

Lecture Notes in Computer Science 4134
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kwangkeun Yi (Ed.)

Static Analysis

13th International Symposium, SAS 2006
Seoul, Korea, August 29-31, 2006
Proceedings

13

Volume Editor

Kwangkeun Yi
Seoul National University
School of Computer Science and Engineering
Seoul 151-744, Korea
E-mail: kwang@ropas.snu.ac.kr

Library of Congress Control Number: 2006931004

CR Subject Classification (1998): D.3.2-3, F.3.1-2, D.2.8, F.4.2, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-37756-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37756-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11823230 06/3142 5 4 3 2 1 0

Preface

Static Analysis is increasingly recognized as a fundamental tool for program
verification, bug detection, compiler optimization, program understanding, and
software maintenance. The series of Static Analysis Symposia has served as the
primary venue for presentation of theoretical, practical, and applicational ad-
vances in the area.

This volume contains the proceedings of the 13th International Static Analy-
sis Symposium (SAS 2006), which was held 29-31 August 2006 at Seoul National
University, Seoul, Korea. A total of 80 papers were submitted; the Program
Committee held a 6-day long online discussion, during which they selected 23
papers. The selection was based on scientific quality, originality and relevance
to the scope of SAS. Almost all submissions were reviewed by three (or more)
PC members with the help of external reviewers.

In addition to the 23 accepted papers, this volume also contains abstracts of
talks given by three invited speakers: Manuvir Das (Microsoft), Peter O’Hearn
(Queen Mary, University of London), and Hongseok Yang (Seoul National
University).

On behalf of the Program Committee, I would like to thank all of the authors
who submitted papers. I would also like to thank the members of the Program
Committee for their thorough reviews and dedicated involvement during the
paper selection process, and all the external reviewers for their invaluable con-
tributions. I would also like to thank the Steering Committee for their help and
advice. Last but not least, I would like to thank Deokhwan Kim for his help
in preparing this volume and in maintaining the on-line conference system, and
Hyunjun Eo for the local arrangements.

June 2006 Kwangkeun Yi

Organization

Program Chair

Kwangkeun Yi Seoul National University, Korea

Program Committee

Anindya Banerjee Kansas State Univ., USA
Wei-Ngan Chin National Univ. of Singapore, Singapore
Patrick Cousot École Normale Supérieure, France
Roberto Giacobazzi Univ. of Verona, Italy
Chris Hankin Imperial College, UK)
Luddy Harrison Univ. of Illinois at Urbana-Champaign, USA
Naoki Kobayashi Tohoku Univ., Japan
Oukseh Lee Hanyang Univ., Korea
Alan Mycroft Univ. of Cambridge, UK
Kedar Namjoshi Bell Labs., USA
Jens Palsberg Univ. of California L.A., USA
Andreas Podelski Max-Planck-Institut, Germany
Ganesan Ramalingam IBM T.J.Watson Research, USA
Radu Rugina Cornell Univ., USA
Harald Søndergaard Univ. of Melbourne, Australia
Zhendong Su Univ. of California Davis, USA
Reinhard Wilhelm Univ. des Saarlandes, Germany

Steering Committee

Patrick Cousot École Normale Supérieure, Paris, France
Giberto Filé Univ. of Padova, Italy
David Schmidt Kansas State Univ., USA

External Referees

Stefan Andrei
Roberto Bagnara
Joerg Bauer
Josh Berdine

Julien Bertrane
Silvia Breu
Satish Chandra
Taehyoung Choi

Philppe Clauss
Christopher L. Conway
Florin Craciun
Dennis Dams

VIII Organization

Manuvir Das
William Deng
Olivia Rossi Doria
Manuel Fahndrich
Jerome Feret
John Field
Patrice Godefroid
Alexey Gotsman
Daniel Grund
Sumit Gulwani
Sebastian Hack
Atsushi Igarashi
François Irigoin
Bertrand Jeannet
Lingxiao Jiang
Jens Knoop
Roman Manevich
Isabella Mastroeni
Laurent Mauborgne
Benoit Meister
Alessio Merlo

Antoine Miné
Ghassan Misherghi
Anders Moller
David Monniaux
Huu Hai Nguyen
Ron Olsson
Corneliu Popeea
Shengchao Qin
Komondoor Raghavan
Venkatesh P. Ranganath
Francesco Ranzato
Jan Reineke
Noam Rinetzky
Xavier Rival
Mooly Sagiv
Hiroyuki Sato
Peter Schachte
David A. Schmidt
Hiroyuk Seki
Damien Sereni
Jakob Grue Simonsen

Jeremy Singer
Fausto Spoto
Bjarne Steensgard
Peter Stuckey
Kohei Suenaga
Eijiro Sumii
Yoshinori Tanabe
Stephan Thesing
Salvatore La Torre
Hiroshi Unno
Eben Upton
Martin Vechev
Bjoern Wachter
Gary Wassermann
Bernd Westphal
Thomas Wies
Jingling Xue
Eran Yahav
Enea Zaffanella
Damiano Zanardini

Sponsoring Institutions

Seoul National University
Korea Information Science Society (KISS)
KISS Special Interest Group on Programming Languages (SIGPL)

In Memoriam: Alain Deutsch (1965-2006)

It is with great sadness that we must note the untimely death of Alain Deutsch,
one of the foremost researchers in static analysis.

From 1988 to 1992, Alain conducted his PhD research at Ecole Polytechnique,
under the direction of Christian Queinnec and Patrick Cousot. His thesis, enti-
tled Modèles Opérationnels de Langage de Programmation et Représentations de
Relations sur des Langages Rationnnels avec Application à la Détermination Sta-
tique de Propriétés de Partages Dynamiques de Données, was a landmark work,
employing abstract interpretation, temporal logic, and formal-language theory to
produce powerful aliasing and lifetime analyses for data structures of programs
in higher-order languages. Alain’s development of “storeless semantics,” where
rational trees and right-regular equivalence relations are used in place of envi-
ronments and stores to give access-path semantics to data structures, initiated
a line of research that continues to this day.

Following post-doctoral studies at Carnegie-Mellon University, Alain joined
INRIA Rocquencourt in 1993, where he continued his research in static analy-
sis and published seminal papers in the Principles of Programming Languages
(POPL) and Programming Language Design and Implementation (PLDI) con-
ferences. With Patrick Cousot, he jointly supervised the PhD research of Bruno
Blanchet.

Alain is perhaps best known for his efforts at Polyspace Technologies Com-
pany; at the time of his death, he was Polyspace’s Chief Technical Officer. The
company was an outgrowth of a project conducted by Alain and his colleagues at
INRIA in 1996, where Alain’s techniques were applied to a post-mortem analysis
of the software of the Ariane 501 rocket. Their successes at error detection for
the 501 and validation of the software of its successor, the Ariane 502, inspired
Alain and Daniel Pilaud in 1999 to co-found Polyspace, a company dedicated
to development of verification and validation tools for on-board, real-time soft-
ware. At Polyspace, Alain helped produce a family of sophisticated tools that
analyze annotation-free software to validate correct behavior in variable initial-
ization, array indexing, arithmetic, type casts, and pointer deferencing — all
the classic problems addressed by static analysis researchers, handled all to-
gether. Polyspace’s tool set has been used with great success by companies in
the aerospace, automotive, medical instrument, and defense industries, and the
company has grown from a group of ten to a multi-national corporation with
offices in France and the United States.

Above all, Alain was a brilliant, incredibly hard working, friendly, sympa-
thetic individual. He will not be forgotten.

Table of Contents

Invited Talk

Unleashing the Power of Static Analysis . 1
Manuvir Das

Session 1

Static Analysis in Disjunctive Numerical Domains . 3
Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter,
Aarti Gupta

Static Analysis of Numerical Algorithms . 18
Eric Goubault, Sylvie Putot

Static Analysis of String Manipulations in Critical Embedded
C Programs . 35

Xavier Allamigeon, Wenceslas Godard, Charles Hymans

Session 2

Abstract Regular Tree Model Checking of Complex Dynamic Data
Structures . 52

Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz,
Tomáš Vojnar

Structural Invariants . 71
Ranjit Jhala, Rupak Majumdar, Ru-Gang Xu

Existential Label Flow Inference Via CFL Reachability 88
Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks

Session 3

Abstract Interpretation with Specialized Definitions 107
Germán Puebla, Elvira Albert, Manuel Hermenegildo

Underapproximating Predicate Transformers . 127
David A. Schmidt

XII Table of Contents

Combining Widening and Acceleration in Linear Relation Analysis 144
Laure Gonnord, Nicolas Halbwachs

Beyond Iteration Vectors: Instancewise Relational Abstract
Domains . 161

Pierre Amiranoff, Albert Cohen, Paul Feautrier

Invited Talk

Separation Logic and Program Analysis . 181
Peter W. O’Hearn

Beyond Reachability: Shape Abstraction in the Presence of Pointer
Arithmetic . 182

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn,
Hongseok Yang

Session 4

Specialized 3-Valued Logic Shape Analysis Using
Structure-Based Refinement and Loose Embedding . 204

Gilad Arnold

Recency-Abstraction for Heap-Allocated Storage . 221
Gogul Balakrishnan, Thomas Reps

Interprocedural Shape Analysis with Separated Heap Abstractions 240
Alexey Gotsman, Josh Berdine, Byron Cook

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal
Algorithm . 261

Alexey Loginov, Thomas Reps, Mooly Sagiv

Invited Talk

Shape Analysis for Low-Level Code . 280
Hongseok Yang

Session 5

Catching and Identifying Bugs in Register Allocation 281
Yuqiang Huang, Bruce R. Childers, Mary Lou Soffa

Table of Contents XIII

Certificate Translation for Optimizing Compilers . 301
Gilles Barthe, Benjamin Grégoire, César Kunz, Tamara Rezk

Analysis of Low-Level Code Using Cooperating Decompilers 318
Bor-Yuh Evan Chang, Matthew Harren, George C. Necula

Session 6

Static Analysis for Java Servlets and JSP . 336
Christian Kirkegaard, Anders Møller

Cryptographically-Masked Flows . 353
Aslan Askarov, Daniel Hedin, Andrei Sabelfeld

Proving the Properties of Communicating Imperfectly-Clocked
Synchronous Systems . 370

Julien Bertrane

Session 7

Parametric and Termination-Sensitive Control Dependence 387
Feng Chen, Grigore Roşu

Memory Leak Analysis by Contradiction . 405
Maksim Orlovich, Radu Rugina

Path-Sensitive Dataflow Analysis with Iterative Refinement 425
Dinakar Dhurjati, Manuvir Das, Yue Yang

Author Index . 443

Unleashing the Power of Static Analysis

Manuvir Das

Program Analysis Group
Center for Software Excellence

Microsoft Corporation
manuvir@microsoft.com

The last few years have seen a surge of activity in the static analysis community
on the application of static analysis to program verification and defect detection.
Researchers have long believed in the benefit of exposing and fixing potential
defects in a program before it is ever run, especially when the program can be
made correct by construction, as in the case of compiler-enforced type systems.
But every static analysis tool (other than a compiler’s type checker) ever built,
no matter how precise, suffers from the same fatal flaw in the eyes of the pro-
grammer: Defect reports do not come with known user scenarios that expose
the defects. Therefore, programmers have been loathe to examine and fix defect
reports produced by static analysis tools as a routine part of the software de-
velopment process. In spite of recent advancements in analysis techniques, there
are no papers we are aware of that report programmers fixing more than a few
dozen defects.

Like many others, we at the Program Analysis group at Microsoft have spent
the last few years building defect detection tools based on static analysis. For
the last two years, we have focused our efforts on pushing these tools into the
regular software development process of the largest products groups at Microsoft,
involving thousands of developers working on tens of millions of lines of code
against strict deadlines. Our goal was to answer the following question: If we do
enough engineering on the tools, will a large group of programmers who build
software for money adopt the tools? In other words, will programmers recognize
the inherent preventive value of static analysis?

We are now in a position to answer this question. Programmers have fixed
over 25,000 defects reported by our tools in the last 12 months, and they have
added over 500,000 formal specifications of function pre-conditions and post-
conditions to their programs. Today, many of our tools are enabled by default
on the desktop machines of every programmer in the organization. Programmers
only enter properly specified, defect-free code into the source code repository.
Some of our tools are based on heavyweight global static analysis; these tools
are run periodically in a centralized manner, and the defects identified by the
tools are filed automatically into the defect database of the product.

In order to achieve this result, we have leaned heavily on advancements from
the static analysis community, including but not limited to abstract interpreta-
tion [1], inter-procedural dataflow analysis [2], linear constraint solving, memory
alias analysis [3], and modular analysis with formal specifications [4,5].

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 1–2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 M. Das

We have used these ideas to build a suite of static analysis tools that in-
cludes: A global inter-procedural symbolic evaluator (PREfix [6]) for detecting
memory usage errors; a global inter-procedural path-sensitive dataflow analy-
sis (ESP [7,8]) for detecting security vulnerabilities and concurrency defects;
a local intra-procedural abstract interpretation with widening and linear con-
straint solving (espX [9]) for detecting buffer overruns; a global inter-procedural
dataflow analysis (SALinfer [9]) for inferring function pre-conditions and post-
conditions; and a formal language of function specifications (SAL [9]) that is
understood and enforced by all of our tools. SAL is now available to program-
mers at large via the Visual Studio compiler and various developer kits that are
released periodically by Microsoft.

Along the way, we have learnt important lessons about what it takes to con-
vince programmers to adopt static analysis tools, and which areas of static anal-
ysis research would be of the most benefit to software developers.

References

1. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL), 1977.

2. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural data flow
analysis via graph reachability. In Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL), 1995.

3. Manuvir Das. Unification-based pointer analysis with directional assignments. In
ACM SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation (PLDI), 2000.

4. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended Static Checking for Java. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, 2002.

5. Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: Towards a realistic tool for
statically detecting all buffer overflows in C. In Proceedings of the SIGPLAN 2003
Conference on Programming Language Design and Implementation, 2003.

6. William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for
finding dynamic programming errors. Software - Practice and Experience, 30(7):775–
802, 2000.

7. Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verifi-
cation in polynomial time. In ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (PLDI), 2002.

8. Nurit Dor, Stephen Adams, Manuvir Das, and Zhe Yang. Software validation via
scalable path-sensitive value flow analysis. In Proceedings of the International Sym-
posium on Software Testing and Analysis (ISSTA), 2004.

9. Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular checking of
buffer overflows in the large. In 28th International Conference on Software Engi-
neering, 2006.

Static Analysis in Disjunctive Numerical
Domains

Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, and Aarti Gupta

NEC Laboratories America,
4 Independence Way, Princeton, NJ

Abstract. The convexity of numerical domains such as polyhedra, oc-
tagons, intervals and linear equalities enables tractable analysis of soft-
ware for buffer overflows, null pointer dereferences and floating point
errors. However, convexity also causes the analysis to fail in many com-
mon cases. Powerset extensions can remedy this shortcoming by consid-
ering disjunctions of predicates. Unfortunately, analysis using powerset
domains can be exponentially more expensive as compared to analysis
on the base domain. In this paper, we prove structural properties of fixed
points computed in commonly used powerset extensions. We show that
a fixed point computed on a powerset extension is also a fixed point in
the base domain computed on an “elaboration” of the program’s CFG
structure. Using this insight, we build analysis algorithms that approach
path sensitive static analysis algorithms by performing the fixed point
computation on the base domain while discovering an “elaboration” on
the fly. Using restrictions on the nature of the elaborations, we design
algorithms that scale polynomially in terms of the number of disjuncts.
We have implemented a light-weight static analyzer for C programs with
encouraging initial results.

1 Introduction

Static analysis over numerical domains has been used to check programs for
buffer overflows, null pointer references and other violations such as division by
zero and floating point errors [26,4,12]. Numerical domains such as intervals,
octagons and polyhedra maintain information about the set of possible values
of integer and real-valued program variables along with their inter-relationships.
The convexity of these domains makes the analysis tractable. On the other hand,
fundamental limitations arising out of convexity leads to imprecision in the anal-
ysis, ultimately yielding many false alarms. Elimination of these false alarms is
achieved through path-sensitive analysis by means of disjunctive domains ob-
tained through powerset extensions. Such extensions can be constructed sys-
tematically from the base domain using standard techniques [14,8].

Powerset extensions of numerical domains consider a disjunction of predicates
at each program location. While the presence of these disjuncts helps surmount
convexity limitations, the complexity of the analysis can be exponentially higher
due to more complex domain operations and also due to the large number of

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 3–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 S. Sankaranarayanan et al.

disjuncts that can be produced during the course of the analysis. Furthermore,
the presence of disjuncts requires special techniques to lift the widening from
the base domain up to the disjunctive domain [2].

Controlling the production of disjuncts during the course of the analysis is
one of the key aspects of managing the complexity of the analysis. The design of
such strategies can be performed by techniques that annotate data flow objects
by partial trace information such as trace partitioning [21,16], and other path-
sensitive data-flow analysis techniques that implicitly manage complexity by
joining predicates only when the property to be proved remains unchanged as a
result [11], or “semantically” by careful domain construction [20,2].

In this paper, we first show that fixed points computed over powerset exten-
sions correspond to fixed points over the base domain computed on an “elab-
oration” of the CFG. As a result, the complexity of flow-sensitive analysis can
also be controlled by means of a strategy for producing elaborations of the CFG
being analyzed. We consider analysis techniques that perform the fixed point
iteration hand in hand with the construction of the elaboration that character-
izes the fixed point. As an application, we consider bounded elaborations, that
correspond to power-set extensions wherein the number of disjuncts in each ab-
stract object is bounded by a fixed number K. We discuss the implementation
our ideas in a light weight static analyzer for the C language as a part of the
F-Soft project [18] and demonstrate promising results.

This paper is organized as follows: Section 2 presents preliminary concepts of
abstract interpretation and presents numerical domains along with their limi-
tations. Powerset extensions are presented in Section 3. Section 4 presents the
notion of an elaboration and techniques for constructing an elaboration while
performing the analysis. Section 5 describes our implementation and results over
some benchmark programs.

2 Preliminaries

We present basic notions of abstract interpretation and numerical domains.

Programs and Invariants
Since the paper focuses on static analysis over numerical domains, we may
regard programs as purely ranging over integer or real-valued variables. Let
V = {x1, . . . , xn} denote integer-valued program variables, collectively referred
to as x. The program operations over these variables include numerical opera-
tions such as addition and multiplication. We shall assume first-order predicates
over the program state belonging to an appropriate language. Given such a
predicate ψ, the set of valuations to x satisfying ψ is denoted �ψ�. A program
is represented by its Control-flow graph(CFG).

Definition 1 (Control-flow Graphs (CFGs)). Formally, a CFG is a tuple
Π : 〈V, L, T , �0, Θ〉:

Static Analysis in Disjunctive Numerical Domains 5

– L: a set of locations (cutpoints);
– T : a set of transitions (edges), where each transition τ : �i → �j is an edge

between the pre-location �i and a post-location �j. Each transition models
the changes in the values of program variables using a transition relation.

– �0 ∈ L: the initial location; Θ is an assertion over x representing the initial
condition.

A state s of the program maps each variable xi to an integer value s(xi). Let
Σ denote the set of program states. The relational semantics of a transition can
be modeled using the notion of a (concrete) post condition:

Definition 2 (Post Condition). Let S ⊆ Σ be a set of states. The (concrete)
post condition S′ : postΣ(S, τ) across a transition τ is a set of states S′ ⊆ Σ.
The post condition models the effect(s) of executing τ on each state satisfying S.

An assertion ψ over x is an invariant of a CFG at a location � iff it is satisfied
by every state reachable at �. An assertion map associates each location of a
CFG with a predicate. An assertion map η is invariant if η(�) is an invariant,
for each � ∈ L. Invariants are established using the inductive assertions method
due to Floyd and Hoare [13,17].

Definition 3 (Inductive Assertion Maps). An assertion map η is inductive
iff it satisfies the following conditions:

Initiation: �Θ� ⊆ �η(�0)�,
Consecution: For each transition τ : �i → �j,

postΣ(�η(�i)� , τ) ⊆ �η(�j)� .

It is well known that any inductive assertion map is invariant. However, the
converse need not be true. The standard technique for proving an assertion
invariant is to find an inductive assertion that strengthens it.

Abstract Interpretation
Abstract interpretation [7] is a generic technique for computing inductive asser-
tions of CFGs using an iterative process. In order to compute an inductive map,
we start from an initial map and repeatedly weaken the predicates mapped at
each location to converge to a fixed point. The assertions labeling each location
can be shown to be inductive when the fixed point is reached.

Abstract Domain. In order to carry out an abstract interpretation, we define
an abstract domain along with some operations on the elements of the abstract
domain known as the domain operations. Informally, an abstract domain is a
lattice of predicates Γ over the program state including the assertions � and
⊥ representing true and false respectively. The domain is defined by the ab-
stract lattice 〈Γ, |=〉 and the concrete lattice of sets of program states ordered
by inclusion

〈
2Σ,⊆
〉

along with the abstraction function α : 2Σ 	→ Γ and the
concretization (or the meaning) function γ : Γ 	→ 2Σ. A key requirement is
that α, γ form a Galois connection (see [7,9] for comprehensive surveys). The
abstract domain operations include:

6 S. Sankaranarayanan et al.

Join. Given d1, . . . , dm ∈ Γ , their join d : d1
 . . .
 dm ∈ Γ satisfies di |= d.
Meet (Intersection). Given d1, . . . , dm ∈ Γ , their meet d : d1 � . . . � dm

satisfies d |= di.
Post-Condition. Given d ∈ Γ and a transition τ , its abstract post condition

d′ : postΓ (d, τ) satisfies

postΣ(γ(d), τ) ⊆ γ(postΓ (d, τ)) .

Note that if the abstract domain is clear from context, we may drop the
subscript from the abstract post condition.

Inclusion Test. Given objects d1 and d2, decide if d1 |= d2.
Widening. Given d1, d2 ∈ Γ such that d1 |= d2, their widening d : d1∇d2 over-

approximates the join, i.e., d1
 d2 |= d. Repeated applications of widening
on an increasing sequence of abstract objects, guarantees convergence to a
fixed point in a finite number of iterations.

Other operations of interest include projection, which is commonly used to
eliminate variables that are out of scope in inter-procedural analysis and the
weakest precondition, which may be used to refine the abstraction in case of
failure to prove a property.

Forward Propagation. An abstract assertion map η : L 	→ Γ labels each CFG
location � with an abstract object η(�) ∈ Γ . An abstract assertion map η is
inductive iff the map γ ◦ η is an inductive assertion map. Given a CFG Π along
with an abstract domain Γ , forward propagation seeks to construct an inductive
abstract assertion map, iteratively as follows:

Initial Step. The initial map η(0) is defined as follows:

η(0)(�0) =

{
Θ, � = �0,

⊥, otherwise.

Iterative Step. The iterative step computes the join of the current assertion
at a location � with the post-condition of all its incoming transitions

η(i+1)(�) = η(i)(�)

⊔

τj : �j→�

postΓ (η(i)(�j), τj) .

For convenience, we denote this as η(i+1) = F(η(i)). Note that F is monotonic
w.r.t |=, i.e., η(i)(�) |= η(i+1)(�) for all � ∈ L.

Convergence. Convergence occurs if η(i+1)(�) |= η(i)(�) for each � ∈ L.

For the sake of simplicity, we do not consider the use of narrowing to improve
the fixed point in this discussion. Given an initial map η(0), forward propagation
computes η(i+1) iteratively as F(η(i)) until convergence η(i+1)(�) |= η(i)(�). Such
a map is a fixed point w.r.t F. It can be shown that a fixed point map is also
inductive. Hence, if the forward propagation converges, it results in an inductive
assertion at each cutpoint. Convergence is guaranteed in finitely many iterative

Static Analysis in Disjunctive Numerical Domains 7

steps if the domain satisfies the ascending chain condition. Examples of such
domains include finite domains and notably the domain of linear equalities [19].
On the other hand, domains such as intervals and polyhedra do not satisfy
this condition. Hence, the widening operation ∇ is used repeatedly to force
convergence in finitely many steps.

Numerical Domains. Numerical domains such as intervals, octagons and poly-
hedra reason about the values of integer or real-valued program variables. These
domains are widely used to check programs for buffer-overflows, null pointer
dereferences, division-by-zero, floating point instabilities [4].

The interval domain consists of interval predicates of the form
∧

i xi ∈ [li, ui]
with the possibility of open intervals. The complexity of the domain operations
is linear in the number of variables. Analysis techniques for this domain have
been widely studied [6,22]. The octagon domain due to Miné consists of as-
sertions of the form

∧
±xi ± xj ≤ c along with interval constraints over the

variables. The nature of the constraints in this domain permits a graphical rep-
resentation and the computation of many domain operations using the short-
est path algorithm as a primitive. The operations in this domain are at most
cubic in the number of variables. The polyhedral domain consists of convex
polyhedra over the program variables represented by constraints of the form∧

a0 + a1x1 + · · · + anxn ≥ 0 [10,15]. Domain operations over this domain are
expensive (exponential space in the size of the polyhedra). However, relaxations
of the operations and the structure of the constraints in the domain can yield
polynomial time approximations to these operations [25,24,23,5].

One of the key properties of these domains is that of convexity. Convex-
ity makes the domain operations tractable. However, it also limits the ability
of these domains to represent sets of states. For instance, consider a convex
predicate including states A and B represented as points x1,x2 in Rn. Such a
predicate necessarily includes states that lie on the line joining these two points.
In many cases, the reachable states of a program form a non convex set in Rn.
Therefore, convex abstract domains cannot represent such sets without the ad-
dition of spurious states. Such a drawback leads to cases wherein the domain
is fundamentally unable to compute an invariant that proves the property of
interest.

Example 1. Figure 1 shows a program that stores the result of a condition 0 ≤
i ≤ 9 in a variable x. The table to the right shows the invariants computed after
each labeled location. Note that the invariant i ≤ 9, required at L4 to prove the
absence of overflows, cannot be established. Although the program is free from
overflows, convex numerical domains will not be able to establish correctness.

Powerset extensions are used to remedy the problem of convexity.

3 Powerset Extensions

Given a base abstract domain of predicates, a powerset extension of the domain
consists of disjunctions of the base domain predicates.

8 S. Sankaranarayanan et al.

int a[10]
if (i ≥ 0 ∧ i ≤ 9) then

L1: x := 1
else

L2: x := 0
end if
L3: · · ·
if x = 1 then

L4: a[i] := · · ·
end if

Location Invariant
L1 i ≥ 0 ∧ i ≤ 9 ∧ x = 1
L2 x = 0
L3 0 ≤ x ∧ x ≤ 1
L4 x = 1

Fig. 1. Example program (left) and the polyhedral invariants (right)

Definition 4 (Powerset extension). A powerset extension of an abstract do-
main 〈Γ, |=〉 is given by the domain

〈
Γ̂ , |̂=
〉

such that

Γ̂ = {S : 〈d1, . . . , dm〉 | di ∈ Γ, m ≥ 0} .

The concretization function γ̂ for a powerset extension is defined as γ̂(S) =⋃
d∈S γ(d). The abstraction function α̂(X) can be defined in many ways, for

instance α̂(X) = {α(X)}. The ordering relation |̂= may be defined in many
ways to derive different extensions. However, any such definition needs to be
faithful to the semantics induced by γ̂, i.e. if S1 |̂=S2 then γ̂(S1) ⊆ γ̂(S2).

Extending Partial Orders. The natural powerset extension is obtained by con-
sidering

〈
Γ̂ , |=n
〉

such that S1 |=n S2 iff γ̂(S1) ⊆ γ̂(S2). This is the partial
order induced by the concrete domain on the abstract domain through γ̂. The
Hoare powerset extension |=p is a partial order defined as follows:

S1 |=p S2 ⇐⇒ (∀d1 ∈ S1) (∃ d2 ∈ S2) d1 |= d2 .

Informally, we require that every object in S1 be “covered” by some object in
S2. This can be refined to yield a Egli-Milner type partial order |=em [1,2]

S1 |=em S2 ⇐⇒ S1 = ∅ or (S1 |=p S2 and (∀ d2 ∈ S2) (∃ d1 ∈ S1) d1 |= d2) .

In addition to S1 |=p S2, each element in S2 must cover some element in S1.

Example 2. Consider the interval domain 〈I,�〉 over variable x1. Let S1 = {ϕ1 :
x1 ∈ [0, 1]} and S2 = {x1 ∈ [12 , 2], x1 ∈ [−1, 1

2]}. It is easily seen that S1 �n S2,
however S1 ��p S2 since each element of S2 is incomparable with ϕ1.

On the other hand let S3 = {ξ1 : x1 ∈ [0, 2], ξ2 : x1 ∈ [−1, 0]}. Note that
S1 �p S3 since ϕ1 � ξ1. On the other hand ξ2 does not cover any object in S1,
hence S1 ��em S3.

Consider the interval domain 〈I,�〉 of conjunctions of closed, open and half-open
intervals over the program variables and its natural powerset extension

〈
Î ,�n
〉
.

It is well-known that deciding the �n relation is computationally hard.

Static Analysis in Disjunctive Numerical Domains 9

Theorem 1. Given S1, S2 ∈ Î, deciding if S1 �n S2 is co-NP-hard.

The proof is essentially a direct translation from the universality checking prob-
lem for DNF propositional formulas and holds on many abstract domains (in-
cluding many finite domains). Specifically, |=n is hard for numerical domains
such as intervals, octagons and polyhedra. Other partial orders |=p and |=em
are easier to compute using O(|S1| + |S2|)2 base domain (|=) comparisons.

The domain operations in a powerset domain can be defined by suitably lifting
the base domain operations. Notably, set union defines a valid join operator. The
meet operation S1�̂S2 is given by the pairwise meet of elements from S1, S2. Post
condition is computed element-wise; i.e., if S = {d1, . . . , dk} ∈ Γ̂ , p̂ost(S, τ) =
{post(d1, τ), . . . , post(dk, τ)}.

Widening operations can be obtained as extensions of the widening on the
base domain using carefully crafted strategies [2]. The use of such widening
operators frequently results in fixed points which satisfy inclusion using the |=p
or even the |=em ordering. Thus, even if a domain were designed to use joins
over a stronger partial order, the final fixed point obtained may be over |=p or
the |=em ordering.

Example 3. Consider the program below:

s := −1
while · · · do

s := −s { Invariant: (s = 1 ∨ s = −1) }
end while

The invariant s = 1 ∨ s = −1 is a fixed point in the powerset extension of the
interval domain using the �p ordering.

CFG Elaboration
We now prove a simple connection between the fixed point obtained on a domain〈
Γ̂ , |=p
〉

using forward propagation on a CFG Π and the fixed point in the
base domain using the notion of an “elaboration”. Intuitively, an elaboration of
a CFG replicates each location of the CFG multiple times. Each such replication
preserves all the outgoing transitions from the original location.

Definition 5. Consider CFGs Πe : 〈Le, Te, �
′
0, Θ〉 and Π : 〈L, T , �0, Θ〉 over

the same set of variables V . The CFG Πe is an elaboration of Π iff there exists
a map ρ : Le 	→ L such that

– The initial location in Πe maps to the initial location of Π: ρ(�′0) = �0.
– Consider locations � ∈ Π and �e ∈ Πe such that ρ(�e) = �. For each outgoing

transition τ : � → m ∈ T , there is an outgoing transition τe : �e → me ∈ Te

such that ρ(me) = m. Furthermore every outgoing transition τe : �e → me ∈
Te is a replication of some transition τ : ρ(�e) → ρ(me) ∈ T .

Each �e ∈ Le is said to be a replication of ρ(�e) ∈ L. Note that every outgoing
transition of ρ(�e) is replicated in �e. We denote the replication of the transition
τ : � → m starting from �e as τ(�e) : �e → me. An elaboration resembles a
(structural) simulation relation between Πe and Π.

10 S. Sankaranarayanan et al.

Example 4. The figure below shows a CFG Π from Example 3 along with an
elaboration. The dashed line shows the relation ρ.

s = −1 s := −1

· · · · · · · · ·

s := −s s := −s s := −s

We shall now prove that every fixed point assertion map on a powerset domain〈
Γ̂ , |=p
〉

on a CFG Π corresponds to a fixed point in the base domain 〈Γ, |=〉
on some elaboration Πe and vice-versa.

Definition 6 (Collapsing). Let ηe : Le 	→ Γ be an assertion map on the
elaboration Πe in the base domain. Its collapse C(ηe) is a map on the original
CFG Π, L 	→ Γ̂ such that for each � ∈ L,

C(ηe)(�) = {η(�e) | ρ(�e) = �} .

The collapsing operator computes the disjunction of the domain objects at each
replicated location.

Lemma 1. If ηe is a fixed point map for Πe in the domain 〈Γ, |=〉 then C(ηe)
is a fixed point map for Π in the domain

〈
Γ̂ , |=p
〉
.

Proof. (Sketch) For convenience we denote ηc = C(ηe). It suffices to show initi-
ation Θ |=p ηc(�0) and consecution for each transition τ : �i → �j , we require
p̂ost(ηc(�i), τ) |=p ηc(�j). Initiation is obtained by noting that initial states must
be replicated in an elaboration. Expanding the definition for LHS,

p̂ost(ηc(�i), τ) = p̂ost({ηe(�e)|ρ(�e) = �i}, τ)
= {post(ηe(�e), τ)|ρ(�e) = �i}

Similarly the RHS is expanded ηc(�j) = {ηe(�′e) | ρ(�′e) = �e}. In order to show
the containment, note that an elaboration requires that τ(�ie) : �ie → �je should
be an outgoing transition for each replication �ie with ρ(�ie) = �i and ρ(�je) = �j .

Using the fact that ηe is a fixed point map, we note that each element
post(ηe(�ie), τ) on the LHS is contained in the element ηe(�je) from the RHS. �

Conversely, the fixed point in
〈
Γ̂ , |=p
〉

induces an elaboration of the CFG.

Definition 7 (Induced Elaboration). Let η̂ be a fixed point map for Π in the
domain

〈
Γ̂ , |=p
〉
. Such a fixed point induces an elaboration Πe and a induced

map ηe defined as follows:

– Locations: Let η̂(�) = {d1, . . . , dm}. The elaboration contains replicated loca-
tions 〈�, 1〉 , . . . , 〈�,m〉 ∈ Le, one per disjunct such that ρ(〈�, j〉) = �. Also,
ηe(〈�, j〉) = dj.

Static Analysis in Disjunctive Numerical Domains 11

– Transitions: For each transition τ : �i → �j we require an outgoing transition
τ(�i, k) : 〈�i, k〉 → 〈�j , l〉 for some l. The target index l is defined using the
proof of consecution of η̂ under τ : p̂ost(η̂(�i), τ) |=p η̂(�j).
Let η̂(�i) = {d1, . . . , dm} and η(�j) = {e1, . . . , en} (Note that we may repre-
sent the empty set equivalently by the singleton {⊥}). We require

p̂ost({d1, . . . , dm}, τ) |=p {e1, . . . , en} .

However, p̂ost({d1, . . . , dm}, τ) = {post(d1, τ), . . . , post(dm, τ)}. By defini-
tion of |=p order, we require for each k,

(∀ k ∈ [1,m])(∃ l ∈ [1, n]) post(dk, τ) |= el .

Therefore, we set τ(�i, k) : 〈�i, k〉 → 〈�j , l〉. It immediately follows that ηe

satisfies consecution for this transition in the base domain 〈Γ, |=〉. Note that
since the choice of a target index l is not unique, there may be many induced
elaborations for a given assertion map.

Example 5. The elaboration shown in Example 4 is induced by the fixed point
shown in Example 3.

Lemma 2. Given a fixed point map ηc for Π in the domain
〈
Γ̂ , |=p
〉
, its in-

duced map ηe is a fixed point for the induced elaboration Πe in the base domain
〈Γ, |=〉.
Proof. The proof follows from the definition above.

Thus, elaborations are structural connections among the disjuncts of the final
fixed point made explicit using a syntactic representation. In fact, interesting
structural connections can be defined for powerset domains with other partial
orders such as |=em, and even the |=n order for certain domains. Making these
connections explicit enables us to get around the hardness of checking |=n in
these domains. We defer the details to an extended version of this paper.

4 On-the-Fly Elaborations

In the previous section, we have demonstrated a close connection between fixed
points in a class of powerset domains and the fixed point in the base domain
computed on a structural elaboration of the original CFG. As a result, analysis
in powerset domains can be reduced to the process of an analysis on the base
domain carried out on some CFG elaboration. As a caveat, we observe that even
though it is possible to find some elaboration that produces the same fixed point
as in the powerset extension with some widening operator, an a priori fixed
elaboration scheme may not be able to produce the same fixed point.

In order to realize the full potential of a powerset extension, the process of
producing an elaboration of the CFG needs to be dynamic, by considering partial
elaborations of the CFG as the analysis progresses. Such a scheme can also be
seen as a powerset extension wherein the containment relations between the
individual disjuncts in a predicate are explicitly depicted.

12 S. Sankaranarayanan et al.

Partial Elaboration. A partial elaboration 〈Πe, U〉 of a CFG Π : 〈L, T , �0〉 is
a tuple consisting of a CFG Πe : 〈Le, Te, �0e〉 and an unresolved set U ⊆ Le ×T
of pairs, each consisting of a location from Πe and a transition from Π .

As with a CFG elaboration, each location �e ∈ Πe is a replication of some
location ρ(�e) ∈ Π . Furthermore, for each transition τ : �i → �j ∈ Π and each
�ie ∈ Le replicating �i, exactly one of the following holds:

– There exists a replicated transition τ(�ie) : �ie → �je ∈ Te, or else,
– 〈�ie, τ〉 ∈ U .

In other words, U contains all the outgoing transitions of Π which have not
been replicated in a given location of Πe. A partial elaboration is a (complete)
elaboration iff U = ∅. Given a CFG Π , an initial partial elaboration Π0

e is
given by L0

e = {�0}, Te = ∅ and U = {〈�0, τ〉 | τ : �0 → �i}; in other words, the
initial location of Π is replicated exactly once and all its outgoing transitions are
unresolved. Two basic transformations are permitted on a partial elaboration:

Location Addition: We add a new location �ie to Le replicating some node
ρ(�ie) ∈ L, i.e., L′

e = Le ∪ {�ie}. Furthermore, all transitions in T outgoing
from �i are treated as unresolved, i.e., U ′ = U ∪ {〈�ie, τ〉 | τ : ρ(�ie) → �j}.

Transition Resolution: Given a pair 〈�ie, τ : �i → �j〉 ∈ U , we replicate τ in
Πe as τ(�ie) : �ie → �je for some replication �je of the target location �j.

Our analysis at each stage consists of a partial elaboration
〈
Π

(i)
e , U (i)

〉
along

with an abstract assertion map η(i) : Le 	→ Γ . Each iteration involves an update
to the map η(i) followed by an update to the partial elaboration.

Consider an unresolved entry 〈�e, τ : �i → �j〉 ∈ U (i). Its resolution involves
the choice of a target node �je replicating �j. Let d : post(η(i)(�ie), τ) denote
the result of the post condition of the unresolved transition. Furthermore, let
�(j,1), . . . , �(j,m) ∈ Le denote the existing replications of the target location �j

and dk = η(i)(�(j,k)) denote the kth disjunct. The choice of a target location
for the transition τ(�ie) depends on the post condition d and the assertions
d1, . . . , dm. The target can either be chosen from the existing target replications
�(j,1), . . . , �(j,m), or a new node �(j,m+1) can be added as a new replication of the
target. We shall assume a merging heuristic MergeHeuristic (d, 〈d1, . . . , dm〉) to
compute the index i s.t. 1 ≤ i ≤ m + 1 for the target location of the transition.

Formally, at each step we first update the map η(i) = F(η(i−1)) as described in
Section 2. The partial elaboration

〈
Π

(i)
e , U (i)

〉
is then refined by first choosing

an unresolved pair 〈�ie, τ : �i → �j〉 ∈ U , and then applying a merging heuristic

�j,∗ = MergeHeuristic
(
post(η(i)(�ie), τ),

〈
η(i)(�je) | �je replicates �j

〉)
.

The transition τ(�ie) is resolved as a result, and the entry 〈�ie, τ〉 is removed from
U (i). If the merging heuristic results in a new location �j,∗, then new entries are
added to U (i) to reflect unresolved outgoing transitions from the newly added

Static Analysis in Disjunctive Numerical Domains 13

location. If there are no more unresolved pairs in U (i+1), the partial elaboration
is also a full elaboration. Thenceforth, the map η is simply propagated on this
elaboration until fixed point is reached.

Upon termination, we guarantee that U (i) = ∅, i.e., the partial elaboration
is a full elaboration and the map η(i) is a fixed point map on this elaboration.
Termination of the scheme depends mainly on the nature of the merging heuris-
tic chosen. Since a transition from U is resolved at each step, termination is
guaranteed as long as the creation of new locations ceases at some point in the
analysis. A simple way to ensure this requirement is to bound the number of
replications of each location to a prespecified limit K > 0.

Merging Heurstics. Formally a merging heuristic MergeHeuristic (d, 〈d1, . . . , dm〉)
chooses an index 1 ≤ i ≤ m+1 ≤ K in order to compute the join di
d if i ≤ m
or create a new location in the partial elaboration as described above. The key
goal of a merging heuristic is that the resulting join add as few extraneous
concrete states as possible. Such extraneous states arise since the join is but an
approximation of the disjunction of concrete states: γ(d1) ∪ γ(d2) ⊆ γ(d1
 d2).

In numerical domains, the states of the program can be viewed as points in
Rn. It is possible to correlate the extraneous concrete states with a distance
metric on the abstract objects. Let k(d, d′) be a distance metric defined on Γ
and α ∈ R be a distance cutoff. Let dmin = argmin{k(d, di)|1 ≤ i ≤ m} be the
“closest” abstract object to d w.r.t k. The merging heuristic induced by k, α is
defined as

MergeHeuristic (d, 〈d1, . . . , dm〉) =

{
dm+1, m < K and k(d, dmin) ≥ α

dmin, m = K or k(d, dmin) < α

In other words, a new location is spawned whenever it is possible to do so (i.e.,
m < K) and the closest object is farther than α apart in terms of distance. Failing
these, the closest object is chosen as the target of the unresolved transition. The
cutoff α ensures that newly formed disjuncts are initially well separated from
the others in terms of the metric k.

The Hausdorff distance, is a commonly used measure of distance between two
sets. Given P,Q ⊆ Rn, their Hausdorff distance is defined as

Hausdorff(P,Q) = maxx∈P {miny∈Q { ||x − y||}} .

While such metrics provide a good measure of the accuracy of the join, they are
hard to compute. We shall use a range-based Hausdorff distance metric.

Range Distance Metric. Let x1, . . . , xn be the program variables and d1, d2 be
abstract objects. For each variable xi, we shall compute ranges I1 : [p1, q1] and
I2 : [p2, q2] of the values of xi. Such ranges may be efficiently computed for
most numerical domains including the polyhedral domain by resorting to linear
programming. The ranges are said to be incompatible if one of the two intervals
is open in a direction where the other interval is closed, i.e., their Hausdorff dis-
tance is unbounded (∞). If the ranges are compatible, the Hausdorff distance is

14 S. Sankaranarayanan et al.

computed based on their end points. The overall distance is a lexicographic tuple
〈m, s〉 where m is the number of dimensions along which d1, d2 have incompatible
ranges while s is the sum of the distances along the compatible dimensions.

Example 6. Consider the polyhedra p1 : 1 ≤ x ≤ 5 ∧ y ≥ 0 and p2 : −1 ≤
y ≤ 1 ∧ 10 ≤ x ≤ 20. The ranges along x, [1, 5] and [10, 20] have a Hausdorff
distance of 9. On the other hand the ranges along y are [0,∞) and [−1, 1] are
incompatible. The overall distance between p1, p2 is therefore (1, 9).

Widening. Widening is applied to loops formed on the partial elaboration of the
CFG by identifying cutpoints, i.e., a set of CFG locations that cut every loop
in the CFG. Note that any loop in the partial elaboration results from a loop in
the original CFG:

Lemma 3. If Ce be a loop in a partial elaboration Πe, then ρ(Ce) is a loop in
the original CFG.

The converse is not true. Therefore, not all loops in a CFG need be replicated
as a loop in the partial elaboration. However, once a loop is formed in a partial
elaboration, it remains a cycle regardless of the other edges or locations that
may be added to the elaboration. These observations can be used to simplify
the application of widening on a CFG elaboration. To begin with, we use the
widening defined on the base domain as if the (partial) elaboration were a reg-
ular CFG. Furthermore, not all back-edges on the original CFG form a cycle
in the elaboration. This lets us limit the number of applications of widening
only to cycle-forming back-edge replications. This is one of the key advantages
of maintaining structural connections among the disjuncts in terms of a partial
elaboration. While our current treatment of widening is simplistic, the possibil-
ity of improving some of the existing widening operators over powersets [2] using
explicit connections between the domain objects, such as those arising from a
CFG elaboration, remains open.

5 Applications

We consider an application of our ideas to an intra-procedural static analyzer
for checking run time errors of systems programs written in the C language,
such as buffer overflows and null pointer dereferences. Our prototype analyzer
constructs a CFG representation by parsing while performing memory modeling
for arrays and data structures using a flow insensitive pointer analysis. This
is followed by model simplification using constant folding and range analysis.
A linearization abstraction converts operations such as multiplication, integer
division, modulo and bitwise logical operations into non-deterministic choices.
Similarly, arrays and pointers are modeled by their allocated sizes while their
contents are abstracted away.

Our analyzer is targeted towards proving buffer overflows and string access
patterns of systems code. The analyzer is context insensitive; all function calls
are inlined using caller ID variables to differentiate between calling contexts. All

Static Analysis in Disjunctive Numerical Domains 15

Table 1. Performance comparison using benchmark programs

Name KLOC #Prop #C K = 1 K = 2 K = 5 K = 10
T #P T #P T #P T #P

code1 1.5 136 56 143 44 134 76 233 77 370 77
code2 1.5 126 46 51 65 115 67 193 68 343 68
code3 2 189 92 207 84 232 81 367 84 600 83
code4 1.9 142 10 31 44 42 44 101 50 191 52
code5 15 634 22 215 176 270 176 375 182 652 184

variables are assumed to have global scope. Reduction in the number of variables
in the model is achieved by tracking live variables during the analysis and by
creating small clusters of related variables. Clusters are detected by backward
traversal of the CFG, collecting the variables that occur in the same expressions
or conditions. The maximum number of variables in each cluster is artificially
limited by a user specified parameter. For each cluster, statements involving
variables that do not belong to the current cluster are abstracted away. The
analysis is performed on each of these clusters. A property is considered proved
only if it can be proved on at least one of the abstractions.

The analysis is performed using the polyhedral domain using base domain
operations implemented in the PPL library [3] and relaxations described in our
previous work [23]. The maximum number of disjuncts K and the maximum clus-
ter sizes are parameters to this analysis. The merging heuristic used is induced
by a slight modification of the range Hausdorff distance described previously.
Back-edges are tracked dynamically in the partial elaboration thereby avoiding
unnecessary widening operations.

We analyzed a variety of benchmark programs using our analysis for differ-
ent values of K. Table 1 shows the performance comparisons for a selection of
benchmark programs. For each program “#Prop” indicates the total number of
properties to be checked, “#C” indicates the number of clusters. We employ a
clustering strategy wherein the number of variables per cluster is kept uniformly
close to 15. For each value of K, we report the time taken (T) and the number of
proofs(“#P”). Timings were measured on an Intel Pentium 3GHz processor with
4GB RAM. The gains produced by the use of disjunctive invariants are tangible
and pronounced in some cases. The lack of monotonicity of our scheme, evident
in “code3”, can be remedied by performing the analysis for smaller values of K
before attempting a large value. For a small number of disjuncts, the overhead
of merging disjuncts seems to be linear in K.

Our results are preliminary; the false positive rate is high, primarily due to our
reliance on a fixed K. The heuristics used to produce and merge disjuncts need to
be sensitive to the program locations involved. For instance, maintaining a fixed
number of disjuncts at function entry nodes produces an effect similar to an inter-
procedural analysis with a bounded number of function summaries. However,
inter-procedural analyses typically use a much larger number of summaries per
function. As a result, for programs with a deep nesting of functions, a bounded
disjunctive domain with K = 10 does not produce a dramatic improvement

16 S. Sankaranarayanan et al.

over the non disjunctive analysis (K = 1). Even though polyhedral analysis is
intractable for larger values of K such as K = 100, such an analysis should be
feasible for a less complex domain such as intervals and octagons. We believe that
pronounced improvements are also possible by considering elaborations that are
not a priori bounded by a fixed K. However, such a scheme requires sophisticated
merging heuristics to prevent an unbounded increase in the number of disjuncts.
The coarseness of the abstractions currently employed along with the lack of a
clustering strategy that performs uniformly well on all the benchmarks is another
bottleneck. Improving the abstraction and scaling up to larger values of K will
substantially reduce the number of false positives for our analyzer.

References

1. Abramsky, S., and Jung, A. Domain theory. In Handbook of Logic in Computer
Science, vol. 3. Clarendon Press, UK, 1994, ch. 1, pp. 1–168.

2. Bagnara, R., Hill, P. M., and Zaffanella, E. Widening operators for powerset
domains. In Proc. VMCAI (2004), vol. 2947 of LNCS, pp. 135–148.

3. Bagnara, R., Ricci, E., Zaffanella, E., and Hill, P. M. Possibly not closed
convex polyhedra and the Parma Polyhedra Library. In SAS (2002), vol. 2477 of
LNCS, Springer–Verlag, pp. 213–229.

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., and Rival, X. A static analyzer for large safety-critical software.
In ACM SIGPLAN PLDI’03 (June 2003), vol. 548030, ACM Press, pp. 196–207.

5. Clarisó, R., and Cortadella, J. The octahedron abstract domain. In Static
Analysis Symposium (2004), vol. 3148 of LNCS, Springer–Verlag, pp. 312–327.

6. Cousot, P., and Cousot, R. Static determination of dynamic properties of
programs. In Proc. Intl. Symp. on Programming (1976), Dunod, pp. 106–130.

7. Cousot, P., and Cousot, R. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
ACM Principles of Programming Languages (1977), pp. 238–252.

8. Cousot, P., and Cousot, R. Systematic design of program analysis frame-
works. In Symposium on Principles of Programming Languages (POPL 1979)
(1979), ACM Press, New York, NY, pp. 269–282.

9. Cousot, P., and Cousot, R. Comparing the Galois connection and widen-
ing/narrowing approaches to Abstract interpretation, invited paper. In PLILP ’92
(1992), vol. 631 of LNCS, Springer–Verlag, pp. 269–295.

10. Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
the variables of a program. In ACM POPL (Jan. 1978), pp. 84–97.

11. Das, M., Lerner, S., and Seigle, M. ESP: Path-sensitive program verifica-
tion in polynomial time. In Proceedings of Programming Language Design and
Implementation (PLDI 2002) (2002), ACM Press, pp. 57–68.

12. Dor, N., Rodeh, M., and Sagiv, M. CSSV: Towards a realistic tool for statically
detecting all buffer overflows in C. In Proc. PLDI’03 (2003), ACM Press.

13. Floyd, R. W. Assigning meanings to programs. Proc. Symposia in Applied Math-
ematics 19 (1967), 19–32.

14. Giacobazzi, R., and Ranzato, F. Optimal domains for disjunctive abstract
intepretation. Sci. Comput. Program. 32, 1-3 (1998), 177–210.

Static Analysis in Disjunctive Numerical Domains 17

15. Halbwachs, N., Proy, Y., and Roumanoff, P. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design 11 (1997), 157–
185.

16. Handjieva, M., and Tzolovski, S. Refining static analyses by trace-based par-
titioning using control flow. In SAS (1998), vol. 1503 of LNCS, Springer–Verlag,
pp. 200–214.

17. Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM
12, 10 (1969), 576–580.

18. Ivančić, F., Gupta, A., Ganai, M. K., Kahlon, V., Wang, C., and Yang, Z.
Model checking C programs using F-Soft. In Computer Aided Verification (CAV)
(2005), pp. 301–306.

19. Karr, M. Affine relationships among variables of a program. Acta Inf. 6 (1976),
133–151.

20. Manevich, R., Sagiv, S., Ramalingam, G., and Field, J. Partially disjunctive
heap abstraction. In Static Analysis Symposium (SAS) (2004), vol. 3148 of LNCS,
Springer–Verlag, pp. 265–279.

21. Mauborgne, L., and Rival, X. Trace partitioning in abstract interpretation
based static analyzers. In ESOP (2005), vol. 3444 of LNCS, Springer–Verlag,
pp. 5–20.

22. Rugina, R., and Rinard, M. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. In Proc. PLDI (2000), ACM Press.

23. Sankaranarayanan, S., Colón, M., Sipma, H. B., and Manna, Z. Efficient
strongly relational polyhedral analysis. In VMCAI (2006), LNCS, Springer–Verlag,
pp. 111–125.

24. Sankaranarayanan, S., Sipma, H. B., and Manna, Z. Scalable analysis of
linear systems using mathematical programming. In Verification, Model-Checking
and Abstract-Interpretation (VMCAI 2005) (January 2005), vol. 3385 of LNCS.

25. Simon, A., King, A., and Howe, J. M. Two variables per linear inequality as
an abstract domain. In LOPSTR (2003), vol. 2664 of Lecture Notes in Computer
Science, Springer, pp. 71–89.

26. Wagner, D., Foster, J., Brewer, E., , and Aiken, A. A first step towards
automated detection of buffer overrun vulnerabilities. In Proc. NDSS (2000), ACM
Press, pp. 3–17.

Static Analysis of Numerical Algorithms

Eric Goubault and Sylvie Putot

CEA Saclay, F91191 Gif-sur-Yvette Cedex, France
{eric.goubault, sylvie.putot}@cea.fr

Abstract. We present a new numerical abstract domain for static analy-
sis of the errors introduced by the approximation by floating-point arith-
metic of real numbers computation, by abstract interpretation [3]. This
work extends a former domain [4,8], with an implicitly relational domain
for the approximation of the floating-point values of variables, based on
affine arithmetic [2]. It allows us to analyze non trivial numerical com-
putations, that no other abstract domain we know of can analyze with
such precise results, such as linear recursive filters of different orders,
Newton methods for solving non-linear equations, polynomial iterations,
conjugate gradient algorithms.

1 Introduction

The idea of the domain of [4,8]1 is to provide some information on the source
of numerical errors in the program. The origin of the main losses of precision
is most of the time very localized, so identifying the operations responsible for
these main losses, while bounding the total error, can be very useful. The analysis
follows the floating-point computation, and bounds at each operation the error
committed between the floating-point and the real result. It relies on a model of
the difference between the result x of a computation in real numbers, and the
result fx of the same computation using floating-point numbers, expressed as

x = fx +
∑

�∈L∪{hi}
ωx

� ϕ� . (1)

In this relation, a term ωx
� ϕ�, � ∈ L denotes the contribution to the global

error of the first-order error introduced by the operation labeled �. The value
of the error ωx

� ∈ R expresses the rounding error committed at label �, and its
propagation during further computations on variable x. Variable ϕ� is a formal
variable, associated to point �, and with value 1. Errors of order higher than
one, coming from non-affine operations, are grouped in one term associated to
special label hi. We refer the reader to [4,8] for the interpretation of arithmetic
operations on this domain.

A natural abstraction of the coefficients in expression (1), is obtained using
intervals. The machine number fx is abstracted by an interval of floating-point
1 Some notations are slightly different from those used in these papers, in order to

avoid confusion with the usual notations of affine arithmetic.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 18–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Static Analysis of Numerical Algorithms 19

numbers, each bound rounded to the nearest value in the type of variable x. The
error terms ωx

i ∈ R are abstracted by intervals of higher-precision numbers, with
outward rounding. However, results with this abstraction suffer from the over-
estimation problem of interval methods. If the arguments of an operation are
correlated, the interval computed with interval arithmetic may be significantly
wider than the actual range of the result.

Resembling forms, though used in a very different way, were introduced in
the interval community, under the name of affine arithmetic [2], to overcome
the problem of loss of correlation between variables in interval arithmetic. We
propose here a new relational domain, relying on affine arithmetic for the com-
putation of the floating-point value fx. Indeed, we cannot hope for a satisfying
computation of the bounds of the error without an accurate computation of the
value, even with very accurate domains for the errors. But affine arithmetic is
designed for the estimation of the result of a computation in real numbers. We
will show that it is tricky to accurately estimate from there the floating-point
result, and that the domain for computing fx had to be carefully designed.

In section 2, we introduce this new domain and establish the definition of
arithmetic operations over it. First ideas on these relational semantics were pro-
posed in [12,13]. In section 3, we present a computable abstraction of this domain,
including join and meet operations, and a short insight into practical aspects,
such as fixed-point computations, cost of the analysis, and comparison to other
domains such as polyhedra. For lack of space, we only give hints of proofs of
the correctness of the abstract semantics, in sections 2.3 and 3.1. Finally, we
present in section 4, results obtained with the implementation of this domain in
our static analyzer FLUCTUAT, that demonstrate its interest.

Notations: Let F be the set of IEEE754 floating-point numbers (with their infini-
ties), R the set of real numbers with ∞ and −∞. Let ↑◦: R → F be the function
that returns the rounded value of a real number x, with respect to the rounding
mode ◦. The function ↓◦: R → F that returns the roundoff error is defined by

∀x ∈ R, ↓◦ (x) = x− ↑◦ (x) .

We note IR the set of intervals with bounds in R. In the following, an interval will
be noted in bold, a, and its lower and upper bounds will be noted respectively
a and a. And we identify when necessary, a number with the interval with its
two bounds equal to this number. ℘(X) denotes the set of subsets of X .

2 New Domain for the Floating-Point Value fx

Affine arithmetic was proposed by De Figueiredo and Stolfi [2], as a solution to
the overestimation in interval arithmetic. It relies on forms that allow to keep
track of affine correlations between quantities. Noise symbols are used to express
the uncertainty in the value of a variable, when only a range is known. The
sharing of noise symbols between variables expresses dependencies. We present
here a domain using affine arithmetic for the floating-point computation.

20 E. Goubault and S. Putot

In section 2.1, we present briefly the principles of affine arithmetic for real
numbers computations. Then in section 2.2, we show on an example the chal-
lenges of its adaptation to the estimation of floating-point computations. In
sections 2.3 and 2.4, we present the solution we propose, and finally in section
2.5 we demonstrate this solution on the example introduced in section 2.2.

2.1 Affine Arithmetic for Computation in Real Numbers

In affine arithmetic, a quantity x is represented by an affine form, which is a
polynomial of degree one in a set of noise terms εi :

x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn, with εi ∈ [−1, 1] and αx

i ∈ R.

Let AR denote the set of such affine forms. Each noise symbol εi stands for an
independent component of the total uncertainty on the quantity x, its value is
unknown but bounded in [-1,1]; the corresponding coefficient αx

i is a known real
value, which gives the magnitude of that component. The idea is that the same
noise symbol can be shared by several quantities, indicating correlations among
them. These noise symbols can be used not only for modelling uncertainty in
data or parameters, but also uncertainty coming from computation.

Let E0 be the set of expressions on a given set V of variables (all possible
program variables) and constants (intervals of reals), built with operators +, −,
∗, / and √ . We note ĈA the set of abstract contexts in AR. We can now define,
inductively on the syntax of expressions, the evaluation function ˆeval : E0×ĈA →
AR. For lack of space, we only deal with a few operations. The assignment of a
variable x whose value is given in a range [a, b], introduces a noise symbol εi :

x̂ = (a + b)/2 + (b− a)/2 εi.

The result of linear operations on affine forms, applying polynomial arithmetic,
can easily be interpreted as an affine form. For example, for two affine forms x̂
and ŷ, and a real number r, we get

x̂ + ŷ = (αx
0 + αy

0) + (αx
1 + αy

1)ε1 + . . . + (αx
n + αy

n)εn

x̂ + r = (αx
0 + r) + αx

1ε1 + . . . + αx
nεn

rx̂ = rαx
0 + rαx

1ε1 + . . . + rαx
nεn

For non affine operations, the result applying polynomial arithmetic is not an
affine form : we select an approximate linear resulting form, and bounds for
the approximation error committed using this approximate form are computed,
that create a new noise term added to the linear form. For example, for the
multiplication of x̂ and ŷ, defined on the set of noise symbols ε1, . . . , εn, a first
over-approximation for the result (the one given in [2]), writes

x̂× ŷ = αx
0α

y
0 +

n∑
i=1

(αx
i α

y
0 + αy

i α
x
0)εi + (

n∑
i=1

|αx
i |.|

n∑
i=1

|αy
i |)εn+1.

Static Analysis of Numerical Algorithms 21

However, this new noise term can be a large over-estimation of the non-affine
part, the additional term is more accurately approximated by

n∑
i=1

|αx
i α

y
i |[0, 1] +

∑
1≤i
=j≤n

|αx
i α

y
j |[−1, 1].

This term is not centered on zero, the corresponding affine form then writes

x̂× ŷ = (αx
0αy

0 +
1
2

n∑
i=1

|αx
i αy

i |)+
n∑

i=1

(αx
i αy

0 +αy
i αx

0)εi +(
1
2

n∑
i=1

|αx
i αy

i |+
∑
i�=j

|αx
i αy

j |)εn+1.

For example, if x̂ = ε1 + ε2 and ŷ = ε2, we get with the first formulation,
x̂× ŷ = 2ε3 ∈ [−2, 2] and with the second formulation, x̂× ŷ = 1

2 + 3
2ε3 ∈ [−1, 2].

However, the exact range here is [-0.25,2] : indeed there could be a more accurate
computation for the multiplication, using Semi-Definite Programming2.

2.2 Motivation for the Affine Real Form Plus Error Term Domain

Using affine arithmetic for the estimation of floating-point values needs some
adaptation. Indeed, the correlations that are true on real numbers after an arith-
metic operation, are not exactly true on floating-point numbers.

Consider for example two independent variables x and y that both take their
value in the interval [0,2], and the arithmetic expression ((x+ y)− y)− x. Using
affine arithmetic in the classical way, we write x = 1 + ε1, y = 1 + ε2, and we
get zero as result of the expression. This is the expected result, provided this
expression is computed in real numbers. But if we take x as the nearest floating-
point value to 0.1, and y = 2, then the floating-point result is −9.685755e− 8.

In order to model the floating-point computation, a rounding error must thus
be added to the affine form resulting from each arithmetic operation. But we
show here on an example that the natural extensions of real affine arithmetic
are not fully satisfying. We consider an iterated computation x = x − a ∗ x, for
0 ≤ a < 1 and starting with x0 ∈ [0, 2].

- With interval arithmetic, x1 = x0 − ax0 = [−2a, 2], and iterating we get an
over-approximation (due to the use of floating-point numbers), of the already
unsatisfying interval xn = [(1 − a)n − (1 + a)n, (1 − a)n + (1 + a)n].

- We now consider affine arithmetic with an extra rounding error added for
each arithmetic operation. We suppose for simplicity’s sake that all coefficients
are exactly represented, and we unfold the iterations of the loop. We note u the
value ulp(1), which is the absolute value of the difference between 1 and the
nearest floating-point number, and u = [−u, u]. We note f̂n = x̂n + δn, where
x̂n is the affine form representing the result of the computation of xn in real
numbers, and δn the interval error term giving the floating-point number. We
have x̂0 = 1 + ε1 and, using affine arithmetic on real numbers, we get

x̂n = (1 − a)n + (1 − a)n ε1 , ∀n ≥ 0.
2 We thank Stéphane Gaubert who pointed out this to us.

22 E. Goubault and S. Putot

The rounding error on x0 is δ0 = 0. Using interval arithmetic for the propagation
of the error δn, and adding the rounding errors corresponding to the product
axn and to the subtraction xn − axn, we get

δn+1 = (1 + a)δn + a(1 − a)nu + (1 − a)n+1u = (1 + a)δn + (1 − a)nu (2)

In this computation, u denotes an unknown value in an interval, that can be
different at each occurrence of u. Using property (1 − a)n ≥ 1 − an, ∀a ∈
[0, 1] and n ≥ 1, we can easily prove that for all n, nu ⊂ δn . The error term
increases, and f̂n is not bounded independently of the iterate n.

- Now, to take into account the dependencies also between the rounding errors,
we introduce new noise symbols. For a lighter presentation, these symbols are
created after the rounding errors of both multiplication ax and subtraction x−
ax, and not after each of them. Also, a new symbol is introduced at each iteration,
but it agglomerates both new and older errors. In the general case, it will be
necessary to keep as many symbols as iterations, each corresponding to a new
error introduced at a given iteration. The error term is now computed as an
affine form δ̂n = μnε2,n, with μ0 = 0 and

δ̂n+1 = (1 − a)μnε2,n + a(1 − a)nu + (1 − a)n+1u.

Introducing a new symbol ε2,n+1 ∈ [−1, 1], it is easy to prove that we can write

δ̂n = n(1 − a)n−1u ε2,n ∀n ≥ 1.

The error converges towards zero. However, we still loose the obvious information
that xn is always positive. Also the computation can be costly : in the general
case, one symbol per operation and iteration of the loop may be necessary.

We now propose a semantics that avoids the cost of extra noise symbols, and
with which we will show in section 2.5, that we can prove that xn ≥ 0, ∀n.

2.3 Semantics for the Floating-Point Value: Abstract Domain

Linear correlations between variables can be used directly on the errors or on
the real values of variables, but not on floating-point values. We thus propose
to decompose the floating-point value fx of a variable x resulting from a trace
of operations, in the real value of this trace of operations rx, plus the sum of
errors δx accumulated along the computation, fx = rx + δx. Other proposals
have been made to overcome this problem, most notably [10].

We present in this section an abstract domain, in the sense that we model
a program for sets of inputs and parameters (given in intervals). However, it is
not fully computable, as we still consider coefficients of the affine forms to be
real numbers. A more abstract semantics, and lattice operations, will be briefly
presented in the implementation section 3.

Real Part rx: Affine Arithmetic. We now index a noise symbol εi by the
label i ∈ L corresponding to the operation that created the symbol. The repre-
sentation is sparse, as all operations do not create symbols. In this section and for

Static Analysis of Numerical Algorithms 23

more simplicity, we suppose that at most one operation, executed once, is asso-
ciated to each label. The generalization will be discussed in the implementation
section.

The correctness of the semantics, defined by ˆeval, is as follows. We note rx the
smallest interval including r̂x and C, the set of concrete contexts, i.e. functions
from the variables to R, seen as a subset of ĈA. We have an obvious concretisation
function concR : ĈA → ℘(C), making all possible choices of values for the noise
symbols in the affine forms it is composed of. This also defines γ from affine
forms to intervals, which cannot directly define a strong enough correctness
criterion. Affine forms define implicit relations, we must prove that in whatever
expression we are using them, the concretisation as interval of this particular
expression contains the concrete values that this expression can take3. We have to
compare ˆeval with the evaluation function eval : E0×C → R which computes an
arithmetic expression in a given (real number) context. Formally, the semantics
of arithmetic expressions in AR, given by ˆeval, is correct because for all e ∈ E0,
for all Ĉ ∈ ĈA, we have property:

∀C ∈ concR(Ĉ), eval(e, C) ∈ γ ◦ ˆeval(e, Ĉ) (3)

Error Term δx : Errors on Bounds Combined with Maximum Error.
The rounding errors associated to the bounds rx and rx is the only informa-
tion needed to get bounds for the floating-point results. In the general case,
our semantics only gives ranges for these errors : we note δx

− and δx
+ the in-

tervals including the errors due to the successive roundings committed on the
bounds rx and rx. The set of floating-point numbers taken by variable x after
the computation then lies in the interval

fx = [rx + δx
−, rx + δx

+].

Note that δx
− can be greater for example than δx

+, so this is not equivalent to
fx = rx + (δx

− ∪ δx
+).

In affine arithmetic, the bounds of the set resulting from an arithmetic op-
eration x y are not always got from the bounds of the operands x and y as
in interval arithmetic : in this case, the error inside the set of values is also
needed. We choose to represent it by an interval δx

M that bounds all possible
errors committed on the real numbers in interval rx.

This intuition can be formalized again using abstract interpretation [3]. We
define D = AR × IR3 and γ̃ : D → ℘(R × F) by:

γ̃(d, δM , δ+, δ−) =

⎧⎪⎨⎪⎩
{(r, f) ∈ R × F/r ∈ γ(d), f − r ∈ δM}
∩
{
(r, f) ∈ R × F/f ≥ inf γ(d) + δ−

}
∩
{
(r, f) ∈ R × F/f ≤ sup γ(d) + δ+

}
The correctness criterion for the abstract semantics �� of an operator � (�R

in the real numbers, �F in the floating-point numbers) is then the classical:
3 This is reminiscent to observational congruences dating back to the λ-calculus.

24 E. Goubault and S. Putot

∀d̃, ẽ ∈ D, ∀rx, ry ∈ R, ∀fx, fy ∈ F such that (rx, fx) ∈ γ̃(d) and (ry , fy) ∈ γ̃(e),

(rx�Rr
y, fx�Ff

y) ∈ γ̃(d��e) (4)

Now the order4 on D is as follows: (d, δM , δ+, δ−) ≤D (d′, δ′
M , δ′

+, δ′
−) if⎧⎪⎨⎪⎩

d ≤D d′

δM ⊆ δ′
M[

min γ(d) + δ−,max γ(d) + δ+

]
⊆
[
min γ(d′) + δ′

−,max γ(d′) + δ′
+

]
2.4 Arithmetic Operations on Floating-Point Numbers

The error on the result of a binary arithmetic operation x y, with ∈ {+,×},
is defined as the sum of two terms :

δx�y
. = δx�y

.,p + δx�y
.,n ,

with . ∈ {−,+,M}. The propagated error δx�y
.,p is computed from the errors on

the operands, and δx�y
.,n expresses the rounding error due to current operation .

Propagation of the Errors on the Operands. The propagation of the max-
imum error uses the maximum errors on the operands. For computing the errors
on the result, we need to compute the values of the noise symbols r̂x and r̂y for
which the bounds of rz are obtained. For that, we compute the values of the εi

that give the bounds of rz, and check if for these values, we are on bounds of
rx and ry.

Let bz
i , for i ∈ L such that αz

i �= 0, be the value of εi that maximizes r̂z . We
have

rz = αz
0 −
∑

i∈L, αz
i
=0

αz
i b

z
i = αz

0 −
∑
i∈L

|αz
i |

rz = αz
0 +

n∑
i∈L, αz

i
=0

αz
i b

z
i = αz

0 +
∑
i∈L

|αz
i |

We can then compute the values of x and y that lead to the bounds of rz (such
that rz = r̂x−(z) r̂y

−(z) and rz = r̂x
+(z) r̂y

+(z)) :

r̂x−(z) = αx
0 −
∑

{i, αz
i
=0}

αx
i b

z
i +
∑

{i, αz
i =0}

αx
i εi

r̂x
+(z) = αx

0 +
∑

{i, αz
i
=0}

αx
i b

z
i +
∑

{i, αz
i =0}

αx
i εi

We note ex
−(z) (resp ex

+(z)) the interval of error associated to r̂x−(z) (resp
r̂x
+(z)), used to get the lower bound rz (resp the upper bound rz) of the result :

4 Depending on the order on AR to be formally defined in section 3.1.

Static Analysis of Numerical Algorithms 25

ex
−(z) =

⎧⎨⎩
δx

− if rx
−(z) = rx

−(z) = rx,

δx
+ if rx

−(z) = rx
−(z) = rx,

δx
M otherwise.

ex
+(z) =

⎧⎨⎩
δx
+ if rx

+(z) = rx
+(z) = rx,

δx
− if rx

+(z) = rx
+(z) = rx,

δx
M otherwise.

We deduce the following determination of ex
−(z) and ex

+(z) :
- if ∀i ∈ L such that αx

i �= 0, αx
i α

z
i > 0, then ex

−(z) = δx
− and ex

+(z) = δx
+

- else if ∀i ∈ L such that αx
i �= 0, αx

i α
z
i < 0, then ex

−(z) = δx
+ and ex

+(z) = δx
−

- else ex
−(z) = ex

+(z) = δx
M .

Then, using these notations, we can state the propagation rules

δx+y
−,p = ex

−(x + y) + ey
−(x + y)

δx+y
+,p = ex

+(x + y) + ey
+(x + y)

δx+y
M,p = δx

M + δy
M

δx×y
−,p = ex

−(x × y)ry(x× y) + ey
−(x × y)rx(x× y) + ex

−(x × y)ey
−(x × y)

δx×y
+,p = ex

+(x × y)ry(x× y) + ey
+(x × y)rx(x× y) + ex

+(x × y)ey
+(x × y)

δx×y
M,p = δx

Mry + δy
Mrx + δx

Mδy
M

Addition of the New Rounding Error. Adding the propagation error to
the result of the computation in real numbers, we get the real result of the
computation of fx fy. We then have to add a new error corresponding to the
rounding of this quantity to the nearest floating-point number.

We note ↓◦ (i), the possible rounding error on a real number in an interval i.
We suppose the rounding mode used for the execution is to the nearest floating-
point, and note it “n” as subscript.

↓n (i) =
{
↓n (i) if i = i,
1
2ulp(max(|i|, |i|))[−1, 1] otherwise.

Then, the new rounding error is defined by

δx�y
−,n = − ↓n (rx�y + δx�y

−,p)

δx�y
+,n = − ↓n (rx�y + δx�y

+,p)

δx�y
M,n = − ↓n (rx�y + δx�y

M,p)

Note that the new rounding errors on the bounds, δf�g
−,n and δf�g

+,n, are in fact
real numbers, identified to a zero-width interval.

These error computations are correct with respect to (4), section 2.3.

2.5 Example

We consider again the example introduced in section 2.2, and we now use the
domain just described. The real part is computed using affine arithmetic, as in
section 2.2. We have δx0

− = δx0
+ = δx0

M = 0 , and, for n greater or equal than 1,

26 E. Goubault and S. Putot

δaxn

− = aδxn

− + ↓n (aδxn

−)
δaxn

+ = aδxn

+ + ↓n (2a(1 − a)n + aδxn

−)

Using δ−axn

− = −δaxn

+ , we deduce

δ
xn+1
− = δxn

− + δ−axn

+ + ↓n (δxn

− + δ−axn

+)
= (1 − a)δxn

− − ↓n (aδxn

−)+ ↓n ((1 − a)δxn

− − ↓n (aδxn

−))

As δx0
− is zero, the error on the lower bound of xn stays zero : δxn

− = 0 for all
n. This means in particular that fxn ≥ 0. The same computation for the error
on the upper bound leads to

δ
xn+1
+ = (1 − a)δxn

+ − ↓n (2a(1 − a)n + aδxn

+)

+ ↓n (2(1 − a)n+1 + (1 − a)δxn

+ − ↓n (2a(1 − a)n + aδxn

+))

Using real numbers, errors on the lower and upper bounds could be computed
exactly. The maximum error on the interval is got by the same computation as
in section 2.2 with no extra noise symbols for the errors, that is by (2). Indeed,
we could also improve the computation of the maximum error this way, but it
will be no longer useful with the (future) relational computation of the errors,
to be published elsewhere.

The results got here and in section 2.2, are illustrated in figure 1. In 1 a), the
bounds of the computation in real numbers for interval (IA) and affine (AA)
arithmetic are compared : the computation by affine arithmetic gives the actual
result. In 1 b), we add to the affine arithmetic result the maximum rounding
error computed as an interval, and we see that after about 120 iterates, the
rounding error prevails and the result diverges. Then in 1 c), we represent the
maximum rounding error computed using extra noise symbols. And finally, in 1
d), we represent the rounding error computed on the higher bound of the real
interval : it is always negative. Remembering that the error on the lower bound
is zero, this proves that the floating-point computation is bounded by the result
obtained from the affine computation in real numbers. The fixpoint computation
is not presented, as it requires the join operator presented thereafter. However,
the analysis does converge to the actual fixpoint.

3 Implementation Within the Static Analyzer
FLUCTUAT

We define here a computable abstraction of the domain presented in section 2.3.
We now abstract further away from trace semantics : we need control-flow join
and meet operators, which must be designed with special care in order to get
an efficient analysis of loops. Also, the analyzer does not have access to real
numbers, we bound real coefficients by intervals. The semantics for arithmetic
operations presented in section 2.3 must thus be extended to interval coefficients.
Finally, we insist on the interest of our analysis, in terms of cost and accuracy,
compared to existing domains such as polyhedrons.

Static Analysis of Numerical Algorithms 27

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 5 10 15 20

’IA_min’
’IA_max’
’AA_min’

’AA_max’

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160

’Float_M_IA_min’
’Float_M_IA_max’

a) Real value : AA compared to IA b) AA plus interval maximum error

-1e-06

-8e-07

-6e-07

-4e-07

-2e-07

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 0 20 40 60 80 100

’DeltaM_AA_min’
’DeltaM_AA_max’

-2.5e-07

-2e-07

-1.5e-07

-1e-07

-5e-08

 0

 0 20 40 60 80 100

’Delta_plus’

c) Refined maximum error d) Error on the higher bound of the real

Fig. 1. Evolution of xn and rounding errors with iterations

3.1 Extended Abstract Domain

We note AI the set of affine forms x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn with αx

0 ∈ R
and αx

i ∈ IR (i > 0). AR is seen as a subset of AI. Let now E be the set of
expressions on variables in V , constant sets, and built with operators +, −, ∗,
/, √ , ∪ and ∩. The semantics we are going to define, through ˆeval generalized
to expressions in E and for AI, is correct with respect to criterion as (3), but
now with expressions in E . We will only need to define the additional join ∪ and
meet ∩ operations.

The set AI forms a poset, with the following order: f̂ ≤ ĝ if for all variables x,
for all abstract contexts Ĉ, calling Ĉf̂ (respectively Ĉĝ) the context which has

value Ĉ(y) for all variables y �= x, and value f̂ (respectively ĝ) for variable x, we
have:

concR ◦ ˆeval(e, Ĉf̂) ⊆ concR ◦ ˆeval(e, Ĉĝ)

Note this implies that the concretization as a subset of R of Ĉf̂ is included in
the concretization as a subset of R of Ĉĝ (take e = x). Note as well that this is
coherent with property (3), defining correctness: any bigger affine interval than a
correct one remains correct. Unfortunately, this does not define a lattice, and we
will only have approximate join and meet operations. Also, an important prop-

28 E. Goubault and S. Putot

erty is that concR does not always provide with an upper approximation of an
environment, i.e. intervals are not always less precise than affine forms, depend-
ing on the “continuation”. This can be true though, for instance if continuations
only contain linear expressions.

3.2 Join and Meet Operations

Affine Forms. Technically, we use a reduced product of the domain of affine
intervals with the domain of intervals. As we just saw, it is not true that the
evaluation of any expression using affine forms is always more accurate than the
evaluation of the same expression using intervals (i.e. f̂ ≤ γ(f̂)).

For any interval i, we note

mid(i) =↑◦
(
i + i

2

)
, dev(i) = max(↑◦ (i− mid(i)), ↑◦ (mid(i) − i))

the center and deviation of the interval, using finite precision numbers. Suppose
for instance αx

0 ≤ αy
0 . A natural join between affine forms r̂x and r̂y , associated

to a new label k is

r̂x∪y = mid([αx
0 , α

y
0]) +
∑
i∈L

(αx
i ∪ αy

i) εi + dev([αx
0 , α

y
0]) εk (5)

This join operation is an upper bound of r̂x and r̂y in the order defined in
section 3, but might be greater than the union of the corresponding intervals.
However, if the over-approximation is not too large, it is still interesting to keep
the relational formulation for further computations.

There is no natural intersection on affine forms, except in particular cases.
In the general case, a possibility is to define the meet (at a new label k) of the
affine forms as the intersection of the corresponding intervals :

r̂x∩y = mid(rx ∩ ry) + dev(rx ∩ ry) εk

Another simple possibility is to take for r̂x∩y the smaller of the two affine forms
r̂x and r̂y, in the sense of the width of the concretized intervals rx and ry.

Also, a relation can sometimes be established between the noise symbols of
the two affine forms, that may be used in further computations.

Error Domain. The union on the intervals of possible errors due to successive
roundings is

δx∪y
M = δx

M ∪ δy
M .

For errors on the bounds, a natural and correct union is δx∪y
− = δx

− ∪ δy
− and

δx∪y
+ = δx

+ ∪ δy
+. However, the set of floating-point values coming from this

model can be largely overestimated in the cases when the union of affine forms
gives a larger set of values than rx ∪ ry would do. We thus propose to use a
more accurate model, still correct with respect to correctness criterion (4), where
δx∪y

− is no longer the error on the lower bound due to successive roundings, but

Static Analysis of Numerical Algorithms 29

the representation error between the minimum value represented by the affine
form, and the minimum of the floating-point value (same thing for the error on
the maximum bound) :

δx∪y
− =

(
δx

− + rx − rx∪y
)⋃(

δy
− + ry − rx∪y

)
δx∪y
+ =

(
δx
+ + rx − rx∪y

)⋃(
δy
+ + ry − rx∪y

)
A disturbing aspect of this model is that we no longer have for all variable x,
δx

− ⊂ δx
M and δx

+ ⊂ δx
M . However, we still have δx− ≥ δx

M and δx
+ ≤ δx

M .
For the meet operation on errors, we define the obvious:

δx∩y
M = δx

M ∩ δy
M

δx∩y
− = δx

− if rx ≥ ry , else δy
−

δx∩y
+ = δx

+ if rx ≤ ry , else δy
+

3.3 Loops and Widening

In practice, a label may correspond not to a unique operation, but to sets of
operations (for example a line of program or a function). The semantics can be
easily extended to this case, creating noise symbols only when a label is met.

Moreover, in loops, different noise symbols will have to be introduced for the
same arithmetic operation at different iterations of the loop : a first solution,
accurate but costly, is to introduce each time a new symbol, that is εi,k for label
i in the loop and iteration k of the analyzer on the loop, and to keep all symbols.
A fixpoint is got when the error terms are stable, for each label j introduced out
of the loop, the interval coefficient αxn

j is stable, and for each label i introduced
in the loop, the sum of contributions

∑n
k=1 αxn

i,k[−1, 1] is stable5. That is, a
fixpoint of a loop is got at iteration n for variable x if

δxn

− ⊂ δ
xn−1
− , δxn

+ ⊂ δ
xn−1
+ , δxn

M ⊂ δ
xn−1
M

αxn

j ⊂ α
xn−1

j for all j outside the loop∑n
k=1 αxn

i,k[−1, 1] ⊂
∑n−1

k=1 α
xn−1

i,k [−1, 1] for all i in the loop

In the same way, a natural widening consists in applying a standard widening
componentwise on errors, on coefficients of the affine forms for labels outside
the loop, and on the sum

∑n
k=1 αxn

i,k[−1, 1] for a label i in the loop. However, in
some cases, reducing the affine form, or part of it, to an interval after a number
of iterations, allows to get a finite fixpoint while the complete form does not.

Another possible implementation is to keep only dependencies between a lim-
ited number of iterations of a loop, and agglomerate older terms introduced
in the loop. For example, a first order recurrence will need only dependencies
from one iteration to the next to get accurate results, while higher order recur-
5 This is a correct criterion with respect to the order defined in section 3.1, but weaker

conditions may be used as well.

30 E. Goubault and S. Putot

rences will need to keep more information. This problem has to be considered
again when getting out of the loop, for a good trade-off between efficiency and
accuracy.

3.4 Use of Finite Precision Numbers in the Analysis

The analyzer does not have access to real numbers, real coefficients in the affine
forms are abstracted using intervals with outward rounding. We use for this the
MPFR library [11] that provides arithmetic on arbitrary precision floating-point
numbers, with exact rounding. However, the abstract domain defined in 3.1 has
a real and not an interval coefficient αx

0 . Technically, this is achieved by creating
a new noise symbol whenever coefficient αx

0 can no longer be computed exactly
with the precision used. Morally, these additional noise symbols are used to keep
the maximum of correlations, even between errors introduced artificially because
of the imprecision of the analysis. Also, in some cases, using high precision
numbers is useful to get more accurate results.

3.5 Comparison with Related Abstract Domains

There is a concretisation operator from affine intervals to polyhedra, whose image
is the set of center-symmetric bounded polyhedra. Calling m the number of
variables, n the number of noise symbols, the joint range of the m variables is
a polyhedra with at most of the order of 2n faces within a n-dimensional linear
subspace of Rm (if m ≥ n). Conversely, there is no optimal way in general to
get an affine form containing a given polyhedra.

Zones [9] are particular center-symmetric bounded polyhedra, intersected with
hypercubes, so our domain is more general (since we always keep affine forms
together with an interval abstraction), even though less general than polyhedra.
It is more comparable to templates [7], where new relations are created along
the way, when needed through the evaluation of the semantic functional.

We illustrate this with the following simple program (labels are given as
comments):

x = [0,2] // 1
y = x+[0,2] // 2

z = xy; // 3
t = z-2*x-y; // 4

In the polyhedral approach, we find as invariants the following ones:

line 2 line 3 line 4{
0 ≤ x ≤ 2
0 ≤ y − x ≤ 2

⎧⎨⎩
0 ≤ x ≤ 2
0 ≤ y − x ≤ 2
0 ≤ z ≤ 8

⎧⎪⎪⎨⎪⎪⎩
0 ≤ x ≤ 2
0 ≤ y − x ≤ 2
0 ≤ z ≤ 8
−8 ≤ t ≤ 8

At line 3, we used the concretisation of the invariant of line 2 on intervals to
get the bounds for z, as is customarily done in zones and polyhedra for non-
linear expressions. The particular polyhedra that affine intervals represent make
it possible to interpret precisely non-linear expressions, which are badly handled
in other linear relational domains:

Static Analysis of Numerical Algorithms 31

line 2 line 3 line 4{
x = 1 + ε1
y = 2 + ε1 + ε2

⎧⎨⎩
x = 1 + ε1
y = 2 + ε1 + ε2
z = 5

2 + 3ε1 + ε2 + 3
2 ε3 ∈ [−3, 8]

⎧⎪⎪⎨⎪⎪⎩
x = 1 + ε1
y = 2 + ε1 + ε2
z = 5

2 + 3ε1 + ε2 + 3
2 ε3

t = − 3
2 + 3

2 ε3 ∈ [−3, 0]

Notice the polyhedral approach is momentarily, at line 3, better than the esti-
mate given by affine arithmetic 6, but the relational form we compute gives much
better results in subsequent lines: t has in fact exact range in [− 9

4 , 0] close to
what we found: [−3, 0]. This is because the representation of z contains implicit
relations that may prove useful in further computations, that one cannot guess
easily in the explicit polyhedral format (see the work [7] though).

Another interest of the domain is that the implicit formulation of relations
is very economical (in time and memory), with respect to explicit formulations,
which need closure operators, or expensive formulations (such as with polyhe-
dra). For instance: addition of two affine forms with n noise symbols costs n
elementary operations, independently of the number of variables. Multiplication
costs n2 elementary operations. Moreover, affine operations (addition and sub-
traction) do not introduce new noise symbols, and existing symbols can be easily
agglomerated to reduce this number n. This leads to an analysis whose cost can
be fairly well controlled.

It is well known that it is difficult to use polyhedra when dealing with more
than a few tens or of the order of one hundred variables. We actually used
this domain on programs containing of the order of a thousand variables (see
example CG10 where we deal with 189 variables already) with no help from any
partitioning technique.

4 Examples

Our static analyzer Fluctuat is used in an industrial context, mostly for validat-
ing instrumentation and control code. We refer the reader to [6] for more on our
research for industrial applications, but present here some analysis results. They
show that the new domain for the values of variables is of course more expensive
than interval arithmetic, but comparable to the domain used for the errors. And
it allows us to accurately analyze non trivial numerical computations.

Consider the program of figure 2 that computes the inverse of A by a Newton
method. The assertion A = BUILTIN DAED DBETWEEN(20.0,30.0) tells the an-
alyzer that the double precision input A takes its value between 20.0 and 30.0.
Then the operation PtrA = (signed int *) (&A) casts A into an array of two
integers. Its exponent exp is got from the first integer. Thus we have an initial
estimate of the inverse, xi, with 2−exp. Then a non linear iteration is computed
until the difference temp between two successive iterates is bounded by e-10.
6 However, as pointed out in section 2.1, we could use a more accurate semantics for the

multiplication. Note also that in our analyzer, we are maintaining a reduced product
between affine forms and intervals, hence we would find here the same enclosure for
z as with general polyhedra.

32 E. Goubault and S. Putot

Here, using the relational domain, Fluctuat proves that, for all inputs between
20.0 and 30.0, the algorithm terminates in a number of iterations between 5 and
9, and states that the output xi is in the interval [3.33e-2,5.00e-2] with an error
due to rounding in [-4.21e-13,4.21e-13]. Executions confirm that respectively
5 iterations for A = 20.0, and 9 iterations for A = 30.0, are needed. Exact
bounds for the number of iterations of this loop for a range of input values is a
difficult information to be synthetized by the analyzer : indeed, if we study the
same algorithm for simple precision floating-point numbers, instead of double
precision, there are cases in which the algorithm does not terminate. Also, the
interval for the values indeed is a tight enclosure of the inverse of the inputs.
The error is over-estimated, but this will be improved by the future relational
domain on the errors. More on this example can be found in [6].

Now, to demontrate the efficiency of our approach, we used it on several
typical examples, with performances shown on the table below. Column #l is the
number of lines of C code of the program, #v describes the number of variables
known to the main function (local variables are not counted). Column Int shows
the floating-point value plus global error result, using an interval abstraction of
the floating-point value. On the next line is the time spent by the analyzer, in
seconds (laptop PC, Pentium M 800MHz, 512Mb of memory), and the maximal
memory it had to use (which is allocated by big chunks, hence the round figures).
The same is done in column Aff, with the affine forms plus error domain.

Name #l #v Int Aff
(fl/int) (time/mem) (time/mem)

Poly 8 3 [-7,8] + [-3.04,3.04]e-6 ε [-2.19, 2.75] +[-2.2,2.2]e-6 ε
(3/0) (0s/4Mb) (0.01s/4Mb)

Inv 26 9 [-∞,∞] + [-∞,∞]ε [3.33,5]e-2 + [-4.2,4.2]e-13 ε
(4/5) (≥12000s/4Mb) (228s/4Mb)

F1a 29 8 [-∞,∞] + [-∞,∞]ε [-10,10] + [-∞,∞]ε
(6/2) (0.1s/4Mb) (0.63s/7Mb)

F1b 11 6 [-∞,∞] + [-∞,∞]ε [-0.95,0.95] + [-∞,∞]ε
(4/2) (0.03/4Mb) (0.26/4Mb)

idem [-1.9,1.9]e2 + [-4.8,4.8]e-3 ε
(9.66s/8Mb)

F2 19 7 [-2.5,2.5]e12 + [-2.3,2.3]e-2 ε [-1.22e-4,1.01] + [-9.4,9.4]e-4 ε
(6/1) (0.13s/4Mb) (0.45s/7Mb)

SA 164 32 [1.06,2.52] + [-4.4,4.4]e-5ε [1.39,2.03] + [-4.1,4.1]e-5 ε
(24/8) (24.96s/16Mb) (25.2s/16Mb)

SH 162 9 [-∞,∞] + [-∞,∞]ε [4.47,5.48] + [-1.4,1.4]e-4 ε
(7/2) (116.72s/4Mb) (54.07s/4Mb)

GC4 105 56 [-∞,∞] + [-∞,∞]ε [9.99,10.0] + [-3.2,3.1]e-5 ε
(53/3) (4.72s/10Mb) (1.11s/7Mb)

GC10 105 189 [-∞,∞] + [-∞,∞]ε [54.97,55.03] + [-∞,∞]ε
(186/3) (22.18s/15Mb) (15.6s/23Mb)

A2 576 75 [6.523,6.524] + [-5.5,5.6]e-6 ε [6.523,6.524] + [-5.5,5.6]e-6 ε
(59/16) (1.43s/9Mb) (2.4s/13Mb)

Static Analysis of Numerical Algorithms 33

double xi, xsi, A, temp;
signed int *PtrA, *Ptrxi, cond, exp, i;
A = __BUILTIN_DAED_DBETWEEN(20.0,30.0);
PtrA = (signed int *) (&A); Ptrxi = (signed int *) (&xi);
exp = (signed int) ((PtrA[0] & 0x7FF00000) >> 20) - 1023;
xi = 1; Ptrxi[0] = ((1023-exp) << 20);
cond = 1; i = 0;
while (cond) {
xsi = 2*xi-A*xi*xi; temp = xsi-xi;
cond = ((temp > e-10) || (temp < -e-10));
xi = xsi; i++; }

Fig. 2. Newton method for computing 1
A

Poly is the computation of a polynomial of degree 4, not in Horner form,
from an initial interval. Inv is the program we depicted above. F1a and F1b
are two linear recursive filters of order 1. F1b is almost ill-conditionned, and
needs an enormous amount of virtual unrollings to converge in interval seman-
tics (we use 5000 unfoldings of the main loop, in the line below the entry cor-
responding to F1b, named idem). The potentially infinite error found by our
current implementation of affine forms, in F1a and F1b, is due to the fact we
do not have a relational analysis on errors yet. F2 is a linear recursive filter of
order 2. SA and SH are two methods for computing the square root of a num-
ber, involving iterative computations of polynomials (in SH, of order 5). GC4
and GC10 are gradient conjugate algorithms (iterations on expressions involv-
ing division of multivariate polynomials of order 2), for a set of initial matrices
“around” the discretisation of a 1-dimensional Laplacian, with a set of initial con-
ditions, in dimensions 4x4 and 10x10 respectively in GC4 and GC10. A2 is a sam-
ple of an industrial program, involving filters, and mostly simple iterative linear
computations.

5 Conclusion

In this paper, we introduced a new domain which gives tight enclosures for both
floating-point and real value semantics of programs. This domain has been im-
plemented in our static analyzer Fluctuat, which is used in an industrial context.

As we see from the examples of section 4, it always provides much more precise
results than the interval based abstract domain of [4], at a small memory expense,
and sometimes even faster. Notice that our domain is in no way specialized, and
works also well on non-linear iterative schemes. As far as we know, no current
static analyzer is able to find as tight enclosures for such computations as we do,
not mentionning that we are also analyzing the difference between floating-point
and real number semantics. The only comparable work we know of, for bounding
the floating-point semantics, is the one of [1]. But the approach in [1] is more
specialized, and would probably compare only on first and second order linear
recursive filters.

34 E. Goubault and S. Putot

Current work includes relational methods for the error computation, as quick-
ly hinted in [13] (it should be noted that the computation of values will also
benefit from the relational computation of errors), and better heuristics for join,
meet and fixed point approximations in the domain of affine forms. We are also
working on underapproximations relying on the same kind of domains.

References

1. B. Blanchet, P. and R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux
and X. Rival. A static analyzer for large safety-critical software. PLDI 2003.

2. J. Stolfi and L. H. de Figueiredo. An introduction to affine arithmetic. TEMA
Tend. Mat. Apl. Comput., 4, No. 3 (2003), pp 297-312.

3. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Symbolic Computation, 2(4), 1992, pp 511-547.

4. E. Goubault. Static analyses of the precision of floating-point operations. In Static
Analysis Symposium, SAS’01, number 2126 in LNCS, Springer-Verlag, 2001.

5. E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-point
computations : a simple abstract interpreter. In ESOP’02, LNCS, Springer 2002.

6. E. Goubault, M. Martel, and S. Putot. Some future challenges in the validation of
control systems. In European Symposium on Real-Time Systems ERTS’06.

7. S. Sankaranarayanan, M. Colon, H. Sipma and Z. Manna. Efficient strongly rela-
tional polyhedral analysis. In Proceedings of VMCAI, to appear 2006.

8. M. Martel. Propagation of roundoff errors in finite precision computations : a
semantics approach. In ESOP’02, number 2305 in LNCS, Springer-Verlag, 2002.

9. A. Miné. The octagon abstract domain. In Journal of Higher-Order and Symbolic
Computation, to appear 2006.

10. A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In ESOP’04, number 2986 in LNCS, Springer-Verlag, 2004.

11. MPFR library Documentation and downloadable library at http://www.mpfr.org.
12. S. Putot, E. Goubault and M. Martel. Static analysis-based validation of floating-

point computations. In LNCS 2991, Springer-Verlag, 2004.
13. S. Putot, E. Goubault. Weakly relational domains for floating-point computation

analysis. In Proceedings of NSAD, 2005.

Static Analysis of String Manipulations in
Critical Embedded C Programs

Xavier Allamigeon, Wenceslas Godard, and Charles Hymans

EADS CCR DCR/STI/C
12, rue Pasteur – BP 76 – 92152 Suresnes, France

firstname.lastname@eads.net

Abstract. This paper describes a new static analysis to show the ab-
sence of memory errors, especially string buffer overflows in C programs.
The analysis is specifically designed for the subset of C that is found in
critical embedded software. It is based on the theory of abstract inter-
pretation and relies on an abstraction of stores that retains the length
of string buffers. A transport structure allows to change the granularity
of the abstraction and to concisely define several inherently complex ab-
stract primitives such as destructive update and string copy. The analysis
integrates several features of the C language such as multi-dimensional
arrays, structures, pointers and function calls. A prototype implementa-
tion produces encouraging results in early experiments.

1 Introduction

Programming in C with strings, and more generally with buffers, is risky busi-
ness. Before any copy, the programmer should make sure that the destination
buffer is large enough to accept the source data in its entirety. When it is not the
case, random bytes may end up in unexpected memory locations. This scenario
is particularly unpleasant as soon as the source data can somehow be forged by
an attacker: he may be able to smash [19] the return address on the stack and
run its own code instead of the sequel of the program. Indeed, buffer overflows
account for more than half of the vulnerabilities reported by the CERT [13] and
are a popular target for viruses [10].

Needless to say defects that may abandon control of the equipment to an in-
truder are unacceptable in the context of embedded software. Testing being not
a proof, we aim at designing a static analysis that shows the absence of memory
manipulation errors (buffer, string buffer and pointer overflows) in embedded
C software. We expect such a tool to be sound; to yield as few false alarms as
possible in practice; to require as less human intervention as possible (manual
annotations are unsuitable) and to scale to realistically sized programs. Any soft-
ware engineer would easily benefit from a tool with all these traits and could rely
on its results. Obviously the analysis should be able to handle all the features of
the C language that are used in practice in the embedded world. This requires the
smooth integration of several analysis techniques together. Simplicity of design
is also a crucial point, since the analysis implementation should be bug-free and

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 35–51, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

36 X. Allamigeon, W. Godard, and C. Hymans

cmd ::= command
| τ x; cmd variable declaration
| lv = e assignment
| ?(lv �� ’\0’) guard
| cmd1 + cmd2 alternative
| cmd1; cmd2 sequence
| cmd∗ arbitrary loop
| f() function call

τ ::= type
| β scalar type
| τ [n] array type
| {τ1 f1 . . . τn fn} structure type

β ::= scalar type
| char character type
| int integer type
| τ∗ pointer type

lv ::= left value
| x variable
| lv .f field access
| lv [e] array access
| ∗e pointer deref.

e ::= expression
| c constant
| lv left value
| e1 � e2 binary operation
| &lv address of
| (τ∗)e cast

� ::= binary operator
| +,−, ×, / integer arithmetic
| +,− pointer arithmetic

�� ::= comparison
| = equality
| �= difference

Fig. 1. Syntax

maintainable. This is not an easy task especially for a language as complex as C.
To attain these goals we adopt the methodology of abstract interpretation [5]:
section 2 presents the subset of C we tackle and its concrete semantics; section
3 describes the abstraction of strings and the sound static analysis algorithm;
section 4 shows how string copy operations are handled, and what checks are
performed by the tool; sections 5 and 6 address the implementation, experiments
and related work.

2 Embedded C Programs

2.1 Syntax

The C programming language is inherently complex, which makes the formal def-
inition of its semantics a difficult task. Hopefully and for obvious safety reasons,
programming critical embedded applications is subject to severe constraints. In
practice, only a subset of C is allowed. The main limitation results from the
obligation to know at compile time the maximum memory usage of any piece of
software. To achieve this, the use of dynamic allocation (function malloc()) and
recursive functions are both forbidden. For the sake of expositional clarity, we
set aside some additional features such as numerous C scalar types, union types
and goto statements. Dealing with these features brings issues orthogonal to the
object of this paper. Some ideas to address these issues may be found in [7,21].
In the end, we consider the relatively small kernel language with the syntax of
figure 1. Complex assignments in C are broken down to simpler assignments be-
tween scalar types. All variables declared in a given scope of the program have
distinct names.

Static Analysis of String Manipulations in Critical Embedded C Programs 37

2.2 Store

A memory address is a pair (x, o) of a variable identifier in V and an offset.
It denotes the oth byte from the address at which the content of variable x is
stored. Operation � shifts an address by a given offset:

(x, o) � i = (x, o + i)

Programs manipulate three kinds of basic values: integers in Z, characters in C
and pointers in P. For sake of simplicity, integers are unbounded. The nature of
characters is left unspecified. It is sufficient to say that there is one null character
denoted by ’\0’. A pointer is a triple 〈a, i, n〉 that references the ith byte of a
buffer that starts from address a and is n bytes long.

The store maps each allocated address to a basic value. The kind of values
stored at a given address never changes. Hence, a store σ = (σZ, σC, σP) defined
on allocated addresses A = AZ ⊕AC ⊕AP belongs to the set:

Σ = (AZ → Z) × (AC → C) × (AP → P)

In this model, any operation that alters the interpretation of data too severely
leads to an error at runtime. For instance, a cast from {int a; int b}∗ to int∗ is
valid; whereas a cast from int∗ to char∗ is illegitimate.

The layout of memory is given by two functions: sizeof(τ) returns the size of
a data of type τ and offset(f) the offset of a field f from the beginning of its
enclosing structure.

2.3 Semantics

We assign a denotational semantics [29] to the kernel language. In the following,
we use notations lv : τ and e : τ to retrieve the type τ of a left value lv or
expression e as computed by a standard C typechecker. A left value lv evaluates
to a set of addresses L{|lv |}, as formalized in figure 2. Sets allow to encode both
non-determinism and halting behaviours. A pointer of type τ∗ can be safely
dereferenced, as long as there remains enough space to store an element of type
τ . Likewise, an expression e of integer type evaluates to a set of integers RZ{|e|}.
Notice how an access to some address not allocated in the store of integer halts
program execution. We skip the classical definition of relation v1#v2 ⇒ v which
explicits the meaning of each binary operation. Definitions for expressions of
character or pointer type are completely identical. The last four equations in
figure 2 define pointer creation and cast.

Three atomic commands operate on the store:

C{|τ x; cmd |}σ = {σ′
|dom(σ) | σx = I{|τ |}(x, 0) ∧ σ′ ∈ C{|cmd |}(σ ⊕ σx)}

where dom(σ) ∩ dom(σx) = ∅
C{|lv = e|}σ = {σ[a 	→ v] | a ∈ L{|lv |}σ ∩ dom(σZ) ∧ v ∈ RZ{|e|}σ}

where lv , e : Z

C{|?(lv �� ’\0’)|}σ = {σ | v ∈ RC{|lv |}σ ∧ v �� ’\0’}

38 X. Allamigeon, W. Godard, and C. Hymans

L{|x|}σ = {(x, 0)}
L{|lv .f |}σ = {a � offset(f) | a ∈ L{|lv |}σ}
L{|lv [e]|}σ = {a � i × sizeof(τ) | a ∈ L{|lv |}σ ∧ i ∈ RZ{|e|}σ ∧ 0 ≤ i < n}

where lv : τ [n]

L{|∗e|}σ = {a � i | 〈a, i, n〉 ∈ RP{|e|}σ ∧ 0 ≤ i ≤ n − sizeof(τ)} where e : τ∗
RZ{|c|}σ = {c}

RZ{|lv |}σ = {σZ(a) | a ∈ L{|lv |}σ ∩ dom(σZ)}
RZ{|e1 � e2|}σ = {v | v1 ∈ RZ{|e1|}σ ∧ v2 ∈ RZ{|e2|}σ ∧ v1 � v2 ⇒ v}

RP{|&x|}σ = {〈(x, 0), 0, sizeof(τ)〉} where x : τ

RP{|&lv .f |}σ = {〈a, 0, sizeof(τ)〉 | a ∈ L{|lv .f |}σ} where lv .f : τ

RP{|&lv [e]|}σ = {〈a, i × sizeof(τ), sizeof(τ [n])〉 | a ∈ L{|lv |}σ ∧ i ∈ RZ{|e|}σ}
where lv : τ [n]

RP{|(τ∗)e|}σ = RP{|e|}σ

Fig. 2. Semantics of left values and expressions

At variable declaration, a new store fragment σx is initialized and concatenated
to the existing store, execution then continues until variable x is eventually
deleted from the resulting store. The new store fragment is built by induction
on the type of the declared variable:

I{|β|}a = [a 	→ v]

I{|τ [n]|}a =
⊕

0≤i<n

I{|τ |}(a � i× sizeof(τ))

I{|{τ1f1 . . . τnfn}|}a =
⊕

0<i≤n

I{|τi|}(a � offset(fi))

where v is any value of type β and ⊕ joins two disjoint stores. Assignments come
in three flavours, one for each basic type: integer, character and pointer. Here, we
only describe the integer assignment since the other two are completely similar.
Assignment to a non-allocated address brings the program to a halt. Guards let
execution continue when the store satisfies the boolean condition. We consider
only equality or disequality with the null character even though other kinds of
guards may easily be handled. The remaining commands control the flow of
execution:

C{|cmd1 + cmd2|}σ = C{|cmd1|}σ ∪ C{|cmd2|}σ
C{|cmd1; cmd2|}σ = C{|cmd2|}(C{|cmd1|}σ)

C{|cmd∗|}σ = lfp∅ Fσ

Fσ0(X) = {σ0} ∪ {σ′ | σ ∈ X ∧ σ′ ∈ C{|cmd |}σ}
C{|f()|}σ = C{|cmd |}σ where cmd is the body of function f

A programP consists of a set of functions and a main command which is executed
in an initially empty store: {|P |} = C{|cmd |}ε.

Static Analysis of String Manipulations in Critical Embedded C Programs 39

C� = {⊥C, 0,1, �C}
γC(⊥C) = ∅ γC(�C) = C

γC(0) = {’\0’}
γC(1) = C \ {’\0’}

Z� = (Z × Z)⊥
γZ(⊥Z) = ∅

γZ([l; u]) = {i | l ≤ i ≤ u}

A� = (V × Z�)�
⊥

γA(⊥A) = ∅
γA(�A) = A

γA(x,O) = {(x, o) | o ∈ γZ(O)}
P� = (A� × Z� × Z�)⊥

γP(⊥P) = ∅
γP(A, I, N) = {〈a, i, n〉 | a ∈ γA(A) ∧ i ∈ γZ(I) ∧ n ∈ γZ(N)}

Fig. 3. Abstract addresses and values

3 Static Analysis

We wish to automatically verify that all string manipulations in a program
are innocuous. This is, by nature, an undecidable problem. So, we design a
static analysis that computes an approximate but sound representation of all the
stores that result from the execution of a program. Following the methodology
of abstract interpretation [5], an abstraction of sets of stores is first devised. The
analysis algorithm is then systematically derived thanks to this abstraction from
the concrete semantics. The results of the analysis are used to check as many
potentially dangerous memory operations as possible and to emit warnings in
other cases.

3.1 Abstract Values, Integer, and Pointer Stores

Figure 3 lists the abstract domains and concretization functions used for sets of
addresses and values. These abstractions are all built from well-known standard
domains: integers are represented by ranges [5]; characters thanks to the domain
of equality/disequality with the null character; a pair of a variable identifier and
a range of possible offsets stands for a set of addresses; and abstract pointers
are triples made of an abstract address, followed by two ranges for possible
offsets and sizes. We use the standard set notations for all operations on ranges:
(⊆,∩,min,max). Moreover, I1�I2 denotes the smallest range that contains both
I1 and I2; I \ {n} the smallest range that contains all elements in I except n;
I + n (I − n) is the range obtained after the addition (subtraction) of n to all
the elements in I.

The abstract domain (D,γ) of the analysis is built as the product of three
domains: one for each type of basic value. An abstract store S is thus a triple
(SZ, SP, SC). Abstract integer SZ and pointer SP stores map each allocated ad-
dress to an abstract value of corresponding type. A fully fledged description of
these standard non-relational domains is skipped. On the other hand, the ab-
stract character store SC, being the object of our study, is discussed at length in
the next section.

40 X. Allamigeon, W. Godard, and C. Hymans

3.2 Abstract Character Store

A string in C is a sequence of characters stored in memory. The first null char-
acter (’\0’) signals the end of the string. If no null character is found before the
end of the allocated area, then the string is not well-formed. Hence the length
of a string stored on a buffer (a : n) of n consecutive bytes starting at address a
in a store σ is:

strlenσ(a : n) = min({n} ∪ {l | 0 ≤ l < n ∧ σ(a � l) = ’\0’})

Now, in order to prove the correctness of string manipulations it is necessary to
at least retain some information about the length of the various strings in the
store.

Let π be a partition of the set of all allocated addresses, such that each element
in the partition is a connected set (a buffer). The abstract store maps each buffer
in the partition to a range that approximates the possible lengths of the string
stored on that buffer:

Σ� = (π → Z�)⊥
γ(S) = {σ | ∀b ∈ π : strlenσ(b) ∈ γZ(S(b))}
γ(⊥) = ∅

Several primitives operate on the domain of character store. Each primitive
obeys a soundness condition. Normalization returns the empty store as soon as
any buffer is associated with an empty range:

η(S) =

{
⊥ if ∃b : S(b) = ⊥Z

S otherwise

Normalization preserves the meaning of the abstract store, thus: γ(η(S)) = γ(S).
From now on, we assume that the store is always in normal form so that no
abstract length can ever be the empty range. A new abstract store with no
information at all may be created using primitive universe from a partition π. It
is such that for any buffer (a : n) in π:

universe(π)(a : n) = [0;n]

It is straightforward to show that: (A → C) ⊆ γ(universe(π)). Abstract stores
S1 and S2 defined on the same partition π can be compared:

S1 � S2 ⇐⇒ (S1 = ⊥ ∨ (S2 �= ⊥ ∧ ∀b ∈ π : S1(b) ⊆ S2(b)))
⇐⇒ γ(S1) ⊆ γ(S2)

Abstract join
 and meet � operations are performed pointwise. To deal with
variable declarations, we need to concatenate stores of disjoint domains and
remove all the buffers allocated for a given variable:

⊥⊕ S = S ⊕⊥ = ⊥
S1 ⊕ S2 = S1S2

S \ x = S|{(a:n)∈π|a=(y,o)∧y
=x}

Static Analysis of String Manipulations in Critical Embedded C Programs 41

These operations verify the following set inequalities:

γ(S1) ∪ γ(S2) ⊆ γ(S1
 S2)
γ(S1) ∩ γ(S2) ⊆ γ(S1 � S2)

{σ1σ2 | σ1 ∈ γ(S1) ∧ σ2 ∈ γ(S2)} ⊆ γ(S1 ⊕ S2)
{σ|{(y,o)∈A|y
=x} | σ ∈ γ(S)} ⊆ γ(S \ x)

Boolean conditions present in if statements, switches and loops must be taken
into account in order to produce sufficiently precise results. Primitive guard con-
strains the store according to an equality or disequality comparison with char-
acter ’\0’:

{σ | σ ∈ γ(S) ∧ a ∈ γ(A) ∩ A ∧ σ(a) �� ’\0’} ⊆ γ(guard(A �� ’\0’, S))

Suppose the constraint implies that there is at least one ’\0’ character in a
memory region that spans from address (x, o1) to address (x, o2). Suppose further
that this region is contained in a unique buffer (a : n) of the partition. Then, the
length of a string starting in a is necessarily smaller than the distance δ from a
to (x, o2). Hence:

guard((x, [o1; o2]) = ’\0’, S) = η(S[a : n 	→ S(a : n) ∩ [0; δ]])

Similarly, suppose now that the value stored at address (x, o) is not the ’\0’
character. If address (x, o) belongs to some buffer a : n of the partition and δ is
the distance from a to (x, o), then:

guard((x, [o; o]) �= ’\0’, S) = η(S[b 	→ S(b) \ {δ}])

In all other cases, guard simply leaves the store unchanged:

guard(A �� ’\0’, S) = S

Transport structure and store accesses. Operations to read and write in the
store are primordial to the analysis. However they are not easily defined mainly
because the region in memory that is impacted by the operation does not nec-
essarily coincide with a particular buffer in the partition. In order to alleviate
this difficulty, we first devise transformations on the abstract store that allow
to change the underlying partition. Transformation cut Cδ splits the buffer b
into two consecutive buffers b1 and b2 of respective sizes δ and n; the reverse
transformation glue Gδ lumps together two buffers that are contiguous :

Cδ([b 	→ L]) =

{
[b1 	→ [δ; δ]; b2 	→ L− δ] if δ ≤ min(L)
[b1 	→ L ∩ [0; δ]; b2 	→ [0;n]] otherwise

Gδ([b1 	→ K; b2 	→ L]) =

{
[b 	→ K � (L + δ)] if δ ∈ K

[b 	→ K] otherwise

42 X. Allamigeon, W. Godard, and C. Hymans

read(S, A) =

⎧⎪⎨⎪⎩
⊥C if S = ⊥ ∨ A = ⊥A

eval|b|(ΦS(b)) if A = (x,O) ∧ b = tobuff(A) ∧ b ⊆ A
�C otherwise

write(S, A,V) =⎧⎪⎨⎪⎩
⊥ if S = ⊥ ∨ A = ⊥A ∨ V = ⊥Z

ΦS[b �→ update|b|(S(b), V)] if A = (x, O) ∧ b = tobuff(A) ∧ b ⊆ A
universe(π) otherwise

tobuff(x, [o1; o2]) = ((x, o1) : (o2 − o1 + 1))

evaln(L) =

⎧⎪⎨⎪⎩
0 if n = 1 ∧ L = [0; 0]
1 if L = [n; n]
�C otherwise

updaten([l; u], 0) = [0; min(u, n − 1)]

updaten([l; u], 1) =

{
[1; 1] if n = 1
[l; n] otherwise

updaten(L, �) = [0; n]

Fig. 4. Abstract memory access

Both operations are sound in that their result includes at least all the concrete
stores originally present:

γ(S ⊕ [b 	→ L]) ⊆ γ(S ⊕ Cδ([b 	→ L]))
γ(S ⊕ [b1 	→ K; b2 	→ L]) ⊆ γ(S ⊕ Gδ([b1 	→ K; b2 	→ L]))

Building on glue and cut, there is a simple algorithm to move from any partition
π1 to another π2 (of course, π1 and π2 must be defined on the same set of
allocated addresses). Starting from π1, the first step consists in splitting buffers
until we get to the coarsest partition which is finer than both π1 and π2. Then, in
a second step buffers are glued together to get back to π2. Let us introduce two
very useful shortcut notations built on top of this algorithm. In the following,
all addresses in buffer b = (a : n) are allocated (i.e. b ⊆ A):

– ΦS(b) minimally modifies the store so as to include buffer b in the result-
ing partition and then returns the value associated with this buffer. More
accurately, let π ⊕ {(a1 : n1) . . . (ak : nk)} be the initial partition, where all
buffers that overlap b are listed in increasing order as (a1 : n1) to (ak : nk).
Then the destination partition is π ⊕ {(a1 : δ), (a : n), (a � n : δ′)}, where δ
and δ′ are the respective distances from a1 to a and from a � n to ak � nk,

– ΦS[b 	→ L] transforms the partition to add buffer b as previously explained,
updates its value with L and translates back to the initial partition.

Memory accesses can now be described by the equations of figure 4. Let us
comment the cases when the abstract address A that is read or written is of the
form (x, [o1; o2]) and all the addresses from (x, o1) to (x, o2) are allocated. In
this case, the buffer b that corresponds to A starts in (x, o1) and stretches over

Static Analysis of String Manipulations in Critical Embedded C Programs 43

n = (o2 − o1 + 1) bytes. Thanks to the previously introduced transformations,
we can easily convert the abstract store so that buffer b belongs to the partition.
Then, to evaluate the value that is read, we apply function evaln to the abstract
length L associated with b. There are three cases:

– when the buffer contains only one character that is equal to ’\0’, then 0 is
returned,

– when L = [n;n], the first ’\0’ character is not in the buffer, so the returned
value is 1,

– in all other cases, there is insufficient information to conclude and �C is
returned.

The intuition that motivates definition of function update goes as follows:

– After a ’\0’ character is written somewhere in the buffer, we can be sure that
the length is strictly less than its size n. Moreover, previous ’\0’ characters
remain so that updaten([l;u],0) = [0; min(u, n− 1)].

– If exactly one non-null character is copied in a buffer of size n = 1, then the
first ’\0’ can not be at index 0, so update1(L,0) = [1; 1].

– In the remaining cases when a non-null character is written, it may erase the
first ’\0’ character in the buffer, so that the length of the string may be un-
bounded. Since non-null characters are untouched, the information about the
lower bound on the possible string lengths is kept, thus updaten([l;u],0) =
[l;n].

– At last, when an unknown value is copied, all information is lost.

These operations are sound with respect to:

{σ(a) | σ ∈ γ(S) ∧ a ∈ γA(A) ∩ dom(σ)} ⊆ γC(read(S,A))
{σ[a 	→ v] | σ ∈ γ(S) ∧ a ∈ γA(A) ∩ dom(σ) ∧ v ∈ γC(V)} ⊆ γ(write(S,A, V))

3.3 Abstract Semantics

Building on the previous primitives, the static analysis computes abstract stores
while mimicking the concrete semantics. Figure 5 presents the definition that
are specifically related to the handling of characters and strings. The remaining
aspects of the analysis are standard and thus not thoroughly described here.

Let us paraphrase some of the most spicy equations:

– To initialize a zone of memory starting at address a with a single character
or with an array of n characters, I{|τ |}a creates a store whose partition is
reduced to a unique buffer of size 1 or n and that contains no information,

– Non-deterministic choice amounts to abstract join and the sequence to func-
tion composition,

– The abstract store after a loop is the result of an abstract fixpoint com-
putation. The constructive version of Tarski’s theorem [6] suggests a naive
algorithm: starting from ⊥, the successive iterates of F� are computed un-
til stabilization. In practice other more complex algorithms [31], the use of
widening, and loop unfolding may be safely applied.

44 X. Allamigeon, W. Godard, and C. Hymans

RC[[c]]S =

{
0 if c = ’\0’
1 otherwise

RC[[lv]]S = read(SC, L[[lv]]S)

I[[char]]a = (⊥,⊥, universe({(a, 1)}))
I[[char[n]]]a = (⊥,⊥, universe({(a, n)}))

I[[τ [n]]]a =
⊕

0≤i<n

{I[[τ]](a � i × sizeof(τ))}
I[[{τ1f1 . . . τnfn}]]a =

⊕
0<i≤n

{I[[τi]](a � offset(fi))}

C[[τ x; cmd]]S = C[[cmd]](S ⊕ I[[τ]](x, 0)) \ x

C[[lv = e]](SZ, SP, SC) = (SZ, SP, write(SC, L[[lv]]S, RC[[e]])) where lv , e : char

C[[?(lv �� ’\0’)]](SZ, SP, SC) = (SZ, SP, guard(L[[lv]]S �� ’\0’, SC))

C[[cmd1 + cmd2]]S = C[[cmd1]]S � C[[cmd2]]S

C[[cmd1; cmd2]]S = C[[cmd2]](C[[cmd1]]S)

C[[cmd∗]]S = lfp⊥ F�
S

F�
S0

(S) = S0 � C[[cmd]]S

C[[f()]]S = C[[cmd]]S where cmd is the body of function f

Fig. 5. Abstract evaluation, initialization and execution of commands

Theorem 1 (Soundness). The abstract semantics of a command cmd on an
abstract store S includes all stores that are obtained by any run of the command
starting from some initial store in γ(S):

{σ′ | σ ∈ γ(S) ∧ σ′ ∈ C{|cmd |}σ} ⊆ γ(C[[cmd]]S)

Proof. The proof is done by structural induction on the syntax of commands.
It reduces to the assembly of the various atomic soundness conditions of each
primitive.

Note, that since, our static analysis is built in a modular way, it would be
possible to replace some components to improve either precision or efficiency and
still retain the overall soundness theorem. In particular any other non-relational
numerical domain can be easily used instead of ranges.

Example 1. Here are the invariants collected by the static analysis with the
character store for a small example:

l0: char buf[10]; (buf, 0) : 10 	→ [0; 10]
l1: buf[0] = ’a’; (buf, 0) : 10 	→ [1; 10]
l2: buf[4] = ’\0’; (buf, 0) : 10 	→ [1; 4]
l3: buf[1] = ’b’; (buf, 0) : 10 	→ [2; 10]
l4: buf[2] = ’\0’; (buf, 0) : 10 	→ [2; 2]

The partition is reduced to one buffer that starts at (buf, 0) of 10 bytes. Let us
delve into the details of the computation from label l2 to l3. The tool reaches
label l2 with the knowledge that the length of buf is greater than 1:

Static Analysis of String Manipulations in Critical Embedded C Programs 45

(buf, 0) : 10 	→ [1; 10]

The partition is split in three around the zone that is being written:

(buf, 0) : 4 	→ [1; 4]
(buf, 4) : 1 	→ [0; 1]
(buf, 5) : 5 	→ [0; 5]

The null character is written in buffer (buf, 4) : 1, using primitive update:

(buf, 0) : 4 	→ [1; 4]
(buf, 4) : 1 	→ [0; 0]
(buf, 5) : 5 	→ [0; 5]

At last, the buffers are glued together to restore the initial partition:

(buf, 0) : 10 	→ [1; 4]

Note that at instruction l3, after character ’b’ is written at index 1 of buf, the
upper bound on the length of the string is forgotten. This is indeed necessary.
Consider the concrete store where the first ’\0’ character is exactly at index 1;
since it is overwritten by a non-null character and the tool has no information
about the position of the remaining ’\0’ characters after the first one, the new
length is unknown.

Imagine now that the previous example were ended by a call to strcpy that
copies string buf into a buffer of size strictly larger than 2. Such a call would be
correct and the approximation computed by the tool precise enough to prove this.
Next section is about the analysis of the strcpy and the checks that are made
to show the correctness of possibly dangerous memory manipulation operations.

4 String Copy

4.1 Concrete Semantics

The syntax of commands is enriched with strcpy(e1, e2). This call copies the
string pointed to by pointer e2 into the buffer starting in e1:

C{|strcpy(e1, e2)|}σ =⎧⎪⎨⎪⎩σ[a1 � j 	→ σ(a2 � j)]0≤j≤l

∣∣∣∣∣∣∣
a1 ∈ L{|∗e1|}σ ∧ n1 = allocszA(a1)
a2 ∈ L{|∗e2|}σ ∧ n2 = allocszA(a2)
l = strlenσ(a2 : n2) ∧ l �= n2 ∧ l < n1

⎫⎪⎬⎪⎭
In the previous equation allocsz(a) denotes the number of bytes that are allocated
starting from address a. The source buffer denoted by e2 should contain a valid
string, i.e. there should be some ’\0’ character before the end of the allocated
source memory zone. In other words, the length l = strlenσ(a2 : n2) of the string
should be different from n2. Additionally, l should be smaller than the size n1 of
the destination buffer. Otherwise, there is not enough space to copy the entire
string and, according to this semantics, the program halts.

46 X. Allamigeon, W. Godard, and C. Hymans

strlen(S,A) =

⊥Z if S = ⊥∨ A = ⊥A

ΦS((x, o) : m) \ {m} A = (x, [o; o]) ∧ m = allocszA(x, o)
weakstrlen(S, b) if A = (x, O) ∧ b = tobuff(A)
[0;+∞] otherwise

strcpy(S,A,⊥) = ⊥

strcpy(S,A, [l; u]) =

⊥ if S = ⊥ ∨ A = ⊥A

η(ΦS[(x, o) : m �→ [l; m − 1]]) if A = (x, [o; o]) ∧ m = min(u + 1, allocszA(x, o))
η(weakstrcpy(S, b, [l; u])) if A = (x,O) ∧ b = tobuff(A) ∧ b ⊆ A

universe(π) otherwise

weakstrlen(S, X) =
�

{ΦS(a : m) \ {m} | a ∈ X ∧ m = allocszA(a)}

weakstrcpy(S, a : n, [l; u]) = ΦS[a : m �→ ΦS(a : m) � [l; m − 1]]
where m = min(u + n, allocszA(a))

Fig. 6. Abstract string length and string copy

4.2 Abstract Semantics

In the abstract world, strcpy is performed in two phases:

C[[strcpy(e1, e2)]]S = (SZ,SP, strcpy(SC,L[[∗e1]]S, strlen(SC,L[[∗e2]]S)))

Both phases are defined in figure 6. First, strlen retrieves the length of the source
string. When the address a of the source string is exactly known, it reads the
information associated with the buffer that starts from a and goes until the first
non-allocated address a � m. The length m represents the case when no null
character is found before the end of the buffer. This case would halt the pro-
gram and is thus eliminated from the result. Then, primitive strcpy updates the
destination buffer with the new abstract length. When the destination address
a is precisely known, the information is replaced by the new abstract length
bounded by the size of the source zone. When the possible destination addresses
are contained in a buffer (a : n), weakstrcpy merges the previous length with
interval [l;u + n − 1] bounded by the size of the destination zone. The lower
bound l corresponds to the case when the smallest string is copied to a. The
upper bound u+n− 1 corresponds to the case when the longest string is copied
to a � (n− 1). Notice how both primitives make extensive use of the algorithm
Φ to change partitions. They satisfy conditions:{

l

∣∣∣∣∣ σ ∈ γ(S) ∧ a ∈ γA(A) ∧ n = allocszA(a)
l = strlenσ(a : n) ∧ l �= n

}
⊆ γZ(strlen(S,A))⎧⎪⎨⎪⎩σ[a � j 	→ cj]0≤j≤l

∣∣∣∣∣∣∣
σ ∈ γ(S) ∧ a ∈ γA(A) ∧ l ∈ γZ(L)
n = allocszA(a) ∧ l < n

∀0 ≤ j < l : cj �= ’\0’ ∧ cl = ’\0’

⎫⎪⎬⎪⎭ ⊆ γ(strcpy(S,A, L))

Static Analysis of String Manipulations in Critical Embedded C Programs 47

This ensures the soundness of the abstract string copy with respect to its concrete
counterpart. Theorem 1 still holds.

4.3 Checks

Information gathered by the static analysis is used to check that all potentially
dangerous memory manipulations are safe. A predicate is applied to the abstract
value computed for the arguments of each operation. If the predicate does not
hold, then the tool has insufficient information to conclude the operation is safe
and it emits a warning. We present three such predicates1:

– Buffer overflows: when accessing an array of size n at any index in γZ(I),
the index should be within bounds:

check[](I, n) = (0 ≤ min(I)) ∧ (max(I) < n)

– Pointer overflows: when dereferencing a pointer P to a data of type τ , the
pointer should be within the referenced zone:

check∗(〈A, I,N〉, τ) = (0 ≤ min(I)) ∧ (max(I) + sizeof(τ) ≤ min(N))

– String buffer overflows: when copying a string of length l in γZ(L) from a
source address a in γA(x,O) to some destination address a′ in γA(y,O′), there
should be a null character before the end of the allocated memory starting
in a and there should be at least l bytes of allocated memory from a′:

check’\0’(S, (x,O), (y,O′), L) =
tobuff(x,O) ⊆ A ∧ a = (x,max(O)) ∧m = allocszA(a) ∧m /∈ ΦS(a : m)
∧ tobuff(y,O′) ⊆ A ∧ max(L) < allocszA(y,max(O′))

5 Experiments

The static analysis was implemented in OCaml [16]. It uses CIL [18] as front-end.
A simplification phase is applied to the CIL output to get to our kernel language.
The analysis then propagates the abstract store following the structure of the
code. Loops are dealt with simple fixpoint computation algorithms. Some loops
are unfolded in order to improve precision. Once computations have stabilized,
an ultimate pass checks potentially dangerous operations and emits warnings.
Excluding CIL, the whole source code totals approximately 4000 lines of code.

The design of this static analysis was constantly lead by software most similar
to what is found on actual aeronautical products. It is interesting to note that, in
these case studies, approximately 60% of calls to strcpy have a constant string as
source argument. Another 25% are called with a source buffer that is initialized
with a constant string. Experiments were performed on small benchmarks from
this software base. We sometimes had to manually remove union types which
1 All abstract arguments are suppose to be different from ⊥.

48 X. Allamigeon, W. Godard, and C. Hymans

are not handled by this analysis. Among others, all 63 calls to strcpy in a 3000
lines of code program were successfully checked. Here is a small example that
embodies some of the more difficult cases the tool had to process:
typedef struct {

char* f;
} s;
char buf[10];

void init(s* x) {
x[1].f = buf;

}

int main() {
s a[2][2];
s* ptr = (s*) &a[1];
init(ptr);
ptr = (s*) &a[0];
strcpy(a[1][1].f, "strcpy ok");
strcpy(a[1][1].f, "strcpy not ok");

}
The tool flags the second call to strcpy. Since it knows variable x and &a[1]
are aliased, it deduces that a[1][1].f has size 10 and doesn’t emit any warning
for the first call. This example demonstrates that the integration of several C
features in one tool are necessary to obtain sufficient precision.

6 Related Work

The detection of buffer overflows in C programs is an active field of research and
various approaches have been proposed.

Fuzzing is a testing technique that consists in hooking a random generator to
the inputs of a program. If the program crashes then defects may be uncovered.
Smart fuzzing tools take advantage of the network protocols [1,3] or file formats
[23] expected by the software in order to exercise the code in more depth. How-
ever, testing can usually not be exhaustive. Tools like StackGuard [8], ProPolice
[2], CRED [20] and other [28] are C compiler’s extension that implement runtime
protection mechanisms. For instance, StackGuard uses a canary to detect attacks
on the stack. Unfortunately, these techniques incur a non negligible overhead:
either by slowing down execution or using up memory. Light static analyzes may
remove unnecessary checks and improve performances [17]. In the end, all these
techniques just turn buffer overflows into denial-of-service attacks.

Static analyses can detect defects before execution of the code. Several tools
[27,25,4,15,11,30,26,12] sacrifice soundness to scalability or efficiency. Unsound
tools include fast and imprecise lexical analyzer such as ITS4 [25]. BOON [26]
and [12] both translate the verification problem into an integer constraint prob-
lem but ignore potential aliasing. Soundness is clearly mandatory in our context.
ASTREE [7], Airac [14], CGS [24] are all sound tools based on abstract interpre-
tation that aim at detecting all runtime errors in C code. ASTREE focuses on
control command software without pointers, Airac on array out of bounds and
CGS on dynamic memory manipulation. These approaches do not have any spe-
cial treatment for strings, which is a potential source of imprecision in our case.
CSSV [9] and the analysis of [22] are most close to our work. Like us, both adopt
the abstraction pioneered in [26] of strings by their possible lengths. Unlike us,
they use the expensive numerical domain of polyhedra. They handle dynamic
allocation. Instead of incorporating value and pointer analysis together, both
perform the pointer analysis separately. CSSV then translates the C program

Static Analysis of String Manipulations in Critical Embedded C Programs 49

into an integer program. It needs function level annotations to produce precise
results during a whole program analysis. CSSV can handle union types, albeit in
a very imprecise way: each memory location has a size and any assignments of a
value of different size sets the location to unknown. Interestingly, the abstraction
in [22] associates the length of strings to pointers, rather than to the buffer where
the string is stored. It seems difficult to extend the formalism in order to deal
with more language features. In particular, two pointers are aliased when they
have the same base address and length. This condition is clearly too restrictive
and prevents the handling of multi-dimensional arrays or cast operations.

7 Conclusion

We have designed and implemented a new static analysis to check the correct-
ness of all memory manipulations in C programs. It integrates several analysis
techniques to handle pointers, structures, multi-dimensional arrays, some kinds
of casts and strings. The analysis of strings is made as simple as possible thanks
to transport operators that let tune the granularity of the abstraction. First ex-
perimental results are extremely promising, and the abstraction seems adequate
to prove actual case studies correct. Further work will explore the semantics and
abstractions necessary to deal with C union types with much precision.

References

1. Dave Aitel. The advantage of block-based protocol analysis for security testing.
Technical report, Immunity,Inc., 2002.

2. A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against stack
smashing attacks. In Proceedings of the USENIX Annual Technical Conference,
2000.

3. Philippe Biondi. Scapy. http://www.secdev.org/projects/scapy/.
4. B. Chess. Improving computer security using extended static checking. In IEEE

Symposium on Security and Privacy, 2002.
5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Conference
Record of the 4th ACM Symposium on Principles of Programming Languages. ACM
Press, 1977.

6. P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 81(1), 1979.

7. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. The ASTRÉE Analyser. In Proceedings of the European Symposium on
Programming, volume 3444 of Lecture Notes in Computer Science. Springer, 2005.

8. C. Cowan and al. StackGuard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX Security Symposium.
USENIX Association, 1998.

9. Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: towards a realistic tool for
statically detecting all buffer overflows in C. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation. ACM Press,
2003.

50 X. Allamigeon, W. Godard, and C. Hymans

10. Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers: An analysis of
the internet virus of november 1988. In Proceedings of the 1989 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 1989.

11. David Evans and David Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, 19(1), 2002.

12. Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David Vitek.
Buffer overrun detection using linear programming and static analysis. In Proceed-
ings of the 10th ACM conference on Computer and communications security. ACM
Press, 2003.

13. Erich Haugh and Matthew Bishop. Testing C programs for buffer overflow vulnera-
bilities. In Proceedings of the Network and Distributed System Security Symposium.
The Internet Society, 2003.

14. Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. Taming false
alarms from a domain-unaware C analyzer by a bayesian statistical post analysis.
In Static Analysis, 12th International Symposium, volume 3672 of Lecture Notes
in Computer Science. Springer, 2005.

15. D. Larochelle and D. Evans. Statically detecting likely buffer overflow vulnerabil-
ities. In Proceedings of the 10th USENIX Security Symposium, 2001.

16. X. Leroy, D. Doliguez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective
Caml system release 3.06, documentation and user’s manual. Institut National de
Recherche en Informatique et en Automatique (INRIA), 2002.

17. George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy software. ACM Transactions
Programming Languages and Systems, 27(3), 2005.

18. George C. Necula, Scott McPeak, S.P. Rahul, and Westley Weimer. CIL: Inter-
mediate language and tools for analysis and transformation of C programs. In
Proceedings of Conference on Compiler Construction, 2002.

19. Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), 1996.
20. Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detec-

tor. In Network and Distributed System Security Symposium. The Internet Society,
2004.

21. Michael Siff, Satish Chandra, Thomas Ball, Krishna Kunchithapadam, and
Thomas W. Reps. Coping with type casts in C. In 7th European Software Engi-
neering Conference, volume 1687 of Lecture Notes in Computer Science. Springer,
1999.

22. Axel Simon and Andy King. Analyzing string buffers in C. In Proceedings of the
9th International Conference on Algebraic Methodology and Software Technology.
Springer-Verlag, 2002.

23. Michael Sutton and Adam Greene. The art of file format fuzzing. In Black Hat
USA 2005, 2005.

24. Arnaud Venet and Guillaume Brat. Precise and efficient static array bound check-
ing for large embedded C programs. In Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation. ACM Press,
2004.

25. John Viega, J. T. Bloch, Y. Kohno, and Gary McGraw. ITS4: A static vulnerability
scanner for C and C++ code. In 16th Annual Computer Security Applications
Conference. IEEE Computer Society, 2000.

26. David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first
step towards automated detection of buffer overrun vulnerabilities. In Proceedings
of the Network and Distributed System Security Symposium. The Internet Society,
2000.

Static Analysis of String Manipulations in Critical Embedded C Programs 51

27. John Wilander and Mariam Kamkar. A comparison of publicly available tools for
static intrusion prevention. In 7th Nordic Workshop on Secure IT Systems, 2002.

28. John Wilander and Mariam Kamkar. A comparison of publicly available tools for
dynamic buffer overflow prevention. In Network and Distributed System Security
Symposium. The Internet Society, 2003.

29. Glynn Winskel. The Formal Semantics of Programming Languages: An Introduc-
tion. The MIT Press, 1993.

30. Yichen Xie, Andy Chou, and Dawson R. Engler. ARCHER: using symbolic, path-
sensitive analysis to detect memory access errors. In Proceedings of the 11th ACM
SIGSOFT Symposium on Foundations of Software Engineering. ACM, 2003.

31. K. Yi. Yet another ensemble of abstract interpreter, higher-order data-flow equa-
tions, and model checking. Technical Memorandum 2001-10, Research on Program
Analysis System, National Creative Research Center, Korea Advanced Institute of
Science and Technology, 2001.

Abstract Regular Tree Model Checking of
Complex Dynamic Data Structures

Ahmed Bouajjani1, Peter Habermehl1, Adam Rogalewicz2, and Tomáš Vojnar2

1 LIAFA, University of Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris 5, France
{Ahmed.Bouajjani, Peter.Habermehl}@liafa.jussieu.fr

2 FIT, Brno University of Technology, Božetěchova 2, CZ-61266, Brno, Czech
Republic

{rogalew, vojnar}@fit.vutbr.cz

Abstract. We consider the verification of non-recursive C programs ma-
nipulating dynamic linked data structures with possibly several next
pointer selectors and with finite domain non-pointer data. We aim at
checking basic memory consistency properties (no null pointer assign-
ments, etc.) and shape invariants whose violation can be expressed in an
existential fragment of a first order logic over graphs. We formalise this
fragment as a logic for specifying bad memory patterns whose formulae
may be translated to testers written in C that can be attached to the
program, thus reducing the verification problem considered to checking
reachability of an error control line. We encode configurations of pro-
grams, which are essentially shape graphs, in an original way as extended
tree automata and we represent program statements by tree transduc-
ers. Then, we use the abstract regular tree model checking framework for
a fully automated verification. The method has been implemented and
successfully applied on several case studies.

1 Introduction

Automated verification of programs manipulating dynamic linked data struc-
tures is currently a very live research area. This is partly due to the fact that
programs manipulating pointers are often complex and tricky, and so methods
for automatically analysing them are quite welcome, and also because automated
verification of such programs is not easy. Programs manipulating dynamic linked
data structures are typically infinite-state systems, their configurations have in
general the form of unrestricted graphs (often referred to as the shape graphs),
and the shape invariants of these graphs may be temporarily broken by the
programs during destructive pointer updates.

In this paper, we propose a new fully-automated method for analysing various
important properties of programs manipulating dynamic linked data structures.
We consider non-recursive C programs (with variables over finite data domains)
manipulating dynamic linked data structures with possibly several next pointer
selectors. The properties we consider are basic consistency of pointer manipula-
tions (no null pointer assignments, no use of undefined pointers, no references to
deleted elements). Further undesirable behaviour of the verified programs (e.g.,

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 52–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Abstract Regular Tree Model Checking 53

breaking of certain shape invariants such as an introduction of undesirable shar-
ing, cycles, etc.) may be detected via testers written in C and attached to the
verified procedures. Moreover, for a more declarative way of specifying undesir-
able behaviour of the considered programs, we introduce a special-purpose logic
LBMP (logic of bad memory patterns) and we show that its formulae may be
automatically translated into C testers. Then, verification of these properties
reduces to reachability of a designated error location.

Our verification method is based on using the approach of abstract regular tree
model checking (ARTMC) [9]. In regular tree model checking, configurations of
the systems being examined are encoded as trees over a suitable ranked alphabet,
sets of configurations are described by tree automata, and transitions of the
systems are encoded as tree transducers. Subsequently, one computes the set of
all configurations reachable from an initial set of configurations by repeatedly
applying the tree transducers on the set of the so-far reached configurations
(encoded as tree automata). In order to make the method terminate as often
as possible and to fight the state explosion problem arising due to increasing
sizes of the automata to be handled, various kinds of automatically refinable
abstractions over automata are used in ARTMC.

In order to be able to apply ARTMC for verification of programs manipulat-
ing dynamic linked data structures, whose configurations (shape graphs) need
not be tree-like, we propose an original encoding of shape graphs based on tree
automata. We use trees to encode the tree skeleton of a shape graph. The edges
of the shape graph that are not directly encoded in the tree skeleton are then
represented by routing expressions over the tree skeleton—i.e., regular expres-
sions over directions in a tree (as, e.g., left up, right down, etc.) and the kind of
nodes that can be visited on the way. Both the tree skeletons and the routing
expressions are automatically discovered by our method. The idea of using rout-
ing expressions is inspired by PALE [28] and graph types [24] although there,
they have a bit different form (see below) and are defined manually.

Next, we show how all pointer-manipulating statements of the C program-
ming language (without pointer arithmetics, recursion, and with finite-domain
non-pointer data) may be automatically translated to tree transducers over the
proposed tree-automata-based representation of sets of shape graphs.

We implemented our method in a prototype tool based on the Mona tree li-
braries [23]. We have tested it on a number of non-trivial procedures manipu-
lating singly-linked lists (SLL), doubly-linked lists (DLL), trees (including the
Deutsch-Schorr-Waite tree traversal), lists of lists, and also trees with linked
leaves. To the best of our knowledge, verifying some properties on trees with
linked leaves have so-far not been considered in any other fully automated tool.
The experimental results obtained from our tool are quite encouraging (and,
moreover, we believe that there is still a lot of room for further improvements
as we have, e.g., not used the mechanism of Mona’s guided tree automata, we
have used general-purpose, not specialised abstractions as in [11], etc.).

Related Work. There have been and there are currently being investigated
various approaches to verification of programs manipulating dynamic linked data

54 A. Bouajjani et al.

structures that differ in the degree of automation, generality, and/or principles
used. Out of these techniques, we mention TVLA based on 3-valued predicate
logic with transitive closure [29,26], PALE based on WSkS and tree automata
[28], approaches based on predicate abstraction [4,27], memory patterns [32,15],
graph grammars [25], separation logic [18], alias logic [14], or various (extended)
automata [20,17,7]. Among these approaches, our method belongs to the most
automated and at the same time most general ones.

The closest approach to what we propose here is the one of PALE that also
uses tree automata (derived from WSkS formulae) as well as the idea of a tree
skeleton and routing expressions. However, first, the encoding of PALE is differ-
ent in that the routing expressions must deterministically choose their target,
and also, for a given memory node, selector, and program line, the expression is
fixed and cannot dynamically change during the run of the analysed program.
Further, program statements are modelled as transformers on the level of WSkS
formulae, not as transducers on the level of tree automata. Finally, the approach
of PALE is not fully automatic as the user has to manually provide loop invari-
ants and all needed routing expressions, which are automatically synthesised in
our approach.

In [8], we proposed a method based on abstract regular word model checking
for verifying programs with 1-selector dynamic data structures. The concept of
regular word model checking was studied in a series of works—including, for
instance, [22,12,1,6,11,21,31]. Several different works [30,13,2,3,9] have appeared
on the subject of regular tree model checking as well. Our approach of abstract
regular (tree) model checking provides efficiency and is the only one that has been
so-far applied in the area of verifying programs with dynamic data structures.

Top-down tree automata on infinite trees are used for verification of pointer
manipulating programs in [17]. Here, linked data structures are represented with
unfolded loops as infinite trees. Unlike our general approach, the work identifies
and concentrates on a decidable fragment of pointer manipulating programs and
their properties. The allowed programs may be compiled into an automaton on
pairs of trees, composed with the given input tree automaton, the undesirable
output tree automaton, and emptiness of the product is then checked.

The logic LBMP we use is close to the existential (positive) fragment of the logic
of reachable patterns (LRP) in linked data-structures [33] but there the purpose
is to have a decidable logic for reasoning about post- and pre-conditions and clo-
sure under negation is important. In our work we only need to express negation of
invariance properties, and our verification approach is model checking.

2 The Class of Programs and Properties Considered

2.1 The Considered Programs

We consider standard, non-recursive C programs manipulating dynamic linked
data structures (with possibly several next pointer selectors). We do not con-
sider pointer arithmetics. We suppose all non-pointer data to be abstracted to a
finite domain by some of the existing techniques before our method is applied.

Abstract Regular Tree Model Checking 55

// Doubly-Linked Lists
typedef struct {

DLL *next, *prev;
} DLL;

DLL *DLL_reverse(DLL *x) {
DLL *y,*z;
z = NULL;
y = x->next;
while (y!=NULL) {

x->next = z;
x->prev = y;
z = x; x = y;
y = x->next

}
return x;

}
Fig. 1. Reversing a DLL

In the paper, we concentrate on the follow-
ing pointer manipulating program statements:
x=NULL, x=y, x = y->next, x->next = y, x =
malloc(), free(x), and if (x==y) goto L1;
else goto L2; for pointer variables x and y
and program line labels L1 and L2. We sup-
pose some further, commonly used statements
(such as while loops or nested dereferences)
to be encoded by the listed statements. For
brevity, we do not explicitly discuss manipula-
tion of non-pointer finite-domain data, which is
anyway straightforward. An example of a typi-
cal program that our method can handle is the
reversion of doubly-linked lists (DLL) shown in
Fig. 1, which we also use as our running example.

2.2 The Considered Properties

First of all, the properties we intend to check
include basic consistency of pointer manipulations, i.e. absence of null and un-
defined pointer dereferences and references to already deleted nodes. Further,
we would like to check various shape invariance properties (such as absence of
sharing, acyclicity, or, e.g., the fact that if x->next == y (and y is not null) in
a DLL, then also y->prev == x, etc.). To define such properties we propose two
approaches described below.

x = aDLLHead;
while (x != NULL && random())

x = x->next;
if (x != NULL

&& x->next->prev != x)
error();

Fig. 2. Checking the consistency
of the next and previous pointers

Shape Testers. First, we use the so-called
shape testers written in the C language. They
can be seen as instrumentation code trying to
detect violations of the memory shape proper-
ties at selected control locations of the orig-
inal program. We extend slightly the C lan-
guage used by the possibility of following next
pointers backwards and by non-deterministic
branching. For our verification tool, the testers
are just a part of the code being verified. An
error is announced when a line denoted by an error label is reached. This way,
we can check a whole range of properties (including acyclicity, absence of shar-
ing and other shape invariants as the relation of next and previous pointers in
DLLs—cf. Fig 2).

A Logic of Bad Memory Patterns. Second, in order to allow the undesired
violations of the memory shape properties to be specified more easily, we propose
a logic-based specification language—namely, a logic of bad memory patterns
(LBMP)—that is a fragment of the existential first order logic on graphs with
(regular) reachability predicates (and an implicit existential quantification over
paths). When defining the logic, our primary concern is not to obtain a decidable

56 A. Bouajjani et al.

logic but rather to obtain a logic whose formulae may be automatically translated
to the above mentioned C testers allowing us to efficiently test whether some bad
shapes may arise from the given program by testing reachability of a designated
error control line of a tester.

Let V be a finite set of program variables and S a finite set of selectors. The
formulae of LBMP have the form Φ ::= ∃w1, ...wn.ϕ where W = {w1, ..., wn},
V ∩ W = ∅, is a set of formulae variables, ϕ ::= ϕ ∨ ϕ | ψ, ψ ::= ψ ∧ ψ | x�y,
x, y ∈ V ∪ W, and � is a reachability formula defined below. To simplify the
formulae, we allow y in x�y to be skipped if it is not referred to anywhere else.
We suppose such a missing variable to be implicitly added and existentially
quantified. Given a ψ formula, we define its associated graph to be the graph
Gψ = (V ∪W, E) where (x, y) ∈ E iff x�y is a conjunct in ψ. To avoid guessing
in the tester corresponding to a formula, we require Gψ of every top level ψ
formula to have all nodes reachable from elements of V .

An LBMP reachability formula has the form � ::= s→| s←| � + � | �.� | �∗ | [σ]
where s ∈ S and σ is a local neighbourhood formula. Finally, an LBMP local
neighbourhood formula has the form ∃u1, ..., um.BC(x s→ y, x = y) where U =
{u1, ..., um} is a set of local formula variables, U ∩ (V ∪W∪{p}) = ∅, p �∈ V ∪W,
s ∈ S, x ∈ V ∪W ∪U ∪ {p}, y ∈ V ∪W ∪U ∪ {p,⊥,�}, and BC is the Boolean
closure. Here, ⊥ represents NULL, � an undefined value, and p is a special variable
that always represents the current position in a shape graph. Moreover, to avoid
guessing in the evaluation of the local neighbourhood formulae, we require that if
σ is transformed into σ′ in DNF, and we construct a graph based on the positive
s→ literals for each disjunct of σ′, each node of such a graph is reachable from p.

The semantics of LBMP formulae is relatively straightforward. Therefore we
defer its description to the full version of the paper [10]. Instead, we illustrate
the semantics of LBMP formulae on several examples expressing undesirable
phenomena that we would like to avoid when manipulating acyclic doubly-linked
lists. In their case, it is undesirable if one of the following happens after some
operation (as, for instance, reversion) on a given list—we suppose the resulting
list to be pointed via the program variable l:

1. The list does not end with null, which can be tested via l
n→

∗
[p = �],

2. The predecessor of the first element is not null, which corresponds to l[¬(p b→
⊥)],

3. The predecessor of the successor of a node n is not n, which can be detected
via the formula l

n→
∗

[∃x. p n→ x ∧ x �= ⊥ ∧ ¬(x
p→ p)], or

4. The list is cyclic, i.e. ∃x. l n→
∗

[p = x] n→ n→
∗

[p = x]. (Note that this property
is in fact implied by items 2 and 3.)

All the given formulae can be joint by disjunction into a single LBMP formula.
Due to the space limitations, we do not provide more examples of LBMP for-
mulae, but we note that for all the structures mentioned later in Section 5, we
are able to specify all the commonly considered undesirable situations in LBMP
(some more examples of LBMP formulae can then be found in the full version
of the paper [10]).

Abstract Regular Tree Model Checking 57

Due to a lack of space, the procedure for translating LBMP formulae is de-
scribed in the full version of the paper [10]. Intuitively, it is quite easy to see
that the existentially quantified LBMP formulae with a stress on exploring paths
through the examined linked data structures starting from program variables
can be encoded in a slightly extended C code, put after the program being ver-
ified, and used in an efficient way for checking safety of the given program. We
translate disjunctions to non-deterministic branching, conjunctions and series
of reachability formulae to series of tests, iteration in the reachability expres-
sions to non-deterministic while loops. The needed extension of C includes non-
deterministic branching and the possibility of following next pointers backwards.
Both of these features may easily be handled in our verification framework.

2.3 The Verification Problem

Our verification problem is model checking of the described undesirable exis-
tential properties against the given program. Above, we explain that for the
specification of a violation of shape invariants, we use shape testers or LBMP
whose formulae are translated into shape testers. For shape testers, we need
to check unreachability of their designated error location. Moreover, we model
all program statements such that if some basic memory consistency error (like
a null pointer assignment) happens, the control is automatically transferred to
a unique error control location. Thus, we are in general interested in checking
unreachability of certain error control locations in a program.

3 Automata-Based Verification Framework

In this section, we introduce the abstract tree regular model-checking framework
based on tree automata and transducers that we use for solving our verification
problem.

3.1 Tree Automata and Transducers
Terms and Trees. An alphabet Σ is a finite set of symbols. Σ is called ranked if
there exists a rank function ρ : Σ → N. For each k ∈ N, Σk ⊆ Σ is the set of all
symbols with rank k. Symbols of Σ0 are called constants. Let χ be a denumerable
set of symbols called variables. TΣ [χ] denotes the set of terms over Σ and χ. The
set TΣ[∅] is denoted by TΣ, and its elements are called ground terms. A term t from
TΣ[χ] is called linear if each variable occurs at most once in t.

A finite ordered tree t over a set of labels L is a mapping t : Pos(t) → L
where Pos(t) ⊆ N∗ is a finite, prefix-closed set of positions in the tree. A term
t ∈ TΣ [χ] can naturally also be viewed as a tree whose leaves are labelled by
constants and variables, and each node with k sons is labelled by a symbol from
Σk [16]. Therefore, below, we sometimes exchange terms and trees. We denote
N lPos(t) = {p ∈ Pos(t) | ¬∃i ∈ N : pi ∈ Pos(t)} the set of non-leaf positions.

Tree Automata. A bottom-up tree automaton over a ranked alphabet Σ is a
tuple A = (Q,Σ, F, δ) where Q is a finite set of states, F ⊆ Q is a set of final

58 A. Bouajjani et al.

states, and δ is a set of transitions of the following types: (i) f(q1, . . . , qn) →δ q,
(ii) a →δ q, and (iii) q →δ q′ where a ∈ Σ0, f ∈ Σn, and q, q′, q1, . . . , qn ∈ Q.
Below, we call a bottom-up tree automaton simply a tree automaton.

Let t be a ground term. A run of a tree automaton A on t is defined as follows.
First, leaves are labelled with states. If a leaf is a symbol a ∈ Σ0 and there is a
rule a →δ q ∈ δ, the leaf is labelled by q. An internal node f ∈ Σk is labelled
by q if there exists a rule f(q1, q2, . . . , qk) →δ q ∈ δ and the first son of the node
has the state label q1, the second one q2, ..., and the last one qk. Rules of the
type q →δ q′ are called ε-steps and allow us to change a state label from q to q′.
If the top symbol is labelled with a state from the set of final states F , the term
t is accepted by the automaton A.

A set of ground terms accepted by a tree automaton A is called a regular tree
language and is denoted by L(A). Let A = (Q,Σ, F, δ) be a tree automaton and
q ∈ Q a state, then we define the language of the state q—L(A, q)—as the set of
ground terms accepted by the tree automaton Aq = (Q,Σ, {q}, δ). The language
L≤n(A, q) is defined to be the set {t ∈ L(A, q) | height(t) ≤ n}.

Tree Transducers. A bottom-up tree transducer is a tuple τ = (Q,Σ,Σ′, F, δ)
where Q is a finite set of states, F ⊆ Q a set of final states, Σ an input ranked
alphabet, Σ′ an output ranked alphabet, and δ a set of transition rules of the
following types: (i) f(q1(x1), . . . , qn(xn)) →δ q(u), u ∈ TΣ′ [{x1, . . . , xn}], (ii)
q(x) →δ q′(u), u ∈ TΣ′ [{x}], and (iii) a →δ q(u), u ∈ TΣ′ where a ∈ Σ0, f ∈ Σn,
x, x1, . . . , xn ∈ χ, and q, q′, q1, . . . , qn ∈ Q. In the following, we call a bottom-up
tree transducer simply a tree transducer. We always use tree transducers with
Σ = Σ′.

A run of a tree transducer τ on a ground term t is similar to a run of a tree
automaton on this term. First, rules of type (iii) are used. If a leaf is labelled
by a symbol a and there is a rule a →δ q(u) ∈ δ, the leaf is replaced by the
term u and labelled by the state q. If a node is labelled by a symbol f , there is a
rule f(q1(x1), q2(x2), . . . , qn(xn)) →δ q(u) ∈ δ, the first subtree of the node has
the state label q1, the second one q2, . . ., and the last one qn, then the symbol
f and all subtrees of the given node are replaced according to the right-hand
side of the rule with the variables x1, . . . , xn substituted by the corresponding
left-hand-side subtrees. The state label q is assigned to the new tree. Rules of
type (ii) are called ε-steps. They allow us to replace a q-state-labelled tree by
the right hand side of the rule and assign the state label q′ to this new tree with
the variable x in the rule substituted by the original tree. A run of a transducer
is successful if the root of a tree is processed and is labelled by a state from F .

A tree transducer is linear if all right-hand sides of its rules are linear (no
variable occurs more than once). The class of linear bottom-up tree transducers
is closed under composition. A tree transducer is called structure-preserving (or a
relabelling) if it does not modify the structure of input trees and just changes the
labels of their nodes. By abuse of notation, we identify a transducer τ with the
relation {(t, t′) ∈ TΣ × TΣ | t →∗

δ q(t′) for some q ∈ F}. For a set L ⊆ TΣ and a
relation R ⊆ TΣ ×TΣ, we denote R(L) the set {w ∈ TΣ | ∃w′ ∈ L : (w′, w) ∈ R}
and R−1(L) the set {w ∈ TΣ | ∃w′ ∈ L : (w,w′) ∈ R}. If τ is a linear tree

Abstract Regular Tree Model Checking 59

transducer and L is a regular tree language, then the sets τ(L) and τ−1(L) are
regular and effectively constructible [19,16].

Let id ⊆ TΣ × TΣ be the identity relation and ◦ the composition of relations.
We define recursively the relations τ0 = id, τ i+1 = τ ◦ τ i and τ∗ = ∪∞

i=0τ
i.

Below, we suppose id ⊆ τ meaning that τ i ⊆ τ i+1 for all i ≥ 0.

3.2 Abstract Regular Tree Model Checking

Let us recall the basic principles of abstract regular tree model checking (ARTMC)
[9]. Let Σ be a ranked alphabet and MΣ the set of all tree automata over Σ. Let
Init ∈ MΣ be a tree automaton describing a set of initial configurations, τ a tree
transducer describing the behaviour of a system, andBad ∈ MΣ a tree automaton
describing a set of bad configurations. The verification problem is to check whether

τ∗(L(Init)) ∩ L(Bad) = ∅ (1)

One of the methods how to check this is ARTMC [9]. Instead of computing the
precise set of reachable configurations, it computes an overapproximation.

We define an abstraction function as a mappingα : MΣ → AΣ where AΣ ⊆ MΣ

and ∀M ∈ MΣ : L(M) ⊆ L(α(M)). An abstraction α′ is called a refinement of
the abstraction α if ∀M ∈ MΣ : L(α′(M)) ⊆ L(α(M)). Given a tree transducer
τ and an abstraction α, we define a mapping τα : MΣ → MΣ as ∀M ∈ MΣ :
τα(M) = τ̂ (α(M))where τ̂(M) is the minimal deterministic automaton describing
the language τ(L(M)). An abstraction α is finitary, if the set AΣ is finite.

For a given abstraction function α, we can compute iteratively the sequence of
automata (τ i

α(Init))i≥0. If the abstraction α is finitary, then there exists k ≥ 0
such that τk+1

α (Init) = τk
α(Init). The definition of the abstraction function α

implies, that L(τk
α(Init)) ⊇ τ∗(L(Init)).

If L(τk
α(Init)) ∩ L(Bad) = ∅, then the verification problem (1) has a positive

answer. If the intersection is non-empty, we must check whether it is a real
counterexample, or a spurious one. The spurious counterexample may be caused
by the used abstraction (the counterexample is not reachable from the set of
initial configurations). Assume that τk

α(Init) ∩ L(Bad) �= ∅, which means that
there is a symbolic path:

Init, τα(Init), τ2
α(Init), · · · τn−1

α (Init), τn
α (Init) (2)

such that L(τn
α (Init)) ∩ L(Bad) �= ∅.

Let Xn = L(τn
α (Init))∩L(Bad). Now, for each l, 0 ≤ l < n, we compute Xl =

L(τ l
α(Init))∩ τ−1(Xl+1). Two possibilities may occur: (a) X0 �= ∅, which means

that the verification problem (1) has a negative answer, and X0 ⊆ L(Init) is a
set of dangerous initial configurations. (b) ∃m, 0 ≤ m < n,Xm+1 �= ∅ ∧Xm = ∅
meaning that the abstraction function is too rough—we need to refine it and
start the verification process again.

In [9], two general-purpose kinds of abstractions are proposed.Both are based on
automata state equivalences. Tree automata states are split into several equivalence
classes, and all states from one class are collapsed into one state. An abstraction

60 A. Bouajjani et al.

becomes finitary if the number of equivalence classes is finite. The refinement is
done by refining the equivalence classes. Both of the proposed abstractions allow
for an automatic refinement to exclude the encountered spurious counterexample.

The first proposed abstraction is an abstraction based on languages of trees of
a finite height. It defines two states equivalent if their languages up to the give
height n are equivalent. There is just a finite number of languages of height n,
therefore this abstraction is finitary. A refinement is done by an increase of the
height n. The second proposed abstraction is an abstraction based on predicate
languages. Let P = {P1, P2, . . . , Pn} be a set of predicates. Each predicate P ∈ P
is a tree language represented by a tree automaton. Let M = (Q,Σ, F, δ) be a
tree automaton. Then, two states q1, q2 ∈ Q are equivalent if their languages
L(M, q1) and L(M, q2) have a nonempty intersection with exactly the same sub-
set of predicates from the set P . Since there is just a finite number of subsets of
P , the abstraction is finitary. A refinement is done by adding new predicates, i.e.
tree automata corresponding to the languages of all the states in the automaton
of Xm+1 from the analysis of spurious counterexample (Xm = ∅).

4 Tree Automata Encoding of Pointer Manipulating
Programs

4.1 Encoding of Sets of Memory Configurations

Memory configurations of the considered programs with a finite set of pointer
variables V , a finite set of selectors S = {1, ..., k}, and a finite domain D of data
stored in dynamically allocated memory cells can be described as shape graphs
of the following form. A shape graph is a tuple SG = (N,S, V,D) where N is a
finite set of memory nodes, N∩{⊥,�} = ∅ (we use ⊥ to represent null, and � to
represent an undefined pointer value), N⊥,� = N ∪{⊥,�}, S : N×S → N⊥,� is
a successor function, V : V → N⊥,� is a mapping that defines where the pointer
variables are currently pointing to, and D : N → D defines what data are stored
in the particular memory nodes. We suppose � ∈ D—the data value � is used
to denote “zombies” of deleted nodes, which we keep and detect all erroneous
attempts to access them.

To be able to describe the way we encode sets of shape graphs using tree
automata, we first need a few auxiliary notions. First, to allow for dealing with
more general shape graphs than tree-like, we do not simply identify the next
pointers with the branches of the trees accepted by tree automata. Instead, we
use the tree structure just as a backbone over which links between the allocated
nodes are expressed using the so-called routing expressions, which are regular
expressions over directions in a tree (like move up, move left down, etc.) and over
the nodes that can be seen on the way. From nodes of the trees described by tree
automata, we refer to the routing expressions via some symbolic names called
pointer descriptors that we assign to them—we suppose dealing with a finite
set of pointer descriptors R. Moreover, we couple each pointer descriptor with
a unique marker from a set M (and so ||R|| = ||M||). The routing expressions

Abstract Regular Tree Model Checking 61

may identify several target nodes for a single source memory node and a single
selector. Markers associated with the target nodes can then be used to decrease
the non-determinism of the description (only nodes marked with the right marker
are considered as the target).

Let us now fix the sets V , S, D, R, and M. We use a ranked alphabet Σ =
Σ2 ∪ Σ1 ∪ Σ0 consisting of symbols of ranks k = ||S||, 1, and 0. Symbols of
rank k represent allocated memory nodes that may be pointed by some pointer
variables, may be marked by some markers as targets of some next pointers, they
contain some data and have k next pointers specified either as null, undefined,
or via some next pointer descriptor. Thus, Σ2 = 2V × 2M ×D× (R∪ {⊥,�})k.
Given an element n ∈ Σ2, we use the notation n.var, n.mark, n.data, and n.s
(for s ∈ S) to refer to the pointer variables, markers, data, and descriptors
associated with n, respectively. Σ1 is used for specifying nodes with undefined
and null pointer variables, and so Σ1 = 2V . Finally, in our trees, the leaves are
all the same (with no special meaning), and so Σ0 = {•}.

We can now specify the tree memory backbones we use to encode memory
configurations as the trees that belong to the language of the tree automaton with
the following rules1: (1) • → qi, (2) Σ2(qi/qm, ..., qi/qm) → qm, (3) Σ1(qm/qi) →
qn, and (4) Σ1(qn) → qu. Intuitively, qi, qm, qn, and qu are automata states,
where qi accepts the leaves, qm accepts the memory nodes, qn accepts the node
encoding null variables, and qu, which is the accepting state, accepts the node
with undefined variables. Note that there is always a single node with undefined
variables, a single node with null variables, and then a sub-tree with the memory
allocated nodes. Thus, every memory tree t can be written as t = undef (null(t′))
for undef , null ∈ Σ1. We say a memory tree t = undef (null(t′)) is well-formed if
the pointer variables are assigned unique meanings, i.e. undef ∩ null = ∅ ∧ ∀p ∈
N lPos(t′) : t′(p).var ∩ (null ∪ undef) = ∅ ∧ ∀p1 �= p2 ∈ N lPos(t′) : t′(p1).var ∩
t′(p2).var = ∅ where N lPos are non-leaf positions—cf. Section 3.1.

We let S−1 = {s−1 | s ∈ S} be a set of “inverted selectors” allowing one to
follow the links in a shape graph in a reverse order. A routing expression may then
be formally defined as a regular expression on pairs s.p ∈ (S∪S−1).Σ2. Intuitively,
each pair used as a basic building block of a routing expression describes one step
over the tree memory backbone: we follow a certain branch up or down and then we
should see a certain node (most often, we will use the node components of routing
expressions to check whether a certain marker is set in a particular node).

A tree memory encoding is a tuple (t, μ) where t is a tree memory backbone
and μ a mapping from the set of pointer descriptors R to routing expressions
over the set of selectors S and the memory node alphabet Σ2 of t. An example
of a tree memory encoding for a doubly-linked list (DLL) is shown in Fig. 3.

Let (t, μ), t = undef (null(t′)), be a tree memory encoding with a set of
selectors S and a memory node alphabet Σ2. We call π = p1s1...plslpl+1 ∈

1 If we put a set into the place of the input symbol in a transition rule, we mean we
can use any element of the set. Moreover, if we use q1/q2 instead of a single state,
one can take either q1 or q2, and if there is a k-tuple of states, one considers all
possible combinations of states.

62 A. Bouajjani et al.

M2

M1

M1

M2

M2

M1

D1

D1

D1

D2

D2

D2

S = {1, 2}
−1

M1: 1.D1

M2: 1.D2

7

10

14

26 Z

Y null

null

null

X

7

10

14

26

X

Z

Y

S = {1, 2}

A tree memory encoding of the DLLThe original DLL Descriptors

null pointers

undefined pointers

Fig. 3. An example of a tree memory encoding—a doubly linked list (DLL)

Σ2.((S ∪S−1).Σ2)l a path in t of length l ≥ 1 iff p1 ∈ Pos(t′) and ∀i ∈ {1, ..., l} :
(si ∈ S ∧ pi.si = pi+1 ∧ pi+1 ∈ Pos(t′)) ∨ (si ∈ S−1 ∧ pi+1.si = pi). For
p, p′ ∈ N lPos(t′) and a selector s ∈ S, we write p

s−→ p′ iff (1) t′(p).s ∈ R, (2)
there is a path p1s1...plslpl+1 in t for some l ≥ 0 such that p = p1, pl+1 = p′,
and (3) s1t

′(p2)...t′(pl)slt
′(pl+1) ∈ μ(t′(p).s).

The set of shape graphs represented by a tree memory encoding (t, μ) with
t = undef (null(t′)) is denoted by [[(t, μ)]] and given as all the shape graphs
SG = (N,S, V,D) for which there is a bijection β : Pos(t′) → N such that:

1. ∀p, p′ ∈ N lPos(t′) ∀s ∈ S : (t′(p).s �∈ {⊥,�} ∧ p
s−→ p′) ⇔ S(β(p), s) =

β(p′).
(The links between memory nodes are respected.)

2. ∀p ∈ N lPos(t′) ∀s ∈ S ∀x ∈ {⊥,�} : t′(p).s = x ⇔ S(β(p), s) = x.
(Null and undefined successors are respected.)

3. ∀v ∈ V ∀p ∈ Pos(t′) : v ∈ t′(p).var ⇔ V (v) = β(p).
(Assignment of memory nodes to variables is respected.)

4. ∀v ∈ V : (v ∈ null ⇔ V (v) = ⊥) ∧ (v ∈ undef ⇔ V (v) = �).
(Assignment of null and undefinedness of variables are respected.)

5. ∀p ∈ N lPos(t′) ∀d ∈ D : t′(p).data = d ⇔ D(β(p)) = d.
(Data stored in memory nodes is respected.)

A tree automata memory encoding is a tuple (A, μ) where A is a tree au-
tomaton accepting a regular set of tree memory backbones and μ is a mapping
as above. Naturally, A represents the set of shape graphs defined by [[(A, μ)]] =⋃

t∈L(A) [[(t, μ)]].

Abstract Regular Tree Model Checking 63

Dn

D2

D1

DnD2D1

...

pointers datamarkers

Subtree 1
Subtree 2

Subtree n

...pointers datamarkers

Subtree 1 Subtree 2 Subtree n...

Fig. 4. Splitting memory nodes in Mona into data and next pointer nodes

Remarks. We use ARTMC as our verification method. It syntactically manipu-
lates tree automata A whose languages can be interpreted as shape graphs using
our encoding. Notice, that (A, μ) and [[(A, μ)]] are two different notions, since the
encoding is not canonical as a given shape graph can be possibly obtained by
several different tree memory encodings. In Section 4.3, we argue that program
statements can, nevertheless, be encoded faithfully as tree transducers. Another
important property of the encoding is that given a tree automata memory encod-
ing (A, μ), the set [[(A, μ)]] can be empty although L(A) is not empty (since the
routing expressions can be incompatible with the tree automaton). Of course,
if L(A) is empty, then [[(A, μ)]] is also empty. Therefore, checking emptiness of
[[(A, μ)]] (which is important for applying the ARTMC framework, see Section
4.4) can be done in a sound way by checking emptiness of L(A).

4.2 Tree Memory Configurations in Mona

In our implementation, we use the tree automata library from the Mona project
[23]. As the library supports binary trees only, and we need n-ary ones, we split
each memory node labelled with Σ2 = 2V×2M×D×(R∪{⊥,�})k in the above
definition of a tree memory encoding into a data node labelled with 2V ×2M×D
and a series of k next pointer nodes, each labelled with R∪ {⊥,�}—cf. Fig. 4.

As for the set of pointer descriptors R, we currently fix it by introducing
a unique pointer descriptor for each destructive update x->s = y or x->s =
new that appears in the program. This is because they are the statements that
establish new links among the allocated memory nodes. In addition, we might
have some further descriptors if they are a part of the specification of the input
configurations (see section 4.4).

Further, in our Mona-based framework, we encode routing expressions using
tree transducers. A transducer representing a routing expression r simply copies
the input tree memory backbone on which it is applied up to: (1) looking for a data
node n1 that is labelled with a special token � �∈ V ∪ M ∪ D and (2) moving �
to a data node n2 that is the target of the next pointer described by r and that
is also marked with the appropriate marker. As described in the next section, we
can then implement program statements that follow the next pointers (e.g., x =
y->s) by putting the token � to a node pointed to by x, applying the transducer
implementing the appropriate routing expression, and making y point to the node
to which � was moved. Due to applying abstraction, the target may not always be

64 A. Bouajjani et al.

unique—in such a case, the transducer implementing the routing expression sim-
ply returns a set of trees in which � is put to some target data node such that all
possibilities where it can get via the given routing expression are covered.

Note that the use of tree transducers for encoding routing expressions allows
us in theory to express more than using just regular expressions. In particular,
we can refer to the tree context of the nodes via which the given route is going.
In our current implementation, we, however, do not use this fact.

4.3 Encoding Program Statements as Tree Transducers

Weencode every of the consideredpointer-manipulating statements as a tree trans-
ducer. In the transducer, we expect the tree memory encoding to be extended by
a new root symbol which corresponds to the current program line or to an error
indication when an error is found during the analysis. We now briefly describe how
the transducers corresponding to the program statements work. Each transducer
is constructed in such a way, that it simulates the effect of a programstatement on a
set of shape graphs representedby a tree automatamemory encoding: if a shapeSG
represented by a tree memory encoding is transformed by the program statement
to a shape graph SG′, then the transducer transforms the tree memory encoding
such that it represents SG′. This makes sure, that although the encoding is non
canonical (see end of section 4.1), we simulate faithfully a program statement.

Non-destructive Updates and Tests. The simplest is the case of the x =
NULL assignment. The transducer implementing it just goes through the input
tree and copies it to the output with the exception that (1) it removes x from
the labelling of the node in which it currently is and adds it to the labelling
of the null node and (2) changes the current line appropriately. The transducer
implementing an assignment x = y is similar, it just puts x not to the null node,
but to the node which is currently labelled by y.

The transducers for the tests of the form if (x == null) goto l1; else goto
l2; are very similar to the above—they just do not change the node in which x is,
but only change the current program line to either l1 or l2 according to whether or
not x is in the null node. If x is in undef , an error indication is used instead of l1 or
l2. The transducers for if (x == y) goto l1; else goto l2; are similar—they just
test whether or not x and y appear in the same node (both different from undef).

The transducer for an x = y->s statement is a union of several complementary
actions. If y is in null or undef , an error is indicated. If y is in a regular data
node and its s-th next pointer node contains either ⊥ or �, the transducer
removes x from the node it is currently in and puts it into the null or undef
node, respectively. If y is in a regular data node n and its s-th next pointer
node contains some pointer descriptor r ∈ R, the � token is put to n. Then, the
routing expression transducer associated with r is applied. Finally, x is removed
from its current node and put into the node to which � was moved by the applied
routing expression transducer.

Destructive Updates. The destructive pointer update x->s = y is imple-
mented as follows. If x is in null or undef , an error is indicated. If x is defined

Abstract Regular Tree Model Checking 65

and if y is in null or undef , the transducer puts ⊥ or � into the s-th next
pointer node below x, respectively. Otherwise, the transducer puts the pointer
descriptor r associated with the particular x->s = y statement being fired into
the s-th next pointer node below x, and it marks the node in which y is by the
marker coupled with r. Then, the routing expression transducer associated with
r is updated such that it includes the path from the node of x to the node of y.

One could think of various strategies how to extract the path going from the
node of x to the node of node y. Currently, we use a simple strategy, which
is, however, successful in many practical examples as our experiments show:
We extract the shortest path between x and y on the tree memory backbone,
which consists of going a certain number of steps upwards to the closest common
parent of x and y and then going a certain number of steps downwards. (The
upward or the downward phase may also be skipped when going just down or
up, respectively.) When extracting this path, we project away all information
about nodes we see on the way and about nodes not directly lying on the path.
Only the directions (left/right up/down) and the number of steps are preserved.

Note that we, in fact, perform the operation of routing expression extraction on
a tree automaton, and we extract all possible paths between where x and y may
currently be. The result is transformed into a transducer τxy that moves the token
� from the position of x to the position of y, and τxy is then united with the current
routing expression transducer associated with the given pointer descriptor r. The
extraction of the routing paths is done partly by rewriting the input tree automaton
via a special transducer τπ that in one step identifies all the shortest paths between
all x and y positions and projects away the non-necessary information about the
nodes on the way. The transducer τπ is simple: it just checks that we are going one
branch up from x and one branch down to y while meeting in a single node. The
transition relation of the resulting transducer is then post-processed by changing
the context of the path to an arbitrary one which cannot be done by transducing
in Mona where structure preserving transducers may only be used.

Dynamic Allocation and Deallocation. The x = malloc() statement is
implemented by rewriting the right-most • leaf node to a new data node pointed
to by x. Below the node, the procedure also creates all the k next pointer nodes
whose contents is set to �.

In order to exploit the regularity that is always present in algorithms allocating
new data structures, which typically add new elements at the end/leaves of the
structure, we also explicitly support an x.s = malloc() statement. We even try to
pre-process programs and compact all successive pairs of statements of the form
x = malloc(); y->s = x (provided x is not used any further) to y->s= malloc().
Such a statement is then implemented by adding the new element directly under
the node pointed to by y (provided it is a leaf) and joining it by a simple routing
expression of the form “one level down via a certain branch”. This typically allows
us to work with much simpler and more precise routing expressions.

Finally, a free(x) statement is implemented by a transducer that moves all
variables that are currently in the node pointed to by x to the undef node (if x
is in null or undef , an error is indicated). Then, the node is marked by a special

66 A. Bouajjani et al.

marker as a deleted node, but it stays in our tree memory encoding with all its
current markers set. In addition to all the other tests mentioned above as done
within the transducer implementing an x = y->s assignment, it is also tested
whether the target is not deleted—if so, an error is indicated.

4.4 Verification of Programs with Pointers Using ARTMC

aDLLHead = malloc();
aDLLHead->prev = null;
x = aDLLHead;
while (random()) {
x->next = malloc();
x->next->prev = x;
x = x->next;

}
x->next = null;

Fig. 5. Generating DLLs

Input Structures. We consider two possibilities
how to encode the input structures. First, we can di-
rectly use the tree automata memory encoding—e.g.,
a tree automata memory encoding (with two pointer
descriptors next and prev and the corresponding rout-
ing expressions) describing all possible doubly-linked
lists pointed to by some program variable. Such an
encoding can be provided manually or derived auto-
matically from a description of the concerned linked
data structure provided, e.g., as a graph type [24]. The
main advantage is that the verification process starts
with an exact encoding of the set of all possible instances of the considered data
structure.

Another possible approach is to start with the unique “empty” shape graph
where all variables are undefined. We can encode such a shape graph using a
tree automata encoding where all variables are in undef , null is empty, there are
no other nodes, and all the routing expressions are empty. The set of structures
on which the examined procedure should be verified is then supposed to be
generated by a constructor written in C by the user (as, e.g., in Fig. 5). This
constructor is then put before the verified procedure and the whole program
is given to the model checker. The advantage is that no further notation is
necessary. The disadvantage is that we have more code that is subject to the
verification and the set of automatically obtained input structures need not be
encoded in the optimal way leading to a slow-down of the verification.
Applying ARTMC. In Section 3.2, we have given an overview of ARTMC.
We supposed that one transducer τ is used to describe the behaviour of the
whole system. In the application described in this paper, we use a variant of this
approach by considering each program statement as one transducer. Then, we
compute an overapproximation of the reachable configurations for each program
line by starting from an initial set of shape graphs represented by a tree automata
memory encoding and iterating the abstract fixpoint computation described in
Section 3.2 through the program structure. The fixpoint computation stops if
the abstraction α is finitary. In such a case, the number of the abstracted tree
automata encoding sets of the memory backbones that can arise in the program
being checked is finite. Moreover, the number of the arising routing expressions is
also finite as they are extracted from the bounded number of the tree automata
describing the encountered sets of memory backbones.2

2 The non-canonicity of our encoding does not prevent the computation from stopping.
It may just take longer since several encodings for the same graph could be added.

Abstract Regular Tree Model Checking 67

During the computation, we check whether a designated error location in the
program is reached or whether a fixpoint is attained. In the latter case, the prop-
erty is satisfied (the error control location is not reachable). In the former case,
we compute backwards to check if the counterexample is spurious as explained in
Section 3.2. However, as said in Section 4.1, the check for emptiness is not exact
and therefore we might conclude that we have obtained a real counterexample al-
though this is not the case. Such a case does not happen in any of our experiments
and could be detected by replaying the path from the initial configurations.

5 Implementation and Experimental Results

An ARTMC Tool for Tree Automata Memory Encodings. We have
implemented the above proposed method in a prototype tool based on the Mona
tree automata libraries [23]. We use a depth-first strategy when iterating the
transducers corresponding to the particular program lines.

We have also refined the basic finite-height and predicate abstractions pro-
posed in [9]. In particular, we do not allow collapsing of data nodes with next
pointer nodes, collapsing of next pointer nodes corresponding to different selec-
tors, and we prevent the abstraction of allowing a certain pointer variable to
point to several memory nodes at the same time.

We have also proposed one new abstraction schema called the neighbour ab-
straction. Under this schema, only the tree automata states are collapsed that
(1) accept equal data memory nodes with equal next pointer nodes associated
with them and (2) that directly follow each other (are neighbours). This strategy
is very simple, yet it proved useful in some practical cases.

Finally, we allow the abstraction to be applied either at all program lines
or only at the loop closing points. In some cases, the latter approach is more
advantageous due to some critical destructive pointer updates are done without
being interleaved with abstraction. This way, we may avoid having to remove
lots of spurious counterexamples that may otherwise arise when the abstraction
is applied while some important shape invariant is temporarily broken.

Experimental Results. We have performed several experiments with singly-
linked lists (SLL), doubly-linked lists (DLL), trees, lists of lists, and trees with
linked leaves. All three mentioned types of automata abstraction—the finite
height abstraction (with the initial height being one), predicate abstraction (with
no initial predicates), and neighbour abstraction—proved useful (gave the best
achieved result) in different examples. All examples were automatically verified
for null/undefined/deleted pointer exceptions. Additionally, some further shape
properties (such as absence of sharing, acyclicity, preservation of input elements,
etc.) were verified in some case studies too. All these properties were specified
in the LBMP logic from Sect. 2.2 and translated to C testers. We give a detailed
overview of the performed experiments in the full version of the paper [10].

Table 1 contains verification times for the experiments mentioned above (the
“+ test” in the name of an experiment means that some shape invariants were

68 A. Bouajjani et al.

Table 1. Results of experimenting with the prototype implementation of the presented
method

Example Time Abstraction method |Q| Nre f

SLL-creation + test 0.5s predicates, restricted 22 0
SLL-reverse + test 6s predicates 45 1
DLL-delete + test 8s finite height 100 0
DLL-insert + test 11s neighbour, restricted 94 0

DLL-reverse + test 13s predicates 48 1
DLL-insertsort 3s predicates 38 0

Inserting into trees + test 12s predicates, restricted 91 0
Linking leaves in trees + test 11min 15s predicates 217 10

Inserting into a list of lists + test 27s predicates, restricted 125 1
Deutsch-Schorr-Waite tree traversal 3min 14s predicates 168 0

checked). We give the best result obtained using the three mentioned abstraction
schemas and say for which abstraction schema the result was obtained. The note
“restricted” accompanying the abstractionmethodmeans that the abstractionwas
applied at the loop points only. The experiments were performed on a 64bit Xeon
3,2 GHz with 3 GB of memory. The column |Q| gives information about the size of
the biggest encountered automaton, and Nref gives the number of refinements.

Despite the prototype nature of the tool, which can still be optimised in
multiple ways (some of them are mentioned in the conclusions), the results are
quite competitive. For example, for one of the most complex examples—the
Deutsch-Schorr-Waite tree traversal, TVLA took 3 minutes on the same machine
with manually provided instrumentation predicates and predicate transformers.
The verification time for the trees with linked leaves is relatively high, but we
are not aware of any other fully automated tool with which experiments with
this structure have been performed.

6 Conclusion

We have proposed a new, fully automated method for verification of programs ma-
nipulating complex dynamic linked data structures. The method is based on the
framework of ARTMC. In order to able to use ARTMC, we proposed a new repre-
sentation of sets of shape graphs based on tree automata and a representation of
the standardCpointermanipulating statements as tree transducers (with some ex-
tensions). In particular,we considered verification of the basicmemory consistency
properties (no null pointer assignments, etc.) and of shape invariants whose cor-
ruption may be described in an existential fragment of a first-order logic on graphs.
We formalised this fragment as a special-purpose logic called LBMP whose for-
mulae may be translated to C-based testers that may be attached to the verified
programs, thus transforming the verification problem to be considered to the con-
trol line reachability. We have implemented the technique in a prototype tool and
obtained some promising experimental results.

Abstract Regular Tree Model Checking 69

In the future, we would like to optimise the performance of our Mona-based pro-
totype tool, e.g., by exploiting the concept of guided tree automata that are sug-
gestedasveryhelpful inmanysituationsbytheauthorsofMona [5] andthatwehave
not used yet. Further, it is interesting to try come up with some special purpose au-
tomata abstractions for the considereddomain—so-farwehave usedmostly general
purpose tree automata abstractions, andwehaveanexperience from [8] that special
purpose abstraction may bring very significant speed-ups (in [8], it was sometimes
twoorders ofmagnitudeor evenmore).Further researchdirections then include, for
instance, checkingofotherkindsofproperties (as, e.g., absenceofgarbage,whichwe
knowtobepossible—cf. the full versionof thepaper [10]—butwhichwehavenotyet
implemented), experimenting with combinations of our technique with techniques
of non-pointer data abstraction, or termination checking.

Acknowledgement. This work was supported in part by the French Ministry
of Research (ACI project Securité Informatique) and by the Czech Grant Agency
within projects 102/05/H050, 102/04/0780, and 102/03/D211.

References

1. P.A. Abdulla, J. d’Orso, B. Jonsson, and M. Nilsson. Regular Model Checking Made
Simple and Efficient. In Proc. of CONCUR’02, volume 2421 of LNCS. Springer, 2002.

2. P.A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking.
In Proc. of CAV’02, volume 2404 of LNCS. Springer, 2002.

3. P.A. Abdulla, A. Legay, J. d’Orso, and A.Rezine. Simulation-Based Iteration of
Tree Transducers. In Proc. of TACAS’05, volume 3440 of LNCS. Springer, 2005.

4. I. Balaban, A. Pnueli, and L. Zuck. Shape Analysis by Predicate Abstraction. In
Proc. of VMCAI’05, volume 3385 of LNCS. Springer, 2005.

5. M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for Guided Tree Automata. In
Proc. of WIA’96, volume 1260 of LNCS. Springer, 1997.

6. B. Boigelot, A. Legay, and P. Wolper. Iterating Transducers in the Large. In Proc.
of CAV’03, volume 2725 of LNCS. Springer, 2003.

7. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Pro-
grams with Lists are Counter Automata. Technical Report TR-2006-3, Verimag,
UJF/CNRS/INPG, Grenoble, 2006.

8. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying Programs with
Dynamic 1-Selector-Linked Structures in Regular Model Checking. In Proc. of
TACAS’05, volume 3440 of LNCS. Springer, 2005.

9. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree
Model Checking. ENTCS, 149:37–48, 2006. A preliminary version was presented at
Infinity’05.

10. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree
Model Checking of Complex Dynamic Data Structures, 2006. Full version available
on URL: http://www.fit.vutbr.cz/~vojnar/pubs.php.

11. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking.
In Proc. of CAV’04, volume 3114 of LNCS. Springer, 2004.

12. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. In
Proc. of CAV’00, volume 1855 of LNCS. Springer, 2000.

13. A. Bouajjani and T. Touili. Extrapolating Tree Transformations. In Proc. of
CAV’02, volume 2404 of LNCS. Springer, 2002.

70 A. Bouajjani et al.

14. M. Bozga, R. Iosif, and Y. Lakhnech. Storeless Semantics and Alias Logic. In Proc.
of PEPM’03. ACM Press, 2003.

15. M. Češka, P. Erlebach, and T. Vojnar. Pattern-Based Verification of Programs
with Extended Linear Linked Data Structures. ENTCS, 145:113–130, 2006. A
preliminary version was presented at AVOCS’05.

16. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications, 2005.
URL: http://www.grappa.univ-lille3.fr/tata.

17. J.V. Deshmukh, E.A. Emerson, and P. Gupta. Automatic Verification of Parameter-
ized Data Structures. In Proc. of TACAS’06, volume 3920 of LNCS. Springer, 2006.

18. D. Distefano, P.W. O’Hearn, and H. Yang. A Local Shape Analysis Based on
Separation Logic. In Proc. of TACAS’06, volume 3920 of LNCS. Springer, 2006.

19. J. Engelfriet. Bottom-up and Top-down Tree Transformations—A Comparison.
Mathematical System Theory, 9:198–231, 1975.

20. P. Habermehl, R. Iosif, and T. Vojnar. Automata-Based Verification of Programs
with Tree Updates. In Proc. of TACAS’06, volume 3920 of LNCS. Springer, 2006.

21. P. Habermehl and T. Vojnar. Regular Model Checking Using Inference of Regular
Languages. ENTCS, 138:21–36, 2005. A preliminary version was presented at
Infinity’04.

22. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic Model
Checking with Rich Assertional Languages. In Proc. of CAV’97, volume 1254 of
LNCS. Springer, 1997.

23. N. Klarlund and A. Møller. MONA Version 1.4 User Manual, 2001. BRICS,
Department of Computer Science, University of Aarhus, Denmark.

24. N. Klarlund and M.I. Schwartzbach. Graph Types. In Proc. of POPL’93. ACM
Press, 1993.

25. O. Lee, H. Yang, and K. Yi. Automatic Verification of Pointer Programs Using
Grammar-Based Shape Analysis. In Proc. of ESOP’05, volume 3444 of LNCS.
Springer, 2005.

26. A. Loginov, T. Reps, and M. Sagiv. Abstraction Refinement via Inductive Learning.
In Proc. of CAV’05, volume 3576 of LNCS. Springer, 2005.

27. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate Abstraction
and Canonical Abstraction for Singly-Linked Lists. In Proc. of VMCAI’05, volume
3385 of LNCS. Springer, 2005.

28. A. Møller and M.I. Schwartzbach. The Pointer Assertion Logic Engine. In Proc.
of PLDI’01. ACM Press, 2001. Also in SIGPLAN Notices 36(5), 2001.

29. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued
Logic. TOPLAS, 24(3), 2002.

30. E. Shahar and A. Pnueli. Acceleration in Verification of Parameterized Tree Net-
works. Technical Report MCS02-12, Faculty of Mathematics and Computer Sci-
ence, The Weizmann Institute of Science, Rehovot, Israel, 2002.

31. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using Language Inference to
Verify Omega-regular Properties. In Proc. of TACAS’05, volume 3440 of LNCS.
Springer, 2005.

32. T. Yavuz-Kahveci and T. Bultan. Automated Verification of Concurrent Linked
Lists with Counters. In Proc. of SAS’02, volume 2477 of LNCS. Springer, 2002.

33. G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A Logic of
Reachable Patterns in Linked Data-Structures. In Proc. of FOSSACS’06, volume
3921 of LNCS. Springer, 2006.

Structural Invariants�

Ranjit Jhala1, Rupak Majumdar2, and Ru-Gang Xu2

1 UC San Diego
2 UC Los Angeles

Abstract. We present structural invariants (SI), a new technique for
incrementally overapproximating the verification condition of a program
in static single assignment form by making a linear pass over the dom-
inator tree of the program. The 1-level SI at a program location is the
conjunction of all dominating program statements viewed as constraints.
For any k, we define a k-level SI by recursively strengthening the domi-
nating join points of the 1-level SI with the (k − 1)-level SI of the pre-
decessors of the join point, thereby providing a tunable selector to add
path-sensitivity incrementally. By ignoring program paths, the size of
the SI and correspondingly the time to discharge the validity query re-
mains small, allowing the technique to scale to large programs. We show
experimentally that even with k ≤ 2, for a set of open-source programs
totaling 570K lines and properties for which specialized analyses have
been previously devised, our method provides an automatic and scalable
algorithm with a low false positive rate.

1 Introduction

An invariant at a program location is a (first-order) predicate over the program
state that holds whenever the location is visited during execution. Thus to prove
that a programmer-specified assertion always holds at a location, it suffices to
check if any invariant implies the asserted predicate. Verification-conditions (VC)
are a powerful technique for generating invariants, and hence verifying properties
of programs [18,13,16]. However, the use of VCs has been hindered by several
considerations. First, in order to generate the VC, the fixpoint semantics of
every loop in the program must be provided as loop invariants. Second, in order
to be precise, VC generators encode all execution paths of the program. When
applied to large programs, this results in large formulas that cannot be solved
efficiently. Thus, while generic, in that they are applicable to any user specified
assertion, and precise, in that they capture all path correlations, the use of
VC-based techniques has been limited to proving deep properties of programs,
often with substantial manual intervention. For checking properties over large
code bases, researchers typically develop specialized analyses based on dataflow
analysis or abstract interpretation, which use a fixpoint computation to find
the semantics of the program over a fixed abstraction. These techniques often
sacrifice genericity and precision to gain automation and scalability: they use
� This research was sponsored in part by the NSF grants CCF-0427202 and CNS-

0541606.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 71–87, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 R. Jhala, R. Majumdar, and R.-G. Xu

property-specific abstractions to gain automation and thus are not generic; they
gain scalability by merging execution paths at join points, leading to imprecision
in the form of false alarms.

In this paper, we consider a middle ground. We present a lightweight VC
generation technique that is automatic and scalable enough to prove many useful
safety properties over large code bases, without requiring an expert to devise a
specialized analysis for each program and each property, and yet is precise enough
to capture many structural idioms used by the programmer to ensure correctness,
even in the presence of path correlations typically missed by dataflow tools. We
achieve this using structural invariants (SI), a series of increasingly precise over-
approximations of the VC, which can be efficiently computed from the dominator
tree of the program’s control-flow graph (CFG) in static single assignment (SSA)
form. SIs use the dominator tree to capture control flow information and the SSA
form to capture data flow information about the program. By using these well-
optimized compiler techniques, and by incrementally refining approximate VCs,
our algorithm scales to large code bases. By not requiring explicitly provided
loop invariants but using simple approximations, our algorithm is automatic.
While this restricts the properties we can prove, we provide empirical evidence
that shows extremely coarse approximations suffice to prove a large variety of
useful properties on many large applications. In particular, we show for a set
of different safety properties considered in the software verification literature
[19,21,20,7,14], our technique is generic, yet completely automatic and scalable,
running in time comparable to specialized dataflow analyses, often with better
precision.

The first and coarsest over-approximation (the 1-structural invariant) is ob-
tained as the conjunction of the dominating operations’ predicates. That this
forms an invariant follows from two observations. First, the operations domi-
nating the target location are guaranteed to execute on any path to the target.
Second, if the program is in SSA form, then the variables occurring in a dominat-
ing operation will not be modified after the last occurrence of that operation on
a path to the target. The 1-SI ignores the predecessors of control flow join points
dominating the target. Hence, correlated conditional control flow to the target
location is not tracked. To regain path-sensitivity that distinguishes between
the executions prior to the join point, we recursively strengthen the predicate of
the join using the disjunction of SIs of predecessors of the join. The degree of
distinguishing or “branch-sensitivity” is parameterized: for any k > 1, the k-SI
is obtained by strengthening the join points using the (k − 1)-SI of the prede-
cessors. By only strengthening join points (and not loop heads), we compute an
SI by traversing a subset of the dominator tree in a single pass. For each k > 0,
the k-SI provides an over-approximation of the VC, becoming more precise with
increasing k. In the limit, i.e., when k equals the number of CFG nodes, the SI is
equivalent to the standard VC [16,17] obtained by unrolling each loop of the pro-
gram once and arbitrarily updating the loop-modified variables. The parameter
k provides a tunable selector for statements that most influence the assertion.
For example, the 1-SI includes only the operations that must happen on all CFG

Structural Invariants 73

paths to the target, and the 2-SI captures one level of branching (required to
prove, e.g., conditional locking behavior). Empirically, we have found the 1-SI to
be two orders of magnitude smaller than a full VC that sweeps over the entire
program, and the resulting validity queries are discharged up to two orders of
magnitude faster than the queries for the full VC. Despite dropping the other
constraints, we found that the 1-SI is sufficient to prove 70% of the assertions
we examined, and for most of the remaining assertions, 2-SI sufficed.

To demonstrate the precision and genericity of our technique, we have imple-
mented a tool psi that generates k-SIs, and used this to successfully analyze a
diverse set of open-source programs for three important safety properties with a
low false positive rate. psi takes as input a C program annotated with assertions,
and a number k, and computes the k-SI for the program at each assertion point,
and then uses Simplify [12] to discharge the validity query, and thus prove the
assertion. The first property (studied in [20] using language-level techniques)
checks the consistent use of tag fields when using unions inside structures in C
programs. In the example of Figure 1(a), which is representative of networking
code, the header field h corresponds to a TCP packet if the proto field has
value TCP and is a UDP packet otherwise, and the property checks that at each
cast to TCP * (resp. UDP *), proto==TCP (resp. proto==UDP). The second prop-
erty (studied in [19,24,14]) checks that Linux drivers acquire and release locks
in strict alternation. In most cases, each call to unlock is dominated by a call
to lock and vice versa. As seen in Figure 3(a), in the few cases where branch
sensitivity is required to capture some idiomatic uses like conditional locks and
trylocks, the 2-SI suffices. The third property is for privilege levels (studied in
[7]): at any point where a suid program calls execv, the effective user-id is non-
root. In our experiments, system calls setting the user-id dominate the call to
execv so the 1-SI suffices to prove these assertions. We have used psi to check
these properties on a total of 570K lines of code containing 759 assertions. With
k ≤ 2, we proved 667 of these, and found 16 bugs and 76 false alarms. The
total running time of all experiments was less than one hour. In contrast, the
software model checker Blast took at least an order of magnitude more time on
all experiments, and did not finish on several runs. We believe this demonstrates
that lightweight VC-based techniques can be made as automatic and scalable as
a variety of specialized analyses. While our coarse approximations may generate
an invariant that is not strong enough to prove the property of interest, our
experience is that SIs can be used as an effective pre-pass for any verification
effort to “filter out” many assertions, leaving sophisticated program verification
tools to focus their resources on more complicated properties.

2 Structural VC Generation

We formalize structural invariants for an imperative language with integer vari-
ables. We begin with the intraprocedural case.

Operations. Our programs are built using: (1) assignment operations x := e,
which correspond to assigning the value of expression e to the variable x. A

74 R. Jhala, R. Majumdar, and R.-G. Xu

Fig. 1. (a) Example 1 (b) CFG in SSA form (c) Dominator Tree of CFG

basic block is a sequence of assignments. (2) Assume operations assume (p),
which continue program execution if the boolean expression p evaluates to true,
and halt the program otherwise.

Control-Flow Graphs. The control flow of a procedure is given by a Control-
flow Graph (CFG), a rooted, directed graph G = 〈N,E, ne, nx〉 with:

1. A set of control nodes N , each labeled by a basic block or assume operation;
2. Two distinguished nodes: an entry node ne and an exit node nx;
3. A set of edges E ⊆ N ×N connecting control nodes: (n1, n2) ∈ E if control

can transfer from the end of n1 to the beginning of n2. We assume that ne

has no incoming edges, and nx has no outgoing edges.

Let pred(n) denote the set {n′ | (n′, n) ∈ E} of predecessors of n in the CFG. We
assume that the set pred(n) is ordered, and refer to the k-th predecessor of a
node n to denote the k-th element in the ordering in pred(n). We write vars(n)
to denote the set of variables appearing in the operation op labeling n. A path
π of length m to a node n in the CFG is a sequence n1 . . . nm where n1 = ne,
nm = n, and for each 1 ≤ i < m the pair (ni, ni+1) ∈ E. We denote by π(i) the
ith node ni along the path. We denote by π[j] the prefix of the path, n1 . . . nj .
A node n is reachable in the CFG if there is a path π to n. We assume that all
nodes in N are reachable from ne.

Dominators. For two CFG nodes n, n′ we say n dominates n′ if for every path
π to n′ of length m, there is some 1 ≤ i ≤ m such that π(i) = n. We say n
strictly dominates n′, written n D n′, if n dominates n′ and n, n′ are distinct. We
write D(n) for the set {n′ | n′ D n}. We write D−1(n) for the set {n′ | n D n′}.
We say n is the immediate dominator of n′ if for every n′′ ∈ D(n′), we have n′′

dominates n. Each node n of the CFG has a unique immediate dominator which

Structural Invariants 75

we write as Idom(n). A dominator tree is a rooted tree whose nodes are the nodes
of the CFG, whose root is the entry node ne, and where the parent of a node n
is Idom(n).

SSA. We assume that programs are represented in static single assignment
(SSA) form [10], in which each variable in the program is syntactically assigned
exactly once. Programs in SSA form have special φ-assignment operations of
the form x := φ(x1, . . . , xn) that capture the effect of control flow joins. A φ-
assignment x := φ(x1, . . . , xn) for variables x, x1, . . . , xn at a node n implies:
(1) n has exactly n predecessors in the CFG, (2) if control arrives at n from its
jth predecessor, then x has the value xj at the beginning of n. Further, we distin-
guish two kinds of φ-assignments: those at the header of natural loops (denoted
φ�), and the others (denoted φ).

Semantics. For a set of variables X , an X-state is a valuation for the variables
X . The set of all X-states is written as V.X . Each operation op gives rise to
a transition relation

op
� ⊆ V.X × V.X as follows. We say s

op
�s′ if either op ≡

assume (p), s |= p, and s′ = s, or op ≡ x := e and s′ = s[x 	→ s.e]. The relation
op
� is extended to basic blocks by sequential composition. We say that a state s
can execute the operation op if there exists some s′ such that s

op
�s′. A formula ϕ

over the variables X represents all X-states where the valuations of the variables
satisfy ϕ. For a formula ϕ, we write vars(ϕ) for the set of variables appearing
syntactically in ϕ. We say that ϕ′ is a postcondition of ϕ w.r.t. an operation op
if {s′ | ∃s ∈ ϕ.s

op
�s′} ⊆ ϕ′, i.e., executing op from a state satisfying ϕ results

in a state satisfying ϕ′. We say that a path π satisfies the formula ϕ if ϕ is a
postcondition of true w.r.t. the sequence of operations along π. For a CFG node
n we say that a formula ϕ is an n-invariant if every path π to n satisfies ϕ.

Operation Predicates. For an operation op, define an operation predicate [[op]]:

op [[op]] op [[op]] op [[op]]
x := e x = e assume (p) p op1; . . . ; opn

∧n
i=1[[opi]]

x := φ(x1, , . . . , xn)
∨n

i=1 x = xi x := φ�(x1, , . . . , xn) true

For a node n labeled with operation op, we write [[n]] for [[op]]. For a program
in SSA form, the operation predicate [[op]] is a postcondition of true w.r.t. the
operation op. Additionally, for a node n we define Φ(n, j) to be x = xj if n is
labeled x := φ(x1, . . . , xj, . . . , xn) and [[n]] otherwise. In other words, Φ(n, j) con-
strains the variable assigned at a φ-node to the value held at the j-th predecessor
of n.

2.1 Structural Invariants

Dominator Invariants. We first relate dominator nodes in the CFG to pro-
gram invariants. This provides an efficient algorithm to compute invariants. Our
technique follows from three observations about dominators and programs in
SSA form. First, immediately after an operation op is executed, the new state
satisfies the operation predicate [[op]]. Second, if n′ dominates n, then along every

76 R. Jhala, R. Majumdar, and R.-G. Xu

execution path to n, there is an instant, just after the dominator n′ is executed,
at which [[n′]] is satisfied. Third, if n′Dn, then in any execution path, after the
last occurrence of n′, the only nodes visited are those that are dominated by n′

(this is illustrated in Figure 2(a)), and none of the variables in vars(n′) are ever
modified. Thus, as [[n′]] held immediately after (the last occurrence of) n′, it is
preserved until execution reached n. Hence [[n′]] is a n-invariant. It follows that
the conjunction of node predicates for all nodes dominating n is an n-invariant.
We call this the dominator invariant of n.

Theorem 1. [Dominator Invariants] For a node n of a CFG in SSA form,
the formula [[n]] ∧

∧
n′∈D(n)[[n

′]] is an n-invariant.

Example 1. [Tagged-Union Verification] Figure 1(a) shows an example of a
C program that deserializes a stream of bytes to extract a packet. The packet is
represented by the C structure iphdr, with a tag field int proto which specifies
if the payload field char *h, a stream of characters, corresponds to a TCP or
a UDP payload. Precisely, if proto is TCP, then h is a TCP payload, else h
is a UDP payload. Figure 1(b) shows the CFG of the program in SSA form.
For simplicity, we treat pointer accesses such as ip→check as unaliased scalars,
our implementation handles pointers correctly. Since union types are not tagged
explicitly in C, programmers use a tag field to determine the type of the union
instance and then cast the data appropriately before access. However, absent or
incorrect checks lead to data access bugs which are a common cause of hard to
find bugs or crashes. This data access specification introduces implicit assertions
in the code wherever the field h is accessed. For example, in Figure 1(a), there
are two implicit assertions: one at line 5 where h is cast to a TCP pointer which
asserts: ip → proto = TCP and one at line 7 where h is cast to UDP pointer which
asserts: ip → proto �= TCP. To check correct usage of tagged unions, we must
find a program invariant at these assertion points that implies the assertions.

Example 2. The CFG in SSA form and the dominator tree for the example of
Figure 1(a) are shown in Figures 1(b), 1(c). In Figure 1(c), we see that the
nodes dominating n5 in Figure 1(b) are n2, n3, n4. By conjoining their respective
operation predicates we get the dominator invariant:

(ip → check′′ =ip → check∨ip → check′′ =ip → check′)∧t=ip → proto ∧ t=TCP

which implies, and thus proves, the implicit data access assertion ip → proto =
TCP at 5. By virtue of the program being in SSA form, the dominator invariant
captures the flow of value through the local variable t.

φ-Strengthening. Dominator invariants ignore conditional control flow merges
in the code and, as Example 3 below shows, are often not precise enough to
prove properties of interest.

Example 3. In the networking example of Figure 1, suppose that we additionally
wish to verify that the payload h is only accessed after the checksum has been
verified (i.e., check field is set to a non-zero value). This yields the additional

Structural Invariants 77

(implicit) assertions at statements 5: and 7: that ip → check′′ �= 0. The con-
junction of the operation predicates of the dominators of n5, namely n2, n3, n4 is
insufficient due to the φ-node, n2 where control joins after the branch. At such a
node, a variable may get a value from one of several predecessors, neither of which
dominates the target node. So, as dominator invariants only conjoin operation
predicates for dominating operations, they do not capture branch correlations.

To gain path sensitivity, we recursively compute the invariant of each predeces-
sor of a φ-node n (a join point) and take their disjunction to strengthn the node
predicate of n. While computing the invariant for the ith predecessor, we addi-
tionally conjoin the predicate Φ(n, i), thus updating the value of each variable
assigned at n to the value in the ith predecessor. We call this process recursive
φ-strengthening. We explicitly parameterize the recursive φ-strengthening with a
bound k. For k = 1 we get exactly the dominator invariants (there is no recursive
strengthening), while for higher values of k we recursively strengthen using the
(k − 1)-SI of the predecessors of the φ-nodes.

Formally, we define k-structural invariants using two recursively defined func-
tions Ψ and Γ. The function Ψ is defined for nodes nr, n and integer k as:

Ψ((nr, n), k) ≡ [[n]] ∧
∧

n′∈D(n)∩D−1(nr)

[[n′]] ∧ Γ(n′, k)

if k > 0 and nr �= n and true otherwise. Intuitively, the parameter nr is the
ancestor in the dominator tree whose subtree is being used to generate the SI
for n, and the parameter k is an explicit bound on the recursion depth. The
function Γ is used for the recursive φ-strengthening. For node n′ and integer k, if
k > 0, and pred(n′) ∩ D−1(n′) = ∅, i.e., n′ is a join node (and not a loop header
otherwise one of the predecessors would be dominated by n′) then:

Γ(n′, k) ≡
∨

nj∈pred(n′)

(Φ(n′, j) ∧ Ψ((Idom(n′), nj), k − 1)

and it is defined as true otherwise, i.e., no strengthening is done. Recall that for
a join φ-node, the formula Φ(n′, j) simply constrains the value of the “merged”
variable to be that of the variable at the j-th predecessor of n′. The k-structural
invariant of a node n of the CFG is Ψ((ne, n), k). The structural invariant of a
node n is Ψ((ne, n), |N |).

A k-SI “unfolds” the nesting structure of the program. The parameter k allows
us to incrementally tune the precision of the invariant, and use coarser (and
faster computed) invariants wherever possible. By raising k, we are increasing
the branch-width sensitivity of the analysis, and setting k to the number of CFG
nodes gives us the exact SI. This provides a dual approximation to the usual
“bounded-depth” analyses, where all paths of length less than a certain bound
are analyzed.

We use induction on k to prove that k-SI are invariants, Theorem 1 provides
the base case.

78 R. Jhala, R. Majumdar, and R.-G. Xu

Fig. 2. (a) If a node n′′ not dominated by n′ appears after the last occurrence of n′ on
a path to n, then n is not dominated by n′. (b) φ-strengthening: For a join φ-node n,
the strengthening Γ(n) is the disjunction of the SIs of the two predecessors n′, n′′ of n,
which are in the tree “hanging off” Idom(n). (c) To compute the (k−1)-SI for n′, n′′ we
strengthen all the join nodes in the path from n′, n′′ to the root Idom(n), recursively
exploring the trees hanging off the inner paths.

Theorem 2. [Structural Invariants] For every CFG G = (N,E, ne, nx) in SSA
form, n ∈ N , and k ∈ N, (1) the k-Structural Invariant of n is an n-invariant,
and (2) Ψ((ne, n), k + 1) ⇒ Ψ((ne, n), k).

Figure 2 shows how the recursive strengthening works vis-a-vis the dominator tree
and the CFG. The 1-SI conjoins the node predicates for each node in the path from
the root node to the target node (shaded) in the dominator tree, i.e., the nodes that
dominate the target node. The 2-SI strengthens the node predicates for each join
φ-node n′ along the path to the root in the dominator tree. To do so, it takes the
disjunctions of the 1-SI for the predecessors of the join node. As shown in the fig-
ure, for join nodes, the predecessors are guaranteed to be in the subtree “hanging
off” the join node’s immediate dominator. Hence, the recursive SI for the predeces-
sors is computed using the subtree rooted at the immediate dominator of the join
node. The 3-SI would further strengthen each φ-node appearing in the recursive
strengthening and so on. Thus, by increasing k we pick up more and more of the
CFG nodes, but each node only appears once in the SI.

Example 4. Consider the φ-node n2 in the CFG of Figure 1(b). It is a join
point and its two predecessors are the nodes n1 and n0′ . Notice that in the
dominator tree in Figure 1(c), the predecessors belong in the subtree hanging off
the immediate dominator of n2 namely the entry node. We recursively compute
the SIs: Ψ(n1) = ip → check = 0 ∧ ip → check′ = 1 (from the dominators
n0, n1), and, Ψ(n0′) = ip → check �= 0, (from the dominating branch condition
n0′). Thus, the strengthening the φ-node n2 yields the following 2-SI for n5:

((ip → check′′ = ip → check′

∧ ip → check = 0 n0

∧ ip → check′ = 1) n1

∨ Γ(n2)
(ip → check′′ = ip → check
∧ ip → check �= 0)) n0′

∧ t = ip → proto ∧ t = TCP n3 and n4

Structural Invariants 79

Fig. 3. (a) Example 2 (b) CFG (c) Dominator Tree

which is strong enough to prove the (implicit) assertion that the check field is
non-zero, at the access location 5. A similar sufficient SI is obtained for 7.

Example 5. [Conditional Locking] Figure 3(a) shows conditional locking on
an arbitrary predicate p. Consider the φ-node n4 in the CFG of Figure 3(b).
It is a join point and its two predecessors are the nodes n3 and n2′ . Notice in
the dominator tree in Figure 3(c), that the predecessors belong in the subtree
“hanging” off the immediate dominator of n4 namely n1. We recursively compute
the SIs: Ψ(n3) = lock′ = 0∧p∧lock′′ = 1 and Ψ(n2′) = lock′ = 0∧¬p. Thus, the
strengthening for the φ-node 4 is Γ(n4) ≡ (lock′′′ = lock′′ ∧Ψ(n3))∨ (lock′′′ =
lock′ ∧ Ψ(n2)). We need not further strengthen the SIs for n3, n′2 as they have
no dominating join nodes. The 2-SI at n6 is:

lock′ = 0 from n1

∧ ((lock′′′ = lock′′ ∧ lock′′ = 1 ∧ p) ∨ (lock′′′ = lock′ ∧ ¬p)) from Γ(n4)
∧ p from n5

This is an invariant strong enough to prove the assertion lock′′′ = 1 at line 6.

2.2 Interprocedural Structural Invariants

We now extend programs to include function calls. The set of operations is
extended to include function calls l := f(e1, . . . , en) and return statements
return(ret), where ret is a special variable. A program is now a set of CFG’s,
one for each function, with a specified function main where execution starts.
Further, we assume that the only operation on the exit node nx of each CFG is
return(ret), and the operation return(·) does not appear anywhere else. We
assume for simplicity there are no global variables, these can be incorporated
with additional notation (and are handled by our implementation). We extend
k-structural invariants to programs with function calls through two approaches:
summarization and abstract summarization.

Summarization. For interprocedural analysis, each function is abstracted into
a set of input-output relations, called the summary, that captures the observed
behavior of the function. For function foo, we have to consider both transitive

80 R. Jhala, R. Majumdar, and R.-G. Xu

callees of foo (i.e., calls to functions within the body of foo), and transitive
callers of foo (i.e., the call chains from main to foo).

To deal with callees, we extend [[op]] to the new operations. First, assume there
is no recursion. Let f be a function with formal parameters x1, . . . , xn, local
variables L, and CFG Gf = (Nf , Ef , nf

e , n
f
x). We define [[l := f(e1, . . . , en)]] as

(∃L.Ψ((nf
e , n

f
x), k))[l/ret, e1/x1, . . . , en/xn] (1)

and [[return(ret)]] = true. Intuitively, we recursively construct the k-SI for
the exit node of f , rename all local variables of f with fresh names (to avoid
name clashes), and substitute the formal parameters and return variable in the
expression. This k-SI is the summary of f . In the presence of recursion, we
additionally pass the stack of function calls in the computation of [[·]], and return
[[l := f(e1, . . . , en), s]] = true if f appears in the stack s.

To deal with callers, we generalize our definition of dominators to the inter-
procedural case, using the call graph of the program. In particular, we add edges
from every call site x := f(. . .) to the entry node ne of f (but not edges from the
exit nodes to the call sites), and compute dominators in this expanded graph.
If n′ dominates n in this expanded graph, then every return-free path from the
entry node of main to n passes through n′ (if n′ and n are in the same func-
tion, we get back the original definition). The algorithm to compute k-SI for the
transitive callers is then identical to the intraprocedural algorithm with this new
definition.
Abstract Summarization. In abstract summarization, summaries are com-
puted relative to two non-empty sets of input and output predicates for each
function. Fix a function f . Let P and P ′ be the input and output predicates
over variables in scope in f respectively. An abstract summary S is a subset of
P × P ′ with the property that for every execution of the function starting from
a state satisfying p to a state satisfying p′, we have (p, p′) ∈ S.

To perform abstract summarization, we traverse the call graph of the pro-
gram bottom up. For any k, function f , and sets P and P ′ of predicates, our
summarization algorithm constructs the k-SI ϕ of the exit node nf

x of f with
respect to the entry point nf

e of f . For any function call l = g(e1, . . . , en) in
the body of f with summary Sg, we use the operation predicate from Equa-
tion 1 with Ψ((nf

e , n
f
x), k) replaced with

∨
(p,p′)∈Sg

(p ∧ p′). If g has not been
summarized, e.g. , for recursive calls, we use the constraint true. Let ϕ be
the k-SI for f . Finally, the abstract summary Sf of f is computed as the set
{(p, p′) ∈ P × P ′ | p ∧ ϕ ∧ p′ is satisfiable}.

If
∨

P and
∨

P ′ are not both equivalent to true, abstract summarization
can lead to unsoundness. To be sound, we add additional assertions to the pro-
gram. At each call site x := f(e1, . . . , en), we add the assertion assert(∃L.

∨
P)

[e1/x1, . . . , en/xn] which checks that the precondition of the function holds at
the call site. At the exit node of f , we add the assertion

∨
P ′ that checks that

the postcondition of the function holds at the return point. These assertions are
checked in addition to the assertions in the program, and the original assertions
are proved soundly if all these assertions also hold. If these assertions do not

Structural Invariants 81

hold, the summary for the function is replaced with (true, true) when checking
other assertions.

Abstract summarization allows our algorithms to scale by keeping the sum-
maries small (just in terms of the abstract predicates), and also acts as a useful
fault localization aid in our experiments. However, it requires user-supplied pred-
icates, reducing automation. Instead of requiring user intervention or performing
predicate inference [2,21], we adopt the approach of [11,24]. We perform abstract
summarization with respect to predicates obtained automatically from the prop-
erty. For example, to checking correct locking, we add predicates corresponding
to each value of lock being taken or freed. This allows our tool to be automatic,
though sometimes with less precision.

3 Experiments

We have implemented psi, an assertion checker for C programs using struc-
tural invariants. Our tool takes as input a C program annotated with asser-
tions and a number k, statically constructs the k-structural invariant for each
assertion, and checks if the k-structural invariant implies the assertion. Our tool
is written in Objective Caml and uses the CIL library [22] for manipulating
C programs. To prove an assertion, psi checks if the k-SI implies the asser-
tion using the Simplify theorem prover [12]. The implementation is staged in
five parts: alias analysis, SSA conversion, dominator tree construction, construc-
tion of the k-SI, and assertion verification. Our tool uses a flow-insensitive may
alias analysis. After alias analysis, we transform the program so that condi-
tionals on possibly aliased objects are added at each pointer dereference. This
accurately reflects state update for the structural invariant. For example, for
the code *p = 5, assuming p may point to a or b, we transform the code to
*p=5; if(p==&a) a=5; if (p==&b) b=5;. Our alias analysis is field insensi-
tive. We heuristically add field sensitivity based on field types to determine a
more precise match. We ran three sets of experiments with psi: checking tagged
unions, correct locking, and correct suid privileges. Our experiments were all run
on a Dell PowerEdge 1800 with two 3.6Ghz Xeon processors and 5 GB of mem-
ory. The running time is dominated by the alias analysis and the generation of
the structural invariants. In comparison, the parsing, ssa conversion, dominator
tree construction, and theorem prover calls take relatively little time.

1. Tagged Unions. Tagged unions are checked by adding an assertion describ-
ing the predicate that must hold when a certain field is accessed or cast before
that access or cast. We added these assertions manually. We ran our tool on
three programs: icmp (a protocol for error notification on the internet, 7K lines
of code), gdk (the GTK+ drawing toolkit, 16K lines of code), and lua (an inter-
preter, 18K lines of code). We checked 69 assertions and found 14 false positives
with k = 2 and 18 false positives with k = 1. The total run time was 684s with
k = 2, dominated by lua (682s). Since most programmers check the tag near
the data access point, we did not propagate k-SIs to the callers of the function
containing the assertion for this set of experiments. This resulted in 8 false pos-

82 R. Jhala, R. Majumdar, and R.-G. Xu

Table 1. Lock experiments. LOC is lines of code. Asserts gives the original number of
asserts, and total gives the total asserts to check pre- and post-conditions. ok gives the
asserts proved safe. error the number of bugs. False positives are broken into pointers
(ptrs), lists, loops, and unclassified errors (unc). t(s) is time in seconds. Cqual shows
the false positives from Cqual (N/A indicates we did not run Cqual).

program LOC func’s asserts total ok error ptrs List loops unc t(s) cqual
scc 16K 638 36 57 47 2 7 0 0 1 38 60
DAC960 24K 763 46 54 38 0 10 0 4 2 141 N/A
af netrom 22K 958 23 25 21 0 0 3 1 3 12 20
af rose 23K 958 15 29 28 0 0 0 0 1 7 9
as-iosched 14K 576 10 17 10 0 4 0 0 3 8 4
elevator 13K 512 2 3 3 0 0 0 0 0 1 0
floppy 18K 696 30 48 43 0 0 0 2 3 35 48
genhd 13K 529 4 6 6 0 0 0 0 0 2 0
ll rw blk 15K 625 8 30 25 0 0 0 2 3 8 N/A
nr route 18K 788 19 34 30 0 0 1 1 2 9 20
wavelan cs 17K 621 19 35 30 1 4 0 0 0 14 4
rose route 42K 953 51 73 55 13 0 0 3 2 35 31
Totals 235K 8,617 263 414 336 16 25 4 13 20 310 196

itives that required assumptions about formal parameters. Our theorem prover
only models integers so there was 1 false positive that required the modeling of
unsigned integers. Four false positives are due to modeling pointer arithmetic
and data structures and one due to type-unsafe programmer assumptions about
memory layout.

2. Locking. The second set of experiments checked double locking errors in
the Linux kernel. Double locking has been extensively studied using dataflow
analysis [19] and BMC [24]. Double locking occurs when locking something that
already has been locked (causing a deadlock) or unlocking something that al-
ready has been unlocked (can cause kernel panic). We model this by adding an
assertion that the lock is in a locked (resp. unlocked) state before every call to
unlock (resp. lock). We use abstract summarization for locks, similar to Saturn
[24]. Predicates for abstract summarization are the lock values. Instead of user
provided pre- and post-conditions, we use a simple heuristic to guess predicates
and psi automatically checks whether those predicates are correct. For each func-
tion, we find the first assertions for each lock and make these the precondition
predicates. Similarly, we find the last lock or unlock statements in the function
and make the corresponding lock states the postcondition predicates. This is
sometimes imprecise, but retains automation. We run psi with a depth k = 2.
We found increasing k > 2 does not reduce the number of false positives in our
experiments since a depth k = 2 captures all the relevant nesting of conditionals.

Table 1 summarizes our results. We examined 12 device driver files in the
Linux kernel, totaling 235K lines of code. Since we consider drivers one file
at a time, our current experimentation is unsound in the way we deal with
function summaries. In particular, we do a global alias analysis at a per file

Structural Invariants 83

level, but assume functions in other files do not have any effect on lock values or
aliasing. There were a total of 414 asserts. Among these, 151 assertions were due
to adding pre- and post-condition assertions for the summaries. We analyzed
a total of 8,617 functions in 310 seconds. We found 16 real bugs and 62 false
positives. We found errors in wavelan and rose route not mentioned in the Saturn
bug database. The bug in wavelan cs, a wireless card driver, was caused by an
obscure case where a packet is recieved when the wireless connection is being
handed over from one access point to another. This bug spans 3 functions.

The false positives are in three categories: loss of precision in abstract summa-
rization (25), getting locks from dynamic data structures or external functions
(4), and loops (13). There are 20 additional errors we have not classified yet.
Loop false positives occur when a lock is acquired and released in a loop. Inter-
estingly, some such examples can be proved using Cqual or dataflow analysis,
showing the orthogonality of these methods. Other false positives relate to dy-
namic data structures (where locks are stored in lists) or pointers returned from
external functions.

Imprecise summary predicates are the most significant false positives (25 of
them), but could be remedied by better predicate generation heuristics or some
editing of the source code. When we heuristically add preconditions and postcon-
ditions, it is possible that the predicate we include in our precondition mentions
a variable that is not in the formal parameter of our function or a global variable.
For example, for the code

void lock (dev *ptr) {
struct receive_queue *q;
q = ptr -> q; assert (q -> lock == 0); q -> lock = 1; }

our heuristics infer that the pre- and post-conditions are (q->lock == 0) and
(q->lock == 1) respectively. This can be solved by correcting the pre- and post-
conditions to (ptr->q->lock == 0) and (ptr->q->lock == 1) respectively.
The 25 false positives involving these issues are all removed after these simple
modifications. Alternately, we could construct the weakest precondition of these
predicates in terms of the formals and used those for abstract summarization.

Table 2. Blast results

Program FP Time (s)
af netrom 4 248
nr route 1 1755
rose route 1 1513

To compare, we ran Blast [21] on some of the Linux
drivers. Table 2 summarizes the results of running Blast
on three of the drivers. While the false positive rate
is lower (although not zero, since Blast produces false
positives when locks are put into lists, and when the
driver makes unmodeled assumptions about external
pointers), the time taken is significantly higher in all
cases.

Our work in lock analysis is most similar to Saturn.
We found all bugs that Saturn found except one that required analysis of two
different files. In addition, we find two extra bugs not reported by Saturn. In
comparison with Cqual [19], we take more time, but have fewer false positives.
Running Cqual on 10 of our 12 device driver examples resulted in 196 type
errors, even though Cqual does reduce loop false positives. In contrast to Cqual,

84 R. Jhala, R. Majumdar, and R.-G. Xu

we get at most one message per assertion site, making it easier to track down
false errors.

Table 3. Precision

k Size (KB) Time FP
1 259 1.5s 241
2 15764 1m45s 62
3 19996 1m54s 62
4 21091 1m58s 62

Finally, Table 3 summarizes the precision-time trade-
off as we increase k over all our lock experiments. Size
measures the total size of the Simplify queries written as
a text file, time is the time to solve all the queries, and
FP the number of false alarms found. In our experiments,
k = 1 is already enough to prove most assertions, and in-
creasing k beyond to 2 does not help in reducing the false
alarms. The size of the formula does not increase appre-
ciably beyond k = 4. For our examples, it is rare to find
complex control flow, i.e., more than four nested conditionals.

Table 4. Suid Programs. Asserts = total number of asserts, Original = original asserts
in the code, FP = false positives.

Program LOC Asserts Original FP Time (s)
mtr 13K 43 8 0 13s
openssh 61K 37 5 0 51s
gpg 219K 190 3 0 1106s

3. Privilege Levels. Finally, we checked whether a Unix setuid program gives
up its owner privileges before executing certain system calls [7]. In unix systems,
programs have privileges associated with users. Normally, a program will execute
under the permission of the user executing the program. However, suid programs
run with root privileges when they are started, which are required to access
certain system resources. After the privileged action is performed, suid programs
give up their root privileges by making a setuid or a seteuid call. A suid
program should give up its root privileges before making further system calls
to reduce the chance of an exploit gaining root access. We model the effective
user id with an integer which is 0 for root, and 1 for any other user. The id
is set to 1 whenever setuid or seteuid is called. We check that whenever a
program calls system or exec, this id is not zero. We examine three programs:
OpenSSH 2.9.9p (the widely used secure shell program), GNU Privacy Guard
(open source pgp), and mtr (a network diagnostic tool), for a total of 294K
lines of code. All these programs follow good security programming guidelines.
After the required privileged action was taken, the effective user id was set to
the user executing the program. We used abstract summarization, using the
state of the id bit as the predicate. This caused 254 out of 270 assertions to
be automatically added, however, summarization made our technique scale well.
Further, k = 1 was enough to prove all assertions with no false positives. Our
results are shown in Table 4, where the time does not include time for alias
analysis. Our total running time (excluding alias analysis) was 20 minutes. As the
size of the programs increased, CIL’s alias analysis became the bottleneck. It took
610s for OpenSSH and did not terminate for gpg within 6 hours. However, since
the address of the id bit is not taken and id is only assigned integer constants,

Structural Invariants 85

and we additionally check that the k-SI is satisfiable, we can conclude in this
case that our technique is sound without the alias analysis. In comparison, Blast
did not finish the verification of openssh or gpg in two hours.

4 Related Work and Conclusions

Related Work. SIs are similar to bounded model checking (BMC) [4,9,24],
which builds VCs capturing all program executions of a certain bounded execu-
tion length. Typically BMC is useful for finding bugs, while SI provides a sound
verification technique. While BMC unrolls the last (or first) k operations of a
program, the “unrolling metric” in k-structural constraints is (roughly) the nest-
ing depth of conditionals. Thus, 1-SI may be strong enough to prove a property
even though the relevant code blocks are separated by arbitrarily many lines of
irrelevant code. SIs are less precise than VC based program verification tools
[16], but we have demonstrated that the loss of precision is not significant for a
large class of interesting properties. We have traded off precision for automation
and scalability. Algorithms for computing compact weakest preconditions have
been studied [17,3], however these did not consider the effects of approximat-
ing the VC using the nesting depth, and the results of the loss of precision in
property checking.

Counterexample-guided abstraction refinement [8,2,21] automates the discov-
ery of abstractions using spurious counterexamples. While theoretically as effi-
cient as SI and as complete as general VC-generation, in practice, these tools do
not scale well for large programs even if there is an “obvious” proof of correct-
ness. This is mainly because these tools strive to be generic, and do not always
exploit “simple” control/data flow tricks, reverting to more expensive but more
general symbolic processing. In fact, our motivation for this work was the obser-
vation that simple algorithms can filter out many assertions quickly before these
more sophisticated tools are applied.

SSA and dominators have been used to find program invariants that facilitate
certain compiler optimizations [1,6] and to check security properties [25]; our
work is a generalization of these algorithms to arbitrary invariants. Indepen-
dent of our work, dominator invariants have been recognized as a quick way to
generate invariants for translation validation [15]. However, that work does not
provide a parameter to adjust the precision.

SI vs Dataflow Analysis. Another scalable technique of finding invariants
is via fixpoint computations over an abstract domain of dataflow facts tai-
lored to the property being checked. Examples are [5,23], which use sophisti-
cated domains to find complex invariants over data, or [19,14,11] which address
more control-oriented properties. Our VC-based method provides a scalable and
generic technique to introduce path correlations incrementally to a variety of
simple properties without requiring an expert-specified and program dependent
abstract domain.

The invariants obtained using k-SI and (flow-sensitive) dataflow analysis that
merges information at join points are, in general, incomparable. For k > 1, the

86 R. Jhala, R. Majumdar, and R.-G. Xu

k-structural constraints incorporate path correlation information that dataflow
analysis merges. For k = 1, if the domain of dataflow facts is fixed (as is usual)
from the property and not tailored to a particular program, the dominator in-
variant may be more precise. For example, suppose p = p1 ∧ p2, and consider
the program:

if (p1) { if (p2) { L: assert(p); } }

where the dataflow domain only tracks p (obtained from the assert).
On the other hand, there are programs where dataflow analysis is more precise.

Consider:

x := 1; while (*) { if(x=1) x := 1; } L: assert(x=1);

When the state of x is tracked, a dataflow analysis produces the invariant x =
1 at L. However, for any k, the k-SI at L is true, since x within the loop is
unconstrained.

Conclusions. SIs form a scalable, lightweight algorithm to prove useful prop-
erties of programs. Although our algorithm is simple, we showed it can prove
many instances of useful and well-studied properties such as setuid, locking, and
tagged unions. These programs and properties are frequently used to test more
complex tools such as SLAM or Blast. However, in our experience, for the same
properties and programs, Blast is usually an order of magnitude slower than
psi. even though the false positive rate is only slightly better than SIs in the
programs and properties we checked.

Thus, we advocate a hybrid verification approach where efficient, simple tools
that incorporate structural idioms are run first to eliminate most assertions, and
more sophisticated but slower tools are focused on the remaining assertions that
escape the purview of the simple tools.

References

1. B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables in
programs. In POPL 88, pages 1–11. ACM, 1988.

2. T. Ball and S.K. Rajamani. The SLAM project: debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, 2002.

3. M. Barnett and K.R.M. Leino. Weakest-precondition of unstructured programs.
In PASTE 2005, pages 82–87. ACM, 2005.

4. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS 99: Tools and Algorithms for the Construction and Analysis of
Systems, LNCS 1579, pages 193–207. Springer, 1999.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI 03:
Programming Languages Design and Implementation, pages 196–207. ACM, 2003.

6. R. Bodik, R. Gupta, and V. Sarkar. ABCD: eliminating array bounds checks on
demand. In PLDI 00, pages 321–333. ACM, 2000.

Structural Invariants 87

7. H. Chen, D. Dean, and D. Wagner. Model checking one million lines of c code.
In NDSS 04: Annual Network and Distributed System Security Symposium, pages
171–185, 2004.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV 00: Computer-Aided Verification, LNCS 1855,
pages 154–169. Springer, 2000.

9. E.M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In TACAS 04: Tools and Algorithms for the construction and analysis of systems,
LNCS 2988, pages 168–176. Springer, 2004.

10. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek. Efficiently
computing static single assignment form and the program dependence graph. ACM
Transactions on Programming Languages and Systems, 13:451–490, 1991.

11. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In PLDI 02: Programming Language Design and Implementation,
pages 57–68. ACM, 2002.

12. D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

13. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
14. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-

specific, programmer-written compiler extensions. In OSDI 00: Operating System
Design and Implementation. Usenix Association, 2000.

15. Y. Fang. Translation validation of optimizing compilers. PhD thesis, 2005.
16. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.

Extended static checking for Java. In PLDI 02: Programming Language Design
and Implementation, pages 234–245. ACM, 2002.

17. C. Flanagan and J.B. Saxe. Avoiding exponential explosion: generating compact
verification conditions. In POPL 00: Principles of Programming Languages, pages
193–205. ACM, 2000.

18. R.W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Com-
puter Science, pages 19–32. American Mathematical Society, 1967.

19. J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI 02:
Programming Language Design and Implementation, pages 1–12. ACM, 2002.

20. D. Grossman. Safe Programming at the C Level of Abstraction. PhD thesis, 2003.
21. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL

02: Principles of Programming Languages, pages 58–70. ACM, 2002.
22. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. In CC 02: Compiler
Construction, LNCS 2304, pages 213–228. Springer, 2002.

23. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

24. Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In POPL
05: Principles of Programming Languages, pages 351–363. ACM, 2005.

25. X. Zhang, T. Jaeger, and L. Koved. Applying static analysis to verifying security
properties, 2004. Grace Hopper Conference.

Existential Label Flow Inference Via CFL Reachability

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks

University of Maryland, College Park
{polyvios, jfoster, mwh}@cs.umd.edu

Abstract. In programming languages, existential quantification is useful for de-
scribing relationships among members of a structured type. For example, we may
have a list in which there exists some mutual exclusion lock l in each list element
such that l protects the data stored in that element. With this information, a static
analysis can reason about the relationship between locks and locations in the
list even when the precise identity of the lock and/or location is unknown. To
facilitate the construction of such static analyses, this paper presents a context-
sensitive label flow analysis algorithm with support for existential quantification.
Label flow analysis is a core part of many static analysis systems. Following Re-
hof et al, we use context-free language (CFL) reachability to develop an efficient
O(n3) label flow inference algorithm. We prove the algorithm sound by reducing
its derivations to those in a system based on polymorphically-constrained types,
in the style of Mossin. We have implemented a variant of our analysis as part of
a data race detection tool for C programs.

1 Introduction

Many modern static program analyses are context-sensitive, meaning they can analyze
different calls to the same function without conservatively attributing results from one
call site to another. While this technique is very useful, it often aids little in the analysis
of data structures. In particular, a typical alias analysis, even a context-sensitive one,
conflates all elements of the same data structure, resulting in a “blob” of indistinguish-
able pointers [1] that cannot be precisely analyzed.

One way to solve this problem is to use existential quantification [2] to express re-
lations among members of each individual data structure element. For example, an ele-
ment might contain a buffer and the length of that buffer [3]; a pointer to data and the
lock that must be held when accessing it [4,5]; or a closure, consisting of a function and
a pointer to its environment [6]. The important idea is that such relations are sound even
when the identity of individual data structure elements cannot be discerned.

This paper presents a context-sensitive label flow analysis algorithm that supports
existential quantification. Label flow analysis attempts to answer queries of the form
“During program execution, can a value v flow to some expression e?” Answering such
queries is at the core of a variety of static analyses, including points-to analysis [7,8],
information flow [9], type qualifier inference [10,11,12], and race detection [4]. Our
goal is to provide a formal foundation for augmenting such analyses with support for
existential quantification. The core result of this paper is a provably sound and efficient
type inference system for label flow that supports existential quantification. This paper
makes the following contributions:

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 88–106, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Existential Label Flow Inference Via CFL Reachability 89

let id = λa.a in
(idi 1L1) +L3 ...;
(idk 2L2) +L4 ...

id

La

L1

L2
Lr

L3

L4

LaiL1 Lri L3

id

La Lr

LakL2 Lrk L4

copy

copy

id

La

L1
(i

L2 (k

Lr

L3
)i

L4)k

(a) Source program (b) Monomorphic analysis (c) COPY-based analysis (d) CFL-based analysis

Fig. 1. Universal Types Example

– We present COPY, a subtyping-based label-flow system in the style of Mossin [13].
In COPY, context sensitivity for functions corresponds to universal types (paramet-
ric polymorphism). Our contribution is to show how to support existential quantifi-
cation using existential types [2], applying the duality of ∀ and ∃. We prove that the
resulting system is sound. (Sect. 3)

– We present CFL, an alternative to COPY that supports efficient inference. Following
Rehof et al [14,15], determining flow in CFL is reduced to a context-free language
(CFL) reachability problem, and the resulting inference system runs in time O(n3)
in the worst case. Our contribution is to show that existentially-quantified flow can
also be expressed as a CFL problem, and to prove that CFL is sound by reducing
it to COPY. These results are interesting because existential types are first-class in
our system, as opposed to universal types, which in the style of Hindley-Milner
only appear in type environments. To make inference tractable, we require the pro-
grammer to indicate where existential types are used, and we restrict the interaction
between existentially bound labels and free labels in the program. (Sect. 4)

– We briefly discuss how a variation of CFL is used as part of LOCKSMITH, a race
detection tool [4] for C programs that correlates memory locations to mutual exclu-
sion locks protecting them. LOCKSMITH uses existential quantification to precisely
relate locks and locations that reside within dynamic data structures, thereby elim-
inating a source of false alarms. (Sect. 2.3)

2 Polymorphism Via Context-Free Language Reachability

We begin by introducing type-based label flow analysis, presenting the encoding of
context sensitivity as universal types, and sketching our new technique for supporting
first-class existential types. We also describe our application of these ideas to LOCK-
SMITH, a race detection tool for C [4]. Sects. 3 and 4 formally develop the label flow
systems introduced here.

2.1 Universal Types and Label Flow

The goal of label flow analysis is to determine which values may flow to which opera-
tions. In the program in Fig. 1(a), values 1 and 2 are annotated with flow labels L1 and
L2, respectively, and the two + operations are labeled with L3 and L4. Therefore label
flow analysis should show that L1 flows to L3 and L2 flows to L4. In this program we
annotate calls to id with indices i and k, which we will explain shortly.

90 P. Pratikakis, J.S. Foster, and M. Hicks

To compute the flow of labels, we perform a type- and constraint-based analysis in
which base types are annotated with labels. For our example, the function id is given
the type intLa → intLr, where La and Lr label the argument and return types, re-
spectively. The body of id returns its argument, which is modeled by the constraint
La ≤ Lr. The call idi yields constraints L1 ≤ La and Lr ≤ L3, and the call idk yields
constraints L2 ≤ La and Lr ≤ L4. Pictorially, constraints form the directed edges in
a flow graph, as shown in Fig. 1(b), and flow is determined by graph reachability. Thus
the graph accurately shows that L1 flows to L3 and L2 flows to L4. However, the graph
conflates the two calls to id—its type is monomorphic—and therefore suggests possible
flows from L1 to L4 and from L2 to L3, which is sound but imprecise.

The precision of the analysis can be improved by adding context sensitivity using
Hindley-Milner style universal types. The standard approach [13], shown in Fig. 1(c),
is to give id a polymorphically constrained universal type ∀La,Lr[La ≤ Lr].intLa →
intLr, where we have annotated id’s type with the flow constraints needed to type its
body. Each time id is used, we instantiate its type and constraints, effectively “inlin-
ing” a fresh copy of id’s body. At the call idi, we instantiate the constraint with the
substitution [La 	→ Lai, Lr 	→ Lri], and then apply the constraints from the call site,
yielding L1 ≤ Lai ≤ Lri ≤ L3, as shown. Similarly, at the call idk we instantiate
again, this time yielding L2 ≤ Lak ≤ Lrk ≤ L4. Thus we see that L1 could flow to
L3, and L2 could flow to L4, but we avoid the spurious flows from the monomorphic
analysis.

While this technique is effective, explicit constraint copying can be difficult to imple-
ment, because it requires juggling various sets of constraints as they are duplicated and
instantiated, and may require complicated constraint simplification techniques
[16,17,18] for efficiency. An alternative approach is to encode the problem in terms
of a slightly different graph and use CFL reachability to compute flow, as suggested
by Rehof et al [14]. This solution adds call and return edges to the graph and labels
them with parentheses indexed by the call site, as shown in Fig. 1(d) with dashed lines.
Edges from idi are labeled with (i for inputs and)i for outputs, and similarly for idk.
To compute flow in this graph, we find paths with no mismatched parentheses. In this
case the paths from L1 to L3 and from L2 to L4 are matched, while the other paths
are mismatched and hence not considered. Rehof et al [14] have shown that using CFL
reachability with matched paths can be reduced to a type system with polymorphically
constrained types.

2.2 Existential Types and Label Flow

The goal of this paper is to show how to use existential quantification during static
analysis to efficiently model properties of data structures more precisely. Consider the
example shown in Fig. 2(a). In this program, functions f and g add an unspecified
value to their argument. As before, we wish to determine which integers flow to which
+ operations. In the third line of this program we create existentially-quantified pairs
using pack operations in which f is paired with 1 and g with 2. Using an if, we then
conflate these two pairs, binding one of them to p. In the last line we use p by applying
its first component to its second component. (We use pattern matching in this example
for simplicity, while the language in Sect. 3 uses explicit projection.)

Existential Label Flow Inference Via CFL Reachability 91

let f = λa.a +L3 · · · in
let g = λb.b +L4 · · · in
let p = if · · · then
packi (f, 1L1)

else
packk (g, 2L2) in

unpack (p1, p2) = p in
p1 @ p2

f

La

L3

•

Lxi
•

×

Lyi

L1

)i (i

Lx •

×

Ly

p

g

Lb

L4

•

Lxk
•

Lyk

L2

)k (k

×∃ ∃

(a) Source program (b) Flow graph

Fig. 2. Existential Types Example

In this example, no matter which pair p is assigned, f is only ever applied to 1, and
g is only ever applied to 2. However, an analysis like the one described above would
conservatively conflate the types at the two pack sites, generating spurious constraints
L1 ≤ L4 and L2 ≤ L3. To solve this problem, Sect. 3 presents COPY, a system
that can model p precisely by giving it a polymorphically constrained existential type
∃Lx,Ly[Ly ≤ Lx].(intLx → int) × intLy, indicating that p contains a pair whose
second element flows to the argument position of its first element. (The uninteresting
labels are omitted for clarity.) At packi, this type is instantiated to yield L1 ≤ La, and
since La ≤ L3 we have L1 ≤ L3 transitively. Instantiating at packk yields L2 ≤ Lb ≤
L4. Thus we precisely model that 1L1 only flows to +L3 and 2L2 only flows to +L4.

To support existential types, we have extrapolated on the duality of universal and
existential quantification. Intuitively, we give a universal type to id in Fig. 1 because
id is polymorphic in the label it is called with—whatever it is called with, it returns.
Conversely, in Fig. 2 we give an existential type to p because the rest of the program
is polymorphic in the pairs—no matter which pair is used, the first element is always
applied to the second.

The key contribution of this paper is to show how to perform inference with exis-
tential types efficiently using CFL reachability, as presented in Sect. 4. Fig. 2(b) shows
the flow graph generated for our example program. When packing the pair (f, 1L1), in-
stead of normal flow edges we generate edges labeled by i-parentheses, and we generate
edges labeled by k-parentheses when packing (g, 2L2). Flow for this graph again corre-
sponds to paths with no mismatched parentheses. For example, in this graph there is a
matched path from L2 to L4, indicating that the value 2L2 may flow to +L4, and there
is similarly a path from L1 to L3. Notice that restricting flow to matched paths again
suppresses spurious flows from L2 to L3 and from L1 to L4. Thus, the two existential
packages can be conflated without losing the flow relationships of their members.

2.3 Existential Quantification and Race Detection

Our interest in studying existential label flow arose from the development of LOCK-
SMITH, a C race detection tool [4]. LOCKSMITH uses label flow analysis to determine
what locations ρ may flow to each assignment or dereference in the program, and we use
a combination of label flow analysis and linearity checking to determine which locks �

92 P. Pratikakis, J.S. Foster, and M. Hicks

struct cache_entry { int refs; pthread_mutex_t refs_mutex; ... };

void cache_entry_addref(cache_entry *entry) { ...
pthread_mutex_lock(&entry->refs_mutex);
entry->refs++;
pthread_mutex_unlock(&entry->refs_mutex);

... }

Fig. 3. Example code with a per-element lock

are definitely held at that point. Here ρ and � are just like any other flow labels, and we
use different symbols only to emphasize the quantities they label.

Each time a location ρ is accessed with lock � held, LOCKSMITH generates a cor-
relation constraint ρ � �. After analyzing the whole program, LOCKSMITH ensures
that, for each location ρ, there is one lock consistently held for all accesses. Correlation
constraints can be easily integrated into flow graphs, and we use a variant of the CFL
reachability closure rules to solve for correlations context-sensitively.

During our experiments we found several examples of code similar to Fig. 3, which
is taken from the knot multithreaded web server [19]. Here cache_entry is a linked
list with a per-node lock refs_mutex that guards accesses to the refs field. With-
out existential quantification, LOCKSMITH conflates all the locks and locations in the
data structure. As a result, it does not know exactly which lock is held at the write to
entry->refs, and reports that entry->refs may not always be accessed with the
same lock held, falsely indicating a potential data race.

With existential quantification, however, LOCKSMITH is able to model this idiom
precisely. We add annotations to specify that in type cache_entry, the fields refs and
refs_mutex should be given existentially quantified labels. Then we add pack anno-
tations when cache_entry is created and unpack annotations wherever it is used,
e.g., within cache_entry_addref. The result is that, in terms of polymorphically
constrained types, the entry parameter of cache_entry_addref is given the type
∃�, ρ[ρ � �].{refs : ref ρ int, refs mutex : lock �, . . .}, and thus LOCKSMITH can
verify that the lock refs_mutex always guards the refs field in a given node.

While our prior work sketches the use of existential types, it gives neither type rules
nor proofs for them, which are the main contributions of this paper. The remainder of
this paper focuses exclusively on existential types for label flow, and we refer the reader
to our other paper for details on LOCKSMITH [4].

3 Label Flow with Polymorphically Constrained Types

We begin our formal presentation by studying label flow in the context of a polymor-
phically-constrained type system COPY, which is essentially Mossin’s label flow sys-
tem [13] extended to include existential types. Note that COPY supports label poly-
morphism but not polymorphism in the type structure. We use the following source
language throughout the paper:

e ::= nL | x | λLx.e | e1@Le2 | if0L e0 then e1 else e2 | (e1, e2)L | e.Lj

| let f = e1 in e2 | fix f.e1 | f i | packL,i e | unpackL x = e1 in e2

Existential Label Flow Inference Via CFL Reachability 93

[Id]
C; Γ, x : τ �cp x : τ

[Int]
C � L ≤ l

C; Γ �cp nL : intl

[Lam]
C; Γ, x : τ �cp e : τ ′ C � L ≤ l

C; Γ �cp λLx.e : τ →l τ ′ [App]

C; Γ �cp e1 : τ →l τ ′

C; Γ �cp e2 : τ C � l ≤ L

C; Γ �cp e1@Le2 : τ ′

[Pair]

C; Γ �cp e1 : τ1 C; Γ �cp e2 : τ2

C � L ≤ l

C; Γ �cp (e1, e2)L : τ1 ×l τ2

[Proj]

C; Γ �cp e : τ1 ×l τ2

C � l ≤ L j ∈ {1, 2}
C; Γ �cp e.Lj : τj

[Cond]

C; Γ �cp e0 : intl C � l ≤ L
C; Γ �cp e1 : τ C; Γ �cp e2 : τ

C; Γ �cp if0L e0 then e1 else e2 : τ
[Sub]

C; Γ �cp e : τ1

C; ∅ � τ1 ≤ τ2

C; Γ �cp e : τ2

Fig. 4. COPY Monomorphic Rules

In this language, constructors and destructors are annotated with constant labels L.
The goal of our type system is to determine which constructor labels flow to which
destructor labels. For example, in the expression (λLx.e)@L′

e′, the label L flows to
the label L′. Our language includes integers, variables, functions, function application
(written with @ to provide a position on which to write a label), conditionals, pairs, and
projection, which extracts a component from a pair. Our language also includes binding
constructs let and fix, which introduce universal types. Each use of a universally
quantified function f i is indexed by an instantiation site i. Expressions also include
existential packages, which are created with packL,i and consumed with unpack. Here
L labels the package itself, since existentials are first-class and can be passed around
the program just like any other value, and i identifies this pack as an instantiation site.
Instantiation sites are ignored in this section, but are used in Sect. 4.

The types and environments used by COPY are given by the following grammar:

types τ ::= intl | τ →l τ | τ ×l τ | ∃l�α[C].τ schemes σ ::= ∀�α[C].τ | τ
labels l ::= L | α constraints C ::= ∅ | {l ≤ l} | C ∪ C
env. Γ ::= · | Γ, x : σ

Types include integers, functions, pairs, and existential types. All types are annotated
with flow labels l, which may be either constant labels L from the program text or
label variables α. Type schemes include normal types and polymorphically-constrained
universal types of the form ∀�α[C].τ . Here C is a set of flow constraints each of the form
l ≤ l′. In our type rules, substitutions φ map label variables to labels. The universal type
∀�α[C].τ stands for any type φ(τ) where φ(C) is satisfied, for any substitution φ. When
l ≤ l′, we say that label l flows to label l′. The type ∃l�α[C].τ stands for the type φ(τ)
where constraints φ(C) are satisfied for some substitution φ. Universal types may only
appear in type environments while existential types may appear arbitrarily. The free
labels of types (fl(τ)) and environments (fl(Γ)) are defined as usual.

The expression typing rules are presented in Figs. 4 and 5. Judgments have the form
C;Γ (cp e : τ , meaning in type environment Γ with flow constraints C, expression

94 P. Pratikakis, J.S. Foster, and M. Hicks

[Let]

C′; Γ �cp e1 : τ1 C; Γ, f : ∀�α[C′].τ1 �cp e2 : τ2

�α ⊆ (fl(τ1) ∪ fl(C′)) \ fl(Γ)
C; Γ �cp let f = e1 in e2 : τ2

[Fix]

C′; Γ, f : ∀�α[C′].τ �cp e : τ C � φ(C′)
�α ⊆ (fl(τ) ∪ fl(C′)) \ fl(Γ)

C; Γ �cp fix f.e : φ(τ)

[Inst]
C � φ(C′)

C; Γ, f : ∀�α[C′].τ �cp f i : φ(τ)

[Pack]
C; Γ �cp e : φ(τ) C � φ(C′) C � L ≤ l

C; Γ �cp packL,i e : ∃l�α[C′].τ

[Unpack]

C; Γ �cp e1 : ∃l�α[C′].τ C ∪ C′; Γ, x : τ �cp e2 : τ ′

�α ⊆ (fl(τ) ∪ fl(C′)) \ (fl(Γ) ∪ fl(C) ∪ fl(τ ′)) C � l ≤ L

C; Γ �cp unpackL x = e1 in e2 : τ ′

Fig. 5. COPY Polymorphic Rules

e has type τ . In these type rules C (l ≤ l′ means that the constraint l ≤ l′ is in the
transitive closure of the constraints in C, and C (C′ means that all constraints in C′

are in the transitive closure of C.
Fig. 4 contains the monomorphic typing rules, which are as in the standard λ calculus

except for the addition of labels and subtyping. The constructor rules ([Int], [Lam] and
[Pair]) require C (L ≤ l, i.e., the constructor label L must flow to the corresponding
label of the constructed type. The destructor rules ([Cond], [App] and [Proj]) require
the converse. The subtyping rule [Sub] is discussed below.

Fig. 5 contains the polymorphic typing rules. Universal types are introduced by [Let]
and [Fix]. As is standard, we allow generalization only of label variables that are not
free in the type environment Γ . In both these rules, the constraints C′ used to type e1
become the bound constraints in the polymorphic type. Whenever a variable f with a
universal type is used in the program text, written f i where i identifies this occurrence
of f , it is type checked by [Inst]. This rule instantiates the type of f , and the premise
C (φ(C′) effectively inlines the constraints of f function into the caller’s context.

Existential types are manipulated using pack and unpack. To understand [Pack]
and [Unpack], recall that ∀ and ∃ are dual notions. Notice that ∀ introduction ([Let])
restricts what can be universally quantified, and instantiation occurs at ∀ elimination
([Inst]). Thus ∃ introduction ([Pack]) should perform instantiation, and ∃ elimination
([Unpack]) should restrict what can be existentially quantified.

In [Pack], an expression e with a concrete type φ(τ) is abstracted to a type ∃l�α[C′].τ .
Notice that the substitution maps abstract τ and C′ to concrete φ(τ) and φ(C′)—
creating an existential corresponds to passing an argument to “the rest of the program,”
as if that were universally quantified in �α, and the constraints C′ are determined by
how the existential package is used after it is unpacked. Similarly to [Inst], the [Pack]
premise C (φ(C′) inlines the abstract constraints φ(C′) into the current constraints.

Existential Label Flow Inference Via CFL Reachability 95

[Sub-Label-1]
l, l′ �∈ D C � l ≤ l′

C; D � l ≤ l′
[Sub-Label-2] l ∈ D

C; D � l ≤ l

[Sub-Pair]

C; D � l ≤ l′

C; D � τ1 ≤ τ ′
1

C; D � τ2 ≤ τ ′
2

C; D � τ1 ×l τ2 ≤ τ ′
1 ×l′ τ ′

2

[Sub-Fun]

C; D � l ≤ l′

C; D � τ ′
1 ≤ τ1

C; D � τ2 ≤ τ ′
2

C; D � τ1 →l τ2 ≤ τ ′
1 →l′ τ ′

2

[Sub-Int]
C; D � l ≤ l′

C; D � intl ≤ intl′
[Sub-∃]

C1 � C2 D′ = D ∪ �α
C; D′ � τ1 ≤ τ2 C; D � l1 ≤ l2

C; D � ∃l1�α[C1].τ1 ≤ ∃l2�α[C2].τ2

Fig. 6. COPY Subtyping

Rule [Unpack] binds the contents of the type to x in the scope of e2. This rule places
two restrictions on the existential package. First, e2 must type check with the constraints
C ∪C′.1 Thus, any constraints among the existentially bound labels �α needed to check
e2 must be in C′. Second, the labels �α must not escape the scope of the unpack (as is
standard [2]), which is ensured by the subset constraint.

The [Sub] rule in Fig. 4 uses the subtyping relation shown in Fig. 6. These rules are
standard structural subtyping rules extended to labeled types. We use a simple approach
to decide whether one existential is a subtype of another. Rule [Sub-∃] requires C1 (
C2, since an existential type can be used in any position inducing the same or fewer
flows between labels. We allow subtyping among existentials of a “similar shape.” That
is, they must have exactly the same (alpha-convertible) bound variables, and there must
be no constraints between variables bound in one type and free in the other. We use a set
D to track the set of bound variables, updated in [Sub-∃].2 Rule [Sub-Label-2] permits
subtyping between identical bound labels (l ∈ D), whereas rule [Sub-Label-1] allows
subtyping among non-identical labels only if neither is bound.

These restrictions on existentials forbid some clearly erroneous judgments such as
C (∃α[∅].intα ≤ ∃α[∅].intβ . The two existential types in this example quantify
over the same label; however, the subtyping is invalid because it would create a con-
straint between a bound label and an unbound label. However, these restrictions also
forbid some valid existential subtyping, such as C ((∃α, β[α ≤ β].intα → intβ) ≤
(∃α, β[∅].intα → intα), which is permissible because β is a bound variable with
no other lower bounds except α, hence it can be set to α without losing informa-
tion. However, our typing rules do not allow this. In our experience with LOCKSMITH

we have not found this restriction to be an issue, and we leave it as an open ques-
tion whether it can be relaxed while still maintaining efficient CFL reachability-based
inference.

We prove soundness for COPY using subject reduction. Using a standard small-step
operational semantics e −→ e′, we define a flow-preserving evaluation step as one

1 Note that we could have chosen this hypothesis to be C′; Γ, x : τ �cp e2 : τ ′ and still had a
sound system, but this choice simplifies the reduction from CFL to COPY discussed in Sect. 4.

2 Our technical report [20] uses an equivalent version of D that makes the reduction proof easier.

96 P. Pratikakis, J.S. Foster, and M. Hicks

whose flow is allowed by some constraint set C. Then we prove that if a program is
well-typed according to C then it always preserves flow.

Definition 1 (Flow-preserving Evaluation Step). Suppose e −→ e′ and in this reduc-
tion a destructor (if0, @, .j, unpack) labeled L′ consumes a constructor (n, λ, (·, ·),
pack, respectively) labeled L. Then we write C (e −→ e′ if C (L ≤ L′. We also
write C (e −→ e′ if no value is consumed during reduction (for let or fix).

Theorem 1 (Soundness). If C;Γ (cp e : τ and e −→∗ e′, then C (e −→∗ e′.

Here, −→∗ denotes the reflexive and transitive closure of the −→ relation. The proof is
by induction on C;Γ (cp e : τ and is presented in a companion technical report [20].

4 CFL-Based Label Flow Inference

The COPY type system is relatively easy to understand and convenient for proving
soundness, but experience suggests it is awkward to implement directly as an infer-
ence system. This section presents a label flow inference system CFL based on CFL
reachability, in the style of Rehof et al [14,15]. This system uses a single, global set
of constraints, which correspond to flow graphs like those shown in Figs. 1(d) and 2.
Given a flow graph, we can answer queries “Does any value labeled l1 flow to a de-
structor labeled l2?”, written l1 � l2, by using CFL reachability. We first present type
checking rules for CFL and then explain how they are used to interpret the flow graph in
Fig. 2. Then we explain how the rules can be interpreted to yield an efficient inference
algorithm. Finally, we prove that CFL reduces to COPY and thus is sound.

Types in CFL are as follows:

types τ ::= intl | τ →l τ | τ ×l τ | ∃l�α.τ schemes σ ::= (∀�α.τ,�l) | τ

In contrast to COPY, universal types (∀�α.τ,�l) and existential types ∃l�α.τ do not include
a constraint set, since we generate a single, global flow graph. Universal types contain
a set �l of labels that are not quantified [14,21]. For clarity universal types also include
�α, the set of labels that are quantified, but it is always the case that �α = fl(τ) \ �l.
Existential types do not include a set �l, because we assume that the programmer has
specified which labels are existentially quantified. We check that the specification is
correct when existentials are unpacked (more on this below).

Typing judgments in CFL have the form I;C;Γ (e : τ , where I and C describe
the edges in the flow graph. C has the same form as in COPY, consisting of subtyping
constraints l ≤ l′ (shown as unlabeled directed edges in Figs. 1 and 2). I contains
instantiation constraints [14] of the form l)i

p l′. Such a constraint indicates that l
is renamed to l′ at instantiation site i. (Recall that each instantiation site corresponds
to a pack or a use of a universally quantified type.) The p indicates a polarity, which
describes the flow of data. When p is + then l flows to l′, and so in our examples we
draw the constraint l)i

+ l′ as an edge l −→)i l′. When p is − the reverse holds,
and so we draw the constraint l)i− l′ as an edge l′ −→(i l. Instantiation constraints
correspond to substitutions in COPY, and they enable context-sensitivity without the

Existential Label Flow Inference Via CFL Reachability 97

[Id]
I ; C; Γ, x : τ �cfl x : τ

[Int]
C � L ≤ l

I ; C; Γ �cfl nL : intl

[Lam]

I ;C; Γ, x : τ �cfl e : τ ′

C � L ≤ l

I ;C; Γ �cfl λLx.e : τ →l τ ′ [App]

I ; C; Γ �cfl e1 : τ →l τ ′

I ; C; Γ �cfl e2 : τ C � l ≤ L

I ; C; Γ �cfl e1@Le2 : τ ′

[Pair]

I ;C; Γ �cfl e1 : τ1 I ;C; Γ �cfl e2 : τ2

C � L ≤ l

I ;C; Γ �cfl (e1, e2)L : τ1 ×l τ2

[Proj]

I ; C; Γ �cfl e : τ1 ×l τ2

C � l ≤ L j ∈ {1, 2}
I ;C; Γ �cfl e.Lj : τj

[Cond]

I ; C; Γ �cfl e0 : intl C � l ≤ L
I ; C; Γ �cfl e1 : τ I ; C; Γ �cfl e2 : τ

I ; C; Γ �cfl if0L e0 then e1 else e2 : τ
[Sub]

I ; C; Γ �cfl e : τ1

C; ∅; ∅ � τ1 ≤ τ2

I ; C; Γ �cfl e : τ2

Fig. 7. CFL Monomorphic Rules

need to copy constraint sets. A full discussion of instantiation constraints is beyond the
scope of this paper; see Rehof et al [14] for a thorough description.

The monomorphic rules for CFL are presented in Fig. 7. With the exception of [Sub]
and the presence of I , these are identical to the rules in Fig. 4. Fig. 8 presents the
polymorphic CFL rules. In these type rules I (l)i

p l′ means that the instantiation
constraint l)i

p l′ is in I . We define fl(τ) to be the free labels of a type as usual, except

fl(∀�α.τ,�l) = (fl(τ) \ �α) ∪ �l. Rules [Let] and [Fix] bind f to a universal type. As is
standard we cannot quantify label variables that are free in the environmentΓ , which we
represent by setting �l = fl(Γ) in type (∀�α.τ1,�l). The [Inst] rule instantiates the type τ
of f to τ ′ using an instantiation constraint I; ∅ (τ)i

+ τ ′ : φ. This constraint represents
a renaming φ, analogous to that in COPY’s [Inst] rule, such that φ(τ) = τ ′. All non-
quantifiable labels, i.e., all labels in �l, should not be instantiated, which we model by
requiring that any such label instantiate to itself, both positively and negatively.

Rule [Pack] constructs an existential type by abstracting a concrete type τ ′ to ab-
stract type τ . In COPY’s [Pack], there is a substitution such that τ ′ = φ(τ), and thus
CFL’s [Pack] has a corresponding instantiation constraint τ)i

− τ ′. The instantiation
constraint has negative polarity because although the substitution is from abstract τ to
concrete τ ′, the direction of flow is the reverse, since the packed expression e flows to
the packed value. In [Pack] the choice of �α is not specified. As in other systems for infer-
ring first-class existential and universal types [22,23,24,25], we expect the programmer
to choose this set. In contrast to [Inst], we do not generate any self-instantiations in
[Pack], because we enforce a stronger restriction for escaping variables in [Unpack].

Rule [Unpack] treats the abstract existential type as a concrete type within e2, and
thus any uses of the unpacked value place constraints on its existential type. The last
premise of [Unpack] ensures that abstract labels do not escape, and moreover abstract
labels may not constrain any escaping labels in any way. Specifically, we require that
there are no flows (see below) between any labels in �α and any labels in �l, which is
the set of labels that could escape. If this condition is violated, then the existentially

98 P. Pratikakis, J.S. Foster, and M. Hicks

[Let]

I ; C; Γ �cfl e1 : τ1 I ; C; Γ, f : (∀�α.τ1,�l) �cfl e2 : τ2

�α = fl(τ1) \�l �l = fl(Γ)
I ; C; Γ �cfl let f = e1 in e2 : τ2

[Fix]

I ; C; Γ, f : (∀�α.τ,�l) �cfl e : τ �α = fl(τ) \ fl(Γ) �l = fl(Γ)
I ; ∅ � τ �i

+ τ ′ : φ I � �l �i
+

�l I � �l �i
− �l

I ;C; Γ �cfl fix f.e : τ ′

[Inst]
I ; ∅ � τ �i

+ τ ′ : φ I � �l �i
+

�l I � �l �i
− �l

I ; C; Γ, f : (∀�α.τ,�l) �cfl f i : τ ′

[Pack]
I ;C; Γ �cfl e : τ ′ I ; ∅ � τ �i

− τ ′ : φ dom(φ) = �α C � L ≤ l

I ; C; Γ �cfl packL,i e : ∃l�α.τ

[Unpack]

I ; C; Γ �cfl e1 : ∃l�α.τ I ; C; Γ, x : τ �cfl e2 : τ ′

�l = fl(Γ) ∪ fl(∃l�α.τ) ∪ fl(τ ′) ∪ L �α ⊆ fl(τ) \�l C � l ≤ L

∀l ∈ �α, l′ ∈ �l.(I ;C � �l � l′ and I ; C � �l′ � l)

I ; C; Γ �cfl unpackL x = e1 in e2 : τ ′

Fig. 8. CFL Polymorphic Rules

quantified labels �α chosen by the programmer are invalid and the program is rejected.
The [Unpack] rule in COPY does not forbid interaction between free and bound labels,
and therefore CFL is strictly weaker than COPY. However, without this restriction we
can produce cases where mixing existentials and universals produces flow paths that
should be valid but have mismatched parentheses. Sect. 4.3 contains one such example.
In practice we believe the restriction is acceptable, as we have not found it to be an
issue with LOCKSMITH. We leave it as an open question whether the restriction can be
relaxed while still maintaining efficient CFL reachability-based inference.

Fig. 9 defines the subtyping relation used in [Sub]. The only interesting differ-
ence with COPY arises because of alpha-conversion. In COPY alpha-conversion is im-
plicit, and only trivial constraints are allowed between bound labels (by [Sub-Label-
2] of Fig. 6). We cannot use implicit alpha-conversions in CFL, however, because we
are producing a single, global set of constraints. Thus instead of the single D used
in COPY’s[Sub] rule, CFL uses two Δi, which are sequences of ordered vectors of
existentially-bound labels, updated in [Sub-∃]. In the rules, the syntax Δ ⊕ {l1, ..., ln}
means to append vector {l1, ..., ln} to sequence Δ. Rule [Sub-Ind-2] in Fig. 9, which
corresponds to [Sub-Label-2] in Fig. 6, does allow subtyping between bound labels lj
and l′j—but only if they occur in exactly the same quantification position. Thus these
subtyping edges actually correspond to alpha-conversion. We could also allow this in
the COPY system, but it adds no expressive power and complicates proving soundness.

Fig. 10 defines instantiation constraints on types in terms of instantiation constraints
on labels. Judgments have the form I;D (τ)i

p τ ′ : φ, where φ is the renaming defined
by the instantiation and D is the same as in Fig. 6—we do not need to allow alpha-
conversion here, because we can always apply [Sub] if we wish to alpha-rename. Thus

Existential Label Flow Inference Via CFL Reachability 99

[Sub-Ind-1]
C � l ≤ l′

C; ∅; ∅ � l ≤ l′
[Sub-Int]

C; Δ1; Δ2 � l ≤ l′

C; Δ1; Δ2 � intl ≤ intl′

[Sub-Ind-2]
C � lj ≤ l′j

C; Δ1 ⊕ {l1, . . . , ln}; Δ2 ⊕ {l′1, . . . , l
′
n} � lj ≤ l′j

[Sub-Ind-3]
C; Δ1; Δ2 � l ≤ l′ l �= li l′ �= l′j ∀i, j ∈ [1..n]

C; Δ1 ⊕ {l1, . . . , ln}; Δ2 ⊕ {l′1, . . . , l
′
n} � l ≤ l′

[Sub-Pair]
C; Δ1; Δ2 � l ≤ l′ C; Δ1; Δ2 � τ1 ≤ τ ′

1 C; Δ1; Δ2 � τ2 ≤ τ ′
2

C; Δ1; Δ2 � τ1 ×l τ2 ≤ τ ′
1 ×l′ τ ′

2

[Sub-Fun]
C; Δ1; Δ2 � l ≤ l′ C; Δ1; Δ2 � τ ′

1 ≤ τ1 C; Δ1; Δ2 � τ2 ≤ τ ′
2

C; Δ1; Δ2 � τ1 →l τ2 ≤ τ ′
1 →l′ τ ′

2

[Sub-∃]

Δ′
1 = Δ1 ⊕ �α1 Δ′

2 = Δ2 ⊕ �α2 φ(�α2) = �α1

C; Δ′
1; Δ′

2 � τ1 ≤ τ2 C; Δ1; Δ2 � l1 ≤ l2

C; Δ1; Δ2 � ∃l1 �α1.τ1 ≤ ∃l2 �α2.τ2

Fig. 9. CFL Subtyping

[Inst-Ind-1]
l, l′ �∈ D I � l �i

p l′

I; D � l �i
p l′ : ∅ [Inst-Ind-2] l ∈ D

I; D � l �i
p l : φ

[Inst-Pair]

I; D � l �i
p l′ : φ

I; D � τ1 �i
p τ ′

1 : φ

I; D � τ2 �i
p τ ′

2 : φ

I; D � τ1 ×l τ2 �i
p τ ′

1 ×l′ τ ′
2 : φ

[Inst-Fun]

I; D � l �i
p l′ : φ

I; D � τ1 �i
p̄ τ ′

1 : φ

I; D � τ2 �i
p τ ′

2 : φ

I; D � τ1 →l τ2 �i
p τ ′

1 →l′ τ ′
2 : φ

[Inst-Int]
I; D � l �i

p l′ : φ

I; D � intl �i
p intl′ : φ

[Inst-∃]

D′ = D ∪ �α I; D′ � τ1 �i
p τ2 : φ

I; D � l1 �i
p l2 : φ

I; D � ∃l1�α.τ1 �i
p ∃l2�α.τ2 : φ

Fig. 10. CFL Instantiation

[Inst-Ind-1] permits instantiation of unbound labels, and [Inst-Ind-2] forbids renaming
bound labels. For example, if we have an ∃ type nested inside a ∀ type, instantiating the
∀ type should not rename any of the bound variables of the ∃ type. Aside from this the
rules in Fig. 10 are standard, and details can be found in Rehof et al [14].

Given a flow graph described by constraints I and C, Fig. 11 gives inference rules to
compute the relation l1 � l2, which means label l1 flows to label l2. Rule [Level] states
that constraints in C correspond to flow (represented as unlabeled edges in the flow
graph). Rule [Trans] adds transitive closure. Rule [Match] allows flow on a matched
path l0 −→(i l1 � l2 −→)i l3. This rule corresponds to “copying” the constraint
l1 � l2 to a constraint l0 � l3 at instantiation site i. Rule [Constant] adds a “self-loop”

100 P. Pratikakis, J.S. Foster, and M. Hicks

[Level]
C � l1 ≤ l2

I ;C � l1 � l2
[Trans]

I ; C � l0 � l1 I ; C � l1 � l2
I ; C � l0 � l2

[Constant]
I ;C � L �i

p L
[Match]

I � l1 �i
− l0 I ; C � l1 � l2 I � l2 �i

+ l3

I ;C � l0 � l3

Fig. 11. Flow

that permits matching flows to or from any constant label. We generate these edges
because constants are global names and thus are context-insensitive.

Note that our relation � corresponds to the �m relation from Rehof et al [14],
where m stands for “matched paths.” The Rehof et al system also includes so-called PN
paths, which allow extra parentheses that are not matched by anything, e.g., extra open
parentheses at the beginning of the path, or extra closed parentheses at the end. In our
system we concern ourselves only with constants, which by [Constant] have all possible
self-loops (this rule is not included in the Rehof et al system). These self-loops mean
that any flow from one constant to another via a PN path is also captured by a matched
path between the constants. Thus for purposes of showing soundness, matched paths
suffice. We could add PN paths to our system with no difficulty to allow queries on
intermediate flows, but have not done so for simplicity.

4.1 Example

Consider again the example in Fig. 2. The expression packi(f, 1L1) is given the type

∃Lxi, Lyi.(intLxi → int) × intLyi

by the [Pack] rule. [Pack] also instantiates the pair’s abstract type to its concrete type
using the judgment

I;C ((intLxi → int) × intLyi)i
− (intLa → int) × intL1

Proving this judgment requires appealing in several places to [Inst-Ind-1], whose
premise I (l)i

p l′ requires that I contain constraints Lyi)i− L1 and Lxi)i
+ La,

among others. These are shown as dashed, labeled edges in the figure. Notice that the
direction of the renaming is opposite the direction of flow: The concrete labels flow to
the abstract labels, but the abstract type is instantiated to the concrete type. Hence the
instantiation has negative polarity. This instantiated existential type flows via subtyping
to the type of p shown at the center of the figure. The directed edges between the type
components are induced by subtyping (applying [Sub-∃] at the top level).

The unpack of p is typed by the [Unpack] rule. Within the body of the unpack, we
apply the second part of the pair (p2) to the first part (p1). Here, p2 has type intLy

while p1 has type intLx → int, and thus to apply the [App] rule, we must first prove
(among other things) that C; ∅; ∅ (intLy ≤ intLx. This requires that Ly ≤ Lx be in
C according to [Sub-Ind-1], and is shown as an unlabeled edge in the figure. With this
edge we have I;C (L1 � L3 and I;C (L2 � L4 (but I;C � (L1 � L4). The
final premises of [Unpack] are satisfied because the bound labels Ly and Lx only flow
among themselves or to variables bound in existential types, which are not free.

Existential Label Flow Inference Via CFL Reachability 101

4.2 An Inference Algorithm

CFL has been presented thus far as a checking system in which the flow graph, described
by C and I , is assumed to be known. To infer this flow graph automatically requires
a simple reinterpretation of the rules. The algorithm has three stages and runs in time
O(n3), where n is the size of the type-annotated program.

First, we type the program according to the rules in Figs. 7-10. As usual the non-
syntactic rule [Sub] can be incorporated into the remaining rules to produce a syntax-
directed system [26]. During typing, we interpret a premise C (l ≤ l′ or I (�l)i

p
�l

as generating a constraint; i.e., we add l ≤ l′ (or �l)i
p
�l) to the set of global constraints

C (or I). Free occurrences of l in the rules are interpreted as fresh label variables.
For example, in [Int] we interpret l as a fresh variable α and add L ≤ l to C. When
choosing types (e.g., τ in [Lam] or τ ′ in [Inst]) we pick a type τ of the correct shape
with fresh label variables in every position. After typing we have a flow graph defined
by constraint sets C and I .

Next, we compute all flows according to the rules in Fig. 11. Excluding the final
premise of [Unpack] and the D’s in [Sub] and [Inst], performing typing and computing
all flows takes time O(n3) [14]. To implement [Sub-Ind-i] efficiently, rather than main-
tain D sets explicitly and repeatedly traverse them, we temporarily mark each variable
with a pair (i, j) indicating its position in D and its position in �α as we traverse an
existential type. We can assume without loss of generality that |�α| ≤ |fl(τ)| in an exis-
tential type, so traversing �α does not increase the complexity. Then we can select among
[Sub-Ind-1] and [Sub-Ind-2] in constant time for each constraint C;Δ1;Δ2 (l ≤ l′,
so this does not affect the running time, and similarly for [Inst-Ind-i].

Finally, we check the last reachability condition of [Unpack] to ensure the program-
mer chose a valid specification of existential quantification. Given that we have com-
puted all flows, we can easily traverse the labels in �α and check for paths to �l and
vice-versa. Since each set is of size O(n), this takes O(n2) time, and since there are
O(n) uses of [Unpack], in total this takes O(n3) time. Thus the algorithm as a whole is
O(n3) + O(n3) = O(n3).

4.3 Differences Between COPY and CFL

As mentioned in Sect. 4, if we weaken CFL’s [Unpack] rule to permit existentially
bound labels to interact with free labels, then we can construct examples with mis-
matched flow. Fig. 12(a) shows one such example. Here the function g takes an argu-
ment z, packs it, and then returns the result of calling function f with the package.
Function f unpacks the existential and returns its contents. Thus g is the identity func-
tion, but with complicated data flow. On the last line, the function g is applied to 1L1,
and the result is added using +L2. Thus L1 flows to L2. Let us assume that at packk,
the programmer wishes to quantify the type of the packed integer, and then compare
COPY and CFL as applied to the program.

The COPY types rules assign f the type scheme

f : ∀Lout[∅].
(
∃Lx[Lx ≤ Lout].intLx

)
→ intLout

102 P. Pratikakis, J.S. Foster, and M. Hicks

let g = λz.
let f = (λx. unpack y = x in y) in
let p = packk z in
f i p

in
(gm 1L1) +L2 · · · Lz

(k

int

Lp

Louti

Lz'

int

Lx

Lout

)i ffi

L1 L2
(m)m

(a) Source program (b) Flow graph

Fig. 12. Example with Mismatched Flow

Notice that since f unpacks its argument and returns the contents, there is a constraint
between Lx, the label of the packed integer, and Lout, the label on f ’s result type.
The interesting thing here is that Lx is existentially bound and Lout is not, which is
acceptable in COPY (technically, we need an application of [Sub] to achieve this), but
not allowed in CFL. At the call to f , we instantiate f ’s type as

f i :
(
∃Lx[Lx ≤ Louti].intLx

)
→ intLouti

Let Lz be the label on g’s parameter, and let Lz′ be the label on g’s return type. Then
when we pack z and bind the result to p, we instantiate the abstract Lx to concrete Lz
and thus generate the constraint Lz ≤ Louti. Then g returns the result of f i, and hence
we have Louti ≤ Lz′. Putting these together and generalizing g’s type, we get

g : ∀Lz, Lz′, Louti[Lz ≤ Louti, Louti ≤ Lz′].intLz → intLz′

Finally, we instantiate this type at gm, and we get L1 ≤ Lzm ≤ Loutim ≤ Lz′m ≤ L2,
and thus we have flow from L1 to L2.

Now consider applying CFL to the same program. Fig. 12(b) shows the resulting
flow graph. The type of f , shown at the right of the figure, is (∀Lout.(∃Lx.intLx) →
intLout, ∅) where in the global flow graph there is a constraint Lx ≤ Lout. As before,
this is a constraint between an existentially bound and free variable, which is forbidden
by the strong non-escaping condition in CFL’s [Unpack] rule. However, assume for the
moment that we ignore this condition. Then the type of f i, shown in the left of the
figure, is

(
∃Lp.intLp

)
→ intLouti where we have an instantiation constraint Lout)i

+
Louti, drawn as a dashed edge labeled)i in the figure. (Note that we have also applied
an extra step of subtyping to make the figure easier to read and drawn an edge Lp ≤ Lx,
although we could also set Lp = Lx.) Since the result of calling f i is returned, we have
Louti ≤ Lz′, where again Lz′ is the label on the return type of g. Moreover, at packk,
we instantiate the abstract type of p to its concrete type, resulting in the constraint
Lp)k− Lz, where Lz is the label on g’s parameter. Finally, at the instantiation of g we
generate constraints Lz)m

− L1 and Lz′)m
+ L2.

Notice that there is no path from L1 to L2, because (k does not match)i. The prob-
lem is that instantiation i must not rename Lp, and instantiation k must not rename
Louti. In CFL, we prevent instantiations from renaming labels by adding “self-loops,”
as in [Inst] in Fig. 8. In this case, we should have Lp)i± Lp and Louti)k± Louti.
We expended significant effort trying to discover a system that would add exactly these

Existential Label Flow Inference Via CFL Reachability 103

self-loops, but we were unable to find a solution that would work in all cases. For exam-
ple, adding a self-loop on Louti seems particularly problematic, since Louti is created
only after f i is instantiated, and not at the pack or the unpack points. Moreover, because
we have (m and)m at the beginning and end of the mismatched path, the self-loops on
L1 and L2 do not help. Thus in [Unpack] in Fig. 8, we require existentially-quantified
labels to not have any flow with escaping labels to forbid this example.

4.4 Soundness

We have proven that programs that check under CFL are reducible to COPY. The first
step is to define a translation function ΨC,I that takes CFL types and transforms them
to COPY types. For monomorphic types ΨC,I is simply the identity. To translate a poly-
morphic CFL type (∀�α.τ,�l) or ∃l�α.τ into a COPY type ∀�α[C′].τ or ∃l�α[C′].τ , respec-
tively, ΨC,I needs to produce a bound constraint set C′. Rehof et al [14,15] were able to
choose C′ = CI = {l1 ≤ l2 | I;C (l1 � l2}, i.e., the closure of C and I . However,
the addition of first class existentials causes this approach to fail, because, for example,
instantiating a ∀ type containing a type ∃l�α[CI].τ could rename some variables in CI

(since CI contains all variables used in the program) and thereby violate the inductive
hypothesis. Thus we introduce a projection function ψS , where we define

ψS(l) =
{
l l ∈ S ∪ L⊔
{l′ ∈ S ∪ L | CI (l′ ≤ l} otherwise

where
 represents the union of two labels. Then for a universal type, ΨC,I sets C′ =
ψ(�α∪�l)(C

I), and for an existential type ΨC,I sets C′ = ψ�α(CI). We extend ΨC,I to type

environments in the natural way and define CI
S = ψS(CI). Now we can show:

Theorem 2 (Reduction from CFL to COPY). Let D be a normal CFL derivation of
I;C;Γ (cfl e : τ . Then CI

fl(Γ)∪fl(τ);ΨC,I(Γ) (cp e : ΨC,I(τ).

Proof. The proof is by induction on the derivation D. There are two key parts of the
proof. The first is a lemma that shows that the bound constraint sets chosen by ΨC,I

for universal and existential types are closed under substitutions at instantiation sites,
so that when we translate an occurrence of [Inst] or [Pack] from CFL to COPY we can
prove the hypothesis C (φ(C′). The other key part occurs in translating an occurrence
of [Unpack] from CFL to COPY. In this case, by induction on the typing derivation
for e2 we have CI

fl(Γ)∪fl(τ)∪fl(τ ′);ΨC,I(Γ), x : ΨC,I(τ) (cp e2 : ΨC,I(τ ′). By the
last hypothesis of [Unpack] in CFL, we know that there are no constraints between the
quantified labels �α and any other labels. Thus we can partition the constraints on the
left-hand side of the above typing judgment into two disjoint sets: CI

(fl(Γ)∪fl(τ)∪fl(τ ′))\�α

and CI
�α. The former are the constraints needed to type check e1 in COPY, and the latter

are those bound in the existential type of e1 by ΨC,I . These two constraint sets form
the sets C and C′, respectively, needed for the [Unpack] rule of COPY. A full, detailed
proof can be found in our companion technical report [20].

By combining Theorems 1 and 2, we then have soundness for the flow relation �
computed by CFL. Notice that we have shown reduction but not equivalence. Rehof et

104 P. Pratikakis, J.S. Foster, and M. Hicks

al [14,15] also only show reduction, but conjecture equivalence of their systems. In our
case, equivalence clearly does not hold, because of the extra non-escaping condition on
[Unpack] in CFL. We leave it as an open question whether this condition can be relaxed
to yield provably equivalent systems.

5 Related Work

Our work builds directly on the CFL reachability-based label flow system of Rehof
et al [14]. Their cubic-time algorithm for polymorphic recursive label flow inference
improves on the previously best-known O(n8) algorithm [13]. The idea of using CFL
reachability in static analysis is due to Reps et al [27], who applied it to first-order
data flow analysis problems. Our contribution is to extend the use of CFL reachability
further to include existential types for modeling data structures more precisely.

Existential types can be encoded in System F [28] (p. 377), in which polymorphism
is first class and type inference is undecidable [29]. There have been several propos-
als to support first-class polymorphic type inference using type annotations to avoid the

undecidability problem. In MLF [22], programmers annotate function arguments that
have universal types. Laufer and Odersky [23] propose an extension to ML with first-
class existential types, and Remy [24] similarly proposes an extension with first-class
universal types. In both systems, the programmer explicitly lists which type variables
are quantified. Packs and unpacks correspond to data structure construction and pattern
matching, and hence are determined by the program text. Our system also requires the
programmer to specify packs and unpacks as well as which variables are quantified, but
in contrast to these three systems we support subtyping rather than unification, and thus
we need polymorphically constrained types. Note that our solution is restricted to label
flow, and only existential types are first-class, but we believe adding first-class universals
with programmer-specified quantification would be straightforward. We conjecture that
full first-class polymorphic type inference for label flow is decidable, and plan to explore
such a system in future work.

Simonet [25] extends HM(X) [30], a generic constraint-based type inference frame-
work, to include first-class existential and universal types with subtyping. Simonet re-
quires the programmer to specify the polymorphically constrained type, including the
subtyping constraints C, whereas we infer these (we assume we have the whole pro-
gram). Another key difference is that we use CFL reachability for inference. Once again,
however, our system is concerned only with label flow.

In ours and the above systems, both existential quantification as well as pack and
unpack must be specified manually. An ideal inference algorithm requires no work
from the programmer. For example, we envision a system in which all pairs and their
uses are considered as candidate existential types, and the algorithm chooses to quantify
only those labels that lead to a minimal flow in the graph. It is an open problem whether
such an algorithm exists.

6 Conclusion

Existential quantification can be used to precisely characterize relationships within el-
ements of a dynamic data structure, even when the precise identity of those elements

Existential Label Flow Inference Via CFL Reachability 105

is unknown. This paper aims to set a firm theoretical foundation on which to build
efficient program analyses that benefit from existential quantification. Our main con-
tribution is a context-sensitive inference algorithm for label flow analysis that supports
existential quantification. Programmers specify where existentials are introduced and
eliminated, and our inference algorithm automatically infers the bounds on their flow.
Our algorithm is efficient, employing context free language (CFL) reachability in the
style of Rehof et al [14], and we prove it sound by reducing it to a system based on
polymorphically-constrained types in the style of Mossin [13]. We have adapted our
algorithm to improve the precision of LOCKSMITH, a tool that aims to prove the ab-
sence of race conditions in C programs [4] by correlating locks with the locations they
protect. We plan to explore other applications of existential label flow in future work.

Acknowledgments

We would like to thank Manuel Fähndrich, Mike Furr, Ben Liblit, Nik Swamy, and the
anonymous referees for their helpful comments. This research was supported in part by
NSF grants CCF-0346982, CCF-0346989, CCF-0430118, and CCF-0524036.

References

1. Das, M.: Unification-based Pointer Analysis with Directional Assignments. In: The
2000 Conference on Programming Language Design and Implementation, Vancouver B.C.,
Canada (2000) 35–46

2. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Transactions on
Programming Languages and Systems 10 (1988) 470–502

3. Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: The 26th Annual
Symposium on Principles of Programming Languages, San Antonio, Texas (1999) 214–227

4. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-Sensitive Correlation Analy-
sis for Race Detection. In: The 2006 Conference on Programming Language Design and
Implementation, Ottawa, Canada (2006) To appear.

5. Flanagan, C., Abadi, M.: Types for Safe Locking. In Swierstra, D., ed.: 8th European Sym-
posium on Programming. Volume 1576 of Lecture Notes in Computer Science., Amsterdam,
The Netherlands, Springer-Verlag (1999) 91–108

6. Minamide, Y., Morrisett, G., Harper, R.: Typed closure conversion. In: The 23rd Annual
Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida (1996)
271–283

7. Fähndrich, M., Rehof, J., Das, M.: Scalable Context-Sensitive Flow Analysis using Instanti-
ation Constraints. In: The 2000 Conference on Programming Language Design and Imple-
mentation, Vancouver B.C., Canada (2000) 253–263

8. Das, M., Liblit, B., Fähndrich, M., Rehof, J.: Estimating the Impact of Scalable Pointer Anal-
ysis on Optimization. In Cousot, P., ed.: Static Analysis, Eighth International Symposium,
Paris, France (2001) 260–278

9. Myers, A.C.: Practical Mostly-Static Information Flow Control. In: The 26th Annual Sym-
posium on Principles of Programming Languages, San Antonio, Texas (1999) 228–241

10. Foster, J.S., Johnson, R., Kodumal, J., Aiken, A.: Flow-insensitive type qualifiers. (ACM
Transactions on Programming Languages and Systems) To appear.

106 P. Pratikakis, J.S. Foster, and M. Hicks

11. Kodumal, J., Aiken, A.: The Set Constraint/CFL Reachability Connection in Practice. In:
The 2004 Conference on Programming Language Design and Implementation, Washington,
DC (2004) 207–218

12. Johnson, R., Wagner, D.: Finding User/Kernel Bugs With Type Inference. In: The 13th
Usenix Security Symposium, San Diego, CA (2004)

13. Mossin, C.: Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, Department
of Computer Science, University of Copenhagen (1996)

14. Rehof, J., Fähndrich, M.: Type-Based Flow Analysis: From Polymorphic Subtyping to CFL-
Reachability. In: The 28th Annual Symposium on Principles of Programming Languages,
London, United Kingdom (2001) 54–66

15. Fähndrich, M., Rehof, J., Das, M.: From Polymorphic Subtyping to CFL Reachability:
Context-Sensitive Flow Analysis Using Instantiation Constraints. Technical Report MS-TR-
99-84, Microsoft Research (2000)

16. Flanagan, C., Felleisen, M.: Componential Set-Based Analysis. In: The 1997 Conference on
Programming Language Design and Implementation, Las Vegas, Nevada (1997) 235–248

17. Fähndrich, M., Aiken, A.: Making Set-Constraint Based Program Analyses Scale. In: First
Workshop on Set Constraints at CP’96. (1996) Available as CSD-TR-96-917, University of
California at Berkeley.

18. Fähndrich, M.: BANE: A Library for Scalable Constraint-Based Program Analysis. PhD
thesis, University of California, Berkeley (1999)

19. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: Scalable threads
for internet services. In: ACM Symposium on Operating Systems Principles. (2003)

20. Pratikakis, P., Hicks, M., Foster, J.S.: Existential Label Flow Inference via CFL Reachabil-
ity. Technical Report CS-TR-4700, University of Maryland, Computer Science Department
(2005)

21. Henglein, F.: Type Inference with Polymorphic Recursion. ACM Transactions on Program-
ming Languages and Systems 15 (1993) 253–289

22. Botlan, D.L., Rémy, D.: MLF —Raising ML to the Power of System F. In: The Eighth
International Conference on Functional Programming, Uppsala, Sweden (2003) 27–38

23. Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM Trans-
actions on Programming Languages and Systems 16 (1994) 1411–1430

24. Rémy, D.: Programming objects with MLART: An extension to ML with abstract and
record types. In: The International Symposium on Theoretical Aspects of Computer Sci-
ence, Sendai, Japan (1994) 321–346

25. Simonet, V.: An Extension of HM(X) with Bounded Existential and Universal Data Types.
In: The Eighth International Conference on Functional Programming, Uppsala, Sweden
(2003) 39–50

26. Mitchell, J.C.: Type inference with simple subtypes. Journal of Functional Programming 1
(1991) 245–285

27. Reps, T., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph Reach-
ability. In: The 22nd Annual Symposium on Principles of Programming Languages, San
Francisco, California (1995) 49–61

28. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)
29. Wells, J.B.: Typability and type checking in System F are equivalent and undecidable. Ann.

Pure Appl. Logic 98 (1999) 111–156
30. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types. Theory and

Practice of Object Systems 5 (1999) 35–55

Abstract Interpretation with
Specialized Definitions

Germán Puebla1, Elvira Albert2, and Manuel Hermenegildo1,3

1 School of Computer Science, Technical U. of Madrid
{german, herme}@fi.upm.es

2 School of Computer Science, Complutense U. of Madrid
elvira@sip.ucm.es

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico
herme@unm.edu

Abstract. The relationship between abstract interpretation and par-
tial evaluation has received considerable attention and (partial) inte-
grations have been proposed starting from both the partial evaluation
and abstract interpretation perspectives. In this work we present what
we argue is the first generic algorithm for efficient and precise integra-
tion of abstract interpretation and partial evaluation from an abstract
interpretation perspective. Taking as starting point state-of-the-art al-
gorithms for context-sensitive, polyvariant abstract interpretation and
(abstract) partial evaluation of logic programs, we present an algorithm
which combines the best of both worlds. Key ingredients include the ac-
curate success propagation inherent to abstract interpretation and the
powerful program transformations achievable by partial deduction. In
our algorithm, the calls which appear in the analysis graph are not an-
alyzed w.r.t. the original definition of the procedure but w.r.t. special-
ized definitions of these procedures. Such specialized definitions are ob-
tained by applying both unfolding and abstract executability. Also, our
framework is parametric w.r.t. different control strategies and abstract
domains. Different combinations of these parameters correspond to ex-
isting algorithms for program analysis and specialization. Our approach
efficiently computes strictly more precise results than those achievable by
each of the individual techniques. The algorithm is one of the key com-
ponents of CiaoPP, the analysis and specialization system of the Ciao
compiler.

1 Introduction and Motivation

The relationship between abstract interpretation [5] and partial evaluation [14]
has received considerable attention. See, for instance, the relationship estab-
lished in a general context in [4,13,6] and the work in the context of par-
tial evaluation of logic programs (also known as partial deduction [21,11]) of
[8,10,18,15,24,26,9,19,25,16]). In order to motivate our proposal, we use the run-
ning “challenge” example of Fig. 1. It is a simple Ciao [3] program which uses

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 107–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

108 G. Puebla, E. Albert, and M. Hermenegildo

:- module(,[main/2],[assertions]).

:- entry main(s(s(s(L))),R) : (ground(L),var(R)).

main1(X,X2):-formula1,1(X,X1), formula1,2(X1,X2), ground1,3(X2).

formula2(X,W):-ground2,1(X),var2,2(W),two2,3(T),minus2,4(X,T,X2),twice2,5(X2,W).

minus4(X,0,X).

minus5(s(X),s(Y),R) :- minus5,1(X,Y,R).

minus6(0,s(Y), R).

twice7(X, Y) :- var7,1(X).

twice8(X,Y) :- ground8,1(X), tw8,2(X,Y).

tw9(0,0).

tw10(s(X),s(s(NX))) :- tw10,1(X,NX).

Fig. 1. Running Example

Peano’s arithmetic.1 The entry declaration is used to inform that all calls to the
exported predicate main/2will always be of the form ← main(s(s(s(L))), R) with
L ground and R a variable. The predicate main/2 performs two calls to predicate
formula/2. A call formula(X,W) performs mode tests ground(X) and var(W)
on its input arguments and returns W = (X − 2) × 2. Predicate two/1 returns
s(s(0)), i.e., the natural number 2. A call minus(A,B,C) returns C = A − B.
However, if the result becomes a negative number, C is left as a free variable.
This indicates that the result is not valid. In turn, a call twice(A,B) returns
B = A × 2. Prior to computing the result, this predicate checks whether A
is valid, i.e., not a variable, and simply returns a variable otherwise. For ini-
tial queries satisfying the entry declaration, all calls to the tests ground1,3(X),
ground2,1(X), and var2,2(W) will definitely succeed. Thus, they can be replaced
by true, even if we do not know the concrete values of variable L at compile
time. Also, the calls to ground8,1(X) will succeed, while the calls to var7,1(X)
will fail, and can thus be replaced by fail. These kinds of optimizations require
abstract information from analysis (e.g., groundness and freeness).

The example illustrates four difficulties and challenges. First, the benefits of
(1) exploiting abstract information in order to abstractly execute certain atoms.
Furthermore, this may allow unfolding of other atoms. However, the use of an
abstract domain which captures groundness and freeness information will in gen-
eral not be sufficient to determine that in the second execution of formula/2 the
tests ground2,1(X) and var2,2(W) will also succeed. The reason is that on suc-
cess of minus2,4(X,T,X2), X2 cannot be guaranteed to be ground since minus6/3
succeeds with a free variable in its third argument position. It can be observed,
however, that for all calls to minus/3 in executions described by the entry decla-
ration the third clause for minus/3 is useless. It will never contribute to a success
of minus/3 since this predicate is always called with a value greater than zero

1 Rules are written with a unique subscript attached to the head atom (the rule
number), and a double subscript (rule number, body position) attached to each
body literal for later reference. We sometimes use this notation for denoting calls to
atoms as well.

Abstract Interpretation with Specialized Definitions 109

in its first argument. Unfolding can make this explicit by fully unfolding calls to
minus/3 since they are sufficiently instantiated (and as a result the “dangerous”
third clause is disregarded). This unfolding allows concluding that in our par-
ticular context all calls to minus/3 succeed with a ground third argument. This
illustrates the importance of (2) performing unfolding steps in order to prune
away useless branches, and that this may result in improved success informa-
tion. By the time execution reaches twice2,5(X2,W), we hopefully know that X2
is ground. In order to determine that upon success of twice2,5(X2,W) (and thus
on success of formula1,1(X,W)) W is ground, we need to perform a fixpoint com-
putation. Since, for example, the success substitution for formula1,1(X,X1) is
indeed the call substitution for formula1,2(X1,X2), the success of the second test
ground2,1(X) (i.e., the one reachable from formula1,2(X1,X2)) cannot be estab-
lished unless we propagate success substitutions. This illustrates the importance
of (3) propagating (abstract) success information, and performing fixpoint com-
putations when needed, and that this simultaneously may result in an improved
unfolding. Finally, whenever we call formula(X,W), the argument W is a variable,
a property which cannot be captured if we restrict ourselves to downwards-
closed domains (i.e., domains capturing properties such that once a property
holds, it will keep on holding in every state accessible in forwards execution).
This indicates (4) the usefulness of having information on non downwards-closed
properties.

Example 1. CiaoPP, which implements our proposed abstract interpretation
with specialized definitions, produces the following specialized code for the ex-
ample of Fig. 1 (rules are renamed using the prefix sp):

sp main1(s(s(s(0))),0).

sp main2(s(s(s(s(B)))),A) :- sp tw2,1(B,C),sp formula2,2(C,A).

sp tw2(0,0).

sp tw3(s(A),s(s(B))) :- sp tw3,1(A,B).

sp formula4(0,s(s(s(s(0))))).

sp formula5(s(A),s(s(s(s(s(s(B))))))) :- sp tw5,1(A,B).

Thus, our proposal can indeed eliminate all calls to mode tests ground/1 and
var/1, and fully unfold predicates two/1 and minus/3 so that they no longer
appear in the residual code. In addition, the algorithm also produces an ac-
curate analysis for such a program. In particular, the success information for
sp main(X,X2) guarantees that X2 is ground on success. Note that this is equiv-
alent to proving ∀X ≥ 3, main(X,X2) → X2 ≥ 0. Furthermore, our system
is able to get to that conclusion even if the entry only informs about X being
any possible ground term and X2 a free variable. This is because, during the
computation of the specialized definitions, the branches corresponding to values
of X smaller than 3 are detected to be failing and the residual code is indeed
equivalent to the one achieved with the more precise entry declaration. This
illustrates how our proposal is useful for improving the results of the analysis
even in cases where there are no initial constants in the query which can be
propagated through the program.

110 G. Puebla, E. Albert, and M. Hermenegildo

The above results cannot be achieved unless all four points mentioned before
are addressed by a program analysis/specialization system. For example, if we
use traditional partial deduction (PD) with the corresponding Generalize and
Unfold rules followed by abstract interpretation and abstract specialization as
described in [24,25] we only obtain a comparable program after four iterations
of the: “PD + abstract interpretation + abstract specialization” cycle. This
shows the importance of achieving an algorithm which is able to interleave PD
with abstract interpretation, extended with abstract specialization, in order to
communicate the accuracy gains achieved from one to the other as soon as
possible. In any case, iterating over “PD + analysis” is not a good idea from the
efficiency point of view.

2 Preliminaries

This section introduces some preliminary concepts on abstract interpretation [5]
and partial deduction [21]. We assume some basic knowledge on the terminology
of logic programming (see for example [20] for details). Very briefly, an atom
A is a syntactic construction of the form p(t1, . . . , tn), where p/n, with n ≥ 0,
is a predicate symbol and t1, . . . , tn are terms. A clause is of the form H ← B
where its head H is an atom and its body B is a conjunction of atoms. A definite
program is a finite set of clauses. A goal (or query) is a conjunction of atoms.

2.1 The Notions of Unfolding and Resultant

Let G be a goal of the form ← A1, . . . , AR, . . . , Ak, k ≥ 1. The concept of compu-
tation rule, denoted byR, is used to select an atom within a goal for its evaluation.
If R(G) =AR we say that AR is the selected atom in G. The operational seman-
tics of definite programs is based on derivations [20]. Let C = H ← B1, . . . , Bm

be a renamed apart clause in P such that ∃θ = mgu(AR, H). Then, the goal ←
θ(A1, . . . , AR−1, B1,. . . , Bm, AR+1, . . . , Ak) is derived fromG andC viaR. As cus-
tomary, given a program P and a goal G, an SLD derivation for P ∪ {G} consists
of a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence C1, C2, . . .
of properly renamed apart clauses of P , and a sequence θ1, θ2, . . . of mgus such
that each Gi+1 is derived from Gi and Ci+1 using θi+1. A derivation step can be
non-deterministic when AR unifies with several clauses in P , giving rise to several
possible SLD derivations for a given goal. Such SLD derivations can be organized
in SLD trees. A finite derivation G = G0, G1, G2, . . . , Gn is called successful if Gn

is empty. In that case θ = θ1θ2 . . . θn is called the computed answer for goalG. Such
a derivation is called failed if Gn is not empty and it is not possible to perform a
derivation step from it. We will also allow incomplete derivations in which, though
possible, no further resolution step is performed.

Given an atom A, an unfolding rule [21,11] computes a set of finite SLD
derivations D1, . . . , Dn (i.e., a possibly incomplete SLD tree) of the form Di =
A, . . . , Gi with computed answer substitution θi for i = 1, . . . , n whose associ-
ated resultants (or residual rules) are θi(A) ← Gi. The set of resultants for the
computed SLD tree is called a partial deduction (PD) for the initial goal.

Abstract Interpretation with Specialized Definitions 111

2.2 Abstract Interpretation

Abstract interpretation [5] provides a general formal framework for comput-
ing safe approximations of program behaviour. Programs are interpreted using
abstract values instead of concrete values. An abstract value is a finite repre-
sentation of a, possibly infinite, set of concrete values in the concrete domain
D. The set of all possible abstract values constitutes the abstract domain, de-
noted Dα, which is usually a complete lattice or cpo which is ascending chain
finite. The subset relation ⊆ induces a partial order on sets of concrete values.
The ⊆ relation induces the � relation on abstract values. Values in the abstract
domain 〈Dα,�〉 and sets of values in the concrete domain 〈2D,⊆〉 are related
via a pair of monotonic mappings 〈α, γ〉: the abstraction function α : 2D → Dα

which assigns to each (possibly infinite) set of concrete values an abstract value,
and the concretization function γ : Dα → 2D which assigns to each abstract
value the (possibly infinite) set of concrete values (e.g., program variable values)
it represents, such that ∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y.
Concrete values denote typically (but not exclusively) which data structures
program variables are bound to in actual executions, i.e., the substitutions. Cor-
respondingly, abstract values will be often referred to as abstract substitutions.
The following operations on abstract substitutions are domain-dependent and
will be used in our algorithms:

– Arestrict(λ,E) performs the abstract restriction (or projection) of a substi-
tution λ to the set of variables in the expression E, denoted vars(E);

– Aextend(λ,E) extends the substitution λ to the variables in the set vars(E);
– Aunif(t1, t2, λ) obtains the description which results from adding the abstrac-

tion of the unification t1 = t2 to the substitution λ;
– Aconj(λ1, λ2) performs the abstract conjunction of two substitutions;
– Alub(λ1, λ2) performs the abstract disjunction (
) of two substitutions.

An abstract atom of the form A : CP is a concrete atom A which comes equipped
with an abstract substitution CP which is defined over vars(A) and provides addi-
tional information on the context in which the atom will be executed at run-time.
We write A : CP � A′ : CP ′ to denote that {θ(A)|θ ∈ γ(CP)} ⊆ {θ′(A′)|θ′ ∈
γ(CP ′)}. In our algorithms, we also use Atranslate(A : CP,H ← B) which adapts
and projects the information in an abstract atom A : CP to the variables in the
clauseC = H ← B. This operation can be defined in terms of the operations above
as: Atranslate(A : CP,H ← B) = Arestrict(Aunif(A,H,Aextend(CP,C)), C). As
customary, the most general abstract substitution is represented as�, and the least
general (empty) abstract substitution as ⊥.

The following standard operations are used in order to handle keyed-tables:
Create Table(T) initializes a table T . Insert(T,Key , Info) adds Info associated to
Key to T and deletes previous information associated to Key , if any. IsIn(T,Key)
returns true iff Key is currently stored in the table T . Finally, Look up(T,Key)
returns the information associated to Key in T . For simplicity, we sometimes
consider tables as sets and we use the notation (Key � Info) ∈ T to denote that
there is an entry in the table T with the corresponding Key and associated Info.

112 G. Puebla, E. Albert, and M. Hermenegildo

3 Unfolding with Abstract Substitutions

We now present our notion of abstract unfolding —based on an extension of
the SLD semantics which exploits abstract information— which is used later to
generate specialized definitions. This will pave the way to overcoming difficulties
(1) and (2) posed in Section 1.

3.1 SLD with Abstract Substitutions

Our extended semantics handles abstract goals of the form G : CP , i.e., a con-
crete goal G equipped with an abstract substitution CP . The first definition
captures derivation steps.

Definition 1 (Derivation Step). Let G : CP be an abstract goal where G =←
A1,. . . , AR, . . . , Ak and CP is an abstract substitution defined over vars(G). Let
R be a computation rule and let R(G) =AR. Let C = H ← B1, . . . , Bm be a
renamed apart clause in P . Then the abstract goal G′ : CP ′ is derived from
G : CP and C via R if there exist θ = mgu(AR, H) and CPu �= ⊥, where:

CPu = Aunif(AR, θ(H),Aextend(CP,Cθ))
G′ = θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak)

CP ′ = Arestrict(CPu, vars(G′))

An important difference between the above definition and the standard deriva-
tion step is that the use of abstract (call) substitutions allows imposing further
conditions for performing derivation steps, in particular, CPu cannot be ⊥. This
is because if CP �= ⊥ and CPu = ⊥ then the head of the clause C is incom-
patible with CP and the unification AR = H will definitely fail at run-time.
Thus, abstract information allows us to remove useless clauses from the residual
program. This produces more efficient resultants and increases the accuracy of
analysis for the residual code.

Example 2. Consider the goal: formula(s4(X), X2) : {X/G, X2/V} which appears
during the analysis of our running example (c.f. Fig. 2). We abbreviate as sn(X)
the successive application of n symbols s to variable X. We have used sharing-
freeness as abstract domain in the analysis though, for simplicity, we will repre-
sent the results using traditional “modes”: the notation X/G (resp. X/V) indicates
that variable X is ground (resp. free). After applying a derivation step using the
only rule for formula, we derive:

ground(s4(X)), var(X2), two(T), minus(T, s4(X), X2′), twice(X2′, X2) :
{X/G, X2/V, T/V, X2′/V}

where the abstract description has been extended with updated information
about the freeness of the newly introduced variables, i.e., both T and X2’ are V.

The second extension we present makes use of the availability of abstract sub-
stitutions to perform abstract executability [24] during resolution. This allows
replacing some atoms with simpler ones, and, in particular, with the predefined

Abstract Interpretation with Specialized Definitions 113

atoms true and false, provided certain conditions hold. We assume the existence
of a predefined abstract executability table which contains entries of the form
T : CP � T ′ which specify the behaviour of external procedures: builtins, li-
braries, and other user modules. For instance, for predicate ground the abstract
execution table contains the information ground(X) : {X/G} � true. For var, it
contains var(X) : {X/V} � true.2

Definition 2 (Abstract Execution). Let G : CP be an abstract goal where
G =← A1, . . . , AR, . . . , Ak. Let R be a computation rule and let R(G) =AR.
Let (T : CPT � T ′) be a renamed apart entry in the abstract executability table.
Then, the goal G′ : CP ′ is abstractly executed from G : CP and (T : CPT � T ′)
via R if AR = θ(T) and CPA � CPT , where

G′ = A1, . . . , AR−1, θ(T ′), AR+1, . . . , Ak

CP ′ = Arestrict(CP,G′)
CPA = Atranslate(AR : CP, T ← true)

Example 3. From the derived goal in Ex. 2, we can apply twice the above defi-
nition to abstractly execute the calls to ground and var and obtain:

two(T), minus(T, s4(X), X2′), twice(X2′, X2) : {X/G, X2/V, T/V, X2′/V}
since both calls succeed by using the abstract executability table described above.

3.2 Abstract Unfolding

In our framework, resultants for abstract atoms will be obtained using abstract
unfolding in a similar way as it is done in the concrete setting using unfolding
(see Sect. 2.1).

Definition 3 (AUnfold). Let A : CP be an abstract atom and P a program. We
define AUnfold(P,A : CP) as the set of resultants associated to a finite (possibly
incomplete) SLD tree computed by applying definitions 1 and 2 to A : CP .

The so-called local control of PD ensures the termination of the above process.
For this purpose, the unfolding rule must incorporate some mechanism to stop
the construction of SLD derivations (we refer to [17] for details).

Example 4. Consider an unfolding rule AUnfold based on homeomorphic em-
bedding [17] to ensure termination and the initial goal in Ex. 2. The derivation
continuing from Ex. 3 performs several additional derivation steps and abstract
executions and branches (we do not include them due to space limitations and
also because it is well understood). The following resultants are obtained from
the resulting tree:

formula(s(s(s(s(0),s(s(s(s(0))))).
formula(s(s(s(s(s(A))))),s(s(s(s(s(s(B))))))) :- tw(A,B).

which will later be filtered and renamed as they appear in rules 5 and 6 of Ex. 1.
2 In CiaoPP assertions express such information in a domain-independent manner.

114 G. Puebla, E. Albert, and M. Hermenegildo

It is important to note that SLD resolution with abstract substitutions is not
restricted to the left-to-right computation rule. For the case of derivation steps
(Def. 1), it is well-known that non-leftmost steps can produce incorrect results
if the goal contains impure atoms to the left of AR. More details can be found,
e.g., in [1] and its references. For the case of abstract execution (Def. 2), the
execution of non-leftmost atoms can be incorrect if the abstract domain used
captures properties which are not downwards closed. A simple solution in this
case is to allow only leftmost abstract execution steps for non-downwards closed
domains.

4 Specialized Definitions

Typically, PD is presented as an iterative process in which partial evaluations
are computed for the new generated atoms until they cover all calls which can
appear in the execution of the residual program. This is formally known as the
closedness condition of PD [21]. In order to ensure termination of this global
process, the so-called global control defines a Generalize operator (see, e.g., [17])
which guarantees that the number of SLD trees computed is kept finite, i.e., it
ensures the finiteness of the set of atoms for which partial deduction is produced.
However, the residual program is not generated until such iterative process ter-
minates.

We now define an Abstract Partial Deduction (APD) algorithm whose execu-
tion can later be interleaved in a seamless way with a state-of-the-art abstract
interpreter. For this, it is essential that the APD process be able to generate
residual code for each call pattern as soon as we finish processing it. This will
make it possible for the analysis algorithm to have access to the improved def-
inition. As a consequence, the accuracy of the analyzer may be increased and
difficulty (2) described in Sect. 1 overcome.

4.1 Abstract Partial Deduction

Algorithm 1 presents an APD algorithm. The main difference with standard
algorithms for APD is that the resultants computed by AUnfold (L23) are added
to the program during execution of the algorithm (L27) rather than in a later
code generation phase. In order to avoid conflicts among the new clauses and
the original ones, clauses for specialized definitions are renamed with a fresh
predicate name (L26) prior to adding them to the program (L27). The algorithm
uses two global data structures. The specialization table contains entries of the
form A : CP � A′. The atom A′ provides the link with the clauses of the
specialized definition for A : CP . The generalization table stores the results
of the AGeneralize function and contains entries A : CP � A′ : CP ′ where
A′ : CP ′ is a generalization of A : CP , in the sense that A = A′θ and (A :
CP) � (A′ : CP ′).

Let us briefly discuss some AGeneralize functions which can be used within
our algorithms when using it as a specializer. In both of them, the decision on
whether to lose information in a call AGeneralize(ST , A : CP) is based on the

Abstract Interpretation with Specialized Definitions 115

Algorithm 1. Abstract Partial Deduction with Specialized Definitions
1: procedure partial evaluation with spec defs(P, {A1 : CP1, . . . , An : CPn})
2: Create Table(GT); Create Table(ST)
3: for j = 1..n do
4: process call pattern(Aj : CPj)
5: procedure process call pattern(A : CP)
6: if not IsIn(GT , A : CP) then
7: (A1, A

′
1) ← specialized definition(P,A : CP)

8: A1 : CP1 ← Look up(GT , A : CP)
9: for all renamed apart clause Ck = Hk ← Bk ∈ P s.t. Hk unifies with A′

1
do

10: CPk ← Atranslate(A′
1 : CP1, Ck)

11: process clause(CPk, Bk)
12: procedure process clause(CP, B)
13: if B = [L|R] then
14: CPL ← Arestrict(CP, L)
15: process call pattern(L : CPL)
16: process clause(CP, R)
17: function specialized definition(P,A : CP)
18: A′ : CP ′ ← AGeneralize(ST , A : CP)
19: Insert(GT , A : CP, A′ : CP ′)
20: if IsIn(ST , A′ : CP ′) then
21: A′′ ←Look up(ST , A′ : CP ′)
22: else
23: Def ← AUnfold(P, A′ : CP ′)
24: A′′ ← new filter(A′)
25: Insert(ST , A′ : CP ′, A′′)
26: Def ′ ← {(H ′ ← B) | (H ← B) ∈ Def ∧ H ′ = ren(H, {A′/A′′})}
27: P ← P

⋃
Def ′

28: return (A′, A′′)

concrete part of the atom, A. This allows easily defining AGeneralize operators
in terms of existing Generalize operators. Let Generalize be a (concrete) general-
ization function. Then we define AGeneralizeα(ST , A : CP) = (A′, CP ′) where
A′ = Generalize(ST , A) and CP ′ = Atranslate(A : CP,A′ ← true). Function
AGeneralizeα only assigns the same specialized definition for different abstract
atoms when we know that after adapting the analysis info of both A1 : CP1 and
A2 : CP2 to the new atom A′ the same entry substitution CP ′ will be obtained
in either case. Similarly, we define AGeneralizeγ(ST , A : CP) = (A′, CP ′) where
A′ = Generalize(ST , A) and CP ′ = �. The function AGeneralizeγ assigns gener-
alizations taking into account the concrete part of the abstract atom only, which
is the same for all OR-nodes which correspond to a literal k, i. These functions
are in fact two extremes. In AGeneralizeα we try to keep as much abstract in-
formation as possible, whereas in AGeneralizeγ we lose all abstract information.
The latter is useful when we do not have an unfolding system which can exploit
abstract information or when we do not want the specialized program to have
different implemented specialized definitions for atoms with the same concrete
part but different abstract substitution.

116 G. Puebla, E. Albert, and M. Hermenegildo

Procedure partial evaluation with spec defs (L1-4) initiates the com-
putation. It first initializes the tables and then calls process call pattern
for each abstract atom Aj : CPj in the initial set to be partially evaluated. The
task of process call pattern is, if the atom has not been processed yet (L6),
to compute a specialized definition for it (L7) and then process all clauses in its
specialized definition by means of calls to process clause (L9-11). For sim-
plicity of the presentation, we assume that clause bodies returned by special-
ized definition are represented as lists rather than conjunctions. Procedure
process clause traverses clause bodies, processing their corresponding atoms
by means of calls to process call pattern, in a depth-first, left-to-right fash-
ion. In contrast, the order in which pending call patterns (atoms) are handled is
usually not fixed in APD algorithms. They are often all put together in a set. The
purpose of the two procedures process clause and process call pattern
is to traverse the clauses in the left-to-right order and add the corresponding call
patterns. In principle, this does not have additional advantages w.r.t. existing
APD algorithms because success propagation has not been integrated yet. How-
ever, the reason for our presentation is to be as close as possible to our analysis
algorithm with success propagation, which enforces a depth-first, left-to-right
traversal of program clauses. Correctness of Algorithm 1 can be established us-
ing the framework for APD in [16].

4.2 Integration with an Abstract Interpreter

For the integration we propose, the most relevant part of the algorithm comprises
L17-28, as it is the code fragment which is directly executed from our abstract
interpreter. The remaining procedures (L1-L16) will be overridden by more ac-
curate ones later on. The procedure of interest is specialized definition. It
performs (L18) a generalization of the call A : CP using the abstract counter-
part of the Generalize operator, denoted by AGeneralize, and which is in charge
of ensuring termination at the global level. The result of the generalization,
A′ : CP ′, is inserted (L19) in the generalization table GT . It is required that
(A : CP) � (A′ : CP ′). If A′ : CP ′ has been previously treated (L20), then its
specialized definition A′′ is looked up in ST (L21) and returned. Otherwise, a
specialized definition Def is computed by using the AUnfold operator (L23).

As already mentioned, the specialized definition Def for the abstract atom
A : CP is used to extend the original program P . First, the atom A′ is renamed
by using new filter which returns an atom with a fresh predicate name, A′′, and
optionally filters constants out (L24). Then, function ren is applied to rename the
clause heads using atom A′ (L26). The function ren(A, {B/B′}) returns θ(B′)
where θ = mgu(A,B). Finally, the program P is extended with the new, renamed
specialized definition, Def ′.

Example 5. Three calls to specialized definition appear (within an oval box)
during the analysis of our running example in Fig. 2 from the following abstract
atoms, first main(s3(X), X2) : {X/G, X2/V}, then tw(B, C) : {B/G, C/V} and finally
formula(C, A) : {C/G, A/V}. The output of such executions is used later (with the

Abstract Interpretation with Specialized Definitions 117

proper renaming) to produce the resultants in Ex. 1. For instance, the second
clause obtained from the first call to specialized definition is

sp main2(s(s(s(s(B)))),A) :- tw2,1(B,C),formula2,2(C,A).

where only the head is renamed. The renaming of the body literals is done in a
later code-generation phase.

It is important to note that Algorithm 1 does not perform success propagation
yet (difficulty 3). In L16, it becomes apparent that all atom(s) in R will be
analyzed with the same call pattern CP as L, which is to their left in the clause.
This may clearly lead to substantial precision loss. In the above example, Alg. 1
is not able to obtain the three abstract atoms above due to the absence of success
propagation. For instance, the abstract pattern formula(C, A) : {C/G, A/V} which
is necessary in order to obtain the last two resultants of Ex. 1 cannot be obtained
with this algorithm. In particular, we cannot infer the groundness of C which,
in turn, prevents us from abstractly executing the next call to ground and,
thus, from obtaining this optimal specialization. In addition, this lack of success
propagation makes it difficult or even impossible to work with non downwards
closed domains (difficulty 4), since CP may contain information which holds
before execution of the leftmost atom L but which can no longer hold after
that. In fact, in our example CP contains the info C/V, which becomes false
after execution of tw(B, C), since now C is ground. This problem is solved in the
algorithm we present in the next section, where analysis information flows from
left to right, adding more precise information and eliminating information which
is no longer safe or even definitely wrong.

5 Abstract Interpretation with Specialized Definitions

The main idea in abstract interpretation with specialized definitions is that a
generic abstract interpreter is equipped with a generator of specialized defini-
tions. Such generator provides, upon request, the specialized definitions to be
analyzed by the interpreter. Certain data structures, which take the form of
tables in the algorithms (i.e., the specialization, generalization, answer and de-
pendency arc tables) will be used to communicate between the two processes
and achieve a smooth interleaving. The input to the whole process is a program
together with a set of calling patterns for it. The output is a specialized program
together with the analysis results inferred for it. The scheme can be parameter-
ized with different (abstract) unfolding rules, generalization operators, abstract
domains and widenings. The different instances give rise to interesting analysis
and specialization methods, some of which are well known and others are novel
(see Section 7).

Algorithm 2 presents our final algorithm for abstract interpretation with spe-
cialized definitions. This algorithm extends both the APD Algorithm 1 and the
abstract interpretation algorithms in [23,12]. The main improvement w.r.t. Al-
gorithm 1 is the addition of success propagation, which requires computing a

118 G. Puebla, E. Albert, and M. Hermenegildo

{X/G,X2/V}main(s3(X), X2){X/G,X2/G}

�
�

�
�SPEC DEF(main(s3(X), X2) : {X/G, X2/V})

• •
main(s3(0), 0) main(s4(B), A)

������
����������

� {B/G,C/V}tw(B, C){B/G,C/G} ������� {C/G,A/V}formula(C, A){C/G,A/G}

�
�

�
	SPEC DEF(tw(B, C) : {B/G, C/V})

• •

�
�

�
	SPEC DEF(formula(C, A) : {C/G, A/V})

• •
tw(0, 0) tw(s(B), s2(C) formula(0, s4(0))))) formula(s(A), s6(B)

� {B/G,C/V}tw(B, C){B/G,C/G}

��

� {A/G,B/V}tw(A, B){A/G,B/G}

��

Fig. 2. Analysis Graph computed by ABS INT WITH SPEC DEF

global fixpoint. It is an important objective for us to be able to compute an ac-
curate fixpoint in an efficient way. The main improvements w.r.t the algorithms
in [23,12] are the following. (1) It interleaves program analysis and specialization
in a way that is efficient, accurate, and practical. (2) Algorithm 2 deals directly
with non-normalized programs. This point, which does not seem very relevant
in a pure analysis system, becomes crucial when combined with a specializa-
tion system in order to profit from constants propagated by unfolding. (3) It
incorporates a hardwired efficient graph traversal strategy which eliminates the
need for maintaining priority queues explicitly [12]. (4) The algorithm includes
a widening operation for calls, Widen Call, which limits the amount of multi-
variance in order to keep the number of call patterns analyzed finite. This is
required in order to be able to use abstract domains with an infinite number of
elements, such as regular types. (5) It also includes a number of simplifications
to facilitate understanding, such as the use of the keyed-table ADT, which we
assume encapsulates proper renaming apart of variables and the application of
renaming transformations when needed.

5.1 The Program Analysis Graph: Answer and Dependency Tables

In order to compute and propagate success substitutions, Algorithm 2 computes
a program analysis graph in a similar fashion as state of the art analyzers such
as the CiaoPP analyzer [23,12]. For instance, the analysis graph computed by
Algorithm 2 for our running example is depicted in Fig. 2. The graph has two
sorts of nodes. Those which correspond to atoms are called “OR-nodes”. An OR-
node of the form CPAAP is interpreted as the answer (success) pattern for the
abstract atom A : CP is AP. The OR-node {X/G,X2/V}main(s3(X), X2){X/G,X2/G} in
the example indicates that when the atom main(s3(X), X2) is called with descrip-
tion {X/G, X2/V} the answer (or success) substitution computed is {X/G, X2/G}.

Abstract Interpretation with Specialized Definitions 119

Those nodes which correspond to rules are called “AND-nodes”. In Fig. 2, they
appear within a dashed box and contain the head of the corresponding clause.
Each AND-node has as children as many OR-nodes as literals there are in its
body. If a child OR-node is already in the tree, it is not expanded any further
and the currently available answer is used. We show within an oval box the calls
to specialized definition which appear during the execution of the running
example (see the details in Sect. 4). The heads of the clauses in the specialized
definition are linked to the box with a dotted arc. For instance, the analysis graph
in Figure 2 contains three occurrences of the abstract atom tw(B, C) : {B/G, C/V}
(modulo renaming), but only one of them has been expanded. This is depicted
by arrows from the two non-expanded occurrences of tw(B, C) : {B/G, C/V} to
the expanded one. More information on the efficient construction of the analysis
graph can be found in [23,12,2].

The program analysis graph is implicitly represented in the algorithm by
means of two data structures, the answer table (AT) and the dependency table
(DT). The answer table contains entries of the form A : CP � AP which are
interpreted as the answer (success) pattern for A : CP is AP. For instance,
there exists an entry of the form main(s3(X), X2) : {X/G, X2/V} � {X/G, X2/G}
associated to the OR-node discussed above.

Dependencies indicate direct relations among OR-nodes. An OR-node AF :
CPF depends on another OR-node AT : CPT iff in the body of some clause
for AF : CPF there appears the OR-node AT : CPT . The intuition is that
in computing the answer for AF : CPF we have used the answer pattern for
AT : CPT . In our algorithm we store backwards dependencies, i.e., for each
OR-node AT : CPT we keep track of the set of OR-nodes which depend on
it. I. e., the keys in the dependency table are OR-nodes and the information
associated to each node is the set of other nodes which depend on it, together
with some additional information required to iterate when an answer is modified
(updated). Each element of a dependency set for an atom B : CP2 is of the form
〈H : CP ⇒ [Hk : CP1] k, i〉. It should be interpreted as follows: the OR-node
H : CP through the literal at position k, i depends on the OR-node B : CP2.
Also, the remaining information [Hk : CP1] encodes the fact that the head of
this clause is Hk and the substitution (in terms of all variables of clause k) just
before the call to B : CP2 is CP1. Such information avoids having to reprocess
atoms in the clause k to the left of position i.

Example 6. For instance, the dependency set for formula(C, A) : {A/V, C/G} is
{〈main(s3(X), X2) : {X/G, X2/V} ⇒ [main(s4(B), A) : {B/G, A/V, C/G}] 2, 2〉} It
indicates that the OR-node formula(C, A) : {A/V, C/G} is only used in the OR-
node main(s3(X), X2) : {X/G, X2/V} via literal 2,2 (see Example 1). Thus, if the
answer pattern for formula(C, A) : {A/V, C/G} is ever updated, then we must
reprocess the OR-node main(s3(X), X2) : {X/G, X2/V} from position 2,2.

5.2 The Algorithm

Algorithm 2 presents our proposed algorithm. Procedure abs int with spec
defs initializes the four tables used by the algorithm and calls process call

120 G. Puebla, E. Albert, and M. Hermenegildo

Algorithm 2. Abstract Interpretation with Specialized Definitions
1: procedure abs int with spec defs(P, {A1 : CP1, . . . , An : CPn})
2: Create Table(AT); Create Table(DT); Create Table(GT); Create Table(ST);
3: for j = 1..n do
4: process call pattern(Aj : CPj , 〈Aj : CPj ⇒ [Aj : CPj], j, entry〉)
5: function process call pattern(A : CP, Parent)
6: CP1 ← Widen Call(AT , A : CP)
7: if not IsIn(AT , A : CP1) then
8: Insert(AT , A : CP1, ⊥); Insert(DT , A : CP1, ∅)
9: (A′, A′

1) ← specialized definition(P,A : CP1)
10: A′′ ← ren(A, {A′/A′

1})
11: for all renamed clause Ck = Hk ← Bk ∈ P s.t. Hk unifies with A′′ do
12: CPk ← Atranslate(A′′ : CP1, Ck)
13: process clause(A : CP1 ⇒ [Hk : CPk] Bk, k, 1)
14: Deps ← Look up(DT , A : CP1)

⋃{Parent}; Insert(DT , A : CP1, Deps)
15: return Look up(AT , A : CP1)
16: procedure process clause(H :CP ⇒ [Hk : CP1] B, k, i)
17: if CP1 �= ⊥ then
18: if B = [L|R] then
19: CP2 ← Arestrict(CP1, L)
20: AP0 ← process call pattern(L : CP2, 〈H :CP ⇒ [Hk : CP1], k, i〉)
21: CP3 ← Aconj(CP1, Aextend(AP0, CP1))
22: process clause(H : CP ⇒ [Hk : CP3]R, k, i + 1)
23: else
24: AP1 ← Atranslate(Hk : CP3, H ← true); AP2 ← Look up(AT , H : CP)
25: AP3 ← Alub(AP1, AP2)
26: if AP2 �= AP3 then
27: Insert(AT , H : CP, AP3)
28: Deps ← Look up(DT , H : CP); process update(Deps)
29: procedure process update(Updates)
30: if Updates = {A1, . . . , An} with n ≥ 0 then
31: A1 = 〈H :CP ⇒ [Hk : CP1], k, i〉
32: if i �= entry then
33: B ← get body(P, k, i)
34: remove previous deps(H :CP ⇒ [Hk : CP1] B, k, i)
35: process clause(H :CP ⇒ [Hk : CP1] B, k, i)
36: process update(Updates − {A1})

pattern for each abstract atom in the initial set. process call pattern ap-
plies, first of all (L6), the Widen Call function to A : CP taking into account the
set of entries already in AT . This returns a substitution CP1 s.t. CP � CP1. The
most precise Widen Call function possible is the identity function, but it can only
be used with abstract domains with a finite number of abstract values for each set
of variables. This is the case with sharing–freeness and thus we will use the identity
function in our example. If the call patternA : CP1 has not been processed before,
it places (L8)⊥ as initial answer inAT forA : CP and sets to empty the set of OR-
nodes in the graph which depend on A : CP1. It then computes (L9) a specialized
definition for A : CP1. We do not show in Algorithm 2 the definition of special-
ized definition, since it is identical to that in Algorithm 1. Then (L11-13) calls
to process clause are launched for the clauses in the specialized definition w.r.t.

Abstract Interpretation with Specialized Definitions 121

which A : CP1 is to be analyzed. Then, the Parent OR-node is added (L14) to the
dependency set for A : CP1.

The function process clause performs the success propagation and consti-
tutes the core of the analysis. First, the current answer (AP0) for the call to
the literal at position k, i of the form B : CP2 is (L21) conjoined (Aconj), af-
ter being extended (Aextend) to all variables in the clause, with the description
CP1 from the program point immediately before B in order to obtain the de-
scription CP3 for the program point after B. If B is not the last literal, CP3 is
taken as the (improved) calling pattern to process the next literal in the clause
in the recursive call (L22). This corresponds to left-to-right success propaga-
tion and is marked in Fig. 2 with a dashed horizontal arrow. If we are actually
processing the last literal, CP3 is (L24) adapted (Atranslate) to the initial call
pattern H : CP which started process clause, obtaining AP1. This value
is (L25) disjoined (Alub) with the current answer, AP2, for H : CP as given
by Look up. If the answer changes, then its dependencies, which are readily
available in DT , need to be recomputed (L28) using process update. This
procedure restarts the processing of all body postfixes which depend on the
calling pattern for which the answer has been updated by launching new calls
to process clause. There is no need of recomputing answers in our example.
The procedure remove previous deps eliminates (L34) entries in DT for the
clause postfix which is about to be re-computed. We do not present its defini-
tion here due to lack of space. Note that the new calls (L35) to process clause
may in turn launch calls to process update. On termination of the algorithm
a global fixpoint is guaranteed to have been reached. Note that our algorithm
also stores in the dependency sets calls from the initial entry points (marked
with the value entry in L4). These do not need to be reprocessed (L32) but are
useful for determining the specialized version to use for the initial queries after
code generation.

The next theorem presents the correctness of the results of Algorithm 2 in
terms of analysis. We use θ|{X1,...,Xn} to denote the projection of substitution θ
onto the set of variables {X1, . . . , Xn}. We denote by success(A : CP, P) the set
of computed answers for initial queries described by the abstract atom A : CP
in a program P .

Theorem 1 (Correctness of Success). Let P be a program and let S =
{A1 : CP1, . . . , An : CPn} be a set of abstract atoms. For all Ai : CPi ∈ S,
after termination of abs int with spec defs(P, S), there exists (Ai : CP ′

i �

APi) ∈ AT s.t. CPi � CP ′
i ∧ success(Ai : CPi, P) ⊆ γ(APi).

Intuitively, correctness holds since Algorithm 2 computes an abstract and–or
graph and, thus, we inherit a generic correctness result for success substitutions
of [12]. However, now we analyze the call patterns in S w.r.t. specialized defini-
tions rather than their original definition in P . Since the transformation rules in
Definitions 1 and 2 are semantics preserving, then analysis of each specialized
definition is guaranteed to produce a safe approximation of its success set, which
is also a safe approximation of the success of the original definition.

122 G. Puebla, E. Albert, and M. Hermenegildo

5.3 The Framework as a Specializer

If we compose a terminating analysis strategy (abstract domain plus widening
operator) with a terminating PD strategy (local control plus global control), then
Algorithm 2 also terminates for such strategies. The set of specialized definitions
computed during the execution of the algorithm is a specialization of the program
w.r.t. the initial entries.

Theorem 2 (Correctness of Specialization). Consider the Algorithm 2 pa-
rameterized with terminating operators AUnfold, Widen Call and AGeneralize.
Then, for any program P and set of abstract atoms S, abs int with spec-
defs(P, S) terminates and the set of renamed specialized definitions is a correct
specialization of P w.r.t. S.

Intuitively, if we have a terminating AUnfold rule and the abstract domain is
ascending chain finite, non-termination can only occur if the set of call patterns
handled by the algorithm is infinite. Since the Widen Call function guarantees
that a given concrete atom A can only be analyzed w.r.t. a finite number of
abstract substitutions CP , non-termination can only occur if the set of atoms has
an infinite number of elements with different concrete parts. If the AGeneralize
function guarantees that an infinite number of different concrete atoms cannot
occur, then termination is guaranteed.

6 Experiments

In this section we show some experimental results aimed at studying two crucial
points for the practicality of our proposal: the cost associated to computing
specialized definitions and the optimization obtained by the process. We have
implemented the abstract interpreter with specialized definitions as an extension
of the generic abstract interpretation system of CiaoPP. The whole system is
implemented in Ciao 1.13#5666 [3]. Execution times are given in milliseconds
and measure runtime. They are computed as the arithmetic mean of five runs.
All of our experiments have been performed on a Pentium M at 1.86GHz and
1GB RAM running Ubuntu Breezy Linux. The Linux kernel used is 2.6.12.

A relatively wide range of programs has been used as benchmarks. The pro-
gram running ex is that in Fig. 1. The rest are the same programs used in [12] as
benchmarks for static analysis.3 Thus, they do not necessarily contain static data
which can be exploited by partial evaluation. Interestingly, some (first group of
rows in Table 1) contain static data, while others (second and third groups of
rows in Table 1) contain little or no static data. In zebra all the data is static
and it can be potentially fully evaluated at compile-time.

As the analyzers within CiaoPP it derives from, our abstract interpreter with
specialized definitions is parametric w.r.t. the abstract domain. In these experi-
ments we have used mostly the sharing+freeness domain [22] (for the first and

3 More details on such benchmarks can be found in [12].

Abstract Interpretation with Specialized Definitions 123

Table 1. Some implementations of AI with Specialized Definitions. Cost and efficiency

Traditional SDγ SDα− SDα Exec T
Bench Abs Ana PD Ana PD SDγ SU SDα− SU SDα SU SU
running ex shfr 5 11 5 13 1.20 14 1.14 14 1.10 1.33
grammar shfr 24 4 21 24 1.03 27 0.92 34 0.72 1.59
query shfr 358 160 15 173 1.01 187 0.93 453 0.38 2.69
zebra shfr 261 1523 1 1522 1.00 1604 0.95 6476 0.24 1148.08
aiakl shfr 13 25 25 44 1.15 53 0.95 50 1.01 1.00
ann shfr 432 159 452 558 1.10 625 0.98 604 1.01 1.00
boyer shfr 154 90 161 232 1.08 271 0.93 241 1.04 1.00
progeom shfr 9 26 14 37 1.10 39 1.03 41 0.98 0.99
warplan shfr 318 63 311 410 0.91 607 0.62 553 0.68 1.01
witt shfr 103 183 118 255 1.18 288 1.04 276 1.09 1.00
browse eterms 33 18 36 50 1.07 71 0.75 65 0.83 1.00
deriv eterms 149 5 151 151 1.03 160 0.97 161 0.97 1.00
fib eterms 13 2 13 15 1.03 17 0.89 17 0.87 1.00
hanoiapp eterms 61 5 65 73 0.96 101 0.70 97 0.73 1.00
mmatrix eterms 68 4 69 71 1.04 74 0.99 72 1.03 1.00
occur eterms 24 7 24 30 1.02 49 0.62 44 0.69 1.00
serialize eterms 68 13 73 85 1.03 108 0.81 97 0.89 1.03
tak eterms 5 3 5 7 1.21 9 0.95 9 0.95 1.00
Overall 1.03 0.90 0.41

second group of rows in Table 1). We have selected this domain because it is on
one hand well known and on the other orthogonal w.r.t. partial evaluation, in
the sense that it does not contain any concrete information (as, for example, a
depth-k or types domain would). We have also conducted experiments with the
eterms domain [27] which infers regular types (third group of rows in the table).

For each benchmark, the columns under Traditional present the analysis
(Ana) and partial deduction (PD) times using the standard algorithms. Column
Ana PD provides the time taken by analysis of the specialized program (rather
than the original one). Each of the following six columns presents the time
taken by the abstract interpreter with specialized definitions, as well as the ratio
(speedup/slowdown, SU) of this time w.r.t. PD + Ana PD. Columns marked SDα

are for the case where AGeneralizeα (Section 5) is used, whereas SDγ columns use
AGeneralizeγ , with SDα− representing the case where we only check for useless
clauses once a derivation is fully computed, rather than at each derivation step.
Finally, the last column represents the speedup in the execution time of the
program after applying SDα−.

The last row summarizes the analysis times for the different benchmarks us-
ing a weighted mean, which places more importance on those benchmarks with
relatively larger analysis times. We believe that this weighted mean is more
informative than the arithmetic mean, as, for example, doubling the speed in
which a large and complex program is analyzed (checked) is more relevant than
achieving this for small, simple programs.

Overall, we first observe that the time taken by the abstract interpreter with
specialized definitions compares well with that taken by a traditional PD phase
followed by a traditional analysis phase (Ana PD). In the case of SDγ there is actu-

124 G. Puebla, E. Albert, and M. Hermenegildo

ally some speedup (1.03), presumably because fewer traversals of the program are
required, whereas in the case of SDα we observe a reasonable slowdown (0.41),
with SDα− representing an interesting tradeoff (0.90). The execution times of
the resulting programs show significant speedups for the first group (in which
concrete information is available for specialization) and (as expected) only very
minor variations for the other programs. This shows that our system performs
well as a specializer. At the same time, the analysis information obtained (which
is of course one of the fundamental objectives of the process) is always at least as
accurate as that obtained when performing analysis after a standalone special-
ization pass (Ana PD), and is more accurate for the programs in the first group,
which shows that it also performs well as an analyzer.

7 Discussion and Related Work

The versatility of our approach can be seen by recasting well-known specializa-
tion and analysis frameworks as instances where the parameters unfolding rule,
widen call rule, abstraction operator, and analysis domain, take different values.

From an analysis point of view, our algorithm can behave as the polyvariant
abstract interpretation algorithm described in [12,23] by defining an AGeneralize
operator which returns the base form of an expression (i.e., it loses all constants)
and an AUnfold operator which performs a single derivation step (i.e., it returns
the original definition). Also, the specialization power of the multivariant ab-
stract specialization framework described in [25,24] can be obtained by using the
same AGeneralize described in the above point plus an AUnfold operator which
always performs a derive step followed by zero or more abstract execution steps.
However abstract executability is performed now online, during analysis, instead
of offline.

From a partial evaluation perspective, our method can be used to perform
classical partial deduction in the style of [21,11] by using an abstract domain
with the single abstract value � and the identity function as Widen Call rule.
This corresponds to the PD domain of [16] in which an atom with variables
represents all its instances. Let us note that, in spite of the fact that the algo-
rithm follows a left-to-right computation flow at the global control level, the
process of generating specialized definitions (as discussed in Section 3) can per-
form non-leftmost unfolding steps at the local control level and achieve the same
optimizations as in PD. Several approaches for abstract partial deduction have
been proposed which extend PD with SLDNF-trees by using abstract substitu-
tions [15,9,19,16]. In essence, such approaches are very similar to APD with call
propagation shown in Algorithm 1. Though all those proposals identify the need
of propagating success substitutions, they either fail to do so or propose means
for propagating success information which are not fully integrated within the
APD algorithm and, in our opinion, do not fit in as nicely as the use of and–or
trees. Also, these proposals are either strongly coupled to a particular (down-
ward closed) abstract domain, i.e., regular types, as in [9,19] or do not provide
the exact description of operations on the abstract domain which are needed

Abstract Interpretation with Specialized Definitions 125

by the framework, other than general correctness criteria [15,16]. However, the
latter allow Conjunctive PD [7], which is not available in our framework yet. It
remains as future work to investigate the extension of our framework in order to
analyze conjunctions of atoms and in order to achieve optimizations like tupling
and deforestation.

Finally, [26] was a very preliminary (and only informally published) step to-
wards our current framework which identified the need for including unfolding
in abstract interpretation frameworks in order to increase their power. Then,
four different alternatives for doing so (Section 5.3) were discussed. The frame-
work we propose in this work does not correspond to any of those alternatives
and is in fact more powerful than any of them.

Acknowledgments

The authors would like to thank John Gallagher and Michael Leuschel for useful discus-
sions. This work was funded in part by the Information Society Technologies program
of the European Commission, Future and Emerging Technologies under the IST-15905
MOBIUS project, by the MEC project TIN-2005-09207 MERIT, and the CAM project
S-0505/TIC/0407 PROMESAS. Manuel Hermenegildo is also supported by the Prince
of Asturias Chair in Information Science and Technology at UNM.

References

1. E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in Partial Evalua-
tion of Logic Programs with Impure Predicates. In Proc. of LOPSTR’05. Springer
LNCS 3901, April 2006.

2. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

3. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla.
The Ciao Prolog System. Reference Manual (v1.8). The Ciao System Documenta-
tion Series–TR CLIP4/2002.1, School of Computer Science, Technical University
of Madrid (UPM), May 2002. System and on-line version of the manual available
at http://clip.dia.fi.upm.es/Software/Ciao/.

4. C. Consel and S.C. Koo. Parameterized partial deduction. ACM Transactions on
Programming Languages and Systems, 15(3):463–493, July 1993.

5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

6. P. Cousot and R. Cousot. Systematic Design of Program Transformation Frame-
works by Abstract Interpretation. In POPL’02, pages 178–190. ACM, 2002.

7. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M.H.
Sørensen. Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming, 41(2&3):231–277, 1999.

8. J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP Pro-
grams Using Abstract Interpretation. NGC, 6(2–3):159–186, 1988.

9. J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain
in program specialisation. HOSC, 14(2,3):143–172, 2001.

126 G. Puebla, E. Albert, and M. Hermenegildo

10. J.P. Gallagher. Static Analysis for Logic Program Specialization. In Workshop on
Static Analysis WSA’92, pages 285–294, 1992.

11. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of PEPM’93,
pages 88–98. ACM Press, 1993.

12. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM TOPLAS, 22(2):187–223, March 2000.

13. N. D. Jones. Combining Abstract Interpretation and Partial Evaluation. In Static
Analysis Symposium, number 1140 in LNCS, pages 396–405. Springer-Verlag, 1997.

14. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, New York, 1993.

15. M. Leuschel. Program Specialisation and Abstract Interpretation Reconciled. In
Joint International Conference and Symposium on Logic Programming, June 1998.

16. M. Leuschel. A framework for the integration of partial evaluation and abstract
interpretation of logic programs. ACM TOPLAS, 26(3):413 – 463, May 2004.

17. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

18. M. Leuschel and D. De Schreye. Logic program specialisation: How to be more
specific. In Proc. of PLILP’96, LNCS 1140, pages 137–151, 1996.

19. M. Leuschel and S. Gruner. Abstract conjunctive partial deduction using regular
types and its application to model checking. In Proc. of LOPSTR, number 2372
in LNCS. Springer, 2001.

20. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

21. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming.
Journal of Logic Programming, 11(3–4):217–242, 1991.

22. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-
tional Conference on Logic Programming, pages 49–63. MIT Press, June 1991.

23. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In SAS’96, pages 270–284. Springer LNCS 1145, 1996.

24. G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Appli-
cation to Program Parallelization. JLP, 41(2&3):279–316, November 1999.

25. G. Puebla and M. Hermenegildo. Abstract Specialization and its Applications. In
Proc. of PEPM’03, pages 29–43. ACM Press, 2003. Invited talk.

26. G. Puebla, M. Hermenegildo, and J. Gallagher. An Integration of Partial Eval-
uation in a Generic Abstract Interpretation Framework. In PEPM’99, number
NS-99-1 in BRISC Series, pages 75–85. Univ. of Aarhus, Denmark, 1999.

27. C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic
programs. In Proc. of SAS’02, pages 102–116. Springer LNCS 2477, 2002.

Underapproximating Predicate Transformers

David A. Schmidt�

Kansas State University, Manhattan, Kansas, USA
schmidt@cis.ksu.edu

Abstract. We study the underapproximation of the predicate trans-
formers used to give semantics to the modalities in dynamic and tempo-
ral logic. Because predicate transformers operate on state sets, we define
appropriate powerdomains for sound approximation. We study four such
domains — two are based on “set inclusion” approximation, and two are
based on “quantification” approximation — and we apply the domains
to synthesize the most precise, underapproximating p̃re and pre trans-
formers, in the latter case, introducing a focus operation. We also show
why the expected abstractions of post and p̃ost are unsound, and we use
the powerdomains to guide us to correct, sound underapproximations.

1 Introduction

When we prove a property, φ, of a program, P , we typically employ an abstrac-
tion on P ’s and φ’s concrete domain, C, so that we overapproximate P to P �

and underapproximate φ to φ�, where P � and φ� are stated within an abstract
domain, A. If we show P � has property φ�, then we conclude P has φ as well.

This approach quickly becomes complicated: Although C might be a set, A
is usually partially ordered. For example, when C is Int and A is Sign, we
have orderings like isPositive �Sign isNotNegative, because γ(isPositive) ⊆
γ(isNotNegative), where γ : Sign → P(Int) concretizes signs. Even when A is
a set, e.g., a set of state partitions, computing least- and greatest fixed points of
state-transition functions and recursively defined assertions requires a powerset
of the state partitions, partially ordered by subset inclusion [25].

Next, a logical property, φ, is interpreted as a set, [[φ]] ∈ P(C). When the
property is abstracted to φ�, which is itself a set, [[φ]]A ∈ P(A), A’s ordering
affects P(A)’s, and denotational semantics indicates there are a variety of pow-
erdomains that one might use [18, 24] to establish soundness, i.e., [[φ]] ⊇ γ∗[[φ]]A.

The situation becomes more complex when program P ’s concrete transition
function is nondeterministic, f : C → P(C), meaning its abstraction should be
f � : A → P(A). What powerdomain should be used for f �’s codomain? Is it the
same one as that used to define [[φ]]A?

Yet another complication is that properties, φ, can be expressed by the pred-
icate transformers, p̃re , pre , post , and p̃ost . The four predicate transformers
behave differently with respect to a given f � : A → P(A). Fortunately, for an

� Supported by NSF ITR-0086154 and ITR-0326577.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 127–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 D.A. Schmidt

The Collatz state-transition function, f : Nat → Nat :

f(n) = div2(n), if n mod2 = 0
f(n) = 3n + 1, if n mod2 = 1

The function’s graph:
. . .

.

0 1 2 3 4 5 6

10 16 22

7 8
. . .

. . .

Fig. 1. Collatz program and its state-transition graph

overapproximating f �, p̃ref� [[φ]]A underapproximates p̃ref [[φ]], meaning we can
soundly calculate abstract preconditions like those in ACTL [3, 7].

But pref� is not well behaved for f �, and the situations for post and p̃ost are
even less clear.

This paper’s primary contribution is its systematic study of the powerdomains
and Galois connections necessary for sound underapproximation of all four of the
classic predicate transformers. The transformers operate on state sets, and we
will require four powerdomains for sound approximation: two are based on “set
inclusion” approximation, and two are based on “quantification” approximation.
The first two are applied to abstract a logic; the latter two are applied to abstract
state-transition functions. Our study of pre ’s abstraction exposes its fundamen-
tal incompleteness, which is repaired by means of a focussed abstraction. We also
see why the expected abstractions of postf and p̃ostf are unsound, and we use
the powerdomains to define correct, sound underapproximations (which must be
expressed in terms of pref−1 and p̃ref−1 , respectively).

The guiding principle throughout our investigation is that property sets, [[φ]]A,
are downwards-closed subsets of A. We tailor the abstractions of the four pred-
icate transformers so that their answers are always downwards-closed sets, and
in two cases, this requires that the abstract transition function, f � : A → P(A),
used by the predicate transformer must calculate answer sets that are upwards
closed. We select the appropriate Galois connection with the appropriate pow-
erdomain to abstract f to the appropriate f �.

2 Background

Say that a program’s semantics is defined by (the least fixpoint of) a state-
transition function, f : C → C. Figure 1 shows a coding of the Collatz function
and its state-transition semantics, drawn as a graph. When f ⊆ C × C is a
non-functional state-transition relation, we model it by f : C → P(C), and we
use this format hereon.

For calculating postconditions, we lift f to f∗ : P(C) → P(C) in the usual
way: f∗(S) = ∪c∈Sf(c). For example, for odd = {2n + 1 | n ≥ 0}, the strongest
f -postcondition from Figure 1 is f∗(odd) = {4, 10, 16, 22, · · ·}.

Underapproximating Predicate Transformers 129

{0,1,2,3,...}

{0,2,4,...} {1,3,5,...}

{}

UI

even
odd

any

none

γ

α

P(Nat) Parity γ(even) = {0, 2, 4, · · ·}
γ(none) = ∅, etc.

α{2, 6} = even
α{0, 1, 2, 3} = any , etc.

div2� : Parity → Parity
div2�(even) = div2�(odd)

= div2�(any) = any

div2�(none) = none

(3x + 1)� : Parity → Parity
(3x + 1)�(odd) = even

(3x + 1)�(even) = odd

(3x + 1)�(p) = p, if p ∈ {none , any}
The abstracted Collatz function, f � : Parity → Parity , is f � = α ◦ f∗ ◦ γ, that is,

f �(none) = none

f �(even) = div2�(even) = any

f �(odd) = (3x + 1)�(odd) = even

f �(any) = any

Fig. 2. Parity abstraction of natural numbers and the Collatz function

If a program’s state space is “too large,” we might abstract it. The abstraction
might be a state partitioning [2, 25], but more generally it is a complete lattice,
(A,�), such that there is a Galois connection of the form (P(C),⊆)〈α, γ〉(A,�):1

Figure 2 abstracts the concrete domain Nat in Figure 1 to the complete lattice
of parities, Parity , which is applied to abstracting the Collatz function.

Each set, S ⊆ C, is abstracted by α(S) ∈ A, and each a ∈ A models the set
γ(a) ⊆ C. The Galois connection overapproximates C, because for all S ⊆ C,
S ⊆ γ(α(S)).

f∗ : P(C) → P(C) is soundly abstracted by a monotone function, f � : A → A,
iff α ◦ f∗ �P(C)→A f � ◦ α iff f∗ ◦ γ �A→P(C) γ ◦ f � [7]. We work only with
monotone functions. The most precise, sound, abstraction of f∗ is α ◦ f∗ ◦ γ —
see Figure 2 for an example.

Complete lattice A possesses an “internal logic,” where γ(a) interprets the
“assertion” a ∈ A, and for c ∈ C, write c |= a iff c ∈ γ(a). This makes f � : A → A
a sound postcondition transformer for f : if c |= a, then f(c) |= f �(a). Since γ
preserves meets in A,2 �A is “logical conjunction”: c |= a1 � a2 iff c |= a1 and
c |= a2. This logic forms the foundation for static analyses based on A.

There is no guarantee that γ preserves joins; see lattice Sign in Figure 3 and
consider 0 |= neg
 pos , which holds even though 0 �|= neg and 0 �|= pos . We can
improve the situation by building the disjunctive completion [7] of A, which is

1 A Galois connection between two complete lattices, P and Q, written P 〈α, γ〉Q, is
a pair of monontonic functions, α : P → Q and γ : Q → P , such that idP→P � γ ◦α
and α ◦ γ � idQ→Q [7, 13]. Note that γ’s inverse, α, is uniquely defined as α(p) =
�{q | p �P γ(q)} and α’s inverse is γ(q) = �{p | α(p) �Q q}.

2 That is, for every T ⊆ A, ∩a∈T γ(a) = γ(�T), which is necessary and sufficient for γ
to be the upper adjoint of a Galois connection.

130 D.A. Schmidt

Example 1: Sign (γ does not preserve �Sign):

γ{...,−1,0,1,2,...}

{1,2,3,...}

{}

UI

{...,−2,−1}
{0}

any

none

neg
poszero

P(Int) Sign

The completed domain expresses more sets in P(Int), and γ preserves �P↓(Sign):

{...,−2,−1,0}

{0,1,2,3,...}

{1,2,3,...}
{...,−2,−1} {0}

{...,−1,0,1,...}

{...,−2,−1,1,2,...}

{ }

γ

UI

P (Sign)

{neg,none}

{neg,pos,none}

{neg,zero,pos,none}

{ }

{none}

{zero,none}

{neg,zero,none}
{zero,pos,none}

{pos,none}

{any,neg,zero,pos,none}
P(Int)

Example 2: Parity (the completion adds no new expressibility):

{1,3,5,...}

{ }

{0,1,2,3,...}

{0,2,4,...}

γ P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}

UI

P(Nat)

Fig. 3. Two examples of disjunctive completion

(P↓(A),⊆), that is, all downclosed subsets of A, ordered by subset inclusion.3

Here is the resulting Galois connection:

(P(C),⊆)〈αo, γ〉(P↓(A),⊆), where γ(T) = γ∗(T) = ∪a∈Aγ(a)
αo(S)=∩{T | S ⊆ γ(T)}=↓{α{c} | c ∈ S}

See Figure 3. The downclosed sets ensure monotonicity of key functions, like
injection, {| · |} : A → P↓(A) (defined {|a|} =↓{a} so that a � a′ implies {|a|} ⊆
{|a′|}), without changing γ’s image: γ(↓S) = γ(S). Because γ : P↓(A) → P(C)
preserves both joins and meets, we have this useful internal logic for P↓(A):

φ ::= a | φ1 � φ2 | φ1
 φ2

c |= a iff c ∈ γ(a)
c |= φ1 � φ2 iff c |= φ1 and c |= φ2
c |= φ1
 φ2 iff c |= φ1 or c |= φ2

The Galois connection is overapproximating, and we can define a sound ab-
straction of f : C → P(C) in the form, f � : A → P↓(A); the most pre-
cise such abstraction is f �

best = αo ◦ f∗ ◦ γ. (E.g., in Figure 3, Example 1,
3 P↓(A) = {↓T | T ⊆ A}, where ↓T = {a ∈ A | there exists a′ ∈ T , a �A a′}.

Underapproximating Predicate Transformers 131

L � φ ::= a | [f]φ | 〈f〉φ | φ1 ∧ φ2 | φ1 ∨ φ2

[[·]] : L → P(C)

[[a]] = γ(a)
[[[f]φ]] = p̃ref [[φ]]
[[〈f〉φ]] = pref [[φ]]

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

Fig. 4. Precondition logic

succ�
best(neg) = {neg, zero,none} (successor), and in Example 2, div2�

best(even)
= {even , odd ,none}.)

3 Preconditions

For state-transition function, f : C → P(C), S’s postcondition is f∗(S), but
when f is nondeterministic, there are two useful preconditions:

p̃ref (S) = {c | for all c′ ∈ C, c′ ∈ f(c) implies c′ ∈ S} = {c | f(c) ⊆ S}
pref (S) = {c | there exists c′ ∈ f(c), c′ ∈ S} = {c | f(c) ∩ S �= ∅}.

The first computes those states whose f -image lies entirely in S (where the f -
image might be empty); the second defines those states whose f -image has at
least one state in S. We study the two preconditions in their standard logical
representations; Figure 4 gives the syntax and interpretation of the logic. We
write c |= φ iff c ∈ [[φ]], e.g., both 12 |= [div2]even and 12 |= 〈div2〉even .

It is important to note that the logic in Figure 4 is not an internal logic of
P↓(A) — we have no guarantee that γ preserves either p̃ref� or pref� .4 To check
c |= φ within P↓(A), we must abstract each [[φ]] ∈ P(C) to a sound [[φ]]A ∈ P↓(A):
that is, for all φ ∈ L, a ∈ A, we require

a ∈ [[φ]]A implies c ∈ [[φ]], for all c ∈ γ(a)

which is equivalent to requiring that γ[[φ]]A ⊆ [[φ]]. We can insert the latter
requirement into the following adjunction situation:

αu

opP (A)

UI[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ UI

opP(C)

αu
[[]]ϕ

γ

Since γ : P↓(A) → P(C) preserves joins as well as meets, we realize the adjunc-
tion as the Galois connection, P(C)op〈αu, γ〉P↓(A)op:5 where γ(T) = ∪a∈Aγ(a),
as before, and
4 Giacobazzi, Ranzato, and their colleages have intensively studied this problem, which

is connected to the backwards completeness of f [15, 17, 25, 26].
5 Where (P,�P)op is (P,�P).

132 D.A. Schmidt

αu(S) = ∪{T | S ⊇ γ(T)} = {a | γ(a) ⊆ S}.

This is an underapproximating Galois connection, because S ⊇ γ(αu(S)). We
can use it to define this most precise abstraction of [[φ]] ∈ P(C):

[[φ]]A = αu[[φ]].

But such a definition is not finitely computable, and we desire an inductive defi-
nition of [[·]]A. For each logical connective, opk, interpreted by gk : P(C)arity(k) →
P(C) in the form,

[[opk(φi)i<arity(k)]] = gk([[φi]])i<arity(k)

its most precise, inductively defined underapproximation is

[[opk(φi)i<arity(k)]]
A = gk

�
best([[φi]]

A)i<arity(k), where gk
�
best = αu ◦ gk ◦ γarity(k)

Since gk
�
best as stated is not finitely computable, we search for a sound ap-

proximation that is. For example, for logical disjunction we settle for

[[φ1 ∨ φ2]]
A = [[φ1]]

A ∪ [[φ2]]A

as a sound underapproximation of

∪�
best([[φ1]]

A
, [[φ2]]

A), where ∪�
best = αu ◦ ∪P(C) ◦ (γ × γ).

Note that [[φ1 ∨ φ2]]
A �= αu[[φ1 ∨ φ2]]: For example, any ∈ αu[[even ∨ odd]]

but any �∈ [[even ∨ odd]]A, where [[even]]A = αu(γ(even)) = {even,none} (and
similarly for [[odd]]A).

3.1 Abstracting p̃ref

We apply the above-stated techniques to p̃ref (S) = {c | f(c) ⊆ S} and its logical
depiction,

[[[f]φ]] = p̃ref [[φ]].

Using the Galois connections at our disposal, we define (p̃ref)�

best
= αu ◦ p̃ref ◦γ

and compute:
[[[f]φ]]A = (p̃ref)�

best
[[φ]]A

= {a | γ(a) ⊆ p̃ref (γ[[φ]]A)}
= {a | f∗[γ(a)] ⊆ γ[[φ]]A}.

The definition is not finitely computable, so we propose p̃ref� as a sound under-
approximation — since f � : A → P↓(A) overapproximates f ’s transitions, f �’s
preimages will correspond to supersets of f ’s preimages. This gives the standard
result [8]:

Underapproximating Predicate Transformers 133

Proposition 1. If f � : A → P↓(A) is overapproximating sound (that is, α ◦
f �P(C)→A f � ◦ α), then p̃ref� is underapproximating sound: αu(p̃ref (S)) ⊇
p̃ref�(αu(S)).

We also have this pleasing result, which shows that the preimage of the best
overapproximation equals the best underapproximation of the preimage:

Theorem 2. p̃ref�
best

= (p̃ref)�

best
, where f �

best = αo ◦ f∗ ◦ γ.

Proof. First, (p̃ref)�

best
(T) = {a | f∗(γ(a)) ⊆ γ(T)}, and next, p̃ref�

best
(T) =

{a | αo◦f∗◦γ(a) ⊆ T}. Assume f∗(γ(a)) ⊆ γ(T); then αo◦f∗◦γ(a) ⊆ αo◦γ(T).
Since αo(γ(T)) ⊆ T , we are finished. �

Function f �
best : A → P↓(A) has been intensively studied:

f �
best(a) = (αo ◦ f∗ ◦ γ)(a) = ↓{α{c′} | c ∈ γ(a), c′ ∈ f(c)}.

Cleaveland, Iyer, and Yankelevich [4] and Dams [9] showed that f �
best proves the

most [f]-properties in the logic in Figure 4.

3.2 Abstracting pref

Recall that pref (S) = {c | f(c) ∩ S �= ∅}. The concrete semantics,

[[〈f〉φ]] = pref [[φ]]

defines those states that have a successor state in [[φ]]. We must underapproxi-
mate this set, and we define (pref)�

best
= αu ◦ pref ◦ γ. This gives us

[[〈f〉φ]]A = (pref)�

best
[[φ]]A

= {a | for every c ∈ γ(a), f(c) ∩ γ(T) �= ∅}.

We search for an approximation of (pref)�

best
expressed in the form, preg.

Clearly, pref� , for f � : A → P↓(A), is unsound, because f �(a) overestimates a’s
successors.6 To underapproximate f : C → P(C), we might try f �

u(a) = (αu ◦
f∗ ◦γ)(a) = {a′ | γ(a′) ⊆ f∗[γ(a)]}. This looks reasonable, but the consequences
are surprising:

Proposition 3. For g : A → P↓(A), for T ∈ P↓(T), preg(T) is an upwards-
closed set and is not necessarily downwards closed.

Proof. We first show, if T �= ∅, then preg(T) = {a | g(a) �= ∅}: For a ∈ A,
let g(a) �= ∅. Then ⊥A ∈ g(a), because the set is downwards closed. Since T is
downwards closed and nonempty, ⊥A ∈ T as well. This set is upclosed (because
g is monotonic) but need not be downclosed (e.g., when g(⊥A) = ∅, where
γ(⊥A) = ∅). When T = ∅, preg(T) = ∅, which is upclosed. �

6 For example, div2�
best(even) =↓{even , odd}, hence even ∈ prediv2�

best
↓{even}, yet

6 ∈ γ(even) and div2(6) = {3}.

134 D.A. Schmidt

The result goes against our intuition that propositions are interpreted as down-
closed subsets of A. To make preg(T) into a downclosed set, it is necessary that
a �A a′ implies g(a) ⊇ g(a′), that is, g’s codomain must be partially ordered by
⊇. In such a codomain, we must ensure that set injection is monotonic, that is,
a0 �A a1 implies {|a0|} ⊇ {|a1|}, which forces {|a|} =↑{a}.

For these reasons, we define underapproximating transition functions of arity,
f � : A → P↑(A), where (P↑(A),⊇) is all upclosed subsets of A, ordered by
superset inclusion.7 The following section provides some intuition.

3.3 Interpreting Downclosed and Upclosed Sets

When we use an overapproximating Galois connection, like P(Nat)〈α, γ〉Parity ,
to analyze a program and we compute that the program’s output is even , we are
asserting, “∀even” — all the program’s concrete outputs are even-valued. The
upper adjoint, γ : Parity → P(Nat), selects the largest set modelled by even ,

Nat }

even
{0,2}

{0} {2}

{2,4,8,16,...}

γ

{ }

{ 2n | nP(Nat) ∋

but the program’s output set might be any S ⊆ Nat such that S ⊆ γ(even).
This reading applies also to the Galois connection, P(Nat)〈αo , γ〉P↓(Parity),

where a downclosed set like {even, odd ,none} asserts ∀{even, odd ,none} ≡
∀(even ∨ odd ∨ none) ≡ ∀(even ∨ odd) — all outputs are even- or odd-valued.
The program’s output might be any S ⊆ Nat such that S ⊆ γ{even , odd ,none}.

What is the dual of an overapproximating “universal assertion”? In the previ-
ous section, we tried using the Galois connection, P(Nat)op〈αu , γ〉P↓(Parity)op ,
to underapproximate a program’s outputs, but the results were disappointing8

and dubious (cf. Proposition 3).
The desired dual is an “existential assertion”: If an overapproximating even ∈

Parity asserts “∀even,” then an underapproximating even should assert “∃even”
— there exists an even number in the program’s outputs. Now, a function like
3x + 1 : Nat → P(Nat) can be underapproximated such that (3x + 1)�(odd) =
{even} — there exists an even number in the function’s output.

This idea extends to compound “existential assertions”: an upclosed set like
{even, odd , any} asserts ∃{even, odd , any} ≡ ∃even∧∃odd∧∃any ≡ ∃even∧∃odd
— there exist both even- and odd-valued numbers in the output set.

But there is a problem: How do we concretize an underapproximating set like
{even} into P(Nat)op? There is no minimal set that contains an even number:

7 P↑(A) = {↑T | T ⊆ A}, where ↑T = {a ∈ A | there exists a′ ∈ T , a′ �A a}.
8 For example, 3x + 1 : Nat → P(Nat) is approximated by (3x + 1)�

best =
αu ◦ (3x + 1)∗ ◦ γ. Then, (3x + 1)�

best(odd) = αu((3x + 1)∗{1, 3, 5, · · ·} =
αu{4, 10, 16, 22, · · ·} = {none} (!)

Underapproximating Predicate Transformers 135

Universal (over-approximating) interpretation: {even , odd} asserts ∀{even , odd} ≡
∀(even ∨ odd) — all outputs are even- or odd-valued; use downclosed sets:

{ S | S is a subset of Nat }

{ S | S has even numbers only }

{ }

γ

P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}

(P(Nat))P

∀(even v odd)=

Existential (under-approximating) interpretation: {even , odd} asserts
∃{even , odd} ≡ ∃even ∧ ∃odd — there exists an even- valued and an odd-
valued output; use upclosed sets:

{ S | S is nonempty }

{ S | S is a subset of Nat }

{ S | S has an even }

{ S | S has an even and an odd }

{ }

op

γ

P (Parity)

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

(P(Nat))P

∃= even ∃ oddv

Fig. 5. Powersets for the Parity abstraction

?

{2,4,8,16,...}

Nat

{0,1}
{0}

{ even }

P(Nat)

{5,7,9,12}
{2}

op

Indeed, {even}’s concretization is not a single set — it must be a set of sets:

γ′{even} = {S ∈ P(Nat) | S ∩ γ(even) �= ∅}.

3.4 Upper and Lower Powerset Constructions

To interpret downclosed sets (“universal assertions”) and upclosed sets (“ex-
istential assertions”) we use concrete domains that are sets of sets. Figure 5
displays the universal and existential interpretations of sets of parities.

The universal interpretation is developed as follows: For Galois connection,
P(C)〈α, γ〉A, define ρ↓ ⊆ P(C) × P↓(A) as

S ρ↓ T iff for all c ∈ S, there exists a ∈ A such that c ∈ γ(a).

This is the lower (“Hoare”) powerdomain ordering, used in denotational seman-
tics [24]. Note that S ρ↓ T iff S ⊆ γ(T). Next, define this Galois connection:

P↓(P(C))〈α↓, γ↓〉P↓(A) where
γ↓(T) = {S | S ρ↓ T}
α↓(S) = ∩{T | for all S ∈ S, S ρ↓ T}

136 D.A. Schmidt

γ↓(T) concretizes T to all the sets covered by T — It is an overapproximation
of an overapproximation:

γ

α

...

UI

...

UI

P (P(C)) P (A)

Because S ρ↓ T iff S ⊆ γ(T), no new expressibility is gained by using the new
Galois connection over P(C)〈αo, γ〉P↓(A): for all f : C → P(C), f �

best : A →
P↓(A) is α↓ ◦ ({| · |} ◦f)∗ ◦γ = αo ◦f∗ ◦γ [30, 31]. But we might argue nonetheless
that this Galois connection “truly defines” the sound overapproximation of f .

On the other hand, the existential interpretation is truly new; it uses the
Smyth-powerdomain ordering from denotational semantics [24]: Define ρ↑ ⊆
P(C) × P↑(A) as

S ρ↑ T iff for all a ∈ T , there exists c ∈ S such that c ∈ γ(a).

That is, every a ∈ T is a witness to some c ∈ S. Note that S ρ↑ T iff for all
a ∈ T , γ(a) ∩ S �= ∅. Next, define this Galois connection:

P↓(P(C)op)〈α↑, γ↑〉P↑(A) where
γ↑(T) = {S | S ρ↑ T}
α↑(S) = ∪{T | for all S ∈ S, S ρ↑ T}

γ↑(T) concretizes T to all sets that T “witnesses” — It is an overapproximation
of an underapproximation:

γ

α

...

UI
...

UI

. .

P (P(C))op
P (A)

Figure 6 summarizes the Galois connections developed so far.

3.5 Properties of pref�

We underapproximate f : C → P(C) by a sound f � : A → P↑(A). We define
f �

best : A → P↑(A) as

f �
best(a) = (α↑ ◦ ({| · |} ◦ f)∗ ◦ γ)(a)

=↑{α(S) | for all c ∈ γ(a), f(c) ∩ S �= ∅}
= {a′ | for all c ∈ γ(a), f(c) ∩ γ(a′) �= ∅}

We have that pref�
best

(T) is downclosed and also that

Proposition 4. pref�
best

is sound: pref�
best

(T) ⊆ (αu ◦ pref ◦ γ)(T).

Figure 7 shows the abstracted precondition logic. Cleaveland, Iyer, and Yankele-
vich [4], Dams, et al. [10], and Schmidt [30] showed that pref�

best
proves the most

sound 〈f〉-properties in the logic of Figure 4.

Underapproximating Predicate Transformers 137

overapproximation underapproximation

set inclusion

P(C)〈αo, γ〉P↓(A)
where
γ(T) = ∪a∈Aγ(a)
αo(S) =↓{α{c} | c ∈ S}

P(C)op〈αu, γ〉P↓(A)op

where
γ(T) = ∪a∈Aγ(a)
αu(S) = {a | γ(a) ⊆ S}

quantification

P↓(P(C))〈α↓, γ↓〉P↓(A)
where
γ↓(T) = {S | S ρ↓ T}
α↓(S) = ∩{T | for all S ∈ S,

S ρ↓ T}

P↓(P(C)op)〈α↑, γ↑〉P↑(A)
where
γ↑(T) = {S | S ρ↑ T}
α↑(S) = ∪{T | for all S ∈ S,

S ρ↑ T}

where ρ↓ ⊆ P(C) × P↓(A) is defined
S ρ↓ T iff for all c ∈ S, there exists a ∈ A such that c ∈ γ(a)

and ρ↑ ⊆ P(C) × P↑(A) is defined
S ρ↑ T iff for all a ∈ T , there exists c ∈ S such that c ∈ γ(a).

Fig. 6. Summary of Galois connections derived from P(C)〈α, γ〉A

[[·]] : L → P↓(A)

[[a]]A = αu(γ(a))
[[[f]φ]]A = p̃re

f
�
best

[[φ]]A

[[〈f〉φ]]A = pref�
best

[[φ]]A
[[φ1 ∧ φ2]]A = [[φ1]]A ∩ [[φ2]]A

[[φ1 ∨ φ2]]A = [[φ1]]A ∪ [[φ2]]A

Fig. 7. The abstracted precondition logic

3.6 Incompleteness and Focus

Although f �
best is the most precise (maximal) sound underapproximation, there

is no guarantee that pref�
best

equals (pref)�

best
= αu ◦ pref ◦ γ.

Here is a counterexample: Consider the Parity abstract domain and the as-
sertion, 〈div2〉(even ∨ odd). This assertion holds for all c ∈ γ(even), and in-
deed, for the downclosed set, T 0 = {even, odd ,none}, we have that even ∈
(prediv2)

�
best(T 0). But div2�

best(even) = {any}, and any �∈ T 0, implying that
even �∈ prediv2�

best
(T 0).

The underlying issue is the well-known incompleteness of disjunction in ap-
proximation [8]; here, any �∈ T 0, even though γ(any) ⊆ γ(T 0). The standard
repair is a focus operation, as used in the TVLA system [28], and in disjunc-
tive transition systems [11, 14, 20], and in tree automata [12], to “split” values
like any into more-precise cases that “cover” all of γ(any). For the example,
T 1 = {even, odd} is a focus set that covers any because γ(any) ⊆ γ(T 1). Since
both even ∈ T 0 and odd ∈ T 0, we conclude any “belongs” to T 0 as well.

138 D.A. Schmidt

The domain-theoretic connection is clear: A downclosed set, like T 0 = {even,
odd , none} should be read as the quantified disjunction, ∀(even ∨ odd ∨ none),
and a focus operation helps validate the disjunction.

Definition 5. For a ∈ A, define focus(a) = {U ⊆ A | γ(a) ⊆ γ(U)}, and define
prefocus

f� (T) = {a | there exist a′ ∈ f �(a) and U ∈ focus(a′) such that U ⊆ T }.

Evidently, prefocus
f� (T) = {a | exists a′ ∈ f �(a), T ∈ focus(a′)}. Definition 5

yields the expressivity and completeness results immediately below, but of course
the selection of a specific focus set is a critical pragmatic decision.9

Proposition 6. For all T ∈ P↓(A), pref�
best

(T) ⊆ pre focus
f�

best

(T) ⊆ (pref)�

best
(T).

Proof. The first inclusion follows by choosing {a′} ∈ focus(a′). For the second
inclusion, assume there exists a′ ∈ f �

best(a) such that γ(a′) ⊆ γ(T). Since a′ ∈
f �

best(a), this implies for all c ∈ γ(a), f(c) ∩ γ(a′) �= ∅. Since γ(a′) ⊆ γ(T), we
have the result. �

Theorem 7. If γ : A → P(C) preserves joins, then prefocus
f�

best

(T) = (pref)�

best
(T).

Proof. We have ⊆; to show ⊇, assume that some a0 ∈ (pref)�

best
(T), that is, for

all c ∈ γ(a0), f(c) ∩ γ(T) �= ∅. We must show that there exists a′ ∈ f �
best(a0)

such that T ∈ focus(a′).
Define T a0 = {ac ∈ T | exists c ∈ γ(a0), f(c) ∩ γ(ac) �= ∅}, and define

a′ =
T a0 . Immediately, we can conclude that a′ ∈ f �
best(a0). Now we must

show T ∈ focus(a′), that is, γ(a′) ⊆ γ(T).
For each ac ∈ T a0 , we have that γ(ac) ⊆ γ(T), hence (
ac∈T a0

γ(ac)) ⊆ γ(T).
Since γ preserves joins, we have that γ(a′) = γ(
T a0) ⊆ γ(T). �

Partition domains [25] are the standard example where γ preserves joins: given
state set C, partition P , and δ : P → P(C) that maps each partition to its
members, the generated partition domain is (P(P),⊆), where γ = δ∗.

If γ preserves joins, then we know that the first inclusion in Proposition
6 can be proper (e.g., T 0 = {even, odd ,none}); if γ fails to preserve joins,
there can be a T that makes the first inclusion an equality and the second
one proper, because there is some c ∈ γ(T) that cannot be “isolated” by a focus
set [16].

4 Postconditions

Earlier, we noted that f∗ : P(C) → P(C), for f : C → P(C), defines f ’s postcon-
dition transformer and f � : A → A is its sound overapproximation. For example,
9 Focus sets are also known as must hyper transitions [32], and there is a dual notion of

may hyper transitions, which prove useful when γ : A → C is not the upper adjoint
of a Galois connection [33].

Underapproximating Predicate Transformers 139

[[·]] : L → P(C)

[[a]] = γ(a)
[[[f]φ]] = p̃ostf [[φ]]
[[〈f〉φ]] = postf [[φ]]

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

Fig. 8. The postcondition logic

Available Expressions:
AE(p) =gfp

⋂
p′∈pred p

((AE(p′) ∩ notModified(p′)) ∪ Gen(p′))
isAvail(e) = νZ. [p]((Z ∧ ¬isModified(e)) ∨ isGen(e))

Live Variables:
LV (p) =lfp Used(p) ∪ (notModified(p) ∩ (

⋃
p′∈succ p

LV (p′)))
isLive(x) = μZ. isUsed(x) ∨ (¬isModified(x) ∧ (〈p〉Z))

Very Busy Expressions:
VBE(p) =gfp Used(p) ∪ (notModified(p) ∩ (

⋂
p′∈succ p′ VBE(p′))

isVBE(e) = νZ. isUsed(e) ∨ (¬isModified(e) ∧ [p]Z)

Reaching Definitions:
RD(p) =lfp

⋃
p′∈pred p

((RD(p′) ∩ notModified(p′)) ∪ Defined(p′))
isReaching(d) = μZ. 〈p〉((Z ∧ ¬isModified(d)) ∨ isDefined(d))

Fig. 9. Data-flow analyses and their encodings in logical form [29]

succ∗{1, 3, 5, · · ·} = {2, 4, 6, · · ·} and succ�
best(odd) = even, where succ�

best =
α ◦ succ∗ ◦ γ is the strongest postcondition transformer for Galois connection,
P(Nat)〈α, γ〉Parity . Similarly, from f : C → P(C) and P(C)〈αo, γ〉P↓(A), we
define f �

best : A → P↓(A) as f �
best = αo ◦ f∗ ◦ γ.

Since f : C → P(C) denotes a nondeterministic transition relation, there are
two variants of logical postcondition:

postf (S) = {d | there exists c ∈ S, d ∈ f(c)} = f∗(S)
p̃ostf (S) = {d | for all c ∈ C, d ∈ f(c) implies c ∈ S}.

d ∈ postf (S) means that one of d’s immediate f -predecessors belongs to S;
d ∈ p̃ostf (S) means that all of d’s immediate f -predecessors belong to S. These
transformers have a natural place in a logic; see Figure 8.

Steffen [34] showed how to use the [f]- and 〈f〉-modalities to define forwards
data-flow analyses, and Schmidt [29] applied Steffen’s ideas, as displayed in Fig-
ure 9, to write mu-calculus formulas [19] that define the naive but standard
forwards and backwards data-flow analyses on annotated control-flow graphs,
where p ∈ ProgramPoint .

140 D.A. Schmidt

For the purposes of program validation and code improvement, the abstrac-
tions of the two post -modalities must be underapproximating.10 Clearly, under-
approximating the logical interpretation of the postcondition transformers is
different from overapproximating a transition function’s postcondition, and the
following proposition indicates how careful we must be:

Proposition 8. Let f : D → Pδ(D), where δ ∈ {↓, ↑}. Let ↓̃ =↑ and ↑̃ =↓.

Then, for all S ∈ P(D),
– p̃ref (S) ∈ Pδ(D)
– pref (S) ∈ Pδ̃(D)

– postf (S) ∈ Pδ(D)
– p̃ostf (S) ∈ Pδ̃(D).

Proof. Recall that f : D → Pδ(D). When reasoning about f , we use the no-
tation, ≤δ, to denote �D, when δ =↓, and *D, when δ =↑. We have that f is
monotonic iff c ≤δ d implies f(c) ⊆ f(d). Here are the four proofs:

p̃ref (S){c | f(c) ⊆ S} : If f(c) ⊆ S and d ≤δ c, then f(d) ⊆ f(c), by f ’s
monotonicity.

prefS = {c | f(c) ∩ S �= ∅}: If f(c) ∩ S �= ∅ and c ≤δ d (that is, d ≤δ̃ c), then
f(c) ⊆ f(d), implying f(d) ∩ S �= ∅.

postf (S) = {d | exists c ∈ S, d ∈ f(c)}: If there exists some c ∈ S such that
d ∈ f(c), and then d′ ≤δ d, then d′ ∈ f(c), because f ’s codomain is Pδ(D).

p̃ostfS = {d | for all c ∈ D, d ∈ f(c) implies c ∈ S}: Say that d ≤δ d′ (that
is, d′ ≤δ̃ d) and d ∈ p̃ostfS. For c′ ∈ D, say that d′ ∈ f(c′) — we must show
that c′ ∈ S, as well. Since d ≤δ d′, this means d ∈ f(c′), because f ’s codomain
is Pδ(D). This places c′ ∈ S. �

The proposition confirms why p̃ref� and pref� correctly underapproximated p̃ref

and pref – the abstract transformers generated downclosed sets as answers.
The proposition also makes clear that postf� and p̃ostf� are unacceptable as
underapproximations, because they generate upclosed sets as answers:

for f � : A → P↑(A), postf� : P↓(A) → P↑(A)
for f � : A → P↓(A), p̃ostf� : P↓(A) → P↑(A).

Unfortunately, starting from γ : A → P(C) and f : C → P(C), there is no non-
trivial overapproximating f � : A → P↑(A) (because, for all f �(a) �= ∅, upclosure
implies that �A ∈ f �(a), implying that γ(f �(a)) = C). A similar problem arises
in the search for a nontrivial underapproximating f � : A → P↓(A).11 There is a
repair, however. If we draw

10 For performing data-flow analysis, one usually abstracts a program, f , to its control-
flow graph, f �

cfg . A naive application of the four analyses in Figure 9 to f �
cfg gives

underapproximating calculations of available expressions and very-busy expressions
and overapproximating calculations of reaching definitions and live variables (but
see [8] for clarification). The set-complements of the latter two calculations — “not-
reaching” and “not-live,” respectively — are used in practice.

11 In contrast, both postf� and p̃ostf� are well defined overapproximations of the two
postcondition transformers!

Underapproximating Predicate Transformers 141

f : C → P(C) as
a b c d

a b c d
, then f−1 : C → P(C) is

a b c d

a b c d

.

That is, f−1(c) = {d | c ∈ f(d)}.

Proposition 9. [21]: (f−1)−1 = f , postf = pref−1 , and p̃ostf = p̃ref−1 .

Proposition 10. For f : A → Pδ(A), δ ∈ {↓, ↑}, f−1 : A → Pδ̃(A) is well
defined and monotonic.

Proof. f−1(a) = {a′ | a ∈ f(a′)}. We use ≤δ to denote �D, when δ =↓, and to
denote *D, when δ =↑. First, note that f : A → Pδ(A) is monotonic iff c ≤δ d
implies f(c) ⊆ f(d).

f−1’s image are δ̃-closed sets: Say that a′ ∈ f−1(a), that is, a ∈ f(a′) and say
that a′ ≤δ b′. We must show a ∈ f(b′) — this follows from f(a′) ⊆ f(b′).

f−1 is monotonic: Assume a ≤δ b; we must show f−1(a) �Pδ̃(A) f−1(b).
First, we show that f−1(b) ⊆ f−1(a): Assume x ∈ f−1(b), that is, b ∈ f(x).
Then δb ⊆ f(x), because f(x) is a δ-closed set. This implies a ∈ f(x) as well,
that is, x ∈ f−1(a). The monotonicity of f−1 follows, because Pδ̃(A) uses the
inverse ordering used by Pδ(A). �

4.1 Abstracting postf and p̃ostf

With Propositions 8, 9, and 10 in hand, we can define sound underapproxima-
tions for the two postcondition transformers. For postf , we have

[[〈f〉φ]] = postf [[φ]] = pref−1 [[φ]]

where f−1 : C → P(C). The inductively defined underapproximation is

[[〈f〉φ]]A = (αu ◦ pref−1 ◦ γ)[[φ]]A.

By Proposition 4, this is soundly underapproximated by

[[〈f〉φ]]A = pre(f−1)�
best

[[φ]]A,

where (f−1)�
best : A → P↑(A) is (f−1)�

best = α↑ ◦ ({| · |} ◦ f−1)∗ ◦ γ.

The same development applied to p̃ostf yields

[[[f]φ]] = p̃ostf [[φ]] = p̃ref−1 [[φ]].

By Theorem 2, the most precise underapproximation is

[[〈f〉φ]]A = (αu ◦ p̃ref−1 ◦ γ)[[φ]]A = p̃re(f−1)�
best

[[φ]]A,

where (f−1)�
best : A → P↓(A) is (f−1)�

best = αo ◦ (f−1)∗ ◦ γ.

This approach of computing postconditions as preconditions of inverted state-
transition relations is implemented in Steffen’s fixpoint analysis machine [35].

142 D.A. Schmidt

5 Related Work

Abstraction of predicate transformers begin in Cousot’s thesis [5]; details were
spelled out in a subsequent series of papers by Cousot and Cousot [6–8] and
applied by Bourdoncle to abstract debugging [1], which was generalized by Massé
[22, 23]. Loiseaux, et al. [21] formalized underapproximation of p̃re .

Cleaveland, Iyer, and Yankelevich [4], Dams [9], and Dams’s colleagues [10]
were the first to study underapproximations of pre . Studies of precision of such
approximations were undertaken by Giacobazzi, Ranzato, and Scozzari [17],
who developed completeness properties, and by Ranzato and Tapparo [25–27],
who studied completeness of pre for state-partition abstract domains. The in-
completeness of pre has been addressed by Larsen and Xinxin [20], Dams and
Namjoshi [11, 12], and Shoham and Grumberg [32]. Steffen [34, 35] was the first
to connect data-flow analysis to forwards-backwards temporal-logic modalities,
and this connection provides the application area for the results in this paper.

Acknowledgments

Allen Emerson and Kedar Namjoshi let me present early thoughts on this work
at VMCAI’06, and Kedar asked several key questions. Michael Huth and Dennis
Dams provided valuable advice within earlier collaborations. The referees gave
many useful comments.

References

1. F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Proc.
ACM Conf. PLDI, pages 46–55, 2003.

2. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

3. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
4. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model

checking. In Proc. SAS’95, LNCS 983. Springer, 1995.
5. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes

d’opérateurs monotones sur un treillis, analyse sémantique de programmes. PhD
thesis, University of Grenoble, 1978.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs. In Proc. 4th ACM Symp. POPL, pages 238–252, 1977.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. 6th ACM Symp. POPL, pages 269–282, 1979.

8. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proc. 27th ACM
Symp. on Principles of Programming Languages, pages 12–25. ACM Press, 2000.

9. D. Dams. Abstract interpretation and partition refinement for model checking. PhD
thesis, Technische Universiteit Eindhoven, The Netherlands, 1996.

10. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Prog. Lang. Systems, 19:253–291, 1997.

11. D. Dams and K. Namjoshi. The existence of finite abstractions for branching time
model checking. In Proc. IEEE Symp. LICS’04, pages 335–344, 2004.

Underapproximating Predicate Transformers 143

12. D. Dams and K. Namjoshi. Automata as abstractions. In Proc. VMCAI’05, LNCS
3385, pages 216–232. Springer-Verlag, 2005.

13. B.A. Davey and H.A Priestly. Introduction to Lattices and Order, 2d ed. Cambridge
Univ. Press, 2002.

14. H. Fecher and M. Huth. Complete abstractions through extensions of disjunctive
modal transition systems. Technical Report 0604, Institut für Informatik und
Praktische Mathematik der Christian-Albrechts-Universitaet zu Kiel, 2005.

15. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refine-
ments in abstract model checking. In Static Analysis Symposium, LNCS 2126,
pages 356–373. Springer Verlag, 2001.

16. R. Giacobazzi and F. Ranzato. The reduced relative power operation on abstract
domains. Theoretical Comp. Sci., 216:159–211, 1999.

17. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. ACM, 47:361–416, 2000.

18. R. Heckmann. Power domain constructions. PhD thesis, Univ. Saarbrücken, 1990.
19. K. Larsen. Proof systems for Hennessy-Milner logic with recursion. In CAAP88,

LNCS 299. Springer-Verlag, 1988.
20. K.G. Larsen and L. Xinxin. Equation solving using modal transition systems. In

LICS’90, 1990.
21. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving

abstractions for verification of concurrent systems. Formal Methods in System
Design, 6:1–36, 1995.

22. D. Massé. Combining backward and forward analyses of temporal properties. In
Proc. PADO’01, LNCS 2053, pages 155–172. Springer, 2001.

23. D. Massé. Property checking driven abstract interpretation-based static analysis.
In Proc. VMCAI’03, LNCS 2575, pages 56–69. Springer, 2003.

24. G. Plotkin. Domains. Lecture notes, Univ. Pisa/Edinburgh, 1983.
25. F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract in-

terpretation. In Proc. ESOP, LNCS 2986, pages 18–32. Springer, 2004.
26. F. Ranzato and F. Tapparo. An abstract interpretation-based refinement algorithm

for strong preservation. In TACAS’05, LNCS 3440, pages 140–156. Springer, 2005.
27. F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based op-

erators by abstract interpretation. In Proc. Conf. VMCAI’06, LNCS 3855, pages
332–347. Springer Verlag, 2006.

28. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24:217–298, 2002.

29. D.A. Schmidt. Data-flow analysis is model checking of abstract interpretations. In
Proc. 25th ACM Symp. on Principles of Prog. Languages. ACM Press, 1998.

30. D.A. Schmidt. Closed and logical relations for over- and under-approximation of
powersets. In Proc. SAS’04, LNCS 3148, pages 22–37. Springer, 2004.

31. D.A. Schmidt. A calculus of logical relations for over- and underapproximating
static analyses. Science of Computer Programming, in press.

32. S. Shoham and O. Grumberg. Monotonic abstraction refinement for CTL. In
TACAS’04. Springer LNCS, 2004.

33. S. Shoham and O. Grumberg. 3-valued abstraction: More precision at less cost. In
LICS’06, 2006.

34. B. Steffen. Generating data-flow analysis algorithms for modal specifications. Sci-
ence of Computer Programming, 21:115–139, 1993.

35. B. Steffen, A. Classen, M. Klein, J. Knoop, and T. Margaria. The fixpoint analysis
machine. In Proc. CONCUR’95, LNCS 962, pages 72–87. Springer, 1995.

Combining Widening and Acceleration
in Linear Relation Analysis�

Laure Gonnord and Nicolas Halbwachs

Vérimag��, Grenoble, France
{Laure.Gonnord, Nicolas.Halbwachs}@imag.fr

Abstract. Linear Relation Analysis [CH78, Hal79] is one of the first,
but still one of the most powerful, abstract interpretations working in
an infinite lattice. As such, it makes use of a widening operator to en-
force the convergence of fixpoint computations. While the approximation
due to widening can be arbitrarily refined by delaying the application of
widening, the analysis quickly becomes too expensive with the increase
of delay. Previous attempts at improving the precision of widening are
not completely satisfactory, since none of them is guaranteed to improve
the precision of the result, and they can nevertheless increase the cost
of the analysis. In this paper, we investigate an improvement of Linear
Relation Analysis consisting in computing, when possible, the exact (ab-
stract) effect of a loop. This technique is fully compatible with the use
of widening, and whenever it applies, it improves both the precision and
the performance of the analysis.

Linear Relation Analysis [CH78, Hal79] (LRA) is one of the very first applica-
tions of abstract interpretation [CC77], and aims at computing an upper approx-
imation of the reachable states of a numerical program, as a convex polyhedron
(or a set of such polyhedra). It was applied in various domains like compile-
time error detection [DRS01], program parallelization [IJT91], automatic verifi-
cation [HPR97, HHWT97] and formal proof [BBC+00, BBM97].

Like any approximate verification method, LRA is faced with the compromise
between precision and cost. Since its relatively high cost restricts its applicability,
any situation where the precision can be improved at low cost must be exploited.
One source of approximation in LRA is widening, the operator that ensures the
termination of iterative computations, by extrapolating an upper approximation
of their limit. When the approximation due to widening is the cause of the lack
of precision of the result of an analysis, a possible way to improve the precision
is to delay widening: instead of applying it at each iteration, one can start with
a number of steps without widening, thus providing a more precise basis for
subsequent extrapolations. Now, delaying widening is generally very expensive:
not only does it increase the number of iterations, but, more importantly, it leads
� This work has been partially supported by the APRON project of the “ACI Sécurité

Informatique” of the French Ministry of Research.
�� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and INPG associ-

ated with IMAG.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 144–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Combining Widening and Acceleration in Linear Relation Analysis 145

to the construction of much more complex polyhedra (that would be simplified
otherwise thanks to widening). So, if we can find some cheap ways to improve
the precision of widening, we may not only improve the overall precision, but
also avoid the cost of delaying widening.

The next question then is “what is a better widening?”. The fact that one
single application of a widening operator gives smaller results [BHRZ03] does
not necessarily mean that its repeated application will involve a convergence
towards a more precise limit (an example can been seen in [SSM04]). Moreover,
the use of such a widening is likely to slow down the convergence, by increasing
the number of necessary iterations.

These remarks led us to look at situations where the widening can obviously
be improved — in the sense that a faster convergence towards a better limit can
be archived — at low cost with respect to the cost of usual polyhedra opera-
tors. For that, a source of inspiration are the so-called “acceleration techniques”
proposed by several authors [BW94, WB98, CJ98, FS00, BFLP03]. These works
consist in identifying categories of loops whose effect can be computed exactly.
Roughly speaking, the effect of a simple loop, guarded by a linear condition
on integer variables, and consisting of incrementations/decrementations of these
variables can be computed exactly as a Presburger formula. These methods have
the advantage of giving exact results. Now, because they are exact, they are re-
stricted to some classes of programs (e.g., “flat counter automata”, i.e., without
nested loops). Moreover, the exact computation with integer variables has a very
high complexity (generally double-exp). So the applicability of these methods is
somewhat limited.

In this paper, we investigate the use of acceleration methods in LRA, in com-
plement to widening. Of course, when the effect of a loop can be computed
exactly (and at low cost) there is no need to approximate it. Now, since we
want to integrate these results in LRA, only the exact abstract effect of the loop
is necessary, that is the convex hull of the reachable states during or after the
loop. This means that we won’t use expensive computations in Presburger arith-
metic. Moreover, we only look for an improvement of standard LRA: wherever
an acceleration is possible, its application will improve the results, but the result-
ing method will not be restricted to those programs where acceleration applies
everywhere.

To illustrate our goal better, let us consider a very simple example, the classi-
cal “leaking gas burner” [CHR91]: one wants to model and analyze the assump-
tion that, whenever the “gas burner” leaks, the leakage is fixed within 10 seconds,
and that the minimum interval between two leakages is 50 seconds. The standard
modelling of this system is by a linear hybrid automaton [ACH+95, HHWT97]
(see Fig. 1). The linear relation analysis of this hybrid automaton proceeds as
follows (the successive results are projected onto the variables t and �, which
represent, respectively, the global time elapsed and the global leaking time,
the variable u being a local variable used to count the time elapsed in each
location):

146 L. Gonnord and N. Halbwachs

ṫ = 1
�̇ = 1
u̇ = 1
u ≤ 10

u := 0

u ≥ 50
u := 0

u := 0
� := 0
t := 0

leaking

u̇ = 1

�̇ = 0

ṫ = 1

not leaking

Fig. 1. Hybrid automaton of the gas burner

t

t

10
©2

(b)

10
©1

(a)

10

20

50 60 70

©3©4

©5

(c)

Fig. 2. Analysis of the hybrid gas burner

At first step, the location “leaking” is reached with the single point {t = � =
0}, and the “time elapse” operator1 gives the polyhedron {0 ≤ t = � ≤ 10}
(©1 , Fig. 2.a). So, the location “not leaking” is reached with {0 ≤ t = � ≤ 10},
and the “time elapse” operator provides {0 ≤ � ≤ 10, t ≥ �} (©2 , Fig.2.b). At
step 2, the location “leaking” is reached back with {0 ≤ � ≤ 10, t ≥ � + 50}, (©3 ,
Fig. 2. 2.c) the convex hull with {t = � = 0}, gives {0 ≤ � ≤ 10, t ≥ 6�} (©4 ,
Fig. 2.c), the “time elapse” provides {0 ≤ � ≤ 20, t ≥ �, t ≥ 6� − 50}, and the
(standard) widening provides {0 ≤ � ≤ t, t ≥ 6� − 50} (©5 , Fig. 2.c), which is
also the solution for “not leaking” and terminates the iteration with an optimal
result: it is the convex hull of the reachable states in each location.

Now, let us consider a discrete version of the gas burner (Fig. 3). First, since
there is a loop around each location, we must apply widening in each of them.
Now, if we detail the computations, we get that for the L(eaking) location,
initially t = � = 0, then t = � = 1 (with no contribution back from N(otleaking)),
so the convex hull is {0 ≤ t = � ≤ 1}, and widening provides {0 ≤ t = �}. This
is already a less precise result than in the continuous case. Further narrowing
does not improve the result. To obtain better results, we should delay widening
for at least 10 iterations (because of the constant 10 appearing in the problem).
Of course, delaying widening in such a way is expensive; moreover it is rather
ad hoc, and it would not work if the constant 10 was replaced by a symbolic
parameter, say δ.

This example shows that the analysis of hybrid automata can be much more
precise and efficient than the analysis of the corresponding discrete counter au-
tomata. The obvious reason is the availability of the “time elapse” operator,
which plays the role of a specialized exact widening operation. One goal of the
paper is to detect that the effect of the single loops in the counter automaton of

1 Which computes the effect of letting the time pass in the location as long as the
location invariant is true.

Combining Widening and Acceleration in Linear Relation Analysis 147

N

t ++
u ++

τ2

L
u := 0
� := 0
t := 0

t ++
� ++
u ++

u ≤ 9?

τ1

u := 0

u := 0

u ≥ 50 →

Fig. 3. Automaton of the gas burner

N

N’

τ⊗
2

u := 0
� := 0
t := 0

L

L’

τ⊗
1

u := 0

u := 0

u ≥ 50 →

Fig. 4. “Accelerated” automaton

Fig. 3 can be computed exactly, so that these loops can be subsumed by single
transitions, exactly as it is done by using the time elapse operator on hybrid
automata. In other words, instead of analyzing the automaton of Fig. 3, we will
apply the standard analysis to the automaton of Fig. 4, where τ⊗1 , τ⊗2 denote the
operations subsuming the effect of the two single loops in the initial automaton.
In this standard analysis, the two single loops will be accelerated, but widening
is still applied, e.g., in L, because of the remaining global loop.

The paper is organized as follows: after making our notations precise (Sec-
tion 1), we consider first, in Section 2, the trivial case of a single loop where
variables are just incremented with constants. Such a loop is called a transla-
tion loop. We can then formally define, in Section 3, the abstract acceleration
we want to compute, which is a convex and dense closure of the exact reachable
set. Then, in Section 4, we consider the case of several translation loops, and
in Section 5, we deal with combinations of translations and assignments of con-
stants. We conclude the paper with comparisons with related work, and some
perspectives.

1 Definitions and Notations

Throughout the paper, n will denote the number of numerical variables, the
numerical states will be considered as elements of the affine space Qn 2.

Let us recall that a (closed convex) polyhedron in Qn can be seen either as
the set {x ∈ Qn | Ax ≤ B} of solutions of a system of linear constraints Ax ≤ B
— where A is an m× n matrix, for some m ≥ 0, and B is an m-vector — or as
the convex hull

{
∑
vi∈V

λivi +
∑
rj∈R

μjrj | λi, μj ∈ Q+,
∑

λi = 1}

of a system of generators — i.e., a finite set V ⊂ Qn of vertices, and a finite set
R ⊂ Qn of rays.

If Ax ≤ B is a system of constraints, we will often note simply {Ax ≤ B} the
polyhedron of its solutions. If P is a polyhedron and R ⊂ Qn is a finite set of
vectors, we will note P ↗ R the polyhedron {x+

∑
rj∈R μjrj | x ∈ P, μj ∈ Q+}

obtained by adding to P all vectors in R as new rays.
2 We consider Q for computational reasons.

148 L. Gonnord and N. Halbwachs

2 A Simple Case: Single Translation Loops

We first consider the case of single loops, i.e., single paths in the program control-
flow graph looping back to a control point. We consider such a single path as
a guarded command g → a, where g is a condition on numerical variables,
and a is a transformation of numerical variables. As usual in LRA, we restrict3

ourselves to linear conditions (g(x) ⇔ Ax ≤ B) and linear transformations (say
x := Cx + D, where C is an n × n matrix, D is an n-vector). Let τ be the
corresponding function: τ(x) = if Ax ≤ B then Cx + D else x. We want to
build the corresponding polyhedra transformer, i.e., to be able to compute the
image P of a polyhedron P0 by an arbitrary number of applications of τ :

x ∈ P ⇔ ∃i ∈ N, ∃x0 ∈ P0, x = τ i(x0)

i.e., if we define the sequence (xk) by xk = Ckx0 +
∑k−1

j=0 CjD:

x ∈ P ⇔ ∃i ∈ N, ∃x0 ∈ P0, ∀j ∈ [0, i− 1], Axj ≤ B, and x = xi

In general, obtaining a general expression for Ck is too expensive, and the
quantification over i and j cannot be computed. So, let us look at some cases
where the computation is possible; in such cases, the loop will be said to be
accelerable:

– [Tiw04] considers the same kind of loops, and shows that their termination
is decidable. The method uses algebraic characterisation of the C matrix,
but does not provide any loop invariant.

– In [FL02], the linear functions λx.Cx+D such that the cardinal of {Ck, k ∈
N} is finite is pointed out to be a class that is accelerable. But the upper-
bound that is given is too large, and as far as we know, the complexity of
the problem of finding whether a monoid generated by a (set of) matrix is
finite or not is an open problem (it is known to be decidable [Hal97]).

– The case where C2 = C is interesting, since it covers the loops which incre-
ment or decrement variables by constants, and/or set variables to constants.

– The simplest case is when C = Id, i.e., when all variables are incremented or
decremented by constants. We call such loops translation loops and we first
consider this simple case.

In the case of a translation loop, we get simply xk = x0 + kD and

x ∈ P ⇔ ∃i ∈ N, ∃x0 ∈ P0, ∀j ∈ [0, i− 1], A(x0 + jD) ≤ B, and x = x0 + iD

By convexity, the condition ∀j ∈ [0, i− 1], A(x0 + jD) ≤ B reduces to Ax0 ≤
B ∧ A(x−D) ≤ B. Adding an arbitrary positive number of D is just adding D
as a ray. Finally, we get:

P =
(
(P0 ∩ {Ax ≤ B}) ↗ {D}

)
∩ {A(x−D) ≤ B}

Remark 1. In the last expression, we have lost the points of the initial polyhedron
P0 that don’t satisfy g. In the rest of the paper, without loss of generality, we
3 Other cases are over-approximated.

Combining Widening and Acceleration in Linear Relation Analysis 149

assume that the initial polyhedron verifies the guard of the transition. If it is
not the case, we first compute the intersection with the guard, and after all our
computations, we make a convex hull with the initial polyhedron.

Example. This allows us to compute the effect of the two simple loops in the
gas burner example (Fig. 3). Starting from P

(0)
L = {t = � = 0}, we first apply

τ⊗1 as in Fig. 4 and get P ′(0)
L = {0 ≤ t = � ≤ 10}. Then, in location N , we have

P
(0)
N = {0 ≤ t = � ≤ 10} which is accelerated into P ′(0)

N = {0 ≤ � ≤ 10, � ≤ t},
and the transition back to L gives Q = {0 ≤ � ≤ 10, � + 50 ≤ t}, so4

P
(1)
L = P

(0)
L ∇
(
P

(0)
L
Q

)
= {t = � = 0}∇{0 ≤ � ≤ 10, 6l ≤ t} = {0 ≤ 6� ≤ t}

Applying again τ⊗1 , we get P ′(1)
N = {0 ≤ �≤ t, 6�≤ t−50} which is the correct

limit .

3 Abstract Acceleration

We are now able to make our objective more precise: we want to precisely char-
acterize, when possible, the effect of a loop on a polyhedron. Of course, with
respect to the exact effect of the loop, we will have to take a convex hull. More-
over, we are faced with a problem of arithmetic, since the effect of a loop is
obtained by applying k times its body where k is an integer. To avoid the com-
plexity of exact arithmetic, we will perform, as usual, a dense approximation.
To summarize, in the case of a simple translation loop, instead of computing the
exact effect of the loop:

τ∗(P0) = {x | ∃i ∈ N, ∃x0 ∈ P0, g(x0) ∧ g(x−D), x = x0 + iD} ∪ P0

we compute its abstract acceleration:

τ⊗(P0) =
⊔

{x | ∃i ∈ Q+, ∃x0 ∈ P0, g(x0) ∧ g(x−D), x = x0 + iD}
 P0

We now are able to prove the following proposition :

Proposition 1. Let τ : Ax ≤ B → x := Cx + D. Then

τ⊗(P0 ∩Ax ≤ B) =
(
(P0 ∩ {Ax ≤ B}) ↗ {D}

)
∩ {A(x−D) ≤ B}

Sketch of Proof: Let P =
(
(P0 ∩ {Ax ≤ B}) ↗ {D}

)
∩ {A(x − D) ≤ B}. Then

x ∈ P ⇔
(
∃i ∈ Q+, ∃x0 ∈ (P0 ∩ {Ax ≤ B}), x = x0 + iD and A(x − D) ≤ B

)
⇔ x ∈ τ⊗(P0) ��

It is also useful to define the rational iteration of a translation loop :

Definition 1. Let i ∈ Q+, then we note :

τ i(P0) = {x|∃x0 ∈ P0, x = x0 + iD ∧ g(x0) ∧ g(x−D)}
4 �, ∇ respectively denote the convex hull and widening operators.

150 L. Gonnord and N. Halbwachs

4 Two Translation Loops

In the presence of several translation loops, the situation becomes more complex.
For instance, the control graph is not necessarily flat, and exact acceleration
techniques no longer apply.

In order to separate the difficulties, we will first assume, at least conceptually,
that the control graph is partitioned according to the combination of guards:
in a given location, either both guards are satisfied, or only one or the other is
satisfied. Once this partitioning is performed, we are left with the problem of
accelerating the loops as long as both guards are satisfied.

Let us note τ⊗1,2(P0) the image of an initial polyhedron P0 by two translation
loops τi : gi → x := x + Di, (i = 1, 2) as long as g1 ∧ g2 is satisfied. It is made
of all the points x that can be reached from P0 ∩ g1 ∩ g2 by successive rational
applications of τ1 and τ2 and staying in g1 ∩ g2 :

x ∈ τ⊗1,2(P0) iff ∃x0 ∈ P0 ∩ g1 ∩ g2,
∃x1, x2 . . . , x� ∈ g1 ∩ g2, ∃x′

1, x
′
2 . . . , x

′
� ∈ g1 ∩ g2,

∃i1, i2, . . . , i�, i′1, i′2, . . . , i′� ∈ Q+,

such that x = x′
�, and xj = τ

ij

1 (x′
j−1), x

′
j = τ

i′
j

2 (xj), j = 1..�

The following proposition gives a way of computing τ⊗1,2(P0):

Proposition 2. Let τi be gi → x := x + Di, (i = 1, 2) then,
– if ∃x0 ∈ P0 ∩ g1 ∩ g2, ∃ε > 0 such that either x0 + εD1 ∈ g1 ∩ g2 or

x0 + εD2 ∈ g1 ∩ g2 (i.e., there is at least one point in P0 where at least one
transition can be “rationally” applied and stay in g1 ∩ g2), then

τ⊗1,2(P0) = ((P0 ∩ g1 ∩ g2) ↗ {D1, D2}) ∩ g1 ∩ g2

– otherwise, τ⊗1,2(P0) = P0 ∩ g1 ∩ g2

Remark 2. The first condition on P0 ∩ g1 ∩ g2 comes from the fact that the
rational application of τ1 or τ2 must be initialised. This condition is usually
obvious to check (as in the example below), and can anyway be reduced to a
Linear Programming problem.

Of course, we don’t really partition the control graph, which would involve a
combinational explosion in the presence of several loops. But, if we use the com-
bined acceleration computed as in Proposition 2, we compute the (approximate)
solution of P = P0
τ⊗1,2(P)
τ⊗1 (P)
τ⊗2 (P) using widening if necessary. It often
happens that P0
τ⊗1,2(P0)
τ⊗1 (τ⊗1,2(P0))
τ⊗2 (τ⊗1,2(P0)) is a (post-) fixpoint, and
that widening does not have to be used. Of course, this is one strategy among
others, but it gives good experimental results. We could also compute for ex-
ample the set P0
 τ⊗1,2(P0)
 τ⊗2

(
τ⊗1 (P0)

)

 τ⊗1
(
τ⊗2 (P0)

)
, or other combinations

(like, e.g., in Fast [BFLP03]).

Combining Widening and Acceleration in Linear Relation Analysis 151

i := j := 0;
while (1) i <= 100 do

if ... then i:=i+2; j:=j+1;
else i:=i+4;

end
(2)

Fig. 5. The program

τ1 τ2

1

i ≥ 101

i ≤ 100 →
i := i + 4

i ≤ 100 →
i := i + 2
j := j + 1

2

i := 0
j := 0

Fig. 6. The associated CFG

Example. As a very simple application, we can now deal with the old basic
example of [Hal79] without using any widening:

In the “program” of Fig 5, we abstract the “if-then-else” statement by the
non-deterministic choice of two simple loops around the control point number 1,
getting the control graph of figure 6. Applying our result (the two transition can
be applied) , we first compute τ⊗1,2({i = j = 0}) = {(0, 0)} ↗ {(2, 1), (4, 0)}∩{i ≤
100} = {0 ≤ 2j ≤ i ≤ 100}. Then we compute :

– τ⊗1 (τ⊗1,2(P0)) = {2j ≥ 2, 2j ≤ i, i ≤ 102}
– τ⊗2 (τ⊗1,2(P0)) = {2j ≥ 0, 2j < i ≤ 104}
– The convex hull of the three polyhedra, {0 ≤ 2j ≤ i, i ≤ 104, i+ 2j ≤ 204}.

This last set is stable by the application of τ1 or τ2, so the convergence is reached
and we can propagate the obtained result to location 2, where we get: {0 ≤ 2j ≤
i, 101 ≤ i ≤ 104, i+ 2j ≤ 204}.

5 Combining Translation and Reset

The next case that we will consider is the combination of translation loops
with loops where some variables are set to constants. Without loss of generality,
we assume that these variables are simply reset to 0. This situation and the
corresponding notations are represented in Fig. 7: we assume x = (y, z); in the
first loop, all the variables are translated, while in the second one, only the
variables y are translated and the variables z are set to 0. We will consider
simple cases first.

gr →g1 →
τ1 τr

x := x + D1 y := y + Dr; z := 0

Fig. 7. Transition and reset loops

x0

D1

d1

z

g1

Fig. 8. Complete reset

152 L. Gonnord and N. Halbwachs

5.1 Complete Reset

A first simple case is when the second loop performs only resetting, i.e., when
Dr = 0. Let us note d1 = D1 ↓ [z = 0] the projection of D1 on the subspace
z = 0. We assume also that gr = true. Then, the evolution of variables from
a point x0 can be represented in the plane (D1, d1) as in Fig. 8 (in this figure,
x0 ↗ {D1} intersects g1, but otherwise, the same expression is still valid). In
this case, we obviously have:

Proposition 3. If τ1 : g1 → x := x + D1 and τ2 : true → z := 0 then:

(τ1 + τr)⊗(P0) = P0 ↗ {D1, d1} ∩ g1(x−D1)

Sketch of Proof : First let us remark that τ∗
r = τr (τr is only a projection).

– ⊆ : If x ∈ (τ1 + τr)∗(x0) (the exact computation), then there has been a succession
of τ1 and τr, that can be summarized by the following chain (the ij are in N) :

x0

(
y0

0

)
→τ

i1
1 x0 + i1D1 →τr

(
y0 + i1d1

0

)
→τ

i2
1 x0 + (i1 + i2)D1

→τr

(
y0 + (i1 + i2)d1

0

)
→ . . .

So if the chain ends with a τr, then there exists I1 ∈ N such that x = x0 + I1d1

and g1(x − D1) (it comes from the fact we have g1(x0 + (I1 − 1)D1)). If the chains
ends with an iteration of τ1, then x = x0 + I1d1 + I2D1, with g(x − D1). As the
abstract acceleration is the relaxation of the exact computation, we are done.

– ⊇ : If x = x0 + I1d1 + I2D1 and g1(x − D1), then we can obtain the point x

by applying the following “rational” chain : x = τ I2
1

((
τr(τ1(x0))

)I1). Indeed, any
application of τ1 followed by an application of τr from an initial point x0 = (y0, 0)
leads to the point (y0 + d1, 0), which allows us to define the rational alternation
of τr and τ1 as if it were an application of a single translation of vector d1. So
applying I1 times (possibly 0) this alternation, we obtain the point (y0 + I1d1, 0).
Then we end by applying τ I2

2 . �
This simple case generalizes naturally:
– for Dr �= 0, if Dr belongs to the plane (D1, d1)
– for gr �= true if {x0} ↗ {D1} ∩ g1 intersects gr.

Remark 3. Notice that we can easily produce reachable domains that cannot
be described by Presburger formulas, as shown by the figures 9 and 10 (where
the exact set is ∃k ≥ 0,

(
2k−1 − 1 ≤ x ≤ 2k − 1 ∧ z ≥ 0 ∧ x ≥ 2z − 1

)
), which

means that standard exact acceleration techniques cannot work. In this case, the
previous proposition leads to the abstract acceleration : {x ≥ z ≥ 0, x ≥ 2z−1}.

5.2 Partial Reset

Now, we consider the case when Dr �= 0 does not belong to the plane (D1, d1)
(i.e., there are variables which are incremented in the second loop, while being
unchanged by the first loop). As before, we assume that gr = true, but we also

Combining Widening and Acceleration in Linear Relation Analysis 153

τ1 τr

z := 0x := x + 1
z := z + 1

true →

x := 0
z := 0

x ≥ 2z →

Fig. 9. The CFG

0
x

z

1 3 7

Fig. 10. The corresponding behaviour

D1

g1

z

y

Dr
x0

Fig. 11. Partial reset

assume that g1 is of the form z ≤ K, i.e., is parallel to the hyperplane z = 0 (see
Remark 5 about this restriction). Moreover, we consider an initial polyhedron
P0 included in the hyperplane z = 0. Now, the variables can evolve from a point
x0 as shown on Fig. 11.

From x0, τ1 can be applied at most, say, kmax times, where kmax is the
minimum over all reset variables zi of the expressions -Kzi/D1zi

+ 1., which we
denote kmax = -K/D1z + 1.5. At any time meanwhile, τr can occur, resetting z
and translating the result according to Dr in the plane {z = 0}. So, after some
applications of τ1 followed by one application of τr, we have x = x0 + kd1 +Dr,
where d1 = D1 ↓ [z = 0] as before, and 0 ≤ k ≤ kmax. Then from any such x, the
same transformation can occur. One can easily show that the resulting domain
is given by the following proposition:

Proposition 4. Let τ1 be of the form (z ≤ K) → x := x + D1 and τr be
true → y := y +Dry; z := 0. Let P0 ⊂ {z = 0}. Let uz = (0, . . . , 0, 1, . . .1) where
we have 1s for the z components, and 0 elsewhere. Let d1 = D1 ↓ [z = 0] and

Dr =
(
Dry

0

)
. Then:

– if D1 · uz < 0 then (τ1 + τr)⊗(P0) = P0 ↗ {D1, d1, Dr}
– else, let kmax = -K/D1z + 1., we have:

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, kmaxd1 + Dr} ∩ g1(x−D1)

Remark 4. The scalar product D1 · uz characterizes whether or not P0 ↗ {D1}
intersects g1.
5 Notice that, here, we precisely take arithmetic into account, since it can be done at

reasonable cost.

154 L. Gonnord and N. Halbwachs

Sketch of Proof : Without loss of generality, we can assume that each time we apply
τ i

r or τ i
1, we have i > 0.

– In the first case, P0 ↗ {D1} does not intersect g1. It means that the guard g1 is
always satisfied :

x0 →τ
i1
1 →τ

i′
1

r x0 + i1d1 + i′1Dr →τ
i2
1 →τ

i′
2

r x0 + (i1 + i2)d1 + (i′1 + i′2)Dr → . . .

Then if the chain ends with some τr, x = x0 + Id1 + I ′Dr (in particular, z = 0).
If the chain ends with some τ1, we obtain x = x0 + Id1 + I ′Dr + I”D1, with no
bound for I, I ′, I”.

– In the second case, the number of iteration of τ1 following one (or more) ap-
plication(s) of τr is at most kmax. We write a similar chain, except that we
have the property ∀j, 0 ≤ ij ≤ kmax. If the chains ends with τ+

r , we obtain
x = x0 + (i1 + i2 + . . . + in)d1 + (i′1 + . . . + i′n)Dr. Let I = i1 + i2 + . . . + in.
Taking the Euclidean division of I by kmax, we get I = qkmax + r with r ≤ kmax

and q ≤ n. Then x = x0 +(q.kmax+ r1)d1 +(q + r2)Dr with r1, r2 ≥ 0, and finally
x = x0 + q(kmaxd1 + Dr) + r1d1 + r2Dr, which is the good form. x also satisfied
g1(x − D1) because all the plane {z = 0} satisfy g1, and −D1 moves away x from
the guard g1.

If the chains ends with τ∗
1 , we add some in+1D1, but we must satisfy g1 before

the last but one application, hence g1(x − D1).

These arguments justify the left-to-the right inclusions. The proof of the two other
inclusions are very similar to the proof of Proposition 4. �

t := d := s := 0 ;
while true do
1: if second then

t := t+1 ; s:= 0 ;
else if meter and s<=3 then

d := d+1 ; s := s+1 ;
end

Example. We consider a very simple reac-
tive program [HPR97], supposed to model
a speedometer under the assumption that
the speed is less than 4 meters/second: the
speedometer perceives either an elapsed sec-
ond from some clock, in which case the time t
is incremented while the instantaneous speed
s (which counts the number of meters occur-
ring during each second) is reset to 0, or a
“meter” sensor, in which case both the distance d and the instantaneous speed
s are incremented; this “meter” event can only occur when s ≤ 3, because of the
assumption on the speed.

With the notations of Fig. 7, we have x = (t, d, s), y = (t, d), z = (s), uz =
(0, 0, 1), g1 = (s ≤ 3), D1 = (0, 1, 1), Dr = (1, 0, 0), and x0 = (0, 0, 0). We have
uz ·D1 = 1 ≥ 0 hence we compute kmax = 4 and d1 = (0, 1, 0), so kmaxd1 +Dr =
(1, 4, 0), and finally:

(τ1 + τr)⊗(x0) = (0, 0, 0) ↗ {(0, 1, 1), (1, 0, 0), (1, 4, 0)}∩ {s ≤ 4}
= {t ≥ 0, 0 ≤ s ≤ 4, 0 ≤ d ≤ 4t + s)}

so we get at once the precise result, which is not easy to obtain with widening
(in [HPR97], we needed 3 iterations, and a “limited widening”).

Combining Widening and Acceleration in Linear Relation Analysis 155

Remark 5. If the guard is not of the form z ≤ K, the behaviour can be non linear.
In the following example, one border of the reachable domain is a parabola:

τ1 τr

z := 0
y := y + 1

x := x + 1
z := z + 1
y := y + 1

true →

(x, y, z) := (0, 0, 0)

x ≥ 2z →

Fig. 12. The CFG

Y

x0

Z

Dr

g1

Fig. 13. The corresponding behaviour

5.3 Weakening the Assumptions

The previously considered case may appear quite specific. However, we can easily
suppress or alleviate some of our assumptions:

– If P0 is not included in {z = 0}, first compute P ′
0 = τr(τ⊗1 (P0)), which is

included in {z = 0} (since it results from an application of τr).
– We can extend Proposition 4 in order to take into account a guard of the

form z �� Kr (��∈ {≤,=,≥}) for the second loop, using Proposition 5 below.
– Finally, Section 5.4 will give an example of using these results to combine a

reset loop with more than one translation loop.

Proposition 5. Let τ1, τr be respectively of the form:

τ1 : (z ≤ K1) → x := x + D1 and τr : (z �� Kr) → y := y + Dr; z := 0

where �� ∈ {≤,=,≥}. Assume P0 ⊂ {z = 0} and K1 > 0 and D1 · uz > 0. Let
us note kmax1 = -K1/D1z + 1., d1 = D1 ↓ [z = 0], and kmaxr = -Kr/D1z + 1..
Then:

– if �� is “≤” then
• if Kr < 0 then (τr never applies)

(τ1 + τr)⊗(P0) = P0 ↗ {D1} ∩ g1(x −D1)

• if Kr > K1 then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, Dr + kmax1d1} ∩ g1(x−D1)

• if K1 ≥ Kr > 0 then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, Dr + kmaxrd1} ∩ g1(x−D1)

– if �� is “=” then
• if K1 ≥ Kr > 0 and ∃k,Kr = kD1z then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr + kd1} ∩ g1(x −D1)

156 L. Gonnord and N. Halbwachs

• else (τr never applies)
(τ1 + τr)⊗(P0) = P0 ↗ {D1} ∩ g1(x −D1)

– if �� is “≥” then
• if Kr > K1 and Kr >0 then (τr never applies)

(τ1 + τr)⊗(P0) = P0 ↗ {D1} ∩ g1(x −D1)
• if K1 ≥ Kr ≥ 0, then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr + kmax1d1, Dr + kmaxrd1} ∩ g1(x−D1)
• if Kr < 0 then

(τ1 + τr)⊗(P0) = P0 ↗ {D1, Dr, Dr + kmax1d1} ∩ g1(x−D1)

Remark 6. If D1 · uz < 0 under the same assumptions as in Proposition 5, g1 is
always true, and we easily get: (τ1 + τr)⊗(P0) = P0 ↗ {D1, d1, Dr}
Sketch of Proof : The demonstration is mostly like the preceding one, except that
we take the second guard into account. In particular, if the second guard is of the
form z = K2, then we must check whether or not the real set {x + iD1, i ∈ N} inter-
sects g2. �
Remark 7. Because g1 = x ≤ K1 and P0 ⊂ {z = 0}, the successive images of
any point x0 ∈ P0 are {x0 + kD1 | 0 ≤ k ≤ kmax} with kmax independent of x0.
Let us consider the ray Dr + kmaxd1 of Proposition 4. If we had an algorithm
to compute directly
τ∗1 (x0) (the polyhedron representing the convex hull of the
exact computation of all x0 + kD1, with 0 ≤ k ≤ kmax1), the Proposition 4
ensures that we can use the following algorithm to compute Dr + kmaxd1 (in
this case, the two algorithms are equivalent):

1. Select one point x0 ∈ P0.
2. Compute the segment S = [x0, x

M
0] =
τ∗1 (x0) (exact computation).

3. Compute Dr + kmaxd1 = τr(xM
0) − x0.

Now, in Proposition 5, if we want to compute the rays Dr + kmax1d1 and Dr +
kmaxrd1 (when necessary), we must obtain (if they exist) the “real” points of
the set S ∩ gr (i.e., the points that are reachable with τ1 in i steps where i ∈ N).
Notice that we get an algorithm that does not care about the relative values
of K1 and Kr. Notice also that the extremal points of S ∩ gr can sometimes
be computed directly if all the D1zi belong to {−1, 0, 1}, because the successive
images of x0 are points with integer coordinates. We will apply this remark in
the example below.

5.4 An Example with More Translation Loops and Resets

We saw in the previous paragraph that the key property of τ1 (the unique trans-
lation loop) is that the number of its iterations when z = 0 is bounded by a
constant kmax1. Let us now consider the case of two translation loops τ1 and τ2
combined with a reset loop τr : z ≤ Kr → y := y + Dr, z := 0.

If we had a similar bound property for (τ1 + τ2), we could have a similar
expression for (τ1 + τ2 + τr)⊗. It is the case if both of the two guards g1 and
g2 only constrain variables in z. This condition guarantees that all points in
{z = 0} have “parallel futures”.

Combining Widening and Acceleration in Linear Relation Analysis 157

Yet another gas burner example: We consider a modified version of the gas
burner example, where it is only assumed that, in each consecutive 60-second
interval, the cumulated leaking time is at most 10 seconds. A new variable v
must be introduced to count the cumulated leaking time since the last time u
has been reset to zero (see Fig 14). Now, we adapt the algorithm of the previous
section :

(u, t,
, v) := (0, 0, 0, 0)

τr

u ≤ 59 →
(u, t,
, v) := (u, t,
, v) + (1, 1, 0, 0)

u = 60 → u := 0, v := 0

τ1 τ2(u, t,
, v) := (u, t,
, v) + (1, 1, 1, 1)
u ≤ 59, v ≤ 9 →

Fig. 14. A more complex version of the gas burner

– Step 1. At the beginning, the polyhedron associated with the control point
is P (0) = {u = t = � = v = 0}.We first compute (τ1 + τ2)⊗(P (0)),
applying the strategy given in Section 4 : τ⊗12(P

(0)) = (0, 0, 0, 0) ↗
{(1, 1, 1, 1); (1, 1, 0, 0)}∩{u ≤ 59; v ≤ 9} = {0 ≤ � = v ≤ 10; � ≤ u = t ≤ 59};
τ⊗1
(
τ⊗12(P

(0))
)

= {� ≤ t, u = t ≤ 60, 0 ≤ v = � ≤ 10}; τ⊗2
(
τ⊗12(P

(0))
)

=
τ⊗1
(
τ⊗12(P

(0))
)
, so finally we get the exact set (τ1 + τ2)⊗(P (0)) = {� ≤ t, u =

t ≤ 60, 0 ≤ v = � ≤ 10}.
– Then, we intersect this last set with gr = {u = 60}6, and we get the ex-

tremal points (60, 60, 10, 10) and (60, 60, 0, 0), thus r1 = τr(60, 60, 10, 10)−
(0, 0, 0, 0) = (0, 60, 10, 0) and r2 = (0, 60, 0, 0), Then, P (1) = (τ1 +
τ2)⊗(P (0)) ↗ {(0, 60, 10, 0), (0, 60, 0, 0)} ∩ {u ≤ 60; v ≤ 10} = {v ≤ �, u ≤
60, 0 ≤ v ≤ 10, v ≤ u, u + 6� ≤ t + 6v}.

– Step 2. We compute P (2) = (τ1+τ2)⊗(P (1) with the same method, replacing
P (0) by P (1). We quickly remark that (τ1 + τ2)⊗(P (2)) ⊆ P (2), τ⊗1 (P (2)) ⊆
P (2), τ⊗2 (P (2)) ⊆ P2, hence we get the invariant:7 {v ≤ �, u ≤ 60, 0 ≤ v ≤
10, v ≤ u, u + 6� ≤ t + 6v}, whose projection on {t, �} gives {0 ≤ � ≤ t, 6� ≤
t + 50}.

6 Related Work and Conclusion

This work is a new attempt at decreasing the imprecision due to the widening in
Linear Relation Analysis. The initial widening operator of [CH78] was promptly
improved in [Hal79], which proposed the operator often called “standard widen-
ing”. More recently, [BHRZ03] proposed several ways of improving the standard
widening, in the sense that the result of a single application of the new operators
6 Here it is not necessary to bother about arithmetic, because our actions are just

incrementations, see Remark 7.
7 We are sure that we have the exact one because we have no loss of precision due to

arithmetic.

158 L. Gonnord and N. Halbwachs

is guaranteed to be smaller than the one computed with the standard widening.
Although these new operators seem to be really better in practice — in the sense
that, in many cases they provide more precise limits without significant loss of
performance —, there are counterexamples (like the speedometer of Section 5.2)
showing that it is not always the case. [GR06] is a nice attempt to improve the
precision by carefully alternating increasing widened sequences and descending
(possibly narrowed) sequences. The approach has more general applications than
Linear Relation Analysis, but could be combined with ours for LRA.

Instead of improving widening, we tried to complement it with some kind
of acceleration, whenever possible. The essential difference between accelera-
tion and widening is that widening is only based on the successive results of
the abstract semantics of the program (i.e., xn and f(xn) are used to compute
xn+1 = xn∇f(xn)), while acceleration looks at the function f itself to build
f∗. Among the techniques that take the abstract function into account, one can
mention the “widening with thresholds” [BCC+03] or “widening upto” [HPR97],
where the conditions involving a loop exit are used to limit the extrapolation.

Of course, we were strongly inspired by exact acceleration techniques [BW94,
WB98, CJ98, FS00, BFLP03]. However, we don’t want to pay the price of exact
computations, and we want to obtain general analysis techniques. So, we use only
an abstract acceleration, keeping the polyhedral approximation, and we still com-
bine it with usual widening, to preserve the generality of the method. In [SW04],
a class of programs is identified for which the abstract solution of the abstract
semantics in the lattice of intervals can be computed exactly, without widening.
Our goals are similar, but in the richer and more complex lattice of polyhedra.
The closest approach to ours is probably the one applied in PIPS [IJT91, Iri05].
First, in this work, the abstract function is naturally taken into account, because
PIPS applies a modular relational analysis — i.e., it computes the relation be-
tween initial and final values of variables of a program fragment. Then, a kind
of abstract acceleration is applied, based on discrete differentiation and integra-
tion. However, this technique is not combined with widening, which is not used
in PIPS.

When our abstract acceleration applies alone, it is guaranteed to provide bet-
ter results than widening — in fact, it provides the best possible results in term
of polyhedra. Used in combination with widening, it generally improves the pre-
cision of the analysis — we don’t have any counterexample so far — because it
precisely foresees some future behaviors. In spite of apparently strong hypothe-
ses, the abstract acceleration applies quite often in programs with counters, and
our first experiments show significant improvements, both in precision and in
performance.

A very first implementation of our technique is available. The detection of
accelerable loops is not very elaborate, for the time being: the strongly connected
subcomponents (SCSC) of the control graph are identified using Bourdoncle’s
classical extension [Bou92] of Tarjan algorithm [Tar72]. Then the SCSC are
considered bottom-up (starting from the deepest ones): in each of them the
paths looping around the input node are checked w.r.t. our acceleration criteria,

Combining Widening and Acceleration in Linear Relation Analysis 159

and possibly replaced by meta-transitions [Boi99]. Of course, since the number
of such paths can be large, we are not obliged to consider all of them.

Future work include of course further experiments of the proposed techniques,
which are also likely to be extended towards more general cases. In particular,
loops which may exchange values between variables could be considered.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science B, 138:3–34, January 1995.

[BBC+00] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma,
and T. Uribe. Verifying temporal properties of reactive systems: A STeP
tutorial. Formal Methods in System Design, 16:227–270, 2000.

[BBM97] N. Bjorner, I. Anca Browne, and Z. Manna. Automatic generation of
invariants and intermediate assertions. Theoretical Computer Science,
173(1):49–87, February 1997.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical soft-
ware. In PLDI 2003, ACM SIGPLAN SIGSOFT Conference on Program-
ming Language Design and Implementation, pages 196–207, San Diego
(Ca.), June 2003.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: Fast accelera-
tion of symbolic transition systems. In CAV’03, pages 118–121, Boulder
(Colorado), July 2003. LNCS 2725, Springer-Verlag.

[BHRZ03] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening
operators for convex polyhedra. In R. Cousot, editor, Static Analysis:
Proceedings of the 10th International Symposium, volume 2694 of Lecture
Notes in Computer Science, pages 337–354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

[Boi99] B. Boigelot. Symbolic methods for exploring infinite state spaces. Phd
thesis, Université de Liège, 1999.

[Bou92] F. Bourdoncle. Sémantique des langages impératifs d’ordre supérieur et
interprétation abstraite. Thesis Ecole Polytechnique, Paris, 1992.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
CAV’94, Stanford (Ca.), 1994. LNCS 818, Springer Verlag.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In 4th ACM Symposium on Principles of Programming Languages,
POPL’77, Los Angeles, January 1977.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5th ACM Symposium on Principles of
Programming Languages, POPL’78, Tucson (Arizona), January 1978.

[CHR91] Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.
Information Processing Letters, 40(5), 1991.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
Presburger arithmetic. In CAV’98, Vancouver (B.C.), 1998. LNCS 1427,
Springer Verlag.

160 L. Gonnord and N. Halbwachs

[DRS01] N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipu-
lations in C programs via integer analysis. In P. Cousot, editor, SAS’01,
Paris, July 2001. LNCS 2126.

[FL02] A. Finkel and J. Leroux. How to compose Presburger-accelerations: Ap-
plications to broadcast protocols. In Proceedings of the 22nd Conf. Found.
of Software Technology and Theor. Comp. Sci. (FSTTCS’2002), volume
2556 of Lecture Notes in Computer Science, pages 145–156, Kanpur, In-
dia, December 2002. Springer.

[FS00] A. Finkel and G. Sutre. An algorithm constructing the semilinear post* for
2-dim reset/transfer vass. In 25th Int. Symp. Math. Found. Comp. Sci.
(MFCS’2000), Bratislava, Slovakia, August 2000. LNCS 1893, Springer
Verlag.

[GR06] D. Gopan and T. Reps. Lookahead widening. In CAV’06, Seattle, 2006.
[Hal79] N. Halbwachs. Détermination automatique de relations linéaires vérifiées

par les variables d’un programme. Thèse de troisième cycle, University of
Grenoble, March 1979.

[Hal97] Vesa Halava. Decidable and undecidable problems in matrix theory. Tech-
nical Report TUCS-TR-127, University of Turku, 30, 1997.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker
for hybrid systems. Software Tools for Technology Transfer, 1:110–122,
1997.

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time
systems using linear relation analysis. Formal Methods in System Design,
11(2):157–185, August 1997.

[IJT91] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural par-
allelization: An overview of the PIPS project. In ACM Int. Conf. on
Supercomputing, ICS’91, Köln, 1991.

[Iri05] F. Irigoin. Detecting affine loop invariants using modular static analy-
sis. Technical Report A/367/CRI, Centre de Recherche en Informatique,
Ecole des Mines de Paris, July 2005.

[SSM04] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constraint-
based linear relations analysis. In International Symposium on Static
Analysis, SAS’2004, pages 53–68. LNCS 3148, Springer Verlag, 2004.

[SW04] Z. Su and D. Wagner. A class of polynomially solvable range constraints
for interval analysis without widenings and narrowings. In TACAS’04,
pages 280–295, Barcelona, 2004.

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1:146–160, 1972.

[Tiw04] A. Tiwari. Termination of linear programs. In R. Alur and D. Peled,
editors, Computer-Aided Verification, CAV, volume 3114 of LNCS, pages
70–82. Springer, July 2004.

[WB98] P. Wolper and B. Boigelot. Verifying systems with infinite but regular
state spaces. In CAV’98, pages 88–97, Vancouver, June 1998. LNCS 1427,
Springer-Verlag.

Beyond Iteration Vectors:
Instancewise Relational Abstract Domains

Pierre Amiranoff, Albert Cohen, and Paul Feautrier

Abstract. We introduce a formalism to reason about program proper-
ties at an infinite number of runtime control points, called instances. In-
finite sets of instances are represented by rational languages. This frame-
work gives a formal foundation to the well known concept of iteration
vectors, extending it to recursive programs with any structured control
flow (nested loops and recursive calls). We also extend the concept of
induction variables to recursive programs. For a class of monoid-based
data structures, including arrays and trees, induction variables capture
the exact memory location accessed at every step of the execution. This
compile-time characterization is computed in polynomial time as a ra-
tional function. Applications include dependence and region analysis for
array and tree algorithms, array expansion, and automatic parallelization
of recursive programs.

1 Introduction

Most compiler techniques reflect the natural inductive structure of programming
languages semantics and machine models. This approach facilitates formal rea-
soning and proofs, enhances modularity (composition), and leads to fast and
simple algorithms.

Yet more and more advanced program analysis and transformation prob-
lems benefit from decoupling the construction of static abstractions from the
local, inductive semantics of the programs. These abstractions, sometimes called
constraint-based [31], are custom to a specific class of programs or compilation
problem. They are engineered to exhibit statically tractable algebraic proper-
ties, e.g., closed mathematical forms amenable to formal (symbolic) computa-
tions, typically based on Presburger arithmetic or decidable automata-theoretic
classes.

To make this duality more concrete, consider the constant propagation opti-
mization [1] which amounts to computing a property of a variable v at a state-
ment s, asking whether v has some value v before s executes. It is quite natural
to formalize constant propagation in an abstract data-flow or interpretation set-
ting. But let us now consider another static analysis problem that may be seen
as an extension of constant propagation: induction variable recognition [1,22]
captures the value of some variable v at a statement s as a function fv of the
number of times s has been executed. In other words, it captures v as a function
of the execution path itself. Of course, the value of a variable at any stage of the
execution is a function of the initial contents of memory and of the execution
path leading to this stage. For complexity reasons, the execution path may not

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 161–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 P. Amiranoff, A. Cohen, and P. Feautrier

be recoverable from memory. In the case of induction variables, we may assume
the number of executions of s is recorded as a genuine loop counter. From such
a function fv for s, we can discover the other induction variables using analyses
of linear constraints [9], but such syntactically bound approaches will not easily
cope with the calculation of function fv itself.

In the following, we will qualify as instancewise any compilation method op-
erating on abstract, finitely presented, relational domains bewteen the infinite
set of runtime control points and any semantical domain of interest. Other
analyses will be called statementwise.

1.1 Statementwise Analysis

We use the term statementwise to refer to the classical type systems, data-flow
analysis and abstract interpretation frameworks, that aim for the computation of
a collecting semantics of a finite set of collection points. Few works addressed the
attachment of static properties at a finer grain than syntactic program elements.
Refinement of this coarse grain abstraction involves a previous partitioning [8] of
the control points : e.g., polyvariant analysis distinguishes the context of function
calls, and loop unfolding virtually unrolls a loop several times. Dynamic parti-
tioning [4] integrates partitioning into the analysis itself. Control points can be
extended with call strings (abstract call stacks) and timestamps, but ultimately
rely on k-limiting [42,26] or summarization heuristics [37] to achieve conver-
gence. Although unbounded lattices have long been used to capture abstract
properties [9,12]), few works considered the computation of data-flow facts us-
ing an unbounded set of control points. Even the most advanced non-uniform
(a.k.a. elementwise) analyses of arrays or heap structures formalized in abstract
interpretation, including the approaches by Deutsch [12,11] and Venet [43,44],
although they compute individual properties over an infinite set of heap loca-
tions, they do map these properties to a finite set of program points only. The
seminal paper by Esparza and Knoop [15] is closer to our work since it promises
a non-intepretative family of static analysis (semi-)algorithms. Follow-up works
building on model-checking of push-down systems or on various path-sensitive
abstractions to extend precision and context sensitivity [16,38,25]. Yet all these
methods ultimately result in the computation of data-flow properties attached
to a finite number of control points.

1.2 Instancewise Analysis

On the other hand, ad-hoc approaches to static analysis are able to compute pro-
gram properties as functions defined on an infinite (or unbounded) number of run-
time control points. Historically, most works derived from loop-restructuring com-
piler efforts [45] aiming at a large spectrum of optimizations: vectorization,
instruction-level, thread-level or data parallelism, scheduling and mapping for au-
tomatic parallelization, locality optimization, and many others [34,45]. In the as-
sociated static analyses, the retrieval of abstract properties is often iteration-less
[45,46,35] and resort to operation research algorithms thoroughly alien to program

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 163

interpretation [19]. The work of Creusillet [10] is one of the rare instancewise anal-
yses to resort to abstract interpretation, the reason lying in the interprocedural
nature of the analysis. The so-called polyhedral model encompasses most works on
analysis and transformation of the (Turing-incomplete) class of static-control pro-
grams [17,34], roughly defined as nested loops with affine loop bounds and array
accesses.An iteration vector abstracts the runtime control point corresponding to a
given iteration of a statement. Program properties are expressed and computed for
each vector of values of the surrounding loop counters. In general, the result of the
analysis is a mapping from the infinite set of iteration vectors (the run-time control
points) to an arbitrary (analysis-specific) vector space (e.g., dependence vector).
Instead of iteratively merging data-flow properties, most analyses in the polytope
model use algebraic solvers for the direct computation of symbolic relations: e.g.,
array dependence analysis uses integer linear programming [17]. Iteration vectors
are quite different from time-stamps in control point partitioning techniques [4,44]:
they are multidimensional, lexicographically ordered, unbounded, and constrained
by Presburger formula [36].

First Contribution. We introduce a general abstraction of runtime control points
that uncompasses most ad-hoc formalisms for the fine grain analysis of loop nests
and arrays in sequential procedural languages. Within this framework, one may
define, abstract and compute program properties as functions of an infinite set
of runtime control points. The concept of instance allows to reason about these
runtime points across multiple executions of the program; it is the generalization
of an iteration vector to general recursion. Rational languages finitely represent
infinite set of instances, and instancewise properties may be captured by rational
relations [3]. This paper goes far beyond our previous attempts to extend itera-
tion vectors to recursive programs, for the analysis of arrays [6,5,7,2] or recursive
data structures [20,7,5].

Second Contribution. Building on the instancewise framework, we extend the
concept of induction variables to arbitrary recursive programs. This extension
demonstrates the ability to characterize properties of programs as functions from
an infinite set of runtime control points, beyond the restricted domain of Fortran
loop nests. Technically, the valuation of induction variables is analog to param-
eter passing in a purely functional language: each statement is considered as a
function, binding and initializing one or more induction variables. We propose
an polynomial algorithm to compute each induction variable as a binding func-
tion mapping instances to the abstract memory locations they access. It is a
rational function on the Cartesian product of two monoids and can be efficiently
represented as a rational transducer [3]. This binding function will give an exact
result for valid traces.

Organization of the Paper. Section 2 defines the instancewise model. Section 3
extends induction variables to recursive control and data structures. Section 4
states the existence of rational binding functions. Section 5 addresses the compu-
tation of binding functions as rational transducers. Section 6 surveys theoretical
results that derive from this work.

164 P. Amiranoff, A. Cohen, and P. Feautrier

2 From Traces to Instances

Figure 1 presents our running example. It features a recursive call to the Toy
function, nested in the body of a for loop, operating on an array A (there is no
simple way to remove the recursion).

To focus on the core concepts, we introduce MoGuL, a toy language with
high-level constructs for traversing data structures addressed by induction vari-
ables in a finitely presented monoid. In a general-purpose (imperative or func-
tional) language, our technique would require additional information about the
shape of data structures, using dedicated annotations [27,28,21] or shape analy-
ses [23,41].

Figure 3 is a simplified version of the MoGuL C-like syntax, focus-
ing on the control structures. Italic non-terminals are defined elsewhere:
elementary_statement covers the usual atomic statements, including assign-
ments, input/output statements, void statements, etc.; predicate is a boolean
expression; init_list contains a list of initializations for one or more loop
variables, and translation_list is the associated list of constant translations

int A[100];
void Toy(int n, int k) {
if (k < n)
{

for (int i=k; i<=n;
i+=2)

{
A[i] = A[i] + A[n-i];
Toy(n, k+1);

}
}

}
int main() {
Toy(99, 0);

}

Fig. 1. Program Toy in C

structure Monoid_int A;
A void Toy(Monoid_int n, Monoid_int k) {
B if (k < n)
C {
D for (Monoid_int i=k; i<=n;
d i=i.2)
E {
F A[i] = A[i] + A[n-i] ;
G Toy(n, k.1);

}
}

}
H int main() {
I Toy(20, 0);

}

Fig. 2. Program Toy in MoGuL

program ::=function (S1)
|function program (S2)

function ::=’function’ ident ’(’ formal_parameter_list ’)’
block (S3)

block ::=LABEL ’:’ ’{’ init_list statement_list ’}’ (S4)
|LABEL ’:’ ’{’ statement_list ’}’ (S5)

statement_list::=ε (S6)
|LABEL ’:’ statement statement_list (S7)

statement ::=elementary_statement ’;’ (S8)
|ident ’(’ actual_parameter_list ’)’ ’;’ (S9)
|’if’ predicate block ’else’ block (S10)
|’for’ ’(’ init_list ’;’ LABEL ’:’ predicate ’;’

LABEL ’:’ translation_list ’)’ block (S11)
|block (S12)

Fig. 3. Simplified MoGuL syntax (control structures)

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 165

Main { Toy(20, 0) Toy {

k < n

{

i = k i = i.2 i = k

k < n } i <= n i <= n i = i.2

{

A[i] = A[i]+A[n-i]

} Toy A[i] = A[i]+A[n-i]

Toy(20, k+1)

} Main return }

In the stack:
� pushes �, while � pops �.

I A

B

C D

δ

E

δ

F

D d

δ

C

B

A

I

G

E

F

B

G
d

δ

A

Fig. 4. Pushdown Trace Automaton

for those induction variables; block collects a sequence of statements, possibly
defining some induction variables. Every statement is labeled.

Figure 2 gives the MoGuL version of Toy. It abstracts the shape of array A
through a monoid type Monoid_int. Induction variables i and k are bound to
values in this monoid. Traversals of A are expressed through i, k and the monoid
operation ·. Further explanations about MoGuL data structures and induction
variables are deferred to Section 3.

Every statement is seen as a function application; therefore the execution stack
alphabet holds every statement label. Moreover, each statement is provided with
a second return label to identify the implicit termination of the statement: if � is
a statement label, � corresponds to the beginning of the execution of a statement
and � indicates its completion. Regarding the execution stack, � pushes � while �
pops �. An additional state, called return state, is associated to the completion
of each statement. The result is called the pushdown trace automaton and the
recognized words are the execution traces. A trace prefix is the trace of a partial
execution, given by a prefix of a complete trace, it matches the intuitive notion
of a runtime control point.

Figure 4presents the trace pushdownautomaton of the Toyprogram.We exhibit
here a prefix of a valid trace: IABCDδEFFGABCDδEFFGABBAGEδdδEF .

For clarity of exposure and without loss of precision, the following exam-
ples will use a simplified representation of the trace pushdown automaton,
omitting return states, except for calls to Toy, states associated to block
statements and to loop predicates. Now, the previous trace prefix reduces to:
IBDFFGBDFFGBBGdF . We will use this simplified representation of traces
in the following.

166 P. Amiranoff, A. Cohen, and P. Feautrier

0

1

2

3

4

I

B

D

F

d G

All states are final.

A few control words:
IBDdF ,
IBDGBDF ,
IBDGBDdG.

Fig. 5. Example Control Automaton

A[i] = ...

Toy(20, k+1)
F

G
−→

F G

Each statement in a sequence is linked to
the enclosing block.

Fig. 6. Construction of the Control Au-
tomaton

The purpose of this paper is to construct a finite-state representation for the
(infinite) set of trace prefixes of Toy, then compute a statically tractable charac-
terization of the precise element of A accessed by every given trace prefix(again
an infinite relational abstract domain).

The stack word language of a pushdown automaton A is the set of stack
words u such that there exists a state q for which the configuration (q, u) is both
accessible and co-accessible — there is an accepting path traversing q with stack
word u.

Definition 1 (Control Word). The stack word language of the pushdown trace
automaton is called the control word language. A control word is the sequence
of labels of all statements that have begun their execution but not yet completed
it. Any trace prefix has a corresponding control word.

Since the stack word language of a pushdown automaton is rational [39], the
language of control words is rational. It is easy to build a finite-state automaton
accepting the rational language of control words. We call the latter the control
automaton.

Figure 5 shows the control automaton for Toy; the control word language is
I + IB + IBD(d + GBD)∗(ε + F + G + GB).

The transformation from trace prefixes to control words is a systematic pro-
cedure. A similar transformation exists from the pushdown trace automaton to
the control automaton; this is important for the design of efficient instancewise
analysis algorithms.

– In the pushdown trace automaton, a sequence of successive statements is a
chain of arcs, while, in the control automaton, each of these statement is
linked by an edge from the common enclosing block, see Figure 6. Thus,
the control automaton makes no distinction between the sequence and the
conditional.

– As in the pushdown automaton for trace prefixes, all states are final.
– Since a return statement closes the corresponding function call and deletes

every label relative to it in the control word, return nodes are not needed
anymore.

The trace language is a Dyck language [3], i.e., a hierarchical parenthesis
language. We define the slimming congruence generated by �� ≡ ε, for all � ∈ Lab.

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 167

This definition induces a rewriting rule over L∗
ab, obviously confluent. This rule

is the direct transposition of the execution stack behavior. Applying it to any
trace prefix p we can associate a minimal word w.

Definition 2 (Slimming Function). The slimming function maps each trace
prefix to the shortest element in the class of p modulo the slimming congruence.

Theorem 1. The set of control words is the quotient set of all prefixes of all
traces modulo the restricted Dyck congruence, and the slimming function is the
canonical projection of trace prefixes over their control words.

The following table illustrates the slimming function on a few trace prefixes.

Trace prefix IBDFFGBDF
Control word IBD GBDF
Trace prefix IBDFFGBDFFGBBGdFFG
Control word IBD GBD d G
Trace prefix IBDFFGBDFFGBBGdFFGBBGdddDBGdF
Control word IBD dF

The slimming function extends Harrison’s Net function; we coined the term
control word in favor of procedure string [42,26,30] to emphasize the unbound-
edness of the relation over stack configurations we ought to statically reason
about.

Consider any trace t of a MoGuL program and any trace prefix p of t. The
slimming function returns a unique control word. Conversely, it is easy to see
that a given control word may be the abstraction of many trace prefixes, possibly
an infinity. E.g., consider two trace prefixes differing only by the sub-trace of a
completed conditional statement:1 their control words are the same.

The demonstration of the following results and additional relations between
trace prefixes and control words are provided in the appendix.

We now come to the formal definition of an instance:

Definition 3 (Instance). Considering the set of all traces of a MoGuL pro-
gram, an instance is a class of trace prefixes modulo the slimming congruence.

Thanks to Theorem 1, instances are in bijection with control words. In the
following, we will refer to instances or control words interchangeably, without
naming a particular trace prefix representative.

From Theorem 1 again, it is fundamental to notice that an instance has a
consistent definition across all possible executions; this allows to collect the se-
mantics of all trace prefixes congruent to a given control word.

The following results states that an instance is also the finest possible way to
collect the semantics over multiple executions.

Theorem 2. Given one execution trace of a MoGuL program, trace prefixes
are in bijection with control words.
1 I.e., after completing a hammock, the two sub-traces being associated to exclusive

branches.

168 P. Amiranoff, A. Cohen, and P. Feautrier

Theorem 2 ensures that control words characterize runtime control points in
a more compact way than trace prefixes. It even guarantees that computing a
relational domain at each instance is no coarser than dynamically evaluating the
concrete property at each runtime control point.

3 Data Structure Model and Induction Variables

This section and the following ones apply instancewise analysis to the exact
characterization of memory locations accessed by a MoGuL program. For de-
cidability reasons, we will only consider a restricted class of data structures and
addressing schemes:
– they do not support destructive updates (deletion of nodes and non-leaf

insertions);2
– they are addressed through induction variables whose only authorized oper-

ations are the initialization to a constant and the associative operation of a
monoid.

These restrictions are reminiscent of purely functional data structures [32].
In this context, we will show that the value of an induction variable at some

runtime control point — or the memory location accessed at this point — only
depends on the instance. Exact characterization of induction variables will be pos-
sible at compile-time by means of so-called binding functions from control words
to abstract memory locations (monoid elements), independently of the execution.

3.1 Data Model

To simplify the formalism and exposition, MoGuL data structures with side-
effects must be global. This is not really an issue since any local structure may
be “expanded” along the activation tree (e.g., several local lists may be seen as
a global stack of lists).

A finitely-generated monoid M = (G,≡) is specified by a finite list of gen-
erators G and a congruence ≡ given by a finite list of equations over words in
G∗. Elements of M are equivalence classes of words in G∗ modulo ≡. When the
congruence is empty, M is a free monoid. The operation of M is the quotient of
the concatenation on the free monoid G∗ modulo ≡; it is an associative operation
denoted by · with neutral element εm.

Definition 4 (Abstract Location). A data structure is a pair of a data struc-
ture name and a finitely-generated monoid M = (G,≡). An abstract memory
location in this data structure is an element of the monoid. It is represented by
an address word in G∗. By definition, two congruent address words represent
the same memory location.

Typical examples are the n-ary tree — the free monoid with n generators (with
an empty congruence) — and the n-dimensional array — the free commutative
monoid Zn (with vector commutation and inversion).
2 Leaf insertions are harmless if data-structures are implicitly expanded when accessed.

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 169

Below are listed some practical examples of monoid-based data structures.

Free monoid.
G = {right, left}, ≡ is the identity
relation, · is the concatenation: monoid
elements address a binary tree.

left right

left right

Free group.
G = {right, left, right−1, left−1}, ≡
is the inversion of left and right
(without commutation): Cayley graphs
[14,24].

right−1
left−1

left rightright−1

left right

Free commutative group.
G = {(0, 1), (1, 0), (0, −1), (−1, 0)}, ≡ is
the vector inversion and commutation,
is vector addition: a two-dimensional
array.

, 1) (0, 1) (0, 1)(1, 0)

(1, 0)

(0,−1) (0,−1) (0,−1)

(−1, 0)

(−1, 0)

Free commutative monoid.
G = {(0, 1), (1, 0)}, ≡ is vector
commutation: a two-dimensional grid.

(0, 1) (0, 1) (0, 1)(1, 0)

(1, 0)

Commutative monoid.
G = {(0, 1), (1, 0)}, ≡ is vector
commutation and (0, 1) · (0, 1) ≡ εm: a
two-dimensional grid folded on the
torus Z × Z

2Z
.

(0, 1) (0, 1) (0, 1)
(1 ,0) (1, 0)

Free partially-commutative
monoid.
G = {next, 1, −1}, ≡ is the inversion
and commutation of 1: nested trees,
lists and arrays.

1 1 1next

next next

−1 −1 −1

Monoid with right-inverse.
G = {right, left, parent},
right · parent ≡ εm,
left · parent ≡ εm: a tree with
backward edges.

left right

parent parent

3.2 Induction Variables

Traditionally, induction variables are scalar variables within loop nests with a
tight relationship with the surrounding loop counters [1,22]. This relationship,
deduced from the regularity of the induction variable updates, is a critical in-
formation for many analyses (dependence, array region, array bound checking)
and optimizations (strength-reduction, loop transformations, hoisting).

A basic linear induction variable x is assigned (once or more) in a loop, each
assignment being in the form x = c or x = x + c, where c is a constant known at
compile-time. More generally, a variable x is called a linear induction variable if on
every iteration of the surrounding loop, x is added a constant value. This is the case
when assignments to x in the cycle are in the basic form or in the form x = y + c,
y being another induction variable. The value of x may then be expressed as an
affine function of the surrounding loop counters. MoGuL extensions are twofold:

170 P. Amiranoff, A. Cohen, and P. Feautrier

– induction variables can be valued in any monoid;
– their evolution can be captured across loops and recursive calls.

As a consequence, induction variables represent abstract addresses in data struc-
tures, and the basic operation over induction variables becomes the monoid op-
eration.

Definition 5 (Induction Variable). A variable x is an induction variable if
and only if the three following conditions are satisfied:

a. x is defined at a block entry, a for loop initialization, or x is a formal
parameter;

b. x is constant in the block, the for loop or the function where it has been
defined;

c. the definition of x (according to a) is in one of the forms:
1. x = c, and c is a constant known at compile-time,
2. x = y · c, and y is an induction variable, possibly equal to x.

A MoGuL induction variable can be used in different address expressions which
reference distinct data structures, provided these structures are defined over the
same monoid. This separation between data structure and shape follows the
approach of the declarative language 81/2 [24]. It is a convenient way to expose
more semantics to the static analyzer, compared with C pointers or variables of
product types in ML.

Eventually, the MoGuL syntax is designed such that every variable of a
monoid type is an induction variable, other variables being ignored. The only
valid definitions and operations on MoGuL variables are those satisfying Def-
inition 5. For any monoid shape, data structure accesses follow the C array
syntax: D[a] denotes element with address a of structure D, where a is in the
form x or x · c, x an induction variable and c a constant.

If A is an array (i.e., A is addressed in a free commutative group), the affine
subscript A[i+2j-1] is not a valid MoGuL syntax. This is not a real limitation,
however, since affine subscripts may be replaced by new induction variables de-
fined when necessary while i or j are defined. As an illustration, let k be the
induction variable equal to i+2j-1, the subscript in the reference above. We
have to build, through a backward motion, static chains of induction variables
from the program start point to the considered reference. Suppose the last mod-
ification of the subscript before the considered program point is given by the
statement j= h denoted by s, where h is another induction variable. We have to
define a new induction variable g = i+2h-1, living before this statement, and to
consider that s initializes k through an additional assignment k= g. This work
has to be done recursively for all paths in the control flow graph until reaching
the start point.

4 Binding Functions

In MoGuL, the computations on two induction variables in two distinct monoids
are completely separate. Thus, without loss of generality, we suppose that all

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 171

induction variables belong to a single monoid Mloc, with operation · and neutral
element εm, called the data structure monoid.

4.1 From Instances to Memory Locations

In a purely functional language, function application is the only way to define
a variable. In MoGuL, every statement is handled that way; the scope of a
variable is restricted to the statement at the beginning of which it has been
declared, and an induction variable is constant in its scope.

Since overloading of variable names occurs at the beginning of each state-
ment, the value of an induction variable depends on the runtime control point of
interest. Let x be an induction variable, we define the binding for x as the pair
(p, vp), where p is a trace prefix and vp the value of x after executing p.

Consider two trace prefixes p1 and p2 representative of the same instance. The
previous rules guarantee that all induction variables living right after p1 (resp.
p2) have been defined in statements not closed yet. Now, the respective sequences
of non-closed statements for p1 and p2 are identical and equal to the control word
of p1 and p2. Thus the bindings of x for p1 and p2 are equal. In others words,
the function that binds the trace prefix to the value of x is compatible with the
slimming congruence.

Theorem 3. Given an induction variable x in a MoGuL program, the function
mapping a trace prefix p to the value of x only depends on the instance associated
to p, i.e., on the control word.

In other words, given an execution trace, the bindings at any trace prefix are
identified by the control word (i.e., the instance).

Definition 6 (Binding Function). A binding for x is a pair (w, v), where w
is a control word and v the value of x at the instance w.

Λx denotes the binding function for x, mapping control words to the corre-
sponding value of x.

4.2 Bilabels

We now describe the mathematical framework to compute binding functions.

Definition 7 (Bilabel). A bilabel is a pair in the set L∗
ab×Mloc. The first part

of the pair is called the input label, the second one is called the output label.

B = L∗
ab×Mloc denotes the set of bilabels. From the direct product of the control

word free monoid L∗
ab and the data monoid Mloc, B is provided with a monoid

structure: its operation • is defined componentwise on L∗
ab and Mloc,

(α|a) • (β|b) def
= (αβ|a · b). (1)

A binding for an induction variable is a bilabel. Every statement updates the
binding of induction variables according to their definitions and scope rules, the
corresponding equations will be studied in Section 4.3.

172 P. Amiranoff, A. Cohen, and P. Feautrier

Definition 8. The set of rational subsets of a monoid M is the least set that
contains the finite subsets of M , closed by union, product and the star operation
[3]. A rational relation over two monoids M and M ′ is a rational subset of the
monoid M ×M ′.

We focus on the family Brat of rational subsets of B.

Definition 9. A semiring is a monoid for two binary operations, the “addition”
+, which is commutative, and the “product” ×, distributive over +; the neutral
element for + is the zero for ×.

The powerset of a monoid M is a semiring for union and the operation of M
[3]. The set of rational subsets of M is a sub-semiring of the latter [3]; it can be
expressed through the set of rational expressions in M . Thus Brat is a semiring.

We overload • to denote the product operation in Brat; ∅ is the zero element
(the empty set of bilabels); and the neutral element for • is E = {(ε, εm)}. From
now on, we identify Brat with the set of rational expressions in M , and we also
identify a singleton with the bilabel inside it: {(s|c)} may be written (s|c).

4.3 Building Recurrence Equations

To compute a finite representation of the binding function for each induction
variable, we show that the bindings can be expressed as a finite number of
rational sets. First of all, bindings can be grouped according to the last executed
statement, i.e., the last label of the control word. Next, we build a system of
equations in which unknowns are sets of bindings for induction variable x at
state n of the control automaton. Given An the control automaton modified so
that n is the unique final state, let Ln be the language recognized by An. The
binding function for x at state n, Λn

x , is the binding function for x restricted to
Ln. We also introduce a new induction variable z, constant and equal to εm.

The system of equations is a direct translation of the semantics of induction
variable definitions; it follows the syntax of a MoGuL program P ; we illustrate
each rule on the running example.

1. At the initial state 0 and for any induction variable x,

Λ0
x = E (2)

E.g., the Toy program involves three induction variables, the loop counter i and
the formal parameters k and n. We will not consider n since it does not subscript
any data structure. The output monoid is Z, its neutral element εm is 0.

Λ0
k = Λ0

i = (ε|0).

2. Λn
z denotes the set defined by

Λn
z =
⋃

w∈Ln

(w|εm). (3)

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 173

Λn
z is the binding function for the new induction variable z restricted to Ln;

it is constant and equal to εm.
For each statement s defining an induction variable x to csx (case c.1 of
Definition 5), and calling d and a the respective departure and arrival states
of s in the control automaton,

Λa
x ⊇ Λd

z • (s|csx). (4)

Since Λd
z • (s|csx) =

⋃
w∈Ld

(ws|csx), (4) means: if w ∈ Ld is a control word,
ws is also a control word and its binding for x is (ws|csx).
The control automaton automaton of Toy has 5 states. For the case c.1 of Defini-
tion 5,

statement I : k = 0, and (4) yields Λ1
k ⊇ Λ0

z • (I |0).
3. For each statement s defining an induction variable x to y · c (case c.2 of

Definition 5), and d and a the respective departure and arrival states of s,

Λa
x ⊇ Λd

x • (s|csx). (5)

To complete the system, we add for every induction variable x unchanged
by s a set of equations in the form (5), where csx = εm.
E.g., for case c.2 of Definition 5,
statement G : k = k · 1 statement d : i = i · 2 statement D : i = k
and (5) yields
Λ1

i ⊇ Λ3
i • (G|0)

Λ1
k ⊇ Λ3

k • (G|1)
Λ2

i ⊇ Λ1
i • (B|0)

Λ2
k ⊇ Λ1

k • (B|0)

Λ3
i ⊇ Λ2

k • (D|0)
Λ3

i ⊇ Λ3
i • (d|2)

Λ3
k ⊇ Λ2

k • (D|0)
Λ3

k ⊇ Λ2
k • (d|0)

Λ4
i ⊇ Λ3

i • (F |0)
Λ4

k ⊇ Λ3
k • (F |0)

Λ1
z ⊇ Λ0

z • (I |0)
Λ1

z ⊇ Λ3
z • (G|0)

Λ2
z ⊇ Λ1

z • (B|0)
Λ3

z ⊇ Λ2
z • (D|0)

Λ3
z ⊇ Λ2

z • (d|0)
Λ4

z ⊇ Λ3
z • (F |0)

Gathering all equations generated from (2), (4) and (5) yields a system (S) of
nv × ns equations with nv × ns unknowns, where nv is the number of induction
variables, including z, and ns the number of statements in the program.3

Toy yields the system

Λ0
i = E

Λ0
k = E

Λ0
z = E

Λ1
i = Λ3

i • (G|0) + (I |0)
Λ1

k = Λ3
k • (G|1) + (I |0)

Λ2
i = Λ1

i • (B|0)
Λ2

k = Λ1
k • (B|0)Λ3

i = Λ3
i • (d|2) + Λ2

k • (D|0)
Λ3

k = Λ3
k • (d|0) + Λ2

k • (D|0)

Λ4
i = Λ3

i • (F |0)
Λ4

k = Λ3
k • (F |0)

Λ1
z = Λ3

z • (G|0) + (I |0)
Λ2

z = Λ1
z • (B|0)

Λ3
z = Λ2

z • (D|0) + Λ2
z • (d|0)

Λ4
z = Λ3

z • (F |0)

Let Λ be the set of unknowns for (S), i.e., the set of Λn
x for all induction

variables x and nodes n in the control automaton. Let C be the set of constant
coefficients in the system. (S) is a left linear system of equations over (Λ,C) [39].
Let Xi be the unknown in Λ appearing in the left-hand side of the ith equation
of (S). If + denotes the union in Brat, we may rewrite the system in the form
3 Some unknown sets correspond to unbound variables at the node of interest, they

are useless.

174 P. Amiranoff, A. Cohen, and P. Feautrier

∀i ∈ {1, . . . ,m}, Xi =
m∑

j=1

Xj •Ci,j + Ri, (6)

where Ri results from the terms Λ0
x = E in right-hand side. Note that Ci,j is

either ∅ or a bilabel singleton of Brat. Thus (S) is a strict system, and as such,
it has a unique solution [39]; moreover, this solution can be characterized by a
rational expression for each unknown set in Λ.

Definition 10 (Rational Function). If M and M ′ are two monoids, a ratio-
nal function is a function from M to M ′ whose graph is a rational relation.

We may conclude that the solution of (S) is a characterization of each unknown
set Xi in Λ as a rational function.

Lemma 1. For any induction variable x and node n in the control automaton,
the binding function for x restricted to Ln Λn

x is a rational function.

Theorem 4. For any induction variable x, the binding function Λx is a rational
function.

This is a corollary of Lemma 1, since the functions Λn
x are defined on disjoint

subsets of control words, partitioned according to the suffix n.
Properties of rational relations and functions are similar to those of rational

languages [3]: membership, inclusion, equality, emptiness and finiteness are de-
cidable, projection on the input or output monoid yields a rational sub-monoid,
and rational relations are closed for union, star, product and inverse morphism,
to cite only the most common properties. The main difference is that they are
not closed for complementation and intersection, although a useful sub-class of
rational relations has this closure property — independently discovered in [33]
and [5]. Since most of these properties are associated with polynomial algorithms,
binding functions can be used in many analyses, see [6,20,5,2] for our previous
and ongoing applications to the automatic parallelization of recursive programs.

5 Computing Binding Functions

This section investigates the resolution of (S). Starting from (6), one may com-
pute the last unknown in terms of others:

Xm = C∗
m,m

(m−1∑
i=1

Xj • Ci,j + Rm

)
. (7)

The solution of (S) can be computed by iterating this process analogous to
Gaussian elimination. This was the first proposed algorithm [5]; but Gaussian
elimination on non-commutative semirings is an exponential process. We present
a polynomial algorithm to compute the binding function of each induction vari-
able as a rational transducer.

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 175

A rational transducer is a finite-state automaton where each transition is
labeled by a pair of input and output symbols (borrowing from Definition 7), a
symbol being a letter of the alphabet or the empty word [3].4

A pair of words (u, v) is recognized by a rational transducer if there is a path
from an initial to a final state whose input word is equal to u and output word
is equal to v.5

A rational transducer recognizes a rational relation, and reciprocally. A trans-
ducer offers either a static point of view — as a machine that recognizes pairs
of words — or a dynamic point of view — the machine reads an input word and
outputs the set of image words.

The representation for the binding function of an induction variable is called
the binding transducer.

Algorithm 1
Given the control automaton and a monoid with nv induction variables (including
z), the binding transducer is built as follows:

– For each control automaton state, create a set of nv states, called a product-
state; each state of a product-state is dedicated to a specific induction vari-
able.

– Initial (resp. final) states correspond to the product-states of all initial (resp.
final) states of the control automaton.

– For each statement s, i.e., for each transition (d, a) labeled s in the control
automaton; call P d and P a the corresponding product-states; and create an
associated product-transition ts. It is a set of nv transitions, each one is
dedicated to a specific induction variable. We consider again the two cases
mentioned in Definition (5.c).
• case c.1: the transition runs from state P d

z in P d to the state P a
x in P a.

The input label is s, the output label is the initialization constant c;
• case c.2: the transition runs from state P d

y in P d to state P a
x in P a. The

input label is s, the output label is the constant c.

The binding transducer for Toy is shown in Figure 7. Notice that nodes allo-
cated to the virtual induction variable z are not co-accessible except the initial
state (there is no path from them to a final state), and initial states dedicated to
i and k are not co-accessible either. These states are useless, they are trimmed
from the binding transducer.

The binding transducer does not directly describe the binding functions. A
binding transducer is dedicated to an induction variable x when its final states
are restricted to the states dedicated to x in the final product-states.

Theorem 5. The binding transducer dedicated to an induction variable x rec-
ognizes the binding function for x.
4 Pair of words leads to an equivalent definition.
5 A transducer is not reducible to an automaton with bilabels as elementary sym-

bols for its alphabet; as an illustration, two paths labeled (x|ε)(y|z) and (x|z)(y|ε)
recognize the same pair of words (xy|z).

176 P. Amiranoff, A. Cohen, and P. Feautrier

z
i k

i k

i k

i k

I |0 I |0

B |0 B |0D|0
D|0

F |0 F |0

d|2
d|0

G|0 G|1

Fig. 7. Binding Transducer for Toy

This result is a corollary of Theorem 4.
From this result, it is possible (yet not mandatory for most analysis purposes)

to capture all induction variables and their relations into a single object; this
may translate into computing product-states of many transducers, which in the
worst case is exponential in the number of induction variables [2].

The construction of the binding transducer is fully implemented in OCaml and
has been experimented on a dozen of recursive kernels. Starting from a MoGuL
program, the analyzer returns the binding transducer according to the choice
of monoid. This analyzer is a part of a more ambitious framework including
dependence test algorithms based on the binding transducer [2].

6 Applications of Instancewise Analysis

Instancewise analyses are pervasive when dealing with loop nest programs [45,7].
This section is a short overview of the known applications of instancewise binding
functions to the analysis of recursive programs. Most applications derive from
standard algorithms and decision procedures on rational and push-down trans-
ducters [3] which are similar to those of finite-state and push-down automata —
with the notable exception of intersection and complementation. In some cases,
one must resort to approximation schemes [5] and semi-algorithms [20].

– Instancewise dependence analysis for arrays [6,5]. The relation between de-
pendent instances is computed as a one-counter (context-free) transducer, or
by a multi-counter transducer in the case of multi-dimensional arrays. In the
multi-counter case, only approximate may/must dependences are available.
This technique applies to the Toy example.

– Instancewise reaching-definition analysis for arrays [6,5] (a.k.a. array data-
flow analysis [18,29]). Compared to dependence analysis, kills of previous
array assignments are taken into account. Due to the conservative assump-
tions about conditional guards (ignored in this paper), one may only exploit
kill information based on structural properties of the program, i.e., exclusive
branches and ancestry of control words in the call tree (whether an instance
forcibly precedes another in the execution). This limitation seems rather
strong, but it already subsumes the loop-nest case [5] and the Toy program.

– Instancewise dependence test for arrays [2]. Amiranoff’s thesis proves the
decidability and NP-completeness of dependence testing based on binding
transducers, in the case of arrays. An extension taking conditional guards

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 177

into account is available, provided the guards can be expressed as affine
functions of some inductive variables lying in free-commutative monoids (un-
published result). This extension defines conditions for the exactness of the
dependence test (i.e., the absence of approximation) that strictly generalize
the case of static-control loop nests; e.g., the exact dependence test can be
applied to a complex control-flow of the Toy example.

– Instancewise dependence and reaching-definition analysis for trees [5]. The
relation between conflicting instances is a rational transducer, from the El-
got and Mezei theorem [13,3]; the dependence relation requires an addi-
tional sequentiality constraint, which makes its characterization undecidable
in general, but an approximation scheme based on synchronous transducers
is available [33,5]. The array and tree cases can be unified: [5] describes a
technique to analyze nested trees and arrays in free partially-commutative
monoids [40].

– Instancewise dependence test for trees [20]. Instead of a relation between in-
stances, this test leverages on instancewise analysis to compute precise state-
mentwise dependence information with unlimited context-sensitivity (not k-
limited). This technique features a semi-algorithm to solve the undecidable
dependence problem, and the semi-algorithm is proven to terminate provided
the approximation scheme of the previous technique is used (unpublished
result).

7 Conclusion and Perspectives

Instancewise compilation decouples the static properties and analyses from the
inductive presentation of program semantics, departing from interpretative algo-
rithms to evaluate semantic program properties as relational abstract domains
over infinite sets of runtime control points. This paradigm abstracts runtime
execution states (or trace prefixes) in a finitely-presented, infinite set of control
words. Instancewise analysis is also an extension of the domain-specific iteration-
vector approach (the so-called polytope model) to general recursive programs.

As an application of the instancewise framework, we extend the concept of
induction variables to recursive programs. For a restricted class of data struc-
tures (including arrays and recursive structures), induction variables capture the
exact memory location accessed at every step of the execution. This compile-
time characterization, called the binding function, is a rational function mapping
control words to abstract memory locations. We give a polynomial algorithm for
the computation of binding functions.

Our current work focuses on instancewise alias and dependence analysis, for
the automatic parallelization and optimization of recursive programs [2]. We
also look after new benchmark applications and data-structures to assess the
applicability of binding functions; multi-grid and sparse codes are interesting
candidates. We would also like to release a few constraints on the data structures
and induction variables, aiming for the computation of approximate binding
functions through abstract interpretation.

178 P. Amiranoff, A. Cohen, and P. Feautrier

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. P. Amiranoff. An Automata-Theoretic Modelization of Instancewise Program Anal-
ysis: Transducers as mappings from Instances to Memory Locations. PhD thesis,
CNAM, Paris, Dec. 2004.

3. J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart, Ger-
many, 1979.

4. F. Bourdoncle. Abstract interpretation by dynamic partitioning. J. of Functional
Programming, 2(4):407–423, 1992.

5. A. Cohen. Program Analysis and Transformation: from the Polytope Model to
Formal Languages. PhD Thesis, Université de Versailles, France, Dec. 1999.

6. A. Cohen and J.-F. Collard. Instancewise reaching definition analysis for recursive
programs using context-free transductions. In Parallel Architectures and Com-
pilation Techniques (PACT’98), pages 332–340, Paris, France, Oct. 1998. IEEE
Computer Society.

7. J.-F. Collard. Reasoning About Program Transformations. Springer-Verlag, 2002.
8. P. Cousot. Semantic foundations of programs analysis. Prentice-Hall, 1981.
9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-

ables of a program. In 5thACM Symp. on Principles of Programming Languages,
pages 84–96, Jan. 1978.

10. B. Creusillet. Array Region Analyses and Applications. PhD thesis, École Nationale
Supérieure des Mines de Paris (ENSMP), France, Dec. 1996.

11. A. Deutsch. Operational Models of Programming Languages and Representations
of Relations on Regular Languages with Application to the Static Determination of
Dynamic Aliasing Properties of Data. PhD thesis, École Polytechnique, France,
Apr. 1992.

12. A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In
ACM Symp. on Programming Language Design and Implementation (PLDI’94),
pages 230–241, Orlando, Florida, June 1994.

13. C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata.
IBM J. of Research and Development, pages 45–68, 1965.

14. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. Paterson, and
W. Thurston. Word Processing in Groups. Jones and Bartlett Publishers, Boston,
1992.

15. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In FOSSACS’99, 1999.

16. J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interproce-
dural parallel flow graphs. In ACM Symp. on Principles of Programming Languages
(PoPL’00), pages 1–11, 2000.

17. P. Feautrier. Array expansion. In ACM Intl. Conf. on Supercomputing, pages
429–441, St. Malo, France, July 1988.

18. P. Feautrier. Dataflow analysis of scalar and array references. Intl. J. of Parallel
Programming, 20(1):23–53, Feb. 1991.

19. P. Feautrier. Some efficient solutions to the affine scheduling problem, part II,
multidimensional time. Intl. J. of Parallel Programming, 21(6):389–420, Dec. 1992.
See also Part I, one dimensional time, 21(5):315–348.

20. P. Feautrier. A parallelization framework for recursive tree programs. In Eu-
roPar’98, LNCS, Southampton, UK, Sept. 1998. Springer-Verlag.

Beyond Iteration Vectors: Instancewise Relational Abstract Domains 179

21. P. Fradet and D. L. Metayer. Shape types. In ACM Symp. on Principles of
Programming Languages (PoPL’97), pages 27–39, Paris, France, Jan. 1997.

22. M. P. Gerlek, E. Stoltz, and M. J. Wolfe. Beyond induction variables: detect-
ing and classifying sequences using a demand-driven ssa form. ACM Trans. on
Programming Languages and Systems, 17(1):85–122, Jan. 1995.

23. R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In ACM Symp. on Principles of Programming
Languages (PoPL’96), pages 1–15, St. Petersburg Beach, Florida, Jan. 1996.

24. J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group-based fields. In Proc. of the
Parallel Symbolic Languages and Systems, Oct. 1995. See also “Design and Imple-
mentation of 81/2, a Declarative Data-Parallel Language, RR 1012, Laboratoire de
Recherche en Informatique, Université Paris Sud 11, France, 1995”.

25. H. Hampapuram, Y. Yang, and M. Das. Symbolic path simulation in path-sensitive
dataflow analysis. In Proc. of the ACM Workshop on Program Analysis for Software
Tools and Engineering (PASTE’05), pages 52–58, Lisbon, Portugal, Sept. 2005.

26. W. L. Harrison. The interprocedural analysis and automatic parallelisation of
Scheme programs. Lisp and Symbolic Computation, 2(3):176–396, Oct. 1989.

27. L. J. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data
structures: improving the analysis and transformation of imperative programs. In
ACM Symp. on Programming Language Design and Implementation (PLDI’92),
pages 249–260, San Francisco, Calfifornia, June 1992.

28. N. Klarlund and M. I. Schwartzbach. Graph types. In ACM Symp. on Principles of
Programming Languages (PoPL’93), pages 196–205, Charleston, South Carolina,
Jan. 1993.

29. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array dataflow analysis and
its use in array privatization. In 20thACM Symp. on Principles of Programming
Languages, pages 2–15, Charleston, South Carolina, Jan. 1993.

30. M. Might and O. Shivers. Environment analysis via Delta CFA. In ACM Symp.
on Principles of Programming Languages (PoPL’06), pages 127–140, Charleston,
South Carolina, Jan. 2006.

31. F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag, 1999.

32. C. Okasaki. Functional data structures. Advanced Functional Programming, pages
131–158, 1996.

33. M. Pelletier and J. Sakarovitch. On the representation of finite deterministic 2-tape
automata. Theoretical Computer Science, 225(1-2):1–63, 1999.

34. G.-R. Perrin and A. Darte, editors. The Data Parallel Programming Model. Number
1132 in LNCS. Springer-Verlag, 1996.

35. S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysis with delayed
abstractions. In Intl. Conf. on High Performance Embedded Architectures and
Compilers (HiPEAC’05), number 3793 in LNCS, pages 218–232, Barcelona, Spain,
Nov. 2005. Springer-Verlag.

36. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM, 35(8):27–47, Aug. 1992.

37. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In ACM Symp. on Principles of Programming Languages
(PoPL’95), San Francisco, CA, Jan. 1995.

38. T. W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their
application to interprocedural dataflow analysis. In Int. Symp. on Static Analysis
(SAS’03), pages 189–213, San Diego, CA, June 2003.

180 P. Amiranoff, A. Cohen, and P. Feautrier

39. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 1:
Word Language Grammar. Springer-Verlag, 1997.

40. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 3:
Beyond Words. Springer-Verlag, 1997.

41. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In ACM Symp. on Principles of Programming Languages (PoPL’99), pages
105–118, San Antonio, Texas, Jan. 1999.

42. M. Sharir and A. Pnueli. Program Flow Analysis: Theory and Applications, chapter
Two Approaches to Interprocedural Data Flow Analysis. Prenticce Hall, 1981.

43. A. Venet. Nonuniform alias analysis of recursive data structures and arrays. In Int.
Symp. on Static Analysis (SAS’02), volume 2477 of LNCS, pages 36–51. Springer-
Verlag, 2002.

44. A. Venet. A scalable nonuniform pointer analysis for embedded programs. In Int.
Symp. on Static Analysis (SAS’04), volume 3148 of LNCS, pages 149–164, Verona,
Italy, 2004. Springer-Verlag.

45. M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
1996.

46. P. Wu, A. Cohen, D. Padua, and J. Hoeflinger. Monotonic evolution: an alternative
to induction variable substitution for dependence analysis. In ACM Intl. Conf. on
Supercomputing (ICS’01), Sorrento, Italy, June 2001.

Separation Logic and Program Analysis

Peter W. O’Hearn

Queen Mary, University of London, United Kingdom

Abstract. Separation logic is a program logic for reasoning about pro-
grams that manipulate pointer data structures. It has a strong form of
modularity or locality built in, and has led to simpler by-hand proofs of
pointer algorithms than was possible in previous formalisms. It is natural
to wonder whether, and in what way, its ideas might be used in program
analysis.

In this talk I will begin by describing the basics of separation logic,
along the way connecting them to concepts from program analysis. I
will then describe some initial, unsuccessful attempts at applying the
formalism. This is done in an effort to convey that some of the first
ideas at application do not work well, and also to help pin down what
some of the central outstanding issues are. This will then lead on to, and
partially justify, one way of organizing a program analysis, where the
abstract domain is built from formulae in separation logic. Finally, I will
survey some recent developments and speculate on further possibilities.

K. Yi (Ed.): SAS 2006, LNCS 4134, p. 181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Beyond Reachability: Shape Abstraction in the
Presence of Pointer Arithmetic

Cristiano Calcagno1, Dino Distefano2, Peter W. O’Hearn2,3,
and Hongseok Yang4

1 Imperial College, London
2 Queen Mary, University of London

3 Microsoft Research, Cambridge
4 Seoul National University

Abstract. Previous shape analysis algorithms use a memory model
where the heap is composed of discrete nodes that can be accessed only
via access paths built from variables and field names, an assumption
that is violated by pointer arithmetic. In this paper we show how this
assumption can be removed, and pointer arithmetic embraced, by using
an analysis based on separation logic. We describe an abstract domain
whose elements are certain separation logic formulae, and an abstraction
mechanism that automatically transits between a low-level RAM view of
memory and a higher, fictional, view that abstracts from the representa-
tion of nodes and multiword linked-lists as certain configurations of the
RAM. A widening operator is used to accelerate the analysis. We report
experimental results obtained from running our analysis on a number of
classic algorithms for dynamic memory management.

1 Introduction

Shape analysis algorithms statically infer deep properties of the runtime heap,
such as whether a variable points to a cyclic or acyclic linked list. Previous shape
analyses (e.g., [7, 30, 31, 14, 21, 23, 24, 6, 1]) assume a high-level storage model
based on records and field access rather than a RAM with arithmetic. This
is a significant limitation. They can deliver reasonable results for the usage of
pointers or references in high-level languages such as Java or ML, or for programs
written in a low-level language that happen to satisfy assumptions not dissimilar
to those required by conservative garbage collectors. But, for many important
low-level programs they would deliver imprecise results1.

The crux of the problem is that the assumption of memory as composed of
discrete nodes with pointers to one another – essentially as a form of graph –
is a fiction that is exposed as such by pointer arithmetic. It is difficult to use
the notion of reachability to characterize how memory may be accessed, because
a memory cell can be accessed by an arithmetic calculation; in a sense, any
cell is reachable. And yet, most shape analyses rely strongly on reachability
1 Correspondingly, even for high-level languages current analyses are limited in the

structures they infer within an array.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 182–203, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Beyond Reachability 183

or, more to the point, what can be inferred from non-reachability (from chosen
roots). Several analyses use explicit reachability predicates in their formulation
of abstract states [31, 24, 1], where others use graph models [30, 14, 21].

This paper has two main contributions. First, we show that it is possible to
define a shape analysis for programs that mutate linked data structures using
pointer arithmetic. Our abstract domain uses separation logic [27] formulae to
represent abstract states, following on from the work on Space Invader [15] and
Smallfoot [3, 4]. We use separation logic because it deals smoothly with pointer
arithmetic; crucially, it does not depend in any way on anything about reachabil-
ity for its soundness. We focus on a particular kind of linked structure that uses
arithmetic: linked lists with variable length entries – or more briefly, multiword
lists [8]. Multiword lists allow for arithmetic operations that split and coalesce
blocks, and are one of the kinds of data structure used in memory managers.

We provide experimental results on a series of programs for dynamic memory
management, essentially following the development in [20], the classic reference
on the subject. Our most involved example is the malloc from Section 8.7 of [19].

The second contribution concerns the use of logic in program analysis. We use
two techniques to accelerate our analysis: a widening operator and a differential
fixpoint algorithm. The way that they are used here makes it difficult to prove
soundness by standard means (to do with prefixpoints). However, soundness is
easy if we view the analysis algorithm as conducting a proof search in separation
logic. The suggestion is that program logic provides a flexible way of exploring
non-standard optimizations in program analysis, while maintaining soundness.

2 Basic Ideas

Although pointer arithmetic can potentially lead to an incredible mess, its dis-
ciplined use can be very regular. Programmers transit between a RAM-level or
even bit-level view and a structured one where, say, a graph structure is laid on
top of the sea of bits, even if the structured view is not enforced by the pro-
gramming language. In this section we describe some of the basic ideas in our
analysis in a semi-formal way, highlighting how it negotiates this kind of transit.

The formulae in our analysis take meaning in the standard RAM model of
separation logic. The notation [E] is used to dereference address E, where E
is an arithmetic expression. We will not repeat the formal definition of the in-
terpretation of formulae in this model, but instead will describe their meanings
intuitively as we go along. Familiarity with [27] would be helpful.

We work with linked lists where a node x is a multiword structure storing
a pointer y to the next node and an integer z which can be read out of the
structure to determine the length of a block of memory associated with it.

184 C. Calcagno et al.

In separation logic we can describe such nodes as follows. First, we consider a
basic predicate blk(E,F), which denotes a (possibly empty) consecutive sequence
of cells starting from E and ending in F−1. (This could be defined using the
iterated separating conjunction [27], but we take blk as primitive.) We also use
the usual points-to predicate E 	→F which denotes a singleton heap where address
E has contents F . Then, the predicate for multiword nodes has the definition

nd(x, y, z) def= (x	→y) ∗ (x+1 	→z) ∗ blk(x+2, x+z) (1)

which corresponds directly to the picture above.
With the node predicate we can define the notion of a multiword linked-list

segment from x to y

mls(x, y) def= (∃z′. nd(x, y, z′)) ∨ (∃y′, z′.nd(x, y′, z′) ∗ mls(y′, y)). (2)

It is understood that this predicate is the least satisfying the recursive equation.
The blk, nd and mls predicates will form the basis for our abstract domain.

In several of the memory managers that we have verified (see Section 7) the
free list is a circular multiword linked list with header node free. Such a cir-
cular list, in the case that it is nonempty, can be represented with the formula
mls(free, free). In others the free list is acyclic, and we use mls(free, 0).

If one doesn’t look inside the definition of nd, then there is no pointer arith-
metic to be seen. The interesting part of the memory management algorithms,
though, is how “node-ness” is broken and then re-established at various places.

Dynamic memory management algorithms often coalesce adjacent blocks
when memory is freed. If we are given nd(x, y, z) ∗ nd(x+z, a, b) then an as-
signment statement [x+1]:= [x+1]+[x+z+1] effects the coalescence. To reason
about this assignment our analysis first breaks the two nodes apart into their
constituents by unrolling the definition (1), giving us

(x	→y) ∗ (x+1 	→z) ∗ blk(x+2, x+z)
∗ (x+z 	→a) ∗ (x+z+1 	→b) ∗ blk(x+z+2, x+z+b). (3)

This exposes enough 	→ assertions for the basic forward-reasoning axioms of
separation logic to apply to the formula. Even just thinking operationally, it
should be clear that the assignment statement above applied to this state yields

(x	→y) ∗ (x+1 	→z+b) ∗ blk(x+2, x+z)
∗ (x+z 	→a) ∗ (x+z+1 	→b) ∗ blk(x+z+2, x+z+b) (4)

where the x+1 ∗-conjunct has been updated. At this point, we have lost node-
ness of the portion of memory beginning at x and ending at x+z, because z+b
is stored at position x+1.

After transforming an input symbolic state we perform abstraction by apply-
ing selected sound implications. First, there is an implication from the rhs to the
lhs of (1), which corresponds to rolling up the definition of nd. Applying this to
formula (4), with a law of separation logic that lets us use implications within
∗-conjuncts (modus ponens plus identity plus ∗-introduction), results in

(x	→y) ∗ (x+1 	→z+b) ∗ blk(x+2, x+z) ∗ nd(x+z, a, b). (5)

Beyond Reachability 185

Next, there is a true implication

(x	→y) ∗ (x+1 	→z+b) ∗ blk(x+2, x+z) ∗ nd(x+z, a, b) =⇒ nd(x, y, z+b). (6)

When we apply it to (5) we obtain the desired coalesced post-state nd(x, y, z+b).
The implication (6) performs abstraction, in the sense that it loses the informa-
tion that b is held at position x+z+1 and that x+z has a pointer to a.

This discussion is intended to illustrate two features of our analysis method.

1. Before a heap access is made, predicate definitions are unrolled enough to
reveal 	→ assertions for the cells being accessed.

2. After a statement is (symbolically) executed, sound implications are used to
lose information as well as to establish that “higher-level” predicates hold.

These features were present already in the original Space Invader. The point
here is that they give us a way to transit between the unstructured world where
memory does not consist of discrete nodes and a higher-level view where memory
has been correctly packaged together “as if” the node fiction were valid.

The real difficulty in defining the abstract domain is choosing the implications
like (6) that lose enough information to allow fixpoint calculations to converge,
without losing so much information that the results are unusably imprecise.

3 Programming Language and Abstract Domain

Programming Language. We consider a sequential programming language that
allows arithmetic operations on pointers.

[rclqT lql]e ::= n | x | e+e | e−e

B ::= e=e | e �=e | e≤e

S ::= x:= e | x:= [e] | [e]:= e | x:= sbrk(e)
C ::= S | C ;C | if(B) {C} else {C} | while(B) {C} | local x ; C

We use the notation [e] for the contents of the memory cell allocated at address
e. Thus, y:= [e] and [e]:= e′ represent look-up and mutation of the heap respec-
tively. sbrk(e) corresponds to the UNIX system call which returns a pointer to e
contiguous cells of memory. The other commands have standard meaning.

The programs in this language are interpreted in the usual RAM model of
separation logic. Concrete states are defined by

States def= Stacks × Heaps Stacks def= Vars → Ints Heaps def= Nats+⇀fin Ints

where Ints is the set of integers, Nats+ is the set of positive integers, and Vars is a
finite set of variables. The concrete semantics of programs as state transformers
can be defined in the standard way (see [15, 27]).

186 C. Calcagno et al.

Table 1. Symbolic Heaps
y

E, F ::= n | x | x′ | E+E | E−E

P ::= E=E | E �=E | E≤E | true

Π ::= P | Π ∧ Π

H ::= E �→E | blk(E, E) | nd(E, E, E)

| mls(E, E) | true | emp

Σ ::= H | Σ ∗ Σ

Q ::= Π ∧ Σ

Symbolic Heaps. A symbolic heap Q is a separation-logic formula of a special
form, consisting of a pure part Π and a spatial part Σ. Symbolic heaps are de-
fined in Table 1. Due to pointer arithmetic, we use a richer collection of pure
predicates than in [3]. As in [15] the primed variables are a syntactic conve-
nience, which indicates that they are existentially quantified. Note that E is
an integer expression, but unlike program expression e, it can contain primed
variables. Spatial predicates blk, nd and mls have the meanings alluded to in
Section 2.

The concretization γ(Q) of Q is the set of the concrete states that satisfy
∃�y′. Q according to the usual semantics of separation logic formulae, where �y′
consists of all the primed variables in Q. We will use the notations Q ∗ H and
P ∧H to express Π ∧ (Σ ∗H) and (P ∧Π)∧Σ, respectively. We treat symbolic
heaps as equivalent up to commutativity and associativity for ∗ and ∧, identity
laws H ∗ emp = H and P ∧ true = P , and idempotence law true ∗ true = true.

Let SH denote the set of all symbolic heaps Q. The abstract domain D consists
of finite sets of symbolic heaps and an extra element �:

S ∈ D def= Pfin(SH) ∪ {�}
γ(S) def= if (S �= �) then (

⋃
Q∈S γ(Q)) else (States ∪ {fault}).

Intuitively, S means the disjunction of all symbolic heaps in S. The elements
S,S′ of D are ordered by the subset relation extended with �:

S � S′ ⇐⇒ (S′ = � ∨ (S ∈ P(SH) ∧ S′ ∈ P(SH) ∧ S ⊆ S′)).

4 Abstraction Rules

The main part of our analysis is the abstraction function Abs:D → D, which
establishes a fictional view of memory as consisting of nodes and multiword lists
(forgetting information, if necessary, to do so). It is applied at the beginning of
a loop and after each iteration; in the bodies of loops the fiction can be broken
by operations on the RAM level.

The abstraction function has five steps, which successively: synthesize nodes
from RAM configurations; simplify arithmetic expressions to control the poten-
tial explosion of arithmetic constraints; abstract size fields; reason about multi-
word lists; and filter out inconsistent symbolic heaps. We will specify the first
four steps in terms of rewriting rules on SH. The rules in each step will always be

Beyond Reachability 187

Table 2. Node Synthesis Rules
y

Package Rule

Precondition: 2≤G≤H

Q ∗ (E �→F, G) ∗ blk(E+2, E+H)

⇒ Q∗nd(E, F, G)∗blk(E+G, E+H)

Swallow Rule

Precondition: H+1≤G≤H+K

Q∗(E �→F, G)∗blk(E+2, E+H)∗nd(E+H, I, K)

⇒ Q ∗ nd(E, F, G) ∗ blk(E+G, E+H+K)

Package2 Rule

Precondition: 2≤G≤H with x′ fresh

Q ∗ blk(E, E+1) ∗ (E+1 �→G) ∗ blk(E+2, E+H) ⇒ Q ∗ nd(E, x′, G) ∗ blk(E+G, E+H)

normalizing. Thus, a particular strategy for applying the rules induces a function
from SH to SH, which will then be lifted to a function on D. For the last step,
we will define a partial identity function on SH and lift it to a function on D.

4.1 Node Synthesis

Node synthesis recognizes places where a portion of low-level memory can be
packaged into a node. The synthesis rules are in Table 2. The idea of the first,
Package, is just to package up a node using the definition of the nd predicate.2

When we do this, we sometimes have to split off part of the end of a block in
order to have the right information to form a node. Figure 1 gives a pictorial
view of the Package rule. A node is indicated by a shaded box with a sub-part,
G in the diagram, and an outgoing pointer, F there. The picture emphasizes the
way in which the abstraction function transfers from the RAM-level view to the
structured view where a group of cells becomes a unique entity (a node).

Fig. 1. Package Rule (left) and Swallow Rule (right)

The idea of the second rule, Swallow, is that when we already have a node to
the right of a block as well as link and size cells, we might be able to swallow
the preceding cells into a node. In doing this we again might have to chop off

2 In these rules E �→F, G is the standard separation logic abbreviation for E �→F ∗
E+1�→G.

188 C. Calcagno et al.

the end of the node (see Figure 1 for a depiction of the rule). The special case
of this rule where G = H+K corresponds to the discussion in Section 2.

The Package2 rule comes from a situation where a block has been split off to
be returned to the user, and the size G of the node has been discovered by the
allocation routine.

The technical meaning of these rules is that we can apply a rewriting Q ⇒ Q′

when Q implies the stated precondition. So, for the Package rule to fire we must
establish an entailment

Q ∗ (E 	→F,G) ∗ blk(E+2, E+H) (2≤G≤H.

Our analysis does this by calling a theorem prover for entailments Q (Q′.
The theorem prover we have implemented builds on the prover used in Small-

foot [3]. It is incomplete, but fast, and it always terminates. The description of
the analysis in this paper can be considered as parameterized by a sound prover.
The prover is used in the abstraction phase, described in this section, as well as
in the widening and rearrangement phases described in Sections 5 and 6.

Finally, there are inference rules which allow us to apply rewriting when the
specific quantities in these rules do not match syntactically. For instance, given
E+H=x′ ∧ ((E 	→F,H) ∗ blk(E+2, x′)) we would like to apply the Package rule
but we cannot do so literally, because we can only get the formula into the
right form after substituting E+H for x′ (as mandated by the equality in the
formula). For this, we apply the rule

Q[E] ⇒ Q′ Q[F] (E=F

Q[F] ⇒ Q′ Match1

Here, Q[·] is a formula with a hole.

4.2 n-Simple Form

The analysis has a non-negative integer n as a parameter. It is used to limit
offset arithmetic with a constant. (In our memory manager programs the choice
n = 4 is sufficient).

When abstraction establishes the fictional view of the heap we must be careful
to keep around some arithmetic information in the pure part, for example re-
membering that a found block packaged into a node was big enough to satisfy a
malloc request. Keeping such important arithmetic information but dropping all
the other information in the pure part is the purpose of the second abstraction
step.

The second abstraction step transforms symbolic heaps to n-simple form,
keeping information about only simple numerical relationships among variables
and parameters of spatial predicates. The transformation prevents one source of
divergence: the generation of increasingly complex arithmetic expressions. This
abstraction reflects our intuitive understanding of programs for dynamic memory
management: complex numerical relationships only express how heap cells form
nodes, but they become unimportant once the nodes are synthesized.

Beyond Reachability 189

Table 3. Rules for Transforming Symbolic Heaps to n-Simple Form
g y

Substitution1 Rule

x=E ∧ Q ⇒ x=E ∧ (Q[E/x])

(if x=E is n-simple and x∈fv(Q))

Substitution2 Rule

x′=E ∧ Q ⇒ Q[E/x′]

(if x′=E is n-simple and x′∈fv(Q))

Merge Rule

E �=0 ∧ 0≤E ∧ Q ⇒ 0 ≤ E−1 ∧ Q

Simplify Rule

Q[E/y′] ⇒ Q[x′/y′]

(if E is not n-simple, y′∈fv(Q) and x′ �∈fv(Q, E))
Drop Rule

P ∧ Q ⇒ Q (if atomic predicate P is not n-simple, or it contains some primed x′)

An expression is called n-simple, for n ≥ 0, if it is either a primed variable or
an instance of N in the following definition:

N,M ::= x1+ · · ·+xk−y1− · · · −yl+m

where all xi, yj are mutually disjoint nonprimed variables and m is an integer
with |m| ≤ n. For instance, neither x+x−y nor x+y−z−5 is 3-simple, since x
appears twice in the first, and |−5| > 3 in the second. An atomic pure predicate
is n-simple if it is of the form x=N or 0≤N where N is n-simple and x �∈ fv(N).

A symbolic heap Q ≡ Π ∧Σ is in n-simple form iff the following hold:

1. Q contains only n-simple expressions.
2. Π does not contain any primed variables.
3. Π ≡ x1=N1 ∧ . . . ∧ xk=Nk ∧ 0≤M1 ∧ . . . ∧ 0≤Ml where all xi’s are distinct

variables that occur in Q only in the left of equation xi=Ni.

The third condition ensures that disequalities are dropped from Q, that the
equalities define program variables x1, . . . , xk in terms of other program vari-
ables, and that these equalities have already been applied in Q. The transfor-
mation to n-simple form ensures that the analysis cannot diverge by repeatedly
generating symbolic heaps with new pure parts. There are only finitely many
pure parts of symbolic heaps in n-simple form, since the number of program
variables is finite.

Table 3 shows the rewriting rules for transforming to n-simple form. The
first two rules expand a primed or nonprimed variable into its definition. The
third rule Merge encodes the �= relation using the ≤ relation. Note that none of
these three rules loses information, unlike the last two. The Simplify rule loses
some numerical relationships between parameters of spatial predicates in Q,
and the Drop rule drops pure conjuncts P which are not in n-simple form. For
instance 0≤x+x ∧ nd(x, x+x, x+x) gets transformed first to 0≤x′ ∧ nd(x, x′, x′)
by Simplify, then to nd(x, x′, x′) by Drop.

The Substitution and Merge rules require that an input symbolic heap should
have a specific syntactic form. We have another matching rule to apply them
more liberally:

190 C. Calcagno et al.

P ∧Q ⇒ Q′ (P⇔P ′

P ′ ∧Q ⇒ Q′ Match2

where P is an atomic pure predicate, such as E �=E′. Our implementation uses
Match1 and Match2 in a demand-driven manner, building them into rules in
Tables 2 and 3; we omit description of the demand-drivel variants for simplicity.

The reader might be wondering why we didn’t use an existing abstract domain
for numerical properties, such as [13], in the pure part. The short answer is that
it is not obvious how to do so, for example, because of the way that symbolic
heaps use existential quantification. An important direction for future work is
to find ways to marry symbolic heaps with other abstractions, either directly or,
say, through a suitable reduced product construction [10].

4.3 Abstraction at the Structured Level

Abstraction of the Size Field of Nodes. The third step of abstraction renames
primed variables that are used to express the size fields of nodes, using the

Size Rule
Q ∗ nd(E,F, x′) ⇒ Q ∗ nd(E,F, y′) (if x′ ∈ fv(Q,E, F) but y′ �∈ fv(Q,E, F))

This rule loses information about how the size x′ of the node E is related to
other values in Q. For instance, the rule abstracts nd(x, y, v′) ∗ nd(y, 0, v′) to
nd(x, y, v′)∗nd(y, 0, w′), thereby losing that the nodes x and y are the same size.

After this step, every primed variable with multiple occurrences in a symbolic
heap denotes the address, not the size, of a node. This implicit type information
of primed variables is used in the remaining steps of the abstraction.

Multiword-List Abstraction. Next, the analysis applies abstraction rules for
multiword-list segments. We use variants of the rewriting rules in [15], which
are shown in Table 43.

The Append rule merges two smaller list segments, which are expressed by
mls or nd. The side condition is for precision, not soundness. The first conjunct
in the condition prevents abstraction when x′ denotes a shared address: i.e. that
two spatial predicates contain x′ in their link fields. This case is excluded by the
condition x′ �∈ fv(Q,G), for the second predicate witnessing the sharing could be
in Q or it could be L1. The second conjunct prevents abstraction when L0(E, x′)
is a node predicate which indirectly expresses relationships between variables.
For instance, L0(E, x′) ≡ nd(y, x′, z) expresses that z is stored in cell y+1.

The three forgetting rules drop atomic predicates. Forget1 removes empty
blocks, and Forget2 drops list segments and nodes that cannot be accessed in a
“known” way. In the presence of pointer arithmetic we can never conclude that
a cell is absolutely inaccessible. Rather, if we cannot be sure of how to safely
access it then our analysis decides to forget about it. Forget3 forces abstraction
to establish the fictional view of memory: when we have a cell or a block that
has not been made into a node in the synthesis phase, we forget it.
3 The rules are slight modifications of the ones in [15], different because of the possible

cyclicity of list segments in this paper.

Beyond Reachability 191

Table 4. Rules for Multiword-List Abstraction

Notation: L(E, F) ::= mls(E, F) | nd(E, F, H) U(E, F) ::= blk(E, F) | E �→F

Append Rule

Q ∗ L0(E, x′) ∗ L1(x′, G) ⇒ Q ∗ mls(E, G)

(if x′ �∈ fv(Q, G) and (L0 ≡ nd(E, x′, F) ⇒ E or F is a primed variable))

Forget1 Rule

Q ∗ blk(E, E) ⇒ Q ∗ emp

Forget2 Rule

Q ∗ L(x′, E) ⇒ Q ∗ true

(if x′ �∈ fv(Q))

Forget3 Rule

Q ∗ U(E, F) ⇒ Q ∗ true

Filtering Inconsistent Symbolic Heaps. Finally, the analysis filters out symbolic
heaps that are proved to be inconsistent by our theorem prover4. Concretely,
given the result S ∈ D of the previous four abstraction steps, the last step
returns S′ defined by:

S′ def= if (S = �) then � else {Q ∈ S | Q �(false} .

4.4 n-Canonical Symbolic Heaps

The results of Abs form a subdomain Cn of D, whose elements we call n-canonical
symbolic heaps. In this section, we define Cn, and we prove the result that relates
canonical symbolic heaps to the termination of the analysis.

Let n be a nonnegative integer. Intuitively, a symbolic heap Q is n-canonical
if it is n-simple and uses primed variables in the first position of spatial pred-
icates only for two purposes: to represent shared addresses, or to represent the
destination of the link field of a node that is pointed to by a program variable.
For instance, the following symbolic heaps are n-canonical:

mls(x, x′) ∗ mls(y, x′) ∗ mls(x′, z), nd(x, x′, y) ∗ mls(x′, z).

They are both n-simple, and they use the primed variable x′ for one of the two
allowed purposes. In the first case, x′ expresses the first shared address of the
two lists x and y, and in the second case, x′ means the link field of a node that
is pointed to by the program variable x.

To give the formal definition of n-canonical symbolic heap, we introduce some
preliminary notions. An expression E occurs left (resp. right) in a symbolic heap
Q iff there exists a spatial predicate in Q where E occurs as the first (resp.
second) parameter. E is shared in Q iff it has at least two right occurrences. E
is directly pointed to in Q iff Q contains nd(E1, E,E2) where both E1 and E2
are expressions without primed variables.
4 For Proposition 4 below the prover must at least detect inconsistency when a sym-

bolic heap explicitly defines the same location twice: Q contains A1(E)∗A2(E) where
Ai ranges over mls(E, F), E �→F and nd(E, F, G).

192 C. Calcagno et al.

Definition 1 (n-Canonical Form). A symbolic heap Q is n-canonical iff

1. it is n-simple and Q �(false,
2. it contains neither blk nor 	→,
3. if x′ occurs left in Q, it is either shared or directly pointed to, and
4. if x′ occurs as size of a node predicate in Q, it occurs only once in Q.

We define CSHn to be the set of n-canonical symbolic heaps, and write Cn for
the restriction of D by CSHn, that is Cn = P(CSHn) ∪ {�}.
Proposition 2 (Canonical Characterization). Let Q ∈ SH be n-simple and
such that Q �(false. Q is n-canonical iff Q � for rules in Section 4.3.

Corollary 3. The range of the abstraction function Abs is precisely Cn.

The main property of n-canonical symbolic heaps is that there are only finitely
many of them. This fact is used in Section 6 for the termination of our analysis.

Proposition 4. The domain Cn is finite.

5 Widening Operator

In this section, we define a widening operator ∇: Cn ×Cn → Cn, which is used to
accelerate the fixpoint computation of the analysis.

Intuitively, the widening operator ∇ is an optimization of the (�-extended)
set union. When ∇ is given two sets S,S′ of symbolic heaps, it adds to S only
those elements of S′ that add new information. So, γ(S∇S′) and γ(S∪S′) should
be equal. For instance, when ∇ is given

S = {mls(x, 0)} and S′ = {x=0 ∧ emp, nd(x, 0, y), nd(x, y′, y) ∗ nd(y′, 0, z)} ,

it finds out that only the symbolic heap x=0 ∧ emp of S′ adds new information
to S. Then, ∇ combines that symbolic heap with S, and returns

{mls(x, 0), x=0 ∧ emp} .

The formal definition of ∇ is parameterized by the theorem prover (for show-
ing some (not necessarily all) semantic implications between symbolic heaps. Let
rep be a procedure that takes a finite set S of symbolic heaps and returns a subset
of S such that

(∀Q,Q′ ∈ rep(S). Q (Q′ ⇒ Q = Q′) ∧ (∀Q ∈ S. ∃Q′ ∈ rep(S). Q (Q′)

The first conjunct forces rep to get rid of some redundancies while the second,
in conjunction with the assumption rep(S) ⊆ S, ensures that γ(rep(S)) = γ(S).
(Our implementation of rep selects (-maximal elements of S; in case two elements
are (-equivalent a fixed ordering on symbolic heaps is used to select one.)

Using (and rep, we define ∇ as follows:

S∇S ′ =

{
S ∪ {Q′ ∈ rep(S ′) | ¬(∃Q ∈ S. Q′ (Q)} if S�=� and S ′ �=�
� otherwise

Beyond Reachability 193

This definition requires heaps added to S to, first, not imply any elements in S
(that would be redundant) and, second, to be “maximal” in the sense of rep.

Our operator ∇ satisfies nonstandard axioms [11], which have also been used
in the work on the ASTRÉE analyzer [28, 12].

Proposition 5. The ∇ operator satisfies the following two axioms:

1. For all S,S′ ∈ Cn, we have that γ(S) ∪ γ(S′) ⊆ γ(S∇S′).
2. For every infinite sequence {S′

i}i≥0 in Cn, the widened sequence S0 = S′
0

and Si+1 = Si∇S ′
i+1 converges.

The first axiom means that ∇ overapproximates the concrete union operator,
and it ensures that the analysis can use ∇ without losing soundness. The next
axiom means that ∇ always turns a sequence into a converging one, and it
guarantees that ∇ does not disturb the termination of the analysis.

The first axiom above is not standard. Usually [9], one uses a stronger axiom
where ∇ is required to be extensive for both arguments, i.e.,

∀S,S′ ∈ Cn. S � (S∇S′) ∧ S′ � (S∇S′).

However, we cannot use this usual stronger axiom here, because our widening
operator is not extensive for the second argument. For a counterexample, con-
sider S = {mls(x, y)} and S′ = {nd(x, y, z)}. We do not have S′ � (S∇S′)
because the rhs is {mls(x, y)}, which does not include S′. Note that although
S′ �� (S∇S′), we still have that

γ(S′) = γ(nd(x, y, z)) ⊆ γ(mls(x, y)) = γ(S∇S′),

as demanded by our first axiom for the ∇ operator.
Note that S∇S′ is usually smaller than the join of S and S′ in Cn. Thus,

unlike other typical widening operators, our ∇ does not cause the analysis to
lose precision, while making fixpoint computations converge in fewer iterations.

The widening operator is reminiscent of the ideas behind the Hoare power-
domain, and one might wonder why we do not use those ideas more directly
by changing the abstract domain. For instance, one might propose to use the
domain C′ that consists of � and sets S of symbolic heaps where no (provably)
redundant elements appear (i.e., for all Q, Q′ ∈ S, if Q (Q′, then Q = Q′). The
Hoare order of C′ would be

S �H S′ ⇐⇒ S′ = � ∨ (S,S′ ∈ P(CSHn) ∧ ∀Q ∈ S. ∃Q′ ∈ S′. Q (Q′).

Unfortunately, the proposal relies on the transitivity of the provable order (,
which is nontrivial for a theorem prover to achieve in practice. If (is not transi-
tive, then �H is not transitive. Hence, the fixpoint computation of the analysis
might fail to detect that it has already reached a fixpoint, which can cause the
analysis to diverge.

On the other hand, our approach based on widening does not require any
additional properties of a theorem prover other than its soundness. And neither
does it require that the transfer functions be monotone wrt (; it only requires
that they be sound overapproximations. So, our approach is easier to apply.

194 C. Calcagno et al.

Table 5. Abstract Semantics

Let A[e] and A be syntactic subclasses of atomic commands defined by:

A[e] ::= [e]:= e | x:= [e] A ::= x:= e | x:= sbrk(e).

The abstract semantics [[C]]: D → D is defined as follows:

[[C0 ; C1]]S = ([[C1]] ◦ [[C0]])S
[[if(B) {C0} else {C1}]]S = ([[C0]] ◦ filter(B))S � ([[C1]] ◦ filter(¬B))S

[[local x ; C]]S = if ([[C]](S[y′/x]) =) then else ([[C]](S[y′/x]))[x′/x]

[[while(B){C}]]S = (filter(¬B) ◦ wfix)(S0, F)

(where S0 = Abs(S) and F = Abs ◦ [[C]] ◦ filter(B))

[[A[e]]]S = if (S = ∨ ∃Q ∈ S. Q �∗
e fault) then

else {Q1 | Q ∈ S ∧ Q �∗
e Q0 ∧ (Q0, A[e] =⇒ Q1)}

[[A]]S = if (S =) then else {Q0 | Q ∈ S ∧ (Q, A =⇒ Q0)}
where primed variables are assumed fresh, and filter: D → D and −: Cn × Cn → Cn and
wfix : Cn × [Cn → Cn] → Cn are functions defined below:

filter(B)(S) = if (S=) then else {B ∧ Q | Q ∈ S and (B ∧ Q � false)}.

S0 − S1 = if (S0 �= ∧ S1 �=) then (S0 − S1) else
“
if (S1=) then ∅ else

”

wfix (S, F) is the first stabilizing element Sk of the below sequence {Si}i≥0:

S0 = S S1 = S0∇F (S) Si+2 = Si+1∇(F (Si+1−Si)).

6 Abstract Semantics

The abstract semantics of our language follows the standard denotational-style
abstract interpretation. It interprets commands as �-preserving functions on D
in a compositional manner. The semantic clauses for commands are given in Ta-
ble 5. In the table, we use the macro ¬ that maps E=F , E �=F , E≤F to E �=F ,
E=F , F≤E−1, respectively. The semantics of compound commands other than
while loops is standard. The interpretation of while loops, however, employs non-
standard techniques. First, when the interpretation of the loop does the fixpoint
computation, it switches the abstract domain from D to the finite subdomain Cn,
thereby ensuring the termination of the fixpoint computation. Concretely, given
a loop while(B) {C} and an initial abstract element S, the semantics constructs
F and S0 with types Cn → Cn and Cn, respectively. Then, the semantics uses
F and S0, and does the fixpoint computation in the finite domain Cn. Note the
major role of the abstraction function Abs here; Abs abstracts the initial abstract
element S, and it is used in F to abstract the analysis results of the loop body,
so that the fixpoint computation lives in Cn.

Intuitively, the analysis works at the “RAM level” inside loops and the higher,
structured, view of lists and nodes is re-established at every iteration. For the

Beyond Reachability 195

purpose of the analysis described in this paper, this is a necessary choice since
very often the precision of the RAM level is needed to meaningfully execute
atomic commands; abstracting at every step usually produces imprecise results.

Second, the abstract semantics of while loops uses an optimized fixpoint algo-
rithm called widened differential fixpoint algorithm. The main idea of this algo-
rithm is to use two known optimization techniques. The first is to use a widening
operator to help the analysis reach a fixpoint in fewer iterations [9].5 The second
is to use the technique of subtraction to prevent the analysis from repeating the
same computation in two different iteration steps [17]. Given an abstract element
S ∈ Cn and an abstract transfer function F : Cn → Cn, the widened differential
fixpoint algorithm generates a sequence whose i+2-th element has the form:

Si+2 = Si+1∇(F (Si+1−Si)),

and returns the first stabilizing element of this sequence.6 The key to the algo-
rithm is to use the widening operator, instead of the join operator, to add newly
generated analysis results to Si+1, and to apply F to the subtracted previous
step Si+1−Si, rather than to the whole previous step Si+1.

Usually, these two techniques have been used separately in the denotational-
style abstract interpretation. The problem is that the common soundness argu-
ment for the subtraction technique does not hold in the presence of widening.
The argument relies on at least one of monotonicity, extensiveness or distribu-
tivity of F 7 but if the widening operator is used (to define F itself), F does not
necessarily have any of these properties. In Section 6.2, we use an alternative
approach for showing the soundness of the analysis and prove the correctness of
the widened differential fixpoint algorithm.

Finally, the semantic clauses for atomic commands are given following the
rules of symbolic execution in [3]. The semantics classifies atomic commands
into two groups depending on whether they access existing heap cells. When an
atomic command accesses an existing heap cell e, such as [e]:= e0 and x:= [e], the
semantics first checks whether the input S always guarantees that e is allocated.
If not, the semantics returns �, indicating the possibility of memory errors.
Otherwise, it transforms each symbolic heap in S using the rearrangement rules�∗ (see Section 6.1) in order to expose cell e. Then, the semantics symbolically
runs the command using =⇒ in Table 6. For the atomic commands that do not
access heap cells, the semantics skips the rearrangement step.

6.1 Rearrangement Rules

When symbolic execution attempts to access a memory cell e which is not ex-
plicitly indicated in the symbolic heap, it appeals to a set of rules (called re-
arrangement rules) whose purpose is to rewrite the symbolic heap in order to
5 Theoretically, since the analyzer works on the set of canonical heaps which is finite,

the use of widening is not necessary for termination. However, widening significantly
speeds up the convergence of the fixpoint computation.

6 Sk is a stabilizing element iff Sk = Sk+1.
7 F is distributive iff for all S , S ′, F (S � S ′) = F (S) � F (S ′).

196 C. Calcagno et al.

Table 6. Rules of Symbolic Execution
y

Q, x:= e =⇒ x=e[x′/x] ∧ Q[x′/x]

Q ∗ e�→F , x:= [e] =⇒ x=F [x′/x] ∧ (Q ∗ e�→F)[x′/x]

Q ∗ e0 �→F , [e0]:= e1 =⇒ Q ∗ e0 �→e1

Q, x:= sbrk(e) =⇒ Q[x′/x] ∗ blk(x, x+(e[x′/x])) (when Q � e>0)

Q, x:= sbrk(e) =⇒ x=−1 ∧ Q[x′/x]

where primed variables are assumed fresh.

Table 7. Rearrangement Rules for Built-in Predicates

Switch Rule

Precondition: F=e

Q ∗ F �→G �e Q ∗ e�→G

Blk Rule

Precondition: F≤e<G with x′ fresh

Q ∗ blk(F, G) �e Q ∗ blk(F, e) ∗ e�→x′ ∗ blk(e+1, G)

reveal e. In this paper, we have three sets of rearrangement rules. The first set,
in Table 7, handles built-in predicates. The rules in the second set follow the
general pattern

Allocated: e

Consistency: Q ∗ Q′[�F/�x]
Q ∗ H(�F) �e Q ∗ Q′[�F/�x]

Here H(�F) is either nd or mls, and Q′ is one of the disjuncts in the definition of
H with all the primed variables in Q′ renamed fresh. Instead of the precondition
requirement as in the abstraction rules in Section 4, the rules generated by
this pattern have an allocatedness requirement and a consistency requirement.
Allocatedness guarantees that the heap contains the cell e that we are interested
in. This correspond to the check:

ΠQ ∧ (H(�F) ∗ e 	→x′) (false

where ΠQ is the pure part of Q and x′ is a fresh primed variable. The consistency
requirement of the rule enforces its post-state to be meaningful. This means that
in order for the rule to fire the following extra consistency condition should hold:

Q ∗ Q′[�F/�x] � false.

The rearrangement rules for nd and mls are reported in Table 8.
The third set consists of a single rule that detects the possibility of memory

faults and it is described below:

Fault Rule Q �e fault (if Q does not contain e 	→F , but Q �/e).

Beyond Reachability 197

Table 8. Rearrangement Rules for Multiword Lists
g

Mls1 Rule

Allocated: e

Consistency: Q ∗ nd(F, G, z′)

Q ∗ mls(F, G) �e Q ∗ nd(F, G, z′)

Mls2 Rule

Allocated: e

Consistency: Q ∗ nd(F, y′, z′) ∗ mls(y′, G)

Q ∗ mls(F, G) �e Q ∗ nd(F, y′, z′) ∗ mls(y′, G)

Node Rule

Allocated: e

Consistency: −
Q ∗ nd(F, G0, G1) �e Q ∗ F �→G0, G1 ∗ blk(F+2, F+G1)

6.2 Soundness

Common soundness arguments in program analysis proceed by showing that the
results of an analysis are prefix points of some abstract transfer functions. Then
one derives that the analysis results overapproximate program invariants. Unfor-
tunately, we cannot use this strategy, because the fixpoint algorithm described
here does not necessarily compute prefix points of abstract transfer functions.

We use an alternative approach that proves soundness by compiling the anal-
ysis results into proofs in separation logic. More specifically, we prove:

Proposition 6. Suppose that [[C]]S = S′. If both S and S′ are non-� abstract
values, then there is a proof of a Hoare triple {S}C {S′} in separation logic.

Note that since the proof rules of separation logic are sound, this proposition
implies that the results of our analysis overapproximate program invariants.

The proposition can be proved by induction on the structure of C. Most of
the cases follow immediately, because the abstract semantics uses sound implica-
tions between assertions or proof rules in separation logic. Cases like these have
been done in previous work [21, 15, 18], and we will not repeat them here. The
treatment of while loops, however, requires a different argument.

Suppose that [[while(B) {C}]]S = S′ for some non-� elements S and S′. Let
S′′ and F be the two parameters, Abs(S) and Abs ◦ [[C]] ◦ filter(B), of wfix in the
interpretation of this loop. Then, by the definition of wfix , the abstract element
wfix(S′′, F) is the first stabilizing element Sk of the sequence {Si}i≥0:

S0 = S′′ S1 = S0∇F (S) Si+2 = Si+1∇F (Si+1−Si).

Moreover, we have that S′ = filter(¬B)(Sk). The following lemma summarizes
the relationship among S, S0, . . ., Sk−1 and Sk, which we use to construct the
separation-logic proof for the loop.

Lemma 7. For all i ∈ {1, . . . , k}, let Ti be Si − Si−1.

1. None of S0, T1, . . ., Tk and Sk is �.
2. S ⇒ Sk.

198 C. Calcagno et al.

Program LOC Max Heap (KB) States (Loop Inv) States (Post) Time (sec)

malloc firstfit acyclic 42 240 18 3 0.05
free acyclic 55 240 6 2 0.09
malloc besttfit acyclic 46 480 90 3 1.19

malloc roving 61 240 33 5 0.13
free roving 68 720 16 2 0.84

malloc K&R 179 26880 384 66 502.23
free K&R 58 3840 89 5 9.69

Fig. 2. Experimental Results

3. Sk ⇒ S0 ∨ T1 ∨ . . . ∨ Tk.
4. F (S0) ⇒ Sk and F (Ti) ⇒ Sk for all i ∈ {1, . . . , k}.

We now construct the required proof. Because of the fourth property in Lemma 7
and the induction hypothesis, we can derive the following proof trees:

Ind. Hypo.
{filter(B)(U)} C {([[C]] ◦ filter(B))(U)}

{B ∧ U} C {([[C]] ◦ filter(B))(U)} (B ∧ U ⇔ filter(B)(U))

{B ∧ U} C {F (U)} Soundness of Abs, F = Abs ◦ [[C]] ◦ filter(B)

{B ∧ U} C {Sk} Prop.4 of Lem.7

twhere U is S0 or Ti. We combine those proof trees, and build the required tree
for the loop:

{B ∧ S0} C {Sk} {B ∧ T1} C {Sk} . . . {B ∧ Tk} C {Sk}
{(B ∧ S0) ∨ (B ∧ T1) ∨ . . . (B ∧ Tk)} C {Sk} Disjunction

{B ∧ Sk} C {Sk} Prop.3 of Lem.7

{Sk} while(B) {C} {¬B ∧ Sk} While

{S}while(B) {C} {S ′} Prop.2 of Lem.7, S ′ = filter(¬B)Sk

Note that the proof tree indicates that the subtraction technique of our fixpoint
algorithm corresponds to the disjunction rule

{P1} C {Q1} {P2} C {Q2}
{P1 ∨ P2} C {Q1 ∨ Q2}

of Hoare logic.

7 Experimental Results

We implemented our analysis in OCaml, and conducted experiments on an Intel
Pentium 3.2GHz with 4GB RAM; our results are in Figure 2. Our implemen-
tation contains a postprocessor that simplifies computed post abstract values

Beyond Reachability 199

using the abstraction Abs and rep in Section 5. malloc K&R is the only one of
the programs with a nested loop; the size of the invariant for it in Figure 2 refers
to the outer loop. (The test-programs can be found on the authors’ web pages.)

The malloc firstfit acyclic and free acyclic programs are Algorithms
A and B from Section 2.5 of [20]. They both manage an acyclic free list main-
tained in address-sorted order. malloc firstfit acyclic walks the free list
until a big enough block is found to satisfy a malloc request. That block is re-
turned to the caller if the size is exactly right, and otherwise part of the block is
chopped off and returned to the caller, with the leftover resized and kept in the
free list. If a correctly-sized block is not found then the algorithm returns 0. The
free algorithm inserts a block in the appropriate place in this list, maintain-
ing sorted order and coalescing nodes when possible. malloc bestfit acyclic
traverses the entire free list to find the best fit for a request, and returns it.

In simplistic first-fit allocators small blocks tend to pile up at the front of the
free list. A way to combat this problem is to use a cyclic rather than acyclic free
list, with a “roving pointer” that moves around the list [20]. The roving pointer
points to where the last allocation was done, and the next allocation starts from
it. malloc roving and free roving implement this strategy.

The first five programs assume that a fixed amount of memory has been given
to the memory manager at the beginning. A common strategy is to extend this
by calling a system routine to request additional memory when a request cannot
be met. This is the strategy used in the memory manager from Section 8.7 of
[19]. When a request cannot be met, sbrk is called for additional memory. In
case sbrk succeeds the memory it returns is inserted into the free list by calling
free, and then allocation continues. The memory manager there uses the roving
pointer strategy. To model this program in the programming language used for
our analysis we had to inline the call to free, as what we have described is not
an interprocedural analysis. Also, we had to model multiple-dereferences like
p�s.ptr�s.size using several statements, as the form in our language has at
most one dereference per statement; this is akin to what a compiler front end
might do. These points, inline free and basic dereferences, account for the 179
LOC in our program for malloc compared to 66 LOC in the original.

The manager in [19] uses a nonempty circular list with a fixed head node that
is never returned to the caller. Its correctness relies on the (unstated) assumption
that sbrkwill return a block whose address is larger than the head node; otherwise,
there are cases in which the header will be coalesced with a block gotten from sbrk,
and this can lead to a situation where the sameblock is allocated twice in a row. Our
model of sbrk in Section 6 does not make this assumption explicit, and as a result
running the analysis on the original malloc reveals this “problem”. By changing
our model of sbrk to reflect the assumption we were able to verify the original; the
model, though, is not as simple as the one in Section 6. We then altered malloc
so that it did not rely on this assumption, and this is the program malloc K&R
reported in Figure 2, for which we used the simple sbrk.

The speedup obtained from the widening operator can be observed in the
analysis of malloc K&R; with widening turned off the analysis took over 20 hours

200 C. Calcagno et al.

Prog : malloc firstfit acyclic and malloc bestfit acyclic

Pre : n−2≥0 ∧ mls(free, 0)

Post : (ans=0 ∧ n−2≥0 ∧ mls(free, 0)) ∨ (n−2≥0 ∧ nd(ans, p′, n) ∗ mls(free, 0))

∨ (n−2≥0 ∧ nd(ans, p′, n) ∗ mls(free, p′) ∗ mls(p′, 0))

Prog : free acyclic

Pre : mls(free, 0) ∗ nd(ap−2, p′, n′)

Post : mls(free, ap−2) ∗ mls(ap−2, 0) ∨ mls(free, 0)

Fig. 3. Sample Computed Post Abstract Values

to terminate. For the other programs the analysis times were similar, except for
free K&R where widening resulted in a speedup of a factor of 2.

Memory safety and memory leaks are general properties, in the sense that
they can be specified once and for all for all programs. For our analysis if a
postcondition is not � then it follows that the program does not dereference a
dangling pointer starting from any concrete state satisfying the precondition. If
true does not appear in the post then the program does not have a memory leak.
For all seven programs, our analysis was able to prove memory safety and the
absence of memory leaks.

But in fact we can infer much more: the postconditions give what might be
regarded as full functional specifications.8 Figure 3 shows sample post abstract
values computed by the analysis (with widening enabled). Take the postcondi-
tion for malloc firstfit acyclic and malloc bestfit acyclic. The first dis-
junct, when ans=0, is the case when the algorithm could not satisfy the malloc
request. The second and third correspond to cases when the request has been
met. These two cases are different because the analysis distinguishes when the
link field of a node happens to point back into the free list. The third disjunct
implies the second, so if the user were to write the first two disjuncts as the de-
sired postcondition, which would be intuitive, then a theorem prover could tell
us that the computed post in fact established a reasonable specification of partial
correctness9. Similar remarks apply to the other postcondition for free acyclic.

Finally, it is easy to trick the analysis into reporting a false bug. Our algorithm
abstracts to the “fictional level” after each loop iteration. If a program fails to
package a portion of RAM into a node before leaving a loop, then the unpackaged
RAM will be abstracted to true. If then subsequently, after the loop, the program
attempts to package up the node with a heap mutation, then the analysis will
return �.

8 The specifications are for partial correctness, but using the techniques of [5] we could
likely establish termination as well if we were to track lengths of multiword lists.

9 This specification would not rule out the manager doing things like returning some
nodes of the free list to the system, but would be a reasonable spec of the interface
to malloc nonetheless.

Beyond Reachability 201

8 Conclusions and Related Work

We believe that the results in this paper may pave the way for improved auto-
matic verification techniques for low-level, “dirty” programs.

Aswementioned earlier, the approach in this paper is a development of the Space
Invader shape analysis [15] (also, [22]). Compared to the original, the differences
here are the following. First, we use different basic predicates, which are oriented to
multiword lists, and different abstraction rules appropriate to the reasoning about
multiword lists; this results in a much more complex abstract domain. Some of the
abstraction rules, in particular, are perhaps not the first that come to mind, and we
settled on them only after some experimentation. Second, in order to accelerate the
analysis, we used a particular widening operator. Also, we used much more intri-
cate test-programs in our experiments. These, and the complexity of our abstract
domain, are such that the widening had a significant impact on performance.

There have been two previous works on doing mechanical proofs of memory
managers in separation logic [33, 25], which both work by embedding separation
logic into Coq. They do not consider the exact same algorithms that we do. The
most significant difference, though, is degree of automation. They require loop
invariants to be provided, and even then the proofs in Coq are not automatic,
whereas our proof construction is completely automatic. Or course, working with
a proof assistant allows one to say more than is typically done in the lightweight
assertions that are used in program analysis. For example, one could say that
the free list increases in size on deallocation, where we do not say that here.

Shallow pointer analyses track points-to relationships between fixed-length
access paths. They are fast compared to shape analyses, but give imprecise
answers on deep heap updates, which occur when linked structures are altered
after traversing some distance. There have been a number of shallow pointer
analyses that deal with pointer arithmetic before (e.g., [32, 16, 29, 26]), but as
far as we are aware not any deep ones.

Between the fast, shallow analyses and the comparatively expensive, deep
shape analyses is the recency-abstraction [2]. It is one of the most relevant pieces
of related work. The recency-abstraction allows for pointer arithmetic and also
connects low-level and high-level, fictional, views of memory. It can distinguish
mutations of pointers coming from the same allocation site, but is imprecise
on deep heap update. A way to handle deep updates was pioneered in [30],
using the method of materialization of summary nodes10; recency-abstraction
(purposely) avoids materialization, in order to gain efficiency, and experimental
results justify the lower precision for its targeted applications. In contrast, here
we must handle deep update precisely if we are to obtain reasonable results for
the memory management algorithms that we used in our experiments.

An interesting question is whether some other previous shape abstraction
might be modified to obtain an effective analysis of multiword lists or similar
structures. In any case the problem paper addresses is existence, not uniqueness,
of shape abstraction beyond reachability.

10 The rearrangement rules here and in [3, 15] are cousins of materialization.

202 C. Calcagno et al.

Acknowledgments . We are grateful to Josh Berdine, Tom Reps and Mooly Sagiv
for comments on pointer analysis and pointer arithmetic, and to Xavier Rival
and Kwangkeun Yi for advice on widening and non-standard fixpoint opera-
tors. Byron Cook’s emphasis on the relevance of analyzing memory managers
gave us an initial push. We had helpful discussions on memory models and the
K&R malloc with Richard Bornat. We acknowledge support from the EPSRC.
Yang was partially supported by R08-2003-000-10370-0 from the Basic Research
Program of Korea Science & Engineering Foundation.

References

1. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. 6th
VMCAI, pp164–180, 2005.

2. G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage. 13th
SAS (this volume), 2006.

3. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with separation
logic. In K. Yi, editor, APLAS 2005, volume 3780 of LNCS, 2005.

4. J. Berdine, C. Calcagno, and P.W. O’Hearn. Automatic modular assertion checking
with separation logic. Proceedings of FMCO’05, to appear, 2006.

5. J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs
for programs with shape-shifting heaps. 18th CAV, to appear, 2006.

6. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with dy-
namic 1-selector-linked structures in regular model checking. 11th TACAS, pp13–
29, 2005.

7. D. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. PLDI,
pp296–310, 1990.

8. W.T. Comfort. Multiword list items. CACM 7(6), pp357-362, 1964.
9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. 4th
POPL, pp238-252, 1977.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. 6th
POPL, pp269-282, 1979.

11. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log. Comput.
2(4), pp511-547, 1992.

12. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE analyzer. 14th ESOP, pp21-30, 2005.

13. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. 5th POPL, pp84-96, 1978.

14. D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom?
On the automated verification of linked list structures. 24th FSTTCS, pp250-262,
2004.

15. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. 16th TACAS, pp287–302, 2006.

16. N. Dor, M. Rodeh, and M. Sagiv. Towards a realistic tool for statically detecting
all buffer overflows in C. PLDI, pp155-167, 2003.

17. H. Eo, K. Yi, and H. Eom. Differential fixpoint iteration with subtraction for
non-distributive program analysis. Sumitted, 2006.

18. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-
rated heap abstractions. 13th SAS, to appear, 2006.

Beyond Reachability 203

19. B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice Hall,
New Jersey, 1988. 2nd Edition.

20. D.E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algo-
rithms. Addison-Wesley, 1973. 2nd Edition.

21. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. 14th ESOP, pp124-140, 2005.

22. S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in Separation
Logic for imperative list-processing programs. 3rd SPACE Workshop, 2006.

23. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. 11th SAS, pp265-279., 2004.

24. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. 6th VMCAI, pp181-198, 2005.

25. N. Marti, R. Affeldt, and A. Yonezawa. Verification of the heap manager of an
operating system using separation logic. 3rd SPACE Workshop, 2006.

26. T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from
low-level code. PEPM’06, pp100-111, 2006.

27. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pp 55-74, 2002.

28. Xavier Rival. Personal communication. 2005.
29. R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices,

and accessed memory regions. ACM TOPLAS, 27(2):185–235, 2005.
30. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages

with destructive updating. ACM TOPLAS, 20(1):1–50, 1998.
31. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3valued logic.

ACM TOPLAS, 24(3):217–298, 2002.
32. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated

detection of buffer overrun vulnerabilities. Proceedings of NDSS, 2000.
33. D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC: Dynamic

storage allocation. 12th ESOP, pp363–379, 2003.

Specialized 3-Valued Logic Shape Analysis Using
Structure-Based Refinement and

Loose Embedding

Gilad Arnold

University of California, Berkeley
arnold@cs.berkeley.edu

Abstract. We consider a shape analysis framework based on 3-valued
logic, and explore ways for improving its performance and scalability by
means of reducing algorithmic overhead and restraining abstract state
set inflation. First we propose a new approach to implementing a fast
3-valued logic analyzer, which replaces a general-purpose abstract heap
refinement mechanism—accounting for most of the time spent by the
reference implementation—with tailored structure-based refinement. We
apply our framework to analyze a set of small Java programs manipulat-
ing singly- and doubly-linked lists, obtaining results that are comparable
to those of the reference implementation, with a process 40-85 times
faster and 2-11 times less memory consuming. We then propose a new
definition for partial ordering of abstract heap descriptors (embedding),
that trims abstract states representing “special cases” in the presence
of a state representing a “general case”. This extension deflates sets of
abstract states by a combinatorial factor, resulting in 45-55% less struc-
tures for the same set of benchmarks. Despite its induced algorithmic
overhead per operation, this modification further cuts the analysis time
by 17-50%. We argue that improving on these two axes together yields a
promise for greater applicability of specialized shape analysis to real-life
programs.

1 Introduction

The ability to reason about the set of heap configurations that a computer
program may exhibit, without actually running the program, has many uses
in program analysis and verification. These include whole-program verification
tasks, like verifying the absence of null dereferences; proving correctness of heap
intensive programs, such as heap sorting algorithms [8]; and checking properties
of heap references throughout the program, such as dead objects analysis and its
applications to static garbage collection [3]. Nonetheless, shape analysis appears
to be among the hardest problems in static program analysis: proving even sim-
ple properties of very small programs manipulating dynamically allocated data
structures is generally undecidable, and even the compulsory deployment of con-
servative abstraction methods following Cousot & Cousot [4] implies non-trivial
frameworks, in turn inducing considerable complexity issues. Sources for such is-
sues include the size of an abstract domain of this kind, as well as the complexity

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 204–220, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Specialized 3-Valued Logic Shape Analysis 205

of the algorithms used for implementing the abstraction, transformations, and
various domain operators.

We consider a shape analysis framework that models heap topology and re-
lated properties using logical structures and applies first-order logic formulas to
model program semantics [12]. Although analyses instantiated by this frame-
work give precise and meaningful results compared to actual (concrete) heap
structures exhibited by a program, it is not widely studied, let alone deployed in
actual production-level compilers or analysis tools. Indeed, the 3-Valued Logic
Analyzer (TVLA) [9] reference implementation was used to demonstrate the
analysis precision and adaptivity to a wide variety of shape-related problems.
However, analyzing even tiny programs manipulating linked lists can take as
long as seconds. Designed as an extensible analysis generator, TVLA is under-
optimized compared to a (presumed) specialized implementation. Still, we can
observe at least two aspects which make a reference implementation inherently
expensive.

Costly refinement and validation of abstract heaps. A significant port-
ion of the analysis time—namely, up to 90%—is due to particular algorithms
that are being used for refining abstract heaps.

State set inflation. The huge abstract domain underlying the analysis—whose
induced complexity is doubly-exponential in the number of abstraction pred-
icates (essentially, the number of reference variables in the program)—leads
very quickly to a blow-up in the number of heap states being tracked by the
analysis, even for mildly complicated programs.

Fig. 1 shows a simple program that constructs and traverses a doubly-linked
list. Analyzing an automatically generated dataflow representation of it using
the default shape abstraction for linked lists [9] yields a total of 113 abstract
heap structures and takes 1.4 seconds to complete with stock TVLA. A slightly

x = null;
while (...) {
y = new DLL();
...
if (x != null) x.p = y;
y.n = x;
x = y;

}

y = x;
while (y != null) {
...
t = y.n;
y = t;

}

Fig. 1. A Java program that constructs and traverses a doubly-linked list

206 G. Arnold

more complicated example—a program that manipulates a singly-linked list us-
ing three loops, one of which removes an arbitrary element from the list—results
in a total of 485 abstract heap descriptors and takes as long as 12 seconds to com-
plete. This demonstrates the steep abstract states inflation and the respective
time penalty experienced with programs of increasing complexity.

This paper describes the fresh implementation of a 3-valued logic based shape
analysis tool. It is intentionally restricted compared to the fully-parameterized
reference implementation, but appears to be better suited for performance and
scalability, making the following major contributions.

Specialized structure-based refinement. While using a meet operator for
abstraction refinement has already been suggested [3] it was never put into
practice with the 3-valued logic framework. We take this concept to the
extreme, performing merely all refinement tasks using a sequence of meet and
join operations with sets of predefined structures, as explained in Section 3.
Consequently, we are able to produce results that are as precise as those
achieved using more powerful algorithms, in only a fraction of the time.

Loose embedding. We identify a case for overly elaborate abstract states that
neither contribute to precision nor bear a significant descriptive insight as to
the represented set of concrete states. Consequently, we propose an alternate
definition of embedding of 3-valued logical structures, which allows abstract
elements representing one or more concrete heap elements to represent no
elements at all, yet still retains connectivity between other elements of the
structure in a conservative manner. This extension—explained in Section 4—
instantly constrains the abstract domain, and therefore the set of abstract
states explored during the analysis. With proper further adjustments to the
semantics of abstract transformers, we are able to restate the soundness of
the framework.

Implementation and preliminary results. We have implemented the above
techniques in our new shape analyzer and applied it to a small set of interest-
ing micro-benchmarks as described in Section 5, showing an overall speed-up
of up to 124 and an up to 15 times smaller memory footprint.

2 Basics of 3-Valued Logic Shape Analysis

We explain the heap state abstraction and abstract transformers following Sagiv
et al. [12], then state the restrictions assumed as the baseline for our specialized
analysis.

2.1 Concrete Program States

We represent concrete program states using 2-valued logical structures.

Definition 1 (Concrete state). A 2-valued logical structure over a vocabulary
(set of predicates) P is a pair S = (U, ι), where U is the universe of the structure
and ι is the interpretation function mapping predicates to their truth-value in the
structure: for every predicate p ∈ P of arity k, ι(p) : Uk → {0, 1}.

Specialized 3-Valued Logic Shape Analysis 207

Table 1. Predicates used in the analysis of programs manipulating doubly-linked lists,
with p (f) instantiated over the set of reference variables (fields)

Predicate Intended meaning
eq(v1, v2) v1 equals v2

p(v) Variable p points to object v
f(v1, v2) The f field of v1 points to v2

rp,f (v) v is reachable from variable p along a sequence of f fields
sf (v) Several f fields point to v
cf (v) v resides on a directed cycle of f fields references
bf1,f2(v) The f2 field of an object pointed by the f1 field of v points back at v

Table 1 shows the set of predicates used in the analysis of the program
in Fig. 1, with p and f instantiated over {x, y, t} and {n, p}, respectively.1
We require that the set of predicates includes the binary predicate eq, bear-
ing the semantics of equality between individuals. Note the use of instrumen-
tation predicates—like transitive reachability, shared referencing, cyclicity, and
back-pointing—in addition to core shape predicates, the importance of which in
retaining abstraction precision has been widely discussed [9,12].

A concrete state is depicted as a directed graph, where each individual in the
universe is a node. The set of unary predicates that hold for each node appear
right next to it. A unary predicate representing a reference variable that points
to some node v is depicted by an arrow from the variable’s name to v. A binary
predicate f which holds for a pair of individuals v1 and v2 is depicted by an
f -labeled directed edge from v1 to v2. The predicate eq is not shown, since any
two nodes are different and every node is equal to itself.

Fig. 2(a) shows a concrete program state arising after the execution of the
statement t = y.n at the second loop of the program in Fig. 1. We denote the
set of all 2-valued logical structures over a set of predicates P by 2-STRUCT[P],
abbreviated to 2-STRUCT under the simplifying assumption that P is fixed.

2.2 Abstract Program States

We represent abstract program states using Kleene 3-valued logic [12], an ex-
tension of Boolean logic which introduces a third value 1

2 denoting a truth value
that may be either 0 or 1. We utilize the partial order defined by 0 � 1

2 and
1 � 1

2 , with the join operation defined accordingly.

Definition 2 (Abstract state). A 3-valued logical structure over a set of pred-
icates P is a pair S = (U, ι), where U is the universe of the structure and ι is the
interpretation function mapping predicates to their truth-value in the structure:
for every predicate p ∈ P of arity k, ι(p) : Uk → {0, 1, 1

2}. A summary node in
an abstract state is an individual u for which eq(u, u) = 1

2 , representing one or
more concrete nodes.
1 Note that bf1,f2 is only instantiated for pairs of distinct reference fields.

208 G. Arnold

(a)

y t

x

rx,n rx,p

bn,p bp,n

rx,n

bn,p bp,n

rx,n

bn,p bp,n

rx,n

ry,n ry,p

bn,p bp,n

rx,n

ry,n

rt,n rt,p

bn,p bp,n

rx,n

ry,n

rt,n

bn,p bp,n

rx,n

ry,n

rt,n

bn,p bp,n

n n n n n n

p p p p p p

(b)

y t

x

rx,n rx,p

bn,p bp,n

rx,n

bn,p bp,n

rx,n

ry,n ry,p

bn,p bp,n

rx,n

ry,n

rt,n rt,p

bn,p bp,n

rx,n

ry,n

rt,n

bn,p bp,n

n n n n

p p p p

n, p n, p

Fig. 2. (a) A concrete program state arising after the execution of the statement
t = y.n in Fig. 1; (b) An abstract program state approximating (a)

An abstract state is also depicted as a directed graph, where parenthesized predi-
cates (unaries) and dotted arrows (binaries) denote 1

2 values, and summary nodes
appear as doubly-lined nodes. Fig. 2(b) shows an abstract state with two sum-
mary nodes, representing any number of one or more concrete nodes at the infix
and suffix of the list, respectively.

We denote the set of all 3-valued logical structures over a set of predicates P
by 3-STRUCT[P], abbreviated to 3-STRUCT. Note that Definition 2 generalizes
Definition 1, therefore 2-STRUCT � 3-STRUCT.

We define a partial order on structures based on the concept of embedding,
and extend it to a preorder on sets of structures.

Definition 3 (Embedding). Let S = (U, ι) and S′ = (U ′, ι′) be two structures
and let f : U → U ′ be a surjection. We say that f embeds S in S′, denoted
S �f S′, if for every predicate p ∈ P(k) and k individuals u1, . . . , uk ∈ U ,

pS(u1, . . . , uk) � pS′
(f(u1), . . . , f(uk)) . (1)

S is embedded in S′, denoted S �S′, if there exists f such that S �f S′.

The concrete structure in Fig. 2(a) is embedded in the abstract structure in
Fig. 2(b) with respect to the mapping depicted by the bold arrows.

Definition 4 (Powerset embedding). Given two sets of structures XS, XS′⊆
3-STRUCT, XS � XS′ iff for all S ∈ XS there exists S′ ∈ XS′ such that S � S′.

In the following, we restrict sets of 3-valued structures by disallowing non-
maximal structures. This ensures that the above Hoare order is indeed a proper

Specialized 3-Valued Logic Shape Analysis 209

partial order. The set D3-STRUCT, consisting of all finite sets of 3-valued struc-
tures that do not contain non-maximal structures, along with the partial order
given by Definition 4, form the abstract domain underlying our framework. We
use the same order to define the concretization of a set of 3-valued structures,
given by γ(XS) =

⋃
XS′�XS XS′.

2.3 Bounded Program States

Note that the size of a 3-valued structure is potentially unbounded. Therefore,
3-STRUCT contains sets with an infinite number of structures and is in turn infi-
nite. We use a fundamental abstraction method [12] to convert a state descriptor
of any size into a bounded (abstract) one.

A 3-valued structure S = (U, ι) is said to be bounded if for every two distinct
individuals u1, u2 ∈ U , there exists a unary predicate p such that pS(u1) and
pS(u2) evaluate to distinct definite truth values (i.e., 0 and 1). The abstract do-
main DB-STRUCT is a finite sub-lattice of D3-STRUCT, containing all (finite) sets
of bounded structures that do not contain non-maximal structures. The struc-
ture abstraction function β—referred to as a canonical abstraction [12]—maps
a potentially unbounded 2-valued structure into a bounded 3-valued structure.
Namely, β

(
(U, ι)
)

= (U ′, ι′), where U ′ consists of the disjoint subsets of U in
which no unary predicate evaluates to distinct definite values, and for any pair
of individuals in different subsets, there is at least one predicate which evalu-
ates to distinct definite values. The interpretation ι′ of each p ∈ P(k) and k
individuals c1, . . . , ck ∈ U ′ is given by

pS′
(c1, . . . , ck) =

⊔
ui∈ci

pS(u1, . . . , uk) .

Fig. 2(b) shows the bounded structure obtained from Fig. 2(a) (note that
S � β(S) for all S). Powerset abstraction is given by α(XS) =

⊔
S∈XS{β(S)}.2

2.4 Abstract Semantics

The abstract interpretation framework of [12] models the semantics of program
transformations using first order logic formulas with transitive closure. For exam-
ple, the update to the value of the unary predicate t through program statement
t = y.n from the example in Fig. 1 is modeled by t(v) ← ∃v′ : y(v′) ∧ n(v′, v).
The embedding theorem [12] ensures that the result of a transformation on any
abstract state is a sound approximation of the best transformer. Yet, as straight-
forward evaluation of update formulas over bounded abstract states leads to con-
siderable loss of precision, and since a best transformer is generally intractable,
we achieve partial concretization (i.e., refinement) by means of two auxiliary
operations [12].

The focus operation applies semantic reduction to a given 3-valued structure
such that the evaluation of the first-order logic focus formula on any resulting
2 The operator

⊔
is the least upper bound on the lattice DB-STRUCT.

210 G. Arnold

(a) y

ry,n ry,p

bn,p bp,n

ry,n

bn,p bp,n

n

p

n, p

(b)

ry,n

bn,p bp,n

y y y

ry,n ry,p

bn,p bp,n

ry,n

bn,p bp,n

ry,n ry,p

bn,p bp,n

ry,n

bn,p bp,n

ry,n ry,p

bn,p bp,n

ry,n

bn,p bp,n

p

n, p

n

p

n, p

n

p

p

n, p

n, p

n, p

Fig. 3. Structure refinement using focus: (a) the original inbound structure; (b) struc-
tures resulting from focus using the formula ∃v′.y(v′) ∧ n(v′, v)

structures yields a definite truth value (i.e., 0 or 1). Fig. 3(a) shows a canonically
bounded doubly-linked list structure that is being focused—prior to an update
due to t = y.n—using the formula ∃v′.y(v′)∧ n(v′, v). The resulting structures
are shown in Fig. 3(b). However, note that focus might lead to structures that do
not necessarily satisfy the integrity constraints—such as the leftmost structure in
Fig. 3(b)—or are not as precise as could be with respect to the values of instru-
mentation predicates, such as the middle structure in Fig. 3(b). The functional-
ity of the coerce operator in this regard is two-fold: by exhaustively evaluating
formulas derived from structure integrity rules, it both dismisses structures for
which some constraint is breached and also tightens predicate values where such
a tightening is accommodated by the constraints. Thus, a coerce step normally
follows a focus operation, so as to complement the weaknesses of the latter.

It should be noted that this refinement method—in particular the coerce
step—is by far the most time consuming phase of the analysis in practice, sug-
gesting that an alternate approach may be highly beneficial for efficiency.

2.5 Restricted 3-Valued Logic Shape Analysis

In thiswork,we assumea restricted instance of the parametric 3-valued logic frame-
work [12] to be the baseline for further proposed improvements. Limiting predicate
arity to nullary, unary, and binary predicates only, we further restrict ourselves to
the predefined fixed set of instrumentation predicates described in Table 1, which
can capture shape properties of any (recursive) data structure. Finally, we support
a fixed, universal set of intermediate-level operations—including manipulation of
reference and Boolean variables/fields and basic control statements—which allows
us to encode a variety of real-world Java programs.3

3 Specialized Analysis with Structure-Based Refinement

We describe in [1] the design and implementation of a specialized prototype
shape analysis tool, constructed with the long-term goal of exploring techniques

3 Array objects and call/return context-sensitivity are currently not supported.

Specialized 3-Valued Logic Shape Analysis 211

for faster practical shape analysis. Despite its conformance with the guidelines
in Section 2.5, we believe that only one of these restrictions—namely, limited
predicate arity—is inherent to the design, bearing the least actual burden to the
applicability of derived analyses. Extending the framework beyond the afore-
mentioned limitations is considered future work.

One interesting aspect of our implementation is the heavy use it makes of fine-
tuned domain operators (i.e., join and meet). Although both are hard problems
given the domain of unbounded 3-valued structures,4 by re-using algorithms
developed by Arnold et al. [3], we are able to infer certain relationships between
3-valued structures—such as deciding an embedding relation—in a surprisingly
effective manner. This feature is heavily relied upon when we introduce structure-
based, operator-intensive refinement. Also, we are able to exploit the flexibility
of a fundamental graph matching technique as we later loosen the definition of
structure embedding. For further details, the interested reader is referred to [1].

The fact that a meet operator can be used to perform abstraction refinement—
both focusing an abstract structure prior to an update, as well as filtering
structures based on some semantic condition—has already been discussed else-
where [2]. Conforming to this approach, a 3-valued structure is used to express
the desired semantic condition, and a meet operation is used to extract the sub-
set of structures that are both represented by a given abstract state and comply
with the semantic condition expressed by the refining structure. We have taken
this approach to the extreme, essentially doing all abstraction refinements us-
ing meet (and join) operations. We demonstrate this approach by describing a
simplified structure-based refinement operator for the abstract transformer of
t = y.n from Fig. 1. This refinement operator—requiring that the n field of
the object pointed by y is focused—is by far the most complicated one, mainly
due to the subtle sub-cases that need to be considered for obtaining sufficient
precision.

3.1 Sufficiently Tight and Effective Refinement

For simplicity, we assume that any semantically sane input structure is such that
its y predicate evaluates to 1 for exactly one individual (i.e., the dereference y.n
deterministically succeeds).5 Therefore, for the purpose of refinement, we can
initially use a set of structures consisting of the three distinct cases where y.n
is either (a) null, (b) a self-loop, or (c) points to a different node. Note that
any of these general cases needs to be split into disjoint sub-cases, indicating
whether additional nodes—other than the one pointed to by y and (possibly by)
y.n—may exist. Such a refinement set, with the simplification of ignoring x, t,
and their induced instrumentation predicates, is shown in Fig. 4.

In this example, the refining structures impose very few constraints on the
values of binary predicates between the different nodes—other than focusing the
n field of the object pointed to by y—and, consequently, on those of instrumen-
tation predicates. Still, for the case of a null y.n, they do require that any node
4 The meet operator was shown particularly hard, even for bounded structures [3].
5 This condition can be easily enforced using a meet-based precondition filter [2].

212 G. Arnold

(a) y y y y

ry,n ry,p

bn,p (bp,n)
(cp)

ry,n ry,p

bn,p (bp,n)
(cp)

(sn) (sp)

(ry,p)
(bn,p) (bp,n)

(cn) (cp)
(sn) (sp)

ry,n ry,p

(bn,p) (bp,n)
cn (cp)

ry,n ry,p

(bn,p) (bp,n)
cn (cp)

(sn) (sp)

(ry,p)
(bn,p) (bp,n)

(cn) (cp)
(sn) (sp)

p

p n, p

n, p

p

n

p

n

p

n, p

n, p

p

(b)

(∗)

y v1 v2 y

ry,n ry,p

(bn,p) (bp,n)
(cn) (cp)

(sp)

ry,n (ry,p)
(bn,p) (bp,n)

(cn) (cp)
(sn) (sp)

ry,n ry,p

(bn,p) (bp,n)
(cn) (cp)
(sn) (sp)

ry,n (ry,p)
(bn,p) (bp,n)

(cn) (cp)
(sn) (sp)

n

p

n, p
p

n, p
n

p

n, pp

n, p

p

n, p

n, p

n, p

Fig. 4. A simplified structure-based refining set for t = y.n: (a) cases of null or self-
loop y.n; (b) cases of y.n pointing to a different node

other than the one pointed to by y has ry,n evaluated to 0. Therefore, in ap-
plying the refining set in Fig. 4 to the structure in Fig. 3(a), our operator does
not yield the leftmost structure of Fig. 3(b) in the first place, as opposed to the
traditional focus operation. (This does not guarantee the integrity of structures
resulting from refinement in general, though.)

The refining set of Fig. 4 does yield the two rightmost structures in Fig. 3(b).
While these are conservative and semantically sane refinements of Fig. 3(a), they
are evidently not as tight as could be, as explained in Section 2.4. As this over-
compromises the precision of our transformer in this case, we first try to further
focus the back p edge to the node pointed to by y. A naive solution to this
can be found in the form of further sub-case refinement, namely by semantically
reducing the refining structures in Fig. 4(b) down to the point where the back
p edge is either 0 or 1, corresponding to the value that bn,p takes for the node
pointed to by y. For example, we can replace the left-hand side structure in
Fig. 4(b) by two similar structures, with the difference being that one has both
bn,p(v1) and p(v2, v1) evaluating to 1, and the other has their value being 0. This
enforces a definite truth value for the back p edge from the node pointed to by
y.n to the node pointed to by y in the result of the refinement step.

By applying further reduction in the same style, we can tighten the value of
the n (p) self-loop on the node that y.n points to in the middle structure in
Fig. 3(b), in correlation with the value of cn (respectively, cp) for that node.6
However, such a level of enumeration will lead to a number of structures that
is exponential in the number of tightened instrumentation predicate values—in
this case bn,p(v1), cn(v2), and cp(v2)—resulting in 8 disjoint structures. This

6 For expository reasons, we ignore the case of a two-node cycle, which is also correlated
with the value of cn(v2) and cp(v2).

Specialized 3-Valued Logic Shape Analysis 213

combinatorial effect gives little hope for scaling a precise enough operator of this
kind to cases with even a little more predicate interdependencies. We manage
to avoid this explosion in the size of the refining set by exploiting the following
properties.

Distributivity of meet over join. As already noted [3], for all sets of struc-
tures, XS �(XR
XR′) = (XS �XR)
(XS �XR′). We can therefore split
the structures in Fig. 4 such that XR corresponds to Fig. 4(a) and XR′

corresponds to Fig. 4(b), with the guarantee that ({S}�XR)
({S}�XR′)
yields the same result as plain meet using the original refining set.

Associativity of meet. As XS �(XR′
1 �XR′

2) = XS �XR′
1 �XR′

2 (the latter
being left-associative) for all sets of structures, we can further avoid the
combinatorial blow-up in the number of structures needed for the proper
reduction, such as the one explained above. Let XR′

1, XR′
2, and XR′

3 be the
sets containing a pair of structures which reduces the left-hand side structure
of Fig. 4(b) with respect to the value of bn,p(v1), cn(v2), and cp(v2), respec-
tively. We observe that the elaborate set of reduced refinement structures
described above is obtained by XR′

1 �XR′
2 �XR′

3, as each of these operands
requires that bn,p(v1), cn(v2), or cp(v2) has a definite value but keeps the
others indefinite (1

2), respectively. Therefore, {S}�XR′
1 �XR′

2 �XR′
3 gives

us the desired level of tightness, without needing to store the fully expanded
set of structures. Note that each of XR′

i, 1 ≤ i ≤ 3, consists of exactly two
complementary structures. Hence, the successive application of meet oper-
ations is likely to reduce the number of unfocused predicates at each step,
down to the point where a single fully-tightened structure is obtained.

We can therefore obtain the desired refinement operation by means of

({S}�XR)
({S}�XR′
1 �XR′

2 �XR′
3) ,

for any given structure S. It is important to note that such a formulation in
fact shifts the exponential behavior from the size of a single refining structure
to the worst case complexity of the additional meet and join operations. Finally,
note that the actual refinement operators used in our framework are fairly more
complicated, as they enumerate further instrumentation-implied sub-cases, and
are well beyond the scope of this paper.

3.2 Enforcing Integrity

As hinted above, a structure resulting from a structure-based refinement op-
eration does not necessarily satisfy the integrity constraints implied by its in-
strumentation predicates. In one instance of this problem, a refinement operator
yields a structure that has a summary node v for which ry,n(v) = 1, but y(v) = 0
and n(v′, v) = 0 for all v′ �= v. We consider the use of structure-based filtering
to dismiss such a structure prior to the transformation update, mimicking the
role of coerce in that respect. While arbitrary first-order logic conditions may
not necessarily be expressible using 3-valued structures, we can still handle this

214 G. Arnold

particular case using our approach. Specifically, it is sufficient here to deter-
mine whether a structure has some node that is neither pointed to by y nor has
an inbound n field pointing from any other node that may be referenced by y,
yet is indicated to be reachable from y by a sequence of n references—namely
∃v.ry,n(v) ∧ ¬y(v) ∧ ∀v′.(y(v′) =⇒ ¬n(v′, v)). Fortunately, a structure SF con-
sisting of an n-unreachable summary node, which is not pointed to by y but
denoted with a definite (1) ry,n value, represents this requirement and makes it
evaluate to 1.7 By the embedding theorem, we have that for any structure that
is embedded in SF , the above formula must evaluate to 1, implying a breached
integrity constraint. We therefore apply this test to each structure resulting from
a refinement operation, dismissing structures that are embedded in our filter.

4 Loose Embedding

Analyzing the program in Fig. 1 with the framework described so far yields a
total of 113 structures, with an average of 3.2 structures per CFG node and a
peak of 9 disjoint abstract states for a single node. This large number seems
counterintuitive to the actual simple essence of what the program does. In the
following, we highlight one source of this inflation and suggest a way to avoid it.

4.1 State-Space Inflation in Loops

Fig. 5 shows three of the abstract structures representing disjoint sets of concrete
heap states, arising immediately past the statement t = y.n during the analysis
of the program in Fig. 1. The structure in Fig. 5(b) represents the set of concrete
doubly-linked lists whose head is pointed to by x, followed by a sequence of (one
or more) nodes, followed by a pair of nodes pointed to by y and t, respectively,
and finally followed by a sequence of (one or more) nodes forming the list suffix.
This structure describes a general case that the program exhibits at this pro-
gram point, providing a conservative approximation of the set of concrete states
incurred by the program, and also contributing a general insight regarding the
state of computation at this point in the program.

On the contrary, the two other structures in Fig. 5 describe what could be
considered a slight variant of the general case. Specifically, Fig. 5(a) represents
the set of lists that lack the suffix nodes and Fig. 5(c) represents the set of
lists that lack the infix nodes. A fourth structure arising at the same program
point—which represents a list with neither infix nor suffix nodes—is not shown.

As is evident from the example, the total number of disjoint abstract states
used for representing all possible concrete states is exponential in the number
of summary nodes appearing in the general case. The special case descriptors
are inevitable by construction of the abstraction framework, given that the loop
traverses all nodes of the list. Yet, informally speaking, they seem to contribute
very little information compared to what the general case already expresses,
7 In fact, two distinct structures are required to represent all possible configurations

corresponding to this case. See [1] for details.

Specialized 3-Valued Logic Shape Analysis 215

x

rx,n rx,p

bn,p bp,n

rx,n

bn,p bp,n

y
rx,n

ry,n ry,p

bn,p bp,n

t

rx,n

ry,n

rt,n rt,p

bn,p bp,n

n

n

n

p

p

p

n, p

x

u1
rx,n rx,p

bn,p bp,n

u2
rx,n

bn,p bp,n

y u3

rx,n

ry,n ry,p

bn,p bp,n

t u4

rx,n

ry,n

rt,n rt,p

bn,p bp,n

u5

rx,n

ry,n

rt,n

bn,p bp,n

n

n

n

n

p

p

p

p

n, p

n, p

x

v1
rx,n rx,p

bn,p bp,n

y v2

rx,n

ry,n ry,p

bn,p bp,n

t

rx,n

ry,n

rt,n rt,p

bn,p bp,n

rx,n

ry,n

rt,n

bn,p bp,n

n

n

n

p

p

p

n, p

(a) (b) (c)

Fig. 5. Abstract heap states arising after the statement t = y.n in Fig. 1

consequently fortifying the analysis with only a little precision, but at a high
cost.

4.2 Relaxed Definition of Embedding

Recall that the definition of D3-STRUCT uses a notion of embedding in order
to eliminate non-maximal structures, prohibiting expressive redundancy and en-
suring a strict partial order. In attempt to make the special cases of Fig. 5
non-maximal—and therefore disposable—we aim at embedding them into the
general case by relaxing the definition of embedding in the following manner.

Allow summaries to represent zero nodes. We allow summary nodes to
be excluded from the range of an embedding function, overruling the sur-
jectivity requirement. The individuals of Fig. 5(a) can therefore be mapped
to a subset of the individuals of Fig. 5(b), as indicated by the bold arrows,
excluding only the suffix summary node u5 from the range of the embedding
function. Yet, it is clear that the requirement for predicate interpretation con-
sistency in Definition 3 is satisfied. This allows for the structure in Fig. 5(b)
to embed the structure in Fig. 5(a), making the latter disposable.

Retain connectivity via non-mapped summaries. Consider the mapping
from individuals of Fig. 5(c) to those of Fig. 5(b), depicted by the bold
arrows: the fact that u2 is excluded from the range of the function breaks the
connectivity of the structure in Fig. 5(b) compared to that of the structure in

216 G. Arnold

Fig. 5(c). In particular, while n(v1, v2) = 1 in the former, n(f(v1), f(v2)) =
n(u1, u3) = 0 in the latter, prohibiting embedding by this function.
We therefore further permit predicate interpretation consistency of any bi-
nary predicate to be checked against the constrained transitive closure of
that predicate in the target structure, which is only computed via sum-
maries excluded from the range of the function under consideration. Since
n(u1, u2) ∧ n(u2, u3) = 1

2 , the extended consistency requirement is satisfied,
making the mapping in the diagram an admissible embedding function.

We now give the formal definition of the relaxed embedding relation.

Definition 5 (Loose embedding). Let S = (U, ι) and S′ = (U ′, ι′) be two
structures and let f : U → U ′ be a function, such that eq(v, v) = 1

2 for all nodes

v ∈ V = U ′ � range(f). We say that f loosely embeds S in S′, denoted S �̃f
S′,

if Eq. (1) holds for all nullary and unary predicates and all nodes, and for every
predicate p ∈ P(2) and pair of individuals u1, u2 ∈ U ,8

pS(u1, u2) �
(

pS′
(f(u1), f(u2))∨

∨
v1,...,vk∈V

(
pS′

(f(u1), v1) ∧
(∧

1≤i≤k−1

pS′
(vi, vi+1)

)
∧ pS′

(vk, f(u2))
))

.

S is loosely embedded in S′, denoted S �̃S′, if there exists f such that S �̃f
S′.

Note that the above definition immediately extends to the definition of the ab-
stract domain D3-STRUCT and its associated operators (join and meet), as well
as its derived bounded state sub-domain. It also extends to the definition of
abstraction and concretization accordingly.9

4.3 Preserving Soundness

The proposed extensions to the definition of embedding invalidate the founda-
tions of soundness provided by the embedding theorem. We therefore adjust the
semantics of logical formula evaluation in accordance with these extensions.

First-order quantification. We interpret each occurrence of the form ∃u.φ as
∃u.eq(u, u) ∧ φ, assuring that any predicate that is existentially quantified
over a summary node is “lowered” to 1

2 . This accounts for the case where no
corresponding node exists in some concrete setting, which could cause the
formula to evaluate to a (definite) 0. Similarly, we interpret each occurrence

8 An empty conjunction evaluates to 1 and an empty disjunction evaluates to 0.
9 Note that for the general case of unbounded 3-valued structures, the loose embedding

relation induces a partial preorder, in turn inducing a preorder on the powerset
domain. We can show it is a strict partial order for the domain of bounded structures,
implying that α is still a well-defined function.

Specialized 3-Valued Logic Shape Analysis 217

of the form ∀u.P as ∀u.¬eq(u, u) ∨ P , assuring that any universally quanti-
fied predicate is “raised” to 1

2 for any summary node. This accounts for the
absence of corresponding nodes in some concrete setting, which could cause
the the formula to evaluate to a (definite) 1.

Binary predicate interpretation. We interpret each binary predicate bet-
ween v1 and v2 as the constrained transitive closure of that predicate, namely
considering the conjunction of the predicate’s values along any sequence of
(zero or more) summary nodes between v1 and v2. As opposed to Defi-
nition 5, we cannot consider the set of non-image summaries here, as no
embedding function is due. Instead, we consider any summary node for the
purpose of transitive closure, but also bound the truth value of such a tran-
sitive interpretation by 1

2 in order to ensure that the result is a conservative
approximation with respect to any embedding function.10

The above extensions suffice to retain the soundness of our local transformers,
consequently implying global soundness. Note, however, that they also imply po-
tential sources of imprecision as well as added computational effort, especially
when transitive binary closure needs to be evaluated. Nonetheless, as binary
edges adjacent to summary nodes are commonly indefinite in the first place,
we do not expect a significant loss of precision due to the contamination of
formula evaluation with 1

2 values. Also, we expect the excess algorithmic over-
head to be absorbed by our highly effective approach for conducting computa-
tions over 3-valued structures. Finally, it should be mentioned that loose embed-
ding also deflates some of our structure-based refinement operators, like the two
single-node structures in Fig. 4(a), which are now embedded in their respective
counterparts.

5 Experimental Results

Table 2 presents analysis statistics for a set of five small Java programs that
manipulate singly- or doubly-linked lists, executed on a 1.6GHz Pentium-M,
1GB machine running Linux. This benchmark, along with approximate analysis
statistics using the TVLA reference implementation on similar hardware, were
adopted from [3]. The results suggest several insights regarding the effectiveness
of our framework. First, it is shown to converge significantly faster than the ref-
erence implementation, ranging from a factor of 40 (using strict embedding on a
simple singly-linked list traversal) to a factor of 124 (using loose embedding on a
program that deletes an arbitrary element from a singly-linked list). Although an
improvement of this kind was expected—our analyzer is restricted by construc-
tion and therefore better tweaked for performance—the actual speed-up factor
is quite encouraging. While our results do not provide sufficient evidence for the
relative effectiveness of structure-based refinement per-se (we implemented nei-
ther focus nor coerce in our framework), the fact that the time spent on abstract

10 For the reasoning behind this additional requirement, see [1].

218 G. Arnold

Table 2. Benchmark results for five Java programs processing singly- and doubly-
linked lists. Columns denote program statistics (number of CFG locations and loops),
running statistics using TVLA (total analysis time and peak memory consumption),
and running statistics using the specialized framework in strict and loose embedding
mode (total, average, and maximum number of structures for a CFG node, analysis
total and refinement times, and peak memory consumption). Time is in milliseconds,
and memory is in kilobytes.

stats reference specialized strict specialized loose
loc loop tot mem tot ave top tot ref mem tot ave top tot ref mem

sll-loop 33 2 900 1000 109 3.3 9 20 6 88 59 1.8 4 11 5 72
sll-reverse 52 3 3000 2000 226 4.4 9 34 12 188 104 2.0 4 28 14 129
sll-delete 49 3 12400 3200 485 9.9 48 202 59 379 215 4.4 20 100 44 235
dll-loop 35 2 1400 1300 113 3.2 9 27 18 463 61 1.7 4 19 11 441
dll-pairs 42 2 3000 2000 191 4.6 15 69 50 896 105 2.5 8 43 31 846

heap refinement by our analyzer—ranging between 30-73% of the total analy-
sis time—suggests that our structure-based approach is relatively time effective
compared to the remaining operations. However, the fact that refinement takes
a larger portion in the doubly-linked list case suggests that it may not scale very
well as dependencies among predicates increase. Memory consumption is gener-
ally lower than that of TVLA, but then again seems not as low in the heavier
abstraction (doubly-linked list) as in the lighter abstraction (singly-linked list).
Yet this issue has not been the focus of our performance optimization and could
probably be improved significantly in the future.

Second, the case of loose embedding appears quite effective in both deflating
the number of structures—45-55% and 46-58% deflation in total and top number
of structures, respectively—as well as shortening total analysis time, by 17-50%.
The case of sll-delete is particularly notable, as one of its loops may terminate
abruptly, allowing a greater number of abstract states to “escape” and propagate
to other CFG nodes. Here, the use of loose embedding seems to provide the
greatest gain in both state set deflation and analysis performance. Finally, it is
worth mentioning that the actual (graphical) results of an analysis using loose
embedding are by far more comprehensible—and therefore, more usable—than
those of a traditional (strict) analysis. We consider this a nice practical outcome,
which supports our view of the problem with strict embedding abstraction.

6 Related Work

This work shares common goals with a few other efforts, all aimed at improving
the scalability and applicability of shape analysis to practical uses. In two cases,
TVLA powerset heap abstractions were compressed into a single structure [7]
or partially disjunctive sets [10] by means of merging (joining) predicate values
and allowing individuals to represent zero concrete nodes, or merging structures
consisting of isomorphic sets of individuals, respectively. Our loose embedding

Specialized 3-Valued Logic Shape Analysis 219

approach seems to resemble the former to some extent, as both allow certain
nodes to represent zero concrete nodes and use a relaxed notion of first-order
quantification in formulas. It also shares a similar approach to the latter, as both
attempt to reduce the number of structures describing “similar” cases based on
some criteria. Nonetheless, by carefully defining the notion of descriptive redun-
dancy, and by extending the definition of the embedding relation—rather than
overloading predicates or joining structures—our approach has the advantage of
not inducing imprecision on remaining representative abstract states.11

Other approaches deviate from 3-valued canonical abstraction and examine
the use of predicate abstraction for analyzing shape properties [11,5]. While such
approaches were shown to yield precise and descriptive results, their contribution
to scalability of shape problems is unclear due to the larger number of predicates
required for sufficient precision.

It is well-known that structure-based semantic reduction is expressively in-
ferior to general FOL formula-based refinement (i.e., as obtained by focus and
coerce [12]). However, we argue that precision can be improved by further elab-
oration of refining structures, suggesting a trade-off between sufficient precision
and tolerable complexity. As far as we know, our work is the first attempt to
deploy practical structure-based abstraction refinement for 3-valued logic shape
analysis and may serve as a point of reference for future efforts.

7 Conclusion

We described a new implementation of a 3-valued logic-based shape analysis
tool that uses an effective structure-based approach for refining abstract heaps,
and deflates abstract state sets using an alternate definition of structure or-
dering. We applied it to a small set of benchmark programs, with encouraging
results, regarding both the effectiveness of the analysis framework as well as
the successful restraining of powerset abstract states exhibited by the analysis.
We believe that the next step in this direction is to further extend and ex-
amine the applicability of our analyzer to different (and more complex) heap
structures on the one hand, and to assess the usefulness of loose embedding for
programs of higher complexity in attempt to assert its expected advantages on
the other. A separate effort, aimed at the automatic derivation of sound and pre-
cise structure-based refining operators from logical formulas, should guarantee
the correctness and improve the adaptivity of our approach, and is currently a
work in progress.

Acknowledgments

I thank Mooly Sagiv and Roman Manevich for their useful feedback and contin-
uous advice. I also thank Ras Bodik for supporting my work on this research.
11 Note that empty summaries have been used by other analyses (e.g., [6]), so the

novelty of our approach in this context is restricted to 3-valued logic-based analysis.

220 G. Arnold

References

1. G. Arnold. Lightweight specialized 3-valued logic shape analyzer. Technical Re-
port UCB/EECS-2006-59, EECS Department, University of California, Berkeley,
May 2006. Available at http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-59.html.

2. G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Intersecting heap abstractions
with applications to compile-time memory management. Technical Report TR-
2005-04-135520, Tel-Aviv University, Apr. 2005. Available at http://www.cs.tau.
ac.il/~rumster/TR-2005-04-135520.pdf.

3. G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Combining shape analyses by
intersecting abstractions. In Verification, Model Checking and Abstract Interpre-
tation (VMCAI), volume 3855, pages 33–48. Springer-Verlag, 2006.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Symposium on Principals of Programming Languages (POPL), pages 269–282.
ACM Press, 1979.

5. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In Sym-
posium on Principals of Programming Languages (POPL), pages 115–126, 2006.

6. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. In The European Symposium on Programming
(ESOP), volume 3444, pages 124–140. Springer-Verlag, 2005.

7. T. Lev-Ami. TVLA: A framework for kleene logic based static analysis. Master’s
thesis, Tel-Aviv University, May 2000.

8. T. Lev-Ami, T. W. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work
for verification: A case study. In International Symposium on Software Testing and
Analysis (ISSTA), pages 26–38, 2000.

9. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
Static Analysis Symposium (SAS), pages 280–301, 2000.

10. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. In Static Analysis Symposium (SAS), pages 265–279, 2004.

11. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In Verification, Model Checking and
Abstract Interpretation (VMCAI), pages 181–198, 2005.

12. M. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. Transactions on Programming Languages and Systems (TOPLAS),
24(3):217–298, 2002.

Recency-Abstraction for Heap-Allocated Storage

Gogul Balakrishnan and Thomas Reps

Comp. Sci. Dept., University of Wisconsin
{bgogul, reps}@cs.wisc.edu

Abstract. In this paper, we present an abstraction for heap-allocated
storage, called the recency-abstraction, that allows abstract-interpret-
ation algorithms to recover some non-trivial information for heap-alloc-
ated data objects. As an application of the recency-abstraction, we show
how it can resolve virtual-function calls in stripped executables (i.e., exe-
cutables from which debugging information has been removed). This ap-
proach succeeded in resolving 55% of virtual-function call-sites, whereas
previous tools for analyzing executables fail to resolve any of the virtual-
function call-sites.

1 Introduction

A great deal of work has been done on algorithms for flow-insensitive points-to
analysis [1,9,35] (including algorithms that exhibit varying degrees of context-
sensitivity [8,12,13,38]), as well as on algorithms for flow-sensitive points-to anal-
ysis [18,29]. However, all of the aforementioned work uses a very simple abstrac-
tion of heap-allocated storage, which we call the allocation-site abstraction [6,24]:

All of the nodes allocated at a given allocation site s are folded together
into a single summary node ns.

In terms of precision, the allocation-site abstraction can often produce poor-
quality information because it does not allow strong updates to be performed.
A strong update overwrites the contents of an abstract object, and represents a
definite change in value to all concrete objects that the abstract object repre-
sents [6,33]. Strong updates cannot generally be performed on summary objects
because a (concrete) update usually affects only one of the summarized concrete
objects. If allocation site s is in a loop, or in a function that is called more than
once, then s can allocate multiple nodes with different addresses. A points-to fact
“p points to ns” means that program variable p may point to one of the nodes
that ns represents. For an assignment of the form p->selector1 = q, points-
to-analysis algorithms are ordinarily forced to perform a weak update: that is,
selector edges emanating from the nodes that p points to are accumulated ; the
abstract execution of an assignment to a field of a summary node cannot kill the
effects of a previous assignment because, in general, only one of the nodes that
ns represents is updated on each concrete execution of the assignment statement.
Because imprecisions snowball as additional weak updates are performed (e.g.,
for assignments of the form r->selector1 = p->selector2), the use of weak

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 221–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 G. Balakrishnan and T. Reps

void foo() {
int **pp, a;

while(...) {
pp =

(int*)malloc(sizeof(int*));

if(...)

*pp = &a;

else {
// No initialization of *pp

}
**pp = 10;

}
}

void foo() {
int **pp, a;

while(...) {
pp =

(int*)malloc(sizeof(int*));

if(...)

*pp = &a;

else {
*pp = &b;

}
**pp = 10;

}
}

(a) (b)

Fig. 1. Weak-update problem for malloc blocks

updates has adverse effects on what a points-to-analysis algorithm can determine
about the properties of heap-allocated data structures.

To mitigate the effects of weak updates, many pointer-analysis algorithms
in the literature side-step the issue of soundness. For instance, in a number of
pointer-analysis algorithms—both flow-insensitive and flow-sensitive—the initial
points-to set for each pointer variable is assumed to be ∅ (rather than �). For
local variables and malloc-site variables, the assumption that the initial value is
∅ is not a safe one—it does not over-approximate all of the program’s behaviors.
The program shown in Fig. 1 illustrates this issue. In Fig. 1(a), *pp is not
initialized on all paths leading to “**pp = 10”, whereas in Fig. 1(b), *pp is
initialized on all paths leading to “**pp = 10”.

A pointer-analysis algorithm that makes the unsafe assumption mentioned
above will not be able to detect that the malloc-block pointed to by pp is possibly
uninitialized at the dereference **pp. For Fig. 1(b), the algorithm concludes
correctly that “**pp = 10” modifies either a or b, but for Fig. 1(a), the algorithm
concludes incorrectly that “**pp = 10” only modifies a, which is not sound.

On the other hand, assuming that the malloc-block can point to any variable
or heap-allocated object immediately after the call to malloc (i.e., has the value
�) leads to sound but imprecise points-to sets in both versions of the program in
Fig. 1. The problem is as follows. When the pointer-analysis algorithm interprets
statements “*pp = &a” and “*pp = &b”, it performs a weak update. Because
*pp is assumed to point to any variable or heap-allocated object, performing a
weak update does not improve the points-to sets for the malloc-block (i.e., its
value remains �). Therefore, the algorithm concludes that “**pp = 10” may
modify any variable or heap-allocated object in the program.1

1 Source-code analyses for C and C++ typically use the criterion “any variable whose
address has been taken” in place of “any variable”. However, this can be unsound
for programs that use pointer arithmetic (i.e., perform arithmetic operations on
addresses), such as executables.

Recency-Abstraction for Heap-Allocated Storage 223

It might seem possible to overcome the lack of soundness by tracking whether
variables and fields of heap-allocated data structures are uninitialized (either as
a separate analysis or as part of pointer analysis). However, such an approach
will also encounter the weak-update problem for fields of heap-allocated data
structures. For instance, for the program in Fig. 1(b), the initial state of the
malloc-block would be set to uninitialized. During dataflow analysis, when pro-
cessing “*pp = &a” and “*pp = &b” it is not possible to change the state of the
malloc-block to initialized because *pp points to a summary object. Hence, fields
of memory allocated at malloc-sites will still be reported as possibly uninitialized.

Even the use of multiple summary nodes per allocation site, where each sum-
mary node is qualified by some amount of calling context (as in [16,28]), does
not overcome the problem; that is, algorithms such as [16,28] must still perform
weak updates.

At the other extreme is a family of heap abstractions that have been intro-
duced to discover information about the possible shapes of the heap-allocated
data structures to which a program’s pointer variables can point [33]. Those
abstractions generally allow strong updates to be performed, and are capable
of providing very precise characterizations of programs that manipulate linked
data structures; however, the methods are also very costly in space and time.

The inability to perform strong updates not only causes less precise points-to
information to be obtained for pointer-valued fields, it also causes less precise
numeric information to be obtained for int-valued fields. For instance, with in-
terval analysis (an abstract interpretation that determines an interval for each
variable that over-approximates the variable’s set of values) when an int-valued
field of a heap-allocated data structure is initialized to � (meaning any possible
int value), performing a weak update will leave the field’s value as �. Mak-
ing unsound assumptions (such as an empty interval) for the initial value of
int-valued fields nullifies the soundness guarantees of abstract-interpretation.
Consequently, the results of the analysis cannot be used to prove absence of
bugs.

In this paper, we present an abstraction for heap-allocated storage, referred to
as the recency-abstraction, that is somewhere in the middle between the extremes
of one summary node per malloc site [1,9,35] and complex shape abstractions
[33]. In particular, the recency-abstraction enables strong updates to be per-
formed in many cases, and at the same time, ensures that the results are sound.

The recency-abstraction incorporates a number of ideas known from the lit-
erature, including

– associating abstract malloc-blocks with allocation sites (à la the allocation-
site abstraction [6,24])

– isolating a distinguished non-summary node that represents the memory
location that will be updated by a statement (as in the k-limiting approach
[19,22] and shape analysis based on 3-valued logic [33])

– using a history relation to record information about a node’s past state [27]
– attaching numeric information to summary nodes to characterize the number

of concrete nodes represented [39]

224 G. Balakrishnan and T. Reps

– for efficiency, associating each program point with a single shape-graph
[6,24,25,32,36] and using an independent-attribute abstraction to track in-
formation about individual heap locations [17].

The contributions of our work are as follows:
– We propose an inexpensive abstraction for heap-allocated data structures

that allows us to obtain some useful results for objects allocated in the
heap.

– We apply this abstraction in a particularly challenging context, and study
its effectiveness. In particular, we measured how well it resolves virtual-
function calls in stripped x86 executables obtained from C++ code. The
recency-abstraction permits our tool to recover information about pointers
to virtual-function tables assigned to objects when the source code contains
a call new C, where C is a class that has virtual methods. Using the recency-
abstraction, our tool was able to resolve 55% of the virtual-function call-sites,
whereas previous tools for analyzing executables—including IDAPro [20] (a
commercial disassembler), as well as our own previous work without the
recency abstraction [3]—fail to resolve any of the virtual-function call-sites.

The recency-abstraction is beneficial when the initialization of objects is between
two successive allocations at the same allocation site.

– It is particularly effective for initializing the VFT-field (the field of an object
that holds the address of the virtual-function table) because the usual case is
that the VFT-field is initialized in the constructor, and remains unchanged
thereafter.

– Inside methods that operate on lists, doubly-linked lists, and other linked
data structures, an analysis based on the recency-abstraction would typically
be forced to perform weak updates. The recency-abstraction does not go
as far as methods for shape analysis based on 3-valued logic [33], which
can materialize a non-summary node for the memory location that will be
updated by a statement and thereby make a strong update possible; however,
such analysis methods are considerably more expensive in time and space
than the one described here.

The remainder of the paper is organized as follows: §2 provides background
on the issues that arise when resolving virtual-function calls in executables. §3
describes our recency-abstraction for heap-allocated data structures. §4 provides
experimental results evaluating these techniques. §5 discusses related work.

2 Resolving Virtual-Function Calls in Executables

In recent years, there has been an increasing need for tools to help program-
mers and security analysts understand executables. For instance, commercial
companies and the military increasingly use Commercial Off-The Shelf (COTS)
components to reduce the cost of software development. They are interested in
ensuring that COTS components do not perform malicious actions (or cannot be

Recency-Abstraction for Heap-Allocated Storage 225

forced to perform malicious actions). Therefore, resolving virtual-function calls
in executables is important: (1) as a code-understanding aid to analysts who
examine executables, and (2) for recovering Intermediate Representations (IRs)
so that additional analyses can be performed on the recovered IR (à la Engler
et al. [11], Chen and Wagner [7], etc.). Poor information about virtual-function
calls typically forces tool builders to treat them either (i) conservatively, e.g., as
a call to any function whose address has been taken, which is a source of false
positives, (ii) as if the call causes execution to halt, i.e., the analysis does not
proceed beyond sites of virtual-function calls, which is a source of false negatives,
or (iii) in an unsound fashion, e.g., as if they call a no-op function that returns
immediately, which can lead to both false negatives and false positives.

In this section, we discuss the issues that arise when trying to resolve virtual-
function calls in executables. Consider an executable compiled from a C++
program that uses inheritance and virtual functions. The first four bytes of
an object contains the address of the virtual-function table. We will refer to
these four bytes as the VFT-field. In an executable, a call to new results in
two operations: (1) a call to malloc to allocate memory, and (2) a call to the
constructor to initialize (among other things) the VFT-field. A virtual-function
call in source code gets translated to an indirect call through the VFT-field (see
Fig. 2).

p = malloc()

p->vt = &VT

f
g

f
g

MallocBlock VirtualTable

º
º
º

º
º

º

(*(p->vt + x))()

···
···

Fig. 2. Resolving virtual-function calls in executables. (A double box denotes a sum-
mary node.)

When source code is available, one way of resolving virtual-function calls is to
associate type information with the pointer returned by the call to new and then
propagate that information to other pointers at assignment statements. However,
type information is usually not available in executables. Therefore, to resolve a
virtual-function call, information about the contents of the VFT-field needs to
be available. For a static-analysis algorithm to determine such information, it
has to track the flow of information through the instructions in the constructor.
Fig. 2 illustrates the results if the allocation-site abstraction is used. Using the
allocation-site abstraction alone, it would not be possible to establish the link
between the object and the virtual-function table: because the summary node

226 G. Balakrishnan and T. Reps

represents more than one block, the interpretation of the instruction that sets
the VFT-field can only perform a weak update, i.e., it can only join the virtual-
function table address with the existing addresses, and not overwrite the VFT-
field in the object with the address of the virtual-function table. After the call
to malloc, the fields of the object can have any value (shown as �); computing
the join of � with any value results in �, which means that the VFT-field can
point to anywhere in memory (shown as dashed arrows). Therefore, a definite
link between the object and the virtual-function table is never established, and
(if a conservative algorithm is desired) a client of the analysis can only conclude
that the virtual-function call may resolve to any possible function.

The key to resolving virtual-function calls in executables is to be able to es-
tablish that the VFT-field definitely points to a certain virtual-function table.
§2.1 describes the abstract domain used in Value-Set Analysis (VSA) [3], a com-
bined pointer-analysis and numeric-analysis algorithm that can track the flow
of data in an executable. The version of the VSA domain described in §2.1 (the
version used in [3]) has the limitations discussed above (i.e., the need to per-
form weak updates); §3 describes an extension of the VSA domain that uses
the recency-abstraction, and shows how it is able to establish a definite link be-
tween an object’s VFT-field and the appropriate virtual-function table in many
circumstances.

2.1 Value-Set Analysis

VSA is a combined numeric-analysis and pointer-analysis algorithm that de-
termines an over-approximation of the set of numeric values or addresses that
each variable holds at each program point. A key feature of VSA is that it
takes into account pointer arithmetic operations and tracks integer-valued and
address-valued quantities simultaneously. This is crucial for analyzing executa-
bles because numeric values and addresses are indistinguishable at runtime and
pointer arithmetic is used extensively in executables. During VSA, a set of ad-
dresses and numeric values is represented by a safe approximation, which we
refer to as a value-set.

Memory-Regions. In the runtime address space, there is no separation of the
activation records of various procedures, the heap, and the memory for global
data. However, during the analysis of an executable, we break the address space
into a set of disjoint memory areas, which are referred to as memory-regions.
Each memory-region represents a group of locations that have similar runtime
properties. For example, the runtime locations that belong to the activation
record of the same procedure belong to a memory-region.

For a given program, there are three kinds of regions: (1) the global -region
contains information about locations that correspond to global data, (2) the AR-
regions contain information about locations that corresponds to the activation-
record of a particular procedure, and (3) the malloc-regions contain information
about locations that are allocated at a particular malloc site.

When performing source-code analysis, the programmer-defined variables pro-
vide us with convenient compartments for tracking data manipulations involving

Recency-Abstraction for Heap-Allocated Storage 227

memory. However, stripped executables do not have information about program-
mer-defined variables. In our work, we use the variable-recovery mechanism de-
scribed in [4] to obtain variable-like entities for stripped executables. The variable-
recovery algorithm described in [4] identifies the structure of each memory-region
based on the data-access patterns in the executable, and treats each field of the
structure recovered for the memory region as a variable. For instance, suppose
that the structure of the AR-region for a procedure P is

struct {
int a;
struct {
int b;
int c;

} d;
};

Procedure P would be treated as having three int-valued variables a, d.b, and
d.c. Similarly, the fields of malloc-regions are treated as variables. In general, if
R is a memory-region, VarR denotes the variables of R. For uniformity, registers
are treated as variables.

Value-Sets. A value-set is a safe approximation for a set of addresses and numeric
values. Suppose that n is the number of regions in the executable. A value-
set is an n-tuple of strided intervals of the form s[l, u], with each component
of the tuple representing the set of addresses in the corresponding region. For
a 32-bit machine, a strided-interval s[l, u] represents the set of integers {i ∈
[−231, 231 − 1]|l ≤ i ≤ u, i ≡ l(mod s)} [31].
– s is called the stride.
– [l, u] is called the interval.
– 0[l, l] represents the singleton set {l}.

Call-strings. The call-graph of a program is a labeled graph in which each node
represents a procedure, each edge represents a call, and the label on an edge
represents the call-site corresponding to the call represented by the edge. A call-
string [34] is a sequence of call-sites (c1c2 . . . cn) such that call-site c1 belongs to
the entry procedure, and there exists a path in the call-graph consisting of edges
with labels c1, c2, . . . , cn. CallString is the set of all call-strings in the program.

A call-string suffix of length k is either (c1c2 . . . ck) or (∗c1c2 . . . ck), where c1,
c2, . . . , ck are call-sites. (c1c2 . . . ck) represents the string of call-sites c1c2 . . . ck.
(∗c1c2 . . . ck), which is referred to as a saturated call-string, represents the set
{cs|cs ∈ CallString, cs = πc1c2 . . . ck, and |π| ≥ 1}. CallStringk is the set of call-
string suffixes of length k, plus non-saturated call-strings of length ≤ k. Consider
the call-graph shown in Fig. 3(a). The set CallString2 for this call-graph is {ε,
C1, C2, C1C3, C2C4, *C3C5, *C4C5, *C5C4}.

VSA is a flow-sensitive, context-sensitive, abstract-interpretation algorithm
(parameterized by call-string length [34]); it is an independent-attribute method
(in the sense of [23]) based on the abstract domain described below. To simplify

228 G. Balakrishnan and T. Reps

Fig. 3. (a) Call-graph; (b) memory-region status map for different call-strings. (Key:
NS: non-summary, S: summary; * refers to a saturated call-string.)

the presentation, the discussion in this section uses the allocation-site abstraction
for heap-allocated storage.

Let Proc denote the set of memory-regions associated with procedures in the
program, AllocMemRgn denotes the set of memory regions associated with heap-
allocation sites, and Global denote the memory-region associated with the global
data area. We work with the following basic domains:

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥

VarEnv[R] = VarR → ValueSet

AbsEnv maps each region R to its corresponding VarEnv[R] and each register to
a ValueSet:

AbsEnv =

(register → ValueSet)
× ({Global} → VarEnv[Global])
× (Proc → VarEnv[Proc]⊥)
× (AllocMemRgn → VarEnv[AllocMemRgn]⊥)

VSA associates each program point with an AbsMemConfig:

AbsMemConfig = (CallStringk → AbsEnv⊥)

During VSA, all abstract transformers are passed a memory-region status map
that indicates which memory-regions, in the context of a given call-string cs, are
summary memory-regions. Whereas the Global region is always non-summary
and all malloc-regions are always summary, to decide whether a procedure P ’s
memory-region is a summary memory-region, first call-string cs is traversed, and
then the call graph is traversed, to see whether the runtime stack could contain
multiple pending activation records for P . Fig. 3(b) shows the memory-region
status map for different call-strings of length 2.

The memory-region status map provides one of two pieces of information used
to identify when a strong update can be performed. In particular, an abstract

Recency-Abstraction for Heap-Allocated Storage 229

struct List {
int a;

struct List* next;

};

int main() {
int i;

struct List* head = NULL;

struct List* elem;

for(i = 0; i < 5; ++i) {
M1: elem = (struct List*)

malloc(sizeof(struct List));

elem->a = i;

elem->next = head;

L1: head = elem;

}
return 0;

}

AR main �→ (

i �→ [(Global �→ 1[0,4])]

head �→ [(malloc M1 �→ 0[0,0])]

elem �→ [(malloc M1 �→ 0[0,0])]

)

malloc M1 �→ (

Field 0 �→ �
Field 4 �→ �

)

(b)
i �→ [(Global �→ 1[0,4])]

head �→ [(malloc M1 �→ 0[0,0])]

elem �→ [(malloc M1 �→ 0[0,0])]

elem->a �→ �
elem->next �→ �

(c)

º
a next

º
elem

head

(a) (d)

Fig. 4. Value-Set Analysis (VSA) results (when the allocation-site abstraction is used):
(a) C program; (b) value-sets after L1 (registers and global variables are omitted);
(c) value-sets in (b) interpreted in terms of the variables in the C program; and (d)
graphical depiction of (c). (The double box denotes a summary region. Dashed edges
denote may-points-to information.)

transformer can perform a strong update if the operation modifies (a) a register,
or (b) a non-array variable in a non-summary memory-region.

Example 1. We will illustrate VSA using the C program2 shown in Fig. 4(a). For
this example, there would be three regions: Global, AR main, and malloc M1.

The value-sets that are obtained from VSA at the bottom of the loop body
are shown in Fig. 4(b). Fig. 4(c) shows the value-sets in terms of the variables
in the C program.

– “i 	→ [(Global 	→ 1[0,4])]” indicates that i has a value (or a global
address) in the range [0, 4].

– “elem 	→ [(malloc M1 	→ 0[0,0])]” indicates that elem contains offset 0
in the malloc-region associated with malloc-site M1.

– “head 	→ [(malloc M1 	→ 0[0,0])]” indicates that head contains offset 0
in the malloc-region associated with malloc-site M1.

– “elem->a 	→ �” and “elem->next 	→ �” indicate that elem->a and elem->
next may contain any possible value. VSA could not determine better value-
sets for these variables because of the weak-update problem mentioned earlier.

2 In our implementation, VSA is applied to executables. We use C code for ease of
understanding.

230 G. Balakrishnan and T. Reps

Because malloc does not initialize the block of memory that it returns, VSA
assumes (safely) that elem->a and elem->nextmay contain any possible value
after the call to malloc. Because malloc M1 is a summary memory-region, only
weak updates can be performed at the instructions that initialize the fields of
elem. Therefore, the value-sets associated with the fields of elem remain �.

Fig. 4(d) shows the information pictorially. The double box denotes a sum-
mary object. Dashed edges denote may-points-to information. In our example,
VSA has recovered the following: (1) head and elem may point to one of the
objects represented by the summary object, (2) “elem->next” may point to any
possible location, and (3) “elem->a” may contain any possible value. �

3 An Abstraction for Heap-Allocated Storage

This section describes the recency-abstraction. The recency-abstraction is similar
in some respects to the allocation-site abstraction, in that each abstract node
is associated with a particular allocation site; however, the recency-abstraction
uses two memory-regions per allocation site s:

AllocMemRgn = {MRAB[s], NMRAB[s] | s an allocation site}
– MRAB[s] represents the most-recently-allocated block that was allocated

at s. Because there is at most one such block in any concrete configuration,
MRAB[s] is never a summary memory-region.

– NMRAB[s] represents the non-most-recently-allocated blocks that were al-
located at s. Because there can be many such blocks in a given concrete
configuration, NMRAB[s] is generally a summary memory-region.

In addition, each MRAB[s], NMRAB[s] ∈ AllocMemRgn is associated with a
“count” value, denoted by MRAB[s].count and NMRAB[s].count, respectively,
which is a value of type SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}.
The count value records a range for how many concrete blocks the memory-
region represents. While NMRAB[s].count can have any SmallRange value,
MRAB[s].count will be restricted to take on only values in {[0, 0], [0, 1], [1, 1]},
which represent counts for non-summary regions. Consequently, an abstract
transformer can perform a strong update on a field of MRAB[s].

In addition to the count, each MRAB[s], NMRAB[s] ∈ AllocMemRgn is also
associated with a “size” value, denoted by MRAB[s].size and NMRAB[s].size,
respectively, which is a value of type StridedInterval. The size value represents an
over-approximation of the set of sizes of the concrete blocks that the memory-
region represents. This information can be used to report potential memory-
access violations that involve heap-allocated data. For instance, if MRAB[s].size
of an allocation site s is 0[12, 12], the dereference of a pointer whose value-set is
[(MRAB[s] 	→ 0[16, 16])] would be reported as a memory-access violation.

Example 2. Fig. 5 shows a trace of the evolution of parts of the AbsEnvs for three
instructions in a loop during VSA. It is assumed that there are three fields in
the memory-regions MRAB and NMRAB (shown as the three rectangles within

Recency-Abstraction for Heap-Allocated Storage 231

MRAB and NMRAB). Double boxes around NMRAB objects in Fig. 5(c) and
(d) are used to indicate that they are summary memory-regions.

For brevity, in Fig. 5 the effect of each instruction is denoted using C syntax;
the original source code in the loop body contains a C++ statement “p = new
C”, where C is a class that has virtual methods f and g. The symbols f and g
that appear in Fig. 5 represent the addresses of methods f and g. The symbol p
and the two fields of VT represent variables of the Global region. The dotted lines
in Fig. 5(b)–(d) indicate how the value of NMRAB after the malloc statement
depends on the value of MRAB and NMRAB before the malloc statement.

The AbsEnvs stabilize after four iterations. Note that in each of Fig. 5(a)–
(d), it can be established that the instruction “p->vt = &VT” modifies exactly
one field in a non-summary memory-region, and hence a strong update can be
performed on p->vt. This establishes a definite link—i.e., a must -point-to link—
between MRAB and VT. The net effect is that the analysis establishes a definite
link between NMRAB and VT as well: the vt field of each object represented
by NMRAB must point to VT. �

Example 3. Fig. 6 shows the improved VSA information recovered for the pro-
gram from Fig. 4 at the end of the loop when the recency-abstraction is used.
In particular, we have the following information:

– elem and head definitely point to the beginning of the MRAB region.
– elem->a contains the values (or global addresses) {0, 1, 2, 3, 4}.
– elem->nextmay be 0 (NULL) or may point to the beginning of the NMRAB

region.
– NMRAB.a contains the values (or global addresses) {0, 1, 2, 3, 4}.
– NMRAB.next may be 0 (NULL) or may point to the beginning of the NM-

RAB region. �
This idea is formalized with the following basic domains (where underlining
indicates differences from the domains given in §2):

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥

VarEnv[R] = VarR → ValueSet
SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}

AllocAbsEnv[R] = SmallRange× StridedInterval × VarEnv[R]

The analysis associates each program point with an AbsMemConfig:

AbsEnv =

(register → ValueSet)
× ({Global} → VarEnv[Global])
× (Proc → VarEnv[Proc]⊥)
× (AllocMemRgn → AllocAbsEnv[AllocMemRgn])

AbsMemConfig = (CallStringk → AbsEnv⊥)

Let count, size, and varEnv, respectively, denote the SmallRange,
StridedInterval, and VarEnv[AllocMemRgn] associated with a given AllocMemRgn.

232 G. Balakrishnan and T. Reps

MRAB VT

MRAB VT

f
g

f
g

f
g

º
º
º

º
º

p = malloc()

p→vt = &VT

§

while . . .

T

F

p

p

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

º
º
º

º
º

v

v

v

MRAB VT

p

p

p

p = malloc()

p→vt = &VT

§

while . . .

T

F

s

s

s

(a) (b)

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

7

º
º
º

º
º

v w

v 7 w

v 7 w

MRAB VT

p

p

p

p = malloc()

p→vt = &VT

§

while . . .

T

F

s

s

ss

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

7

º
º
º

º
º

v

v 7 w

v 7 w

MRAB VT

v 7 w

p

p

p

p = malloc()

p→vt = &VT

§

while . . .

T

F

ss

s

s

(c) (d)

Fig. 5. A trace of the evolution of parts of the AbsEnvs for three instructions in a
loop. (Values v and w are unspecified values presented to illustrate that � is applied on
corresponding fields as the previous MRAB value is merged with NMRAB during the
abstract interpretation of an allocation site.)

MRAB NMRAB

head
0,1[0,4] 0,1[0,4]

elem

Fig. 6. Improved VSA information for the program from Fig. 4 at the end of the loop
(i.e., just after L1) when the recency-abstraction is used. (The double box denotes a
summary region. Dashed edges denote may-points-to information.)

A given absEnv ∈ AbsEnv maps allocation memory-regions, such as MRAB[s] or
NMRAB[s], to 〈count, size, varEnv〉 triples.

The transformers for various operations are defined as follows:
– At the entry point of the program, the AbsMemConfig that describes the

initial state records that, for each allocation site s, the AllocAbsEnvs for
both MRAB[s] and NMRAB[s] are 〈[0, 0],⊥StridedInterval, λvar.⊥ValueSet〉.

– The transformer for allocation site s transforms absEnv to absEnv′, where
absEnv′ is identical to absEnv, except that all ValueSets of absEnv that contain

Recency-Abstraction for Heap-Allocated Storage 233

[..., MRAB[s] 	→ si1, NMRAB[s] 	→ si2, ...] become [..., ∅, NMRAB[s] 	→ si1

si2, ...] in absEnv′. In x86 code, return values are passed back in register eax.
Let size denote the size of the block allocated at the allocation site. The
value of size is obtained from the value-set associated with the parameter
of the allocation method. In addition, absEnv′ is updated on the following
arguments:

absEnv′(MRAB[s]) = 〈[0, 1], size, λvar.�ValueSet〉
absEnv′(NMRAB[s]).count = absEnv(NMRAB[s]).count +SR absEnv(MRAB[s]).count

absEnv′(NMRAB[s]).size = absEnv(NMRAB[s]).size
 absEnv(MRAB[s]).size
absEnv′(NMRAB[s]).varEnv = absEnv(NMRAB[s]).varEnv
 absEnv(MRAB[s]).varEnv

absEnv′(eax) = [(Global 	→ 0[0, 0]), (MRAB[s] 	→ 0[0, 0])]

where +SR denotes SmallRange addition. In the present implementation, we
assume that an allocation always succeeds; hence, in place of the first and
last lines above, we use

absEnv′(MRAB[s]) = 〈[1, 1], size, λvar.�ValueSet〉
absEnv′(eax) = [(MRAB[s] 	→ 0[0, 0])].

Consequently, the analysis only explores the behavior of the system on exe-
cutions in which allocations always succeed.

– The join absEnv1
absEnv2 of absEnv1, absEnv2 ∈ AbsEnv is performed point-
wise; in particular,

absEnv′(MRAB[s]) = absEnv1(MRAB[s])
 absEnv2(MRAB[s])
absEnv′(NMRAB[s]) = absEnv1(NMRAB[s])
 absEnv2(NMRAB[s])

where the join of two AllocMemRgns is also performed pointwise:

〈count1, size1, varEnv1〉
 〈count2, size2, varEnv2〉
= 〈count1
 count2, size1
 size2, varEnv1
 varEnv2〉.

In all other abstract transformers (e.g., assignments, data movements, interpre-
tation of conditions, etc.), MRAB[s] and NMRAB[s] are treated just like other
memory regions—i.e., Global and the AR-regions—with one exception:
– During VSA, all abstract transformers are passed a memory-region

status map that indicates which memory-regions, in the context
of a given call-string suffix cs, are summary memory-regions. The
summary-status information for MRAB[s] and NMRAB[s] is ob-
tained from the values of AbsMemConfig(cs)(MRAB[s]).count and
AbsMemConfig(cs)(NMRAB[s]).count, respectively.

4 Experiments

This section describes the results of our preliminary experiments. The first three
columns of numbers in Tab. 1 show the characteristics of the set of examples

234 G. Balakrishnan and T. Reps

Table 1. Characteristics of the example programs, together with the distribution of
the number of callees at indirect call-sites and the running times for VSA. The bold
entry indicates that eight call-sites in deriv1 are identified as definitely unreachable.

x86 Procs # Indirect ⊥ 1 2 ≥3 � % Reachable Time
Instructions call-sites call-sites resolved (secs)

NP 252 5 6 0 0 6 0 0 100 1
primes 294 9 2 1 1 0 0 1 50 <1
family 351 9 3 0 3 0 0 0 100 1
vcirc 407 14 5 0 5 0 0 0 100 <1
fsm 502 13 1 0 1 0 0 0 100 5
office 592 22 4 0 4 0 0 0 100 <1
trees 1299 29 3 1 0 0 0 2 0 9
deriv1 1369 38 18 8 8 2 0 0 100 4
chess 1662 41 1 0 0 0 0 1 0 16
objects 1739 47 23 18 0 4 0 1 17 2
simul 1920 60 3 2 0 0 0 1 0 6
greed 1945 47 17 6 10 0 0 1 59 10
shapes 1955 39 12 4 4 3 0 1 58 10
ocean 2552 61 5 3 0 0 0 2 0 17
deriv2 2639 41 56 33 22 0 0 1 39 2

that we used in our evaluation. These programs were originally used by Pande
and Ryder in [29] to evaluate their algorithm for resolving virtual-function calls
in C++ programs. The programs in C++ were compiled without optimization3

using the Microsoft Visual Studio 6.0 compiler and the .obj files obtained from
the compiler were analyzed. We did not make use of debugging information in
the experiments.

The final seven columns of Tab. 1 report the performance (both accuracy and
time) of the version of VSA that incorporates the recency abstraction to help
resolve virtual-function calls.
– In these examples, every indirect call-site in the executable corresponds to

a virtual-function call-site in the source code.
– The column labeled ⊥ shows the number of (apparently) unreachable indirect

call-sites.
– The column labeled � shows the number of reachable indirect call-sites at

which VSA could not determine the targets. A non-zero value in the �-
column means that at some indirect call-sites VSA could not resolve the
virtual-function call to a specific subset of the procedures. VSA reports such
call-sites to the user, but does not explore any procedures from that call-site.
This is a source of false negatives, and occurred for 9 of the 15 programs. On

3 Note that unoptimized programs generally have more memory accesses than opti-
mized programs; optimized programs make more use of registers, which are easier
to analyze than memory accesses. Thus, for static analysis of stripped executables,
unoptimized programs generally represent a greater challenge than optimized pro-
grams.

Recency-Abstraction for Heap-Allocated Storage 235

the other hand, for the 6 programs for which the �-column is 0, any call-
sites reported in the ⊥-column are definitely unreachable. In particular, the
eight call-sites that were identified as unreachable in deriv1 are definitely
unreachable.

– The other columns show the distribution of the number of targets at the
indirect call-sites. For example, the column labeled 1 denotes the number of
indirect call-sites that had a single target.

It is important to realize that these results are obtained solely by using ab-
stract interpretation to track the flow of data through memory (including the
heap). The analysis algorithm does not rely on symbol-table or debugging in-
formation; instead it uses the structure-discovery mechanism described in [4].
On average, our method resolved 55% of the virtual-function call-sites, whereas
previous tools for analyzing executables—such as IDAPro, as well as our own
previous work using VSA without the recency abstraction [3]—fail to resolve any
of the virtual-function call-sites.

Manual inspection revealed that most of the situations in which VSA could
not resolve indirect call-sites were due to VSA not being able to establish that
some loop definitely initializes all of the elements of some array. The problem is
as follows: In some of the example programs, an array of pointers to objects is
initialized via a loop. These pointers are later used to perform a virtual-function
call. Even when VSA succeeded in establishing the link between the VFT-field
and the virtual-function table, VSA could not establish that all elements of the
array are definitely initialized by the instruction in the loop, and hence the
abstract value that represents the values of the elements of the array remains �.

Note that this issue is orthogonal to the problem addressed in this paper.
That is, even if one were to use other mechanisms (such as the one described in
[15]) to establish that all the elements of an array are initialized, the problem of
establishing the link between the VFT-field and the virtual-function table still
requires mechanisms similar to the recency-abstraction.

This issue makes it difficult for us to give a direct comparison of our approach
with that of [29]; in particular, [29] makes the unsafe assumption that elements
in a array of pointers (say, locally allocated or heap allocated) initially point
to nothing (∅), rather than to anything (�). Suppose that p[] is such an array
of pointers and that a loop initializes every other element with &a. A sound
result would be that p’s elements can point to anything. However, because in
the algorithm used in [29] the points-to set of p is initially ∅, [29] would determine
that p’s elements point to a, which is unsound.

5 Related Work

Some of the relationships between our approach and past work on abstractions
of heap-allocated storage were already mentioned near the end of §1.

The recency-abstraction is similar in flavor to the allocation-site abstrac-
tion [6,24], in that each abstract node is associated with a particular alloca-
tion site; however, the recency-abstraction is designed to take advantage of the

236 G. Balakrishnan and T. Reps

fact that VSA is a flow-sensitive, context-sensitive algorithm. Note that if the
recency-abstraction were used with a flow-insensitive algorithm, it would pro-
vide little additional precision over the allocation-site abstraction: because a
flow-insensitive algorithm has just one abstract memory configuration that ex-
presses a program-wide invariant, the algorithm would have to perform weak
updates for assignments to MRAB nodes (as well as for assignments to NMRAB
nodes); that is, edges emanating from an MRAB node would also have to be
accumulated.

With a flow-sensitive algorithm, the recency-abstraction uses twice as many
abstract nodes as the allocation-site abstraction, but under certain conditions it
is sound for the algorithm to perform strong updates for assignments to MRAB
nodes, which is crucial to being able to establish a definite link between the set
of objects allocated at a certain site and a particular virtual-function table.

If one ignores actual addresses of allocated objects and adopts the fiction that
each allocation site generates objects that are independent of those produced
at any other allocation site, another difference between the recency-abstraction
and the allocation-site abstraction comes to light:

– The allocation-site abstraction imposes a fixed partition on the set of allo-
cated nodes.

– The recency-abstraction shares the “multiple-partition” property that one
sees in the shape-analysis abstractions of [33]. An MRAB node represents a
unique node in any given concrete memory configuration—namely, the most
recently allocated node at the allocation site. In general, however, an abstract
memory configuration represents multiple concrete memory configurations,
and a given MRAB node generally represents different concrete nodes in the
different concrete memory configurations.

Hackett and Rugina [17] describe a method that uses local reasoning about in-
dividual heap locations, rather than global reasoning about entire heap abstrac-
tions. In essence, they use an independent-attribute abstraction: each “tracked
location” is tracked independently of other locations in concrete memory configu-
rations. The recency-abstraction is a different independent-attribute abstraction.

The use of count information on (N)MRAB nodes was inspired by the heap
abstraction of Yavuz-Kahveci and Bultan [39], which also attaches numeric in-
formation to summary nodes to characterize the number of concrete nodes rep-
resented. The information on summary node u of abstract memory configuration
S describes the number of concrete nodes that are mapped to u in any concrete
memory configuration that S represents. Gopan et al. [14] also attach numeric
information to summary nodes; however, such information does not provide a
characterization of the number of concrete nodes represented: in both the present
paper and [39], each concrete node that is combined into a summary node con-
tributes 1 to a sum that labels the summary node; in contrast, when concrete
nodes are combined together in the approach presented in [14], the effect is to
create a set of values (to which an additional numeric abstraction may then be
applied).

Recency-Abstraction for Heap-Allocated Storage 237

The size information on (N)MRAB nodes can be thought of as an abstraction
of auxiliary size information attached to each concrete node, where the concrete
size information is abstracted in the style of [14].

Strictly speaking, the use of counts on abstract heap nodes lies outside the
framework of [33] for program analysis using 3-valued logic (unless the framework
were to be extended with counting quantifiers [21, Sect. 12.3]). However, the use
of counts is also related to the notion of active/inactive individuals in logical
structures [30], which has been used in the 3-valued logic framework to give a
more compact representation of logical structures [26, Chap. 7]. In general, the
use of an independent-attribute method in the heap abstraction described in
§3 provides a way to avoid the combinatorial explosion that the 3-valued logic
framework suffers from: the 3-valued logic framework retains the use of separate
logical structures for different combinations of present/absent nodes, whereas
counts permit them to be combined.

Several algorithms [2,5,10,37,29] have been proposed to resolve virtual-function
calls in C++ and Java programs. For each pointer p, these algorithms determine
an over-approximation of the set of types of objects that p may point to. When p is
used in a virtual-function call invocation, the set of types is used to disambiguate
the targets of the call. Static information such as the class hierarchy, aliases, the set
of instantiated objects, etc. are used to reduce the size of the set of types for each
pointer p. Because we work on stripped executables, type information is not avail-
able. The method presented in §3 analyzes the code in the constructor that initial-
izes the virtual-function pointer of an object to establish a definite link between the
object and the virtual-function table, which is subsequently used to resolve virtual-
function calls. Moreover, algorithms such as Rapid Type Analysis (RTA) [2] and
Class Hierarchy Analysis (CHA) [10] rely on programs being type-safe. The results
of CHA and RTA cannot be relied on in the presence of arithmetic operations on
addresses, which is present in executables.

References

1. L. O. Andersen. Binding-time analysis and the taming of C pointers. In PEPM,
pages 47–58, 1993.

2. D.F. Bacon and P.F. Sweeney. Fast static analysis of C++ virtual function calls. In
Object-Oriented Programming, Systems, Languages, and Applications, pages 324–
341, 1996.

3. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Comp. Construct., pages 5–23, 2004.

4. G. Balakrishnan and T. Reps. Recovery of variables and heap structure in x86
executables. Tech. Rep. 1533, Comp. Sci. Dept., Univ. of Wisconsin, Madison,
US., September 2005.

5. B. Calder and D. Grunwald. Reducing indirect function call overhead in C++
programs. In Princip. of Prog. Lang., pages 397–408, 1994.

6. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
Prog. Lang. Design and Impl., pages 296–310, 1990.

7. H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties
of software. In Conf. on Comp. and Commun. Sec., pages 235–244, November 2002.

238 G. Balakrishnan and T. Reps

8. B.-C. Cheng and W.W. Hwu. Modular interprocedural pointer analysis using
access paths: Design, implementation, and evaluation. In Prog. Lang. Design and
Impl., pages 57–69, 2000.

9. M. Das. Unification-based pointer analysis with directional assignments. In Prog.
Lang. Design and Impl., pages 35–46, 2000.

10. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In European Conference on Object-Oriented
Programming, pages 77–101, 1995.

11. D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Op. Syst. Design and
Impl., pages 1–16, 2000.

12. M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis using
instantiation constraints. In Prog. Lang. Design and Impl., 2000.

13. J.S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In SAS, 2000.

14. D. Gopan, F. DiMaio, N.Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In Tools and Algs. for the Construct. and Anal. of Syst.,
pages 512–529, 2004.

15. D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In Princip. of Prog. Lang., pages 338–350, 2005.

16. B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August.
Practical and accurate low-level pointer analysis. In 3nd IEEE/ACM Int. Symp.
on Code Gen. and Opt., pages 291–302, 2005.

17. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
Princip. of Prog. Lang., pages 310–323, 2005.

18. M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer alias
analyses. In SAS, 1998.

19. S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. In
Prog. Lang. Design and Impl., pages 28–40, 1989.

20. IDAPro disassembler, http://www.datarescue.com/idabase/.
21. N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.
22. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-

tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 4, pages 102–131. Prentice-Hall, Englewood Cliffs, NJ,
1981.

23. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 12, pages 380–384. Prentice-Hall, Englewood Cliffs, NJ,
1981.

24. N.D. Jones and S.S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Princip. of Prog. Lang.,
pages 66–74, 1982.

25. J.R. Larus and P.N. Hilfinger. Detecting conflicts between structure accesses. In
Prog. Lang. Design and Impl., pages 21–34, 1988.

26. T. Lev-Ami. TVLA: A framework for Kleene based static analysis. Master’s thesis,
Tel-Aviv University, Tel-Aviv, Israel, 2000.

27. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work
for verification: A case study. In Int. Symp. on Softw. Testing and Analysis, pages
26–38, 2000.

28. A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object sensitivity for
points-to analysis for Java. TOSEM, 2005.

Recency-Abstraction for Heap-Allocated Storage 239

29. H. Pande and B. Ryder. Data-flow-based virtual function resolution. In SAS, pages
238–254, 1996.

30. S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. In
Symp. on Princ. of Database Syst., 1994.

31. T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from
low-level code. In PEPM, 2006.

32. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. Trans. on Prog. Lang. and Syst., 20(1):1–50, January
1998.

33. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
Trans. on Prog. Lang. and Syst., 24(3):217–298, 2002.

34. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications, chapter 7, pages 189–234.
Prentice-Hall, 1981.

35. B. Steensgaard. Points-to analysis in almost-linear time. In Princip. of Prog. Lang.,
1996.

36. J. Stransky. A lattice for abstract interpretation of dynamic (Lisp-like) structures.
Inf. and Comp., 101(1):70–102, Nov. 1992.

37. V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
and C. Godin. Practical virtual method call resolution for Java. In Object-Oriented
Programming, Systems, Languages, and Applications, pages 264–280, 2000.

38. J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analyses
using binary decision diagrams. In Prog. Lang. Design and Impl., 2004.

39. T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists
with counters. In SAS, 2002.

Interprocedural Shape Analysis with
Separated Heap Abstractions

Alexey Gotsman1, Josh Berdine2, and Byron Cook2

1 University of Cambridge
Alexey.Gotsman@cl.cam.ac.uk
2 Microsoft Research Cambridge
{jjb, bycook}@microsoft.com

Abstract. We describe an interprocedural shape analysis that makes
use of spatial locality (i.e. the fact that most procedures modify only a
small subset of the heap) in its representation of abstract states. Instead
of tracking reachability information directly and aliasing information in-
directly, our representation tracks reachability indirectly and aliasing
directly. Computing the effect of procedure calls and returns on an ab-
stract state is easy because the representation exhibits spatial locality
mirroring the locality that is present in the concrete semantics. The ben-
efits of this approach include improved speed, support for programs that
deallocate memory, the handling of bounded numbers of heap cutpoints,
and support for cyclic and shared data structures.

1 Introduction

Interprocedural shape analysis engines infer and prove properties about the
shapes of dynamically-allocated linked data structures constructed by imperative
programs with (possibly recursive) procedures. We present a local interprocedu-
ral shape analysis tool, called Summate, that is efficient and more accurate than
previously reported results. The tool’s advantage comes from the representation
used for abstract program states, which consists of circumscribed portions of a
program’s heap. The shape of an abstracted portion of heap is determined solely
by the representation of only that portion of heap. Representing heap portions
independently is accomplished by building the shape of the heap into the no-
tion of abstraction, using formulæ in separation logic. That is, abstracted heaps
have known shape and are specified using inductive predicates that make pos-
itive statements (saying what the shape is, rather than what it is not) of each
circumscribed portion of the abstracted heap.

The benefit of our representation for interprocedural analysis is that, when
a procedure is called, the portion of the heap that it will not access can easily
be separated from the rest, and easily recombined with the modified heap upon
procedure return. Furthermore, spatial locality of code (i.e. the fact that each
program statement accesses only a very limited portion of the concrete state)
matches the spatial locality in the representation, dramatically reducing the
amount of reasoning that must be performed when summarizing how procedure

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 240–260, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Interprocedural Shape Analysis with Separated Heap Abstractions 241

calls and returns change the symbolic representation of a program’s state. This is
because each instruction can only affect one of the separated heap portions—the
transfer functions are parametric with respect to the untouched heap portions.

Our approach provides support for cyclic and shared data structures, proce-
dures that deallocate memory, and a bounded number of heap cutpoints1 [13]—
all of which appear commonly in programs. For this reason our analysis is more
accurate and applicable: it can be directly applied to, and give precise results
for, a larger set of programs than previously reported tools.

Note that our approach also has a limitation: it is specialized to a limited set
of data-structures such as linked lists, doubly-linked lists and trees. Our analysis
is fortified with inductive axioms from [3]. These axioms accelerate the analysis.
However: in order to support new data structures we would need to do additional
manual work up-front before fortifying the analysis further. We return to this
point in Sect. 6.

2 Fundamentals

Summate implements a fixed-point computation over an abstract domain built
from assertions expressed in separation logic. In essence, the analysis performed
by Summate can be viewed as a method of constructing proofs in standard
separation logic (in fact, our proof of the analysis’ soundness is based on this
observation). In this section we describe Summate’s fundamental operations as
proof rules in separation logic. Later, in Sect. 3, we go into more specific detail.

2.1 Abstract Representation of States

Summate’s states denote sets of store-heap pairs, and are represented as formulæ
of separation logic’s assertion language, which include:

F, E ::= nil | x | x′ expressions
Q, P ::= emp | E 	→F | P ∗ Q | true | E=F | P ∧ Q | P ∨ Q | · · · assertions

Expressions are independent of the heap, while assertions are not. Primed vari-
ables are implicitly existentially quantified. The formal semantics of assertions
is standard, e.g. as in [12], but informally:

– emp describes states where the heap is empty, with no allocated locations;
– E 	→F describes states where the heap contains a single allocated location

E, with contents F ;
– P ∗Q describes states where the heap is the union of two disjoint heaps (with

no locations in common), one satisfying P and the other satisfying Q;
– true describes all states;

1 Roughly speaking: a cutpoint is a location in the portion of the heap that the pro-
cedure may access distinct from all the actual parameters of the procedure, that the
rest of the state knows about in some way, either as the contents of a heap location
or value of a variable.

242 A. Gotsman, J. Berdine, and B. Cook

– E=F describes states where the store gives E and F equal values;
– P ∧ Q describes states which satisfy both P and Q; and
– P ∨ Q describes states which satisfy either P or Q.

Possibly infinite sets of concrete states are finitely represented using induc-
tive predicate assertions. For example, using the predicate ls(x, y) defined as
x�=y ∧ (x	→y ∨ ∃x′. x	→x′ ∗ ls(x′, y)) the symbolic heap ls(x, nil) represents all of
the states in which x�=nil and the heap has the shape of a linked list starting
from location x and ending with nil. There are unboundedly many such states,
as the length of the list is unconstrained. Similarly, representations built from
formulæ such as tree(x) or dlist(p, f, n, b) [12] constitute abstractions of unbound-
edly many concrete states, shaped like trees or doubly-linked lists. In each case,
the abstracted heaps have known shape, specified declaratively by an induc-
tive predicate. The abstraction comes from not tracking the precise number of
inductive unfoldings from the base case.

2.2 Local Reasoning for Procedures

Interprocedural analyses commonly compute so-called procedure summaries that
approximate the semantics of a procedure by associating representations of
the program state at procedure entry to corresponding result states at pro-
cedure exit. We represent such computed summaries as a sequence Γ of triples
{P} f(�x) {Q} in separation logic.2 In separation logic, a triple {P} C {Q} is
valid if executing command C from any state satisfying assertion P does not
violate memory safety and, if execution terminates, results in a state satisfying
assertion Q. Lying behind this is a semantics of commands which results in a
memory fault when accessing dangling pointers or other memory locations not
guaranteed to be allocated. So validity of {P} C {Q} ensures that P describes
all the memory (except that which gets freshly allocated) that may be accessed
during the execution of C, that is, the footprint of C.

The technical foundation of our approach to local interprocedural analysis is
the Frame rule [10]:

Frame
{P} C {Q}

{P ∗ R} C {Q ∗ R}
C does not modify variables in R

If P ensures C’s footprint is allocated, then according to Frame, executing C
in the presence of additional memory R results in the same behavior, and C
does not touch the extra memory. Since we represent concrete states with for-
mulæ, Frame expresses how commands exhibit spatial locality in the abstract
representation.

Our aim is to define an analysis which exploits this locality by using Frame
in the case where C is a recursive procedure call f(�x) in order to send only part
2 In this way, each triple in Γ corresponds to an entry in the table computed by

tabulation algorithms such as [11], where the set of exit states there is expressed
using logical disjunction in the Q’s.

Interprocedural Shape Analysis with Separated Heap Abstractions 243

of the heap P at the call site to the procedure, while holding the rest of the
heap R aside, to be added to the heap Q that results from executing f . This is
formalized in the following proof rule for local recursive procedure calls:

LocalProcCall
S � Pσ ∗ R Qσ ∗ R � T

Γ , {P} f(�x) {Q} ({S} f(�xσ) {T }

This rule is not primitive, but derivable (see Appendix A) from Frame and
Hoare logic rules. Here � means semantic consequence and σ is an injective
substitution map from variables, including the formals, to variables, including
the actuals. σ adapts the hypothesis (i.e. the procedure summary), which is
expressed not in terms of the actual, but formal, parameters (and possibly other
variables, as discussed below), to a specification expressed in terms of the actual
parameters. The rule LocalProcCall says that to compute the post-heap of a
call to procedure f starting from pre-heap S:

1. split S into two disjoint (∗-conjoined) heaps Pσ (a local heap) and R (a
frame);

2. express the pre-heap Pσ in terms of the formal parameters, yielding P , which
is applicable to the summary of the procedure f ;

3. compute the post-heap Q of the procedure call on P ;
4. express Q in terms of the actual parameters, yielding Qσ;
5. ∗-conjoin Qσ with the frame axiom R, yielding the post-heap T .

Note that the choice of splitting Pσ ∗ R of S is not important for soundness:
any splitting is sound, but if too small a heap Pσ is chosen, a false memory fault
will be discovered, and no post-heap Q will exist. Here (as in [15]) we choose to
split the heap so that we send the procedure all of the heap reachable from the
actual parameters.

2.3 Cutpoints

For the procedure call rules above, note that the free variables of the pre-
and post-conditions of the procedure summaries in Γ need not contain only
the formal parameters. For instance, {x	→y ∗ y 	→nil} f(x) {x	→y} is a per-
fectly reasonable procedure summary, whose pre- and post-conditions happen
to contain a variable y which does not occur in the command f(x). Such vari-
ables, commonly referred to as ghost variables, can be instantiated to whatever
value is appropriate at a particular call site using Hoare logic’s substitution
rule (Subst, see Appendix A), which carries over to our LocalProcCall-based
analysis.

For an instance of where this arises in programs, consider the code in Fig. 1,
which represents a sequence of operations on a stack s implemented as a linked-
list. Imagine that we are trying to summarize the effect that foo can have on the
stack passed to it. Notice that, while the stack s is reachable from foo, both i1
and i2 will contain pointers into s but are not reachable from foo. Pointers such

244 A. Gotsman, J. Berdine, and B. Cook

Node *s, *i1, *i2;

int x, y, z;

/* ... */

s = push(s, x);

i1 = iterator(s);

s = push(s, y);

i2 = iterator(s);

s = push(s, z);

foo(s);

i2 = next(i2);

assert(i1 == i2);

Fig. 1. Simple example code fragment with cutpoints

as i1 and i2 are known as cutpoints. It is difficult to make a scalable analysis
that will be accurate enough to prove that the assert cannot fail.

Without special consideration, cutpoints can be treated just as any other
ghost variable. Since we use the standard store-based semantics, and a sepa-
rated abstract representation, there are no problems splitting heaps in ways
that create pointers that dangle across the split. Hence, if we were not wor-
ried about computability and finiteness considerations, the presence of cutpoints
would be irrelevant: simply ignoring them and treating them just like any other
ghost variable is sound and maximally precise. As a result, our representation
enables our analysis to accurately and efficiently handle cutpoints: they cost
no more than any other variable which appears in procedure summary pre- or
post-conditions.

However, there is a problem in that just ignoring cutpoints potentially leads
to unboundedly many of them, which breaks finiteness of the abstract domain.
A solution is to abstract cutpoints beyond some bounded number by breaking
the connection between them and the pointers to them, that is, by forgetting
the destinations of pointers to cutpoints. In this manner, our analysis treats
bounded numbers of cutpoints, and is parametric in the bound.

Hoare logic’s rule of semantic consequence provides a mechanism for per-
forming this abstraction. A cutpoint c in heap splitting P ′ ∗ R can simply be
existentially quantified, since P ′ � ∃c. P ′ is a particular semantic consequence,
thereby breaking the connection between pointers in R to c. Quantifying cut-
points is productive since quantified variables do not contribute to the size of
the abstract domain, in contrast with unquantified variables. So, if a splitting
S � P ′∗R contains cutpoints �c, then we can abstract them using the derived rule:

LocalProcCallCut
S � P ′ ∗ R ∃�c. P ′ � Pσ Qσ ∗ R � T

Γ , {P} f(�x) {Q} ({S} f(�xσ) {T }

The operational reading of this rule is like that of LocalProcCall except that
after splitting the pre-state into P ′ ∗ R, the variables denoting cutpoints in P ′

should be existentially quantified.

Interprocedural Shape Analysis with Separated Heap Abstractions 245

3 Implementation of the Analysis

We consider a simple programming language of while loops and recursive pro-
cedures extended with the usual four heap operations for loading from, storing
to, allocating, and deallocating heap locations. Note, that although the analysis
presented in this section operates on the abstract domain of separation logic
formulæ including inductive predicates for lists only, the interprocedural anal-
ysis technique can be extended to include inductive predicates for other data
structures such as trees and doubly-linked lists.

The syntax of the language is defined as follows:

G ::= E=F | ¬(E=F) branch guards
S ::= skip | x:= E | x:= new() | assume(G) safe commands

A(E) ::= dispose(E) | x:= [E] | [E]:=F dangerous commands
T ::= S | A(E) | f(�x) atomic commands
C ::= T | if (G) {C} else {C} | while (G) {C} commands
D ::= f(�x) {local �y in C} procedure declarations
M ::= letrec D, . . . , D in main(�x) programs

Here variables x, y, . . . range over some infinite set Var; existentially quantified
variables x′, y′, . . . range over some disjoint infinite set Var′; and, for each pro-
gram, procedure names f range over some fixed finite set. We also assume given
a set of variables Ghost ⊂ Var used for ghost variables in the analysis to replace
cutpoints during the processing of procedure calls. Quantified variables cannot
appear in programs, but are included since expressions also appear in formulæ
(Sect. 2.1). For convenience of later definitions, commands S are syntactically
distinguished from commands A(E). The difference between the two is that for
a command S, execution is always safe, while execution of a command A(E)
may be unsafe, due to accessing heap location E.

Complications due to reference parameters are orthogonal to our concerns of
interprocedurality, so we only consider procedures with value parameters. Ad-
ditionally, for simplicity of presentation, we treat only programs without global
variables or functions returning values (standard treatments such as [8, 5] can be
adopted). As a result, for f(�x) {local �y in C} we require that the list of local
variables �y contain all the free variables fv(C) of C except the formals �x. Finally,
we assume programs have been syntactically preprocessed to ensure �x ∩ �y = ∅
for each procedure declaration, and actual parameters are distinct variables.

The informal meaning of commands is as follows:

– skip accesses no heap, and has no effect;
– x:= E does not access the heap, and results in a state where x has the value

of E (using the overwritten value of x);
– allocation x:= new() requires no heap and returns an uninitialized location

that is distinct from all other allocated locations (though may be pointed to
by a previously dangling pointer);

246 A. Gotsman, J. Berdine, and B. Cook

– dispose takes a single location and deallocates it, possibly creating dangling
pointers in the process;

– x:= [E] accesses heap location E and results in a state where the heap is
unmodified and x has value equal to the contents of E;

– [E]:= F accesses location E and changes its contents to F ;
– assume(G) acts as a filter on the state space of programs—G must be true

after assume is executed;
– and the meaning of the control-flow commands is standard.

We will argue correctness of the analysis by generating proofs in separation
logic out of its results, rather than directly in terms of the concrete semantics of
the programming language. Therefore we do not present the concrete semantics
in any detail here, it is entirely standard and appears elsewhere (such as [12]).
Instead, the separation logic axioms for commands [12] together with the rules
from the previous section specify the meaning of the programming language
in enough detail for our present purpose. We use the following rule (which is
derived from standard rules for recursive procedure declarations [8] and variable
declarations, see Appendix A) to define the semantics of procedure declarations:

RecProcDeclLocals
Γ , {P} f(�x) {Q} ({P} C {T } ∃�y. T � Q Γ , {P} f(�x) {Q} ({R} C′ {S}

Γ ({R} letrec f(�x) {local �y in C} in C′ {S}

where �x ∩ �y = ∅, �y ∩ fv(P) = ∅, fv(P) is the set of all free variables of P . The
side condition �y ∩ fv(P) = ∅ is needed so that variables in P do not clash with
local variables of f . Existential quantification of the local variables ensures that
they are not visible to a caller after the call returns.

3.1 Symbolic Heaps

Summate’s analysis represents sets of concrete program states with sets of sym-
bolic heaps Q of form Π ∧ Σ, where Π and Σ are given by:

Π ::= true | Π ∧ Π | E=E Σ ::= emp | Σ ∗ Σ | E 	→E | ls(E, E) | junk

Symbolic heap formulæ consist of two parts: a Boolean formula Π built from
= and ∧ which is insensitive to the heap; and a heap formula Σ which expresses
heap shape. The meaning of these formulæ is as in Sect. 2.1, with the addition
that junk describes at least one allocated location. Recall also that ls(E, F)
describes non-empty acyclic singly-linked lists. Cyclic lists can be expressed using
multiple predicates: e.g. ls(x, y′) ∗ ls(y′, x). Note that x	→x is a cycle of length
one, while ls(x, x) is inconsistent.

Formulæ are considered up to symmetry of =, permutations across ∧ and
∗ (e.g. Π ∧ B0 ∧ B1 and Π ∧ B1 ∧ B0 are equated), unit laws for true and
emp, idempotency of − ∗ junk (e.g. junk ∗ junk and junk are equated), adding or
removing consequences of equalities present in the pure part, and interchanging
equal (due to the equalities in the pure part) variables in the spatial part. So,
x = y∧y = z ∧ ls(v, x) and x = y∧y = z∧x = z ∧ ls(v, y) are considered equal.
We denote the set of symbolic heaps with SH.

Interprocedural Shape Analysis with Separated Heap Abstractions 247

3.2 Intraprocedural Analysis

As a part of its interprocedural analysis, Summate must also implement an
intraprocedural analysis. For this Summate implements the analysis from [6, 4].
This analysis is defined in Appendix B. A complete exposition is found in [6].

The intraprocedural analysis defines a set of canonical symbolic heaps CSH ⊂
SH on which the analysis operates, a canonicalization function can:SH → CSH,
which returns a canonical symbolic heap abstracting a given symbolic heap, and a
decision procedure for consistency of canonical symbolic heaps. Note that canon-
ical symbolic heaps are written in the same language as symbolic heaps, i.e. they
can have existential quantifiers. A key property of the abstract domain proved
in [6] is that although the number of symbolic heaps over a finite number of un-
quantified variables is infinite, the domain of consistent and canonical symbolic
heaps over a finite number of unquantified variables is finite. Hence, due to the
presence of canonicalization in the analysis, fixed-point computations over the
abstract domain converge in a finite number of steps.

For each atomic command C the intraprocedural analysis defines a transfer
function AC :SH → (2CSH ∪ {�}) that, given an initial symbolic heap, returns
either � (meaning that a possible memory error has been encountered) or a set
of consistent canonical symbolic heaps representing the effect of the command
on the initial symbolic heap. If the former case is encountered, our analysis
terminates and reports a possible bug.

While performing fixed-point computations both our intraprocedural and in-
terprocedural analyses use subset inclusion as a domain ordering between sets
of symbolic heaps. Other, less coarse, approximations of entailment between
symbolic heaps (e.g. [3, 2]) would be possible (but note that convergence of
fixed-point computation is a question if the entailment prover is not transitive).

3.3 Analyzing Procedure Calls and Returns

In this section we give a detailed explanation of how Summate treats procedure
calls and returns. This treatment follows the operational reading of the rules
LocalProcCall and RecProcDeclLocals.

According to the proof rule LocalProcCall, to process procedure call f(�xθ)
we have to determine which part of the symbolic heap at the call-site to send
to the procedure. As noted in Sect. 2.2, we send to the procedure the part of
the heap reachable from the actual parameters in the formula representing the
symbolic heap. Formally, let Σ be the spatial part of a consistent symbolic heap
and U be a set of expressions. Let V be the minimal set of expressions such that:

U ∪ {F | ∃E, Σ1. E ∈ V and Σ = H(E, F) ∗ Σ1} ⊆ V

Here H(E, F) stands for either E 	→F or ls(E, F). We denote the part of Σ
reachable from U with Reach(Σ, U) and define it as the ∗-conjunction of the
following set of formulæ:

{Σ1 | ∃E, F, Σ2. E ∈ V and Σ = Σ1 ∗ Σ2 and Σ1 = H(E, F)}

248 A. Gotsman, J. Berdine, and B. Cook

Let Unreach(Σ, U) be the formula consisting of all ∗-conjuncts from Σ that are
not in Reach(Σ, U).

Consider a procedure call statement f(�xθ) with formal parameters �x and the
map from formal parameters to actual parameters θ and let Qcall = Π ∧ Σ be
the heap at the call site. To take the equalities in Π into account while computing
the part of Σ reachable from actual parameters we require that the variables in
Σ be chosen so that for each equivalence class generated by the equalities in Π
at most one variable from this equivalence class is present in Σ (with preference
given to unquantified variables over quantified ones, and to actual parameters
over other variables). We denote the part of the heap to be sent to the procedure
with local(Π ∧ Σ, �xθ) and define it as:

local(Π ∧ Σ, �xθ) = can
(
∃
(
fv(Π ∧ Σ)�fv(Reach(Σ, �xθ))

)
. Π ∧ Reach(Σ, �xθ)

)
The local heap is obtained by taking the part of the heap reachable in the formula
from the actual parameters, projecting it onto those variables appearing in the
representation of the reachable heap, and canonicalizing the result. The set of
cutpoints in the result is Cut = fv(local(Qcall, �xθ))��xθ. The frame in this case
is given by frame(Π ∧ Σ, �xθ) = Π ∧ Unreach(Σ, �xθ).

Having obtained a local heap we have to express it in terms of the formal
parameters. As follows from the proof rule RecProcDeclLocals, we also have
to rename cutpoints so as they do not clash with the local variables of the
procedure f . Hence, we rename them to variables in Ghost. Let ghost(V) be a
function that given the set of variables V returns a bijective partial function
from variables in Ghost to V and let η = ghost(Cut). Then the heap Qentry at
the entry point of the procedure f (expressed in terms of formal parameters and
ghost variables) is given by local(Qcall, �xθ)(θ ∪ η)−1.

Example 1. Suppose that before executing the procedure call foo(a) (with the
formal parameter x) we have a symbolic heap a=d ∧ ls(a, b) ∗ ls(b, nil) ∗ c 	→b so
that the tail of the list pointed to by a is shared. Then the part of the heap
reachable from actual parameters (in this case just a) is ls(a, b) ∗ ls(b, nil) and
the local heap is can(a=d′ ∧ ls(a, b) ∗ ls(b, nil)) = ls(a, b) ∗ ls(b, nil). We remind
the reader that primed variables are implicitly existentially quantified. Here b is
a cutpoint, so we choose a variable X ∈ Ghost and rename b to X and a to x
obtaining ls(x, X) ∗ ls(X, nil) as a heap at the entry point of the procedure. �

Note that for simplicity of presentation the analysis described above precisely
handles only the cutpoints that arise from stack sharing, i.e. in the situation
when a location in the local heap is equal to the value of a variable of the
caller and distinct from all the actual parameters. Such cutpoints are defined
by unquantified variables in the symbolic heap at the call-site. The other kind
of cutpoints result from heap sharing, i.e. in the situation when a location in
the local heap is equal to the contents of a location in the frame and distinct
from all the local variables of the caller. Such cutpoints are defined by quantified
variables in the symbolic heap at the call-site (e.g. x′ in the local heap ls(x, x′)

Interprocedural Shape Analysis with Separated Heap Abstractions 249

with frame ls(y, x′) where x is an actual parameter and y is a local variable of
the caller). This kind of cutpoints can be handled precisely in a similar fashion
(i.e. by replacing them with ghost variables in the local heap).

The way of processing procedure calls described above gives the most precise
treatment to cutpoints—no information is lost when the heap at the call site
has a cutpoint. However, in the case of recursive procedures the renaming of
cutpoints to ghost variables can result in the number of unquantified variables
in canonical symbolic heaps growing unboundedly. At the same time, as noted
in Sect. 3.1, the abstract domain of canonical symbolic heaps is finite only if
the number of unquantified variables is bounded. Hence, as it stands now, the
analysis may not terminate. To solve this problem we put a bound m on the
maximal number of cutpoints that can appear in a symbolic heap, i.e. on the
cardinality of the set Ghost. Our analysis is parametric in this bound. When-
ever during a call the number of cutpoints exceeds m, we existentially quantify
the new cutpoints introduced by this call (i.e. variables in Cut�Ghost) using
the proof rule LocalProcCallCut. This guarantees finiteness of the abstract
domain, and hence, termination of the analysis. The local heap in the case when
we abstract cutpoints is defined as:

local(Π ∧ Σ, �xθ) =
can(∃(Cut�Ghost ∪ fv(Π ∧ Σ)�fv(Reach(Σ, �xθ))). Π ∧ Reach(Σ, �xθ))

Example 2. Consider the previous example and suppose that m=0. Then the
local heap will be can(a=d′ ∧ ls(a, b′) ∗ ls(b′, nil)) = ls(a, nil). We existentially
quantified the cutpoint and this resulted in it being eliminated by the subsequent
canonicalization. The heap at the entry point of the procedure is ls(x, nil). In this
case we lost the information about c pointing to a node in the list. �

We observe that the pathological cases where the number of cutpoints grows un-
boundedly while analyzing recursive procedures is rarely encountered in practice
(especially if some sort of dead variable analysis is used to eliminate unnecessary
unquantified variables). Even when the number of cutpoints in a symbolic heap
at the call-site exceeds m our analysis is still able to obtain some information
(though not the most precise).

According to RecProcDeclLocals, while processing procedure returns we
have to existentially quantify the local variables of the procedure in order to
obtain a summary (and canonicalize the result so that it is in our abstract
domain). To obtain a symbolic heap at the return-site of the caller we just
have to rename formal parameters to actual parameters and ghost variables to
cutpoints in the resulting heap, and ∗-conjoin it with the frame. The result is
guaranteed to be canonicalized.

3.4 Control-Flow Graphs

Before performing the interprocedural analysis we apply a standard translation
from the program to its control-flow graph (cfg). A cfg is defined by the set of

250 A. Gotsman, J. Berdine, and B. Cook

nodes N and the control-flow relation F ⊆ N ×L×N , where L is the set of edge
labels, L = T ∪ {return, quantify locals}, T is the set of atomic commands.

We translate each procedure f independently, distinguishing its entry node
entry(f) (the node from which the execution of the procedure starts) and exit
node exit(f) (the node from which the procedure returns).

As noted in Sect. 3.3 we have to existentially quantify all the local variables
before returning from a procedure. Therefore, as the last statement of each pro-
cedure we add a statement (labeled with quantify locals) with the transfer
function that existentially quantifies the local variables in the given heap and
canonicalizes the result. Let end(f) be the node of the cfg preceding this state-
ment, so that (end(f), quantify locals, exit(f)) ∈ F .

For each procedure call statement f(�xθ) (where �x are the formal parameters,
θ is the map from the formal parameters to the actual parameters) we introduce
two nodes—a call node and a return node—and add two edges to the cfg, one
connecting the call node to the entry node of the procedure f (labeled with
f(�xθ)), and the other connecting the exit node of the procedure f to the return
node (labeled with return). We connect the statement preceding f(�xθ) to the
call node and the return node to the statement succeeding f(�xθ).

While translating the program to the cfg we translate while and if state-
ments in the standard way using assume statements. Note that although we
define our analysis using such a representation, the proof of its soundness relies
upon the fact that the resulting cfg is obtained from a well-structured program
since it uses Hoare logic’s proof rules for while and if.

3.5 Interprocedural Analysis

To perform the interprocedural analysis using the treatment of procedure calls
and returns in our analysis proposed in Sect. 3.3, we adapt the Reps-Horwitz-
Sagiv algorithm [11, 14] for using symbolic heaps as the abstract domain and
efficiently handling procedure summaries with multiple cutpoints.

The analysis tabulates a function ϕ: N → 2CSH×CSH. Intuitively, ϕ(n) repre-
sents the set of pairs (Q1, Q2) of symbolic heaps at the entry point of a function
containing the node n (Q1) and at the node n (Q2) such that there exists an
execution of a sequence of program statements between these two points trans-
forming Q1 to Q2.

The function computed by the analysis is the least function ϕ satisfying the
equations in Fig. 2 under the following order: ϕ1 � ϕ2 ⇔ ∀n. ϕ1(n) ⊆ ϕ2(n).

We assume that we are given a symbolic heap I representing the initial state
at the start of main expressed purely in terms of the formal parameters of main
(the equation for ϕ(entry(main))). In the equations for ϕ(nentry) and ϕ(nreturn)
the symbolic heap Qentry at the entry point of the procedure is obtained from
a heap Qcall at the call-site as it is described in Sect. 3.3. Note that in order to
effectively treat procedure summaries containing cutpoints (i.e. ghost variables),
the procedure is analyzed on this heap only if it has not been analyzed for another
heap equal to the current one up to a bijective renaming of ghost variables (this
equality can be decided in time polynomial in the length of the symbolic heaps).

Interprocedural Shape Analysis with Separated Heap Abstractions 251

ϕ(entry(main)) = ϕ(entry(main)) ∪ (I × I);

ϕ(nentry) = ϕ(nentry) ∪ {(Qentry, Qentry) | ∃ncall, Q0, Qcall, η.

(ncall, f(
xθ), nentry) ∈ F ∧ (Q0, Qcall) ∈ ϕ(ncall) ∧
η = ghost(fv(local(Qcall,
xθ))�
xθ) ∧ Qentry = local(Qcall,
xθ)(θ ∪ η)−1 ∧

(¬∃Q′
entry, η′. (Q′

entry, Q′
entry) ∈ ϕ(nentry) ∧ Q′

entry(θ ∪ η′) = Qentry(θ ∪ η))}
for each nentry = entry(f) for some procedure f ;

ϕ(nreturn) = {(Q0, (Qexitσ) ∗ frame(Qcall,
xθ)) | ∃Qentry, η. (Q0, Qcall) ∈ ϕ(ncall) ∧
σ = θ ∪ η ∧ local(Qcall,
xθ) = Qentryσ ∧ (Qentry, Qexit) ∈ ϕ(nexit)}

for each pair of a call node ncall and a return node nreturn for a statement f(
xθ); here
nentry = entry(f), nexit = exit(f);

ϕ(n2) = {(Q0, Q2) | ∃n1, C, Q1. (n1, C, n2) ∈ F ∧ (Q0, Q1) ∈ ϕ(n1) ∧ Q2 ∈ AC(Q1)}
for all other nodes n2.

Fig. 2. The equations defining the analysis. For simplicity we show only the case when
cutpoints are not abstracted. All substitutions are injective.

Similarly, in the equation for ϕ(nreturn) we search for summaries with the initial
state equal to Qentry up to a bijective renaming of ghost variables.

Example 3. Consider the following program fragment:

append(x, y);
append(u, v);
append(x, z)

Here append(a, b) receives as parameters head nodes of two lists and de-
structively appends the second list to the end of the first one. Suppose the
initial state of the program consists of five disjoint lists ls(x, nil) ∗ ls(y, nil) ∗
ls(z, nil) ∗ ls(u, nil) ∗ ls(v, nil). The analysis will process each call to append in
turn. The local heap of the first call to append expressed in terms of formal pa-
rameters is ls(a, nil) ∗ ls(b, nil). As the analysis has no summaries for append,
it will go on analyzing append on the local heap and will discover a post-
heap ls(a, b) ∗ ls(b, nil). Hence, the heap at the return-site of the call will be
ls(x, y) ∗ ls(y, nil) ∗ ls(z, nil) ∗ ls(u, nil) ∗ ls(v, nil).

The local heap of the second call is again ls(a, nil) ∗ ls(b, nil). The analysis will
reuse the the summary discovered before and the heap at the return-site will be
ls(u, v) ∗ ls(v, nil) ∗ ls(x, y) ∗ ls(y, nil) ∗ ls(z, nil).

The local heap of the third call expressed in terms of actual parameters is
ls(x, y)∗ ls(y, nil)∗ ls(z, nil). Here we have a cutpoint y. We replace it with a ghost
variable Y , rename actuals to formals and obtain ls(a, Y)∗ ls(Y, nil)∗ ls(b, nil) as a
local heap. As there are no summaries for this local heap, the analysis will have
to analyze append once again discovering a post-heap ls(a, Y)∗ ls(Y, b)∗ ls(b, nil).
Hence, the heap at the return-site of the call will be ls(u, v) ∗ ls(v, nil) ∗ ls(x, y) ∗
ls(y, z) ∗ ls(z, nil). �

252 A. Gotsman, J. Berdine, and B. Cook

4 Soundness

Following Lee, Yang, and Yi [9] we show the soundness of our analysis via trans-
lation to program proofs in separation logic; each run of the analysis determines
a collection of proofs.

Suppose the analysis has not encountered a possible memory error and ϕ is
the least function satisfying the equations in Fig. 2. Let ψn(Q) = {R | (Q, R) ∈
ϕ(n)}. Intuitively, for a node n ∈ N and a symbolic heap Q ∈ CSH, ψn(Q)
gives the set of symbolic heaps corresponding to the possible states at the node
n reachable from the state {Q} at the entry point to the procedure containing n.

Let s be a set of symbolic heaps. We define the separation logic formula
representing this set as a disjunction of the formulæ representing the heaps in s:
means(s) =

∨
{Q | Q ∈ s}. Note that means(∅) = false. Throughout this section

Γ denotes the set of specifications of all the procedures obtained as a result of
the analysis: Γ = {{Q} f(�x) {means(ψexit(f)(Q))} | ψentry(f)(Q) �= ∅}.

Theorem 1. Suppose the analysis succeeded, i.e. a possible memory error has
not been encountered. Let C be a command, n1 respectively n2 be the nodes of
the control-flow graph immediately preceding respectively following the command,
and n0 be the entry node of the procedure containing n1 and n2. Then for each
symbolic heap Q such that ψn0(Q) �= ∅, the following judgment holds in separa-
tion logic: Γ ({means(ψn1(Q))} C {means(ψn2(Q))}.

The proof proceeds by induction on the structure of the command C. The cases
for all the commands except for procedure call are similar to the ones in [9]
and use the usual axioms and inference rules of separation logic [12]. The proof
in the case of procedure call relies upon the proof rule LocalProcCallCut.
Taking n1 = entry(f) and n2 = end(f) for each procedure f in the program in
Theorem 1 and using RecProcDeclLocals, we obtain:

Corollary 1. Let �D be the list of all procedure declarations in the program, �v
the list of the formal parameters of main. Then if the analysis succeeds,

({means(I)} letrec �D in main(�v) {means(ψend(main)(I))}.

Corollary 1 justifies that the success of our analysis implies that the program is
memory-safe and the computed post-condition is a valid one.

5 Experimental Results

In order to evaluate the performance of our analysis we have applied Summate
to the list processing programs proposed in the literature, including those in
[15] and [14]. The results are displayed in Table 1. The tests were performed on
a 2GHz Pentium 4 Linux PC with 512MB of memory. Each program consists
of a list-processing function and a client calling the function. We consider both
iterative and recursive versions of functions. For each function except create we
use three different clients. The first one corresponds to a cutpoint-free call. For

Interprocedural Shape Analysis with Separated Heap Abstractions 253

Table 1. Experimental results for iterative and recursive versions of simple list-
processing functions with three different clients. The meaning of the programs is
straightforward from their names (reverse via append reverses a list by appending
its head to its reversed tail, reverse8 reverses a list 8 times). Recursive reverse we
used is not suitable for reversing a panhandle list. Times are given in seconds. Sum-
mate did not require more than 600KB in any of these cases. reverse via append is a
recursive function; as in [15] its “iterative” version uses an iterative version of append.

Program
Iterative Recursive

1 2 3 1 2 3
create 0.004 — — 0.004 — —
deallocate 0.004 0.005 0.007 0.003 0.005 0.005
traverse 0.004 0.005 0.011 0.004 0.005 0.008
find 0.004 0.008 0.022 0.005 0.010 0.034
insert 0.007 0.019 0.082 0.006 0.014 0.057
remove (element is not in the list) 0.006 0.025 0.115 0.006 0.010 0.022
remove (element is in the list) 0.004 0.006 0.007 0.004 0.005 0.006
reverse (acyclic list) 0.006 0.015 0.066 0.004 0.007 0.015
reverse (panhandle list) 0.030 0.032 0.175 — — —
reverse via append 0.006 0.020 0.142 0.006 0.013 0.047
append 0.005 0.015 0.066 0.004 0.008 0.021
merge 0.150 0.036 0.884 0.009 0.051 1.138
splice 0.010 0.024 0.041 0.006 0.010 0.019
reverse8 0.011 0.072 0.540 0.008 0.024 0.090

reversing a panhandle list the second client calls the function so that the heap
at the call-site is ls(x, y) ∗ ls(y, z′) ∗ ls(z′, y) (one cutpoint), the third client—
ls(x, y) ∗ ls(y, z) ∗ ls(z, y) (two cutpoints). Here (and throughout this section) x,
y, and z are local variables of the client. For append, merge, and splice the
second client calls the function two times, hence, creating a cutpoint e.g. for
append:

xy = append(x, y);
xyz = append(xy, z)

The third client performs the call three times (thereby creating two cutpoints).
For all the other programs the second client calls functions on a list in the case
when a part of the list is shared (i.e. the heap at the call-site is ls(x, y)∗ ls(y, nil)∗
ls(z, y)). In this case one cutpoint is created in each call. The third client calls
functions on a list in the case when it has two pointers to the middle of the
list thereby modeling the situation shown in the example in Sect. 2.3 (i.e. the
heap at the call-site is ls(x, y) ∗ ls(y, z) ∗ ls(z, nil)). In this case two cutpoints are
created in each call (except for reverse8, which creates an additional cutpoint
because the program keeps track of the former head of the list, i.e. the tail of
the reversed list).

For each program we were able to prove memory safety, absence of memory
leaks, and the fact that the acyclicity of lists is preserved. In the cases when

254 A. Gotsman, J. Berdine, and B. Cook

Table 2. Experimental results for iterative and recursive versions of list sorting pro-
grams. mergesort and tailsort are recursive, insertionsort—iterative. As in [15]
their “iterative” respectively “recursive” versions are obtained by using these func-
tions with iterative respectively recursive versions of insert or merge.

Program
Iterative Recursive

Time (sec) Memory (KB) Time (sec) Memory (KB)
mergesort 6.159 2288 0.211 368
quicksort — — 0.300 608
insertionsort 0.058 368 0.042 368
tailsort 0.008 368 0.007 368

the caller had variables pointing to the middle of a list (i.e. we had calls with
cutpoints), we have proved that the elements pointed to by the variables are
still present in the resulting list in the order determined by the semantics of the
list processing function. Besides, for each particular program the post-condition
obtained as the result of the analysis could give some more information. For
instance, we were able to prove that after reverse or reverse via append the
head of the list moves to its tail, that the result of append, merge, splice still
contains the heads of both source lists, and that insert actually inserts the
element it is given into the list. remove was tested two times: in the case when
the element being removed is present in the list, and in the case when it is not.
In the former case the accurate treatment of cutpoints by our analysis allowed
for proving that this element is deleted from the list.

In all these experiments the bound on the number of cutpoints was set to 3.
A larger bound would not affect either precision or complexity of the analysis,
since 3 is the maximal number of cutpoints created at a time in the programs
considered. Setting the bound to a lower number makes the analysis less precise.

We also tested our implementation on list sorting programs. The results for
them are shown in Table 2. The client in the programs calls a sorting function on
a list once. For each of the programs we proved memory safety and preservation
of the list acyclicity. insertionsort and mergesort have calls with a cutpoint.
Accurate processing of this cutpoint by our analysis allowed us to prove that the
head of the source list is present in the sorted list.

We have not done a systematic benchmarking of Summate against the other
executable shape analysis tools in the same conditions. However, it is fair to say
that Summate is at least competitive with the previously reported tools with
respect to speed and memory, and clearly better with respect to accuracy:

– We observe a speed-up of up to 3 orders of magnitude in comparison with
the numbers reported in [15] and [14]. However: this difference could likely
be attributed to differences in machine configuration.

– Summate consumes less memory than previously reported local interproce-
dural shape analyses.

– Other than Summate, no local shape analysis tool accurately treats calls
with multiple cutpoints.

Interprocedural Shape Analysis with Separated Heap Abstractions 255

– We have reported experimental results for programs operating on shared and
cyclic data structures and programs that deallocate memory.

6 Conclusions

Summate implements an interprocedural shape analysis that makes use of spa-
tial locality. Summate’s abstraction simply tracks declarative representations
of independent heap portions. Consequently, computing the effect of procedure
calls and returns on an abstract state is easy.

Summate is the most accurate interprocedural shape analysis, due to its sup-
port of memory disposal, cyclic and shared data structures, and its handling
of bounded numbers of cutpoints. To the best of our knowledge, no other tool
precisely and efficiently supports these features combined. Furthermore: our in-
terprocedural analysis can be formulated in terms of a handful of proof rules3

and (unlike in previous efforts [13]) the proof of its soundness follows from them
straightforwardly.

Related Work. Hackett & Rugina [7], describe an analysis where transfer func-
tion computations benefit from using a form of local reasoning similar to ours.
However, procedure summaries are represented in terms of global states and so
analysis of procedure calls does not benefit from locality.

Several papers have described TVLA-based interprocedural shape analy-
ses (i.e. [14, 13, 15]) where the procedure summaries operate on local heaps.
However: in this work the analysis must dynamically find a way to divide the
heap such that the overall shape is preserved. This is delicate with the TVLA
reachability-based representation, since the separation significantly alters the
represented reachability information. A consequence of this is that accurate
treatment of cutpoints is expensive (e.g. in [14] all cutpoints must be abstracted
away into a single cutpoint). Furthermore, the transfer function computation in
this context is non-local and still expensive, because the analysis must propa-
gate updates throughout the state. Summate’s separated representation ensures
that the difference between the states in the transfer function computation is
limited. This is, in part, because instead of storing reachability information in
a quickly queryable form, we only update information from which reachability
could be computed. This is possible since the precise structure of abstracted
heaps is known.

It is important to note the limitations of Summate’s abstraction. Summate
is much faster than tools such as TVLA [16], but in some ways can also be
less general. Computing a transfer function requires case analysis. Since our
representation specifies the precise structure of the abstracted heap, the case
analysis phase of the transfer function can rely on it, and so the number of
resulting possible cases is significantly lower. However, we use carefully hand-
crafted inductive predicates and axioms. These inductive predicates and axioms
only needed to be designed once [3], but a similar exercise must be done in order
to support additional data types.
3 This is similar in spirit to [1].

256 A. Gotsman, J. Berdine, and B. Cook

Acknowledgments. The authors benefited greatly from discussions of this
and related work with Dino Distefano, Peter O’Hearn, Tal Lev-Ami, Roman
Manevich, Hongseok Yang, and Greta Yorsh. The authors would also like to
thank Noam Rinetzky for providing the test programs used in [15] and the
anonymous reviewers for useful suggestions.

References

[1] T. Amtoft and A. Banerjee. Information flow analysis in logical form. In SAS,
volume 3148 of LNCS, pages 100–115, 2004.

[2] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation
logic. In APLAS, volume 3780 of LNCS, pages 52–68, 2005.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation
logic. In FSTTCS, volume 3328 of LNCS, 2004.

[4] J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In CAV, 2006.

[5] S. A. Cook. Soundness and completeness of an axiomatic system for program
verification. SIAM J. on Computing, 7:70–90, 1978.

[6] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, volume 3920 of LNCS, pages 287–302, 2006.

[7] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations.
In POPL, pages 310–323, 2005.

[8] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In Sympo-
sium on the Semantics of Algorithmic Languages, pages 102–116, 1971.

[9] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. In ESOP, volume 3444 of LNCS, pages 124–140,
2005.

[10] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In CSL, volume 2142 of LNCS, pages 1–19, 2001.

[11] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL, pages 49–61, 1995.

[12] J. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74, 2002.

[13] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In POPL, pages 296–309, 2005.

[14] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural functional shape analysis
using local heaps. Tech. Rep. 26, Tel Aviv Univ., Nov. 2004.

[15] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In SAS, volume 3672 of LNCS, pages 284–302, 2005.

[16] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24(3):217–298, 2002.

A Proof Rules

The proof rules used by our interprocedural analysis can be derived from the
Frame rule and Hoare logic rules, which are listed in Fig. 3. The corresponding
derivations, which also involve some predicate calculus, are given in Fig. 4.

Interprocedural Shape Analysis with Separated Heap Abstractions 257

ProcCall

Γ , {P} f(
x) {Q} � {P} f(
x) {Q}

Subst
{P} C {Q}

{Pσ} Cσ {Qσ}
C modifies x implies

xσ ∈ Var�
⋃

y �=x fv(yσ)

Conseq
P � R {R} C {S} S � Q

{P} C {Q}

VarDecl
{P} C {Q}

{P} local
x in C {Q}
x ∩ fv(P, Q) = ∅

RecProcDecl
Γ , {P} f(
x) {Q} � {P} C {Q} Γ , {P} f(
x) {Q} � {R} C′ {S}

Γ � {R} letrec f(
x) {C} in C′ {S}

Fig. 3. Standard rules of Hoare logic

RecProcDeclLocals

Γ ′ � {P} C {T} T � ∃
y. T
Conseq

Γ ′ � {P} C {∃
y. T}
VarDecl

Γ ′ � {P} local
y in C {∃
y. T} ∃
y. T � Q
Conseq

Γ ′ � {P} local
y in C {Q} Γ ′ � {R} C′ {S}
Γ � {R} letrec f(
x) {local
y in C} in C′ {S}

where Γ ′ = Γ , {P} f(
x) {Q} and the first rule applied is RecProcDecl;

LocalProcCall

S � Pσ ∗ R

ProcCall
Γ ′ � {P} f(
x) {Q}

Subst
Γ ′ � {Pσ} f(
xσ) {Qσ}

Frame
Γ ′ � {Pσ ∗ R} f(
xσ) {Qσ ∗ R} Qσ ∗ R � T

Conseq
Γ ′ � {S} f(
xσ) {T}

where Γ ′ = Γ , {P} f(
x) {Q};
LocalProcCallCut

S � P ′ ∗ R

P ′ � ∃
c. P ′ ∃
c. P ′ � Pσ

P ′ � Pσ

P ′ ∗ R � Pσ ∗ R

S � Pσ ∗ R Qσ ∗ R � T
LocalProcCall

Γ , {P} f(
x) {Q} � {S} f(
xσ) {T}

Fig. 4. Derivations of procedure call and declaration rules

258 A. Gotsman, J. Berdine, and B. Cook

B Intraprocedural Analysis

In this section we describe Summate’s intraprocedural analysis. This analysis is
essentially the same as that of [6, 4].

Transfer functions are defined by this analysis in terms of the symbolic exe-
cution relation �, the rearrangement relation →E , and the abstraction relation
→∗. Each individual concrete state can be expressed exactly by a symbolic heap,
i.e. there is a subset of symbolic heaps which are simply different syntax for con-
crete states. In the usual concrete semantics, each command only accesses a
small portion of the state: its footprint. From this perspective, symbolic exe-
cution (�) expresses the usual concrete semantics of commands4 in terms of
symbolic heaps, where the footprint of the command is expressed as one of the
formulæ that is alternate syntax for a concrete state. The task of rearrangement
(→E) is then to transform an arbitrary symbolic heap, via case analysis, into
a set of symbolic heaps where the footprint of the next command is concrete.
Abstraction (→) then takes the symbolic heaps resulting from symbolic execu-
tion and maps them into a finite subdomain of symbolic heaps, ensuring that
fixed-point computations converge.

The definition of these relations asks several types of questions about symbolic
heaps: entailment of an equality (Q (E=F), or of a disequality (Q (E �=F),
inconsistency (Q (false), or testing if a location is guaranteed to be allocated
(Q (allocated(E)). We also sometimes ask the negations of these questions.
Decision procedures for these queries are defined in [6].

Symbolic Execution (�). The symbolic execution relation captures the effect of
executing an atomic command from a symbolic heap. That is, Q0

C� Q1 means
that Q1 over-approximates the concrete states that can result from executing C
on states satisfying Q0. The symbolic execution rules are reported in Fig. 5.

Rearrangement (→E). Symbolic execution does not operate on arbitrary pre-
states. For instance, Load requires that the source heap cell be explicitly known.
In order to put symbolic heaps into the form required for symbolic execution of a
command, we use the rearrangement relation →E , defined by the axioms shown
in Fig. 6. When rearrangement fails to reveal the required location E, it indicates
a potential memory safety violation and returns �.

Abstraction (→). Abstraction is accomplished by certain separation logic impli-
cations that rewrite a symbolic heap to a logically weaker one. The abstraction
relation on symbolic heaps Q0 → Q1 is defined by the axioms shown in Fig .7.

Note that the heap abstraction is defined solely in terms of the representation
of heaps, i.e., the dynamic information the analysis knows. The precision of this
abstraction immaterializes static information about the program text used by
shallow analyses, such as allocation-sites.

We call a symbolic heap Q canonical if it is maximally abstracted, i.e. Q �
and denote the set of all canonical symbolic heaps with CSH. A canonicalization
4 Except that the rule for dispose does not quite yield the strongest postcondition.

Interprocedural Shape Analysis with Separated Heap Abstractions 259

Q
skip� Q Skip

Q
x:=E� x=E[x′/x] ∧ Q[x′/x] Assign

Q
x:=new()� Q[x′/x] ∗ x �→y′ New

Q
assume(E=F)� Q ∧ E = F if Q � E �=F AssumeT

Q
assume(E �=F)� Q if Q � E = F and Q � false AssumeF

Q ∗ E �→F
dispose(E)� Q Dispose

Q ∗ E �→F
x:=[E]� x=F [x′/x] ∧ (Q ∗ E �→F)[x′/x] Load

Q ∗ E �→F
[E]:=G� Q ∗ E �→G Store

Fig. 5. Symbolic Execution (�). Here x′, y′ are globally fresh ([2] allows more local
freshness constraints).

Q ∗ F �→G →E Q ∗ E �→G if Q � E=F Switch

Q ∗ ls(F, G) →E Q ∗ E �→G if Q � E=F Unroll1

Q ∗ ls(F, G) →E Q ∗ E �→x′ ∗ ls(x′, G) if Q � E=F and x′ fresh Unroll>1

Q →E � if Q � allocated(E) Crash

Fig. 6. Rearrangement (→E)

z′=E ∧ Q → Q[E/z′] Subst

Q ∗ H0(E, x′) ∗ H1(x′, F) → Q ∗ ls(E, nil) if Q � F=nil

AppendLsNil

Q ∗ H0(E, x′) ∗ H1(x′, F0) ∗ H2(F1, G) → Q ∗ ls(E, F0) ∗ H2(F1, G) if Q � F0=F1

AppendLsGuard

Q ∗ H(x′, E) → Q ∗ junk Junk

Q ∗ H0(x′, y′) ∗ H1(y′, x′) → Q ∗ junk JunkCycle

Fig. 7. Abstraction (→). Here H(E,F) stands for either E �→F or ls(E,F); and x′, y′

do not occur other than where explicitly indicated.

function is defined in [6]. This function, can, is based on a fixed sequence of
abstraction axiom applications, and transforms a symbolic heap to a canonical
symbolic heap abstracting it, i.e. Q →∗ can(Q) and can(Q) � .

Transfer Functions. The transfer function AC for an atomic command C trans-
forms a given symbolic heap to either � (indicating a possible crash) or a set of
consistent canonical symbolic heaps. Transfer functions are defined separately
for safe commands S and unsafe ones A(E) in the following way:

260 A. Gotsman, J. Berdine, and B. Cook

AS(Q0) = {can(Q1) | Q0
S� Q1}

AA(E)(Q0) =

{
�, if Q →E �

{can(Q2) | ∃Q1. Q0 →E Q1 ∧ Q1
A(E)� Q2}, otherwise

Example 4. Suppose we want to compute the value of the transfer function for
the command x = [x] on the symbolic heap ls(x, nil). The rearrangement phase
will transform the heap into two symbolic heaps x	→nil and x	→x′ ∗ ls(x′, nil)
thereby making the information that x is allocated in the heap explicit. The
symbolic execution phase will then symbolically simulate the effect of the com-
mand on the heaps producing x = nil and x = x′ ∧ x′′ 	→x′ ∗ ls(x′, nil). Finally,
the abstraction phase will leave the first heap unchanged and will canonicalize
the second heap to junk ∗ ls(x, nil). Hence, the value of the transfer function is
{x = nil, junk ∗ ls(x, nil)}. �

Finiteness. A key property of the abstract domain CSH proved in [6] is that the
domain of consistent and canonical symbolic heaps {Q | Q � false ∧ Q �} over
a finite number of unquantified variables is finite.

Automated Verification of the Deutsch-Schorr-Waite
Tree-Traversal Algorithm

Alexey Loginov1, Thomas Reps1, and Mooly Sagiv2

1 Comp. Sci. Dept., University of Wisconsin
{alexey, reps}@cs.wisc.edu

2 School of Comp. Sci., Tel-Aviv University
msagiv@post.tau.ac.il

Abstract. This paper reports on the automated verification of the total correct-
ness (partial correctness and termination) of the Deutsch-Schorr-Waite (DSW)
algorithm. DSW is an algorithm for traversing a binary tree without the use of
a stack by means of destructive pointer manipulation. Prior approaches to the
verification of the algorithm involved applications of theorem provers or hand-
written proofs. TVLA’s abstract-interpretation approach made possible the auto-
matic symbolic exploration of all memory configurations that can arise. With the
introduction of a few simple core and instrumentation relations, TVLA was able
to establish the partial correctness and termination of DSW.

1 Introduction

The Deutsch-Schorr-Waite (DSW) algorithm provides a way to traverse a tree without
the use of a stack by temporarily—but systematically—stealing pointer fields of the
tree’s nodes to serve in place of the stack that one ordinarily needs during, e.g., an
in-order traversal.1 The benefits of being able to perform a tree traversal without the
use of a stack are best seen in the context of garbage collection: such an algorithm
can be employed during the mark phase of garbage collection, when the scarcity of
available memory can preclude the use of either an explicit stack for traversing a tree,
or a recursive tree traversal (which would use an implicit stack of activation records).

The subtlety of the algorithm (and the complexity of analyzing it) is due to the fact
that, during the traversal, the algorithm visits each node of the tree three times, and per-
forms a kind of pointer rotation on each node visit [10]. By the time the algorithm
finishes, it has restored the original values of each node’s left-child and right-child
pointers, thus restoring the original tree.

Richard Bornat singles out the algorithm as a key test for formal methods: “The
[Deutsch-]Schorr-Waite algorithm is the first mountain that any formalism for pointer
analysis should climb.” [2] Past approaches have involved hand-written proofs of com-
plicated invariants to verify the partial correctness of the algorithm. Even with some
automation, these efforts were usually laborious: a proof performed in 2002 with the

1 The variant of the algorithm that we analyzed works correctly when applied to a directed
acyclic graph (DAG). While our current analysis applies only when the input is a binary tree,
§7 discusses how this limitation can be addressed.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 261–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

262 A. Loginov, T. Reps, and M. Sagiv

help of the Jape proof editor took 152 pages! [1] The key advantage of TVLA’s abstract-
interpretation approach over proof-theoretic approaches is that a relatively small num-
ber of concepts are involved in defining an abstraction of the structures that can arise on
any execution, and verification is then carried out automatically by symbolic exploration
of all memory configurations that can arise. In particular, we defined the abstraction us-
ing a few simple instrumentation relations—eight key formulas—each containing only
two atomic subformulas.

The contributions of this work can be summarized as follows:

– We defined an abstraction (in the canonical-abstraction framework used by TVLA)
that captures sufficient invariants of DSW to demonstrate partial correctness and
termination.

– We used the fact that each tree node passes through four states (induced by the
original state and the three visits to each node) to define a state-dependent abstrac-
tion, which requires fewer structures to represent the memory configurations that
can arise in DSW than would be necessary without state dependence.

– We used the abstraction to establish the partial correctness of DSW via automatic
symbolic exploration of all memory configurations.

– We used the state-dependent abstraction to establish a bound on the number of
iterations of the algorithm’s loop, thus establishing that DSW terminates.

2 Program Analysis Using 3-Valued Logic

root

8

4

62

8

5

Fig. 1. A possible concrete
store for a binary tree

In this section we give a brief overview of the framework
of parametric shape analysis via three-valued logic. For
more details, the reader is referred to [17].

Program states are represented using first-order logi-
cal structures, which consist of a collection of individu-
als, together with an interpretation for a finite vocabulary
of finite-arity relation symbols, R. An interpretation is a
truth-value assignment for each relation symbol for every
appropriate-arity tuple of individuals. To ensure termina-
tion, the framework puts a bound on the number of dis-
tinct logical structures that can arise during analysis by
grouping individuals that are indistinguishable according to a special subset of unary
relations, A. The grouping of nodes is referred to as canonical abstraction and the set
A is referred to as the set of abstraction relations.

The application of canonical abstraction typically transforms a logical structure S
into a 3-valued logical structure S#, in which the third value, 1/2, denotes the possi-
bility of having either 0 (false) or 1 (true) in S. A program state is updated and queried
via logical formulas, which are interpreted over the three-valued structure S# using a
straightforward extension of Kleene’s 2-valued semantics.

Because of canonical abstraction, individuals in a 3-valued structure can represent
more than one individual in a given 2-valued structure; such individuals are referred to
as summary individuals. In general, a 3-valued logical structure can represent an infinite
set of 2-valued structures.

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 263

Table 1. (a) Declaration of a binary-tree datatype in C. (b) Core relations used for representing
the stores manipulated by programs that use type Tree.

typedef struct node {
struct node *left;
int data;
struct node *right;

} *Tree;

Relation Intended Meaning
x(v) Does pointer variable x point to heap cell v?
left(v1, v2) Does the left field of v1 point to v2?

(Is v2 the left child of v1?)
right(v1, v2) Does the right field of v1 point to v2?

(Is v2 the right child of v1?)
(a) (b)

Table 2. Defining formulas of instrumentation relations commonly employed in analyses of pro-
grams that use type Tree. There is a separate relation rx for every program variable x.

p Intended Meaning Defining Formula

down(v1, v2) Do the left or right fields of v1 point to v2? left(v1, v2)∨ right(v1, v2)
(Is v2 a child of v1?)

tdown(v1, v2) Is v2 reachable from v1 down∗(v1, v2)
along left and right fields?

rx(v) Is v reachable from pointer variable x ∃ v1 : x(v1) ∧ tdown(v1, v)
along left and right fields?

Program states are encoded in terms of core relations, C ⊆ R. Core relations are
part of the underlying semantics of the language to be analyzed; they record atomic
properties of stores. For instance, Tab. 1 gives the definition of a C binary-tree datatype,
and lists the core relations that would be used to represent the stores manipulated by
programs that use type Tree, such as the store in Fig. 1. Unary relations represent
pointer variables, and binary relations left and right represent the left and right
fields of a Tree node. Fig. 2(a) shows 2-valued structure S2, which represents the
store of Fig. 1 using the relations of Tab. 1.

The abstraction function on which an analysis is based, and hence the precision of
the analysis defined, can be tuned by (i) choosing to equip structures with additional in-
strumentation relations to record derived properties, and (ii) varying which of the unary
core and unary instrumentation relations are used as the set of abstraction relations. The
set of instrumentation relations is denoted by I. Each arity-k relation symbol is defined
by an instrumentation-relation defining formula with k free variables. Instrumentation
relation symbols may appear in the defining formulas of other instrumentation relations
as long as there are no circular dependences.

Tab. 2 lists some instrumentation relations that are important for the analysis of pro-
grams that use type Tree. Instrumentation relations that involve reachability proper-
ties, such as relation rx(v), often play a crucial role in the definitions of abstractions.
These relations have the effect of keeping disjoint subtrees summarized separately.
Fig. 2(b) shows 2-valued structure S2, which represents the store of Fig. 1 using the
core relations of Tab. 1, as well as the instrumentation relations of Tab. 2.

If all unary relations are abstraction relations, the canonical abstraction of 2-valued
logical structure S2 is S3, shown in Fig. 3, with all tree nodes not pointed to by root
represented by the summary individual at the bottom. In S2, nodes in the left subtree

264 A. Loginov, T. Reps, and M. Sagiv

root

left

left
le

ft

right

right

rroot

rroot

rroot

rroot

rroot

rroot

root

left,

down

left,

down

le
ft,

do
w

n

right,down

right,down

(a) (b)

Fig. 2. A logical structure S2 that represents the store shown in Fig. 1 in graphical form: (a) S2

with relations of Tab. 1. (b) S2 with relations of Tabs. 1 and 2 (relations of Tab. 1 appear in grey).
Unlabeled (curved) arcs between nodes represent the tdown relation. Self-loops of the tdown relation
(corresponding to the reflexive tuples) have been omitted to reduce clutter.

of root’s target are indistinguishable from those in its right subtree according to A
(consisting of relations x(v) and rx(v) for each program variable x). S3 represents all
trees with two or more elements, with the root node pointed to by program variable
root.

rroot

rroot

root

le
ft

t d
ow

n

right

dow
n

left, right,
down, tdown

tdown

Fig. 3. A 3-valued
structure S3 that is
the canonical ab-
straction of struc-
ture S2. In addition
to S2, S3 represents
any tree of size 2 or
more that is pointed
to by program vari-
able root.

The following graphical notation is used for depicting 3-valued
logical structures:

– Individuals are represented by circles containing (non-0) val-
ues for unary relations. Summary individuals are represented
by double circles.

– A unary relation p corresponding to a pointer-valued program
variable is represented by a solid arrow from p to the individual
u for which p(u) = 1, and by the absence of a p-arrow to each
node u′ for which p(u′) = 0. (If p = 0 for all individuals,
the relation name p is not shown.)

– A binary relation q is represented by a solid arrow labeled
q between each pair of individuals ui and uj for which
q(ui, uj) = 1, and by the absence of a q-arrow between pairs
u′

i and u′
j for which q(u′

i, u
′
j) = 0.

– Relations with value 1/2 are represented by dotted arrows.

For each kind of statement in the programming language, the con-
crete semantics is defined by relation-update formulas for core re-
lations. The structure transformers for the abstract semantics are
defined by the same relation-update formulas for core relations and
relation-maintenance formulas for instrumentation relations. The
latter are generated automatically via finite differencing [15]. Ab-
stract interpretation collects a set of 3-valued structures at each pro-
gram point. It is implemented as an iterative procedure that finds

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 265

the least fixed point of a certain set of equations [17]. When the fixed point is reached,
the structures that have been collected at a program point describe a superset of all the
execution states that can arise there.

Not all logical structures represent admissible stores. To exclude structures that do
not, we impose integrity constraints. For instance, relation x(v) of Tab. 1 captures
whether pointer variable x points to memory cell v; x would be given the attribute
“unique”, which imposes the integrity constraint that x can hold for at most one indi-
vidual in any structure: ∀ v1, v2 : x(v1)∧ x(v2) ⇒ v1 = v2. This formula evaluates
to 1 in any 2-valued logical structure that corresponds to an admissible store. Integrity
constraints contribute to the concretization function (γ) for our abstraction [23]. In-
tegrity constraints are enforced by coerce, a clean-up operation that may “sharpen” a
3-valued logical structure by setting an indefinite value (1/2) to a definite value (0 or
1), or discard a structure entirely if an integrity constraint is definitely violated by the
structure (e.g., if it cannot represent any admissible store).

2.1 Analyzing Programs That Manipulate (Only) Trees

When analyzing a program in which each data structure at every point is a tree (a prop-
erty that we will call treeness), it is possible to take advantage of this fact to reduce the
(abstract) state space that is explored. This is achieved by having the analysis perform
a semantic reduction after each step to filter out non-trees that may have crept into the
representation. When the analysis relies on the program to maintain treeness, to guar-
antee that the results are sound, the analysis must check that treeness is preserved at
every step. We address the latter obligation first. The techniques described below are
applicable whenever one wishes to analyze programs in which all input, output, and
intermediate data structures are trees. We call such analyses tree-specific shape analy-
ses; our DSW analysis is an example of a particular tree-specific shape analysis. (Other
work in which tree-specific shape analyses have been developed include [4, 7, 8].)

Checking That Treeness is Maintained. The analyzer checks that treeness is main-
tained by asserting certain logical formulas that capture the conditions under which the
execution of a program statement could result in a violation of treeness. Before the
computation of a transfer function, the logical formulas of corresponding assertions are
evaluated. If a formula possibly fails to hold, i.e., does not evaluate to 1, then an error
report is issued and the analysis is terminated.

For purposes of this paper, a binary tree is a structure containing no cycles and
no nodes with multiple incoming left or right pointers. (Our definition disallows
the sharing of subtrees, and thus is more restrictive than the traditional definition that
merely requires there to be at most one path between any pair of nodes. This is not an
inherent limitation of TVLA; if the sharing of subtrees is to be permitted, the restriction
on sharing can be relaxed—see footnote 3.)

Given a data structure that satisfies the data-structure invariants for a binary tree,
only one type of statement has the potential to transform the data structure into one
that violates some of those properties, namely, a statement of the form x->sel = y
(where sel can be left or right), which creates a new sel-connection in the data
structure. Two logical formulas capture the conditions that guarantee that the applica-
tion of the transformer for a statement of the form x->sel = y maintains treeness.

266 A. Loginov, T. Reps, and M. Sagiv

The first formula captures the precondition for down to remain acyclic:

∀ v1, v2 : x(v1)∧ y(v2) ⇒ ¬tdown(v2, v1) (1)

The second formula captures the precondition for the statement to avoid introducing
sharing:2

∀ v1, v2 : y(v2) ⇒ ¬down(v1, v2)3 (2)

Semantic Reduction for Trees. After each application of an abstract transformer, we
perform a semantic reduction to filter out non-trees that may have crept into the abstract
structures computed by the transformer. The reduction is implemented as an application
of coerce to enforce integrity constraints that express data-structure invariants.

For instance, relation down is given the attributes “acyclic” and “invfunction”. The
“acyclic” attribute of down results in the automatic generation of the following integrity
constraint:

∀ v1, v2 : tdown(v1, v2)∧ tdown(v2, v1) ⇒ v1 = v2 (3)

The “invfunction” attribute of down results in the automatic generation of the following
integrity constraint:

∀ v1, v2 : (∃ v : down(v1, v)∧ down(v2, v)) ⇒ v1 = v2 (4)

Operation coerce is applied at certain steps of the algorithm, e.g., after the application
of an abstract transformer, to enforce Constraints (3) and (4), along with a few oth-
ers, to help prevent the analysis from admitting non-trees, and thereby possibly losing
precision.

3 Deutsch-Schorr-Waite Tree-Traversal Algorithm

The original Deutsch-Schorr-Waite algorithm reverses the direction of left and
right pointers, as it traverses the tree [18]. It attaches two bits, mark and tag, to
each node. The mark bit serves to prevent multiple visits to nodes on a cycle or in
shared subtrees. The tag bit records whether, during the traversal of reversed pointers,
a node was reached from its left or right child.

In [10], Lindstrom gave a variant that eliminated the need for both bits, provided the
input data structure contains no cycles. His insight was that one could treat the visit
step at an internal node as a kind of pointer-rotation operation, and that completion of
the tree-traversal could be established having the algorithm watch for a distinguished
value that serves as a kind of sentinel. In this paper, we actually consider the Lindstrom

2 As explained in §3, we ensure that x->sel is NULL prior an assignment of the form
x->sel = y, so the assignment indeed creates a new sel-connection.

3 If we relaxed the restriction on the sharing of subtrees, then, in place of Formula (2), we
would employ a slightly more complex formula that precludes the possibility of creating two
paths between a pair of tree nodes v1 and v4 (one path that existed prior to the statement,
and the other that was created due to the introduction of the new sel edge from x to y):

∀ v1, v2, v3, v4 : tdown(v1, v4)∧ tdown(v1, v2)∧ x(v2) ∧ y(v3) ⇒ ¬tdown(v3, v4)

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 267

[1] void traverse(Tree *root)
[2] { Tree *prev, *cur, *next;

[3] if (root == NULL)
[4] return;
[5] prev = -1;
[6] cur = root;
[7] while (1) {

// Save left subtree
[8] next = cur->left;

// Rotate pointers
[9] cur->left = cur->right;
[10] cur->right = prev;

// Move forward
[11] prev = cur;
[12] cur = next;
[13] if (cur == -1)

// Traversal completed
[14] break;
[15] if (cur == NULL) {

// Swap prev and cur
[16] cur = prev;
[17] prev = NULL;
[18] }
[19] }
[20]}

void traverse(Tree *root) [1]
{ Tree *prev, *cur, [2]

*next, *tmp; [3]
if (root == NULL) [4]
return; [5]

prev = SENTINEL; [6]
cur = root; [7]
while (1) { [8]
// Save the left subtree
next = cur->left; [9]
// Rotate pointers
tmp = cur->right; [10]
// Maintain treeness
cur->right = NULL; [11]
cur->right = prev; [12]
cur->left = NULL; [13]
cur->left = tmp; [14]
// Move forward
prev = cur; [15]
cur = next; [16]
if (cur == SENTINEL) [17]

// Traversal completed
break; [18]

if (cur == NULL) { [19]
// Swap prev and cur
cur = prev; [20]
prev = NULL; [21]

} [22]
} [23]

} [24]

(a) (b)

Fig. 4. (a) Original version of the Deutsch-Schorr-Waite algorithm (adapted from [10]). (b) Mod-
ified version of the Deutsch-Schorr-Waite algorithm that was analyzed using TVLA. (The differ-
ences appear in bold.)

variant, but continue to refer to it as Deutsch-Schorr-Waite (DSW). Another connection
between our analysis (of the Lindstrom variant) and the original version of DSW is
discussed briefly in §7.

Fig. 4 shows two versions of the Deutsch-Schorr-Waite algorithm. The left-hand
column shows a version adapted from [10], also known as Lindstrom scanning. The
right-hand column shows a slightly modified version of the algorithm that we used in
our work. There are two differences between the two versions.

First, the constant -1 on lines [5] and [13] has been replaced with SENTINEL, where
SENTINEL is assumed to be a reference to a distinguished node that is not part of
the input tree. In TVLA, pointer values can either equal NULL (corresponding to the
situation in which the pointer does not point to any heap object) or point to a heap object
that was allocated by malloc. In this sense, TVLA follows the semantics of Java,

268 A. Loginov, T. Reps, and M. Sagiv

in which new non-NULL pointer values can be generated only via memory-allocation
operations.

Second, a purely local transformation (involving the introduction of one temporary
variable tmp) has been applied to lines [9]–[10]:

[9] cur->left = cur->right;
[10] cur->right = prev;

=⇒

[10] tmp = cur->right;
// Maintain treeness
[11] cur->right = NULL;
[12] cur->right = prev;
[13] cur->left = NULL;
[14] cur->left = tmp;

This really involved three transformations:

1. Assignment statements of the form x->sel1 = y->sel2 have been normalized
to statement sequences tmp = y->sel2; x->sel1 = tmp (see lines [10]
and [14] of Fig. 4(b)).

2. Assignment statements of the form x->sel = y have been normalized to statement
sequences x->sel = NULL; x->sel = y (see lines [11]–[12] and [13]–[14] of
Fig. 4(b)). This ensures that statements of the form x->sel = y can never destroy
existing sel-paths in the data structure, thus simplifying the task of maintaining
information about the reachability of tree nodes from program variables.

3. Assignmentscur->right = NULL and cur->right= prev have been moved
to lines [11] and [12] (before assignments to cur->left). This change prevents
the right child of cur’s target from temporarily having two incoming edges after
the assignment to cur->left on line [14].4 The resulting algorithm maintains the
invariant that the nodes of the input tree always make up one or two data structures
that satisfy the binary-tree properties: after the assignment on line [14] of Fig. 4(b),
the nodes of the input tree make up two trees, one rooted at next’s target, and the
other rooted at cur’s target; the original root is a descendant of cur’s target.

Transformations 1 and 2 above are simple normalizations that one could expect to find
in a translation of programs written in a high-level language into a lower-level interme-
diate representation. Transformation 3 prevents the temporary sharing of cur’s right
subtree (it would otherwise briefly become cur’s left and cur’s right subtree). We
could relax our restriction on sharing and analyze the version of the algorithm that does
not include transformation 3 (§7 discusses how we would approach this task), but we
chose to verify total correctness and preservation of treeness for the slightly modified
version of the DSW algorithm shown in Fig. 4(b). Because of transformation 3, the
techniques of §2.1 apply in the analysis of this version; we now describe this version in
detail.

For each tree node n, the body of the while loop is executed three times with cur
pointing to n. Each time that n is considered, its left and right pointers are rotated
in a counter-clockwise fashion on lines [10]–[14] of Fig. 4(b) (cf. lines [9] and [10] of
Fig. 4(a)). After the third such execution, the original values for the left and right
pointers are re-established, as we explain below.

4 Only the assignment cur->right = NULL needs to be moved to achieve the desired effect.
We moved both assignments for clarity.

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 269

Fig. 5. States of the subtree of n with cur
pointing to n: (a) after the first execution
of statement on line [10] of Fig. 4(b), n is
in state 0; (b) after the second execution of
statement on line [10] of Fig. 4(b), n is in
state 1; (c) after the third execution of state-
ment on line [10] of Fig. 4(b), n is in state
2; (d) after the third execution of statement
on line [14] of Fig. 4(b), n is in state 3.
Grey edges represent the original values of
the left and right fields.

Before the first execution of lines [10]–
[14] of Fig. 4(b) with cur pointing to n, no
nodes in the subtrees rooted at l or r (n’s left
and right subtrees in the original tree) have
been visited, and no left or right point-
ers of nodes in the subtrees rooted at l or r
have been modified. In this situation, we say
that n is in state 0. Fig. 5(a) illustrates this
situation.

A pointer to node l, the left child of n
prior to the rotation of n’s left and right
pointers, is saved in next on line [9]. After
the rotation, the traversal continues by mov-
ing into the (sub)tree rooted at next, i.e.,
l (see lines [15] and [16]). When cur be-
comes null, the values of cur and prev are
swapped on lines [20] and [21]. This causes
the traversal to backtrack to the most recently
visited node that had a right subtree in the
original tree.

When the traversal backtracks to n, the al-
gorithm reaches lines [10]–[14] of Fig. 4(b)
for the second time with cur pointing to n.
At this point, all nodes in l’s subtree and no
nodes in r’s subtree have been visited. The
left and right pointers of nodes in l’s
subtree have been rotated three times and
restored to their original values. No left
or right pointers of nodes in r’s subtree
have been modified. In this situation we say
that n is in state 1. Fig. 5(b) illustrates this
situation.

A pointer to node r, the left child of n prior to the second rotation of n’s pointers, is
saved in next. After the rotation, the traversal continues by moving into the (sub)tree
rooted at r (see lines [15] and [16]). Once again, the algorithm backtracks when cur
is null. When the traversal backtracks to n, the algorithm reaches lines [10]–[14] of
Fig. 4(b) for the third (and final) time with cur pointing to n. At this point, all nodes
in l’s and r’s subtrees have been visited. The left and right pointers of nodes in
both subtrees have been rotated three times and restored to their original values. In this
situation we say that n is in state 2. Fig. 5(c) illustrates this situation.

After the subsequent execution of lines [10]–[14] of Fig. 4(b) with cur pointing to
n, n’s left and right pointers are restored to their original values. At this point, all
nodes in the subtree rooted at n have been visited, and all left and right pointers
in the subtree have been rotated three times and restored to their original values. In this
situation we say that n is in state 3. Fig. 5(d) illustrates this situation.

270 A. Loginov, T. Reps, and M. Sagiv

The algorithm traverses the tree in order, visiting each node n three times: (1) while
following the originalleft pointers from n’s parent through n into l’s subtree, (2) while
backtracking from l’s subtree to n and then traversing r’s subtree, and (3) while back-
tracking from r’s subtree through n to n’s parent in the original tree.

1

2

1

1

2

?

cur

3

0

3

0

0

?

Fig. 6. States of tree nodes
that are outside of the subtree
pointed to by cur. (Grey edges
represent the original values of
the left and right fields.)

Fig. 6 depicts the states of the tree nodes that are not
in the subtree pointed to by cur. All ancestors (in the
original tree) of cur’s target are in state 1 or 2, indicat-
ing that the left (1) or right (2), subtree is currently being
traversed. If cur’s target lies in the left subtree of an an-
cestor, then that ancestor must be in state 1, otherwise it
must be in state 2. The triangular shapes at left represent
all nodes that occur earlier than cur’s target in an in-
order traversal of the tree. For each of these nodes there
exists an ancestor of cur’s target, such that the node is
in the left subtree of the ancestor, and cur’s target is in
the right subtree of the ancestor. All nodes in that cat-
egory are in state 3; they have been visited three times,
and their left and right pointers have been reset to
their original values. The triangular shapes at right rep-
resent all nodes that occur later than cur’s target in an
in-order traversal of the tree. For each of these nodes
there exists an ancestor of cur’s target, such that the
node is in the right subtree of the ancestor, and cur’s
target is in the left subtree of the ancestor. All nodes
in that category are in state 0; they have not been vis-
ited, and their left and right pointers still have their
original values.

4 A Shape Abstraction for Verifying DSW

Consider the problem of establishing that the Deutsch-Schorr-Waite algorithm shown
in Fig. 4(b) is partially correct. This is an assertion that compares the state of a store at
the end of the procedure with its state at the start.

Partial correctness of DSW means (i) the tree produced at exit must be identical to
the input tree, and (ii) every node must be visited. We will come back to property (ii)
when we discuss the total correctness of DSW in §5. Property (i) can be specified as
follows:

∀v1, v2 : left(v1, v2)⇔ left0(v1, v2) (5)

∀v1, v2 : right(v1, v2)⇔ right0(v1, v2), (6)

where left0 and right0 denote the initial values of relations left and right, respectively.
Additionally, a correct traversal routine must neither lose nodes of the input tree, nor
gain new ones. However, this property is implied by properties (5) and (6).

The challenge is that the abstraction has to track the “unintended” use of pointers
for stack simulation with sufficient precision to verify that at the end of the algorithm

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 271

their correct usage has been reestablished. Canonical abstraction with just the properties
listed in Tabs. 1 and 2 is an insufficiently precise abstraction to demonstrate that the
tree’s edges are restored.

The key relations for establishing properties (5) and (6) at the end of the program
are those that capture the relationships of pointers that arise between tree nodes during
the traversal. The following set of unary relations capture properties of nodes in state
0 (before any changes to the nodes’ left and right pointers) or state 3 (after the
nodes’ left and right pointer values have been restored):

eql,l0(v1)
def= ∀v2 : left(v1, v2)⇔ left0(v1, v2) (7)

eqr,r0(v1)
def= ∀v2 : right(v1, v2)⇔ right0(v1, v2) (8)

Unary relations eql,l0(v1) and eqr,r0(v1) distinguish individuals that represent tree
nodes whose left, respectively right, pointers have their initial values. We can now
use ∀v : eql,l0(v) in place of Formula (5) and ∀v : eqr,r0(v) in place of Formula (6)
when asserting the partial correctness of DSW.

The following set of unary relations capture properties of nodes in state 1, after one
visit to those nodes, i.e., one rotation of the left and right pointers:

eql,r0(v1)
def= ∀v2 : left(v1, v2)⇔ right0(v1, v2) (9)

rer,l0(v1)
def= ∀v2 : right(v1, v2)⇔ left0(v2, v1) (10)

rer,r0(v1)
def= ∀v2 : right(v1, v2)⇔ right0(v2, v1) (11)

Unary relation eql,r0(v1) distinguishes individuals that represent tree nodes whose
left field points to their right (in the input tree) subtree. Unary relations rer,l0(v1)
and rer,r0(v1) (re is a mnemonic for reverse) distinguish individuals that represent tree
nodes n whose right fields point to their parents in the input tree (assuming that n is
the left child in the case of rer,l0(v1) and right child, otherwise).

The following set of unary relations capture properties of nodes in state 2, after two
visits to those nodes, i.e., two rotations of the left and right pointers:

eqr,l0(v1)
def= ∀v2 : right(v1, v2)⇔ left0(v1, v2) (12)

rel,l0(v1)
def= ∀v2 : left(v1, v2)⇔ left0(v2, v1) (13)

rel,r0(v1)
def= ∀v2 : left(v1, v2)⇔ right0(v2, v1) (14)

Unary relation eqr,l0(v1) distinguishes individuals that represent tree nodes whose
right field points to their left (in the input tree) subtree. Unary relations rel,l0(v1)
and rel,r0(v1) distinguish individuals that represent tree nodes n whose left fields
point to their parents in the input tree (assuming that n is the left child in the case of
rel,l0(v1) and right child, otherwise).

Let us give the intuition behind the use of the relations defined by Formulas (7)–
(14) for the partial-correctness verification of DSW, which involves establishing that all
left and right pointers have their initial values at the end of DSW.

272 A. Loginov, T. Reps, and M. Sagiv

These relations maintain the relationship between the current and the original values
of left and right pointers. Prior to the first rotation of pointers for node n, n has
entries 1 for the state-0 relations (Formulas (7) and (8)), which say that there has been
no change from n’s starting pointer values. These entries allow the analysis to conclude
that after the current iteration’s rotation of n’s pointers, n should have entry 1 for state-1
relations, Formula (9) and Formulas (10) or (11). Similarly, the 1 entries for the state-1
relations for node n help establish the 1 entries for its state-2 relations (Formula (12)
and Formulas (13) or (14)) after the second rotation of n’s pointers. Finally, the 1 entries
for the state-2 relations for node n help establish the 1 entries for its state-3 relations
Formulas (7) and (8) after the third rotation of n’s pointers.

In our initial attempt to establish the partial correctness of DSW, we added all re-
lations of Formulas (7)–(14) to the set of abstraction relations, A. This attempt failed
(we terminated the analysis after several days of computation) because of the vast ab-
stract state space that needed to be explored. To pare down the abstract state space,
we observed that not all node distinctions introduced by the relations of Formulas (7)–
(14) were necessary. For instance, note that any leaf node in state 0 or state 3 sat-
isfies (among other relations) Formula (9), which defines eql,r0—nominally a state-1
relation—because it has no outgoing left or right pointers, while an internal tree
node in state 0 or state 3 does not satisfy it. As a result, eql,r0 prevents canonical ab-
straction from summarizing a leaf node in state 0 or 3 with an internal node in one of
those states. The resulting abstraction has a larger-than-necessary state space because
we only need to ensure that tree nodes in state 1 have their left field pointing to their
original right subtree, i.e., have the property defined by the relation eql,r0 .

To remove such unnecessary distinctions, we introduce the concept of a state-
dependent abstraction. The first component of such an abstraction is a collection of
unary core state relations, state0(v), state1(v), state2(v), and state3(v).5 Every time the
rotation of left and right pointers of the tree node pointed to by cur is completed
(after line [14] of Fig. 4(b)), the node’s state is changed to the next state. (The state
relations carry no semantics with respect to the pointer values of nodes; they simply
record the “visit counts” for each node.) As the second component of the abstraction,
we introduce state-relation-guarded versions of the relations of Formulas (7)–(14):

s0 eql,l0(v1)
def= state0(v1)∧ eql,l0(v1) (15)

s0 eqr,r0(v1)
def= state0(v1)∧ eqr,r0(v1) (16)

s1 eql,r0(v1)
def= state1(v1)∧ eql,r0(v1) (17)

s1 rer,l0(v1)
def= state1(v1)∧ rer,l0(v1) (18)

s1 rer,r0(v1)
def= state1(v1)∧ rer,r0(v1) (19)

s2 eqr,l0(v1)
def= state2(v1)∧ eqr,l0(v1) (20)

s2 rel,l0(v1)
def= state2(v1)∧ rel,l0(v1) (21)

s2 rel,r0(v1)
def= state2(v1)∧ rel,r0(v1) (22)

5 The state relations are not added to the set of abstraction relations, A.

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 273

s3 eql,l0(v1)
def= state3(v1)∧ eql,l0(v1) (23)

s3 eqr,r0(v1)
def= state3(v1)∧ eqr,r0(v1) (24)

We replace the relations of Formulas (7)–(14) in the set of abstraction relations, A, with
Formulas (15)–(24). The resulting abstraction allows the grouping of nodes that have
different values for the relation eql,r0 , for example, as long as these nodes are not in
state 1.

5 Establishing That DSW Terminates

We can establish that DSW terminates using the unary state relations of §4 via a simple
progress monitor, which we describe below.

For each state relation s, we create a copy of s, which is used to save the values of
relation s at the start of the currently-processed loop iteration (after line [8] of Fig. 4(b)).
We give the new relations the superscript lh to indicate that they hold the loop-head
values. The first abstract operation of each iteration of the loop takes a snapshot of the
current states of nodes: statelh

i (v) ← statei(v), for each i ∈ [0..3] and each binding of v
to individuals in the abstract structure being processed. Additionally, it asserts that cur
does not point to a tree node in state 3 at the head of the loop.

The last operation of every loop iteration performs a progress test by asserting the
following formula:

∃ v :
(
statelh

0 (v)∧ state1(v)∨ statelh
1 (v)∧ state2(v)∨ statelh

2 (v)∧ state3(v)
)∧ ∀ v1 �= v : (statelh

0 (v1)⇔ state0(v1))∧(statelh
1 (v1)⇔ state1(v1))∧

(statelh
2 (v1)⇔ state2(v1))∧(statelh

3 (v1)⇔ state3(v1))

The assertion ensures that one node’s state makes forward progress (the first line of
the assertion) and that no other node changes state (the second and third lines of the
assertion).

Together with the assertion that cur does not point to a tree node in state 3 at the
start of the loop, the above progress monitor establishes that each tree node is visited
exactly three times, thus establishing that the algorithm terminates, as well as the fact
that every node is, in fact, visited by the algorithm (property (ii) of partial correctness).

6 Experimental Evaluation

We applied TVLA to the DSW algorithm shown in Fig. 4(b) and analyzed it using the
abstraction defined in §4. As input for the algorithm, we supplied the 3-valued structure
S7 shown in Fig. 7, which is essentially the structure S3 from Fig. 3 refined with values
for relations introduced in §4. Additionally, S7 contains a special sentinel node that is
not part of the input tree; it is referenced by program variable SENTINEL. In Fig. 7,
as well as Fig. 8, relations left0 and right0 are omitted to reduce clutter. Their values
are identical to left and right, respectively. We have also omitted the values for state-1
and state-2 relations eql,r0 , rer,l0 , rer,r0 , eqr,l0 , rel,l0 , and rel,r0 . They have value 1/2
for the non-sentinel nodes of both figures and value 1 for the sentinel nodes. Because

274 A. Loginov, T. Reps, and M. Sagiv

we are performing tree-specific shape analysis, both figures only represent concrete
structures that satisfy the treeness integrity constraints (see §2.1).

rroot
state0

s0_eql,l
0

s0_eqr,r
0

eql,l
0

eqr,r
0

root

le
ft

t d
ow

n

right

dow
n

left, right,
down, tdown

tdown

rroot
state0

s0_eql,l
0

s0_eqr,r
0

eql,l
0

eqr,r
0

state0rSENTINEL
s0_eql,l

0

s0_eqr,r
0

eql,l
0

eqr,r
0

S
E

N
T

IN
E

L

tdown

Fig. 7. A 3-valued structure
S7 that represents all trees
of size 2 or more

Fig. 8 shows the unique structure S8 collected by the
analysis at the exit node. The definite 1 values for rela-
tions eql,l0 and eqr,r0 (defined by Formulas (7) and (8)) for
each individual of S8 establish that the outgoing left and
right pointers of every tree node are restored, thus es-
tablishing partial correctness property (i), i.e., that the tree
produced at exit is identical to the input tree. The absence of
violations of the progress monitor defined in §5 establishes
that DSW terminates, as well as the fact that every node is
visited (partial correctness property (ii)).

The analysis took just under nine hours on a 3GHz
Linux PC and used 150MB of memory. While the au-
thors have a number of ideas for performance optimizations
for the research system, the main goal was to demonstrate
the feasibility of automatic symbolic exploration of heap-
manipulating programs with vast (abstract) state spaces.

The cost of verifying that DSW terminates is negligi-
ble (when compared to the cost that DSW is partially cor-
rect) because the progress monitor does not increase the
size of the reachable state space. The number of distinct
abstract structures that were collected at all program points
exceeded 80,000. The number of structures at some pro-
gram points exceeded 11,000. This number is not surpris-
ing, if we consider that some of these structures contained
15 individuals. (At intermediate steps, the analysis explored
abstracts structures with up to 21 individuals!) However, 80,000 is well below the limit
imposed by the number of distinct 3-valued structures, 2220

, which represents the num-
ber of subsets of individuals with every possible vector of unary abstraction-relation
values. (There are 20 unary abstraction relations: pointer relations x(v) and reachabil-
ity relations rx(v) for each of the five pointer-valued program variables, as well as ten
relations of Formulas (15)–(24).) Fig. 9 shows a sample abstract structure S9 that arises
before line [11] of Fig. 4(b). In S9, as in all other structures that arise at that point, the
state relations and state-relation-guarded relations defined by Formulas (15)–(24), have
precise values for all individuals.

In summary, our experiment showed that, using the abstraction defined in §4, an
automatic analysis can maintain enough precision to identify sufficient invariants to
demonstrate both partial correctness and termination of DSW.

7 Discussion and Future Work

The analysis carried out by TVLA performs fully-automatic state-space exploration.
However, one has to bring to bear some expertise in specifying TVLA analyses. The
concept of tree-specific shape analysis (see §2.1) is of general utility. It can be reused

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 275

for any analysis in which all input, output, and intermediate data structures are trees.
The instrumentation relations defined by Formulas (9)–(14), which capture pointer rela-
tionships of tree nodes, and core state relations state0(v), . . . , state3(v), which are used
to control the precision of the abstraction, are specific to the problem of verifying the
total correctness of DSW.

rroot
rprev

state3
s3_eql,l

0

s3_eqr,r
0

eql,l
0

eqr,r
0

root,prev

le
ft

t d
ow

n right

dow
n

left, right,
down, tdown

tdown

rroot
rprev

state3
s3_eql,l

0

s3_eqr,r
0

eql,l
0

eqr,r
0

rcurrsentinel
state0

s0_eql,l
0

s0_eqr,r
0

eql,l
0

eqr,r
0

cur,S
E

N
T

IN
E

L

tdown

Fig. 8. A 3-valued struc-
ture S8 collected at exit of
DSW

A key difference between our approach and theorem-
prover-based approaches is that we do not need to specify
loop invariants. Instead, we need to specify a collection of
node distinctions (or node relationships), such as the rela-
tions eql,r0(v1) and rer,l0(v1) of Formulas (9)–(14); these
allow the node distinctions specified to be observable by the
analysis. Given the appropriate node distinctions, abstract
interpretation automatically infers the invariants satisfied by
the program.

Recently, a machine-learning technique has been used to
identify key instrumentation relations automatically [11]. In
the future, we would like to see if it can be used to identify
the key relations for verifying DSW, namely the relations of
Formulas (9)–(14).

Although the instrumentation relations introduced in §4
are tailored for establishing the correctness of DSW, the con-
cept of state-dependent abstractions is likely to be of general
utility. In fact, simpler versions of state-dependent abstrac-
tions have arisen in past work. For example, the unary rela-
tion inOrder was used to establish the partial correctness of
sorting [9]. The state-dependent abstractions defined in this
paper are prepared to deal with more than just two states
(initial and final, as is the case for the relation inOrder), and
use the value of the state as a guard to reduce the number of
distinct properties recorded for individuals, thereby reducing the size of the (abstract)
state space that is explored.

There is an interesting analogy between the explicit state-tracking that the original
DSW algorithm performs via the mark and tag bits, and the state relations of our ab-
straction. (In some sense, the state relations introduced for purposes of analysis impose a
DSW-like view of the world to track the actions of the Lindstrom variant of the algorithm.)

While we chose to apply a transformation that ensures that the algorithm main-
tains treeness (transformation 3 of §3), it is possible to verify the unmodified algorithm
(Fig. 4(a)) by introducing the following instrumentation relation:

isLocallyShared(v) def= ∃ v1 : left(v1, v)∧ right(v1, v)

Relation isLocallyShared (which has value 0 for all nodes in the input 3-valued struc-
ture, indicating that the input is a valid binary tree) allows us to relax the restriction
on sharing by tracking where sharing occurs rather than requiring its absence. To be
applicable to the version of the algorithm that does not include transformation 3, the
tree-specific shape analysis of §2.1 can be generalized to handle the limited class of
DAGs that arise in lines [9]–[10] of Fig. 4(a) as follows:

276 A. Loginov, T. Reps, and M. Sagiv

cur

s0_eq_ll0
s0_eq_rr0

state0
r_cur
eq_ll0
eq_rr0

next

eq_lr0
eq_rl0

s0_eq_ll0
s0_eq_rr0

re_lr0
re_rr0
state0
r_cur
r_next
eq_ll0
eq_rr0

prev

eq_rl0
s2_eq_rl0
s2_re_ll0

re_ll0
re_rr0
state2
r_prev

root

eq_lr0
s1_eq_lr0

re_ll0
re_lr0
state1
r_prev
r_root

SENTINEL

eq_lr0
eq_rl0

s0_eq_ll0
s0_eq_rr0

re_ll0
re_lr0
re_rl0
re_rr0
state0
r_prev
r_root

r_SENTINEL
eq_ll0
eq_rr0

tmp

s0_eq_ll0
s0_eq_rr0

state0
r_cur
r_tmp
eq_ll0
eq_rr0

eq_lr0=1/2
eq_rl0=1/2
re_ll0=1/2
re_rl0=1/2

eq_rl0
s2_eq_rl0
s2_re_ll0

re_ll0
re_rr0
state2
r_prev

t_down

eq_lr0
s1_eq_lr0
s1_re_rr0

re_ll0
re_rr0
state1
r_prev

t_down left down

t_down leftdown

t_down

right

t_down

t_down

t_down

t_down

t_down leftdown

t_down

t_down

t_down

t_down

t_down rightdown

s0_eq_ll0
s0_eq_rr0

state0
r_cur
r_tmp
eq_ll0
eq_rr0

eq_lr0=1/2
eq_rl0=1/2
re_ll0=1/2
re_lr0=1/2
re_rl0=1/2
re_rr0=1/2

down t_down left right

down t_down left right

t_downt_down t_down

down t_down rightdown t_down left

t_down

t_down

Fig. 9. A 3-valued structure S9 that arises prior to the first rotation of pointers of the node n
pointed to by cur (before line [11] of Fig. 4(b)). Relations left0 and right0 are omitted from the
figure. Initially, node n was the right child of the node pointed to by prev. The latter node is now
the root of a tree with leaf SENTINEL (the original root is the parent of SENTINEL). No nodes
in n’s subtree have been visited; that subtree has not been modified from its initial state.

1. The precondition for the absence of sharing (Formula (2)) would be removed.
2. The integrity constraints that forbid structures that contain sharing would be mod-

ified to include an isLocallyShared guard to permit the kind of local sharing that
arises in Fig. 4(a). E.g., Constraint (4) becomes:

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 277

∀ v1, v2 : (∃ v : ¬isLocallyShared(v)∧ down(v1, v)∧ down(v2, v)) ⇒ v1 = v2.

The DSW algorithm shown in Fig. 4(b) (as well as the algorithm shown in Fig. 4(a))
does not work correctly when applied to a data structure that contains a cycle: the traver-
sal terminates prematurely and not all of the edges are properly restored. However, the
algorithm works correctly when applied to a DAG: a node n with k paths from the root
to n is visited 3k times, rather than 3 times. (Note, however, that k can be exponential
in the size of the graph.) Given a bound on k, we may be able to verify the correctness
of DSW for DAGs, if we relax the restriction on sharing and introduce 3k state rela-
tions and the corresponding state-relation-guarded relations. However, unless k is very
small it is not likely that the reachable state space can be explored with our computing
resources. In the general case, in which the input is a DAG with no bound on k, the
partial-correctness result can be obtained by having the state relations of nodes wrap
around: a visit to a node in state 3 results in changing the node’s state to 1. While this
change would be sufficient to establish that the outgoing left and right pointers
of every DAG node are restored and that every node is visited, the analysis would no
longer be able to establish termination using the simple progress monitor of §5.

In practice, one would rarely be interested in using such an algorithm to traverse a
DAG because of the potentially exponential cost. In most applications, one is likely to
want to process each node once (e.g., in depth-first order) and visit each node a constant
number of times. This can be achieved by equipping the nodes with two bits to record
the visit count (a number from 0 to 3). All nodes reachable from a node with visit count
3 must have been visited three times. If cur is set to point to a node with visit count 3,
the direction of the traversal can be reversed by swapping the values of cur and prev,
thus terminating the exploration of the node’s subgraph. By relaxing the restriction on
sharing, it should be possible to verify the total correctness of the modified algorithm.

8 Related Work6

The general form of the Deutsch-Schorr-Waite algorithm works correctly for arbitrary
graphs [18]. (Unlike the algorithm we used in our work, which was taken from [10],
the general form is not constant-space because it uses mark and tag bits.) We divide the
discussion of related work according to the kind of data structures to which the analyzed
algorithm can be applied.

DSW on Arbitrary Graphs. The first formal proofs of the partial correctness of DSW
were performed manually by Morris [14] and Topor [20]. In [19], Suzuki automated
some steps of the partial-correctness verification of the algorithm by introducing deci-
sion procedures that could handle heap-manipulating programs. More recently, Bornat
used the Jape proof editor [3] to construct a partial-correctness proof of DSW [2]. The
resulting proof used 152 pages [1].

Our automated approach provides the obvious benefit of disposing with the need
to provide manual proofs, which require significant investments of time and expertise.
However, even in the presence of a powerful theorem prover, proof-based approaches

6 The discussion of [14, 20, 19] relies on what is reported in [22, 13].

278 A. Loginov, T. Reps, and M. Sagiv

rely on the user to provide loop invariants that are sufficient to establish the property
being verified. For instance, the properties of nodes and their subtrees that are described
in §3 (see Figs. 5 and 6 and the corresponding text) would have to be specified as loop
invariants. As discussed in §7, our obligation is simpler: we have to specify instrumen-
tation relations that act as ingredients for a loop invariant; the analysis automatically
synthesizes a loop invariant—in the form of a collection of 3-valued structures that
overapproximate the set of concrete structures that actually arise—by means of state-
space exploration.

Yang [21] and Mehta and Nipkow [13] gave manually-constructed, but machine-
checkable, proofs of the partial correctness of DSW. The two approaches share the goal
of making formal reasoning about heap-manipulating programs more natural. The for-
mer approach uses the logic of Bunched Implications [5] (a precursor formalism to
Separation Logic [16]), which permits the user to reason with Hoare triples in the pres-
ence of complicated aliasing relationships. The latter approach uses Isabelle/HOL to
construct formal proofs that are human-readable. These approaches improve the usabil-
ity of proof-based techniques. However, they still lack the automation of our approach.

DSW on Trees and DAGs. Yelowitz and Duncan were the first to present a termination
argument for the Deutsch-Schorr-Waite algorithm [22]. They analyzed Knuth’s version
of the algorithm [6], which uses tag bits but does not work correctly for graphs that
contain a cycle. It does, however, work for DAGs, as does the version we used, taken
from [10]. The termination argument involved the use of program invariants to prove
bounds on the number of executions of statements in the loop. In §5, we showed how
to use the state relations defined in §4 in a simple progress monitor for the algorithm’s
loop to establish that DSW terminates (on trees). As was the case for partial correctness,
our task is reduced to establishing appropriate distinctions between nodes. Given the
state relations, the complete state-space exploration shows no violation of the progress
monitor and establishes a bound (namely, three) on the number of visits to each tree
node; consequently, the algorithm must terminate.

Several previous papers reported on automatic verification of weaker properties of
the Deutsch-Schorr-Waite algorithm, namely that the algorithm has no unsafe pointer
operations or memory leaks, and that the data structure produced at the end is, in fact, a
binary tree [15, 12, 7]. The authors first established these properties in [15]. ([12] con-
tains a typo stating that that work establishes partial correctness; however, [12] reused
the TVLA specification from [15], and establishes the same properties as [15].) Fi-
nally, [7] extended the framework of [17] with grammars, which provide convenient
syntactic sugar for expressing shape properties of data structures. That work relied on
the use of grammars, instead of instrumentation relations, to express tree properties and
the absence of memory leaks.

References

1. R. Bornat. Proofs of pointer programs in Jape. “Available at http://www.dcs.qmul.
ac.uk/˜richard/pointers/”.

2. R. Bornat. Proving pointer programs in Hoare logic. In Mathematics of Program Construc-
tion, pages 102–126, July 2000.

Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm 279

3. R. Bornat and B. Sufrin. Animating formal proofs at the surface: The Jape proof calculator.
The Computer Journal, 43:177–192, 1999.

4. L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis, Dept. of
Computer Science, Cornell University, January 1990.

5. S. Ishtiaq and P. O’Hearn. Bi as an assertion language for mutable data structures. In Symp.
on Principles of Programming Languages, pages 14–26, January 2001.

6. D. Knuth. The Art of Computer Programming – Vol. 1, Fundamental Algorithms. Addison-
Wesley, 1973.

7. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using grammar-based
shape analysis. In European Symp. On Programming, pages 124–140, April 2005.

8. T. Lev-Ami, N. Immerman, and M. Sagiv. Fast and precise abstraction for shape analysis.
To appear in Proc. Computer-Aided Verification, August 2006.

9. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verifi-
cation: A case study. In Int. Symp. on Software Testing and Analysis, pages 26–38, August
2000.

10. G. Lindstrom. Scanning list structures without stacks or tag bits. Information Processing
Letters, 2(2):47–51, June 1973.

11. A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learning. In Proc.
Computer-Aided Verification, pages 519–533, July 2005.

12. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap abstraction.
In Static Analysis Symp., pages 265–279, August 2004.

13. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In Automated
Deduction — CADE-19, pages 121–135, July 2003.

14. J. Morris. Verification-oriented language design. Tech. Report TR-7, Computer Science Div.,
University of California–Berkeley, December 1972.

15. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas with applications
to program analysis. In European Symp. On Programming, pages 380–398, April 2003.

16. J. Reynolds. Separation Logic: A logic for shared mutable data structures. In Symp. on Logic
in Computer Science, pages 55–74, July 2002.

17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM
Trans. on Programming Languages and Systems (TOPLAS), 24(3):217–298, 2002.

18. H. Schorr and W. Waite. An efficient machine independent procedure for garbage collection
in various list structures. Communications of the ACM, 10(8):501–506, August 1967.

19. N. Suzuki. Automatic Verification of Programs with Complex Data Structures. PhD thesis,
Dept. of Computer Science, Stanford University, February 1976.

20. R. Topor. The correctness of the Schorr-Waite list marking algorithm. Tech. Report MIP-R-
104, School of Artificial Intelligence, University of Edinburgh, July 1974.

21. H. Yang. Local Reasoning for Stateful Programs. PhD thesis, Dept. of Computer Science,
University of Illinois, Urbana-Champaign, June 2001.

22. L. Yelowitz and A. Duncan. Abstractions, instantiations, and proofs of marking algorithms.
In Symp. on Artificial Intelligence and Programming Languages, pages 13–21, August 1977.

23. G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical characterizations of heap abstractions.
To appear in ACM Transactions on Computational Logic (TOCL).

Shape Analysis for Low-Level Code

Hongseok Yang

Seoul National University, Korea

Abstract. Shape analysis algorithms statically infer deep properties of
the runtime heap, such as whether a variable points to a cyclic or acyclic
linked list. Previous shape analyses have tended to avoid features of
low-level programming languages, such as memory disposal and pointer
arithmetic. Yet, these features are used in many important programs,
particularly systems programs.

In this talk I will describe how shape analysis for low-level code can
be done with separation logic. A crucial element of the approach is the
way it negotiates a transit between a low-level RAM view of memory and
a higher, fictional, view that abstracts from the representation of nodes
and linked structures as certain configurations of the RAM. The analysis
algorithm can be seen as conducting a proof search in separation logic,
and I will show how this provides a flexible way of exploring non-standard
optimizations, while maintaining soundness.

K. Yi (Ed.): SAS 2006, LNCS 4134, p. 280, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 281 – 300, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Catching and Identifying Bugs in Register Allocation

Yuqiang Huang†, Bruce R. Childers†, and Mary Lou Soffa‡

† Department of Computer Science
University of Pittsburgh

Pittsburgh, Pennsylvania 15260
{yuqiangh, childers}@cs.pitt.edu

‡ Department of Computer Science
University of Virginia

Charlottesville, Virginia 22904
soffa@cs.virginia.edu

Abstract. Although there are many register allocation algorithms that work
well, it can be difficult to correctly implement these algorithms. As a result, it is
common for bugs to remain in the register allocator, even after the compiler is
released. The register allocator may run, but bugs can cause it to produce incor-
rect output code. The output program may even execute properly on some test
data, but errors can remain. In this paper, we propose novel data flow analyses
to statically check that the output code from the register allocator is correct in
terms of its data dependences. The approach is accurate, fast, and can identify
and report error locations and types. No false alarms are produced. The paper
describes our approach, called SARAC, and a tool, called ra-analyzer, that stati-
cally checks a register allocation and reports the errors it finds. The tool has an
average compile-time overhead of only 8% and a modest average memory
overhead of 85KB.

1 Introduction

One of the most critical compiler transformations is register allocation, as a good al-
locator can make a dramatic difference in obtaining good performance [4, 11]. One
study even reported that careful register allocation makes one order of magnitude dif-
ference in performance [26]! Thus, considerable effort has been given to developing
new allocation algorithms or variants of existing ones [2-7, 11, 12, 24, 26, 28, 30].
Given the many algorithm variants and the complexity of modern architectures, im-
plementing register allocation is often a complex and error prone task. Particularly, it
is difficult to detect and locate bugs in an erroneous output of the allocator if the code
runs to completion. Some efforts [13, 18, 21] have proposed techniques to ensure the
allocator’s implementation is correct. In this paper, we describe a novel technique to
check the correctness of register allocation and also to report the bugs. This technique
is useful throughout the lifetime of a compiler, particularly during the development
period.

Although a compiler undergoes much testing, bugs in the register allocator often
slip past regression tests and are reported after release. What is worse is that many of
these bugs cause the compiler to fail on some input programs, but not on others. The

282 Y. Huang, B.R. Childers, and M.L. Soffa

generated code may have bugs, although the compiler did not crash. Such latent bugs
will not be discovered until a particular test input causes the program to fail. Assum-
ing that a test input catches the bug, the developer is likely to believe that the bug is in
the program itself, rather than the compiler. She will spend much time and effort
tracking down the bug to only discover that it is in the compiler and cannot be readily
fixed. All of this leaves the developer in the unfortunate situation of having little con-
fidence in the correctness of the generated code because bugs may remain even after
testing.

The research community has recognized the difficulty of implementing compiler
optimizations including register allocation and has proposed techniques to address the
situation. Necula et al. [21] proposed a symbolic evaluation approach to check the al-
locator’s output against the input. However, this approach reports false alarms and has
four times compile-time overhead. Jaramillo et al. [13] proposed a dynamic checking
approach that runs the allocator’s input and output code. Then it compares the corre-
sponding values to check that they are the same. However, it does not guarantee the
correctness of the allocator’s output unless all paths are exercised by test inputs.

In this paper, we propose a new approach, called SARAC, that uses static analy-
sis to check the correctness of the allocator’s output. SARAC reports the location
and type of an error in the output due to an incorrect allocation. The analysis checks
that the data flow semantics of the output match the semantics of the input. It trav-
erses all program paths, using data flow analysis to gather information about the
output. It then checks correctness using the gathered information. A checking step
verifies that the data dependences of the input code are preserved in the output
code, once the allocator has assigned registers and possibly spilled registers. The in-
formation collected during the analysis is used to determine error types and loca-
tions. Identifying errors in the dependences is a first step towards a complete tool
for checking and reporting bugs.

Our approach does not produce false alarms and gives hints to the compiler engi-
neer to help her diagnose and fix bugs in the allocator. Our analysis does not rely on
knowledge about the allocator implementation; it can be used with different register
allocation algorithms, including those that perform coalescing and rematerialization.
It uses data flow techniques and can be easily implemented. Such independence from
the register allocator suggests that a single error analysis tool can be built and em-
ployed for different allocators (in different compilers and target machines). Finally,
the approach has minimal performance and memory overhead, making it efficient and
practical. A prototype tool, called ra-analyzer, that implements SARAC has an aver-
age compile-time overhead of 8% and an average memory requirement of 85 KB.

This paper makes several contributions:

• A new way (SARAC) to statically check the correctness of a register allocator
implementation and to identify and report the location and type of bugs, inde-
pendently of the register allocator; no false alarms are generated.

• Techniques to support register allocators that perform coalescing, remateriali-
zation and sub-register class allocation.

• The treatment of the register allocator as a black box. SARAC supports many
allocator extensions, including live range splitting, interference region spilling,
web splitting, spill coalescing, spill propagation and spill coloring.

 Catching and Identifying Bugs in Register Allocation 283

• A tool (ra-analyzer) that implements SARAC in SUIF’s back-end optimizer
(MachSUIF [29]) for the Intel IA-32.

• An evaluation of ra-analyzer’s performance and memory overhead.

The next section describes how allocation preserves the semantics of the input
code. The third section presents algorithms for gathering and using data flow informa-
tion to check for correctness. The fourth section evaluates ra-analyzer. The fifth sec-
tion discusses related work and the final section concludes and describes future work.

2 Register Allocation

This section describes the motivation and background for our static analysis to catch
and identify register allocation errors. To provide focus, we make several reasonable
assumptions about the allocator. We assume that the allocator is not integrated with
other optimizations (e.g. instruction scheduling) [3, 24], and it does not change the
control flow graph, as is typical for register allocators. Initially, we assume a register
allocator that does only allocation — e.g., it does not do coalescing or rematerializa-
tion. We also do not show address calculations. In a later section, we discuss how
coalescing, rematerialization, sub-register class allocation and addresses can be incor-
porated. Lastly, we assume that the input code to the allocator is correct since we ad-
dress register allocation errors.

When assigning locations (registers or memory) to hold values (variables or tem-
poraries), a register allocator (e.g., on a RISC-style machine) can make only certain
edits to the input code. One edit can change an input statement’s operand to a hard-
ware register. Another edit is to insert store/load statements. A copy through a register
might also be introduced. The edits take into account the data type and the target ma-
chine. For example, a floating point (FP) register should be used to hold a FP value
and the appropriate register assignment made to a FP statement. Some target ma-
chines may require that specific hardware registers be used for certain operations. In
this case, the register allocator has to ensure that its edits (and assignment) conform to
the architectural constraints.

Figure 1 provides a running example, which counts the number of integer divisors
for some number, n. The allocator’s input and output are shown in RTL notation [9].
RTL is a standard low level intermediate code representation used in various
compilers (e.g., GNU gcc [10] and VPO [1]). In RTL, r[n] is used to represent
register n and M[loc] is used to represent memory location loc. For example, r[1]
is register 1 and M[c] is the memory location for variable c. A load is shown as
r[n]=M[loc] and a store as M[loc]=r[n]. A register-to-register copy is shown as
r[n]=r[m]. Although our technique is not tied to a particular intermediate
representation.

In the example, we assume that r[1] is assigned by the allocator to hold variable
n, and r[2] is used to hold the other variables as necessary. However, two wrong
allocation edits are made as shown in the incorrect output. The first wrong edit
occurs at code point 8, where the wrong register has been assigned to the second
source operand of the statement. The other incorrect edit is located at code point 12,
where the wrong destination operand is used for the spill. The example also shows

284 Y. Huang, B.R. Childers, and M.L. Soffa

the locations where the errors are manifested. The location where an error is
manifested is not necessarily the location where the wrong edit is made. For
example, the erroneous edit at 12 is manifested as error 2 and 3 at code point 11 and
14, respectively.

2.1 Data Flow Semantics and Register Allocation

A semantically correct allocation of registers must preserve the input code’s
semantics, particularly the data dependences. Thus, variable and temporary definition
and use pairs (“du-pairs”) in the input should be maintained in the output. We define a
“du-pair” notationally as (p.x=,q.=x), where the definition of the variable or
temporary x at code point p reaches the use of x at q. A code point is a label on a
statement in the input or output. For example, in the allocator’s input of Figure 1, the
variable c is defined at code point 1 and used at code point 6, giving the du-pair
(1.c=,6.=c).

Source Code Input to Allocator

/*count number of divisors
to variable n that is
passed as an argument*/
c=0;
for (d=1; d<=n; d++) {
if (n%d == 0)
c++;
}

1:c=0;
2:d=1;
3:PC=((n<=0)?L3:PC+4);
L1:
4:t=n%d;
5:PC=((t!=0)?L2:PC+4);
6:c=c+1;
L2:
7:d=d+1;
8:t=d<=n;
9:PC=((t==1)?L1:PC+4);
L3:

Correct Output from Allocator Incorrect Output from Allocator
1:r[1]=M[n];
2:r[2]=0;
3:M[c]=r[2];
4:r[2]=1;
5:M[d]=r[2];
6:PC=((r[1]<=0) ? L3:PC+4);
L1:
7:r[2]=M[d];
8:r[2]=r[1]%r[2];
9:PC=((r[2]!=0)?L2:PC+4);
10:r[2]=M[c];
11:r[2]=r[2]+1;
12:M[c]=r[2];
L2:
13:r[2]=M[d];
14:r[2]=r[2]+1;
15:M[d]=r[2];
16:r[2]=r[2]<=r[1];
17:PC=((r[2]==1)?L1:PC+4);
L3:

1:r[1]=M[n];
2:r[2]=0;
3:M[c]=r[2];
4:r[2]=1;
5:M[d]=r[2];
6:PC=((r[1]<=0) ? L3:PC+4);
L1:
7:r[2]=M[d];
8:r[2]=r[1]%r[1]; err1: wrong reg
9:PC=((r[2]!=0) ? L2:PC+4);
10:r[2]=M[c];
11:r[2]=r[2]+1; err2: stale (c)
12: M[d]=r[2]; wrong store(causes

err2,3)
L2:
13:r[2]=M[d];
14:r[2]=r[2]+1; err3: eviction (d)
15:M[d]=r[2];
16:r[2]=r[2]<=r[1];
17:PC=((r[2]==1) ? L1:PC+4);
L3:

Fig. 1. Example source, input to register allocator, correct and incorrect output code

 Catching and Identifying Bugs in Register Allocation 285

After register allocation, there is not necessarily a one-to-one correspondence
between the input du-pairs (involving variables and temporaries) and the output du-
pairs (involving registers and memory locations). The allocator can insert loads, stores
or copies to move values between the registers and memory. The output correspon-
dence of an input du-pair is termed a “du-sequence”:

A du-sequence (s.d=, ..., t.=u) is a chain of du-pairs such that d holds the value
v at s, u holds the same value v at t, and there is a connected chain of du-pairs
starting at s and ending at t that can register copy, load, or store the value v.

A du-sequence can perform a number of moves; a typical du-sequence has no moves
or one store and reload. For example, there is du-sequence (2.r[2]=,

3.M[c]=r[2],10.r[2]=M[c],11.=r[2]) in the correct output of Figure 1. The
notation 3.M[c]=r[2] shows a store at code point 3. Similarly, 10.r[2]=M[c]
shows a load at 10.

When the allocator correctly maintains the data flow of the input, each input du-
pair has a corresponding output du-sequence, where the start of the du-sequence maps
to the definition in the du-pair and the end of the du-sequence to the use of the du-
pair. Thus, a combination of propagation and substitution is used to recover the du-
pair from the du-sequence. For example, in Figure 1 the correct output code points 2
and 11 map to input code points 1 and 6, and 2.r[2]= corresponds to 1.c= and
11.=r[2] to 6.=c. Hence, the input du-pair (1.c=,6.=c) corresponds to the du-
sequence (2.r[2]=,3.M[c]=r[2],10.r[2]=M[c],11.=r[2]). The input du-
pair can be recovered by propagation and substitution as shown in the steps:

1. (2.r[2]=,3.M[c]=r[2],10.r[2]=M[c],11.=r[2]) // Initial du-sequence
2. (2.r[2]=,10.r[2]=r[2],11.=r[2]) // After propagation of r[2]
3. (2.r[2]=,11.=r[2]) // After propagation of r[2]again
4. (1.c=,6.=c) // Final du-pair after c was substituted for r[2]

When a use has multiple reaching definitions, all defined values need to be in the
same register (or memory location) before the use. For example, the use 6.=c has the
reaching definitions 6.c= and 2.c= in the allocator’s input of Figure 1. These are
maintained in the correct output as (11.r[2]=,12.M[c]=r[2],10.r[2]=M[c],
11.=r[2]) and (2.r[2]=,3.M[c]=r[2],10.r[2]=M[c],11.=r[2]).

Thus, the input and output have the equivalent data flow semantics if and only if
the input’s du-pairs can be recovered from the output’s du-sequences. Hence, we use
the “recovery” process to check the correctness of an allocation. Because of the
"recovery" process, there are no false positive for our techniques.

2.2 Sources of Errors

A bug in the allocator that causes the output program to crash or produce a wrong
result (but not the compiler) is manifested through incorrect code edits that can be
made by the allocator. For a register allocator, the incorrect edits are:

1. incorrect register assignment: the wrong register is used for an operand;
2. wrong store or load: a value is stored or loaded incorrectly (the store or load

may be redundant or it may use the wrong memory address for a variable or
temporary);

286 Y. Huang, B.R. Childers, and M.L. Soffa

3. missing store or load: a value is not spilled or reloaded when needed;
4. wrong register type: the wrong type is used (e.g., a load-byte statement is used

when a load-word statement is needed);
5. constraint violation: specific architectural constraints are violated.

These edits can violate the semantics of the input code and affect data
dependences. The first three edits can cause the du-sequences in the output code to
have no correspondence with the input du-pairs. These incorrect edits can challenge
the compiler engineer to detect. We focus on these edits as an important and
necessary step to catch and report bugs in an allocation. Both the wrong register type
and constraint violation edits usually preserve the correct data dependence. Our
algorithms can be extended to automatically check these using a linear inspection of
the input and output.

An incorrect edit can lead to errors in the program. An error happens when a du-
pair in the input cannot be recovered from the allocator’s output. We define an error
as a violation of the input code’s data flow. Note the distinction between an “incorrect
edit” and an “error”: An incorrect edit is the cause of an error. The incorrect edit
defines where something was done wrong to the code, but it is not necessarily the
code point where the error is exposed. An incorrect edit may not manifest itself as an
error until a value affected by the edit is used. For instance, in Figure 1 the wrong edit
at code point 12 is not exposed until code points 11 and 14. In fact, an incorrect edit
can be made that does not cause an error in the program. For example, when a
duplicate load is inserted, it may do no harm in terms of the program’s data flow. Our
concern is incorrect edits that cause the program to fail—crashing or computing a
wrong value—by disobeying the input code’s data flow.

The incorrect edits can lead to three error types: stale value error, wrong operand
error, or eviction error. Although these errors all involve data flow, we distinguish
between them to report causal information about what went wrong. A stale value
error happens when referring to a register or memory location that holds an old
version of the needed value. A wrong or missing store is a common cause. For
example, the incorrect output of Figure 1 shows that the wrong store is generated and
that r[2] is spilled to M[d], rather than to M[c]. Thus, there is no du-sequence for c
along the loop back edge that reaches the use at code point 11. Consequently, a stale
value for c is used. Equivalently, the input du-pair (6.c=,6.=c) cannot be recovered.
A wrong operand error occurs when referring to a register or memory location that
does not hold the needed value at all. The value is actually held in some other
location(s). This error is usually caused by an incorrect register assignment. An
eviction error occurs when referring to a value that is not held in any location at all.
This error is usually caused by an wrong store. Figure 1 shows examples for both
wrong operand and eviction errors.

3 Error Analysis for Register Allocation

To find register allocation errors, we develop a technique, called SARAC (Static and
Automatic Register Allocation Checking) that includes mapping generation and data
flow analysis. The technique implicitly and efficiently gathers information about the

 Catching and Identifying Bugs in Register Allocation 287

SARAC(input,output) {
 Map map = mapGen(input,output); // Step 1: mapping generation
 Dataflow sets = defAnalysis(map,output); //Step 2: dataflow analysis
 errAnalysis(output,map,sets); //Step 2: check the allocation
}

Fig. 2. SARAC steps

du-pairs and du-sequences to ensure that the du-pairs in the allocator’s input code
match the du-pairs recovered from the du-sequences in the allocator’s output code. As
most register allocators operate at the procedural level, SARAC uses the code
generated for a procedure. The technique is also applicable to local register allocation
and can be extended to interprocedural register allocation [28].

The three steps of SARAC are shown in Figure 2. First, mapping information is
generated using the allocator’s input and output. Then, iterative forward data flow
analysis, called defAnalysis, is performed on the output using mapping
information. This analysis collects three types of data flow sets needed to check the
correctness of the output and report error locations and types. Finally, a linear scan,
called errAnalysis, exposes def-use violations.

3.1 Step 1: Mapping Generation (mapGen)

SARAC needs to know which value (of the original operand) in the input is actually
defined/used by the output. Therefore, a mapping or association is determined that
relates an operand in the output to its corresponding operand in the input. Intuitively,
a location (register or memory) in the output is mapped to the corresponding
value(variable or temporary) in the input. A mapping can also relate constants in the

mapGen(input,output) {

 Map map := ∅;
 // get blocks in same order for traversal
 Blocks Bin[] := canonicalOrder(input);
 Blocks Bout[] := canonicalOrder(output);
 Block Bi := Bin.getNextElement();
 Block Bo := Bout.getNextElement();
 while (Bi≠null) {
 // create maps for stmts in input and output
 foreach Statement Si∈Bi {
 Statement So := find(Si, Bo);
 if (So≠null)
 // map all (*) opers in So to opers in Si
 map := map∪{So.*→Si.*};
 }
 Bi := Bin.getNextElement();
 Bo := Bout.getNextElement();
 }
 return map;

}

Fig. 3. Pseudocode for mapping generation

288 Y. Huang, B.R. Childers, and M.L. Soffa

output and input. Mappings are generated for all necessary statements, including
statements in the function prologue and epilogue. For load, store or register copy
statements injected by the allocator, there is no corresponding statement in the input.
Thus, no mapping is generated for these statements. For each of the other statements
in the output code, there is a corresponding statement in the input.

As shown in Figure 3, mapGen generates mappings based on the allocator’s input
and output, where the allocator is viewed as a black box. First, the basic blocks in the
input and output code are put in a canonical order. Next, the input blocks are
traversed. For each input statement, the corresponding output statement (if present) is
found in a basic block by find. Finally, the operands in the output statement are
mapped to operands in the input statement. In the figure, the notation “*” means
“any” (e.g., all operands). Although a mapping includes information about statement
and operand number, an abbreviation (e.g., location→value) is used in the paper. For
example, the output code in Figure 1 has statement r[2]=0 corresponding to the
input statement c=0. Thus, the mappings are r[2]→c and 0→0.

3.2 Step 2: Data Flow Analysis (defAnalysis)

To check if the register allocation is correct and to determine error locations and
types, defAnalysis needs to gather information about the behavior of the register
allocator using the output code and the mappings. defAnalysis gathers three types
of information at all points in the program: (1) the values that are currently held in
locations (registers and memory), (2) the stale values and (3) the evicted values. Note
if we only wanted to know if a register allocation is correct, we would not need the
eviction information. We develop a data flow algorithm to gather the information by
using the mappings to get the values in the input code associated with locations in the
output code. For example, when r[2]=1 at output code point 4 in Figure 1 is
processed, the original destination operand d is retrieved from the mappings. This
gives three pieces of information. First, the current value of d is defined in r[2].
Second, the value c in r[2] is evicted. Finally, any previous values of d in other
locations become stale.

These three types of information are collected in three data flow sets — the
Location set (L), Stale set (ST) and Eviction set (E). Each set consists of triples <l, v,
c>, where l is a location (register or memory) from the output code, v is a value
(name) from the input code or another location from which the value can be found,
and c is a vector consisting of a series of code points where the relationship between l
and v occurred. Thus, the semantics of <l, v, c> for L, ST and E are defined as
follows.

• L records the fact that location l holds v. The vector c records the du-sequence
for v (as a series of code points involved in the sequence).

• ST records that location l holds a stale v due to a series of code points in c,
where a value has been killed because of a new defintion at the start of that
series.

• E records that v has been evicted from location l at a statement in c. For E, c is
always a vector with a single element.

 Catching and Identifying Bugs in Register Allocation 289

3.2.1 Data Flow Equations
A statement S in the output code can either be a statement passed from the input with
registers assigned or a copy statement introduced by the register allocator. We use O
to represent original statements and ld to represent the destination of the statement in
the output code. We use C to represent copy statements. A copy statement is either a
load, store or register copy inserted by the allocator. Thus, S has the formats:

O: ld = exp {original statement} or C: ld = ls {copy statement}

We now describe each set’s Gen, Kill, IN and OUT. In a basic block, each set’s IN
for a statement is its OUT from the immediately preceding statement. The merge
points are described separately for each set. The three sets are computed in the same
phase.

Our data flow equations extend the traditional data set operations mostly because
of the third element of the triple, c, which is an ordered set. The elements of c are a
set of code points that are used to compute the du-sequence as data flow proceeds. We
redefine ∩ and – to handle the set c. We also define other operators to propagate the
value along du-sequences and to produce a new triple.

Definition of ∩:

l v c, , l′ v ′ c ′, ,∩
l v c, , l′ v′ c′, ,,{ } if l==l′ v== v ′ c c ′≠∧ ∧

l v c, , if l==l′ v==v′ c==c ′∧ ∧
∅ otherwise

=

Definition of –:

l v c, , l′ v′ c′, ,–
∅ if l==l′ v==v′∧

l v c, , otherwise
=

These two operators are similar to the normal set operators on the first two
elements in the triple. The third element c is handled in a special way.

Computing the Location Set (L)

L_gen[S]
ld v S, , if S O∈ ld v→∧

ld ls S, , if S C∈
=

There are two cases for L_gen[S]. The first case occurs when a statement S in O
defines a new value in ld. The location ld must be mapped to a value v. Therefore, a
triple “<ld, v, <S>>” is generated. For example, when r[2]=1 at code point 4 in
Figure 1 is processed, a triple “<r[2], d, <4>>” is generated. The second case
happens to a statement S in C, which does not define a new value but copies a value.
The value to copy is in ls. “<ld, ls, <S>>” is generated to indicate that the value will be
found at ls when applying the value propagation. For example, when M[d]=r[2] at
code point 5 in Figure 1 is processed, a triple “<M[d], r[2], <5>>” is generated to
show that the value in M[d] can be found from r[2].

L_kill[S] considers that the execution of S destroys the value in ld:

L_kill[S] ld * *, ,=

290 Y. Huang, B.R. Childers, and M.L. Soffa

This Kill computes the triple indicating any value held in the destination of S.
For the value propagation (i.e., collapsing C statements in a du-sequence), the

operator ⊕ is defined.

Definition of ⊕:

l′ v′ S1 … Si, ,, , l v S, ,⊕
l v S, , if S O∈
l v ′ S1 … Si S, , ,, , if S C∈ l′==v∧

∅ otherwise

=

This operator just returns the right hand side triple if S is in O. If S is in C, then there
are two cases. First, the value propagation along a du-sequence is performed if l' is v
and vector <S1, ..., Si> appended with S is the third element of the result triple.
Second, the value of null is returned if l' is not v.

Given the Gen, Kill and IN sets, L_out[S] is computed as:

L_out[S] L_in[S] L_gen[S]⊕() L_in[S] L_kill[S]–()∪=

L_out[S] has all the locations (registers and memory) that hold a value, regardless of
whether it is current or stale. When M[d]=r[2] at code point 5 in Figure 1 is
processed, L_in[5] has “<r[2], d, <4>>” and L_gen[5] consists of “<M[d], r[2],

<5>>”. The triple “<M[d], d, <4, 5>>” is computed from “L_in[5] ⊕ L_gen[5]”. This
triple shows that M[d] holds value d after code point 5, which was computed at code
point 4 and propagated at code point 5.

At the merge point to block B, L_in is:

L_in[B] = L_out Predecessors B()[]∩

L_in is computed by ∩ on L_outs of all predecessors to B. A correct register
allocation puts the same value in the same location along any preceding path for a
later use of that value from that location. Therefore, ∩ removes the “inconsistent
triples” which have different values in the same location.

Computing the Stale Set (ST)

ST_gen[S] L_gen[S] =

ST_gen[S] is the same as L_gen[S] though its two cases have different semantics.
First, when S in O defines a new v is into ld (where ld→v), every previous v held in
some other locations (not ld) becomes stale. Which locations holding v will be
discovered from L_in[S] later on. Second, S in C is considered. ST_gen[S] is
computed using a place holder ls (i.e., the source of S) to represent the actual value.
If ls holds a stale value, ld also holds a stale value after the value propagation.

ST_kill[S] is computed similar to L_kill[S]:

ST_kill[S] ld * *, ,=

When a stale value in ld is destroyed by S, this fact must be reflected in ST_kill[S].

The operator • is defined for finding stale values.
Definition of (�

 Catching and Identifying Bugs in Register Allocation 291

The first case applies to S in O. Any other location l' (i.e., l' (l) that holds v' (i.e., v' =
=v) is discovered and a new triple “<l', v, <S>>” is produced. The second case applies
to S in C and the right hand side triple is simply returned. The last case yields null.

ST_out[S] is computed as:

For S in O, “L_in[S] (ST_gen[S]” computes the triples where v in any location other
than ld becomes stale because S defines new v in ld. For example, when
r[2]=r[2]+1 at code point 11 in Figure 1 is processed, ST_gen[11] consists of
“<r[2], c, <11>>”. The triple “<M[c], c, <2,3>>” is retrieved from L_in[11].
“L_in[11] • ST_gen[11]” produces “<M[c], c, <11>>”. For S in C, “<ld, ls, <S>>” is
computed from • operation and “ST_in[S] ⊕ (L_in[S] • ST_gen[S])” does the stale
value propagation. For example, “ST_in[10] ⊕ (L_in[10] • ST_gen[10])” produces
“<r[2], c, <11,10>>”, which shows that the previous c became stale at code point 11
and propagated to r[2] at code point 10 along the loop back edge.

At the merge point to block B, ST_in is:

ST_in[B] = ST _out Predecessors B()[]∪

ST_in is computed by the union on ST_outs of all predecessors to B. The union is
done because if the value is stale along any path to the block, it is possible that the
stale value might be used in the current (or later) block. Hence, the union operation
preserves the fact that the value is stale along some path.

Computing the Eviction Set (E)
The equations for E are closely related to the ones for L.

E_gen[S] ld * S, , E_kill[S] L_gen[S]=,=

E_gen[S] records that any value in ld will be evicted because of S. But which value
is actually evicted must be discovered from L_in[S]. E_kill[S] is the same as
L_gen[S].

To obtain the value currently held in a location (e.g., ld) and then indicate that it is
evicted from there, the operator is defined and its semantics is self-explanatory.

Definition of :

l′ v′ *, , l * S, , l′ v′ S, , if l′==l

∅ otherwise
=

E_out[S] is computed as:

E_out[S] E_in[S] L_in[S] E_gen[S]()∪() L_in[S] E_kill[S]⊕()–=

The operator discovers the value evicted by S from ld with the computation
“L_in[S] E_gen[S]”. “L_in[S] ⊕ E_kill[S]” gives the triples that a value is put into
ld by S.

292 Y. Huang, B.R. Childers, and M.L. Soffa

At the merge point to block B, E_in is computed as:

E_in[B] = E _out Predecessors B()[]∪

E_in[B] holds any value’s history of being most recently evicted from any location
along all preceding paths.

3.3 Step 3: Checking and Reporting (errAnalysis)

Once L, ST and E are collected, they are used to check the output code. The error
analysis step ensures that the du-pairs from the input are preserved in the output. The
algorithm for identifying and reporting errors is shown in errAnalysis in Figure 4.

errAnalysis(output,map,sets) {
 L:=sets.L; ST:=sets.ST; E:=sets.E;
 foreach Block B∈output {
 if (B≠Binitial)
 setFinalization(B,map,L,ST,E);
 foreach Statement S∈B {
 typeCheck(S,map);
 constraintCheck(S,map);
 if (S∈Ο)
 useCheck(S,map,L,ST,E);
 }
 }
}

setFinalization(B,map,L,ST,E) {
 L_union := ∪ L_out[Predecessors(B)];
 L_inconsistent := {<l,v,>|
 ∀<l,v,*>∈(L_unionL_in[B])};
 ST_in[B] := ST_in[B]L_inconsistent;
 E_in[B] := E_in[B}∪ L_inconsistent;
 computeLocalFlow(B,map,L,ST,E);
}

useCheck(S,map,L,ST,E) {
 foreach l∈uses(S) {
 v := getMap(S,l,map);
 if (<l,v,*>∈L_in[S]) {
 if (<l,v,c>∈ST_in[S]) {
 ε := “S uses stale

value,
 c made v in l

stale”;
 }else ε := null;
 }elsif (<l’,v,c>∈L_in[S])

{

 ε := “S uses wrong
operand,

 but c defined v in
l’”;

 }else {
 ∀<l",v,c>∈E_in[S];
 ε := “S uses evicted

value,
 c evicted v from

l"”;
 }
 }
}

Fig. 4. Pseudocode for checking algorithm

For non-initial blocks, a finalization step is performed on the data flow sets by
setFinalization. The finalization is actually done in defAnalysis, but we show
it here for clarity. It computes L_inconsistent − the “inconsistent triples” where the
values in the same location are different for different paths. These triples are not
computed into L_in because a correct register allocation should put the same value
into the same location for any path. To report causes rather than just check errors, we
assume that the inconsistent values (in the same location) are “evicted” at the merge.
Therefore, L_inconsistent is added to E_in and removed from ST_in. Finally, local
data flow sets are updated by the equations discussed in Section 3.2.1.

The next step in errAnalysis iterates over all the statements. First, the operands
of the output are verified that they have the correct types as specified by the input.

 Catching and Identifying Bugs in Register Allocation 293

Second, it verifies that architectural constraints are satisfied with constraintCheck,
which depends on the target architecture (not shown for brevity). Finally, useCheck
applies to O statements (C statements are implicitly checked because of the value
propagation performed in defAnalysis).

useCheck checks that all uses in every O statement are correct in terms of the
input’s data flow. It reports the error location and type for any data flow violation. For
each use l (i.e., location), it first consults the mappings to determine which value it
should use. When l actually holds v, which is shown as a triple “<l, v, *>” in L_in, it
further checks if v in l is stale. Next, it checks if v is in other locations. If this is true, it
implies that the wrong operand might be used. Otherwise, an eviction error must have
occurred. The history of v being most recently evicted from any location l'' is
reported.

3.4 Extensions

Two important extensions to a register allocator are coalescing and rematerialization
[4, 5, 6, 11]. This section describes how SARAC can support these extensions. It
shows how sub-register class allocation and address expressions are incorporated.

Input Output Du-sequence Web
1: L0:x=a+1;
2: z=x;
3: PC=L2;
4: L1:y=a+2;
5: z=y;
6: u=y+3;
7: L2:v=z;
8: w=v+4;

1: L0:r[1]=r[3]+1;
2: PC=L2;
3: L1:r[1]=r[3]+2;
4: r[5]=r[1]+3;
5: L2:r[6]=r[1]+4;

copies for x, y, z,
and v have been been
coalesced in r[1]

defs 1.x= 4.y=

uses 8.=v 6.=y

Fig. 5. Register coalescing example and its du-sequence web

Register Coalescing. Register coalescing removes unnecessary copies from the input
code. As shown in Figure 5, the copies at input code points 2, 5, and 7 for z are
removed in the output. Thus, r[1] can hold x, y, z or v; a location can correspond to
multiple values. The analyses described earlier rely on a one-to-one mapping between
locations and values and consequently cannot directly handle coalescing.

To support coalescing, SARAC needs to handle the effect of removing copies.
SARAC infers coalescing by examining the du-sequences in the input code and
updating the mappings to capture all possibly coalesced values. The idea is to use a
“du-sequence web” to capture the relationship between a definition that begins a du-
sequence and a use that ends the sequence. We define a du-sequence web as a set of
du-sequences sharing a start or end, where the copy statements in each du-sequence
are collapsed. There may be many independent webs for the input code, each
corresponding to a set of related du-sequences. The most right column of Figure 5
shows a web for the input code. In this web, the du-sequence (1.x=, 2.z=x, 7.v=z,
8.=v) is represented by the edge between 1.x= and 8.=v. The web also captures the
relationships among the du-sequences (4.y=, 5.z=y, 7.v=z, 8.=v) and (4.y=,
6.=y).

294 Y. Huang, B.R. Childers, and M.L. Soffa

The webs are used to update the mappings. Once the webs are constructed, each
web is assigned a unique name, say n. Then, the name in the mappings for the web’s
definitions and uses are changed to n. In the example, r[1]→x (where, r[1] is the
destination of r[1]=r[3]+1) is changed to r[1]→n. Any input code copy that is
actually not coalesced is also considered as C statement besides the copies injected by
the register allocator. Thus, the mappings for any copy statement passed from the
input to output are removed. With the updated mappings, defAnalysis and
errAnalysis are performed normally. In defAnalysis, the value n is propagated
along the output du-sequence. In errAnalysis, only the uses in a du-sequence web
are analyzed.

Rematerialization. Rematerialization improves spill code by recomputing values
rather than reloading them from memory. It usually considers constant expressions in
the code, such as integer constants in load-immediate statements and address offsets.

To handle rematerialization, the mappings are extended to bind constants to values
and locations. The idea is to bind constants in the input and output code to values and
locations in the mappings. The bindings are created by scanning the output code to
find uses of constant expressions (i.e., the use is reachable by a constant definition,
like a load-immediate). A similar step is performed to bind constants to values in the
input code. errAnalysis compares a location that is bound to a constant to the
corresponding value’s binding. If the constants match, then the output code is correct.

Sub-register Class Allocation. Some architectures allow different registers to
overlap. For instance, the IA-32 has the AH and AL registers, which overlap a part of
the AX register. Such overlapping registers are a “register alias set” [30] and an
allocator has to take into account the overlap when assigning registers. A write to a
register will destroy the value in any member of its alias set.

To handle sub-register class allocation, only modest modifications are needed to
SARAC’s data flow equations at several points. The equations have to be changed to
take into account the effect on the full register alias set. For example, when L_kill[S]
is computed, the register alias set of ld is considered, rather than just ld.

Address Generation. Some allocators determine an effective address (rather than a
variable or temporary name) for spilling a value. In this case, this address is typically
computed as an offset from the stack pointer. In SARAC, a “memory location” is the
effective address used in a store/load. Assuming that the allocator makes only the
edits described earlier, there can be no intervening manipulation of the stack pointer
between a store and an associated load. That is, the allowable edits do not permit the
insertion of statements that change the stack pointer (except in the function prologue
and epilogue). Thus, the effective addresses can be easily determined. When the
allocator directly manipulates the stack pointer, SARAC determines an address by
evaluating the operations done to the stack pointer and offset.

4 Experiments

We implemented SARAC as a tool (ra-analyzer) for SUIF’s backend code optimizer
(MachSUIF, version 2.02.07.15), on the Intel IA-32 [29]. A global graph coloring

 Catching and Identifying Bugs in Register Allocation 295

register allocator [11] was implemented as a separate pass in MachSUIF. ra-analyzer
is run after register allocation. Two experiments were conducted. First, faults were
injected into the allocator’s output to explore how the tool might be used to find bugs.
Second, the performance and memory overhead of the tool were measured.

For the experiments, we used benchmarks in SPECint2K [8], MediaBench [15]
and MiBench [19] that are compilable by base SUIF. The procedures in the
benchmarks span a wide range of code sizes and complexities. All experiments were
run on a RedHat Linux computer with a 2.4 GHz Pentium 4 and 1 GB RAM.

4.1 Fault Injection

We checked if MachSUIF’s allocator causes errors in the benchmarks and found no
errors for two possible reasons. First, MachSUIF’s allocator is correct. Second, a very
limited number of test suites (many benchmarks cannot be compiled by SUIF) may
not expose all latent bugs. Thus, we believe that ra-analyzer is particularly useful in a
regression testing environment or during the development of a compiler.

To illustrate how ra-analyzer might be used by compiler engineers, we injected
bugs into the output of MachSUIF’s allocator. We then used ra-analyzer to find the
bugs. The bugs were automatically injected by a “fault injector”. The fault injector
made incorrect edits to the output code, including incorrect register assignment,
wrong store/load, missing store/load. For each edit type, the fault injector randomly
selected a basic block to change. An appropriate statement was found to modify,
based on the edit type. If an appropriate statement could not be located, the edit was
abandoned and a new one was tried. The injector attempted to make 5 changes for
each edit type, but it sometimes made fewer edits when it could not find a candidate.
Each function in every benchmark had 0 to 25 incorrect edits.

As an example, the fault injector changed one register operand to a different
register in the FFT benchmark. In this case, the statement movl $1,%ecx was
changed to movl $1,%ebx. The register %ecx holds the virtual register $vr12. When
ra-analyzer checked the code, it reported the error message:

addl %ecx,%eax
//Wrong operand - %ecx,"movl $1,%ebx" defined $vr12 in %ebx

From the error message, compiler engineers can identify what went wrong. For
example, consistently using the wrong register might suggest that liveness analysis or
the interference graph construction has a problem. With the information from
ra-analyzer, compiler engineers can use a debugger to step through the allocator and
find bugs.

In the fault injection experiments, 65 to 10,749 total incorrect edits were made to
the benchmarks. The simpler programs (e.g., FFT) had the fewest edits, while the
more complex ones (e.g., 255.vortex) had the most. Of the total edits, there were 22–
3,198 incorrect register assignment edits, 29–5,104 wrong store/load edits, and 7–
2,447 missing store/load edits. The edits made covered the possible changes to the
code described in Section 2.2. The edits lead to a total of 108–18,103 errors. There
were 18–2,648 stale errors, 49–7,552 wrong operand errors and 35–7,903 eviction
errors. When ra-analyzer was applied on the code, it correctly caught the errors
without generating any false positives or negatives, and reported their locations and
types.

296 Y. Huang, B.R. Childers, and M.L. Soffa

4.2 Performance and Memory Overhead

Table 1 shows the performance and memory overhead of ra-analyzer for the
benchmarks. The major column “# Statements” describes benchmark size. The
secondary column “Tot” is the total number of intermediate code statements in a
benchmark, “Procs” is the number of procedures, and “Avg” is the average number of
statements.

Table 1. Memory and performance overhead

Statements Memory Overhead Performance Overhead
Benchmarks Tot Procs Avg Avg Max Min Analyzer RA RA% MachSuif Tot%
164.gzip 17,396 106 164 44,338 553,736 200 4.06 3.29 123% 53.30 8%
175.vpr 56,693 300 189 44,481 1,971,892 100 13.02 10.95 119% 169.55 8%
181.mcf 4,844 26 186 40,473 230,884 1,044 1.13 0.95 120% 28.14 4%
197.parser 40,677 324 126 43,675 2,147,404 100 11.64 7.15 163% 112.89 10%
255.vortex 203,810 923 221 80,572 10,027,076 100 53.29 41.78 128% 599.66 9%
256.bzip2 10,680 74 144 48,238 988,144 200 3.21 2.30 139% 32.09 10%
300.twolf 99,780 191 522 454,336 9,881,344 196 87.95 25.29 348% 307.81 29%
FFT 953 7 136 22,057 77,244 1,932 0.23 0.19 122% 6.65 3%
bitcount 816 15 54 7,177 21,000 1,328 0.10 0.13 81% 12.19 1%
dijkstra 434 6 72 10,934 32,792 200 0.07 0.06 122% 1.95 3%
sha 824 8 103 14,381 56,184 5,044 0.15 0.21 71% 4.19 4%
stringsearch 974 10 97 17,967 31,176 552 0.17 0.17 99% 10.25 2%
jpeg 82,923 506 164 38,805 925,564 100 20.90 17.12 122% 279.54 7%
adpcm 710 5 142 27,743 57,408 9,900 0.12 0.13 92% 5.70 2%
epic 11,452 49 234 88,801 1,935,300 956 6.22 4.46 139% 41.49 15%
g721 3,942 28 141 32,769 425,360 3,552 0.79 0.80 98% 13.48 6%
mpeg2 45,995 206 223 67,238 1,919,996 200 13.76 10.26 134% 131.44 10%

In Table 1, the major column “Memory Overhead” gives statistics about the
memory overhead. The average (Avg), maximum (Max) and minimum (Min) data in
bytes are presented for procedures in each benchmark. As expected, MiBench has the
lowest memory requirements. These programs have small procedures (e.g., bitcount
has an average of 54 statements in a procedure), and as a result, the size of the data
flow sets tends to be small. Other programs, namely 255.vortex and 300.twolf, have
larger memory requirements. In 255.vortex, Draw701() needs 10 MB because of its
large number of intermediate code statements (5,228). However, 255.vortex’s average
memory requirement is consistent with the other benchmarks because it has only a
few large procedures and many smaller ones. On the other hand, 300.twolf has a
relatively small number of procedures that are quite large and complex (varying from
3 to 4,462 intermediate statements). As a result, its average memory consumption is
the largest among all programs. In this benchmark, uclosepns() has the maximum
memory overhead (9.8 MB) because it has a large number of statements (4,001) and
basic blocks (417). Although it doesn’t have the most statements in 300.twolf,
uclosepns() has the most basic blocks and as a result, it incurs the most memory
overhead. The average memory overhead is 85 KB for all benchmarks. This overhead
is minimal.

We also investigated how the data flow sets (L, ST, and E) and the mappings
contribute to total memory overhead. Because ST is a subset of L (see the data flow
equations in Section 3.2), ra-analyzer records stale values only in ST for efficiency

 Catching and Identifying Bugs in Register Allocation 297

(i.e., L does not record stale values, which are already in ST). Across all benchmarks,
L has the least memory consumption and ST has the most. L tends to be small (e.g.,
for uclosepns(), it is 375KB) because of the relatively small number of locations
(operands) that it records. ST, on the other hand, tracks stale values. Thus, it is
generally quite large (e.g., in uclosepns(), it is 6.26 MB). E is typically moderate
in size; in uclosepns(), it is 3.2 MB. The mappings also consume memory, which
is proportional to the number of intermediate statements and the number of operands.
For the benchmarks, the mappings take 88 bytes to 450 KB (average 19 KB).

In Table 1, the major column “Performance Overhead” gives ra-analyzer’s run-
time performance. The column “Analyzer” is the total run-time in seconds for ra-
analyzer and the column “RA” is for MachSUIF’s allocator. The run-times are totals
and account for compilation of all procedures in a benchmark. The column “RA%” is
the percentage overhead of ra-analyzer over the allocator, which varies from 71% to
348% (average 96%). We expect that the run-time of ra-analyzer should be about the
same as the run-time for the register allocator since both do somewhat similar analysis
steps. In all benchmarks, except 300.twolf and 197.parser, the overhead follows this
expectation, ranging from 71% to 139%. In 300.twolf the overhead is 348% and in
197.parser the overhead is 163%. This higher overhead is due to the use of iterative
data flow analysis in ra-analyzer. In these two benchmarks, there is at least one
complicated procedure where the data flow sets take a while to converge because of
multiple, deep loop nests. For example, in 300.twolf, the procedure uclosepns()
takes the most time (10.96 Sec). It has 15 loop nests (with a maximum nest depth of
3), and takes up to 5 iterations for the data flow sets to converge.

The last two columns compare ra-analyzer’s performance to overall compile-time.
The column labeled “MachSuif” is the run-time of the MachSUIF compiler without
ra-analyzer. The column “Tot%” is the total percentage increase in compile-time
when ra-analyzer is run. On most benchmarks, ra-analyzer’s overhead is less than
10%. In 300.twolf, the overhead is 29%. Despite this one benchmark, the tool works
well: The average overhead relative to total compile-time is 8%. This small cost is
worth the benefit of ensuring that the register allocation is correct.

5 Related Work

Several researchers have focused on proving the correctness of compiler optimization
algorithms. Lacey et al. [14] used temporal logic to express data flow analysis and
prove optimization correctness via reasoning. They did not consider register
allocation. Naik and Palsberg [20] presented a proof for the correctness of an ILP
register allocation algorithm. Ohori et al. [23] proposed a framework to construct and
prove register allocation algorithms. Our work differs in that it addresses the
implementation difficulties of register allocation, rather than algorithm correctness.
Indeed, our work is complementary to the correctness proof of allocation algorithms.

Lerner et al. [16, 17] proved the soundness of several optimization
implementations. Their approach requires the compiler engineer to use a domain-
specific language to implement optimizations to automate reasoning about
correctness. The verification of the register allocator’s implementation is not
presented.

298 Y. Huang, B.R. Childers, and M.L. Soffa

Similar to our work, some research efforts suggest automatically checking
semantic equivalence between the input and output code [18, 21, 22, 25, 27].
However, the range of optimizations that can be handled in these approaches is
typically limited. Among these efforts, only McNerney et al. [18] and Necula et al.
[21] have examined how to check the output of the register allocator. The abstract
interpretation approach in [18] applies only to a restricted domain of programs and
did not present evaluation data. Necula et al. [21] utilize symbolic evaluation in their
translation validation infrastructure. However, this approach reports false alarms and
has significant compile-time overhead. By focusing on allocation, SARAC can
exploit properties of the allocation process (e.g., the property that def-use pairs are
preserved in the output). As a result, our technique is accurate and fast. It also reports
error casual information.

6 Conclusion and Future Work

This paper describes SARAC, a new approach to catch and identify bugs in register
allocation. The approach statically checks that the input def-use pairs are maintained
in the output code, given that the register allocator conducts limited edits. It is
accurate and fast. The approach can be extended to handle register coalescing,
rematerialization and sub-register class allocation. A prototype tool (ra-analyzer)
shows that our approach has minimal compile-time and memory overhead.

A goal for our future work is to make ra-analyzer standalone so that it can be used
with other compilers and machine architectures. To achieve this goal, SARAC will
need to support more register allocators and register file structures, particularly ones
that allow predication or have irregular register types. We also plan to more fully
support type and architectural constraint checking. This support is important because
the types and architectural constraints can be a common error source in a register
allocator. Another issue is how to interface the tool to different compilers and
intermediate representations. A final issue in making SARAC standalone is to
develop a way to describe machine dependent information about registers to the tool.

References

[1] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. ACM
SIGPLAN Conf. on Programming Language Design and Implementation, June 1988.

[2] D. Bernstein, D. Q. Goldin et al. Spill code minimization techniques for optimizing
compilers. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 1989.

[3] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register allocation and
instruction scheduling for RISCs. 4th Int’l. Conf. on Architectural Support for
Programming Languages and Operating Systems, April 1991.

[4] P. Briggs, K. D. Cooper and L. Torczon. Improvements to graph coloring register
allocation. ACM Trans. on Programming Languages and Systems, 3(16): 428-455, May
1994.

[5] P. Briggs, K. D. Cooper and L. Torczon. Rematerialization. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, June 1992.

 Catching and Identifying Bugs in Register Allocation 299

[6] G. J. Chaitin. Register allocation & spilling via graph coloring. Symp. on Compiler
Construction, June 1982.

[7] F. C. Chow and J. L. Hennessy. The priority-based register allocation coloring approach.
ACM Trans. on Programming Languages and Systems, 4(12):501-536, October 1990.

[8] CPU2000 benchmark. Standard Performance Evaluation Corporation (SPEC),
URL: http://www.spec.org.

[9] J. W. Davidson and C. W. Fraser. Register allocation and exhaustive peephole
optimization. Software --- Practice and Experience, 14 (9): 857-865, September 1984.

[10] GCC. URL: http://gcc.gnu.org/.
[11] L. George and A. W. Appel. Iterated register coalescing. ACM Trans. on Programming

Languages and Systems, 3(18): 300-324, May 1996.
[12] R. Gupta, M. L. Soffa and T. Steele. Register allocation via clique separators. ACM

SIGPLAN Conf. on Programming Language Design and Implementation, July 1989.
[13] C. S. Jaramillo, R. Gupta and M. L. Soffa. Verifying optimizers through comparison

checking. Int’l. Workshop on Compiler Optimization Meets Compiler Verification, April
2002.

[14] D. Lacey, N. D. Jones, E. V. Wyk and C. C. Frederiksen. Proving correctness of compiler
optimizations by temporal logic. Symp. on Principles of Programming Languages,
January 2002.

[15] C. Lee, M. Potkonjak and W. H. Mangione-Smith. MediaBench: a tool for evaluating and
synthesizing multimedia and communicatons systems. ACM/IEEE Int’l. Symp. on
Microarchitecture, 1997.

[16] S. Lerner, T. Millstein and C. Chambers. Automatically proving the correctness of
compiler optimizations. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 2003.

[17] S. Lerner, T. Millstein, E. Rice and C. Chambers. Automated soundness proofs for
dataflow analyses and transformations via local rules. Symp. on Principles of
Programming Languages, 2005.

[18] T. M. McNerney. Verifying the correctness of compiler transformations on basic blocks
using abstract interpretation. ACM/SIGPLAN Workshop Partial Evaluation and
Semantics-Based Program Manipulation, 1991.

[19] MiBench. University of Michigan, URL: http://www.eecs.umich.edu/mibench/.
[20] M. Naik and J. Palsberg. Correctness of ILP-based register allocation. Unpublished

manuscript. URL: http://theory.stanford.edu/~mhn/pubs/regalloc.pdf.
[21] G. C. Necula. Translation validation for an optimizing compiler. ACM SIGPLAN Conf.

on Programming Language Design and Implementation, June 2000.
[22] G. C. Necula and P. Lee. The design and implementation of a certifying compiler. ACM

SIGPLAN Conf. on Programming Language Design and Implementation, June 1998.
[23] A. Ohori. Register allocation by proof transformation. 12th European Symp. on Program-

ming, April 2003.
[24] S. S. Pinter. Register allocation with instruction scheduling: a new approach. ACM

SIGPLAN Conf. on Programming Language Design and Implementation, June 1993.
[25] A. Pnueli, M. Siegel and F. Singerman. Translation validation. 4th Tools and Algorithms

for Construction and Analysis of Systems, April 1998.
[26] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. on Programming

Languages and Systems, 5(21): 895–913, September 1999.
[27] M. C. Rinard. Credible compilation. Technical Report MIT-LCS-TR-776, MIT, March

1999.

300 Y. Huang, B.R. Childers, and M.L. Soffa

[28] V. Santhanam and D. Odnert. Register allocation across procedure and module
boundaries. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 1990.

[29] M. D. Smith and G. Holloway. Machine SUIF. URL: http://www.eecs.harvard.edu/hube/
research/machsuif.html.

[30] M. D. Smith, N. Ramsey and G. Holloway. A generalized algorithm for graph-coloring
register allocation. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 2004.

Appendices

Mapping Grammar. To define the notation for a mapping, we give a short grammar:

<mapping> := operandposn: <out> → <in>
 <out> := codept . location | codept . #constant
 <in> := codept . value | codept . #constant
 where,
 operandposn – operand number in a statement
 codept – a statement number in the input or output code
 location – a register or memory location
 value – a temporary or variable

For example, consider the code from Figure 1. The statement r[2]=0 at output
code point 2 corresponds to c=0 at input code point 1; therefore, the mapping for the
first operand r[2]at code point 2 is: 1:2.r[2]→1.c, where r[2] is a location
(memory or register) and c is a value (temporary or variable). Similarly, there is a
mapping 2:6.#0→3.#0 to give the correspondence between the constants at output
code point 6 and input code point 3. The mappings generated for the incorrect output
code by mapGen in Figure 3 are:

1:2.r[2]→1.c 2:2.#0→1.#0
1:4.r[2]→2.d 2:4.#1→2.#1
1:6.r[1]→3.n 2:6.#0→3.#0 3:6.L3→3.L3
1:8.r[2]→4.t 2:8.r[1]→4.n 3:8.r[1]→4.d

1:9.r[2]→5.t 2:9.#0→5.#0 3:9.L2→5.L2
1:11.r[2]→6.c 2:11.r[2]→6.c 3:11.#1→6.#1
1:14.r[2]→7.d 2:14.r[2]→7.d 3:14.#1→7.#1
1:16.r[2]→8.t 2:16.r[2]→8.d 3:16.r[1]→8.n

1:17.r[2]→9.t 2:17.#1→9.#1 3:17.L1→9.L1

The mapping in bold is for error 1 in the incorrect output (code point 8).

Certificate Translation for Optimizing Compilers�

(Extended Abstract)

Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara Rezk

INRIA Sophia-Antipolis, Project EVEREST
{Gilles.Barthe, Benjamin.Gregoire, Cesar.Kunz,

Tamara.Rezk}@sophia.inria.fr

Abstract. Certifying compilation provides a means to ensure that un-
trusted mobile code satisfies its functional specification. A certifying com-
piler generates code as well as a machine-checkable “certificate”, i.e. a for-
mal proof that establishes adherence of the code to specified properties.
While certificates for safety properties can be built fully automatically,
certificates for more expressive and complex properties often require the
use of interactive code verification. We propose a technique to provide
code consumers with the benefits of interactive source code verification.
Our technique, certificate translation, extends program transformations
by offering the means to turn certificates of functional correctness for
programs in high-level languages into certificates for executable code.
The article outlines the principles of certificate translation, using speci-
fications written in first order logic. This translation is instantiated for
standard compiler optimizations in the context of an intermediate RTL
Language.

1 Introduction

Program verification environments provide a means to establish that programs
meet their specifications, and are increasingly being used to validate safety-
critical or security-critical software. Most often, such environments target high-
level languages. However it is usually required to achieve correctness guarantees
for compiled programs, especially in the context of mobile code—because code
consumers may not have access to the source program or, if they do, may not
trust the compiler. Yet there is currently no mechanism for bringing the benefits
of interactive source code verification to code consumers. The objective of our
work is precisely to propose such a mechanism, called certificate translation,
which allows us to transfer evidence from source programs to compiled programs.

The starting point of our work is Proof Carrying Code (PCC) [9], which
provides a means to establish trust in a mobile code infrastructure, by requiring
that mobile code is sent along with a formal proof (a.k.a. certificate) showing its
adherence to a property agreeable by the code consumer. While PCC does not
� This work is partially funded by the IST European Project Mobius.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 301–317, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

302 G. Barthe et al.

preclude generating certificates from interactive verification of source programs,
the prominent approach to certificate generation is certifying compilation [11],
which constructs automatically certificates for safety properties such as memory
safety or type safety. Certifying compilation is by design restricted to a specific
class of properties and programs—a deliberate choice of the authors [11] whose
primary goal was to reduce the burden of verification on the code producer side.
In contrast, certificate translation is by design very general and can be used to
enforce arbitrary properties on arbitrary programs. Of course, generality comes
at the cost of automation, so we must assume that programs have been annotated
and proved interactively.

Thus the primary goal of certificate translation is to transform certificates of
original programs into certificates of compiled programs. Given a compiler �.�,
a function �.�spec to transform specifications, and certificate checkers (expressed
as a ternary relation “c is a certificate that P adheres to φ”, written c : P |= φ),
a certificate translator is a function �.�cert such that for all programs p, policies
φ, and certificates c,

c : p |= φ =⇒ �c�cert : �p� |= �φ�spec

The paper outlines the principles of certificate translation, and illustrates its
mechanisms in the context of an an optimizing compiler for a Register Transfer
Language (RTL). The compiler proceeds in a step by step fashion. For each
optimization step, we build an appropriate certificate translator, and combine
them to obtain a certificate translator for the complete compilation process.

Building a certificate translator for a non-optimizing compiler is relatively sim-
ple to construct since proof obligations are preserved (up to minor differences).
Dealing with optimizations is more challenging. The major difficulty arises from
the fact that certificate translators for optimizations often take as argument, in
addition to the certificate of the original program, a certificate of the results of
the analysis that justifies the optimization. In order to enable such an aggrega-
tion, one must therefore express the results of the analysis in the logic of the
PCC architecture, and enhance the analyzer so that it produces a certificate of
the analysis for each program. The overall architecture of a certificate translator
is given in Figure 1.

Contents. Sections 2 introduces our programming language RTL and our PCC
infrastructure. Section 3 provides a high-level overview of the principles and
components that underline certificate translation, whereas Section 4 describe
certificate translators for several standard optimizations (at RTL level). In sec-
tion 5 we compare our work with recent related developments. We conclude in
Section 6 with future work.

2 Setting
RTL Language. Our language RTL (Register Transfer Language) is a low-level,
side-effect free, language with conditional jumps and function calls, extended
with annotations drawn from a suitable assertion language. The choice of the

Certificate Translation for Optimizing Compilers 303

Program f

Certificate
Translator

TCB

and

Optimized

Specification of f̄

Program f̄
Program f

Analysis
Results ofSpecification of f

Results of Analysis

VC Gen

Proof
Checker

Analyzer

Analyzer
Certifying

Compiler
Optimizing

Correctness for f
Certificate of

Analysis for f
Proof of

Correctness for f̄
Certificate of

Fig. 1. Overall picture of certificate translation

comparison ::=< | ≤ | = | ≥ | >
expressions e ::= n | r | −e | e + e | e ∗ e | . . .

assertions φ ::= � | e e | ¬φ | ∀r, φ | . . .
comparisons cmp ::= r r | r n

operators op ::= n | r | cmp | n + r | . . .
instr. desc. ins ::= rd := op, L | rd := f(r), L | cmp ? Lt : Lf | return r | nop, L

instructions I ::= (φ, ins) | ins
fun. decl F ::= {r; ϕ; G; ψ; λ; Λ}
program p ::= f �→ F

Fig. 2. Syntax of RTL

assertion language does not affect our results, provided assertions are closed
under the connectives and operations that are used by the verification condition
generator.

The syntax of expressions, formulas and RTL programs (suitably extended to
accommodate certificates, see Subsection 2), is shown in Figure 2, where n ∈ N
and r ∈ R, with R an infinite set of register names. We let φ and ψ range over
assertions.

A program p is defined as a function from RTL function identifiers to function
declarations. We assume that every program comes equipped with a special
function, namely main, and its declaration. A declaration F for a function f
includes its formal parameters r, a precondition ϕ, a (closed) graph code G,
a postcondition ψ, a certificate λ, and a function Λ from reachable labels to
certificates (the notion of reachable label is defined below). For clarity, we often
use in the sequel a subscript f for referring to elements in the declaration of a
function f , e.g. the graph code of a function f as Gf .

As will be defined below, the VCGen generates one proof obligation for each pro-
gram point containing an annotation and one proof obligation for the entry point
Lsp. The component λ certifies the latter proof obligation and Λ maps every pro-
gram point that contains and assertion to the proof of its related proof obligation.

304 G. Barthe et al.

Formal parameters are a list of registers from the set R, which we suppose to
be local to f . For specification purposes, we introduce for each register r in r a
(pseudo-)register r∗, not appearing in the code of the function, and which repre-
sents the initial value of a register declared as formal parameter. We let r∗ denote
the set {r∗ ∈ R | r ∈ r}. We also introduce a (pseudo-)register res, not appear-
ing in the code of the function, and which represents the result or return value of
the function. The annotations ϕ and ψ provide the specification of the function,
and are subject to well-formedness constraints. The precondition of a function f ,
denoted by function pre(f), is an assertion in which the only registers to occur are
the formal parameters r; in other words, the precondition of a function can only
talk about the initial values of its parameters. The postcondition of a function f ,
denoted by function post(f), is an assertion1 in which the only registers to occur
are res and registers from r∗; in other words, the postcondition of a function can
only talk about its result and the initial values of its parameters.

A graph code of a function is a partial function from labels to instructions. We
assume that every graph code includes a special label, namely Lsp, corresponding
to the starting label of the function, i.e. the first instruction to be executed when
the method is called. Given a function f and a label L in the domain of its graph
code, we will often use f [L] instead of Gf (L), i.e. application of code graph of f
to L.

Instructions are either instruction descriptors or pairs consisting of an anno-
tation and an instruction descriptor. An instruction descriptor can be an assign-
ment, a function call, a conditional jump or a return instruction. Operations
on registers are those of standard processors, such as movement of registers or
values into registers rd := r, and arithmetic operations between registers or be-
tween a register and a value. Furthermore, every instruction descriptor carries
explicitly its successor(s) label(s); due to this mechanism, we do not need to
include unconditional jumps, i.e. “goto” instructions, in the language. Immedi-
ate successors of a label L in the graph of a function f are denoted by the set
succf (L). We assume that the graph is closed; in particular, if L is associated
with a return instruction, succf (L) = ∅.

Verification Condition Generator. Verification condition generators (VC-
Gens) are partial functions that compute, from a partially but sufficiently an-
notated program, a fully annotated program in which all labels of the program
have an explicit precondition attached to them. Programs in the domain of the
VCGen function are called well annotated and can be characterized by an in-
ductive definition. Our definition is decidable and does not impose any specific
structure on programs.

Definition 1 (Well Annotated Program)

– A label L in a function f reaches annotated labels, if its associated instruction
contains an assertion, or if its associated instruction is a return (in that case

1 Notice that a postcondition is not exactly an assertion in the sense that it uses register
names from r∗, which must not appear in preconditions or annotations of the program.

Certificate Translation for Optimizing Compilers 305

the annotation is the post condition), or if all its immediate successors reach
annotated labels:

f [L] = (φ, ins) ⇒ L ∈ reachAnnotf

f [L] = return r ⇒ L ∈ reachAnnotf
(∀L′ ∈ succf (L), L′ ∈ reachAnnotf) ⇒ L ∈ reachAnnotf

– A function f is well annotated if every reachable point from starting point
Lsp reaches annotated labels. A program p is well annotated if all its functions
are well annotated.

Given a well-annotated program, one can generate an assertion for each label,
using the assertions that were given or previously computed for its successors.
This assertion represents the precondition that an initial state before the execu-
tion of the corresponding label should satisfy for the function to terminate in a
state satisfying its postcondition.

The computation of the assertions for the labels of a function f is performed
by a function vcgf , and proceeds in a modular way, using annotations from the
function f under consideration, as well as the preconditions and postconditions
of functions called by f . The definition of vcgf (L) proceeds by cases: if L points
to an instruction that carries an assertion φ, then vcgf (L) is set to φ; otherwise,
vcgf (L) is computed by the function vcgidf .

vcgf (L) = φ if Gf (L) = (φ, ins)

vcgf (L) = vcgid
f (ins) if Gf (L) = ins

vcgid
f (rd := op, L) = vcgf (L){rd ←〈op〉}

vcgid
f (rd := g(r), L) = pre(g){rg ←r}

∧(∀res. post(g){r∗
g ←r} ⇒ vcgf (L){rd ←res})

vcgid
f (cmp ? Lt : Lf) = (〈cmp〉 ⇒ vcgf (Lt)) ∧ (¬〈cmp〉 ⇒ vcgf (Lf))

vcgid
f (return r) = post(f){res←r}

vcgid
f (nop, L) = vcgf (f [L])

Fig. 3. Verification condition generator

The formal definitions of vcgf and vcgidf are given in Figure 3, where e{r← e′}
stands for substitution of all occurrences of register r in expression e by e′. The
definition of vcgidf is standard for assignment and conditional jumps, where 〈op〉
and 〈cmp〉 is the obvious interpretation of operators in RTL into expressions in the
language of assertions. For a function invocation, vcgidf (rd := g(r), L) is defined as
a conjunction of the precondition in the declaration of g where formal parameters
are replaced by actual parameters, and of the assertion ∀res. post(g){r∗

g ← r} ⇒
vcgf (L){rd ← res}. The second conjunct permits that information in vcgf (L)
about registers different from rd is propagated to other preconditions. In the re-
mainder of the paper, we shall abuse notation and write vcgidf (ins) or vcgidf (L) in-
stead of vcgidf (ins, L′) if f [L] = ins, L′ and neither L′ or ins are relevant to the
context.

306 G. Barthe et al.

Certified Programs. Certificates provide a formal representation of proofs,
and are used to verify that the proof obligations generated by the VCGen hold.
For the purpose of certificate translation, we do not need to commit to a specific
format for certificates. Instead, we assume that certificates are closed under
specific operations on certificates, which are captured by an abstract notion of
proof algebra.

Recall that a judgment is a pair consisting of a list of assertions, called context,
and of an assertion, called goal. Then a proof algebra is given by a set-valued
function P over judgments, and by a set of operations, all implicitly quantified
in the obvious way. The operations are standard (given in Figure 4), to the
exception perhaps of the substitution operator that allows to substitute selected
instances of equals by equals, and of the operator ring, which establishes all ring
equalities that will be used to justify the optimizations.

axiom : P(Γ ; A; Δ � A)
ring : P(Γ � n1 = n2) if n1 = n2 is a ring equality
intro⇒ : P(Γ ; A � B) → P(Γ � A ⇒ B)
elim⇒ : P(Γ � A ⇒ B) → P(Γ � A) → P(Γ � B)
elim= : P(Γ � e1 = e2) → P(Γ � A{r←e1}) → P(Γ � A{r←e2})
subst : P(Γ � A) → P(Γ{r←e} � A{r←e})

Fig. 4. Proof Algebra (excerpts)

As a result of working at an abstract level, we do not provide an algorithm for
checking certificates. Instead, we take P(Γ (φ) to be the set of valid certificates
of the judgment Γ (φ. In the sequel, we write λ : Γ (φ to express that λ is a
valid certificate for Γ (φ, and use proof as a synonym of valid certificate.

Definition 2 (Certified Program)

– A function f with declaration {r; ϕ; G; ψ; λ; Λ} is certified if:
• λ is a proof of (ϕ ⇒ vcgf (Lsp){r∗←r},
• Λ(L) is a proof of (φ ⇒ vcgidf (ins) for all reachable labels L in f such

that f [L] = (φ, ins).
– A program is certified if all its functions are.

The verification condition generator is sound, in the sense that if the program
p is called with registers set to values that verify the precondition of the function
main, and p terminates normally, then the final state will verify the postcondition
of main.

3 Principles of Certificate Translation

In a classical compiler, transformations operate on unannotated programs, and
are performed in two phases: first, a data flow analysis gathers information about
the program. Then, on the basis of this information, (blocks of) instructions are

Certificate Translation for Optimizing Compilers 307

rewritten. In certificate translation, we may also rewrite assertions, and we must
also generate certificates for the optimized programs.

Certificate translation is tightly bound to the optimizations considered. Ac-
cording to different optimizations, certificate translators fall in one of the three
categories:

– PPO/IPO (Preservation/Instantiation of Proof Obligations): PPO deals
with transformations for which the annotations are not rewritten, and where
the proof obligations (for the original and transformed programs) coincide.
This category covers transformations such as non-optimizing compilation
and unreachable code elimination. IPO deals with transformations where
the annotations and proof obligations for the transformed program are in-
stances of annotations and proof obligations for the original program, thus
certificate translation amounts to instantiating certificates. This category
covers dead register elimination and register allocation;

– SCT (Standard Certificate Translation): SCT deals with transformations for
which the annotations are not rewritten, but where the verification condi-
tions do not coincide. This category covers transformations such as loop
unrolling and in-lining;

– CTCA (Certificate Translation with Certifying Analyzers): CTCA deals with
transformations for which the annotations need to be rewritten, and for
which certificate translation relies on having certified previously the analysis
results used by the transformation. This category covers constant propa-
gation, common subexpression elimination, loop induction, and other opti-
mizations that rely on arithmetic.

For simplicity, assume for a moment that the transformation .̄ does not mod-
ify the set of reachable annotated labels. Then certificate translation may be
achieved by defining two functions:

T0 : P((pre(f) ⇒ vcgidf (Lsp)) → P((pre(f̄) ⇒ vcgid
f̄

(Lsp))
Tλ : ∀L, P((φL ⇒ vcgidf (L)) → P((φ̄L ⇒ vcgid

f̄
(L))

where f̄ is the optimized version of f , and φL is the original assertion at label
L, and φ̄L is the rewritten assertion at label L. Here the function T0 transforms
the proof that the function precondition implies the verification condition at
program point Lsp for f into a proof of the same fact for f̄ , and likewise, the
function Tλ transforms for each reachable annotated label L the proof that its
annotation implies the verification condition at program point L for f into a
proof of the same fact for f̄ .

In the remainder of this section, we justify the need for certifying analyzers,
and show how they can be used for specific transformations. The following ex-
ample, which will be used as a running example in the subsequent paragraphs,
illustrates the need for certifying analyzers.

Example 1. Let f be a certified function with specification: pre(f) ≡ � and
post(f) ≡ res ≥ b ∗ n, where b and n are constants. The graph code of f and its
proofs obligations are given by:

308 G. Barthe et al.

L1 : ri := 0, L2

L2 : ξ, r1 := b + ri, L3

L3 : ri := c + ri, L4

L4 : rj := r1 ∗ ri, L5

L5 : ϕ, (ri = n) ? L6 : L3

L6 : return rj

� � ⇒ 0 ≥ 0
� ξ ⇒ φ
� ϕ ⇒ (ri = n ⇒ φt ∧ ri �= n ⇒ φf)

where, ξ 	 0 ≤ ri and ϕ 	 rj = r1 ∗ ri ∧ r1 ≥ b ∧ ri ≥ 0 and

φ 	 (b + ri) ∗ (c + ri) = (b + ri) ∗ (c + ri) ∧ b + ri ≥ b ∧ c + ri ≥ 0
φt 	 rj ≥ b ∗ n

φf 	 r1 ∗ (c + ri) = r1 ∗ (c + ri) ∧ r1 ≥ b ∧ c + ri ≥ 0

Suppose that constant propagation is applied to the original program, substi-
tuting an occurrence of r1 with b and b + ri with b, as shown in program (a)
in Figure 5. If we do not rewrite assertions, that is we let ξcp = ξ and ϕcp = ϕ
then the third proof obligation is (ϕ ⇒ (ri = n ⇒ φt ∧ ri �= n ⇒ φ′

f), where
φ′

f 	 b ∗ (c + ri) = r1 ∗ (c + ri)∧ r1 ≥ b∧ c + ri ≥ 0 cannot be proved since there
is no information about the relation between r1 and b. A fortiori the certificate
of the original program cannot be used to obtain a certificate for the optimized
program.

Motivated by the example above, optimized programs are defined augmenting
annotations by using the results of the analysis expressed as an assertion, and
denoted RESA(L) below.

Definition 3. The optimized graph code of a function f is defined as follows:

Gf̄ (L) =
{

(φ ∧ RESA(L), �ins�) if Gf (L) = (φ, ins)
�ins� if Gf (L) = ins

where �ins� is the optimized version of instruction ins. In the sequel, we write φ̄L

for φL ∧ RESA(L).

In addition, we define the precondition and postcondition of f̄ to be those of f .
Then one can encode elementary reasoning with the rules of the proof algebra
to obtain a valid certificate for the optimized function f from a function

T ins
L : ∀L, P((vcgidf (L) ⇒ RESA(L) ⇒ vcgid

f
(L))

and a certified program

fA = {rf ; �; GA; �; λA; ΛA}

where GA is a new version of Gf annotated with the results of the analysis, i.e.
Gf such that GA(L) = (RESA(L), ins) for all label L in f .

Thus, certificate translation is reduced to two tasks: defining the function
T ins

L , and producing the certified function fA. The definition of T ins
L depends

upon the program optimization. In the next paragraph we show that T ins
L can

be built for many common program optimizations, using the induction principle

Certificate Translation for Optimizing Compilers 309

attached to the definition of reachAnnotf . As to the second task, it is delegated
to a procedure, called certifying analyzer, that produces for each function f the
certified function fA. There are two approaches for building certifying analyzers:
one can either perform the analysis and build the certificate simultaneously, or
use a standard analysis and use a decision procedure to generate the certificate
post-analysis. The merits of both approaches will be reported elsewhere; here we
have followed the second approach.

As shown in Figure 1, certifying analyzers do not form part of the Trusted
Computing Base. In particular, no security threat is caused by applying an
erroneous analyzer, or by verifying a program whose assertions are too weak
(e.g. taking RESA(L5) = � in the above example) or too strong (by adding
unprovable assertions), or erroneous. In these cases, it will either be impossible
to generate the certificate of the analysis, or of the optimized program.

(a) Constant propagation
L1 : ri := 0, L2

L2 : ξcp, r1 := b, L3

L3 : ri := c + ri, L4

L4 : rj := b ∗ ri, L5

L5 : ϕcp, (ri = n) ? L6 : L3

L6 : return rj

(b) Loop induction
L1 : ri := 0, L2

L2 : ξli, r1 := b, L3

L3 : r′
j := b ∗ ri, L′

3

L′
3 : ri := c + ri, L′′

3

L′′
3 : r′

j := m + r′
j , L4

L4 : rj := r′
j , L5

L5 : ϕli, (ri = n) ? L6 : L′
3

L6 : return rj

(c) Dead register
L1 : ri := 0, L2

L2 : ξdr, set r̂1 := b, L3

L3 : r′
j := b ∗ ri, L′

3

L′
3 : ri := c + ri, L′′

3

L′′
3 : r′

j := m + r′
j , L4

L4 : set r̂j := r′
j , L5

L5 : ϕdr, (ri = n) ? L6 : L′
3

L6 : return r′
j

Fig. 5. Example of different optimizations

4 Instances of Certificate Translation

This section provides instances of certificate translations for common RTL opti-
mizations. The order of optimizations is chosen for the clarity of exposition and
does not necessarily reflect the order in which the optimizations are performed
by a compiler. Due to space constraints, we only describe certificate translators
for constant propagation, loop induction, and dead register elimination. Other
transformations (common subexpression elimination, inlining, register alloca-
tion, loop unrolling, unreachable code elimination) will be described in the full
version of the article.

4.1 Constant Propagation

Goal. Constant propagation aims at minimizing run-time evaluation of expres-
sions and access to registers with constant values.

Description. Constant propagation relies on a data flow analysis that returns
a function A : PP × R → Z⊥ (PP denoting the set of program points) such
that A(L, r) = n if r holds value n every time execution reaches label L. The
optimization consists in replacing instructions by an equivalent one that exploits
the information provided by A. For example, if r1 is known to hold n1 at label

310 G. Barthe et al.

L, and the instruction is r := r1 + r2, then the instruction is rewritten into
r := n1 + r2. Likewise, conditionals which can be evaluated are replaced with
nop instructions.

Certifying Analyzer. We have implemented a certifying analyzer for constant
propagation as an extension of the standard data flow algorithm. First, we attach
to each reachable label L the assertion EQA(L) (since the result of the analysis
is a conjunction of equations, we now write EQA(L) instead of RESA(L)):

EQA(L) ≡
∧

r∈{r|A(L,r) �=⊥}
r = A(L, r)

To derive a certificate for the analysis we have to prove that, for each reachable
label L,

(EQA(L) ⇒ vcgidfA
(L)

After performing all ⇒-eliminations (i.e. moving hypotheses to the context),
and rewriting all equalities from the context in the goal, one is left to prove
closed equalities of the form n = n′ (i.e. n, n′ are numbers and not arithmetic
expressions with variables). If the assertions are correct, then the certificate is
obtained by applying reflexivity of equality (an instance of the ring rule). If the
assertions are not correct, the program cannot be certified.

Certificate Translation. The function T ins
L is defined by case analysis, using the

fact that the transformation of operations is correct relative to the results of the
analysis:

Top : ∀L, ∀op, P((EQA(L) ⇒ 〈op〉 = 〈�op�opL 〉)

The expression 〈�op�
op
L 〉 represents the substitution of variables by constants in

op. The function Top is built using the ring axiom of the proof algebra; a similar
result is required for comparisons and branching instructions.

Example 2. Recall function f , defined in Example 1. Using the compiler and
transforming the assertions as explained before, we obtain the optimized program
shown in Figure 5 (a), where assertions at L1 and L3 have been transformed into
ξcp 	 ξ ∧ ri = 0 and ϕcp 	 ϕ ∧ r1 = b. It is left to the reader to check that all
proof obligations become provable with the new annotations.

4.2 Loop Induction

Goal. Loop induction register strength reduction aims at reducing the number
of multiplication operations inside a loop, which in many processors are more
costly than addition operations.

Description. Loop induction depends on two analyzes. The first one is a loop
analysis that detects loops and returns for each loop its set of labels {L1, . . . , Ln},
and its header LH , a distinguished label in the above set such that any jump
that goes inside the loop from an instruction outside the loop, is a jump to LH .

Certificate Translation for Optimizing Compilers 311

f [LH] = r′
d := b ∗ ri, L′′

H

f [L′′
H] = f [LH]

f [Li] = ri := ri + c, L′′
i

f [L′′
i] = r′

d := r′
d + b ∗ c, L′

i{LH ←L′′
H}

f [Ld] = rd := r′
d, L′

d{LH ←L′′
H}

f [L] = (φ ∧ r′
d = b ∗ ri, ins{LH ←L′′

H}) if f [L] = (φ, ins)
f [L] = f [L]{LH ←L′′

H} in any other case inside the loop

Fig. 6. Loop Induction

The second analysis detects inside a loop an induction register ri (defined in
the loop by an instruction of the form ri := ri + c) and its derived induction
register rd (defined in the loop by an instruction of the form rd := ri ∗ b). More
precisely, the analysis returns: an induction register ri and the label Li in which
its definition appears, a derived induction register rd and the label Ld in which
its definition appears, a new register name r′d not used in the original program,
two new labels L′′

i and L′′
H not in the domain of Gf and two constant values b, c

that correspond to the coefficient of rd and increment of ri.
The transformation replaces assignments to the derived induction register rd

with less costly assignments to an equivalent induction register r′d. Then rd is
defined as a copy of r′d.

Certifying Analyzer. Only the second analysis needs to be certified. First, we
define EQA(L) ≡ r′d = b∗ri if L ∈ {L′′

H , L1, . . . , Ln}\{LH} and EQA(L) ≡ � if
L is a label outside the loop or equal to LH . Then, we need to create a certificate
that the analysis is correct. One (minor) novelty w.r.t. constant propagation is
that the definition of fA includes two extra labels L′′

H and L′′
i , not present in

the original function f . The definition of fA is given by the clauses:

fA [LH] = (EQA(LH), r′
d := b ∗ ri, L′′

H)
fA [L′′

H] = (EQA(L′′
H), insLH)

fA [L] = (EQA(L), insL) if L ∈ dom(Gf), L �∈ {LH , Li}
fA [Li] = (EQA(Li), insLi{L′

i ←L′′
i })

fA [L′′
i] = (�, r′

d := r′
d + b ∗ c, L′

i)

where insL is the instruction descriptor of f [L], and L′
i is the successor label

of Li in f . Interestingly, the certified analyzer must use the fact that the loop
analysis is correct in the sense that one can only enter a loop through its header.
If the loop analysis is not correct, then the certificate cannot be constructed.

Certificate Translation. Figure 6 shows how instructions for labels L1 . . . Ln of
a function f are transformed into instructions for the optimized function f . As
expected, the transformation for instructions outside the loop is the identity, i.e.
f [L] = f [L] for L �∈ {L1, . . . , Ln}.

Certificate translation proceeds as with constant propagation, using the in-
duction principle attached to the definition of reachAnnotf , and the certificate
of the analysis, to produce a certificate for f̄ .

312 G. Barthe et al.

Example 3. Applying loop induction to program (a) in Figure 5, we obtain
program (b) where m denotes the result of the product b ∗ c and ξli 	 ξcp and
ϕli 	 ϕcp ∧ r′j = b ∗ ri.

4.3 Dead Register Elimination

Goal. Dead register elimination aims at deleting assignments to registers that
are not live at the label where the assignment is performed. As mentioned in the
introduction, we propose a transformation that performs simultaneously dead
variable elimination in instructions and in assertions.

Description. A register r is live at label L if r is read at label L or there is a
path from L that reaches a label L′ where r is read and does not go through
an instruction that defines r (including L, but not L′). A register r is read at
label L if it appears in an assignment with a function call, or it appears in a
conditional jump, or in a return instruction, or on the right side of an assignment
of an assignment operation to a register r′ that is live. In the following, we denote
L(L, r) = � when a register is live at L.

In order to deal with assertions, we extend the definition of liveness to asser-
tions. A register r is live in an assertion at label L, denoted by L(L, r) = �φ, if
it is not live at label L and there is a path from L that reaches a label L′ such
that r appears in assertion at L′ or where r is used to define a register which is
live in an assertion.

By abuse of notation, we use L(L, r) = ⊥ if r is dead in the code and in
assertions.

The transformation deletes assignments to registers that are not live. In order
to deal with dead registers in assertions, we rely on the introduction of ghost
variables. Ghost variables are expressions in our language of assertions (we as-
sume that sets of ghost variables names and R are disjoint). We introduce as
part of RTL, “ghost assignments”of the form set v̂ := op, L, where v̂ is a ghost
variable. Ghost assignments do not affect the semantics of RTL, but they affect
the calculus of vcg in the same way as normal assignments.

The transformation is shown below where σL = {r← r̂ | L(L, r) = �φ} and
deadc(L, L′) = {r|L(L, r) = � ∧ L(L′, r) = �φ}.

ghostL((φ, ins)) = (φσL, ghostidL (ins))
ghostL(ins) = ghostidL (ins)

The analysis ghostidL (ins) is defined in Figure 7. We use set r̂ := r, as syntactic
sugar for a sequence of assignments set r̂i := ri, where for each register ri in r,
r̂i in r̂ is its corresponding ghost variable. The function ghost transforms each
instruction of f into a the set of instructions of f . Intuitively, it introduces for any
instruction ins (with successor L′) at label L, a ghost assignment set r̂ := r, L′

immediately after L (at a new label L′′) if the register r is live at L but not live
at the immediate successor L′ of L. In addition, the function ghostL performs
dead register elimination if ins is of the form rd := op, and the register rd is not
live at L.

Certificate Translation for Optimizing Compilers 313

ghostidL (return r) = return r
ghostidL (rd := f(r), L′) = L : rd := f(r), L′′

L′′ : set t̂ := t, L′ for each t ∈ deadc(L, L′)
ghostidL (nop, L′) = nop, L′

ghostidL (cmp ? L1 : L2) = L : cmp ? L′
1 : L′

2

L′
1 : set t̂1 := t1, L1 wheret1 = deadc(L, L1)

L′
2 : set t̂2 := t2, L2 where t2 = deadc(L, L2)

ghostidL (rd := op, L′) = nop, L′ if L(L′, rd) = ⊥
= set r̂d := opσL, L′ if L(L′, rd) = �φ

= L : rd := op, L′′

L′′ �→ set t̂ := t, L′

where t = deadc(L, L′)

if L(L′, rd) = �

Fig. 7. Ghost Variable Introduction-Dead Register Elimination

Instantiation of Proof Obligations. Certificate translation for dead register elim-
ination falls in the IPO category, i.e. the certificate of the optimized program is
an instance of the certificate of the source program. This is shown by proving
that ghost variable introduction preserves vcg up to substitution.

Lemma 1. ∀L, vcgf̄ (L) = vcgf (L)σL

A consequence of this lemma is that if the function f is certified, then it is possible
to reuse the certificate of f to certify f , as from each proof p :(φL ⇒ vcgf (L) we
can obtain a proof p :(φ̄L ⇒ vcgf̄ (L) by applying subst rule of Figure 4 to p with
substitution σL.

After ghost variable introduction has been applied, registers that occur free
in vcgf (L) , are live at L, i.e. L(L, r) = �.

Example 4. In Figure 5, applying first copy propagation to program (b), we can
then apply ghost variable introduction to obtain program (c), where ξdr 	 ξli

and ϕdr 	 r̂j = r̂1 ∗ ri ∧ r̂1 ≥ b ∧ ri ≥ 0 ∧ r̂1 = b ∧ r′j = b ∗ ri ∧ r′j = r̂j .

5 Related Work

Certified Compilation. Compiler correctness [6] aims at showing that a com-
piler preserves the semantics of programs. Because compilers are complex pro-
grams, the task of compiler verification can be daunting; in order to tame the
complexity of verification and bring stronger guarantees on the validity of com-
piler correctness proofs, certified compilation [8] advocates the use of a proof as-
sistant for machine-checking compiler correctness results. Section 2 of [8] shows
that it is theoretically possible to derive certificate translation from certifying
compilation. However, we think that the approach is restrictive and unpractical:

– certificates encapsulate the definition of the compiler and its correctness
proof on the one hand, and the source code and its certificate on the other
hand. Thus certificates are large and costly to check;

314 G. Barthe et al.

– with the above notion of certified compiler, the approach is necessarily con-
fined to properties about the input/output behavior of programs, and rules
out interesting properties involving intermediate program points that are
expressed with assertions or ghost variables;

– and a further difficulty with this approach is that it requires that the source
code is accessible to the code consumer, which is in general not the case.

For similar reasons, it is not appropriate to take as certificates of optimized
programs pairs that consist of a certificate for the unoptimized program and of
a proof that the optimizations are semantics preserving.

Certifying Compilation. Certifying compilation is concerned with generating
automatically safety certificates. The Touchstone compiler [11] is a notable exam-
ple of certifying compiler, which generates type-safety certificates for a fragment
of C. In Chapter 6 of [10], Necula studies the impact of program optimizations
on certifying compilation. For most standard optimizations an informal analysis
is made, indicating whether the transformation requires reinforcing the program
invariants, or whether the transformation does not change proof obligations.

There are many commonalities between his work and ours, but also some no-
table differences. First, the VCGen used by Necula propagates invariants back-
wards, whereas ours generates a proof obligation for each invariant. This has
subtle implications on the modifications required for the invariant. A main dif-
ference is that we not only have to strengthen invariants, but also transform
the certificate; further, when he observes that the transformation produces a
logically equivalent proof obligation, we have to define a function that maps
proofs of the original proof obligation into proofs of the new proof obligation
after optimization.

Provable Optimizations through Sound Elementary Rules. Rhodium [7]
is a domain-specific language for declaring and proving correct program opti-
mizations. The domain-specific language is used to declare local transformation
rules and to combine them into the optimization. Transformations written in
Rhodium are given a semantic interpretation that is used to generate sufficient
conditions for the correctness of the transformation. The proof obligations are
in turn submitted to an automatic prover that attempts to discharge them au-
tomatically. The idea also underlies the work of Benton [4], who proposes to
use a relational Hoare logic to justify transformation rules from which optimiza-
tions can be built. The perspective of decomposing optimizations through sound
elementary rules is appealing, but left for future work.

Spec# and BML Project. The Spec# project [2] defines an extension of
C# with annotations, and a compiler from annotated programs to annotated
.NET files, which can be run using the .NET platform, and checked against
their specifications at run-time or verified statically with an automatic prover.
The Spec# project implicitly assumes some relation between source and byte-
code levels, but does not attempt to formalize this relation. There is no notion

Certificate Translation for Optimizing Compilers 315

of certificate, and thus no need to transform them. A similar line of work for
Java was pursued independently by Pavlova and Burdy [5] who define a Byte-
code Modeling Language into which annotations of the Java Modeling Language
and a VCGen for annotated bytecode programs; the generated proof obligations
are sent to an automatic theorem prover. They partially formalize the relation
between proof obligations at source code and bytecode level, but they do not
consider certificates.

In a similar spirit, Bannwart and Müller [1], provide Hoare-like logics for
significant sequential fragments of Java source code and bytecode, and illustrate
how derivations of correctness can be mapped from source programs to bytecode
programs obtained by non-optimizing compilation.

Certifying Analyzers. Specific instances of certifying analyzers have been
studied independently by Wildmoser, Chaieb and Nipkow [13] in the context of
a bytecode language and by Seo, Yang and Yi [12] in the context of a simple
imperative language. Seo, Yang and Yi propose an algorithm that automatically
constructs safety proofs in Hoare logic from abstract interpretation results.

6 Concluding Remarks

Certificate translation provides a means to bring the benefits of source code
verification to code consumers using PCC architectures. Certificate translation
significantly extends the scope of PCC in that it allows to consider complex
security policies and complex programs— at the cost of requiring interactive
verification. The primary motivation for certificate translation are mobile code
scenarios, possibly involving with several code producers and intermediaries,
where security-sensitive applications justify interactive verification. One impor-
tant constraint for these scenarios (which originate from mobile phone industry)
is that only the code after compilation and optimization is available to the code
consumer or a trusted third party: this assumption makes it impossible to use
ideas from certified compilation, or to use as certificates for optimized programs
a pair consisting of a certificate of the unoptimized program, and a proof of
correctness of the optimizations.

There are many directions for future work, including:

– On a side, we would like to build a generic certificate translation, instead
of developing a translator per optimization. One natural approach would
be to describe standard program optimizations as a combination of more
elementary transformations in the style of Rhodium.

– On a practical side, we have developed a prototype certificate translator for
our RTL language. This prototype generates proof obligations for the initial
program that are sent to the Coq theorem prover. Once the proofs obligations
are solved, the proofs are sent to the certificate translator that automatically
optimizes the program and transforms the proofs. In the medium term, we
intend to extend our prototype to a mainstream programming language such
as C or Java to an assembly language.

316 G. Barthe et al.

– On an experimental side, we would like to gather metrics about the size of
certificates—which is an important issue, although not always central in the
scenarios we have in mind. Preliminary experiments using λ-terms as certifi-
cates indicate that their size does not explode during translation, provided
we perform after certificate translation a pass of reduction that eliminates all
the redexes created by the translation. For example, the size of certificates
remains unchanged for dead register elimination. For constant propagation,
the size of certificates grows linearly w.r.t. the size of the code. There are
other opportunities to reduce certificate size; in particular, not all annota-
tions generated by certifying analyzers are used to build the certificate for
the optimized program, so we could use enriched analyses with dependency
information to eliminate all annotations that are not used to prove the op-
timized program, i.e. annotations that are not directly used to justify an
optimization, and annotations that are not used (recursively) to justify such
annotations;

– On an applicative side, we would like to experiment with certificate trans-
lation in realistic settings. E.g. certificate translation could be useful in the
component-based development of security-sensitive software, as the software
integrator, who will be liable for the resulting product, could reasonably re-
quire that components originating from untrusted third parties are certified
against their requirements, and use certificate translation to derive a certifi-
cate for the overall software from certificates of each component. The ben-
efits of certificate translation seem highest in situations where integration
of components involves advanced compilation techniques, e.g. compilation
from Domain-Specific Languages to conventional languages.

References

1. F. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto, editor,
Proceedings of Bytecode’05, Electronic Notes in Theoretical Computer Science. El-
sevier Publishing, 2005.

2. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming System: An
Overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in Computer
Science, pages 50–71. Springer-Verlag, 2005.

3. G. Barthe, T.Rezk, and A. Saabas. Proof obligations preserving compilation. In
Proceedings of FAST’05, volume 3866 of Lecture Notes in Computer Science, pages
112–126. Springer-Verlag, 2005.

4. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of POPL’04, pages 14–25. ACM Press, 2004.

5. L. Burdy and M. Pavlova. Annotation carrying code. In Proceedings of SAC’06.
ACM Press, 2006.

6. J. D. Guttman and M. Wand. Special issue on VLISP. Lisp and Symbolic Com-
putation, 8(1/2), March 1995.

7. S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness proofs for
dataflow analyses and transformations via local rules. In Proceedings of POPL’05,
pages 364–377. ACM Press, 2005.

Certificate Translation for Optimizing Compilers 317

8. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Proceedings of POPL’06, pages 42–54. ACM Press, 2006.

9. G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119.
ACM Press, 1997.

10. G.C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
October 1998. Available as Technical Report CMU-CS-98-154.

11. G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.
In Proceedings of PLDI’98, pages 333–344. ACM Press, 1998.

12. S. Seo, H. Yang, and K. Yi. Automatic Construction of Hoare Proofs from Abstract
Interpretation Results. In A. Ohori, editor, Proceedings of APLAS’03, volume 2895
of Lecture Notes in Computer Science, pages 230–245. Springer-Verlag, 2003.

13. M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analysis for proof carrying
code. In F. Spoto, editor, Proceedings of BYTECODE’05, Electronic Notes in
Theoretical Computer Science. Elsevier Publishing, 2005.

Analysis of Low-Level Code Using Cooperating
Decompilers�

Bor-Yuh Evan Chang, Matthew Harren, and George C. Necula

University of California, Berkeley, California, USA
{bec, matth, necula}@cs.berkeley.edu

Abstract. Analysis or verification of low-level code is useful for min-
imizing the disconnect between what is verified and what is actually
executed and is necessary when source code is unavailable or is, say,
intermingled with inline assembly. We present a modular framework for
building pipelines of cooperating decompilers that gradually lift the level
of the language to something appropriate for source-level tools. Each de-
compilation stage contains an abstract interpreter that encapsulates its
findings about the program by translating the program into a higher-
level intermediate language. We provide evidence for the modularity of
this framework through the implementation of multiple decompilation
pipelines for both x86 and MIPS assembly produced by gcc , gcj , and
coolc (a compiler for a pedagogical Java-like language) that share sev-
eral low-level components. Finally, we discuss our experimental results
that apply the BLAST model checker for C and the Cqual analyzer to
decompiled assembly.

1 Introduction

There is a growing interest in applying software-quality tools to low-level rep-
resentations of programs, such as intermediate or virtual-machine languages, or
even on native machine code. We want to be able to analyze code whose source is
either not available (e.g., libraries) or not easily analyzable (e.g., programs writ-
ten in languages with complex semantics such as C++, or programs that contain
inline assembly). This allows us to analyze the code that is actually executed and
to ignore possible compilation errors or arbitrary interpretations of underspec-
ified source-language semantics. Many source-level analyses have been ported
to low-level code, including type checkers [23, 22, 8], program analyzers [26, 4],
model checkers [5], and program verifiers [12, 6]. In our experience, these tools
mix the reasoning about high-level notions with the logic for understanding low-
level implementation details that are introduced during compilation, such as
stack frames, calling conventions, exception implementation, and data layout.
We would like to segregate the low-level logic into separate modules to allow for
easier sharing between tools and for a cleaner interface with client analyses. To
� This research was supported in part by the National Science Foundation under grants

CCF-0524784, CCR-0234689, CNS-0509544, and CCR-0225610; and an NSF Grad-
uate Research Fellowship.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 318–335, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of Low-Level Code Using Cooperating Decompilers 319

better understand this issue, consider developing a type checker similar to the
Java bytecode verifier but for assembly language. Such a tool has to reason not
only about the Java type system, but also the layout of objects, calling conven-
tions, stack frames, with all the low-level invariants that the compiler intends
to preserve. We reported earlier [8] on such a tool where all of this reasoning is
done simultaneously by one module. But such situations arise not just for type
checking but essentially for all analyses on assembly language.

In this paper we propose an architecture that modularizes the reasoning about
low-level details into separate components. Such a separation of low-level logic
has previously been done to a certain degree in tools such as CodeSurfer/x86 [4]
and Soot [28], which expose to client analyses an API for obtaining information
about the low-level aspects of the program. In this paper, we adopt a more
radical approach in which the low-level logic is packaged as a decompiler whose
output is an intermediate language that abstracts the low-level implementation
details introduced by the compiler. In essence, we propose that an easy way to
reuse source-level analysis tools for low-level code is to decompile the low-level
code to a level appropriate for the tool. We make the following contributions:
– We propose a decompilation architecture as a way to apply source-level tools

to assembly language programs (Sect. 2). The novel aspect of our proposal
is that we use decompilation not only to separate the low-level logic from
the source-level client analysis, but also as a way to modularize the low-level
logic itself. Decompilation is performed by a series of decompilers connected
by intermediate languages. We provide a cooperation mechanism in order to
deal with certain complexities of decompilation.

– We provide evidence for the modularity of this framework through the im-
plementation of multiple decompilation pipelines for both x86 and MIPS
assembly produced by gcc (for C), gcj (for Java), and coolc (for Cool [1],
a Java-like language used for teaching) that share several low-level compo-
nents (Sect. 3). We then compare with a monolithic assembly-level analysis.

– We demonstrate that it is possible to apply source-level tools to assembly
code using decompilation by applying the BLAST model checker [18] and
the Cqual analyzer [17] with our gcc decompilation pipeline (Sect. 4).

Note that while ideally we would like to apply analysis tools to machine code
binaries, we leave the difficult issue of lifting binaries to assembly to other work
(perhaps by using existing tools like IDAPro [19] as in CodeSurfer/x86 [4]).

Fig. 1. Cooperating decompilers

Challenges. Just like in a
compiler, a pipeline archi-
tecture improves modular-
ity of the code and allows
for easy reuse of modules
for different client-analyses.
Fig. 1 shows an example of
using decompilation modules to process code that has been compiled from
C, Java, and Cool. Each stage recovers an abstraction that a corresponding

320 B.-Y.E. Chang, M. Harren, and G.C. Necula

compilation stage has concretized. For example, we have a decompiler that de-
compiles the notion of the run-time stack of activation records into the abstrac-
tion of functions with local variables (Locals). The analogy with compilers is very
useful but not sufficient. Compilation is in many respects a many-to-one map-
ping and thus not easily invertible. Many source-level variables are mapped to
the same register, many source-level concepts are mapped to the run-time stack,
many source-level operations are mapped to a particular low-level instruction
kind. We address this issue by providing each decompiler with additional infor-
mation about the instruction being decompiled. Some information is computed
by the decompiler itself using data-flow analysis. For example, the Locals de-
compiler can keep track of the value of the stack and frame pointer registers
relative to function entry.

The real difficulty is that some information must be provided by higher-level
modules. For example, the Locals module must identify all calls and determine
the number of arguments, but only the object-oriented module (OO) should
understand virtual method invocation. There is a serious circularity here. A
decompiler needs information from higher-level decompilers to produce the input
for the higher-level decompiler. We introduce a couple of mechanisms to address
this problem. First, the entire pipeline of decompilers is executed one instruction
at a time. That is, we produce decompiled programs simultaneously at all levels.
This setup gives each decompiler the opportunity to accumulate data-flow facts
that are necessary for decompiling the subsequent instructions and allows the
control-flow graph to be refined as the analysis proceeds. When faced with an
instruction that can be decompiled in a variety of ways, a decompiler can consult
its own data-flow facts and can also query higher-level decompilers for hints based
on their accumulated data-flow facts. Thus it is better to think of decompilers
not as stages in a pipeline but as cooperating decompilers. The net result is
essentially a reduced product analysis [15] on assembly; we explain the benefits of
this framework compared to prior approaches based on our previous experiences
in Sect. 3 and 5.

2 Cooperating Decompilation Framework

static int length(List x) {
int n = 0;

while (x.hasNext()) {
x = x.next();

n++;

}
return n;

}
Fig. 2. A Java method

For concreteness, we describe the methodol-
ogy through an example series of decompiler
modules that together are able to perform Java
type checking on assembly language. We focus
here on the Java pipeline (rather than C), as
the desired decompilation is higher-level and
thus more challenging to obtain. Consider the
example Java program in Fig. 2 and the corre-
sponding assembly code shown in the leftmost
column of Fig. 3. In this figure, we use the stack
and calling conventions from the x86 architecture where the stack pointer rsp

points to the last used word, parameters are passed on the stack, return values

Analysis of Low-Level Code Using Cooperating Decompilers 321

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

length:
. . .
m[rsp] := 0

Lloop:

r1 := m[rsp+12]
jzero r1, Lexc

r2 := m[r1]
r1 := m[r2+32]
rsp := rsp − 4
m[rsp] :=
m[rsp+16]
icall [r1]

rsp := rsp + 4
jzero r1, Lend

rsp := rsp − 4
m[rsp] :=
m[rsp+16]
r1 := m[r2+28]
icall [r1]

rsp := rsp + 4
m[rsp+12] := r1

incr m[rsp]
jump Lloop

Lend:
r1 := m[rsp]
. . .
return

length(tx):

tn := 0
Lloop:

r1 := tx

jzero r1, Lexc

r2 := m[r1]
r1 := m[r2+32]

t1 := tx

r1 :=
icall [r1](t1)

jzero r1, Lend

t1 := tx

r1 := m[r2+28]
r1 :=
icall [r1](t1)

tx := r1

incr tn
jump Lloop

Lend:
r1 := tn

return r1

length(αx):

αn = 0
Lloop:
α′′

n = φ(αn , α′
n)

α′′
x = φ(αx , α′

x)

if (α′′
x =0) Lexc

αrv =
icall
[m[m[α′′

x]+32]]
(α′′

x)

if (αrv =0) Lend

α′
rv =
icall
[m[m[α′′

x]+28]]
(α′′

x)

α′
x = α′

rv
α′

n = α′′
n + 1

jump Lloop

Lend:

return α′′
n

length(αx : obj):

αn = 0
Lloop:
α′′

n = φ(αn , α′
n)

α′′
x = φ(αx , α′

x)

if (α′′
x =0) Lexc

αrv =
invokevirtual
[α′′

x , 32]()

if (αrv =0) Lend

α′
rv =
invokevirtual
[α′′

x , 28]()

α′
x = α′

rv
α′

n = α′′
n + 1

jump Lloop

Lend:

return α′′
n

length(αx : List):

αn = 0
Lloop:
α′′

n = φ(αn , α′
n)

α′′
x = φ(αx , α′

x)

if (α′′
x =0) Lexc

αrv =
α′′

x .hasNext()

if (αrv =0) Lend

α′
rv =
α′′

x .next()

α′
x = α′

rv
α′

n = α′′
n + 1

jump Lloop

Lend:

return α′′
n

Assembly Locals IL SymEval IL OO IL Java IL

Fig. 3. Assembly code for the program in Fig. 2 and the output of successive decom-
pilers. The function’s prologue and epilogue have been elided. Jumping to Lexc will
trigger a Java NullPointerException .

are passed in r1 , and r2 is a callee-save register. Typically, a virtual method
dispatch is translated to several lines of assembly (e.g., lines 6–11): a null-check
on the receiver object, looking up the dispatch table, and then the method in
the dispatch table, passing the receiver object and any other arguments, and
finally an indirect jump-and-link (icall). To ensure that the icall is a correct
compilation of a virtual method dispatch, dependencies between assembly in-
structions must be carefully tracked, such as the requirement that the argument
passed as the self pointer is the same as the object from which the dispatch ta-
ble is obtained (cf., [8]). These difficulties are only exacerbated with instruction
reordering and other optimizations. For example, consider the assembly code
for the method dispatch to x.next() (lines 14–17). Variable x is kept in a stack
slot (m[rsp+16] at line 15). A small bit of optimization has eliminated the

322 B.-Y.E. Chang, M. Harren, and G.C. Necula

null-check and the re-fetching of the dispatch table of x , as a null-check was
done on line 6 and the dispatch table was kept in a callee-save register r2 , so
clearly some analysis is necessary to decompile it into a method call.

The rest of Fig. 3 shows how this assembly code is decompiled by our system.
Observe how high-level constructs are recovered incrementally to obtain essen-
tially Java with unstructured control-flow (shown in the rightmost column). Note
that our goal is not to necessarily recover the same source code but simply code
that is semantically equivalent and amenable to further analysis. To summarize
the decompilation steps, the Locals module decompiles stack and calling conven-
tions to provide the abstraction of functions with local variables. The SymEval
decompiler performs symbolic evaluation to accumulate and normalize larger
expressions to present the program in a source-like SSA form. Object-oriented
features, like virtual method dispatch, are identified by the OO module, which
must understand implementation details like object layout and dispatch tables.
Finally, JavaTypes can do a straightforward type analysis (because its input is
already fairly high-level) to recover the Java-like representation.

As can be seen in Fig. 3, one key element of analyzing assembly code is decod-
ing the run-time stack. An assembly analyzer must be able to identify function
calls and returns, recognize memory operations as either stack accesses or heap
accesses, and must ensure that stack-overflow and calling conventions are handled
appropriately.This handling ought to be done in a separatemodule both because it
is not specific to the desired analysis and also to avoid such low-level concerns when
thinking about the analysis algorithm (e.g., Java type-checking). In our example
decompiler pipeline (Fig. 1), the Locals decompiler handles all of these low-level
aspects. On line 17, the Locals decompiler determines that this instruction is a
function call with one argument (for now, we elide the details how this is done, see
the Bidirectional Communication subsection and Fig. 4). It interprets the calling
convention to decompile the assembly-level jump-and-link instruction to a func-
tion call instruction with one argument that places its return value in rrv . Also,
observe that Locals decompiles reads of and writes to stack slots that are used as
local variables into uses of temporaries (e.g., tx) (lines 3, 5, 10, 15, 19, 20, 23).
To do these decompilations, the Locals decompiler needs to perform analysis to
track, for example, pointers into the stack. For instance, Locals needs this infor-
mation to identify the reads on both lines 5 and 10 as reading the same stack slot
tx . Section 3 gives more details about how these decompilers are implemented.

�

�

type abs

val step : curr × instrin → instrout × (succ list)
val � : abs × abs → bool

val
 : abs × abs → abs

Decompiler Interface.
Program analyses are al-
most always necessary to
establish the prerequi-
sites for sound decompi-
lations. We build on the traditional notions of data-flow analysis and abstract
interpretation [14]. Standard ways to combine abstract interpreters typically rely
on all interpreters working on the same language. Instead, we propose here an
approach in which the communication mechanism consists of successive decom-
pilations. Concretely, a decompiler must define a type of abstract states abs

Analysis of Low-Level Code Using Cooperating Decompilers 323

and implement a flow function (i.e., abstract transition relation) step with the
type signature given above for some input language instrin and some output
language instrout . The input type curr represents the abstract state at the
given instruction, and succ is an abstract successor state at a particular pro-
gram location. For simplicity in presentation, we say a decompiler translates one
input instruction to one output instruction. Our implementation extends this to
allow one-to-many or many-to-one translations. As part of the framework, we
provide a standard top-level fixed-point engine that ensures the exploration of
all reachable instructions. To implement this fixed-point engine, we require the
signature include the standard partial ordering � and widening
 operators [14]
for abstract states.

For simple examples where the necessary communication is unidirectional
(that is, from lower-level decompilers to higher-level decompilers via the decom-
piled instructions), an exceedingly simple composition strategy suffices where we
run each decompiler completely to fixed point gathering the entire decompiled
program before running the next one (i.e., a strict pipeline architecture). This
architecture does not require a product abstract domain and would be more
efficient than one. Unfortunately, as we have alluded to earlier, unidirectional
communication is insufficient: lower-level decompilers depend on the analyses of
higher-level decompilers to perform their decompilations. We give examples of
such situations and describe how to resolve this issue in the following subsection.

Bidirectional Communication. In this subsection, we motivate two com-
plimentary mechanisms for communicating information from higher-level de-
compilers to lower-level ones. In theory, either mechanism is sufficient for all
high-to-low communication but at the cost of efficiency or naturalness. As soon
as we consider high-to-low communication, clearly the strict pipeline architecture
described above is insufficient: higher-level decompilers must start before lower-
level decompilers complete. To address this issue, we run the entire pipeline of
decompilers one instruction at a time, which allows higher-level decompilers to
analyze the preceding instructions before lower-level decompilers produce sub-
sequent instructions. For this purpose, we provide a product decompiler whose
abstract state is the product of the abstract states of the decompilers, but in
order to generate its successors, it must string together calls to step on the de-
compilers in the appropriate order and then collect together the abstract states
of the decompilers.

Queries. Consider again the dynamic dispatch on line 17 of Fig. 3. In order
for the Locals module to (soundly) abstract stack and calling conventions into
functions with local variables, it must enforce basic invariants, such as a function
can only modify stack slots (used as temporaries) in its own activation record
(i.e., stack frame). To determine the extent of the callee’s activation record, the
Locals module needs to know, among other things, the number of arguments of
the called function, but only the higher-level decompiler that knows about the
class hierarchy (JavaTypes) can determine the calling convention of the methods
that r1 can possibly point to. We resolve this issue by allowing lower-level de-
compilers to query higher-level decompilers for hints. In this case, Locals asks:

324 B.-Y.E. Chang, M. Harren, and G.C. Necula

Locals SymEval OO JavaTypes

rsp : sp(−12) r1 = m[m[α′′
x] + 28] α′′

x : nonnull obj α′′
x :List

isFunc(r1)?−−−−−−−→ isFunc(m[m[α′′
x] + 28])?−−−−−−−−−−−−−− → isMethod(α′′

x , 28)?−−−−−−−−−−−− →
Yes, 1 argument← ·−·−·− · − Yes, 1 argument← ·−·−·−·−·−·−·−·− · − Yes, 0 arguments←·−·−·−·−·−·−·−· −

17 icall [r1] icall [r1](t1) icall [m[m[α′′
x] + 28]](α′′

x) invokevirtual [α′′
x , 28]() α′′

x .next()

Assembly Locals IL SymEval IL OO IL Java IL

Fig. 4. Queries to resolve the dynamic dispatch from line 17 of Fig. 3

“Should icall [r1] be treated as a standard function call; if so, how many ar-
guments does it take?”. If some higher-level decompiler knows the answer, then
it can translate the assembly-level jump-and-link (icall [r1]) to a higher-level
call with arguments and a return register and appropriately take into account
its possible interprocedural effects.

In Fig. 4, we show this query process in further detail, eliding the return values.
Precisely how these decompilers work is not particularly relevant here (see details
in Sect. 3). Focus on the original query isFunc(r1) from Locals . To obtain an
answer, the query gets decompiled into appropriate variants on the way up to
JavaTypes . The answer is then translated on the way down. For the OO module
the method has no arguments, but at the lower-level the implicit this argument
becomes explicit. For JavaTypes to answer the query, it must know the type of
the receiver object, which it gets from its abstract state. The abstract states of
the intermediate decompilers are necessary in order to translate queries so that
JavaTypes can answer them. We show portions of each decompiler’s abstract
state in the boxes above the queries; for example, Locals must track the current
value of the stack pointer register rsp (we write sp(n) for a stack pointer that
is equal to rsp on function entry plus n). By also tracking return addresses,
this same query also allows Locals to decompile calls that are implemented in
assembly as (indirect) jumps (e.g., tail calls). This canonicalization then enables
higher-level decompilers to treat all calls uniformly.�

�
�
	type curr = hintsout × absAdjacent decompilers agree upon the queries

that can be made by defining a type hints in
their shared intermediate language. An object of type hintsout provides infor-
mation about the current abstract states of higher-level decompilers, usually in
the form of one or more callback functions like isFunc. Such an object is pro-
vided as an input to the step function of each decompiler (as part of curr);
This architecture with decompilations and callbacks works quite nicely, as long as
the decompilers agree on the number of successors and their program locations.

Decompiling Control-Flow. Obtaining a reasonable control-flow graph on which
to perform analysis is a well-known problem when dealing with assembly code
and is often a source of unsoundness, particularly when handling indirect control-
flow. For example, switch tables, function calls, function returns, exception raises
may all be implemented as indirect jumps (ijump) in assembly. We approach
this problem by integrating the control-flow determination with the decompila-

Analysis of Low-Level Code Using Cooperating Decompilers 325

tion; that is, we make no a priori guesses on where an indirect jump goes and
rely on the decompiler modules to resolve them to a set of concrete program
points. In general, there are two cases where the decompilers may not be able
to agree on the same successors: lower-level decompilers don’t know the suc-
cessors or higher-level ones have additional successors. Sometimes a low-level
decompiler does not know the possible concrete successors. For example, if the
Locals decompiler cannot resolve an indirect jump, it will produce an indirect
successor indicating it does not know where the indirect jump will go. However,
a higher-level decompiler may be able to refine the indirect successor to a set
of concrete successors (that, for soundness, must cover where the indirect jump
may actually go). It is then an error if any indirect successors remain unresolved
after the entire pipeline. A decompiler may also need to introduce additional
successors not known to lower-level modules. In both examples, a high-level de-
compiler augments the set of successors with respect to those of the low-level
decompilers. The problem is that we do not have abstract states for the low-level
decompilers at the newly introduced successors. This, in turn, means that it will
be impossible to continue the decompilation at one of these successors.

1 . . .
2 call C.m
3 . . .
4 jump Lexit

5 Lcatch :
6 . . .
7 Lexit :
8 . . .

To illustrate the latter situation, consider a static method
call C.m() inside the try of a try-catch block and its compi-
lation to assembly (shown to the right). We would like to make
use of the run-time stack analysis and expression normalization
performed by Locals and SymEval in decompiling exceptions, so
the decompiler that handles exceptions should be placed some-
where after them in the pipeline. However, the Locals decom-
piler, and several decompilers after it, produce one successor
abstract state after the call to C.m() (line 2). In order to soundly analyze a pos-
sible throw in C.m(), the decompiler that handles exceptions must add one more
successor at the method call for the catch block at Lcatch . The challenge is to
generate appropriate low-level abstract states for the successor at Lcatch . For
example, the exceptions decompiler might want to direct all other decompilers
to transform their abstract states before the static method call and produce an
abstract state for Lcatch from it by clobbering certain registers and portions of
memory. �

�
�
	type succ = loc × (abs × ((instrC list) option))The mechanism we pro-

pose is based on the obser-
vation that we already have a pipeline of decompilers that is able to transform
the abstract states at all levels when given a sequence of machine instructions.
To take advantage of this we require a decompiler to provide, for each newly in-
troduced successor, a list of machine instructions that will be “run” through the
decompilation pipeline (using step) to produce the missing lower-level abstract
states. To achieve this, the succ type (used in the return of step) carries an
optional list of machine instructions (of type instrC). As a side-condition, the
concrete machine instructions returned by step should not include control-flow
instructions (e.g., jump). We also extend the concrete machine instruction set

326 B.-Y.E. Chang, M. Harren, and G.C. Necula

with instructions for abstracting effects; for example, there is a way to express
that register rx gets modified arbitrarily (havoc rx).

Both queries and these reinterpre-
tations introduce a channel of commu-
nication from higher-level decompilers
to lower-level ones, but they serve com-
plimentary purposes. For one, reinter-
pretations are initiated by high-level
decompilers, while queries are initiated
by low-level decompilers. We want to use queries when we want the question to
be decompiled, while we prefer to communicate through reinterpretations when
we want the answers to be decompiled. The diagram above summarizes these
points. In the extended version [9], we give the product decompiler that ties
together the pipeline (with queries and reinterpretations), which further clarifies
how the decompiler modules interact to advance simultaneously.

Soundness of Decompiler Pipelines. One of the main advantages of the
modular architecture we describe in this paper is that we can modularize the
soundness argument itself. This modularization increases the trustworthiness of
the program analysis and is a first step towards generating machine-checkable
proofs of soundness, in the style of Foundational Proof-Carrying Code [3].

Since we build on the framework of abstract interpretation, the proof obli-
gations for demonstrating the soundness of a decompiler are fairly standard
local criteria, which we sketch here. Soundness of a decompiler module is shown
with respect to the semantics of its input and output languages given by con-
crete transition relations. In particular, leaving the program implicit, we write
IL �� l �L l′@� for the one-step transition relation of the input (lower-level)
machine, which says that on instruction IL and pre-state l , the post-state is l′

at program location � (similarly for the output machine H). As usual, we can
specify whatever safety policy of interest by disallowing transitions that would
violate the policy (i.e., modeling errors as “getting stuck”). Also, we need to
define a soundness relation l � a between concrete states for the input machine
and abstract states, as well as a simulation relation l ∼ h between concrete
states of the input and output machines.

Note that for a given assembly program,we use the same locations for all decom-
pilations since we consider one-to-one decompilations for presentation purposes
(otherwise, we would consider a correspondence between locations at different lev-
els). Let L0 and H0 denote the initial machine states (as a mapping from starting
locations to states) such that they have the same starting locations each with com-
patible states (i.e., dom(L0) = dom(H0) and L0(�) ∼ H0(�) for all � ∈ dom(L0)).
Now consider running the decompiler pipeline to completion (i.e., to fixed point)
and let Ainv be the mapping from locations to abstract states at fixed point. Note
that Ainv must contain initial abstract states compatible with the concrete states
in L0 (i.e., dom(L0) ⊆ dom(Ainv) and L0(�) � Ainv(�) for all � ∈ dom(L0)).

We can now state the local soundness properties for a decompiler module’s
step . A decompiler’s step need only give sound results when the query object

Analysis of Low-Level Code Using Cooperating Decompilers 327

it receives as input yields answers that are sound approximations of the ma-
chine state, which we write as h � q (and which would be defined and shown
separately).

Property 1 (Progress). If l ∼ h , l � a , h � q , step((q, a), IL) = (IH , A′) and
IH �� h �H h′@� , then IL �� l �L l′@� (for some l′).

Progress says that whenever the decompiler can make a step and whenever the
output machine is not stuck, then the input machine is also not stuck. That is, a
decompiler residuates soundness obligations to higher-level decompilers through
its output instruction. Thus far, we have not discussed the semantics of the
intermediate languages very precisely, but here is where it becomes important.
For example, for stack slots to be soundly translated to temporaries by the
Locals decompiler, the semantics of the memory write instruction in Locals IL
is not the same as a memory write in the assembly in that it must disallow
updating such stack regions. In essence, the guarantees provided by and the
expectations of a decompiler module for higher-level ones are encoded in the
instructions it outputs. If a decompiler module fails to perform sufficient checks
for its decompilations, then the proof of this property will fail.

To implement a verifier that enforces a particular safety policy using a de-
compiler pipeline, we need to have a module at the end that does not output
higher-level instructions to close the process (i.e., capping the end). Such a mod-
ule can be particularly simple; for example, we could have a module that simply
checks syntactically that all the “possibly unsafe” instructions have been de-
compiled away (e.g., for memory safety, all memory read instructions have been
decompiled into various safe read instructions).

Property 2 (Preservation). If l ∼ h , l � a , h � q and step((q, a), IL) =
(IH , A′), then for every l′ such that IL �� l �L l′@� , there exists h′, a′ such
that IH �� h �H h′@� where l′ ∼ h′ and a′ = Ainv(�) where l′ � a′ .

Preservation guarantees that for every transition made by the input machine,
the output machine simulates it and the concrete successor state matches one of
the abstract successors computed by step (in Ainv).

3 Decompiler Examples

In this section, we describe a few decompilers from Fig. 1. For each decompiler,
we give the instructions of the output language, the lattice of abstract values,
and a description of the decompilation function step . We use the simplified
notation step(acurr , Iin) = (Iout , asucc) to say that in the abstract state acurr

the instruction Iin is decompiled to Iout and yields a successor state asucc . We
write asucc@� to indicate the location of the successor, but we elide the location
in the common case when it is “fall-through”. A missing successor state asucc

means that the current analysis path ends. We leave the query object implicit,
using q to stand for it when necessary. Since each decompiler has similar struc-
ture, we use subscripts with names of decompilers or languages when necessary
to clarify to which module something belongs.

328 B.-Y.E. Chang, M. Harren, and G.C. Necula

instr IL ::= IC | x := call �(e1, ..., en)
| x := icall [e](e1, ..., en)
| return e

abs values τ ::= � | n | sp(n) | ra | &� | cs(r)

Decompiling Calls and Lo-
cals. The Locals module deals
with stack conventions and in-
troduces the notion of statically-
scoped local variables. The two
major changes from assembly instructions (IC) are that call and return instruc-
tions have actual arguments. The abstract state includes a mapping Γ from
variables x to abstract values τ , along with two additional integers, nlo and
nhi , that delimit the current activation record (i.e., the extent of the known valid
stack addresses for this function) with respect to the value of the stack pointer on
entry. The variables mapped by the abstract state include all machine registers
and variables tn that correspond to stack slots (with the subscript indicating
the stack offset of the slot in question). We need only track a few abstract values
τ : the value of stack pointers sp(n), the return address for the function ra , code
addresses for function return addresses &� , and the value of callee-save registers
on function entry cs(r). These values form a flat lattice, with the usual ordering.

Γ � e : sp(n) nlo ≤ n ≤ nhi n ≡ 0 (mod 4)

step(〈Γ ;nlo ; nhi〉, r := m[e]) = (r := tn, 〈Γ [r �→ Γ (tn)]; nlo ; nhi〉)
Many of the

cases for the
step function
propagate the input instruction unchanged and update the abstract state. We
show here the definition of step for the decompilation of a stack memory read
to a move from a variable. For simplicity, we assume here that all stack slots are
used for locals. This setup can be extended to allow higher-level decompilers to
indicate (through some high-to-low communication) which portions of the stack
frame it wants to handle separately. We write Γ (e : τ to say that in the
abstract state 〈Γ ; nlo; nhi〉 , the expression e has abstract value τ . For verifying
memory safety, a key observation is that Locals proves once and for all that such
a read is to a valid memory address; by decompiling to a move instruction, no
higher-level decompiler needs to do this reasoning. The analogous translation for
stack writes appears on, for example, line 19 in Fig. 3.

The following rule gives the translation of function calls:

Γ (xra) = &� Γ (rsp) = sp(n) n ≡ 0 (mod 4) q.isFunc(e) = k Γ ′ = scramble(Γ, n, k)

step(〈Γ ; nlo ; nhi 〉, icall [e]) = (xrv := icall [e](x1, ..., xk), 〈Γ ′[rsp �→ sp(n+4)]; nlo ; nhi 〉@�)

It checks that the return address is set, rsp contains a word-aligned stack pointer,
and e is the address of a function according to the query. Based on the calling
convention and number of arguments, it constructs the call with arguments and
the return register. The successor state Γ ′ is obtained first by clearing any non-
callee-save registers and temporaries corresponding to stack slots in the callee’s
activation record, which is determined by scramble using the calling conven-
tion, n , and k . Then, rsp is updated, shown here according to the x86 calling
convention where the callee pops the return address. In the implementation, we
parameterize by a description of the calling convention. Further details, including
the verification of stack overflow checking, is given in the extended version [9].

Analysis of Low-Level Code Using Cooperating Decompilers 329

Symbolic Evaluator. The SymEval (E) module does the following analysis
and transformations for higher-level decompilers to resolve some particularly
pervasive problems when analyzing assembly code.

1. Simplified and Normalized Expressions. High-level operations get compiled
into long sequences of assembly instructions with intermediate values ex-
posed (as exemplified in Fig. 3). To analyze one instruction at a time, we
need to assign types to all intermediate expressions, but this undertaking
quickly becomes unwieldy. Additionally, arithmetic equivalences are used
extensively by compilers (particularly in optimized code). We want to ac-
cumulate larger expression trees and perform arithmetic simplification and
normalization before assigning types. Observe how SymEval does this work
in the example decompilation of line 17 in Fig. 4.

2. Static Single Assignment (SSA). In contrast to source-level variables, flow-
sensitivity is generally required to analyze registers because registers are
reused for unrelated purposes. To have a set variables suitable for source-level
analyses, the symbolic evaluator yields an SSA-like program representation.

3. Global Value Numbering (GVN). The same variable may also be placed in
multiple locations (yielding an equality on those locations). For example, to
check that a reference stored on the stack is non-null, a compiler must emit
code that first loads it into a register. On the non-null path, an assembly-
level analysis needs to know that the contents of both the register and the
stack slot is non-null. So that higher-level decompilers do not have to deal
with such low-level details, the symbolic evaluator presents a single symbolic
value α that abstracts some unknown value but is stored in both the register
and the stack slot (implicitly conveying the equality). Combined with the
above, the symbolic evaluator can be viewed as implementing an extended
form of GVN [2]. Further details are given in the extended version [9].

Decompiling Object-Oriented Features. The OO decompiler (O) recog-
nizes compilations of class-based object-oriented languages, such as Java. The
output instruction language for the OO decompiler includes the instructions

instr IO ::= IE | α = putfield [e, n]
| α = invokevirtual [e0, n](e1, ..., en)

expr eO ::= eE | getfield [e, n]

from the symbolic evaluator,
except it is extended for vir-
tual method dispatch, field
reads, and field writes. Al-
most all of the heavy lifting has been done by the symbolic evaluator, so OO is
quite simple. The abstract values that we need to track are straightforward: a
type for object references, which may be qualified as non-null or possibly null.

The decompilation of virtual method dispatch (as on line 17 in Fig. 4) is as
follows:

Γ (β) = nonnull obj Γ � e1 : τ1 · · · Γ � em : τm q.isMethod(β, n) = τ1 × · · · × τm → τ

step(Γ, α = icall [m[m[β] + n]](β, e1, ..., em))
= (α = invokevirtual [β, n](e1, ..., em), Γ [α �→ τ])

330 B.-Y.E. Chang, M. Harren, and G.C. Necula

It checks that the object reference is non-null and that the dispatch table is
obtained from the same object as the object being passed as the receiver object.
Observe that since the abstract state is independent of the register and memory
state, the successor abstract state is particularly easy to derive. One additional
bit of interesting work is that it must recognize null-checks and strengthen a
possibly-null object to a non-null one. Because of the symbolic evaluator, OO
simply updates the type of a symbolic value α and need not worry about the
equivalences between all the registers or temporaries that contain α .

Implementation and Experience. We have implemented and tested the
above decompiler modules in multiple decompiler pipelines, including three main
ones for assembly generated from Java programs by gcj , C programs by gcc ,
and Cool programs by coolc. All decompiler pipelines start from a very sim-
ple untyped RISC-like assembly language to minimize architecture dependence.
We have parsers for x86 and MIPS that translate to this generic assembly. The
Locals module is parameterized by the calling convention, so we can easily han-
dle several different calling conventions (e.g., standard x86, standard MIPS, or
the non-standard one used by coolc). In these pipelines, we use communica-
tion in three main ways: queries for identifying function or method calls (as in
Fig. 4), queries for pointer types, and reinterpretations for exceptional succes-
sors (as in Decompiling Control-Flow of Sect. 2). The responses for the isFunc
and isMethod queries contain a bit more information than as shown in Fig. 4,
such as the calling convention for the callee and between JavaTypes/CoolTypes
and OO , the types of the parameters and the return value (i.e., whether they
are object references). The OO decompiler also queries JavaTypes/CoolTypes
to determine certain pointer types that may require consulting the class table,
such as whether a read field is an object reference.

Each of the decompiler modules de-
scribed above is actually quite small (at
most ∼600 lines of OCaml). Furthermore,
each module is approximately the same size
providing some evidence for a good division
of labor. The overhead (i.e., the definition
of the intermediate languages and associ-
ated utility functions) seems reasonable, as
each language only required 100–150 lines
of OCaml. The entire coolc pipeline (in-
cluding the Cool type analysis but not the
framework code) is 3,865 lines compared to 3,635 lines for a monolithic assembly-
level analyzer from our previous work [8], which uses the classic reduced product
approach (as shown visually above). Cool is a fairly realistic subset of Java, in-
cluding features such as exceptions, so the CoolTypes module includes the han-
dling of exceptions as described in Decompiling Control-Flow of Sect. 2. The
additional code is essentially in the definition of the intermediate languages, so
what we conclude is that our pipeline approach does give us a modular and
easier to maintain design without imposing an unreasonable code size penalty

Analysis of Low-Level Code Using Cooperating Decompilers 331

with respect to the monolithic version. Additionally, note that 2,159 and 1,515
of the 3,865 lines of the coolc decompiler pipeline are reused as-is in the gcj
and gcc pipelines, respectively.

Comparing the implementation experience with our previous assembly-level
analyzer, we found that the separation of concerns imposed by this framework
made it much easier to reason about and implement such assembly-level anal-
yses. For example, because of the decompilations, Cool/Java type inference is
no longer intermingled with the analysis of compiler-specific run-time struc-
tures. With this framework, we also obtained comparable stability in a much
shorter amount of time. Many of the bugs in the implementation described in
our prior work [8] were caused by subtle interactions in the somewhat ad-hoc
modularization there, which simply did not materialize here. Concretely, after
testing our coolc decompiler pipeline on a small suite of regression tests devel-
oped with the previous monolithic version, we ran both the decompiler pipeline
and the previous monolithic versions on the set of 10,339 test cases generated
from Cool compilers developed by students in the Spring 2002, Spring 2003, and
Spring 2004 offerings of the compilers course at UC Berkeley (on which we pre-
viously reported [8]). Of the 10,339 test cases, they disagreed in 182 instances,
which were then examined manually to classify them as either soundness bugs
or incompletenesses in either the decompiler or monolithic versions. We found 1
incompleteness in the decompiler version with respect to the monolithic version
that was easily fixed (some identification of dead code based on knowing that a
pointer is non-null), and we found 0 soundness bugs in the decompiler version.
At the same time, we found 5 incompletenesses in the monolithic version; in 2
cases, it appears the SymEval module was the difference. Surprisingly, we found
3 soundness bugs in the monolithic version, which has been used extensively by
several classes. We expected to find bugs in the decompiler version to flush out,
but in the end, we actually found more bugs in the more well-tested monolithic
version. At least 1 soundness bug and 1 incompleteness in the monolithic version
were due to mishandling of calls to run-time functions. There seem to be two
reasons why the decompiler version does not exhibit these bugs: the updating
of effects after a call is implemented in several places in the monolithic version
(because of special cases for run-time functions), while in the decompiler version,
the Locals decompiler identifies all calls, so they can be treated uniformly in all
later modules; and the SSA-like representation produced by SymEval decompiler
greatly simplifies the handling of interprocedural effects in higher-level modules.

As another example of the utility of this approach, after the implementation
for the class table parser was complete (which are already generated by gcj to
support reflection), one of the authors was able to implement a basic Java type
inference module in 3–4 hours and ∼500 lines of code (without the handling of
interfaces and exceptions).

4 Case Studies

To explore the feasibility of applying existing source-level tools to assembly code,
we have used BLAST [18] and Cqual [17] on decompilations produced by our

332 B.-Y.E. Chang, M. Harren, and G.C. Necula

gcc pipeline. To interface with these tools, we have a module that emits C from
SymEval IL. SymEval IL is essentially C, as register reuse with unrelated types
have been eliminated by SSA and expression trees have been recovered. However,
while a straightforward translation from SymEval IL produces a valid C program
that can be (re)compiled and executed, the typing is often too weak for source-
level analysis tools. To avoid this issue for these experiments, we use debugging
information to recover types. When debugging information is not available, we
might be able to obtain typing information using a decompiler module that
implements a type reconstruction algorithm such as Mycroft’s [24].

Code Size Decomp. Verification
Test Case C x86 Orig. Decomp.

(loc) (loc) (sec) (sec) (sec)

qpmouse.c (B) 7994 1851 0.74 0.34 1.26
tlan.c (B) 10909 10734 8.16 41.20 94.30
gamma dma.c (Q) 11239 5235 2.44 0.97 1.05

We have taken the
benchmarks shown in the
table, compiled them to
x86 (unoptimized), and
decompiled them back to
C before feeding the de-
compilations to the source-
level tools (B for BLAST
and Q for Cqual). In all cases, we checked that the tools could verify the presence
(or absence) of bugs just as they had for the original C program. In the table, we
show our decompilation times and the verification times of both the original and
decompiled programs on a 1.7GHz Pentium 4 with 1GB RAM. The BLAST cases
qpmouse.c and tlan.c are previously reported Linux device drivers for which
BLAST checks that lock and unlock are used correctly [18]. For gamma dma.c ,
a file from version 2.4.23 of the Linux kernel, Cqual is able to find in the decom-
piled program a previously reported bug involving the unsafe dereference of a
user-mode pointer [20]. Both Cqual and BLAST require interprocedural analyses
and some C type information to check their respective properties. We have also
repeated some of these experiments with optimized code. With qpmouse, we were
able to use all the -O2 optimizations in gcc 3.4.4, such as instruction scheduling,
except -fmerge-constants, which yields code that reads a byte directly from
the middle of a word-sized field, and -foptimize-sibling-calls, which intro-
duces tail calls. The latter problem we could probably handle with an improved
Locals module, but the former is more difficult due to limitations with using
the debugging information for recovering C types. In particular, it is challenging
to map complicated pointer offsets back to C struct accesses. Similarly, it is
sometimes difficult to insert casts that do not confuse client analyses based only
on the debugging information because it does not always tell us where casts are
performed. Finally, we do not yet handle all assembly instructions, particularly
kernel instructions.

5 Related Work

In abstract interpretation, the problem of combining abstract domains has also
been considered by many. Cousot and Cousot [15] define the notion of a re-
duced product, which gives a “gold standard” for precise combinations of ab-

Analysis of Low-Level Code Using Cooperating Decompilers 333

stract domains. Unfortunately, obtaining a reduced product implementation is
not automatic; they generally require manual definitions of reduction opera-
tors, which depend on the specifics of the domains being combined (e.g., [11]).
Roughly speaking, we propose a framework for building reduced products based
on decompilation, which is particular amiable for modularizing the analysis of
assembly code. Cortesi et al. [13] describe a framework (called an open product)
that takes queries as the central (and only) means of communication. They al-
low arbitrary queries between any pair of domains, whereas our queries are more
structured through decompilation. With this structure we impose, modules need
only agree upon a communication interface with its neighbors. Combining pro-
gram analyses for compiler optimization is also a well-known and well-studied
problem. Lerner et al. [21] propose modular combinations of compiler optimiza-
tions also by integrating analysis with program transformation, which then serve
as the primary channel of communication between analyses. We, however, use
transformation for abstraction rather than optimization. For this reason, we use
layers of intermediate languages instead of one common language, which is es-
pecially useful to allow residuation of soundness obligations.

Practically all analysis frameworks, particularly for low-level code, perform
some decompilation or canonicalization for client analyses. For example, Code-
Surfer/x86 [4] seeks to provide a higher-level intermediate representation for
analyzing x86 machine code. At the core of CodeSurfer/x86 is a nice combined
integer and pointer analysis (value set analysis) for abstract locations. The mo-
tivation for this analysis is similar to that for the Locals module, except we
prefer to handle the heap separately in language-specific ways. Their overall ap-
proach is a bit different from ours in that they try to decompile without the
assistance of any higher-level language-specific analysis, which leads to complex-
ity and possible unsoundness in the handling of, for example, indirect jumps and
stack-allocated arrays. While even they must make the assumption that the code
conforms to a “standard compilation model” where a run-time stack of activa-
tion records are pushed and popped on function call and return, their approach
is more generic out of the box. We instead advocate a clean modularization to
enable reuse of decompiler components in order to make customized pipelines
more palatable.

Tröger and Cifuentes [27] give a technique to identify virtual method dispatch
in machine code binaries based on computing a backward slice from the indirect
call. They also try to be generic to any compiler, which necessarily leads to diffi-
culties and imprecision that are not problems for us. Cifuentes et al. [10] describe
a decompiler from SPARC assembly to C. Driven by the program understanding
application, most of their focus is on recovering structured control-flow, which
is often unnecessary (if not undesirable) for targeting program analyses.

6 Conclusion and Future Work

We have described a flexible and modular methodology for building assembly
code analyses based on a novel notion of cooperating decompilers. We have shown

334 B.-Y.E. Chang, M. Harren, and G.C. Necula

the effectiveness of our framework through three example decompiler pipelines
that share low-level components: for the output of gcc , gcj , and compilers for
the Cool object-oriented language.

We are particularly interested in assembly-level analyses for addressing
mobile-code safety [25, 23], ideally in a foundational but also practical man-
ner. As such, we have designed our decompilation framework with soundness in
mind (e.g., making decompilers work one instruction at a time and working in
the framework of abstract interpretation), though we have not yet constructed
machine-checkable soundness proofs for our example decompilers. To achieve
this, we envision building on our prior work on certified program analyses [7], as
well as drawing on abstract interpretation-based transformations [16, 26]. Such
a modularization of code as we have achieved will likely be critical for feasibly
proving the soundness of analysis implementations in a machine-checkable man-
ner. This motivation also partly justifies our use of reflection tables produced by
gcj or debugging information from gcc , as it seems reasonable to trade-off, at
least, some annotations for safety checking.

References

[1] A. Aiken. Cool: A portable project for teaching compiler construction. ACM
SIGPLAN Notices, 31(7):19–24, July 1996.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In Principles of Programming Languages (POPL), pages 1–11, 1988.

[3] A. W. Appel. Foundational proof-carrying code. In Logic in Computer Science
(LICS), pages 247–258, June 2001.

[4] G. Balakrishnan and T. W. Reps. Analyzing memory accesses in x86 executables.
In Compiler Construction (CC), pages 5–23, 2004.

[5] G. Balakrishnan, T. W. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian,
S. H. Yong, C.-H. Chen, and T. Teitelbaum. Model checking x86 executables
with CodeSurfer/x86 and WPDS++. In Computer-Aided Verification (CAV),
pages 158–163, 2005.

[6] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects (FMCO), 2005.

[7] B.-Y. E. Chang, A. Chlipala, and G. C. Necula. A framework for certified pro-
gram analysis and its applications to mobile-code safety. In Verification, Model
Checking, and Abstract Interpretation (VMCAI), pages 174–189, 2006.

[8] B.-Y. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck. Type-based
verification of assembly language for compiler debugging. In Types in Language
Design and Implementation (TLDI), pages 91–102, 2005.

[9] B.-Y. E. Chang, M. Harren, and G. C. Necula. Analysis of low-level code using
cooperating decompilers. Technical Report EECS-2006-86, UC Berkeley, 2006.

[10] C. Cifuentes, D. Simon, and A. Fraboulet. Assembly to high-level language trans-
lation. In Software Maintenance (ICSM), pages 228–237, 1998.

[11] M. Codish, A. Mulkers, M. Bruynooghe, M. J. G. de la Banda, and M. V.
Hermenegildo. Improving abstract interpretations by combining domains. ACM
Trans. Program. Lang. Syst., 17(1):28–44, 1995.

Analysis of Low-Level Code Using Cooperating Decompilers 335

[12] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying
compiler for Java. In Programming Language Design and Implementation (PLDI),
pages 95–107, 2000.

[13] A. Cortesi, B. L. Charlier, and P. V. Hentenryck. Combinations of abstract do-
mains for logic programming. In Principles of Programming Languages (POPL),
pages 227–239, 1994.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Principles of Programming Languages (POPL), pages 234–252, 1977.

[15] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Principles of Programming Languages (POPL), pages 269–282, 1979.

[16] P. Cousot and R. Cousot. Systematic design of program transformation frame-
works by abstract interpretation. In Principles of Programming Languages
(POPL), pages 178–190, 2002.

[17] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In Program-
ming Language Design and Implementation (PLDI), pages 1–12, 2002.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In Computer-Aided Verification (CAV),
pages 526–538, 2002.

[19] IDA Pro disassembler. http://www.datarescue.com/idabase .
[20] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type inference.

In USENIX Security Symposium, pages 119–134, 2004.
[21] S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses and trans-

formations. In Principles of Programming Languages (POPL), pages 270–282,
2002.

[22] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Reading, MA, USA, Jan. 1997.

[23] J. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed
assembly language. ACM Trans. Program. Lang. Syst., 21(3):527–568, 1999.

[24] A. Mycroft. Type-based decompilation. In European Symposium on Programming
(ESOP), pages 208–223, 1999.

[25] G. C. Necula. Proof-carrying code. In Principles of Programming Languages
(POPL), pages 106–119, Jan. 1997.

[26] X. Rival. Abstract interpretation-based certification of assembly code. In Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI), pages 41–55,
2003.

[27] J. Tröger and C. Cifuentes. Analysis of virtual method invocation for binary
translation. In Reverse Engineering (WCRE), pages 65–74, 2002.

[28] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan.
Soot - a Java bytecode optimization framework. In Centre for Advanced Studies
on Collaborative Research (CASCON), page 13, 1999.

Static Analysis for Java Servlets and JSP

Christian Kirkegaard and Anders Møller

BRICS�, University of Aarhus, Denmark
{ck, amoeller}@brics.dk

Abstract. We present an approach for statically reasoning about the
behavior of Web applications that are developed using Java Servlets and
JSP. Specifically, we attack the problems of guaranteeing that all output
is well-formed and valid XML and ensuring consistency of XHTML form
fields and session state. Our approach builds on a collection of program
analysis techniques developed earlier in the JWIG and Xact projects,
combined with work on balanced context-free grammars. Together, this
provides the necessary foundation concerning reasoning about output
streams and application control flow.

1 Introduction

Java Servlets [15] and JSP (JavaServer Pages) [16] constitute a widely used plat-
form for Web application development. Applications that are developed using
these or related technologies are typically structured as collections of program
fragments (servlets or JSP pages) that receive user input, produce HTML or
XML output, and interact with databases. These fragments are connected via
forms and links in the generated pages, using deployment descriptors to declar-
atively map URLs to program fragments. This way of structuring applications
causes many challenges to the programmer. In particular, it is difficult to ensure,
at compile time, the following desirable properties:

– all output should be well-formed and valid XML (according to, for example,
the schema for XHTML 1.0);

– the forms and fields that are produced by one program fragment that gen-
erates an XHTML page should always match what is expected by another
program fragment that takes care of receiving the user input; and

– session attributes that one program fragment expects to be present should
always have been set previously in the session.

Our aim is to develop a program analysis system that can automatically check
these properties for a given Web application.

The small example program shown on the following page illustrates some of
the many challenges that may arise.

� Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 336–352, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Static Analysis for Java Servlets and JSP 337

public class Entry extends javax.servlet.http.HttpServlet {

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

HttpSession session = request.getSession();

String url = response.encodeURL(request.getContextPath()+"/show");

session.setAttribute("timestamp", new Date());

response.setContentType("application/xhtml+xml");

PrintWriter out = response.getWriter();

Wrapper.printHeader(out, "Enter name", session);

out.print("<form action=\""+url+"\" method=\"POST\">"+

"<input type=\"text\" name=\"NAME\"/>"+

"<input type=\"submit\" value=\"lookup\"/>"+

"</form>");

Wrapper.printFooter(out);

}

}

public class Show extends javax.servlet.http.HttpServlet {

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

Directory directory = new Directory("ldap://ldap.widgets.org");

String name = misc.encodeXML(request.getParameter("NAME"));

response.setContentType("application/xhtml+xml");

PrintWriter out = response.getWriter();

Wrapper.printHeader(out, name, request.getSession());

out.print("Phone: "+directory.phone(name));

Wrapper.printFooter(out);

}

}

public class Wrapper {

static void printHeader(PrintWriter pw, String title,

HttpSession session) {

pw.print("<html xmlns=\"http://www.w3.org/1999/xhtml\">"+

"<head><title>"+title+"</title></head><body>"+

"<hr size=\"1\"/>"+

"<div align=\"right\"><small>"+

"Session initiated ["+session.getAttribute("timestamp")+"]"+

"</small></div><hr size=\"1\"/>"+

"<h3>"+title+"</h3>");

}

static void printFooter(PrintWriter pw) {

pw.print("<hr size=\"1\"/></body></html>");

}

}

338 C. Kirkegaard and A. Møller

This program contains two servlets: one named Entry that produces an XHTML
page with a form where the user enters a name, and one named Show that re-
ceives the user input and produces a reply as another XHTML page based on
information from an external database. We assume that the deployment descrip-
tor maps the relative URL enter to the first servlet and show to the second one.
Also, misc.encodeXML is a method that escapes special XML characters (for
example, converting < to <). At runtime, the pages may look as follows:

In order for the program to work as intended, the programmer must consider
many aspects, even for such a tiny program, as the following questions indicate:

– do all open start tags produced by printHeader match the end tags pro-
duced by printFooter?

– does getAttribute("timestamp") always return strings that are legal as
XML character data? (for example, ‘<’ should not appear here)

– does the form action URL that is produced by Enter in fact point to the
Show servlet? (this depends on the value of the action and method attributes
and the deployment descriptor mapping)

– is the parameter NAME always present when the Show servlet is executed?
(checking this requires knowledge of the presence of form fields in the
XHTML pages that lead to this servlet)

– is the attribute timestamp always present in the session state when the Show
servlet is executed? (if not, a null reference would appear)

To answer such questions statically, one must have a clear picture of which string
fragments are being printed to the output stream and how the servlets are con-
nected in the application. Presently, programmers resort to informal reasoning
and incomplete testing in order to obtain confidence of the correctness of the pro-
gram. A more satisfactory situation would of course be to have static guarantees
provided by a fully automatic analysis tool.

As the desirable properties listed above are clearly undecidable, the analysis
we present is necessarily approximative. We design our analysis to be conser-
vative in the sense that it may produce spurious warnings, but a program that
passes the analysis is guaranteed to satisfy the properties. Naturally, we aim for
an analysis that has sufficient precision and performance to be practically useful.

Application servers handle JSP through a simple translation to servlets [16].
This means that by focusing our analysis efforts on servlets, we become able to
handle JSP, and applications that combine servlets and JSP, essentially for free.

Static Analysis for Java Servlets and JSP 339

Contributions. Our contributions are the following:

– We show how to obtain a context-free grammar that conservatively approx-
imates the possible output of servlet/JSP applications using a variant of the
Java string analysis [6].

– On top of the string analysis, we apply theory of balanced grammars by
Knuth [12] and grammar approximations by Mohri and Nederhof [14] to
check that the output is always well-formed XML.

– On top of the well-formedness checking, we show how a balanced context-
free grammar can be converted into an XML graph, which is subsequently
validated relative to an XML schema using an existing algorithm [8].

– By analyzing the form and link elements that appear in the XML graph
together with the deployment descriptor of the application, we explain how
to obtain an inter-servlet control flow graph of the application.

– Based on the knowledge of the control flow, we give examples of derived
analyses for checking that form fields and session state are used consistently.

Together, the above components form a coherent analysis system for reasoning
about the behavior of Web application that are built using Java Servlets and
JSP. The system has a front-end that converts from Java code to context-free
grammars and a back-end that converts context-free grammars to XML graphs
and checks well-formedness, validity, and other correctness properties. Our ap-
proach can be viewed as combining and extending techniques from the JWIG
and Xact projects [5,10,8] and applying them to a mainstream Web application
development framework.

Perhaps surprisingly, the analysis of well-formedness and validity can be made
both sound and complete relative to the grammar being produced in the front-
end. (The completeness, however, relies on an assumption that certain well-
defined contrived situations do not occur in the program being analyzed).

The goal of the present paper is to outline our analysis system, with particu-
lar focus on the construction of context-free grammars and the translation from
context-free grammars to XML graphs. The limited space prevents us from de-
scribing the details of each component, so we instead base our presentation on a
running example. The system is at the time of writing not yet fully implemented;
we return to this issue in Section 6.

Although we here focus on Java-based Web applications, we are not relying on
language features that are specific to Java. In particular, the approach we present
could also be applied to the .NET or PHP platforms where Web applications are
typically also built from loosely connected program fragments that each produce
XHTML output and receive form input.

Related Work. We are not aware of previous attempts to statically analyze
the aspects mentioned above for Java Servlets and JSP applications. The most
closely related work is that of Minamide [13] who combines string analysis with
HTML validation for PHP. In [13], a variant of the technique from [6] is used
to produce a context-free grammar from a PHP program. HTML validation is
performed either by extracting and checking sample documents or by considering

340 C. Kirkegaard and A. Møller

only documents with bounded depth, which results in neither sound nor complete
analysis results.

There are other related interesting connections between XML data and context-
freegrammars, inparticular, theworkbyBerstel andBoasson [3] andBrüggemann-
Klein and Wood [4]. The paper [3] uses Knuth’s results to check some aspects of
XML well-formedness for a given context-free grammar, but it does not take the
full step to validity. The paper [4] only considers grammars that correspond to
well-formed XML documents, whereas our scenario involves arbitrary context-free
grammars that need to be checked for well-formedness and validity.

Inter-servlet control flow analysis is closely related to workflow and business
protocols for Web services. Much effort is put into designing workflow languages
and Web service composition languages to be used for modeling and analyzing
properties during the design phase of Web application development (examples
are WS-BPEL [2] and YAWL [18]). Our work complements this in the sense that
the analysis we present is able to reverse engineer workflows from the source code
of existing Web applications (although that is not the focus of the present paper).
This is related to process mining [7] but using source code instead of system logs,
and thereby obtaining conservative results.

As mentioned, our technique builds on our earlier work on JWIG and Xact.
JWIG [5] is a Java-based framework for Web application development where
session control-flow is explicit and XHTML pages are built in a structured man-
ner that permits static analysis of validity and form field consistency. Xact [10]
is a related language for expressing XML transformations. The notion of XML
graphs, which is essential to our analysis system, comes from these projects
(where they are also called summary graphs for historical reasons) – an XML
graph is a representation of a potentially infinite set of XML structures that
may appear in a running JWIG or Xact program. The paper [8] describes an
algorithm for validating an XML graph relative to a schema written in XML
Schema.

Overview. We first, in Section 2, describe how to analyze the output stream
and produce a context-free grammar that approximates the possible output of
a given Web application. Section 3 explains the well-formedness check and the
construction of a balanced grammar. In Section 4 we then show how to convert
the balanced grammar into an XML graph and check validity relative to an XML
schema.

Section 5 describes the construction of the inter-servlet control flow graph,
based on the XML graph and the deployment descriptor. We also sketch how to
use the XML graph and the control-flow information to check consistency of the
use of form fields and session state. Finally, in Section 6 we discuss challenges
and considerations for implementing the entire analysis system and expectations
for its performance and precision.

More details are given in a technical report [9] where we recapitulate Knuth’s
algorithm for checking balancing of the language of a context-free grammar,
explain our extension of Knuth’s algorithm for constructing balanced grammars,
and consider the precision of our analysis.

Static Analysis for Java Servlets and JSP 341

2 Analyzing the Output Stream

A servlet sends data to its clients by writing string values to a special output
stream, which is allocated by the Web server for each request. Our analysis
must trace these output streams and keep track of all the string values writ-
ten to them. Given a Web application, the analysis produces for each servlet
entry point a context-free grammar whose language is guaranteed to contain
all data that can possibly be written to the corresponding output stream at
runtime.

To keep track of string values, we first run the Java string analysis as described
in [6] with the parameters of each write, print, and append invocation on
output streams as hotspots. For each invocation, the result is a regular language
containing all the possible string values that may occur at those program points.

The subsequent analysis of output streams is a variant of that of String-
Buffers in the string analysis [6]. In both cases the basic problem is to keep
track of the possible sequences of side-effecting operations that may be performed
on certain objects. However, there are only append-like operations on output
streams, and, since append is an associative operation, this makes the handling
of interprocedural data-flow somewhat simpler in our case.

For each method in the Web application, we produce a flow graph where edges
represent control flow and nodes have the following kinds:

– append: an append operation corresponding to a write, print, or append
operation on an output stream, where the argument is given by a regular
language of string values as produced by the preliminary string analysis;

– invoke: a method invocation carrying information about its possible targets;
– nop: a join point (for example, for a while statement or a method exit).

Constructing such a flow graph, even for a single servlet, is not trivial. The
Java language imposes many challenges, such as, virtual method dispatching,
exceptions, and data transfer via instance fields and arrays. Additionally, the
Java standard library allows stream objects to be nested in different ways (using
BufferedStream, PrintWriter, etc.). Fortunately, most of the hard work can be
done using the Soot framework [17], much like in our earlier applications of Soot
[6,5,10]. We also need to keep track of the relevant output streams, but that can
be done easily with Soot’s alias analysis capabilities. The request dispatching
mechanism in the Servlet API can be handled similarly.

As an example, we obtain the flow graph shown in Figure 1 for the example
program from Section 1.

We use the following terminology about context-free grammars. A context-
free grammar (CFG) G is a quadruple (V, Σ, S, P) where V is the nonterminal
alphabet, Σ is the terminal alphabet (in our grammars, Σ is the Unicode al-
phabet), V ∩ Σ = ∅, S ⊆ V is a set of start nonterminals, and P is a finite
set of productions of the form A → θ where A ∈ V and θ ∈ U∗, using U to
denote the combined alphabet V ∪ Σ. We write αAω ⇒ αθω when A → θ
is in P and α, ω ∈ U∗, and ⇒+ and ⇒∗ are respectively the transitive clo-
sure and the reflexive transitive closure of ⇒. The language of G is defined as

342 C. Kirkegaard and A. Møller

 Session initiated [...]

 <head><title>...</title></head><body>

 <div align="right"><small>

 </small></div><hr size="1"/>

 <h3>...</h3> }

 <hr size="1"/>

 { <html xmlns="http://www.w3.org/1999/xhtml">

Entry.doGet

1

11

12

Wrapper.printHeader

6

Show.doPost

{ Phone: ... }

8

9

14

Wrapper.printFooter

2

4

5

10

7

13

16

3
 </form> }

 <input type="submit" value="lookup"/>

 <input type="text" name="NAME"/>

 { <form action="..." method="POST">

{ <hr size="1"/></body></html> }

15

Fig. 1. Flow graph for the example program. (We here depict append nodes as rounded
boxes, invoke nodes are squares, nop nodes are circles, and dotted edges represent
method boundaries.)

L(G) = {x ∈ Σ∗ | ∃s ∈ S : s ⇒+ x}. The language of a nonterminal A is
LG(A) = {x ∈ Σ∗ | A ⇒+ x}. We sometimes omit the subscript G in LG when
it can be inferred from the context.

Given a flow graph, we derive a CFG G = (V, Σ, S, P) where each flow graph
node n is associated with a nonterminal Nn ∈ V such that L(Nn) is the set of
strings that can be output starting from n:

– for an append node n with an edge to m and whose label is L, we add a
production Nn → RLNm where RL is the start nonterminal for a linear
sub-grammar for L;

– for an invoke node n with a successor m and a possible target method rep-
resented by a node t, we add Nn → NtNm; and

– for a nop node n with a successor m we add Nn → Nm, and for one with no
successors we add Nn → ε.

The start nonterminals are those that correspond to the servlet entry points.

Example. The grammar for the example flow graph has V = {N1, . . . , N16,
R3, R8, R12, R15}, and P contains the following productions:

Static Analysis for Java Servlets and JSP 343

N1 → N2 N6 → N7 N11 → N12 N14 → N15

N2 → N11N3 N7 → N11N8 N12 → R12N13 N15 → R15N16

N3 → R3N4 N8 → R8N9 N13 → ε N16 → ε
N4 → N14N5 N9 → N14N10

N5 → ε N10 → ε

R3 → [[<form action=" . . . " method="POST"> . . . </form>]]
R8 → [[Phone: . . .]]
R12 → [[<html xmlns="http://www.w3.org/1999/xhtml">

<head><title> . . . </title></head><body> . . .]]
R15 → [[<hr size="1"/></body></html>]]

([[·]] denotes a linear grammar for the given regular language.) For the Entry
servlet we set S = {N1}, and for Show we set S = {N6}. We may also consider
both servlets in combination using S = {N1, N6}.

3 Checking Well-Formedness Using Balanced Grammars

The goal of this phase is to check for a given CFG G whether all strings in L(G)
are well-formed XML documents. We simplify the presentation by ignoring XML
comments, processing instructions, entity references, and the compact form of
empty elements (for example, that
</br> may be written as
), and
we assume that all attributes are written on the form name="value".

This phase proceeds in a number of steps that consider different aspects of
well-formedness. First, however, we need to be able to easily identify occurrences
of the two characters </ in the language of the grammar. We achieve this by
a simple preliminary grammar transformation that – without changing the lan-
guage of the grammar – eliminates productions on the form A → α<ω where
ω ∈ V U∗ ∧ / ∈ FIRST (ω) or ω ⇒∗ ε ∧ / ∈ FOLLOW (A). (See, for instance,
[1] for a definition of FIRST and FOLLOW .) From here on, </ is treated as a
single alphabet symbol.

To be able to identify the XML structure in the grammar, we define six special
forms of grammar productions:

C → < T A > C </ T > (element form)
C → X (text form)
C → C C (content sequence form)
A → W T = " V " (attribute form)
A → A A (attribute sequence form)
A → ε (empty form)

Here, C represents nonterminals, called content nonterminals, whose produc-
tions are all on element form, text form, or content sequence form, and A rep-
resents nonterminals, called attribute nonterminals, whose productions are all
on attribute form, attribute sequence form, or empty form. T represents non-
terminals whose languages contain no whitespace and no <, >, or = symbols,
W represents nonterminals whose languages consist of nonempty whitespace, X

344 C. Kirkegaard and A. Møller

represents nonterminals whose languages do not contain <, and V means the
same as X except that it also excludes ". We say that a CFG is on tag-form if
every start nonterminal s ∈ S is a content nonterminal. Our aim is to convert
G into an equivalent grammar on tag-form and check various well-formedness
requirements on the way.

3.1 Step 1: Obtaining a Balanced Grammar

We now view < (which marks the beginning of a start tag) as a left parenthesis
and </ (which marks the beginning of an end tag) as a right parenthesis. A
necessary condition for L(G) to be well-formed is that the language in this
view is balanced. (A language L is balanced if the parentheses balance in every
string x ∈ L.) To check this property, we simply apply Knuth’s algorithm [12]
(as described in detail in [9]). If the grammar passes this check, Knuth moreover
gives us an equivalent completely qualified grammar G′ (as also explained in [9]).

As the next step towards tag-form, we will now convert G′ into a balanced
grammar. (A CFG is balanced if every nonterminal is balanced in the sense that
the parentheses balance in all derivable strings; for a formal definition see [12] or
[9].) Balanced grammars have the useful property that in every production that
contains a left parenthesis (< in our case), the matching right parenthesis (</)
appears in the same production. Again we resort to Knuth: in [12], Knuth shows
how a completely qualified CFG that has a balanced language can be converted
to a balanced grammar – however, under the assumption that the language has
bounded associates. Our grammars generally do not have this property (one can
easily write a servlet that results in any desirable grammar), so we need to
modify Knuth’s algorithm to accommodate for a more general setting. Although
L(G′) is balanced, there may in fact not exist a balanced grammar G′′ with
L(G′) = L(G′′), as observed in [12]. Hence we resort to approximation (using a
local variant of [14]): the grammar G′′ that we produce has the property that it is
balanced and L(G′) ⊆ L(G′′). Surprisingly, the loss of precision incurred by this
approximation is limited to the degree that it does not affect precision of our well-
formedness and validity analyses. A detailed explanation of this rather technical
algorithm is given in the technical report [9] along with proofs of soundness and
relative completeness.

Example. For the example grammar shown in Section 2, notice that L(R12)
and L(R15) are not balanced: the former has an excess of < symbols (for the
html and body start tags), and the latter has a converse excess of </ symbols.
Our algorithm straightens this and outputs a grammar where every production
that contains a < symbol also contains the matching </ symbol. In this simple
example, no approximations are necessary.

3.2 Step 2: Transforming to Tag-Form

The symbols <, >, and " are essential for our further transformation to tag-form
since they function as context delimiters in XML documents in the sense that

Static Analysis for Java Servlets and JSP 345

they delimit the tag, element content, and attribute value contexts, respectively.
Given a balanced grammar G = (V, Σ, S, P) we will in the following classify
nonterminals and symbols occurring on right-hand sides of productions in P
according to their possible contexts. If such classification can be uniquely de-
termined, we will use the contexts to extract a grammar on tag-form for L(G),
otherwise we have evidence that some strings in L(G) are not well-formed.

Let C be a lattice with values ⊥, tag, content, attrval, and error ordered by

tag attrvalcontent

error

and define a function δ : C × Σ → C by

δ(c, σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c if σ �∈ {<, >, "} or c = ⊥
tag if (σ = < and c = content) or (σ = " and c = attrval)
attrval if (σ = " and c = tag) or (σ = > and c = attrval)
content if σ = > and (c = tag or c = content)
error otherwise

Intuitively, δ determines transitions on C according to the context delimiters
{<, >, "} and is the identity function on all other symbols.

We may now define a constraint system on the grammar G expressed as a
function Δ : C × U∗ → C defined by the following rules:

Δ(content, s) * content for all s ∈ S

ΔG(c, A) * ΔG(c, θ) for all A → θ ∈ P

Δ(c, x) *

⎧⎪⎨⎪⎩
c when x = ε

Δ(δ(c, σ), y) when x = σy where σ ∈ Σ, y ∈ U∗

Δ(Δ(c, θ), y) when x = Ay where A ∈ V, y ∈ U∗ and A → θ ∈ P

The constraint system will always have a unique least solution ΔG, which can
be found using a standard fixed-point algorithm. (This is the case because a
finite subset of U∗ containing all nonterminals and all prefixes of right-hand
sides of productions in P is enough to fulfill the constraints.) Furthermore, if
ΔG(content, s) = error for some s ∈ S then L(G) contains a non-well-formed
string. In that case, we can issue a precise warning message by producing a
derivation starting from s and using productions A → θ with ΔG(c, θ) = error.

Assume now that ΔG(content, s) �= error for all s ∈ S. The balanced grammar
G can then be converted as follows into an equivalent grammar on tag-form.

First, we will ensure that nonterminals occur in unique contexts in all deriva-
tions. For every A ∈ V and c ∈ {content, tag, attrval} where ΔG(c, A) �= ⊥, create
an annotated nonterminal Ac with the same productions as A. Then make Ac

a start nonterminal if A ∈ S and replace every production Bc1 → αAω where
ΔG(c1, α) = c2 with a production Bc1 → αAc2ω. All unannotated nonterminals
and productions are now unreachable and can be removed.

346 C. Kirkegaard and A. Møller

Now that the grammar is balanced with respect to < and </ and each nonter-
minal is used in only one context in any derivation, it is straightforward to bring
the grammar on tag-form (except for the attribute nonterminals) by repeatedly
applying Transformation 1 and Transformation 2 from [12] to eliminate all non-
terminals A ∈ V where ΔG(c, A) �= c. We can handle attribute nonterminals
similarly by considering a few more context delimiters (whitespace and =). Due
to the limited space, we omit the tedious details.

Example. The extracted CFG for the example program in Section 2 has a bal-
anced language and our transformation results in a grammar on tag-form. After
applying some basic simplification rules to make it more readable, we obtain the
following grammar with C1 being the only start nonterminal (assuming that we
consider S = {N1, N6} in the original grammar):

C1 → < html A1 > C2 C4 </ html > C8 → < h3 > X1 </ h3 >

C2 → < head > C3 </ head > C9 → C5 | C13 X3

C3 → < title > X1 </ title > C10 → < hr A2 ></ hr >

C4 → < body > C10 C11 C10 C8 C9 C10 </ body > C11 → < div A3 > C12 </ div >

C5 → < form A4 A5 > C6 C7 </ form > C12 → < small > X2 </ small >

C6 → < input A6 A7 > </ input > C13 → < b > Phone: </ b >

C7 → < input A8 A9 > </ input >

A1 → xmlns="http://www.w3.org/1999/xhtml" A6 → type="text"

A2 → size="1" A7 → name="NAME"

A3 → align="right" A8 → type="submit"

A4 → action=" V1 " A9 → value="lookup"

A5 → method="POST"

X1 → Enter name | LCDATA V1 → contextpath/show
X2 → Session initiated [LDATE]

X3 → Lphone

LCDATA is the set of all strings that can be returned from misc.encodeXML,
LDATE are the legal date string values, Lphone contains the possible output of
the method directory.phone, and contextpath denotes the application context
path as obtained by getContextPath. These regular languages are obtained by
the preliminary string analysis.

3.3 Step 3: Checking Well-Formedness

The previous steps have checked a number of necessary conditions for well-
formedness. Now that we have the grammar on tag-form, we can easily check
the remaining properties:

– All start productions must be on element form. (In other words, there is
always exactly one root element.)

– For every production C1 → < T1 A > C2 </ T2 > on element form, both
L(T1) and L(T2) must be singleton languages and equal. (Otherwise, one
could derive a string where a start tag does not match its end tag.)

Static Analysis for Java Servlets and JSP 347

– For every production C1 → < T1 A > C2 </ T2 > on element form, the
attributes corresponding to A must have disjoint names. More precisely,
whenever A ⇒+ αA1φA2ω where α, φ, ω ∈ U∗ and Ai → Wi T ′

i = " Vi " for
i = 1, 2, we check that L(T ′

1) ∩ L(T ′
2) = ∅. If the sub-grammars of T ′

1 and
T ′

2 are linear, this check is straightforward; otherwise, since the property is
generally undecidable we sacrifice completeness and issue a warning.

The only way sub-grammars that correspond to attribute names can be nonlinear
is if the program being analyzed uses a recursive method to build individual
attribute names in a contrived way where a part of a name is written to the
output stream before the recursive call and another part is written after the
call. With the exception of this pathological case, the checks described above
are passed if and only if L(G) contains only well-formed XML documents. Our
running example passes the well-formedness check.

4 Checking Validity Using XML Graphs

An XML graph is a finite structure that represents a potentially infinite set of
XML trees, as defined in [10,8] (where XML graphs are called summary graphs).
We here give a brief description of a variant of the formalism, tailored to our
present setting.

An XML graph contains finite sets of nodes of various kinds: element nodes
(NE), attribute nodes (NA), text nodes (NT), sequence nodes (NS), and choice
nodes (NC). (The definition of summary graphs used in earlier papers also in-
volves gap nodes, which we do not need here.) Let N = NE∪NA∪NT ∪NS∪NC .
The graph has a set of root nodes R ⊆ N . The map contents : NE ∪ NA → N
connects element nodes and attribute nodes with descriptions of their contents.
For sequence nodes it returns sequences of nodes, contents : NS → N ∗, and
for choice nodes it returns sets of nodes, contents : NC → 2N . The map
val : NT ∪ NA ∪ NE → REG, where REG are all regular string languages over
the Unicode alphabet, assigns a set of strings to each text node, element node,
and attribute node, in the latter two cases representing their possible names.

An XML graph may be viewed as a generalized XML tree that permits choices,
loops, and regular sets of possible attribute/element names and text values. The
language L(χ) of an XML graph χ is intuitively the set of XML trees that can
be obtained by unfolding it, starting from a root node.

As an example, consider the set of all ul lists with one or more li items
that each contain a string from some regular language L. It can be described
by an XML graph with six nodes N = {e1, e2, s1, s2, c, t}, roots R = {e1}, and
maps contents = {e1 	→ s1, e2 	→ t, s1 	→ e2 c, s2 	→ ε, c 	→ {s1, s2}} and
val = {e1 	→ {ul}, e2 	→ {li}, t 	→ L}. This is illustrated as follows:

CHOICE

ul

li

SEQ

L

SEQ2

1

s

e

s

e

c

1 1

2

2

348 C. Kirkegaard and A. Møller

The rounded boxes represent the element nodes e1 and e2, the SEQ boxes represent
the sequence nodes s1 and s2 (edges out of s1 are ordered according to their
indices), and the CHOICE box represents the choice node c. The text node t is
represented by its associated language L.

From the Xact project, we have an algorithm that can check for a given XML
graph χ and a schema S, written in either DTD or XML Schema, whether or not
every XML tree in L(χ) is valid according to S. (See [8] for a description of the
algorithm and [11] for an implementation.) Hence, our only remaining task in
order to be able to validate the output of the servlets is to convert the balanced
grammar on tag-form that we produced and checked for well-formedness in Sec-
tion 3 into an XML graph. Fortunately, this is straightforward to accomplish, as
explained in the following.

Starting from the start nonterminals S and their productions, each produc-
tion p ∈ P is converted to an XML graph node np according to its form. Also,
each nonterminal A is converted to a choice node nA with contents(nA) =
{np | p is a production of A}:

Element Form. For a production p = C1 → < T1 A > C2 </ T2 >, np becomes
an element node. We know from the well-formedness check that L(T1) =
L(T2) is some singleton language {s}, so we set name(np) = {s}. To capture
the attributes and contents, a sequence node nq is also added, and we set
contents(np) = nq and contents(nq) = nA nC2 .

Text Form. For a production p = C → X , the sub-grammar starting from X
is converted to an equivalent sub-graph rooted by np, using only sequence
nodes, choice nodes, and text nodes. We omit the details.

Attribute Form. For a production p = A → W T = " V ", np becomes
an attribute node. As in the previous case, the sub-grammar rooted by
V is converted to an equivalent sub-graph rooted by a node nV , and we
let contents(np) = nV . From the well-formedness check, we know that the
sub-grammar of T is linear, so its language is regular and we set name(np)
accordingly.

Content or Attribute Sequence Form. For a production p = C → C1 C2,
np becomes a sequence node with contents(np) = nC1 nC2 . Productions on
attribute sequence form are converted similarly.

Empty Form. For a production p = A → ε, np becomes a sequence node with
contents(np) = ε.

The root nodes R are the nodes that correspond to the start nonterminals.
For the example program from Section 1, we obtain the XML graph shown

in Figure 2 (slightly simplified by combining nested sequence nodes). Note that
since the program has no recursive methods, there are no loops in the graph.
Running the Xact validator on this XML graph and the schema for XHTML
gives the result “Valid!”, meaning that the program is guaranteed to output only
valid XHTML documents.

Static Analysis for Java Servlets and JSP 349

SEQ

SEQ

{Phone:}

b
phoneL

5

CHOICE

LCDATA

CHOICE

{Enter name}
SEQ

1
2

div

small

{Session initiated [..]}

align

{right}

{1}

size

SEQ

{text}

type

SEQ

1
2

1

2

{NAME}

{submit}

{lookup}

type
name value

input input

method

{POST}

SEQ

SEQ

2
31

{http://..}

xmlns body

html

head

form

1
2

title

4

h3
2

hr

3 61

{ /show}

action

1

2
3

4

contextpath

Fig. 2. XML graph for the example program. (We depict element nodes as rounded
boxes, attribute nodes as ellipses, and sequence and choice nodes as SEQ and CHOICE

boxes, respectively. Edges out of sequence nodes are ordered according to the indices.)

5 Analyzing Inter-servlet Control Flow

Servlet/JSP applications are typically structured as collections of dynamic pages
that are connected via a deployment descriptor, web.xml, together with links
() and forms (<form action=". . .">) appearing in generated
XHTML documents. Since links and forms are intertwined with general page
layout and various kinds of data, it is often a challenging task to recognize and
apprehend the complete control flow of applications consisting of more than a
few servlets or JSP pages. We will now briefly describe how to further bene-
fit from the XML graphs to obtain an inter-servlet control flow graph for an
application.

The goal is to produce a graph with nodes corresponding to the doGet and
doPost methods of each servlet class and edges corresponding to the possible
control flow via links or forms in the generated documents. The challenge in
producing such a graph is associating a set of possible servlet classes to the links

350 C. Kirkegaard and A. Møller

and forms appearing in generated documents by using the URL mappings of the
deployment descriptor.

Given an XML graph corresponding to the output of a servlet method we
recognize the links and forms by searching (that is, unfolding according to the
contents map, starting from the roots) for element nodes named a or form, and
further, searching for their attribute nodes with names href and action, re-
spectively. From each of the attribute values, we can extract a regular language
of all possible target URLs and compare with the mappings described by the
deployment descriptor to get the corresponding set of servlet classes. This set
forms the inter-servlet flow edges out of the method. By applying the process to
all servlet methods we obtain an inter-servlet control flow graph, which is guar-
anteed to be sound because the XML graphs represent sound approximations of
the possible XHTML output.

The inter-servlet control flow graph for our running example is like the one in
Figure 1, however extended with an inter-servlet flow edge from the exit node n5
of the Entry.doGet method to the entry node n6 of the Show.doPost method.

The inter-servlet control flow graph provides a whole-program view of the
Web application. This is useful for visualizing the flow to the programmer and
for checking reachability properties of the application workflow. It also serves as
the foundation for a number of interesting derived analyses. One such analysis is
consistency checking of form fields (as explained in detail in the JWIG paper [5]),
which guarantees that all request parameters expected by a servlet exist as form
fields in the XHTML output of every immediately preceeding servlet in the flow
graph. A related analysis is consistency checking of session state, which can
guarantee that every use of a session state variable has been preceeded by a
definition. Clearly, such analyses are only feasible if the inter-servlet control flow
is known, and, as sketched above, the XML graphs are a key to obtain precise
knowledge of this flow.

6 Implementation Considerations and Conclusion

We have presented an approach for analyzing servlet/JSP applications to detect
XML well-formedness and validity errors in the output being generated and
outlined how to obtain and apply knowledge of the inter-servlet control flow.
The front-end, which constructs a CFG for the program being analyzed, is sound;
the back-end, which constructs an XML graph from the CFG and analyzes well-
formedness and validity is both sound and complete relative to the CFG (under
the assumption that certain well-defined contrived patterns do not occur in the
program).

We have chosen an approach of imposing as few restrictions as possible on the
programs being analyzed. An alternative approach, which might of course lead
to a simpler analysis, would be to restrict the class of programs that the analysis
can handle or sacrifice soundness. The trade-off we have chosen investigates the
possibilities in the end of this design spectrum that is most flexible seen from
the programmer’s point of view.

Static Analysis for Java Servlets and JSP 351

Only a complete implementation and experiments on real applications can tell
whether the precision and performance are sufficient for practical use. However,
we have reasons to believe that this is the case. Regarding the front-end, it
is our experience from the JWIG, Xact, and string analysis projects [5,10,6]
that the extraction of flow graphs from Java programs works well in practice –
regarding both precision and performance – and the extraction of CFGs from
flow graphs is both precise and efficient. Similarly, the analysis of XML graphs
in the back-end has also shown to work well in practice. The only remaining
question is whether the grammar manipulations can be done efficiently, but
our preliminary experiments indicate that this is the case. We are presently
implementing the grammar manipulations and connecting the components of
the analysis system, which will hopefully give more confidence to the practical
feasibility of the approach.

Acknowledgments. We thank Aske Simon Christensen for inspiring discus-
sions about various aspects of the program analysis.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

2. Assaf Arkin et al. Web Services Business Process Execution Language Version 2.0,
December 2005. OASIS, Committee Draft.

3. Jean Berstel and Luc Boasson. Formal properties of XML grammars and languages.
Acta Informatica, 38(9):649–671, 2002. Springer-Verlag.

4. Anne Brüggemann-Klein and Derick Wood. Balanced context-free grammars,
hedge grammars and pushdown caterpillar automata. In Proc. Extreme Markup
Languages, 2004.

5. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on Programming
Languages and Systems, 25(6):814–875, 2003.

6. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proc. 10th International Static Analysis Sympo-
sium, SAS ’03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

7. M. H. Jansen-Vullers, Wil M. P. van der Aalst, and Michael Rosemann. Min-
ing configurable enterprise information systems. Data & Knowledge Engineering,
56(3):195–244, 2006.

8. Christian Kirkegaard and Anders Møller. Type checking with XML Schema in
Xact. Technical Report RS-05-31, BRICS, 2005. Presented at Programming
Language Technologies for XML, PLAN-X ’06.

9. Christian Kirkegaard and Anders Møller. Static analysis for Java Servlets and JSP.
Technical Report RS-06-10, BRICS, 2006.

10. Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis
of XML transformations in Java. IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

11. Christian Kirkegaard and Anders Møller. dk.brics.schematools, 2006. http://www.
brics.dk/schematools/.

352 C. Kirkegaard and A. Møller

12. Donald E. Knuth. A characterization of parenthesis languages. Information and
Control, 11:269–289, 1967.

13. Yasuhiko Minamide. Static approximation of dynamically generated Web pages.
In Proc. 14th International Conference on World Wide Web, WWW ’05, pages
432–441. ACM, May 2005.

14. Mehryar Mohri and Mark-Jan Nederhof. Robustness in Language and Speech Tech-
nology, chapter 9: Regular Approximation of Context-Free Grammars through
Transformation. Kluwer Academic Publishers, 2001.

15. Sun Microsystems. Java Servlet Specification, Version 2.4, 2003. Available from
http://java.sun.com/products/servlet/.

16. Sun Microsystems. JavaServer Pages Specification, Version 2.0, 2003. Available
from http://java.sun.com/products/jsp/.

17. Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot – a Java optimization framework. In Proc. IBM Centre for
Advanced Studies Conference, CASCON ’99. IBM, November 1999.

18. Wil M. P. van der Aalst, Lachlan Aldred, Marlon Dumas, and Arthur H. M. ter
Hofstede. Design and implementation of the YAWL system. In Proc. 16th Inter-
national Conference on Advanced Information Systems Engineering, CAiSE ’04,
volume 3084 of LNCS. Springer-Verlag, June 2004.

Cryptographically-Masked Flows

Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld

Department of Computer Science and Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden

Abstract. Cryptographic operations are essential for many security-critical sys-
tems. Reasoning about information flow in such systems is challenging because
typical (noninterference-based) information-flow definitions allow no flow from
secret to public data. Unfortunately, this implies that programs with encryption
are ruled out because encrypted output depends on secret inputs: the plaintext and
the key. However, it is desirable to allow flows arising from encryption with secret
keys provided that the underlying cryptographic algorithm is strong enough. In
this paper we conservatively extend the noninterference definition to allow safe
encryption, decryption, and key generation. To illustrate the usefulness of this
approach, we propose (and implement) a type system that guarantees noninter-
ference for a small imperative language with primitive cryptographic operations.
The type system prevents dangerous program behavior (e.g., giving away a secret
key or confusing keys and non-keys), which we exemplify with secure imple-
mentations of cryptographic protocols. Because the model is based on a standard
noninterference property, it allows us to develop some natural extensions. In par-
ticular, we consider public-key cryptography and integrity, which accommodate
reasoning about primitives that are vulnerable to chosen-ciphertext attacks.

1 Introduction

Cryptographic operations are ubiquitous in security-critical systems. Reasoning about
information flow in such systems is challenging because typical information-flow defi-
nitions allow no flow from secret to public data. The latter requirement underlies non-
interference [11,16], which demands that public outputs are unchanged as secret inputs
are varied. While traditional noninterference breaks in the presence of cryptographic
operations, the challenge is to distinguish between breaking noninterference because of
legitimate use of sufficiently strong encryption and breaking noninterference due to an
unintended leak.

A common approach to handling cryptographic primitives in information-flow aware
systems is by allowing declassification of encryption results. The intention of declas-
sification is that the result of encryption can be released to the attacker. Declassifi-
cation, however, is a versatile mechanism: different declassification dimensions cor-
respond to different reasons why information is released [29,4]. Attempts at framing
cryptographically-masked flows into different dimensions have been made although, as
we discuss, not always with satisfactory results.

In this paper, we introduce cryptographic primitives into an information-flow setting
while preserving a form of noninterference property. This is achieved by building in

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 353–369, 2006.
© Springer-Verlag Berlin Heidelberg 2006

354 A. Askarov, D. Hedin, and A. Sabelfeld

(a) Noninterference (b) Encryption

(c) Possibilistic noninterference (d) Cryptographically-masked flows

Fig. 1. From noninterference to cryptographically-masked flows

the model a basic assumption that attackers may not distinguish between ciphertexts
and that decryption using the wrong key fails. Although this assumption is stronger
than some probabilistic and computational cryptographic models (which allow some
information to leak when comparing ciphertexts), we argue that it can still be reason-
able, and that it opens up possibilities for tracking information flow in the presence of
cryptographic primitives in expressive programming languages.

The intuition behind our approach is sketched below and illustrated in Figure 1,
where dashed and solid lines correspond to secret and public values, respectively. Fix-
ing some public (low) input xL and varying secret (high) input from xH to yH may
not reflect on a public output z′L of a system that satisfies noninterference (illustrated
in Figure 1(a)). Suppose the system in question involves encryption, such as in the pro-
gram z = enc(k, x) for some secret key k. Clearly, noninterference is broken: variation
in the secret input from xH to yH may cause variation in the public output from z′L to
z′′L (illustrated in Figure 1(b)).

However, noninterference can be recovered if the result of encryption is possibly any
value v. This means that variation of the high input from xH to yH does not affect the
public output—any value v is a possible public output in both cases. This form of non-
interference is known as possibilistic noninterference [24] (illustrated in Figure 1(c)).
Overall, although low outputs might depend on low inputs and ciphertexts, no obser-
vation about possible low outputs may reveal information about changes in high inputs
(illustrated in Figure 1(d)).

This paper makes a case for possibilistic noninterference as a natural model for
cryptographically-masked flows. Further, we have designed and implemented a secu-
rity type system that provably enforces possibilistic noninterference for an imperative
language with primitive cryptographic operations and communication channels. The
type system prevents dangerous program behavior (e.g., giving away a secret key or
confusing keys or non-keys), which we exemplify with secure implementations of cryp-
tographic protocols. Because the model is based on a standard noninterference property,
it allows us to develop some natural extensions. In particular, we consider public-key
cryptography and integrity, which accommodates reasoning about primitives that are
vulnerable to chosen-ciphertext attacks.

Cryptographically-Masked Flows 355

sec. levels σ ::= L | H
key levels γ ::= P | S
global decls. gd ::= global x γ | ch τ

basic types t ::= int | encγ τ
prim. types τ ::= t σ | key γ | (τ1, τ2)
local decls. ld ::= x τ

expressions e ::= n | x | e1 op e2 | encγ (e1, e2) | decγ (e1, e2) | newkey γ | (e1, e2)
| fst(e) | snd(e)

statements c ::= skip | x := e | if e then b1 else b2 | while e do b | out(ch, e)
| in(x, ch)

block b ::= {ld1; . . . ldn; c1; . . . ; cm}
actor actor ::= A b program prog ::= gd1; . . . gdn; actor1 . . . actorm

Fig. 2. Syntax

2 Language

We explore how to model cryptographic flows in a small imperative language equipped
with primitive encryption functions, dynamic key generation, and channels for commu-
nication. This section introduces the syntax and semantics of the language. For space
reasons we are forced to omit the standard features of the language. The complete rules
can be, however, found in the full version of this paper [3].

Syntax. The syntax of the language is defined in Figure 2. Let x ∈ VarName range
over the set of variable names and ch ∈ ChanName range over the set of channel
names. A program consists of a sequence of global declarations followed by a se-
quence of actors. A global declaration is either a declaration of a global key or the
declaration of a channel. Global keys are declared by associating a variable name with
a key level. Values and keys have corresponding security levels. Values are either public
(low) L or secret (high) H. The key levels declare the maximum value security level
the key can safely encrypt. In particular, a key of level S may safely encrypt public
and secret values, whereas a key of level P may only safely encrypt public values.
Let KeyLvl = {S, P} be the set of key levels. Global keys are assumed to have ap-
propriate values at the beginning of the execution of a program and correspond to
initial shared secrets between the actors of the program. A channel is declared by
associating a channel name with the type of the messages that will be sent over the
channel. Let A range over the set of actor names. An actor is defined by naming a
block, representing the code of the actor. A block is simply a sequence of variable
declarations followed by a sequence of commands. Variables are local to the block
in which they are declared. The commands include the standard commands of an im-
perative language and commands for sending on and receiving from a given channel.
Apart from expressions for generating new keys and for encryption and decryption, ex-
pressions are standard: integers, variables, total binary operators, pair formation, and
projection.

Semantics. The semantics of the system is defined as a big-step operational semantics.
The actors of a program run concurrently and interact with each other by sending and
receiving messages on the declared channels. We refrain from modeling the semantics

356 A. Askarov, D. Hedin, and A. Sabelfeld

for the entire system and instead provide semantics for isolated actors. Thus we delib-
erately ignore information flows via races and other flows that may arise in concurrent
systems (cf. [27]). First we define the values and environments, which are used in the
following definition of the semantics of expressions and commands. Let n ∈ Z range
over the integers and k ∈ Key = KeyP∪KeyS range over keys, where KeyP and KeyS
are disjoint. The values are built up by the ordinary values, integers, keys and pairs of
values, together with the encrypted values u ∈ U = UP ∪ US.

values ∈ Value v ::= n | k | (v1, v2) | u

The system is parameterized over two symmetric encryption schemes—one for each
key level γ—represented by triples SEγ = (Kγ , Eγ ,Dγ), where

– Kγ is a key generation algorithm that on each invocation generates a new key.
– Eγ is a probabilistic encryption algorithm that takes a key k ∈ Keyγ, a value

v ∈ Value and returns a ciphertext u ∈ Uγ .
– Dγ is a deterministic decryption algorithm that takes a key k ∈ Keyγ, a cipher-

text u ∈ Uγ and returns a value v ∈ Value or fails. Decryption should satisfy
Dγ(k, Eγ(k, v)) = v.

The reason for the use of different encryption schemes for different security levels is
to lay the ground for an extension of the system into a multi-level system, i.e. a system
with more than two security levels. In such a system we would have one encryption
schema at each security level, trusted to encrypt values up to and including the security
level. We shall assume that the keys sets KeyP and KeyS of the two different encryption
schemes are distinct; let pk range over KeyP and sk over KeyS.

Input and output is modeled in terms of streams of values with the cons operation “·”
and the distinguished empty stream ε. The full environment E consists of four compo-
nents: (i) the variable environment M , which is a stack of mappings from variable
names to lifted values (values joined with a special value for undefined Value• =
Value ∪ {•}); (ii) the key-stream environment G, which maps an encryption scheme
level to the stream of keys generated by successive use of the key generator (let ks range
over streams of keys); (iii) the input environment I and (iv) the output environment O,
which map channel names to streams of values.

Semantics of Expressions. The evaluation of expressions has the form 〈(M, G), e〉 ⇓
〈G′, v〉: evaluating an expression in a given variable and key-stream environment yields
a value and a possibly updated key-stream environment. The semantics of integers,
variables, total binary operators, pair formation, and projection are entirely standard.

Figure 3 presents the rules specific to the treatment of cryptography; the rest of the
rules can be found in [3]. Key generation (S-NEWKEY) takes the level of the key to be
generated and returns the topmost element in the key stream associated to that level in
the key-stream environment. Encryption (S-ENC) and decryption (S-DEC) both use the
encryption schemes SEγ introduced above.

Semantics of Commands. Commands are state transformers of the form 〈E, c〉 ⇓ E′:
the command c yields the new environment E′ when run in the environment E. The

Cryptographically-Masked Flows 357

(S-NEWKEY)
G(γ) = k · ks

〈(M, G), newkey γ〉 ⇓ 〈G[γ �→ ks], k〉

(S-ENC)

〈(M, G), e1〉 ⇓ 〈G′, k〉 〈(M, G′), e2〉 ⇓ 〈G′′, v〉 k ∈ Keyγ

u = Eγ(k, v)
〈(M, G), encγ (e1, e2)〉 ⇓ 〈G′′, u〉

(S-DEC)

〈(M, G), e1〉 ⇓ 〈G′, k〉 〈(M, G′), e2〉 ⇓ 〈G′′, u〉 k ∈ Keyγ

v = Dγ(k, u)
〈(M, G), decγ (e1, e2)〉 ⇓ 〈G′′, v〉

Fig. 3. Semantics of Expressions

semantics of the commands is entirely standard for a while language with channels—
everything specific to encryption is in the expressions. For space reasons the semantics
of the commands is not presented here but can be found in [3].

3 Security

This section states the assumptions our semantic model makes on the underlying en-
cryption schema and shows how these assumptions lead up to a natural formulation
of possibilistic noninterference. The section concludes by investigating the relation be-
tween our assumptions and common cryptographic attacker models.

Encryption Model. As was mentioned above, this paper only considers probabilistic
encryption schemes. A probabilistic encryption scheme is a triple (K, E ,D) where the
encryption algorithm is a function from a key, a plaintext, and some initial random
data, referred to as the initial vector. Such an algorithm will produce a set of possible
ciphertexts for each plaintext-key pair, one ciphertext for each initial vector.

To be able to formulate and prove possibilistic noninterference for our system we
need to demand two properties of the underlying encryption schemes. The first property
is the assumption that an adversary can learn nothing about the plaintext or the key by
observing the ciphertext. This property, known as Shannon’s perfect secrecy [30], is
used to justify our indistinguishability relation on ciphertexts.

The second property is an authenticity property needed in the treatment of decryp-
tion. More precisely we are assuming that decryption using the wrong key fails:

D(k, E(k′, v)) = ⊥ if k �= k′

Insufficiency of Standard Noninterference. The prevailing notion when defining con-
fidentiality in the analysis of information flows is noninterference. Noninterference is
typically formalized as the preservation of a low-equivalence relation under the exe-
cution of a program: if a program is run in two low-equivalent environments then the
resulting environments should be low-equivalent. For ordinary values like integers low-
equivalence demands that public values are equal. However, from the assumption that

358 A. Askarov, D. Hedin, and A. Sabelfeld

an adversary can learn nothing about the plaintext from observing the ciphertext it is
secure to treat all ciphertexts of the same length1 as low-equivalent. However appealing
this may be, such a treatment leads the ability of masking implicit flows in ciphertexts.
Consider the program on Listing 1 for some public channel ch and encryption with
secret key k:

l := enc(k, a);
out(ch, l);
if (h) then l := enc(k, b) else skip;
out(ch, l);

Listing 1. Occlusion

If all encrypted values are consid-
ered equal then we cannot distinguish
between the first and the second output
value, even though it is clear that the
equality/inequality of the first and the
second value reflects the secret value h.

Possibilistic Noninterference. To address this problem we use a variant of noninter-
ference known as possibilistic noninterference, which allows us to create a notion of
low-equivalence that disallows the above example without disallowing intuitively se-
cure uses. Before we formalize our notion of possibilistic noninterference, let us lift the
evaluation relation to a set of results as follows:

〈E, c〉 ⇓ Ê iff Ê = {E′ | 〈E, c〉 ⇓ E′}

With this we can formulate our notion of possibilistic noninterference. Let E1 ∼Σ E2
denote that the environments E1 and E2 are low-equivalent w.r.t the environment type
Σ. A pair of commands, c1 and c2 are noninterfering if

NI(c1, c2)Σ ≡ ∀E1, E2 . E1 ∼Σ E2∧
〈E1, c1〉 ⇓ Ê1 ∧ Ê1 �= ∅ ∧ 〈E2, c2〉 ⇓ Ê2 ∧ Ê2 �= ∅ =⇒

∀E′
1 ∈ Ê1∃E′

2 ∈ Ê2 . E′
1 ∼Σ E′

2

That is, two commands are considered equivalent if, for every pair of low-equivalent
environments in which the commands terminate it holds that there exists the possibility
that each environment produced by the first command when run in the first environment
can be produced by the second command when run in the second environment.

By only considering environments for which the commands terminate, we ignore the
issue with crashes. This is equivalent to saying that normal and abnormal termination
cannot be distinguished by the attacker.

Adequacy of the Model. The choice of possibilistic noninterference does not automat-
ically solve the above problem—using the full low-equivalence relation on ciphertexts
would lead to the same danger of masking insecure flows. Instead the low-equivalence
relation has to be crafted carefully to avoid masked insecure flows and at the same time
allow secure usage of encryption primitives. We will now show how this can be done
for probabilistic encryption schemes. Consider first what happens in the above example.
Let two low-equivalent environments E1 and E2 s.t. h is true in the first and false in
the second. The result of running the if statement of the example above in the second

1 We do not assume that encryption hides the length of messages.

Cryptographically-Masked Flows 359

environment E2 is the singleton set Ê2 = {E2}. However, the result of running it in
the first environment is the set of environments Ê1 = {E1[l = c] | encrypt(b) = c},
where each c is obtained by encrypting b under the same key but with different initial
vectors. The demand of possibilistic noninterference is that for each environment in Ê1
there should exists a low-equivalent environment in Ê2. This is only the case if all ci-
phertexts {c | encrypt(b) = c} are low-equivalent. Thus, any low-equivalence relation
that does not consider the different ciphertexts originating from one plaintext and one
key to be the equivalent will prevent this kind of masking. However, we must make sure
that each ciphertext produced by one plaintext and key has a low-equivalent ciphertext
for each other choice of plaintext and key.

Fortunately, for probabilistic encryption schemes we can easily form a low-equiva-
lence relation

.= with these properties by regarding ciphertexts with the same random
initial vector to be equivalent:

∀k1, k2, v1, v2 . E(k1, v1, iv) .= E(k2, v2, iv)

where iv ranges over initial vectors. This relation has the following properties: (i) differ-
ent ciphertexts produced by one plaintext and one key will have different initial vectors
and will not be low-equivalent, and (ii) since each plaintext and key will produce ci-
phertexts using all initial vectors, for each ciphertext produced by one plaintext and key
there will be exactly one low-equivalent ciphertext for every other choice of plaintext
and key.

Relation to Computational Adversary Models. The perfect secrecy and authenticity
demands on the encryption schemes are fairly strong. However, there are schemes for
which the probability of breaking these assumptions is provably negligible.

The first demand that the ciphertexts should give no information about the plaintexts
is commonly relaxed to the notion of semantic security under chosen plaintext attack
(SEM-CPA) by assuming that the adversary has limited computational power. Semantic
security states that “Whatever is efficiently computable about the cleartext given the
cyphertext, is also efficiently computable without the cyphertext” [17]. 2

In the same way we may allow a relaxation of the demand of authenticity, which
can be implemented by combining Message Authentication Code (MAC) with a SEM-
CPA encryption scheme to form a new scheme that is both secure (SEM-CPA) and
authenticity preserving (INT-PTXT)[6]. A scheme is INT-PTXT if the chance that an
adversary can produce ciphertexts C s.t. M = Dk(C) �= ⊥ and M was never a param-
eter of Ek(·) is negligible. To see that the probability of a successful decryption using
the wrong key is negligible under an INT-PTXT scheme consider the following. If a
ciphertext C = Ek(M) decrypts successfully using another key than was used to con-
struct the message i.e. M ′ = Dk′(C) for k′ �= k then the scheme cannot be INT-PTXT,
since M ′ was never a parameter of Ek′(·).

On Semantic Security. We believe that it is possible to prove a general result that if a
program with SEM-CPA + INT-PTXT encryption primitives is secure w.r.t. possibilis-
tic noninterference then it is also semantically secure. This result is likely to involve

2 There is another frequently used notion of security under a computationally limited adversary,
IND-CPA. IND-CPA has been shown to be equivalent to SEM-CPA [17,6].

360 A. Askarov, D. Hedin, and A. Sabelfeld

restrictions on key cycles, which are a known problem when reconciling the formal and
computational views of cryptography [2], or demanding that the underlying schema is
secure in the presence of such cycles (cf. KDM security [7]).

With such a result at hand, we shall be able to capitalize on the modularity of our
approach. For a given language and type system, as soon as we can prove that all well-
typed programs are noninterfering, we automatically get semantic security. This opens
up possibilities for reasoning about expressive languages and type systems, where all
we have to worry about are noninterference proofs (which are typically simpler than
proofs of computational soundness).

4 Types

The syntax of the types is defined in Figure 2. A primitive type is either a security anno-
tated basic type, a pair of primitive types or a key type. The security annotation assigns
a security level to the basic type expressing whether it is secret or public. The types of
encrypted values are structural in the sense that the type reflects the original type of the
encrypted values as well as the level of the key that was used in the encryption. For in-
stance, encS (int H) L is the type of a secret integer that has been encrypted with a secret
key once and encS (encS (int H) L) L is the type of an integer that has been encrypted
with a secret key twice. The type of the variable environment Ω is a map from variables
to primitive types, the type of the input environment and the output environment alike Θ
is a map from channel names to primitive types, and the key-stream environment defines
its own type (in the domain of the environment). The type of the entire environment, Σ,
is the pair of a variable type environment and a channel type environment.

Well-Formed Values. Well-formedness defines the meaning of the types ignoring the
security annotations. The well-formedness is entirely standard and is omitted for space
reasons.

Low-Equivalence. In Figure 4 we formalize the low-equivalence relation. For complex
types, i.e., pairs and environments, low-equivalence is defined structurally by demand-
ing the parts of the complex type to be low-equivalent w.r.t. the corresponding type.
Any values are low-equivalent w.r.t. a secret type. Integers are low-equivalent w.r.t.
a public integer type if they are equal. Low-equivalence for keys is slightly different
since keys are not annotated with a security level—only a key level—whose meaning
is defined by well-formed values as different sets. Even though it is semantically mean-
ingful to add a security level to key types—the values of keys can be indirectly affected
by computation—we have chosen not to. Instead, a public key is considered to be of
low security and a secret key of high security. Thus, public keys are low-equivalent if
they are equal, and any two secret keys are low-equivalent.

The most interesting rule is the rule defining low-equivalence w.r.t. a public encryp-
tion type (LE-ENC-L1) and (LE-ENC-L2). These two rules define the difference in mean-
ing between encryption with a secret and a public key. First, in both rules, the encrypted
values must be low-equivalent w.r.t. the low-equivalence relation of encrypted values.
Second, there must exist a pair of low-equivalent keys w.r.t. the key type of the encryp-
tion type that decrypt the encrypted value to two values. This is where the rules differ.

Cryptographically-Masked Flows 361

(LE-KEY-L)
pk• ∼key P pk•

(LE-KEY-H)
sk•

1 ∼key S sk•
2

(LE-INT-L)
n• ∼int L n•

(LE-INT-H)
n•

1 ∼int H n•
2

(LE-ENC-L3) • ∼encP τ L •
(LE-ENC-H)

u•
1 ∼encγ τ H u•

2

(LE-PAIR)
v11 ∼τ1 v21 v12 ∼τ2 v22

(v11, v12) ∼(τ1,τ2) (v21, v22)

(LE-MEM)
∀x ∈ dom (Ω) M1(x) ∼Ω(x) M2(x)

M1 ∼Ω M2

(LE-INENV)
∀ch ∈ dom(Θ) . I1(ch) ∼Θ(ch) I2(ch)

I1 ∼Θ I2

(LE-OUTENV)

∀ch ∈ dom(Θ) .
O1(ch) ∼Θ(ch) O2(ch)

O1 ∼Θ O2

(LE-KGEN)
G1(S) ∼ G2(S) G1(P) ∼ G2(P)

G1 ∼ G2

(LE-KGENP)

pk1 ∼key P pk2

K1 ∼P K2

pk1 · K1 ∼P pk2 · K2
(LE-KGENS)

sk1 ∼key S sk2

K1 ∼S K2

sk1 · K1 ∼S sk2 · K2

(LE-ENC-L1)

∃vi, ki . vi = Dγ(ki, ui) i = 1, 2 k1 ∼key S k2 v1 ∼τ v2

u1
.= u2

u1 ∼encS τ L u2

(LE-ENC-L2)

∃vi, ki . vi = Dγ(ki, ui) k1 ∼key P k2 v1 ∼tolow(τ) v2

u1
.= u2

u1 ∼encP τ L u2

Fig. 4. Low-equivalence

Since ciphertexts created by public keys can be decrypted by anyone with access to the
public keys, we have to demand that the inside of the encrypted value contains only
public values. This is done in the (LE-ENC-L2) rule, which demands that the inside is
not only low-equivalent w.r.t. its type τ , but low-equivalent w.r.t. tolow (τ), which is
defined as follows:

tolow (t σ)= t L tolow (key P)=key P tolow((τ1, τ2)) = (tolow (τ1), tolow (τ2))

The (LE-ENC-L1) rule can be seen as encoding the power of the attackers. For en-
cryption with secret keys the demand is only that the resulting values should be low-
equivalent w.r.t. the primitive type, τ , of the encryption type. This way, we demand
low-equivalence inside encrypted values and make certain that that the result of de-
crypting low-equivalent encrypted values will result in low-equivalent values and that
secret values are not stored inside encrypted values that are created by public keys.

Subtyping. The subtyping is entirely standard; it allows public information to be seen
as secret with the exception of invariant subtyping for keys. The subtyping relation
for primitive types, <:, and the subtyping relation for security levels, �, defines the
corresponding join operators. The subtyping relation can be found in [3].

362 A. Askarov, D. Hedin, and A. Sabelfeld

(T-NEWKEY)
pc � lvl(key γ)

Ω, pc � newkey γ : key γ
(T-ENC1)

Ω, pc � e1 : key S
Ω, pc � e2 : τ

Ω, pc � encS (e1, e2) : encS τ L

(T-ENC2)

Ω, pc � e1 : key P
Ω, pc � e2 : τ lvl(τ) = σ

Ω, pc � encP (e1, e2) : encP τ σ
(T-DEC)

Ω, pc � e1 : key γ
Ω, pc � e2 : encγ τ σ

Ω, pc � decγ (e1, e2) : τσ

Fig. 5. Type Rules of Expressions

Expression Type Rules. The type rules for expressions are of the form Ω, pc (e : τ .
Figure 5 defines typing rules for non-standard expressions, while the rest of the rules
can be found in [3]. The generation of a new key with the requested security level results
in a key with that security level if the requested level is not below the context type. The
reason for this is that we assume that the public-key stream is publicly observable. En-
cryption with secret keys will always result in public encrypted values. Encryption with
public keys is possible on any value but produces a result that is as secret as the origi-
nal value. Both the type rule for key generation and the type rule for public encryption
makes use of function lvl(·) that computes the security level of the given value:

lvl(t σ) = σ lvl((τ1, τ2)) = lvl(τ1)
 lvl(τ2) lvl(key P) = L lvl (key S) = H

Decryption is allowed only if the key level of the key used for decryption matches the
key level of the encrypted value. The result of the decryption is tainted by the security
level of the encrypted values. The taint function is defined as follows:

(t σ)σ′
= t (σ
 σ′) (τ1, τ2)σ = (τσ

1 , τσ
2) (key P)L = key P (key S)σ = key S

Command Type Rules. As with expressions most of the rules are standard for a secu-
rity type system (cf. [34]). As is standard, following Denning’s original approach to
analyzing programs for secure information flow [13], in order to prevent implicit flows
the notion of security context is defined. The security context of a program point is de-
fined to be the least upper bound of the security levels of the conditional expressions
of the enclosing conditionals. The context affects the the commands with side-effects,
i.e., variable assignment, input, and output. A block of local declarations followed by a
sequence of statements is checked by first adding the declared variables to the variable
environment and then checking all statements in the new type environment. The type
rule for sequences of statements (T-SEQ) checks all statements of the sequence. If and
while are the two constructs that can lead to indirect flows since they affect the control
flow. Thus, the body of the if and the while are checked in the context of the security
level of the control expression. This way, when a branch is depending on a secret the
body of that branch is prevented from causing any low side effects. The type rules of
commands can be found in [3].

Cryptographically-Masked Flows 363

5 Soundness

The main soundness theorem of the paper states that well-typed programs are noninter-
fering. Typically, for typed programming languages, the soundness is phrased in terms
of progress, i.e. well-typed programs can always be evaluated in well-formed environ-
ments, and preservation, i.e. after this step has been made the resulting environment is
well formed. It may be interesting to note that the way we have avoided to model error
makes this system not satisfy progress: decryption with the wrong key or computing
with an uninitialized variable will prevent evaluation. The well known solution is to
model failure in the semantics. To keep the presentation cleaner we refrain from this.

The soundness theorem states that well-typed programs are noninterfering. Section 3
lifts the evaluation relation of commands to sets and formulates noninterference for
commands. Before giving the formulation of the soundness theorem we must lift the
codomain of the evaluation relation of expressions to sets and formulate noninterference
for expressions:

〈(M, G), e〉 ⇓ 〈G′, v̂〉 iff v̂ = {v | 〈(M, G), e〉 ⇓ 〈G′, v〉}
With this we can define noninterference for expressions, which is equivalent to the

noninterference of statements defined above. Put simply, if two expressions e1 and e2
are run in low-equivalent key-stream and variable environments, yielding pairs of new
key-stream environments and results, then these results should be low-equivalent:

NI (e1, e2)Ω,τ ≡ ∀M1, M2, G1, G2 . M1 ∼Ω M2 ∧ G1 ∼ G2∧
〈(Mi, Gi), ei〉 ⇓ 〈G′

i, v̂i〉 ∧ v̂i �= ∅ =⇒
G′

1 ∼ G′
2 ∧ ∀v1 ∈ v̂1 ∃v2 ∈ v̂2 . v1 ∼τ v2

We arrive at the soundness theorems for expressions and commands, both proved by
induction on type derivation [3].

Theorem 1. Soundness for expressions Ω, pc (e : τ =⇒ NI (e, e)Ω,τ

Theorem 2. Soundness for commands Σ, pc (c =⇒ NI (c, c)Σ

6 Extensions

In this section we consider two extensions: integrity and public-key cryptography.

Integrity. Confidentiality classifies information into public and secret, i.e., information
that may or may not be given to the world, respectively. Dually, integrity classifies in-
formation into untrusted (or low-integrity) and trusted (or high-integrity), i.e., whether
the information may or may not have been affected by the world.

Tracking the integrity of data enables us to explore some additional dimensions of
cryptography: weaknesses of the encryption algorithms and the effect of encryption
on integrity. Consider for example, a primitive that is vulnerable to chosen ciphertext
attacks. With integrity controls, it is natural to express the restriction that untrusted
encrypted values may not be decrypted.

364 A. Askarov, D. Hedin, and A. Sabelfeld

In the presence of integrity the security levels for values are pairs of the form (σ, ι),
where σ is a confidentiality level, and ι is a corresponding integrity level. The follow-
ing tables define two functions—safeE(α, (σ, ι)) and safeD(α, (σ, ι))—that indicate
if it is safe to encrypt (decrypt) a plaintext (ciphertext) of security level (σ, ι) with an
encryption scheme that has property α. Here α ranges over standard notions [5]—IND-
CCA (indistinguishable under chosen-ciphertext attacks) and IND-CPA (indistinguish-
able under chosen-plaintext attacks).

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe safe safe safe

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe - - safe

safeE(α, (σ, ι)) safeD(α, (σ, ι))

In this way we can provide different type rules for different assumptions on the vul-
nerability properties of the encryption and decryption algorithms:

(T-ENC*)
Ω, pc (e1 : key S Ω, pc (e2 : τ lvl(τ) = (σ, ι) safeE(α, (σ, ι))

Ω, pc (encα
S (e1, e2) : encS τ (L, H)

(T-DEC*)
Ω, pc (e1 : key γ safeD(α, (σ, ι)) Ω, pc (e2 : encγ τ (σ, ι)

Ω, pc (decα
γ (e1, e2) : τ (σ,ι)

A Note on the Integrity of Keys. The current model allows very limited interaction
with keys apart from encryption. Since the values of keys cannot be programmatically
inspected, the power of the attacker is limited to choice between secure keys. Thus, the
model cannot in its present form distinguish between encryption with high and low-
integrity keys w.r.t. confidentiality. The intuition is clear: since the attacker can only
choose between secure keys, that choice will give different but safe encrypted values.

Public-Key Cryptography. Even though the present system deals only with symmetric-
key cryptography, there is nothing in the model that prevents modeling public-key cryp-
tography. The set of secret keys would contain the private keys and the set of public keys
would contain the public keys, where the private keys and the public keys are dual. In
this system values encrypted with public keys would be considered public, since only
actors with access to the private keys would be able to decrypt them.

However, public-key cryptography is most interesting in the presence of integrity. In
the same way we can model that encryption of secrets using secret keys results in public
values, we can model that encryption raises the integrity of the encrypted value to the
integrity of the key, which corresponds to signing.

7 Programming with Encryption: Examples

We have implemented a prototype of the type system and mechanically type-checked
two applications: secure backup and a Wide-Mouthed-Frog protocol implementation. In
both examples the type system prevents dangerous insecurities such as sending sensitive
unencrypted data over a public channel or not using a secret key for encryption. This
section discusses some interesting fragments of these implementations.

Cryptographically-Masked Flows 365

Secure Data Backup. In the secure backup scenario a low-confidentiality channel is
used for sending sensitive information to the remote storage. Listing 2 presents the
code for the backup operation. Here and below we slightly simplify the syntax with
respect to Figure 2 for the sake of readability.

1 global K secret;
2 backup enc secret (int high) low;
3
4 actor Backup {
5 data int high;
6 ctxt enc secret (int high) low;
7 data := ...
8 ctxt := encrypt(K, data);
9 out backup ctxt;

10 }

Listing 2. Backup code

Here, the global declarations contain
secret key K and low channel backup.
The type of the latter says that only en-
crypted high integers may be sent over
this channel.

Lines 5 and 7 declare and initial-
ize a high integer variable data. Line 6
declares the variable ctxt of type enc

secret (int high) low. On line 8 the
value of variable data is encrypted with
secret key K and the resulting ciphertext is assigned to the variable ctxt. Since type of
ctxt matches the type of the backup channel it might be sent over this channel. This is
done by the out command on line 9.

1 actor Restore {
2 data int high;
3 ctxt enc secret (int high) low;
4 in ctxt backup;
5 data := decrypt(K, ctxt);
6 }

Listing 3. Recovery code

When recovering data, an actor reads
the data from the public channel and de-
crypts it. Assuming the same global dec-
larations Listing 3 presents the recovery
code. Here, line 4 reads data from the
backup channel. It’s decrypted using the
key K on line 5.

An example of an easy-to-overlook
error is to have the following line in place of line 9 in the body of actor Backup: out
backup data;. This is an insecurity that the type system rejects. Generally, in the se-
cure backup example the type system ensures that secret data is encrypted before it is
sent over the backup channel, thus preventing accidental leaks.

Wide-Mouthed-Frog Protocol. The Wide-Mouthed-Frog protocol [8] is a simple key
exchange protocol with trusted server and timestamps. In this protocol secret keys KAS

and KBS are shared between server S and principals A and B, respectively. Principal A
generates a fresh session key KAB, which is transferred to B in two messages:

1. A → S : A, {TA, B, KAB}KAS

2. S → B : {TS , A, KAB}KBS

The first message consist of A’s name and a tuple encrypted with the shared key KAS .
This tuple contains three elements—a timestamp TA, the name of principal B, and a
generated key KAB . Upon receipt of this message, S decrypts it, checks the timestamp,
replaces TA with its own timestamp TS, encrypts it with key KBS , and forwards the
resulting message to B. Principal B then checks whether the second message is timely.

Obviously, there is more to implementation of the protocol than expressed by the
two-step description. Our type system guarantees that implementations do not introduce
information-flow leaks in the protocol. Listing 4 presents the implementation of this

366 A. Askarov, D. Hedin, and A. Sabelfeld

protocol for principal A. The full version of this paper [3] contains the implementation
for the server S and principal B.)

1 global Kas secret;
2 chanS <int low, enc secret
3 (<int low, <int low, key secret>>) low>;
4 chanAB enc secret (int high) low;
5 actor A {
6 idA int low; idB int low; tsA int low;
7 messageToB int high;
8 Kab key secret;
9 // ... initialization

10 Kab := newkey (secret);
11 out chanS <idA,
12 encrypt(Kas, <tsA,<idB, Kab>>)>;
13 out chanAB encrypt (Kab, messageToB);
14 }

Listing 4. WMF Implementation

This program declares two chan-
nels: chanS for communicating with the
server, and chanAB for sending mes-
sages to B, once the key has been ex-
changed. The type of the channel chanS
corresponds to the first message in the
protocol—a pair consisting of a low in-
teger and an encryption with secret key
of a three-element tuple (expressed by
nested pairs). Since the level of the key
used for encrypting this tuple is secret,
it is safe to label the result of encryption
as low. The body of the actor declaration defines low-confidentiality variables idA and
idB that stand for the names of the principals; variable tsA stores the current timestamp;
the high-confidentiality variable messageToB contains the information that A wants to
send to B.

The new key is generated on line 10. Line 12 constructs the first message of the
protocol and sends it to the server. Line 13 uses the newly generated key and sends the
secret message to the principal B.

In this example, the type system prevents non-secret session keys in the key estab-
lishment protocol. As in the previous example, it also guarantees that secret information
may not leave the system unless it is encrypted with a secret key.

8 Related Work

As mentioned in the introduction, declassification models are sometimes used to jus-
tify cryptographic primitives in languages with information-flow control. Declassifi-
cation mechanisms facilitate information release. A recent classification of declassifi-
cation [29] suggests that information release policies represent aspects of what is de-
classified, by whom, when and where in the system. These correspond to dimensions
of information release. The relation of our model to declassification is somewhat sub-
tle, because masking does not actually model information release. Hence, none of the
release dimensions is directly suitable for cryptographically-masked flows.

Furthermore, attempts at framing cryptographically-masked flows into different di-
mensions do not always lead to satisfactory results. For example, releasing the differ-
ence between two values of a secret whenever the results of its encryption are different
can be a deceptive policy when assumptions about the underlying cryptographic primi-
tives are not explicitly stated. If the underlying encryption function is bijective (assum-
ing the key is fixed) then releasing the result of encryption is equivalent to releasing
the secret itself. This phenomenon applies to typical policies from the what dimension,
such as delimited release [28].

Another example of releasing the secret itself, together with the result of a cryp-
tographic primitive applied to the secret, can be found in [9]. The password checker
example is based on matching the hash of the password with the hash of a user query.

Cryptographically-Masked Flows 367

The password has a label H
cert� L, which means that the level of the password is even-

tually declassified from high to low. This, however, allows the password itself to be
released to the attacker in cleartext.

Nevertheless, declassification is meaningful in the context of cryptographic com-
putation when the attacker is capable of learning some information from ciphertext.
Temporal policies express when, at earliest, the attacker might learn the secret. Volpano
and Smith’s relative secrecy [33,32] guarantees that the attacker cannot learn the secret
in polynomial time in the size of the secret. Approaches by Laud [20,21], Laud and
Vene [22], provide computational guarantees for a simple imperative language but with
the assumption that keys can be statically distinguished. Mitchell et al. [23,25] reason
about security with respect to polynomial-time attackers for a form of the π calculus.

A source of our inspiration is Abadi’s secrecy model for symmetric-key crypto-
graphic protocols [1]. This model assumes that an attacker is unable to decrypt cipher-
texts encrypted with secret keys. Compared to [1], we end up with simpler typing rules.
For example, because of the probabilistic encryption assumption, we do not need to deal
with explicit confounders. In addition, our approach accommodates natural extensions
with integrity and public-key cryptography. Another source of inspiration is a logi-
cal relations technique by Sumii and Pierce that facilitates manual security proofs for
cryptographic protocols [31]. This technique is not accompanied by static enforcement
mechanisms (such as a type system), however.

Gordon and Jeffrey [18] extend Abadi’s work to multiple security levels that may be
dynamically created and may become compromised. This and other work within Gor-
don and Jeffrey’s Cryptyc project, however, relies on trace-based properties (such as
correspondence) that are weaker than noninterference. Dam and Giambiagi’s work on
admissibility [12,15] focuses on protocol implementation, with the goal that informa-
tion leaks in the implementation must adhere to those declared in protocol specification.

Duggan’s and Chothia et al.’s cryptographic types [14,10] help enforce security for a
distributed programming language. This is realized through a combination of static and
dynamic checks, leading to access-control guarantees (albeit without information-flow
guarantees) for secrecy and integrity. Myers et al.’s qualified robustness [26] is based
on a possibilistic treatment of endorsement, operation dual to declassification.

Hicks et al. [19] define a notion of noninterference modulo trusted functions, which
requires parts of programs free of cryptographic functions to be in a certain sense in-
distinguishable. The cryptographic functions are trusted to release information if their
security labels satisfy trust constraints. It is a worthwhile direction for future work to
formally investigate the relation to noninterference modulo trusted functions. We do not
expect it to be straightforward because the definition of the indistinguishability relation
from [19] involves two-level semantics.

9 Conclusions and Future Work

We have developed an approach to tracking information flow in the presence of crypto-
graphic operations, based on possibilistic noninterference. We have argued that a possi-
bilistic treatment of cryptographic operations leads to a natural model of attackers that
may not distinguish between ciphertexts. This model has a close connection to prob-

368 A. Askarov, D. Hedin, and A. Sabelfeld

abilistic encryption and, we believe, it naturally connects to computational adversary
models (cf. Section 3).

Our case for possibilistic noninterference is driven by the possibility of capitalizing
on the available machinery for reasoning about noninterference in programming lan-
guages. We have demonstrated that possibilistic noninterference can be provably and
straightforwardly enforced via a security-type system for a language that includes cryp-
tographic primitives and message passing. The type system is amenable to extensions,
including integrity and public-key cryptography, which makes it attractive for develop-
ing secure implementations of non-trivial cryptographic protocols. We plan to explore a
semantic justification of these extensions, crystallizing guarantees provided by the typ-
ing rules, and to consider cases studies in which it is critical to achieve these guarantees.

Acknowledgments. We wish to thank Martín Abadi and Peeter Laud for helpful com-
ments. This work was supported, in part, by the Swedish Research Council and, in part,
by the Information Society Technologies programme of the European Commission, Fu-
ture and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

1. M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786, September 1999.
2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational sound-

ness of formal encryption). J. of Cryptology, 15(2):103–127, 2002.
3. A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows.

Technical report, Chalmers University of Technology, June 2006. Located at
http://www.cs.chalmers.se/∼aaskarov/sas06full.pdf.

4. A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic
protocols: A case study. In Proc. European Symp. on Research in Computer Security, volume
3679 of LNCS, pages 197–221. Springer-Verlag, September 2005.

5. M. Bellare, A. Desa, D. Pointcheval, and P. Rogaway. Relations among notions of security
for public-key encryption schemes. In Advances in Cryptology- Crypto 98, volume 1462 of
LNCS, pages 26–46, January 1998.

6. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Advances in Cryptology - Asiacrypt 2000,
volume 1976 of LNCS, pages 531–545, January 2000.

7. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of
key-dependent messages. In Selected Areas in Cryptography, volume 2595 of LNCS, pages
62–75. Springer-Verlag, August 2002.

8. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on
Computer Systems, 8(1):18–36, February 1990.

9. S. Chong and A. C. Myers. Security policies for downgrading. In ACM Conference on
Computer and Communications Security, pages 198–209, October 2004.

10. T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access control. In Proc. IEEE
Computer Security Foundations Workshop, pages 170–186, 2003.

11. E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure Computation, pages
297–335. Academic Press, 1978.

12. M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a simple payment
protocol. In Proc. IEEE Computer Security Foundations Workshop, pages 233–244, July
2000.

Cryptographically-Masked Flows 369

13. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

14. D. Duggan. Cryptographic types. In Proc. IEEE Computer Security Foundations Workshop,
pages 238–252, June 2002.

15. P. Giambiagi and M. Dam. On the secure implementation of security protocols. In Proc.
European Symp. on Programming, volume 2618 of LNCS, pages 144–158. Springer-Verlag,
April 2003.

16. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp.
on Security and Privacy, pages 11–20, April 1982.

17. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

18. A. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the pi-
calculus. In Proc. CONCUR’05, number 3653 in LNCS, pages 186–201. Springer-Verlag,
August 2005.

19. B. Hicks, D. King, and P. McDaniel. Declassification with cryptographic functions in a
security-typed language. Technical Report NAS-TR-0004-2005, Network and Security Cen-
ter, Department of Computer Science, Pennsylvania State University, May 2005.

20. P. Laud. Semantics and program analysis of computationally secure information flow. In
Proc. European Symp. on Programming, volume 2028 of LNCS, pages 77–91. Springer-
Verlag, April 2001.

21. P. Laud. Handling encryption in an analysis for secure information flow. In Proc. European
Symp. on Programming, volume 2618 of LNCS, pages 159–173. Springer-Verlag, April 2003.

22. P. Laud and V. Vene. A type system for computationally secure information flow. In Proc.
Fundamentals of Computation Theory, volume 3623 of LNCS, pages 365–377, August 2005.

23. P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. In ACM Conference on Computer and Communications Security, pages
112–121, November 1998.

24. D. McCullough. Noninterference and the composability of security properties. In Proc. IEEE
Symp. on Security and Privacy, pages 177–186, May 1988.

25. J. C. Mitchell. Probabilistic polynomial-time process calculus and security protocol analysis.
In Proc. European Symp. on Programming, volume 2028 of LNCS, pages 23–29. Springer-
Verlag, April 2001.

26. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified
robustness. J. Computer Security, 2006. To appear.

27. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

28. A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proc. In-
ternational Symp. on Software Security (ISSS’03), volume 3233 of LNCS, pages 174–191.
Springer-Verlag, October 2004.

29. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proc. IEEE
Computer Security Foundations Workshop, pages 255–269, June 2005.

30. C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:623–656,
1948.

31. E. Sumii and B. Pierce. Logical relations for encryption. In Proc. IEEE Computer Security
Foundations Workshop, pages 256–269, June 2001.

32. D. Volpano. Secure introduction of one-way functions. In Proc. IEEE Computer Security
Foundations Workshop, pages 246–254, July 2000.

33. D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Proc. ACM Symp. on
Principles of Programming Languages, pages 268–276, January 2000.

34. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J.
Computer Security, 4(3):167–187, 1996.

Proving the Properties of Communicating
Imperfectly-Clocked Synchronous Systems

Julien Bertrane

École Normale Supérieure, Paris, France
bertrane@di.ens.fr

Abstract. Our work aims at certifying that all the executions of sev-
eral collaborating synchronous systems in a realistic environment follow
a given specification. In order to analyze the numerous executions that
may happen while considering a set of synchronous systems whose clocks
are non-perfect and that communicate through non-instantaneous chan-
nels, we define two new abstract domains. The Changes counting domain
and the Integral bounding domain gap the imprecisions of the previously
defined Constraint domain that occur because of these hardware impre-
cisions. We define a reduced product between these domains that allows
a much more precise though sound analysis than the three analyses that
may have been defined in each domain.

1 Introduction

The design of critical embedded command systems often relies on the GALS
(globally asynchronous, locally synchronous) paradigm. This means that several
synchronous subsystems communicate with each other in order to compute the
decisions, each one being timed by its own clock. These clocks may however
desynchronize the one compared to the others. The reason for this design method
is that the propagation of the information inside large systems is too long for it to
be made of a single synchronous system. Furthermore, in order to prevent design
and hardware errors, it is common to use several redundant units executing on
different systems.

The designers have therefore to take this clock skew problem into consider-
ation. Another consequence of such a design is that it implies communications
between the synchronous systems, for example through buses. The communica-
tion delays between the subsystems cannot be neglected nor considered constant.
The two temporal imprecisions caused by this hardware limitations make their
analysis very difficult.

We introduce several abstract domains that interact and allow an abstract
interpretation based analysis of the code of embedded systems built according
to the previous hypotheses. Their goal is to try to prove that the software part
of the system is robust enough to satisfy the specifications despite the hardware
imprecisions.

Previous Works
The design of data processing systems for critical software is often based on
the Lustre and SCADE synchronous programming frameworks. Their theoretical

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 370–386, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Proving the Properties of Communicating 371

foundations and properties were presented in [9,11] and [3,2,8]. We try to never
choose between their syntax, and any example given may be easily written in
both of them. The difficulties resulting from asynchrony and non-instantaneous
communications for synchronous systems were also studied in [7]. A way to face
these difficulties is presented in [1]: a protocol is defined that ensures the ro-
bustness of the system to clock desynchronization. Our studies doesn’t aim at
proposing robustness techniques but at proving them, even if they are hidden
inside a huge amount of code. S. Thompson and A. Mycroft, proposed in [12]
several abstractions to study asynchronous circuits that share some characteris-
tics with the changes counting domain we introduce here : both describe signals
through their value changes. We make an extensive use of the abstract inter-
pretation theory and tools presented in particular of [6,5,10]. We presented a
simpler analysis method in [4].

Sect. 2 presents the characteristics and the limits of the synchronous subsys-
tems that we study and of the hardware they will be run on. We then introduce
in Sect. 3 the semantics of the executions of these systems. In Sect. 4, we recall
briefly the Constraint domain. Sect. 5 extends our abstract model by defining a
new abstract domain, the Changes counting domain and considering a reduced
product with the Constraint domain. This extension is continued in Sect. 6 with
the definition of a third abstract domain, the Integral bounding domain, also
interacting thanks to a reduced product with the two former ones. An example
of the interaction between these domains is presented in Sect. 7. In Sect. 8, we
give some details about an implementation of these domains and about future
improvements.

2 Communications Between Non-perfect Systems

The systems we analyze are made of several units written in a synchronous
language, either based on the node notion like Lustre or on a graphical repre-
sentation like SCADE. In our examples, we use graphical descriptions, since it is
easy to include the numerical bounds of the limitations of the hardware in them.
In this work, we only consider boolean values and boolean operators.

First, the synchronous systems execute on non-perfect clocks. In order to
model their imprecision, each system is connected to a time interval containing
the delay between two consecutive ticks. In our example, systems are boxes con-
taining a small box providing this interval. The two effects of a unit (buffering of
inputs and computation of an output emitted at the next tick) may be consid-
ered separately, as we did in [4]. The buffering and periodic reading is computed
by an operator called DISCR (depicted as ||| in [4]). The computation and the
release of its result is made by an operator called SHIFT.

These systems are connected through buses. The transfer of an information
along a bus in non-instantaneous. Buses are thus timed by an interval specifying
the minimum and the maximum duration of this communication. Of course, a
value doesn’t necessarily arrive in a system exactly at the time it gets used.
Therefore, we assume that these systems are plugged on buffers that receive the

372 J. Bertrane

H
A
R
D
W
A
R
E

HARDWARE (environment, sensors, actuators)

HARDWARE (environment, sensors, actuators)

system)
 synchronous
CODE(on a

system)
 synchronous
CODE(on a

system)
 synchronous
CODE(on a

 [0.4;0.5]

2C [1.9;2.1]

1

3

wiring
HARDWARE

 [0.4;0.5]

 [0.4;0.5]

C [1.9;2.1]

C [0.3;0.4]

Fig. 1. Three synchronous systems, with bounds on their clock imprecisions and their
communication delays

values transmitted by the bus. If a new value arrives in a buffer which has still
not been read, then the new value replaces the older one. A bus is graphically
represented by a wire and its delay interval.

Therefore, a diagram contains informations not only on the software but also
on the hardware, as shown on Fig 1. It presents three synchronous systems con-
nected with three clocks C1, C2 and C3. C1 and C2 have the same characteristics :
for these clocks, the length of a cycle between two ticks belongs to [1.9; 2.1]. In
the case of C3, the cycle length is assumed to belong to [0.3; 0.4]. The communi-
cation buses are denoted by arrows connecting synchronous systems (inside the
hardware wiring label). In a real system, we could have more complex wiring,
for example each couple of systems may be connected in both sense (emission
and reception). In that case, arrows may split to send the same information
to several systems. The characteristics of all the buses in this example are the
same : the communication lasts between 0.4 and 0.5 time units.

Proving the Properties of Communicating 373

[0.;0.]

5 p6p2
p4

p7
p3

p1p0 NOTNOT

C :0.9, 1.1 C’ :0.6, 0.7

[0.4;0.5] p

Fig. 2. A couple of communicating imperfectly clocked synchronous systems

3 Concrete Semantics of Communicating Non-perfectly
Clocked Synchronous Systems

The concrete semantics of a communicating group of non-perfectly clocked syn-
chronous systems is the precise description of all its possible behaviors. Indeed,
because of the hardware imprecision, we cannot define the behaviour for a sys-
tem, since it is not unique, even for a given input : we don’t even know the
precise time of each clock tick, but only an approximation of this time. We first
define an equivalent to the classical notion of variable, since our representation
does not provide names for each point of a program :

Definition 1 (Control point). A control point is any input or output of an
operator or of a synchronous system. The set of control points is denoted by P .

We may now define informally the concrete semantics :

Definition 2 (Concrete semantics). The concrete semantics of a communi-
cating group of non-perfectly clocked synchronous systems S is the set of all its
possible executions. It belongs to P(P → (R+ → B)), where R+ is the time (after
the beginning of the execution).

Since this set is not easy to handle, we immediately abstract it in the canonical
way into an element of P → P(R+ → B). The function �S� ∈ P → P(R+ → B)
maps each control point pi to the set �S�(pi) of behaviors possible at point pi.
Each of these behaviors is described by a signal : a function v connecting each
time t to the value v(t) ∈ B at control point pi at the time t.

Now, we can incrementally build (see Fig. 3) the semantics (as soon as the
parameters C, C′ and the communication delays are chosen) of the system pre-
sented on Fig. 2. On this figure, t stands for true, f for false, and we let C0 = 0,
C1, C2, C′

0 = 0, C′
1, C′

2 as well as vertical dashed lines denote the first clocks
ticks. The arrows show which already built part allows to build a new segment of
the signals. For example, in the first step of the building of this solution, we use
the initialization convention which expresses that before time t = 0, the signals
are set to false. During the second step, we discover that between C0 = 0 and
C1, the signal at p3 is set to false, since p3 is simply the result of the previous
cycle at point p2, which was false. The same occurs for p6 and p7. The signal at
p4 is the delayed version of the one at p3. And each step extends the previous
one.

374 J. Bertrane

f

 0 C1 0 C1 C1 C2C10 C1

0 0

4
p

5
p

6
p

7
p

C’1 0 C’1 0 C’1 C’2

0
p

1
p

2
p

3
p = f

t

f
t

f
t

f
t

f
t

f
t

f
t

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

t

f

f

f

t

0 C’1

f

f

f

f

f

f

f

f f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

t

t

f

f

t

f

f

t

f

1st Step 3rd Step 4th Step2nd Step 5th Step

time:

time:

0

Fig. 3. The semantics of the diagram on Fig. 2

Studying this concrete semantics is very difficult because we cannot even
describe one behavior at one control point, since it lasts an infinite time. A
fortiori, describing infinitely many of them seems impossible, as well as manip-
ulating them. We therefore make use of the abstract interpretation framework
and define several abstract domains that are able of manipulating this “infinite”
elements or sets, and prove their properties.

4 Constraint Domain

We defined in [4] an abstract domain based on the notion of temporal constraints.
It allows the proof of some temporal properties and it is our first abstract domain,
with only a few modifications. The two basic elements are :

• A constraint denoted by
∃[a; b] : x , meaning that any
signal takes the value x at least
once during the interval [a; b].
• A constraint denoted by
∀〈a; b〉 : x, meaning that any
signal takes the value x during
the whole interval [a; b].

<1,2>:true

1 32 4

false

true

[3,4]:false

A signal satisfying two abstract constraints

These constraints and the formula built with them using the conjunction and
disjunction operators may express many temporal properties. This abstract do-
main is denoted by C. The connection between this abstract domain and the
concrete semantics is maintained by a concretization function γ that connects
any abstract formula to all the signals that satisfy it. In order to perform an anal-
ysis, we defined in [4] abstract operators that spread any information obtained
in a control point to its neighbors, remaining in this abstract domain. For each

Proving the Properties of Communicating 375

operator OP, we defined in [4] a backward abstract operator
←−
Ψ #

OP. They are very
intuitive : for example,

←−
Ψ #

AND(∀〈a; b〉 : True) = (∀〈a; b〉 : True, ∀〈a; b〉 : True).
The result is a couple of constraints since the AND operator has two inputs, and
we are reasoning backwards. On the other hand,

←−
Ψ #

AND cannot deal precisely with
the constraint ∀〈a; b〉 : False, which would require a non-countable infinity of
disjunctions, and it doesn’t gain in that case any information, returning top (�),
i.e. the absence of constraint.

We now also connect any time-independent (i.e. logical) operator with a trivial
forward abstract operator

−→
Ψ # that simply mimics the execution of the operator :−→

Ψ #
AND(∀〈1; 3〉 : True, ∀〈2; 4〉 : True) = ∀〈2; 3〉 : True.
Spreading abstract information from one control point to the other ones,

we prove abstract properties of the communicating non-perfectly clocked syn-
chronous systems. The abstract interpretation theory provides a simple way to
prove that this propagation of the information is sound. For any gate performing
a transformation Ψ , the abstract counterpart Ψ# must satisfy :

Ψ ◦ γ ⊆ γ ◦ Ψ#.

All of the abstract operators we defined in [4] satisfy this condition.

Constraints Borders. We define four functions connecting a constraint to a real :

right border :
{
∀〈a; b〉 : False 	→ b
∃[a; b] : False 	→ b

left border :
{
∀〈a; b〉 : False 	→ a
∃[a; b] : False 	→ a

right influence border :
{
∀〈a; b〉 : False 	→ b
∃[a; b] : False 	→ a

left influence border :
{
∀〈a; b〉 : False 	→ a
∃[a; b] : False 	→ b

right border and left border simply give the borders of the constraints.
right influence border(c), where c is a constraint, gives the latest (i.e. the
bigest) time after which we have for sure thanks to c an information on any
signal satisfying c. In case of a ∀〈a; b〉 : u constraint, we know the signal value
at any point inside [a; b], so that the result is b. On the other hand, a ∃[a; b] : u
constraint only says that after a, we will have one information about the signal.
Similarly, left influence border gives the earliest time before which we have
an information on the signal.

In order to prevent the loss of information which leads among others the result
of

←−
Ψ #

AND(∀〈a; b〉 : False) to be defined as �, we introduce a new abstract domain
which interacts with the Constraint domain and prevents this imprecision.

5 Changes Counting Domain

Goals of the Changes Counting Domain. Synchronous programs are often used
in embedded systems, that they control through actuators, after having com-

376 J. Bertrane

puted reactualized orders depending on what they received from sensors. Most
of these sensors, however, work in real time, i.e. they deliver a value at any
time. For example, the temperature is usually measured by a resistance varying
continuously with the temperature. Of course, engineers take this into consider-
ation and discretize the signal, and as a consequence stabilize it. We try to take
advantage of this kind of properties by creating a new abstract domain that
interacts with our Constraint domain.

Definition of the Changes Counting Domain. In fact we define two abstract do-
mains, but they are close enough to share most of the code of their abstract
transfer functions. The Changes counting domain, denoted by N simply de-
scribes, at each control point, the maximal number of changes that may happen :

– either during a particular interval [a; b] : it is the Local Changes counting
domain

– or during any interval of given width (after time t = 0, starting point of the
execution) : it is the Global Changes counting domain.

The only difference is in fact that the global version adds a universal quantifier
to its condition.

Definition 3 (Local Changes Counting Domain). The set of Local Changes
counting is (N ∪ {+∞})× R+ × (R+ ∪ {+∞}). The top element, denoted by �
is (+∞, 0, +∞). The bottom element, denoted by ⊥ is (+∞, 0, 0).

Definition 4 (Global Changes Counting Domain). The set of Global Cha-
nges counting is (N ∪ {+∞}) × (R+ ∪ {+∞}). The top element, denoted by �
is (+∞, +∞). The bottom element, denoted by ⊥ is (+∞, 0).

In the following, we consider the Global Changes counting domain only. All the
statements can be easily adapted to the Local Changes counting domain by
considering one interval instead of all of the ones with a particular width. The
meaning of an element (n, δ)N ∈ N connected to a control point p1, where S1
denotes set of signals in the concrete semantics, is :

∀v ∈ S1, ∀x ∈ R+, � ∃x0, ..., xn+1 ∈ [x; x + δ], such that

x0 < x1 < . . . < xn < xn+1
v(x0) �= v(x1) ∧ v(x1) �= v(x2) ∧ . . . ∧ v(xn) �= v(xn+1).

This prevents v from changing its value more than n times during [x; x+δ]. This
automatically defines a concretization function γ as the following set :

γ(n, δ) 	

⎧⎨⎩v : R+ 	→ B,

∣∣∣∣∣∣
∀x ∈ R+, � ∃x0, ..., xn+1 ∈ [x; x + δ],
x0 < x1 < . . . < xn < xn+1
v(x0) �= v(x1) ∧ . . . ∧ v(xn) �= v(xn+1)

⎫⎬⎭

Proving the Properties of Communicating 377

This function relates the concrete and the abstract domain. It automatically
defines a pre-order �N on N : ∀n1, n2 ∈ N , n1 �N n2 ⇐⇒ γ(n1) ⊆ γ(n2).
In fact, we consider the abstract elements modulo �N ∩ N so that �N is an
order.

Applications of This Domain. This domain is useful in three types of context :

– It may simply be a direct consequence of the property that we try to prove
(or its negation). It is interesting in that case to rewrite it in the Changes
counting domain.

– Some operators (like the discretization previously considered) may induce a
stability that may be converted into a Changes counting domain element.

– An input may be by physical construction (hardware property) stable and
this property may be translated into a Changes counting domain element.

Transfer Function Inside the Changes counting Domain. If the width (called δ
above) of any abstract element of the Changes counting domain was the same for
each abstract element of this domain, the transfer functions would be really easy
to define. Considering for example the AND gate connecting two input control
points p1 and p2 to an output control point p3, if we know that :

– any signal in the semantics connected to point p1 changes its value at most
n1 times during any interval of width δ,

– any signal in the semantics connected to point p2 changes its value at most
n2 times during any interval of width δ,

clearly, any signal in the semantics connected to point p3 changes its value at
most n1 + n2 times during any interval of width δ. In that simplified case, this
allows a simple definition of an abstract forward transfer function for the
AND operator.

But, if we try to compute the result of the abstract forward transfer function
Ψ#
AND on the couple of abstract elements (5, 2.1)N , (3, 4.7)N , one for each input of

the AND gate, we cannot use the same argument.
However, as pictured on Fig. 4, if the signal at the second input control point

cannot change its value more than three times during 4.7 time units, it also can-
not change its value more than three times during 2.1 time units, and therefore
satisfies the abstract element (3, 2.1)N . As a consequence :

−→
Ψ #

AND N ((5, 2.1), (3, 4.7)) �N
−→
Ψ #

AND N ((5, 2.1), (3, 2.1))

and this allows the same type of computation as the one above : the output
control point satisfies the abstract element (8, 2.1)N . This is done automatically
by a reframing function :

Definition 5. A reframing function takes two abstract elements containing a
notion of interval, and returns two new abstract elements whose interval widths

378 J. Bertrane

AND

changes
<5 value

<3 value
changes

<3 value
changes

<8 value
changes

<5 value
changes
during during

during during
4.7 2.1

2.1 2.1

implies

implies

2.1
during

implies

implies

Fig. 4. Computing the abstract operator AND in the changes counting domain

are equal, and that are consequences of the two input elements. We call ϕ0 the
basic reframing function that returns its input elements, only modified in that
the interval width is the shortest of its two input interval widths.

For instance, ϕ0((5, 2.1), (3, 4.7)) 	 ((5, 2.1), (3, 2.1)). Trickier reframing func-
tions may easily be defined for the Changes counting domain elements.

Transfer Functions of Time-Independent Operators. All the time-independent
operators OP are connected to an abstract forward transfer function ΨOP# defined
by :

ΨOP#,ϕ((n1, δ1), (n2, δ2)) 	 (ñ1 + ñ2, δ̃1)

where ϕ is a reframing function and ϕ((n1, δ1), (n2, δ2)) = ((ñ1, δ̃1), (ñ2, δ̃1)).
This abstract function is clearly sound, since the result of a time-independent
operator may change only if one of its inputs changes.

Transfer Function of Time-Dependent Operators. This case is much more dif-
ficult. We consider for instance the operator DISCR[μ,ν] which models the peri-
odic reading of an input buffer (according to an imprecise clock whose cycles
last between μ and ν time units; μ, ν ∈ R+∗). First, we may deduce stability
information without even looking at the input, since this operator performs a
discretization. We know that the output signal may not change its value more
than once during any interval [x; x + μ], x ∈ R+, which generates the abstract
element (1, μ)N .

But this may not be precise enough. Another argument can be considered.
We assume that we already know that during any interval [x; x + δ], any input
signal may change its value at most n times :(n, δ)N . Let us consider any inter-
val [y; y+η] at the control point after the discretization. It is included in at most

Proving the Properties of Communicating 379

j =
⌈

η
μ

⌉
+1 consecutive cycles1 of the discretizer, which cover an interval [z, z +

hwsρ], with ρ �
⌈

η
μ

⌉
∗ ν + ν.

Now, [z, z + ρ] is of width ρ, and during these
j cycles, only

⌈
ρ
δ

⌉
∗ n value changes may occur

at the input control point. Since the operator is
only discretizing the input signal, it doesn’t add
any value change, and therefore at most

⌈
ρ
δ

⌉
∗ n

value changes may occur during the j cycles, and
a fortiori during [y; y + η]. Since ρ �

⌈
η
μ

⌉
∗ ν + ν,

we know that
⌈

ρ
δ

⌉
∗ n �
⌈
1 η

μ2∗ν+ν

δ

⌉
∗ n, and we

may soundly define :
−→
Ψ #

DISCR[μ,ν]η(n, δ) 	
(⌈

1 η
μ2∗ν+ν

δ

⌉
∗ n, η

)
DISCR[;]

k+jc
kc

z+rz

y

k

y

c k+jc

during

*n value
changes

Computing
−→
Ψ #

DISCR[μ,ν]η
(n, δ)

We introduced a η parameter in the computation of the abstract operator
that will necessarily also be a parameter of our analysis. The operator and the
analysis are sound for any η. When an analysis is not successful, modifying this
parameter is a way to refine it.

Reduced Product Between the Constraints Domain and the Changes Count-
ing Domain. It is clear that any signal that may not change its value more
than once in 2 time units, and that also satisfies the constrains ∀〈0; 0〉 : True
and ∀〈2; 2〉 : True is always equal to True between 0 and 2. Indeed, if it was
equal to False at some point t between 0 and 2, then it would change its value
at least twice during the [0; 2] interval (once between 0 and t, and once between t
and 2).

We now generalize informally to a more realistic yet simple example the re-
duced product : we study how the conjunction (c1 ∧ c2)C of two constraints and
the abstract element (1, stab)N may be reduced.

We define a function ρ connecting any pair (c1, c2) of constraints and any real
stab that satisfies the following conditions :

– the intervals of the two constraints are disjoint
– the values of the constraints are equal. We call b this value.
– in case c1 is before c2 (which makes sense when the first condition is satis-

fied), left influence border(c2) − right influence border(c1) < stab,
and conversely in the other case.

to a new constraint : ∀〈right border(c1); left border(c2)〉 : b.

1 �v� denotes the smallest integer greater or equal to v.

380 J. Bertrane

For example, we consider on
the figure on the right that the
following abstract elements are
satisfied :
• c1 = ∀〈1; 2〉 : true
• c2 = ∃[3; 4] : true
• (1, 2.5)N , i.e. one value
change at most during any in-
terval of width 2.5

(1,2.5)changes counting

<1,2>:true1c = [3,4]:truec =2

false

true

32 41

right_influence_border(c)

= right_border(c) left_border(c)

left_influence_border(c)

x z

1

1

2

2

y

The three abstract elements

This transformation is sound for the same reason as the one proving the
∀〈0; 0〉 : True ∧ ∀〈2; 2〉 : True ∧ (1, 2.)N case. For instance, if we assume that
a signal sp at a control point p satisfies the constraints c1 and c2, the changes
counting condition (1, stab), that the three previous conditions are satisfied and
that c1 is before c2, then we know that :

– at a point x after right influence border(c1) and before right border(c1),
the signal takes the value b

– at a point y after left border(c2) and before left influence border(c2),
the signal takes the value b

If at some point z between x and y, the signal takes the value ¬b, then (1, stab)N
is not satisfied, since the width of [x; y] is smaller than the width of

[right influence border(c1); left influence border(c2)]

which is smaller than stab : the signals changes its value once between x and z
and once between z and y. As a consequence, the signal must take the value b
at point z, and therefore at any point between x and y and a fortiori during the
whole interval [right border(c1); left border(c2)].

This argument is generalized to any finite set of constraints. The ρ function
is applied to all the pairs present in the constraint set, and the result is soundly
added to this set of abstract elements. It may also be generalized to the case
where the changes counting abstract element is (n, stab)N instead of (1, stab)N .

6 Integral Bounding

Origin and Goals of This Domain. We assume that a system contains two control
points p1 and p2 clocked by different desynchronized clocks C1 and C2. Compar-
ing the values v1(t) and v2(t) of the semantics restricted to these control points
at a time t is needed in order to set interesting properties and to prove them.
However, which time t should we consider ? It would be necessary to consider
any n-th tick C1(n) and C2(n). But we often don’t even know their interleaving.
However, one thing that vary continuously with a slight move of a clock tick is
the integral of the value. We consider the boolean signals are converted into 0

Proving the Properties of Communicating 381

or 1 integer signals. Since the semantics is defined step by step, following the
clocks, the signals may vary only finitely many times during an interval of finite
width, and there is no risk of undefined integral.

Definition of the Integral Bounding Domain. As for the changes counting domain,
this domain may be split into a local and a global version. We present the more
complex global one, from which it is easy to extract the local version. The basic
element of the Integral bounding domain, denoted by I, is the Integral bound.

Definition 6 (Integral bound). The set of Integral bounds is R+×R+×R+.
The top element, denoted by � is (+∞, 0, +∞). The bottom element, denoted
by ⊥ is (1, 1, 0).

The meaning of an element (δ, α, β) at a control point p1, where S1 denotes the
set of signals in the concrete semantics, is :

∀v ∈ S1, ∀x ∈ R+, α �
∫ x+δ

x

int of bool(v(t))dt � β,

where int of bool :
{

True �→ 1
False �→ 0 . We may therefore define a concretization

function γ as the following set :

γ(δ, α, β) 	
{

v : R+ �→ B, ∀x ∈ R+, α �
∫ x+δ

x

int of bool(v(t))dt � β

}
.

It automatically defines a pre-order on I : ∀i1, i2 ∈ I, i1 �I i2 ⇐⇒ γ(i1) ⊆ γ(i2)
In fact, we consider the equivalence classes of elements of this abstract domain
according the equivalence relation �I ∩ I . On these classes, �I is an order.

The Integral bounding domain transfer functions that propagate the infor-
mation available at one control point to the other ones according to the syntax
are all constant equal to �, which is clearly sound. A reason for this deliberate
loss of precision is that the Integral bounding domain is always used in reduced
products, that will be described in the next sections.

Reduced Product Between the Integral Bounding Domain and the Changes
Counting Domain. In the ideal case, we are in presence of two already proven
properties of any signal v in the semantics for a particular control point p1 and
for any x ∈ R+ :

– v satisfies a changes counting condition : the value v(t) at time t doesn’t
change more than n times during any interval [x; x + δ]

– v satisfies an integral bounding condition : α �
∫ x+δ

x v(t)dt � β.

This is optimal in that the width of both types of the intervals (δ) is the same.
If this isn’t the case, we may reuse a reframe function defined before. Now, if
we consider [x; x + δ[as the union

⋃
j

[
x + j

k × δ; x + j+1
k × δ
[
, and we try to

dispatch the n value changes inside these k intervals, we discover that there

382 J. Bertrane

width :
xx x+ δk

+δxx x+ δk

chng :

+δxx x+ δk

0

x +δ

k
δsignal

x

2 00000001

2# chng :

10 2 000000

2 0000000

correct case incorrect cases

chng :

3 value changes
δ +δ

Fig. 5. Three cases that may happen while dispatching the n value changes in the
intervals, the two on the right are discarded, because they do not satisfy the conditions,
respectively the changes counting condition and the integral bounding one

is a finite disjunction of cases, and that we have some information about the
constraints on each of these cases. Some must be discarded, since in any case,
they won’t satisfy the Integral bounding condition. Three cases are presented on
Fig. 5.

Reduced Product Between the Integral Bounding Domain and the Constraint
Domain. We consider here a control point where the following local integral
bounding condition is satisfied :

0 �
∫ x+4

x

v(t)dt � 3.

We also assume that at this control point, the constraints ∀〈x; x + 1〉 : True and
∀〈x + 3; x + 4〉 : True hold. Since∫ x+4

x

v(t)dt =
∫ x+1

x

v(t)dt +
∫ x+3

x+1
v(t)dt +

∫ x+4

x+3
v(t)dt = 2 +

∫ x+3

x+1
v(t)dt,

it is clear that we may safely replace the integral bounding condition by a new
more precise one :

0 �
∫ x+3

x+1
v(t)dt � 1.

Having, as in this example, the interval of a Constraint included in the in-
terval of a local integral bounding is exceptional. But in the case of a global

Proving the Properties of Communicating 383

integral bounding condition, we may “choose” any starting point : the condition
is valid for each of them. An interesting choice made by the analyzer for this
starting or ending point would be the borders of the Constraint elements already
accumulated at the considered control point.

The Reduced Product Between the Integral Bounding, the Constraint and the
Changes Counting Domain. A reduced product is obtained from the three ba-
sic domains by considering all the optimizations described earlier and combining
them. We propose an example in the next section.

7 Analyzing Imperfectly-Clocked Synchronous Systems

We present here the simulation of an analysis build on top of the three presented
domains of an academic example. We analyze a simple system which could eas-
ily be build for example in SCADE. A graphical representation of this system is
presented on Fig. 6. The classical PRE operator is initiated with the false value,
as a p4=false->PRE p2 in Lustre. We assume the entrance signal is quite sta-
ble : it may not change its value more than once in any interval of width 100
time units.

The stability at point p1 is translated into the abstract element (1, 100)N . Fol-
lowing the abstract operator for the changes counting domain defined in Sect. 5,
we get a condition for the signals at points p2 and p3 :

Ψ#
DISCR[39,41]116(1, 100)N =

(⌈⌈116
39

⌉ ∗ 41 + 41
100

⌉
∗ n, 116

)
= (2, 116)N .

As a consequence, at points p2, p3, and p4 the signals satisfy the condition
(2, 116)N and a fortiori (2, 100)N . At point p5, the abstract operator for the
logical gate XOR computes the abstract element (4, 116)N . Imagine we try to
prove that for a signal v at point p5,

∫ x+100
x

v(t)dt < 95. We propose a proof by
contradiction. We therefore assume (100, 95, 100)I is satisfied at point p5 and
try to prove that we converge into ⊥.

XOR
p
3

p
4 p

6
p
5p

1

[39;41]

p
2

PRE
[39;41]

DISCR

Fig. 6. A example of system where the cooperation between the three abstract domains
is needed

384 J. Bertrane

95
4

p
3

p
5

XOR

x

signal

x+100

100

changes
<2 value

100

chng :

changes

100

<2 value

chng :

1

0

0 0

0 01

1
p

Fig. 7. One possibility of repartition of the value changes

The analyzer will distribute, as in the Sect. presenting the reduced prod-
uct between the integral bounding domain and the changes counting domain,
the possible changes (at most four) into subintervals of [x; x + 100]. We con-
sider a case with three value changes. Let us assume that [x; x + 100] is di-
vided into four subintervals (i.e. k = 4). The analyzer will then distribute these
changes to the inputs, since a change in the result of a XOR operator neces-
sarily comes from a change in one of its inputs. One of the possibilities is
presented on Fig 7. However, it is soon discarded. Indeed, it implies (among
others) the abstract constraint ∀〈75; 100〉 : true for points p4 and p2. Hence,−→
Ψ #

XOR(∀〈75; 100〉 : True, ∀〈75; 100〉 : True) = ∀〈75; 100〉 : False for the point
p5, which is detected as incompatible with the 95 �

∫ x+100
x

signal(t)dt � 100
condition by the reduced product between the Integral bounding domain and
the Constraint domain. The interaction of the three abstract domains gaps thus
their local weaknesses.

This is a much simplified view of what our analyzer does, even in that simple
case. But step by step, our analyzer discards the impossible cases. If it fails, it will
perform a refinement, either by dividing each interval again, or by changing the
parameters of the abstract operators. If all the cases get discarded, this means
that a sound abstract overapproximation of the concrete semantics is empty, and
thus that this concrete semantics is empty, which puts a end to this proof by
contradiction.

8 Implementation and Future Improvements

This domains were implemented and combined into a prototype of analyzer
written in ocaml. The principle is the same as in the above example. We consider
the intersection A of an overapproximation of the semantics and of the negation
of the wanted property. We iterate the abstract operators in order to get a
precise abstract representation A# of A. If the analyzer proves that A# = ⊥,

Proving the Properties of Communicating 385

the property is proved, since its negation does not intersect with the semantics of
the system. Otherwise, either the analyzer is not precise enough, or the property
is false and a counter-example may be found in the concretization of A#.

Instead of reals, which are omnipresent in our domains, we used the float
type. This may cause rounding errors during the analysis that we would not
detect. We would like to take them into consideration, as explained in [5]. We
would also like to prove the robustness of some systems to errors in the commu-
nication or in the execution. Communication errors could of course be simulated
by removing the bus link and setting at its arrival the value to �, but there are
few chances that a system would still satisfy any interesting specification in that
case. A more interesting approach would introduce probabilities for an informa-
tion to be lost in the communication, and it would require a probability for the
system to recover from this error. A modified version of the integral bounding
domain could undertake this feature.

9 Conclusion

The computerized commands of an embedded system are usually made of several
communicating synchronous systems, each one with its own clock. During a real
execution, the clocks tick imperfectly and the communication delays between the
systems are non-constant. We proposed a realistic model that allows the speci-
fication of the allowed clock skew between several clocks as well as the variable
communication delays. In this model, there may be a non-coutable infinity of
different executions of a the synchronous subsystems. We introduced two new
abstract domains that can express and handle temporal properties despite of
these hardware imperfections. The result of the reduced product of them with a
previously defined abstract domain is able of both expressing and proving many
of the interesting temporal properties in such an environment. It is the basis of
a working prototype of static analyzer.

References

1. A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P. Talpin, and S. Tri-
pakis. A protocol for loosely time-triggered architectures. LNCS, Proceedings of
the Second International Conference on Embedded Software, p. : 252 - 265, 2002.

2. G. Berry. The Constructive Semantics of Pure Esterel. 1999.
3. G. Berry. Proof, language, and interaction: essays in honour of Robin Milner,

Pages: 425 - 454: The foundations of Esterel. MIT Press, 2000.
4. J. Bertrane. Static analysis by abstract interpretation of the quasi-synchronous

composition of synchronous programs. VMCAI, 2005.
5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. The Essence of Computation:
Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, LNCS
2566, 85-108. Springer, 2002.

386 J. Bertrane

6. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. Proc. ACM
SIGPLAN 2003 Conf. PLDI, 196-207, San Diego, CA, USA, . ACM Press, 7-14
juin 2003.

7. P. Caspi. Embedded control: From asynchrony to synchrony and back. 1st In-
ternational Workshop on Embedded Software, EMSOFT2001, Lake Tahoe, Volume
2211 in LNCS, October 2001.

8. P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From
simulink to scade/lustre to tta: a layered approach for distributed embedded ap-
plications. Proceedings of the 2003 ACM SIGPLAN conference on Language, com-
piler, and tool for embedded systems, 2003.

9. P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language
for programming synchronous systems. Proceedings of the 14th ACM symposium
on Principles of programming languages, POPL’87, 1987.

10. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103—179, 1992.

11. N. Halbwachs. Synchronous programming of reactive systems. Dordrecht Boston ,
Kluwer Academic Publishers, 1993.

12. S. Thompson and A. Mycroft. Abstract interpretation of asynchronous circuits.
SAS, Verona, Italy, August 2004.

Parametric and Termination-Sensitive
Control Dependence

(Extended Abstract)

Feng Chen and Grigore Roşu

Department of Computer Science
University of Illinois at Urbana - Champaign, USA

Abstract. A parametric approach to control dependence is presented, where the
parameter is any prefix-invariant property on paths in the control-flow graph
(CFG). Existing control dependencies, both direct and indirect, can be obtained as
instances of the parametric framework for particular properties on paths. A novel
control dependence relation, called termination-sensitive control dependence, is
obtained also as an instance of the parametric framework. This control depen-
dence is sensitive to the termination information of loops, which can be given via
annotations. If all loops are annotated as terminating then it becomes the classic
control dependence, while if all loops are annotated as non-terminating then it
becomes the weak control dependence; since in practice some loops are termi-
nating and others are not, termination-sensitive control dependence is expected
to improve the precision of analysis tools using it. The unifying formal frame-
work for direct and indirect control dependence suggests also, in a natural way,
a unifying terminology for the various notions of control dependence, which is
also proposed in this paper. Finally, a worst-case O(n2) algorithm to compute
the indirect termination-sensitive control dependence for languages that allow
only “structured” jumps (i.e., ones that do not jump into the middle of a di erent
block), such as Java and C#, is given, avoiding the O(n3) complexity of the trivial
algorithm calculating the transitive closure of the direct dependence.

1 Introduction

Control dependence plays a fundamental role in program analysis: in program slicing
[13,18], in compiler optimization [12,1], in total program correctness [15], and in secu-
rity (of information flows) [11]. Intuitively, a statement S control-depends on a choice
statement C i the choice made at C determines whether S is executed or not. Be-
cause of the significance and broad range of applications of control dependence, related
definitions and algorithms have been extensively investigated: [12] gives an e cient
algorithm to compute (direct) control dependence; [15] introduces strong control de-
pendence (also called the range of the control statement in [19]) as well as weak control
dependence; [4] defines a generalized control dependence to capture both classic and
weak direct control dependencies, together with their corresponding algorithms.

Although all these notions of control dependence are related, there is no adequate
unifying framework for all of them, not even a uniform or consistent terminology. This

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 387–404, 2006.
c Springer-Verlag Berlin Heidelberg 2006

388 F. Chen and G. Roşu

often results in confusion and di culty in understanding existing work, and may slow
future developments, in particular defining new, or domain-specific control dependence
relations. For example, the strong control dependence in [15] is the transitive closure of
the control dependence in [12], contradicting common practice in formal terminology,
since the former is actually weaker than the latter as a binary relation; the generalized
control dependence in [4] addresses only the direct control dependencies (classic and
weak), but omits the word “direct” in definitions and proofs, and also proposes the ter-
minology “loop control dependence” for (direct) weak control dependence; [15] claims
that strong control dependence is included in weak control dependence, which appears
quite intuitive, but it is non-trivial to prove rigorously. A rigorous development of a
unifying framework for the various control dependences, like the one proposed in this
paper, would enhance understanding and clarify terminology in this area.

A first important step in this direction is made by [4], which defines a generalized
control dependence that is parametrized by a property on paths and captures both classic
and weak direct control dependences. A linear time algorithm [4] detects all statements
that directly depend on a choice statement. However, the parametric approach in [4]
covers only direct control dependence. The first contribution of our work, parametric
control dependence (Section 3), consists of an extension of the work in [4] that also
includes indirect control dependencies, as well as comparisons of di erent concrete
instances of it. Our compact prefix-invariance property of the parameter is equivalent
to the intersection of all the constraints on the parameter required by the results in [4],
modulo the fact that we do not add a self-looping edge to the terminal node of the
CFG to capture weak control dependence; in fact, we need to apply no transformations
on CFGs in order to capture particular control dependencies as special cases. We also
develop a rigorous mathematical theory in Section 3, capturing formally many results
about di erent control dependence relations (Corollaries 1, 2 and 3).

The second contribution of this paper consists of defining a new control dependence
relation that we call termination-sensitive control dependence, because it is sensitive to
the termination information of loops, which can be given as annotations. If all loops are
annotated as terminating then the termination-sensitive control dependence becomes
the classic control dependence, while if all loops are annotated as non-terminating then
it becomes the weak control dependence. If some loops are annotated as terminating
while others not, then the termination-sensitive dependence strictly includes the clas-
sic control dependence and is strictly included in the weak one. Thus, one can regard
it as a “knob” allowing one to tune the precision anywhere in between the two most
widely accepted, but rather extreme control dependence relations. Since in practice
some loops are terminating and others are not, termination-sensitive control depen-
dence is expected to improve the precision of analysis tools using it. We introduce
this termination-sensitive control dependence and derive all its properties as a formal
instance of the parametric control dependence in the first part of the paper; it is in fact
this new control dependence together with the lack of foundational and algorithmic sup-
port for indirect variants of control dependence of the generic control dependence in [4]
that motivated our parametric approach to control dependence presented in Section 3.

The third contribution of our paper, Section 5, consists of an O(n2) algorithm to
compute all control scopes for all the (branch) statements in a program of size n, in the

Parametric and Termination-Sensitive Control Dependence 389

context of higher level programming languages, such as Java and C#; statement S is in
the control scope of C if and only if S termination-sensitive indirectly control-depends
on C (control scope will be defined in Section 5). Since our control scopes become
precisely the transitive closures of the classic and weak direct control dependencies
when the loops are all annotated as terminating and as non-terminating, respectively,
this generic algorithm seamlessly yields special instance algorithms to calculate the
indirect versions of these dependencies, namely the complete strong and weak control
dependencies, in O(n2) complexity. These results appear to be new even in the widely
accepted, but in our view restricted, framework of strong and weak control dependence.

Section 2 revisits control dependence notions and presents them in a uniform light,
as instances of the forthcoming parametric control dependence. Section 3 presents our
parametric version of control dependence; a result relating the control dependence rela-
tions associated to di erent path properties allows us to compare the various instances
of control dependence, in particular to show that the termination-sensitive (indirect)
control dependence, discussed in Section 4, includes the standard control dependence
but is included by the weak control dependence. Section 5 discusses the O(V 2) algo-
rithm to compute the entire termination-sensitive indirect control dependence. Due to
space limitations, the interested reader is referred to [8] for detailed proofs.

Motivation. Even though direct variants of control dependence tend to su ce in pro-
gram slicing e orts, there are many applications that need indirect control dependence.
For example, in [19], the (indirect) control dependence is used to define and reason
about information flow in security, and in [15], (indirect) weak control dependence is
used to prove total correctness of programs. A less standard application domain is that
of runtime analysis or multithreaded systems, described in more detail below.

Our main motivation for the termination-sensitive control dependence came from
e orts in debugging multithreaded systems, namely in improving the accuracy and the
coverage of predictive runtime analysis [7]. Since we refer back to it later in the paper,
we explain this runtime analysis on a very simple example. Assume the running threads
and events in Figure 1, where e1 causally precedes, or “happens-before”, e2 (e.g., e1

writes a shared variable and e2 reads it right afterwards), and the statement generating
e3 is in the control scope of the statement generating e2, while the statement generating
e3 is not in the control scope of e2. Then we say that e3 is dependent upon e1, but that
e3 is not dependent upon e1, despite the fact that e1 obviously happened before e3.

e2
e1

e3

T1 T2

e’3

Fig. 1. Predictive Analysis

The intuition here is that e3 would happen anyway,
with or without e1 happening. Because of its combined
static dynamic flavor, we call this new dependence rela-
tion on events the hybrid dependence. Interestingly, if the
events in the scope of e2 are not relevant for the prop-
erty to check, then any permutation linearization of rele-
vant events consistent with the intra-thread total order and
the hybrid dependence corresponds to some valid execu-
tion of the multithreaded system. Therefore, if any of these
permutations violate the property, then the system can do
so in a di erent execution. In particular, without any other dependencies but those in
Figure 1, the property “e1 must happen before e3” can be violated by the program gen-

390 F. Chen and G. Roşu

erating this execution, even though the particular observed run does not! Indeed, there
is no evidence in the observed run that e1 should precede e3, since e3 happens anyway.

The control scope of a statement is determined statically, as the set of statements
that control depend on it. Unfortunately, classic control dependence does not consider
non-terminating loops, thus leading to false positives in the runtime analysis, while
weak control dependence makes the worst case assumption (all loops are not termi-
nating), resulting in over-restrictive dependence among events and thus false negatives.
Termination-sensitive control dependence takes the termination information of loops
into account in order to build a more precise control dependence relation.

2 Control Dependence Revisited

Here we discuss some of the major known results on control dependence, introducing at
the same time a uniform notation and terminology. Some of the results in this section are
mentioned in other works as ”folklore”; however, we were not able to find them proved
formally in the literature. We will show that all these results follow as corollaries of the
general results in the next section. The structure of the results in this section anticipates
the structure of those for parametric control dependence in the next section.

Preliminaries. A directed graph G is a pair V E , where E V V . The elements of V
are called nodes and those of E are called edges. A finite path of G is a finite sequence
of nodes u1u2 um 1 such that (ui ui 1) E for all 0 i m, where m 0 is its
length. If u u1 and v um 1 then we call this path a u v path. For any node u, we
let u be the empty path from u to itself; its length is 0. An infinite path is an infinite
sequence u1u2 such that (ui ui 1) E for all i 0. A u path is a (finite or infinite)
path starting with u. We let Paths(G) be the set of all paths of G, finite or infinite. For a
path either infinite or finite in length greater than or equal to k 0, we let k be the
path containing the first k edges of , i.e., u1u2 uk 1. We also define the concatenation
of paths: if u1u2 um finite and umum 1 finite or infinite, then is the finite
or infinite path u1u2 umum 1 . A property of paths in a graph G is a set Paths(G).
For any Paths(G), we say that () holds, or simply (), i .

Definition 1. [12] A control flow graph CFG V E START END is a directed
graph V E together with an entry node, START, from which every other node is reach-
able, and an exit node, END, reachable from any other node. We make the standard
assumption that nodes in V except END can have either one or two successors. Let
VC V denote the set of nodes with two successors and call them choice nodes.

Nodes in V correspond to statements in the program, edges in E indicate possible flows
of control in the program, and choice nodes correspond to choice statements, such as
conditionals, e.g., C1 in Figure 2 (A). Conditionals can also be parts of loops, e.g., C1

and C2 in Figure 2 (C). Due to the assumption on the number of successors, E O(V).
In this paper, we tend to use letters at the beginning of the Greek alphabet, such as

, etc., for u v paths, and letters and so on, for infinite or u END paths,
though this convention is not strictly obeyed. From here on we fix a CFG.

Parametric and Termination-Sensitive Control Dependence 391

(B)

i>0

y ++

T

F

z = y

C1

S1

S2

(C)
(A)

i>0

x = 1 y = 1

z = x

C1

S1 S2

S3

T F
j > 0

j ++

T

F

C1

S1

i < nC2

No

T

z = y

S2

F

j > 0

i ++

T

F

C1

i < nC2

T

z = yS3

F

S1

z = 1

S2

(D)

z = yS4

Fig. 2. Some control flow graphs

2.1 Classic Control Dependence

Definition 2. ([12,11]) Node u is post-dominated by node v, written u v, i all
u END paths contain v. Let PostDom(u) be the set of post-dominators of u except u.

The notation u v symbolizes that no matter how we leave u (the first two edges of
the diamond), we eventually converge (the other two edges of the diamond) and reach
(the arrow) v. In Figure 2 (A), C1 S 3, while S 1 and S 2 do not post-dominate C1; in
Figure 2 (B), C1 S 2, while S 1 is not a post-dominator of C1 – however, there is no
guarantee that S 2 will be reached once C1 is reached, because of the potentially infinite
loop through C1. In our context of predictive runtime analysis, this reflects a serious
limitation of the classic notion of control dependence; we will discuss this issue shortly.

Lemma 1. The post-dominance relation, , is a partial order on the nodes of CFG.

The following properties of post-dominance are immediate corollaries of our parametric
control dependence framework in Section 3:

Corollary 1. The following hold: (1) If v1 v2 PostDom(u) then either v1 v2 or
v2 v1, i.e., PostDom(u) is a total order; and (2) For any u, if PostDom(u)
then PostDom(u) has a unique first element w.r.t. .

Definition 3. Let ipd(u) be the first element of PostDom(u) , called the immediate
post-dominator of u; let u v i v ipd(u).

The immediate post-dominator is the post-dominator that appears first on any u END
path. For example, in Figure 2 (A), C1 S 3 since S 3 appears before any other post-
dominators of C1 on any path from C1 to END; in Figure 2 (B), C1 S 2.

Proposition 1. is an inverted tree rooted at END.

One can encode as a post-dominance tree [14,12] with END at its root. Using post-
dominance, direct control dependence can be defined as in [12]:

Definition 4. Node v is directly control dependent on node u, written u
dcd

v, i (1)
there exists a u v path such that v post-dominates every node in di erent from u;
and (2) u is not post-dominated by v.

392 F. Chen and G. Roşu

For example, in Figure 2 (A), S 1 and S 2 are directly control dependent on C1 but S 3

is not; while in Figure 2 (B), S 1 is directly control dependent on C1 but S 2 is not. In
Figure 2 (C), S 1 is directly control dependent on C1 but not on C2 (because S 1 does not
post-dominate C1). Note that direct control dependence is not a partial order on nodes:
in Figure 2 (C), C1 and C2 are directly control dependent on each other.

The notion of direct control dependence has been widely used in program analysis,
e.g., in program slicing [13,18] and compiler construction [12], where it was called just
“control dependence”. However, this relation only captures the direct dependence among
statements; it does not capture indirect dependence. Recall, e.g., that in Figure 2 (C), S 1

does not directly control depend on C2; however, note that once C2 is reached, the execu-
tion of S 1 depends on the control decision made at C2! Therefore, S 1 control depends on
C2 by all means, suggesting that the terminology proposed in [12] for control dependence
is, perhaps, not the most appropriate one. We will shortly see that S 1 is in the transitive
closure of the direct control dependence on C2; for some reason, this transitive closure of
direct control dependence was misleadingly called “strong control dependence” in [15].
We will call it simply “control dependence” in what follows, because we think it cap-
tures best the dependence of some statements on the control decision made by others. As
an example of an application where (indirect) control dependence is needed in the con-
text of information flow, see [11]. Another use of it appears in the context of debugging
multithreaded systems (see the discussion in Section 1 on predictive runtime analysis
regarding the sample execution trace in Figure 1); e.g., in Figure 2 (C), if C1C2C1S 1S 2

is an execution, the analysis needs to know that S 1 also depends on the choice made at
C2 to not exit the loop, which is caused by an indirect control dependence in the CFG.

In fact, even before direct control dependence was introduced in [12], Dennings al-
ready discussed the indirect influence of control statements on the program flow in [11].
It was also called the range of branches in [19], which is nothing but the transitive clo-
sure of direct control dependence, as informally mentioned in [12,16] without proof.
Podgurski and Clarke [15] called it “strong control dependence”, to emphasize that it
was stronger than their “weak” control dependence, still without proving that it was the
transitive closure of the direct control dependence, thus leading to a slightly inconsis-
tent terminology: for a relation R (control dependence in their case) “strong R” ended
up strictly including R. For reasons explained above, we prefer to drop the adjective
“strong” and call it just control dependence:

Definition 5. Node v is control dependent on u, written u
cd

v, i there exists some
u v path that does not contain ipd(u), the immediate post-dominator of u.

For example, in Figure 2 (C), C2
cd

S 1. One can prove the following properties of
control dependence, all of which follow from our parametric framework:

Corollary 2. (Follows by Theorem 1 and Proposition 4) For
dcd

and
cd

, the following
hold:

1.
cd dcd

(one cannot replace
dcd

by
dcd

because
cd

needs not be reflexive);

2. If u
cd

v then PostDom(u) PostDom(v); in particular, ipd(v) ipd(u);

3. u
cd

v i there exists some u v path such that PostDom(u) .

Parametric and Termination-Sensitive Control Dependence 393

Therefore, control dependence is nothing but the transitive closure of the direct control
dependence, so it is a relation weaker than the direct control dependence.

2.2 Weak Control Dependence

Although control dependence now also captures “indirect” dependence, it still has an-
other important limitation: it is insensitive to (non-terminating) loops; e.g., in Figure
2 (C), S 2 is not control dependent on C1 (the former is the post-dominator of the lat-
ter). This may lead, e.g., to incorrect runtime analysis of multi-threaded systems. Re-
consider the execution in Figure 1. Suppose it is generated by the program in Figure
2 (C). More specifically, suppose that e1 is a write on the shared variable j, e2 is the
following read on j generated by C1, e3 is the write on j generated by S 1, and e3 is
the write on z generated by S 2. One may think that e3 is not control dependent on e2

by definition, that is, that e3 will happen regardless of e2. However, since the loop is
potentially non-terminating, S 2 may never be executed at runtime. Thus, the observed
existence of e3 is a consequence of a fortunate control choice made by C1 when e2

took place. Therefore, e3 should be control dependent on e2. Podgurski and Clarke
[15] introduced strong post-dominance to handle control dependence in the presence of
loops:

Definition 6. Node u is strongly post-dominated by v, written u
s

v, i (1) u v
and (2) there is some integer k 1 s.t. every u path of length larger than or equal to k

passes through v. Node v is a proper strong post-dominator of u i u
s

v and u v.

In other words, u is strongly post-dominated by v i u is post-dominated by v and
there is no infinite u path that does not pass through v; e.g, in Figure 2 (B), S 2 does
not strongly post-dominate C1, because there is an infinite path from C1 that will not
pass through S 2, while in Figure 2 (D), S 1 is strongly post-dominated by C2 but C2 is
not strongly post-dominated by S 3. There may be no proper strong post-dominators for
some nodes; e.g., in Figure 2 (C), neither C1 nor C2 have proper strong post-dominators,
since they can choose to either stay in the loop forever or jump out of it. Based on strong
post-dominance, weak control dependence is defined in [15] as follows:

Definition 7. Node v is directly weakly control dependent on u, written u
dwcd

v, i u

has successors u and u s.t. u
s

v but u is not strongly post-dominated by v; weak

control dependence, written
wcd

, is the transitive closure of
dwcd

.

In Figure 2 (D), C1
dwcd

S 4 because S 2
s

S 4 but not S 1
s

S 4. Weak control depen-
dence is a generalization of control dependence, that is, every control dependence is a
weak control dependence. This was informally mentioned in [15], but it is not straight-
forward to prove it rigorously using their original definitions. However, it will follow
as a corollary of our parametric framework, as shown at the end of Section 3. What
makes this result even more interesting is that direct weak control dependence is not a
generalization of direct control dependence. E.g., in Figure 2 (D), S 3 is directly con-
trol dependent but not directly weak control dependent on C1, while it is directly weak

394 F. Chen and G. Roşu

control dependent but not directly control dependent on C2. Weak control dependence

is not a partial order either: e.g., in Figure 2 (C), both C1
dwcd

C2 and C2
dwcd

C1. The
(direct) weak control dependence makes the worst-case assumption that all loops are
non-terminating, which is very rarely the case in practice. In fact, most loops terminate.

3 Parametric Control Dependence

We next propose a parametric framework to define and reason about control depen-
dence, which incorporates both direct control dependence and direct weak control de-
pendence, as well as their indirect variants, as special cases. This framework can be
easily instantiated to define other control dependence relations, such as the termination-
sensitive control dependence discussed in Section 4. It is fair to say that here we do not
intend to generalize all approaches to control dependence. For example, we believe that
the nice recent work in [16] on extending control dependence to work with CFGs with
more than one or with no end nodes could also be cast as an instance of a parametric
framework, but it is not trivial and we do not attempt to explicitly capture that here.
Also, we believe that the symbolic approach in [3] which interprets CFGs as Kripke
structures and then calculating post-dominators by e cient fair CTL model-checking
queries, can be also extended to well-presentable properties on paths, like our “param-
eters” below, but again, we do not intend to investigate this interesting problem here.

Definition 8. A set Paths(CFG) is a prefix-invariant property on paths i (1)

(END); and (2) () () for any Paths(CFG) (is finite). A u path

is any u path in . Node u is -post-dominated by node v, written u v, i all

u paths contain v. PostDom (u) is the set of -post-dominators of u di erent from u.

From now on in this section, we fix a prefix-invariant property . One can show that
contains all u END paths, that is, () holds for any u END path . By Definition

1 (END is reachable from any u), there exists at least one finite u path. Note that for
some nodes u, PostDom (u) can be empty. For example, as shown after Definition 6,
some nodes may not have strong post-dominators, which will be shown shortly to be a
special case of -post-dominators for a well chosen property .

Proposition 2. For , the following hold:

1. , that is, u v implies u v;

2. is a partial order;

3. If u v and there is a u u path that does not contain v, then u v;

4. If v1 v2 PostDom (u), then either v1 v2 or v2 v1; in other words,

PostDom (u) is a total order;

5. If PostDom (u) then PostDom (u) has a unique first element w.r.t. ;

Parametric and Termination-Sensitive Control Dependence 395

6. is a forest of inverted trees, where u v i v ipd (u), where ipd (u) is the

first element of PostDom (u) , called the immediate -post-dominator of u.

One can show that post-dominance and strong post-dominance are two special cases of
-post-dominance by choosing appropriate parameters : let denote the set of all

finite paths ending with END and let be the union of with all infinite paths.

Proposition 3. Both and are prefix-invariant, and and
s

.

We will discuss a third special case of -post-dominance in Section 4, where additional
termination information of loops will be taken into account.

Definition 9. Node v is directly -control dependent on u, written u
d

v, i : (1) there
is a u v path s.t. v -post-dominates its nodes except u; (2) v does not -post-dominate

u. Node v is -control dependent on u, written u v, i there exists some u v path
that does not contain ipd (u).

Note that
d

is not a partial order. For example,
dcd

and
dwcd

, which will be shortly shown

to be special cases of
d

, are not partial orders. This means that, in the worst case, the

time needed to compute the transitive closure of
d

is O(V 3) [10].

Theorem 1. For
d

and , the following hold:

1.
d

;

2. If u v then PostDom (u) PostDom (v); in particular, ipd (v) ipd (u);

3. u v i there exists some u v path such that PostDom (u) .

One can also show that direct control dependence and direct weak control dependence
are two special cases of direct -control dependence, while control dependence and
weak control dependence are two special cases of -control dependence:

Proposition 4.
dcd d

and
dwcd d

, and
cd

and
wcd

.

The following proposition will allow us to compare control dependencies, based on just
a simple comparison of their corresponding parameters:

Proposition 5. If are prefix-invariant properties then: (1) ;

(2) PostDom (u) PostDom (u); (3) ipd (u) ipd (u); and (4) .

Corollary 3.
cd

for any prefix-invariant property ; in particular,
cd wcd

.

Interestingly, the inclusion of the direct versions of the dependences in the corollary

above does not hold. For example, it is not the case that
dcd dwcd

.

396 F. Chen and G. Roşu

4 Termination-Sensitive Control Dependence

Weak control dependence takes loops into account using strong post-dominance, which
is more suitable for proving total correctness of programs [15] than classic control de-
pendence. However, weak control dependence unfortunately makes the worst-case as-
sumption about the termination of loops in the program, namely, all loops are assumed
to be potentially infinite. Considering the fact that most loops terminate in real pro-
grams, this assumption is too conservative in practice. Let us look at the example in
Figure 2 (D). The loop containing S 1 and C2 obviously terminates, so S 3 will be even-
tually executed once C2 is reached. In other words, the execution of S 3 does not depend

on the choice made at C2. However, by Definition 7, C2
wcd

S 3. Such over-restrictive
assumptions may bring false positives to static program analysis, while for our runtime
predictive analysis, they may generate over-restrictive control dependences on events,
reducing the number of potential permutations of events when investigating possible
actual executions, resulting in more false negatives, i.e., a reduced coverage.

In this section, we introduce a new control dependence relation, named termination-
sensitive control dependence, as another instantiation of the parametric control depen-
dence framework presented in Section 3. As indicated by its name, this control depen-
dence takes the termination information of loops into account to improve the precision
of program analyses that make use of control dependence. Although termination anal-
ysis is an undecidable problem, there exist some e ective algorithms to approximately
determine termination of programs, e.g., [9,5] (more discussion on these algorithms is
out of the scope of this paper). Besides, termination information can also be provided
by users (e.g., using special annotations) or detected by heuristics-based criteria (for ex-
ample, a loop whose condition is i n and in which i is increased at each iteration will
always terminate). Here we only focus on defining a more precise control dependence
relation using existing termination information, which is assumed to be correct.

Definition 10. A termination-sensitive control flow graph V E START END V is
a CFG V E START END together with a distinguished set of nodes V V.

The nodes in V can be thought of as nodes that can lead to non-terminating executions.
In practice, one would like to annotate as few statements as possible to provide the ter-
mination information; if that is the case, then V can contain precisely the conditions of
those loops that may not terminate.Theoretically, one can add to V all the unavoidable
statements in such loops, but this is not necessary. Besides, some of these statements
can themselves be loops, but ones which terminate. From here on, we fix an arbitrary
termination-sensitive CFG and define complete paths as follows:

Definition 11. A complete path is a path that is either finite and ends with END, or
is infinite and inf() V , where inf() gives those nodes visited infinitely often in

. Let denote the set of complete paths of the termination-sensitive CFG.

Note that infinite paths generated by “nested” loops in which the outer ones are an-
notated as “non-terminating” (in V), while the inner ones are “terminating”, are con-
sidered complete as far as the outer loop is executed infinitely often. One may want
to instead annotate the “terminating” nodes as a subset V V and then require the

Parametric and Termination-Sensitive Control Dependence 397

complete path to satisfy inf() V ; while this is reasonable and fits our paramet-
ric setting as well, such an approach would be less precise, because it would exclude
common paths as the ones generated by nested loops as above. There is an interesting
similarity between termination-sensitive CFGs and Buchi automata [6], where the role
of accepting states is played by V and that of accepted words by complete paths.

One can show that is also a prefix-invariant property on paths. Indeed, for any
u v path and v path , is a u END path i is a v END path. Besides,
if is infinite, then since is finite, inf() inf(). Therefore, inf() V
inf() V ; in particular, inf() V i inf() V . Based on the parametric
framework for control dependence introduced in Section 3, we can define correspond-
ing post-dominance and dependence notions: -post-dominance, immediate -post-
dominance, direct -control dependence, and -control dependence. The following
results follow immediately from the generic framework in the previous section:

Corollary 4. For , the following hold:

1. , that is, u v implies u v;

2. is a partial order;

3. If v1 v2 PostDom (u), then either v1 v2 or v2 v1; in other words,

PostDom (u) is a total order;

4. If PostDom (u) then PostDom (u) has a unique first element w.r.t. ;

5. is a forest of inverted trees;

Corollary 5. For
d

and , the following hold:

1.
d

;

2. If u v then PostDom (u) PostDom (v); in particular, ipd (v) ipd (u);

3. u v i there exists some u v path such that PostDom (u) .

Now we are ready to define termination-sensitive control dependence and to compare
this new control dependence with classical and weak control dependence:

Definition 12. Let
tscd

: be the termination-sensitive control dependence.

Proposition 6.
cd tscd wcd

(it follows by Proposition 5, since).

Note that there are no inclusions between the direct versions of these control depen-

dences, i.e., between
d

(or
dcd

) and
d

or between
d

and
d

(or
dwcd

). For example,
consider the CFG in Figure 2 (D). Suppose that C2 V (i.e., the loop containing S 1

and C2 is annotated as “non-terminating”). Then C1
d

S 3 but S 3 is not directly -

control dependent on C1, while C2
d

S 3 but S 3 is not directly control dependent on

C2. Suppose next that C2 V . Then C1
d

S 3 but S 3 is not directly weak control

dependent on C1, while C2
d

S 2 but S 2 is not directly -control dependent on C2.

398 F. Chen and G. Roşu

By Proposition 6, the set V acts as a “knob” tuning the precision of the control
dependence relation. For example, if V then termination-sensitive control depen-
dence becomes precisely classic control dependence. If V V then it becomes weak
control dependence. In practice, V is somewhere in-between and V . However, the
more nodes are added to V , the more dependences are added, i.e., the weaker the de-
pendence relation becomes. For example, in Figure 2 (C), suppose that C2 V . Then
S 2 is not termination-sensitive control dependent on C2. But if the user declares that

C2 V despite the actual semantics of the program, we will have C2
tscd

S 2.
Ideally, one would like to pick a V which would generate a minimal set of complete

paths that includes all the actual execution paths of the program to analyze. Unfor-
tunately, the selection of such an optimal V is di cult to achieve, because one would
need to automatically prove termination of loops, an undecidable problem. A safe ap-
proach would be to start with V V , and then remove from it all the statements which
are not loop conditions, then all those loop conditions controlling terminating loops
which can be detected by heuristic criteria or declared so by users or code generators.

5 Control Scope

The control scope of a conditional statement is the set of statements that control de-
pend on it, where the control dependence is termination-sensitive and indirect. In other
words, S is in the control scope of C i the execution of S depends upon a fortu-
nate choice made by C. Algorithms to compute direct control dependence [12] and
direct weak control dependence [4] are well-known. These algorithms take linear time
to detect all the statements that directly depend upon a given statement C, and can be
used to construct program dependence graphs (PDG) [13], which are widely adopted
in program slicing. These linear algorithms to calculate control dependencies are suf-
ficient in applications where high online speed is not crucial and where only the di-
rect dependencies are necessary, such as debugging. However, there are applications
that need the transitive versions of the control dependences. For example, in [19], the
(indirect) control dependence is used to define and reason about information flow in
security, and in [15], (indirect) weak control dependence is used to prove total cor-
rectness of programs. Also, in predictive runtime analysis, one prefers to calculate all
the dependencies statically and then spend constant time at runtime to check whether
the statements generating two events depend upon each other, to reduce the runtime
overhead.

From here on, by control dependence we mean termination-sensitive control de-
pendence. Statically calculating all the direct dependencies for all the statements can
therefore be achieved in O(V 2), since the parameter property on paths that leads to our
control dependence fits the framework in [4]. However, it is not clear how to e ectively
calculate indirect control dependencies. A blind application of the transitive closure of
direct dependence would yield an O(V 3) algorithm (since direct control dependence is
not a partial order), which can be impractical even on relatively small programs. With-
out additional information about the program which generates the CFG, there is nothing
that one can do to decrease the complexity of calculating control dependence. However,
CFGs are typically generated from actual code that is stored as lines of sequences of

Parametric and Termination-Sensitive Control Dependence 399

characters in files. In what follows, we augment the CFG with code references and show
that, under some mild and common restrictions, we can calculate the entire control de-
pendence relation in O(V 2), which is the same as the complexity of calculating direct
control dependence. These results appear to be new even for classic and weak control
dependence relations, both special cases of our (termination-sensitive) control depen-
dence. It may seem that O(V 2) is still impractical in large applications; however, in the
case of predictive runtime analysis or unit testing, we only need to calculate the control
scopes for relatively small units, e.g., only intra-procedurally.

The nodes of a CFG generally correspond to either simple statements (ones that
do not contain sub-statements) or to conditions that are part of compound statements
(ones that contain sub-statements); these are formalized in Definition 14. We con-
sider two types of compound statements, conditionals and loops; note that although
a programming language may also support other kinds of compound statements, e.g.,

, such statements are decomposed into simple statements when constructing
the CFG, so they need not appear explicitly in the CFG (they appear only implicitly, en-
coded by corresponding edges). Even though CFGs capture faithfully the control flow
of a program, unfortunately, precious structural information about the program, such
as where a compound statement starts and where it ends, is generally not reflected in
a CFG.

In what follows we augment CFGs with structural information by adding to each
node a corresponding unique line, or code reference number, which can be thought of
as the position in the program of the statement corresponding to that node. The reference
numbers of all nodes are assumed distinct. Since there is a one-to-one correspondence
between (simple and compound) statements in the program and nodes in the CFG, we
can identify statements with the reference numbers of their corresponding nodes. Since
the corresponding node in the CFG of a loop is its condition, the reference number
of a statement is not necessarily the line number where that statement starts! E.g., the
reference of in Fig. 3 (B) is 3. We next formalize this:

Definition 13. A sequential CFG (SCFG) V E START END # is a CFG together
with injective maps # : V and : V Intervals() such that: (1) #(C) (C) for
any C V ; and (2) (C) (C) for any C C V with #(C) (C).

associates to each node (simple statement with out-degree 1 or condition part of
a compound –conditional or loop– statement with out-degree 2) a unique number.

returns for each condition the code boundaries of its compound statement, as an
interval bounded by the smallest and the largest reference numbers of nodes in the
SCFG covered by that statement; some statements may include but not overlap other
statements.

Fig. 3 shows some SCFGs. Nodes are shown in ascending order of and labeled with
their line numbers; conditions are also labeled with their statement boundaries. The
computation of the function is straightforward and can be done at parse time at no ad-
ditional cost. For example, in Fig. 3 (A), (1) [1 3]; in (B), (3) [2 3]; and in (C),
(1) [1 6]. For each SCFG, one can define a function next : V V END ,

which associates to each node S V V END the number #(S) where (S S) E is
the unique outgoing edge from S . For “jump” statements, including , ,

400 F. Chen and G. Roşu

1: if (i > 0)
2: then x = 1;
3: else y = 1;
4: z = x;

1: do {
2: y ++;
3: } while (y < n);
4: z = y;

1: while (i > 0) {
2: if (j < 0)
3: then break;
4: else i --;
5: j -- ;
6: }
7: z = i;

(B) (C)(A) (B)

y<n

y ++

T

F

z = y

3
[2,3]

4

(A)

i>0

x = 1

y = 1

z = x4

T

F1
[1,3]

2

3

2

i>0

i --

break

z = i7

T

F1
[1,5]

4

2
[2,4]

3

j<0

T

F

(C)

j --5

Fig. 3. Sample programs and their SCFGs

, and exception throwing, next is the reference number of the statement that
S jumps to; e.g., in Fig. 3 (C), next(3) 7. If S is a simple non-jump statement
at the end of a loop body, then next(S) is the reference number of the loop state-
ment; e.g., in (B), next(2) 3, and in (C), next(5) 1. For all other simple state-
ments, the next function simply returns the reference number of the next statement in
the program; e.g., in (A), next(2) next(3) 4, and in (C), next(4) 5. We can
identify statements in the program with their corresponding nodes in the SCFG. From
here on, we call all the nodes in an SCFG statements and define the following SCFG
terminology:

Definition 14. Nodes in V are called compound statements and those in V V are
called simple statements. If C is compound statement and S is any statement with #(S)
(C) then S is a sub-statement of C, or C contains S ; if additionally there is no proper

sub-statement C of C that properly contains S then S is a direct sub-statement of C.

The requirements of SCFGs are common to all programing languages. Most higher
level structured programming languages, such as Java and C#, impose additional re-
strictions on jump statements; e.g., , , , exception throwing, can
only jump to specific positions determined statically at compile time. We next define a
corresponding version of SCFG that captures formally such restrictions on jumps:

Definition 15. A structured SCFG (SSCFG) is an SCFG V E START END # s.t.:
(1) Each compound statement C has a unique entry point, entry(C), which is the lower
bound of (C); if #(S) (C) and next(S) (C) then next(S) entry(C); and (2)
Backward control flows can only be caused by loops: for any (S S) E with #(S)
#(S), there is a compound statement C such that #(S) (C) and #(S) entry(C);
in this case, we call C a loop statement; all compound statements which are not loops
are called conditional statements. For every loop statement L, we let next(L) be the
statement following L, i.e., next(L) : max(#(S 1) #(S 2)) where (L S 1) (L S 2) E.

We next focus on computing the control scope of compound statements. The control
scope of a compound statement C is the set of statements that are control-dependent on
C. Unfortunately, such statements can be spread all over the program, thus making their
precise bookkeeping hard. We show that in the context of an SSCFG, the statements
that control depend on a compound statement C are located in a window, or an interval,

Parametric and Termination-Sensitive Control Dependence 401

of references, say scope (C), which we call control scope interval. Note that our use of
intervals is not related to the concept of (maximal) interval discussed in [2] and used
in elimination methods [17]. The control scope intervals may be larger than the con-
trol scopes, but we show that the extra statements can be e ciently detected. In other
words, scope (C) characterizes unambiguously the statements that are control-dependent
on C.

An immediate observation is that all sub-statements of a compound statement are
control dependent on it. Besides, a jump statement from within a compound statement
C may extend the control scope of C. For example, in Fig. 3 (C), the statement
extends the scope of the statement to the end of the loop, thus making statement 5
control-depend on the compound statement 2. This can be formalized as follows:

Definition 16. Given C a compound statement with (C) [b1 b2], let pre-scope(C)
be (C) when C is a loop statement, and [b1 max(b2 next(J1) 1 next(Jn)) 1] when
C is a conditional statement, where Ji for i [1 n] are the direct substatements of C.

1: while (i > 0) {
2: if (j < 0) {
3: if (k == 0)
4: continue;
5: else
6: j --;
7: } else {
8: i ++;
9: }}

10: x = i;

(A)

i>0

j --

T

F1
[1,8]

6

2
[2,8]

3
[3,6]

j<0

T

F

(B)

i ++8

k=0

F

x = i10

Fig. 4.

For example, in Fig. 3 (C), the pre-scope of the loop is
[1 6] while the pre-scope of the statement is [2 6]. Note
that in this definition, the pre-scopes of loop statements
do not consider the e ects of their direct sub-statements
(when, e.g., an exception is thrown or a break continue for
an outer loop) because, as we discuss below, the backward
edges of loops cause a di erent situation to handle. Pre-
scopes of statements can be calculated at no additional cost
at parse time, since the targets of jumps are known stat-
ically (we focus on intra-procedure analysis here; excep-
tions not caught in the analyzed procedure, are assumed to
jump to the end of the procedure). Note, however, that the pre-scope of C may already
contain statements that do not control-depend on C: e.g., in Fig. 4, the pre-scope of the
conditional 3 is [3 8] (due to the statement), so 8 is in pre-scope(3); however,
8 does not control-depend on 3. To filter out such statements, we next introduce a new
relation between statements:

Definition 17. Statement S is forward-reachable from S i there exists an S S path
that contains no loop statement L such that L contains both S and S .

In Fig. 3 (C), node 3 is reachable but not forward-reachable from 4, and in Fig. 4, state-
ment 8 is reachable but not forward-reachable from statement 3. Although the intuition
for forward-reachability is “from S one can go forward and reach S ”, it is not always
the case that one can find an S S path with increasing reference numbers: in Fig. 4,
statement 10 is forward-reachable from 2, but the path between them always contains
1. Next proposition gives an e ective way to compute forward-reachability:

Proposition 7. Given statements S and S in an SSCFG G, S is forward-reachable
from S i S reachable from S in a graph that replaces each edge e (n1 n2) with
n1 n2 in G (i.e., one corresponding to a loop L with entry(L) n2), by (n1 next(L)).

402 F. Chen and G. Roşu

The following allows us now to relate the pre-scopes and control dependence:

Proposition 8. If #(S) pre-scope(C) and S forward-reachable from C, then C
tscd

S .

Definition 18. A control scope interval of C is one that contains: (1) all nodes that
control depend on C; and (2) only forward-reachable nodes that control-depend on C.

Recall that the control scope of a compound statement C is the set of all statements that
control-depend on C, and note that a control scope interval of C can contain statements
that are not forward-reachable but still control depend on C.

We next describe an O(V 2) algorithm that computes control scope intervals for all
the compound statements. Theorem 2 (given below) will then provide us an e cient
procedure to extract the actual control scopes from our control scope intervals, that is,
to filter out all the statements in the control scope interval of each C that do not control-
depend on C.

Fig. 5. Prescopes overlap

Let us depict prescopes on SSCFGs, like in Fig. 5. The
ranges of arrows give the prescopes of the statements; for-
ward arrows represent branch statements and backward
arrows represent loop statements. There are two types of
overlapped prescopes, shown in Fig. 5 (A) and (B). In the
first case, C2 is forward reachable from C1. Then the con-
trol scope interval of C1 should contain that of C2: consider
S 1 pre-scope(C1) in (A); C1 may choose the branch with

C2 and then skip S 1, so C1
tscd

S 1. In the second case, C1

and C2 must have the same control scope intervals: in (B),
the execution of S 1 in the second iteration of the loop depends on the choice made at C1

in the first iteration. When pre-scope(C1) overlaps several nested loops, like in (C), then
all loops must have the same control scope interval as C1. Based on these observations,
we can derive the following algorithm which is explained in more detail in [8]:

(Step 1) Extend prescopes (Fig. 5 (A)) by a backward traversal of the code SSCFG:
if prescopes of two statements overlap, then extend the prescope of the outer
statement accordingly;
(Step 2) Compute equivalence classes of statements that have the same control
scope (Fig. 5 (B) and (C)); these are precisely the connected components of the
graph representing the overlap between loops and other conditionals;
(Step 3) Compute the actual control scope interval of each equivalence class as
the union of the extended prescopes of all the statements in that class; if the
class contains loops in V , then the upper bound of its interval is set to .

Steps 1 and 2 take O(V 2) and step 3, which also takes the termination information of
loops into account, takes O(V). To calculate the actual control scopes, all one needs
to do is to remove from control scope intervals those statements that are not control-
dependent. The following theorem gives us a simple way to do it:

Theorem 2. C
tscd

S i #(S) is in the control scope interval of C, and S is forward-
reachable from C or there is some loop L with Ĉ L̂ (same equiv class) and S (L).

C1

C2

C2

C1 C1

C2

C3

(A) (B) (C)

S1

S1

Parametric and Termination-Sensitive Control Dependence 403

6 Conclusion

This paper presented three novel contributions to control dependence. First, it intro-
duced parametric control dependence as a general framework to define various control
dependence relations, both direct and indirect. Second, it defined a new control depen-
dence relation, called termination-sensitive control dependence, generalizing both clas-
sic and weak control dependence by taking explicit termination information of loops
into account. Finally, an O(V 2) algorithm was described to compute the (indirect) con-
trol dependence of all the statements; this algorithm works only for languages without
arbitrary jumps inside blocks, including Java and C# (but not C). It would be interesting
to also incorporate the recent work on control dependence in [16] in a parametric frame-
work. Another question is whether one can combine the TSCD analysis with data-flow
analysis and extend the algorithm in Section 5 with inter-procedural analysis.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques, and tools. Addison-
Wesley, 1986.

2. F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun. ACM, 19(3):137,
1976.

3. B. Aminof, T. Ball, and O. Kupferman. Reasoning about systems with transition fairness.
In the 11th International Conference on Logic for Programming Artificial Intelligence and
Reasoning, 2004.

4. G. Bilardi and K. Pingali. A framework for generalized control dependence. In PLDI’96,
1996.

5. A. R. Bradley, Z. Manna, and H. Sipma. Termination analysis of integer linear loops. In the
16th International Conference on Concurrency Theory (CONCUR’05), 2005.

6. J. Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik und Grundl.
Math., 6:66–92, 1960.

7. F. Chen and G. Roşu. Predicting concurrency errors at runtime using sliced causality. Tech-
nical Report UIUCDCS-R-2005-2660, Dept. of CS at UIUC, 2005.

8. F. Chen and G. Roşu. Parametric and termination-sensitive control dependence. Technical
Report UIUCDCS-R-2006-2712, Dept. of CS at UIUC, 2006.

9. M. Colon and H. Sipma. Practical methods for proving program termination. In CAV’02,
2002.

10. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

11. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Commun. ACM, 20(7):504–513, 1977.

12. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

13. S. Horwitz and T. W. Reps. The use of program dependence graphs in software engineering.
In ICSE, 1992.

14. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM
Trans. Program. Lang. Syst., 1(1):121–141, 1979.

15. A. Podgurski and L. A. Clarke. A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Transactions on Software
Engineering, 16(9):965–979, 1990.

404 F. Chen and G. Roşu

16. V. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcli . A new foundation for
control-dependence and slicing for modern program structures. In The European Symposium
on Programming (ESOP’05), 2005.

17. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM Comput.
Surv., 18(3):277–316, 1986.

18. F. Tip. A survey of program slicing techniques. Technical Report CS-R9438, Centre for
Mathematics and Computer Science, 1994.

19. M. Weiser. Program slicing. In ICSE’81, 1981.

Memory Leak Analysis by Contradiction�

Maksim Orlovich and Radu Rugina

Computer Science Department
Cornell University
Ithaca, NY 14853

{maksim, rugina}@cs.cornell.edu

Abstract. We present a novel leak detection algorithm. To prove the absence of
a memory leak, the algorithm assumes its presence and runs a backward heap
analysis to disprove this assumption. We have implemented this approach in a
memory leak analysis tool and used it to analyze several routines that manipulate
linked lists and trees. Because of the reverse nature of the algorithm, the analysis
can locally reason about the absence of memory leaks. We have also used the
tool as a scalable, but unsound leak detector for C programs. The tool has found
several bugs in larger programs from the SPEC2000 suite.

1 Introduction

Low-level programming languages such as C and C++ provide manual memory man-
agement and require explicit deallocation of program structures by programmers. As a
result, memory leaks represent a standard cause of errors in such languages. Memory
leaks are difficult to identify, as the only symptom is a slow increase in memory con-
sumption. For long-running applications, this eventually causes to the system running
out of memory. In recent years, a number of static memory leak analysis and verification
techniques have been developed [1,2,3,4,5].

This paper presents a new static memory leak detection analysis that reasons about
the absence of errors by disproving their presence. To show that an assignment in the
program is leak-free, the analysis assumes the opposite – that the assignment causes the
program to lose the last reference to a heap cell, called the error cell. Then, the algo-
rithm performs a backward dataflow analysis, trying to contradict the feasibility of the
error cell. If each backward path leads to a contradiction, then the original assumption
was wrong. Otherwise, if there is a backward path that validates the feasibility of the
error cell, the analysis reports a program trace that leads to the error. The memory leak
analysis by contradiction approach has several appealing properties:

– It can be used to reason about the presence or absence of leaks in incomplete pro-
grams. It can determine that program fragments are leak-free regardless of their
input heap, or identify the inputs under which the program fragment may leak;

– It can be used in interactive tools in a demand-driven fashion, where programmers
query particular statements in the program, asking about the possibility of memory
leaks at those points.

� This work was supported by NSF grant CNS-0406345, DARPA grant FA8750-04-2-0011, and
AFOSR grant F9550-06-1-0244 .

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 405–424, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

406 M. Orlovich and R. Rugina

To the best of our knowledge, existing approaches to memory leak analysis and detec-
tion cannot give such guarantees, or be used in such a way.

We have implemented the proposed algorithm in a prototype analysis tool and used
it to analyze memory leaks in standard library functions that manipulate recursive heap
structures. The tool can show that most of these programs do not leak memory, regard-
less of their inputs, or leak only for malformed inputs. We have also used the tool to
find errors in larger programs from the SPEC2000 benchmarks suite. In this setting, the
tool analyzes each program assignment, and uses a cutoff to limit the amount of back-
ward exploration per assignment. The tool has found several memory leaks in these
programs.

The rest of the paper is organized as follows. Section 2 presents the scope of this
paper. Section 3 illustrates the main idea with a simple example. We show the reverse
heap analysis algorithm in Section 4. Experimental results are presented in Section 5.
Finally, we discuss related work in Section 6, and conclude in Section 7.

2 Leak Classification and Analysis Scope

The notion of a memory leak is closely related to the notion of lifetime of heap cells: a
cell is being leaked if the program or the run-time system doesn’t reclaim its memory
when the lifetime has ended. However, there are different ways of defining lifetime.
These can be classified into three main categories, based on the following heap cell
properties:

1. Referencing: the lifetime of a cell ends when it there are no references to that
cell (excluding references from dead cells). This notion is used, for instance, by
reference-counting garbage collectors.

2. Reachability: the lifetime of a cell ends when it is no longer reachable from program
variables. This notion is used by tracing and copying garbage collectors.

3. Liveness: the lifetime of a cell ends after the last access to that cell. This is the most
precise notion of lifetime.

The above three classes are increasingly stronger notions of lifetime; they correspond
to three classes of leaks. A system that targets a given class of leaks cannot make guar-
antees about leaks in the stronger classes. For instance, reference counting approaches
do not detect unreachable heap cycles; and reachability-based approaches do not detect
cells that are still reachable, but no longer needed (sometimes referred to as “Java mem-
ory leaks”). The scope of this work is the analysis of referencing leaks. As some of the
existing static analyses [6,4], our technique does not detect unreachable cycles.

The analysis is sound for the imperative language described in Section 4 (essentially
a subset of C without pointer arithmetic, unions, and casts), provided that the underlying
points-to information is sound. We use our implemented tool in two settings:

– Verification. We use the tool to verify the absence of referencing leaks for algo-
rithms written in our language.

– Bug-finding. We also use our implementation as a scalable error-detection tool that
targets all of the C language. In this setting, the tool makes several unsound assump-
tions. Despite of being unsound, the tool is useful at identifying potential errors,
with a relatively low number of false warnings.

Memory Leak Analysis by Contradiction 407

1 typedef struct list {
2 int data;
3 struct list *next;
4 } List;
5
6 List *reverse(List *x) {
7 List *y, *t;
8 y = NULL;
9 while (x != NULL) {
10 t = x->next;
11 x->next = y;
12 y = x;
13 x = t;
14 }
15 return y;
16 }

Fig. 1. Example program

3 Example

Figure 1 shows a function that performs in-place list reversal. The function takes a
linked list x as argument, and returns the reversed list pointed to by y. The function is
written using C syntax, but assumes type-safety.

Suppose we want to prove that the assignment y = x at line 12 cannot cause a
memory leak. For this, assume by absurd that a leak occurs at this point. That is, assume
that the execution of y = x causes the program to loose the last reference to a valid
allocated cell at this point, the error cell. We describe this cell using a dataflow fact
{y} indicating that y is the sole reference to the cell in question. Starting with this fact,
we analyze program statements backward, looking for a contradiction. In this case, the
contradiction shows up right away, at the predecessor statement x->next = y at line
11. No program state before line 11 can make it possible to have a heap cell referenced
only by y at the next program point. This is because:

– either y did not reference the cell in question before line 11, in which case it won’t
reference it after the assignment;

– or y did reference the cell in question, in which case there will be two distinct
references to the cell after the assignment, one from y and one from x->next.
These represent different memory locations because of the type-safety assumption.
Hence, y is not the only reference to the cell after line 11;

Each of the two cases yields a contradiction. Hence, the initial assumption is invalid
and the assignment y = x cannot cause a memory leak.

Similar analyses can be performed for each of the assignments in this program. The
analysis of assignments x->next = y at line 11, and x = t at line 13 are the same
as above. The analysis of t = x->next at line 10 requires exploring multiple back-
ward paths, one that wraps around the loop and yields a contradiction at x = t, and
one that goes out of the loop and yields a contradiction at the procedure entry point

408 M. Orlovich and R. Rugina

where t’s scope begins. Finally, the analysis of y = NULL at line 8 is contradicted
right away, as the scope of y begins at that point.

Additionally, the analysis must check that local variables do not leak memory when
they go out of scope at the end of the procedure. The analysis models the return state-
ment return y as a sequence: “ret = y; y = NULL; t = NULL;”, where
ret is a special return variable. Assignment y = NULL is contradicted by ret = y;
and t = NULL is contradicted by x = t at line 13, and y = NULL at line 8. The
assignment to ret needs not be checked.

Hence, the analysis concludes that reverse is leak-free. Not only the analysis has
quickly contradicted each assignment, mostly using one single backward step per as-
signment, but the analysis has actually determine that reverse doesn’t leak memory
regardless of its input heap.

In contrast, forward heap analyses (such as [4] or [7]) cannot determine this fact
because they would need to exhaustively enumerate all possible heaps at the entry of
reverse. Without knowledge about all variables and program structures that might
point into the list passed to reverse, enumerating all heaps is not feasible.

4 Backward Memory Leak Analysis

We present the memory leak analysis using a core imperative language consisting of
statements and expressions with the following syntax:

Statements s ∈ St s ::= ∗e0 ← e1 | ∗ e ← malloc | free(e) | cond(e0 ≡ e1)
return e | enter | ∗ e0 ← p(e1, ..., ek)

Expressions e ∈ E e ::= n | a | ∗ e | e.f | e0 ⊕ e1

where n ∈ Z ranges over numeric constants (NULL being represented as constant
0), a ∈ A ranges over symbolic addresses, f ∈ F over structure fields, p ∈ P
over procedures, ⊕ over arithmetic operators, and ≡ over the comparison operators
= and �=. The special statement enter describes the beginning of scope for local
variables. The entry node of each procedure the enter statement, and the exit node
is the return statement. The condition statement cond(e0 ≡ e1) ensures that the
program execution proceeds only if the condition succeeds. Condition statements can
be used to model if statements and while statements as non-deterministic branches in
the control-flow graph, followed by the appropriate cond statements on each of the
branches.

Expressions are represented using a small set of primitives. Symbolic addresses a
are the addresses of variables (globals, locals, and parameters). We denote by ax the
symbolic address of variable x. The syntax for expressions doesn’t contain variables
because variables can be expressed as dereferences of their symbolic addresses. For
instance, ax models the C expression &x; ∗ax models C expression x; (∗ax).f models
&(x->f); and ∗((∗ax).f) models x->f. With this representation, each memory read
is explicit in the form of a dereference ∗e; and each assignment has the form ∗e ← e′,
making the memory write ∗e explicit. The set Mem(e) denotes the subexpressions of e
that represent memory locations. This set is defined recursively as follows:

Memory Leak Analysis by Contradiction 409

Mem(n) = Mem(a) = ∅
Mem(∗e) = {∗e} ∪ Mem(e)

Mem(e.f) = Mem(e)
Mem(e0 ⊕ e1) = Mem(e0) ∪ Mem(e1)

To simplify the rest of the presentation, we define expression contexts E as expres-
sions with holes [·]:

E ::= E .f | ∗ E | E ⊕ e | e ⊕ E | [·]
If E is an expression context and e is an expression, then E [e] is the expression obtained
by filling the hole of the context E with expression e.

The core language is a subset of C that supports heap structures and pointers to vari-
ables or to heap cells. The execution of the program disallows casts between numeric
constants and pointers. All structures have the same set of non-overlapping fields, so
that an update to a structure field does not affect the values of other fields. Essentially,
unions and unsafe pointer casts are not allowed. The language semantics are defined
in Appendix A using evaluation relations for expressions and statements. The relation
(e, σ) → v indicates that the evaluation of expression e in store σ yields value v; and
the relation (s, σ) → σ′ indicates that the evaluation of statement s in store σ yields a
new store σ′.

4.1 Aliasing and Disjointness

To resolve pointer aliasing, the leak analysis assumes that an underlying analysis pro-
vides: 1) a partitioning of the memory into regions (i.e. different regions model disjoint
sets of memory locations); and 2) points-to information between regions. We assume
a flow-insensitive points-to interface consisting of a set Rgn of regions, and a function
pt(e) that returns the set of regions that expression e may point into.

Flow-insensitive points-to analyses such as [8,9] can be used to provide the region
partitioning and the points-to information, but they require the availability of the entire
program. For incomplete programs, the following approaches can be used: 1) type-
based points-to information for type-safe languages, with one region for each type and
points-to relations according to type declarations; and 2) address-taken points-to infor-
mation, with one region for each memory location whose address has not been stored
in the program, and one region for everything else.

The analysis uses the points-to information to resolve alias queries. An expression e
is disjoint from a region set rs, written e # rs, if updates in any of the regions in rs do
not affect value of e. The analysis answers such queries using the points-to information:

e # rs iff ∀(∗e′) ∈ Mem(e) . pt(e′) ∩ rs = ∅

For expression contexts, E [e] # rs means that all of the sub-expressions of E [e] other
than e are disjoint from regions in rs: E [e] # rs if and only if ∀(∗e′) ∈ Mem(E [e]) −
{e} . pt(e′) ∩ rs = ∅.

4.2 Error Cell Abstraction

The analysis starts from the potential error point, a program assignment, assuming that
the assignment has overwritten the last reference to the error cell. The analysis models
this cell using a triple of the form (S, H, M), where:

410 M. Orlovich and R. Rugina

ImplicitMiss(e, (S, H,M)) = (e = n) ∨ (e = a) ∨ (e = E [∗n]) ∨ (e = E [n.f]) ∨
(e = ∗e′ ∧ (S ∩ pt(e′) = ∅))

Miss(e, (S, H,M)) = e ∈ M ∨ ImplicitMiss(e, (S,H, M))

Infeasible(S,H,M) = ∃e ∈ H . Miss(e, (S, H, M))

Cleanup(S, H,M) = (S, H,M ′), where:
M ′ = {e | e ∈ M ∧ ¬ImplicitMiss(e, (S, H, M))}

Fig. 2. Helper functions used by the analysis

– S ⊆ Rgn is the conservative set of regions that might hold pointers to the error cell;
– H is a set of expressions that point to the error cell; and
– M is a set of expressions that do not reference the cell.

We refer to H as the hit set, and to M as the miss set, similarly to [4]. The partial
ordering for this abstraction is such that (S1, H1, M1) � (S2, H2, M2) if and only
if S1 ⊆ S2, H1 ⊇ H2, and M1 ⊇ M2. The join operation is defined accordingly:
(S1, H1, M1) � (S2, H2, M2) = (S1 ∪ S2, H1 ∩ H2, M1 ∩ M2). Two elements of the
dataflow lattice have special meaning: the top element � indicates that the error cell is
always feasible; and the bottom element ⊥ indicates a contradiction, i.e., that the error
cell is not feasible.

Figure 2 shows several helper functions that the analysis uses to reasons about
dataflow triples. The function ImplicitMiss helps the analysis identify new miss ex-
pressions, to which we refer as implicit miss expressions. These include:

– Numeric constants n. Addresses manufactured from numeric constants cannot ref-
erence the cell, because casting integers into pointers is not allowed;

– Symbolic addresses a. Leaks can occur only for heap cells, which cannot be refer-
enced by symbolic addresses;

– Invalid expressions E [∗n] and E [n.f]. These include null pointer dereferences and
null field accesses. Evaluating such expressions would cause run-time errors, so
they are not valid references to the error cell;

– Lvalue expressions that represent regions outside of the region set S. If S∩pt(e) =
∅, then ∗e is an implicit miss expression.

The function Infeasible identifies infeasible dataflow facts: a dataflow fact d is in-
feasible if there is an expression that hits and misses the error cell. Such facts represent
impossible states of the error cell; they are equivalent to the bottom value ⊥, and corre-
spond to contradictions in our framework.

To keep the dataflow facts as small as possible and avoid redundancy in the abstrac-
tion, the analysis uses a function Cleanup to remove implicit miss expressions from
dataflow triples. This function always yields an abstraction higher up in our lattice (i.e.,
more conservative dataflow information). Hence, using Cleanup after applying a trans-
fer function does not affect the correctness of the analysis.

Memory Leak Analysis by Contradiction 411

e # w esgn

sgne
[FILTER1]

e1 #w e−−
1 e# w (∗e)+

+(∗e)
[FILTER2]

e1 #w e+
1 e # w (∗e)−

−(∗e)
[FILTER3]

e1 = ∗e e# w esgn
1

sgne1
[FILTER4]

E [∗e0]# w E [∗e0]sgn

sgnE [e1]
[SUBST1]

e0 # w (∗e0)−−

−e1

[SUBST2]

Fig. 3. Analysis rules for an assignment ∗e0 ← e1. The sign sgn is either + or −. The set
w = pt(e0) is the conservative set of written regions.

4.3 Intra-procedural Analysis

For each abstraction (S, H, M) that describes the error cell after a statement, the analy-
sis computes an abstraction (S′, H ′, M ′) that describes the known facts about the error
cell before the statement. Hence, the analysis computes an over-approximation of the
state before each statement (as opposed to weakest preconditions, which are under-
approximations). We refer to the state after the statement as the post-state, and the state
before the statement as the pre-state.

The overall analysis uses a worklist algorithm to perform the backward dataflow
computation. The analysis is initiated at assignment and a few other program points,
as discussed later in Section 4.5. Then, the information is propagated backward. When
the analysis reaches a contradiction (⊥) on all backward paths, the error is disproved.
When the abstraction of the error cell is �, or when the analysis reaches the entry point
of a program fragment, the analysis reports a potential violation. The analysis of each
statement is presented below.

Analysis assignments: ∗e0 ← e1. Given a dataflow triple (S, H, M) that describes the
post-state of the error cell, the analysis computes a new dataflow fact that describes the
pre-state of the cell. The transfer function for assignments is:

[[∗e0 ← e1]](S, H, M) =
{⊥ if Infeasible(S′, H ′, M ′)

Cleanup(S′, H ′, M ′) otherwise

where H ′, M ′ are derived using the rules in Figure 3
S′ = S ∪ pt(e0)

The region set S always grows since the post-state gives no information about the old
value of the written location. The analysis must conservatively assume that ∗e0 might
reference the cell in the pre-state (we discuss how to improve this in Section 4.8).

To keep the analysis rules succinct, we write e+ and e− for e ∈ H and e ∈ M
(hit/miss expressions in the post-state); and +e and −e for e ∈ H ′ and e ∈ M ′ (hit/miss
expressions in the pre-state). We also write e−− to denote that Miss(e, (S, H, M)). The
set w is the set of regions potentially written by the assignment: w = pt(e0). Hence, an
expression has the same value before and after the statement if it is disjoint from w.

412 M. Orlovich and R. Rugina

The inference rules in Figure 3 are used to derive hit and miss expressions in the
pre-state. If the premises hold in the post-state, then the conclusion holds in the pre-
state. Each rule is implemented by iterating over expressions in H and M , matching
them against the rightmost expression in the premise. If the rule applies (i.e., all other
premises hold), then the expression in the conclusion is added to H ′ or M ′. Our im-
plementation also checks for contradictions as new expressions are generated in the
pre-state, returning ⊥ as soon as the first contradiction occurs.

The first four rules filter out existing expressions from H and M if the assignment
might invalidate them. Clearly, each expression disjoint from w will maintain its hit or
miss status (rule [FILTER1]). The other filtering rules are less obvious. They attempt to
preserve expressions that fail this simple test. Consider rule [FILTER2]. If expression e1
is disjoint from w and e1 misses in the post-state, then it also misses it in the pre-state.
Hence, the assignment writes a value that doesn’t reference the cell. Therefore, each
expression ∗e that hits the cell in the post-state must necessarily be a location different
than the one written by the assignment, provided that its address e is not affected by
the assignment. Therefore, if all these premises are met, ∗e has the same value in the
pre-state, so it will hit the error cell before the statement. Rule [FILTER3] is symmetric.
Rule [FILTER4] indicates that the RHS expression e1 can be preserved if its address
is not changed by the assignment. The reason is that, if e1 happens to be written, it is
updated with its old value.

Rule [SUBST1] derives new hit and miss expressions in the pre-state by substitution.
If e0 # w, then ∗e0 in the post-state has the same value as e1 in the pre-state. Hence,
if an expression e = E [∗e0] hits (misses) in the post-state, we can substitute e1 for
∗e0 to derive an expression E [e1] that hits (misses) in the pre-state. For this to be safe,
the expression E [∗e0] must be disjoint from w. The last rule, [SUBST2] is similar to
substitution, but for implicit misses and for a simple context E = [·].

Example. Consider a triple ({ry}, {∗ay}, {}) describing the error cell in the post-state.
Here, ay is the symbolic address of variable y, and ry is the region that contains y. Let
x ← y be the assignment to analyze, represented in our formulation as ∗ax ← ∗ay.
Assume that variables x and y belong to different regions, so all necessary disjointness
conditions are met. By rule [SUBST2] we get −(∗ay), because ∗ax is an implicit miss
in the post-state. By rule [FILTER1], +(∗ay) also holds. Hence, a contradiction occurs.

Analysis of allocations: ∗e0 ← malloc. The analysis tries to determine if the error
cell has been allocated at this site. First, if (∗e0)+ and some expression unaliased to ∗e0
also references the cell, then a contradiction occurs. Second, if there is evidence that the
error cell has not been allocated at this site, it proceeds past this statement, treating the
allocation as a nullification ∗e0 ← 0. Note that the nullification automatically causes
a contradiction when a fields of ∗e0 hits the error cell in the post-state. Otherwise, if
none of the above conditions are met, the analysis conservatively stops and returns �,
signaling that the leak might be feasible and the error cell might be allocated at this site.
The transfer function is defined as follows:

[[∗e0 ← malloc]](d) =

⎧⎨⎩⊥ if UnaliasedHit ∧ (∗e0 ∈ H ∧ e0 # w)
[[∗e0 ← 0]](d) if UnaliasedHit ∨ (Miss(∗e0, d) ∧ e0 # w)
� otherwise

Memory Leak Analysis by Contradiction 413

where d = (S, H, M), w = pt(e0), and UnaliasedHit = ∃(∗e) ∈ H : pt(e) ∩ w = ∅.
Here, ⊥ indicates a contradiction, and � indicates a potential leak for a cell allocated
at this site.

Analysis of deallocations:free(e). When the analysis reaches a deallocationfree(e),
a contradiction occurs if e references the error cell. In other words, losing the last ref-
erence of a cell that has been freed is not an error. Otherwise, the analysis learns that e
misses in the pre-state and keeps the rest of the state unchanged. The algorithm is:

[[free(e)]](S, H, M) =

⎧⎨⎩⊥ if e ∈ H
(S, H, M) if Miss(e, (S, H, M))
(S, H, M ∪ {e}) otherwise

Analysis of conditions: cond(e0 ≡ e1). For conditions, the analysis knows that the
(in)equality has succeeded in the post-state. It uses this information to derive new hit
and miss expressions in the pre-state, as indicated by the following rules:

cond(e0 = e1) cond(e0 �= e1)

e+
0

+e1

e+
1

+e0

e−−
0

−e1

e−−
1

−e0

e+
0

−e1

e+
1

−e0

If H ′ and M ′ are the new hit and miss expressions derived using the above rules,
M ′′ = M ∪ M ′, and H ′′ = H ∪ H ′, then the transfer function for conditions is:

[[cond(e0 ≡ e1)]](S, H, M) =
{⊥ if Infeasible(S, H ′′, M ′′)

Cleanup(S, H ′′, M ′′) otherwise

4.4 Inter-procedural Analysis

The inter-procedural analysis follows the general structure of the worklist inter-proc-
edural analysis algorithm proposed by Sharir and Pnueli [10]. Information is propagated
from the points after procedure calls to the corresponding procedure exit points, and
from procedure entry points to the corresponding points before the call. The analysis
uses backward procedure summaries to cache previous analysis results. The entire inter-
procedural worklist algorithm is presented in Appendix B.

The analysis uses two functions, Map and Unmap, to account for the necessary
changes in the analysis information when crossing procedure boundaries, such as as-
signments of actuals to formals, or to model the scopes of local variables. The anal-
ysis uses Map when moving from the caller into the callee space, and uses Unmap
when moving back into the caller space. The mapping process is performed right be-
fore return, and the unmapping right after enter. Each pair is discussed below.

Analysis for Map and return(e). For simplicity, consider a procedure p with one for-
mal parameter formal and one local variable local. Let ret be a special variable
that models the return value. Variables local, formal, and ret are represented in
this section using C-style notation instead of the normalized representation for expres-
sions. Consider a call-site that invokes p with an actual argument eact.

414 M. Orlovich and R. Rugina

return e
Analysis of

∗e0 = p(eact)
Map at callsite

an
al

y
si

s

ex
ec

u
ti

on
∗e0 ← ret

ret ← 0

(M1)

(M2)

(R3)

(R2)

(R1)

(M3)

ret ← e

local ← 0

formal ← 0

Remove Info

Fig. 4. Analysis for Map and return(e)

The call-site mapping process and the analysis of the return of p are described in
Figure 4. The execution proceeds from top to bottom, and the analysis works in the
reverse order. We explain the actions in this diagram in the execution order. Each node
return(e) is modeled as a sequence that assigns the returned expression to ret,
and then nullifies all local and formal variables, showing that they go out of scope.
The transfer function of return is the composition of the transfer functions of these
assignments, in reverse order.

The mapping function Map takes place at the point right before a call site ∗e0 ←
p(eact). The mapping process assigns the return variable ret to expression ∗e0 and
then nullifies the return variable. The mapping process also removes from H and M all
the expressions that involve locals or parameters of the caller, keeping only information
relevant to the callee. This is shown by the Remove Info step right before the analysis
moves into the callee’s space.

Analysis for Unmap and enter. When the analysis reaches the entry of a procedure,
it moves back to the caller space, to the point right before the call. The analysis of
the enter statement and the unmapping process are described in Figure 5. We use a
special operation scope(s) to indicate that symbol s enters its scope. For the analysis,
which is reversed, scope(s) indicates that s goes out of scope. The transfer function
of scope(s) has two possible outcomes: it yields a contradiction if s occurs in one of
the hit expressions; otherwise, it removes all hit and miss expressions that refer to s.
The analysis of enter is modeled using a scope operation for each of its locals.

The unmap process accounts for the assignments of actuals to formals and for restor-
ing part of the information that Map has filtered out. One complication that arises for
recursive functions is that expression eact in the caller might refer to variable formal.
A direct assignment formal ← eact would then talk about two different instances of
the same variable formal, the one of the caller and the one of the callee. This prob-
lem can be solved using a shadow variable to perform the assignment in two steps.
In execution order, first assign the actual to the shadow, then move to the callee space
and assign the shadow to the formal. In between the two shadow assignments, the for-
mal enters its scope (and goes out of scope for the analysis). The analysis also restores
expressions that Map has filtered out, provided that they cannot be modified by the
callee. For instance, local variables whose addresses have not been taken can be safely
restored. In general, restoring expressions requires knowledge about the locations being
modified by the callee, i.e., MOD information.

Memory Leak Analysis by Contradiction 415

an
al

y
si

s

ex
ec

u
ti

on

shadow ← eact

Restore Info

scope(formal)

formal ← shadow

shadow ← 0

scope(local)

(U1)

(U2)

(U3)

(U4)

(U5)

(E1)

Unmap at callsite
∗e0 ← p(eact)

Analysis of
enter

Fig. 5. Analysis for Unmap and enter

4.5 Leak Probing Points

The last piece that completes the analysis is defining the initialization points. The anal-
ysis issues one query for each assignment, to determine if the assignment might leak
memory. We refer to each leak query as a leak probe. For each assignment ∗e0 ← e1
the analysis builds a dataflow triple (pt(e0), {∗e0}, {e1}) to describe an error cell ref-
erenced by e0, but not by e1. In many cases, e1 is an implicit miss and can be omitted
from the miss set. The analysis then asks whether this triple might hold at the point
right before the assignment.

In addition to assignments, the analysis issues leak probes at the following points:

1. Allocations: each ∗e0 ← malloc is probed as ∗e0 ← 0.
2. Deallocations: for each free(e), the analysis issues a probe that corresponds to

∗(e.f) ← 0, for each field f of e. This checks for leaks caused by freeing a cell
that holds the last reference to another cell.

3. Locals and formals: at return points, it issues a probe for each local variable and
formal parameter. These correspond to the nullifications (R2) and (R3) in Figure 4.
The assignment to ret needs not be checked.

4. Assigned returns: for each call ∗e0 ← p(...), it issues a probe that corresponds to
the assignment (M2) in Figure 4. Note that this probe will immediately propagate
into the callee.

5. Leaked returns: Although in our language return values are always assigned, in C
function calls are not required to do so. In that case, the assignment (M2) is missing
and the returned value might be leaked. The analysis uses a probe that corresponds
to the nullification of ret (M3), to check for leaked returns.

4.6 Formal Framework and Soundness

This section summarize the soundness result for the transfer functions in our analysis.
This result states that the abstract semantics of statements are sound with respect to the
concrete execution of the program, provided that the points-to information is sound.
The definitions below define the notion of soundness for the points-to information, and
describe the abstraction function. Then, the soundness theorem is stated. In these defi-
nitions, L denotes the set of all memory addresses, including symbolic addresses a ∈ A
and heap addresses.

416 M. Orlovich and R. Rugina

Definition 1 (Points-to Soundness). Let Rgn be the finite set of memory regions. A
points-to abstraction pt : E → 2Rgn is a sound approximation of a concrete store σ,
with witness mapping μ : L → Rgn from locations to regions, written σ |=μ pt, if:
∀e ∈ E . (e, σ) → l ∧ l ∈ L ⇒ μ(l) ∈ pt(e).

Definition 2 (Abstraction Function). Let σ be a store, l ∈ L − A a heap location
in σ, l ∈ dom(σ), and μ a mapping from locations to regions. A dataflow fact d is a
conservative approximation of l in σ with respect to μ, written (l, σ) |=μ d, if d = �,
or d = (S, H, M) and:

1. ∀e ∈ H . (e, σ) → l
2. ∀e ∈ M . (e, σ) → l ⇒ l′ �= l
3. ∀l′ ∈ L . σ(l′) = l ⇒ μ(l′) ∈ S

Definition 3 (Dataflow Validity). Let s be a statement, d and d′ two dataflow facts,
and pt the points-to information. The triple {d} s {d′} is valid relative to pt, written
|=pt {d} s {d′}, if for any pre- and post-stores for which pt is sound, and for any
location that is approximated by d′ in the post-store, the location is then approximated
by d in the pre-store: ∀l, σ, σ′, μ . (σ′ |=μ pt ∧ σ |=μ pt ∧ (l, σ′) |=μ d′ ∧ (s, σ) →
σ′) ⇒ (l, σ) |=μ d.

From this definition, it follows that {�} s {d′} is valid for any d′. Also, ⊥ can never
approximate the error cell: ∀l, σ, μ . (l, σ) �|=μ ⊥. Therefore, {⊥} s {d′} is never valid.

Theorem 1 (Transfer Function Soundness). For any assignment, malloc, free, or
condition statement s, if d′ is a dataflow fact after s, and pt is the points-to infor-
mation, then the dataflow fact d = [[s]](d′) that the transfer function computes before s
is sound relative to the points-to information pt: |=pt { [[s]](d′) } s { d′ }.

Due to lack of space, we omit the proof of the theorem. The proof is presented in [11].

4.7 Termination

The leak detection analysis is guaranteed to terminate, because of three reasons. First,
region sets are bounded by the finite set Rgn. Second, hit and miss expressions can only
shrink during the analysis. Although the set of expressions in unbounded, these sets
have finite size when a node is reached for the first time; after that, they only decrease.
Third, the transfer functions are monotonic. It is easy to see that larger hit and miss sets
will cause the inference rules to derive more facts in the pre-state.

4.8 Extensions

We propose several extensions that improve the precision of the basic analysis:

– Diminish the region set increase via points-to information. As mentioned earlier,
the region set S grows during the analysis because the state after an assignment
doesn’t give information about the old value of the location being written. The
analysis conservatively assumes that the old value hit the error cell in the pre-state.
This is overly conservative, especially in the case of assignments of integers or

Memory Leak Analysis by Contradiction 417

other non-pointer values. The analysis can use points-to information to avoid this.
If ∗e0 is the LHS of the assignment being probed, and ∗e is the LHS of the cur-
rently analyzed assignment, the analysis can determine that −(∗e) if ∗e and ∗e0 are
unaliased: pt(e0) ∩ pt(e) = ∅. In this case, pt(e0) is not added to S.

– Enable region set removal via strong updates. A second improvement is to augment
the abstraction so that the analysis also removes regions from S. For this, we tag
each region in S with a program expression ∗e, or with a top value. An expression
tag shows that the region contains at most one reference to the cell, and that ref-
erence, if present, is ∗e. Top indicates imprecision. When the analysis identifies a
region r that contains at most one reference ∗e, and the analysis rules imply −(∗e),
then it can safely remove r from S in the pre-state.

– Separated abstraction: We propose a variation of the analysis where the analy-
sis computes more than one triple (S, H, M) per program point. Two triples are
merged only if their subset of regions that contain the hit expressions S ∩ H is
the same. Otherwise, the triples are maintained separated. Because of less frequent
merges, the analysis becomes more precise.

5 Experiments

We have implemented the algorithms presented in this paper in an analysis system
developed in our group, CRYSTAL. All of the C constructs (including arrays, pointer
arithmetic, and unions) are translated into an intermediate representation that is very
similar to the normalized representation from Section 4. Therefore, the implementation
closely follows the formal presentation; at the same time, it handles all of the com-
plexity of C. The leak detector uses the extensions discussed in the previous section.
The results were collected on a 3Ghz Pentium 4 machine running Red Hat Enterprise
Linux 4.

Heap manipulation benchmarks. We have tested our leak analyzer on several small
heap manipulation routines. For this experiments, we only consider programs written
in the type-safe subset of C from Section 4. The benchmarks include iterative and recur-
sive versions of standard linked list operations (insert, delete, reverse, merge) for singly-
linked and doubly-linked lists; two versions of the Deutsch-Schorr-Waite pointer rever-
sal algorithm, for lists and for trees; and AVL tree manipulations. The singly-linked list
manipulations are a representative subset of those from [1] and [12]. The doubly-linked
list implementations are part of the Gnome’s GLib library 1.

We have experimented with each procedure in isolation, or with small groups of
procedures when some of them called others. Warnings were reported when the anal-
ysis reached the entry of a procedure that is never called. Recursive functions have
been wrapped into non-recursive functions. We use a type-based points-to region par-
titioning and points-to analysis. All of the programs were analyzed in less than one
second.

Figure 6 shows analysis statistics and results for the small benchmarks. The mean-
ing of the two-letter prefix is as follows: s means “singly” and d means “doubly”; i

1 ftp://ftp.gtk.org/pub/gtk

418 M. Orlovich and R. Rugina

Program Probes Trace Length Abstractions
Total Warn / Leak Median Max per point

si-create 5 0 / 0 2 6 1.0
si-delete 11 0 / 0 10 29 1.4
si-insert 13 1 / 0 2 130 1.8
si-reverse 9 0 / 0 1 6 1.0
si-rotate 6 1 / 1 2 10 1.1
si-merge 16 0 / 0 12 200 1.7
sr-append 11 0 / 0 2 57 2.0
sr-insert 11 2 / 0 13 114 2.7
sr-reverse 11 0 / 0 1 82 1.6
sr-rev-leak 13 1 / 1 1 95 2.8
di-delete 9 2 / 2 6 89 2.7
di-prepend 7 1 / 1 7 15 1.1
di-reverse 7 0 / 0 1 12 1.2
di-merge 19 0 / 0 1 24 1.2
avl-rotate 6 0 / 0 1 2 1.0
avl-balance 6 1 / 0 22 803 1.3
avl-insert 31 2 / 0 2 1627 3.9
dsw-list 14 0 / 0 2 91 2.1
dsw-tree 18 1 / 0 15 1367 8.6

Fig. 6. Experiments on recursive structure manipulations

means “iterative” and r means “recursive”. The first group of columns presents the to-
tal number of probes, the number of warned probes, and the number of actual errors.
The analysis assumes any possible inputs, including malformed inputs. The tool has
determined that no leaks occur for about half of the programs. It has found the mem-
ory leak in the buggy version of the recursive list reversal program sr-rev-leak
from [12]. Some procedures leak memory if the inputs are malformed: si-rotate
leaks when its second argument doesn’t point to the last element, as the function ex-
pects; and di-delete and di-prepend leak if the input doesn’t satisfy the doubly-
linked list invariant. We consider these warnings legitimate. The remaining ones are
false positives and are due to imprecision in the analysis.

The last three columns show analysis statistics: the median and maximum length of
reverse traces (measured as applications of transfer functions), and the average number
of abstraction triples per program point. The trace statistics indicate that for most of
the probes contradictions show up quickly, but there are a few probes that require sig-
nificantly more work, especially for complex pointer manipulations. The last column
shows that the analysis usually creates few (around 2) abstractions per program point.

Larger benchmarks. We have also experimented with this tool on larger programs from
the SPEC200 benchmark suite2. To make the tool useful for larger programs, we use
several heuristics that cut down the amount of backward exploration: there is a limit on

2 We omit gcc because all warnings referred to data allocated via alloca.

Memory Leak Analysis by Contradiction 419

Benchmark Size Time Probes
KLOC (sec) Total Aband. Warn Bugs

ammp 13.2 6.95s 1550 123 24 20
art 1.2 1.20s 32 16 1 1
bzip2 4.6 3.36s 108 62 2 1
crafty 19.4 27.71s 1493 1174 0 0
equake 1.5 1.50s 55 12 0 0
gap 59.4 108.66s 13517 6685 1 0
gzip 7.7 5.11s 489 173 3 1
mcf 1.9 4.21s 392 64 0 0
mesa 50.2 34.50s 5037 956 2 2
parser 10.9 19.36s 2859 1021 0 0
perlbmk 61.8 340.07s 25151 15801 1 1
twolf 19.7 20.29s 2526 1105 0 0
vortex 52.6 304.59s 9448 7421 26 0
vpr 16.9 15.14s 1216 530 0 0

Fig. 7. Experiments on the SPEC2000 benchmarks

the number of transfer functions per probe (currently 500), and a limit on the size of
the region set S (currently 50). When the analysis reaches these limits, it abandons the
probe. The analysis also limits the amount of inter-procedural exploration by ignoring
callees more than one level deep, but allows tracking the error cell back into the callers.
The tool uses type-based points-to information, which is unsound for type-unsafe C
programs. Other sources of unsoundness include ignoring library functions other than
memory allocators; and the unsound treatment of arrays, where the analysis does not
probe assignments of array elements. The analysis cannot reason about array index
dependencies, so array element probes would otherwise lead to false warnings.

Figure 7 shows the results. The first column shows the sizes of these programs and
the second column the analysis times. The remaining columns show the analysis results:
the number of probes explored; the number of probes abandoned because of the cut-off;
the number of probes warned; and the number of actual bugs found. Warned probes are
those for which the analysis reaches a validating allocation site for the error cell.

Most of the leaks found (e.g., in ammp and perlbmk) are situations where the
application doesn’t free memory upon returning on error handlers. Interestingly, this
happens even for out-of-memory error handlers: the application allocates several buffers
and if allocation fails for one, none of the others are freed. In art a function actually
forgets to deallocate a local buffer on the normal return path. The main reasons for false
warnings are the imprecision of the type-based region approximation; the use of pointer
arithmetic; and the fact that programs such as vortex use complex, custom memory
management.

Overall, we again find that the length distribution of backward traces is uneven. In
most of the cases, the analysis can quickly identify a contradiction, within just a few
lines of code. However, a few points generate very long backward traces, along which
the analyses loses precision, and therefore becomes unlikely to produce meaningful
results. The cutoff helps eliminate such cases from our reports.

420 M. Orlovich and R. Rugina

6 Related Work

Manevich et al. [13] propose a backward flow analysis with the goal of tracing back
null pointer errors, and disprove such errors. Although our analysis is similar in spirit to
theirs, the analysis of memory leaks in heap structures is a more challenging problem
than that of distinguishing between null and non-null values.

A related line of research has explored demand-driven inter-procedural analyses and
frameworks [14,15,16,17]. Given a dataflow fact d at a program point p, a demand-
driven flow analysis explores backward program paths starting from p with the goal of
determining whether d is part of the forward dataflow solution at p. Our backward anal-
ysis is, in fact, a demand-driven analysis, although we are not interested in an answer
to a forward analysis (since we don’t have one), but rather with respect to the program
semantics. Furthermore, to the best of our knowledge, the analysis in this paper is the
first reverse, demand-driven heap analysis.

Several static leak detection analyses have been recently proposed. Heine and
Lam [3] use a notion of pointer ownership to describe those variables responsible for
freeing heap cells, and formulate the analysis as an ownership constraint system. In
our previous work [4], we used a shape analysis with local reasoning about single heap
cells to detect memory leaks and accesses through dangling pointers. Xie and Aiken [5]
reduce the problem of memory leak detection to a Boolean satisfiability problem, and
then use a SAT-solver to identify potential errors. Their analysis is path- and context-
sensitive, but uses unsound techniques to handle recursion and loops. Dor et al. [1] use
TVLA, a shape analysis tool based on 3-valued logic, to prove the absence of mem-
ory leaks and other memory errors in several list manipulation programs. Their analysis
verifies these programs successfully, but is intra-procedural and cannot be applied to re-
cursive and multi-procedure programs. Of these analyses, [3,4] target referencing leaks;
and [1,5] target reachability leaks. We are not aware of analyses that can detect liveness
memory leaks. Compared to our work, the above approaches cannot answer memory
leak queries in a demand-driven fashion; and cannot reason about the absence of errors
for incomplete programs.

Shape analyses [18,7,4] have been proposed with the goal of being able to distin-
guish, for instance, between cyclic and acyclic heap structures. These are all forward,
exhaustive analyses. In contrast, the heap analysis in this paper is a reverse, demand-
driven heap analysis.

The leak detection analysis in this paper uses an abstraction similar to the one that
we developed in our previous work on shape analysis [4], where the algorithm analyzes
a single heap cell at a time. This is a good match to memory leak detection by contra-
diction, because the analysis needs to reason about one single cell, the error cell. There
two main differences between these analyses. First, the leak analysis in this paper is not
aimed at computing shapes or precise reference counts. Therefore, the analysis uses a
simpler abstraction (without reference counts), and doesn’t require bifurcation. Second,
the analysis is backwards. Analyzing the state of a heap cell in the reverse direction is
non-trivial and less intuitive than the forward analysis.

Finally, dynamic memory leak detector tools such as Purify [19] or SWAT [20] in-
strument the program and only errors at run-time. Dynamic tools will miss errors that

Memory Leak Analysis by Contradiction 421

do not happen in that run; in particular, they will miss errors that only occur in rarely
executed code fragments.

7 Conclusions

We have presented a new approach to memory leak detection where errors are disproved
by contradicting their presence. To determine whether a memory leak can occur at a
program point, the analysis uses a reverse inter-procedural flow analysis to disprove
its negation. We have used this approach to analyze a set of complex list manipulation
routines in isolation. We have also used this approach in an error-detection tool and
found several memory leaks in the SPEC benchmarks.

References

1. Dor, N., Rodeh, M., Sagiv, M.: Checking cleanness in linked lists. In: Proceedings of the 8th
International Static Analysis Symposium, Santa Barbara, CA (2000)

2. Shaham, R., Kolodner, E.K., Sagiv, M.: Automatic removal of array memory leaks in java.
In: Proceedings of the 2000 International Conference on Compiler Construction, Berlin, Ger-
many (2000)

3. Heine, D., Lam, M.: A practical flow-sensitive and context-sensitive C and C++ memory leak
detector. In: Proceedings of the SIGPLAN ’03 Conference on Program Language Design and
Implementation, San Diego, CA (2003)

4. Hackett, B., Rugina, R.: Shape analysis with tracked locations. In: Proceedings of the 32th
Annual ACM Symposium on the Principles of Programming Languages, Long Beach, CA
(2005)

5. Xie, Y., Aiken, A.: Context- and path-sensitive memory leak detection. In: ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Lisbon, Portugal (2005)

6. Heine, D., Lam, M.: A practical flow-sensitive and context-sensitive C and C++ memory
leak detector. In: Proceedings of PLDI, San Diego, CA (2003)

7. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans-
actions on Programming Languages and Systems 24(3) (2002)

8. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the 23rd Annual
ACM Symposium on the Principles of Programming Languages, St. Petersburg Beach, FL
(1996)

9. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen (1994)

10. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In Muchnick,
S., Jones, N., eds.: Program Flow Analysis: Theory and Applications. Prentice Hall Inc
(1981)

11. Orlovich, M., Rugina, R.: Memory leak analysis by contradiction. Technical report, Cornell
University (2006)

12. Rinetzky, N., Sagiv, M.: Interprocedural shape analysis for recursive programs. In: Proceed-
ings of the 2001 International Conference on Compiler Construction, Genova, Italy (2001)

13. Manevich, R., Sridharan, M., Adams, S., Das, M., Yang, Z.: PSE: Explaining program fail-
ures via postmortem static analysis. In: Proceedings of the ACM SIGSOFT ’99 Symposium
on the Foundations of Software Engineering, Newport Beach, CA (2002)

14. Strom, R., Yellin, D.: Extending typestate checking using conditional liveness analysis. IEEE
Transactions on Software Engineering 19(5) (1993) 478–485

422 M. Orlovich and R. Rugina

15. Duesterwald, E., Gupta, R., Soffa, M.: Demand-driven computation of interprocedural data
flow. In: Proceedings of the 22nd Annual ACM Symposium on the Principles of Program-
ming Languages, San Francisco, CA (1995)

16. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In: Proceed-
ings of the ACM Symposium on the Foundations of Software Engineering, Washington, DC
(1995)

17. Sagiv, S., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications
to constant propagation. Theoretical Computer Science 167(1&2) (1996) 131–170

18. Ghiya, R., Hendren, L.: Is is a tree, a DAG or a cyclic graph? a shape analysis for heap-
directed pointers in C. In: Proceedings of the 23rd Annual ACM Symposium on the Princi-
ples of Programming Languages, St. Petersburg Beach, FL (1996)

19. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors. In: Pro-
ceedings of the 1992 Winter Usenix Conference. (1992)

20. Hauswirth, M., Chilimbi, T.: Low-overhead memory leak detection using adaptive statistical
profiling. In: Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston, MA (2004)

A Language Semantics

The language semantics are defined using the following domains:

Numeric constants n ∈ Z
Symbolic addresses a ∈ A
Heap cell addresses c ∈ C
Structure fields f ∈ F

Locations l ∈ L = A + (C × F)
Values v ∈ V = Z + L
Stores σ ∈ Σ = L ⇀ V

The following rules define the evaluation of expressions and statements:

(n, σ) → n (a, σ) → a

(e, σ) → l
l ∈ dom(σ)

(∗e, σ) → σ(l)

(e, σ) → (c, f1)
c ∈ C

(e.f, σ) → (c, f)

(e0, σ) → v0 (e1, σ) → v1

v0, v1 ∈ Z v = v0 ⊕ v1

(e0 ⊕ e1, σ) → v

(e0, σ) → l (e1, σ) → v l ∈ dom(σ)

(∗e0 ← e1, σ) → σ[l �→ v]

(e0, σ) → v0 (e1, σ) → v1 v0 ≡ v1

(cond(e0 ≡ e1), σ) → σ

(e0, σ) → l l ∈ dom(σ) c fresh
σ′ = σ[l �→ (c, f1)] ∪ {(c, f) �→ 0}f∈F

(∗e0 ← malloc, σ) → σ′

(e, σ) → (c, f1) (c, f1) ∈ dom(σ)
σ′ = σ − {(c, f) �→ }f∈F

(free(e), σ) → σ′

B Demand-Driven Inter-procedural Analysis Algorithm

Figure 8 shows the entire inter-procedural demand-driven dataflow analysis-by-
contradiction algorithm. Each procedure in the program is represented using a control-
flow graph whose nodes n ∈ N are program statements. For each CFG node n, pred(n)
represents the predecessors of n in the graph. Node np

e is the entry node of procedure
p, and node np

x is the exit (i.e., return) node. Given a dataflow fact d0 that describes the
error cell and a control-flow graph node n0, the algorithm returns “Success” if it can
determine that a leak cannot occur at point n0; otherwise, it returns “Potential Leak”.

Memory Leak Analysis by Contradiction 423

LEAKANALYSISBYCONTRADICTION(d0 ∈ D, n0 ∈ N)
1 for each n ∈ N, c ∈ C, i ∈ Di

2 R(n)(c)(i) ← ⊥
3 for each p ∈ P
4 S(p)(none) ← Callsites(p) × {none}
5
6 W ← ∅
7 INSERT(d0, none, n0)
8
9 while W �= ∅

10 remove (n, c, i) from W
11 s ← R(n)(c)(i)
12 switch n
13 case call p :
14 c′ ← i
15 INSERT(Map({ (i, s) }, n), c′, np

x)
16 S(p)(c′) ← S(p)(c′) ∪ { (n, c) }
17 if (R(np

e)(c′) �= ⊥)
18 then for each n′ ∈ pred(n)
19 INSERT(Unmap(R(np

e)(c′), n), c, n′)
20
21 case np

e :
22 if (Callsites(p) = ∅)
23 then return “Potential Leak′′

24 for each (n′, c′) ∈ S(p)(c)
25 for each n′′ ∈ pred(n′)
26 INSERT(Unmap({ (i, s) }, n′), c′, n′′)
27
28 case default :
29 d ← [[n]]•(i, s)
30 if (d = �)
31 then return “Potential Leak′′

32 for each n′ ∈ pred(n)
33 INSERT(d, c, n′)
34
35 return “Success′′(NoLeak)

INSERT(d ∈ D, c ∈ C, n ∈ N)
36 for each i ∈ Di

37 R(n)(c)(i) ← R(n)(c)(i) � d(i)
38 if R(n)(c)(i) has changed
39 then W ← W ∪ { (n, c, i) }

Fig. 8. Inter-Procedural Demand Analysis by Contradiction

Separable Abstractions. The algorithm is formulated to work with separable dataflow
abstractions. A separable abstraction is a map D = Di → Ds, where Di is a finite set
called the index domain, and (Ds,�,�,⊥,�) is a lattice called the secondary domain.

424 M. Orlovich and R. Rugina

Dataflow facts d ∈ Di → Ds are represented using association lists, and compo-
nents with bottom secondary values are omitted. For instance, d = {(i, s)} stands for
λi′ . if (i′ = i) then s else ⊥. The ordering over D is the pointwise ordering of func-
tions. For a lattice element d ∈ D, each pair (i, d(i)) is called a component of the ab-
straction d. Transfer functions are expressed component-wise: [[n]]• : (Di ×Ds) → D.
A standard (non-separable) dataflow abstraction is represented as a separable abstrac-
tion with one single component. The basic leak analysis uses a non-separable abstrac-
tion; and one of the extensions in Section 4.8 uses a separable abstraction to avoid
merging dataflow facts and improve the analysis precision.

Worklist Algorithm. The analysis uses a worklist algorithm. Each worklist element is a
single component (not an entire abstraction) and each procedure context c is an index
from Di. There is an additional context none, explained below. The set C = Di ∪
{none} denotes all possible contexts. The backward propagation stores dataflow facts
in the result function R : N → C → D. For a node n and a context c, the value of
R(n)(c) ∈ D is the dataflow fact computed after node n in a context c of the enclosing
procedure.

The analysis uses reverse summaries for procedures. The procedure summary for a
context c maps a single component with index i = c at procedure exit to a corresponding
dataflow fact d at procedure entry. Dataflow facts whose birth-points occur inside of a
function are given the special context none. Procedure summaries are not stored in
a separate data structure; instead, they are implicitly captured in R: the summary or
procedure p for a context c is R(np

e)(c).
When the analysis reaches a procedure entry point, it propagates the information to

all of the callers that have requested a result for the current context c. For this, the algo-
rithm uses a call-site map S : P → C → (N × C). When the analysis of a component
reaches the entry of p with context c, it propagates the component to the points indi-
cated by S(p)(c). This contains pairs (n′, c′) of target points and target contexts at those
points. The call site map is set up every time a procedure call is encountered (line 16),
and used when reaching procedure entries (line 23). For facts with context none (born
inside procedures), S contains all possible call sites, as indicated by the initialization at
lines 6-7.

The analysis uses two functions, Map and Unmap, to account for the necessary
changes in the analysis information when crossing procedure boundaries. Function Map
is used when moving from the caller into the callee space; function Unmap is used
for moving back into the caller space. Map and Unmap each take two arguments: the
dataflow fact d to process, and the call-site n where the mapping or unmapping takes
place.

Path-Sensitive Dataflow Analysis
with Iterative Refinement

Dinakar Dhurjati1, Manuvir Das2, and Yue Yang2

1 University of Illinois at Urbana Champaign
{dhurjati@cs.uiuc.edu}

2 Center for Software Excellence, Microsoft Corporation
{manuvir, jasony@microsoft.com}

Abstract. In this paper, we present a new method for supporting ab-
straction refinement in path-sensitive dataflow analysis. We show how
an adjustable merge criterion can be used as an interface to control the
degree of abstraction. In particular, we partition the merge criterion with
two sets of predicates — one related to the dataflow facts being propa-
gated and the other related to path feasibility. These tracked predicates
are then used to guide merge operations and path feasibility analysis,
so that expensive computations are performed only at the right places.
Refinement amounts to lazily growing the path predicate set to recover
lost precision. We have implemented our refinement technique in ESP,
a software validation tool for C/C++ programs. We apply ESP to vali-
date a future version of Windows against critical security properties. Our
experience suggests that applying iterative refinement to path-sensitive
dataflow analysis is both effective in cutting down spurious errors and
scalable enough for solving real world problems.

1 Introduction

In recent years, model checking and dataflow analysis have emerged as com-
peting approaches for compile-time defect detection. Many model checking tools
[1,2,3,4,5,6] have enjoyed the benefit of abstraction refinement. The process starts
with a coarse (simple) abstract model. Once the model is checked, the feasibility
of the resulting abstract counterexample is examined. If feasible, the result re-
veals a real error; otherwise, the result is a false positive. In the latter case, the
abstraction is refined and fed back to the model checker for successive checking.

Although abstraction refinement has proven effective in model checking, simi-
lar techniques have not been widely adopted in dataflow analysis [7,8,9,10]. The
main difficulties involved in supporting abstraction refinement in dataflow anal-
ysis are: (1) How do we control the abstraction? Model checking has an a priori
abstract model, which naturally represents the abstraction; in dataflow analysis,
the abstraction is computed directly from a source program as dataflow facts by
obtaining the least fixed point solution to a set of transfer functions. (2) How do
we identify false positives? The abstract counterexample produced by a model
checker is a single path. Therefore, the model checking refinement process can

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 425–442, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

426 D. Dhurjati, M. Das, and Y. Yang

prove its feasibility using theorem proving. In contrast, the abstract trace gen-
erated by dataflow analysis is a summary of up to exponentially many (or even
infinitely many) execution paths in the original program — rigorously proving
its feasibility is very difficult.

In this paper, we address these difficulties. Our first insight is that the merge
criterion in dataflow analysis plays a key role in determining path-sensitivity.
By extending the fixed merge criterion to an adjustable one, abstractions can
be tuned in response to the characteristics of the paths being analyzed. Our
second insight is that in the absence of a single counterexample, the refinement
process can be effective if spurious error traces, and the missing predicates that
lead to these traces, can be identified heuristically. By combining an adjustable
merge criterion with efficient heuristics for finding where precision is lost, the
analysis can adaptively adjust its precision in a demand-driven fashion. We apply
these refinement techniques to ESP [10,11], a validation tool for large C/C++
programs, with promising results.

Loss of precision in dataflow analysis mainly arises in two situations: (1) when
states along different paths are merged at merge points and (2) when dataflow
facts are propagated across infeasible paths. Consider ESP as an example, its
path-sensitive dataflow analysis incorporates two mechanisms to preserve the
precision of path-sensitive analysis: an effective merge algorithm based on prop-
erty simulation [10] and a path feasibility analyzer called SSM (Symbolic State
Manager) [12]. However, these mechanisms are “static”, in the sense that they
are based on a fixed set of rules. Although ESP can preserve precision in common
cases, sometimes it is still overly conservative — the merge may be too aggressive
or the tracking on simulation states may be too imprecise. As a fixed-precision
analysis, ESP is not able to recover precision loss should it arise. The iterative
refinement technique described in this paper removes this limitation.

Example. To illustrate how a false positive may be introduced in static analysis,
consider the example in Figure 1. The finite state machine in Figure 1(a) encodes
a property adapted from the requirement on Windows kernel objects. We intend
to validate that a program should not call UseHandle on an object that has been
previously closed by CloseHandle. Figure 1(b) shows a function that processes a
handle according to various status values. Albeit simple, this code snippet reflects
a common coding practice: Programmers often use internal flags (such as flag1
and flag2 in this example) to record programming states and later use them
to guide control flow. If an analysis does not track enough branch correlations,
it may report a violation to the property protocol at L4. In contrast, a more
precise analysis reveals that no valid error path can lead to this point because
of the guard on flag1 at L3. Hence, the warning is a false positive. ��

Contributions. A practical analysis tool is aimed at supporting industrial pro-
grams with complex language features. Therefore, it must satisfy several chal-
lenging (and sometimes conflicting) goals at once: (1) it should scale to large
programs, (2) it should offer enough precision, and (3) it should produce use-

Path-Sensitive Dataflow Analysis with Iterative Refinement 427

�� ��
�� �	UNINIT

OpenHandle���� ��
�� �	OPENED

UseHandle
��

CloseHandle
���� ��

�� �	ERROR
�� ��
�� �	CLOSED

UseHandle��

extern int stat1, stat2;

void Process(int handle) {

int flag1, flag2;

L1: if (stat1 > 0) {

CloseHandle(handle);

flag1 = 1;

}

else

flag1 = 0;

L2: if (stat2 > 0)

flag2 = 1;

else

flag2 = 0;

L3: if (flag1 == 0)

L4: UseHandle(handle);

}
(a) (b)

Fig. 1. Usage of Windows kernel objects. Figure (a) shows the finite state machine of
the typestate property. Figure (b) shows a simplified code pattern adapted from the
Windows kernel.

ful feedback to help programmers investigate bugs. This paper addresses these
tradeoffs and integrates practical techniques to produce useful results. Our con-
tributions can be summarized as follows.

– We show how the merge criterion in dataflow analysis can be extended to
support adaptable abstractions. In particular, we apply two predicate sets
to control precision: one is a fixed set consisting of predicates related to
the property of interest, and the other is an adjustable set consisting of
predicates related to path feasibility (these predicates are referred to as path
predicates).

– We apply the following heuristic to quickly recognize potential false positives:
Along with an error trace, there often exists a corresponding good trace (a
path leading to a valid property state) that ends at the same program point.
If these “good state” and “error state” co-exist, it is likely that the error
state is reached because useful predicates present in the good state have been
inadvertently dropped from the error state during the analysis. Therefore,
addition of these distinguishing predicates to the tracked path predicate set
will help eliminate spurious errors.

– We implement the refinement techniques in ESP. We show experimental
evidence that iterative refinement is effective in filtering out false positives
and is scalable enough to be applied to large-scale programs.

The remainder of the paper is organized as follows. In Section 2, we review
the techniques applied in ESP. In Section 3, we describe our iterative refinement

428 D. Dhurjati, M. Das, and Y. Yang

approach. In Section 4, we discuss experimental results. In Section 5, we review
related work. We conclude in Section 6.

2 Background

ESP checks program properties related to typestates [13]: For a value created dur-
ing program execution, its ordinary type is invariant but its typestate may be
updated by certain operations. ESP allows a user to write a custom specification
encoded in a finite state machine, as illustrated in Figure 1(a), to describe type-
state transitions. According to the specification, ESP instruments the source
program with the state-changing events. It then employs an inter-procedural
dataflow analysis algorithm, based on function summaries [8], to compute the
typestate behavior at every program point. To obtain path-sensitivity, ESP uses
the combination of property simulation [10] and path simulation [12].

2.1 Property Simulation

In ESP, a symbolic state is divided into the property state (typestate according to
the specified protocol) and the simulation state (state related to path feasibility).
The property simulation algorithm defines a merge heuristic centered around
the property of interest: At a merge point, if two symbolic states have the same
property state, ESP merges the simulation states. Otherwise, ESP explores the
two paths independently as in a full path-sensitive analysis.

The simulation state is an element in a lattice whose elements are abstractions
of heap and store. Let D be the domain of property states and S be the domain
of simulation states. Given a symbolic state s ∈ S, we denote its property state
by ps(s) and its simulation state by ss(s). The merge criterion for s is charac-
terized by the following grouping function:

αps(s) = {[{d},�s′∈s[d]ss(s′)] | d ∈ D ∧ s[d] �= φ}

where s[d] = {s′|s′ ∈ S ∧ d = ps(s′)} and � is the
least upper bound in the simulation state lattice.

Example. To see the different effects caused by various merge policies, consider
Figure 1(b). Assume that the property state is OPENED when function Process
is entered. A full path-sensitive analysis tracks all paths reaching program point
L3, resulting in four symbolic states at L3:

[{CLOSED}, {stat1 > 0, f lag1 = 1, stat2 > 0, f lag2 = 1}]
[{CLOSED}, {stat1 > 0, f lag1 = 1, stat2 <= 0, f lag2 = 0}]
[{OPENED}, {stat1 <= 0, f lag1 = 0, stat2 > 0, f lag2 = 1}]
[{OPENED}, {stat1 <= 0, f lag1 = 0, stat2 <= 0, f lag2 = 0}]

ESP, on the other hand, drops the correlation between variables stat2 and flag2
because the branch at L2 does not affect the property state. As a result, only

Path-Sensitive Dataflow Analysis with Iterative Refinement 429

two symbolic states are kept at L3:

[{CLOSED}, {stat1 > 0, f lag1 = 1}]
[{OPENED}, {stat1 <= 0, f lag1 = 0}]

Since the dropped facts are irrelevant to the property of interest, ESP still
maintains enough information to conclude that L4 is not reachable if the property
state is CLOSED. ��

Property simulation matches the coding practice of a careful programmer: The
correlation between a given property state and the program state is usually
guarded in the code by branch conditions. ESP makes such implicit correlation
explicit. The adjustable merge criterion developed in this paper builds upon this
insight by taking additional path predicates into account as well.

2.2 Path Simulation

The symbolic path simulator, referred to as Simulation State Manager (SSM) in
this paper, manages simulation states and acts as a theorem prover to answer
queries about path feasibility. A simulation state mainly consists of two sets of
information: (1) the symbolic store (mapping from locations to values) and (2) a
set of constraints (or path predicates) imposed on values. These path predicates
are implicitly conjuncted. To reason about facts related to path feasibility, SSM
applies a decision procedure based on a set of inference rules. The path simulator
performs a set of transfer functions on behalf of ESP for instructions such as as-
signments, branches, procedure calls (into-binding), call returns (back-binding),
and merges. These transfer functions update simulation states accordingly and
filter out infeasible paths.

Path feasibility analysis is undecidable in general. To guarantee convergence
and efficiency, the Simulation State Manager makes conservative assumptions
when necessary. While such over approximation is sound (i.e., it will not miss
errors), it may introduce imprecision. The refinement technique in this paper
allows the analysis to start with a light-weight decision procedure and fine-tune
it based on counterexamples.

2.3 Imprecision Due to Property Simulation

Although the ESP merge heuristic is precise in most cases, sometimes it can be
too conservative.

Example. In Figure 2(a). The branch at L1 does not change the property state.
Therefore, ESP merges the simulation states at L2 and loses the correlation
between stat and flag. As a result, a false positive is reported at L4. ��

Our refinement technique would pick up an additional path predicate, say stat >
0, and add it to the merge criterion. This would direct the analysis to track the

430 D. Dhurjati, M. Das, and Y. Yang

extern int stat;

void Process(int handle) {

int flag = 0;

L1: if (stat > 0)

flag = 1;

else

flag = 2;

L2: if (stat > 0)

CloseHandle();

L3: if (flag != 1)

L4: UseHandle();

}

extern int stat;

void Process(int handle) {

int flag = 0;

if ((stat & 0x81) != 0)

return;

CloseHandle(handle);

L1: flag = stat & 0x1;

L2: if (flag != 0) {

L3: UseHandle(handle);

}

}

(a) (b)

Fig. 2. Examples that illustrate the need of refinement. Figure (a) shows a false positive
caused by the ESP merge heuristic. Figure (b) shows a false positive caused by the
path feasibility analysis.

branch at L1 accurately since the branch arms impose different facts about the
predicate. With this additional precision, the analysis can rule out the false error.

Even when an error reported by ESP is a real error, it may still be beneficial
to apply refinement to “concretize” the abstract counterexample, i.e., to expand
the merged paths at certain branch points so that the trace can be more explicit
and meaningful for inspection purposes.

2.4 Imprecision Due to Path Simulation

The Simulation State Manager uses a set of inference rules to implement the
underlying decision procedure. By default, it supports a subset of congruence
closure and uninterpreted functions. While it is possible to apply a heavy-weight
theorem prover that combines many theories, it would significantly hinder the
scalability of our analysis. Therefore, when the complexity of certain branch
correlations get too complicated, the correlations would be dropped due to the
lack of reasoning power in the theorem prover.

Example. In Figure 2(b), the fact (stat & 0x81)= 0 should hold at L1 because
the function would have returned otherwise. This fact should imply flag = 0 at
L2. However, if the theorem prover does not employ inference rules to track bit-
wise operations, it might not be able to deduce such information — this would
result in a false positive at L3. ��

The above example reflects a coding pattern where operations are controlled by
certain bits in a flag. While tracking this is critical for certain code bases and
properties, it is not important in general. Therefore, it is beneficial to start an
analysis with a light-weight theorem prover and only add precision as needed.

Path-Sensitive Dataflow Analysis with Iterative Refinement 431

3 Refining Dataflow Analysis

There are three key steps in the dataflow refinement process: (1) identifying
“suspicious” error traces that need refinement, (2) selecting a minimal set of
dropped branch correlations that may contribute to the precision loss and adding
them to the merge criterion, and (3) enforcing the extended merge criterion in
the subsequent iteration.

3.1 Identifying False Positives

As previously mentioned, generating one concrete counterexample out of an ab-
stract ESP counterexample may not be scalable. The novelty of our approach
is that instead of trying to ascertain that an error trace reported by ESP is a
false positive before starting the refinement process, we develop an inexpensive
heuristic that can identify false positives with high probability.

Definition. Corresponding Good State — Given a candidate error state E, its
corresponding good state is defined as a symbolic state G at the same program
point as E, such that the property state of G is not ERROR. ��

Heuristic 1. Given a candidate error state E, if there exists a corresponding
good state E′, E is subject to refinement; otherwise, E is not subject to refine-
ment. ��

Example. At program point L4 in Figure 2(a), the error is indicated by state
[CLOSED, {stat > 0, f lag �= 1}]. There also exists a good state, [OPENED, {stat <=
0, f lag �= 1}], which correctly keeps track of the correlations. According to
heuristic 1, the error at L4 is subject to refinement. ��

This heuristic is based on the following intuition: If at a program point, there
only exists an error trace without any good traces, there is no evidence that the
program can behave correctly. Hence, the error is likely to be real.

We now formally examine heuristic 1 using a case analysis. For a given candi-
date error state, there may or may not exist a corresponding good state at the
same program point. Among the four possible combinations (as listed below),
heuristic 1 directly supports category (1) and (4). For category (2) and (3), while
the heuristic cannot properly distinguish whether the error is a false positive, the
refinement policy imposed by the heuristic can still be beneficial. This explains
why our inexpensive heuristic can be surprisingly effective in practice.

Category 1 [False error, With good state]. Heuristic 1 directly targets this
category. A false positive in this group would be properly identified.

Category 2 [Real error, With good state]. These error states would also
be profiled as plausible errors needing refinement. Although these errors are not
false positives, selecting them for refinement can indeed be helpful for inspection

432 D. Dhurjati, M. Das, and Y. Yang

purposes because expanding the abstract trace will make the error message more
explicit and meaningful.

Category 3 [False error, Without good state]. It may appear that our
heuristic is not suitable for this category because these false errors would not be
subject to refinement. This, however, is not a deficiency of the heuristic. This is
because ESP is conservative — it reports all (and potentially more) paths that
can reach a program point. Therefore, if the error path is infeasible and there is
no corresponding good path, it means that there is no feasible path at all that
can reach this program point, i.e., the “false error” is part of “dead code”. From
a software engineering point of view, it may be desirable to reveal these as real
errors.

Category 4 [Real error, Without good state]. Heuristic 1 is correct in not
identifying these real errors as false positives.

3.2 Selecting New Predicates

After a potential false positive is identified, we need to determine what are
the additional predicates that are most likely to improve the precision. One
approach is to collect all the path predicates accumulated in the error state.
However, most of these predicates are irrelevant and will result in unnecessary
overhead in the subsequent analysis. To pinpoint exactly where precision is lost,
we develop heuristic 2 based on the insight from heuristic 1 to gather only the
relevant predicates in common scenarios.

Heuristic 2. We compare the simulation states between the candidate error
state and its corresponding good state. The difference in path predicates sug-
gests why the error path and the good path deviate. Therefore, we select these
distinguishing predicates and add them to the merge criterion for the subsequent
iteration. ��

Example. In Figure 2(a), if we compare the predicates between the simulation
state of the error state, [CLOSED, {stat > 0, f lag �= 1}], and the simulation state
of the good state, [OPENED, {stat <= 0, f lag �= 1}], it is clear that {stat > 0} is
a distinguishing factor. It should therefore be added to the merge criterion. ��

This method is efficient because it queries the state information that is already
available as dataflow facts computed from the previous iteration; it is also effec-
tive because it allows path-sensitivity to be incrementally added at exactly the
right place.

3.3 Adjusting the Merge Criterion

After additional path predicates are selected, they are added to the merge cri-
terion. At merge points in the subsequent run, incoming states that differ with

Path-Sensitive Dataflow Analysis with Iterative Refinement 433

respect to these selected path predicates will be tracked independently. This
section formally describes this process.

Let P1, P2, ..., Pn be the set of predicates that need to be added to the merge cri-
terion in any iteration. LetT be a set of tri-values {1, 0, *}, with the elements denot-
ing true,false anddon’t know, respectively.To track the predicatesP1, P2, ..., Pn

accurately in the new run, we change the property state component to D × T...×
T (or D × T n). For a symbolic state in the new run, [{d, t1, t2, ..., tn}, ss], ti de-
notes whether predicate Pi is provable from the simulation state ss using a theo-
rem prover. If � denotes provability, ti can be defined as follows:

ti = 1 if ss � Pi

= 0 if ss � ¬Pi

= * otherwise

The merge criterion is extended with a tri-value vector denoting the status
of each of the predicates that we have decided to track accurately. At merge
points, the incoming symbolic states are compared. If there exists a ti such that
its value is different in the two incoming states, the paths are tracked separately;
otherwise, the paths are merged. Formally, the grouping function for the merge
criterion is modified as follows:

αps(s) = {[{d},�s′∈s[d]s(s′)]| d ∈ D × T n ∧ s[d] �= φ }

where s[d] = {s′|s′ ∈ ss ∧ d = ps(s′)} and � is the
least upper bound in the execution state lattice.

The tri-values are set to * in the initial state for a given run of the dataflow
analysis. To obtain the next set of symbolic states after a program statement, we
first invoke the same transfer functions as in the original ESP. For each predicate
Pi, we then invoke the Simulation State Manager to prove Pi or ¬Pi. Depending
on the provability, we assign a tri-value to the (i + 1)th location in the prop-
erty state component. Once we have the new set of symbolic states we use the
grouping function, just like in the original ESP algorithm, to merge the symbolic
states whose new property states (the original property state and the predicate
vector) are the same.

Example: In Figure 2(a), a subsequent run adds the predicate {stat > 0} to
the property state component. Let p denote the predicate {stat > 0}. The new
ESP run at program point L2 would have two separate symbolic states [{CLOSED,
p = 1}, {stat > 0, f lag = 1}] and [{CLOSED, p = 0}, {stat <= 0, f lag = 2}].
Since the the property state components are no longer the same, the two symbolic
states will be tracked independently. With this additional correlation, the new
run will not produce an error state. ��

New Automata of State-Changing Events. Changing the merge criterion
as outlined above could be viewed as using an alternative property state ma-

434 D. Dhurjati, M. Das, and Y. Yang

1 Pi

0

*

else Pi

not(Pi)else

not(Pi)

else

Pi

not(Pi)

Fig. 3. A tri-value automaton for the ith predicate Pi. Values 1, 0, and * denote true,
false and don’t know, respectively.

chine for defining state-changing events. This new state machine is the product
automaton of the original property automaton with n tri-value automata. The
ith tri-value automaton is shown in Figure 3. The product property automaton
has |D| ∗ 3n states, where |D| is the number of states in the original property
automaton.

Complexity of the New Merge Algorithm. The original ESP algorithm is
polynomial in |D| [10]. The complexity of an ESP run with refined abstraction as
described above is exponential in the number of predicates since the size of our
new property automaton is exponential in the number of predicates. In practice,
however, this is not an issue since only a few predicates matter at any point
in the program and most states in the new property state automaton are never
reached. Note that we also need to add the cost of 2 ∗ n calls to the theorem
prover in addition to the cost of the transfer function at each step in the ESP
algorithm. We can optimize away most of these queries by using a simple value
flow analysis [14] to “slice” the program.

3.4 A More Refined Abstraction Method

The tri-vectors succinctly encode a set of abstract states of the program. How-
ever, this is only an approximation (referred to as the cartesian approximation
in SLAM [15]) to the most precise predicate abstraction. For example, suppose
we have added a new predicate x = 0. If at the merge points the facts along the
two paths are x < 0 and x > 0 respectively, sometimes it is desirable to keep
the fact of x �= 0 after the merge. However, with cartesian approximation, such
information is lost.

To regain the precision lost in this situation, we have also implemented an al-
ternative abstraction method based on distinguishing variables. Instead of using
the tri-value of a predicate to control merging, we project the related variables
from the predicate set. At merge points, any incoming states with different facts
on the selected variables are tracked separately. In the above example, x would

Path-Sensitive Dataflow Analysis with Iterative Refinement 435

procedure IterativeRefine(P, D)
begin

for each f ∈ P
E[f] = φ;

while true do
switch ESPRun(P, D, E)
case SUCCESS:

output “success”; break;
case FAILURE(T): //T is a set of ESP error traces

for each f ∈ P
E’[f] = φ

for each t ∈ T
if (CheckSuspiciousTrace(t)) then

E’ = E’ ∪p RelevantPredicates(t)
if (E’ ⊆ E) then

output T as error; break;
E = E ∪p E’;

end

Fig. 4. The iterative refinement algorithm for checking if program P satisfies the prop-
erty specified in automaton D

be picked out as a controlling factor for merge. Consequently, the incoming paths
with x < 0 and x > 0 are not merged since they affect the value of x.

Essentially this approach enables a mechanism for lazily tracking disjunctions
on predicates. Initially, the constraints carried in a simulation state are implicitly
conjuncted since it is prohibitive for the Simulation State Manager to eagerly
track every disjunction on merge due to the exponential cost. With the variable-
based refinement technique, an application is allowed to, and can afford to, have
a “deep” analysis when necessary, because it only focuses on a small number of
selected variables. Instead of asking the Simulation State Manager to explicitly
track the disjunctions, the merge mechanism is used to split the paths along
which the disjunctions are tracked independently.

One caveat with this refined abstraction method is that the fixed point com-
putation might not converge when the tracked variable is updated inside a loop.
To guarantee termination we unroll such loops for a fixed number of iterations.

3.5 The Iterative Refinement Algorithm

Having discussed the key steps in the refinement process, we now present the
iterative refinement algorithm for ESP.

Our analysis starts with the original ESP merge criterion and a set of simple in-
ference rules for reasoning about path feasibility. It then repeats the following pro-
cess: It first uses heuristic 1 to identify suspicious error traces. It then uses heuristic
2 to collect the missing path predicates. Based on these new predicates, it con-
structs a new precision policy by adding those selected predicates (or projected
variables) to the merge criterion. Finally, it conducts a more thorough analysis

436 D. Dhurjati, M. Das, and Y. Yang

along a focused set of paths. During the new iteration, whenever the tracked pred-
icates are involved, paths will be kept separate at merge points and comprehensive
inference rules in Simulation State Manager will be enabled in path simulation.

The iterative refinement algorithm for ESP is shown in Figure 4. Given a pro-
gram P and a property state automaton D, procedure IterativeRefine tries to
verify if P satisfies D by iteratively calling ESPRun. Procedure ESPRun takes
P , D, and E as input, where E is a map between functions and sets of pred-
icates: For a function f , E[f] represents the predicates that should be tracked
accurately when analyzing function f . ESPRun performs an analysis similar to
the original ESP, except that it uses the new precision policy based on E[f]. If
ESPRun returns success, i.e., it reports no error traces, P satisfies the property
specified in D. Otherwise, ESPRun returns a set of error traces T . We then
apply heuristic 1 to identify suspicious error traces in procedure CheckSuspi-
ciousTrace. If we find a suspicious error trace, we use heuristic 2 to generate
a set of relevant predicates from the error trace in procedure RelevantPred-
icates. ∪p can be succinctly described using the following equation: for each
f, (E ∪p E’)[f] = E[f] ∪ E’[f]. Essentially it aggregates the predicates for each
function. If there are no new predicates that need to be tracked accurately, we
stop and report the remaining errors as real errors. Otherwise we do one more
iteration by accurately tracking the predicates in E ∪p E’.

3.6 Incremental Refinement

A more precise analysis applied in a later iteration will explore only a subset
of the paths explored by the analysis in previous iterations. In particular, this
means that a symbolic state that does not reach the error state in a previous
iteration is guaranteed not to reach the error state in subsequent iterations.

We have implemented a form of this optimization in ESP, at all call sites.
In a given iteration, we record all of the property states that lead to an error
state. In the following iteration, we terminate the analysis for symbolic states
at call sites whose property state did not lead to an error state in the previous
iteration. This optimization allows us to avoid repeating part of the computation
from previous iterations.

4 Results

With the integration of refinement techniques, ESP has been successfully de-
ployed in validating several critical security properties for a future version of
Windows. In this section, we summarize our general experience on root cause of
false positives and use one of the properties as a case study.

4.1 General Experience

We have studied the root cause of false positives by manually inspecting the error
traces from various experiments using the Windows code base. We categorized
false positives in several groups: (1) those introduced by the imprecision of our

Path-Sensitive Dataflow Analysis with Iterative Refinement 437

analysis, (2) those introduced by the limitation of our specification method, and
(3) those that are “real errors” according to the specification, but the violation
to the protocol is by design, e.g., for performance reasons.

The distribution of these categories varies depending on properties being
checked, but the first group is usually the most common case. Among this group,
we have found that in most cases, the false positives are introduced by lacking
reasoning power from the Simulation State Manager. This further confirmed that
the ESP merge heuristic is usually precise enough.

The second group of false positives is due to “under specified” properties.
This issue arises in practice when specifications are developed based on coarse
documentations and program flags are used to track more state transitions than
the transitions specified in the property automaton. When these flags are as-
signed with different values that appear to be “irrelevant” with respect to the
specification, the correlations would be lost due to excessive merging. Our re-
finement method allows ESP to identify the additional branch correlations and
track those accurately without requiring refinement of the specifications.

Traces in the third group are “benign”. However, they are still worth a careful
code review because other invariants are usually required to maintain program
correctness.

4.2 Case Study

We have performed a case study by checking a security vulnerability. This vul-
nerability arises when a program acquires exclusive access to a system resource
and then relinquishes the exclusive access by closing its handle but “leaks” the
access to the resource through certain API. Checking this kind of property has
been difficult with previous tools because it requires precise tracking of value
flow in large programs1.

Scalability: Using two PCs, each with a 3.06GHz Xeon CPU and 2GB of RAM,
iterative refinement completed in 765 minutes for ASTs covering 5079 binaries
(DLL, SYS, and EXE modules) in a future version of Windows. ESP discovered
83 traces, out of which 47 were confirmed as real bugs and fixed. Being able to
perform such an analysis for the whole Windows code base clearly demonstrates
the scalability of our approach.

Effectiveness of Heuristic: After those 83 traces were produced, we applied
our heuristic again to further classify which of them are likely false positives. We
partitioned the traces into two buckets. If at a program point, there only exists
an error trace without any good traces, we put it into the high-confidence bucket.
If the trace has a corresponding good path, we put it into the low-confidence
bucket. The high-confidence bucket contains 38 real bugs and 2 spurious warn-
ings, with a noise ratio of 5%. The low-confidence bucket, on the other hand,
contains 9 real bugs and 34 spurious warnings, with a noise ratio of 79%. This

1 We are unable to provide more details about violations of the property because some
instances identified by ESP apply to previously shipped products as well.

438 D. Dhurjati, M. Das, and Y. Yang

ranking method allows us to quickly provide the high-confidence bucket to de-
velopers and focus on the low-confidence bucket to figure out where the tool
needs to be improved. The final spurious traces are mostly due to complex code
patterns that are too hard to track. Our existing Simulation State Manager is
not powerful enough to handle these cases. Nonetheless, our heuristic has been
shown to be highly effective. In our future work, we plan to power up the Simula-
tion State Manager so that the remaining false positives can be further reduced
with iterative refinement.

Precision improvement: We also conducted a comparison analysis between
using and not using the refinement technique, which has shown that the refine-
ment technique is effective in precision enhancement. As an example, we made
two runs on an EXE binary with 11718 LOC and 388 functions, one with re-
finement and the other without refinement. When refinement is applied, ESP
reports 1 real bug and no false positives in 6.9 seconds. When refinement is not
used, ESP also reports 3 spurious errors along with the actual bug in 3.2 seconds.

To summarize, these experiments suggested that (1) it is feasible to integrate
abstraction refinement to diagnose industrial-sized programs, (2) the heuristic
for distinguishing potential false positives is effective, and (3) refinement can
improve precision with a modest performance cost.

5 Related Work

The main contribution of this paper is an approach that integrates abstrac-
tion refinement, inter-procedural dataflow analysis, and counterexample-based
heuristics in a novel way to provide a practical solution for improving software
quality. Since our analysis draws on several insights from previous work, there
are several categories of related work.

5.1 Path Feasibility Analysis

There is a long line of work on improving path feasibility in dataflow analysis. For
example, qualified dataflow analysis [16] uses a given set of assertions on variable
values to “qualify” paths under consideration. Bodik et al. [9] mark infeasible
paths to improve the accuracy of def-use pair analysis. ESP [10,11], the basis of
this paper, uses specification states to distinguish merge policy at merge points
and relies on symbolic path simulation to enforce path feasibility. These works
all use a pre-defined set of qualifications and do not address refinement issues.

5.2 Demand-Driven Analysis

Our approach is similar to demand-driven analysis [8,17] but addresses different
issues. Their algorithms delay the computation of part of the analysis until it
is needed; but the analysis is performed with fixed precision. Our analysis uses
function summaries described in [8] for inter-procedural analysis. In addition,
our algorithm delays adding precision to the analysis until it is dictated by
evidence.

Path-Sensitive Dataflow Analysis with Iterative Refinement 439

5.3 Iterative Refinement

Several dataflow algorithms [18,19,20,21] have applied refinement techniques for
iteratively adjusting precision. While conceptually similar to our refinement pro-
cess, these algorithms are domain-specific. For example, Guyer et al. [18] use
client-driven refinement for pointer analysis and Plevyak et al. [19] use refine-
ment for inferring concrete types in objet-oriented languages. Trace partitioning
discussed in [20,21] focus on deciding which explicit disjunctions to keep during
the analysis. In contrast to these analyses, our refinement technique targets more
flexible typestate defect detection and can be applied to regain lost facts.

Fischer et al. [22] describe predicated lattices, a technique that is close in spirit
to our refinement approach. Their framework partitions the program state ac-
cording to a set of predicates and tracks a lattice element for each partition. Our
abstraction mechanism based on the adjustable merge criterion could be viewed
as a practical way of implementing predicated lattices. Their work focuses on a
general framework and does not address how to pick additional predicates for
refinement. In contrast, our particular interest is in combining effective parti-
tioning of predicates with efficient heuristics to recognize important predicates.

5.4 Abstraction Refinement in Model Checking

Abstraction refinement has been an accepted technique in model checking tools,
e.g., [1,2,3,4,6,23]. Our approach is different in how program abstraction is repre-
sented, selected, and enforced. (1) In model checking, the abstraction is defined
by the state space of a given abstract model. In our analysis, the abstraction
is done on the fly via selective merging. (2) Model checking techniques use the-
orem proving to map an abstract counterexample to a concrete program trace
to identify false positives. While generating new predicates from the proof of
unsatisfiability is more accurate and complete, it is also more expensive. We use
an inexpensive but effective heuristic to identify suspicious counterexamples and
then check the feasibility during the extra iteration of ESP analysis. (3) Model
checking starts with a coarse abstraction and requires an expensive iteration
process to reach the ideal abstraction. In contrast, ESP reports very few false
positives to begin with. Hence, our seed abstraction is much closer to the de-
sired one, which leads to faster convergence. Studies in [22,24] also show that
it is beneficial to use ESP to provide a starting abstraction for the refinement
process.

5.5 Counterexample-Based Heuristics

Counterexample-based heuristics are developed in [25,26]. Our heuristic for find-
ing missing predicates is inspired by these works. The main difference is that
these works focus on explaining root causes of real errors — they try to pinpoint
deviating path segments between error paths and good paths. In contrast, we
use the existence of corresponding good traces to quickly identify potential false
positives and useful predicates.

440 D. Dhurjati, M. Das, and Y. Yang

5.6 Precise Symbolic Simulation

Several static tools, such asPREfix [27], CMC [28], and Saturn [29], provide precise
symbolic simulation but limit exploration of program paths. We offer a comple-
mentary approach: instead of truncating the search space, our analysis considers
all paths but guides the exploration effort to where it is most productive.

6 Conclusions

A static tool must walk the fine line between precision and scalability. In this
paper, we have presented a new approach that allows the dataflow abstraction
to be refined incrementally in response to the characteristics of the paths being
analyzed. We have used the refinement technique to help validate a future version
of the Windows operating system against important security properties. Our
experience suggests that the heuristic for finding false positives is highly effective
and the refinement method is scalable enough to be of practical use.

Acknowledgments. We thank Stephen Adams, Zhe Yang, Vikram Dhanesh-
war, and Hari Hampapuram from the Center for Software Excellence at Microsoft
for their infrastructure support and insightful suggestions. Stephen Adams also
conducted some experiments. We are also grateful to Tom Ball from Microsoft
Research for many valuable discussions.

References

1. Thomas Ball and Sriram Rajamani. The SLAM project: Debugging system soft-
ware via static analysis. In Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL), 2002.

2. Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety
properties of interfaces. In Proceedings of the 8th international SPIN workshop on
Model checking of software, pages 103–122, New York, NY, USA, 2001. Springer-
Verlag New York, Inc.

3. Thomas Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy ab-
straction. In ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, 2002.

4. T. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions from proofs.
In Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL), 2004.

5. Cormac Flanagan. Automatic software model checking using CLP. In ESOP, pages
189–203, 2003.

6. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5):752–794, 2003.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL), 1977.

Path-Sensitive Dataflow Analysis with Iterative Refinement 441

8. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural data
flow analysis via graph reachability. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL), 1995.

9. Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Refining data flow information
using infeasible paths. In Proceedings of the Sixth European Software Engineering
Conference, 1997.

10. Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verifi-
cation in polynomial time. In ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (PLDI), 2002.

11. Nurit Dor, Stephen Adams, Manuvir Das, and Zhe Yang. Software validation
via scalable path-sensitive value flow analysis. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), 2004.

12. Hari Hampapuram, Yue Yang, and Manuvir Das. Symbolic path simulatin in path-
sensitive datflow analysis. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE),
2005.

13. R. Strom and S. Yemini. Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Transactions on Software Engineering, 12(1):157–
171, 1986.

14. Manuvir Das. Unification-based pointer analysis with directional assignments. In
ACM SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation (PLDI), 2000.

15. Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. Lecture Notes in Computer Science,
2031, 2001.

16. L. Howard Holley and Barry K. Rosen. Qualified data flow problems. In Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL), 1980.

17. Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In ACM
SIGPLAN 2001 Conference on Programming Language Design and Implementation
(PLDI), 2001.

18. Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Proceedings of
the International Symposium on Static Analysis (SAS), 2003.

19. John Plevyak and Andrew A. Chien. Precise concrete type inference for object-
oriented languages. In Proceedings of the Ninth Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), 1994.

20. Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In M. Sagiv, editor, European Symposium on Programming
(ESOP), volume 3444 of Lecture Notes in Computer Science, pages 5–20. Springer-
Verlag, 2005.

21. Maria Handjieva and Stanislav Tzolovski. Refining static analyses by trace-based
partitioning using control flow. In Proceedings of the 5th International Symposium
on Static Analysis (SAS), 1998.

22. Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. Joining dataflow with predi-
cates. In Proceedings of the Symposium on the Foundations of Software Engineering
(FSE), 2005.

23. K. R. M. Leino and F. Logozzo. Loop invariants on demand. In Proceedings of the
3rd Asian Symposium on Programming Languages and Systems (APLAS), 2005.

24. Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K. Rajamani,
Mark Seigle, and Westley Weimer. Speeding up dataflow analysis using flow-
insensitive pointer analysis. In Proceedings of the 9th International Symposium
on Static Analysis (SAS), 2002.

442 D. Dhurjati, M. Das, and Y. Yang

25. Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause:
Localizing errors in counterexample traces. SIGPLAN Not., 38(1):97–105, 2003.

26. A. Groce and W. Visser. What went wrong: Explaining counterexamples. In SPIN
Workshop on Model Checking of Software, pages 121–135, May 2003.

27. William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer
for finding dynamic programming errors. Software - Practice and Experience,
30(7):775–802, 2000.

28. Madanlal S. Musuvathi, David Park, Andy Chou, Dawson R Engler, and David L
Dill. CMC: A pragmatic approach to model checking real code. In Proceedings of
the Fifth Symposium on Operating Systems Design and Implementation (OSDI),
2002.

29. Yichen Xie and Alex Aiken. Scalable error detection using boolean satisfiability.
In Proceedings of the ACM Symposium on Principles of programming Languages
(POPL), 2005.

Author Index

Albert, Elvira 107
Allamigeon, Xavier 35
Amiranoff, Pierre 161
Arnold, Gilad 204
Askarov, Aslan 353

Balakrishnan, Gogul 221
Barthe, Gilles 301
Berdine, Josh 240
Bertrane, Julien 370
Bouajjani, Ahmed 52

Calcagno, Cristiano 182
Chang, Bor-Yuh Evan 318
Chen, Feng 387
Childers, Bruce R. 281
Cohen, Albert 161
Cook, Byron 240

Das, Manuvir 1, 425
Dhurjati, Dinakar 425
Distefano, Dino 182

Feautrier, Paul 161
Foster, Jeffrey S. 88

Godard, Wenceslas 35
Gonnord, Laure 144
Gotsman, Alexey 240
Goubault, Eric 18
Grégoire, Benjamin 301
Gupta, Aarti 3

Habermehl, Peter 52
Halbwachs, Nicolas 144
Harren, Matthew 318
Hedin, Daniel 353
Hermenegildo, Manuel 107
Hicks, Michael 88
Huang, Yuqiang 281
Hymans, Charles 35

Ivančić, Franjo 3

Jhala, Ranjit 71

Kirkegaard, Christian 336
Kunz, César 301

Loginov, Alexey 261

Majumdar, Rupak 71
Møller, Anders 336

Necula, George C. 318

O’Hearn, Peter W. 181, 182
Orlovich, Maksim 405

Pratikakis, Polyvios 88
Puebla, Germán 107
Putot, Sylvie 18

Reps, Thomas 221, 261
Rezk, Tamara 301
Rogalewicz, Adam 52
Roşu, Grigore 387
Rugina, Radu 405

Sabelfeld, Andrei 353
Sagiv, Mooly 261
Sankaranarayanan, Sriram 3
Schmidt, David A. 127
Shlyakhter, Ilya 3
Soffa, Mary Lou 281

Vojnar, Tomáš 52

Xu, Ru-Gang 71

Yang, Hongseok 182, 280
Yang, Yue 425

	Frontmatter
	Invited Talk
	Unleashing the Power of Static Analysis

	Session 1
	Static Analysis in Disjunctive Numerical Domains
	Static Analysis of Numerical Algorithms
	Static Analysis of String Manipulations in Critical Embedded C Programs

	Session 2
	Abstract Regular Tree Model Checking of Complex Dynamic Data Structures
	Structural Invariants
	Existential Label Flow Inference Via CFL Reachability

	Session 3
	Abstract Interpretation with Specialized Definitions
	Underapproximating Predicate Transformers
	Combining Widening and Acceleration in Linear Relation Analysis
	Beyond Iteration Vectors: Instancewise Relational Abstract Domains

	Invited Talk
	Separation Logic and Program Analysis
	Beyond Reachability: Shape Abstraction in the Presence of Pointer Arithmetic

	Session 4
	Specialized 3-Valued Logic Shape Analysis Using Structure-Based Refinement and Loose Embedding
	Recency-Abstraction for Heap-Allocated Storage
	Interprocedural Shape Analysis with Separated Heap Abstractions
	Automated Verification of the Deutsch-Schorr-Waite Tree-Traversal Algorithm

	Invited Talk
	Shape Analysis for Low-Level Code

	Session 5
	Catching and Identifying Bugs in Register Allocation
	Certificate~Translation~for~Optimizing~Compilers
	Analysis of Low-Level Code Using Cooperating Decompilers

	Session 6
	Static Analysis for Java Servlets and JSP
	Cryptographically-Masked Flows
	Proving the Properties of Communicating Imperfectly-Clocked Synchronous Systems

	Session 7
	Parametric and Termination-Sensitive Control Dependence
	Memory Leak Analysis by Contradiction
	Path-Sensitive Dataflow Analysis with Iterative Refinement

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

