ∈ Sn which is obtained by arranging the
symbols from the top pancake to the bottom pancake represents a stack of n
pancakes. Let en be the permutation (1, 2, . . . , n) that corresponds to the sorted
stack. Let σ ∈ Sn be a permutation that is obtained by reversing the preceding
k (2 ≤ k ≤ n) symbols in π ∈ Sn. Then the transformation from the permu-
tation π to the permutation σ is called the prefix reversal of k symbols for the
permutation π, and it is denoted πk = σ. Since we use only the prefix reversals
of permutations in this paper, we mention reversals to mean the prefix ones.
The successive reversals (πx1)x2 of a permutation π are also denoted π(x1,x2).
Moreover, if x = (x1, x2, . . . , xm) then let πx represent a successive reversals
with x1, x2, . . . , xm symbols. If πx = en then x is called a sorting sequence of
π. For a given permutation π ∈ Sn, let the function f(π) = min{|x| : πx = en}
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Fig. 1. The pancake graphs

represent the smallest number of reversals to sort the permutation. In addition,
let the function f(n) = max{f(π) : π ∈ Sn} represent the largest number of
reversals to sort the stacks of n pancakes. Conventionally, the same letter f is
used for the functions. Note that the meaning of f depends on its argument.

A pancake graph is a graph whose vertices are π ∈ Sn, and whose edges are
between vertices π and σ where σ = πk. Since pancake graphs are different de-
pending on n, each pancake graph is called n-pancake graph and denoted by Pn.
Figure 1 shows P1 to P4. In general, between two vertices in a graph, the path
that has the smallest number of edges is called the shortest path between the
two vertices, and the number of edges included in the path is called the shortest
distance. For arbitrary pair of two vertices in a graph, the longest shortest dis-
tance is called the diameter of the graph. By selecting en as one of the pair of
vertices to which we compute the shortest distance, computing the diameter of
an n-pancake graph is equivalent to computing f(n). In this paper, the shortest
distance between a vertex π ∈ Sn and the vertex en is simply mentioned the
distance of π.

3 Basic Method

We took the method by Kounoike et al.[7] by which they obtained f(15) as
the basic method to obtain the diameters. The method obtains the dependency
between vertices based on the symmetric and recursive properties of pancake
graphs and restricts the vertices whose distance computation is necessary.

First, for a permutation π = ex
n−1 ∈ Sn−1, we define a permutation σk ∈ Sn

(1 ≤ k ≤ n) by expression (1). Then, for f(σk), expression (2) holds.

σk =

 ((en)n)x k = 1
((en)(k,n))x 2 ≤ k ≤ n− 1
ex

n k = n
(1)



Computing the Diameter of 17-Pancake Graph Using a PC Cluster 1117

5
10

6
10

7
10

8
10

9
10

10
10

11
10

12
10

3
9

4
9

5
9

6
9

7
9

8
9

9
9

10
9

11
9

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
8

10
8

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
7

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

0
5

1
5

2
5

3
5

4
5

5
5

6
5

0
4

1
4

2
4

3
4

4
4

5
4

0
3

1
3

2
3

3
3

0
2

1
2

SSSSSSSS

SSSSSSSSS

SSSSSSSSSS

SSSSSSSSSS

SSSSSSSS

SSSSSSS

SSSSSS

SSSS

SS

…

dependence

direct dependence

5
10

6
10

7
10

8
10

9
10

10
10

11
10

12
10

3
9

4
9

5
9

6
9

7
9

8
9

9
9

10
9

11
9

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
8

10
8

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
7

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

0
5

1
5

2
5

3
5

4
5

5
5

6
5

0
4

1
4

2
4

3
4

4
4

5
4

0
3

1
3

2
3

3
3

0
2

1
2

SSSSSSSS

SSSSSSSSS

SSSSSSSSSS

SSSSSSSSSS

SSSSSSSS

SSSSSSS

SSSSSS

SSSS

SS

…

dependence

direct dependence

Fig. 2. The dependency relation between S
m
n

f(σk) ≤


f(π) + 1 k = 1
f(π) + 2 2 ≤ k ≤ n− 1
f(π) k = n

(2)

For π ∈ Sn−1, let Tk(π) be the transformation that obtains σk ∈ Sn, and let
Tk(S) be a set of Tk(π) for all the elements of the set S ⊆ Sn−1. In addition, let
Sm

n be a set of π ∈ Sn such that f(π) = m holds where Sk
n be empty for k such

that k < 0 or k > f(n). Then define the set S
m

n by expression (3).

S
m

n = T1(Sm−1
n−1 ) ∪ T2(Sm−2

n−1 ) ∪ · · · ∪ Tn−1(Sm−2
n−1 ) ∪ Tn(Sm

n−1) (3)

This is the set of vertices in Sn whose upper bounds are equal to m. Then, from
expression (2), f(π) ≤ m holds for π ∈ S

m

n . The following relation holds among
S

m

n , Sm
n and Sn:

Sn =
f(n−1)+2⋃

k=0

S
k

n, (4)

Sm
n ⊆

f(n−1)+2⋃
k=m

S
k

n. (5)

From expression (4), we can see that

f(n) ≤ f(n− 1) + 2. (6)

In Figure 2, a set depends on the sets that are just above or upper left of it, and
the lower left and upper right blank parts represent empty sets. We cannot judge
if the below part of a set is empty or not until its diameter is computed. Based on
the relationship, we can obtain an arbitrary S

m

n by repeating transformation and
distance computation recursively from S1 = S0

1 = {e1}. To obtain the diameter
f(n), we first obtain f(π) for all of π ∈ S

f(n−1)+2

n . Then, depending on the
existence of π that satisfies f(π) = f(n− 1) + 2, f(n) is classified as follows:
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– In case that π which satisfies f(π) = f(n− 1)+2 exists: f(n) = f(n− 1)+2
holds. We can finish computation just after such π is found (See expression
(6)).

– Otherwise: f(n) ≤ f(n − 1) + 1 holds. We can finish computation with the
result f(π) = f(n − 1) + 1 by showing π which satisfies the equation.

For searching shortest paths, we use A* algorithm. Refer [7] to see the detail of
the algorithm.

The implementation by Kounoike et al. fixes the elements of the sets in
Figure 2 from the leftmost column by performing transformation and distance
computation. The diameters are also obtained in the process. This search method
makes it possible to skip the searches of vertices that are known to be unneces-
sary for diameter computation based on dependency among the sets. However,
as the size of the pancake graph increases, the number of elements in the sets be-
comes very large, and we cannot manage the pancake graph only with the main
memory. Their implementation stores all the results of distance computation for
later use. The results increase exponentially, and it occupies 21GB of the disk as
a compressed file after the computation of f(14). Hence, their implementation
has the limitation for diameter computation of the larger pancake graphs.

4 Our New Implementation

In the previous implementation, it is impossible to compute the diameter of the
larger pancake graphs because of memory restriction. Hence, we changed the
searching method to decrease the number of nodes drastically during the search
process. In addition, by devising the representation of each node, we decreased
the amount of the memory used. Moreover, we proved that distance computation
is unnecessary in some cases and accelerated the search.

4.1 Depth-First Search

If we consider the process of computing diameters the tree search, the search
method in the previous implementation corresponds to the breadth-first search
inside a specific column in Figure 2. If we can replace it with the depth-first
search, much memory space can be saved. However, the simple depth-first search
will also search the vertices that have no relation to diameter computation.

Then, we used a method in which the vertices are judged if they have relation
to diameter computation or not by using the incumbent diameter value. For a
vertex π, if its upper bound value u is known, to judge if the vertex can be
discarded or not, it is necessary to know to which column the vertex belongs in
Figure 2. Then, let the number obtained by the following expression of n = |π|
and u be the column number in the figure of dependency relationship.

column = n× 2 − u (7)

If the column number calculated by substituting u with the incumbent diameter
is less than or equal to the column number of the vertex which we are focusing
on, we can discard the vertex.
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If we perform the depth-first search by using this method, while the incumbent
diameter is smaller than the true diameter, our implementation may search some
vertices that are not searched by the previous implementation. However, once
the incumbent diameter becomes equal to the true diameter, this situation never
occurs. Empirically, we can easily find the vertices that attains f(n−1)+1 during
f(n) computation. Hence, this method is efficient enough.

4.2 Elimination of Unnecessary Distance Computations

Up to now, we have computed the distance of the transformation even if it
does not increase the upper bound, that is, σn = Tn(π) for π = ex

n−1. This
transformation generates a permutation obtained by just adding n at the final
position of the permutation π = ex

n−1. However, it looks impossible to sort
this kind of permutations with less operations than f(π). Then, we guessed that
f(π) = f(σn) and proved it. Hence, there is no need to compute the diameter for
f(σn). By using this, we can improve A* search. By applying this improvement,
we could accelerate the program by 5 to 8%.

Proof of f(π) = f(σn). Let π = ex
n−1 and σn = Tn(π), respectively. In

general, to sort the permutation σn, it is necessary to execute multiple prefix
reversals. Here, we abstract the operation sequence necessary to sort and denote
it with an operation sequence X.

First, we assume that there exists an operation sequence X for which |X|<
f(π) holds. Then, let Y = (y1, y2, ..., ym) be the operation sequence where yi

obtained by transforming each element xi in X = (x1, x2, ..., xm) as follows:

yi =
{

xi xi < npos

xi − 1 xi ≥ npos
(8)

where npos represents the position of n when the operations just before xi are
applied to σn.

Each yi that is constructed by this transformation has the following features:

– In case that n is at the final position, it is just a reversal of no more than
n− 1 symbols.

– Order of the symbols except for n is same as that of the result of operation
before transformation.

σn has n at the final position in the initial status. Therefore if we use Y
instead of X, we can sort π without performing the reversal of n symbols. In
this case, the number of operations is |Y | = |X|. That is, if σn can be sorted by
|X| operations, f(π) can be also sorted by no more than |X| operations. This
leads to contradiction. Hence, there does not exist X that satisfies |X| < f(π).
From this, we can say f(π) = f(σn).

Improvement of A* Search. In the part of the diameter computation by
A* search, one vertex which attains the least estimated distance is taken from
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enumerated elements, and the estimated distances for all of its neighbor vertices
are computed. However, if the permutation corresponding to the vertex has
n in its final position, then from the proof above, we can see that the shortest
distance is obtained without checking the vertex generated by the prefix reversal
of n symbols. That is, we can see that there is a shortest path which does not
include the vertex. Hence, in case that the final position has n, we can lessen
the paths to be searched by ignoring the vertices obtained by the prefix reversal
of n symbols. In addition, generalizing this idea, in case that the final part of
the permutation is sorted, we can lessen more vertices to be searched by not
operating them.

5 Parallelization

We have implemented the proposed system as a parallel system that works based
on the Master-Worker method by using the MW framework[10]. By using MW,
the number of Workers can be coped with automatically because Condor[11]
performs the resource management. In addition, according to the function of
MW, in case that some failures on the Worker side are detected, the executed
tasks are migrated into normal Workers automatically.

Master fulfills the distribution of child problems and the collection of results,
and Workers compute the given child problems. There is a variance among the
sizes of child problems (the number of vertices for which distance computations
are necessary) and the size of each child problem cannot be expected in advance.
Therefore, if a Worker simply solves all of the child problems and returns the
result, then it would be inefficient because the Worker that has finished its com-
putation earlier must wait until the completion of computation of other Workers.
Hence, we introduced a mechanism in which a Worker will suspend computa-
tion after a constant time and divide the suspended situation into multiple child
problems. From this, we can maintain a constant number of tasks on the Master
side all the time, and the Worker that has completed its computation can start
its next computation immediately.

In addition, in parallel execution, we conducted a benchmark task in the
initialization process of each Worker to measure the power of the machine on
which the Worker runs. As the benchmark task, we selected the computation
of f(15). After a minute has passed, computation of the benchmark task on the
Worker is stopped and we regard the number of vertices searched per second as
the benchmark value of the Worker. Based on this value, we can estimate the
execution time when we use other machines.

6 Computations of the Diameters of P16 and P17

By using the implemented system, we actually computed the diameters of 16-
and 17-pancake graphs. In both cases, we set both of the parameters in execu-
tion, the check pointing interval and the interval of the interruption of Worker
computation to be 10 minutes. We also set the number of child problems which
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Table 2. PC clusters configurations

Computation Master/Worker CPU Memory No. Connection
PCs

f(16) Master Pentium2 400MHz 256MB 1 100BASE-TX
Worker Pentium3 1GHz dual 1GB 16

Pentium2 400MHz 256MB 17
f(17) Master Opteron 1.8GHz dual 2GB 1 1000BASE-T

Worker Opteron 1.8GHz dual 2GB 107
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Master holds to be 1024. For these parameters, the optimal values are unknown.
However, the values we set are proved to provide the sufficient performance based
on preliminary experiments. Table 2 shows the PC clusters configurations that
are used for the computations.

In computation of f(16), by the computation during 33 days and 19 hours
under the environment with 49 Workers at most, we have obtained the result
f(16) = 18. From expression (6), it is known that f(16) ≤ f(15) + 2 = 19.
Hence, we have checked that there is no vertex whose distance is 19. Figure 3
shows the change of the number of Workers in the process of computation. In
this figure, the number of Workers of Pentium3 decreases rapidly around t = 80.
This is because the MW framework found an ordinary user’s job and a part of
computation is automatically interrupted. In addition, around t = 170, Pentium2
machines are all stopped because of maintenance. Figure 4 shows the change of
the number of remaining vertices in the process of the computation. Here, the
number of vertices is the number in case all the vertices are assumed to be
necessary for search. From this figure, we can see that the remaining vertices
decrease almost linearly. Hence, we could find that the remaining computation
time can be expected on the way of the computation process.

In computation of f(17), by the computation during 38 days and 19 hours
under the environment with 214 Workers at most, we have checked that there is
no vertex whose distance is no less than 20 and obtained the result f(17) = 19.
Figure 5 shows the change of the number of Workers in the process of computa-
tion. In Figure 5, the number of Workers are rapidly increasing around t = 90,
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Table 3. Examples of the permutations that attain the diameters of P16 and P17

n Permutation Sorting Sequence

(1, 15, 9, 11, 8, 10, 12, 7, 13, 5, 2, 16, 4, 14, 6, 3) (10, 12, 16, 3, 5, 12, 3, 2, 4, 3, 5, 6, 8, 12, 3, 13, 15, 2)
16 (6, 10, 4, 14, 2, 13, 16, 12, 8, 11, 7, 9, 5, 1, 3, 15) (10, 8, 12, 5, 6, 2, 4, 14, 4, 15, 10, 2, 16, 15, 13, 2, 5, 3)

(13, 9, 15, 2, 6, 4, 7, 11, 8, 12, 10, 14, 1, 16, 5, 3) (11, 4, 3, 10, 6, 8, 9, 6, 13, 11, 14, 16, 3, 4, 2, 12, 14, 2)
(1, 4, 2, 7, 13, 3, 5, 17, 10, 15, 9, 14, 8, 12, 6, 16, 11) (17, 8, 6, 10, 3, 8, 2, 12, 14, 3, 5, 8, 17, 2, 4, 3, 12, 6, 12)

17 (7, 13, 2, 4, 1, 3, 5, 17, 10, 15, 9, 14, 8, 12, 6, 16, 11) (12, 10, 2, 17, 10, 8, 12, 3, 10, 4, 5, 8, 17, 4, 3, 2, 12, 6, 12)
(11, 15, 4, 2, 3, 1, 5, 8, 6, 17, 13, 16, 12, 14, 10, 7, 9) (14, 7, 15, 16, 2, 7, 14, 12, 13, 11, 4, 12, 17, 6, 14, 4, 3, 2, 3)

Table 4. Statistical information

n 16 17
Number of (different) workers 49 214
Wall clock time for this job (sec) 2921931.4774 3309757.6983
Overall Parallel Performance 0.9993 0.9994
Equivalent Run Time 103371746009.5473 2375697871296.6587

because we augmented the number of Workers assigned to the computation. The
change of the numbers of remaining vertices is shown in Figure 6. Because the
ratio of change varies around t = 90, we can see the effect of the augmentation
of the assigned Workers.

We show some of the permutations and sorting sequences that attain the
diameters in Table 3. The statistical information of the computations is shown
in Table 4 where Overall Parallel Performance is a ratio of the total time of
computation of Workers over the total working time of Workers. Though this
value is ideally equal to 1, it is usually a smaller value practically, because of
the overhead by communication and the unbalanced task granularity. However,
in our system, the values are nearly equal to 1. Therefore we can see that it
works very efficiently. We consider that this is because tasks are interrupted in
constant time, and at least a constant number of tasks are maintained on the
Master side all the time, hence all the Workers can execute the tasks all the time.
In addition, Equivalent Run Time is the total sum of the multiplication of the
execution time of each Worker and the benchmark value. This is the expected
execution time when it is executed on the machine whose benchmark value is 1.
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The benchmark value of Pentium3 machine is about 1100 per one CPU. Hence, if
all the Workers work all the time, then f(16) can be computed in about 34 days
in case of executing it on Pentium3 machines only. In addition, if we compute
f(17) by using 16 Pentium3 machines, which are used for computation of f(16),
then no less than 4 years would be necessary as the computation time.

In this computation, we counted the number of discarded vertices as well as
the number of searched to verify the correctness of the results of computation of
the diameters. As a result, the sum of numbers of the discarded and the searched
vertices matched the number of total vertices. Hence, we can conclude that the
computation is correct. Since computation for each vertex is fulfilled in one CPU,
we can also be fully confident in the correctness of the result of computation.

7 Conclusions

In this study, we have improved the method by Kounoike et al. to obtain the
diameter of P15 so that it is applicable to compute the diameters of the larger
scales of pancake graphs and implemented as a parallel computing system. In
addition, we applied the system and obtained 16- and 17- pancake graphs by PC
clusters. By conventional implementations, it has been impossible to compute the
diameters of the larger pancake graphs because of memory restriction. However,
our improved method can complete the computation if sufficient time is supplied
and the computation time is shorten.

By using the implemented system, we have obtained the diameters of the
pancake graphs up to n = 17. We want to obtain the diameters of larger pancake
graphs. In addition, the known diameters so far satisfy f(n) = f(n− 1)+ 2 only
when n = 3, 6 and 11 and no n has been found for n > 11 which satisfies the
equation. We are also interested in such n’s.
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Topic 17: High-Performance Bioinformatics

Craig A. Stewart, Michael Schroeder,
Concettina Guerra, and Konagaya Akihiko

Topic Chairs

High performance computational biology and bioinformatics are increasingly
required to extract valuable biological and biomedical knowledge from ever-
increasing biological data. New computational techniques and new theoretical
models are required to simulate complex biological behavior of biological sys-
tems. Topic 17 focuses on high-performance and high-throughput computing
necessary for management of biological data, extraction of meaning from biolog-
ical data and using such data in modeling and simulation of biological systems.

Five papers were accepted for Topic 17 this year:
Multidimensional Dynamic Programming for Homology Search on Distributed

Systems by Shingo Masuno, Tsutomu Maruyama, Yoshiki Yamaguchi, and Ak-
ihiko Konagaya describes a computation method for multidimensional dynamic
programming on distributed systems. This paper makes use of FPGA systems in
novel and interesting ways, demonstrating the utility that many people expect
to see in FPGA-based systems in biocomputing in the future.

Load balancing and Parallel Multiple Sequence Alignment with Tree Accumu-
lation by Guangming Tan proposes a load balancing strategy for parallelizing
tree accumulation in progressive alignment in the widely used package ClustalW,
reducing overall running time and achieving reasonable speedups.

ZIB Structure Prediction Pipeline: Composing a Complex Biological Work-
flow through Web Services by Patric May, Hans-Christian Ehrlich, and Thomas
Steinke presents status of their efforts for the realization of an automated protein
prediction pipeline as an example for a complex biological workflow scenario in a
Grid environment based on Web services. As grid computing evolves, many lead-
ing experts believe the use of standards-based web services to be of particular
value in bioinformatics.

Evaluation of Parallel Paradigms on Anisotropic Nonlinear Diffusion by S.
Tabik, E.M. Garzn, I. Garca, and J. J. Fernndez discusses the parallel implemen-
tation of Anisotropic Nonlinear Diffusion, a powerful noise reduction technique
in the field of computer vision. This technique is applied to the problem of anal-
ysis of 3D images, an important problem in high performance computational
biology and bioinformatics.

Improving the Research Environment of High Performance Computing for
Non-Cluster Experts Based on Knoppix Instant Computing Technology by Fu-
mikazu Konishi, Manabu Ishii, Shingo Ohki, Yusuke Hamano, Shuichi Fukuda,
and Akihiko Konagaya presents an approach for instant computing using Knop-
pix technology that can allow even a non-computer specialist to easily construct
and operate a Beowulf cluster. The application InterProScan (from the Euro-

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1125–1126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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pean Bioinformatics Institute) is used as a demonstration of the value of Knoppix
Instant Computing Technology in bioinformatics.

These papers represent the very high-quality submissions received for the
topic High-Performance Bioinformatics. The contribution of Shingo Masuno,
Tsutomu Maruyama, Yoshiki Yamaguchi, and Akihiko Konagaya is in particular
noted as a distinguished contribution. The organizers of the High-Performance
Bioinformatics topic would like to thank all authors who submitted papers, the
paper review committee, and the Euro-Par 2006 conference organizers.
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Abstract. Alignment problems in computational biology have been fo-
cused recently because of the rapid growth of sequence databases. By
computing alignment, we can understand similarity among the sequences.
Dynamic programming is a technique to find optimal alignment, but it
requires very long computation time. We have shown that dynamic pro-
gramming for more than two sequences can be efficiently processed on a
compact system which consists of an off-the-shelf FPGA board and its
host computer (node). The performance is, however, not enough for com-
paring long sequences. In this paper, we describe a computation method
for the multidimensional dynamic programming on distributed systems.
The method is now being tested using two nodes connected by Ether-
net. According to our experiments, it is possible to achieve 5.1 times
speedup with 16 nodes, and more speedup can be expected for compar-
ing longer sequences using more number of nodes. The performance is
affected only a little by the data transfer delay when comparing long se-
quences. Therefore, our method can be mapped on any kinds of networks
with large delays.

1 Introduction

Alignment problems in computational biology, namely homology search, have
been focused recently because of the rapid growth of sequence databases[1,2,3].
By computing alignment, we can investigate similarity among the sequences. Dy-
namic programming is a technique to find optimal alignment among sequences.
In dynamic programming, all causal connections to the final result are stored,
and back-traced in order to obtain the optimal alignment. Its computational
complexity, however, is very large (order LN to compare N sequences of length
L), and it is not realistic to use algorithms based on dynamic programming even
for alignment between two sequences on desk-top computers. In order to reduce
the computation time, many heuristic algorithms[6,7,8] or hardware systems
[9,10,11,12,13,14,15] have been proposed. Most of them, however, are designed
for two-dimensional alignment (alignment between two sequences) because of the
complexity to calculate alignment among more than two sequences under limited

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1127–1137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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hardware resources. We have already proposed computational methods for more
than two sequences [16,17], and shown that high performance can be achieved
on a compact system which consists of an off-the-shelf FPGA board and its host
computer (node). The performance is, however, not enough for comparing long
sequences.

In this paper, we describe a computation method for the multidimensional
dynamic programming on distributed systems, which consist of the nodes con-
nected as a ring. The communication pattern between the nodes in our approach
is very simple and regular. Each node receives data from its predecessor, and
sends its results to its successor. This data transfer can be overlapped with the
computation of the dynamic programming. The method is now being tested
using two nodes connected by Ethernet.

This paper is organized as follows. Section 2 introduces the outline of dynamic
programming for homology search, and our computation method for more than
two sequences are described in Section 3. The parallel computation method on
distributed systems are given in Section 4, and the estimated performance based
on the experimental results is given in Section 5. The current status and future
works are given in Section 6.

2 Dynamic Programming for Homology Search

In the dynamic programming for homology search, sequences are compared in-
serting gaps with extra costs. Figure 1 shows an example of alignment of two
sequences by dynamic programming (two-dimensional). In Figure 1(A), scores
on each node on the search space (M × N) are calculated using the equation
in Figure 2. Scores for each matching between two elements (Ms[a[x], b[y]]) and
inserting gaps (GC()) are given by score matrices [4,5]. In each node, there are
three candidates of its score (from the left-upper node, upper node and left node)
in two-dimensional search, and the maximum of them is chosen. The paths which
give the maximum values are stored, and after calculating scores of all nodes,
the paths are back-traced from the last node to the start node to obtain the
alignment of the two sequences (Figure 1(B)).

To obtain an alignment of more than two sequences, the same procedure is ap-
plied to the sequences. The search space of N -dimensional dynamic programming

b[0]    b[1]     b[2]      ......................  b[N-1]

a[0]

a[1]

a[M-1]

..........

Start Node

Last Node

y

x

b[0]    b[1]     b[2]      ......................  b[N-1]

a[0]

a[1]

a[M-1]

..........

Start Node

Last Node

y

x

(A) computation of scores of each node (B) backtracing from Last Node

Fig. 1. Two Dimensional Dynamic Programming
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Two-Dimensional Search:
score(x, y) =

max

 score(x-1, y-1)+Ms[a[x], b[y]]
score(x, y-1)+GC(x, -)
score(x-1, y)+GC(-, y)


Three-Dimensional Search:
score(x, y, z) =

max



score(x-1, y-1, z-1)+Ms[a[x], b[y], c[z]]
score(x, y-1, z-1)+Ms[-, b[y], c[z]]+GC(x, -, -)
score(x-1, y, z-1)+Ms[a[x], -, c[z]]+GC(-, y, -)
score(x-1, y-1, z)+Ms[a[x], b[y], -]+GC(-, -, z)
score(x-1, y, z)+GC(-, y, z)
score(x, y-1, z)+GC(x, -, z)
score(x, y, z-1)+GC(x, y, -)


Fig. 2. Equations to calculate Scores

becomes LN (when N sequences have length L). As indicated by the equations
in Figure 2,

1. the number of candidates of the score for each node is 2N−1 in N -dimensional
dynamic programming, and

2. the size of score matrices is kN (k is the number of type of elements in the
sequences), which becomes very large for larger N .

Figure 3 shows the maximum parallelism in dynamic programming. As shown
in Figure 3, nodes on a diagonal line (plane) can be processed in parallel. The
maximum parallelism in N -dimensional search is the product of the size of N -1
sequences (in the maximum case). When N=2, the maximum parallelism is Y ,
and it takes X × Y - 1 steps to calculate the alignment.

3 Multidimensional Dynamic Programming on an FPGA

In the dynamic programming, we need to store paths to each node to back-
trace. The total size of the paths becomes LN(the number of the nodes in the
search space) ×N(data bit width of a path), which becomes very large for larger
N . However, if the given sequences are not apparently similar, we do not need
the alignment. Therefore, in our approach, two types of circuits are configured
on FPGA[15,17]. With the first type circuits, the similarity among sequences
are checked by computing only the scores. Then, the second type circuits are

t=1

t=2

t=X       t=X+1  .......................... t=X+Y-1

............

X

Y

(A) Parallel Processing of two dimensional
        dynamic programming

(B) Parallel Processing of three dimensional
        dynamic programming

Z

t=X+Y+ k’

Y

X

Fig. 3. Parallelism in Dynamic Programming
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configured on the FPGA, and the alignments are calculated for the sequences
with high similarity (score) by storing all causal connections. In the following
discussion, we focus on the first type circuits.

In our approach, N -dimensional dynamic programming is achieved by re-
peating two-dimensional dynamic programming along other dimensions in or-
der to reduce the size of the score matrices which have to be cached on the
FPGA (for the protein sequences (k=24), the total size of the score matrix be-
comes 324K words when N=4). Suppose that we repeat the following procedure
for four-dimensional dynamic programming (a four-dimensional score matrix
Ms[a[x], b[y], c[z], d[t]] is used).

1. Calculate the alignment between two sequences (a and b) without changing
other two sequences (c[z] = Ck and d[t] = Dl; Ck and Dl are constants).

2. Increment z, and then t (c[z] or(and) d[t] is changed).

Then, we need only a part of the four-dimensional matrix, which is a two-
dimensional score matrix (Ms[a[x], b[y], Ck, Dl]) in the first step of the proce-
dure. However, we need different two-dimensional score matrix when the value
of c[z] or d[t] is changed. In our implementation, two-dimensional score matrices
are implemented using dual-port RAMs in FPGA, and score matrices for next
b[z] or/and d[t] (namely next parts of the four-dimensional score matrix) are
downloaded from external RAMs on the FPGA board in parallel with the com-
putation of scores. The number of score matrices which are download during
the computation becomes 2N−2. Thus, with a certain value of N , the down-
loading time of the next score matrices exceeds the time of the computation of
the two-dimensional dynamic programming, and becomes the bottleneck of this
approach.

In the following discussion, suppose that X , Y , Z and T are length of se-
quences placed along x, y, z and t axes, and Wx, Wy, Wz and Wt are part of
sequences which can be processed continuously without extra input/output for
boundary data. Figure 4 shows how three-dimensional dynamic programming
is executed by the repetition of the two-dimensional dynamic programming. In
Figure 4, processing of Wx×Wy nodes (two-dimensional dynamic programming)
in the scan window (gray square in the figure) is scanned along z axis (the black
arrow shows the scan line). When the scan window reaches at the end of z axis,

Step0 ........... StepK ....

Z

Y

X

W
x

Step(Z*m+0) ..... Step (Z*m+K) ....

Z

Y

Step(Z+ 0) .....Step(Z+K) ....

Z

Y

X

W
x

Wy
Wy

X W
x

Wy

Scan
Window

Scan
Line

Fig. 4. Three-Dimensional Dynamic Programming
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Z

X

Z

Y

Current Scan Window

Output to the
next scan line

Output to the
scan line below

Input from the
scan line above

Input from 
the previous 

scan line

X

Y

Previous Scan 
Window

Current Scan 
Window

scan line

(A) (B)

Fig. 5. Boundary Data for Three-Dimensional Dynamic Programming

it is shifted along y axis by Wy , and is scanned along z axis again. After pro-
cessing Wx ×Y ×Z nodes, the scan window is shifted down along x axis by Wx,
and the same procedure is repeated.

Figure 5 shows the data input/output for the three-dimensional dynamic pro-
gramming. In Figure 5(A), two dark gray rectangles show the inputs to the scan
window (light gray square), and two rectangles with slanted lines show the out-
put by the scan window. The outputs are stored, and used for the computation
of other scan lines. In Figure 5(B), in order to calculate scores in the current
scan window, data in previous scan window are also necessary (those data are
not necessary in Figure 5(A), because the scan window is placed at the boundary
on the search space, and boundary conditions are given instead of those data).
Therefore, the data in previous scan window are held on FPGA.

Figure 6 shows the scan cube for four-dimensional dynamic programming (a
cube is used instead of the window). Processing of nodes in the cube (size is
Wx × Wy × Wz) is scanned along t axis, changing positions of the scan line.
In order to calculate scores of the nodes in the cube, the scan window in the
cube (light gray square in Figure 6(A)) is scanned along z axis. Suppose that
current cube is on (x, y, z, t=Ck). In order to start the calculation of the scan
window (Figure 6(B)(1)), we need scores in dark gray parts and scores in the
previous cube along t axis ((x, y, z, t=Ck-1) which are temporally held on the
FPGA (not shown in the figure) as boundary data. Among these data, two
dark gray rectangles in the figure can be obtained while calculating the scores
of the nodes in the scan window. However, data in the dark gray square (the

Wz

Wx

Wy

Start 
node

End node

(A) Scan Cube (B) Boundary Data Given to the Currnet Search Cube and Stored for other Cubes

previous scan
cube
on x-axis

previous scan cube
on y-axis

previous scan cube
on z-axis Outputs to next scan cubes on x and y axes

Outputs 
to next 
scan cubes
on z axis

(1) (2) (3)

Fig. 6. Four-Dimensional Dynamic Programming
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last scan window in the previous scan cube along z axis) need to be loaded
before starting the calculation, because the size of data is large, and can not
be loaded in parallel with the computation. The outputs by the scan window
are two rectangles with slanted lines. When the scan window is in the cube
(figure 6(B)(2)), scores calculated in the previous scan window are held on the
FPGA, and used for the calculation of the current scan window (the scores in
the previous cube along t axis which are held on the FPGA are also used). When
the scan window reaches at the end of the cube, scores in the current window are
stored for later processing (figure 6(B)(3)). In this processing of the scan cube,
there are two types of data;

1. data which can be loaded, and output in parallel with the computation of
the scores of the nodes in the scan window (two dark rectangles in Figure
6(B)(1,2,3)), and

2. data which have to be loaded before the computation (dark gray square in
Figure 6(B)(1)) and which have to be stored after the computation (dark
gray square in Figure 6(B)(3)).

The total clock cycles by our approach can be estimated as follows, when the
data width of each element in score matrices is 16 bits, and the external memory
banks run at the same speed as the circuit on the FPGA. In the following equa-
tions, the first term chooses the maximum of the computation time of the scan
window (Wx + Wy) and the time to update score matrices which is executed in
parallel with the computation. In other terms, constant values show the time
to download score matrices, and other values show the time to input/output
boundary data (some matrices can not be loaded in parallel with the computa-
tion, and we need to download them when c[z], d[t] and so on are changed).
Three-Dimensional:

max

{
Wx + Wy

242/4

}
× XY Z

WxWy

Four-Dimensional:
max

{
Wx + Wy

242/8 × 2

}
× XY ZT

WxWy

+ max

{
242/2

WxWy × 2/5

}
× XY ZT

WxWyWz

Five-Dimensional:
max

{
Wx + Wy

242/16 × 4

}
× XY ZTU

WxWy

+ max

{
242/4 × 2

WxWy × 2/5

}
× XY ZTU

WxWyWz

+

max

{
242/2

WxWyWz × 2/5

}
× XY ZTU

WxWyWzWt

Six-Dimensional:
max

{
Wx + Wy

242/32 × 8

}
× XY ZTUV

WxWy

+ max

{
242/5 × 4

WxWy × 2/5

}
× XY ZTUV

WxWyWz

+

max

{
242/5 × 8

WxWyWz × 2/5

}
× XY ZTUV

WxWyWzWt

+ max

{
242/5 × 7

WxWyWzWt × 2/5

}
× XY ZTUV

WxWyWzWtWu

In the equations above, {Wx, Wy , Wz, Wt, Wu} are parameters which decide
the performance, and have to be chosen so that the maximum performance can
be realized under given hardware resources (the size of the FPGA, and the mem-
ory bandwitdh). For example, in our current implementation on ADM-XRC-II
(FPGA board byits Alpha Data) with one Xilinx XC2V6000, {Wx, Wy, Wz , Wt}
are {10,64,6,3} for five-dimensional dynamic programming, and it takes about
1.35 × 104 seconds to calculate the alignment, when the length of the sequences
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Fig. 7. Parallel Processing with Multiple FPGAs

is 256. This performance is more than 100 times of Pentium 4 2GHz[17], but is
still too slow for comparing longer sequences.

4 Multidimensional Dynamic Programming on a
Distributed System

Figure 7(A) shows the search space in three-dimensional dynamic programming.
With one FPGA, the computation of the scan window is started from the left-
hand side of box 11, and the scan window is scanned along z axis (scan line).
After finishing box 11, the scan window moves to box 12, and the computation of
the scan window is repeated. Figure 7(B1) shows how to divide the search space.
In Figure 7(B1), FPGAk processes box k1 - kN sequentially. When the first scan
window in box 11 is processed by FPGA1, the boundary data on its bottom are
transferred to FPGA2. Then, FPGA2 starts the computation of the first scan
window in box 21. In the same way, FPGA3 starts the computation of the first
scan window in box 31 as soon as the boundary data for the scan window arrive
from FPGA2. Figure 7(B2) shows only the boxes which are processed in parallel.
In this parallel processing, data transfer can be overlapped with the computation
of scan windows. After finishing the computation of box 11, FPGA1 starts the
computation of box 12, and FPGA2 also starts the computation of box 22 (Figure
7(C1)(C2)).

Figure 8 shows when the computation of the scan window can be started on
FPGA1 and FPGA2. The gray boxes in Figure 8 shows the first term of the
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Fig. 8. Flow of the computation on FPGA1 and FPGA2

equation in Section 3. During the computation of a scan window in FPGA1,
its boundary data are sent to FPGA2, and FPGA2 starts the computation of
its scan window using the boundary data. Figure 8(A) shows the flow of the
computation when the data transfer is faster than the computation of the scan
window, and Figure 8(B) shows the flow when it is slower. In Figure 8(B), each
FPGA becomes idle to wait for sending its boundary data to its successor, and
for the arrival of the boundary data from its predecessor.

Data transfer delay is not important in our computation method. The reason
is as follows. FPGA1 can continue its computation until it finishes all the com-
putation assigned to FPGA1, and the data transfer can be overlapped with the
computation of the scan windows. FPGA2 becomes idle when waiting for the
first arrival of the boundary data because of the data transfer delay, but after
that, FPGA2 can continue its computation as far as the boundary data arrive
within a certain delay. Therefore, the increase of the computation time by the
data transfer delay is only

the data transfer delay × (the number of FPGAs - 1)
in the total computation time.

Figure 9 shows a distributed system for our computation method. In our
approach, the search space is divided along x axis as shown in Figure 7(B1).
When the number of FPGAs(N) is smaller than the number of the divided
search spaces, some FPGAs have to process several of them sequentially (for
example, FPGAi processes the i-th, (N+i)-th, (2N+i)-th spaces, and so on).
Therefore, the nodes are connected as a ring. Each node on the system consists

.......

FPGA

Processor

NIF NIF

node node node node

Fig. 9. A distributed system
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of an FPGA board with one FPGA, its host processor, and two network interface
cards. With two network interface cards, each node receives boundary data from
its predecessor, and send new boundary data to its successor.

5 Estimated Performance

We have implemented two circuits (four-dimensional and five-dimensional ho-
mology search) on XC2V6000, and they run at 36.6MHz and 31.0MHz respec-
tively. The main reason of the low operational frequency is selectors to choose
the maximum 2N − 1 candidates.

We are now testing the computation method using two nodes (two FPGA
boards and their host processors) connected by Ethernet (100Mbps). Figure 10
shows the performance of the computation method which is estimated based
on our experiments (five-dimensional, and legth of all sequences is 256). Boxes
with slanted lines correspond to the second and the third terms of the equation
shown in Section 3, and grey boxes correspond to the first term (the computa-
tion time, and the downloading time of the score matrices which can be executed
in parallel with the computation). The size of the scan cube is {10,64,6,3} for
non-distributed processing by one FPGA, and {10,32,14,3} for the distributed
processing by more than one FPGA. These sizes are dicided so that the maxi-
mum performance can be achieved in each case. In the five-dimensional dynamic
programming, the time to download score matrices is larger than the computa-
tion time. Therefore, we need to minimize the downloading time when processing
by one FPGA. However, the downloading time can be hidden by the idle time
caused by the slow data transfer on the distributed system, which allows us to
focus to minimize the computation time. Because of the lack of the throughput
for data transfer, the idle time occupies more than half of the total computa-
tion time when the number of FPGAs is larger than one. The computation time
with two FPGAs is larger than one FPGA. However, we can obtain performance
gain as the number of FPGAs increases. The performance gain becomes 5.1
times with 16 FPGAs, and about 10 times with 26 FPGAs. With 26 FPGAs,

1

2

4

8

16

26

#FPGA

0 2 4 6 8 10 12 14 16 x10  sec3

time to load/store boundary data
when t is incremented
time to load/store boundary data
when z is incremented

time to load score matrices

computation time 
of the scan cube

idle time

Fig. 10. Estimated performance on the distributed system
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each FPGA processes only one divided search space, because the search space is
divided to 26 sub-spaces (X/Wx = 256/10).

The data transfer delay is not important in our computation method as de-
scribed in Section 4, when the computation time by each FPGA is large enough.
When the number of FPGAs is N , the increase of the total computation time is
abount N × d seconds if the data transfer daley becomes d second longer. This
increase is very small compared with the total computation time.

6 Conclusions and Future Works

In this paper, we described a computation method for the multidimensional
dynamic programming on distributed systems. The method is now being tested
using two nodes connected by Ethernet. The data transfer speed of Ethernet
(100 Mbps) is not enough, but according to our experiments, it is possible to
achieve 5.1 times speedup with 16 nodes. The performance is affected only a
little by the data transfer delay when comparing long sequences. Therefore, our
method can be mapped on any kinds of networks with large delays.

We still have two major works. First, we need to evaluate the method using
more FPGA boards, and then using more FPGA boards placed at distant places.
Second, the size of boundary data can be compressed less than half, because two
continuous data on the boundary have same values with high probability. We
need to implement circuits to compress and uncompress the boundary data on
FPGAs.
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Abstract. Multiple sequence alignment program, ClustalW, is time
consuming, however, commonly used to compare the protein sequences.
ClustalW includes two main time consuming parts: pairwise alignment
and progressive alignment. Due to the irregular computation based on
tree in progressive alignment, available parallel programs can not achieve
reasonable speedups for large scale number of sequences. In this paper,
progressive alignment is reduced to tree accumulation problem. Load
balancing is ignored in previous efficient parallel tree accumulations. We
proposed a load balancing strategy for parallelizing tree accumulation in
progressive alignment. The new parallel progressive alignment algorithm
reducing to tree accumulation with load balancing reduced the overall
running time greatly and achieved reasonable speedups.

1 Introduction

Algorithms for multiple sequence alignment [1] are routinely used to find con-
served regions in biomolecular sequences, to construct family and superfamily
representations of sequences, and to reveal evolutionary histories of species. Con-
served subregions in DNA/protein sequences may represent important functions
or regulatory elements. The profile or consensus sequences obtained from a mul-
tiple alignment can be used to characterize a family or superfamily of species.
Multiple sequences alignment is also closely related to phylogenetic analysis.
From a mathematical point of view, the multiple sequences alignment is a more
complex combinatorial problem which is NP hard. There has been a lot of inter-
est in finding efficient approximation algorithms (PTAS)[2] for these problems.
However, the PTAS algorithms have high time complexity so that they become
impractical for many long sequences. Some popular heuristic approaches such as
progressive alignment [1] that work reasonably well in practice have been pro-
posed. The most widely used algorithm is the progressive alignment algorithms
and its typical implementations are ClustalW [1] and DFALIGN [3]. Although
the running time has been reduced, the time complexity of the progressive align-
ment algorithms is O(n2m2), where n is the number of sequences and m is the
maximum length of all sequences. Since the best known progressive alignment
programs is ClustalW, we focus on the parallelization of ClustalW. The basic
algorithm behind ClustalW proceeds in three steps.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1138–1147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

Fig. 1. a). A guide tree. Each leaf represents a sequences, the internal nodes represent
the partial alignment from their children. b). The running time distribution of three
parts in ClustalW. The number of protein sequences is 781, 1158 and 1770. In most
cases the CPU times spent on building the guide tree is less than 1 percent (almost
cannot be seen in this figure). The pairwise alignment occupies the most of the overall
running time, however, the running time of the progressive alignment significantly
increases with the larger number of sequences.

1. Pairwise alignment(PW): Compute the optimal alignment cost for each
pair of sequences using standard dynamic programming. This results in a
distance matrix whose entries indicates the degree of divergence of each pair
of sequences in evolution. In fact, this step can be very time consuming and
become the bottleneck of the whole process because it has to align n(n-
1)/2 pairs, where n is the number of sequences. Since each alignment is
independent of the rest, the parallelization is a problem of allocating time-
independent tasks to parallel processors and can achieve linear speedups
[5][6][7][8].

2. Guide tree(GT): Compute an evolutionary tree from the distance matrix
using some phylogeny reconstruction method. This tree will be used as the
guide tree (See Figure 1(a)) which guides the final multiple alignment pro-
cess are computed from the distance matrix by first using a popular distance
based phylogeny reconstruction method, the Neighbor-Joining method [4].
In general, this step can be completed very fast.

3. Progressive Alignment(PA): The basic procedure of progressive align-
ment is to use a series of pairwise alignments to merge larger and larger
groups of sequences, following the branching order in the guide tree. Each
merger involves aligning two multiple alignments using a dynamic program-
ming algorithm similar to that for the alignment of a pair of sequences.
It contains a profile-profile/sequences alignment implemented by dynamic
programming algorithm with linear space. In this way, sequences that are
highly divergent from the rest of sequences are given due consideration in
the alignment process.

Because ClustalW program is widely used and time consuming, there ex-
ist some contributions to parallelizing ClustalW algorithm. Mikhailov et al. [5]
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designed a parallel ClustalW for shared-memory multiprocessor machines. It
runs only on SGI computers with OpenMP and achieves a maximum speedup
of 10 for the whole alignment process on 16 processors machine for some pro-
tein sequences. Duzlevski [6] used Posix threads and its implementation can be
run symmetric multiprocessor computers. Jamse et al. [7] and K. Li [8] imple-
mented a parallel ClustalW for PC cluster using MPI, respectively. They report
a fine linear speedup only for pairwise alignment, but the speedup and scalabil-
ity for the whole alignment are poor because those parallel programs ignore the
significant to parallelize progressive alignment.

For the small number of sequences, the efficient parallelization of the step 1 is
enough because the running time of progressive alignment is not significant(See
figure 1(b)). However, when the number of sequences becomes larger, the poor
performance of parallelization in progressive alignment becomes a bottleneck
because of the linear speedup in pairwise alignment. Because of the irregular
structure based on tree in progressive alignment, it is difficult to efficiently par-
allelize step 3. The previous parallel programs focuses on the small scale problem,
thus the performance of parallel progressive alignment is not important to the
overall parallel program for the small number of sequences (less than few hun-
dreds of sequences). However, when aligning the larger number of sequences,
the progressive alignment becomes a bottleneck because of the linear speedup
in step 1 and the poor performance for parallel progressive alignment. In this
paper, we proposed a fast parallel algorithm for multiple sequences alignment
program (ClustalW) using load balancing strategy.

2 Parallel Progressive Alignment

2.1 Reducing to Tree Upward Accumulation

There are generally two kinds of accumulations on trees with bounded maximum
degree: upward accumulations and downward accumulations[9]. Consider a tree
of n nodes, each containing an operation drawn from a set S, and a binary
associative operation

⊗
: S × S → S. Let sv denote the operation at node v,

and u1, u2, ..., uk be an ordered list children of v. Without loss of generality, the
upward accumulation problem is to compute A(v) for each node v in the tree
where

A(v) =
{

sv if v is a leaf
A(u1)

⊗
A(u2)

⊗
...

⊗
A(uk) otherwise (1)

If the binary operator is commutative, we can simply write the upward accumu-
lation as:

A(v) =
⊗

u∈subtree(v)

su (2)

Progressive alignment is a profile/sequences alignment progress basing on the
guide tree that is a complete binary tree. The leaves are sequences and the inter-
nal nodes are profiles. Basing on the guide tree, progressive alignment performs
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the profile/sequences alignment from leaves to root. Thus, progressive align-
ment is reduced to the tree accumulation problem. If the binary operator

⊗
represents profile/sequences alignment, progressive alignment is reduced to tree
accumulation naturally.

contractl(u):
push(u.right.stack, u, u.operator);
u.right.operator = u.operator
(u.left.opertor, u.right.opertor);
u.right.parent = u.parent;
if u.left != NULL

u.parent.left = u.right;
else

u.parent.right = u.right;
u.right.left = u.left;
if root = = u

root = u.right;

(a)

distribution:
for each node u do in parallel

wait until u.val is computed;
while u.stack != NULL do

(v, operator) = pop(u.stack);
while dependency in operator do

block;
end
v.val = operator(u.val);
end

end

(b)

Fig. 2. Pseudocode procedure for contractl and distribution

2.2 Parallel Tree Accumulation

To get round this problem, the PRAM tree accumulation algorithm operates in
two phases [9]: a contraction phase in which the tree is reduced to a single leaf
and some nodes are put aside on stacks, and a distribution phase in which the
stacked nodes receive their final values. Each contraction operation removes a
leaf node v and its parent (an internal node) by connecting v’s sibling directly to
its grandparent. Although the final value to be assigned to the internal node is
still unknown, yet it is the certain known function (binary operator) of the final
value that is to be assigned to the siblings. The deleted internal node and its
binary operator are put aside on a stack belonging to all the siblings. When the
final value to be assigned to the sibling is computed, the value for the deleted
parent can be computed in turn.

Contraction. The contraction operations each remove two nodes, at least one
of which is a leaf (See Figure 3). Assume that all leaf nodes of tree are numbered
from left to right. Mark all even/odd numbered leaves. For every marked leaf that
is left child of their parent u, perform the contraction operation: contractl(u),
and then for every marked leaf that is right of their parent u, perform the
contraction operation: contractr(u). This guarantees that parents of the leaves
contracted are not adjacent [9]. The primitive operation is contraction, which is
only called so when u is the internal node and its one of its children is a marked
leaf. contractl(u) and contractr(u) a pair of symmetric operation, contractl(u) is
defined as fig. 2(a).
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(a) (b) (c)

Fig. 3. An illustration of the contraction phase and mapping tree accumulation to task
graph. (a). the original tree. The number in each node is number by preorder traversal.
(b). the partial contracted tree. The internal node 3, 4, 8 and 11 are removed. The
information are stored in their right child. c). The DAG task graph. The direction
implicit the order of task dispatched.

Distribution. The contracted nodes are expanded and accumulations at all
nodes are accomplished during the distribution phase. The premise is that before
a leaf node is expanded, its siblings have correct accumulation. The information
stored in each leaf node and the accumulations in its siblings are used to compute
the final values of the node. Each node u has stack u.stack with the data structure
of (node, function). If (v, h) is in u.stack, then operator (u.val) should be assigned
to v.val, once u.val is computed (See fig. 2(b)).

2.3 Load Balancing Strategy

For a tree accumulation problem, tree contraction has been proven to be effi-
cient if the operations associated with the internal nodes require O(1) time[9].
The available parallel algorithms for tree accumulation, which rest on a common
assumption that all binary operators are equal, that is, the computing time of
all binary operators is the same, the order has no bearing on the runtime. On
the other hand, if the each binary operator on nodes consumes different time,
or at least two operations require different time for executing, different orders
of operations might well lead to variety, even to the extent of great difference in
runtime. Have a deeper analysis of this issue. In the parallel upward accumula-
tion, A(v) in the same level of the tree can be computed in parallel. However, if
the binary operators need different running time, then the processor which has
completed its computational task will have to wait until all the computational
tasks of its brother nodes have finished, which causes poor load balancing, and
consequently results in low processor utilization. Moreover, the topology of the
tree also has influence on the performance of the parallel algorithm in that the
critical path of accumulating from the leaves to the root determines the running
time. Unfortunately, previous parallel algorithms hardly focus on the effect of
tree topology and almost all of them start accumulating from all leaves, let alone
contrive efficient policy to map accumulation to proper processor, which gravely
diminish the efficiency of tree accumulation because the processors which com-
pute the shorter branches are left idle most of the time if the tree is unbalanced
which is just the case in most practical applications.
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Progressive alignment reducing to tree upward accumulation is an exact exam-
ple for the shortcomings described above. The time of each pairwise alignment
is proportional to the product of the length of two sequences. The length of
sequences is different, thus each pairwise alignment has different running time.
Because of the divergent of all sequences, the guide tree based on the distance
matrix may not be a balancing tree. So a naive implementation of previous par-
allel tree accumulation algorithm can not promise good load balancing and high
processor utilization.

Many scheduling algorithms have been proposed and two good surveys on
static and dynamic scheduling algorithms can be found in [10], where a parallel
program can be described as a directed acyclic graph (DAG). A weighted DAG
task graph can be used to represent the problem of tree accumulation on the basis
that a task is defined as an operator at a node. The task graph can be constructed
in the contraction phase. Each stacked node corresponds to a certain node in the
task graph. The weight of a node is an estimated running time of the operator
while the weight of an edge is an estimated size of messages from the child task
to the parent task. And how to calculate the two weights is determined according
to real applications. An compelling example of mapping from the original tree
to task tree is shown in Figure 3(c).

Define the b-level of a task as the length of the longest path from the task
to the root task, where the length of a path is the sum of all the node and
edge weights along the path. Further, the number of internal nodes from each
node to root is added to calculate the b-level in order to consider the factor of
tree topology. The b-level of a node is bounded from above by the length of a
critical path, which is the longest path from the temporal node to the root node
in the DAG. The b-level of a node is assigned to the node on the stacks in the
contraction phase. In the distribution phase, a dynamic priority queue is main-
tained in order to schedule the tasks for processors. When any popped operator
can be computed, it is inserted into the priority queue according to its b-level.
And if there is any idle processor, remove the task at the head of the queue
and schedule it to the processor. The modified distribution algorithm employs
a coordinator-worker model. The coordinator maintains the priority queue and
schedules and dispatches tasks to workers who execute the real operators. The
algorithm of coordinator in the distribution phase are as follow:

Distribution with load balancing:
for each node u do

wait until u.val is computed;
while u.stack != NULL do

(v, operator) = pop(u.stack);
while dependency in operator do

block;
end
insert(u, v, operator, queue);
while (queue != NULL && idle procs != 0) do
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dispatch(queue, processor);
end

end
end

The coordinator also maintains an idle processors pool. In the beginning, all
processors are idle and the pool is full. When one task is assigned to one idle
processor, the processor is deleted from the pool. And after one processor has
completed its task, it sends a message to coordinator and coordinator adds this
processor to the pool.

3 Performance Evaluation

Because the previous parallel programs can not get speedups for progressive
alignment, we only evaluated the performance of load balancing. The experi-
ment implemented the load balancing parallel algorithm in cluster systems—
distributed memory parallel computers connected by networks. Each node of
the cluster system is composed of Xeon 2.8Ghz SMP processors, 4GB memory,
while all the nodes are connected via gigabit Ethernet switch. And the parallel
program is written using C with MPI library. Moreover, the test data sets are
downloaded from PDB bank [11], and they are five different protein family or
domain(TROW, WOLPM, WIGBR, ZYMMO, YERPS). For simplicity, some
notations are used in the evaluation: lb denotes the parallel algorithm with load
balancing and na denotes the naive parallel algorithm.

Speedup: The performance of a parallel algorithm is measured by speedup
or efficiency. The speedup of a parallel algorithm using p processors is defined
as Speedup = Tserial

Tparallel(p) and the efficiency is Efficiency = Speedup(p)
p . Strictly

speaking, Tserial is the running time of the fastest known serial algorithm on one
processor for the same problem. Figure 4(a) and 4(b) show the speedups as the
number of processors and the size of problem size are increased for algorithms
with load balancing strategy and without load balancing strategy, respectively.
The speedups of lb are much higher than that of na. When the number of pro-
cessors is less than 16, the parallel program with load balancing strategy can
achieve approximate linear speedup. While the number of processors is larger,
the speedup of both algorithms increases slowly. The highest speedup 18 of lb
occurred when the number of sequences is 3998 and the number of processors is
32, while the highest speedup 8 of na occurred when the number of sequences is
781 and the number of processors is 32.

Time: The most important contribution of load balancing strategy is the
reduction of overall running time. The tree accumulation process in progressive
alignment presented above comprises computation, communication and other
overhead such as scheduling and idle. Table 1 demonstrates the overall running
time for two parallel algorithms with the different number of processors and
different size of problems. The overall running time of parallel algorithm lb are
reduced mostly 3 times as that of na. Because the relative time distributions
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(a) (b)

Fig. 4. Speedup for naive parallel algorithm with/without load balancing

Table 1. The overall running time of two parallel algorithms. The number of sequences
of 5 data sets are 781, 1158, 1770, 2033 and 3998, the number for processors are 4, 8,
16, 24 and 32. Time: second

4 8 16 24 32

781 lb 163 73 51 40 40
na 377 127 68 58 51

1158 lb 199 91 62 55 48
na 502 189 113 93 91

1770 lb 311 173 79 63 56
na 765 321 203 183 183

2033 lb 393 146 87 69 64
na 998 373 226 206 185

3998 lb 448 200 100 86 74
na 1394 609 406 345 327

of computation, communication and overhead for the different problem size are
almost the same, we only analysis the experiment results of overhead in the case
of 1158 sequences alignment.

The parallel algorithms are implemented using coordinator-worker model,
while the coordinator only performs scheduling and communication. It is the
workers who execute the real computation and send/receive message from coor-
dinator. Figure 5(a) shows that there is minor difference of the communication
times between two algorithms. However, the communication distribution among
all slave processors for lb is even more than the distribution for na. Figure 5(b)
demonstrates communication time distribution among all workers in 32 pro-
cessors. In fact, the unbalanced communication is relative the reflection of the
unbalance computation in each worker. In the presented algorithms, there only
exist communications between the coordinator and workers, so the more compu-
tation load in one worker, the more communications are needed in the worker.
Due to the different computing load and unbalanced binary tree, some slave
processors may be idly waiting for another computation task that depends on
some other computation tasks running on slower processors. Although the com-
munication and computation load is unbalanced for the parallel algorithm na,
neither of the time cost are higher than the cost of the parallel algorithm lb as
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(a) (b)

Fig. 5. a) The maximum communication time in seconds with the different number of
processors. b) The communication time distribution in 32 processors for two parallel
algorithms.

(a) (b)

Fig. 6. a) The maximum idle time in seconds for the different number for processors.
b)The time proportions of idle to the overall running time.

shown in above analysis. Thereby the communication and computation time pale
in terns of their influence on the time reduction. Measure the idle time in each
worker processor. Figure 6(a) shows the maximum idle time for different number
of processors. The parallel algorithm lb mainly focuses on the factors of compu-
tation weight and branch length in the task tree to schedule the computation
task, and it proved to have reduced the idle time in each processor greatly. With
the number of processors increasing, the computation loads in each processor
become less, that is, the overall computation is decreasing, so the proportions of
idle time to the overall running time become higher (See Figure 6(b)). However,
the larger the number of processors, the more the overhead of scheduling task
among more processors is, and correspondingly the more the idle time is for the
parallel algorithm lb.

4 Conclusions

In this paper, a new parallel implementation of progressive alignment through
tree accumulation with load balancing is presented. And in the proposed im-
plementations, the load balancing strategy is used in order to take advantage
of both weighted tree contraction and tree topology. Moreover, a test for the
performance of the algorithm and a comparison with the naive PRAM imple-
mentation on a 32-processors Linux cluster system is shown and analyzed in the
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context, which shows that the parallel tree accumulation algorithm achieves not
only reasonable speedups for the data sets used in the evaluation, but also higher
speedups than the naive parallel algorithm using load balancing.

This work is supported by National Natural and Science Foundation (90412010)
and Youth Foundation of ICT.
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Abstract. In life sciences, scientists are confronted with an exponen-
tial growth of biological data, especially in the genomics and proteomics
area. The efficient management and use of these data, and its trans-
formation into knowledge are basic requirements for biological research.
Therefore, integration of diverse applications and data from geograph-
ically distributed computing resources will become a major issue. We
will present the status of our efforts for the realization of an automated
protein prediction pipeline as an example for a complex biological work-
flow scenario in a Grid environment based on Web services. This case
study demonstrates the ability of an easy orchestration of complex bio-
logical workflows based on Web services as building blocks and Triana
as workflow engine.

1 Introduction

In the post-genomics era protein structure prediction is still one of the ma-
jor challenges in bioinformatics research, because the full understanding of the
biological function of proteins requires knowledge about its three-dimensional
(3D) structure [1]. Although experimental methods are providing high-resolution
structure information, they are still expensive in costs and duration. On the
other hand, fully automated computational structure prediction tools have made
rapid progress over the last years (Critical Assessment of Structure Prediction,
CASP [2] and CAFASP [3]). Protein structure prediction is a process which typ-
ically involves multiple data processing and decision steps, iterations, as well as
the parallel execution of time-consuming applications. In comparison with se-
quence homology searches with, for example, Blast [4] structure prediction is a
much more complex scenario.

Web services provide a well-defined, standardized access to methods indepen-
dent from its implementation and programming platform. As pointed out in [5],
Web services are an emerging technology paradigm for distributed computing.
Problem solving environments with standardized workflow description languages
(e.g. BPEL4WS [6]) are providing solutions to these problems. Suitable workflow
engines support the orchestration [7] of workflows with Web services as build-
ing blocks. Complex workflows contain compute and/or storage intensive tasks.
Regarding compute intensive tasks, the support of parallel execution models,

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1148–1158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



ZIB Structure Prediction Pipeline 1149

e.g. task farming or MPI parallelized programs, are therefore an imperative pre-
requisite. We selected Triana [8] for the following reasons: it easily integrates
Web services, and provide a graphical user interface allowing an easy work-
flow orchestration. Furthermore, it can represent workflows as non-DAG and
the workflow engine can be interfaced with selected Grid services which is an
important pre-requisite for the next step towards the realization of our workflow
in a Grid environment.

There are many initiatives pushing biological applications towards the use
of workflow, Grid and/or Web service technologies. Gao et. al. [9] describe
a drug discovery data-mining system using Web services. Mattoso et. al. [10]
built MHOLline, an automated workflow for comparative modelling with legacy
applications using Web service technology. They used BPEL4WS for defining
the workflow and IBM BPWS4J 1.0.1 [11] as workflow engine. PROSPECT-
PSPP [12] is a fully automated structure prediction pipeline using SOAP for
remote procedure calls. Hence, the problem of consistency in data integration
projects, which combine common information from different data sources, is
still a major obstacle for obtaining unique information sets and data quality
in secondary biological databases. There are successful data integration (data
warehouse) projects, for example, MSD [13] or Columba [14] with their focus
on structural data. The Helmholtz Open BioInformatics Technology initiative
(HOBIT) [15] is dedicated to build a technology platform for concatenating ap-
plications and resources together with an efficient communication tier for bioin-
formatics resource access based on Web services.

The scope of this paper is to show that fully automated workflows with Web
service components are able to integrate heterogeneous applications and data
into a standalone, demanding biological application scenario. One can expect
that Web services are one starting point for the realization of a collaborative
e-science infrastructure in Grid environments. In this paper we use protein struc-
ture prediction as a paradigm for complex biological problems.

The organization of the article is as follows. In the next section we describe the
ZIB structure prediction pipeline. Section 3 presents the Web services, followed
by workflow definition in Triana. As the most interesting result, we compare the
overhead timings of the traditional monolithic workflow using a PERL imple-
mentation of the workflow engine with the Web service based workflow using the
Triana workflow engine in section 4. Finally, section 5 gives a summary and an
outlook towards future work.

2 ZIB Structure Prediction Pipeline

The ZIB structure prediction pipeline has been designed and implemented for
the 6th CASP experiment in 2004 [2,16]. In order to provide a fully automated
protein prediction tool, the pipeline integrates various prediction and analysis
steps. The whole pipeline is designed modular, so that improved methods can
be substituted in, as they become available. Fig. 1 shows the global pipeline
architecture.
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Fig. 1. Schematic representation of the ZIB structure prediction pipeline

Fig. 2. Sub-Workflows: (top) Sequence analysis, (bottom) Threading

The first step in the workflow is the identification of suitable template struc-
tures for homology modelling (Fig. 2, top). A sequence analysis sub-workflow
is passed to search for homologous sequences with known structures. Successive
PSI-Blast searches are performed in order to find suitable templates. If no tem-
plate structure has been found in the PDB (Protein Data Bank [17]) database,
a second PSI-Blast search in the Uniprot [18] database is initiated followed by
parallel PSI-Blast searches in the PDB database starting from the Uniprot hits.
If a structural template has been found, an atomic structural model will be gen-
erated with MODELLER [19]. If no suitable structural template is detectable,
the structure will be predicted by our protein threading implementation. The
threading procedure (Fig. 2, bottom) starts with a secondary structure predic-
tion using PsiPred [20]. PsiPred provides a 3-state prediction (helix, strand, loop)
together with a reliability score for every sequence position. THESEUS [21] is an
MPI-parallelized implementation of a protein threading based on a multi-queue
branch-and-bound search algorithm to find the optimal sequence-to-structure
alignment through a library of template structures [22]. From the highest scor-
ing template structures the most probable template is selected and submitted to
the loop modelling procedure where different 3D models are generated in par-
allel. Here, MODELLER is used to model the loop regions and the sidechain
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atoms of the given template structure. At the end, a full atom structure for the
target sequence is provided.

The most time consuming step in the sequence analysis procedure is the PSI-
Blast search against the Uniprot database (minutes to one hour of CPU time).
The prediction of a 3D protein model by threading typically takes many minutes
to hours, the modelling steps with MODELLER some minutes to few hours. The
types of data to be exchanged and processed are protein sequences, structures
and alignments. Data formats are either application specific, e.g. the PDB format
for protein structures or Blast-XML for PSI-BLAST, or in-house developed XML
schemes for a standardized data exchange.

Fold recognition by threading can be parallized by assigning each of a subset
of template structures to a different process. Our parallel threading core is im-
plemented in C++ and uses either MPI for message passing or POSIX threads.
Two kind of parallel architectures are designed: a Master-Slave (MS) version,
and a Single-Program-Multiple-Data (SPMD) version. In the MS architecture
the central component is the MySQL database. A master process or POSIX
thread distributes each outstanding template structure to a slave process wait-
ing for work. Based on a first-come-first-serve protocol a dynamic load balancing
scheme can be realized. In the SPMD architecture the content of the MySQL
template structure database is dumped into a binary file which is cloned on each
compute node on a Linux cluster. The template structures are distributed in a
static scheme amongst the MPI processes, i.e., each MPI process performs its
own subset. Having all template structures processed, one MPI process gathers
all results from the remaining concurrent MPI processes. The SPMD approach
is significant faster over the MS architecture (shown in Figure 3: the red line

Fig. 3. Performance of the two parallel threading architectures
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indicates the MS and the blue line the SPMD architecture). The drawback of
the MS architecture is the time determing database connections: the central
database server can not timely satisfy the requests from all the slave processes.
The SPMD architecture has the extra advantage of parallel I/O. To show the
time efficiency of our implementation, we can process a protein sequence consist-
ing of 573 amino acids against 37556 templates structures representing the whole
SCOP template database in about 36 minutes on 32 cpus on a IA32 Myrinet
Linux cluster .

3 Workflow Implementation with Web Services

3.1 Compute Environment

The implemented pipeline runs on compute resources locally available at our
site. Web service applications can either run on a compute cluster complex con-
sisting of an IA32 Myrinet Linux cluster and a Cray XD1 system, or on desktop
machines. The resources of the compute cluster complex are managed by a job
management system providing a single point of control (job submission and job
control). The Triana workflow engine runs either on local desktop machines or on
the cluster front-end node. More technical details of the hardware and software
configuration can be found elsewhere [23].

3.2 Web Service Implementations

For the ZIB structure prediction pipeline the following applications, part of them
are legacy codes, were wrapped into Web services:

– A local Blast program package including the standard sequence analysis
tools BLAST and PSI-BLAST as well as FastaCMD for retrieving FASTA
formatted sequences. The analysis tools are implemented with standard op-
tions (e.g. database, E-value). Input is a protein sequence.

– A local PsiPred version which requires as input a protein sequence.
– The in-house developed parallelized threading program THESEUS which

needs a protein sequence, the predicted secondary structure from PsiPred
and a position-specific scoring matrix from PSI-Blast as input.

– A local MODELLER version, which requires the template identifier and a
sequence as input and optional the threading model in the loop modelling
case.

The Web services are designed asynchronous, because of high computational
demands of the applications. They provide methods for submitting the job and
for collecting the results. A generic polling Web service has been implemented
which monitors the job status on the local batch system and informs the workflow
engine process that a job has finished and results are available. Parallelization
over data is achieved by handling lists as data structure in Web services.

Data, either XML or unfiltered file contents, are transferred through the body
of the SOAP message. The Web services were implemented using two different
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languages: the Blast, PsiPred, and the MODELLER Web services are written
and deployed with Java and Apache Axis [24], the THESEUS and the polling
Web service are written in Python.

3.3 Workflow Definition with Triana

Our structure prediction workflow is defined and executed by Triana [25]. Tri-
ana allows the user to build and execute workflows consisting of Triana units
and Web services. Triana is written in Java and supports the implementation
of self-written Triana units easily. The Triana GUI provides a Unit Wizzard
for generating a skeleton Triana unit code, an editor and an interface for com-
piling the code. Fig. 4 shows as an example the source code snippet of our
makeFastaCMDrequest unit:

– The unit has one input port (line 4).
– The unit has two output ports (lines 19 and 20).
– The input for the unit is a Blast result in a XML document.
– The XML document is parsed for possible Blast hits (line 12:BlastXML.Hit).
– The output ports send a request string to the FastaCMD Web service with a

list of corresponding hit identifiers that are needed by FastaCMD to fetch the
corresponding protein sequences, together with the input XML document,
which is needed in the further workflow.

Web services can directly be imported into Triana canvas from its WSDL
description. By specifying the URI of the WSDL document the Web service is
known to Triana and usable as Triana unit. Input and output object types are
given by the WSDL description.

Triana supports the loop as control element in its workflow description. Every
resource-intensive application has to be submitted to the local batch system.

1 /* provides a list of sequence ids for FastaCMD */
2 public void process() throws Exception {
3 //get the input from the triana module node
4 BlastXML.BlastFtObj BlastXmlObj = (BlastXML.BlastFtObj) getInputAtNode(0);
5
6 StringBuffer IDs = new StringBuffer(); // array of sequence ids
7 Iterator hitIter = BlastXmlObj.HitStorage.keySet().iterator();
8.....
9 while (hitIter.hasNext()){
10 String tmpKey = (String) hitIter.next();
11 //get each hit
12 BlastXML.Hit tmpHit = (BlastXML.Hit) BlastXmlObj.HitStorage.get(tmpKey);
13 //extract the hit accession and generate FastaCMD request string
14 if (requestCount != BlastXmlObj.HitStorage.size()-1)
15 IDs.append(tmpHit.getHit_accession()).append("\n");
16 else
17 IDs.append(tmpHit.getHit_accession());
18 }
19 outputAtNode(0, IDs.toString());
20 outputAtNode(1, BlastXmlObj);
21 }

Fig. 4. Example of a Triana unit: makeFastaCMDrequest
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Then, our polling Web service method pollStatus determines the status of a
given job (queued, running, finished). The orchestrated Triana sub-workflow unit
pollStatusLoop(PDB) includes Triana’s LOOP unit that initiates either the next
polling cycle or exits the loop. The decision is made depending on the output
of the pollStatus Web service: if the stop condition is send (meaning job is
finished) the job identifier (being the input of the pollStatus Web service) is
passed to the next step in the workflow, which is usually a getResults Web
service method.

The data driven parallelization of sub-workflows (high-throughput compu-
tations) like the invocation of a series of PSI-Blast searches against the PDB
database in the sequence analysis sub-workflow (see Fig. 2) is implemented
through lists. The Blast Web service works on lists of protein sequences as input
data, i.e. the Web service method runBlast submits all input sequences to the
batch system and returns a list of job identifiers that can be handled by the
polling Web service.

4 Web services vs. “Scripting”

In this section we compare the performance of two different implementation sce-
narios of our protein structure prediction pipeline focussing on the associated
overhead costs. The “traditional” approach uses a specifically written workflow
engine implemented in PERL (scripting approach). The second implementation
is based on the Triana workflow engine with Web services as described in the
previous sections. In both implementations the time-consuming bioinformatics
applications ran as jobs scheduled via the local batch system, i.e. in both cases
the steps (1) job submission to compute nodes of the cluster, (2) monitoring the
job status (polling), and (3) delivery of results after job termination were identi-
cal. Data analysis steps either implemented into Web services or as Triana units
have their counterparts in the PERL implementation as well. The Triana work-
flow engine process was either started on the cluster front-end (TRIANA/Linux,
in Table 2) or on a desktop machine connected through a switched 100 Mb/s Eth-
ernet network to the cluster front-end (TRIANA/Windows). The PERL script
ran on the front-end only (PERL/Linux).

Additionally, we have implemented a pipeline version ZIB-jws including the
BLAST Web service from DNA Data Bank Japan (DDBJ)1 for searches against
the PDB instead of our local PSI-BLAST installation (see Fig. 2). The DDBJ
provides their Web services also synchronous as well as asynchronous. Therefore,
the DDBJ BLAST Web service could be directly plugged into our request and
response with polling architecture. For the PERL implementation we used the
SOAP::Lite library.

Three experiments were performed to estimate the overhead costs:

1. PDB sequence analysis + homology modelling (Homology(PDB)),
2. PDB sequence analysis + UNIPROT sequence analysis + parallel PDB se-

quence analysis + homology modelling (Homology(UNIPROT)),
1 http://xml.nig.ac.jp/wsdl/index.jsp
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3. PDB sequence analysis + UNIPROT sequence analysis + PsiPred prediction
+ Threading + loop modelling (Threading).

To maintain the desired partial workflow, for every experiment a specific protein
target sequences was used:

1. a sequence that had a significant identity (> 40%) to a sequence in the PDB,
2. a sequence that showed no significant identity to a PDB sequence but where

sequences with sufficient similarity were detectable in the PDB through it-
erative search against the Uniprot database sequences with, and

3. a sequence with no similarity detectable in PDB and Uniprot.

All experiments were repeated 10 times for the normal ZIB prediction pipeline
(ZIB) as well as for the ZIB-jws version to have a minimal representative set of
results. Timing information is based on the gettimeofday system call.

In all experiments, the total workflow execution times (wall-clock time) as
well as the time spent in the execution of non-application steps, i.e. the workflow
overhead execution time, were recorded. In the later case, the wall-clock is fetched
before and after the invocation of an asynchronous Web service. The mean values
for the total workflow times (Table 1), and the mean values of the overhead times
(Table 2) over all approaches are summarized. Note that the total workflow
execution time depends heavily on the resource usage of the compute complex,
since it includes the job waiting time in a batch queue. Fortunately, for that study
these numbers are more of a formal interest since our main focus is to estimate
the overhead costs of our workflow design with Web services compared to the
scripting approach. The 3D structures obtained by the different approaches were
validated to manually obtained reference data in order to ensure the correctness
of any workflow implementation.

Table 1. Typical total workflow execution times (wall-clock, in seconds) for the two
workflow versions

experiment ZIB ZIB-jws

Homology(PDB) 134.1 133.5
Homology(UNIPROT) 358.1 358.0
Threading 503.2 503.1

As expected, the overhead times in the Triana/Web service implementation
is by an order of magnitude larger compared to the monolithic PERL approach
(Table 2). Overall, the total execution times for the ZIB-jws pipeline are slightly
better than those for the in-house version. This is because the DDBJ Web service
can only execute simple Blast runs, whereas our in-house implementation uses
the more time consuming PSI-BLAST. This implies that any workflow engine
invokes the Blast result polling services less frequently than in the in-house
scenario. Furthermore, the overhead execution time did not include the time for
data transfers between the workflow engine process and a Web service. Compared



1156 P. May, H.-C. Ehrlich, and T. Steinke

Table 2. Mean workflow overhead execution times (in seconds) for the two workflow
versions

Implementation/Platform Homology Threading
PDB UNIPROT

ZIB ZIB-jws ZIB ZIB-jws ZIB ZIB-jws

TRIANA/Linux 0.120 0.120 0.300 0.300 0.301 0.300
TRIANA/Windows 0.123 0.120 0.305 0.302 0.305 0.303
Perl/Linux 0.012 0.009 0.080 0.078 0.075 0.071

to the total workflow execution (wall-clock) times, the overhead times in both
workflow versions of the Web services based workflow implementation are about
four orders of magnitude lower and therefore practically negligible (less than
0.1%).

5 Summary and Outlook

We have presented the implementation of a protein structure prediction pipeline
as Web service-based workflow using Triana. We have demonstrated that Web
services are a versatile technology to integrate various, heterogeneous methods
into one stand-alone, fully automated and biological demanding application sce-
nario.

The design of such complex workflows with Web services as buildings blocks
are well supported by the Triana problem-solving environment. Additionally,
Triana supports the workflow design and the development of self-written Tri-
ana units. Within the Triana framework, the processing of workflows with Web
services is characterized by an additional, but expected performance overhead.
Fortunately, these additional “costs” are usually negligible for workflow sce-
narios where the time-dominating factors are compute-intensive tasks. Such a
coarse-grain segmentation of workflows is the appropriate approach for taking
the advantages of Web service technology in real-world scenarios. Moreover, we
see today the overall benefit of using the Web service approach in the modular
design of the workflow, the improved maintainability, and the more intuitive
plug-in of new modules accessible as Web services. Those modules may run lo-
cally or are provided by external service providers. The “only” concern of the
end user is the functional interface and the corresponding input and output data.

Having a Web service based workflow in place fulfills an important precondi-
tion for moving the application scenario into a Grid environment. As long as all
services are statically defined in the workflow any flexibility for improving the
throughput performance is missing. The next step is to apply brokering services
at runtime to select appropriate compute and storage resources for compute
and/or storage intensive workflow steps. This approach will allow the transpar-
ent use of geographically distributed resources for the workflow processing. It
enables the implementation of high-throughput pipelines for solving complex
biological questions.
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This work constitutes the base for further developments towards a workflow
system for protein structure prediction based on Grid services in a Grid envi-
ronment. Several additional pre- and post-processing steps to further improve
the quality of the predicted models will enhance the ZIB structure prediction
pipeline. This development is also part of the German MediGRID [26] project.
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Abstract. Anisotropic Nonlinear Diffusion (AND) is a powerful noise reduction
technique in the field of computer vision. This method is based on a Partial Dif-
ferential Equation (PDE) tightly coupled with a massive set of eigensystems. De-
noising large 3D images in biomedicine and structural cellular biology by AND
is extremely expensive from a computational point of view, and the requirements
may become so huge that parallel computing turns out to be essential. This work
addresses the parallel implementation of AND. The parallelization is carried out
by means of three paradigms: (1) Shared address space paradigm, (2) Message
passing paradigm, and (3) Hybrid paradigm. The three parallel approaches have
been evaluated on two parallel platforms: (1) a DSM (Distributed Shared Mem-
ory) platform based on cc-NUMA memory access and (2) a cluster of Symmetric
biprocessors. An analysis of the performance of the three strategies has been ac-
complished to determine which is the most suitable paradigm for each platform.

1 Introduction

In many disciplines, raw data acquired from instruments are substantially corrupted by
noise and sophisticated filtering techniques are then indispensable for a proper interpre-
tation or post-processing. In general terms, smoothing techniques can be classified into
linear and non-linear. Standard linear filtering techniques based on local averages or
Gaussian kernels succeed in reducing the noise, but at expenses of poor feature preser-
vation. In other words, they may severely blur the features as their edges are attenuated.
However, nonlinear filtering techniques achieve better feature preservation as they try to
adaptively tune the strength of the smoothing to the local structures found in the image.
Anisotropic nonlinear diffusion (AND) is currently one of the most powerful noise re-
duction techniques in the field of computer vision [1]. This technique takes into account
the local structures found in the image to filter noise, preserve edges and enhance some
features, thus considerably increasing the signal-to-noise ratio (SNR) with no signifi-
cant quantitative distortions of the signal. Pioneered in 1990 by Perona and Malik [2],
AND has grown up to become a well-established tool in the last decade [1,3,4]. AND
has already been successfully applied in different disciplines, such as medicine [5,6,7]
or biology [8,9,10], for denoising multidimensional images. AND has actually been
crucial to achieve some recent breakthroughs [11,12,13,14].

� This work was supported by the Spanish Ministry of Education and Science through grant
TIN2005-00447.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1159–1168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The mathematical basis of AND is a partial differential equation (PDE) tightly cou-
pled with a massive set of eigensystems [10]. The computational cost of AND may be
very high, depending on the size of the images. There are some disciplines where the
requirements may be so huge –much more than 1 Gbyte in size [15,16]– that parallel
computing proves to be essential.

The standard numerical scheme for solving PDEs is based upon an explicit finite
difference discretization. More efficient schemes have been specifically designed for
nonlinear diffusion [17], though. However, they are complex to implement and, despite
their efficiency, they still require to be parallelized [18].

In this work we address the parallelization of AND for its application to denoising
of large three-dimensional (3D) volumes in biomedicine and structural cellular biol-
ogy. We make use of the standard explicit numerical scheme for the discretization. This
scheme is commonly used in other fields where PDEs are involved [19] and, as a conse-
quence, the parallel approaches that are presented and discussed here may be valuable
for them too.

2 Review of Anisotropic Nonlinear Diffusion

AND accomplishes a sophisticated edge-preserving denoising that takes into account
the structures at local scales. AND tunes the strength of the smoothing along different
directions based on the local structure estimated at every point of the multidimensional
image. Conceptually speaking, AND can be considered as an adaptive gaussian filtering
technique in which, for every voxel in the volume, an anisotropic 3D gaussian function
is computed whose widths and orientations depend on the local structure [20]. This
section presents local structure determination via structure tensors, the concept of dif-
fusion, a diffusion approach commonly used in image processing and, finally, details of
the numerical implementation.

2.1 Estimation of Local Structure

The structure tensor is the mathematical tool that allows us to estimate the local struc-
ture in a multidimensional image. Let I(x) denote a 3D image, where x = (x, y, z)
is the coordinate vector. The structure tensor of I is a symmetric positive semi-definite
matrix given by:

J(∇I) = ∇I · ∇IT =

 I2
x IxIy IxIz

IxIy I2
y IyIz

IxIz IyIz I2
z

 (1)

where Ix = ∂I
∂x , Iy = ∂I

∂y , Iz = ∂I
∂z are the derivatives of the image with respect to x, y

and z, respectively.
The eigen-analysis of the structure tensor allows determination of the local structural

features in the image [1]:

J(∇I) = [v1 v2 v3] ·
µ1 0 0

0 µ2 0
0 0 µ3

 · [v1 v2 v3]T (2)
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The orthogonal eigenvectors v1, v2, v3 provide the preferred local orientations, and
the corresponding eigenvalues µ1, µ2, µ3 (assume µ1 ≥ µ2 ≥ µ3) provide the average
contrast along these directions. The first eigenvector v1 represents the direction of the
maximum variance. Therefore, v1 represents the direction normal to the local feature
(see Fig. 1).

v1

v2

v3

Fig. 1. Local structure found by eigen-analysis of the structure tensor. v1, v2, v3 are the corre-
sponding eigenvectors. v1 is the direction normal to the local structure.

2.2 Concept of Diffusion in Image Processing

Diffusion is a physical process that equilibrates concentration differences as a function
of time, without creating or destroying mass. In image processing, density values play
the role of concentration. This observation is expressed by the diffusion equation [1]:

It = div(D · ∇I) (3)

where It = ∂I
∂t denotes the derivative of the image I with respect to the time t, ∇I is the

gradient vector, D is a square matrix called diffusion tensor and div is the divergence
operator:

div(f) =
∂fx

∂x
+

∂fy

∂y
+

∂fz

∂z

In AND the smoothing depends on both the strength of the gradient and its direction
measured at a local scale. The diffusion tensor D is therefore defined as a function of
the structure tensor J :

D = [v1 v2 v3] ·
λ1 0 0

0 λ2 0
0 0 λ3

 · [v1 v2 v3]T (4)

where vi denotes the eigenvectors of the structure tensor. The values of the eigenval-
ues λi define the strength of the smoothing along the direction of the corresponding
eigenvector vi. The values of λi rank from 0 (no smoothing) to 1 (strong smoothing).

Therefore, this approach allows smoothing to take place anisotropically according to
the eigenvectors determined from the local structure of the image. Consequently, AND
allows smoothing on the edges: Smoothing runs along the edges so that they are not
only preserved but smoothed. AND has turned out, by far, the most effective denoising
method by its capabilities for structure preservation and feature enhancement [1,8,9,10].
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2.3 Edge Enhancing Diffusion

One of the most common ways of setting up the diffusion tensor D gives rise to the
so-called Edge Enhancing Diffusion (EED) approach [1]. The primary effects of EED
are edge preservation and enhancement. Here strong smoothing is applied along the
preferred directions of the local structure, (the second and third eigenvectors, v2 and
v3). The strength of the smoothing along the normal of the structure, i.e. the eigenvector
v1, depends on the gradient: the higher the value is, the lower the smoothing strength
is. Consequently, λi are then set up as: λ1 = g(|∇I|), λ2 = 1 and λ3 = 1, with g being
a monotonically decreasing function, such as g(x) = 1/

√
(1 + x2/K2), where K > 0

acts as a contrast parameter [1]; Structures with |∇I| > K are regarded as edges,
otherwise they are considered to belong to the interior of a region. Therefore, smoothing
along edges is preferred over smoothing across them, hence edges are preserved and
enhanced.

2.4 Numerical Discretization of the Diffusion Equation

The diffusion equation, Eq. (3), can be numerically solved using finite differences. The
term It = ∂I

∂t can be replaced by an Euler forward difference approximation. The result-
ing explicit scheme allows calculation of subsequent versions of the image iteratively:

Is+1 = Is +τ ·( ∂
∂x(D11Ix) + ∂

∂x(D12Iy) + ∂
∂x(D13Iz)

+ ∂
∂y (D21Ix) + ∂

∂y (D22Iy) + ∂
∂y (D23Iz)

+ ∂
∂z (D31Ix) + ∂

∂z (D32Iy) + ∂
∂z (D33Iz))

(5)

where s is the iteration index, τ denotes the time step size, Is denotes the image at time
ts = sτ , the terms Ix, Iy , Iz are the derivatives of the image Is with respect to x, y
and z, respectively. Finally, the Dmn terms represent the components of the diffusion
tensor Ds. The standard scheme to approximate the spatial derivatives ( ∂

∂x , ∂
∂y and ∂

∂z )
is based on central differences.

In this traditional explicit scheme for solving the partial differential equation Eq. (3),
the stability is an issue [1]. The maximum time step that is allowed is τ ≤ 0.5/Nd,
where Nd is the number of dimensions of the problem. In our case, we are dealing with
a three-dimensional problem, so Nd = 3. In the experiments carried out in this work,
we used a conservative value of τ = 0.1. As far as the number of iterations is concerned,
a range of 60-100 iterations is typically used in 3D problems [1,8,9,10] with that value
of τ .

For illustration purposes, Fig. 2 shows the result of the application of 60 iterations
of AND to a volume of a mitochondrion, a cell organelle, that was obtained by electron
microscope tomography [16]. The enhancement in visualizing a slice of the volume is
apparent (left: slice from the original volume; right: slice from the filtered volume).

2.5 The Algorithm of the Diffusion Approach

In this work, we propose an optimized algorithm for solving the PDE in Eq. (5) that
computes the volume by z-planes, where –without loss of generality– the z-axis is the
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Fig. 2. Left: a slice from a volume of a mitochondrion obtained by electron microscope tomogra-
phy; Right: the same slice from the volume filtered with anisotropic nonlinear diffusion

direction of the larger image dimension Nz >= Nx, Ny . The proposed sequential al-
gorithm consists of the following steps:

Do s = 0 . . . n − 1
Do k = 1 . . .Nz /* processing the volume by z-planes */
1. Compute the structure tensor Js

k (Eqs. (1) and (2)).
2. Compute the diffusion tensor Ds

k from Js
k (Eq. (4)).

3. Compute the resulting z-plane of the image Is+1
k , at step (s + 1) from step

s by means of Eq. (5). The resulting z-plane of the image corresponds to
the diffusion time t(s+1) = (s + 1)τ

End Do
End Do

where s and k denote the index of the iteration and the index of the z-plane respectively.
The algorithm is executed iteratively for a number of iterations n. The final image is
obtained after a total diffusion time T = nτ . Note from Eq. (5) that Is+1

k is only
a function of Is

k−2, Is
k−1,Is

k, Is
k+1, Is

k+2. Our implementation minimizes the memory
usage by allocating and computing only the necessary data for updating each single
z-plane. Hereinafter, the body of this nested loop is denoted as Is+1

k = AND(Is
k).

3 Parallel Implementation of AND

In this work, AND have been implemented using three parallel programming models:
(1) shared address space model based on Pthreads,(2) message passing model, where
MPI is applied for message passing between different processors; and (3) hybrid model
that uses Pthreads at the node level while MPI is only applied for message passing be-
tween processors from different and/or the same nodes. Essentially, the parallel strate-
gies are based on domain decomposition. They consist in distributing the input 3D vol-
ume among the processors by blocks of consecutive z-planes, and every processor then
applies the AND algorithm to its own block. At the end of every iteration, depending
on the specific implementation, boundaries planes must be updated from neighbor pro-
cessors for their processing in the subsequent iteration. Next, the main characteristics
of every parallel code are described:
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-Pure Pthreads code. A single thread is mapped onto each processor of the system.
The shared address space model allows all the processors to access the shared whole 3D
volume. The thread running in each processor updates its corresponding z-planes of the
shared volume. Transparently, the neighbor threads then have their boundary z-planes
updated thanks to the shared memory. To ensure consistency of the data throughout the
algorithm, an additional structure has been defined to hold the boundary z-planes before
the neighbors modify them.

-Pure MPI code. Here, one process is spawned on each processor. Each processor
then updates its own block of z-planes. The update of a given local z-plane Is+1

k is only
a function of Is

k and its four neighbor z-planes, Is
k−1, Is

k−2, Is
k+1 and Is

k+2. Updating the
boundary z-planes of the block would imply many communications during one update
step. To avoid excessive communications, each processor allocates four additional z-
planes to hold the two neighbor z-planes of the two boundaries. At the end of each
iteration, the processor then exchanges the updated four boundary z-planes with the
immediate neighbor processors by MPI point-to-point communications.

-Hybrid code. The hybrid strategy has been designed in such a way that one MPI
process is spawned on each node, and the MPI process then creates as many Pthreads
processes as the number of processors in the node. The block of z-planes assigned to
the node is shared by all the threads running in the node. Every thread updates its own
subset of the block of z-planes, similarly to the shared address space strategy above
described. At the end of the iteration, all the threads running in a node are joined. The
boundary z-planes are then exchanged among the immediate neighbor nodes by MPI
point-to-point communications. The outline of the hybrid code would be as follows:

1. Distribute I0 among nodes, Nnd
z = �Nz/P �+ 4 planes are assigned to each node.

2. Do s = 0 . . . n− 1
(a) Each thread initializes its auxiliary data structures.
(b) Do k = 1 . . .N thr

z = �(Nnd
z − 4)/T � /* each thread */

Is+1
k = AND(Is

k)
End Do

(c) Interchange boundary z-planes between neighbor nodes.
3. End Do
4. Collect the image.

where Nnd
z and N thr

z denote the local number of z-planes of the volume in every node
and in every thread respectively, P and T denotes the number of nodes and processors
inside one node respectively, and I0 denotes the original 3D volume, n denotes the
number of iterations, and AND() represents the diffusion algorithm.

In this strategy, it is necessary to control the data distribution at two levels: (1) at
the node level, since the total number of z-planes is distributed among nodes, and (2)
at the processor level inside the node, as each thread updates its subset of z-planes by
applying the AND process.

4 Evaluation of the Parallel Implementation of AND

In this section, we evaluate the performance of three parallel implementations of the
AND method: (1) Pure MPI AND-code, (2) Pure Pthreads AND-code and (3) Hybrid
AND-code. The evaluation has been carried out on two parallel platforms:
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-Distributed Shared Memory (DSM) platform SGI Altix 3700 Bx2 of 8 processors
1600 MHz Intel Itanium 2 Rev with 128 GB RAM. The Altix 3700 computer system
is based on a Distributed Shared Memory architecture and uses a cache-coherent Non-
Uniform Memory Access (NUMA) where the latency of processors to access to local
memory is lower than the latency to access to global memory (or remote memory) [21].

-Cluster of symmetric biprocessors of Intel(R) Xeon(TM) 3.06 GHz with 2 GB
RAM, 512 KB cache. Nodes are interconnected via two Gigabit Ethernet networks,
one for data (NFS) and the other for computation. The architecture of this cluster is
based on a UMA access, where all processors have equally fast (symmetric) access to
the memory in the node.

Dimensions of volumes in biomedicine and structural cellular biology usually range
between 256x256x256 and 640x640x640. Typical values for n are around 60-100 iter-
ations with τ = 0.1, where n is the number of iterations needed to denoise the volume
for an acceptable result [9,10]. In this work, two test volumes with cubic symmetry of
sizes 256x256x256 and 640x640x640 have been selected to carry out the evaluation
process. Hereinafter, these volumes will be referenced by the size of their edges.

4.1 Distributed Shared Memory Platform: Altix 3700

Let mpi be the number of MPI processes and pt the number of Pthreads processes. To
evaluate the hybrid implementation for a fixed number of processors p, several combi-
nations of values of mpi and pt are possible. Experimental performance results were
measured for several combinations of mpi and pt for a fixed p, obtaining similar behav-
ior. In the results shown here, we focus on the case with pt = 2 Pthreads processes, and
we only increment the number of MPI processes. Fig. 3 shows the speedup achieved
by the pure MPI, pure Pthreads and hybrid implementations, for the two volumes, on
a 8-processor SGI Altix 3700 Bx2. As it can be seen, in general the three parallel im-
plementations have very good performance. They all approach the ideal linear speedup,
with slightly better behavior for the message passing implementation. For the volume
640, some curves exhibit slight levels of superspeedup. Finally, the volume size has
turned out to have a very low influence on the speedup. The excellent behavior shown
by the message passing version may be thanks to the high speed interconnection tech-
nology used in this computer [21]. In summary, the three parallel strategies present very
good levels of scalability on this computer platform.

4.2 Cluster of Symmetric Biprocessors

On the cluster of symmetric biprocessors, the performance has been evaluated only for
two models: message passing model and hybrid model with pt = 2, since on this plat-
form the evaluation of the shared address space model is limited to two processors into
one node. The scalability of both models has been analyzed by means of the speedup
measurements.

Traditionally, the speedup is only referred to the sequential runtime. Recently, a gen-
eral concept of speedup has been introduced [22], where the parallel runtime is used as
a reference instead. In this evaluation, this concept is taken into account to evaluate the
performance of AND on the cluster of SMPs. Specifically, for the volume 640, the par-
allel runtime with four processors is considered as a reference, since it was not possible
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Fig. 3. Speedup on a SGI Altix 3700 Bx2 of the pure MPI, Pure Pthreads and hybrid codes for
the volumes 256 and 640

to run the codes on fewer than four processors with these volume sizes. Meanwhile, the
sequential runtime is used as reference for the smaller volume 256.

Fig. 4 shows the speedup achieved by the pure MPI code and the hybrid code, for the
test volumes, on the cluster of SMPs described above. In general terms, both strategies
yield good results, with better performance for the hybrid strategy. It is evident from
these figures that the hybrid strategy yields better scalability than the strategy based on
message passing, specially for increasing number of processors.

In order to explain the better behavior of the hybrid strategy compared to the message
passing one, additional measures of communication times have been obtained as well
(results not shown here). Clearly the penalty due to the communications is stronger on
the message passing implementation than on the hybrid one, specially as the number of
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Fig. 4. Speedup on a cluster of SMPs of the pure MPI and hybrid codes for the volumes 256 and
640
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processors increases since only communications between pairs of symmetric processors
are involved for the hybrid code.

The influence of the problem size on the performance was also analyzed, and the
conclusion is that the volume size proves to be relevant on this platform. This behav-
ior is justified by two factors. First, the computational complexity depends linearly on
the volume size whereas the amount of communications is proportional to the size of
a single z-slice. Therefore, for small volumes the penalties from communications are
relevant, specially for the pure MPI code. Second, the local memory hierarchy manage-
ment improves for larger volume sizes and has a stronger impact in the scalability of
both strategies. Therefore, any increase in the problem size is expected to imply a direct
improvement in the speedup of both strategies.

5 Conclusions

In this work, we have presented parallel implementations of AND, using three strate-
gies based on: (1) shared address space, (2) the message passing paradigm and (3) a
hybrid approach. The evaluation has been carried out on two different architectures:
(1) a Distributed Shared Memory platform based on cc-NUMA access and (2) a clus-
ter of Symmetric Biprocessors based on UMA access. In view of the results, we can
conclude that the parallel algorithms present good levels of scalability. Furthermore,
the evaluation allows us to draw the conclusion that for DSM platforms like the Altix
3700 Bx2, all paradigms yield better and similar speedup. Consequently there is no fa-
vorable paradigm for this platform. However, for clusters of SMPs the hybrid paradigm
(Pthreads+MPI) is more suitable than a strategy based solely on the message passing
paradigm.
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Abstract. We have designed and implemented a new portable sys-
tem that can rapidly construct a computer environment where high-
throughput research applications can be performed instantly. One chal-
lenge in the instant computing area is constructing a cluster system
instantly, and then readily restoring it to its former state. This paper
presents an approach for instant computing using Knoppix technology
that can allow even a non-computer specialist to easily construct and
operate a Beowulf cluster . In the present bio-research field, there is now
an urgent need to address the nagging problem posed by having high-
performance computers. Therefore, we were assigned the task of propos-
ing a way to build an environment where a cluster computer system can
be instantly set up. Through such research, we believe that the tech-
nology can be expected to accelerate scientific research. However, when
employing this technology in bio-research, a capacity barrier exists when
selecting a clustered Knoppix system for a data-driven bioinformatics
application. We have approached ways to overcome said barrier by using
a virtual integrated RAM-DISK to adapt to a parallel file system. To
show an actual example using a reference application, we have chosen
InterProScan, which is an integrated application prepared by the Euro-
pean Bioinformatics Institute (EBI) that utilizes many database and scan
methods. InterProScan is capable of scaling workload with local compu-
tational resources, though biology researchers and even bioinformatics
researchers find such extensions difficult to set up. We have achieved the
purpose of allowing even researchers who are non-cluster experts to easily
build a system of ”Knoppix for the InterProScan4.1 High Throughput
Computing Edition.” The system we developed is capable of not only
constructing a cluster computer environment composed of 32 computers
in about ten minutes (as opposed to six hours when done manually), but
also restoring the original environment by rebooting the pre-existing op-
erating system. The goal of our instant cluster computing is to provide
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an environment in which any target application can be built instantly
from anywhere.

1 Introduction

Over the last decade, high performance computing has become a fundamental
technology essential for large-scale scientific research. The Beowulf[1,2,3] parallel
workstation that consists of commercial PC components achieves a balanced
low-cost architecture for an environment of single-user scientific workstations.
However, as Philip Papadopoulos points out, the economics of clusters have
changed due to additional and ongoing personnel costs related to the ”care and
feed” of the machine.[4,5,6]

This paper presents an image-based approach for a light-load deploying system
using Linux-based Live CD technology. The image-based system adapts well to
temporary usage. The original environment can be easily rolled back as well.
We have designed and implemented a new portable system that can rapidly
construct a computer environment where high-throughput search applications
for protein analysis can be performed instantly. One challenge in this instant
computing area is making a target system with a reasonable configuration to
enable instant construction, and then easy restoration to the former state. The
advantage of instant computing is its demonstrated available technology to solve
a given problem without the need for special technical knowledge in order to
build a system that can perform the intended application. Consequently, end
users have practical needs for instant computing.

2 Related Work

Related work in instant computing technology can be divided into two groups:
install-based systems and image-based systems.

2.1 Install-Based Deploying System

NPACI Rocks toolkit. The NPACI Rocks toolkit developed by the Uni-
versity of California at San Diego (UCSD) is designed to address a large-scale,
cluster-work support infrastructure for applications that scientists can build and
manage by themselves. Rocks has achieved the setup of a system consisting of
hardware and software, and which is unified by prescribed system configurations.
The Rocks cluster architecture inherited by the Beowulf project was defined as
consisting of minimal components for which there are large mean-time-to-failure
specifications. [4] The conventional Beowulf parallel workstation intended for
scientific applications requiring the repetitive use of large data sets and large
applications is composed of a front-end node and work-nodes with dual channel
Ethernet networks. Therefore, the presumed Rocks hardware system offers both
simplicity and a high degree of practicality. UCSD also developed a robust set
of OS installation tools known as NPACI Rocks with RedHat Kickstart. UCSD
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had deployed all software by using RPM-based automatic configuration tech-
nology, and also supported a reinstallation mechanism for forcing the base OS
on the computing nodes as well. As far as possible in the Rocks world, such
technologies may facilitate the easy building of cluster systems by end users. In
addition, similar efforts have been made to realize a light-speed deploying system
for cluster computing the Real World Computing Partnership, Scyld Beowulf,
Scalable Cluster Environment, Open Cluster Group, VA Linux, and Extreme
Linux. These install-based management systems are fitted into a uniform clus-
ter system that can be used for a long time. For weekend computing, end users
may want to temporarily construct a cluster computer system, and will not ac-
cept a destructive reinstallation because the PC must be restored to its original
condition.

2.2 Image-Based Deploying System

Knoppix. Knoppix is a collection of GNU/Linux and features one CD live file
system (iso9660) that can be customized as a full-featured portable computer
system. [7] The key technologies of Knoppix are automatic hardware detection
and configuration, and a compressed loop-back device. The loop-back device
allows us to mount a file as a block device, thus reducing the system file image
and enabling the file to be read on the-fly decompression. After the CD has been
mounted on the loop-back device, additional memory disks (tmpfs) are mounted
with a writable ext2 file system for an application program as a normal Linux
distribution system. The tmpfs size is adapted from the available size of real
memory.

ClusterKnoppix. ClusterKnoppix is a Linux kernel extension for single-system
image clustering that adopts Knoppix distribution using the OpenMosix kernel,
and is designed to activate a cluster without having to install it on the hard disk.
The MOSIX multi-computer system, which is improved by kernel algorithms
for sharing the scalability of PC cluster resources, has a feature of preemp-
tive process migration for dynamic load-balancing and memory-ushering, due to
the management mechanism required for cluster-wide dynamically distributed
resources in a time-sharing parallel execution environment for multiple users.
MOSIX offers a general-purpose environment infrastructure for executing large
scale, demanding sequential and parallel applications.[8] The MOSIX infrastruc-
ture includes such MOSIX File Systems as the Global File System (GFS)[10]
and Parallel Virtual File System (PVFS)[11] that provide a unified view of all
files on all mounted file systems in all nodes of the MOSIX cluster. The system
consists of several functional components for easily building a cluster system. For
booting up the work nodes via a network, ClusterKnoppix has the OpenMosix
terminal server that integrates the Pre-Boot Execution Environment (PXE),
Dynamic Host Configuration Protocol (DHCP), and tftp. Moreover, the system
allows new nodes to join the cluster automatically by using the auto discovery
feature for improved convenience.[12]
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3 Application

In the present bio-research, bioinformatics applications that typically represent a
data-oriented approach are utilized with a public and/or in-house database from
which a researcher can obtain new findings about topics of interest. To prepare
a research environment, bioinformatics applications usually require a long time
to perform, and are not easy for researchers who are not experts on information
technology. Furthermore, it is very troublesome to build and maintain a system
for large-scale computation. We were assigned the task of proposing a way to
build an environment where a cluster computer system can be instantly set up.
This technology is expected to accelerate the pace of bioinformatics research.
Building such a temporary system is not very appealing in view of existing
research and development systems. Therefore, there is an urgent need to address
this nagging problem.

We have chosen InterProScan [13] as a reference application, which represents
data-oriented characteristics. InterProScan is an integrated application prepared
by the European Bioinformatics Institute (EBI) that utilizes many databases
and scan methods for protein signatures. These well-maintained databases in-
clude protein families, domains, and functional sites in which identifiable features
found in known proteins can be applied to unknown protein sequences. Inter-
ProScan allows a protein science researcher to simultaneously scan several mem-
ber databases, such as PROSITE patterns, PROSITE profile, PRINTS, PFAM,
PRODOM, SMART, and TIGRFAMs. InterProScan is capable of scaling work-
load with local computational resources, though biology researchers and even
bioinformatics researchers find such extensions difficult to set up.

4 System Design and Implementation

We have been addressing the difficulties of instantly constructing a high-perfor-
mance cluster computing system, and improving the research environment to
make it easy for non-cluster experts to do so. Our approach entails two main
domains in the deploying environment. First, we will decide on a target ap-
plication. Secondly, our second domain is remastering a specific service. This
section describes the system design and implementation for remastering typical
bioinformatics applications on Live-OS.

InterProScan consist of several functional scripts: system configure, pre-proce-
dure, job submitting, status checker, post-procedure, and member database. The
database contains 11,972 entries, representing 3079 domains, 8597 families, 228
repeats, 27 active sites, 21 binding sites, and 20 post-translational modification
sites. Overall, there are 7,521,179 InterPro hits from 1,466,570 UniProt protein
sequences in release 10.0. [14] Thus, the database contains 5.3G-byte file sets
comprising 38,391 directories and 38,433 files. InterProScan is a well-known ap-
plication with abundant directories.

As for why there are so many directories, there is an issue regarding how a
protein family model file of the HMMER program is stored in each directory.
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Thus, the file system must store much structure information as metadata. More-
over, InterProScan will also submit 12 jobs per sequence file. Thus, storage space
greater than the file size of a member database is required when adding the file
size of meta-data and the results.

A Live-OS offers the advantage of easily setting up the most suitable environ-
ment, but the technical issue of creating more than 6G bytes of data storage space
for member databases and results must be addressed. Specifically, a single Live-
OS node without a hard disk drive cannot be expected to obtain RAM-DISK
space exceeding 2G byte. Therefore, to make our proposed method complemen-
tary, a parallel file system has been chosen to integrate RAM-DISK storage with
a clustered Live-OS computer. To realize our method of an integrated RAM-
DISK, we have designed KnoppixCluster using a traditional architecture for
high-performance computing environments such as the Beowulf parallel work-
station, which has been defined for single-user multiple computers. In order to
develop InterProScan service on KnoppixCluster, we have developed a series of
setup scripts: htc hop, htc step, and htc jump. The htc hop script executes a
setup procedure to deploy the back-end image. First, the front-end is booted
from a local CD-image. Then the front-end executes htc hop to activate the fea-
tures with our configuration, which includes the network card settings, DHCP IP
ranges, and client-side NIC drivers. To enable these features, we have chosen the
Knoppix terminal server, which allows thin clients such as diskless workstations.
[15] After htc hop is completed, the system is ready to start a back-end-node
booting sequence. The back-end nodes must support a PXE prepared by the
front-end node for network booting from the terminal server .

The htc step script can then be executed on the front-end node, provided
that the necessary number of back-end-nodes are booted up, thus allowing us to
automatically create a configuration file for PVFS2 and Condor [16]. Our con-
figurations that focus on instant computing can instantly create an on-memory-
parallel-file system using PVFS2 to integrate a specified memory disk (tempfs)
that is mounted with a writable ext2 file system on the back-end nodes. In or-
der to build a service environment for InterProScan4.1 with database release
10.0, additional capacity of 1.2G bytes is necessary for that data structure, al-
though a capacity of 5G bytes should be sufficient to store a database. Thus,
the quantity necessary for this structure information can be obtained through
experimental observation beforehand. Therefore, this system must use PVFS2
to create a total capacity greater than 6.2G bytes. This capacity thus becomes
the condition on which to maintain the minimum system configuration. This
condition is evaluated based on the run-time system capacity on the back-end
nodes, then the possibility of said system configuration is evaluated, and the
script provides information for the end-user. The back-end node serves an im-
portant role in providing the on-memory-parallel-filesystem. The back-end node
also functions as a work node to perform a given task at the same time. In order
to utilize the back-end nodes, the condor scheduling system allows us to deal
with parallel jobs involving large-volume processing. The condor is set up by
running a condor setup program (condor configure) on each back-end node in
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the on-memory-parallel-filesystem through serial processing. In order to collect
the software and hardware of ”headth” on all nodes, we have chosen Ganglia,
which is a lightweight, distributed, multicast-based monitoring system. Ganglia
allows us to indicate the number and speed of the CPUs, the kernel version, the
amount of RAM installed, and more useful information about all nodes. After all
setups are completed, a test job is performed in the htc jump script to confirm
whether all setups can be properly executed, and with the results being verified.

5 Performance

5.1 The Evaluation of Application Performance by the Boot
Memory Model

We have evaluated the effects of dividing main memory in the Knoppix Instant
Computing System on an application because rewritable space is important for
practical use. This problem dictates how much main memory size can be assigned
to RAM-DISK to execute typical bioinformatics applications on KNOPPIX.

For example, a computer with 1G byte of memory is able to assigned 400M
bytes of memory for operating system use; thus, the remaining 600M bytes of
memory can be assigned for RAM-DISK use. When consisting of ten cluster
nodes, this system can create a rewritable capacity of 6G bytes . The capacity
that can be used for the on-memory-parallel-file system is reduced when too
much quantity is allocated to the operating system. The system thus assigns
the necessary and sufficient conditions of system memory for a bioinformatics
application.

Table 1 shows the test equipment that we used to build Knoppix Cluster
for this performance evaluation. The front-end node has 4G bytes of memory
to ensure the stability of system operation, and the back-end nodes have 2G
bytes of memory. Table 2 shows the experimental conditions for the different
boot memory models. As for the experiment, we measured the execution time of

Fig. 1. A boot model for Knoppix Cluster
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Table 1. Test Equipment

Front-end node Back-end node

CPU Pentium4 2.4 GHz Pentium4 2 GHz
Main Memory 4G bytes 2G bytes

NIC 1000 Base-T 100 Base-T
node 1 10

Table 2. Experiment Conditions for boot memory models

item parameter

Memory Model high (800 MB) low (400 MB)
File System PVFS ver.1
application Parallel Blast
Database Size (sequences) 1000,10000,10000
Query (sequences) 1,2,4,8,10,100
Number of Proc. (CPU) 1,2,4,8,10
Rep. 5

parallel BLAST extended from NCBI BLAST [18] with a combination of query
and database size on the on-memory-parallel-filesystem in both High mode and
Low mode. The experiment was repeated five times to evaluate repeatedly, and
a total trial experiment count of 1350 times was enforced.

Figure 2 shows the homology search throughput, which is the capability of
each memory model in units of time. There were no differences between the
two memory models based on the results of the wide-range parameter sweep
experiment. Therefore, it was shown that similar performance could be expected
for a special configuration of the on-memory-parallel-filesystem.
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5.2 The Evaluation of Instant System Setup Performance

Knoppix-Cluster allows us to instantly reproduce a final system configuration by
embedding a construction script in a boot image. An end user without special
expertise can use this mechanism to build a cluster system. Table 3 shows the
setup time for each step in our instant Knoppix Cluster. It took about ten minutes
(on a 30-node scale) to build a cluster computer on the instant system. Even when
compared with the reinstallation time stated in the reference paper about ROCKS
[4], performance equivalent to that above is realized for this setup time.

Table 3. The setup time for an instant cluster

Script Time (sec)

Work nodes size 10 20 30
HTC hop 22 21 19
HTC Step 214 419 619
File System (PVFS2) 46 82 118

Scheuler (Condor) 156 299 445
Monitor (Ganglia) 12 21 32

Total Time 234 440 638
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5.3 The Evaluation of InterProScan4.1 Performance for Instant
Computing

An experiment was conducted to verify practical use of the high-throughput ap-
plication environment instantly provided for non-cluster experts. InterProScan4.1
is a well-known integrated application that can perform a search using 12 pro-
grams and a database. Each application has a different executive time distribu-
tion. Figure 3 shows the total execution time difference between RAM-DISK and
Hard DISK. Since Knoppix Cluster is built by using the on-memory-parallel-
filesystem (which is a case of special use),we had to observe the difference in
practical execution time.

6 Conclusion

We have presented and implemented a new approach to image-based instant
computing technology on Knoppix Cluster for improving the research environ-
ment of high performance computing for non-cluster experts. Our work rep-
resents the first step in exploring design and implementation issues regarding
instant computing technology. We have been very particular about restoring
the original condition as held before. We expanded instant computing by using
the on-memory-parallel-filesystem for image-based technology from install-based
technology, and this technology enabled us to handily build a cluster system.
Consequently, we considered its adaptation to practical bioinformatics applica-
tions and succeeded in building an InterProScan4.1 environment and distribut-
ing images for Knoppix using the InterProScan4.1 High Throughput Computing
Edition. [19] The results can then be used as one infrastructure for deploying
application service.
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Topic 18: Embedded Parallel Systems

Jürgen Teich, Stefanos Kaxiras, Toomas Plaks, and Krisztián Flautner

Topic Chairs

Multi-processor systems implemented in System-on-a-Chip technology (MPSoC)
are emerging for processing embedded applications such as consumer electron-
ics, mobile phones, computer graphics, and medical imaging, to name a few.
Contrary to cluster and grid processing, their design and required compilation
techniques are driven by multiple conflicting design objectives simultaneously
such as power consumption, speed, monetary cost, and physical as well as mem-
ory size. Here, new specification techniques, special parallelization and map-
ping techniques are needed in order to embed computations optimally into the
parallel architecture. Various architectural concepts ranging from fine-grain to
coarse-grain parallel SoC architectures with focus on dynamic programmability
or reconfigurability are currently emerging in academia and industry.

On account of the outlined importance of MPSoCs in todays and future em-
bedded systems, the topic Embedded Parallel Systems is included in the program
of Euro-Par for the first time. Unfortunately, the number of submitted papers
was comparatively small but nevertheless after a rigorous review process we ac-
cepted three papers which form one session at the conference. In the following,
we provide a brief outline of the topics addressed in these contributions.

The paper titled “Optimal Localization of Data Dependencies in Algorithm
Partitioning Under Resource Constraints” by S. Siegel and R. Merker deals with
the communication in dedicated processor arrays. The authors propose an integer
linear program in order to minimize the number of necessary channels and the
amount of local memory.

The work “FPGA implementation of a Prototype Hierarchical Control Net-
work for Large-Scale Signal Processing Applications” by J. Lemaitre and E. De-
prettere presents a prototypical FPGA implementation of a hierarchical control
network coupled with a distributed dataflow network. For modeling the network,
communicating Finite State Machines and Kahn Process Networks are used.

The third paper “An Embedded Systems Programming Environment for C”
by B. Burgstaller, B. Scholz, and A. Ertl presents a programming environment
for mixed-mode execution, i.e. code is either executed on the CPU or in a vir-
tual machine. Trade-offs between highly compressed byte-code and the speed of
machine code are discussed.

The Topic Committee would like to sincerely thank all the authors submitted
papers and the referees who helped with the reviewing process. In particular, we
would like to thank Frank Hannig for his valuable assistance in the organization
of this topic. Finally, we would like to thank the Euro-Par 2006 Organizing
Committee for their support to establish this topic.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, p. 1179, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Abstract. Mapping algorithms to parallel architectures efficiently is
very important for a cost-effective design of many modern technical prod-
ucts. In this paper, we present a solution to the problem of efficiently
realizing uniform data dependencies on processor arrays. In contrary to
existing approaches, we formulate an optimization problem to consider
the cost of both: channels and registers. Further, a solution to the op-
timization problem assigns which channels shall be implemented and it
specifies the control for the realization of the uniform data dependencies.
We illustrate our method on the edge detection algorithm.

1 Introduction

Many modern technical products need to cope with fast digital signal, image
and video processing under real-time requirements. Massively parallel data pro-
cessing on processor arrays (PAs) is known to accelerate compute-intensive al-
gorithms. The semiconductor industry presents more and more solutions for
implementations of PAs in portable and other embedded systems. These solu-
tions range from ASICs, reconfigurable systems in FPGAs, arrays of CPU-cores
to platforms such as DRP from NEC [1] and picoArray [2].

PAs are mainly characterized by their processing elements (PEs). Some PEs
are connected to the periphery, e. g. via a memory hierarchy (Fig. 1 (b)). The PEs
are characterized by functional units and local memory. This paper focuses on the
communication within the PA which is realized by regular local interconnections
between the PEs.

To exploit the processing performance of PAs, we apply a new design flow
which consists of mainly two steps: 1) partitioning the algorithm in order to
match the PA parameters such as shape of PA, number of PEs, communication to
a memory hierarchy [3] and 2) realizing the data dependencies of the algorithm
on the PA. This paper deals with the second step.

The first step can be summarized as follows: We consider compute-intensive
algorithms e. g. described as systems of uniform recurrence equations (SUREs)
[4]. They consist of many elementary computational tasks, the so-called itera-
tions, that are aligned in an iteration space. Using our parameterized partitioning
method [5], we map algorithms to PAs, i. e. each iteration to a PE (allocation) and

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1181–1191, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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determine the corresponding time of execution (schedule). The optimal use of the
data path of each PE for the operations of the algorithm is addressed in [6,7,8,9].

This paper considers the second step: the realization of the data dependencies
of an algorithm on the PA. The data dependencies cause data transfer within
the PA. This data transfer is realized using channels between PEs and registers
within PEs. Other existing works consider only one or the other. The optimal
use of channels for the realization of data dependencies is considered in [10] for
one-dimensional PAs and in [11] embedded in the traditional design flow which
applies linear space-time mappings. The optimal use of registers is regarded in
[12,13] for a single processor machine or in [14] for the design of PAs based on
the traditional design flow.

We present an approach which addresses the optimal use of both: channels and
registers for the realization of the uniform data dependencies of the algorithms.
It is important to consider channels and registers in one model because channels
with a delay (e. g. with a pipeline structure) can reduce the usage of registers.

Given several channels and their implementation cost, we formulate and solve
the communication problem by integer linear programming (ILP). A solution
to the communication problem specifies which channels shall be implemented
and the control of the data dependencies, i. e. when a channel or a register is
used to realize a data dependency. This solution also includes the specification
of an inner schedule for all computational tasks (given by the statements of the
SURE) within an iteration. Our approach can be extended by existing methods
concerning the optimal use of the data path.

To select the channels with minimum cost, our method can be applied in
several ways. E. g. in reconfigurable computing where different algorithms shall
be implemented on the same PA, we can determine which channels would best
realize the communication within the PA for each algorithm. This information
combined with the reconfiguration cost can lead to an efficient solution for the
communication. In [15] we consider savings in the communication cost by avoid-
ing redundancy. There it is necessary to know the channel selection (binding of
data dependencies to channels) a priori. We apply the method presented in this
paper to determine an efficient channel selection.

This paper is organized as follows. We describe the notation of algorithms as
SUREs and we summarize partitioning in Sect. 2. Section 3 is the main contribu-
tion of this paper. In this section we derive a method to formulate and solve the
communication problem. We give a solution to the communication problem for
an example application in Sect. 4. Finally we draw some conclusions in Sect. 5.

2 Algorithm Coding and Partitioning

To demonstrate our methods for the communication problem, we consider sys-
tems of uniform recurrence equations which are defined as follows:

Definition 1 (System of Uniform Recurrence Equations (SURE)).
A system of uniform recurrence equations consists of a set of J statements
(1 ≤ j ≤ J) of the form
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Sj : yj [i] := fj

(
. . . , yi

[
i − d̃

r

j,i

]
, . . .

)
, ∀i ∈ Ij , i, j ∈ N

where Ij denotes the iteration space of statement Sj, Ij is a polyhedral subset of
a Z-module and fj denotes a single-valued function.

A variable yi that is computed by statement Si is a dependent variable if it
is input to some (other) statement Sj . Vector d̃

r

j,i denotes the corresponding
uniform data dependency. Upper index “r” is used only if more that one data
dependency exists between statements Sj and Si.

With the embedding given by I = conv(
⋃

j Ij) ⊂ Z
n we determine the itera-

tion space I of the SURE. In Algorithm 1 we show the edge detection algorithm
(EDA) in the notation of a SURE which we use throughout this paper as an
example.

Algorithm 1. Edge detection algorithm (EDA)

S1 : q [ x
y ] = 2 · pi [ x

y ] , ( x
y ) ∈ I1 = {( x

y ) ∈ Z
2 | 0≤x≤N−1

0≤y≤M−1 }
S2 : h1 [ x

y ] = pi [ x
y−1 ] + pi [ x

y+1 ] , ( x
y ) ∈ I2 = {( x

y ) ∈ Z
2 | 0≤x≤N−1

1≤y≤M−2 }
S3 : h2 [ x

y ] = h1 [ x
y ] + q [ x

y ] , ( x
y ) ∈ I3 = I2

S4 : v1 [ x
y ] = pi

[
x−1

y

]
+ pi

[
x+1

y

]
, ( x

y ) ∈ I4 = {( x
y ) ∈ Z

2 | 1≤x≤N−2
0≤y≤M−1 }

S5 : v2 [ x
y ] = v1 [ x

y ] + q [ x
y ] , ( x

y ) ∈ I5 = I4

S6 : h3 [ x
y ] = h2

[
x−2
y−1

]− h2 [ x
y−1 ] , ( x

y ) ∈ I6 = {( x
y ) ∈ Z

2 | 2≤x≤N−1
2≤y≤M−1 }

S7 : h4 [ x
y ] = |h3 [ x

y ] |, ( x
y ) ∈ I7 = I6

S8 : v3 [ x
y ] = v2

[
x−1
y−2

]− v2

[
x−1

y

]
, ( x

y ) ∈ I8 = I6

S9 : v4 [ x
y ] = |v3 [ x

y ] |, ( x
y ) ∈ I9 = I6

S10 : s [ x
y ] = h4 [ x

y ] + v4 [ x
y ] , ( x

y ) ∈ I10 = I6

S11 : po

[
x−1
y−1

]
= min(255, s [ x

y ]), ( x
y ) ∈ I11 = I6

Next we briefly describe locally parallel, globally sequential (LPGS) partition-
ing [5] and we use it as a parameterized method to directly map an algorithm
to a PA. LPGS-partitioning separates an iteration i ∈ I into κ̂ (denoting a par-
tition) and κ (representing the position within a partition) by the tiling step as
follows [5]:

i = Θκ̂ + κ, 0 ≤ κk < ϑk, 1 ≤ k ≤ n, κ̂ ∈ K̂ ⊂ Z
n, κ ∈ K ⊂ N

n (1)

where Θ = diag(ϑ1 · · ·ϑn) ∈ N
n×n is a square matrix whose diagonal elements

represent the size of the partitions in each of the n directions of the iteration
space I. The size of the partitions corresponds to the size of the PA. Only two
elements of Θ may be greater than one to obtain a two-dimensional PA. The
PA consists of

∏n
i=1 ϑi PEs.

We extend the scheduling function from [5] to determine the time of execution
for each statement Sj of an iteration given by κ̂ and κ as follows:

tj(κ̂,κ) = λτ κ̂ + τ offsκ + bj with τ , τ offs ∈ Z
1×n, bj ∈ L . (2)



1184 S. Siegel and R. Merker

The first term in (2) determines the starting time for each partition. The
second term allows to shift the schedule within a partition according to τ offs to
avoid data dependency conflicts or to change the time behavior of the I/O of
the PA. With bj we determine the starting time for each statement Sj within
the iteration interval λ which is defined as follows:

Definition 2 (Iteration Interval λ). The iteration interval λ denotes the
number of time steps between the beginning of two successive iterations. The
set L = {0, 1, 2, . . . , λ − 1} consists of these time steps.

Note that the parameters bj will be specified by a solution to the communication
problem.

In Fig. 1 (a) we show LPGS-Partitioning for the EDA. Each circle denotes an
iteration. The numbers within each circle describe the beginning and the end of
the corresponding iteration interval. In Fig. 1 (b) we illustrate the obtained PA
with a memory hierarchy. Memory L0 denotes local registers whose cost will be
determined in the communication problem. Some boundary PEs are connected
to the memory hierarchy whose size depends on the tile size and the size of the
image (M and N). We refer to [3] where we describe how to determine this
memory hierarchy. The local interconnections are not depicted in Fig. 1 (b).
They will be determined by solving the communication problem.

We introduce the set D̃ which comprises all uniform data dependencies with
∀d̃ ∈ D̃: d̃k < ϑk where 1 ≤ k ≤ n. For a data dependency d̃ ∈ D̃ there
exists at least one iteration within a partition serving as the source of the data
dependency d̃ and there exists at least one iteration in the same partition serving
as the corresponding drain.

Fig. 1. (a) LPGS-Partitioning of the EDA with an iteration space of size M ×N = 8×6
according to Θ = diag(4 3) and tj(κ̂, κ) = 11·(2 1)·κ̂+(0 1)·κ+bj , (b) Corresponding
PA with a 2-level memory hierarchy
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Let ϑk1 > 1 and ϑk2 > 1 represent the two dimensions of the partitions. Then,
only the elements d̃k1 and d̃k2 of any vector d̃ ∈ D̃ can be greater than zero. To
make things easier (especially for dim(I) > 2), we introduce the set D ∈ Z

2 as
follows: Each vector d ∈ D corresponds to one and only one vector d̃ ∈ D̃ with
d1 = d̃k1 and d2 = d̃k2 . Hence there exists a bijective mapping between the sets
D̃ and D. Note that one-dimensional partitions can be regarded as a special case
where w. l. o. g. we set ϑk2 = 1.

For the example of the EDA we consider partitions with ϑ1, ϑ2 ≥ 3. Therefore,
all the 13 data dependencies which can be extracted from Algorithm 1 belong
to the set DEDA:

DEDA =
{
d3,1 =(00) , d3,2 =(00) , d5,1 =(00) , d5,4 =(00) , d1

6,3 =(21) ,d2
6,3 =(01) ,d7,6 =(00) ,

d1
8,5 =(12) , d2

8,5 =(10) , d9,8 =(00) ,d10,7 =(00) , d10,9 =(00) ,d11,10 =(00)
}

.

3 Communication Problem

The uniform data dependencies given by the set D need to be realized by a
conflict free organization of the data transfer they cause. The communication
problem consists in minimizing the implementation cost in terms of channels
and registers for these data dependencies. In order to determine this cost, we
introduce a model which allows a description of the communication.

3.1 Modelling the Communication

A set W = {w1, w2, . . . , w|W|} of channels wi ∈ Z
2 between PEs is supposed

to be given. The elements of Wbi ⊆ W denote the channels that may be used
bidirectional. To each element wk of W corresponds a delay lwk ∈ N which
represents the time it takes to transfer an instance of a variable on that channel.
Each channel with lwk = 0 denotes a broadcast. Channels with lwk > 0 represent
a pipeline structure which may only be used onedirectional. Hence the delay of
channel wk may only be non-zero if wk ∈ W \Wbi.

The realization of data dependency dj,i consists of two parts. First, it realizes
the transfer of an instance of variable yi from its source to the relative posi-
tion given by dj,i. Second, the realization is responsible for the storage of that
instance until it is input to a data path which executes statement Sj .

We model the transfer of each instance of a dependent variable yi by a
sequence of moves which describes the path from its source to its drain. A
sequence of moves m where 0 ≤ m ≤ Mj,i is characterized by a mapping
{0, 1, 2, . . . , Mj,i} −→ W ∪ {w0} which determines the order in which the
channels are used for a realization of data dependency dj,i. With Mj,i we denote
the maximum number of moves it may take to realize a data dependency dj,i.
We determine each Mj,i a priori according to [16]. The element w0 represents
“no transfer”. With m = 0 we describe an initial “move” which will always be
mapped to w0.
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Example 1. Suppose W = {w1 = ( 1
0 ) , w2 = ( 0

1 ) , w3 = ( 1
1 )}, d = ( 1

1 ) and
M = 2. The following four different mappings would realize data dependency d:

1) 2) 3) 4)

0 → w0

1 → w1

2 → w2

0 → w0

1 → w2

2 → w1

0 → w0

1 → w3

2 → w0

0 → w0

1 → w0

2 → w3

To determine this mapping is one task of the communication problem. We add
binary variables βj,i,k,m to the communication problem which parameterize this
mapping as follows:

βj,i,k,m =
{

1 if channel wk is used at move m to realize data dep. dj,i

0 otherwise . (3)

In order to assure that each move is mapped to one and only one channel, the
variables βj,i,k,m are subject to:

∀dj,i ∈ D :
∑|W|

k=0 βj,i,k,m = 1, 0 ≤ m ≤ Mj,i where βj,i,0,0 = 1 . (4)

To avoid mappings which represent similar paths as given in Example 1 by
realizations 3) and 4), we force mappings to channel w0 to be placed as far to
the end as possible in the sequence of moves for m ≥ 1. Therefore we add the
following constraints:

∀dj,i ∈ D : βj,i,0,m+1 ≥ βj,i,0,m, 1 ≤ m ≤ Mj,i − 1 . (5)

To distinguish between the direction in which a bidirectional channel wk ∈
Wbi is used we add binary variables βbi

j,i,k to the communication problem which
parameterize the direction of a potential use of channel wk by data dependency
dj,i as follows:

βbi
j,i,k =

{
0 if channel wk would be used in the direction given by wk

1 if channel wk would be used in the direction given by −wk
(6)

where wk ∈ Wbi. The path of a dependent variable from its source to its drain
is fixed once the sequence of moves is determined. To ensure that this path leads
to the correct final destination, we add the following constraints:

∀dj,i ∈ D : prel
j,i,Mj,i

= dj,i (7)

where prel
j,i,m describes the relative position where an instance of variable yi is

located within the PA (relative to its source) after the mth move of the realization
of data dependency dj,i. We determine prel

j,i,m as follows:

prel
j,i,m =

m∑
m′=1

( ∑
{k |wk∈Wbi}

βj,i,k,m′(1 − 2 βbi
j,i,k)wk +

∑
{k |wk∈W\Wbi}

βj,i,k,m′wk

)
. (8)
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In the following, we will regard the time behavior of the realization of the data
dependencies. The causality of all data dependencies of the set D is ensured by
the following constraints:

∀dj,i∈D : tdj,i = bj − (bi + li)︸ ︷︷ ︸
1©

+ τ offs · dj,i︸ ︷︷ ︸
2©

−∑Mj,i

m=1

∑|W|
k=1 βj,i,k,m · lwk︸ ︷︷ ︸

3©

≥ 0 . (9)

The delay tdj,i equals the number of time steps for which an instance of the de-
pendent variable yi needs to be stored until it is used by statement Sj . Of course,
this amount of time may not be negative (causality constraint). In (9), term 1©
determines the time between the availability of an instance of the dependent
variable yi and its use (disregarding the scheduling offset). With li we describe
the number of time steps after which the result of statement Si is available at
the output register of the data path. We assume that the input of the data path
can be connected directly to the end of any local channel or to any local register.
Term 2© takes the scheduling offset into account as it represents the relative time
difference between the iteration serving as the source and the iteration serving
as the drain of data dependency dj,i. And term 3© denotes the time it takes to
transfer an instance of the dependent variable yi from the source to the drain.

If tdj,i > 0, then it is necessary to store an instance of the dependent variable
yi along its path for tdj,i time steps. We introduce variables trj,i,m ∈ N in the com-
munication problem to parameterize the storage of an instance of a dependent
variable yi along its path from the source to the drain of data dependency dj,i.
The value of variable trj,i,m gives the number of time steps for which an instance
of variable yi is stored in a local register after the mth move of the realization
of data dependency dj,i. The variables trj,i,m are subject to:

∀dj,i ∈ D : tdj,i =
∑Mj,i

m=0 trj,i,m . (10)

Equation (10) ascertains that an instance of the dependent variable yi is stored
for as many time steps as given by tdj,i along its path. Each variable trj,i,m with
m = 0 denotes the time of storage for dependent variable yi at the source of
data dependency dj,i, i. e. before yi is transported anywhere. This explains why
we always map move m = 0 to channel w0. Note that our model above is also
valid for data dependencies with dj,i = 0 where we use Mj,i = 0.

3.2 The Objective Function

The values of variables βj,i,k,m, βbi
j,i,k, and trj,i,m fully describe the realization

of all data dependencies on the PA. In the following, we will determine the
objective function of the communication problem. Hence we need to derive the
cost for channels and registers. This cost can only be determined indirectly from
variables βj,i,k,m, βbi

j,i,k, and trj,i,m. Therefore we introduce further variables in
the communication problem through which the cost can be described.

With tinj,i,m we describe the time at the PE at the relative position prel
j,i,m at

which an instance of variable yi arrives as the mth move of the realization of data
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dependency dj,i. And with tout
j,i,m we describe the time at which that instance

of variable yi leaves the PE to perform move m + 1 of the realization of data
dependency dj,i. Variables tinj,i,m and tout

j,i,m are determined as follows:

tinj,i,m = bi + li︸ ︷︷ ︸
1©

+
∑m

m′=1

∑|W|
k=1 βj,i,k,m′ · lwk︸ ︷︷ ︸

2©

+
∑m−1

m′=0 trj,i,m′︸ ︷︷ ︸
3©

− τ offs · prel
j,i,m︸ ︷︷ ︸

4©

, (11)

tout
j,i,m = tinj,i,m + trj,i,m . (12)

In (11), term 1© determines the time when the source of a data dependency
dj,i is available. Term 2© represents the delay caused by the transfer until the
mth move. Term 3© gives the delay caused by the storage along its path. And
term 4© accounts for the time difference between the source and the position
after the mth move of the realization of the data dependency according to the
scheduling offset.

Note that for m = 0, the time tinj,i,0 denotes the time when an instance of
variable yi is fetched from the data path at the relative position prel

j,i,0 = 0. After
the last move (m = Mj,i), an instance of variable yi arrives at the drain of data
dependency dj,i. And time tout

j,i,Mj,i
denotes the time when that instance serves

as an input to the data path at the relative position prel
j,i,Mj,i

= dj,i for the
computation of statement Sj .

For τ offs = 0 in (2), it would be sufficient to consider one iteration interval
λ of one PE to describe the communication problem [11]. For the general case
where the scheduling offset may also be non-zero, we have to use an extended
approach to solve the communication problem.

As a consequence we determine a priori for each data dependency dj,i ∈ D a
set of time steps L′

j,i. The set L′
j,i is defined in a similar way to the set L (see

Def. 2) with the only difference that it takes the scheduling offset into account
so that it may consist of some different time steps. We refer to [16] for a detailed
derivation of how to determine the set L′

j,i.
We introduce binary variables which account for the use of channels and

registers caused by the realization of data dependency dj,i ∈ D. Binary variable
γj,i,k,m,l′ denotes whether a channel wk is used at time step l′ ∈ L′

j,i at the mth

move of the realization of that data dependency. And binary variable δj,i,m,l′

denotes whether a register is used at time l′ ∈ L′
j,i after the mth move of the

realization of that data dependency. The binary variables γj,i,k,m,l′ and δj,i,m,l′

are determined as follows:

γj,i,k,m,l′ =
{

1 if l′= tout
j,i,m−1+βbi

j,i,kτ offswk ∧ βj,i,k,m=1
0 otherwise

}
, l′∈L′

j,i, m>0 ,

(13)

δj,i,m,l′ =
{

1 if tinj,i,m ≤ l′ ∧ l′ < tout
j,i,m

0 otherwise

}
with l′ ∈ L′

j,i . (14)

Note that for a channel with a pipeline structure, the binary variable γj,i,k,m,l′

takes the value of one only for the first time step during which the channel is
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used for the realization of data dependency dj,i. Hence, another communication
can begin to use the same channel at the next time step.

The number of channels wk used at time l ∈ L caused by the realization of
data dependency dj,i is given by variable cwj,i,k,l. The corresponding number of
registers that is used at time l is given by cr

j,i,l. We determine variables cwj,i,k,l

and cr
j,i,l as follows:

cwj,i,k,l =
∑

{l′∈L′
j,i | l′ mod λ=l}

∑Mj,i

m=1 γj,i,k,m,l′ with l ∈ L , (15)

cr
j,i,l =

∑
{l′∈L′

j,i | l′ mod λ=l}
∑Mj,i

m=0 δj,i,m,l′ with l ∈ L . (16)

In (15) and (16), the first sum considers all time steps of the set L′
j,i that will

be mapped to time l ∈ L by modulo arithmetics. And the second sum adds over
the moves that realize data dependency dj,i.

Next we determine the total cost for the realization of all data dependencies of
the set D. Variable cwk denotes the maximum number of channels wk that is used
at an arbitrary PE. And variable cr denotes the maximum number of registers
used at an arbitrary PE. The values of variables cwk and cr are determined as
follows:

cwk = max
l∈L

∑
dj,i∈D cwj,i,k,l and cr = max

l∈L
∑

dj,i∈D cr
j,i,l . (17)

Finally, the objective function of the communication problem is determined
as follows:

min
(
ηr · cr +

∑|W|
k=1 ηw

k · cwk
)

(18)

where ηr denotes the cost for a register and ηw
k denotes the cost for channel wk.

4 Experimental Results

For the EDA (Algorithm 1) we discuss two different target architectures (PA1
and PA2) as given in Table 1. The cost for a register is ηr = 1 for PA1 and
ηr = 1.5 for PA2. In both cases, we assume one data path with a latency of one
for solving each statement Sj within each PE. Hence, we search for a solution
to the communication problem with λ = 11. The scheduling offset is τ offs = 0.

In Fig. 2 we illustrate the optimal solution to the communication problem.
The starting time of each use of a channel and/or register within the iteration

Table 1. Available channels wk, their latency lwk and their cost ηw
k

(PA1)

k 1 2 3 4 5

wk (1 0)T (0 1)T (1 1)T (1 −1)T ±(1 0)T

lwk 3 3 1 2 0

ηw
k 1.5 1.5 1 2.5 2

(PA2)

k 1 2 3 4 5

wk (1 0)T (0 1)T (1 1)T (1 −1)T ±(1 0)T

lwk 2 2 1 2 0

ηw
k 1 1 1.5 3 1.5
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interval is shown. The gray background in the use of channel w5 denotes a use
in the negative direction. The inner schedule is given by the succession of the
statements Sj .

ILPs were generated to solve the communication problem. Both ILPs consist
of 3838 constraints, 2001 binary and 220 integer variables. The ILPs were solved
using ILOG CPLEX v. 9.1 on an Athlon 64 Processor 3800+. It took 40 sec.
and 72 sec. for PA1 and PA2 respectively to find an optimal solution of each
ILP (including the verification that the solution is optimal).

reg1 d5,4 d3,1 d2
8,5 d2

8,5 d2
6,3 d1

6,3 d10,9 d10,9

reg2 d3,1

w3 d1
8,5 d1

8,5 d1
6,3 d2

6,3

w5 d2
8,5 d1

8,5 d1
6,3 d2

6,3

S4 S1 S5 S2 S3 S8 S9 S6 S7 S10 S11

(PA1)

reg1 d5,4 d3,1 d3,1 d1
6,3 d2

6,3 d10,9 d10,9

w1 d2
8,5

w3 d1
8,5 d1

8,5 d2
6,3 d1

6,3

w5 d1
8,5 d1

6,3 d2
6,3

S4 S1 S5 S2 S3 S8 S9 S6 S7 S10 S11

�
0 1 2 3 4 5 6 7 8 9 10 11

(PA2)

Fig. 2. Bar chart denoting the usage of channels and registers for the communication
caused by all data dependencies of the set DEDA within an iteration interval λ = 11

5 Conclusions

In this paper we have formulated and solved the communication problem to
realize uniform data dependencies within a PA using ILP. Our method takes
the cost of channels and registers of the target architecture into account. A
solution to the communication problem determines a selection of channels and
the control of the communication caused by the uniform data dependencies.
Further, it specifies the inner schedule for all computational tasks within an
iteration.

Our method can also be used to find suitable realizations of the uniform data
dependencies of algorithms on a given PA with fixed local interconnections.
Future work includes an extension of our approach to non-uniform data depen-
dencies (e. g. the realization of input/output) or to multi-level partitioning (e. g.
co-partitioning).
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Abstract. The performance of a high throughput and large-scale signal
processing system must not be compromised by the control and moni-
toring flow that is inherently part of the system. In particular, the in-
terfacing of data flow and control flow components should be such that
control does not obstruct the signal flow that is of higher priority. We
assume that the signal processing is modeled as a distributed hierarchy
of data flow networks, and that the control and monitoring is modeled
as a distributed hierarchy of communicating Finite State Machines. The
interfaces between leaf-nodes of the control and monitoring network, and
the signal processing nodes in the dataflow networks are specified in such
a way that the semantics of both network types are preserved. In this
paper, we present the prototyping of a control network and its interfac-
ing with a data flow network in a FPGA-based platform, and we analyze
the performance of the interfacing in a case study. The HDL code that
is involved in the interfaces is generated in a semi-automated way.

1 Introduction

Large-scale signal processing systems such as phased array radio telescopes [15]
typically comprise of a hierarchically distributed data flow network (DFN), a hi-
erarchically distributed control network (CN), and an interfacing between these
two networks. Depending on the nature of the astronomical source that is ob-
served, the system must be able to operate in modes that range from spec-
troscopy, pulsar observation or searches for transients. Moreover, disturbances
in the high throughput streaming data paths, which are mainly due to radio
frequency interferences and changes in the ionosphere, must be monitored and
mitigated [14] by re-configuring the dataflow processing at run-time. Thus, to
each operational mode corresponds a different set of high-level dataflow pro-
cessing parameters (e.g. frequency resolution and integration time) and control
parameters (e.g schedule to update the number of beams and blanked channels).

We assume that signal processing tasks such as filtering, FFT, beamforming
and correlation in the DFN are modeled as nodes of Kahn Process Networks
(KPN [12]). The control data for re-configuring and monitoring the processes in
the KPNs and/or the components onto which they are mapped is sent over the

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1192–1203, 2006.
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CN that has a tree or lattice-like structure, until they reach CN leaf-nodes which
interact with KPN nodes through specific interfaces. As shown schematically
in Figure 1, the interaction between these nodes is synchronized by means of
periodic pulse trains that are distributed to control nodes in a synchronization
network. The periods of the pulse trains are so chosen that a command that is
sent over the CN to a dataflow process reaches this process during the period that
precedes its execution. The process will then execute this command concurrently
and complementarily to the DFN data processing.

This paper focuses on the way the CN is modeled and reports on a prototype
FPGA implementation. In [7], the interfaces between CN leaf-nodes and KPN
processing nodes have been so modeled that the two networks that are designed
separately can work together without compromising their individual semantics.
This paper also demonstrates that these interfaces can be implemented in a
semi-automated way, taking IP re-use and scalability constraints into account,
and avoiding error prone and time consuming handcrafting of FPGA implemen-
tations [10].

Fig. 1. Interface between a control network (CN) and a data flow network (DFN). The
root, nodes and leaf-nodes receive periodic pulse trains in a synchronization network.

In the remaining of this section we give our problem statement, solution ap-
proach and related work. The rest of the paper is organized as follows. In Sec-
tion 2, we explain how to map nodes of the CN onto soft-cores and how to
interface CN leaf-nodes with KPN processing nodes that wrap hardware IPs. In
Section 3, we present a case study for the control of processes in a KPN in the
DFN from leaf-nodes in the CN, and discuss the results concerning the Hardware
Description Language (HDL) semi-automation, the IP re-use, and the scaling in
the design. Finally, conclusions and future work are drawn in Section 4.
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1.1 Problem Statement

The high throughput large-scale systems we are concerned with comprise of two
networks that transport and process signal data and control data, respectively.
The signals propagate and are processed in a hierarchy of distributed KPNs that
together make up the Dataflow Network (DFN). The control data are passed
and processed in a tree or lattice like structure of communicating Finite State
Machines that make up the Control Network (CN). Signal processing tasks in
the KPNs as well as the system components onto which they are mapped are
re-configured and their behavior is monitored from the leaf-nodes in the CN
for the system to operate in a particular mode. Because the two networks have
different semantics as shown in Table 1, their interfaces have to be defined and
modeled judiciously to avoid semantic corruption. Their definition and model
can be found in [7]. The problem that is addressed in this paper is whether these
interfaces can be implemented in a semi-automated way such that, indeed

– The semantics of the two models of computation remain respected, and
– The inclusion of control interfaces does not obstruct the performance of the

DFN in terms of throughput and resource usage.

Table 1. Characteristics of the data flow network and control network to interface

Dataflow network (DFN) Control network (CN)

Behavior Deterministic Sporadic

I/O data type Streams Messages

Scheduling Local Global

Synchronization Blocking write and read Periodic

Timing Self-timed Synchronous

1.2 Solution Approach

In the CN, all nodes are connected to other nodes above through a single port,
and all nodes, except the leaf-nodes are connected to other nodes below through
a single output port. They receive and send control packets from and to these
ports, respectively. The leaf-nodes have three ports to below: a configuration-
data output port, a command output port, and a monitoring-data input port as
shown in Figure 2. Control packets that are received from above are unpacked
(possibly after some processing) to separate commands from configuration data
before being send downwards. By the same token, incoming monitoring data is
packed in control packets that are sent upwards, possibly after some processing
of the packets. The DFN is mapped onto networks of platforms that implement
the KPNs in the DFN, and each platform has a single entry point for control
data. CN leaf-nodes are internal to platforms and are interfaced to platform com-
ponents onto which processes of a KPN in the DFN are mapped. As a result, all
platform components must have a configuration-data input port, a command in-
put port, and a monitoring data output port. A CN leaf-node that is associated
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Fig. 2. Approach to interface CN nodes with CN leaf-nodes, and CN leaf-nodes with
DFN processes

with a dataflow component therefore unpacks component-specific configuration
data, releases component-specific commands, and packs component-specific in-
coming monitoring data.

In our approach to prototype the hierarchical CN we start from Figure 1.
Root is mapped on a PC, and the rest of the figure is mapped on an FPGA-
based platform as if it were a DFN platform onto which a KPN was mapped.
Thus Node is the platform’s single entry point. Node and Leaf-node are mapped
onto soft-cores (e.g., the microblaze from Xilinx, or the nios II from Altera)
of the FPGA-based platform [16] [17]. Leaf-node is controlling a specific DFN
platform component. The control of a dataflow component is kept separated
from the dataflow and from the synchronization mechanism by means of three
concurrent FSMs. A first FSM synchronizes the execution of commands issued
from a leaf-node with the (periodic) execution of the signal processing function.
A second FSM controls the dataflow Read and Write ports in a SBF (Stream
Based Functions [8]) dataflow model of computation. A third FSM controls the
IP Execute function repertoire in the SBF dataflow model of computation. These
FSMs are generated automatically in HDL from a high-level specification.

1.3 Related Work

The PSDF model [1] separates the dataflow specification from the control spec-
ification, with the objectives of staying within one model of computation and
modeling parameterized dataflow in such a way that it remains possible to derive
quasi-static schedules [2]. We are dealing with with a large DFN and a large CN
instead of a single process network. The DFN is a network of distributed KPNs
and the CN is a network of communicating FSM. The interfacing of the two is
not done as in [1] because the behavior of the CN is sporadic. Thus we cannot
schedule and we cannot afford blockings read at the interface.

The FunState model [3] unifies many models of computation and allows to
verify scheduling constraints as well. However, a state transition must take place
in a FunState component before a function starts a new execution. Waiting for
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this transition may obstruct a high throughput streaming dataflow processing. In
our approach to respecting the dataflow integrity, pre-defined control procedures
are executed in a FSM in a process, while a complementary FSM concurrently
controls the dataflow distribution in this process.

In [4], applications are modeled using Process Networks and SBF with non-
static parameters. These applications are also mapped onto a FPGA and get
configuration data from outside. However, the re-configuration is only possible
after a complete network cycle. We want to be able to re-configure each individual
periodic dataflow process during any period at run-time, without stopping the
entire DFN.

An approach to dynamically reconfiguring a streaming application in a hi-
erarchical SoC with a multiprocessor subsystem is presented in [5]. Processing
tasks can be reconfigured through inserting reconfiguration tokens in the data
streams. We avoid such insertions by physically separating dataflow and con-
trol paths in our implementations. Nevertheless, combining the generic services
offered by the shell described in [5] with a standard task-level specification as
in [6] would lead to optimized SoC implementations and re-usable modules.

2 Interface Mapping

In this Section we first briefly review the modeling paradigm to abstract plat-
form-specific processing, communication, and synchronization mechanisms to
specifying Control and Dataflow processing applications in the large-scale sys-
tem. Then we detail the mapping of the CN and the DFN into soft-cores and
hardware of an FPGA-based platform, respectively, and the interfacing of the
two networks.

2.1 Modeling Paradigm

From a separation of concerns viewpoint it is interesting to specify the DFN
and CN models independently from each other and to progressively refine them
for HW/SW implementation on networks of platforms as shown in Figure 3.
Thus, optimized implementations of the separated networks can be re-used from
a high-level specification. The first step consists of refining the mechanisms
that are involved in the communication between nodes in the models based on
generic, platform-independent services of an abstract HW/SW task transaction
level interface [6]. These services may be provided with functions (Read, Write,
Execute) that manipulate vectors of arbitrary data types. These data types may
be dataflow tokens in the DFN, or control packets in the CN, which consist of
two parts: a header that indicates which command should be executed at what
time by which node or leaf-node, and eventually control data information that
comes with a specific command.

The second step converts task-level representations to implementations th-
rough services that abstract platform-specific intricacies. When targeting a
FPGA, each control node is assigned to a soft-core for which we generate code.
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Fig. 3. Modeling Paradigm. The DFN and CN models are separated and gradually
refined to be implemented in networks of platforms through a task transaction level
interface.

Synchronization pulse trains are handled as interrupts through a real-time oper-
ating system. Control packets are defined in structures whose elements can easily
be manipulated individually. These soft-cores communicate through embedded
memories. Each dataflow process is assigned to a re-configurable processor that
is generated in HDL. These dataflow processors exchange tokens through em-
bedded memories, which are not shared with the memories that are used in the
control network. Hardware IPs are wrapped in these dataflow processors because
we do not want to get involved in low level functions design.

2.2 Node Mapping

The state diagram of a control node executed in a soft-core is shown on the
left-hand side in Figure 4 and the corresponding platform-independent code is
given on the right-hand side (lines 1-10). The default state is represented in grey
(INIT, lines 11-15) and corresponds to the definition of a packet and initialization
of the communication channels in the CN. These channels are first checked for
the presence of packets (READ&CHECK). When a packet is received, there are
two possibilities (SWITCH): it is either sent to the appropriate destination in
the hierarchy (ROUTE), or it is inserted in a priority queue (QUEUE&ORDER, lines
16-22). Finally, there are again two alternatives (CHECK): the command that is
in the packet on top of the queue must be executed during the current period
(EXECUTE), else the communication channels are checked again until a new packet
enters the node or a new command must be executed.

As detailed in [9], the hardware realization of a KPN node (process) is made of
four components: a Dataflow Read Unit that gets tokens from dataflow input
channels, multiplexes and transmits them to an Execute Unit, which consumes
these tokens, performs computation using an IP Function Repertoire and pro-
duces output tokens towards a Dataflow Write Unit. This unit demultiplexes
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Fig. 4. Mapping a node as a FSM onto a soft-core: state diagram and corresponding
platform-independent pseudo code

the output tokens and sends them to output dataflow channels. The fourth com-
ponent is the Controller that supervises the execution of the three other units.
All these units are shown in Figure 5.

2.3 Interfacing a Leaf-Node with a Process

In the interface between a CN leaf-node with a DFN process, the additional
configuration-data port is connected to a Control Read Unit as shown in
Figure 5. The Dataflow Read Unit, Dataflow Write Unit and Function Repertoire
get their own configuration parameters under the supervision of the Controller.
The additional command port is connected to the Controller and the monitoring-
data port is connected to a Control Write Unit, which probes the dataflow in
the Dataflow Write Unit, as well as the state of the node in the Controller.
Zooming in into the Controller, three distinct FSMs are executed. The behavior
of these FSMs is depicted in Figure 6 (initial states are represented in grey).

Fig. 5. Hardware implementation of the interface between a leaf-node and a process
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Fig. 6. Separation of concerns with three FSMs in a controller (SYNC for synchroniza-
tion, DF for dataflow distribution and IP for IP-function control)

A SYNC FSM gets a command issued from a CN leaf-node and synchronizes
its broadcasts to the two other FSMs when starting a new period. A DF FSM
implements the behavior of an SBF [8] dataflow model of computation in a
DFN process, without any notion of time, but a notion of order. It controls the
Dataflow Read Unit, the Dataflow Write Unit and the clock enable signal of
the IP Function Repertoire. The only command it can execute is a monitoring
command. In this case it permits the Control Write Unit getting data from
the Dataflow Write Unit. Concurrently, an IP FSM executes commands in states
that encapsulate the corresponding IP-specific pre-defined control procedures,
with an IP-cycle accurate notion of time. It generates control signals for the IP
Function Repertoire and controls the flow of re-configuration data.

3 Case Study

In Section 2 we detailed our approach to map a hierarchical CN and the interface
with a DFN onto a FPGA. In this Section we present such an implementation
and discuss the results concerning the separation of the two networks, the semi-
automation, IP re-use and design-scaling.

3.1 Application

In this case study, the DFN is limited to a single KPN with two processes as
shown in Figure 7. The first process generates periodic dataflow patterns (e.g.
impulses, ramps or sinewaves) that can be re-configured (e.g. amplitude, fre-
quency) by a leaf-node. The second process wraps an 8-taps FIR filter IP whose
taps can be re-configured (e.g. low-pass, band-pass, high-pass characteristics de-
pending on the operational mode) from a leaf-node as well. The two leaf-nodes
and the node above in the hierarchical CN are executed in nios II soft-cores in
a Stratix II FPGA [16], and support a portable real-time kernel (MicroC/OS-
II [13]) to handle the synchronization pulse trains as interrupts. The node is the
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Fig. 7. FPGA implementation of a hierarchical control network to control and monitor
a test generator and a FIR filter

single entry point of the FPGA-based platform. It supports a portable light-
weight TCP/IP stack from Opencores [18] to communicate with the root that is
mapped on a CPU in a PC.

Re-configuring the filter coefficients requires converting the new coefficients
to the filter-specific format because coefficients are stored in partial order and
distributed in embedded memory segments. This is done in the Execute state of
the leaf-node that controls the filter as shown in the pseudo-code in Figure 7.
On the occurrence of a synchronization pulse train, a control packet is read
from the priority queue. If the command requests re-configuring the filter, then
a conversion program is called (lines 2-4) that converts the configuration data to
the filter-specific sequence. This sequence is sent to the re-configuration channel
(lines 10-12) and the control packet is removed from the queue after its execution
(line 6). The leaf-node may then send a command to activate the re-configuration
of the process as detailed in Section 2.

3.2 Results

Each nios II soft-core has been implemented in approximately 1,000 (Adaptive)
Look-Up Tables (LUT) and 64kB of memory in this application. The middle-
ware library took approximately 1.3MB of external SDRAM for each proces-
sor. These results could be improved by mapping nodes and leaf-nodes onto
Application Specific Instruction-Set Processors (ASIP [11]) and by sharing the
implementation of the middleware between all soft-cores, respectively. Figure 8
shows the impact of the FIR function-scaling on throughput (maximum fre-
quency sustained by the dataflow in the process after synthesis of the process,
on the left-hand side) and resource usage (LUT, on the right-hand side). Re-
sults are given for the interface presented in this paper (CN-DFN) and for a
manufacturer-dependent dataflow only interface (Atlantic [16]). Our interface
needs a few more resources since it includes both dataflow and control, and the
loss in the throughput is still acceptable (less than 10%) in this case study.

Portable and speed-optimized HDL has been generated from high-level graph-
ical specifications in StateCAD [17] for the three FSMs that are executed in the
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Fig. 8. Impact of design-scaling on throughput and resource usage

controllers of the DFN processes to wrap the hardware IPs. Thus, we avoided
time consuming and error prone HDL handcrafted development. Our interfaces
permit de-coupling low-speed clock domain(s) in the CN (soft-cores hardly run
faster than 150MHz) from the high-speed clock domain(s) in the DFN. However,
finding optimal buffer sizes to minimize the chance of blocking in the dataflow
communication channels remains problematic. Moreover, the granularity of the
dataflow processes in our prototype is large enough for the control network not
to be critical since dataflow processes use more resources than a soft-core. Nev-
ertheless their periods should not be shorter in future implementations so that
soft-cores in the CN are not overwhelmed handling synchronization pulse trains
as interrupts.

Although dataflow processes can be re-configured without the loss of data as
in the case of the filter, re-configuring functions may induce transients in the data
itself. Thus, the current practise is still to discard the data that is temporarily
corrupted due to the transition.

4 Conclusion

We presented a prototype FPGA implementation of a hierarchical control net-
work (modeled as communicating Finite State Machines) and its interfacing with
a distributed dataflow network (modeled as communicating Kahn Process Net-
works). Nodes of the control network have been mapped onto soft-cores and
interfaced with the nodes of the dataflow network, without sharing hardware
resources, and based on HDL FSMs that isolate the synchronization mecha-
nisms from the dataflow distribution and from the monitoring and control of the
dataflow processing tasks, which are executed in hardware IPs. The performance
of the interfaces in term of speed and resource usage allowed not to obstruct the
performance of the (dominant) dataflow network in a case study. In addition,
we anticipated design scaling and design re-use constraints by semi-automating
HDL code generation in the mapping of the interfaces.

In the near future we would like to map such interfaces onto a network of
re-configurable platforms, mainly consisting of FPGAs and CPUs, so as to eval-
uate its adaptiveness to larger systems. This mapping could be facilitated by
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keeping the signal processing separated from the control and monitoring in the
architecture exploration of these large systems.
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Abstract. Resource constraints are a major concern with the design,
development, and deployment of embedded systems. Embedded systems
are highly hardware-dependent and have little computational power. Mo-
bile embedded systems are further constrained by their limited battery
capacity. Many of these systems are still programmed in assembly lan-
guage because there is a lack of efficient programming environments.

To overcome or at least alleviate the restrictions, we propose a light-
weight and versatile programming environment for the C programming
language that offers mixed-mode execution, i.e., code is either executed
on the CPU or on a virtual machine (VM). This mixed-mode execution
environment combines the advantages of highly compressed bytecode
with the speed of machine code.

We have implemented the programming environment and conducted
experiments for selected programs of the MiBench suite and the Spec
2000. The VM has a footprint of 12 KB on the Intel IA32. Initial results
show that the performance of the virtual machine is typically only 2 to 36
times slower than the binary execution, with compressed code occupying
only 36%–57% of the machine code size. Combining sequences of VM
instructions into new VM instructions (superinstructions) increases the
execution speed and reduces the VM code size. Preliminary experiments
indicate a speedup by a factor of 3.

1 Introduction

Mobile devices powered by batteries constitute a major share of today’s embed-
ded systems market. Mobile devices have embedded intelligence, which needs to
be programmed. Due to the limitations in terms of power consumption, memory
size, and computational power, programming mobile devices is still a difficult
problem. To overcome or at least alleviate the problem of programming embed-
ded systems, we introduce a programming environment for C. The C program-
ming language is still the language of choice for mobile and embedded systems,
with more than 78% of all surveyed embedded systems firmware and application
developers employing it [1].
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Fig. 1. Model

Our programming environment provides a seamless in-
tegration of VM and machine code execution as outlined
in Fig. 1. The program is stored as an image which con-
tains bytecode1 and machine code. Depending on whether
the code is bytecode or machine code, it is executed on
the VM or on the CPU respectively. Both, CPU and VM,
share the same memory and the thread of execution can
either jump from the VM to the machine code realm or
vice versa.

In this model rarely executed code is run on the VM. Frequently executed
code is run on the CPU. This mixed-mode execution combines the advantage
of both worlds: machine code is fast however has limited compression poten-
tial. Bytecode is stored highly compressed though the execution is slower. This
execution model results in small image sizes, which reduces memory footprint
and therefore devices will save energy. Also, the costs per device will decrease.
Further advantages of VMs are hardware independent execution of C-programs
and the fast deployment of programs by downloading them via an inter-network
communication.

The contribution of this paper is the implementation of a light-weight pro-
gramming environment for the C programming language. This programming
environment offers mixed-mode execution, i.e., a seamless integration of VM
code and machine code. The footprint overhead of the VM is small. The current
footprint of the VM on an Intel IA32 architecture is 12 KB.

The paper is organised as follows: in Sec. 2 we discuss the compilation path
of the programming environment. In Sec. 3 we discuss the design of our VM.
In Sec. 4 we present experimental results. In Sec. 5 we survey related work. We
draw our conclusions in Sec. 6.

2 Compilation

Fig. 2 depicts the compilation path of our embedded systems programming en-
vironment. Therein an application consists of a set of C source files containing
code that can be compiled to either bytecode or to machine code. To allow the
programmer to select between the two, we extend the C programming language
with two storage class specifiers (cf. [2]), namely vm and mc. Furthermore, we
use a command line parameter with the C-compiler to select a default storage
class for unassigned entities. (Unassigned entities are entities that have not been
assigned one of the above storage class specifiers). With this mechanism we par-
tition the set of entities of a given application into the set of entities assigned to
the realm of the VM, and those assigned to machine code.

It is the purpose of the splitter to preprocess an application and separate
each source file into a corresponding vm and mc file that reflects the programmer’s
choices with respect to compilation to vm or mc code. The splitter has to achieve a
1 In the context of this paper the word “bytecode” does not denote Java bytecode.

Instead, it denotes the instruction code format of our VM.
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Fig. 2. Compilation Path

1 #define MAX 1024
2 mc static void fft float (float ∗R In, float ∗I In, float ∗R Out, float ∗I Out);
3 vm char Buffer[MAX];

4 vm int main(void){
5 float R In[MAX], I In[MAX], R Out[MAX], I Out[MAX];
6 fft float (R In,I In,R Out,I Out);
7 return 0;
8 }
9 mc static void fft float (float ∗R In, float ∗I In, float ∗R Out, float ∗I Out)
10 { /∗ perform FFT ∗/ }

(a) Application

1 #define MAX 1024
2 extern void fft float (float ∗R In, float ∗I In, float ∗R Out, float ∗I Out);
3 char Buffer[MAX];
4 int main(void){
5 float R In[MAX]; float I In[MAX]; float R Out[MAX]; float I Out[MAX];
6 fft float (R In,I In,R Out,I Out);
7 return 0;
8 }

(b) Application, vm Realm

1 #define MAX 1024
2 extern char Buffer[MAX];
3 void fft float (float ∗R In, float ∗I In, float ∗R Out, float ∗I Out)
4 { /∗ perform FFT ∗/ }

(c) Application, mc Realm

Fig. 3. Example: Splitting of Application Sources

clear semantic separation between vm and mc code to enable separate compilation
by the vm and mc compilers.

The example in Fig. 3 is a simplified version of the FFT benchmark from the
MiBench embedded benchmark suite [3]. Figure 3 (a) denotes the application
which, for the sake of simplicity, consists of only one source file. Line 2 and
lines 9–10 define a C function fft float, which, due to the storage class speci-
fier mc, is meant to be compiled to machine code. The main function (lines 4–8 is
to be compiled to bytecode; main calls fft float. Line 3 declares a global buffer
variable that is kept in bytecode as well. Figure 3 (b) shows the vm file as output
by the splitter. Therein the code for function fft float has been removed and a
corresponding external declaration has been inserted to keep the file compileable.
This contrasts the declaration of the global buffer that is kept in the vm file (cf.
line 3). All vm and mc storage class specifiers have been removed, because the
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occurrence of a declaration in the vm file already implies the vm storage class
specifier. Likewise for the mc-file of Figure 3 (c). It contains only the definition
of the MAX constant, an external declaration for the global buffer, and the code
for function fft float. As can be derived from Fig. 2, the separated files are
then compiled by the C compilers for machine- and bytecode.

We employ LCC [4,5] for both bytecode and machine code compilation. LCC
comes already equipped with a backend for bytecode, which we extended to
facilitate the architecture of our VM (cf. Section 3).

Bytecode and machine code files of a given application are combined by the
linker to a so-called fat binary. In this linkage step all references are resolved;
this includes cross-references between bytecode and machine code to allow for
seamless execution between the two. The fat binary can then be downloaded and
executed on the embedded device.

3 Virtual Machine

The instruction set of our stack-based VM is closely related to the bytecode
interface that comes with LCC [4], with the main deviations being induced by
the requirements of the seamless integration of vm and mc execution. Table 1
depicts the instructions provided by our VM. The instruction opcodes cover
the leftmost column whereas the column headed “IS-Op.” lists operands derived
from the instruction stream (all other instruction operands come from the stack).
The column entitled “Suffixes” denotes the valid type suffixes for an operand
(F=float, I=signed integer, U=unsigned integer, P=pointer, V=void, B=struct).2

In this way instruction ADDRG receives its pointer argument p from the instruction
stream and pushes it onto the stack. Instructions ADDRF and ADDRL receive an
integer argument literal from the instruction stream; this literal is then used as
an offset to the stack framepointer to compute the address of a formal or local
variable. Instruction BADDRG uses its instruction stream argument as an index
into a lookup table to derive the address of an mc-entity. The lookup table itself
is created by the linker (cf. Section 2). For the remaining instructions of our VM
we refer to the descriptions in Table 1.

To make bytecode interpretation acceptable for embedded systems, the per-
formance of the interpretive system must be within reasonable limits compared
to the performance of machine code. Due to the large design space for inter-
preters the achieved performance can vary drastically, with slowdowns between
a factor of 10 and more than a factor of 1000 reported in the literature [6].

We used vmgen [7,8] for the implementation of our VM. Vmgen takes VM
instruction descriptions as input and generates C code for execution, VM code
generation, disassembly, tracing, and profiling. Vmgen already incorporates ad-
vances in interpreter technology such as threaded code (representing a VM in-
struction as the address of the routine that implements the instruction [9]), top

2 Operators contain byte size modifiers (i.e., 1, 2, 4, 8), which we have omitted for
reasons of brevity.
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Table 1. VM Instruction Set

Instruction IS-Op. Suffixes Description

ADD SUB — FIUP.. integer addition, subtraction

MUL DIV — FIU... integer multiplication, division

NEG — FI.... negation

BAND BOR BXOR — .IU... bitwise and, or, xor

BCOM — .IU... bitwise complement

LSH RSH MOD — .IU... bit shifts and remainder

CNST a .IUP.. push literal a
ADDRG p ...P.. push address p of global

ADDRF l ...P.. push address of formal parameter, offset l
ADDRL l ...P.. push address of local variable, offset l
BADDRG index ...P.. push address of mc entity at index
INDIR — FIUP.. pop p; push ∗p
ASGN — FIUP.. pop p; pop arg; ∗p = arg

ASGN B a .....B
pop p, pop q; copy the

block of length a at ∗q to p
CVI — FIU... convert from signed integer

CVU — .IUP.. convert from unsigned integer

CVF — FI.... convert from float

CVP — ..U... convert from pointer

LABEL — ....V. label definition

JUMP target ....V. unconditional jump to target
IJUMP — ....V. indirect jump

EQ GE GT LE LT NE target FIU... compare and jump to target
ARG — FIUP.. top of stack is next outgoing argument

CALL target ....V. vm procedure call to target
ICALL — ....V. pop p; call procedure at p

INIT l ....V. allocate l stack cells for local variables

BCALL — FIUPVB mc procedure call

RET — FIUPVB return from procedure call

HALT — ....V. exit the vm interpreter

of stack (TOS) caching (keeping the topmost stack element in a register), and
superinstructions (combining frequently occurring patterns of VM instructions).

Figure 4 depicts a refined view of the execution architecture introduced in
Sec. 1. The VM comprises a frontend, an interpreter, and stacks. The purpose
of the frontend is to parse the bytecode (cf. Table 1) and to issue calls to the in-
terpreter to build the internal representation that vmgen uses to store threaded
instructions. Once this internal representation has been generated from the in-
struction stream, the interpreter is started. Our VM employs three stacks: the
VM stack is used as the evaluation stack, the Arg stack holds procedure call
arguments, and the Prog stack is used for machine code execution. The separate
argument stack is due to LCC’s ordering of bytecode instructions which inter-
sperses procedure call arguments with other stack operands. The separate Arg
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Fig. 4. Refined Execution Model

1 baddrg p4 ( #ul -- p )
2 p = getsymbol ptr(ul);

(a) BADDRG P4

1 arg p4 ( p -- ARGp )
2 /* moves p from VM

stack to Arg stack */

(b) ARG P4

1 add i4 ( l1 l2 -- l )
2 l = l1+l2;

(c) ADD I4

1 addrl p4 (#l -- p)
2 p = (void *)(fp+l);

(d) ADDRL P4

1 bcall v ( l1 p -- )
2 indirect call v(p,argsp,l1);
3 argsp = argsp+l1;

(e) BCALL V

Fig. 5. Vmgen Instruction Specifications

stack provides an efficient way to collect procedure call arguments and arrange
them in a stack frame (we will elaborate on procedure calls in the following).

Vmgen provides a mechanism to specify the semantics of the instructions
provided by the interpreter. As an example, consider Fig. 5 (c) which depicts
the specification of the ADD instruction with this mechanism.3 Therein line 1
describes the stack effect of the instruction: it pops the arguments l1 and l2 from
the VM stack and pushes argument l. Line 2 contains C code that describes how
argument l is actually computed. The overall semantics for the ADD instruction
is to pop l1 and l2 from the VM stack, execute the C code, and push l back
on the VM stack.

1 proc main
2 INIT 4096
3 ADDRL P4 12288
4 ARG P4
5 ADDRL P4 8192
6 ARG P4
7 ADDRL P4 4096
8 ARG P4

9 ADDRL P4 0
10 ARG P4
11 CNST I4 4
12 CALL V fft float
13 CNST I4 0
14 RET I4
15 endproc

(a) main.s

12.1 BADDRG P4 0
12.2 BCALL V

(b) after linking

1 void *st[]={
2 (void *)&fft float,
3 0L};

(c) address table

Fig. 6. Call from Bytecode to Machine Code

3 Note that, unlike Table 1, the VM instructions in Fig. 5 include the type and size
specifiers.
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To illustrate the concept of mixed mode execution, we consider the vm code
generated for function main of Fig. 3 (b). This function contains a binary call
to function fft float. Fig. 6 (a) depicts the bytecode for function main as
generated by LCC. Line 2 allocates stack space on the VM stack to accommodate
the four arrays of floats declared locally in main. The calling concept is illustrated
in lines 3–12; our LCC bytecode backend is configured to evaluate parameters
of function calls in the same order as with the bytecode (right to left, in this
case). Each ADDRL P4-instruction pushes the address of one float-array onto the
VM stack (cf. the corresponding instruction specification in Fig. 5 (d), where
the address in p is computed relative to the VM stack framepointer fp). Each
subsequent ARG P4-instruction moves this address from the VM stack to the Arg
stack (cf. Fig. 5 (b), where the Arg-prefix denotes the argument stack). The
purpose of line 11 is to push the number of stack cells covered by the arguments
onto the VM stack. Line 12 contains the call to fft float.

Once our linker (cf. Fig. 2) generates the fat binary, we employ a scan of the
bytecode to collect all references that cannot be resolved within the bytecode
itself. For these references we generate a machine code address table. (The ad-
dress table for our example is shown in Fig. 6 (c), it contains just the address of
function fft float.)

It is only at link time that the actual address of fft float can be resolved.
The linker replaces line 12 of Fig. 6 (a) by the code depicted in Fig. 6 (b) in
order to account for the fact that this is a binary call. In line 12.1 the index
of function fft float with respect to the address table is pushed onto the VM
stack (cf. Fig. 5 (a) for the corresponding instruction specification). This index
is used by instruction BCALL V (cf. Fig. 5 (e)) to perform the binary call.

1 void indirect call v(void (∗f)(void),void ∗arg, long arglen) {
2 void ∗p=alloca(sizeof(Cell)∗arglen);
3 memcpy(p,arg,sizeof(Cell)∗arglen);
4 return (∗f)();
5 }

Fig. 7. Binary Call

The binary call mechanism itself is illustrated in Fig. 7. Function alloca
allocates space on the program stack to account for the arguments of the call.
Thereafter the arguments are copied from the Arg stack to the Prog stack (arg
corresponds to the framepointer of the argument stack) and the binary call itself
is carried out. To clean up after the call, the current argument frame is removed
from the argument stack (cf. Fig. 5 (e)).

Calls of bytecode functions from machine code are carried out via a trampoline
(similar to the approach in [10]). The trampoline code sets up the VM and Arg
stacks and starts VM execution at the first bytecode instruction of the called
function.
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4 Experiments

As a testbed we used selected C programs of the MiBench benchmark suite [3]
and the Spec CPU 2000 [11] benchmark suite targeting specific areas of the
embedded market. We performed our experiments on the Intel IA32 platform to
determine

1. the slowdown of programs executed as bytecode on our VM,
2. the VM performance improvement due to superinstructions, and
3. the best possible compression rate by using simple Huffman coding.

4.1 Performance of the Virtual Machine

We compared the performance of the VM to native code on the IA32 platform. To
make a fair comparison, LCC was used to generate the bytecode and the machine
code of the benchmark programs. In Table 2 the runtimes of the benchmark
programs are shown.

Table 2. Performance, Machine Code (s) · λ = Bytecode (s)

Benchmark Machine Code (s) Byte Code (s) λ

S
p
ec

2
k gzip 85 2943 34.6

bzip2 321 11463 35.7
mcf 55.9 483 8.6

M
iB

en
ch

basicmath
small 0.1 0.35 3.5
large 2.1 5.2 2.5

bitcount 0.07 2.16 30.9
FFT 0.16 4.3 26.9
adpcm

rawcaudio 1.2 32.1 26.8
rawdaudio 1.2 24.7 20.6

CRC32 1.0 19.7 19.7

In Table 2 the time measurements are given in seconds. All programs are
executed on a Pentium 4 with 1.8GHZ under Linux. The execution time of the
benchmark programs vary from 0.1 to 321 seconds when compiled as machine
code. If the programs are compiled as bytecode the execution increases varying
from 0.35 to 11463 seconds. These results were expected since the execution of
bytecode is slower than machine code. The slowdown (Column λ of Table 2)
ranges from 2 to 36. Note that the slowdown increases if extensive computations
are performed inside of the VM. If machine libraries are called as in basic math,
the slowdown is much smaller. This result is not surprising and it goes in line with
the expected slowdown factors reported in [7]. Note that this virtual machine
already uses the fastest known techniques such as threaded code and an advanced
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dispatching mechanism, but we have not employed superinstructions in the above
experiments.

Latest experiments with superinstructions enabled indicate that significant
further improvements with respect to execution times are possible. In profiling
the gzip program and using just the top 7% of the most frequently executed
bytecode sequences we experienced a reduction of the slowdown from a factor
of 36 to a factor of 12. In allowing more superinstructions further improvements
can be expected. However, there is a clear tradeoff between the code size and
performance of the VM. By converting 7% of the most frequently bytecode se-
quences the codesize of the VMs increases by 55.5%, i.e., to nearly 19 KB instead
of 12 KB.

4.2 Code Compression

Bytecode has properties that allow high compression rates. In this experiment
we compared the size of binary executables with Huffman encoded bytecode.
As a compression method we split the bytecode stream into three portions for
Huffman coding: op-code stream, number stream, and symbol stream. This is a
well known technique [12] to improve the compression rate. In this experiment
we did not apply a dictionary approach (such as superinstructions or LZW) that
stores re-occurring sequences only once. By adding a dictionary approach, even
higher compression rates are possible. In Table 3 the results of this experiment
are shown.

Table 3. Codesize

Benchmark
Op-Code

(bits)
Number
(bits)

Symbol
(bits)

Total
(bytes)

IR
(bytes)

Object
(bytes)

S
p
ec

2
k gzip 115312 46614 31194 24140 148872 42412

bzip2 65380 33196 15816 14299 94328 28093
mcf 26091 12417 3393 5238 39324 10325

M
iB

en
ch

basicmath
small 4728 1965 793 936 6756 2612
large 5970 2373 1116 1183 8648 3224

bitcount 5702 1897 289 986 7152 1952
FFT 6998 2926 529 1307 8756 2467
adpcm

rawcaudio 2774 1309 316 550 4384 1069
rawdaudio 2766 1310 316 549 4384 1067

CRC32 1348 400 60 226 1772 528

Columns Op-Code, Number, and Symbol show the number of bits required
to store the op-codes, numbers, and symbols of the bytecode. We used differ-
ent Huffman codes for op-codes and arguments. Column Total gives the number
of bytes to store Huffman encoded bytecode of a benchmark program. In Column
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Fig. 8. Compression Rate

Object we show the number of bytes of the Intel IA32 machine code. As shown
in Fig. 8 the compression rate of compressed bytecode is very high. Here we
compare the size of the compressed bytecode (Column Total) with the size of
the machine code (Column Object). Compression rates range from 36% for very
small programs to 57% for larger programs. Compression rates can be further im-
proved by employing dictionary based approaches in combination with Huffman
codes. This initial result is very motivating; it shows that a high compression
rate is achieved by using virtual machine technology.

The number of bytes used for the internal representation is quite expensive,
as shown in Column IR of Table 3. The internal representation of the bytecode is
bigger than the IA32 machine code. This is attributed to the use of threaded code
techniques [9] in which op-codes are replaced by function pointers. In the Intel
IA32 architecture threaded code techniques waste roughly 3 bytes per bytecode
instruction, i.e., four bytes for a function pointer minus one byte for an op-
code. This result indicates that a buffer technique should be applied to keep
most frequent executed portions of code in its internal representation. Rarely
executed code should be left in its compressed form until it is needed.

5 Related Work

Instead of translating the source code of a high-level language to assembly code,
quite often a VM is used. A VM abstracts the properties of the underlying hard-
ware and, therefore, makes the execution of programs hardware independent.
In comparison to other implementation techniques of programming languages,
VMs have the advantages of (1) portability, (2) ease of implementation, and (3)
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fast edit-compile-run cycles. VMs are very light-weight, which makes them suit-
able for embedded systems [13,14].

VM code consists of a sequence of VM instructions, which have many simi-
larities to real machine code. In such a design, the interpretive system consists
of two components: (1) a front end, that is a compiler that translates the input
language to VM code, and (2) the VM interpreter that executes VM code. Good
examples of such an architecture are Java’s JVM [15], Prolog’s WAM [16], and
Smalltalk’s VM [17].

Several tools [7,18,19] assist the development of VMs. A VM compiler gener-
ates an interpreter for a VM based on a VM specification. For example, the tool
vmgen [7] was used to generate the code for Gforth [20].

Interpreted code can be executed with binary code and vice versa. Such a
mixed execution environment was introduced for the Java programming lan-
guage [21]. We believe that dynamic execution environments with mixed-mode
execution have not been investigated for C, although a similar project [22] was
developed for the Trimedia processor.

Low-end embedded systems have strong restrictions on the amount of avail-
able memory, which severely limits the size of the applications. Memory is a
scarce commodity for several reasons: available physical space is limited, and
power consumption and production costs must be minimised. Therefore, a lot
of effort was taken to minimise program sizes of embedded systems applica-
tions. Especially in the realm of Java, compression rates of up to 85% of the
original program size are not rare [23,24,25]. Instead of using sophisticated
compression schemes, alternative representations of the VM code such as trees
have been investigated [26]. For binary code several techniques have been intro-
duced [12,27,28,29]. The main technique is to split the code into various portions
and to compress them with different compression schemes. Even the instructions
are split in op-codes and operands. This gives further opportunities to remove
redundancies. Recently an interesting approach was introduced to incorporate
compression into the instruction fetch inside a VM using Huffman codes [30].
It has to be investigated to what extend such an approach would affect the
performance of our VM.

6 Conclusion

In this paper we have introduced a light-weight programming environment for
the C programming language that alleviates the resource constraints present in
embedded systems. Our programming environment provides seamless integration
of VM and machine code execution.

In our compilation model the programmer assigns storage classes to C func-
tions in order to decide whether they are compiled to bytecode or machine code.
Our programming environment uses the LCC compiler, for which we have im-
plemented a bytecode backend. The VM itself was developed with the vmgen
specification tool.

We have conducted experiments with selected programs from the MiBench
and Spec 2000 benchmark suites. Experiments show that the compressed
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bytecode occupies only 36%–57% of the corresponding machine code. The byte-
code executed on the VM is only 2–36 times slower than machine code. Exper-
iments indicate that superinstructions will further boost the performance by a
factor of 3. However, superinstructions increase the footprint of the VM.
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