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Abstract. Cryptographic operations are essential for many security-critical sys-
tems. Reasoning about information flow in such systems is challenging because
typical (noninterference-based) information-flow definitions allow no flow from
secret to public data. Unfortunately, this implies that programs with encryption
are ruled out because encrypted output depends on secret inputs: the plaintext and
the key. However, it is desirable to allow flows arising from encryption with secret
keys provided that the underlying cryptographic algorithm is strong enough. In
this paper we conservatively extend the noninterference definition to allow safe
encryption, decryption, and key generation. To illustrate the usefulness of this
approach, we propose (and implement) a type system that guarantees noninter-
ference for a small imperative language with primitive cryptographic operations.
The type system prevents dangerous program behavior (e.g., giving away a secret
key or confusing keys and non-keys), which we exemplify with secure imple-
mentations of cryptographic protocols. Because the model is based on a standard
noninterference property, it allows us to develop some natural extensions. In par-
ticular, we consider public-key cryptography and integrity, which accommodate
reasoning about primitives that are vulnerable to chosen-ciphertext attacks.

1 Introduction

Cryptographic operations are ubiquitous in security-critical systems. Reasoning about
information flow in such systems is challenging because typical information-flow defi-
nitions allow no flow from secret to public data. The latter requirement underlies non-
interference [11,16], which demands that public outputs are unchanged as secret inputs
are varied. While traditional noninterference breaks in the presence of cryptographic
operations, the challenge is to distinguish between breaking noninterference because of
legitimate use of sufficiently strong encryption and breaking noninterference due to an
unintended leak.

A common approach to handling cryptographic primitives in information-flow aware
systems is by allowing declassification of encryption results. The intention of declas-
sification is that the result of encryption can be released to the attacker. Declassifi-
cation, however, is a versatile mechanism: different declassification dimensions cor-
respond to different reasons why information is released [29,4]. Attempts at framing
cryptographically-masked flows into different dimensions have been made although, as
we discuss, not always with satisfactory results.

In this paper, we introduce cryptographic primitives into an information-flow setting
while preserving a form of noninterference property. This is achieved by building in

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 353–369, 2006.
© Springer-Verlag Berlin Heidelberg 2006



354 A. Askarov, D. Hedin, and A. Sabelfeld

(a) Noninterference (b) Encryption

(c) Possibilistic noninterference (d) Cryptographically-masked flows

Fig. 1. From noninterference to cryptographically-masked flows

the model a basic assumption that attackers may not distinguish between ciphertexts
and that decryption using the wrong key fails. Although this assumption is stronger
than some probabilistic and computational cryptographic models (which allow some
information to leak when comparing ciphertexts), we argue that it can still be reason-
able, and that it opens up possibilities for tracking information flow in the presence of
cryptographic primitives in expressive programming languages.

The intuition behind our approach is sketched below and illustrated in Figure 1,
where dashed and solid lines correspond to secret and public values, respectively. Fix-
ing some public (low) input xL and varying secret (high) input from xH to yH may
not reflect on a public output z′L of a system that satisfies noninterference (illustrated
in Figure 1(a)). Suppose the system in question involves encryption, such as in the pro-
gram z = enc(k, x) for some secret key k. Clearly, noninterference is broken: variation
in the secret input from xH to yH may cause variation in the public output from z′L to
z′′L (illustrated in Figure 1(b)).

However, noninterference can be recovered if the result of encryption is possibly any
value v. This means that variation of the high input from xH to yH does not affect the
public output—any value v is a possible public output in both cases. This form of non-
interference is known as possibilistic noninterference [24] (illustrated in Figure 1(c)).
Overall, although low outputs might depend on low inputs and ciphertexts, no obser-
vation about possible low outputs may reveal information about changes in high inputs
(illustrated in Figure 1(d)).

This paper makes a case for possibilistic noninterference as a natural model for
cryptographically-masked flows. Further, we have designed and implemented a secu-
rity type system that provably enforces possibilistic noninterference for an imperative
language with primitive cryptographic operations and communication channels. The
type system prevents dangerous program behavior (e.g., giving away a secret key or
confusing keys or non-keys), which we exemplify with secure implementations of cryp-
tographic protocols. Because the model is based on a standard noninterference property,
it allows us to develop some natural extensions. In particular, we consider public-key
cryptography and integrity, which accommodates reasoning about primitives that are
vulnerable to chosen-ciphertext attacks.
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sec. levels σ ::= L | H
key levels γ ::= P | S
global decls. gd ::= global x γ | ch τ

basic types t ::= int | encγ τ
prim. types τ ::= t σ | key γ | (τ1, τ2)
local decls. ld ::= x τ

expressions e ::= n | x | e1 op e2 | encγ (e1, e2) | decγ (e1, e2) | newkey γ | (e1, e2)
| fst(e) | snd(e)

statements c ::= skip | x := e | if e then b1 else b2 | while e do b | out(ch, e)
| in(x, ch)

block b ::= {ld1; . . . ldn; c1; . . . ; cm}
actor actor ::= A b program prog ::= gd1; . . . gdn; actor1 . . . actorm

Fig. 2. Syntax

2 Language

We explore how to model cryptographic flows in a small imperative language equipped
with primitive encryption functions, dynamic key generation, and channels for commu-
nication. This section introduces the syntax and semantics of the language. For space
reasons we are forced to omit the standard features of the language. The complete rules
can be, however, found in the full version of this paper [3].

Syntax. The syntax of the language is defined in Figure 2. Let x ∈ VarName range
over the set of variable names and ch ∈ ChanName range over the set of channel
names. A program consists of a sequence of global declarations followed by a se-
quence of actors. A global declaration is either a declaration of a global key or the
declaration of a channel. Global keys are declared by associating a variable name with
a key level. Values and keys have corresponding security levels. Values are either public
(low) L or secret (high) H. The key levels declare the maximum value security level
the key can safely encrypt. In particular, a key of level S may safely encrypt public
and secret values, whereas a key of level P may only safely encrypt public values.
Let KeyLvl = {S, P} be the set of key levels. Global keys are assumed to have ap-
propriate values at the beginning of the execution of a program and correspond to
initial shared secrets between the actors of the program. A channel is declared by
associating a channel name with the type of the messages that will be sent over the
channel. Let A range over the set of actor names. An actor is defined by naming a
block, representing the code of the actor. A block is simply a sequence of variable
declarations followed by a sequence of commands. Variables are local to the block
in which they are declared. The commands include the standard commands of an im-
perative language and commands for sending on and receiving from a given channel.
Apart from expressions for generating new keys and for encryption and decryption, ex-
pressions are standard: integers, variables, total binary operators, pair formation, and
projection.

Semantics. The semantics of the system is defined as a big-step operational semantics.
The actors of a program run concurrently and interact with each other by sending and
receiving messages on the declared channels. We refrain from modeling the semantics
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for the entire system and instead provide semantics for isolated actors. Thus we delib-
erately ignore information flows via races and other flows that may arise in concurrent
systems (cf. [27]). First we define the values and environments, which are used in the
following definition of the semantics of expressions and commands. Let n ∈ Z range
over the integers and k ∈ Key = KeyP∪KeyS range over keys, where KeyP and KeyS
are disjoint. The values are built up by the ordinary values, integers, keys and pairs of
values, together with the encrypted values u ∈ U = UP ∪ US.

values ∈ Value v ::= n | k | (v1, v2) | u

The system is parameterized over two symmetric encryption schemes—one for each
key level γ—represented by triples SEγ = (Kγ , Eγ , Dγ), where

– Kγ is a key generation algorithm that on each invocation generates a new key.
– Eγ is a probabilistic encryption algorithm that takes a key k ∈ Keyγ, a value

v ∈ Value and returns a ciphertext u ∈ Uγ .
– Dγ is a deterministic decryption algorithm that takes a key k ∈ Keyγ, a cipher-

text u ∈ Uγ and returns a value v ∈ Value or fails. Decryption should satisfy
Dγ(k, Eγ(k, v)) = v.

The reason for the use of different encryption schemes for different security levels is
to lay the ground for an extension of the system into a multi-level system, i.e. a system
with more than two security levels. In such a system we would have one encryption
schema at each security level, trusted to encrypt values up to and including the security
level. We shall assume that the keys sets KeyP and KeyS of the two different encryption
schemes are distinct; let pk range over KeyP and sk over KeyS.

Input and output is modeled in terms of streams of values with the cons operation “·”
and the distinguished empty stream ε. The full environment E consists of four compo-
nents: (i) the variable environment M , which is a stack of mappings from variable
names to lifted values (values joined with a special value for undefined Value• =
Value ∪ {•}); (ii) the key-stream environment G, which maps an encryption scheme
level to the stream of keys generated by successive use of the key generator (let ks range
over streams of keys); (iii) the input environment I and (iv) the output environment O,
which map channel names to streams of values.

Semantics of Expressions. The evaluation of expressions has the form 〈(M, G), e〉 ⇓
〈G′, v〉: evaluating an expression in a given variable and key-stream environment yields
a value and a possibly updated key-stream environment. The semantics of integers,
variables, total binary operators, pair formation, and projection are entirely standard.

Figure 3 presents the rules specific to the treatment of cryptography; the rest of the
rules can be found in [3]. Key generation (S-NEWKEY) takes the level of the key to be
generated and returns the topmost element in the key stream associated to that level in
the key-stream environment. Encryption (S-ENC) and decryption (S-DEC) both use the
encryption schemes SEγ introduced above.

Semantics of Commands. Commands are state transformers of the form 〈E, c〉 ⇓ E′:
the command c yields the new environment E′ when run in the environment E. The
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(S-NEWKEY)
G(γ) = k · ks

〈(M, G), newkey γ〉 ⇓ 〈G[γ �→ ks], k〉

(S-ENC)

〈(M, G), e1〉 ⇓ 〈G′, k〉 〈(M, G′), e2〉 ⇓ 〈G′′, v〉 k ∈ Keyγ

u = Eγ(k, v)

〈(M, G), encγ (e1, e2)〉 ⇓ 〈G′′, u〉

(S-DEC)

〈(M, G), e1〉 ⇓ 〈G′, k〉 〈(M, G′), e2〉 ⇓ 〈G′′, u〉 k ∈ Keyγ

v = Dγ(k, u)

〈(M, G), decγ (e1, e2)〉 ⇓ 〈G′′, v〉

Fig. 3. Semantics of Expressions

semantics of the commands is entirely standard for a while language with channels—
everything specific to encryption is in the expressions. For space reasons the semantics
of the commands is not presented here but can be found in [3].

3 Security

This section states the assumptions our semantic model makes on the underlying en-
cryption schema and shows how these assumptions lead up to a natural formulation
of possibilistic noninterference. The section concludes by investigating the relation be-
tween our assumptions and common cryptographic attacker models.

Encryption Model. As was mentioned above, this paper only considers probabilistic
encryption schemes. A probabilistic encryption scheme is a triple (K, E , D) where the
encryption algorithm is a function from a key, a plaintext, and some initial random
data, referred to as the initial vector. Such an algorithm will produce a set of possible
ciphertexts for each plaintext-key pair, one ciphertext for each initial vector.

To be able to formulate and prove possibilistic noninterference for our system we
need to demand two properties of the underlying encryption schemes. The first property
is the assumption that an adversary can learn nothing about the plaintext or the key by
observing the ciphertext. This property, known as Shannon’s perfect secrecy [30], is
used to justify our indistinguishability relation on ciphertexts.

The second property is an authenticity property needed in the treatment of decryp-
tion. More precisely we are assuming that decryption using the wrong key fails:

D(k, E(k′, v)) = ⊥ if k �= k′

Insufficiency of Standard Noninterference. The prevailing notion when defining con-
fidentiality in the analysis of information flows is noninterference. Noninterference is
typically formalized as the preservation of a low-equivalence relation under the exe-
cution of a program: if a program is run in two low-equivalent environments then the
resulting environments should be low-equivalent. For ordinary values like integers low-
equivalence demands that public values are equal. However, from the assumption that
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an adversary can learn nothing about the plaintext from observing the ciphertext it is
secure to treat all ciphertexts of the same length1 as low-equivalent. However appealing
this may be, such a treatment leads the ability of masking implicit flows in ciphertexts.
Consider the program on Listing 1 for some public channel ch and encryption with
secret key k:

l := enc(k, a);
out(ch, l);
if (h) then l := enc(k, b) else skip;
out(ch, l);

Listing 1. Occlusion

If all encrypted values are consid-
ered equal then we cannot distinguish
between the first and the second output
value, even though it is clear that the
equality/inequality of the first and the
second value reflects the secret value h.

Possibilistic Noninterference. To address this problem we use a variant of noninter-
ference known as possibilistic noninterference, which allows us to create a notion of
low-equivalence that disallows the above example without disallowing intuitively se-
cure uses. Before we formalize our notion of possibilistic noninterference, let us lift the
evaluation relation to a set of results as follows:

〈E, c〉 ⇓ Ê iff Ê = {E′ | 〈E, c〉 ⇓ E′}

With this we can formulate our notion of possibilistic noninterference. Let E1 ∼Σ E2
denote that the environments E1 and E2 are low-equivalent w.r.t the environment type
Σ. A pair of commands, c1 and c2 are noninterfering if

NI(c1, c2)Σ ≡ ∀E1, E2 . E1 ∼Σ E2∧
〈E1, c1〉 ⇓ Ê1 ∧ Ê1 �= ∅ ∧ 〈E2, c2〉 ⇓ Ê2 ∧ Ê2 �= ∅ =⇒

∀E′
1 ∈ Ê1∃E′

2 ∈ Ê2 . E′
1 ∼Σ E′

2

That is, two commands are considered equivalent if, for every pair of low-equivalent
environments in which the commands terminate it holds that there exists the possibility
that each environment produced by the first command when run in the first environment
can be produced by the second command when run in the second environment.

By only considering environments for which the commands terminate, we ignore the
issue with crashes. This is equivalent to saying that normal and abnormal termination
cannot be distinguished by the attacker.

Adequacy of the Model. The choice of possibilistic noninterference does not automat-
ically solve the above problem—using the full low-equivalence relation on ciphertexts
would lead to the same danger of masking insecure flows. Instead the low-equivalence
relation has to be crafted carefully to avoid masked insecure flows and at the same time
allow secure usage of encryption primitives. We will now show how this can be done
for probabilistic encryption schemes. Consider first what happens in the above example.
Let two low-equivalent environments E1 and E2 s.t. h is true in the first and false in
the second. The result of running the if statement of the example above in the second

1 We do not assume that encryption hides the length of messages.
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environment E2 is the singleton set Ê2 = {E2}. However, the result of running it in
the first environment is the set of environments Ê1 = {E1[l = c] | encrypt(b) = c},
where each c is obtained by encrypting b under the same key but with different initial
vectors. The demand of possibilistic noninterference is that for each environment in Ê1
there should exists a low-equivalent environment in Ê2. This is only the case if all ci-
phertexts {c | encrypt(b) = c} are low-equivalent. Thus, any low-equivalence relation
that does not consider the different ciphertexts originating from one plaintext and one
key to be the equivalent will prevent this kind of masking. However, we must make sure
that each ciphertext produced by one plaintext and key has a low-equivalent ciphertext
for each other choice of plaintext and key.

Fortunately, for probabilistic encryption schemes we can easily form a low-equiva-
lence relation

.= with these properties by regarding ciphertexts with the same random
initial vector to be equivalent:

∀k1, k2, v1, v2 . E(k1, v1, iv) .= E(k2, v2, iv)

where iv ranges over initial vectors. This relation has the following properties: (i) differ-
ent ciphertexts produced by one plaintext and one key will have different initial vectors
and will not be low-equivalent, and (ii) since each plaintext and key will produce ci-
phertexts using all initial vectors, for each ciphertext produced by one plaintext and key
there will be exactly one low-equivalent ciphertext for every other choice of plaintext
and key.

Relation to Computational Adversary Models. The perfect secrecy and authenticity
demands on the encryption schemes are fairly strong. However, there are schemes for
which the probability of breaking these assumptions is provably negligible.

The first demand that the ciphertexts should give no information about the plaintexts
is commonly relaxed to the notion of semantic security under chosen plaintext attack
(SEM-CPA) by assuming that the adversary has limited computational power. Semantic
security states that “Whatever is efficiently computable about the cleartext given the
cyphertext, is also efficiently computable without the cyphertext” [17]. 2

In the same way we may allow a relaxation of the demand of authenticity, which
can be implemented by combining Message Authentication Code (MAC) with a SEM-
CPA encryption scheme to form a new scheme that is both secure (SEM-CPA) and
authenticity preserving (INT-PTXT)[6]. A scheme is INT-PTXT if the chance that an
adversary can produce ciphertexts C s.t. M = Dk(C) �= ⊥ and M was never a param-
eter of Ek(·) is negligible. To see that the probability of a successful decryption using
the wrong key is negligible under an INT-PTXT scheme consider the following. If a
ciphertext C = Ek(M) decrypts successfully using another key than was used to con-
struct the message i.e. M ′ = Dk′(C) for k′ �= k then the scheme cannot be INT-PTXT,
since M ′ was never a parameter of Ek′(·).

On Semantic Security. We believe that it is possible to prove a general result that if a
program with SEM-CPA + INT-PTXT encryption primitives is secure w.r.t. possibilis-
tic noninterference then it is also semantically secure. This result is likely to involve

2 There is another frequently used notion of security under a computationally limited adversary,
IND-CPA. IND-CPA has been shown to be equivalent to SEM-CPA [17,6].
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restrictions on key cycles, which are a known problem when reconciling the formal and
computational views of cryptography [2], or demanding that the underlying schema is
secure in the presence of such cycles (cf. KDM security [7]).

With such a result at hand, we shall be able to capitalize on the modularity of our
approach. For a given language and type system, as soon as we can prove that all well-
typed programs are noninterfering, we automatically get semantic security. This opens
up possibilities for reasoning about expressive languages and type systems, where all
we have to worry about are noninterference proofs (which are typically simpler than
proofs of computational soundness).

4 Types

The syntax of the types is defined in Figure 2. A primitive type is either a security anno-
tated basic type, a pair of primitive types or a key type. The security annotation assigns
a security level to the basic type expressing whether it is secret or public. The types of
encrypted values are structural in the sense that the type reflects the original type of the
encrypted values as well as the level of the key that was used in the encryption. For in-
stance, encS (int H) L is the type of a secret integer that has been encrypted with a secret
key once and encS (encS (int H) L) L is the type of an integer that has been encrypted
with a secret key twice. The type of the variable environment Ω is a map from variables
to primitive types, the type of the input environment and the output environment alike Θ
is a map from channel names to primitive types, and the key-stream environment defines
its own type (in the domain of the environment). The type of the entire environment, Σ,
is the pair of a variable type environment and a channel type environment.

Well-Formed Values. Well-formedness defines the meaning of the types ignoring the
security annotations. The well-formedness is entirely standard and is omitted for space
reasons.

Low-Equivalence. In Figure 4 we formalize the low-equivalence relation. For complex
types, i.e., pairs and environments, low-equivalence is defined structurally by demand-
ing the parts of the complex type to be low-equivalent w.r.t. the corresponding type.
Any values are low-equivalent w.r.t. a secret type. Integers are low-equivalent w.r.t.
a public integer type if they are equal. Low-equivalence for keys is slightly different
since keys are not annotated with a security level—only a key level—whose meaning
is defined by well-formed values as different sets. Even though it is semantically mean-
ingful to add a security level to key types—the values of keys can be indirectly affected
by computation—we have chosen not to. Instead, a public key is considered to be of
low security and a secret key of high security. Thus, public keys are low-equivalent if
they are equal, and any two secret keys are low-equivalent.

The most interesting rule is the rule defining low-equivalence w.r.t. a public encryp-
tion type (LE-ENC-L1) and (LE-ENC-L2). These two rules define the difference in mean-
ing between encryption with a secret and a public key. First, in both rules, the encrypted
values must be low-equivalent w.r.t. the low-equivalence relation of encrypted values.
Second, there must exist a pair of low-equivalent keys w.r.t. the key type of the encryp-
tion type that decrypt the encrypted value to two values. This is where the rules differ.
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(LE-KEY-L)
pk• ∼key P pk•

(LE-KEY-H)
sk•

1 ∼key S sk•
2

(LE-INT-L)
n• ∼int L n•

(LE-INT-H)
n•

1 ∼int H n•
2

(LE-ENC-L3) • ∼encP τ L •

(LE-ENC-H)
u•

1 ∼encγ τ H u•
2

(LE-PAIR)
v11 ∼τ1 v21 v12 ∼τ2 v22

(v11, v12) ∼(τ1,τ2) (v21, v22)

(LE-MEM)
∀x ∈ dom (Ω) M1(x) ∼Ω(x) M2(x)

M1 ∼Ω M2

(LE-INENV)
∀ch ∈ dom(Θ) . I1(ch) ∼Θ(ch) I2(ch)

I1 ∼Θ I2

(LE-OUTENV)

∀ch ∈ dom(Θ) .
O1(ch) ∼Θ(ch) O2(ch)

O1 ∼Θ O2

(LE-KGEN)
G1(S) ∼ G2(S) G1(P) ∼ G2(P)

G1 ∼ G2

(LE-KGENP)

pk1 ∼key P pk2

K1 ∼P K2

pk1 · K1 ∼P pk2 · K2
(LE-KGENS)

sk1 ∼key S sk2

K1 ∼S K2

sk1 · K1 ∼S sk2 · K2

(LE-ENC-L1)

∃vi, ki . vi = Dγ(ki, ui) i = 1, 2 k1 ∼key S k2 v1 ∼τ v2

u1
.
= u2

u1 ∼encS τ L u2

(LE-ENC-L2)

∃vi, ki . vi = Dγ(ki, ui) k1 ∼key P k2 v1 ∼tolow(τ) v2

u1
.
= u2

u1 ∼encP τ L u2

Fig. 4. Low-equivalence

Since ciphertexts created by public keys can be decrypted by anyone with access to the
public keys, we have to demand that the inside of the encrypted value contains only
public values. This is done in the (LE-ENC-L2) rule, which demands that the inside is
not only low-equivalent w.r.t. its type τ , but low-equivalent w.r.t. tolow (τ), which is
defined as follows:

tolow (t σ)= t L tolow (key P)=key P tolow((τ1, τ2)) = (tolow (τ1), tolow (τ2))

The (LE-ENC-L1) rule can be seen as encoding the power of the attackers. For en-
cryption with secret keys the demand is only that the resulting values should be low-
equivalent w.r.t. the primitive type, τ , of the encryption type. This way, we demand
low-equivalence inside encrypted values and make certain that that the result of de-
crypting low-equivalent encrypted values will result in low-equivalent values and that
secret values are not stored inside encrypted values that are created by public keys.

Subtyping. The subtyping is entirely standard; it allows public information to be seen
as secret with the exception of invariant subtyping for keys. The subtyping relation
for primitive types, <:, and the subtyping relation for security levels, �, defines the
corresponding join operators. The subtyping relation can be found in [3].
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(T-NEWKEY)
pc � lvl(key γ)

Ω, pc � newkey γ : key γ
(T-ENC1)

Ω, pc � e1 : key S
Ω, pc � e2 : τ

Ω, pc � encS (e1, e2) : encS τ L

(T-ENC2)

Ω, pc � e1 : key P
Ω, pc � e2 : τ lvl(τ) = σ

Ω, pc � encP (e1, e2) : encP τ σ
(T-DEC)

Ω, pc � e1 : key γ
Ω, pc � e2 : encγ τ σ

Ω, pc � decγ (e1, e2) : τσ

Fig. 5. Type Rules of Expressions

Expression Type Rules. The type rules for expressions are of the form Ω, pc � e : τ .
Figure 5 defines typing rules for non-standard expressions, while the rest of the rules
can be found in [3]. The generation of a new key with the requested security level results
in a key with that security level if the requested level is not below the context type. The
reason for this is that we assume that the public-key stream is publicly observable. En-
cryption with secret keys will always result in public encrypted values. Encryption with
public keys is possible on any value but produces a result that is as secret as the origi-
nal value. Both the type rule for key generation and the type rule for public encryption
makes use of function lvl(·) that computes the security level of the given value:

lvl(t σ) = σ lvl((τ1, τ2)) = lvl(τ1) � lvl(τ2) lvl(key P) = L lvl (key S) = H

Decryption is allowed only if the key level of the key used for decryption matches the
key level of the encrypted value. The result of the decryption is tainted by the security
level of the encrypted values. The taint function is defined as follows:

(t σ)σ′
= t (σ � σ′) (τ1, τ2)σ = (τσ

1 , τσ
2 ) (key P)L = key P (key S)σ = key S

Command Type Rules. As with expressions most of the rules are standard for a secu-
rity type system (cf. [34]). As is standard, following Denning’s original approach to
analyzing programs for secure information flow [13], in order to prevent implicit flows
the notion of security context is defined. The security context of a program point is de-
fined to be the least upper bound of the security levels of the conditional expressions
of the enclosing conditionals. The context affects the the commands with side-effects,
i.e., variable assignment, input, and output. A block of local declarations followed by a
sequence of statements is checked by first adding the declared variables to the variable
environment and then checking all statements in the new type environment. The type
rule for sequences of statements (T-SEQ) checks all statements of the sequence. If and
while are the two constructs that can lead to indirect flows since they affect the control
flow. Thus, the body of the if and the while are checked in the context of the security
level of the control expression. This way, when a branch is depending on a secret the
body of that branch is prevented from causing any low side effects. The type rules of
commands can be found in [3].
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5 Soundness

The main soundness theorem of the paper states that well-typed programs are noninter-
fering. Typically, for typed programming languages, the soundness is phrased in terms
of progress, i.e. well-typed programs can always be evaluated in well-formed environ-
ments, and preservation, i.e. after this step has been made the resulting environment is
well formed. It may be interesting to note that the way we have avoided to model error
makes this system not satisfy progress: decryption with the wrong key or computing
with an uninitialized variable will prevent evaluation. The well known solution is to
model failure in the semantics. To keep the presentation cleaner we refrain from this.

The soundness theorem states that well-typed programs are noninterfering. Section 3
lifts the evaluation relation of commands to sets and formulates noninterference for
commands. Before giving the formulation of the soundness theorem we must lift the
codomain of the evaluation relation of expressions to sets and formulate noninterference
for expressions:

〈(M, G), e〉 ⇓ 〈G′, v̂〉 iff v̂ = {v | 〈(M, G), e〉 ⇓ 〈G′, v〉}
With this we can define noninterference for expressions, which is equivalent to the

noninterference of statements defined above. Put simply, if two expressions e1 and e2
are run in low-equivalent key-stream and variable environments, yielding pairs of new
key-stream environments and results, then these results should be low-equivalent:

NI (e1, e2)Ω,τ ≡ ∀M1, M2, G1, G2 . M1 ∼Ω M2 ∧ G1 ∼ G2∧
〈(Mi, Gi), ei〉 ⇓ 〈G′

i, v̂i〉 ∧ v̂i �= ∅ =⇒
G′

1 ∼ G′
2 ∧ ∀v1 ∈ v̂1 ∃v2 ∈ v̂2 . v1 ∼τ v2

We arrive at the soundness theorems for expressions and commands, both proved by
induction on type derivation [3].

Theorem 1. Soundness for expressions Ω, pc � e : τ =⇒ NI (e, e)Ω,τ

Theorem 2. Soundness for commands Σ, pc � c =⇒ NI (c, c)Σ

6 Extensions

In this section we consider two extensions: integrity and public-key cryptography.

Integrity. Confidentiality classifies information into public and secret, i.e., information
that may or may not be given to the world, respectively. Dually, integrity classifies in-
formation into untrusted (or low-integrity) and trusted (or high-integrity), i.e., whether
the information may or may not have been affected by the world.

Tracking the integrity of data enables us to explore some additional dimensions of
cryptography: weaknesses of the encryption algorithms and the effect of encryption
on integrity. Consider for example, a primitive that is vulnerable to chosen ciphertext
attacks. With integrity controls, it is natural to express the restriction that untrusted
encrypted values may not be decrypted.
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In the presence of integrity the security levels for values are pairs of the form (σ, ι),
where σ is a confidentiality level, and ι is a corresponding integrity level. The follow-
ing tables define two functions—safeE(α, (σ, ι)) and safeD(α, (σ, ι))—that indicate
if it is safe to encrypt (decrypt) a plaintext (ciphertext) of security level (σ, ι) with an
encryption scheme that has property α. Here α ranges over standard notions [5]—IND-
CCA (indistinguishable under chosen-ciphertext attacks) and IND-CPA (indistinguish-
able under chosen-plaintext attacks).

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe safe safe safe

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe - - safe

safeE(α, (σ, ι)) safeD(α, (σ, ι))

In this way we can provide different type rules for different assumptions on the vul-
nerability properties of the encryption and decryption algorithms:

(T-ENC*)
Ω, pc � e1 : key S Ω, pc � e2 : τ lvl(τ) = (σ, ι) safeE(α, (σ, ι))

Ω, pc � encα
S (e1, e2) : encS τ (L, H)

(T-DEC*)
Ω, pc � e1 : key γ safeD(α, (σ, ι)) Ω, pc � e2 : encγ τ (σ, ι)

Ω, pc � decα
γ (e1, e2) : τ (σ,ι)

A Note on the Integrity of Keys. The current model allows very limited interaction
with keys apart from encryption. Since the values of keys cannot be programmatically
inspected, the power of the attacker is limited to choice between secure keys. Thus, the
model cannot in its present form distinguish between encryption with high and low-
integrity keys w.r.t. confidentiality. The intuition is clear: since the attacker can only
choose between secure keys, that choice will give different but safe encrypted values.

Public-Key Cryptography. Even though the present system deals only with symmetric-
key cryptography, there is nothing in the model that prevents modeling public-key cryp-
tography. The set of secret keys would contain the private keys and the set of public keys
would contain the public keys, where the private keys and the public keys are dual. In
this system values encrypted with public keys would be considered public, since only
actors with access to the private keys would be able to decrypt them.

However, public-key cryptography is most interesting in the presence of integrity. In
the same way we can model that encryption of secrets using secret keys results in public
values, we can model that encryption raises the integrity of the encrypted value to the
integrity of the key, which corresponds to signing.

7 Programming with Encryption: Examples

We have implemented a prototype of the type system and mechanically type-checked
two applications: secure backup and a Wide-Mouthed-Frog protocol implementation. In
both examples the type system prevents dangerous insecurities such as sending sensitive
unencrypted data over a public channel or not using a secret key for encryption. This
section discusses some interesting fragments of these implementations.
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Secure Data Backup. In the secure backup scenario a low-confidentiality channel is
used for sending sensitive information to the remote storage. Listing 2 presents the
code for the backup operation. Here and below we slightly simplify the syntax with
respect to Figure 2 for the sake of readability.

1 global K secret;
2 backup enc secret (int high) low;
3
4 actor Backup {
5 data int high;
6 ctxt enc secret (int high) low;
7 data := ...
8 ctxt := encrypt(K, data);
9 out backup ctxt;

10 }

Listing 2. Backup code

Here, the global declarations contain
secret key K and low channel backup.
The type of the latter says that only en-
crypted high integers may be sent over
this channel.

Lines 5 and 7 declare and initial-
ize a high integer variable data. Line 6
declares the variable ctxt of type enc

secret (int high) low. On line 8 the
value of variable data is encrypted with
secret key K and the resulting ciphertext is assigned to the variable ctxt. Since type of
ctxt matches the type of the backup channel it might be sent over this channel. This is
done by the out command on line 9.

1 actor Restore {
2 data int high;
3 ctxt enc secret (int high) low;
4 in ctxt backup;
5 data := decrypt(K, ctxt);
6 }

Listing 3. Recovery code

When recovering data, an actor reads
the data from the public channel and de-
crypts it. Assuming the same global dec-
larations Listing 3 presents the recovery
code. Here, line 4 reads data from the
backup channel. It’s decrypted using the
key K on line 5.

An example of an easy-to-overlook
error is to have the following line in place of line 9 in the body of actor Backup: out
backup data;. This is an insecurity that the type system rejects. Generally, in the se-
cure backup example the type system ensures that secret data is encrypted before it is
sent over the backup channel, thus preventing accidental leaks.

Wide-Mouthed-Frog Protocol. The Wide-Mouthed-Frog protocol [8] is a simple key
exchange protocol with trusted server and timestamps. In this protocol secret keys KAS

and KBS are shared between server S and principals A and B, respectively. Principal A
generates a fresh session key KAB, which is transferred to B in two messages:

1. A → S : A, {TA, B, KAB}KAS

2. S → B : {TS , A, KAB}KBS

The first message consist of A’s name and a tuple encrypted with the shared key KAS .
This tuple contains three elements—a timestamp TA, the name of principal B, and a
generated key KAB . Upon receipt of this message, S decrypts it, checks the timestamp,
replaces TA with its own timestamp TS, encrypts it with key KBS , and forwards the
resulting message to B. Principal B then checks whether the second message is timely.

Obviously, there is more to implementation of the protocol than expressed by the
two-step description. Our type system guarantees that implementations do not introduce
information-flow leaks in the protocol. Listing 4 presents the implementation of this



366 A. Askarov, D. Hedin, and A. Sabelfeld

protocol for principal A. The full version of this paper [3] contains the implementation
for the server S and principal B.)

1 global Kas secret;
2 chanS <int low, enc secret
3 (<int low, <int low, key secret>>) low>;
4 chanAB enc secret (int high) low;
5 actor A {
6 idA int low; idB int low; tsA int low;
7 messageToB int high;
8 Kab key secret;
9 // ... initialization

10 Kab := newkey (secret);
11 out chanS <idA,
12 encrypt(Kas, <tsA,<idB, Kab>>)>;
13 out chanAB encrypt (Kab, messageToB);
14 }

Listing 4. WMF Implementation

This program declares two chan-
nels: chanS for communicating with the
server, and chanAB for sending mes-
sages to B, once the key has been ex-
changed. The type of the channel chanS
corresponds to the first message in the
protocol—a pair consisting of a low in-
teger and an encryption with secret key
of a three-element tuple (expressed by
nested pairs). Since the level of the key
used for encrypting this tuple is secret,
it is safe to label the result of encryption
as low. The body of the actor declaration defines low-confidentiality variables idA and
idB that stand for the names of the principals; variable tsA stores the current timestamp;
the high-confidentiality variable messageToB contains the information that A wants to
send to B.

The new key is generated on line 10. Line 12 constructs the first message of the
protocol and sends it to the server. Line 13 uses the newly generated key and sends the
secret message to the principal B.

In this example, the type system prevents non-secret session keys in the key estab-
lishment protocol. As in the previous example, it also guarantees that secret information
may not leave the system unless it is encrypted with a secret key.

8 Related Work

As mentioned in the introduction, declassification models are sometimes used to jus-
tify cryptographic primitives in languages with information-flow control. Declassifi-
cation mechanisms facilitate information release. A recent classification of declassifi-
cation [29] suggests that information release policies represent aspects of what is de-
classified, by whom, when and where in the system. These correspond to dimensions
of information release. The relation of our model to declassification is somewhat sub-
tle, because masking does not actually model information release. Hence, none of the
release dimensions is directly suitable for cryptographically-masked flows.

Furthermore, attempts at framing cryptographically-masked flows into different di-
mensions do not always lead to satisfactory results. For example, releasing the differ-
ence between two values of a secret whenever the results of its encryption are different
can be a deceptive policy when assumptions about the underlying cryptographic primi-
tives are not explicitly stated. If the underlying encryption function is bijective (assum-
ing the key is fixed) then releasing the result of encryption is equivalent to releasing
the secret itself. This phenomenon applies to typical policies from the what dimension,
such as delimited release [28].

Another example of releasing the secret itself, together with the result of a cryp-
tographic primitive applied to the secret, can be found in [9]. The password checker
example is based on matching the hash of the password with the hash of a user query.
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The password has a label H
cert� L, which means that the level of the password is even-

tually declassified from high to low. This, however, allows the password itself to be
released to the attacker in cleartext.

Nevertheless, declassification is meaningful in the context of cryptographic com-
putation when the attacker is capable of learning some information from ciphertext.
Temporal policies express when, at earliest, the attacker might learn the secret. Volpano
and Smith’s relative secrecy [33,32] guarantees that the attacker cannot learn the secret
in polynomial time in the size of the secret. Approaches by Laud [20,21], Laud and
Vene [22], provide computational guarantees for a simple imperative language but with
the assumption that keys can be statically distinguished. Mitchell et al. [23,25] reason
about security with respect to polynomial-time attackers for a form of the π calculus.

A source of our inspiration is Abadi’s secrecy model for symmetric-key crypto-
graphic protocols [1]. This model assumes that an attacker is unable to decrypt cipher-
texts encrypted with secret keys. Compared to [1], we end up with simpler typing rules.
For example, because of the probabilistic encryption assumption, we do not need to deal
with explicit confounders. In addition, our approach accommodates natural extensions
with integrity and public-key cryptography. Another source of inspiration is a logi-
cal relations technique by Sumii and Pierce that facilitates manual security proofs for
cryptographic protocols [31]. This technique is not accompanied by static enforcement
mechanisms (such as a type system), however.

Gordon and Jeffrey [18] extend Abadi’s work to multiple security levels that may be
dynamically created and may become compromised. This and other work within Gor-
don and Jeffrey’s Cryptyc project, however, relies on trace-based properties (such as
correspondence) that are weaker than noninterference. Dam and Giambiagi’s work on
admissibility [12,15] focuses on protocol implementation, with the goal that informa-
tion leaks in the implementation must adhere to those declared in protocol specification.

Duggan’s and Chothia et al.’s cryptographic types [14,10] help enforce security for a
distributed programming language. This is realized through a combination of static and
dynamic checks, leading to access-control guarantees (albeit without information-flow
guarantees) for secrecy and integrity. Myers et al.’s qualified robustness [26] is based
on a possibilistic treatment of endorsement, operation dual to declassification.

Hicks et al. [19] define a notion of noninterference modulo trusted functions, which
requires parts of programs free of cryptographic functions to be in a certain sense in-
distinguishable. The cryptographic functions are trusted to release information if their
security labels satisfy trust constraints. It is a worthwhile direction for future work to
formally investigate the relation to noninterference modulo trusted functions. We do not
expect it to be straightforward because the definition of the indistinguishability relation
from [19] involves two-level semantics.

9 Conclusions and Future Work

We have developed an approach to tracking information flow in the presence of crypto-
graphic operations, based on possibilistic noninterference. We have argued that a possi-
bilistic treatment of cryptographic operations leads to a natural model of attackers that
may not distinguish between ciphertexts. This model has a close connection to prob-
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abilistic encryption and, we believe, it naturally connects to computational adversary
models (cf. Section 3).

Our case for possibilistic noninterference is driven by the possibility of capitalizing
on the available machinery for reasoning about noninterference in programming lan-
guages. We have demonstrated that possibilistic noninterference can be provably and
straightforwardly enforced via a security-type system for a language that includes cryp-
tographic primitives and message passing. The type system is amenable to extensions,
including integrity and public-key cryptography, which makes it attractive for develop-
ing secure implementations of non-trivial cryptographic protocols. We plan to explore a
semantic justification of these extensions, crystallizing guarantees provided by the typ-
ing rules, and to consider cases studies in which it is critical to achieve these guarantees.
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