Welf Lowe
Mario Siidholt (Eds.)

Software
Composition

5th International Workshop, SC 2006
Vienna, Austria, March 2006
Revised Selected Papers

LNCS 4089

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4089

Welf Lowe Mario Siidholt (Eds.)

Software
Composition

Sth International Symposium, SC 2006
Vienna, Austria, March 25-26, 2006
Revised Papers

@ Springer

Volume Editors

Welf Lowe

Vixjo University

School of Mathematics and Systems Engineering
Software Technology Group

351-95 Vixjo, Sweden

E-mail: welf.lowe @msi.vxu.se

Mario Siidholt

Ecole des Mines de Nantes

Département Informatique

4, rue Alfred Kastler, 44307 Nantes Cedex 3, France
E-mail: Mario.Sudholt@emn.fr

Library of Congress Control Number: 2006930915

CR Subject Classification (1998): D.2, D.1.5, D.3, F.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-37657-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37657-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11821946 06/3142 543210

Preface

Research in software composition investigates models and techniques to build
systems from predefined, pretested, reusable components instead of building
them from scratch. In recent years, this idea has largely been adopted by in-
dustry. In the shape of service-oriented architecture, software composition has
become an influential design paradigm, especially for the (re-)organization of the
IT infrastructure of organizations. On the technical level, the standardization of
Web services and other composition technologies has further matured.

Current research in software composition aims at (further) developing com-
position models and techniques. The aspect-oriented programming and design
paradigm, for instance, has gained interest in the research community as a com-
position (support) model. Other current research questions concern the spec-
ification of component contracts, in particular making explicit its observable
behavior, and methods of correct components composition. The International
Symposium on Software Composition provides a premier forum for discussing
these kinds of research questions and presenting original research results.

This LNCS volume contains the proceedings of the 5th International Sym-
posium on Software Composition, which was held as a satellite event of the
European Joint Conferences on Theory and Practice of Software (ETAPS) in
Vienna, Austria, March, 25-26 2006. The symposium started with a keynote on
“Semantically Enabled Service-Oriented Architectures” given by Dieter Fensel,
Director of the Digital Research Institute. The main program consisted of presen-
tations of research papers on software compositions. These proceedings contain
the revised versions of the papers presented at SC 2006.

We selected 21 technical papers out of 60 submissions. Each paper went
through a thorough revision processes and was reviewed by three to five review-
ers followed by an electronic Program Committee discussion. We would like to
thank the Program Committee members and the external reviewers for selecting
a set of diverse and excellent papers and making SC 2006 a success.

We would like to express our gratitude to the European Network of Ex-
cellence on Aspect-Oriented Software Development (AOSD-Europe) and to the
International Federation for Information Processing, Technical Committee on
Software: Theory and Practice (IFIP, TC 2) for sponsoring this event. Finally,
we would like to thank the organizers of ETAPS 2006 for hosting and providing
an excellent organizational framework for SC 2006.

June 2006 Welf Lowe, Véxjo University, Sweden
Mario Siidholt, INRIA - Ecole des Mines de Nantes, France

Program Co-chairs

SC 2006

Organization

Program Committee

Brian Barry
Alexandre Bergel
Judith Bishop

Pierre Cointe
Vittorio Cortellessa
Thierry Coupaye
Birgit Demuth
Flavio De Paoli
Dieter Fensel

Volker Gruhn
Thomas Gschwind
Arno Jacobsen
Mehdi Jazayeri

Tom Henzinger
Kung-Kiu Lau

Karl Lieberherr

Welf Léwe (Co-chair)
Mira Mezini

Claus Pahl

Arnd Poetzsch-Heffter
Elke Pulvermiiller
Lionel Seinturier
Mario Stidholt (Co-chair)
Wim Vanderperren

Referees

U. ABmann

O. Barais

D. Beyer

M. Book

F. Cabitza

O. Caron

A. Chakrabarti
P.-C. David

B. De Fraine

(Bedarra Research Labs, Canada)
(Trinity College Dublin, Ireland)
(University of Pretoria, South Africa)
(Ecole des Mines de Nantes, France)
(University of L’Aquila, Ttaly)
(France Telecom, France)
(Technische Universitét Dresden, Germany)
(University of Milano Bicocca, Italy)
(DERI Galway/Innsbruck, Ireland/Austria)
(University of Leipzig, Germany)
(IBM Research, Switzerland)
(University of Toronto, Canada)
(University of Vienna, Austria)
(EPF Lausanne, Switzerland)
(The University of Manchester, UK)
(Northeastern University, USA)

(Vaxjo University, Sweden)

(Darmstadt University of Technology, Germany)
(Dublin City University, Ireland)

(University of Kaiserslautern, Germany)
(Karlsruhe University of Technology, Germany)
(INRIA & LIP6, France)

(INRIA & EMN, France)

(VU Brussels, Belgium)

E. Della Valle S. Hu

M. D’Hondt A. Jackson
J. Feng E. Kilgarriff
D. Gao L. Ling

V. Gasiunas S. Loecher
M. Gawkowski M. Loregian
F. Hartmann A. Maurino

T. Haselwanter
M. Haupt

I. Ntalamagkas
J. Oberleitner

VIII Organization

J. Palm I. Savga E. Tu

M. Petrovic J. Schéfer V. Ukis

N. Rauch T. Schaefer 7. Wang

M. Reitz J. Scicluna Z. Xu

N. Rivierre D. Suvee M. Zaremba

D. Roman T. Skotiniotis St. Zschaler

R. Rouvoy F. M. Taweel C. Zhang

B. Sapkota I. Toma A. V. Zhdanova

Sponsoring Institutions

IFIP, Laxenburg, Austria
AOSD-Europe, European Network of Excellence in AOSD, Lancaster, UK

Table of Contents

Automatic Checking of Component Protocols in Component-Based
SYSEEIMS . ot 1
Wolf Zimmermann, Michael Schaarschmidt

Checking Component Composability 18
Christian Attioghé, Pascal André, Gilles Ardourel

Static Verification of Indirect Data Sharing in Loosely-coupled
Component Systemso.u it 34
Lieven Desmet, Frank Piessens, Wouter Joosen, Pierre Verbaeten

Enforcing Different Contracts in Hierarchical Component-Based
SYSEEIMS .« o ot 50
Philippe Collet, Alain Ozanne, Nicolas Rivierre

Automated Pattern-Based Pointcut Generation 66
Mathieu Braem, Kris Gybels, Andy Kellens, Wim Vanderperren

An Aspect-Oriented Approach for Developing Self-Adaptive Fractal
COMPONENES . . ¢ . vttt et et e e e e 82
Pierre-Charles David, Thomas Ledoux

Aspects of Composition in the Reflex AOP Kernel 98
Eric Tanter

A Component-Based Approach to Compose Transaction Standards. 114
Romain Rouvoy, Patricia Serrano-Alvarado, Philippe Merle

A Class-Based Object Calculus of Dynamic Binding: Reduction and
Properties. 131
Pawet T. Wojciechowski

Tracechecks: Defining Semantic Interfaces with Temporal Logic 147
Eric Bodden, Volker Stolz

Service Composition with Directories 163
Ion Constantinescu, Walter Binder, Boi Faltings

Modeling Composition in Dynamic Programming Environments with
Model Transformations inirmini . 178
Uwe Zdun, Mark Strembeck

General Composition of Software Artifacts 194
William Harrison, Harold Ossher, Peri Tarr

X Table of Contents

Dimensions of Composition Models for Supporting Software Evolution . . .

In-Gyu Kim, Tegegne Marew, Doo-Hwan Bae, Jang-Eui Hong,
Sang-Yoon Min

Context-Aware ASPectSttt

Eric Tanter, Kris Gybels, Marcus Denker, Alexandre Bergel

Understanding Design Patterns Density with Aspects.................

Simon Denier, Pierre Cointe

A Model for Developing Component-Based and Aspect-Oriented

SYSEEIMIS . ot

Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye,
Laurence Duchien

FROG:I: Fractal Components Deployment over OSGi

Mikael Desertot, Humberto Cervantes, Didier Donsez

Modular Design of Man-Machine Interfaces with Larissa

Karine Altisen, Florence Maraninchi, David Stauch

On the Integration of Classboxes into C#

Markus Lumpe, Jean-Guy Schneider

Automatic Control Flow Generation from Software Architectures

Kung-Kiu Lau, Vladyslav Ukis

Author Index

211

Automatic Checking of Component Protocols in
Component-Based Systems

Wolf Zimmermann' and Michael Schaarschmidt?

! Martin-Luther Universitit Halle-Wittenberg, Institut fiir Informatik,
06099 Halle/Saale, Germany
zimmer@informatik.uni-halle.de
2 Martin-Luther Universitiat Halle-Wittenberg, Rechenzentrum,
06099 Halle/Saale, Germany
michael.schaarschmidt@urz.uni-halle.de

Abstract. We statically check whether each component in a component-
based system is used according to its protocol and provide counterexam-
ples if such a check fails. The protocol is given by a finite state machine
specifying legal sequences of procedure calls of the interface of a compo-
nent. The main contribution is that we can deal with call-backs without
any restrictions. We achieved this by using context-free grammars in-
stead of finite state machines to describe the use of components.

1 Introduction

The construction of component-based systems became increasingly important
in software construction. However, software architects have to deal with new
problems stemming from component-based system architectures. An important
issue is whether a component is correctly used. Usually components implement
one or more interfaces specifying the services they offer. For the purpose of this
paper, a service is simply a procedure or function signature. However just the
knowledge of services does not provide sufficient information for the construc-
tion of systems. Often the source code of a component is not available after its
deployment or even not physically available as e.g. Web Services. However, for a
component industry the unavailability of source code is essential — Web Services
may even be offered on a pay-per-use basis.

A major problem for construction of component-based systems is to check
whether the components can be composed and possibly provide own components
to adapt them. A failure to use a component correctly might cause a system
abortion while executing the system — this might happen even after the system
is delivered to the customer. In this context abortion means that a system stops
with an uncaught exception internal to a component (e.g. dereferencing of null
reference, illegal array accesses, division by zero etc.). Since the source code of
components is often unavailable, other approaches are necessary to check whether
components are used in such a way that the system does not abort. Our goal
is to provide a mechanizable approach for checking statically component-based
systems for abortion freeness on an almost black-box basis.

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 1-17, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 W. Zimmermann and M. Schaarschmidt

Our approach currently restricts the architecture of component-based sys-
tems to sequential systems and to one client using services of other components.
However any component may use services of other components or even of the
client. In particular we do not exclude call-backs. We assume that each compo-
nent implements one or more interfaces and each interface I specifies services
as a set of procedure signatures Y. The services X¢ of a component C' is the
union of the interfaces implemented by the component. Informally, a protocol of
a component is a set of sequences Lo € X¢. The aim of protocols is to guarantee
certain properties, e.g. that the component doesn’t abort if its services are called
according to a sequence in Lo. A component C' might call other services spec-
ified as interfaces used by a component. The profile of a component C' specifies
for each interface I required by C' the set of sequences Po(I) C X7 of services
possibly being called by C. A component-based system § is a multi-set of com-
ponents (i.e. there might be multiple copies of a component called instances)
where each interface used by a component is instantiated with an instance of
a component. The use of an instance ¢ of a component C' in a component-
based system S is the set of possible sequences of services U. C X, that are
called to ¢ during execution of §. The use of an instance ¢ of a component C'
conforms to its protocol iff U. C L¢, i.e. any sequence of services called to ¢
agrees with the protocol of C. Therefore, if the conformity check succeeds for
each instance in a component-based system S and each component of S is cor-
rectly implemented then the abortion-freeness of S is guaranteed. We assume
that each component contains in its deployment description its protocol and its
profile.

Many approaches (e.g. [13,17,18,22]) use finite state machines (short: FSM)
Ap and Ag to specify protocols L(Ap) and profiles L(Ag) for each interface of a
component where L(Ap) and L(Ag) are the languages accepted by Ap and Ag,
respectively. Since connectors connect profiles for an interface of one component
with an interface of another component it is checked whether L(Ag) C L(Ap)
and counter-examples are provided in the case such a check fails. The idea be-
hind these local checks is that protocol conformance checks can be executed
incrementally. It implicitly assumes that any checked connection cannot be in-
validated as long as the protocols of the component providing the profile are
satisfied. In this paper, we show that these approaches have several drawbacks:
First, local checks cannot be applied if the interfaces of a component cannot
be used independently. Second, it cannot be applied if the component system
contains recursive call-backs.

Other works use model-checking approaches [8,9,7,11,3,5] to prove that pro-
grams satisfy certain properties. They use context-free model checking because
finite state machine models are not an adequate abstraction if the program may
contain recursive procedures. However, these works assume that the whole pro-
gram is completely available.

Our method combines and generalizes these approaches in order to allow de-
pendencies between different interfaces of a component and arbitrary recursive
call-backs. FSMs are used for describing protocols. In contrast to the above

Automatic Checking of Component Protocols in Component-Based Systems 3

Deployment
Cy C, C,
PS, PS, LRI PS,
Ay Ay A,
H f H
Y \ ;o\
/ \ / / \
// ‘\ // \\ Combined / \\
, \ P \ Grammar /’ \
/ \ 1 LGy)cL(Ay) G / \
I oai \ / /LG LA
/ L(G1‘)QL(A1) \ \ N (Gn)g (n) \
/ ! / \

L \ 1 \
Instance Instance Instance Instance Instance Instance
Grammar | ¢ @ @ | Grammar Grammar | gee | Grammar | ® ® ® | Grammar | ¢ @@ | Grammar

Gi Gt G Gf Gn G

Instances

Fig.1. An Approach to Conformance Checking

works, a single FSM A¢ is used for the whole component C. Hence, interaction
of procedure calls to different interfaces of C' are taken into account. Instead of
FSMs for describing uses of components our approach uses context-free grammar
(short: CFG) G¢ for this purpose. Thus, for each instance ¢ of a component C
it is checked whether L(G.) C L(Ac¢). It is a well-known result from the theory
of formal languages that this test is algorithmically decidable. We show how
counterexamples can be provided if such a check fails. From the global system
and the profiles of each component the use of components is derived. However,
a profile of a component C' cannot be described itself as a context-free grammar
since only the use of interfaces is known but not how these are instantiated.
Therefore, we generalize context-free grammars by parameterizing non-terminal
and terminal symbols with the interfaces. The obtained structure is called a
parameterized context-free scheme (pCFS). These pCFSs can be mechanically
computed from the source code of the components. The pCFSs are used in a
component-based system S to compute a context free grammar specifying all se-
quences of calls to all instances of the components by instantiating the interfaces
of the pCFS analogous to the corresponding instances in S. Context-free gram-
mars for uses of instances of components in a component-based system can now
be derived by projection. Hence, it is now possible to check for each instance ¢
of component C' of § whether L(G.) C L(Ac¢), i.e. whether to use of ¢ conforms
to the protocol. Fig. 1 illustrates the summary of our approach. The paper is
organized as follows: Section 2 demonstrates the limitations of local checks and
the use of FSMs for profiles. Section 3 summarizes how to check L(G) C L(A)
for CFGs G and FSMs A and shows how counterexamples are provided. Sec-
tion 4 introduces parameterized context-free schemes. Section 5 shows their use
in specifying profiles of components and how they can be generated from source
text. Finally, Section 6 shows how CFGs specifying the use of a component are
generated from the profiles. A short appendix introduces some of the notations
from formal languages used in this paper.

4 W. Zimmermann and M. Schaarschmidt
2 Limitations of Local Checks Based on FSMs

Local protocol checking approaches (e.g. [18,20,13]) check independently each
connection in a component-based system. They usually assume a protocol for
each interface and assume that they can be independently used. I.e. instances of
a component C' can accept all interleavings of all calling sequences by the proto-
cols of its interfaces. Then they deduce profiles for the interfaces required by C'.
Hence, it is possible to check whether a profile U for an interface conforms to its
protocol P, i.e. whether U C P. For these checks, it is often assumed that the
profile U also is a regular language. Thus, protocol conformance can be decided.
However, in practice it often happens that components cannot accept arbitrary
interleavings of the calling sequences to its protocol. Thus, more sophisticated
approaches introduce coordination components (sometimes also called connec-
tors) that accept arbitrary interleavings and the other components only have
one interface. Therefore a component has a single protocol. In this section, we
show that even if each component has one interface and if each connection is
succesfully checked, the absence of global protocol errors is not guaranteed. The
main reason for these violations are recursive call-backs. Thus, for the same rea-
sons as in the works of software model checking [8,9,7,11,3,5], CFGs are more
adequate than FSMs to describe the use of components.

Our examples are denoted similar to Java. The main difference is that classes
are components and we do not inherit from components. Procedures and func-
tions can only have parameters whose types are interfaces or basic types (for
simplicity, we only use here the type int). Any procedure or function that is not
defined by an interface of a component is internal to that component. There is
exactly one component, the client, containing a parameterless procedure main
which is executed upon on system start. The client has parameters that represent
interfaces to be instantiated with components upon composition time. Thus, all
instances of components in a component based system are known upon compo-
sition time. Note that all instances of a component can be referenced by a name.
Procedures allow to pass by reference instances of components. Values of basic
types are passed by value. This model is similar to commercial component sys-
tems such as COM, EJB, CORBA except that all components are known upon
composition time. Dynamic instances of components are possible. The operation
new(x) computes a new instance of the component refered to by variable x. In
this paper, we assume for simplicity that all services of components are proce-
dures. The parameters of the client can only be used in main. The identifier this
denotes the instance of the component currently being executed.

Ezxample 1. Consider the component system in Fig. 2. ¢ is an instance of Cs.
The component system starts its execution by executing main. Suppose we read
2, i.e. i = 2. Then, the body of the loop will be executed and it calls c.a(2, this).
Thus, when executing this call on ¢ it is n = 2 and « refers to the client. Since
the condition becomes true, the call x.b(1, this) is being executed. Since x refers
to the client, this is a call-back and the execution of b on the client starts with
k =1 and z referring to c. After the first assignment it holds n = 1 which also

Automatic Checking of Component Protocols in Component-Based Systems 5

cllent C’l[] implements I { component C> implements J {

void a(int n, I x){
vozd b mt k,J z O) if(n > 0) { x.b(n — 1, this); z.d(); }
n=(n + D%2; n=1/n;

z.a(k, this); }
void d(){ n=1/n—1; } interface J {
void mawn(void a(int, I);
mt i
read(z)
while(i > 0){ c.a(i, this); i — —; } Composition: C;[Cs]

}

interface I {
void b(int, J);
void d)

Fig.2. A Component-Based System

b

=

Protocol for Client C,; Protocol for C,

Fig. 3. Protocols for the Client and Component in Fig. 2

holds after the second assignment. Thus, the call z.a(1, this) is executed. Note
that this is a recursive call since z refers to ¢ and the first call of @ on ¢ is not
yet completed. In this second call it is n = 1 and x refers to the client. Thus the
condition becomes true and the call 2.b(0, this) is being executed. This again is a
recursive call since x refers to the client and the first call of b on the client is not
yet completed. After the execution of the first statement it holds n = 0. Hence,
the second statements performs a division by 0 and therefore the system aborts.

Fig. 3 shows the protocol of the components. Note that a second execution of
b and a second execution of d on the client lead to a division by zero. The client
requires that b and d must be called alternating and b is called first — if at all.
Otherwise divisions by zero are executed. Apparently, this protocol is violated
by the system.

The following example demonstrates that recursive call-backs are the reason for
protocol violations:

Ezample 2. According to the clients protocol, the profile for cis L. = {a™|n € N}
and the profile for z is also L, = {a"|n € N}. According to component Cs’s
protocol, the profile for x is L, = {(bd)"|n € N}.

After composition, z always refers to ¢ and x always refers to the client. Such
information could e.g. be derived from a points-to analysis. Thus there are two
profiles for calling sequences to c¢. Even an arbitrary interleaving of L, and L.
shows that U. = {a"|n € N} is the set of all calling sequences to instance ¢ of

6 W. Zimmermann and M. Schaarschmidt

component Cs. Since these sequences are accepted, the use of ¢ conforms to the
protocol of C'. Consider now the client. Since x is the only variable referring to
the client, the use of the client is U = {(bd)"|n € N}. Hence, the local protocol
checking approach also would decide that the use of the client conforms to its
protocol which is wrong according to the scenario in Example 1.

The checking approach in Example 2 considers individually each component.
If there wouldn’t introduced recursive procedure calls due to call-backs the
above arguments would be completely legal. The individual protocol confor-
mance checking doesn’t work because these recursive calls lead to use of com-
ponents that cannot be detected from one component alone. Many works of
protocol checking are aware of this problem and exclude therefore recursive call-
backs. In fact if a is recursively called every call b can be viewed as an open
bracket that is closed by a call d. Therefore the set of sequences describing the
use of the client is the Dyck-Language over the pair of brackets b and d. It is gen-
erated by the CFG G = ({b,d},{Z},{Z := ZZ|cZd|e}, Z). Tt is a well-known
result from the theory of formal languages that Dyck-Languages are not regu-
lar languages and therefore no FSM exists that accepts Dyck-languages. Thus,
the use of components cannot be specified using FSMs. The next section shows
that even in the case that the use of components is described by CFGs, model
checking of protocol conformance is possible.

3 Model Checking with CFGs

We present here the standard algorithm for checking L(G) C L(A) for a CFG
G=(T,N,P,Z) and a FSM A = (T, Q, R, qo, F'). Furthermore, we show how it
can be used to provide counterexamples if L(G) € L(A). The basic idea is instead
of checking L(G) C L(A) to check the equivalent condition L(G)N(T*\ L(A)) =
0. Any word w € L(G) N (T* \ L(A)) is a counterexample of the check. In the
context of the paper, it provides a sequence of procedure calls to a component
that violate its protocol. The FSM A’ = (T, Q, R, qo, @ \ F') accepts T* \ L(A).
Hence, we check whether L(G) N L(A’) = 0. It is known that the intersection
of a context-free language with a regular language is context-free, and that it is
decidable for context-free grammars G whether L(G) = (). Our model checker
therefore has the following steps: First, a CFG G’ such that L(G") = L(G)NL(A")
is constructed. Then, it is checked whether L(G") = (). If it turns out that
L(G") # 0, a counterexample w € L(G") is produced.

Step 1: First the CFG G = (T, N, P, Z) is transformed into an equivalent gram-
mar in extended Chomsky Normal Form (short: eCNF) Gy = (T, Ny, Py, Z1),
i.e., each production has one of the forms' A = BC, A = B, or A ==t
with A,B,C € N andt € T. If ¢ € L(G) then Z; ::= ¢ € P;. Second, a CFG
G' = (T,N’,P',Z") is computed such that L(G’) = L(G1) N L(A’). Define the
size of a CFG G = (T, N, P, Z) as |G| £ [P|+ > [|rl.

l::=repP

! Chomsky Normal form also forbids chain productions A ::= B.

Automatic Checking of Component Protocols in Component-Based Systems 7

Lemma 1. For any CFG G, an equivalent grammar Gy in eCNF can be com-
puted in time O(|G|) and |G1| = O(|G]).

Proof. (Sketch) We use the same proof as [15] except the elimination of chain
productions. The elimination of chain productions would result in execution time

O(IG?) and |G1| = O(IG]?).

Lemma 2. Let G = (T,N,P,Z) be a CFG in eCNF and A = (T,Q, R, qo, F)
be a FSM. A CFG G’ such that L(G") = L(G) N L(A) can be constructed in time
O(IG| - 1QI*). Moreover |G'| = O(|G] - |QF).

Proof. (Sketch) This proof slightly extends the algorithm described in [21]. In
addition to their algorithm, we have to consider chain productions. We define
G' = (N',T,P',Z") as follows:

N'2{(X,q,¢)|X e NNg,¢d €eQiuZ
Plé{Z/ n= <Zaq03f>|f € F}U
{X,q,q") == (B, q,m){(C,r,)]
X :2=BCePAq,q,reQ}U
{{X,q,¢") = (B,q,)| X ==B € PNg,q €Q}U
{X,q,¢):=t|X :=te PAteTAqt — ¢ € R}U
{{X,q,q) i=¢|X :=e€ PAqgeQ}

It can be shown by induction on the length of the derivation that for any w € T*
(X,q,¢) ¢ wiff X ¢ wAqw =4 ¢'. The time needed for this construction
is proportional to the size of G’ which is O(|G| - |Q?).

Using the FSM A’ = (T, Q, R, qo, @ \ F), Lemma 1, and Lemma 2, the following
Theorem summarizes Step 1:

Theorem 1. LetG = (T,N,P,Z) be a CFG and A = (T, Q, R, qo, F') be a FSM.
Then, a CFG G' = (T,N',P’,Z") such that L(G') = L(G) N (T* \ L(A)) can be
computed in time O(|G| - |Q|?) and |G'| = O(|G| - |QJ?).

Step 2: The main idea is to compute all generating non-terminals from a CFG
G = (T,N,P,Z). A non-terminal X is generating if there is a w € T* such
that X = w. Obviously it holds L(G) = § iff Z is not generating. Hence, only
generating non-terminals need to be determined and it needs to be checked
whether Z is generating. This can be done in linear time as e.g. shown in [15].
The algorithm in [15] incrementally builds a set H of generating non-terminals.
Initially, H = {X|3w € T* ¢ X ::= w € P}. A new non-terminal X is added
to H if there is a production X == w for w € (T'U H)*. This is done until H
doesn’t change or Z € H. If we also maintain the productions considered in this
process, counterexamples w € T can be generated by constructing a derivation
Z = w using these productions.

Theorem 2. It can be checked in time O(|G|) whether L(G) =0 for a CFG G
The following Theorem summarizes the results:

Theorem 3. Let G = (T, N, P,Z) be a CFG according to Theorem 1 and A =
(T,Q, R,qo, F) be a FSM. Then, it can be checked in time O(|G| - |Q|3) whether
L(G) C L(A). In the case of a negative answer counterexamples are provided.

8 W. Zimmermann and M. Schaarschmidt
4 Parameterized Context-Free Schemes

The profile of a component C specifies for each interface I required by C the
set of sequences Pc(I) C X7 of services possibly being called by C. These
cannot be described by context-free grammars because the isolated consideration
of a component cannot assume anything on the context of its use. The main
idea of parameterized schemes is similar to definite-clause grammars. Each non-
terminal symbol may have typed parameters. The left-hand side of a context-free
production declares them (similar to the declaration of a procedure signature).
The right-hand side of a production uses them. For defining profiles, we use
the parameters of interface types. In contrast to definite-clause grammars we
don’t dynamically evaluate parameterized context-free schemes (short: pCFS).
Instead, we use them as two-level grammars and expand them to CFSs (i.e.
grammars without start symbol) by substituting constants for each parameter.

In our context, we use pCFSs as follows: Their productions are derived from
the procedure definitions of an interface. The head becomes the left-hand side of
the production. The body is generated from the right-hand side of the produc-
tion. The expansion of parameterized CFSs substitutes parameters (according
to their type) by instances of components in a component system.

A type is a pair (I,{c1,...,cn}) consisting of a name I and a finite set of
instances ¢1, . . ., ¢,. The set of instances of a type is denoted by ¢(I). A parameter
is pair x : I consisting of a wariable x and a type name I. A parameterized
non-terminal is pair (f)(y1 : J1,...,yk : Jx) consisting of a non-terminal name
(f) and a sequence of parameters y; : Ji,...,yx : Jr. An partial instantiation
of (fYy1 : J1,.-.,yx : Ji) with variables z1,...,z; is the triple denoted as
(FY(z1,...,2k). A parameterized terminal is a pair p(xy : I1,..., &y ¢ I;y) and
a terminal name p and parameters x1 : I1,..., %y : L. For the purpose of the
paper we only consider terminals with one parameter.

(F)(x1,...,2x) is called an applied occurrence of parameterized non-terminal
Ny Ty oyym s JIm) over xy 2 Iy ooy 2 Iy iff k= m and I; = J; for i =
1, ..., k. The notion of an applied occurrence of a terminal is defined analogously.
For a set N of parameterized non-terminals, 2y (x1 : I1, ...,z : I) denotes the
set of all applied occurrences of parameterized non-terminals (X) € N over a
sequence of parameters x1 : I1,..., 2k : Ix. The notion Xp(xy : I1,...,xp ¢ Iy)
is defined analogously for a set T' of parameterized terminals.

A parametrized context-free scheme is a 4-tuple pCFS = (TYPES,N,T, P)
where

TYPES is a finite set of type names,

N is a set of parameterized non-terminals such that all parameters have a

type in TYPES,

— T is a set of parameterized terminals such that all parameters have a type
in TYPES and NNT = 0,

- P C {(f)(xl 0 ER (7R Ik) n= U)|<f>($1 S E TR (7R Ik) e NANw €

(On(z1: L,y ooy s L) UXp(zq 0 Th, .o 2k 2 I))*} is a set of context-free

production schemes.

Automatic Checking of Component Protocols in Component-Based Systems 9

The notion of context-free production scheme means that every variable used in
an applied occurrence of a terminal or non-terminal on a right-hand side of a pro-
duction must be declared on the left-hand side of a production. Furthermore, the
applied occurrences must be correctly typed w.r.t. to N or T'. Note that overload-
ing of parameterized non-terminals and parameterized terminals is permitted.
Fig. 4 shows two pCFSs. Section 5 shows how to use pCFSs to specify profiles
of components. For the purpose of the paper, we need the following property:

pCFS,:
éijlypESI = I(’(tg}z)(thzs Ic:J),(b)(this : I,z :J),(d)(this : I),(a)(this : J,x : 1)}
1 =14ia 1S
Py = {{(main t2ns I,c:J) = (a(c) (a)(c, this))”
b this : I,z : J == a(z) (a)(z, this)
)Ethzs I =c
pCFS,
TYPESy = {I,
Na =1{(a >2hzs Jac I (main)(this : I,c: J), (b)(this : I,z : J),{d)(this : I)}
T, = {b(th: J)L 4
P, ={{(a) thzs J 1: I) (z) (b)(z, this) d(z) (d)(x)|e}

Fig. 4. Parameterized Context-Free Schemes

i

b C1 02)
d C1
AN

Fig. 5. An Evaluation of pCFS; U pCFS, in Fig. 4 for +(I) = {c1} and ¢(J) = {c2}

c1,¢2), (d)(c1), (a)(c2,c1)}
a)(ez,c1))”

Rz
(Il

f‘w—/f\
A

(c2) (a)
(c1) (b)(c1,c2) d(er) (d)(c1)le}

a)(c2, 1

H II Il
one

Property 1. Let pCFS, = (TYPES,,N1,T1, P1) and pCFS, = (TYPES,, N»,
T5, P») be two parameterized context-free schemes. Then pCFS; U pCFS, =
(TYPES1 U TYPES5, N1 U Ny, Ty UTs, Py U P) is also a pCFS.

A context-free scheme (short: CFS) is a triple (T', N, P) that can be extended to a
CFG (T,N,P,Z) for a Z € N. In our approach we generate CFSs from pCFS by
substituting instances of types on the left-hand side of context-free production
schemes and evaluate the right-hand sides of productions in the sense that each
variable = is replaced by the corresponding parameter. This is later used to
generate the combined grammar specifying the set of possible sequences of all
procedure calls when executing a component-based system, cf. Fig. 1.

Let pCFS = (TYPES, N, T, P) be a parameterized context-free scheme. An
environment is a list of pairs o = [¢1/x1, ..., cx /x| where x1 : Iy, ...,z : Iy is
a set of parameters and ¢; € ¢(I1),...,cx € t(I) are instances of Iy,..., I €
TYPES, respectively. The evaluation of an applied occurrence (f)(x1,...,xx)
of a parameterized non-terminal (f)(y1 : I1,...,yx : Ir) under environment o
is defined as (f)(z1,...,zr)0 = (f)(c1,...,ck). The evaluation of a word w =
ar-an € (2n(xy Ly .oy I)UX (21 2 [, ..o 2k Ig))™ under o is defined

10 W. Zimmermann and M. Schaarschmidt

as wo = a10 - - - a,o. The evaluation of pCFS for the instances ¢(I1), ..., t(Ix)
of its types TYPES = (I4,...,Iy) is the triple CFS, = (N,,T,, P,) where

— N, :{(f)(ch“‘,ck) | <f>(.%‘1 :]1,..‘,:Ekifk) e NAc EL(I1)/\---/\Ck EL(Ik)}

—T.= {plci,...,ex)| plxr: iy .. xp s Ik) €T Aer € (i) AN+ Aeg € ()}

— I, = <f>(C1,...,Ck) :::w[C1/x1,...,Ck/l'k] |(f)(x1:11,...,xk:1k):::w€P/\
cr €(li) N Neg € u(Ik)}

It is not hard to see, that CFS, is a context-free scheme.

If we specify a start symbol Z € N, we have here all the notions of derivations,
languages etc. for the grammar G = (T,, N,, P,, Z). Fig. 5 shows the evaluation
of pCFS, UpCFS, of Fig. 4 for o(I) = {c1} and «(J) = {c2}.

This evaluation process is used in Section 6 to determine the uses for each
instance of a component such that we can apply the protocol checking approach
described in Section 3.

5 Generation of Profiles

In this section we show how to derive for each component C' a pCFS pCFS .~
for its profile. We assume that overloading is resolved, i.e. any name of any
procedure is different. The main ideas for construction of pCFS - are:

— The interfaces used by C define the type names. This information can easily
be extracted from the component’s source code and the interface definitions.

— The procedures of the interfaces define parameterized terminals. They only
have a parameter this : I where I is the interface containing p.

— Procedures of interfaces as well as procedures of the component C' define
non-terminals. They always have the first parameter this : I where I is the
interface containing the procedure and it only contains the parameter from
the procedure that pass references to instances of components (component
parameters). If a procedure is only contained within C' (i.e. internal to C), it
defines analogously a non-terminal. In this case a parameter this : J is the
first parameter where J is a (fixed) interface implementing C. If C is the
client, the parameters of main are the parameters of C. For simplicity, we
assume that these are not used outside of main.

— Each procedure p of component C' defines a production. Its left-hand side is
the parameterized non-terminal corresponding to p. Its right-hand side is an
abstraction of the procedure body w.r.t. calls to other interfaces. The right-
hand sides are specified as EBNF (see Appendix) and follows the following
principles:

e Internal calls are mapped to applied occurrences of non-terminals using
the arguments from the call that pass references to instances of compo-
nents. The implicit first argument this is made explicit.

e External calls are mapped to a word consisting of a terminal (corre-
sponding to the called procedure) followed by non-terminal as above.

e Statement lists are mapped to concatenation words stemming from the
single statements.

Automatic Checking of Component Protocols in Component-Based Systems 11

e Conditionals are mapped to alternatives between words stemming from
the branches.

e Loops are mapped to iterations over words stemming from the words.

e Expressions are mapped according to the evaluation order used by the
compiler generating binary code.

An applied occurrence of a terminal p(z) where p(this : I) € T models a
call to an instance of a component implementing C' since the variable x refers
to such an instance. If (p)(this : Io, @1 : I1,...,zk : Ix) 2= w is a production
then w specifies a set containing all sequences of procedure calls to interfaces
when calling p (i.e. it is an abstraction of the procedure body). Furthermore the
other applied of occurrences of non-terminals y.f(y1,...,¥m) in w specify all
sequences of procedure calls to interfaces from components stemming from the
call of f to the instance of the component referred to by y. Hence any applied
occurrence of a terminal must be followed by the applied occurrences of the
corresponding non-terminal. This is required for taking into account possible call-
backs. Since we allow assignments to variables containing references to instances
to components, it is necessary to know all possibles instances a variable may refer
to. In our earlier work [23] describing the special case that a client can only call
a component, we used points-to analysis (see e.g. [14] for an overview) for this
purpose. However, here we don’t explicitly know the instances (except the neur
operations). On the other hand, we know that upon composition time they stem
from required interfaces, i.e., generic parameters of components or parameters
of procedures. We therefore consider these parameters also as possible instances
when performing points-to analysis. Thus, after a local points-to analysis of a
component C, for each applied occurrence of a variable y of type I, the set PT(y)
contains all new-objects, all generic parameters of C, and all parameters of the
procedures of C that could refered to by y. For a precise analysis, a flow-sensitive
and context-sensitive analysis should be used.

We now define formally the pCFS. For this some notions are required: A com-
ponent C' uses an interface I, if it either implements I, has a parameter of type
I (in case of clients), has a procedure with a parameter of type I, or uses an
interface with a procedure having a parameter of type I. A component parameter
is a parameter x : I where I is an interface. m¢(pars) denotes the projection of
a parameter list to component parameters. The notion is analogously defined
for a list of arguments. proc(I) denotes the set of procedures defined by inter-
face I, proc(C) for the set of procedure declarations p(pars) Body of C, and
internal(C) denotes the set of procedure heads of C' that are internal to C', i.e.
not declared by an interface implemented by C'. Note that all these informations
can be derived from the source text of the component and the interfaces used
by the component. Fig. 6 shows the formal definition of profiles. We have chosen
a left-to-right evaluation order according to semantics of Java or C#. If this
evaluation order is implementation-dependent one has to choose here the order
used by a compiler. Note that such a transformation can easily be generalized to
real-life programming languages if variables containing references to components
are distinguished from other variables.

12

where J is an interface implemented by C' and [-

6

This section shows how for each instance of a component ¢ in a component-based
C%] a CFG G, that describes the use of ¢ can be generated
from the profiles of each component. Let cq, . . ., ¢; be the instances of Cy, ..., Cg,

system Cy[Ch, ...,

W. Zimmermann and M. Schaarschmidt

A profile of a component C'is a pCFS pCFS, = (TYPESc,Tc, N¢, Po)
TYPESc = C uses I}

Te = thzs I) I € TYPESC /\p pars) € proc(I)}

N¢ = this : I, mc(pars c /\pgpars) € proc(I)}uU
p this : J, mc (pars p(pars) 6 internal(C)}

Pc = this : I, wo(pars Body]|

p(pars) {Body S proc() A (p)(this : I,mc(pars) € Nc'}
1s the followmg transformation:

(args)] = (p)(this, wc(args 8) internal procedure calls
y.p(args)] =p(y1) (p)(y1, 7o (args))| - [p(yn) ﬂiv jgyn o (args))
for ext ernal calls wit ={y1,---,yn}
S1; Sgg = 5'1 So
if g =
g ;SSi else Sz]] = H51H IISQII)
while(e) 5] = (ﬂ I leD)”
v=¢] =
e1 + ez =
61&&62) = 62 |5]
= if v is an integer variable or a constant
new (v)] =

Fig. 6. Profile of a Component C

ngc ::{irﬁ?g? (>c(1, 02),;1.).)5017(0?)(7 <d>(;)137 (a)(c2,c1)}
o ébé%cl 025’ : = Ea (62?7611)
d 013 :E
la c2,C1) =Db (b)(c1,c2) d (d)(c1)|e}
iz = mam)(chcz ::fg 2)2027001))*
3613 ; a 2, C1
ay(cayc1) = (b)(c1,c2) (d)(c1)le}

Fig. 7. Computed Uses for ¢; and c2 in the Component System of Fig. 2

Fig. 4 shows the parameterized context-free schemes pCFS, and pCFS,, de-
scribing the profiles of client C; and component Cy of Fig. 2, respectively. The
profiles in Fig. 4 are generated from the source code of the components in Fig. 2.

Model Checking Component-Based Systems

respectively. The steps for computing G, for a ¢ = ¢; are the following;:

1.

2. Evaluate the system profile for ¢+ in order to obtain a CFS CFS. =

Compute the system profile pCFS g = pCFS ¢ U---UpCFS, where pCFS,
is the profile of C;, i = 1,... k. Note that the system profile is a pCFS

according to Property 1.

cf. Section 4, where ¢(I) = {¢; : C; implements I}.

(T? N’ P)’

Automatic Checking of Component Protocols in Component-Based Systems 13

3. Compute the system interaction Gg = (T, N, P, (main)(co,c1, . ..,ci)). Note
that Gg is a CFG.

4. Define G, = (N, T¢, P., (main)(co,c1,...,cx)) where T. = {p|p(c) € T},
P, = {X == ¢*(w)|X == w € P}, and ¢* : T* — T} is induced by the

x ifxeT,

mapping ¢ : T — T. defined by ¢(z) = € otherwise

Figure 5 shows the CFS after Step 2. Thus, the system interaction is obtained
by adding the start symbol (main)(ci, c2). Fig. 7 shows the CFGs describing the
uses of ¢; and ¢, respectively. It can easily be seen that L(G,,) is the Dyck-
language with open bracket b and closing bracket d.

The right-hand sides of the productions in the system interaction are an ab-
straction of the corresponding procedure bodies. Therefore, we have the invariant
that L({p)(c1,...,cn)) contains at least all sequences of procedure calls to all
components w.r.t. to grammar G,,. A formal proof requires formal semantics
of the programming languages used by the components. An induction on the
height of the derivation tree could be used to show the above claim. Hence
L(Gs) contains all sequences of all calls made to instances of a component dur-
ing the execution of a component based system. By definition of ¢*, in the fourth
step, all sequences are projected to those calling ¢. Thus, we can check for each
instance ¢ of C' whether L(G.) C L(A¢) where A¢ is a FSM specifying the
protocol of C.

7 Related Work

Many works on static protocol-checking of components consider local protocol
checking on FSMs. The same approach can also be applied to check protocols
of object in object-oriented systems. The idea of static type checking by us-
ing FSMs goes back to Nierstrasz [18]. Their approach uses regular languages
to model the dynamic behavior of objects, which is less powerful than CFGs.
Therefore the approach cannot handle recursive call-backs. [17] considers object-
life cycles for dynamic exchange of implementations of classes and methods using
a combination of the bridge/strategy pattern. It also based on FSMs. The ap-
proach comprises dynamic as well as static conformance checking. Tenzer and
Stevens [22] investigate approaches for checking object-life cycles. They assume
that object-life cycles of UML-classes are described using UML state-charts and
that for each method of a client, there is a FSM that describes the calling se-
quence from that method. In order to deal with recursion, Tenzer and Stevens
add a rather complicated recursion mechanism to FSMs. It is not clear whether
this recursion mechanism is as powerful as pushdown automata and therefore
could accept general context-free languages. All these works are for sequential
systems. Schmidt et al. [13] propose an approach for protocol checking of concur-
rent component-based systems. Their approach is also FSM-based and unable
to deal with recursive call-backs. Earlier work of the authors shows that CFGs
are very adequate to handle internal recursion on a client-side [23]. However, the
systems only allow that clients call components.

14 W. Zimmermann and M. Schaarschmidt

Even modeling the use of a component with context-free languages may ab-
stract too much from the real behavior. Other approaches therefore use dynamic
protocol-checking, e.g. Chambers [10] defines Predicate Classes for the language
Cecil. Each object of a given class is attached to a set of predicates. Before a
method call is accepted by an object, a certain set of predicates have to be true.
A class is described by several property classes. These property classes corre-
spond to the states in our finite state machine. Ramalingam et al. [19] derive
dynamic checkers using abstract interpretation techniques. In particular, they
abstract client programs to Boolean programs that perform runtime checking
of client-component conformance. However dynamic protocol checking does not
exclude protocol faults as static protocol checking does. On the other hand, they
identify bugs at the right place. In particular, dynamic adapters might support
avoiding protocol faults whenever possible.

An alternative approach for investigation of protocol conformance is the use of
process algebras such as CSP, cf. e.g. [2,1]. These approaches are more powerful
than FSMs and context-free grammars. However, mechanized checking requires
some restrictions on the specification language. For example, [2] uses a subset
of CSP that allows only the specification of finite processes. At the end the
conformance checking reduces to checking FSMs similar to [13].

FSMs are also used for checking Liskov’s substitution principle for subtyping in
object-oriented systems based on class protocols. Reussner [20] generalizes on the
idea of Nierstrasz and adds counters and conditions over counters to the regular
types to decide, whether Liskov’s substitution principle is satisfied. Freudig et al.
[12] use sub-classes of CFGs for describing protocols and checking Liskov’s sub-
stitution principle. They need subclasses of CFGs because the subset-problem on
general context-free languages is algorithmically undecidable. They do not model
calling sequences stemming from a method which is required for checking whether
the use of an object of a certain class conforms to its protocol.

The work on model checking context-free processes and pushdown systems
started with [8,9]. The model checking of LTL-formulas can be done within the
same complexity as shown here (linear in the size of the system and cubic in
the number of states) [11,3,5]. However, these approaches would require that the
complete system is available as a context-free process or as a pushdown system.
The framework described in [6] contains among others an algorithm for checking
whether L(G) C L(A) for context-free grammars G and finite state machines
A with the same complexity as our approach in Section 3. In contrast to our
approach, their approach is not able to generate counterexamples.

8 Conclusions

We discussed the problem of statically checking whether instances components
in a component-based system are used according to their protocol. As many
approaches we consider sequential systems and require static knowledge of the
components. Instances of components could be generated dynamically. As other
approaches we used FSMs for describing component protocols. Other approaches
usually check locally the conformance of each connection in a component-based

Automatic Checking of Component Protocols in Component-Based Systems 15

system assuming that the use of interfaces is described by FSMs. We have shown
that in the presence of recursive call-backs this approach fails to achieve its goals
because a global view is required for describing the use of components and regular
languages are not powerful enough to describe adequately recursive call-backs.
The local protocol conformance checking approaches are therefore restricted to
systems without recursive call-backs.

The contribution of our approach is that we are able to deal with recursive
call-backs and determine the use of component instances from a global view.
The reason for being able to deal with recursive call-backs is that we used CFGs
to describe the use of components instead of FSMs. The problem whether a
context-free language is a subset of a regular language is algorithmically decid-
able (even in time linear to the size of the grammar). The reason for being able
to handle a global view is the use of two-level CFSs for specifying how a pro-
cedure of a component uses other interfaces. The parameters of the CFSs are
the same as provided by the component and the interfaces it uses. Upon compo-
nent composition, these parameterized context-free schemes are composed in the
same way as the components are composed in order to obtain for each instance
of a component the CFG specifying its use.

Our approach is a model-checking approach in the sense that if a conformance
check fails, it is able to provide counterexamples. Since the CFGs are an abstrac-
tion of the use of instances of components, a failure might be caused because ab-
stractions may contain words that do not represent a sequence of procedure calls to
that instance, i.e., false negatives may occur. Further work should consider how
certain counterexamples can be avoided. This would require more knowledge of
the code that might be encoded in the parameterized CFSs for the components.

Certainly, for practical reasons, our approach for sequential systems needs
be extended to concurrency as well as to composition with statically unknown
components. If we would be able to deal with concurrency and composition with
statically unknown components it would be possible to deal with most classical
component systems such as Web Services, CORBA, COM, .NET, EJBs. A fur-
ther challenge is certainly to deal with more recent composition principles such
aspect-oriented programming [16] or invasive software composition [4] because
these approaches change at runtime the protocols of components.

Acknowledgement. We thank the anonymous referees for their helpful
comments.

References

1. C. Attiogbé, P. André, G. Ardourel. Checking Component Composability In
Proc. of the 5th International Symposium on Software Composition, this volume
of Lecture Notes in Computer Science. Springer, 2006.

2. R. Allen and S. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, 6(3):213-249, 1997.

3. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In
Proceedings of the 13th Conference on Computer Aided Verification, volume 2102
of Lecture Notes in Computer Science, pages 207-220. Springer, 2001.

16

[SLEEN

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

W. Zimmermann and M. Schaarschmidt

U. Assmann. Invasive Software Composition. Springer, 2003.

M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted hierar-
chical state machines. In Proceedings of the 28th International Colloquium on Au-
tomata, Languages, and Programming ICALP’2001, volume 2076 of Lecture Notes
in Computer Science, pages 652—666. Springer, 2001.

. A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and

P. Wolper. An efficient automata approach to some problems on context-free
grammars. Information Processing Letters, T4(5-6):221-227, 2000.

. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model checking. In CONCUR’97: Proceedings of the 8th
International Conference on Concurrency Theory, volume 1243 of Lecture Notes
in Computer Science, pages 135—150. Springer, 1997.

. O. Burkart and B. Steffen. Model checking for context-free processes. In CON-

CUR’92: Proceedings of the 3rd International Conference on Concurrency Theory,
volume 630 of Lecture Notes in Computer Science, pages 123—-137. Springer, 1992.

. O. Burkart and B. Steffen. Pushdown processes: Parallel composition and model

checking. In CONCUR’9: Proceedings of the 5th International Conference on
Concurrency Theory, volume 836 of Lecture Notes in Computer Science, pages
98-113. Springer, 1994.

C. Chambers. Predicate classes. In Proceedings of the 7th European Conference on
Object-Oriented Programming, volume 707 of Lecture Notes in Computer Science,
pages 268-296. Springer, 1993.

J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proceedings of the 12th Conference on Com-
puter Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages
232-247. Springer, 2000.

J. Freudig, W. Lowe, R. Neumann, and M. Trapp. Subtyping of context-free classes.
In Proceedings 3rd White Object Oriented Nights, 1998.

H. W. Schmidt, B. J. Krdmer, I. Poernemo, and R. Reussner. Predictable compo-
nent architectures using dependent finite state machines. In Proc. of the NATO
Workshop Radical Innovations of Software and Systems Engineering in the Future,
volume 2941 of Lecture Notes in Computer Science, pages 310-324. Springer, 2002.
M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems, 21(4):848-894, 1999.
J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 2nd edition, 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In EFCOOP’97 — Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer Science, pages 220-242.
Springer, 1997.

W. Lowe, R. Neumann, M. Trapp, and W. Zimmermann. Robust dynamic ex-
change of implementation aspects. In TOOLS 29 — Technology of Object-Oriented
Languages and Systems, pages 351-360. IEEE, 1999.

O. Nierstrasz. Regular types for active objects. In OOPSALA 93, volume 28 of
ACM SIGPLAN Notices, 1993.

G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving special-
ized program analyses for certifying component-client conformance. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, pages 83-94. ACM, 2002.

Automatic Checking of Component Protocols in Component-Based Systems 17

20. R. H. Reussner. Counter-constraint finite state machines: A new model for
resource-bounded component protocols. In Proceedings of the 29th Annual Con-
ference in Current Trends in Theory and Practice of Informatics, volume 2540 of
Lecture Notes in Computer Science, pages 20—40. Springer, 2002.

21. A. K. Salomaa. Formal Languages. Springer, 1978.

22. J. Tenzer and P. Stevens. Modelling recursive calls with uml state diagrams. In
6th International Conference on Fundamental Approaches to Software Engineering
(FASE’03), volume 2621 of Lecture Notes in Computer Science, pages 135-149.
Springer, 2003.

23. W. Zimmermann and M. Schaarschmidt. Model checking of client-component con-
formance. In 2nd Nordic Conference on Web-Services, number 008 in Mathematical
Modelling in Physics, Engineering and Cognitive Sciences, pages 63-74, 2003.

A Grammars and Automata

An alphabet X is a finite set of symbols. A word w over X' is a concatenation
of n symbols of X' i.e. w = a1 ---a, where a1,...,a, € X. A word w is empty
iff n = 0. The empty word is unique and is denoted by . Concatenation can
be easily extended to words, i.e. uv denotes the concatenation of words u and
v. X* denotes the set of all words over the alphabet X. A formal language (or
short language) is a subset L C X*. A context-free grammar (short: CFG) is a
quadruple G = (T, N, P, Z) where T and N is an alphabet (the terminal symbols
and non-terminal symbols, resp.), TN N =0, P C N x (T U N)* (the set of
productions, and Z € N (the start symbol). We denote non-terminals by capital
letters and terminals by lower case letters. A production is denoted by X ::=
w € P. A direct derivation w.r.t. G is a pair of words z,y € (T'U N)*, denoted
by z =¢ y, such x = uXv y = vwv for some u,v € (TUN)*, X =:=w € P.
The derivation relation = is the reflexive, transitive closure of =¢. We omit
the index G if it is clear from the context. The language generated by CFG G
is defined as L(G) £ {w € T*|Z =¢ w}. We use often Extended Backus-Naur
Form (short: EBNF) to describe CFGs. For this, we assume that [,],*,|¢ X~ and
use the following abbreviations:

X = u|v abbreviates X :=u X :=wv where A is a new non-terminal.
X u=u* abbreviates X ::= A. A :=c¢lud

A finite state machine (FSM) is a quintuple A = (T, Q, R, qo, F') where T is
an alphabet, @ is a finite set of states such that QNT =0, RC QxT xT
is a set of rules (rules are denoted as qa — ¢', qo € Q is the initial state, and
F C @ is the set of final states. A accepts in state g a letter a iff there is a rule
ga — ¢’ € R. ¢’ is called the successor state of ¢ on input a. A direct derivation
w.r.t A is relation = 4 defined by qau =4 ¢'u where qa — ¢’ € R and u € T™*.
The derivation relation = 4 is the reflexive, transitive closure of = 4. We omit
the index A if it is clear from the context. The FSM A accepts a word w € T*
iff there is a final state f € F such that qw =4 f. The language accepted by
A is defined as L(A) £ {w € T*|A accepts w}. In this work we visualize finite
automata as labeled directed graphs. The states are the vertices, and there is a
directed edge ¢ % ¢ iff gqa — ¢’ € R. Fig. 3 shows an example.

Checking Component Composability

Christian Attiogbé, Pascal André, and Gilles Ardourel

LINA CNRS FRE 2729 - University of Nantes
F-44322 Nantes Cedex, France
{Christian.Attiogbe, Pascal.Andre, Gilles.Ardourel}@univ-nantes.fr

Abstract. Component-Based Software Engineering (CBSE) is one of
the approaches to master the development of large scale software. In this
setting, the verification concern is still a challenge. The current work
addresses the composability of components and their services. A com-
ponent model (Kmelia) is introduced; an associated formalism, simple
but expressive is introduced; it describes the services as extended LTSs
and their structuring as components. The composability of components
is defined on the basis of the composability of services. To ensure the cor-
rectness of component composition, we check that an assembly is possible
via the checking of the composability of the linked services, and their be-
havioural compatibility. In order to mechanize our approach, the services
and the components are translated into the LOTOs formalism. Finally the
LoTos CADP toolbox is used to perform experiments.

Keywords: Components, Services, Behavioural Interface Description,
Composability, Behavioural Verification.

1 Introduction

The rigorous development of large systems with methods that scale up and that
are reusable in various projects is still a challenging research topic. Component-
Based Software Engineering (CBSE) motivates a number of works on this topic
[19,15,6,12]. The component approach promotes the (re)use of components com-
ing from third party developers to build new large systems. The success of the
large scale development of component-based systems depends on the availability
of: reliable components libraries, tools to search for components (in libraries),
expressive languages of composition of the components and especially tools for
checking the correct use of components.

The motivation for this work lies on the need of a sound basis for devel-
oping correct components, for studying composition and for implementing re-
lated tools. While many component approaches focus on the structural aspects
of component composition, we insist on the functional (services) and dynamic
(behaviour) aspects of the components because they are important criteria for
component reuse. In this perspective, related works deal with the behavioural
compatibility for simplified abstract component models [6,8,5]. On the other
hand there are mechanized approaches such as Tracta [10] or SOFA [17] but
their component models are restricted. These works associate behaviour(s) to

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 18-33, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Checking Component Composability 19

components and not to services. But this is a limitation since the services pro-
vide a finer description of the component usage.

The goal of the work is to provide the designer of component-based systems
with a high level component model and also with the methods to assist his/her
use of the components. We are interested in building an experimental toolbox
for component study and development.

The main contribution of this article is a simple formal model (named Kmelia)
for modelling and composing components; it supports the verification of compos-
ability. We define composability of components by considering the links between
their services and the behavioural compatibility of these services. Therefore, we
get a hierarchical definition of composition and assemblies. In our work, a com-
ponent is viewed and used through the services which constitute its interface.
The use of services is central for the verification of composability when assem-
bling components. It is important to detect the defects which could lead to a
faulty behaviour of the developed system early in the development. A bad inter-
action between a called service and the calling one may lead to a blocking of the
whole system. To ensure a good level of correctness of the components and their
assemblies, the formal verification of the service descriptions with respect to the
desired properties of the component is necessary. Consequently, the specifications
of components and their service behaviours should be abstract and formal. The
use of an abstract formal model makes it possible to hide the implementation
details of the components in order to have general reasoning techniques which
are adaptable to various implementation environments.

The article is structured as follows. Section 2 presents the Kmelia model
through the description of services and components. It is illustrated with an
example of a bank Automatic Teller Machine system. Further details on Kmelia
are given in [3]. The Section 3 introduces the service links and sublinks used
to describe component assemblies and compositions. Section 4 is devoted to the
composability of services and components. Behavioural compatibility between
component services is also treated there. In the Section 5 we present the mech-
anization approach undertaken to support the Kmelia model. Experiments are
done with LOTOS. Section 6 concludes with a discussion and the perspectives.

2 A Component Model Based on Services: Kmelia

In the Kmelia model, a component is characterised by: a name (the component
identifier), a state (variables and an invariant predicate on them), an interface
made of services and the description of the services. The interface specifies the
component interactions with its environment [1,15]. A Kmelia component in-
terface is made of provided services and required services. A provided service
offers a functionality, while a required service is the expression of the need of a
functionality. This need is fulfilled when the component is combined with other
components (in an assembly), one of them supplying the corresponding required
service. Therefore, in Kmelia, component services interact with synchronous
communication supported by message exchanges or service calls/responses via

20 C. Attiogbé, P. André, and G. Ardourel

communication channels. Related works [17,18,16] associate dynamic behaviours
(or protocols) to components and services are atomic operations (messages).
Unlike these approaches, we consider services as units of interaction and they
are equipped with dynamic behaviours (service behaviours). This provides finer
component descriptions where services are the main entities [2].

2.1 Service Specification

A service s of a component C' is defined with an interface I, and a (dynamic)
behaviour Bs: (Is,Bs). Usually a required service does not have the same level
of detail as a provided service since a part of these details is already in the
(provided) service that calls it.

The interface I of a service s is defined by a 5-tuple (o, P, Q, Vs, Ss) where
o is the service signature (name, arguments, result), P is a precondition, @ is
a postcondition, Vs is a set of local declarations and the service dependency S,
is a 4-tuple S = (subs, cals, reqs, ints) of disjoint sets where sub, (resp. cal,
reqs, ints) contains the provided services names (resp. the services required from
the caller, the services required from any component, the internal services) in
the scope of s. Using a required service 7 in cal, of a service p (as opposed to a
component interface) implies r to be provided by the component which calls p.
Using a provided service p in the sub, of a service r but not in the component
interface, means that p is accessible only during an interaction with r.

The behaviour B, of a service s is an extended labelled transition system (eLTS)
defined by a 6-tuple (S, L, 6, D, So, Sg) with S the set of the states of s, L the
set of transition labels and 6 the transition relation (6 € S x L — S). Sy is the
initial state (Sp € S), S is the finite set of final states (Sp C S), @ is a state
annotation partial function (¢ € S — subs). An eLTS is obtained when we allow
nested states and transitions. This provides a flexible description with optional
behaviours named branching states and also reduces the LTS size. A branching
state is the one annotated with sub-service names (using the @ function), which
are (sub-)services of the component C' that may be called when the evolution
reaches this state (but the control returns to this state when the launched sub-
service is terminated). Formally, the unfolding of (the branching states of) an
eLLTS results in an LTS.

Transitions: The elements ((ss,label),ts) of § have the concrete Kmelia syn-
tax ss--label-->ts where the labels are (possibly guarded) combinations of
actions: [guard] action*. The actions may be elementary actions or commu-
nication actions. An elementary action (an assignment for example) does not in-
volve other services; it does not use a communication channel. A communication
action is either a service call/response or a message communication. Therefore
communications are matching pairs: send message(!)-receive message(?), call
service(!!)-wait service start(??), emit service result(!!)-wait service result(??).
The Kmelia syntax of a communication action (inspired by the Hoare’s CSP) is:
channel (! [|?|!![?7) message(param*).

Channels: A communication channel is established between the interacting ser-
vices when assembling components. A channel defines a context for the

Checking Component Composability 21

communication actions. At the moment one writes a behaviour, one does not
know which components will communicate, but one has to know which chan-
nels will be used. A channel is usually named after the required service that
represents the context. The placeholder keyword CALLER is a specific channel
that stands for the channel open for a service call. From the point of view of a
provided service p, CALLER is the channel that is open when p is called. From
the point of view of the service that calls p, this channel is named after one of
its required service, which is probably named p. The placeholder keyword SELF
is a specific channel that stands for the channel opened for an internal service
call. In this case, the required service is also the provided service.

2.2 Component Specification
A component (C) is a 8-tuple W, Init, A, N, I,Dg,v,Cs) with:

— W = (T,V,Vp, Inv) the state space where T is a set of types, V a set of
variables, Vi C V x T a set of typed variables, and Inv is the state invariant;

— Init the initialisation of the Vp variables;

— A a finite set of elementary actions;

— N a finite set of service names;

— I the component interface which is the union of two disjoints finite sets: I,
the set of names of the provided services that are visible in the component
environment and I, the names of required services.

— Dg is the set of service descriptions; it is partitioned into the provided ser-
vices (Dg,) and the required services (Ds,).

— v: N — Dg is the function that maps service names to service descriptions.
Moreover there is a projection of the I partition on its image by v:
nel,=v(n)€Ds, ANnel.=v(n)ecDg,

— Cg is a constraint related to the services of the interface of C in order to
control the usage of the services.

The behaviour of the component relies on the behaviours of its services. The
constraint Cg describes general conditions on the service usage: it may be an
ordering of services or a predicate (temporal condition, mutual exclusion...). A
specific service offered (like a main) as a single provided service may implement
a Component Behaviour Protocol in the sense of [10,17].

2.3 Component Assembly

Assembling Kmelia components consists in linking their pairwise services: re-
quired services may be linked to provided services. Formal details are given in
the Sect. 3.3. Let consider two main semantics for the link operator: the monadic
and the polyadic semantics. With the monadic semantics, only one provided ser-
vice may be associated to a required service; a component is both a component
type and the unique instance of it; a required service may be linked to at most
one provided service (no overloading); only one instantiation of a service exists
at any time. The service evolutions are concurrent processes with shared compo-
nent state. With the polyadic semantics a provided service may be linked with

22 C. Attiogbé, P. André, and G. Ardourel

various required services (allowing broadcast communications); in the same way
a required service may be linked to various providers. As an example, a chat
application provides services for multiple clients. Only the monadic semantic is
considered in this article.

2.4 Illustration

We illustrate the model with a simplified real-world problem: a bank Automatic
Teller Machine (ATM). Since the case is very common, the details are omitted
here. Fig. 1 shows a simplified component assembly for the ATM, that includes
four components: the central ATM CORE which handles the ATM bank services,
the USER INTERFACE component which controls the user access, the AAC stands
for the bank management and the LOCAL BANK holds the local management ac-
cess. The component usage is quite flexible: an assembly may be correct for
the services whose dependency chains are fulfilled. The USER INTERFACE

ATM_CORE
AAC USER_INTERFACE
authorization j_] ask_ o Lo withdrawal Dil] ask_for_money
authorization JPtad \.\
. o ~
account_update D R S\ ..
- R K ask_amount D—D amount ... o]
Vl H L:Je aviour
debit s [~ | code
eject_card % ask_code L
LOCAL_BANK swallow_card R, . D B
i query_account
display accoun’Lquery
balance ask_ IPPtias
:l account_balance < deposit

transfer :I
link
provided service D—D required service < ------- service call

Fig. 1. Assembly for an ATM System

component offers the (provided) code service only in the interface of the be-
haviour service; it means that the USER INTERFACE only gives its code
during a withdrawal operation that it has initiated. In such a situation, code is
a sub-service. The component services are detailed in the Fig. 2. Note that the
USER INTERFACE may also call a withdrawal service that does not require
its code. In the following we focus on the withdrawal provided service which is
linked to the required ask for money service, called by the behaviour service.
This triple constitutes a context for a service verification (see Sect. 4.4). The
links associated to withdrawal are:

(p-r ATM_CORE.withdrawal, USER_INTERFACE.ask_for_money
//p-r stands for provided-required

//sublinks

(r-p ATM_CORE.ask_code, USER_INTERFACE.code)

(r-p ATM_CORE.ask_amount, USER_INTERFACE.amount))

Checking Component Composability 23

USER_INTERFACE.behaviour() = ATM_CORE.withdrawal(card : CashCard) =

e0
ask_for_money(myCard) nbt :=3
e10 el <code, amount>
<code> ask_code()
X ask_for_money?result(b)
v el
e2 ask_code?result(c:Integer)

[c<>card.code
! & nbt >0]
v display(...)

;nbt:=nbt-1

[c<>card.code & nbt = 0]
) swallow_Card()

[c=card.code]
rep:=ask_authorization
(card.id, c)

USER_INTERFACE.code () =

[not rep] display(...) ;
eject_card() G

e3 e4

Iresult(myCode) [rep] display(...) [m > cart.limit]

e5 display(...)

USER_INTERFACE.amount () = ask_amount()

~O
ask_amount?result
a := acceptAmount() (m:Integer)

v e7

. [m <= card.limit]
Iresult(a) debit(c,m);

© eject_card()

e6

Iresultffalse)

Iresult(true)

oF

e8

Fig. 2. LTS of the two main services (with the sub-services)

The withdrawal starts with an identification step: card insertion, password
control, authentication by ACD/ATM controller (AAC). If the AAC accepts
the transaction, the ATM asks for the amount of cash, otherwise the card is
ejected and the withdrawal transaction ends. The user enters an amount which
is compared with the current card policy limit. When the allowed amount is lower
than the requested one or if the current ATM cash is not sufficient, the ATM
asks again for the amount of cash. Otherwise the ATM asks the AAC to process
the transaction, updates the card limit, gives the cash and prints a receipt when
it is possible. In any case the withdrawal transaction ends after a card ejection.
There are four elementary actions (debit, eject card, swallow card, display). The
channels may be omitted and deduced either from the context or from default
rules. This syntactic sugar is not currently implemented in our prototype.

The interaction description is made flexible by enabling the call of sub-services
when the evolution reaches branching states. For example, the notation el
<code, amount> expresses that the services code and amount may be called
in the el (branching) state. Thus the ask for money service may operate with

24 C. Attiogbé, P. André, and G. Ardourel

any withdrawal protocol (whatever the order for amount and code). The angle
brackets are the syntactic counterpart of the @ function.

3 Component Assembly and Composition

In the Kmelia model, the component assembly and composition are based on
various types of links between services. For instance we have a sublink when a
hidden service (not in the interface of the components) is called in the scope of a
provided service. In an assembly, required services are linked to provided services.
A composition is an assembly where some unlinked services are promoted to the
composite level.

In this section, we provide the formal background for component assembly
and composition. We use a set theory notation close to that of Z or B where
X <Y denotes the relation from X to Y (a set of pairs); dom and ran denote
respectively the domain and the range of a relation; a — b denotes the pair
(a,b). In the remainder let C be a set of Cj components with k£ € 1..n and
Cr = ({Tk, Vi, Vi, Invg), Inity, Ak, Ni, I, Dsy, Vi, Csy,) as defined in Sect. 2.

Let N be the set of service names of C (N =U,, . Ni)-

3.1 Dependencies Between Component Services

Let dependsy, be a relation between component services defined as a part of the
service dependency in a component Cj, where sm = vy (m):

dependsy, : N, — N,
V(n,m) : dependsy o (n € calsm) V (n € Teqsm) V (n € subgm)

3.2 Links and Sublinks Between Component Services

Basically, the links are 4-tuple of component and service names with the following
properties: (1) the service names are those of their owner components, (2) any
component service is not linked to itself (not recursive).

BaseLink : IP (C x N x C x N)
(1) V(Ci,n1,Cj,n2) : BaseLink e ny € N A nay € Nj
(2) VC; :C, ny: N; e (Ciyny,Ci,ny) ¢ BaseLink

A link connects two services of the interfaces of their owner components.
Link C BaseLink AY(C;,n1,Cj,n2) : Link e ny € I; Ang € I

A sublink is a base link between two services such that one of them at least is
hidden. For instance we have a sublink when a hidden service is called in the
scope of a provided service.

SubLink C BaseLink AY(C;,n1,Cj,ng) : SubLink eny ¢ I; V ny ¢ I;

The sublink makes explicit the relation between the service dependencies de-
clared in the interfaces of the services involved in a Link. In the following these
relationships are constrained in order to define component assembly and com-
ponent composition.

Checking Component Composability 25

3.3 Component Assembly

A component assembly is a triple A = (C, links, subs) where C is a set of
components, links is a set of links between the services of C and subs is a
relation from links to sublinks.

links C Link N
(1) (V(Ci,n1,Cj,n2) :linkse C; € CANCj €CA
((n1 € Ip; Amg € Inj) V (n1 € Iy Amg € 1))
subs : Link < SubLink N
(2) dom subs = links A
3) (V((Ci,n1,Cj,n2) — (Ck,n3,Ci,ng)) € subs e C; = C, A C; = Cp) A
(4) (¥(Ci,n1,Cj,n2) : ran subs e ((vi(n1) € Dgy,) xor (vj(n2) € Dspj)))

The components of the links are the components of the assembly (1). The sub-
links are related to links (2) that concern the same components (3). Provided
services are linked to required services (1 and 4).

The triple A is a well-formed component assembly if the following property
holds: the services in the sublinks are not in the involved component interfaces,
but they are in the dependencies of the involved services (w.r.t sublinks).

(5) V(l,sl) € subs |l = (Ci,m1,Cj,n2) A sl = (Cx,ng, Cr,ng) ®
((n3,n1) € depends;* V (na4,n2) € depends;*)

where depends;* is the transitive closure of depends;.
Practically a link establishes an implicit communication channel between the
involved services. This channel is shared with the sub-services.

3.4 Component Composition

A composition is a well-formed component assembly which is encapsulated within
a component. We define an operator named compose that builds a new compo-
nent by combining one or several components.

The parameters of the compose operator are:

— an outer component oC' (the composite) together with its interface, new
services and services of its constituents;

— a well-formed assembly A = (C, links, subs) (see section 3.3);

— the desired promotions, that are set of links between the services of oC and
those of Cj, € C.

The promotion is a relation between a service of the composite oC' and an
unlinked service of the components in A, that preserves existing sublinks; such
promoted service becomes usable at the composite level.

promotions C BaselLink N
(V(Ci,n1,Cj,ng) : promotions e
(1) (Ci =0C)N(Cj€C) N
(2) ((voc(ny) € Dsp, A2 € ij) V (Voc(n1) € Dsyoc A2 € 1rj)))

26 C. Attiogbé, P. André, and G. Ardourel

The resulting component is an enhancement of oC': it contains every provided
and required services of oC' and provides/requires the promoted services from
other components in C (using promotions). Here the sub-services of the promoted
services are also promoted.

From a methodological point of view, the composition operator may be used
to refine an abstract component with a component assembly; it may also be
used to structure simple components or to provide a more restrictive interface
of existing components.

4 Formal Verification of Components and Assemblies

Formal verification of components is performed according to various aspects. In
the Section 4.1, we overview the main issues of component formal verification
so as to situate the composability of components. Thereafter we focus on one
specific aspect: the verification of the correct interaction between components.
Indeed, a part of the service composability lies on the behavioural compatibility
of the services: a correct service interaction is a guarantee for the composition
of components. In the following, both static aspect and dynamic aspect of the
verification are considered to check composability.

4.1 Formal Analysis of Components

The safety and liveness verifications apply to software components; but they
should be adapted to component features. The behavioural compatibility between
components is related to both safety and liveness. It is a widely studied topic
[21,8,4,7]. Behavioural introspection (discovering the component behaviour) is
one way to deal with behavioural compatibility; but one has to prove compati-
bility. Checking behavioural compatibility often relies on checking the behaviour
of a (component based) system through the construction of a finite state au-
tomaton. However the state explosion is a limitation of this approach [8,4]. More
generally, the following properties should be considered for verification.

— Correctness of functional properties: do the components do what they should
do? These properties may be independently checked on the components
which are used and also on the composition of the components;

— Flexibility of maintenance (modifiability, evolution): that means the compo-
nents should be simply updated when needed, without drastically affecting
the third party components which use them. The update of a component
includes the modification of the implementation of its service(s), the remov-
ing/adding of a service; etc.

— Heterogeneity: within the CBSE approach, the components coming from
various providers may be composable to develop large systems. This is a
challenging concern because the components may have different models;

— Compositionality: the properties of a global system should be deduced from
the properties of the composed components;

Checking Component Composability 27

— (Static) Interoperability properties: the compatibility of signatures and in-
terfaces (naming and typing); does a component give enough information
about its interface(s) in order to be (re)usable by other components?

— Architectural properties: they involve the availability of the required com-
ponents, the availability of the needed services, the correctness of the links
between interfaces of components (providers and callers);

— Behavioural compatibility: it is about the correct interaction between two or
more components which are combined. Several points need to be considered:
various kinds of interaction, synchronous or not, atomic actions or non atomic
ones.

The last three categories of properties are related to composability.

4.2 Composability

We define composability at different related levels: service level and component
level.

Definition 1 (Service Composability)

A provided service spc, = ((0p, Pp, Qp, Vsp, Ssp), Bsp) of a component C; and
a required service src; = ((or, Pr, Qr, Vs, Ssr), Bsy) of a component C; are s-
composable (noted s-composable(spc,, src;)) when src, is required in the behav-
iour By of a service s of Cj if:

1. the interfaces of spc, and src; are compatible; that is,
(a) their signatures are matching (no type conflict: o, and o, are identical),
(b) the assertions (pre/post) are consistent (post(spc,) ~ post(src;)) and
(c) their mutually dependent services S, Ss, (see service dependencies in
Sect. 2.1) are not conflicting: the inner required-provided relationship is
preserved: that means they involve a well-formed assembly(see Sect. 3.4).
2. the behaviour By, of spc, and By of s are compatible: compatible(Bs,, Bs);
that is, their eLTSs are matching; either they evolve independently or they
perform complementary communication actions until a termination without
a deadlock.

The conditions 1.c. and 2. are checked in the context of each service s that
calls src;. Bs, is nul since the required src,; does not have a behaviour. The
compatibility of behaviours is dealt with in more details in the following.

Definition 2 (Component Composability)

Two components C; and C; are c-composable according to a set of service pairs
ss, if all the pairs (s;, s;) of ss are composable:

c-composable(C;, Cj,s8) < Y(si,85) € ss e s-composable(s;, s;)

Proposition 1 (Assembly ‘Checkability’). When two components C; and
C; are c-composable w.r.t to a list of services ss, then C; and C; can be linked
in a well-formed assembly via ss. This generalises to several components.

Accordingly Kmelia component assemblies and compositions may be formally
checked for correctness.

28 C. Attiogbé, P. André, and G. Ardourel

4.3 Checking Composability: Static Analysis

The interface of a component contains the sets of provided and required ser-
vices (with the naming and typing informations); additionally, informations on
required or called sub-services are attached to the interface. In a similar way,
these informations are available for the service descriptions. Accordingly, the
static analysis of the interface of a component is achieved using:

i) simple correspondence checking algorithms and possibly standard typing al-
gorithms;
it) a deep investigation on the availability of required or called sub-services.

The definitions given above are used to perform this static level analysis. At this
stage, some incompatibilities may be detected. We cover by the way the main
part of (static) interoperability properties and architectural properties.

4.4 Checking Composability: Behavioural Compatibility Analysis

At this stage, we assume that a verification of the static and architectural prop-
erties is already performed for a given assembly. This implies that each service
of the components is completely and correctly described. Now, the main concern
is to check that a given component interacts correctly with others (which may
be provided by a third party developer) over the links. Remind that each ser-
vice is described with an eL'TS where the transitions are labelled with guarded
elementary actions and communication actions (see Sect. 2.1).

The component interacts correctly with its environment if its services are
composable with the other services. We consider only one caller service and one
called service at time. We check that Bp a given eLTS matches with Br a second
eLTS: compatible(Bp, Br). A complete interaction between the services of several
components results in a pairwise local analysis between the LTS of a caller and
that of the called service. The eL.TSs are unfolded to obtain LTSs. Therefore, two
services interact until a terminal state if the labels of their associated LTSs are in
correspondence according to a set of rules that define compatible. They are based
on the labels of the transitions going from a current state to the following states
(output transitions). The rules indicate the correct evolutions according to the
current states of two involved services: from a current state considered in each
LTS, we explore the labels on the output transitions. In the case of elementary
actions on the labels, each LTS evolves independently, their current states are
updated. In the case of communication actions on the labels, the transitions
match if for the considered services (hence the appropriate channels), we have
the matching pairs: send(!)-receive(?), call service(!!)-wait service start(9¢), emit
service result(!!)-wait service result(?7). In this case each LTS evolves in its next
state. If the labels do not match, an incompatibility or a deadlock is detected.

After a final state of a called service, the caller may continue with independent
transitions or with transitions that imply other (sub-)services. When the final
states are reached without deadlock, the services are compatible.

In the following we focus on a practical verification of the behavioural com-
patibility aspect, that (re)uses an existing verification toolbox.

Checking Component Composability 29

5 Formal Verification with Lotros/CADP

We use LoTos [14] and its associated CADP [9] toolbox to experiment on the
composability checking. We encode the Kmelia components into LOTOS processes
which are the input of the CADP tools. In order to exploit the CADP tools, the
behavioural compatibility is based on communication between processes.

5.1 Lotos

Lotos [14] is an ISO standard formal specification language. It is initially de-
signed for the specification of network interconnection (OSI) but is also suitable
for concurrent and distributed systems. LOTOS extends the process algebra CCS
and CSP and integrates (algebraic) abstract data types. A LOTOS specification
is structured with process behaviours. It has the main behaviour description op-
erators of the basic process algebra CCS and CSP. LoTOS uses the ”!” and ”?”
operators of CSP which denote respectively emission and reception. The salient
features of LOTOS are: the powerful multi-way synchronisation; the use of com-
munication channels called gates; the synchronous interaction of processes; the
use of algebraic data types to model data part of systems; the availability of the
CADP toolbox [9].

A process is the description in the time of the observational behaviour of a
given system. The description is given as the non-deterministic combination of
the sequence of events feasible by the system. The set of events of a behaviour
is called the alphabet of the process. In a process specification, a sequence of
events is denoted with ”;”. The choice between alternative behaviours B and
C is described with B [] C. The notation [Bterm] -> B describes a process
behaviour B guarded with a boolean term Bterm. The inaction is denoted with
stop. A successful termination is denoted with exit. The sequential composition
of behaviours B and C is described with B >> C.

Three parallel composition operators are used to compose processes: ||| is
used for the interleaving behaviour of the composed processes; | | is used for the
strict (on all the events) synchronisation of the involved processes; | [L]1] where
L is a synchronisation list (of events) is used to synchronise the processes on the
events within the list L; when L is empty this results on a interleaving. The use of
L forces the related processes to perform matching communication actions. Both
synchronous and asynchronous communications may be described in LOTOS.

The ISO LoTos has an operational semantics in terms of labelled transitions
systems. The semantic rules define the behaviour of the LOTOS processes and
their communication. As far as the data part is concerned, algebraic term rewrit-
ing is considered to evaluate data terms and each variable may be instantiated
by the values corresponding to its type.

5.2 Translating the Services into LoTOS Processes

Our working hypotheses are the followings. To deal with the communication,
each service has a default channel made by prefixing the service name with

30 C. Attiogbé, P. André, and G. Ardourel

the keyword ”"Chan ”. Thus, Chan serv denotes the default channel of a ser-
vice named serv. This channel is used as an alphabet element of the process
corresponding to the service. In the same way, the channels associated to the
services with which a service serv communicates (service calls appearing in the
behaviour) are listed in the alphabet. We treat the activation of a service with
a communication (to enter the initial state of the called service). A process cor-
responding to a service waits for a call. The caller service sends a call. Initially
each service (the associated process) waits for a communication using its default
channel. A caller service calls a service by sending a message (with the called
name as parameter) on the default channel of the called service. The parameters
are also sent using the default channel of the called process.

Translation Principle and Result

Remind that the behaviour of a component service is a transition system where
each label is a combination of actions which may be elementary actions, or
communication actions. From each state of a service there are one or several
(outgoing) transitions going to other states.

LoTos processes are basically state machines. Therefore the transition system
which describes a service is described with one or several LOTOS processes; one
main process is associated to the service and one or several subprocesses are
used to describe the former one. Basically, each state is translated into a process.
The behaviour of the latter describes the transitions which are attached to the
corresponding state.

The translation procedure is performed as follows: each service state is ex-
amined; each outgoing transition of the state corresponds to a LOTOS action
followed by the translation of the reached state. The used channels, the com-
munication actions and the elementary actions are collected to form the current
process alphabet. According to these working hypotheses, we define a semantic
encoding (namely LotosEncoding) of the service specifications. The encoding
into LOTOS of service specifications is inductively performed by considering: ser-
vice interface without formal parameters; service interface with formal parame-
ters; service states (initial, final, intermediary and branching) and the transitions
related to each service state.

During the translation process, the data type spaces are reduced!' to avoid
the state explosion problem: we use enumerated or byte types. For each ser-
vice ServName, we define a LOTOS data type. It has a constructor which is
named according to the service; this permits the call of the service. Besides, all
the messages which are sent to the default channel associated to a service are
used as constructors of the data type associated to this service. Enumerated
data are translated with constructors of abstract data types. The expressions
used within actions are not evaluated; they are translated by simple actions in
the LOTOS process. The guards are not evaluated; each guard is encoded by an
action.

1 Model checking tools consider all the possible values of a type.

Checking Component Composability 31
5.3 Using CADP to Check the Behavioural Compatibility

The behavioural compatibility checking is based on LOTOS processes communica-
tion. We use the | [L] | composition operator. A compatibility checking involves
a pair of services: the caller service and the called one; for example behaviour
and withdrawal in our case (see Fig. 2). The withdrawal service is required
by behaviour via the name ask for money. A renaming of withdrawal with
ask for money is performed. These two services (the caller and the called) are
translated into LOTOS processes (say Lbehaviour and Lask for money); each
process has its alphabet (alphabet in the following); the processes are then
composed using the | [L]| operator to get a resulting process called Res in the
following. L is instantiated with the list of channels and actions used for the
communication between both services as illustrated above.

Res = Lbehaviour [alphabet]
| [chan_behaviour, chan_ask_code, chan_ask_amount, ...]|
Lask_for_money [alphabet]

Consequently, the services are compatible if the obtained Res process has no
conflict according to the composition operator.

As far as the running example is concerned, we check that USER INTERFACE and
ATM CORE are composable according to the services (ask for money, withdrawal):
the interface checking is easy. The behaviours of ask for money and withdrawal
are compatible.

To make it easy the experimentation of our component model, we implement
an analyser (using Antlr? and Java) of component specifications. A prototype
(named km12lotos) to translate the component services into LOTOS is also de-
veloped using Java.

Given an input component specification (in Kmelia), the analyser parses the
specification and generates the corresponding internal structure. The latter is
read by the km12lotos prototype; it generates communicating LOTOS processes
which are used as input to the CADP toolbox. In the ATM case study (see Sec-
tion 2), the experiment deals with an assembly of components. Specific services
(a caller with a called one, branching node with the sub-services) are checked.
The CADP functionalities raise failures when there are lack of channels, wrong
channels, incompatible types, blocking or incompatible behaviours.

The experiment using CADP helps us to discover specification errors; for
example when a wrong communication channel is used. When the errors are
recovered and the communications are fine, the CADP caesar utility generates
the (execution) graph corresponding to the system. The graph is very large in
the case of brute translation; but when we erase independent alphabet actions
and minimise the generated graph, we get a graph with less than hundred states.
Stepwise simulation (using CADP executor utility) is performed to analyse the
evolution of the system.

2 www.antlr.org

32 C. Attiogbé, P. André, and G. Ardourel

6 Discussion and Perspectives

We have presented a model where a component provides several behaviours via
services. This flexibility offered to the user results in a non trivial formalisation
of the model and its composability. A formal model is built to serve reasoning
purpose and the composability is defined. Composable components may be used
to build component assemblies or compositions. Some experiments are performed
with the LoTos CADP toolbox. A prototype toolbox (COSTO: COmponent
Study TOolbox) is under development to support our experiments; it already
integrates some modules: a Kmelia analyser, an architectural correctness checker,
a translator to generate LOTOS processes from the component specifications. We
also have a translator to MEC.

Compared to related works [4,13], our approach works at the abstract specifi-
cation level, it offers a more flexible formalism than the ones proposed by [21,4]
for the description of interacting services. We adopt a pairwise verification ap-
proach that avoids state explosion like in [4]. From the practical point of view,
our proposal follows the mechanized approaches like Tracta [10] or SOFA [17].
The latter already provides many analysis tools; but we have a different com-
ponent model that needs deep investigation before tool reuse and development.
However we can build on the experiences gained with these works. Most of the
approaches that integrate behavioural specifications to components [17,16,18]
work at a protocol (or component) level while our approach is mainly based on
the services, the protocol level is handled by a constraint in our model. More-
over, their communication actions refer only to messages and not to services (no
service call or result). The non-regular protocols of [18] may be represented in
Kmelia using guards and nested states, but using algebraic grammar provides a
more efficient solution for the given applications. The work of [16] addresses as-
semblies and implementation issues in Java but does not deal with composition.

Many exciting investigations remain to be done. Whatever the component
model, the compositionality is still a challenge [20]. The perspectives of this
work are: to reinforce the correctness properties of component with supplemen-
tary study of correctness of components and services with regard to their envi-
ronment; to extend the COSTO (COmponent Study TOolbox) prototype under
development so as to cover more mechanized analysis concerns.

References

1. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213-249, July 1997.

2. P. André, G. Ardourel, and C. Attiogbé. Behavioural Verification of Service Com-
position. In ICSOC/Workshop on Engineering Service Compositions, WESC’05.

3. P. André, G. Ardourel, C. Attioghé, H. Habrias, and C. Stoquer. A Service-Based
Component Model: Formalism, Analysis and Mechanization. Technical Report
RR05.08, LINA, December 2005.

4. P. C. Attie and D. H. Lorenz. Correctness of Model-based Component Composition
without State Explosion. In ECOOP 2003 Workshop on Correctness of Model-based
Software Composition, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Checking Component Composability 33

P. C. Attie and D. H. Lorenz. Establishing Behavioral Compatibility of Software
Components without State Explosion. Technical Report NU-CCIS-03-02, College
of Computer and Information Science, Northeastern University, 2003.

K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A Formal Model
for Componentware. In G. T. Leavens and M. Sitaraman, editors, Foundations
of Component-Based Systems, pages 189-210. Cambridge University Press, New
York, NY, 2000.

A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45-54, 2005.

L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), pages 109-120.
ACM Press, 2001.

J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A Protocol Validation and Verification Toolbox. In R. Alur and T. A.
Henzinger, editors, Proc. of the 8th Conference on Computer-Aided Verification
(CAV’96), volume 1102 of LNCS, pages 437-440. Springer Verlag, 1996.

D. Giannakopoulou, J. Kramer, and S.C. Cheung. Behaviour Analysis of Distrib-
uted Systems Using the Tracta Approach. ASE, 6(1):7-35, 1999.

T. Gschwind, U. ABmann, and O. Nierstrasz, editors. Software Composition, 4th
Int. Workshop, SC 2005, Edinburgh, UK, volume 3628 of Lecture Notes in Com-
puter Science. Springer, 2005.

G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski, and
K. C. Wallnau, editors. Component-Based Software Engineering, 8th International
Symposium, CBSE 2005, USA, May, 2005, volume 3489 of LNCS. Springer, 2005.
P. Inverardi, A. L. Wolf, and D. Yankelevich. Static Checking of System Behaviors
using Derived Component Assumptions. ACM Transactions on Software Engineer-
ing and Methodology, 9(3):239-272, 2000.

ISO LOTOS. A Formal Description Technique Based on The Temporal Order-
ing of Observational Behaviour. International Organisation for Standardization -
Information Processing Systems - Open Systems Interconnection, Geneva, 1988.
N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 26(1):70-93, january 2000.

S. Pavel, J. Noyé, P. Poizat, and J.C. Royer. A Java Implementation of a Com-
ponent Model with Explicit Symbolic Protocols. In Gschwind et al. [11], pages
115-124.

F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. IEFEE
Transactions on SW Engineering, 28(9), 2002.

M. Stidholt. A Model of Components with Non-regular Protocols. In Gschwind
et al. [11], pages 99-113.

C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addi-
son Wesley Publishing Company, 1997.

F. Xie and J. C. Browne. Verified Systems by Composition from Verified Compo-
nents. In ESEC/FSE-11: Proc. of the 9th European software engineering confer-
ence, pages 277-286, New York, NY, USA, 2003. ACM Press.

D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292-333, 1997.

Static Verification of Indirect Data Sharing in
Loosely-coupled Component Systems

Lieven Desmet, Frank Piessens, Wouter Joosen, and Pierre Verbaeten

DistriNet Research Group, Department of Computer Science
Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
Lieven.Desmet@cs.kuleuven.be
http://www.cs.kuleuven.be/lieven/research/

Abstract. To maintain loose coupling and facilitate dynamic composi-
tion, components in a pipe-and-filter architecture have a very limited syn-
tactic interface and often communicate indirectly by means of a shared
data repository. This severely limits the possibilities for compile time
compatibility checking. Even static type checking is made largely irrele-
vant due to the very general types given in the interfaces. The combina-
tion of pipe-and-filter and a shared data repository is widely used, and
in this paper we study this problem in the context of the Struts frame-
work. We propose simple, but formally specified, behavioural contracts
for components in such frameworks and show that automated formal
verification of certain semantical compatibility properties is feasible. In
particular, our verification guarantees that indirect data sharing through
the shared data repository is performed consistently.

1 Introduction

Current component systems often promote loosely-coupled components to en-
hance component reuse. The pipe-and-filter style [1] for example is a very popular
architectural style for constructing flow-oriented component frameworks. It is of-
ten combined with the repository style [1] to support anonymous communication
between components. Current state-of-the-art web component frameworks such
as Java Servlets [2] or the popular Struts framework [3] are examples of such
frameworks.

The main advantage of this kind of architecture is that it makes “wiring” of
components at the syntactical level very simple: components are independent
entities and interact with the shared data repository through a generic untyped
interface. The corresponding drawback is that semantical compatibility checks
are absolutely minimal: even compile-time or composition-time type checking
is circumvented. For instance, retrievals from the repository are done under the
Object type, and the retrieved object is then downcasted to the expected type at
run time, potentially leading to exceptions at run time. This in turn significantly
hinders independent extensibility of applications built in such frameworks, and
reuse of components in new compositions. It is for instance up to the composer to
make sure that all data that a given component expects to find on the repository

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 34-49, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Static Verification of Indirect Data Sharing 35

is guaranteed to be present in the constructed composition. Oversights of the
composer can lead to run-time errors.

To enhance component reuse and third-party composability, a precise docu-
mentation of the semantical behaviour of the components is essential. By making
parts of the component contract formal, automated tool support for verifying
some level of semantical compatibility at composition time becomes feasible.
As a consequence, certain types of bugs can be detected at compile time or at
composition time instead of at run time.

In this paper we propose formal component contracts written in JML, the
Java Modeling Language [4], that specify part of the behaviour of components
in the Struts framework and we show that static verification with state-of-the-
art verifiers for JML is feasible. Our contracts specify for instance what data a
component expects on the repository, and what data the component puts onto
the repository. Verification checks whether (1) implementations of components
honour their contract, and whether (2) compositions always respect the contracts
of their constituents. Our approach has been validated on GatorMail [5], an
open-source, Struts-based webmail application.

While we have worked out our contracts for the case of Struts, the same
idea is applicable to any framework based on the pipe-and-filter and repository
architectural styles.

The rest of this paper is structured as follows. Section 2 provides some back-
ground information on the web technologies used, component contracts and sta-
tic verification. Next, the problem statement is elaborated in Sect. 3 and solutions
for verifying two composition properties are proposed in Sect. 4. Section 5 vali-
dates the proposed solutions in the open-source webmail application GatorMail.
In Sect. 6, the presented work is related to existing research and, finally, Sect. 7
summarises the contributions of this paper.

2 Background

2.1 Java Servlets, JavaServer Pages and the Struts Framework

Java Servlets. The Java Servlet technology is part of the J2EE specification [6].
It is a server-side component model for extending the functionality of a web
server [2]. A J2EE web application is typically a collection of Java Servlets,
deployed in a servlet-based web container such as Tomcat, JBoss or WebSphere.
A container casts incoming HTTP requests into an object-oriented form (i.e. a
HTTPServletRequest object) and checks to see if there is a servlet registered for
processing that request. During request processing, a servlet can decide to either
dispatch the request to another servlet (and by doing so, form a pipe of servlets)
or to return a response to the user.

Within a web application, servlets are loosely-coupled with each other
(through a very generic interface) and support for dispatching between servlets
is provided by the web container. The servlets can communicate anonymously
by means of a shared data repository.

36 L. Desmet et al.

JavaServer Pages. The JavaServer Pages (JSP) technology is also part of the
J2EE specification and is built upon Java Servlets. JSP enables separation of
content from presentation in developing dynamic websites.

JavaServer Pages are used to develop the user interface (or view) of a web
application. They are also loosely-coupled, and can communicate anonymously
with other JavaServer Pages or Servlets by using the same shared data repository.

The Struts Framework. Apache Struts [3] is a widespread, open-source applica-
tion framework on top of Java Servlets and JavaServer Pages. Struts encourages
developers to use the JavaServer Pages Model 2 architecture [7], a variation on
the Model-View-Controller design pattern for web applications.

In a Struts application (illustrated in Fig. 1), incoming HTTP requests are en-
capsulated in HTTPServletRequest objects and dispatched to the ActionServlet.
This ActionServlet is the Controller of the Struts application. According to the
requested URL, an appropriate action is selected and the HTTPServietRequest
(Req in Fig. 1) is processed. An action interacts with the Model and fetches
the necessary data for the View. After processing the request, an ActionForward
object(AF in Fig. 1) is returned to the ActionServlet, indicating which action or
view has to be processed next. This process continues until a JSP view is reached
and output is sent back to the web browser. In this architecture only the imple-
mentations of the different actions and JSP views are application-specific, the
other parts are provided by the Struts framework.

Action Action [}
Servlet /
e

JSP h

H\E

HTTP request

%

Web browser

Web application]

Fig. 1. Request processing in Struts

Actions resemble Java Servlets in that they both process a HTTPServletRe-
quest and that both are able to use the associated shared data repository that
is propagated through the flow together with the request.

In order to achieve reusable actions, an extra forward indirection is used in
Struts. Actions use logical names to identify forwards, and the Struts config-
uration file (which is specific for each configuration) specifies the declarative
mapping between logical forwards and actual forwards. In this way, the logical
names are mapped to actual forwards at run time using the ActionMapping class.
The mapping can either be action-specific (local forward) or composition-wide
(global forward).

What is important in the context of this paper is the fact that the declarative
forwarding and indirect data sharing ensure that actions, servlets and JSP views
are very loosely-coupled from a syntactical point of view.

Static Verification of Indirect Data Sharing 37

2.2 Component Contracts and Static Verification

Component contracts have already often been proposed before for various pur-
poses [8]. For components written in Java, The Java Modeling Language
(JML) [4] is a popular formal contract specification language. In this paper,
JML notation is used to specify pre- and post-conditions as well as frame condi-
tions for methods that process HTTP requests. Frame conditions specify what
part of the state a method is allowed to modify.

One of the main advantages of JML is the large amount of tool support that is
available [9]. Tools are available for run-time contract checking, test generation,
static verification and inference of specifications. Of particular interest to us
are tools for static verification of JML contracts. A variety of verification tools
is available that make different trade-offs in verification power and need for
user interaction. In the experiments reported on in this paper, we used the
ESC/Java2 verifier [10]. The main advantage of this verifier is that it requires
no user interaction. On the downside, the verifier is far from complete, and has
some known sources of unsoundness [11,12]. In Sect. 4.3, we explain how this
impacts verification of our proposed contracts.

3 Problem Statement

Although the declarative forwarding mechanism and indirect data sharing in
Struts highly facilitate the composition of a web application from a syntactical
point of view, they also introduce hidden complexities for the software composer.
In order to achieve correctly functioning compositions, the software composer
needs to bear in mind all the hidden data interactions through the shared data
repository, and anticipate all possible forwards of the actions.

This hidden complexity should not be underestimated. We investigated Gator-
Mail [5], an open-source webmail application of the University of Florida, built
upon the Struts framework. In this web application (consisting of about 20.000
lines of code), we identified 36 Struts actions and 29 JSP views, reused in 52
request processing flows [13]. The FolderAction for instance was reused in more
than 20 processing flows. All the flows contributed to 147 declarative control flow
transitions in the webmail application, and to 1369 data repository interactions.
The control flow transitions were specified in the composition configuration by
means of global and local forwards, but none of the data interactions with the
shared repository were documented.

It should be clear that under these circumstances it is not obvious how to
reuse existing components or to contribute to an open-source project such as
GatorMail, without breaking any of the existing, hidden data dependencies be-
tween actions, or without leaving some dangling control flow transitions!, unless
of course, a full source code study is undertaken to identify the declarative for-
wards and the data repository interactions.

! With a dangling control flow transition, we mean that at run time the action returns
a logical forward, but that no mapping can be found to an actual forward in the list
of local or global forwards of the running configuration.

38 L. Desmet et al.

To focus on the essence of the problem, we now define a simplified version of
the Struts application model. This simplified version mainly takes the declarative
forwarding mechanism and the indirect data sharing into account. The presented
application model is then used to define some desired composition properties at
the end of the section. The problem we address in this paper is how we can verify
these properties statically.

The simplified application model is sufficiently generic to reflect the common
characteristics of many pipe-and-filter applications with a shared data repository.
Hence, the proposed solution of Sect. 4 is generally applicable to this kind of
applications. In Sect. 5, the simplified model is further specialised towards the
Struts application framework in order to apply our solution to real, existing
Struts applications.

3.1 Simplified Application Model

In the simplified application model (shown in Fig. 2), an application is still a
composition of actions. All actions implement an ezecute method taking two
parameters: a Request and a Form. A Request is a first class entity represent-
ing the request that is being processed and the request provides access to the
shared data repository (setDataltem, getDataltem and removeDataltem) associ-
ated with the request. The Form encapsulates the request parameters provided
by the client for processing the request.

The ezecute method of an Action returns a string, logically indicating which
control flow transition should be taken. A Configuration object encapsulates the
local and global forwards of a composition and maps the strings to corresponding
actions. The RequestProcessor then repeatedly executes an action for a given
request and based on the return value it selects an appropriate succeeding action
from the Configuration. JSP views are reduced to normal actions in the simplified
application model, but they do not produce a forward.

Action Request Configuration

+globalForwards
+localForwards

+execute(in request : Request, in form : Form) : string +setDataltem(in name : string, in value : object)
+getDataltem(in name : string) : object
+removeDataltem(in name : string)

RequestProcessor Form

+process(in action : Action, in request : Request, in form : Form, in configuration : Configuration)

Fig. 2. The simplified application model

3.2 Composition Example

To illustrate the simplified application model, a basic composition example is
now introduced. The composition is part of an online calendar system and al-
lows a user to schedule a meeting with several participants at a given time slot

Static Verification of Indirect Data Sharing 39

and location. The composition consists of four actions and is shown in Fig. 3.
The rounded boxes represent actions and the solid arrows indicate control flow
transitions.

Shared data repository
associated with the request

/v{ conflicts E_(——b{
~

meeting k< —
~
~
~

~ N N

~
~

AddMeeting EmailNotifica)
SUCCESS: . . success
tionAction -

~

fail N AddMeeting
FailedView

Fig. 3. Composition example: scheduling a meeting

The first action to be executed in scheduling a meeting is the AddMeetingAc-
tion. This action tries to schedule the requested meeting. On success, the request
is processed by an EmailNotificationAction which sends a notification to the par-
ticipants of the meeting. Afterwards, the scheduled meeting is shown to the web
user (AddedMeetingView). On failure, the AddMeetingFailedView lists the dif-
ferent conflicts which make the scheduling impossible.

The labels on the control flow transitions represent the return values of the
different actions. The AddMeetingAction can either return “success” or “fail”,
indicating whether or not the scheduling was successful. The EmailNotification-
Action only returns “success”, whereas views do not produce a forward.

The interactions with the shared data repository are indicated by dashed lines.
The AddMeetingAction stores the meeting information (containing the partic-
ipants, time slot and location) on the shared repository. In case the meeting
cannot be scheduled, a list of conflicts is saved as well. All other actions retrieve
the meeting information from the shared repository. In addition, the AddMeet-
ingFailedView also reads the list of conflicts.

3.3 Desired Composition Properties

Based on the simplified application model, a number of desired composition
properties can be defined in loosely-coupled compositions with a declarative
control flow and indirect data sharing. Some examples are:

No dangling forwards: Every logical forward in the composition is mapped
to an actual forward in the configuration.

No broken data dependencies: A shared data item is only read after being
written. For each shared data read interaction, the shared data item that
is already written on the repository is of the type expected by the read
operation.

40 L. Desmet et al.

In the next section, solutions are proposed to statically verify these composi-
tion properties in the simplified application model.

4 Solution

In order to statically verify the composition properties of the previous section,
each action is extended with an appropriate action contract. These contracts are
then verified in two phases. Firstly, the compliance of the action implementation
with the action contract is checked. Secondly, the composition properties are
checked based on the different action contracts.

The action contracts are expressed in a framework-specific contract language.
Listing 1.1 for example, shows such a framework-specific contract of AddMeeting-
Action. These framework-specific contracts are then translated into JML con-
tracts in order to verify them with existing verifiers. For the rest of the paper
we have chosen to show the translated JML contracts since JML is a fairly
well-known contract language.

Listing 1.1. Framework-specific contract of AddMeetingAction

//spec: forwards {”success”,”fail”};
spec: writes { Meeting meeting};
9 g
//spec: on forward == "fail” also writes { Vector conflicts};

This section only highlights key points of the solution. Some additional speci-
fication decisions and the full action contracts of the composition example (in the
framework-specific contract language and in JML) can be found on the paper’s
accompanying website [14].

4.1 No Dangling Forwards Property

Action Contracts for the No Dangling Forwards Property. In order to
verify the no dangling forwards property, the action contract needs to include
sufficient information about the possible declarative forwards (i.e. the different
return values). This can simply be done in a JML specification by restricting the
return values of an action as part of the action’s post-condition. In Listing 1.2
for example, two possible return values are declared in the action’s contract: the
strings “success” and “fail”.

Listing 1.2. Contract for declarative forwarding (AddMeetingAction.spec)

public class AddMeetingAction extends Action {
//@ also
//@ ensures \result == "success” || \result == "fail”;
public String execute(Request request, Form form);

}

Static Verification of Indirect Data Sharing 41

Static Checking of the No Dangling Forwards Property. To check the
compliance of the action’s contract with its implementation, a very pragmatic
approach such as applying a simple search pattern on the Java source could be
used. If however the source code is not that straightforward anymore (e.g. if
programming constants are used, or if the return value is constructed in several
statements), a static checker tool such as ESC/Java2 can be used to verify the
compliance with the ensures clause.

Verifying the no dangling forwards property itself is trivial and can be done
by using a simple algorithm that verifies that for each possible return value
of the action either a corresponding local forward or global forward exists in
the composition-specific configuration. In practice, the declarative forwarding
property is not individually verified, but is verified in combination with the no
broken data dependencies property as will be explained in Sect. 4.2.

4.2 No Broken Data Dependencies Property

Action Contracts for the No Broken Data Dependencies Property.
The action contracts have to specify the interactions between actions and the
shared data repository. These interactions can be expressed in terms of the pre-
and post-state of the repository by using the getDataltem method of the Request.

Because methods used in specifications may not have side-effects, the get-
Dataltem method is declared pure, i.e. the method will not modify the program
state. A more precise definition of purity can be found in [15].

For read interactions, the action’s contract indicates that the action requires
that a non-null data item of the specified type can be read from the shared
repository, as is shown in Listing 1.3.

Listing 1.3. Contract for indirect data sharing (EmailNotificationAction.spec)

public class EmailNotificationAction extends Action {

//@ also

//@ requires request = null;

//@ requires request.getDataltem(”meeting”) instanceof Meeting;
//@ ensures \result == "success”;

public String execute(Request request, Form form);

For write interactions, the ensures pragma states which data items on the
shared repository will be non-null and of the specified type after method exe-
cution. In Listing 1.4 for example, the JML contract of the execute method of
AddMeetingAction states that the shared data item meeting will be a non-null
Meeting object. Since write interaction may also depend on certain conditions
(e.g. if a write interaction occurs in an if-then-else structure), this must also be
reflected in the action’s contract. In Listing 1.4 an implication expression (==>)
is used to express that the data item conflicts is only written in case the return
value equals “fail”.

42 L. Desmet et al.

Listing 1.4. JML contract for indirect data sharing (AddMeetingAction.spec)

public class AddMeetingAction extends Action {

//@ also

//@ requires request = null;

//@ ensures request.getDataltem(”meeting”) instanceof Meeting;

//@ ensures \result == 7fail” ==> request.getDataltem(”conflicts”) instanceof Vector;
//@ ensures \result == "success” || \result == "fail”;

public String execute(Request request, Form form);

Static Checking of the No Broken Data Dependencies Property. To
verify the no broken data dependencies property, ESC/Java2 is used to verify
both the compliance of the implementation of the erecute method with the
contract, and the composition property itself.

To check the compliance of the action, a specification of the shared repository
is introduced, as listed in 1.5. Hereby, explicit JML pragmas and a ghost vari-
able are introduced for each shared data item, since the current version of the
ESC/Java2 tool does not support reasoning about hashtable indirections.

Listing 1.5. JML contract of the shared data repository (Request.spec)

public class Request {
//@ public ghost Object meeting;
//@ public ghost Object conflicts;

//@ requires isKey(name);

//@ ensures name == "meeting” ==> this.meeting == value;
//@ ensures name == "conflicts” ==> this.conflicts == value;
public void setDataltem(String name, Object value);

//@ requires isKey(name);

//@ ensures name == "meeting” ==> \result == this.meeting;
//@ ensures name == "conflicts” ==> \result == this.conflicts;
public /*@ pure @x/ Object getDataltem(String name);

//@ ensures \result <==> key == "meeting” || key == "conflicts”;
public /%@ pure @x/ boolean isKey(String key);

To verify the first and second composition property, a composition-specific check
method is automatically generated and then verified by ESC/Java2. The check
method (shown in Listing 1.6) firstly initializes the different actions used in the
composition. Secondly, based on the local and global forwards of the composition
configuration, a complete control flow graph is statically constructed, similar to
what would happen at run time by repeatedly using the RequestProcessor.

The wunreachable pragmas are able to detect violations to the no dangling
forwards property, since they are only reachable if an action returns a value that
does not match any of its local or global forwards.

The no broken data dependencies property is implicitly verified. Since, for
every method call in the method body, ESC/Java2 checks that the preconditions
are fulfilled, each data item read must be preceded by a data item write in the
execution path and comply with the type requirements in order to satisfy the
JML contract of the read interaction.

Static Verification of Indirect Data Sharing 43

Listing 1.6. Composition-specific check method to be verified by ESC/Java2

//@ requires request = null;

public void check addMeeting(Request request, Form form){
AddMeetingAction addMeetingAction = new AddMeetingAction();
EmailNotificationAction emailNotificationAction = new EmailNotificationAction();
AddedMeetingView addedMeetingView = new AddedMeetingView();
FailedAddedMeetingView failedAddedMeetingView = new FailedAddedMeetingView();

String forwardl = addMeetingAction.execute(request,form);

if (forward1l.equals("success")){
String forward2 = emailNotificationAction.execute(request,form);
if (forward2.equals("success")){

addedMeetingView.execute(request,form);

} else { //@ unreachable; }

} else if(forwardl.equals("fail")){
failedAddedMeetingView.execute(request,form);

} else { //@ unreachable; }

4.3 Unsoundness with ESC/Java2

ESC/Java2 has a number of known sources of unsoundness [11,12]. One of these
sources also impacts the soundness of our approach, namely ESC/Java2’s default
handling of framing. As defined in JML, ESC/Java2 has a default for missing
modifies clauses (i.e. modifies \ everything) to unhide unexpected changes to vari-
ables caused by calling a routine, but logic to reason about routine bodies that
contain these modifies clauses has not yet been implemented in ESC/Java2 [12].
As a result, methods without explicit modifies clauses can be verified since the
default frame condition includes everything. However in calling such methods,
the current implementation of ESC/Java2 does not take this default frame condi-
tion into account resulting in an unsound verification. In our case this means that
an intermediate action can break the dependencies between one action writing
shared data and another action retrieving that data, without ESCJava/2 being
able to detect that violation.

To counter this unsoundness, each action annotation is extended with a frame
condition, explicitly stating which data items on the shared repository are
changed. Also the methods in the Request to store and retrieve data from the
repository need to have explicit frame conditions. By doing so, ESCJava/2 is
able to detect unspecified write interaction with the repository. In addition,
other methods interacting with the repository (such as library methods) also
require an explicit modifies clause and their contracts need to be verified as well.

Since the current JML notations do not support modifies pragmas in terms of
pure methods or hashtable values, the inserted pragmas in the actions are quite
verbose (Listing 1.7). In the examples of this paper the modifies pragmas are
omitted, but the full annotation with frame conditions can be found at [14].

Listing 1.7. Frame condition of EmailNotificationAction

//@ ensures (\forall String s; request.isKey(s) ==>
\old(request.getDataltem(s)) == request.getDataltem(s));

44 L. Desmet et al.

5 Validation

In this section, we validate the solutions of Sect. 4 in the open-source web-
mail application GatorMail. Firstly, we introduce some slight refinements to
the presented solution in order to be applicable to real Struts web applica-
tions. Secondly, we investigate the JML annotation overhead of the presented
approach and the performance of the ESC/Java2 verification tool while verifying
the GatorMail web application. Finally, we discuss our validation results.

5.1 Verifying Struts Applications: An Example

To illustrate the verification of Struts applications, a small composition example
extracted from the GatorMail application is used. In GatorMail, the web URL
/createFolder.do is mapped to the composition of Fig. 4 and allows a web user to
create a new IMAP mailfolder. The composition consists of three Struts actions
and two JSP views. Four control flow transitions occur in the composition: all
three action can return a “success” forward, and in addition the CreateFolder-
Action can return a “fail” forward. The interactions of the composition with the
shared data repository are listed in table 1.

Verifying the Declarative Forwarding. In the Struts framework, the eze-
cute method of an action returns an ActionForward object instead of a string.

This ActionForward does not only encapsulate the declarative forward, but also
contains the composition-specific forward path associated with the declarative

CreateFolder FolderManage .
Action success Action success [folderManage.jsp
fail FolderManage ifyv i
ModifyAction success I[folderManageModify.jsp

Fig. 4. /createFolder.do composition in GatorMail

[createFolder

Table 1. Indirect data dependencies in /createFolder.do

Folder folder:
FolderManageAction (write)
folderManage.jsp (read)
FolderManageModify Action (write)
folderManageModify.jsp (read)

ResultBean result:
CreateFolderAction (write)

List quotaList:
FolderManageAction (write)
folderManage.jsp (read)
FolderManageModify Action (write)
folderManageModify.jsp (read)

String requestStartTime:
CreateFolderAction (read/write)
FolderManageAction (write)
folderManage.jsp (read)
FolderManageModifyAction (write)
FolderManageModifyAction (write)

String isSubscribed:
FolderManageModify Action (write)
folderManageModify.jsp (read)

List folderBeanList:
FolderManageAction (write)
folderManage.jsp (read)

Static Verification of Indirect Data Sharing 45

forward. To do so, the Struts application framework loads the local and global
forwards of the composition into the ActionMapping object at run time, and the
returned ActionForward is then constructed by calling the findforward method
on the ActionMapping parameter (Listing 1.8).

Listing 1.8. Declarative forwarding in Struts

public class FolderManageAction extends Action {
public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response) throws Exception {

return mapping.findForward("success");

}
}

To be able to express the local forward string in the JML contracts of the
actions, extra specification is introduced for ActionMapping (Listing 1.9). The
specification states that the declarative forward used as parameter of the find-
Forward method is equal to the name property of the returned ActionForward.
By doing so, the declarative forwards can be expressed in term of the name
property of the returned result (Listing 1.10).

Listing 1.9. JML specification of ActionMapping

public class ActionMapping extends ActionConfig {

//@ requires name != null;
//@ ensures \result != null;
//@ ensures \result.getName() == name;
public ActionForward findForward(String name);
}
Listing 1.10. Declarative forward specification of FolderManageAction
//@ ensures \result.getName() == "success”;

Verifying Indirect Data Sharing. Since indirect data sharing via a shared
repository in Struts is identical to the simplified application model, the solution
of Sect. 4 can be applied to Struts applications without any modification.

5.2 Results of the GatorMail Experiment

To validate the applicability of our approach, we annotated 12 actions and 8
views of the GatorMail webmail application. With these annotations we were
able to verify the declarative forwarding and indirect data sharing properties in
17 composition flows (i.e. one third of all flows in GatorMail). We used this subset
of the application to investigate the annotation overhead and the performance
of the verification. Only the results are reported in this subsection. The full

46 L. Desmet et al.

annotations and a short description of how to verify both the implementation
conformance and the composition properties can be found at [14].

JML Annotation Overhead. As a quantification of the annotation overhead,
a JML line count is performed on the annotated actions. As shown in table 2,
at most 15 lines of JML annotation are used in an action contract to express
the control flow transitions and the shared repository interactions. The JML
contract of FolderAction for example, consists of 9 annotation lines, illustrated
in Listing 1.11. But this quite verbose JML contract is actually generated from
a more concise, Struts-specific contract specified in Listing 1.12.

The Struts-specific contracts are at most 4 lines of annotations, and they are
much easier to write by a Struts developer or to read by a software composer.
The Struts-specific contracts of the GatorMail case and a tool for converting
them into the verifiable JML annotation can be found at [14].

Table 2. JML notation overhead in GatorMail

Action # JML lines Action # JML lines
ChangeSubscribed Action? 14 FolderManageAction 10
CheckSessionAction 7 FolderManageModifyAction 11
CreateFolderAction 10 ModifyFolderAction? 15
DeleteFolderAction 10 MoveCopyAction 11
DeleteMessagesAction 10 PerformDeleteFolderAction? 15
FolderAction 12 RenameFolderAction 9

Listing 1.11. JML contract of FolderAction

//@ also
//@ requires request = null;
//@ requires mapping = null;
//@ ensures \result != null;
//@ ensures \result.getName() == "success” || \result.getName() == "inbox”;
//@ ensures request.requestStart Time instanceof Long;
@ ensures \result.getName() == "success” ==> request.folderBeanList instanceof List;
g
//@ ensures \result.getName() 7success” ==> request.folder instanceof Folder;
//@ ensures \result.getName() == "success” ==> request.messages instanceof List;
//@ ensures \result.getName() == "success” ==> request.quotalList instanceof List;

//@ requires form instanceof FolderForm;

Listing 1.12. Struts-specific contract of FolderAction

Y

//struts: forwards {”success”,”inbox”};
//struts: writes {Long requestStartTime};
//struts: on forward == "success” also writes {List folderBeanList, Folder folder,
List messages, List quotaList};

Verification Performance with ESC/Java2. To evaluate the performance of
the verification process, the verification time and memory usage is measured for

2 These actions extend the LookupDispatchAction, and have alternative substitutes of
the ezecute method. Thus, it’s obvious that these actions have a higher JML line
count, since several methods are annotated.

Static Verification of Indirect Data Sharing 47

verifying the implementation compliance and the composition properties. The
performance tests were run on a Pentium M 1.4 with 512MB RAM, running
Debian Linux, while using Java 1.4.2 09, ESC/Java2 2.0a9 and Simplify 1.5.4.
Table 3 shows the performance results of verifying a subset of GatorMail.
Both verification steps can be done in a reasonable amount of time (less than 15
seconds per verification) and limited memory resources (not exceeding 25MB).
If also the frame conditions are checked, the verification takes up to 700 seconds,
but since most bugs are already found without checking the frame conditions, this
type of verification has to be run less regularly. In addition, since the verification
is done modularly (i.e. action per action), the verification complexity is linear
and the the verification process is scalable to larger software projects as well.

Table 3. Verification performance

Action Verification time Mem. Composition flow Verif. Mem.
(with frame cond.) usage time usage

ChangeSubscribedAction 1.960 s (13.151 s) 16 MB /folder.do 0.853 s14 MB
CheckSessionAction 0.252 s (2.241 s) 13 MB /folderManage.do 0.506 s15 MB
CreateFolderAction 0.951 s (5.106 s) 15 MB /folderManageModify.do0.555 s15 MB
DeleteFolderAction 0.978 s (61.193 s) 17 MB /createFolder.do 1.639 s17 MB
DeleteMessagesAction 4.607 s (24.542 s) 20 MB /renameFolder.do 1.741 s17 MB
FolderAction 14.18 s (711.654 s) 24 MB /changeSubscribed.do 1.733 s18 MB
FolderManageAction 1.407 s (10.475 s) 16 MB /deleteFolder.do 1.145 s18 MB
FolderManageModifyAction 2.126 s (205.791 s) 16 MB /performDeleteFolder.do2.497 s19 MB
ModifyFolderAction 0.831 s (1.699 s) 14 MB /modifyFolder.do 7.638 s22 MB
MoveCopyAction 4.334 s (20.957 s) 19 MB /deleteMessages.do 1.819 s23 MB
PerformDeleteFolderAction 1.390 s (5.833 s) 16 MB /moveMessage.do 2.468 s24 MB
RenameFolderAction 0.844 s (4.993 s) 15 MB /copyMessage.do 1.960 s25 MB
/moveMessages.do 2.338 s17 MB

/copyMessages.do 1.936 s19 MB

/errorCopy.do 0.435 s20 MB

/errorCopyToSent.do 0.725 s20 MB
/errorCopyTrash.do 0.446 s18 MB

5.3 Discussion

One of the problems that we were confronted with was ESC/Java2’s poor support
to reason about hashtable indirections. Since the dynamics of loosely-coupled
component systems such as Struts strongly rely on hashtable indirections in the
implementation, we were forced to circumvent this lack of support by introduc-
ing very verbose specifications or statically constructing the complete control
flow graph. Additionally, ESC/Java2 is far from complete, for instance reason-
ing about loops is fairly weak. Also, known sources of unsoundness, related to
framing and reentrancy need to be avoided. Again, this made specifications more
verbose than they could be. This is however a temporary problem and future
versions of the tool are expected to improve in the different domains.

Another issue that we encountered in verifying GatorMail was the violation
of the Liskov substitution principle. The DeleteMessagesAction for example
extends the FolderAction, while having a stronger precondition regarding the
expected data items on the shared repository for the execute method. Since
verification tools rely on the Liskov substitution principle, we had to slightly
refactor GatorMail in order to comply with the Design by Contract concept.

48 L. Desmet et al.

While the GatorMail case study shows that annotation overhead and verifi-
cation performance are fine, it can not give us data about the usefulness of our
approach for detecting bugs early. Since GatorMail is a mature application, bugs
due to broken dependencies have been ironed out already. Therefore, it would
be interesting to apply our approach to less mature software systems or to study
a development process that incorporates our approach in future research.

6 Related Work

To the best of our knowledge, this is the first proposal for automatic verification
of indirect data sharing in Java-based component frameworks. However, our
approach is strongly inspired by ongoing research in several research domains.

In software architecture research, several Architecture Description Languages
(such as Wright, Darwin and Rapide) are proposed to support architecture-based
reasoning, ranging from semi-formal diagrams with boxes and lines to formal
notations [16]. Architecture analysis techniques have already been developed to
detect problems such as deadlock and component mismatch [17,18].

Comparable approaches (such as CL [19] and Piccola [20]) are proposed in
the domain of coordination and software composition. CL, for example, is a
composition language for predictable assembly from certifiable components. In
CL, the run-time behaviour of an assembly of components can be predicted from
known properties of components and their patterns of interaction [19].

The use of JML or related languages such as Spec# [21] for verifying compo-
nent properties is a very active research domain. For example, Smans et al. [22]
specify and verify code access security properties, Jacobs et al. [23] verify data-
race-freeness in concurrent programs, and Pavlova et al. [24] focus on security
properties of applets. Other applications of JML are surveyed in [9].

7 Conclusion

This paper has focussed on two desirable composition properties in pipe-and-
filter and repository based component systems. We proposed framework-specific
component contracts to specify a component’s possible forwards and its inter-
actions with the shared repository and translated them into JML annotations.
The contracts are sufficiently simple to have an acceptable annotation overhead
and a very reasonable automatic verification time.

Although, as discussed in Sect. 5.3, there are still some drawbacks with the
current state of the verification tool, the conducted experiments show that using
existing contract annotation languages and verification tools in order to achieve
more robust compositions looks promising.

Acknowledgements

The authors would like to thank Bart Jacobs, Adriaan Moors and Jans Smans
for their useful comments and insights while proofreading this paper.

Static Verification of Indirect Data Sharing 49

References

1.

N Ot WD

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Shaw, M., Garlan, D.: Software Architecture - Perspectives on an emerging disci-
pline. Prentice-Hall (1996)

Java Servlet Technology. (http://java.sun.com/products/servlet/)

The Struts Framework. (http://jakarta.apache.org/struts/)

The Java Modeling Language (JML). (http://www.jmlspecs.org/)

GatorMail WebMail. (http://sourceforge.net/projects/gatormail/)

J2EE platform specification. (http://java.sun.com/j2ee/)

Seshadri, G.: Understanding JavaServer Pages Model 2 architecture. (http://www.
javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html)

Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)

Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) 7(3) (2005) 212-232
KindSoftware: The Extended Static Checker for Java version 2 (ESC/Java2).
(http://secure.ucd.ie/products/opensource/ESCJava2/)

Leino, K.R.M., Nelson, G., Saxe, J.B.: (ESC/Java User’s Manual)

Cok, D.R.: (ESC/Java2 Implementation Notes)

Desmet, L., Piessens, F., Joosen, W., Verbaeten, P.: Dependency analysis of the
Gatormail webmail application. Report CW 427, Department of Computer Science,
K.U.Leuven, Leuven, Belgium (2005)

Desmet, L., Piessens, F., Joosen, W., Verbaeten, P.: Static verification of compo-
sition properties. (http://www.cs.kuleuven.be/~1lieven/research/SC2006/)
Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06-rev28, lowa State
University, Department of Computer Science (2005)

Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1) (2000)
70-93

Inverardi, P., Tivoli, M.: Automatic synthesis of deadlock free connectors for
com/dcom applications. In: Proceedings of the 8th ESEC held jointly with 9th
ACM SIGSOFT FSE, ACM Press (2001) 121-131

Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3) (1997) 213-249

Ivers, J., Sinha, N., Wallnau, K.: A Basis for Composition Language CL. Technical
Report CMU/SEI-2002-TN-026, SEI, Carnegie Mellon University (2002)
Achermann, F., Nierstrasz, O.: Applications = Components + Scripts — A Tour
of Piccola. In Aksit, M., ed.: Software Architectures and Component Technology.
Kluwer (2001) 261-292

Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. Lecture Notes in Computer Science 3362 (2004)

Smans, J., Jacobs, B., Piessens, F.: Static verification of code access security policy
compliance of .NET applications. Journal of Object Technology 5(3) (2006)
Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concurrency for ag-
gregate objects with invariants. In: Proceedings of the Third IEEE International
Conference on Software Engineering and Formal Methods, IEEE Computer Society
(2005) 137-146

Pavlova, M., Barthe, G., Burdy, L., Huisman, M., Lanet, J.L.: Enforcing high-level
security properties for applets. In: CARDIS. (2004) 1-16

Enforcing Different Contracts in
Hierarchical Component-Based Systems

Philippe Collet!, Alain Ozanne?, and Nicolas Rivierre?
! University of Nice - Sophia Antipolis, I3S Laboratory, France
philippe.collet@unice.fr
2 France Telecom R&D, MAPS/AMS Laboratory, Issy les Moulineaux, France
{alain.ozanne, nicolas.rivierre}@francetelecom.com

Abstract. Using different specification formalisms together is necessary
to leverage better reliability on component-based systems. The ConFract
system provides a contracting system for hierarchical software compo-
nents, but currently, only executable assertions are supported.

In this paper, we describe how TLA, taken as an instance of behav-
ioral sequence-based formalism, was integrated in ConFract. A domain
specific language is proposed in order to enable designers to describe the
observations needed to appropriately verify their specifications. These
observations are automatically generated for assertions and in the case
of TLA, we show what kind of observations must be provided to link the
specifications to the concrete application.

1 Introduction

Software engineering is now concerned with more complex, dynamic, evolving
and long-living systems. Recently, the concept of component has been revisited
to provide a more adapted framework to master software complexity. The notion
of contract is then part of the definition of software components [26], in order
to organize the guarantee of properties all along the software life cycle. Besides
combining different specification formalisms is desirable to leverage reliability on
component-based systems, but this task is rather complex, given the diversity
of formalisms that express behavior, their numerous common points and differ-
ences, and the separation between static and dynamic approaches. The very term
behavioral is even differently interpreted according to approaches. For example,
works on executable assertions provide behavioral contracts as state-oriented
expressions before and after method calls [19,14]. Other approaches describe
component behaviors as protocols or interaction sequences [1,17,23].

In this context, the ConFract system [7] provides a contracting model for the
Fractal hierarchical components platform [4] and aims at combining different
specification techniques. But currently, ConFract only supports an executable
assertion language, and properties are checked at configuration and run times.
We thus propose to integrate TLA [12] as an instance of sequence-based spec-
ification formalism. In this paper, we describe its integration in ConFract, by
enhancing the underlying metamodel and providing a domain specific language

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 50-65, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Enforcing Different Contracts in Hierarchical Component-Based Systems 51

(DSL) that acts as a pivot model. This DSL enables designers to describe, on
a Fractal system, the observations that are needed to appropriately verify their
specifications. The definition of observations is based on a scope (where the ob-
servation takes place in the hierarchy of components), moments or times during
the system life cycle (including design, configuration and run times) and the val-
ues observed. Observations are finally linked to appropriate verification methods
that have been integrated in ConFract. In the case of executable assertions, we
show that these observations can be automatically generated. As for TLA, we
describe what kind of observations must be provided to link the specifications
to the concrete application. As our contributions only rely on the very general
assumptions made on components by the Fractal model [4], they are applicable
to other component models.

The rest of the paper is organized as follows. The next section gives an
overview of the ConFract system through a running example. In section 3, a
TLA specification of the example is described. Section 4 presents the integration
of this new formalism in the ConFract system. Relationships to other works are
covered in section 5. Section 6 concludes this paper and gives some indications on
future work. An appendix gives an overview of both TLA and the used checking
technique.

2 The ConFract System

The purpose of the ConFract system [7] is to specify and verify, on Fractal soft-
ware components, properties that go beyond interface signatures. Integrated in
Fractal as a non functional feature, it reifies contracts between components. Con-
Fract aims at taking into account the specificities of the life cycle of component-
based applications (design, (re-)configuration, deployment, runtime) as well as
their hierarchical and dynamic nature in the case of Fractal.

Fractal [4] is a general component model with the following main features:
composite components (to have a uniform view of applications at various levels
of abstraction), shared components (to model resources and resource sharing
while maintaining component encapsulation), reflective capabilities (introspec-
tion capabilities to monitor a running system and re-configuration capabilities
to deploy and dynamically configure a system) and openness (in the model,
almost everything is optional and can be extended). Components can be con-
nected through server (provided) and client (required) interfaces. The content
of a composite component is composed of other components, called subcompo-
nents, which are under the control of the enclosing component. A Java-based
reference implementation is also available!.

2.1 A Running Example

Throughout this paper, we illustrate our approach with a cruise control system
inspired from [16]. This system is controlled by three buttons: resume, on and off.

! The reader can find more detail in [5] and at http://fractal.objectweb.org.

52 P. Collet, A. Ozanne, and N. Rivierre

}» Server interface
% Client interface }7 <Car> 4{
csp
C: P!
CarSpeed
Sensor void setThrottle(float val)
void engineOn() <CruiseCtrl> float getThrottle()
void engineOff() Prompt float getSpeed()
boolean isEngineOn() ppt Promot
}» 4{‘)}7 <SensorCtrl> 4 — }7 <SpeedCtrl> 4 }7 %7 void :’n ble()

void on() sns csp © cnable

void disable()

i Sensor CarSpeed
void off() F arspee void resume()
att
void resume() Attributes Attributes
void break() }»4{ ctrl {true, false}

void accelerate() att err {float}
. targetSpeed {float}

Fig. 1. The Cruise Control System in Fractal

When the engine is running and on is pressed, the cruise control system records
the current speed and maintains the car at its speed. When the accelerator,
brake or off is pressed, the cruise control system disengages but retains the
speed setting. If resume is pressed, the cruise control system accelerates or de-
accelerates the car back to the previously-recorded speed (see figure 1 for the
Fractal architecture and the Java interfaces).

From an external point of view, the component <Car> provides the inter-
face csp, of Java type CarSpeed, whose methods permit to set the throttle and
to get the current speed at which the car is travelling. The cruise component
<CruiseCtrl> represents the main control system, providing a Sensor interface,
some attributes representing the cruise operation, its target speed and a possi-
ble error code. This component also requires a CarSpeed interface in order to
interact with the car. Internally, the <CruiseCtrl> is made of two subcompo-
nents. The <SpeedCtrl> is controlled through its provided Prompt interface,
and when it is enabled, it adjusts the throttle to maintain the target speed.
The <SensorCtrl> pilots the <SpeedCtrl> according to the method calls on its
Sensor interface.

2.2 Main Principles of ConFract

The ConFract system dynamically builds contracts from specifications at as-
sembly time and updates them according to the dynamic reconfigurations of
components. A contract is thus a first class entity, always up-to-date regarding
the architecture and which also refers to components needed for its evaluation.
Among them, the ConFract system determines the responsibilities associated to
each specification, distinguishing a guarantor, which must be notified in case of
violation and can react to it, from beneficiaries, that are components which can
rely on the property. It is then possible to use these concepts to negotiate on
contracts at assembly or run times [6].

Currently in ConFract, specifications are written in the CCL-J language
(Component Constraint Language for Java) which is inspired by OCL [20] and
enhanced to be adapted to the Fractal model. CCL-J is an executable assertion

Enforcing Different Contracts in Hierarchical Component-Based Systems 53

language supporting classic constructs such as preconditions, postconditions and
invariants. The scope of specifications can be on a type interface, on a specific
Fractal interface or on a component instance, type or template.

2.3 Types of Contract

The ConFract system distinguishes several types of contracts according to the
specifications given by the designers.

Interface contracts are established on the binding between a client and a
server interface, only retaining specifications on the interface scope. They are
similar to object contracts [19,14]. For example, the following specifications of
the setThrottle and getSpeed methods are used to build the interface contract
between the two interfaces based on the CarSpeed Java type.
context void CarSpeed.setThrottle (float val)

pre: 0.0 <= val <= 10.0
post: getThrottle () == val

context float CarSpeed. getSpeed ()
post: 0.0 <= result <= speedParam .MAX

External composition contracts are located on the external side of each
component. They consist of specifications which refer only to external interfaces
of the component. They thus express the usage and external behavior rules of the
component. For example, the following specification scope is on the <SpeedCtrl>
component and states the postconditions of the method enable from the interface
prt. The postconditions refer to other interfaces on the component, namely atb
and csp, to define its behavior, that is the ctrl attribute is true and the target
speed is the current speed of the car.
on <SpeedCtrl>

context void prt.enable ()

post: atb.ctrl == true
post: atb.targetSpeed == csp.getSpeed () @pre

Internal composition contracts are located on the internal side of a com-
posite component. In the same way, they consist of specifications which refer
only to internal interfaces of the component and to external interfaces of its
subcomponents. They express the assembly and internal behavior rules of the
implementation of the composite component. The following specification con-
cerns the <CruiseCtrl>> component, but also refers the interfaces of one of its
subcomponents <SpeedCtrl>. It asserts that the method on must only be called
to engage the cruise when the engine itself is on, and affects the <SpeedCtrl>
attributes, setting ctrl to true and err to zero.
on <CruiseCtrl>
context void sns.on()

pre: sns.enginelsOn ()

post: <SpeedCtrl >.atb.ctrl == true
post: <SpeedCtrl >.atb.err ==

Runtime checking of assertions. When building the contract, the Con-
Fract system includes, in each provision of a contract, the specification predicate

54 P. Collet, A. Ozanne, and N. Rivierre

(currently a CCL-J assertion), an interception context (the times and locations
where the provision is supposed to be satisfied) and the necessary references
to the context (component, interfaces, etc.). The contracts are then evaluated
when the appropriate event occurs : preconditions are checked at method entry,
postconditions at exit, etc.

2.4 Motivations

In order to validate the general nature of the ConFract system, it must integrate
formalisms that allow designers to specify and verify different aspects of com-
ponent assemblies. Formalisms such as temporal logic or process algebra make
possible the specification of the correct behaviors of a system at the desired ab-
straction level. The specifications can be formally verified, using theorem provers
or model checker tools, but can also serve to check the adherence of a component
implementation to its specification - typically by producing oracles from the sys-
tem specifications, in order to (runtime) check execution traces against a verified
model. Integrating such formalisms and verifications is thus very interesting, to
validate and evolve the ConFract metamodel and to show the combination of
different behavioral descriptions under the control of contracts.

3 TLA Specification

In this section we formulate in the Temporal Logic of Action (TLA) some prop-
erties of the cruise system and the associated oracles (see the appendix for a TLA
overview). For the sake of brevity we focus on the component <CruiseCtrl> and
its refinement by the sub-component <SpeedCtrl> of figure 1.

3.1 Specifications

< CruiseCtrl> We first specify in TLA the cruise component, taking into ac-
count a simplified requirement: the distance between the current speed of the
car and the target speed cannot increase when the cruise is engaged.

MODULE CruiseCtrl
EXTENDS Integers
CONSTANT MAX
VARIABLE cruise

Typelnv = cruise € [ctrl : BOOLEAN , err: 0 .. MAX]
Init Aé cruise = [ctrl — FALSE, err +— 0]
Next = A cruise’ € [ctrl : BOOLEAN , err : 0 .. MAX]

A cruise.ctrl = cruise.err’ < cruise.err
AN —cruise.ctrl’ = cruise.err’ =0
Spec = Init A O[Next] (cruise)

THEOREM Spec = O Typelnv

Fig. 2. The CruiseCtrl module

Enforcing Different Contracts in Hierarchical Component-Based Systems 55

The specification is as follow (cf. figure 2). MAX represents the maximum
speed at which the car can travel. Typelnv defines what values the state variable
cruise can assume in a behavior that satisfies the specification - a record whose
ctrl and err fields? represent cruise attributes (cf. figure 1). Spec is formula 1
of the annex, ignoring liveness requirements. Init starts any correct behavior in
a state where the cruise is disengaged. Nexzt defines the possible moves (using
the prime notation of TLA to distinguish values in the successor states). The
first conjunct ensures that the next state is conform to Typelnv, the second that
the error cannot increase when the cruise is engaged. The last conjunct sets the
error to 0 when the cruise disengages. The theorem asserts that the specification
implies the invariance properties Typelnv.

<SpeedCtrl> The correct behaviors of the speed controller component are
specified in figure 3. The role of this sub-component of the cruise (cf. figure 1)
is to set the throttle when the car is cruising in order to decrease the error.
Its specification refines the cruise specification of figure 2. The state has an
additional field ¢rg representing the previously-recorded speed (the attribute
targetSpeed of figure 1). The possible moves of the speed controller are defined as
a disjunction of four statements, representing the incoming calls - enable, resume,
disable - on its interface (Prompt) and the outgoing calls - setThrottle - on its
interface (CarSpeed). The speed controller can always record the current speed
with no error when it engages (Enable). It can also engage with the previously-
recorded speed and the current error when it is disengaged (Resume). The error
cannot increase when it is engaged since it accelerates or de-accelerates the car
back to the recorded speed (Throttle). Finally, it can always disengage retaining
the speed setting with no error (Disable).

MODULE SpeedCtrl
EXTENDS Integers
CONSTANT MAX
VARIABLE speed
Typelnv = speed € [ctrl : BOOLEAN , trg : 0 .. MAX, err: 0 .. MAX)]

Init 2 speed = [ctrl — FALSE, trg — 0, err — 0]

Enable éA Ir €0.. MAX : speed’ = [ctrl — TRUE, trg — 1, err — 0]
Resume 3 —speed.ctrl A Je € 0.. MAX : speed’ = [speed EXCEPT !.ctrl = TRUE, !.err = €]
Throttle = speed.ctrl AJe € 0 .. speed.err : speed’ = [speed EXCEPT l.err = €]
. A ’
Disable = speed’ = [ctrl — FALSE, trg — speed.trg, err — 0]

Next = Enable V Resume V Throttle V Disable

4

Spec Init A O[Next] (speed)

THEOREM Spec = O Typelnv
Cruise = INSTANCE CruiseCtrl WITH cruise < [ctrl — speed.ctrl, err — speed.err)
THEOREM Spec = Cruise!Spec

Fig. 3. The SpeedCtrl module
2 ctrl abstracts the activity of the cruise as a boolean, err represents the distance
between the current speed of the car and the target speed when the cruise is
engaged.

56 P. Collet, A. Ozanne, and N. Rivierre

Refinement. The last theorem of figure 3 asserts that the speed controller
implements the cruise (i.e. every behaviors satisfying Spec also satisfies the spec-
ification Cruise!Spec of the cruise), according to the state substitution obtained
by removing the field trg when instantiating the cruise.

Correctness. We applied the TLC model checker [13] to these specifications,
describing finite-state models by giving explicit value to the constant MAX.
These specifications and the refinement being simples no error was reported.

3.2 Oracles

As mentioned above, the intent of an oracle is to check execution traces of a
system under test against a verified model. Oracles address only safety proper-
ties (whose violation can be illustrated on finite behaviors) but are a practical
way to check if the system behaviors are correctly implemented, or to provide
counter-examples when they are not. An approach to produce oracles from TLA
specifications of a system is discussed in the appendix. We apply now this ap-
proach in the context of the speed controller - the principle is similar for the
cruise.

<SpeedCtrlOracle> An oracle for the speed controller component is spec-
ified in figure 4. The specification first extends the modules SpeedCtrl and I0.
The module SpeedCtrl (cf. figure 3) contains the state variable speed and the for-
mula Spec specifying the correct behaviors of the speed controller. The module
IO defines the io-operators representing observations of primitive values (cf. an-
nex). The operator ObsVal represents observations of the speed controller state.
Its definition relies on io-operators (e.g. ioNat to valuate the err integer field)
and is used to set the state in the initial state predicate InitObs and the next-
state relation NextObs of the observer specification Obs. Obs and Oracle are
respectively formula 2 and formula 3 of the annex.

MODULE SpeedCtrlOracle
EXTENDS SpeedCtrl, 10

ObsVal 2 [etrl — i0Bool, trg — ioNat, err — ioNat]

InitObs speed = ObsVal
Nezt%bs speed’ = ObsVal
Obs = InitObs A O[NextObs]speed

Oracle 2 (Init A InitObs) A O[(Next A NextObs)]speed

a
a

Fig. 4. The SpeedCtrlOracle module

Discussion. A behavior of an actual speed controller might result in the
following execution trace:

ctrl trg err

FALSE, 50, O // the cruise is disengaged
TRUE, 50, 10 // the button resume is pressed (err = 10)

Enforcing Different Contracts in Hierarchical Component-Based Systems 57

TRUE, 50, 6 // the cruise sets the throttle (err = 6)

TRUE, 45, 0 // the button on is pressed

TRUE, 45, 0 // the cruise maintains the current speed
0 // the cruise is disengaged

FALSE, 45,

This behavior is valid but verifying manually its correctness would be labor
intensive. As discussed in annex, a runtime checker applied to formula Oracle
automatically computes behaviors from this kind of trace and checks their cor-
rectness against a verified model, reporting faulty behaviors when an error is
detected.

4 Integration

4.1 Requirements

As discussed above, the ConFract system currently makes verification by check-
ing assertions in the context of the execution flow, using directly the computation
data. Formal behavioral languages, on the other hand, make possible the spec-
ification of the correct behaviors of a system, the composition of sub-systems
and refinement reasoning about a system specified at multiple levels of abstrac-
tion. These specifications, as illustrated above with TLA, can be verified on a
model or serve to check execution traces acquired from an implementation of the
system.

As the means of verification may differ from a formalism to another the con-
tract system should embed different kinds of verification. People integrating a
formalism should then be able to define several verifications. In the case of TLA,
runtime checking of a specification requires specific oracle specifications to cap-
ture execution traces. More generally, the integration of a formalism is concerned
by the definition of appropriate observations on a system. Integrating such code
in ConFract is not an easy task. To facilitate it, a domain-specific language®
can enable formalism integrators to focus on the semantics of observations and
verifications rather than on technical particularities.

4.2 A Language for Observations and Verifications

The proposed DSL is dedicated to the definition of observations with associated
verification methods, thus acting as a pivot model in the ConFract system. This
language enables designers to define a set of rules. A rule describes where and
when observations occur, what values they capture, and the verifications to be
made.

Rule definition. A rule is defined according to the following syntax pattern:
3 A domain-specific language (DSL) is a programming language or executable specifi-

cation language that offers, through appropriate notations and abstractions, expres-
sive power focused on, and usually restricted to, a particular problem domain [28].

58 P. Collet, A. Ozanne, and N. Rivierre

On <a component>
Observe {
(val: <some value> at: <some times>;)+

}

Verify <some properties >

Its semantics is rather close to the assertion clauses introduced in section 2,
as executable assertion languages are rather operational in their expression. The
On block defines what spatial domain of the system is visible to the rule, that
is a component scope. The Observe block describes the observations operated in
the scope. The Verify block describes the checking part, which can of course use
the observed values.

The Observe part contains a list of observations that are defined by the state-
ments val:... at:.... The at block gives the times at which the value described in
the val block can be observed. Whereas the On blocks always refer to a com-
ponent, the val part contains a sequence of functional expressions that can be
evaluated in the On scope at defined times. Results may be bound to names if
needed. Finally, the Verify property is a predicate that takes the val values as
parameters.

For example, the third assertion from the internal composition contract of
section 2 can be automatically translated to the following rule:

On <CruiseCtrl >

Observe {
val: error = <SpeedCtrl >.atb.err
at: exit void sns.on();

}

Verify error == 0

It means that the attribute err of <SpeedCtrl> should be 0 for any of its
observations made on the on() method exit from the sns interface of the <Crui-
seCtrl> component. The val block specifies that <SpeedCtri>.atb.err should be
observed and bound to name error, when events described in at occurs.

Event definition. In order to define when observations should occur, some
atomic observable events are provided. Inside a rule, events are considered as
sets. For example, in the following definition:

at: entry boolean sns.isEngineOn()

the considered set of events contains only one event, the entry in the sns.isEngine-
On() method. Basic regular expressions enable designers to denote more easily
sets of events that encompass several method calls or several interfaces:

at: entry * sns.x(%x) , exit x sns.x(x)

This set of events contains all events that are determined by an entry or exit
of any method on the sns interface. This kind of events are common in aspect-
oriented systems [11].

Classic set operations are also provided (union, intersection, etc.) and an in-
terval is defined as the set of all occurring events between two events. Open
intervals can also be defined by referring to all events before or after another

Enforcing Different Contracts in Hierarchical Component-Based Systems 59

one. Moreover, events that are specific to components life cycle are also ma-
nipulable so that design or configuration events can be taken into account. For
example, adding or removing a component to/from a composite one, binding
and unbinding between two interfaces, starting or stopping a component. As the
Fractal platform provides these control features through extensible interfaces [4],
it is quite straightforward to be notified of these events.

It should be noted that a rule can refer to design time verifications that
are done, for example, on an ADL. Indeed, main architectural descriptions of
an ADL (containment, binding) can be translated into successive configuration
events, thus enabling the checking system to do appropriate verifications.

4.3 TLA Application

We now consider the use of the DSL to integrate TLA specifications and the
associated verifications in ConFract. Runtime and design time verifications are
considered.

Implementation adherence. To check at runtime the adherence of a com-
ponent’s implementation to its TLA specification, the context is the set of all
events at which the execution can be observed to complete the trace. We assume
that they may enter the trace in any order and number of times. A trace can
be checked against a verified model using an oracle specification, as proposed in
section 3.2. For example, the rule shown below considers the runtime checking
of an implementation of the component <SpeedCtrl>.

On <SpeedCtrl >
Observe {
val: att.ctrl, att.err, arr.targetSpeed
at: exit void csp.setThrottle(float),
exit x ppt.x(x*);

}
Verify TlaTrace(" SpeedCtrlOracle")

Taken the component <SpeedCtrl> as the scope reference, observation events
described in the at construct are defined by all exits of the method setThrottle
from the csp interface and of all methods from the ppt interface. The wval block
specifies that the attributes atb.ctrl, atb.err and atb.targetSpeed of <SpeedCtrl>
should be observed when events described in at occurs.

The Verify clause finally states that checking is done through the TlaTrace
technique, taking the SpeedCtriOracle specification (cf. figure 4) as additional
parameter. TlaTrace refers to a TLA runtime checker, which is called by the Con-
Fract system. As mentioned in 3.2, the trace of the specified values from the val
block are used by the runtime checker, when evaluating Speed CtriOracle, to com-
pute a behavior and check its correctness against a verified model. Doing so, we
runtime check an external composition contract of the SpeedCtrl, i.e. the correct-
ness of the behaviors observed on its external interfaces against a verified model.

Design time verifications. Given the TLA specifications ofthe components
<SpeedCtrl> and <CruiseCtrl> (cf. section 3.1), one can consider checking
their correctness and the refinement that link them. For example, one can define

60 P. Collet, A. Ozanne, and N. Rivierre

the following rule on the <CruiseCtrl> before its sub-component <SpeedCtrl>
starts. This rule considers the correctness of the SpeedCtrl specification (cf. figure
3). It must be noted that this specification explicitly asserts that the speed con-
troller implements the cruise controller. So verifying the correctness of SpeedCtri,
using a model checker tool, automatically checks the refinement property.

On <CruiseCtrl>

Observe {
val: at: before <SpeedCtrl >.start;

}
Verify TlaModel (" SpeedCtrl")

The definitions of before and after constructs in the ConFract metamodel enable
developers to implement a more specific observation. In this example, it would
enable developers to check this property on an ADL or just before the application
starts, and not to check it again if dynamic reconfigurations occur. The Verify
clause states that checking is done through the TlaModel technique, taking the
SpeedCtrl specification (cf. figure 3) as additional parameter. TlaModel refers
to a TLA model checker, called by the ConFract system. We thus model check
an internal composition contract of the CruiseCtrl, i.e. if the speed controller
specification implements the cruise controller specification.

4.4 Enhancing the ConFract System

Using the proposed DSL, the observations and associated verifications are now
made explicit. Depending on the formalism, they must be provided by the de-
signer or can be directly generated by the ConFract system (see figure 5). In the
case of assertions, as illustrated in section 2, ConFract now generates the obser-
vation rules from the specifications. Verification is then simply the evaluation of
the assertion.

Assertion |_input input

spec

ConFract system ’ Contract Descriptor

DSL

\ TLA spec

On... \\
Observe { ...} \

Verify ...

generates

refers to

Fig. 5. The enhanced ConFract system

As for TLA, designers have to provide the observation rules associated to
the specifications and oracles. This is illustrated in figure 5 by the three input
files on the right. The ConFract system then interprets the rules to operate

Enforcing Different Contracts in Hierarchical Component-Based Systems 61

the observations and their associated verifications. But as the system does not
impose any naming convention on the TLA specifications, one must provide for
each contract a descriptor denoting the specifications and their oracle. In this
contract descriptor, the type of contract and the concerned components are also
described so that responsibilities can be deduced in the ConFract system |[7].
On the contrary, the verification methods (TlaTrace and TlaModel in previous
section) are provided once and for all when TLA is integrated into ConFract.

More generally, using our DSL, it is possible to define observations at de-
sign, configuration or run times. Observations can also be about components’
interactions or configuration actions, so that one can capture the behavior of
both components and architectures. Moreover, the DSL allows the specifier to
choose the verification method for each observation rule, so that it is possible to
run the verification at different times of the application life cycle. For example,
the TLA oracle checking can be done at runtime or with post mortem traces
(see appendix), and this can be simply configured in the system. Finally, the
descriptor enables the specifier to explicitly bind its specification to a specific
kind of contract. As contracts contain responsibilities between components, this
makes possible to map specifications in very abstract models (such as TLA) to
a concrete interpretation in the final running application.

5 Related Work

Assertions and DbC. Since the Eiffel language [19], numerous works focused
on executable assertions in object-oriented languages, notably for Java. JML [14]
combines executable assertions with some features of abstract programs. It al-
lows the developer to build executable models which use abstraction functions on
the specified classes. Works on contracting components focus on using adapted
formalisms to specify component interfaces. Contracts on .NET assemblies have
been proposed [2], associating abstract programs that are written in AsmL to
interfaces, and interpreting them in parallel with the code. Several works have
also proposed contracts for UML components. In [21], contracts between service
providers and service users are formulated based on abstractions of action and
operation behavior using the pre and postcondition technique. A refinement rela-
tion is provided among contracts but they only concerns peer to peer composition
in this approach. In the same way, a graphical notation has been defined [29]
to express functional and extra-functional contracts on UML components ports.
All these works focus on interface specifications, whereas ConFract supports in
addition two forms of composition contracts.

ADLs. A number of Architecture Description Languages (ADLs) have been
proposed for capturing software architectures in terms of components and their
overall interconnection structure [18]. Many of these languages support formal
notations to specify components and connectors behaviors. For example, Wright
[1] and Darwin [17,16] use CSP-based notations, Rapide [15] uses partially or-
dered sets of events and supports simulation of reactive architectures. These for-
malisms allow to verify correctness of component assemblies, checking properties

62 P. Collet, A. Ozanne, and N. Rivierre

such as deadlock freedom. Some ADLs support implementation issues, typically
by generating glue code to connect component implementation. However most
of the work on applying formal verifications to component interactions has fo-
cused on design time. A notable exception is the SOFA component model and
its behavior protocol formalism based on regular-like expressions [23,22]. This
formalism (recently adapted to Fractal) is designed to specify communication
among components and permits the designer to verify the adherence of a com-
ponent’s implementation to its specification at runtime, while the correctness of
refining the specification can be verified at design time.

Runtime verifications. The idea of testing a running system to check its
conformity with a behavioral specification is not new, e.g. [8,24]. Recent works
aim at developing practical testing environments for software developers as well
as formal frameworks for defining finite trace monitoring logics. For example, the
objective of the PathExplorer project [10] is to construct a flexible framework for
efficient monitoring of program executions. It provides support to check whether
an execution trace violates some Linear Temporal Logic (LTL) formula. A review
of several other attempts to develop runtime verifications systems is provided
in [3]. In this paper, the authors propose a rule-based framework dedicated to
the definition and implementation of a large class of finite trace monitoring
logics. In [9] they present JSpy, a system for instrumenting Java bytecode which
aims at providing runtime analysis of Java programs. JSpy’s input consists of a
collection of rules, where a rule is a pair of predicate (syntactic constraints on a
Java statement) and action (logging information to be inserted in the bytecode).
Our work is quite similar, but it provides observation means on an architecture
of components rather than on bytecode.

6 Conclusion

The work presented here targets both design and runtime verifications. How-
ever, rather to introduce a new specification language, we focus on a framework
intended to integrate different formalisms for contracting component behaviors.
The integration relies on a DSL dedicated to the association of observations with
verification methods, and specialized to hierarchical component-based systems.
It particularly takes into account the components structure (interfaces, bindings,
nested components...) and life cycle (design, re-configurations, runtime).

The integration of an assertion-based language and a temporal logic have been
described for illustration. These two formalisms clearly show different needs in
the handling of specifications, oracles, observations and verifications. With the
proposed DSL and the appropriate descriptors, the integration of a formalism
is characterized. People involved in formalisms integration can now describe the
formalism in ConFract and determine which part can be generated or must be
provided by final designers. Besides, events are always confined in a component
scope, facilitating monitoring. Moreover, as the contract writer can choose obser-
vation points, it is easy to accommodate the quantity of observations to specific
deployment constraints.

Enforcing Different Contracts in Hierarchical Component-Based Systems 63

This work can be seen as a first step to put together different specification
languages, formal and semi-formal, under the control of a contracting system,
so that they can be used at best all along the life cycle of component-based
systems. For example, assertions are close to the developer. Temporal logics are
more expressive but require a less trivial capture of the state.

Future works include the extension of the proposed DSL to add actions in ob-
servation rules. We also plan to integrate other formalisms well-suited to specify
communication among components, such as behavior protocols [22], as well as
languages dedicated to extra-functional properties.

Acknowledgements. This work was partially supported by France Telecom under
the collaboration contracts number 422721832-13S and 46132097-13S.

References

1. ALLEN, R. J., AND GARLAN, D. A formal basis for architectural connection.
ACM, Transactions on Software Engineering and Methodology 6 (July 1997).

2. BARNETT, M., AND SCHULTE, W. Runtime Verification of .NET Contracts. Jour-
nal of Systems and Software 65, 3 (2003), 199-208.

3. BARRINGER, H., GOLDBERG, A., HAVELUND, K., AND SEN, K. Rule-based run-
time verification. In VMCAI (2004), B. Steffen and G. Levi, Eds., vol. 2937 of
Lecture Notes in Computer Science, Springer, pp. 44-57.

4. BRUNETON, E., CoupPAYE, T., LECLERCQ, M., QUEMA, V., AND STEFANI, J.-B.
An Open Component Model and Its Support in Java. In ICSE 2004 - CBSE7
(May 2004), vol. 3054 of LNCS, Springer Verlag.

5. BRUNETON, E., CouPAYE, T., AND STEFANI, J.-B. The Fractal component model.
Specification, Technical Report v1, v2, The ObjectWeb Consortium, 2002/2003.
http://fractal.objectweb.org.

6. Cuang, H., AND CoLLET, P. Fine-grained Contract Negotiation for Hierarchical
Software Components. In 31th EUROMICRO Conference 2005, 30 August - 8
September 2005, Porto, Portugal (2005), IEEE Computer Society.

7. CoLLET, P., Rousseau, R., CoupayE, T., aAND RIVIERRE, N. A Contracting
System for Hierarchical Components. In CBSE’2005, St. Louis, MO, USA, May
14-15, 2005, Proceedings (2005), vol. 3489 of LNCS, Springer Verlag, pp. 187-202.

8. Di1az, M., JuaNoLE, G., AND COURTIAT, J. P. Observer — a concept for formal
on-line validation of distributed systems. IEEE Trans. on Software Engineering
20, 12 (Dec. 1994), 900-913.

9. GOLDBERG, A., AND HAVELUND, K. Instrumentation of java bytecode for runtime
analysis. Fifth ECOOP Workshop on Formal Techniques for Java-like Programs
(FTfJP’03)) (July 2004).

10. HaveLunDp, K., aAND Rosu, G. Efficient monitoring of safety properties. Inter-
national Journal on Software Tools for Technology Transfer (STTT) 6, 2 (Aug.
2004), 158-173.

11. KiczaLgs, G., LAMPING, J., MENHDHEKAR, A., MaEDA, C., LoPEs, C., Lo-
INGTIER, J.-M., AND IRWIN, J. Aspect-oriented programming. In Proceedings Euro-
pean Conference on Object-Oriented Programming, M. Aksit and S. Matsuoka, Eds.,
vol. 1241. Springer-Verlag, Berlin, Heidelberg, and New York, 1997, pp. 220—242.

12. LamporT, L. The Temporal Logic of Actions. ACM Trans. on Programming
Languages and Systems 16, 3 (May 1994), 872-923.

64

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

P. Collet, A. Ozanne, and N. Rivierre

LAMPORT, L. Specifying Systems: The TLAT Language and Tools for Hardware
and Software Engineers. Addison Wesley, July 2002.

Leavens, G. T., BAKER, A. L., aND RuBy, C. JML: A notation for detailed
design. In Behavioral Specifications of Businesses and Systems (1999), H. Kilov,
B. Rumpe, and I. Simmonds, Eds., Kluwer, pp. 175-188.

Lucknam, D. C., AND VERA, J. An event-based architecture definition language.
IEEE Trans. Software Eng. 21,9 (1995), 717-734.

MAGEE, J., AND KRAMER, J. Concurrency: state models € Java programs. John
Wiley & Sons, Inc., 1999.

MAGEE, J., KRAMER, J., AND GIANNAKOPOULOU, D. Behaviour analysis of
software architectures. In WICSA (1999), pp. 35-50.

Mebvipovic, N., AND TAYLOR, R. N. A classification and comparison framework
for software architecture description languages. In IEEE Transactions on Software
Engineering (Jan. 2000), vol. 26(1), pp. 70-93.

MEYER, B. Applying “design by contract”. IEEE Computer 25,10 (Oct. 1992), 40-51.
OBJECT MANAGEMENT GROUP. Object Constraint Language Specification. Tech.
Rep. version 1.1, ad/97-08-08, IBM www.software.ibm.com/ad/ocl, Sept. 1997.
Panr, C. Components, contracts, and connectors for the unified modelling lan-
guage UML. In FME 2001 - Formal Methods Europe (2001), vol. 2021 of Lecture
Notes in Computer Science, Springer Verlag, pp. 259-277.

PrasiL, F. Enhancing component specification by behavior description: the sofa ex-
perience. In WISICT ’05: Proceedings of the 4th international symposium on Infor-
mation and communication technologies (2005), Trinity College Dublin, pp. 185-190.
PrasiL, F., AND VisNOVSKY, S. Behavior protocols for software components.
IEEE Transactions on Software Engineering 28(11) (Nov. 2002).

RicHARrDsON, D. J.; AnHa, S. L., anD O’MALLEY, T. O. Specification-based
test oracles for reactive systems. In 14th International Conference on Software
Engineering (ICSE’92) (1992), pp. 105-118.

Rivierrg, N., HOrN, F.; AND TrRAN, F. D. On monitoring concurrent systems
with TLA: an example. Fifth International Conference on Application of Concur-
rency to System Design (ACSD’05), St Malo, FR (June 2005), 36-47.
SzyPERSKI, C. Component Software — Beyond Object-Oriented Programming,
2nd ed. Addison-Wesley Publishing Co. (Reading, MA), 2002.

TLA. References to the TLA literature can be found at http://lamport.org/.
VAN DEURSEN, A., KLINT, P.; AND VISsER, J. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices 35, 6 (2000), 26-36.

WEis, T., BECKER, C., GEHS, K., AND PLouzEAau, N. A UML meta-model for
contract aware components. In UML 2001 - The Unified Modeling Language (Oct.
2001), vol. 2185 of Lecture Notes in Computer Science, Springer Verlag, pp. 442-456.

Appendix: TLA

The Temporal Logic of Actions (TLA) has been proposed by Lamport for the
specification and verification of the correct behaviors of concurrent and reactive

systems

4 [12,13]. TLA allows the composition of sub-systems and refinement rea-

soning. A behavior represents an execution of the system as an infinite sequence
of states where a state is an assignment of values to state variables. An action

4 More precisely, the specification language is TLAT.

Enforcing Different Contracts in Hierarchical Component-Based Systems 65

formula expresses the relation between the value of variables in two successive
states. TLA specifications are usually written in the canonical form:

Spec = Init A O[Next], A L (1)

where the state predicate Init characterizes the system’s initial states, Next is an
action formula typically written as a disjunction of possible moves (O asserts that
Next is always true), z is the tuple of state variables and L describes the liveness
requirements. Spec represents all behaviors satisfying formula 1. Compared to
other temporal logics, TLA differs in that it allows to specify both a system
and its temporal properties within the same formalism. The verification of TLA
specifications has been amply studied [27] and can be automated with the model
checker tool TLC [13].

TLA oracles. The intent of an oracle is to check execution traces of a system
under test against a verified model. An approach to produce oracles from TLA
specifications of a system (applied in figure 4 of section 3.2) has been proposed in
[25] as follow. Let Spec be the specification of the correct behaviors of a system
(Spec is formula 1) and Obs be a specification of an observer of this system:

Obs = InitObs A O[NextObs], (2)

Obs represents arbitrary valuations of the system state at each step. Its definition
relies on specific TLA operators (referred as io-operators) representing arbitrary
values. For example, an arbitrary boolean value is defined as®:

. A
10Bool = CHOOSE val : val € BOOLEAN .

An oracle is specified as a simple form of composition of formula Obs and
Spec. Tt represents the simultaneous advance of any observable behavior against
a correct behavior.

Oracle = (InitObs A Init) A O[NextObs A Next], (3)

The intent of formula Oracle is to be evaluated by a (runtime) checker acting
as a model-checker except for the io-operators. When evaluating these operators,
the checker captures (online or postmortem) observations of a system under test
through an input stream. That way, any execution trace captured by Obs but
satisfying not Spec will not satisfy Oracle and be reported as a deadlock. The
requirement (an executable form of few io-operators) can be easily achieved by
the TLC model checker since this tool allows a TLA operator to be overridden
by a Java method [13]|. For example the operator i0Str, defined as an arbitrary
string value, is overridden as:

public static BufferedReader in = ...
public static Value ioStr() { return new StringValue(in.readLine ()); }

5 The expression CHOOSE z : F equals an arbitrarily chosen value z that satisfies
the formula F [13]. Note that io-operators are required only for primitive values
(boolean...), since other values are construction of primitive values.

Automated Pattern-Based Pointcut Generation

Mathieu Braem, Kris Gybels, Andy Kellens*, and Wim Vanderperren

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{mbraem, kgybels, akellens, wvdperre}@vub.ac.be

Abstract. One of the main problems in Aspect-Oriented Software
Development is the so-called fragile pointcut problem. Uncovering and
specifying a good robust pointcut is not an easy task. In this paper
we propose to use Inductive Logic Programming, and more specifically
the FOIL algorithm, to automatically identify intensional (or “pattern-
based”) pointcuts. We present the tool chain we implemented to induce
a pointcut given a set of identified joinpoints. Using several realistic
medium-scale experiments, we show that our approach is able to auto-
matically induce robust pointcuts for a set of joinpoints.

1 Introduction

Separation of concerns [29] is a crucial property for realizing comprehensible
and maintainable software. Current software engineering paradigms do however
not always succeed in cleanly modularizing all concerns. Consequently, these
concerns are spread and repeated over several modules in the system. Due to this
code duplication, it becomes very hard to alter such concerns within the system.
These concerns are called crosscutting because the concern virtually crosscuts
the decomposition of the system. Typical examples of crosscutting concerns are
debugging concerns such as logging [19] and contract verification [33], security
concerns [8] such as confidentiality and access control, and business rules [28,9]
that describe business-specific logic.

Aspect-Oriented Software Development aims to provide a solution for these
crosscutting concerns [19]. To this end, AOSD introduces an additional module
construct, named an aspect. Traditional aspects consist of two main parts: a
pointcut definition and an advice. Points in the program’s execution where an
aspect can be applied are called joinpoints. The declarative pointcut language
allows to concisely describe a set of joinpoints where the aspect should be applied.
The advice is the concrete behavior that is to be executed at certain joinpoints,
typically before, after or around the original behavior of the joinpoints.

Since existing software systems can benefit from the advantages of AOSD
as well, a number of techniques have been proposed to identify crosscutting
concerns in existing source code (aspect mining) and transform these concerns
into aspects (aspect refactoring). When refactoring a concern to an aspect, a
pointcut must be written for this aspect. Pointcut languages like for instance

* Ph.D. scholarship funded by the “Institute for the Promotion of Innovation through
Science and Technology in Flanders” (IWT Vlaanderen).

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 66-81, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automated Pattern-Based Pointcut Generation 67

the CARMA pointcut language allow specifying intensional (or “pattern-based”)
pointcuts, so that the pointcut does not easily break when the base code is
changed [11]. While existing aspect refactoring techniques also automatically
generate a pointcut, they typically only provide an enumerative pointcut, which
is fragile with respect to evolution of the base program. Turning this pointcut
into a pattern-based pointcut is left to be done manually by the developer.

In this paper we propose to exploit Inductive Logic Programming techniques
to automatically deduce an intensional pointcut from a given set of joinpoints.
The next section details the problem of uncovering intensional pointcuts and
introduces the running example used throughout this paper. Section 3 introduces
Inductive Logic Programming and the concrete algorithms used and in section 4
we apply ILP for automatically generating intensional pointcuts. Afterwards, we
present the tools created to support our approach, compare with related work
and state our conclusions.

2 Background and Problem Statement

2.1 Pattern-Based Pointcuts

The main problem in maintaining aspect-oriented code is the so-called fragile
pointcut problem [21]. Pointcuts are deemed fragile when seemingly innocent
changes to the base program, such as renaming or relocating a method, break a
pointcut such that it no longer captures the joinpoints it is intended to capture.
When code is added to a program and introduces new joinpoints in the joinpoint
model of the program, pointcuts are similarly considered fragile when some of
these new joinpoints should be captured by the pointcut but it fails to do so.

public class Point {
private int x,y;

public void setX(int a) {
this.x=a;

}

public void setY(int a) {
this.y=a;

[N B N

=
o ©

}
public int getX() {
return x;

[
[

}
public int getY() {
return y;

e
oA W

}

=
=Y

}

-
3

Fig. 1. A simple Point class

As described in our previous work [11] and that of others [20], pointcuts
are particularly fragile when they are written in an enumerative style. As an
example take the Point class of figure 1. When adding an observer aspect, we

68 M. Braem et al.

need a pointcut that captures all executions of methods on the Point class that
are state changing. A purely enumerative pointcut is shown in figure 2.

The pointcut language used in the figure and the remainder of the paper is
based on CARMA but is restricted to a static joinpoint model, we’ll refer to
it as PAGH! to make the distinction. CARMA [11] uses a fully dynamic join-
point model, which for example allows conditions in pointcuts on the values
associated with joinpoints. PAGH has a purely static joinpoint model, which
effectively equates joinpoints with shadow joinpoints. An extension of the work
presented here that takes a dynamic joinpoint model into account is left for fu-
ture work. The important point however is that PAGH retains other features
of CARMA which allow writing advanced intensional pointcuts: the use of logic
variables, recursion and full access to the static shadow joinpoint model of the
program.

stateChanges (Jpvar) :
execution(Jpvar,setX).

stateChanges (Jpvar) :
execution(Jpvar,setY).

oW o e

Fig. 2. A pointcut for the Observer aspect, written in a purely enumerative style

The pointcut of figure 2 matches if the joinpoint at hand is either the execu-
tion of method setX or the execution of method setY. Such an enumeratively de-
scribed pointcut obviously breaks easily. For example, when we evolve the point
class to a three-dimensional point and add a setZ method, the stateChanges
pointcut does not match the added method and thus fails to comply with the
intention of capturing all methods that change the state of a Point object.

The problem with enumerative pointcuts is of course the motivation for writ-
ing pointcuts in a more pattern-based style, exploiting a pattern that is exhibited
by the joinpoints that should be captured. The pointcut in figure 3 uses quantifi-
cation over the names of methods that start with set. It remains consistent when
evolving the point to a three-dimensional point. However, consider for example
the addition of a reset method that resets the x and y dimension of the point
to the default values. This method does not have the begins with the keyword set
pattern in common with the other state changing methods. Conversely, consider
the addition of a method setting which simply returns the value of a setting,
rather than doing any assignments. This method also exhibits the begins with
keyword set pattern but should in fact not be captured by the pointcut. We can
capture the reset and setting methods as a deviation from the pattern by in-
cluding an extra condition that the name of the method may also be reset and
should not be setting, but this tends to add an enumerative list of exceptions
to the pointcut.

! The name refers to a concept from the same realm as does Karma, see http://
memory-alpha.org/en/wiki/Pagh

Automated Pattern-Based Pointcut Generation 69

-

stateChanges (Jpvar) :
execution(Jpvar,MethodName) ,
3 startsWith(MethodName, ‘set’).

N

Fig. 3. A pointcut for the Observer aspect, written in a pattern-based style

1 | stateChanges (Jpvar) :

2 execution(Jpvar,MethodName) ,

3 inMethod (AssignmentJP,MethodName) ,

4 isAssignment (AssignmentJP,AssignmentTarget),
5 instanceVariable (AssignmentTarget,ClassName) .

Fig. 4. A pointcut for the observer

Using an advanced pointcut language that gives access to the full static join-
point model of methods, it is possible to exploit a more robust pattern [11].
Figure 4 illustrates a pointcut that exploits the pattern that all the state chang-
ing methods contain an assignment to an instance variable of an object. This
pointcut does not break when adding the setting or reset methods.

2.2 Automated Support for Pattern-Based Pointcuts

The area of aspect refactoring and aspect mining is a particularly interesting
research area within AOSD that is currently being explored. In performing as-
pect mining and refactoring, the problem crops up of finding a pointcut for the
newly created aspect. Also, as with object-oriented refactoring, research is being
performed on how to automate these refactorings using tool support. In such
tools, it would be interesting to be able to automate the step of generating a
pattern-based pointcut as well. Currently, most proposals for automating as-
pect refactoring simply generate an enumerative pointcut, which then too easily
breaks when the program is evolved after refactoring.

In this paper we present the results of using a specific machine learning tech-
nique for deriving a pattern exhibited by examples. In particular we use Induc-
tive Logic Programming, which is in fact an algorithm that works similarly to the
process we’ve described in the previous section for coming to an evolution-robust
pattern-based pointcut. We further describe this relation informally in the next
section, and present in detail the ILP algorithm.

3 Inductive Logic Programming

3.1 Logic Induction of Pointcuts

The algorithm of logic induction is similar to the process we followed in section
2.1 for coming to a more evolution-robust pattern-based pointcut. Informally,
the way ILP works and the relationship to this manual process is as follows:

70 M. Braem et al.

positive examples: ILP takes as input a number of positive examples, in our
setting of deriving pattern-based pointcuts these would be joinpoints that
the pointcut should capture.

background information: A second input to ILP is background information
on the examples. In our setting, these would be the result of predicates in
the pointcut language that are true for the joinpoints, or in other words,
the data associated with the joinpoints. Such as the name of the message of
the joinpoint, the type of the joinpoint (message, assignment, ...), in which
method or class the joinpoint occurs.

induction: ILP follows an iterative process of inducing a logic rule for combi-
nations of the positive examples. This is similar to the manual process we
followed in the previous section: we take two examples such as the methods
setX and setY, and find that in the background information the fact that
the names of the methods start with set holds true.

negative examples: ILP also takes as input a number of negative examples,
the rules that are derived during the iterative induction should never cover
negative examples. Negative examples effectively force the algorithm to use
other information of the background in the induced rules. This is similar
to the process followed in the previous section where we added a setting
method which should not be covered by the pointcut.

3.2 FOIL

In this paper we use the FOIL ILP algorithm [30]. FOIL learns hypotheses
which are sets of first-order rules, similar to Horn clauses. However, since no
literals containing function symbols are allowed, the rules are more restricted
than Horn clauses. On the other hand, the rules are more expressive because
literals appearing in the body of the rules may be negated.

Pseudo-code for the algorithm is shown in figure 5. The algorithm takes a top-
down approach to ILP. Starting with the most general rule, FOIL specializes it
until no more negative examples are covered. The algorithm involves a double
loop to find suitable queries. In the outer loop the algorithm generates rules, each
time starting with the most general rule, covering all examples. In the inner loop,
it adds clauses to the rule, until no more negative examples are covered. The
algorithm halts when all positive examples have been covered.

The algorithm generates candidate literals based on the literals and variables
already present in the rule, and on predicates found in the background infor-
mation. Suppose the current rule is Predicate(X1, Xo, ..., Xx) <« Literal; ...
Literal,. FOIL now considers the following literals for addition as Literal, 1.

- Q(V1,...,V;), where @ is predicate occurring in the background information
and where V;(Vi,0 < i < r) is either a new variable or a variable already
present in the rule. At least one of the variables V; has to be present in rule.

— Equal(X,, Xy), where X; and X}, are variables already present in the rule.

— The negation of the literals formed in the rules above.

Automated Pattern-Based Pointcut Generation 71

FOIL(T arget predicate, Positives, Negatives, Background)

1: Learned rules — {}
2: while Positives is not empty do {learn a new rule}
3: NewRule < a new rule for T'arget predicate with no preconditions

4: NewRuleNeg — Negatives

5: while NewRuleNeg is not empty do {specialize NewRule}

6: Candidate literals < generate candidate new literals for NewRule, based on
Background

7: calculate Foil Gain for each literal in Candidate literals

8: add literal with highest Foil Gain to preconditions of NewRule

9: NewRuleNeg « subset of NewRuleNeg satisfying NewRule preconditions

10: end while

11: Learned Rules «— Learned Rules U {NewRule}

12 Positives < Positives\{ members of Positives covered by NewRule}
13: end while

14: return Learned rules

Fig. 5. Pseudo-code for the FOIL Inductive Logic Programming algorithm

At each step of the inner loop a heuristic function is evaluated for all candidate
literals. The result of this function shows how much the rule gains from adding
this literal. The candidate literal which results in the highest gain is chosen as the
next literal. This gain function, shown in figure 6, is a simple measure, based on
the comparison of the number of covered positive (p) and negative (n) examples
before (pg, ng) and after (p1,n1) the literal is added to the rule. The numbers of
bindings that remain positive (¢) after adding the literal to the rule is factored in.

. . p1 Ppo
Foil Gain(L,R) =t (1o —1lo
(L,R) (82) oy g2p0+n0>

Fig. 6. Foil Gain function

4 Applying ILP for Pointcut Abstraction

The FOIL algorithm is able to find rules from a set of logic facts. It requires a
number of positive examples and a set of negative examples to avoid oversimpli-
fication. In addition, it expects a sufficiently large set of background information
in order to be able to induce a rule. The positive examples for FOIL are the join-
points where the aspect needs to be applied. They can either be manually selected
or automatically using for example an aspect mining technique. All other join-
points are defined as negative examples for the ILP algorithm. As background
information, we construct a logic database consisting of the information that is
normally available in the pointcut language on these joinpoints. These are the

72 M. Braem et al.

Joinpoint predicates newStatement(Joinpoint, Class)
isRead(Joinpoint, Variable) throwStatement(Joinpoint, Variable)

isSendOf(Joinpoint, Method) catchStatement(Joinpoint, Class)

returnStatement(Joinpoint) finallyStatement(Joinpoint)
execution(Joinpoint, Method) synchronizedBlock(Joinpoint, Variable)

inMethod(Joinpoint, Method) castStatement (Joinpoint, Class, Variable)

isAssignment (Joinpoint, Variable) instanceofStatement(Joinpoint,Class,Variable)

Structural predicates
methodInClass(Method, Class) methodReturns(Method, Class)
classExtends(Class, Class2) f:lassInPackage(Class, Package)
classImplements(Class, Class2) %slnterface(Class)
argumentOf(Variable,Method,Pos) }sClass(Class)
instanceVariable(Variable, Class) }sMet.hod(Method)
typeOf(Variable, Class) isVariable(Variable)
isConstructor(Method)

Modifier predicates

isFinal(Arg) isProtected (Member)
isPublic(Arg) isPrivate(Member)
isAbstract(Arg) isVolatile(Variable)
isStrict(Arg) isTransient(Variable)
isStatic(Member) isSynchronized(Method)
isNative(Method)

annotationOf(Member, Class)

Fig. 7. Predicates available in the PAGH crosscut language to select joinpoints, the
solutions for these predicates are used as background information for the ILP algorithm

solutions of the predicates shown in figure 7, which also includes predicates about
the relationships between classes etc. Because this pointcut language is based
on a purely static joinpoint model, these solutions can be determined using only
the program’s source or compiled representation, i.e. compiled Java classes.

The algorithm will induce a pointcut that captures exactly the joinpoints
currently in the program that should be captured (the positive examples), and
none of the others (the negative examples). This is guaranteed by the algorithm.
What we furthermore expect is that the induced pointcut also is a non-fragile
or robust pointcut. In general we will not have a specific pointcut in mind that
the algorithm should derive (otherwise the application of ILP would be rather
pointless), though in these experiments we can use the robust pointcut we derived
manually in section 2.1 as a benchmark for comparison.

4.1 Basic Point class

As an example of our approach, take the simple Point class from figure 1. In a first
step we derive the static joinpoints from this code, and derive the information
on all of these that is given by the predicates of the pointcut language (figure 7).

Automated Pattern-Based Pointcut Generation 73

returnStatement(jpl).
returnStatement (jp6).
returnStatement(jp11).
returnStatement(jp14,).
returnStatement (jp17).
inMethod (jp1,‘Point.setX (I)I’).
inMethod (jp2,‘Point.setX(I)I’).
inMethod (jp3,‘Point.setX (I)I’).
inMethod (jp4, Point.setX (I)I).
inMethod (jp6, Point.setY (I)I’).
inMethod (jp7, Point.set Y (I)I).
inMethod (jp8,‘Point.setY (I)I’).
inMethod (jp9,‘Point.setY (I)I’).
inMethod(jp11,‘Point.getX()I’).
inMethod (jp12,‘Point.getX()I").
inMethod (jp14,‘Point.get Y ()I’).
inMethod (jp15,‘Point.getY ()I’).
inMethod(jp17,‘Point.Point()V’).

isRead(jp12,‘Point.x’).
isRead(jp15,‘Point.y’).
methodInClass(‘Point.setX (I)I’,‘Point’).
methodInClass(‘Point.setY (I)I’,‘Point’).
methodInClass(‘Point.getX()I’,‘Point’).
methodInClass(‘Point.getY ()I’,Point’).
methodInClass(‘Point.Point()V’,‘Point’).
classExtends(‘Point’,‘java.lang.Object’).
methodReturns(‘Point.setX(I)I’,‘int’).
methodReturns(‘Point.set Y (I)I’,‘int’).
methodReturns(‘Point.getX()I’,‘int’).
methodReturns(‘Point.getY ()T, ‘int’).
isAssignment (jp2,‘Point.x’).
isAssignment (jp7,‘Point.y’).
instanceVariable(‘Point.x’,‘Point,int’).
instanceVariable(‘Point.y’,‘Point,int’).
classInPackage(‘java.lang.Object’,‘java.lang’).
execution(jp0,‘Point.set X (I)I’).

isRead(jp3,10°).
isRead(jp4,11’).
isRead(jp8,12’).
isRead(jp9,13’).

execution(jp5,‘Point.setY (I)I).
execution(jp10, Point.getX()I’).
execution(jpl3, Point.getY()I’).
execution(jp16,‘Point.Point()V’).

Fig. 8. Part of the background information for the Point class of figure 1

This forms the background information for the logic induction algorithm, part
of this generated background information is shown in figure 8.

The methods that are state changing on this simple Point class are the meth-
ods setX and setY only. We identify these two joinpoints as positive examples
of our desired stateChanges pointcut, which are the joinpoints jp0 and jp5 re-
spectively. The pointcut should not cover the other joinpoints: the joinpoints
jp10 and jp13, for instance, denote the execution of the getX and getY method.
Clearly, these methods are not state changing. So these and all other joinpoints
besides jp0 and jp5 are marked as negative examples. We give the FOIL algo-
rithm the positive examples stateChanges (jp0) and stateChanges(jp5). The
resulting rule is shown in figure 9. The pointcut selects all executions of methods
that contain an assignment.

The resulting pointcut is clearly not very robust. An evolution that easily
breaks the pointcut would be to have a getX method that does an assignment
to a local variable which does not mean that that method changes the state of
an object, yet its execution would be captured by the pointcut. This result is
however not very surprising: the Point class is small and does not include non-
state changing methods that do assignments to local variables which would have
served as a negative example for the FOIL algorithm. As the induced pointcut
covers all positive examples and no negative ones, the induction stops and no
further predicates from the background information are used to limit the rule to

74 M. Braem et al.

only the positive examples. The ILP algorithm works better on larger programs,
so that more negative examples are available to avoid oversimplified pattern-
based pointcuts.

stateChanges(A):
execution(A,B),
inMethod(C,B),
isAssignment (C,D).

AW N e

Fig. 9. Induced stateChanges pointcut

In order to have a more realistic example, we apply our experiment to the
Point class bundled with Java. We do not include a full listing of the gener-
ated background, but instead we give some statistics about the generated facts.
Table 1 compares the number of facts found in the AWT Point class to the
number of facts from the basic Point example.

Table 1. Generated facts statistics

Classes # Facts # Joinpoints

Toy example 1 71 10
AWT Point class 1 364 70
Complete AWT library 362 276863 65060

We identify four execution joinpoints in the AWT Point class where a state
changing method is invoked and input them as positive examples to the al-
gorithm. The remaining 66 joinpoints are defined as negative examples. The
resulting pointcut is shown in figure 10. In this case, the algorithm generates a
pointcut that is sufficiently robust for evolution: it is in fact the same pointcut
we determined manually in section 2.1.

1| stateChanges(A):

2 execution(A,B),

3 inMethod(C,B),

4 isAssignment(C,D),

5 instanceVariable(D,E).

Fig. 10. Resulting pointcut when applying our approach to the AWT Point class

4.2 Extended Experiments

In order to provide a limited evaluation of our approach, we conduct several
more involved experiments using the state-changes example on the Java AWT
framework.

Automated Pattern-Based Pointcut Generation 75

Large fact database: We apply our approach to the complete Java AWT
library in order to evaluate whether our approach still returns a useful result
when the number of facts is very large. This library contains approximately 362
classes and generates more than 250000 facts. The result is the same as for the
Java AWT Point class alone: the same pointcut as was determined manually in
section 2.1 is induced. For a performance evaluation, we refer to section 5.

Negation: One of the distinguishing features of the FOIL algorithm in compar-
ison to other ILP algorithms is its ability to induce rules containing negations.
As a variation of the state changing methods example, we need a pointcut for
the executions of methods that change the observable representation of an ob-
ject. This means the method does assignments to instance variables that are
not declared transient using the modifier transient in Java: conceptually, these
fields are not part of the object’s persistent state and are not retained in the
object’s serialization. This is used for example when a class defines a cache in
order to optimize some parts of its operations. As such, observers do not need to
be notified when transient fields are altered. When applying this experiment to
the Java AWT library, our algorithm induces the rule shown in figure 11, which
in comparison to the pointcuts induced above adds exactly the properties in the
background to distinguish these joinpoints from the negative examples that we
would expect it to add, i.e. the fact that the instance variables being assigned
to are not declared transient.

stateChanges(A):
execution(4,B),
inMethod(C,B),
isAssignment(C,D),
instanceVariable(D,E),
not (isTransient (D)) .

=Y NN I

Fig. 11. Resulting pointcut for non-transient field assignments in Java AWT

InEquality: The FOIL algorithm is also able to induce inequality for certain
rule variables. For example, suppose we want to detect all methods that contain
“illegal” assignments, namely assignments to instance variables of other classes.
The rule of figure 12 is induced when we apply this experiment to the AWT
library. This rule declares that a method is illegally state changing when it
contains an assignment to an instance variable that does not belong to the same
class as the method.

Recursion: Another advantage of the FOIL algorithm is its ability to induce
recursive rules. For example, suppose we redefine state changing methods to
also include execution joinpoints of methods that indirectly change the state
of an object by invoking a method that is state changing. This is useful for
implementations of the observer aspect that take into account the jumping aspect
problem [4,11]. In order to capture this pattern robustly, two pointcut rules are

76 M. Braem et al.

1| illegalStateChanges(A):

2 execution(A,B),

3 methodInClass(B,C),

4 inMethod(D,B),

5 isAssignment (D,E),

6 instanceVariable(E,F),
7 C<>F.

Fig. 12. Resulting pointcut for field assignments from a different class than the class
defining the field

required, one of which is recursive. In this experiment our ILP implementation
however did not induce such a recursive pointcut rule although theoretically the
algorithm is able to induce recursive rules. The algorithm induces several rules
that are unnecessarily complicated, depending on information that is irrelevant
to the state changing concern. This pointcut breaks easily when the base program
evolves because it is concerned with too much information. However, when we
use method names as positive examples rather than joinpoints, a recursive rule
is induced which does not exhibit such fragility issues, the resulting rule is shown
in figure 13. All that would be necessary to turn this into a pointcut is an extra
condition which gets the joinpoint associated with the method name. A possible
reason that the algorithm doesn’t try adding this condition may have to do with
the gain function, but this needs to be investigated further in future work.

stateChanges(4) :
inMethod(B,A),
isAssignment (B,C),
instanceVariable(C,D).

stateChanges(A):
inMethod(B,4),
isSend0f (B,C),
stateChanges(C) .

[N T N T N R

Fig. 13. Recursive stateChanges rule

5 Tool Support

Our approach is supported by a fully automatic tool chain, which is illustrated
in figure 14. The tool chain consists of the following tools:

— FactGen:This tool translates arange of Java class files and /or jar files to a set of
facts representing these classes. The tool uses the javassist library [7] to process
the binary class files. The javassist library provides a high-level reflective API
that allows to inspect the full Java byte code, including method bodies. The
output of the FactGen tool is the fact representation in XML format.

— JFacts: This tool allows to translate logic predicates from one syntax into
another. Currently, the tool supports the FactGen’s XML syntax, QFoil’s
syntax, CARMA’s syntax and PAGH and Prolog syntax.

Automated Pattern-Based Pointcut Generation 77

S) P

Fig. 14. The tool chain for inducing pointcuts in a logic pointcut language over static
joinpoints in Java code

— QFoil: This tool is the implementation of the FOIL ILP algorithm by Ross
Quinlan [31]. It takes a set of facts and a set of positive examples as input
(negative examples are implicitly assumed) and tries to induce a logic rule
that covers all of the positive examples and rejects all of the negative exam-
ples. This implementation of FOIL is particularly interesting because of its
performance (see the benchmarks in the next paragraph).

In order to evaluate our approach performance-wise, we conduct several bench-
mark experiments with an increasingly large number of facts. The experiments
were done using the state changing methods example. Table 2 shows the results?.
In all cases, except for the toy Point class of course, the rule from Figure 10 was
induced. The performance results are acceptable as the time required is not much
more than compiling such a large set of classes. Considering the premature stage
of the FactGen and JFacts tools, we believe that a significant improvement is
still possible there.

Table 2. Benchmark results of our prototype tool chain

classes # facts # joinpoints FactGen+JFacts (s) QFOIL (s)

Toy Point class 1 71 10 0.461 0.01

AWT Point class 1 364 70 0.5902 0.0142
25 classes from AWT 25 11622 2855 1.8098 0.8779
50 classes from AWT 50 42870 10982 3.9702 5.4671
75 classes from AWT 75 79403 21367 6.5163 4.4448
100 classes from AWT 100 88236 23409 7.1599 5.4526
AWT (no subpackages) 118 103752 27862 7.9929 7.1708

6 Related Work

To our knowledge, there exist few approaches which try to automatically gener-
ate pattern-based pointcuts. In previous work [12] we already report on a first

2 The timings were performed on an Intel Pentium 4 3Ghz. Each timing represents
the average time of a single experiment, based on 100 experiments.

78 M. Braem et al.

attempt for using Inductive Logic Programming in order to derive pattern-based
pointcuts. In this work we employ Relative Least General Generalisation [27],
an alternative ILP algorithm, instead of the FOIL algorithm. Using RLGG, we
are able to derive correct pointcuts for some specific crosscutting concerns in a
Smalltalk image. However, due to the limitations of both our implementation as
well as the applied ILP algorithm (for instance, the algorithm does not support
negated literals), our RLGG-based technique often results in pointcuts that suf-
fer from some fragility: the resulting pointcuts for example frequently contain
redundant literals referring to the names of specific methods or classes, which of
course easily breaks the pointcut when these names are changed. Furthermore,
our earlier work suffers from serious scalability issues. In the context of Adaptive
Programming [24], an approach has been developed for automatically deducing
traversal strategies, which are AP’s counterpart of pointcuts [25], from a given
class and object graph.

As mentioned earlier, the major area of application of our technique lies in the
automated refactoring of crosscutting concerns in pre-AOP code into aspects.
Quite a number of techniques exist [13,26,22,15] which propose refactorings in
order to turn object-oriented applications into aspect-oriented ones. However,
these techniques do not consider the generation of pattern-based pointcuts. In-
stead they propose to automatically generate an enumeration-based pointcut
which, optionally, can be manually turned into a pattern-based pointcut by the
developer. As is pointed out by Binkley et al. [2], our technique is complementary
with these approaches as it can be used to both improve the level of automation
of the refactoring, as well as the evolvability of the refactored aspects.

In the context of aspect mining, which is closely related to object-to-aspect
refactorings, a wealth of approaches are available that allow for the identification
of crosscutting concerns in an existing code base. The result of such a technique
is typically an enumeration of joinpoints where the concern is located. Ceccato et
al. [6] provide a comparison of three different aspect mining techniques: identifier
analysis, fan-in analysis and analysis of execution traces. Breu and Krinke pro-
pose an approach based on analyzing event traces for concern identification [3].
Bruntink et al. [5] make use of clone detection techniques in order to isolate id-
iomatically implemented crosscutting concerns. Furthermore, several tools exist
that support aspect mining activities by allowing developers to manually ex-
plore crosscutting concerns in source code, such as the aspect mining tool [14],
FEAT [32], JQuery [17] and the Concern Manipulation Environment [16]. These
approaches are complementary with our approach in that the joinpoints they
identify can serve as positive examples for our ILP algorithm.

7 Conclusions and Future Work

In this paper we present our approach using Inductive Logic Programming for
generating a concise and robust pointcut from a given enumeration of joinpoints.
We report on several successful experiments that apply our approach to a realistic
and medium-scale case study. We have applied our approach to a CARMA-based

Automated Pattern-Based Pointcut Generation 79

logic pointcut language restricted to a static joinpoint model, dubbed PAGH.
In future work we will consider tackling full CARMA which requires taking into
account in the background information that joinpoints and joinpoint shadows
are not equated as in PAGH. Our approach can easily be applied to for exam-
ple AspectJ [18] as well by translating PAGH pointcuts to AspectJ pointcuts.
However, the FOIL algorithm must then be restricted to not generate pointcuts
using features of PAGH that can not be translated to AspectJ: variables can only
be used once in a pointcut (except when using the “if” restrictor in AspectlJ),
recursive named pointcuts are not possible, and only some uses of the structural
predicates can be translated. Other points left for future work are:

— Multiple Results: Our current tools only generate one pointcut for a given
set of joinpoints. In some cases, most notably when there is few background
information (i.e. a small number of little classes), several alternative point-
cuts are possible. Our current approach has a bias for short, non-negative
and non-recursive rules. As we have described in the paper, this might not
always lead to a (good) result. Therefore, it would be useful to allow present-
ing multiple pointcut results. An interesting research topic in this context
would consist of uncovering poincut patterns and anti-patterns that might
be used to guide the selection and generation process.

— Other Algorithms: There exist several algorithms for Inductive Logic Pro-
gramming. In previous work, we conduct several small-scale experiments
with the Relative Least General Generalization (RLGG) [27] algorithm in
an aspect mining context [12]. Having several algorithms might improve the
quality of the selected results to the end-user. For example, solutions that
are induced by more than one algorithm might be better.

— Run-Time Information: Our current approach only analyzes the static pro-
gram information to induce pointcuts. Pointcuts that require run-time pro-
gram information, such as stateful aspects [10], cannot be induced. For this
end, facts representing the run-time behavior of the program are necessary.
We are currently investigating whether it is possible to induce such dynamic
pointcuts using several program traces as background information.

— Tool Integration: Although our current tool works fully automatically, it is
a stand-alone command-line tool that is not integrated in an IDE. We plan
to develop an Eclipse plugin for our tool. This plugin can then be a basis for
inducing pattern-based pointcuts by other plugins which provide support for
the refactoring process.

References

1. Mehmet Aksit, editor. Proc. 2nd Int’ Conf. on Aspect-Oriented Software Develop-
ment (AOSD-2003). ACM Press, March 2003.

2. D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Automated refac-
toring of object oriented code into aspects. In 21st IEEE International Conference
on Software Maintenance (ICSM), 2005.

80

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Braem et al.

Silvia Breu and Jens Krinke. Aspect mining using event traces. In 19th Interna-
tional Conference on Automated Software Engineering, pages 310-315, Los Alami-
tos, California, September 2004. IEEE Computer Society.

. Johan Brichau, Wolfgang De Meuter, and Kris De Volder. Jumping aspects. In

C. Lopes, L. Bergmans, M. D’Hondt, and P. Tarr, editors, Workshop on Aspects
and Dimensions of Concerns (ECOOP 2000), June 2000.

M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. An evaluation
of clone detection techniques for identifying crosscutting concerns. In Proceedings
of the IEEE International Conference on Software Maintenance (ICSM). IEEE
Computer Society Press, 2004.

M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonello, and T. Tourwé. A qual-
itative comparison of three aspect mining techniques. In Proceedings of the 13th
International Workshop on Program Comprehension (IWPC 2005), pages 13-22.
IEEE Computer Society Press, 2005.

Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient Java byte-
code translators. In GPCE ’03: Proceedings of the second international conference
on Generative programming and component engineering, pages 364-376, New York,
NY, USA, 2003. Springer-Verlag New York, Inc.

Bart De Win, Wouter Joosen, and Frank Piessens. Developing secure applications
through aspect-oriented programming. pages 633—-650. Addison-Wesley, Boston,
2005.

Maja D’Hondt and Viviane Jonckers. Hybrid aspects for weaving object-oriented
functionality and rule-based knowledge. In Lieberherr [23], pages 132-140.

Rémi Douence, Pascal Fradet, and Mario Siidholt. Composition, reuse and inter-
action analysis of stateful aspects. In Lieberherr [23], pages 141-150.

Kris Gybels and Johan Brichau. Arranging language features for pattern-based
crosscuts. In Aksit [1], pages 60-69.

Kris Gybels and Andy Kellens. An experiment in using inductive logic program-
ming to uncover pointcuts. In First Furopean Interactive Workshop on Aspects in
Software, September 2004.

Stefan Hanenberg, Christian Oberschulte, and Rainer Unland. Refactoring of
aspect-oriented software. In 4th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a Net-
worked World, 2003.

J. Hannemann. The Aspect Mining Tool web site. http://www.cs.ubc.ca/labs/spl/
projects/amt.html.

Jan Hannemann, Gail Murphy, and Gregor Kiczales. Role-based refactoring of
crosscutting concerns. In Peri Tarr, editor, Proc. 4rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2005), pages 135-146. ACM Press, March 2005.
William Harrison, Harold Ossher, Stanley M. Sutton Jr., and Peri Tarr. Con-
cern modeling in the concern manipulation environment. IBM Research Report
RC23344, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, Sep-
tember 2004.

Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In Aksit [1], pages 178-187.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS
2072, pages 327-353, Berlin, June 2001. Springer-Verlag.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Automated Pattern-Based Pointcut Generation 81

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220-242. Springer Verlag, 1997.

Gregor Kiczales and Mira Mezini. Separation of concerns with procedures, anno-
tations, advice and pointcuts. In Furopean Conference on Object-Oriented Pro-
gramming, ECOOP 2005, 2005.

Christian Koppen and Maximilian Storzer. PCDiff: Attacking the fragile pointcut
problem. In Kris Gybels, Stefan Hanenberg, Stephan Herrmann, and Jan Wloka,
editors, Furopean Interactive Workshop on Aspects in Software (EIWAS), Septem-
ber 2004.

Ramnivas Laddad. Aspect-oriented refactoring, dec 2003.

Karl Lieberherr, editor. Proc. 3rd Int’ Conf. on Aspect-Oriented Software Devel-
opment (AOSD-2004). ACM Press, March 2004.

Karl J. Lieberherr. Adaptive Object-Oriented Software: the Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996.

Karl J. Lieberherr, Jeffrey Palm, and Ravi Sundaram. Expressiveness and complex-
ity of crosscut languages. In Gary T. Leavens, Curtis Clifton, and Ralf Lammel,
editors, Foundations of Aspect-Oriented Languages, March 2005.

Miguel Pessoa Monteiro. Catalogue of refactorings for aspectj. Technical Report
UM-DI-GECSD-200401, Universidade Do Minho, 2004.

S. Muggleton and C. Feng. Efficient induction in logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281-298. Academic Press, 1992.

H. Ossher and P. Tarr. The shape of things to come: Using multi-dimensional
separation of concerns with Hyper/J to (re)shape evolving software. Comm. ACM,
44(10):43-50, October 2001.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053-1058, December 1972.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239-266, August 1990.

Ross Quinlan. Qfoil: the reference foil implementation. Home page at http://
www.rulequest.com/Personal/, 2005.

Martin P. Robillard and Gail C. Murphy. Automatically inferring concern code
from program investigation activities. In Proceedings of Automated Software En-
gineering (ASE) 2003, pages 225-235. IEEE Computer Society, 2003.

Wim Vanderperren, Davy Suvée, and Viviane Jonckers. Combining AOSD and
CBSD in PacoSuite through invasive composition adapters and JAsCo. In
Net.ObjectDays 2003, pages 36-50, September 2003.

An Aspect-Oriented Approach for Developing
Self-Adaptive Fractal Components

Pierre-Charles David! and Thomas Ledoux?

! France Télécom, Recherche & Développement
28, chemin du vieux chéne
F-38243 Meylan
PierreCharles.David@francetelecom. com
2 OBASCO Group, EMN / INRIA, Lina
Ecole des Mines de Nantes
4 rue Alfred Kastler
F-44307 Nantes CEDEX 3
Thomas.Ledoux@emn. fr

Abstract. Nowadays, application developers have to deal with increas-
ingly variable execution contexts, requiring the creation of applications
able to adapt themselves autonomously to the evolutions of this context.
In this paper, we show how an aspect-oriented approach enables the
development of self-adaptive applications where the adaptation code is
well modularized, both spatially and temporally. Concretely, we propose
SAFRAN, an extension of the Fractal component model for the devel-
opment of the adaptation aspect as reactive adaptation policies. These
policies detect the evolutions of the execution context and adapt the
base program by reconfiguring it. This way, SAFRAN allows the modu-
lar development of adaptation policies and their dynamic weaving into
running applications.

1 Introduction

Nowadays, application developers have to deal with increasingly variable execu-
tion contexts. On the one hand, we find a large diversity of platforms covering a
wide spectrum in terms of available resources (from embedded systems to grids),
these heterogeneous machines being increasingly interconnected, and hence in-
terdependent. On the other hand, even on a particular host the execution context
of an application changes during its execution (hardware and software resources
availability, mobility...). This situation makes application development more
and more complex, as it is often difficult to know at development-time the con-
ditions in which applications will be used, especially when these conditions can
change unpredictably during execution. Instead of trying to hide the execution
context under an abstraction layer (middleware), we believe that applications
must become context-aware so that they can adapt to their context [1]. Such
self-adaptive applications are able to adapt themselves autonomously [2] to the
evolutions of their execution context, not only to continue functioning but also
to leverage new possibilities which can appear dynamically.

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 82-97, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Aspect-Oriented Approach for Developing SAFRAN 83

The need to build applications which adapt to their environment is not new.
However, the ad hoc techniques generally used, in which adaptation decisions
are hardwired in applications, are not sufficient: they mix business concerns
with adaptation policies, which makes both initial development and maintenance
more difficult [3]. Furthermore, it is generally impossible to predict during the
development phase the actual circumstances in which applications will be used,
even less the appropriate reaction. Ideally, we would like to be able to develop the
adaptation code separately and then integrate it dynamically inside the business
code so as to decouple these two kinds of code, both spatially and temporally.

In this paper, we use an aspect-oriented approach [4] to modularize the adap-
tation code in self-adaptive applications. Aspect-Oriented Programming (AOP)
gives us an interesting framework to separate the adaptation concern from busi-
ness code and then to dynamically weave and un-weave them. The system we
propose, SAFRAN, allows to develop self-adaptive applications based on the
Fractal component model [5]. SAFRAN is designed around three main princi-
ples: (i) the use of a dynamic component model (Fractal) to build applications
which can be adapted at runtime; (ii) the use of AOP concepts and techniques
to develop the adaptation logic separately from business code and then to dy-
namically weave them to yield self-adaptive applications; (7i) and finally the use
of a Domain (or Aspect) Specific Language [6] to express this adaptation logic.

Section 2 shows how the software adaptation concern can be — conceptually —
considered as an aspect. Section 3 then presents our contribution, SAFRAN,
showing how this approach translates in the concrete design and architecture of
SAFRAN. We finally illustrate the use of SAFRAN on a simple example (Sec-
tion 4), and discuss some related work (Section 5) before concluding (Section 6).

2 Software Adaptation as an Aspect

2.1 Adaptation as a Cross-Cutting Concern

In the most general sense, an adaptation is a modification triggered by changing
circumstances, by which a system becomes better suited to its new environment.
In the case of software, an adaptation will be implemented by a program respon-
sible for (i) observing the environment in which the target software is running
to detect new conditions, (i7) deciding about the appropriate modifications to
apply to the target software, and (ii7) applying these modifications, adapting
the target to the new conditions. With the advent of ubiquitous computing, new
applications must be able to adapt themselves autonomously [2]| to the various
execution contexts in which they can be running. Such self-adaptive software
applications are both the agent and the target of the adaptation.

The main issue with building such self-adaptive software is that integrating
the code dealing with the adaptation concern into the application increases its
complexity: the business code becomes “polluted” by non-functional concerns like
observing the environment and deciding which reconfiguration is more appropri-
ate. This also impedes the reusability of the system, which can then function

84 P.-C. David and T. Ledoux

properly only in the few, fixed set of situations which have been anticipated dur-
ing its development. To solve these issues, we need a looser and more dynamic
coupling between business code and adaptation logic.

Software adaptation thus appears as a cross-cutting concern relative to busi-
ness code, which we would like to modularize so as to offer more reusability
and maintainability of the business code. Aspect-Oriented Programming (AOP)
[4] gives us adequate abstractions and composition mechanisms to solve these
issues.

2.2 Towards an Adaptation Aspect

In “traditional” AOP systems (e.g. AspectJ [7]), an aspect is a module which
regroups pairs of the form (pointcut, advice) where pointcut denotes a set of join-
points, i.e. points of interest in the execution of a base program (in which the
aspect is to be weaved) and advice is a code fragment to be executed whenever
the pointcut matches, i.e. at each of its join-points. Together, these constructs
can be used to implement in a well-defined module a concern which can modify
the semantics of a base program incrementally and transparently (from the base
program’s point of view) [8]. The base program and the aspects are weaved into
a consistent whole, either statically or dynamically. In the following, we propose
to “aspectize” the adaptation concern.

The event-based nature of the adaptation process (when a significant change
occurs, an adaptation decision is made taken and then applied) relates with the
EAOP approach [9] in which point-cuts are defined in terms of sequences of
runtime events in the execution of the base program (method invocation, object
creation. ..). In EAOP, runtime events are only internal, i.e. related to the base
program execution. This is not sufficient to trigger adaptations in the more
general setting of context-aware applications, which must also react to external
events regarding the evolutions of their execution context, like the appearance
of a new device or the sudden decrease of the available bandwidth. Despite their
different origin (the context instead of the application itself), we believe these
events can also be considered as join points, as they trigger adaptation actions.
Our join point model thus extends the domain of possible join points beyond
internal events (“traditional” join points) to the whole execution context, which
increases the expressive power of our system by allowing us to react to changes
in the execution context.

Concerning the advice model, actions (triggered by events) indicate how to
reconfigure the base program in order to adapt it to the new conditions. The
role of the advice language is thus to adjust the target application (tuning, para-
meterization, architectural configuration...) in order to make it more adapted.
Note that contrary to AspectJ [7] which is a general purpose Aspect-Oriented
language, the advice language in SAFRAN is a domain-specific language whose
expressive power is reduced so that it is not possible to reconfigure the applica-
tion in an inconsistent state.

As for the aspect weaving model, our choice of considering adaptation in open
and dynamic systems lead us to choose a dynamic approach, which is much more

An Aspect-Oriented Approach for Developing SAFRAN 85

flexible than static weaving because the separation of concerns remains at run-
time. This means that the adaptation aspect does not have to be anticipated, but
can be loaded, modified and tuned at runtime, without stopping the application.
This dynamic weaving process allows us to fully decouple the base program and
the adaptation aspect (both spatially and temporally).

3 An Adaptation Aspect in SAFRAN

SAFRAN (Self-Adaptive FRActal compoNents) [10] is an extension to the Frac-
tal component model [5] allowing the creation of self-adaptive applications. One
of the key principles in the design of SAFRAN is the treatment of the adap-
tation concern as an aspect. Following the structure of a generic AOP system,
SAFRAN’s main elements are:

— a base program corresponding to a configuration of Fractal components (ar-
chitecture);

— point-cuts corresponding to the notification of internal events (message invo-
cations on Fractal interfaces, changes in the architecture) or external events
(thanks to a framework we designed to create context-aware applications);

— advices voluntarily restricted to architectural reconfigurations;

— and finally the adaptation aspect itself, linking join points to advices, and
represented by modular adaptation policies dynamically weaved and un-
weaved into target components.

The rest of this section will present in more details each of these points.

3.1 Fractal Components: The Base Program

Fractal [5] is a component model developed by France Télécom R&D and INRIA,
and distributed through the ObjectWeb consortium. We chose Fractal over other
component models because it is designed around a minimal but very extensible
core, and is highly dynamic.

A Fractal application (see Fig. 1) is seen as an assembly of components, each
made of two parts: a controller (in grey on the figure) and its content. This con-
tent can be either made of other components (composite) or of a single object of
the underlying programming language (primitive). For example, the figure shows
a single composite containing two primitive sub-components. The controller part
of a component manages all the interactions of its content with the outside. To
do this, it exposes internal and external interfaces (ports), which can represent
services provided or required by a component. Two compatible interfaces can be
connected together to create a one-way binding through which all communica-
tions must pass. On the figure, the rightmost sub-component provides a service
of type “S” through an interface named “s”. The other sub-component uses this
service through a binding from its own required interface of a compatible type,
and exposes another service “m” of a different type. This service is exported to

86 P.-C. David and T. Ledoux

the outside of the composite using a binding from a matching internal interface.
When the composite receives an invocation on its interface “m”; its controller
intercepts the message, executes optional control behavior (depending on the
controller configuration), and then forwards it to the sub-component through
the internal binding.

al
=
ol [ah

&

Fig. 1. Example of a simple Fractal architecture

In addition to service interfaces, which depends on each application (“s” and
“m” on the figure), Fractal components can offer a variety of standard control
interfaces. These interfaces, represented on top of the components in the fig-
ure, enable dynamic introspection and modification of various aspects of the
components: discovery of the set of interfaces of a component (component inter-
face, C on the figure), lookup, creation and destruction of bindings (binding-
controller, or BC), addition and removal of sub-components from composites
(content-controller, or CC), etc.

Fractal offers a predefined set of such control interfaces to reflectively manip-
ulate aspects of the components. This support for architectural reflection allows
us to reconfigure the architecture of an application during its execution. Com-
pared to other component models like ArchJava [11], which supports runtime
reconfigurations only if they have been programmed at compile-time, Fractal’s
support for reflection enables the discovery and unanticipated modification of
the structure of components. This feature is essential for the creation of self-
adaptive applications [12] as most of the adaptation we will want to perform are
not known during the initial construction of the software.

Another advantage of Fractal is that the set of control interfaces is not fixed.
Although there is a predefined set of such interfaces, all of them are optional.
More importantly, Fractal and its default implementation are designed so that is
is easy to add new control interfaces, thus extending the component model. We
use this feature in SAFRAN to seamlessly integrate our extension into the stan-
dard model by adding a new control interface named adaptation-controller
to manage the adaptation aspect associated to a component. Beyond the advan-
tages inherent to the component-based approach, the specific features of Fractal
make it an ideal candidate for the construction of adaptable applications, the
first step towards fully autonomous self-adaptive applications.

An Aspect-Oriented Approach for Developing SAFRAN 87
3.2 Reconfiguration with FScript: The Advice Language

FScript is a domain-specific language [6] we designed to program the Fractal com-
ponents reconfigurations. FScript is a simple procedural language with dynamic
typing and lexical scoping, which gives access to all the standard operations
supported by Fractal components: creation of new components, architecture in-
trospection and reconfiguration of this architecture by manipulating composites’
content and bindings between interfaces. The main features of FScript are (i) a
special notation to navigate easily in the Fractal architecture of the base pro-
gram, and (i) the guarantee that reconfigurations always leave the application
in a consistent state. Although it has been designed to be used in SAFRAN,
FScript can also be used by itself as a scripting language to program consistent
Fractal components reconfigurations.

The FPath Notation. FScript uses a special syntax, FPath (inspired by the
XPath language [13]), to easily navigate in Fractal architectures without modi-
fying it and select elements (components, interfaces or configuration attributes)
matching certain criteria. The language is based on a model of Fractal archi-
tectures as a (virtual) directed graph where nodes represent components, their
interfaces and attributes, and where arcs are annotated by labels to denote the
kind of relation between two nodes (C'1 “is a sub-component of” C2, I1 “is bound
to” I2...). In addition to basic expressions (arithmetic, boolean and compari-
son operators. ..), FPath expression can denote relative paths (starting from an
initial node). Such a path is a series of steps, each made of three elements: axis:
:test [predicate]. On each step, an initial set of nodes is converted to a new
set by following all the arcs with a label corresponding to the axis, then filtering
the result using the test (on the node names) and optional predicates (boolean
FPath expressions applied to each candidate). More precisely, the evaluation
algorithm for one step is the following:

P1. [Initialisation| result < 0.
P2. [Selection] Select every node connected to any of the current ones through

an arc whose label matches the axis part: result «— U{n : ¢ 3 n,c €
current}.

P3. [Test] If the test part is an identifier (as opposed to *), remove from result
the nodes whose name do not match: result — {n € result : name(n) =
test}.

P4. [Filtering] Only keep the elements for which all predicates hold: result «—
{z € result : pred;(x) A --- A pred,(z)}.

P5. [End| The algorithm finishes and returns result.

For a multi-step path, this algorithm is repeated with the result of the previous
step as the current node-set of the next.

FPath offers a set of axes to navigate in Fractal architectures, by selecting a
component’s interfaces (interface axis), configuration attributes (attribute),

88 P.-C. David and T. Ledoux

direct sub-components (child) or parents® (parent), and following the binding
of an interface (binding). It is also possible to select in one step all the direct and
indirect sub-components (resp. parents) of a component with the descendant
(resp. ancestor) axis, which is the transitive closure of child (resp. parent).

For example, the FPath expression child::server/attribute::cache-
Enabled first selects all the sub-components of the initial node(s) named server
(test on the node name), then selects its configuration attribute named cache-
Enabled. Using the same logic, the expression count (interface: :*[required
(.) and not(bound(.))]) > Oreturns true if and only if the initial component
has required interfaces which are not yet connected (the dot “.” in predicates
denote the current node to which it is applied).

FScript Actions. FScript is used to define reconfiguration actions, combining
FPath expressions, primitive actions, simple control structures (sequence, choice,
finite iteration) and variables manipulation. All the dynamic reconfiguration
operations supported by Fractal components are available to FScript program
as predefined, primitive actions, including the attach() and detach() actions
introduced by SAFRAN to control the (runtime) weaving of adaptation policies
to components. The following example shows an FScript action which could be
used to adapt a component.

// Changes a cache’s replacement strategy.
action select-strategy(cache, strat) = {
// Gets the cache’s client interface to the strategy
itf := $cache/interface::strategy;
if (bound($itf)) { // Is it already bound to a server interface?
// Unbind it and stop the now unused component.
previous := $itf/binding::*;
unbind($itf);
stop($previous/component: : *) ;
}
// Binds the cache client interface to the
// appropriate server interface on $strat.
bind($itf, $strat/interface::replacement-strategy);
// Make sure the strategy component is started.
start($strat) ;

This action can be used to change the replacement strategy used by a cache
component by modifying the binding between the cache and the strategy com-
ponent. It uses FPath expressions to navigate in the application’s structure, and
primitive actions corresponding to operations supported by Fractal components
(bind (), stop()...). Although this action is relatively specific to a given appli-
cation, FScript can be used to program more generic reconfigurations (replacing
a component by another for example) which can then be reused in multiple
application (architectural patterns).

! Fractal supports component sharing, so a component can have multiple parents.

An Aspect-Oriented Approach for Developing SAFRAN 89

Guarantees. FScript’s design and implementation guarantee the consistency
of reconfigurations. Because these reconfigurations are meant to adapt running
applications, we must guarantee that reconfiguration will not break the target
application. To this end, we have chosen a set of consistency criterion, in partic-
ular transactional integrity (atomicity, consistency of the final state, isolation)
and termination of the reconfigurations. The validation of these criteria is guar-
anteed in part by the language’s structure itself, whose expressive power has
been limited, and in part by the implementation. More precisely:

— The definition of (directly or indirectly) recursive actions is forbidden, and
the only control structure available for iteration, a for each loop, iterates
on the result of an FPath expression, which always returns a finite set of
nodes. These constraints guarantee actions’ termination, although they do
not provide a time bound.

— During the execution of a reconfiguration, the language interpreter keeps a
complete journal of all the primitive actions performed, together with enough
information to revert them. As soon as an error occurs, the interpreters uses
this journal to roll-back the current reconfiguration and return to the initial
state. Given that all the primitive Fractal reconfigurations are themselves
atomic and reversible, this guarantees the atomicity of FScript reconfigura-
tions.

— At the end of a reconfiguration, the interpreter checks that the current
configuration is consistent, i.e. that all the required client interfaces are cor-
rectly bound to a corresponding server interfaces and that all the components
which have been temporarily stopped during the reconfiguration can safely
be restarted. If this is not the case, the interpreters cancels the reconfigura-
tion and rolls back to the initial state, thus ensuring the consistency of the
application.

— Finally, the isolation of reconfigurations is currently guaranteed by globally
serializing them. This works, but is highly sub-optimal and may be enhanced
in future works.

3.3 Internal and External Events as Join-Points

We now describe the join-points supported by SAFRAN to trigger the adaptation
actions’ execution. Following the EAOP approach [9], we consider these join-
points as event occurrences. Although traditional join-points only account for
the execution of the base program, we extended the domain of events to consider
with external events corresponding to changes in the execution context.

Whether they are internal or external, all event occurrences in SAFRAN are
represented as objects with a set of properties. Some of these properties are
present on every event while some are specific to certain kinds of events. Common
properties are: the type of the event, as a string; the source of the event, which
can be either a component or an element of the execution context (see below);
and a timestamp indicating the time of occurrence of the event.

Event specification and detection is realized by event descriptors, for which
the exact syntax depend on the type of event, but always follow the same

90 P.-C. David and T. Ledoux

general form event-type (parameters). Thus, the descriptor changed(sys://
storage/memory#free) allows to detect the variations in the quantity of mem-
ory available on the system.

Internal Events. Internal events are execution points in the base program,
which in our case is a set of Fractal components. The first three types of inter-
nal events, message-received, message-returned and message-failed, cor-
respond respectively to the reception of a message, the successful return of a
message and the throwing of an exception. The descriptors for these three kinds
of events share the same parameters, expressed using FPath, to indicate which
interfaces and methods should be monitored. For example, message-received(
$c/interface: :logger) can be used to detect invocations on any method of the
logger interface of component $c, while message-failed($c/interface: : %)
detects errors on any interface of the same component.

The other internal event types correspond to the possible reconfigurations of
Fractal components : component creation, life-cycle changes (component started
or stopped), configuration (changes in configuration parameters), content ma-
nipulation (addition and removal of sub-components) and finally creation and
destruction of bindings. Each of the corresponding descriptor takes arguments to
specify which components, interfaces or attributes to monitor. Thus, the descrip-
tor component-started($c/child: :*) detects when any direct sub-component
of $c is started.

The implementation of these events is based on the instrumentation of Frac-
tal controllers, for example the components’ lifecycle-controller is instru-
mented to generate component-{started,stopped} events.

External Events. In order to detect the occurrence of external events we first
need to reify the application’s execution context, which is normally implicit. To
do this, we use WildCAT [14], a system we designed to ease the creation of
context-aware applications [1]. WildCAT is used by SAFRAN to observe the
execution context and to notify the occurrence of the external events which can
trigger the execution of reconfigurations. As was the case for FScript, WildCAT
can actually be used independently.

WildCAT models the execution context as a set of context domains, each rep-
resenting a particular aspect of the context, for example hardware resources,
network, geo-physical information, etc. Each of these context domains is it-
self modeled as a tree of resources described by a set of attributes (simple
(name, value) pairs). The syntax used to denote resources and attributes is in-
spired by that of URIs: domain://path/to/resource#attribute (#attribute
being optional). For example, sys://storage/drives/hdc#removable indicates
whether the hdc drive is removable.

The context model provided by WildCAT changes dynamically to reflect
changes in the actual execution context: attributes values can change, attributes
and resources can appear or disappear at any moment. All these modifications
generate external events which can be detected by an adaptation policy. The
different types of external events supported by SAFRAN are:

An Aspect-Oriented Approach for Developing SAFRAN 91

changed (expression) : detects any modification of the value of the expression,
which can reference any attribute or resource in the context?, for exam-
ple changed(geo://location/logical#room). Expressions to monitor are
written in a simple language which, in addition to references to context
locations, supports strings, numbers, arithmetic and boolean operations,
comparisons and function calls.

realized(condition) :detects the occurrence of a boolean condition, for exam-
ple realized(sys://storage/memory#free > 2*sys://storage/swap#
used). This is actually a particular case of changed which only detects
changes from false to true.

appears (path) and disappears(path) : detects the appearance or disappear-
ance of a resource or attribute in the context. The path expression can
be a joker character “*” as its last element. For example appears(sys://
devices/input/*) detects the apparition of any new input device.

3.4 Adaptation Policies: The Adaptation Aspect Language

Adaptation Aspect Syntax. Conforming to the reactive nature of the adap-
tation process, adaptation policies in SAFRAN are structured as sets of reactive
rules of the form

when <event> if <condition> do <action>

where <event> is an (internal or external) event descriptor® (cf. Sect. 3.3) cor-
responding to a point-cut, <condition> is a boolean FPath expression (without
side-effects), and <action> is an FScript reconfiguration (cf. Sect. 3.2) corre-
sponding to the aspect’s advice.

This type of rules is inspired by what can be found in Active Databases [15]
under the name of ECA (Event, Condition, Action) rules. An adaptation rule in-
dicates that when an event corresponding to the <event> expression occurs, if the
<condition>expression holds, then the <action>reconfiguration is applied, thus
adapting the target application to the new conditions resulting from the event.

In the SAFRAN system, the adaptation policies which are dynamically at-
tached to Fractal components are made of (ordered) sequences of adaptation
rules:

policy example = {
rule { when <eventl> if <cond1> do <actionl> }
rule { when <event2> if <cond2> do <action2> }

As an adaptation policy is always executed when attached to a target com-
ponent, a special variable named $target can be used inside rules to access

2 WildCAT automatically re-evaluates expressions when any element it depends on
changes.

3 In the future, we plan to extend this model to support more complex point-cuts,
especially hybrid point-cuts which mix internal and external events and would allow
finer coordination between the execution of adaptation code and the base program.

92 P.-C. David and T. Ledoux

the component to which the policy is attached; it is akin to self of this in
object-oriented languages.

Figure 2 summarizes the event/control flow between the different parts of
SAFRAN. Internal events are generated by instrumentation code inside Fractal
components, and external events are detected by WildCAT. These events are
routed to the appropriate adaptation controllers, which uses its current rules
to decide which adaptations to perform. These decisions are finally applied by
executing FScript reconfigurations.

~SAFRAN

Self-Adaptive FRActal comp

Adaptation |decisions .
Controller > FScript

external ,‘ k‘ internal §
events ,/ ~\ events reconfigurations

/ "\
Vi \

Standard Fractal Model
+

WildCAT

instrumentation

Fig. 2. Flow of events in SAFRAN

Weaving the Adaptation Aspect. SAFRAN introduces an extension to the
Fractal model which enables the dynamic attachment (weaving) of adaptation
policies (aspects) to components (base program). Like most Fractal extensions, it
takes the form of a new control interface, in this case adaptation-controller.
It is this controller, present on each self-adaptive component, which implements
the weaving of adaptation policies into the target component, thus making it self-
adaptive: whereas a standard Fractal component can be adapted by an external
entity (through its standard control interfaces), a SAFRAN component embeds
the adaptation code itself and becomes autonomous, actor of its own adaptation.

The AdaptationController interface (see below) enables the dynamic at-
tachment (weaving) of one or several adaptation policies to each SAFRAN com-
ponent. This interface can be seen as a special case of an aspect weaving interface,
where attachFcPolicy () and detachFcPolicy() correspond to specialized ver-
sions of more general weave (Aspect) and unweave (Aspect) operations:

public interface AdaptationController {
void attachFcPolicy(AdaptationPolicy policy);
void detachFcPolicy(AdaptationPolicy policy);
AdaptationPolicy[] getFcPolicies();

}

When a policy is attached to a component, the component’s adaptation con-
troller analyzes it, and depending on the join-points mentioned in the rules,
instruments the target component to generate the appropriate internal events
and registers itself with WildCAT to be notified of the external events. After
this initialization, when the adaptation controller receives events, be they inter-
nal or external, it determines the appropriate reaction according to the current

An Aspect-Oriented Approach for Developing SAFRAN 93

set of policies and rules on the target component (see below), and then executes
this reaction in order to adapt the component to the new circumstances. This
execution schema matches the reactive nature of the adaptation process, with
the same three phases: observation, decision, action.

Aspect Composition Model. To handle multiple advices affecting the same
join-point, SAFRAN provides an ad hoc aspect composition model. Indeed, a
policy (aspect) can be made of several rules, a component can have multiple
policies attached at the same time, and of course an application can contain many
self-adaptive components. SAFRAN defines the following composition rules to
manage the interactions between these different elements when several rules are
triggered by the same event:

— Inside a given policy, the rules’ reactions are composed in sequence, in the
textual order of their definition, and executed in a single reconfiguration
transaction. The rationale is that a given policy should implement a consis-
tent, self-contained adaptation, and its (single) author can be expected to
foresee the rules’ interactions.

— On a single component, the competing reactions of multiple policies are
also executed in sequence, but each in its own reconfiguration transaction.
The effects of a single policy’s failure is thus isolated. This is important as
policies developped independently can be attached to the same component.
The order in which the policies’ reactions are executed depend in the order
of their attachment: the oldest policies are executed first. The rationale is
that once a policy P is attached to component C, the resulting component
C’ must be considered as a self-contained black-box by the next policies, and
hence P has a greater priority over the policies attached later.

— Finally, when multiple components must react to a single event, their re-
actions are executed in an order defined by the components’ composition
relations: subcomponents are adapted before their parents. The rationale is
similar to the previous one: in a component-base approach, when a composite
includes a subcomponent, it should treat it as a black-box.

Although these rules are designed to be the most general possible, there are
situations in which they are not appropriate. One of the main future directions
of our work is the extend the execution model of our reactive rules to provide
more flexibility on the semantics of composition. The challenge is to do this while
without making the policies language too complex for the end users.

4 Example

The example application we chose to illustrate the use of SAFRAN is a small web
server named Comanche, implemented by E. Bruneton as a tutorial on the use
of Fractal. Comanche, being extremely simple, does not integrate a file cache
mechanism. In order to improve its performances, we thus add a new cache
component in Comanche. The cache performances depends on the amount of

94 P.-C. David and T. Ledoux

memory it can use. If this amount is too low, the system will not use all the cache
potential. If it is too high, performances can be even lower, as the cache will force
the operating system to use slow virtual memory (swap). The amount of memory
we should allocate to the cache depends on the amount of free memory available
on the host system, which varies dynamically and unpredictably. Our adaptation
policy will thus have to dynamically adapt the maximum amount of memory
allocated to the cache component in order to guarantee good performances in
every circumstances. The introduction of a cache component in Comanche is
very simple, as it only requires to modify the application architecture defined
using Fractal’s ADL (Architecture Description Language), after having coded
the cache component itself, of course.

The cache component exposes two parameters accessible through its
attribute-controller interface, currentSize and maximumSize, indicating
respectively the current and maximum amount of memory the cache uses; only
maximumSize is writable. The policy works by adjusting the value of maximumSize
depending on the amount of free memory on the host system, which WildCAT
makes available as sys://storage/memory#free. We now have all the informa-
tion we need to write the adaptation policy:
policy adaptive-cache = {

rule {
when realized(sys://storage/memory#free < 10%1024)
do { to-free := 10%1024 - sys://storage/memory#free;
size := $target/cache/attribute::currentSize - $to-free;
if ($size < 500) {
set-value($target/cache/attribute: :maximumSize, 0);
disable-cache($target);
} else {
set-value($target/cache/attribute: :maximumSize, $size);
}
}}
rule {
when mem:changed(sys://storage/memory#free)

if (sys://storage/memory#free >= 10%1024)
do { enable-cache($target);

current := $target/cache/attribute::currentSize;
size := 0.8 * ($mem.new-value + $current);
max := sys://storage/memory#used - $current + $size;

if ($max < sys://storage/memoryQ@total - 10%1024) {
set-value($target/cache/attribute: :maximumSize, $size);
}
}r}

This file uses two user-defined FScript actions (code not shown for space
reasons): the first one, disable-cache, disables the cache component by dis-
connecting it while the second action, enable-cache, re-introduces it in the
components’ pipeline. The first rule is triggered when the total amount of avail-
able memory drops below 10Mb. When this happens, the reconfiguration action
tries to free memory by reducing the size of the cache, or even disabling it com-
pletely below a certain size. The second rule is triggered whenever the amount
of memory changes* but is more than 10 Mb. In this case, the reconfiguration

4 In practice, such an event is not generated each time the amount of free memory
changes, but only when such a change is detected. The sampling rate and hence the
system performance depends on how the corresponding sensor is configured.

An Aspect-Oriented Approach for Developing SAFRAN 95

adjusts the maximum cache size to use 80% of the total amount available, but
only if this leaves enough free memory to the rest of the system.

This example policy illustrates (i) a point-cut based on two types of exter-
nal events (realized and changed); (i) two kinds of reconfiguration actions:
parameterization and bindings manipulation. Not only the reconfiguration is dy-
namic, but thanks to the dynamic weaving process in SAFRAN, the policy can
be updated during the execution of the base application, which is essential when
developing open systems.

5 Related Work

In the last few years, numerous works have tried to make software more adapt-
able, in particular to take into account the needs of mobile computing and au-
tonomous applications [2]. The most promising approach seems to be the use
of dynamic and extensible component models, which enable the integration of
non-functional services in a way that is adapted to the specific needs of applica-
tions, and most importantly allow dynamic reconfigurations of the application
itself [16]. Some works, like ACEEL [17] or K-Components [3] are based on cus-
tom component model which impose a specific way of structuring applications.
Others use existing component models but restrict themselves to particular ap-
plication domains: for example PLASMA [18] which is based on Fractal like
SAFRAN but limited to multimedia stream processing.

Concerning the adaptation aspect itself, Cilia et al. [19] have shown the links
existing between AOP and reactive rules from active databases, particularly in
the context of autonomous applications. Indeed, applications must be reactive
in order to adapt themselves to their context, and the underlying principles of
AOP allow us to introduce this reactivity in base programs in a non-invasive way.
However, the authors only present abstract concepts where SAFRAN provides
a concrete implementation.

We can also note the existence of FAC [20] and Fractal-AOP [21], two ex-
tensions of the Fractal model for general AOP. Although SAFRAN is heavily
inspired by AOP, SAFRAN’s goal is to enable the creation of self-adaptive ap-
plications, and AOP is simply a convenient framework used to structure and
describe the system. The difference between the FAC/Fractal-AOP approach
and SAFRAN’ approach is essentially the same as between a general-purpose
programming language, powerful but generic, and a DSL, more limited but bet-
ter suited to its particular objective.

6 Conclusion and Future Works

In this paper, we have shown how AOP principles can be used to ease the creation
of self-adaptive applications. On a conceptual level, we have shown that adap-
tation can be considered as a cross-cutting concern and that it is possible to use
AOP’s concepts (base program, point-cuts, advices and weaver) in this particular

96 P.-C. David and T. Ledoux

case to model the adaptation aspect. In order to support self-adaptive applica-
tions, we have extended the traditional notion of join-points beyond internal
events related to the program’s execution to include external events correspond-
ing to changes in the execution context. Regarding the advices, we have on the
contrary chosen to restrict the expressive power of our reconfiguration actions
by designing a Domain-Specific Language (FScript) which can offer guarantees
on the consistence of adaptations.

On a more concrete level, we have then described SAFRAN, an extension
of the Fractal model which implements this approach and enables the modu-
lar development of reactive adaptation policies. The main features of SAFRAN
are (i) the decoupling of adaptation policies from business components, (i) a
Domain-Specific Language based on reactive rules to express these policies, and
(i1i) a completely dynamic approach, where policies and reconfiguration actions
— even ones which where not anticipated at compile-time — can be defined, loaded
and applied during the execution of the target application without stopping it.
Another interesting feature of SAFRAN is its modular design, with subsystems
(WildCAT and FScript) which can be reused independently.

One of our future goals is to extend the principles of SAFRAN to allow the
adaptation of distributed applications. We do not anticipate major structural
changes in the system, but incremental evolutions of its different parts. A first
step would be to extend FScript to support distribution-aware reconfigurations,
like for example component migration and distributed bindings. New WildCAT
context domains will have to be implemented to share information between re-
mote nodes; different strategies are possible with varying degrees of invasiveness
(see [14]). Finally, the execution model of adaptation policies itself will have to
be extended to support coordinated adaptation of remote components.

References

1. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: Workshop on The What, Who, Where, When, and How of Context-
Awareness, as part of CHI 2000, The Hague, The Netherlands (2000)

2. Kephart, J.: A vision of autonomic computing. In Gabriel, R.P.; ed.: Onward!
proceedings from an OOPSLA 2002 track, Seattle, WA, USA, ACM (2002) 13-36

3. Dowling, J., Cahill, V.: The K-Component architecture meta-model for self-
adaptive software. In: Proceedings of Reflection 2001, The Third International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns.
Volume 2192 of LNCS., Springer-Verlag (2001) 81-88

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: European Conference on Object-
Oriented Programming (ECOOP). Volume 1241 of LNCS., Springer-Verlag (1997)

5. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: An open com-
ponent model and its support in java. In: Proceedings of the 7th International Sym-
posium on Component-Based Software Engineering (CBSE 2004). Volume 3054 of
LNCS., Edinburgh, Scotland, Springer-Verlag (2004) 7-22

6. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices 35(6) (2000) 26-36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

An Aspect-Oriented Approach for Developing SAFRAN 97

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In Knudsen, J.L., ed.: ECOOP 2001. Volume 2072 of LNCS.,
Springer-Verlag (2001) 327-353

Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and
obliviousness. In: Workshop on Advanced Separation of Concerns. (2000) Min-
neapolis.

Douence, R., Fradet, P., Stidholt, M.: A framework for the detection and resolution
of aspect interactions. In: Generative Programming and Component Engineering
GPCE 2002. Volume 2487 of LNCS., Pittsburgh, PA, USA, Springer-Verlag (2002)
173-188

David, P.C.: Développement de composants Fractal adaptatifs : un langage dédié
a laspect d’adaptation. PhD thesis, Université de Nantes / Ecole des Mines de
Nantes (2005)

Aldrich, J., Chambers, C., Notkin, D.: Architectural reasoning in ArchJava. In:
Proceedings of ECOOP’2002, Malaga, Spain, AITO (2002)

Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of applica-
tion behaviour. In: Proceedings of ECOOP 2002. Volume 2374 of LNCS., Malaga,
Spain, Springer-Verlag (2002) 205-230

World Wide Web Consortium: XML path language (XPath) version 1.0. W3C
Recommendation (1999) http://www.w3.org/TR/xpath.

David, P.C., Ledoux, T.: WildCAT: a generic framework for context-aware applica-
tions. In: Proceeding of MPAC’05, the 3rd International Workshop on Middleware
for Pervasive and Ad-Hoc Computing, Grenoble, France (2005)

Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system
manifesto: A rulebase of a ADBMS features. In: International Workshop on Rules
in Database Systems. Volume 985., Springer-Verlag (1995) 3-20

McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing adaptive
software. IEEE Computer 37(7) (2004) 56—64

Chefrour, D., André, F.: Développement d’applications en environnements mobiles
a laide du modéle de composant adaptatif ACEEL. In: LMO 2003, Vannes, Hermés
(2003)

Layaida, O., Hagimont, D.: Designing self-adaptive multimedia applications
through hierarchical reconfiguration. In: Distributed Applications and Interop-
erable Systems (DAIS). Volume 3543 of LNCS., Athens, Greece, Springer-Verlag
(2005) 95—

Cilia, M., Haupt, M., Mezini, M., Buchmann, A.: The convergence of AOP and ac-
tive databases: Towards reactive middleware. In: Proceedings of GPCE’03. Volume
2830 of LNCS., Erfurt, Germany, Springer-Verlag (2003) 169-188

Pessemier, N., Seinturier, L.: Components, ADL & AOP: Towards a common
approach. In: Reflection, AOP and Meta-Data for Software Evolution Workshop
at ECOOP 2004 (RAM-SE’04), Oslo, Norway (2004)

Fakih, H., Bouraqadi, N.: Les aspects et les composants logiciels : Etude de cas
avec le modéle de composant Fractal. Numéro spécial de la revue L’Objet sur les
aspects 11(3) (2005) 1-17 In French.

Aspects of Composition
in the Reflex AOP Kernel

Eric Tanter*

DCC — University of Chile
Avenida Blanco Encalada 2120 — Santiago, Chile
etanter@dcc.uchile.cl

Abstract. Aspect composition is a challenging and multi-faceted issue,
generally under-supported by current AOP languages and frameworks.
This paper presents the composition support provided in Reflex, a versa-
tile kernel for multi-language AOP in Java. The core of Reflex is based on
a model of partial reflection whose central abstractions are links: bind-
ings between a (point)cut and an action. Reflex supports the definition of
aspect languages through the mapping of aspects to links. We overview
the wide range of features for link composition in Reflex—which includes
extensible operators for ordering and nesting of links, and control over
the visibility of changes made by structural aspects—, illustrating how
they can be used to implement various scenarios of aspect composition.

1 Introduction

Aspect-Oriented Programming (AOP) provides means for proper modularization
of crosscutting concerns [17]. As a matter of fact, in a typical application, many
crosscutting concerns can be identified and modularized as aspects. This raises
the issue of aspect composition, which includes questions such as: how to ensure
that aspects are properly composed? Furthermore, since the points where an
aspect applies (the cut of the aspect) are usually specified intensionally, how can
programmers know that two aspects are affecting the same program point?

The issue of aspect composition was first analyzed in [6], where a classifi-
cation of conflicts between aspects is proposed. Three classes of conflicts are
identified: (a) inherent conflicts, related to the incompatibility of two aspects,
(b) accidental conflicts, when two aspects happen to apply at the same program
point or have semantical conflicts, and (¢) spurious conflicts, which are conflicts
that are detected whereas they are not actual conflicts. All in all, a number
of approaches to aspect composition have been proposed, usually focusing on a
particular dimension of aspect composition.

First of all, two aspects that apply to the same program points (text or ex-
ecution) are said to interact; in other words, the intersection of their cut is not
empty. When two aspects interact, there are two possibilities: either they are in-
compatible, and hence a mutual exclusion has to be specified [5, 10, 21], so as to

* E. Tanter is partially financed by the Milenium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile.

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 98-113, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Aspects of Composition in the Reflex AOP Kernel 99

retract one of the aspects, or to raise an error. Otherwise, if both aspects should
be applied, their order of application must be specified [5, 10, 31]. If aspects can
act around an execution point of a program, then the notion of nesting appears,
typically associated with a proceed-like mechanism [20, 31].

Furthermore, one may need to define that an aspect should apply whenever
another applies [5, 10] (aka. implicit cut), or that an aspect applies onto another
aspect [10, 5], for instance using a logging aspect to monitor the effectiveness
of a caching aspect (aka. aspects of aspects). Finally, in AOP approaches where
structural modifications can be done to a base program (e.g. adding members to
a class), the visibility of these changes to other aspects should be controllable [8].

Finally, the aspect composition problem can be divided in two parts: that of
the detection of aspect interactions, and that of their resolution. SOUL/Aop [5],
as well as AspectJ, only address means to specify composition, while Klaeren
et al. [21] focus on means to detect interactions. Concrete approaches to detec-
tion all deal with conflicts of aspects over a shared program point; being able
to detect semantic interactions between two aspects that do not interact from
a weaving point of view is to our knowledge not addressed by any proposal, as
in the general case it is undecidable. If aspects are expressed using limited ac-
tion languages, static analysis may be able to detect most semantic interactions
(see [15] for an effort in this direction). Using static analysis in presence of
Turing-complete aspect languages (at least for the part specifying the actions of
aspects) is an open issue. It is also generally admitted that automatic resolution
is not feasible; an exception to this is the approach of [15], where the limited
expressiveness of the aspect language is used to automatically determine and
resolve interactions between aspects. Nevertheless, in a general setting, unless it
can be proven that the aspects commute, the resolution of their interaction has
to be specified explicitly [10].

We are not aware of any proposal addressing all these dimensions. For in-
stance, AspectJ [20] does not provide any support for mutual exclusion and
visibility of aspectual changes, and is limited in terms of aspects of aspects and
ordering/nesting of aspects. Furthermore aspect interactions are not detected.
Other proposals are thoroughly discussed in Section 7. This paper presents the
different mechanisms for aspect composition in Reflex!, a versatile kernel for
multi-language AOP [29]2. Reflex supports:

automatic detection of aspect interactions limiting spurious conflicts;
— aspect dependencies, such as implicit cut and mutual exclusion;

extensible composition operators for ordering and nesting of aspects;
— control over the visibility of structural changes made by aspects;
— aspects of aspects.

! http://reflex.dcc.uchile.cl/

2 In [29], we only discuss the issue of ordering/nesting of aspects, not the other dimen-
sions. Furthermore, the part on ordering/nesting of this paper includes a number of
corrections and improvements over the previously-presented work.

100 E. Tanter

The major contributions of this work are a very flexible solution for ordering
and nesting of aspects, and an initial solution for the under-explored issue of
how structural changes made by aspects affect other aspects.

In Section 2, we briefly explain the idea of multi-language AOP, and its
incarnation in the Reflex AOP kernel for Java. We then discuss the different
aspects of composition in Reflex: aspects of aspects (Sect. 3), aspect dependen-
cies (Sect. 4), ordering/nesting of aspects (Sect. 5), and visibility of structural
changes (Sect. 6). We then review in Section 7 the literature in the area of aspect
composition, highlighting the differences with our work. Section 8 concludes.

2 Multi-language AOP and Reflex

This section briefly introduces the necessary background concepts on multi-
language AOP and the Reflex AOP kernel.

2.1 Multi-language AOP

In previous work [28, 29], we have motivated the interest of being able to define
and use different aspect languages, including domain-specific ones, to modularize
the different concerns of a software system. We have proposed the architecture
of a so-called wversatile kernel for multi-language AOP, and our current Java
implementation, Reflex.

An AOP kernel supports the core semantics of various AO languages through
proper structural and behavioral models. Designers of aspect languages can
experiment comfortably and rapidly with an AOP kernel as a back-end, as it
provides a higher abstraction level for transformation than low-level transforma-
tion toolkits. The abstraction level provided by our kernel is a flexible model of
partial behavioral reflection [30], extended with structural abilities. Furthermore,
a crucial role of an AOP kernel is that of a mediator between different coexist-
ing AO approaches: detecting interactions between aspects, possibly written in
different languages, and providing expressive means for their resolution.

i i I . .
| plugin architecture | languages O O _________ metaob]ec'zl advice

At pointcut
| (__detection) (_resolution) | composition activation :
condition residue

]
wanstormation /" CLLITD /. nooset | shacow

Fig. 1. Architecture of a versatile kernel Fig.2. The link model and correspon-
for multi-language AOP dence to AOP concepts

The architecture of an AOP kernel consists of three layers (Fig. 1): a trans-
formation layer in charge of basic weaving, supporting both structural and be-
havioral modifications of the base program; a composition layer, for detection

Aspects of Composition in the Reflex AOP Kernel 101

and resolution of aspect interactions; a language layer, for modular definition of
aspect languages (as plugins). It has to be noted that the transformation layer
is not necessarily implemented by a (byte)code transformation system: it can
very well be integrated directly in the language interpreter (VM). As a matter
of fact, the role of a versatile AOP kernel is to complement traditional proces-
sors of object-oriented languages. Therefore, the fact that our implementation
in Java, Reflex, is based on code transformation should be seen as an implemen-
tation detail, not as a defining characteristic of the kernel approach.

2.2 Reflex in a Nutshell

Reflex is a portable library that extends Java with structural and behavioral
reflective facilities. Behavioral reflection follows a model of partial behavioral
reflection presented in [30]: the central notion is that of explicit links binding a
set of program points (a hookset) to a metaobject. A link is characterized by a
number of attributes, among which the control at which metaobjects act (before,
after, around), and a dynamically-evaluated activation condition. Fig. 2 depicts
two links, one of which is not subject to activation, along with the correspon-
dence to the AOP concepts of the pointcut/advice model. Note that our view of
AOP is inherently related to metaprogramming: an aspect cut is realized by in-
trospection of a program (both structure and execution), and its action consists
of behavioral/structural modifications (intercession). Reflex does not impose a
specific metaobject protocol (MOP), but rather makes it easy to specify tailored
MOPs, which can coexist in a given application. This means that one can spec-
ify, on a per-link basis, the exact communication protocol (which method to call
with which arguments) with the metaobject. A detailed case study of supporting
the dynamic crosscutting of AspectJ in Reflex can be found in [25].

The aforementioned links are called behavioral links to distinguish them from
structural links, which are used to perform structural reflection. A structural link
binds a set of classes to a metaobject, which can both introspect and modify class
definitions via a class-object structural model similar to that of Javassist [7]: an
RPool object gives access to RClass objects, which in turn give access to their
members as RMember objects (either RField, RMethod, or RConstructor), which
in turn give access to their bodies as RExpr objects (with a specific type for each
kind of expression). These objects are causally-connected representations of the
underlying bytecode, offering a source-level abstraction over bytecode.

Reflex is implemented as Java 5 instrumentation agent operating on bytecode,
typically at load time. The transformation process consists, for each class being
loaded, of (1) determining the set of structural links that apply to it, and applying
them, and (2) determining the set of behavioral links and installing them. The
reason of this ordering is discussed in Section 6. During installation of behavioral
links, hooks are inserted in class definitions at the appropriate places in order
to provoke reification at runtime, following the metaobject protocol specified for
each link.

102 E. Tanter

2.3 From Aspects to Links

As said above, Reflex relies on the notion of an explicit link binding a cut to an
action. Links are a mid-level abstraction, in between high-level aspects and low-
level code transformation. How aspect languages are defined and implemented
over the kernel is out of the scope of this paper (preliminary elements can be
found in [29]). Composition of aspects at the kernel level is expressed in terms
of link composition, which is the central matter of this paper.

A simple AspectJ aspect, comprising of a single advice associated to a simple
pointcut (with no higher-order pointcut designator), is straightforwardly im-
plemented in Reflex with a link (as in Fig. 2). However, most practical AOP
languages, like AspectJ, make it possible to define aspects as modular units
comprising more than one cut-action pair. In Reflex this corresponds to differ-
ent links, with one action bound to each cut. Furthermore, AspectJ supports
higher-order pointcut designators, like cflow. In Reflex, the implementation of
such an aspect requires an extra link to expose the control flow information.
There is therefore an abstraction gap between aspects and links: a single aspect
may be implemented by several links. This abstraction gap is the matter of the
language layer, as discussed in [29)].

3 Aspects of Aspects

Defining aspects of aspects, i.e. aspects that apply to the execution of other
aspects, is a feature that can be useful to handle crosscutting in aspects them-
selves [5, 13, 10]. For instance, a profiling aspect monitoring the efficiency of
a caching aspect. Another example is an aspect resolving an accidental se-
mantical conflict between two aspects [6]. Unsurprisingly, Reflex supports as-
pects of aspects, a feature supported by almost every AOP proposal (e.g. the
adviceexecution pointcut descriptor of AspectJ). A link A can apply to the
action of another link B by having the cut of A matching operations that oc-
cur in the metaobject associated to B. Since metaobjects are standard objects,
a link can apply not only on the execution of the metaobject methods (simi-
larly to adviceexecution in AspectJ), but also to all other operations occuring
within the metaobject: field accesses, created objects, messages sent, etc. There
is indeed no difference between controlling the execution of a base application
object and that of a metaobject.

A distinguishing feature of aspects of aspects in Reflex comes if we con-
sider aspects acting around an execution point, for instance a caching aspect.
Typically, a caching aspect holds cached values, and when a cache fault occurs,
the aspect invokes the original operation via proceed. Such a proceed is done
in Reflex via calling the proceed method of an execution point closure (EPC)
object, which a metaobject can request. If we want to profile the caching aspect
to determine the ratio of cache hits/faults, we can define a profiling aspect that
matches execution of the caching method, and separately, that of the proceed
method on the EPC object. This definition is not feasible in AspectJ, because
proceed is a special expression that is not visible to other aspects.

Aspects of Composition in the Reflex AOP Kernel 103

4 Aspect Dependencies

Aspect dependencies can be of two kinds: implicit cut (“apply A whenever B
applies”) and mutual exclusion (“never apply A if B applies”). These dependen-
cies between aspects are mentioned in [5, 10, 21]. In addition, we also consider
the case of forbidden interactions, an error mechanism to forbid two aspects to
interact [6].

4.1 Implicit Cut

An implicit cut is obtained by sharing the cut specification between two aspects:
In AspectJ, this is done by sharing pointcuts; in Reflex, by sharing hooksets
(pointcut shadows) and activations (pointcut residues). Consider an e-commerce
application on which we apply a discount aspect that applies to frequent cus-
tomers, implemented by link discount, and a tracing aspect implemented by
the link trace. The following ensures that trace applies whenever discount
does (BLink stands for behavioral link):

BLink trace = Links.get(discount.getHookset(), <mo>);
trace.addActivation(new SharedActivation(discount));

The first line states that trace has the same hookset than discount (<mo>
stands for the metaobject specification, not relevant here). The second line adds
an activation condition, SharedActivation, which ensures that the activation of
trace is that of discount: even if the activation condition of discount evolves
dynamically, the dependency of trace to discount is ensured.

BLink trace = Links.getSameCut(discount, <mo>);

The above getSameCut method is a convenience method equivalent to the pre-
vious version. It just hides to programmers the way the implicit cut is realized.
Finally, note that an implicit cut by definition implies that both aspects apply
at the same points, therefore raising the issue of their ordering/nesting. This is
addressed in Section 5.

4.2 Mutual Exclusion

Mutual exclusion between two aspects is obtained in Reflex by declaring that
a link should not apply if another one does. As an example, consider a bingo
aspect (implemented by a bingo link) that is used in the same application as the
discounting aspect: every 1000 buyings, a big discount is offered. If a frequent
customer happens to be the winner of the bingo, then the standard discount
granted to frequent customers should not apply3. The following statement spec-
ifies that discount should not apply if bingo does:

Rules.declareMutex(discount, bingo);

3 This example is taken from an EAOP illustration [16, 14].

104 E. Tanter

Following this declaration, Reflex acts differently depending on whether the de-
pendent links are subject to dynamic activation or not. If both links are not
activatable (i.e. no pointcut residue), the mutual exclusion dependency can be
resolved at weaving time, when hooks are inserted in the code. If one of them
is indeed subject to dynamic activation, then Reflex postpones the resolution
of the dependency to runtime: when control flow reaches a hook shared be-
tween mutually-exclusive links, the activation condition of the dominant link
(here, bingo) is evaluated, and consequently, only one of the two links is applied
(bingo, or discount if bingo is not active).

In the face of multiple mutual exclusion dependencies, the current algorithm
first sorts out all links which are only dominant and then eliminates dominated
links if their dominant is always active, or adds a dynamic condition to the
dominated links if their dominant is subject to dynamic activation. At each
step, the set of rules that apply is reduced.

For instance, if links A, B and C are interacting and the mutex relations are
mutex(A, B) and mutex(B, C), the algorithm first puts A in the remaining links
set, and removes B from the links to consider (supposing A is always active).
Then, only C and A remain, and since no mutex is declared between both, C
is added to the remaining links. The final solution is therefore A-C. Now, if A
is subject to an activation condition, B is not removed: rather, it is put in the
remaining links, but subject to a dynamic condition on the activation of A. At
the next step, mutex(B, C') applies. Since the application of B depends on that of
A, C would be kept and subject to the activation of B. Consequently, at runtime,
either A-C or B result, depending on whether A is active or not.

Forbidden Interactions. A particular case of mutual exclusion is when in-
teraction between two aspects should be considered an error (aka. an inherent
conflict [6]). In this case, one does not want to specify which link to apply or not,
but rather to raise an exception. This is done in Reflex using declareError:

Rules.declareError(discount, bingo);

Similarly to declareMutex, the effect of declareError can occur at weaving
time if both links are not activatable, or at runtime otherwise. In both cases, a
ForbiddenInteraction exception is thrown.

5 Ordering and Nesting of Aspects

As previously mentioned, the Reflex AOP kernel follows the general approach
advocated by Douence et al., of automatic detection and explicit resolution of
aspect interactions [10]:

— The kernel ensures that interactions are detected, and reported to users upon
under-specification (Sect. 5.1).

— The kernel provides expressive and extensible means to specify the resolution
of aspect interactions (Sect. 5.2).

— From such specifications, it composes links appropriately (Sect. 5.3).

Aspects of Composition in the Reflex AOP Kernel 105

5.1 Interaction Detection

An aspect interaction occurs when several aspects affect the same program point
(execution or structure). Two behavioral links interact statically if the intersec-
tion of their hooksets is not empty. Still, the cut of an aspect may include a
dynamically-evaluated condition (recall Fig. 2): we say that two behavioral links
interact dynamically if they interact statically and they are both active at the
same time. Since link ordering is resolved statically (when introducing hooks)
and activation conditions can be changed dynamically, Reflex adopts a defen-
sive approach: any static interaction is reported, and must be considered by the
developer, so that a dynamic interaction is never under-specified. Our approach
limits the number of spurious conflicts because it is based on the weaving process,
which occurs on a by-need basis. In the presence of open systems with dynamic
class laoding, two aspects that may theoretically interact for a given program (as
in the formal approach of [10]) but do not in a particular run of that program
do not raise detected conflicts.

Two structural links interact if the intersection of their class sets is not
empty. We do not discriminate between static and dynamic interaction, because
structural links are applied directly at load time. At present our approach for
structural link interactions may report spurious conflicts because two links may
affect the same class orthogonally. Finer-grained detection of interactions among
structural links is left as future work.

Upon interactions, Reflex notifies an interaction listener. The default inter-
action listener simply issues warnings upon under-specification (see [29] for an
example), informing the user that specification should be completed. It is possi-
ble to use other listeners, e.g. for on-the-fly resolution.

5.2 Ordering and Nesting

At interaction points, resolution must be specified. If links are mutually exclusive,
specifying their ordering is not necessary*. Otherwise, ordering must be specified;
this section explains how this is done for behavioral links®.

The interaction between two before-after aspects can be resolved in two ways:
either one always applies prior to the other (both before and after), or one
“surrounds” the other [5, 10], although AspectJ only supports wrapping. These
alternatives can be expressed using composition operators dealing with sequenc-
ing and wrapping. Considering aspects that can act around an execution point
(such as a caching aspect), the notion of nesting as in AspectJ appears: a nested

4 We deliberately separate the issue of dependencies from ordering/nesting, although
mutual exclusion and forbidden interactions could be expressed with the operators
explained in this section. The reason is two-fold: first, it is easier and higher-level for
the user to declare dependencies as presented in Sect. 4.2; second, it is more efficient
for the weaver to “sort out” interacting links before trying to order them.

5 The case of structural links is simpler because they are always applied sequentially
at the time a class is about to be loaded; no nesting is involved.

106 E. Tanter

weaving
point
proceed
original
operation
(a) seq(I1,12) (b) wrap(I1,12) (c) wrap(I1,12)
no around with around

Fig. 3. Ordering and nesting scenarios

advice is only executed if its parent around advice invokes proceed. Around
advices cannot be simply sequenced in AspectJ: they always imply nesting, and
hence their execution always depends on the upper-level around advice [31].

In Reflex, link composition rules are specified using composition operators.
The rule seq(l1,l2) uses the seq operator to state that I; must be applied be-
fore lo, both before and after the considered operation occurrence. The rule
wrap(ly,l2) means that I3 must be applied within /1, as clarified hereafter.

Kernel operators. User composition operators are defined in terms of lower-
level kernel operators not dealing with links but with link elements. A link ele-
ment is a pair (link, control), where control is one of the control attributes: for
instance, by (resp. ay) is the link element of Iy for before (resp. after) control.
There are two kernel operators, ord and nest which express respectively ordering
and nesting of link elements. nest only applies to around link elements: the rule
nest(r,e) means that the application of the around element r nests that of the
link element e. The place of the nesting is defined by the occurrences of proceed
within r. Sequencing and wrapping can hence be defined as follows:

seq(ly,le) = ord(by, ba), ord(r1,r2),ord(a1, az)
wrap(ly,la) = ord(by, bs), ord(as, a1), nest(ry, by), nest(ry, r2), nest(ry, az)

Fig. 3 illustrates sequencing and wrapping, showing seq(l1, 1) with all link ele-
ments (a), and the result of wrap(ly,l2) first without around link elements (b),
and then with around link elements (c¢). Weaving points are explained later on.

Composition operators. Reflex makes it possible to define a handful of user
operators for composition on top of the kernel operators. For instance, Seq and
Wrap are binary operators that implement the seq and wrap operators as defined
above:

class Seq extends CompositionOperator {
void expand(Link 11, Link 12){
ord(b(11), b(12)); ord(r(11), r(12)); ord(a(ll), a(l2));
1}

Aspects of Composition in the Reflex AOP Kernel 107

class Wrap extends CompositionOperator {
void expand(Link 11, Link 12){
ord(b(11), b(12)); ord(a(l2), a(ll));
nest(r(11), b(12)); nest(r(11), r(12)); nest(r(11), a(l2));
3

The methods b (before), r (around), a (after), ord, and nest are provided by
CompositionOperator. The expand method, evaluated whenever an interaction
between two links occurs, defines a user operator in terms of kernel operators.
Below is an example of a composition rule declared between two interacting
aspects: a timing aspect measuring method execution time, and a synchroniza-
tion aspect ensuring mutual exclusion of methods. Both aspects act before and
after method executions. The declared composition implies that the timing as-
pect measures execution time of methods, including the synchronization cost:

BLink timer = ...; BLink synchro = ...;
Rules.declare(new Wrap(timer, synchro));

Another example of composition operator is Any: this operator simply states
that the order of composition of two given links does not matter (similarly to
commute in [10]); the kernel is free to compose them arbitrarily. Currently, the
Any operator is implemented as a Seq operator, but this is not something users
should rely upon:

class Any extends Seq {2}

Higher-level operators. Users can define higher-level operators based on the
building blocks of Reflex. For instance, we can define a variant of Wrap that, in
addition to the Wrap semantics, specifies that the nested link does not apply if the
wrapping link is not active. We call this operator DWrap (D for “dependency”):

class DWrap extends Wrap {
void expand(Link 11, Link 12){
super.expand(11l, 12); // wrap semantics
12.addActivation(new SharedActivation(11)); // active dependency
+}

5.3 Hook Generation

When detecting link interactions, Reflex generates a hook skeleton based on the
specified composition rules, similarly to Fig. 3. The hook skeleton is then used for
driving the hook generation process: taking into account how link elements have
to be inserted, with the appropriate calls to metaobjects. In order to support
nesting of aspects with proceed, Reflex adopts a strategy similar to that of
AspectJ described in [19], based on the generation of closures.

As mentioned earlier, in order to be able to do proceed, a metaobject is
given an execution point closure (EPC) object, which has a proceed method, as
well as methods for changing the actual arguments and receiver of the replaced

108 E. Tanter

operation. Hence, for each interaction scenario with nesting, Reflex generates
closures embedding the composition resolution of the following nesting level, so
that calling proceed on the EPC object results in the execution of the links at
the nesting level below. This is done down to the deepest level where proceed
results in the execution of the replaced operation. The top-level weaving points
on Fig. 3 represent hooks, while nested weaving points represent closures.

Since previous benchmarks [25] highlighted that executing the replaced oper-
ation reflectively implies important performance penalties, we have now adopted
the generated stub solution used in AspectJ [19].

6 Visibility of Structural Changes

In the general case, aspects may change both the structure and behavior of a
program as a consequence of their actions. Although several AOP proposals —
such as EAOP [13, 14, 10, 11], trace-based aspects [12], AOLMP [9, 5, 18], and
several others— do not consider structural aspects, languages like AspectJ do
(via inter-type declarations). Reflex, as a versatile kernel for AOP, also supports
structural changes, as mentioned earlier, via structural links.

As explained previously, aspects rely on introspecting the structure of a pro-
gram to define their cut. Since structural aspects modify this structure, the issue
of whether structural changes made by aspects are visible to others or not ap-
pears. This is a composition issue because if there is only one aspect, there is
no problem: the issue arises when considering the integration of several aspects
over the same application. This issue is still under-explored in the community.

Consider an aspect adding history to fields, and another aspect making fields
persistent: the issue of whether the field added by the first aspect in order to
record history should be made persistent appears. In Reflex, the persistence
aspect is implemented by a behavioral link, monitoring field accesses; the history
aspect, in addition to using a behavioral link for capturing history, makes use
of a structural link to introduce a new field in appropriate classes. Therefore,
the history field will only be made persistent if the cut of the persistence link
actually “sees” that field. For some applications it can make sense to have history
fields being persistent as well, but still, those fields may need to be hidden from
other aspects.

Default visibility. Reflex applies all structural links before behavioral links
are setup. This makes it possible for a behavioral link to affect operations re-
lated to a member added by a structural link, if so desired. But by default, all
structural changes are hidden. This makes it possible to avoid unwanted confla-
tion of extended and non-extended functionalities, as discussed in the meta-helix
architecture [8].

Furthermore, changes done to the program when introducing hooks (for set-
ting up behavioral links) are always hidden. This is motivated by the fact
that behavioral changes are conceptually runtime changes: the fact that Reflex
operates at load time, by introducing hooks, should be transparent; hence hooks

Aspects of Composition in the Reflex AOP Kernel 109

should be hidden. Similarly, infrastructure members introduced by Reflex —such
as metaobject references and initialization methods— cannot be observed. This
is implemented thanks to a mirror-based structural API [3, 27], which exposes
only interface types to users, rather than implementation types as in Javassist:
hence Reflex can coordinate visibility of structural elements “behind the scene”
(ensuring structural correspondence [3, 27]).

Declarative visibility. When introspecting a class for determing matching or
not of its cut, a link only sees what has been declared to be its view of the
program. By default, as we said, a link only sees the original program definition.
But it is possible to declare that a link has an augmented view of the program,
i.e. including changes made by other links:

(1) Rules.augmentViewOf (persistency, history);
(2) Rules.addToDefaultView(history) ;

Line (1) above declares that persistency sees all changes made by history.
Several links can be given to augmentViewOf. Line (2) adopts a different focus,
by promoting all changes made by history as part of the default view.

To support the subjectivity introduced above, Reflex automatically records
the identity of the link affecting a given structural element as a metadata of
the element. Metadata are stored in a general-purpose key-value property map
attached to each structural element, and can be used for many purposes. In
particular, it is possible for a link to force a new structural element to be always
visible (resp. always hidden) by setting a particular property forceVisible
(resp. forceHidden).

The proposed mechanism for controlling the visibility of structural changes
already goes beyond existing AOP proposals, in particular AspectJ. However,
our approach can still be refined and enhanced, to address more specific and
fine-grained conflicts between structural changes.

7 Related Work

Our work on aspect composition in the Reflex AOP kernel is inspired by the
work of Douence et al. in the EAOP model. It can be seen as an effort to project
over a concrete and efficient implementation their formal approach to aspect
composition [10, 11]. Among the notable differences is the fact that EAOP does
not contemplate structural changes to programs, nor the possibilities of aspects
to act around a given execution point.

Klaeren et al. have focused on the issue of validating combinations of as-
pects [21]. They use assertions to ensure the correctness of the dependencies be-
tween aspects with respect to the specification, focusing on mutually-exclusive
aspects. However they do not address means to resolve interactions between
aspects. Reflex also covers mutual exclusion, as explained in Section 4.2.

JAsCo [26] provides two mechanisms for aspect composition: precedence
strategies and combination strategies. In JAsCo, an aspect is deployed by speci-
fying a connector that determines which hooks should be enabled (the cut of an

110 E. Tanter

aspect) and which advice should be triggered when the cut is matched. Within a
connector that instantiates several hooks, it is possible to specify explicitly the
order in which associated advices are executed, leading to fine-grained control on
precedence strategies. This is similar to what can be expressed declaratively in
Reflex using the composition operators. However, this mechanism works fine only
for interacting aspects that are deployed by one connector. Also, with respect
to around advice however, JAsCo forces the nesting relation, while Reflex lets,
at the kernel level, the possibility of having a sequence of around advices. For
other interaction problems that are not solved by means of precedence strate-
gies, JAsCo provides combination strategies: such a strategy is like a filter on
the list of hooks that are applicable at a certain point in the execution. With
combination strategies, one can programmatically exclude certain hooks from
the current interaction. Again, this is similar to what can be achieved in Reflex;
actually the low-level interface in the Reflex kernel is equivalent, except that it
works on hook trees rather than flat lists, in order to reflect the nesting relation.
However, Reflex provides a declarative layer on top of this low-level, program-
matic interface, which JAsCo does not. Finally, JAsCo does not automatically
report on interactions, and does not address structural aspects.

Nagy et al. present a declarative approach to aspect composition [23], consid-
ering two types of constraints: ordering and control. The approach for ordering
constraints is similar to our kernel-level predicates: the pre constraint ressem-
bles our ord predicate for indicating precedence. But the issue of aspect nesting
(as addressed by nest) is not discussed. Control constraints are used to make an
aspect depend on the “return value” of the action of another aspect. Although
only boolean return values are considered, the approach is interesting. In Reflex,
it is expressable in a more flexible manner through activation conditions. Also,
Nagyet al. introduce two types of constraints, soft ones and hard ones, to be able
to express a strong dependency between two aspects, such that one can apply
only if the other one did. Mutual exclusion is however not considered. Further-
more, in our proposal, dependencies are a separate notion, although they can be
embedded within user-defined composition operators (e.g. the DWrap operator,
Sect. 5.2). Our approach is therefore more flexible in this sense. Finally, they do
not address the issue of structural changes to base code.

Brichau et al. proposed the use of logic metaprogramming [32, 9] to build com-
posable domain-specific aspect languages [5]. A logic language is used to reason
about object-oriented base programs, whose description at the metalevel is done
with logic facts and rules. The logic language also serves as the medium in which
both aspects and aspect languages are implemented and coordinated, through
logic rules in logic modules. Although no aspect-specific syntax is provided, the
use of a common logic medium is extremely expressive and allows for the spec-
ification of advanced composition strategies. The proposal, called SOUL/Aop,
however only considers a static joinpoint model; the more recent AOLMP sys-
tem Carma [18] is based on a dynamic joinpoint model, but has not gotten to
aspect composition issues yet. SOUL/Aop only deals with before/after advices,
hence issues related to acting around an execution point are not considered; nor

Aspects of Composition in the Reflex AOP Kernel 111

are structural aspects addressed. Also, advice weaving in SOUL/Aop is done
by inlining advice code at appropriate places, complexifying the support for as-
pects of aspects. Note that Reflex, as of now, does not offer any real support
for composing languages, but just aspects. Conversely, Brichau et al. do support
composition of languages exactly in the same way as aspects are composed: by
combining parameterized logic modules. We are currently exploring language
composition alternatives for Reflex, in particular with the MetaBorg approach
for unrestricted embedding and assimiation of domain-specific languages [4].

8 Conclusion

We have exposed different dimensions of the multi-faceted issue of aspect com-
position, and explained the support that the Reflex AOP kernel provides for the
same. Reflex supports automatic detection of aspect interactions limiting spu-
rious conflicts; possibilities to express aspect dependencies, such as implicit cut
and mutual exclusion; extensible composition operators for ordering and nesting
of aspects; the definition of aspects of aspects; and the possibility to control the
visibility of structural changes made by aspects. Since Reflex is used as an exper-
imental platform for multi-language AOP, its composition features can be used
to handle composition of aspects defined in different aspect languages. The open-
ness of the platform also makes it possible to experiment with new composition
operators.

Our experience with supporting declarative aspect composition suggests that
an imperative implementation in plain Java may not be the appropriate way to
go, as we are facing difficulties in the implementation of some deductions, which
would be straightforward using a logic engine. This remains to be explored.
Furthermore, our initial solution to composition of structural aspects needs to
be extended further, to deal with finer-grained conflicts and resolution schemes.

Acknowledgements. The author would like to thank Jacques Noyé for his
detailed comments on a draft of this paper, as well as for his contribution on the
body of work on Reflex. Guillaume Pothier, Leonardo Rodriguez and Rodolfo
Toledo contributed to the implementation of the features described in this paper.
The anonymous reviewers of SC’06 provided very valuable feedback that allowed
us to enhance both the presentation and the work hereby presented.

References

[1] M. Aksit, editor. Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD 2003), Boston, MA, USA, Mar. 2003.
ACM Press.

[2] D. Batory, C. Consel, and W. Taha, editors. Proceedings of the 1st ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Component Engi-
neering (GPCE 2002), volume 2487 of Lecture Notes in Computer Science, Pitts-
burgh, PA, USA, Oct. 2002. Springer-Verlag.

112

3]

[4]

[5]

[7]

8]

[10]
[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

E. Tanter

G. Bracha and D. Ungar. Mirrors: Design principles for meta-level facilities of
object-oriented programming languages. In OOPSLA 2004 [24], pages 331-344.
ACM SIGPLAN Notices, 39(11).

M. Bravenboer and E. Visser. Concrete syntax for objects. In OOPSLA 2004
[24]. ACM SIGPLAN Notices, 39(11).

J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific
languages with logic metaprogramming. In Batory et al. [2], pages 110-127.

L. Bussard, L. Carver, E. Ernst, M. Jung, M. Robillard, and A. Speck. Safe
aspect composition. In J. Malenfant, S. Moisan, and A. Moreira, editors, Object-
Oriented Technology: ECOOP 2000 Workshop Reader, volume 1964 of Lecture
Notes in Computer Science, pages 205-210. Springer-Verlag, 2000.

S. Chiba. Load-time structural reflection in Java. In E. Bertino, editor, Proceed-
ings of the 14th European Conference on Object-Oriented Programming (ECOOP
2000), number 1850 in Lecture Notes in Computer Science, pages 313-336, Sophia
Antipolis and Cannes, France, June 2000. Springer-Verlag.

S. Chiba, G. Kiczales, and J. Lamping. Avoiding confusion in metacircularity:
The meta-helix. In Proceedings of the 2nd International Symposium on Object
Technologies for Advanced Software (ISOTAS’96), volume 1049 of Lecture Notes
in Computer Science, pages 157-172. Springer-Verlag, 1996.

K. De Volder and T. D’Hondt. Aspect-oriented logic meta-programming. In
P. Cointe, editor, Proceedings of the 2nd International Conference on Metalevel
Architectures and Reflection (Reflection 99), volume 1616 of Lecture Notes in
Computer Science, pages 250-272, Saint-Malo, France, July 1999. Springer-Verlag.
R. Douence, P. Fradet, and M. Siidholt. A framework for the detection and
resolution of aspect interactions. In Batory et al. [2], pages 173-188.

R. Douence, P. Fradet, and M. Siidholt. Composition, reuse and interaction analy-
sis of stateful aspects. In Lieberherr [22], pages 141-150.

R. Douence, P. Fradet, and M. Stiidholt. Trace-based aspects. In R. E. Filman,
T. Elrad, S. Clarke, and M. Aksit, editors, Aspect-Oriented Software Development,
pages 201-217. Addison-Wesley, Boston, 2005.

R. Douence, O. Motelet, and M. Siidholt. A formal definition of crosscuts. In
A. Yonezawa and S. Matsuoka, editors, Proceedings of the 3rd International Con-
ference on Metalevel Architectures and Advanced Separation of Concerns (Reflec-
tion 2001), volume 2192 of Lecture Notes in Computer Science, pages 170186,
Kyoto, Japan, Sept. 2001. Springer-Verlag.

R. Douence and M. Siidholt. A model and a tool for event-based aspect-oriented
programming (EAOP). Technical Report 02/11/INFO, Ecole des mines de Nantes,
Dec. 2002. 2nd edition, French version published in the Proceedings of ” Langages
et Modeles & Objets” (LMO’03).

P. Durr, T. Staijen, L. Bergmans, and M. Aksit. Reasoning about semantic con-
flicts between aspects. In 2nd European Interactive Workshop on Aspects in Soft-
ware (EIWAS 2005), Brussels, Belgium, Sept. 2005.

The EAOP tool homepage, 2001. http://www.emn.fr/x-info/eaop/tool.html.

T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Commu-
nications of the ACM, 44(10), Oct. 2001.

K. Gybels and J. Brichau. Arranging language features for more robust pattern-
based crosscuts. In Aksit [1], pages 60-69.

E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In Lieberherr [22], pages
26-35.

[20]

21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

Aspects of Composition in the Reflex AOP Kernel 113

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In J. L. Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP 2001), number 2072 in
Lecture Notes in Computer Science, pages 327-353, Budapest, Hungary, June
2001. Springer-Verlag.

H. Klaeren, E. Pulvermiiller, A. Rashid, and A. Speck. Aspect composition ap-
plying the design by contract principle. In Proceedings of the 2nd International
Symposium on Generative and Component-Based Software Engineering (GCSE
2000), volume 2177 of Lecture Notes in Computer Science, pages 57-69. Springer-
Verlag, 2000.

K. Lieberherr, editor. Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD 2004), Lancaster, UK, Mar. 2004. ACM
Press.

I. Nagy, L. Bergmans, and M. Aksit. Declarative aspect composition. In 2nd
Software- Engineering Properties of Languages and Aspect Technologies Workshop,
Mar 2004.

Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA 2004), Vancouver, British
Columbia, Canada, Oct. 2004. ACM Press. ACM SIGPLAN Notices, 39(11).

L. Rodriguez, E. Tanter, and J. Noyé. Supporting dynamic crosscutting with par-
tial behavioral reflection: a case study. In Proceedings of the XXIV International
Conference of the Chilean Computer Science Society (SCCC 2004), Arica, Chile,
Nov. 2004. IEEE Computer Society Press.

D. Suvee, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented approach
tailored for component based software development. In Aksit [1], pages 21-29.
E. Tanter. Metalevel facilities for multi-language AOP. In 2nd European Inter-
active Workshop on Aspects in Software (EIWAS 2005), Brussels, Belgium, Sept.
2005.

E. Tanter and J. Noyé. Motivation and requirements for a versatile AOP kernel.
In 1st European Interactive Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany, Sept. 2004.

E. Tanter and J. Noyé. A versatile kernel for multi-language AOP. In R. Gliick
and M. Lowry, editors, Proceedings of the 4th ACM SIGPLAN/SIGSOFT Con-
ference on Generative Programming and Component Engineering (GPCE 2005),
volume 3676 of Lecture Notes in Computer Science, pages 173—-188, Tallinn, Es-
tonia, Sept./Oct. 2005. Springer-Verlag.

E. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral reflection:
Spatial and temporal selection of reification. In R. Crocker and G. L. Steele, Jr.,
editors, Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2003), pages 27—
46, Anaheim, CA, USA, Oct. 2003. ACM Press. ACM SIGPLAN Notices, 38(11).
M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic
join points in aspect-oriented programming. ACM Transactions on Programming
Languages and Systems, 26(5):890-910, Sept. 2004.

R. Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings of TOOLS-USA 98, page 112, 1998.

A Component-Based Approach to Compose
Transaction Standards

Romain Rouvoy!, Patricia Serrano-Alvarado?, and Philippe Merle!

L INRIA Futurs, Jacquard Project,
LIFL - University of Lille 1,

59655 Villeneuve d’Ascq Cedex, France
{romain.rouvoy, philippe.merle}@inria.fr
2 ATLAS-GDD Team,

LINA - University of Nantes,

44322 Nantes Cedex 03, France

patricia.serrano-alvaradoQuniv-nantes.fr

Abstract. This paper tackles the problem of composition of transaction
services, which are governed by various transaction standards. Among
others, we can cite the Object Transaction Service, Java Transaction Ser-
vice, or Web Services Atomic Transaction. However, the Web Services
Atomic Transaction standard encloses legacy transaction standards to
support the Web Services application platform. This encapsulation in-
troduces an additional complexity to the system and hides the speci-
ficities of legacy transaction standards. When composing heterogeneous
legacy applications, the underlying transaction services are basically not
composed transparently. This paper presents an approach to build an
Adapted Transaction Service, named ATS, which supports several trans-
action standards concurrently. The objective of ATS is to facilitate the
transaction standards composition. To introduce ATS we detail how the
Object Transaction Service, Web Services Atomic Transaction, and Java
Transaction Service standards can be composed. Besides, an ATS imple-
mentation is introduced using the GoTM framework. We show that this
fine-grained component-based approach does not introduce an additional
overhead to legacy applications and supports well scalability. Moreover,
this approach can be extended to other standards.

1 Introduction

For years, the number of transaction standards grows drastically. Among others,
we can cite the Object Transaction Service (OTS) from the Object Manage-
ment Group [1], the Java Transaction Service (JTS) from Sun Microsystems [2],
or the Web Services Atomic Transaction (WS-AT) [3] published by Microsoft,
IBM, IONA, BEA Systems, Hitachi and Arjuna Technologies. Current trends
define new transaction standards by encapsulating existing ones. For example,
the WS-AT standard encloses the JTS standard, which encapsulates the OTS
standard. But this approach introduces an additional complexity for each layer,
while loosing the specificities of each encapsulated transaction standard. When

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 114-130, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Component-Based Approach to Compose Transaction Standards 115

composing heterogeneous legacy applications, the underlying transaction services
are basically not composed transparently.

This drawback leads us to propose a practical approach to compose trans-
action standards. In this paper, we present an approach to build an Adapted
Transaction Service (ATS) and its implementation based on fine-grained com-
ponents. The ATS composes several transaction standards simultaneously and
ensures the compliancy of the different functions. To design ATS, we analyze the
interfaces of the transaction standards, and we identify the required functions.
Each function is derived into various strategies depending on the specific seman-
tics. Therefore, ATS is built by composition of these strategies and adapters.
Adapters ensure the compliance with transaction standards interfaces. Finally,
we use GoTM to build the resulting ATS. GoTM is a framework that provides
various fine-grained transaction components [4]. These components are imple-
mented with Fractal, a component model that provides good properties in terms
of modularity and performances [5]. To illustrate our approach, we build a trans-
action service that composes the CORBA, Web Services and Java transaction
standards.

This paper is organized as follows. The problem of transaction standard com-
position is presented in Section 2. Section 3 describes our approach to achieve
transaction standard composition. The implementation of our solution with the
GoTM framework is detailed and evaluated in Section 4. Section 5 discusses
related works, and Section 6 concludes.

2 The Problem of Transaction Standard Composition

To illustrate the problem related to transaction standard composition, we use
the example of Flight Booking and Hotel Reservation applications, as depicted
in Figure 1.

<<
Y = . Hotel
Flight Booking .
o - Reservation
S\ AApplication Application
= PV = T=
Y Third |/ Web Services Application
CORBA Application Platform i Application s Datform
N 9 S =
Object Transaction Java Transaction Web Services Atomic
Service Service Transaction

Fig. 1. Illustration of the problem of transaction standard composition

These applications are hosted by different distributed application platforms
(CORBA and Web Services), which support their own transaction standard. In
particular, the CORBA application platform provides the Object Transaction
Service (OTS). The Web Services application platform provides the Atomic
Transaction Service (WS-AT). The Third Application uses locally the Java

116 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

Transaction Service (JTS). This third application can interact with both ap-
plications remotely using the functionalities provided by each distributed appli-
cation platforms.

Even if this architecture allows heterogeneous application platforms to inter-
act, the transaction context! is not implicitly propagated from an application to
another. That is, WS-AT, which handles Hotel Reservation transactions, does
not cooperate with OTS, which controls the Flight Booking transactions. And,
the third application, using JTS, can not synchronize its execution with the two
other applications.

Usually, to achieve such a synchronization, the third application should control
all the transaction services, and therefore use three different transaction Appli-
cation Programming Interfaces (APIs). Thus, when it begins a new transaction,
the third application should explicitly begin transactions in the three transaction
services. But, when the transaction commits, the third application should find a
way of coordinating the commit protocol of each transaction service. Existing ap-
proaches use compensation mechanisms to support the coordination of multiple
transactional activities [6]. But applications can not always define compensating
actions (e.g.: compensating the sending of an email). Therefore the compensating
actions may be limited in some coordination situations. Moreover, the definition
of a coordination algorithm at the third application level weaves the code related
to non-functional properties (i.e., transaction services synchronization) with the
business code.

This paper proposes an approach to deal with the heterogeneity of existing
transaction standards. Instead of proposing to use a unified language or a new
transaction standard, we propose to build Adapted Transaction Services (ATS)
that support several transaction standards concurrently. Therefore the third ap-
plication uses only the interfaces provided by JTS and transactions are auto-
matically coordinated in the two other transaction services. With this approach,
legacy systems can be transparently composed together from a transactional
point of view.

3 ATS Design

This section begins with an overview of an ATS built to answer to the problem of
transaction standard heterogeneity depicted in Figure 1. Thus, the approach ap-
plied to build this ATS is detailed. First, the considered transaction services are
analyzed to highlight the functions involved in each transaction standard. Next,
these functions are abstracted and dependencies are identified. Each function
is extended into various strategies according to the semantics imposed by the
considered standards. These strategies are then composed (i.e., linked together)
to build the content of the Common Transaction Service (CTS). Finally, the
ATS is built by adding to the CTS necessary adapters to support JTS, WS-AT,
and OTS standards.

! Information related to the execution of the current transaction.

A Component-Based Approach to Compose Transaction Standards 117

3.1 Overview of an ATS
Figure 2 introduces an ATS supporting OTS, JTS, and WS-AT standards.

<

’) Hotel
2(Fiight Booking Rese?thion
8 Application Application

~ |~

CORBA [Applicai Third &rvices| Application
Platform ’Applicatio Platform

< v | [17
@ Object Transaction || Java Transaction Web Services

Service Adapter || Service Adapter || Transaction Adapter
Common Transaction Service (CTS)
Adapted Transaction Service (ATS)

Fig. 2. An example of ATS supporting transaction standard composition

An ATS is composed of a set of adapters and a CTS. The CTS provides an
implementation of a generic transaction engine. The CTS groups the behaviour of
all the functions supported by the ATS. The adapters provide compliance with
the considered transaction standards (OTS, JTS and WS-AT). The adapters
are responsible for mapping the operation performed on a particular transaction
standard to the functions provided by the CTS. The functions, required by the
adapters, are provided by the CTS.

Thus, this modular architecture can be easily modified to support new trans-
action standards. In this case, the content of the CTS is adapted according to
the chosen adapters to provide the minimal set of functions required.

3.2 Function Analysis

A function is a set of operations linked by their semantics. In particular, we
make the hypothesis that transaction services are based on the minimal set of
Status, Coordination, and Participants functions. Then, we identify these func-
tions for each APIs used by the applications to ensure transactional behaviour.
More specifically, we consider the CosTransactions API, Java Transaction API,
and Atomic Transaction Services provided by the OTS, JTS and WS-AT stan-
dards, respectively. This analysis aims at confirming that the three identified
functions are enough to compose transaction services.

JTA Analysis. The Java Transaction API (JTA) defines a set of Java inter-
faces that provide transaction support to any Java application. Figure 3 lists the
interfaces involved in JTA.

Based on an analysis of this API, we establish the interface dependencies. These
dependencies are illustrated with the "uses” UML stereotype [7] in Figure 3. For
example, the Transaction interface depend on the Status, Synchronization
and XAResource interfaces. The operations described in the Transaction inter-
face require Synchronization and XAResource interfaces, while providing the
Status interface.

118 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

Functions| JTA]
«function» «interface» [¢US€s»
Status . Status [!
«interface» " <USEST— !
«function» UserTransaction |- - - «interface»
Coordination «interface» Transaction
TransactionManager |- €4568» Zi \
«interface» «uses» |
«function» XAResource [\~ 7777777 TTTTC T
Participants «interface» «uses» |

Synchronization

Fig. 3. Java Transaction API analysis

Next, we classify JTA interfaces according to the function indicated by their
semantics. The identified functions are indicated with the ”function” UML
stereotype in Figure 3. For example, the semantics of the UserTransaction,
Transaction, and TransactionManager interfaces refer to a Two-Phase Com-
mit protocol [8]. Thus, we define the Coordination function to abstract the iden-
tified semantics. We apply the same approach to each operation making up the
API. As a result, we extract three functions: Coordination, Status and Partici-
pants. The Status function controls the state of the transaction. The Participants
function manages the participants involved in the transaction.

CosTransactions Analysis. The CosTransactions API is defined using the
OMG Interface Description Language and allows CORBA applications written

in different programming languages to use it. Figure 4 identifies the interfaces
involved in the CosTransactions API.

CosTransactions Functions|
R > «interface» «function»
§ ‘ Status _ usesy| «interface» Status
2 | N/ Current
e «uses» i
I «interface» - -
| r———- «uses» «interface» «function»
: | Control |————- > . o L
" TN Terminator Coordination
«interface» | «uses»
Coordinator| = ~~~~~71 «interface»
| — : TransactionFactory
N «interface» iSe———
o §\ RecoveryCoordinator |- —-—>| «interface»
: 5,} g‘— ——————————————————— Resource
I Ol B :
] «interface» K| «function»
| T T T T T T T T T T T T T T T T T T T, . . I Py
gl Synchronization || [/ Participants
Q! -
Bl N «interface»
& SubtransactionAwareResource

Fig. 4. CosTransactions API analysis

We apply the same process as with JTA. Interface dependencies are first inferred
from the transaction API. The functions involved in the CosTransactions API are
identified and we obtain the Coordination, Status and Participants functions.

A Component-Based Approach to Compose Transaction Standards 119

WS Atomic Transaction Analysis. Web Services Atomic Transaction (WS-
AT) is the last transaction standard specified. This standard allows transaction-
aware Web Services distributed across a network to be synchronized with
different policies. The WS-AT standard is structured in several services, each
service providing a specific function. Figure 5 identifies the services involved in
the Web Services Atomic Transaction standard.

Coordination] [Functions] AtomicTransaction | «USES»
7777777777 e
|| «service» ||[[«function» «service» «service»
| |_Activation Status OutcomeNotification | | PhaseZero
| o - ///’“/” -
! (USES? I «function» k] A «service»
| } Coordination g} ' CompletionWithAck
| | \A‘\ T
«service» |||[«function» «service» : «service» | |

Registration Participants Completion | 2PC }

|

| _CUSES»__«USesy,_ KUSES» «USESH

Fig. 5. WS Atomic Transactions analysis

The granularity of this standard is not the same than the two previous ones.
Indeed, Web Services are based on message exchanges rather method invocations.
Thus, we analyze the interaction between the services involved in the WS-AT
standard. The Registration service depend on the Activation service. This is
because a Coordination Context should be created before participants can reg-
ister with the transaction. The Completion, CompletionWithAck, PhaseZero,
2PC and OutcomeNotification services encapsulate the WS-Atomic Transac-
tion business logic. These additional services depends on the Registration service
to interact with transaction participants. As a consequence, functions involved
in WS-Atomic Transaction are: Coordination, Status and Participants.

3.3 Strategy Definition

Function Summary. In this step, we associate each identified function with a
set of generic operation signatures. This association depends on the operations
declared in the CosTransactions, WS Atomic Transaction and Java Transac-
tion APIs. Next, the dependencies between the functions are inferred from the
interface dependencies established in the section 3.2.

As shown in Figure 6, the Status and Participants functions are not depen-
dent on any other function. The Status function provides the operations required
to handle the transaction status allowed by a given transaction model. The Par-
ticipants function provides operations to manage the transaction participants.

The Coordination function updates the transaction status using the Status
function. It also ensures the coherence between the transaction status and the
resource states. For example, updating the transaction status to commit implies
that participants validate their modifications using the Participants function.
Thus, the execute () operation changes the transaction status and notifies the
participants involved in the transaction.

120 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

«function» ,(ir?(luirfsj, «function»
Coordination | requires» Status «strategy»
+execute() F-—-- ‘ +setStatus() AtomicTransactionState
I +getStatus()
L «strategy»
«function» XAResources
Participants
«strategy» ronli «strategy»
TwoPhaseCommit | |"€" !st() SynchronizationsJTA
+delist()
+notify() «strategy»
4 SubTransactionAwareResources
[I 1
«strategy» «strategy» «strategy»
TransactionAwareParticipants | | Synchronizations || Resources

Fig. 6. Illustration of the function abstraction

However, transaction standards define also some semantics that should be re-
spected by the implementations. These semantics are named strategies and are
associated to identified functions. A strategy can be an implementation of an
algorithm, a protocol (e.g., the Two-Phase Commit protocol) or a specialization
of an entity (e.g., XAResource). Figure 6 shows an overview of the possible strat-
egy derivations for JTS, WS-AT and OTS from the identified functions. These
strategies are described in the following sections.

Two-Phase Commit Strategy. The TwoPhaseCommit strategy represents an
implementation of the Two-Phase Commit (2PC) protocol for the Coordination
function. This protocol defines, among other things, a sequence of messages
that ensures atomicity. Figure 7 shows the UML Interaction diagram [7] used to
describe a basic 2PC protocol.
As shown in Figure 7, the TwoPhase-

Commit strategy extending the Coordina- | 1yophaseCommit Participants
tion function emits a prepare message. The

prepare

Participants function answers to this mes-)

. . vote-commit
sage with a vote-commit or vote-abort Koo {*O'R*}
message. Depending on the collected votes, o Yoteabort | TTT L]
the TwoPhaseCommit strategy sends a commit ;
commit or an abort message to Partici- {OR} abort
pants function. Once the participants have L ack

achieved the validation process, the Partic-
ipants function sends an ack message to
acknowledge the coordination process. Ad-
ditional strategies can be defined to imple-
ment optimized versions of 2PC, such as Two-Phase Commit Presumed Commit
(2PCPC) or Two-Phase Commit Presumed Abort (2PCPA) protocols (see [8]
for more details).

Fig. 7. 2PC Interaction Diagram

Participants Strategies. The Participants function is extended by six strate-
gies, which are adapted to the different types of resources defined in the

A Component-Based Approach to Compose Transaction Standards 121

transaction standards. These strategies are the SubTransactionAwareResources,
Synchronizations and Resources for OTS ; TransactionAwareParticipants for
WS-AT and SynchronizationsJTA and XAResources for JTS. The differences
between these strategies are the list of messages that the resources can handle.
For example, the Synchronization strategy handles commit and abort messages.
The Resource strategy handles these two messages plus the prepare message.
Each strategy is based on a set of specific ECA rules (Event/Condition/Action).
These rules define the behaviour to apply on the participants involved in the
transaction depending on incoming messages.

global synchronizations

on prepare? count(synchronizations)>0:
foreach s in synchronizations do:
s.beforeCompletion()
on commit? count(synchronizations)>0:
foreach s in synchronizations do:
s.afterCompletion(Status.STATUS_COMMITTED)
on abort? count(synchronizations)>0:
foreach s in synchronizations do:
s.afterCompletion(Status.STATUS_ROLLEDBACK)

[
= O © 00 3O Uik Wi =

—_

Fig. 8. SynchronizationsJTA Strategy ECA Rules

Figure 8 depicts the example of the SynchronizationsJTA strategy. The Event
part corresponds to the messages received by the strategy prefixed by the on key-
word. The Condition part checks that at least one participant is involved in the
transaction. The Action part applies a treatment to all the participants registered
in the transaction. These participants are notified before and after the comple-
tion of the transaction in which they are involved. The afterCompletion()
operation parameter depends on the outcome of the transaction (i.e., commit-
ted or aborted). Additional ECA rules are defined for each strategy extending
the Participants function.

Atomic Transaction State Strategy. The Status function is extended by the
AtomicTransactionState strategy. This strategy can be configured using a state
automaton describing the transaction state transitions.

The state automaton used in our example describes an atomic transaction as
depicted in Figure 9. We use the UML diagram State Machine [7] to describe
the states involved in the lifecycle of an atomic transaction. These states are
common to each transaction standard because all of them are related to atomic
transactions. As shown in Figure 9, an atomic transaction starts in an Inactive
state. When it receives the start message, the atomic transaction moves to the
Active state. Thus, an atomic transaction can be suspended and resumed using
start and stop messages. To move to the validation phase, the atomic transaction
should be in the Active state and receives a prepare, abort or aborted message.

122 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

The prepare message begins the
Two-Phase Commit protocol,
moving the Transaction to the
Preparing state. The abort mes-
sage causes the transaction to
abort unilaterally. The aborted
message ends the transaction
without applying the Two-Phase (N) (

. Committing Prepared
Commit protocol. The abort and Lommi
aborted messages result in the

Aborting)

aborted

committed
same behaviour independently of —
the current state of the transac- Committed >@ Aborted

tion. When a transaction in the
Preparing state receives the pre-
pared message, it moves to the
Prepared state to decide the out-
come of the transaction. When this decision is taken by the Coordination Proto-
col, the transaction can commit if it receives the commit message. In this case, the
transaction enters in the Committing state to validate the transaction and then
moves to the Committed final state once the decision is acknowledged. Any abort
message received by a transaction state results in moving the in the Aborting
state to cancel the transaction before moving to the Aborted final state. Addi-
tional State Machine diagrams can be defined to handle new transaction states
such as the Compensating state [9].

Fig. 9. Atomic Transaction State Diagram

3.4 Composition of the ATS

Once the transaction standards have been described in terms of functions and
strategies, the next step builds the Common Transaction Service (CTS) by com-
position of strategies following function dependencies. The CTS is a generic
transaction engine that provides common facilities to the three transaction stan-
dards. This composition is implemented with the paradigm of a software bus [10].
A software bus provides facilities to compose the strategies interacting using
messages. For example, the commit or abort messages are propagated from the
TwoPhaseCommit strategy to the Synchronizations strategy according to the
dependency that links their associated functions (Coordination and Participants
respectively).

Figure 10 gives an overview of the strategy composition used to build the CTS.
This composition meets the requirements of JTS, WS-AT and OTS standards.
The MessageBus bus propagates the messages between the strategies involved
in the CTS. Associations link a strategy to either a dependent strategy or the
MessageBus in order to connect required to provided functions.

Once the CTS is built, it needs to be made compliant with the APIs of each of
the considered transaction services. The result of this adaptation is the Adapted
Transaction Service (ATS). In practice, the adaptation is done by constructing

A Component-Based Approach to Compose Transaction Standards 123

«adapter»
JTS

«strategy»
«strategy» «strategy» SynchronizationsJTA
AtomicTransactionState XAResources «strategy»
’—/‘\ SubTransactionAwareResources
«adapter» «strategy» «bus» «strategy»
WS-AT TwoPhaseCommit [| MessageBus Synchronizations
[
5/] «strategy»
«strategy» «adapter» Resources
TransactionAwareParticipants oTS I

Fig.10. CTS: composition of JTS/WS-AT/OTS-compliant strategies

adapters that provide the operations required by the associated standard APIs,
and require the CTS functions identified in Section 3.2.

Figure 10 illustrates the adaptation of CTS to JTS, WS-AT and OTS trans-
action interfaces. In this step, an adapter for each of the transaction services is
defined. Each adapter is bound to the strategies it requires. The JTS adapter
requires the TransactionState, TwoPhaseCommit, XAResources and Synchro-
nizationsJTA strategies. The OTS adapter requires the TransactionState, Two-
PhaseCommit, Synchronizations, Resources and SubTransaction AwareResources
strategies. The WS-AT adapter requires the TransactionState, TwoPhaseCom-
mit, TransactionAwareParticpants strategies.

3.5 ATS Use Case

This section introduces how the ATS is used in practice. This use case describes
a simple scenario applied on the example depicted in Figure 2.

1. The Third Application creates a new transaction in the ATS via the JTS
adapter. An adapted transaction context is automatically initialized by the
ATS. The transaction context associates the method invoked by the Third
Application with the created transaction.

2. The Third Application calls the Flight Booking Application using the CORBA
platform facilities. The transaction context is propagated to the target appli-
cation via the CORBA Portable Interceptors mechanism [11]. In particular,
the Client Portable Interceptor defines the OTS adapter of the ATS as the
current transaction service. The Server Portable Interceptor replaces the ex-
isting transaction service by the OTS adapter during the execution of the ap-
plication. As a consequence, the Flight Booking Application enlists Resource
and Synchronization participants in the OTS adapter of the ATS.

3. The Third Application invokes the Hotel Reservation Application (see Figure 2)
using the Web Services application platform. The transaction context is
propagated as a WS-Coordination Context [12] in the header of the Web
Service request. This means that the Hotel Reservation Application will enlist
its TransactionAwareParticipantsin the ATS via the Registration Service
provided by the WS-AT adapter of the ATS.

124 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

4. The Third Application commits the transaction. The ATS synchronizes all the
heterogeneous participants using the commit protocol embedded in the CTS.
This means that the completion of the transaction is done independently of
the transaction standard (i.e. OTS, JTS, WS-AT) used by the applications.
Each participant is notified depending on its associated strategy.

4 Implementation Issues

In this section, we present the ATS implementation, which is based on the Fractal
component model and the GoTM framework.

4.1 The Fractal Component Model

The hierarchical Fractal component model uses the usual component, interface,
and binding concepts [5]. A component is a runtime entity that conforms to
the Fractal model. An interface is an interaction point expressing the provided
or required methods of the component. A binding is a communication chan-
nel established between component interfaces. Furthermore, Fractal supports
recursion with sharing and reflective control [13]. The recursion with sharing
property means that a component can be composed of several sub-components
at any level, and a component can be a sub-component of several components.
The reflective control property means that an architecture built with Fractal
is reified at runtime and can be dynamically introspected and managed. Frac-
tal provides an ADL, named FractalADL, to describe and deploy automatically
component-based configurations [14].
Figure 11 illustrates the

different entities of a typi- primitive component content binding
cal Fractal component archi- controller " ——
tecture. Thick black boxes
denote the controller part of
a component, while the in-
terior of the boxes corre- server

runfg+-3+ Client —*[

interface .
sponds to the content part Apbplication .
of a component. Arrows cor- COMPOsIte jnternal client collection shared
b component nterface interface interface component

respond to bindings, and
tau-like structures protrud-
ing from black boxes are in-
ternal or external interfaces.
Internal interfaces are only accessible from the content part of a component. A
starry interface represents a collection of interfaces of the same type. The two
shaded boxes C represent a shared component.

Fig.11. The Fractal component model

4.2 The GoTM Transaction Framework

Like Fractal, GoTM [4] is a project developed as part of the ObjectWeb ini-
tiative. It is a software framework that provides a set of Fractal components

A Component-Based Approach to Compose Transaction Standards 125

developed in Java and implementing generic transaction-related strategies. The
static configuration of the transaction service is described using the Fractal ADL,
which allows the transaction service designer to select the default strategies to
use. GoTM implements efficiently various validation protocols (e.g., 2PC, 2PC-
PA, and 2PC-PC) [8] and a variety of resource handlers (e.g., XAResource,
Resource, and Synchronization). This list of components is not exhaustive; the
GoTM framework can be extended to include new components.

The GoTM framework additionally includes different optimizations to provide
good performance to the transaction services built with GoTM. These optimiza-
tions include the use of a pool of components and a caching controller to reduce
the cost of component creation. GoTM uses configurable factories to describe and
configure the created component instances. Finally, threading strategies (e.g., se-
quential, threaded, or pooled) control the propagation of messages between the
components of the ATS. GoTM supports both Julia [5] and AOKell [15] imple-
mentations of the Fractal component model.

4.3 ATS Implementation with GoTM

Implementing ATS with the GoTM framework requires implementing the enti-
ties identified in Section 3 (functions, strategies, bus, etc.) with existing GoTM
components when possible. GoTM provides most of the identified strategies (e.g.,
TwoPhaseCommit, AtomicTransactionState) as Fractal components.

The bus entity is mapped to an existing GoTM component that implements
a message bus. This message bus provides various message propagation poli-
cies (e.g.: synchronous ordered, synchronous unordered or asynchronous). These
policies allow implementing various 2PC protocols [8] and to provide various
optimizations (e.g.: resources synchronization).

The strategy elements are mapped to similar GoTM components depending
on their characteristics. As an example, the 2PC strategy is implemented by the
2PC component provided by GoTM. This composite component contains smaller
components that describe the different steps of the 2PC protocol. Strategy com-
ponents are composed with the message bus to form the Common Transaction
Service (CTS).

The adapter components ensure the compliance with the API of each trans-
action standard. Therefore, the adapter components provide the standard APIs
as server interfaces. The adapter component requires as client interfaces all the
dependencies corresponding to the interfaces expressed in dependencies graph
of Figures 3, 4 or 5. It can be easily automatically generated because all the
transaction-related algorithms are implemented by strategies. To allow this gen-
eration, we use a conversion model describing how to redirect the incoming trans-
action standard invocations to the interfaces provided by the GoTM components
(see [16] for more details).

To obtain the ATS component, the CTS component is shared between the OTS
, the WS-AT and the JTS adapter components. This architecture allows the OTS,
WS-AT and JTS adapters to cooperate transparently via the CTS. Figures 12
and 13 depict the resulting implementation of ATS. This implementation

126 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

is composed of a static and a dynamic part. The static part describes the architec-
ture of the transaction service. The dynamic part describes the behaviour of one
transaction. Nevertheless the pattern of a common component shared between
several adapter components is applied in the two parts.

@
§| —

§§|— m gtg)ter Transaction A Transaction
=
<
5 H :é-g’gpter g\ NTransaction Transactions Transactions|

o Current Active Created

‘£S

Eg" WS-AT Common Transaction Service (CTS)

<9 Adapter . .

ggl— Adapted Transaction Service (ATS)
=

Fig.12. An Adapted Transaction Service implementation

The static part of the service is depicted in Figure 12. This part corre-
sponds to the entry point of the service. The strategies available in the sta-
tic part of the CTS consist in the management of activated transactions using
the TransactionCurrent component. The active transactions are stored in the
TransactionsActive component. The TransactionFactory component pro-
vides facilities to create new instances of transactions. The transaction architec-
ture is described in the TransactionModel component.

R
(2]
SHgHH
o
@,
[%]
i Ra
=
Hy
g Common Transaction (CT)
—g§ /_;_tomic .
ransaction
'E}— State
’} 2PC H
Protocol|
Message

< MLl 77 oyt
5
ksl
©
(2]
o
o
's -
.9}_
£
o]
<
% AT;iransactionAwareParﬁcipants .
= . anager Adapted Transaction (AT)

Fig. 13. An Adapted Transaction implementation

Figure 13 illustrates the model of transactions created by the transaction
service. The behaviour of the transaction is grouped in the Common Transaction
(CT). Similarly to the ATS architecture, the Adapted Transactionis composed

A Component-Based Approach to Compose Transaction Standards 127

of one CT and three Adapter components. The strategies composing the CT are
GoTM components implementing the TwoPhase Commit, Atomic Transaction
State, and a Message Bus. Given that JTS, WS-AT and OTS standards handle
different types of resources, the associated resource managers are not placed in
the CT. Finally, only the standard APIs, which are provided by the adapters,
are exposed by the AT component.

4.4 Performance Analysis

This section presents a performance benchmark, which illustrates the efficiency of
our approach. In particular, it shows that introducing fine-grained components
to build transaction services has not a negative performance impact. ATS is
compared to the JOTM 1.5.10 transaction service depending on the number of
involved participants and threads. ATS uses the AOKell implementation of the
Fractal component model. JOTM, a project developed as part of the Object Web
initiative, is a Java implementation of the JTS specification [17]. It is recognized
for its reliability and efficiency. It is integrated into the JOnAS J2EE Application
Server.

26 110 T

24 100 |
22 |

2
18
16
14
1

Average Completion Time (ms)
Transaction Throughput (tx/s)

2
1 - — 20 —
08 - ~__
N — A 30 e > _
04 b - -
02 10 T
° 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 ° 1 6 " 16 21 26 31 36 “ 46 51
Number of involved participants (#) Number of concurrent transactions ()
Fig. 14. Participants scalability Fig. 15. Concurrent transactions

Figure 14 illustrates the result of the following scenario. A single client ap-
plication creates transactions involving an increasing number of participants.
The completion time of each transaction is observed depending on the num-
ber of participants. Figure 14 shows that the ATS transactions complete faster
than JOTM ones. Thus, the use of a fine-grained component-based architecture
does not introduce an overhead to the transaction service. This result can be
explained by the optimizations available in AOKell [18].

Figure 15 applies the following scenario. An increasing number of clients create
concurrent transactions involving 40 participants. The number of transactions
completed per second is observed depending on the number of concurrent trans-
actions started. Figure 15 shows that the ATS transactions complete faster than
JOTM ones when the number of concurrent transactions grows. This is mainly
because ATS delegates the coordination process to the transaction rather imple-
menting this protocol at the transaction service level. This choice isolates each

128 R. Rouvoy, P. Serrano-Alvarado, and P. Merle

transaction, which completes independently. Thus, the ATS provides better scal-
ability properties than JOTM. This speedup, estimated to 1.5 when using mock
objects as transaction participants, demonstrates that the use of a fine-grained
component-based transaction service introduces no additional overhead in a real
application context.

5 Related Work

The Java Transaction Service (JTS) specification provides a practical solution to
transaction interoperability and composition problems. Indeed JTS relies on the
Object Transaction Service (OTS) to propagate transaction contexts between
applications. Thus, OTS and JTS could be composed to allow heterogeneous
applications to interoperate from a transactional point of view. The Arjuna
Transaction Service [19] is the only transaction service that supports this archi-
tecture. Nevertheless, such a mapping is not always simple and therefore a stan-
dard may not directly depend on another one. Our approach makes abstraction
of the transaction standards to avoid such dependency. Therefore, the transac-
tion context could be propagated independently of the composed transaction
standards. Moreover, our approach can be applied to consider other transaction
standards (e.g., Activity Service [6,9]).

More recently, Web Services-Atomic Transactions (WS-AT) have provided an
abstraction of transaction services to allow heterogeneous transaction services to
be coordinated [3]. This approach extends the Web Services-Coordination (WS-
Coordination) framework to handle transaction contexts [12]. Heterogeneous
transaction services are reified as Participant of a global transaction service,
which will act as coordinator during the execution of the validation protocol.
Transaction-aware Web Services are responsible for creating a new transaction
context and registering participants to the global transaction service. However,
this approach requires the legacy applications to be modified to support the
APIT introduced by the global transaction service. Our approach does not mod-
ify legacy applications because we preserve the transaction standards and we
compose them rather introducing an API to support heterogeneity. Neverthe-
less, our approach is not orthogonal with Web Services tendency. Therefore,
WS-AT can be used as an input transaction standard.

Finally, several component-based approaches have been proposed to build
transaction services [20,21]. These approaches focuses on the definition of
transaction services as software components to facilitate their integration in
applicative systems. In this coarse-grained approach, the transaction service is
encapsulated in a single component. Thus, the transaction services are hosted
by a dedicated framework and made available to the application via a trad-
ing mechanism. Nevertheless, none of these works addresses the composition of
the transaction standards related to the services. Our approach promotes fine-
grained components, which can be reused easier than coarse-grained components
to adapt the transaction service to any transaction standard.

A Component-Based Approach to Compose Transaction Standards 129

6 Conclusion

This paper has presented an approach to build an adapted transaction service,
named ATS, which supports transaction standards composition. The design of
ATS has been guided by the analysis of the OTS, WS-AT and JTS transaction
services. The ATS has been implemented with the GoTM framework and the
Fractal component model. Our ATS implementation has been compared to the
JOTM transaction service. This evaluation has shown that our approach intro-
duces no overhead compared to existing products and supports well scalability.
Our approach can be easily extended to support extended transaction standards
such as Activity Services [6,9]. Consequently, the proposed solution facilitates
transaction standard composition because (1) the ATS is used transparently, and
(2) it increases neither complexity of existing platforms nor their performance.

Acknowledgments. This work is funded by the national institute for research
in computer science and control, and the Region Nord - Pas-de-Calais.

Availability. GoTM is freely available under an LGPL licence at the following
URL: http://gotm.objectweb.org.

References

1. OMG: Object Transaction Service (OTS). 1.4 edn. (2003)

2. Cheung, S.: Java Transaction Service (JTS). Sun Microsystems, Inc., San Antonio
Road, Palo Alto, CA. 1.0 edn. (1999)

3. Cabrera, L.F., Copeland, G., Feingold, M. et al.: Web Services Atomic Transaction
(WS-AtomicTransaction). 1.0 edn. (2005)

4. Rouvoy, R., Merle, P.: GoTM : Vers un canevas transactionnel & base de com-
posants. In: Langages, Modeles et Objets Conf. (LMO). Volume 10 of L’Objet.
Lille, France, Hermes Sciences (2004) 131-146

5. Bruneton, E., Coupaye, T., Leclercq, M. et al.: An Open Component Model and
Its Support in Java. In: 7th Int. Symp. on Component-Based Software Engineering
(CBSE). Volume 3054 of LNCS. Edinburgh, United Kingdom, Springer (2004) 7-22

6. Cabrera, L.F., Copeland, G., Feingold, M. et al.: Web Services Business Activity
Framework (WS-BusinessActivity). 1.0 edn. (2005)

7. OMG: Unified Modeling Language (UML): Superstructure. 2.0 edn. (2005)

8. Serrano-Alvarado, P., Rouvoy, R., Merle, P.: Self-Adaptive Component-Based
Transaction Commit Management. In: 4th Work. on Adaptive and Reflective Mid-
dleware (ARM). Volume 116 of AICPS. Grenoble, France, ACM (2005) 1-6

9. OMG: Additional Structuring Mechanisms for the OTS. 1.1 edn. (2005)

10. Eskelin, P.: Component Interaction Patterns. In: 6th Annual Conf. on the Pattern
Languages of Programs (PLoP). Urbana, IL, USA (1999)

11. Wang, N., Parameswaran, K., Schmidt, D. et al.: The Design and Performance
of Meta-Programming Mechanisms for Object Request Broker Middleware. In:
6th USENIX Conf. on Object-Oriented Technologies and Systems (COOTS). San
Antonio, Texas, USA (2001)

12. Cabrera, L.F., Copeland, G., Feingold, M. et al.: Web Services Coordination (WS-
Coordination). 1.0 edn. (2005)

130

13.

14.

15.

16.

17.

18.

19.

20.

21.

R. Rouvoy, P. Serrano-Alvarado, and P. Merle

Bruneton, E.,; Coupaye, T., Stefani, J.B.: Recursive and dynamic software com-
position with sharing. In: 7th Int. Work. on Component-Oriented Programming
(WCOP). Malaga, Spain (2002)

Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engi-
neering 26(1) (2000) 70-93

Seinturier, L., Pessemier, N., Coupaye, T.: AOKell: An Aspect-Oriented Imple-
mentation of the Fractal Specifications. Objectweb Fractal Workshop (2005)
Rouvoy, R., Merle, P.: Towards a Model Driven Approach to build Component-
Based Adaptable Middleware. In: 3rd Work. on Adaptive and Reflective Mid-
dleware (ARM). Volume 80 of AICPS. Toronto, Ontario, Canada, ACM (2004)
195-200

Mesnil, J.F.: Overview of JOTM: a Java Open Transaction Manager. In: 10th
Biennal Work. on High Performance Transaction Systems (HPTS). Pacific Grove,
California, USA (2003)

Demarey, C., Harbonnier, G., Rouvoy, R. et al.: Benchmarking the Round-Trip La-
tency of Various Java-Based Middleware Platforms. Studia Informatica Universalis
Regular Issue 4(1) (2005) 7-24

Little, M.: The Evolution of a Transaction Processing System. In: 11th Biennal
Work. on High Performance Transaction Systems (HPTS). Pacific Grove, Califor-
nia, USA (2005)

Hérault, C., Nemchenko, S., Lecomte, S.: A Component-Based Transactional Ser-
vice, Including Advanced Transactional Models. In: 5th Int. Symp. and School
on Advance Distributed Systems (ISSADS). Volume 3563 of LNCS. Guadalajara,
Mexico, Springer (2004) 545-556

Arntsen, A.B., Karlsen, R.: ReflecTS: a flexible transaction service framework. In:
4th Work. on Adaptive and Reflective Middleware (ARM). Volume 116 of AICPS.
Grenoble, France, ACM (2005) 1-6

A Class-Based Object Calculus of Dynamic
Binding: Reduction and Properties

Pawel T. Wojciechowski

Poznan University of Technology
60-965 Poznani, Poland
ptw@cs.put.poznan.pl

Abstract. To be able to compose and decompose software components
at run time, some form of dynamic rebinding between components
(or objects) is needed. In this paper, we identify basic properties of
dynamic object (re)binding, and propose a class-based object calculus
that gives precise meaning to these properties. We also define two
example semantic properties that are characteristic for many concurrent
programs with low-level bind/unbind operations. Our calculus has a
built-in construct atomic that can be used to implement one of the
semantic properties.

Keywords: lambda and object calculi, dynamic binding, atomicity.

1 Introduction

What do we mean by dynamic object rebinding? Consider a construct bind X a
that binds a name X to an object a. The effect of binding name X to a is that
we can refer to a via name X, e.g. a method m of object a can be invoked either
via a.m or X.m. The crucial point here is that the object a can be later unbound
from X (using a construct unbind X) and another object b can be rebound to
X at runtime. By the alias change, any concurrent object ¢ that knows name X,
has been therefore unbound from a and bound to b.

We must ensure that types of objects a and b that are dynamically bound to
X, match the corresponding field accesses and method calls via name X. For
this, X is not a pure name but it is a signature that declares types of fields
and methods of objects that are bindable to X. Objects are defined by classes,
which define fields and methods with their types. Checking the match between
signatures and classes is mostly standard; for clarity, we leave therefore our
calculus untyped, focusing on the operational semantics. Note that an object ¢
invoking a method X.m may not even know the object on which method m is
invoked. This simple mechanism can be used to implement software components
(or objects with a predefined interface) that can be composed dynamically.

In our previous work, we developed SAMOA [RWS06a, WRS04] — a software
framework for implementing network protocols from reusable components, that
provide services (a service corresponds to signatures presented in this paper,
extended with requirement declarations). The programmers can easily encode

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 131-146, 2006.
© Springer-Verlag Berlin Heidelberg 2006

132 P.T. Wojciechowski

dynamic replacement of components, using high-level abstractions that are built
on top of the dynamic binding feature described in this paper. A software frame-
work, such as SAMOA, can be used for implementing dynamically composable
systems. For instance, we have used our framework to design and implement an
Adaptive Group Communication (AGC) middleware [RWS06b], in which net-
work protocols can be replaced on-the-fly. For this, we have designed various
algorithms for Dynamic Protocol Update (DPU), i.e. a synchronous replacement
of protocols in a distributed system [WRO05].

In [RWSO06a], we described the high-level architecture of a software framework
for building dynamically composable systems, such as ours. In this paper, we
take a more fundamental view, and investigate a small set of low-level language
constructs that can be used to reason formally about dynamic object rebind-
ing. In particular, we have used our language to give precise meaning to basic
properties of dynamic object rebinding. We also define two example semantic
properties that are characteristic for many concurrent programs with low-level
bind/unbind operations. Our calculus has a built-in construct atomic that can
be used to implement one of the semantic properties.

The paper is organized as follows. Section 2 introduces basic notions and
defines the syntax of our calculus. Section 3 presents a set of language properties
of dynamic object rebinding, and example semantic properties of programs that
use the dynamic rebinding feature. To illustrate one property, Section 4 shows an
example erroneous program and its fix-up. Section 5 formalizes the operational
semantics of our language, thus giving precise meaning to the properties defined
earlier. Section 6 presents related work. Finally, we conclude and discuss future
work in Section 7.

2 The Class-Based Object Calculus

We define our language as the call-by-value A-calculus, extended with signatures,
objects, object binding/unbinding, exceptions, threads and atomic tasks. The
abstract syntax of the language is in Figure 1. The main syntactic categories
are signatures, classes, values and expressions. For convenience, we differenti-
ate names: X, Y range over signature names; A, B range over class names; f
ranges over object field names, and m ranges over method names. We write x
as shorthand for a possibly empty sequence of variables 1, ..., z,, (and similarly
for ¢, v, and e). We abbreviate operations on pairs of sequences in the obvi-
ous way, writing e.g. x : ¢t as shorthand for zy : t1,...,x, : t, (and similarly
for f = v). Sequences of parameter names in functions and class methods are
assumed to contain no duplicate names. We write M as shorthand for a (non-
empty) sequence of methods My, ..., M, in a class. Methods of the same class
must contain no duplicate names; similarly, field names are unique per class.

Types. Types include the base type Unit of unit expressions, which abstracts
away from concrete ground types for basic constants (integers, Booleans, etc.),
the type Sig of object signatures, the type 0bj of objects, and the type ¢t — ¢’
of functions and class methods.

A Class-Based Object Calculus of Dynamic Binding 133

Variables xr,y,a,b € Var
Signature names X,Y € Sig
Class names A,B € Lab
Field names f
Method names m
Interface names neSel u=f|m
Types t = Unit | Sig | Obj |t — ¢
Signatures s n=sig X {f1:t1, .., [t tiy
my ity —th, .Mty — t;}
Fun. abstractions F n=x : t={e}
Methods M n=tmkF
Classes C € Class ::= class A {f1 = v1, ..., fr = vk, M1, ..., My}
Values v,wé€ Val == ()| X |new A| F
Expressions e€Eyp n=z|v|len|ee|letz=cine|e:=e

| bind e e | unbind e | try e catch e | escape
| fork e | atomic e

We work up to alpha-conversion of expressions throughout, with z binding in e in an
expression x : t = {e}, and z in €’ in an expression let * = e in ¢’. Names do not
bind, and so are not subject to alpha-conversion.

Fig. 1. A concurrent language of dynamic object (re)binding

Signatures. A signature describes an object interface, i.e. a declaration of
object fields and methods that can be accessed or called upon an object via
the signature. Syntactically, a signature is a keyword sig, followed by the name
of the signature, and a sequence of field and method names, accompanied with
their types.

Methods. A method of the form ¢ m F has declarations of a type t of the
values that it returns, its name m, and its body F'. Access control is not modelled
(all fields and methods are public). Objects can refer to their own methods with
self.m, where self is a variable. A method’s body is a function abstraction of the
form z : t = {e} (we adopted the C+4 or Java notation, instead of the usual
Az : t.e from the A-calculus).

Classes. A class has declarations of its name (e.g. class A) and the class body
{f =v,M}, where f = v is a sequence of fields (data containers) accessible via
names f and instantiated to values v, and M is a sequence of object methods.
Classes do not explicitly declare their superclass with extends since we do not
model class inheritance. Class inheritance and object constructor methods can
be easily added to the calculus definition, in the style of Featherweight Java (FJ)
[IPW99]. We assume that every class implicitly extends a special class Object,
like in FJ. The class Object does not define any fields nor methods.

134 P.T. Wojciechowski

Values. A walue is either an empty value () of type Unit, a signature name, e.g.
X, an object instance, e.g. new A, or function abstraction x : t = {e}. Values
are first-class, they can be passed as arguments to functions and methods, and
returned as results or extruded outside objects. (Typing could be used to forbid
extruding functions that contain object self references).

Basic expressions. Basic expressions e are mostly standard and include vari-
ables, values, field/method selectors, function/method applications, let binders,
and field assignment e := e. The let-binder is a construct of ML-like languages,
that can be used to define functions, and to bind object and immutable data to
variables. For instance, let © = new A in e creates a new object of class A that
is bound to a variable (where x binds in e). Then, we can write e.g. z.f := v
to overwrite a field f of object x with a value v, or we can write e.g. z.m v to
call a method m of object . We use syntactic sugar e;; ea (sequential execution)
for let = €7 in ey (for some x, where x is fresh).

Dynamic binders and exceptions. FExecution of bind X a binds a signature
X to an object a; any previous binding of signature X disappears. Execution
of unbind X unbinds a signature X from any object bound to X, or raises an
exception if no object is bound to X.

To catch exceptions, we have an expression try e catch €', which is similar to
the one found in ML-like languages. If there was an exception thrown in e then
the execution of e terminates and e’ commences. Execution of try e catch e’
returns either the result of e, if no exception occurred, or the result of ¢/, if there
was an exception thrown in e and no exception in ¢’. Exceptions can be thrown
explicitly using escape, or implicitly (as in unbind). If there is no expression to
catch an exception, the execution of escape blocks its thread of execution.

Threads and atomic tasks. The language allows multithreaded programs by
including an expression fork e, which spawns a new thread for the evaluation
of expression e. This evaluation is performed only for its effect; the result of e is
never used.

Execution of atomic e creates a new concurrent thread to evaluate an expres-
sion e atomically; we call such expressions tasks. Concurrent execution of atomic
tasks can be interleaved but the following property holds.

Property 1 (Isolation Property). Consider all atomic tasks in a program P, and
a set N of all signatures that the tasks may refer to. A non-terminating execution
of P satisfies the isolation property, if given any signature name X in N, the
order of accessing fields or calling methods via X by the atomic tasks is the same
as in an ideal execution of P in which the tasks would be executed sequentially.

An atomic task in our language can itself be multithreaded since its execution
can spawn new threads using fork. The operational semantics of tasks and the
atomic construct ensuring isolation will be given in Section 5.

In our previous work [Woj05], we have presented an example implementation
of tasks, but for a different, more restrictive definition of isolation that considers
modifications of data stores. The implementation is based on static typing and

A Class-Based Object Calculus of Dynamic Binding 135

runtime versioning. In [WRS04], we have proposed several optimizations of the
concurrency control algorithm implementing versioning.

Programs. A program is a pair (CT, e) of a class table CT and a main expression
e, where the class table CT is a mapping from class names to class declarations. To
lighten the notation, we always assume a fized class table CT. To avoid uncaught
exceptions we syntactically restrict the program’s main expression e to have the
form try e’ catch v, where v is a value. We assume that a class table satisfies
some sanity conditions: (1) ¢T(A) = class A...; (2) Object ¢ CT; and (3)
for every class name A (except Object) appearing anywhere in CT, we have
A € dom(cT). Given these conditions, a class table can be easily identified with
a sequence of class declarations.

3 Properties of Dynamic (Re)binding

Below we present basic properties of language constructs for binding/unbind
objects in our calculus, together with some discussion of higher-level rebinding
constructs that could be built on top of our calculus.

Then, we give two example semantic properties of programs, in which objects
can be rebound dynamically. The untyped calculus presented in this paper does
not have language support to declare and verify if such semantic properties hold.
We leave this for future work.

3.1 Language Properties

Below are runtime properties of the language constructs. After each property,
we provide a short justification of our design choice.

Property 2 (Binding Uniqueness). At run time, a signature X has two possible
states: it either binds to some object or not.

This is due to the fact that we decided to have two language constructs: bind X v
that binds a signature X to an object v, and unbind X that unbinds the sig-
nature. Our intention was to model these two operations. At the higher-level of
abstraction, however, the programmers may want to have a single construct that
e.g. replaces software components in one atomic step.

Property 3 (Binding Restriction). At most one object can be bound to a signa-
ture X at a time.

If more than one object could be bound to a signature X, then a method call
X.m would not know which object to call; similarly, a field access X.f would not
know which object to select. (In our language, the same field or method names
can appear in different classes.) At the higher-level of abstraction, however,
overwriting bindings of X could be encoded; the higher-level unbind construct
could then remove the current binding and deactivate any previous binding if it
exists.

136 P.T. Wojciechowski

Property 4 (Object Aliasing). An object can be bound to many signatures.

We allow this for expressiveness at the operational semantics. Note that X.m and
Y.m mean something different in programs with atomic tasks, event if X and Y
may bind the same object; to understand why, see the definition of the isolation
property. We think that object aliasing could be useful for programmers. If any
restriction is required, then it should be declared by programmers, and enforced
via a type system.

Property 5 (Failures). If no object is bound to X, then unbind X fails, field
access X.f fails for any f, and method call X.m fails for any m.

The above property with an exception mechanism built into the calculus allows
for more expressiveness. We can express alternative actions on failure at the
higher level of abstraction, e.g. “wait till some object is bound”.

Property 6 (Concurrency). The operations of binding/unbinding a signature X,
and the object field accesses or method calls via X can be concurrent.

Dynamic re-binding of objects in a sequential program seems to be a rarely
needed feature (e.g. dynamic class loading usually occurs only on object construc-
tion). On the other hand, new emerging applications that depend on dynamic
object rebinding, such as dynamic protocol updating and adaptive systems are
often concurrent. Concurrency in these applications stems from various reasons:
the old and updated protocol components may need to coexist for some time
[WRO5], the protocol components are themselves concurrent with the protocol
updater [RWS06a] that dynamically rebinds the components, etc.

3.2 Semantic Properties

Below are two example properties that may be required by programs with object
rebinding.

Property 7 (Reference Consistency). A set of object references R = {X;.n;
i = 1..k,j = 1.1} is consistent in an expression e, if exists object a such that
any method call or field access X;.n; in R, as part of evaluation of e, refers to a.

In Section 4, we present an example program that requires this property. In the
program, e.g. if a method call X.put has been executed upon some object, then
another reference to X (a field access X.getn) in the same round of the protocol
should also be executed upon the same object.

Property 8 (Signature Linearity). A signature X is linear in a program, if it is
either unbound, or it binds the same object v during whole program execution;
object v that was bound to X cannot be rebound to other signature.

If a linear signature X has been bound to some object, then it cannot be rebound
to another object, and vice versa. This property could be useful in programs in
which dynamic object rebinding is not a feature to mask implementations of
a given signature, but to authenticate an object via a signature. If objects are
communicated between machines (as part of some protocol), it may be useful to
use for this an abstract signature of an object, rather than its concrete name.

A Class-Based Object Calculus of Dynamic Binding 137
4 Example of the Reference Consistency Requirement

In this section, we give a small example program to explain the need for the
Reference Consistency (Property 7 in Section 3), and the use of the atomic
construct (with the isolation property) to ensure reference consistency. The pro-
gram implements a simple protocol involving the exchange of messages between
a client and an anonymous server, accessible via a signature X.

The protocol uses public key cryptography, which can be explained as fol-
lows. The client encrypts a message m using server’s public key to produce an
encrypted message; only the server can decrypt this message, so this ensures
secrecy. The server can sign a message m by encrypting it with its secret key
(which is the inverse of the public key); any client in possession of server’s public
key can then decrypt this message. Public key cryptography is used, e.g. in an
authentication protocol [Low96]).

A client obtains server’s public key from a trusted key store keyStore, using a
method keyStore.publicKey; the method accepts as its argument the server’s
name X.getn (see in the end of the program). The key store (omitted here)
returns a public key that corresponds to this name. To send a message (a value
100) encrypted using the public key, the client invokes server’s method X.put.
Execution of X.put (see class A or class B) decrypts the message using server’s
secret key, which is stored in the object field secretKey.

sig X
{
getn : Obj
put : Int -> Int
}
class A
{
getn = self (* an object name *)

secretKey = 1 (* a secret key of A *)
Int put (v : Int) = { decrypt (v, self.secretKey) }

}

class B
{
getn = self (* an object name *)
secretKey = 2 (* a secret key of B *)
Int put (v : Int) = { decrypt (v, self.secretKey) }

}

class Updater

{
Unit update (x : Sig, o : Obj) =
{

unbind x; (* unbind signature z from any object *)
bind x o; (* bind signature z to object o *)
}
}

138 P.T. Wojciechowski

let a = new A in (* create object a *)
bind X a; (* and binds sig X to a *)
let b = new B in (¥ create object b *)
fork (new Updater).update(X, b); (* rebind X to b *)
try
X.put (encrypt(100, keyStore.publicKey(X.getn))) (* The client *)
catch
0

Exchange of an encrypted message between server X and the client occurs
in parallel with dynamic replacement of the actual object implementing X. For
this, we have an updater object Updater, with a single method update that
implements a simple handover protocol: it takes as arguments a signature and
an object, unbinds anything bound to the signature and binds the object. (For
simplicity, we require that X is initially bound.)

In the main expression, a concurrent thread (created with fork) calls a
method update that unbinds a server object a (bound to X) and binds server
object b to X. The client does not know if it calls a or b; it is not aware of
the hot-swapping done by the updater. The program is however problematic in
twofold ways. Firstly, the client may call a server using a signature X that has
been unbound by the update method and not rebound yet, thus leading to an
exception error. Secondly, the following property is not true:

Property 9 (Safety). A message encrypted with a public key of object x is also
received by z (for any x).

We would like this property to hold during program execution. Otherwise, the
client may encrypt and send a message to the server using a public key of another
server, which is like an attack on a protocol using public key cryptography.

To fix up our program, we can use the atomic construct to encode the mes-
sage exchange protocol (initiated by the client) and the update protocol (in the
update method) as two parallel atomic tasks. Below is an example code:

class Updater

{
Unit update (x : Sig, o : Obj) =
{
atomic
(unbind x; (* unbind signature x from any object *)
bind x 0;) (* and bind signature T to object o atomically *)
}
}
let a = new A in (¥ create object a *)
bind X a; (* and binds sig X to a *)

let b = new B in (¥ create object b *)
fork (new Updater) .update(X, b); (* rebind X to b *)
try
atomic X.put (encrypt(100, keyStore.publicKey(X.getn))) (* The client *)
catch
0

A Class-Based Object Calculus of Dynamic Binding 139

The advantage of atomic with respect to coarse-grain locking is that the client-
server protocol and server updating can be executed concurrently. Moreover
possible deadlocks are avoided, which simplifies programming. However, isolation
ensured by atomic is actually a stronger property than reference consistency —
atomic tasks that do not do object rebinding may also be mutually isolated, even
if they cannot themselves invalidate reference consistency.

The use of atomic in protocols depends on its implementation. Protocols have
various side effects (I/O actions, network communication, etc.); these side-effects
are not always revocable. The implementations of atomic (we give examples in
Section 6) usually restrict I/O actions in atomic blocks, e.g. due to rollback sup-
port. This restriction should not be a problem if atomic is used to protect only
short code fragments, as in our example program. Alternatively, we proposed in
[W0j05] an implementation of atomic that does not depend on rollback-recovery
of tasks. (We do not have an explicit rollback construct in our language.)

5 Operational Semantics

We specify the operational semantics of our language using the abstract machine
defined in Figures 2 and 3. The machine evaluates a program by stepping through
a sequence of states. A state S consists of four components: an object store A,
a counter « of fresh atomic blocks, a bind store 8, and execution threads T,
organized as a sequence Ty, ..., Tp,.

The object store A is a finite map from object field selectors to values stored in
the fields, where a field selector, denoted 04.f, is an object location 04 indexed
by a field name f.

The bind store (3 is a set of pairs (X, 0?) of a signature name X and an object
location o bound to the signature. The set difference 3\ 3’ is the set of elements
found in 8 but not found in §’; the union of sets 3 U 3’ is the set consisting of
the elements of both sets, with no duplicate elements.

The expressions ¢ in a sequence of threads T are written in the calculus
presented in Section 2, extended with a new construct task ¢ N T'. The construct
is not part of the language to be used by programmers; its meaning will be
explained below.

We define a small-step evaluation relation A, a, 8 | g — A’ a/, 3" | ¢/, read
“expression g reduces to expression ¢’ in one step, with A, a, 8 being transformed
to A’ a/,37. We also use —* for a sequence of small-step reductions. By
concurrent execution, we mean a sequence of small-step reductions in which the
reduction steps can be taken by different threads with possible interleaving.

Reductions are defined using evaluation context £ for expressions e and g.
The evaluation context ensures that the left-outermost reduction is the only
applicable reduction for each individual thread in the entire program. Context
application is denoted by [], as in £[e]. Structural congruence rules allow us to
simplify reduction rules by removing the context whenever possible.

Evaluation of a program (CT, e), where CT is constant, starts in an initial state
with empty stores), a null counter 0, and with a single thread that evaluates

140 P.T. Wojciechowski

State Space:

S € State = ObjStore x Taskld x BindStore x ThreadSeq
A € 0bjStore = ObjLoc.Sel — Val
a € Taskld = Nat

B € BindStore = Sig x ObjLoc
o € ObjLoc Cc Var
T € ThreadSeq =g | T,T
g€ Ezp, ., n=z|v|en|ee|letzx=eine|e:=e|bind e e | unbind e
| try e catch e | escape | fork e | atomic e | task i N T

Evaluation Contexts:

E=[]|En|Ee|vE|letz=Eine|E:=e|0*.f:=&|bind £ e | bind X &
| try € catche|taski N € | E,T | T,E

Structural Congruence
T.7'=T7.T T,)=T

A7Oé7/8|g—>A/7a/>ﬁ/|g/ g—>g/
A,O{,,8|g[g}*>A/,Of/,ﬁ/|g[g/] A,O{,ﬁ|94>A,O£,B|g/

Transition Relation
eval C ((Lab — Class) x Ezp) x Val
e’l)al((CT, 8),1}0) = wa 0,@ | e —" Aa aa/B | Vo, ()7) ()

Method Body Lookup:

cT(A) =class A {f =v,M}
tmFeM
mbody(m,A) = F

Fig. 2. Reduction semantics - Part 1

the expression e. Evaluation then takes place according to the machine’s rules
in Figure 3. The evaluation terminates once all threads have been reduced to
values, in which case the value vg of the initial, first thread Ty is returned as the
program’s result. Subscripts in values reduced from threads denote the sequence
number of the thread, i.e. v; is reduced from 4’s thread, denoted T; (i = 0,1, ..).
The execution of threads can be arbitrarily interleaved.

5.1 Reduction Rules

Below we describe reduction rules in Figure 3. The first two evaluation rules
are the standard rules of a call-by-value A-calculus [Plo75]. We write e{v/z} to
denote the capture-free substitution of v; for x; in the expression e (i =1, .., n).
Function application z : t = {e} v in (R-App) reduces to the function’s body e in

A Class-Based Object Calculus of Dynamic Binding 141

z:t={e} v —e{v/z}
let x =v in e — e{v/z}
o ¢ dom(A)
CT(A) =class A {fi = v1,..., f = vk, M }

A = (A 0% f1 — 1,y 0™ i 0g)
Ao, B | new A — A, B | 04

Ao, Bl ot fi=v— A fr],a,8]()
A, B | ot f— Ao, B | U{oA/self} if A(oA.f) =0

mbody(m,A) = F
oAmuv — F{o?/self} v

try v catche — v

try..catch ¢ &’
try £'|escape | catch e — e

A, | bind X 0" — A, (B\ {(X,)} U{(X, o)} | O

A a,f | ubind X — A o, B\ {(X, oM} | () if (X,0%) e€p

A, o, 3 | unbind X — escape if (X,-)¢p
Aa,B| Xn— Aa,plon if (X,0%)ep
Ao, Xn— A o, | escape if (X,-)¢p

N={Xe€Sig : Xce}

A,a,p | Elatomic e] — A,a+ 1,68 | E[()],taska+1 N e

Elfork e] — £[()], e
task ¢ N E[fork e] — task i N (E[()],e)

taski Nec€c& 1<}
XeENNM X¢e (X,0Y)ep

Aa,B | E[task j M E'[X.n]] — A,a,B | E[task j M E'[o04.n]]

task i N v — ()

Vi,V — v if 1<y

Fig. 3. Reduction semantics - Part 11

(R-App)

(R-Let)

(R-New)

(R-Assign)

(R-Field)
(R-Invk)
(R-Try)
(R-Esc)

(R-Bind)

(R-Unbind1)
(R-Unbind?2)
(R-Lookupl)

(R-Lookup?2)
(R-Atomic)

(R-Fork1)

(R-Fork2)

(R-Taskl)

(R-Task2)

(R-Thread)

142 P.T. Wojciechowski

which formal arguments z are replaced with the actual arguments v. Execution
of let £ = v in e in (R-Let) reduces the whole expression to the expression e in
which variable x is replaced by value v.

Execution of new A creates a new object of class A. The object is identified
by a fresh object location 04, and represented by a new record of object fields
f1, -y i in the object store A; see the (R-New) rule. The notation (A4, 04.f +— v)
means “the store that maps o4.f to v and maps all other selectors to the same
thing as A”. The object fields f1, .., fx are accessible via the object location 04,
e.g. oa.fi (i = 1..k) refers to a field f; of object 04. The object fields in the
object record are initialized with field values v1, .., vy defined by class A.

Rules (R-Assign) and (R-Field) correspondingly, assign a new value v to the
field f of an object 0”, and read the current value stored in an object field 0. f.
For instance, let us look at the rule (R-Assign). We use the notation Afo?.f + v
to denote update of map A at 0. f to v. Note that the term resulting from this
evaluation step is just (); the interesting result is the updated store. The (R-
Assign) rule must be applied first, if not possible then we try (R-Field).

Similarly to FJ, the invocation 0.m v of a method m of an object o applies
the beta-reduction rule from the call-by-value A-calculus; see the (R-Invk) rule.
The rule first looks up in the class table ¢T a method body F of the form
x : t = {e} (using a function mbody(m, A) defined in the bottom of Figure 2);
then, it reduces to the method body in which self is replaced by the receiver
0. Then, the application rule (R-App) (described earlier) can be used, which
applies the arguments v to the method m.

Exceptions are defined using two rules. The (R-Try) rule defines the case when
no exception was thrown; it simply reduces the whole expression try...catch
with the body reduced to a value v to the value v; the catch clause is discarded.
To throw an exception, the escape construct is used. If escape is in the redex
position of the expression e’ in the body of the innermost try e’ catch e, the
(R-Esc) rule reduces try e’ catch e to the exception handler e.

Dynamic binder bind X 04 in rule (R-Bind) removes from store 3 any previous
binding (X, -) of a signature X, and extends § with a new element of X paired
with an object location 0o”. The whole expression reduces to the empty value ().
Dynamic unbinder unbind X in rules (R-Unbind1l) and (R-Unbind2) respectively,
removes the binding (X, -) from store § and reduces to the empty value (), or
throwns an exception with escape if no binding of X exists.

Dynamic resolver X.n in rules (R-Lookupl) and (R-Lookup2) respectively, re-
turns the field/method selector 0?.n, where 0# is the object location currently
bound to a signature X, or throwns an exception if no binding of X exists.

5.2 Concurrent and Atomic Evaluations

Execution of an expression atomic e creates a new thread for evaluation of a task
e with the isolation property, defined in Section 2. The task has the syntactic
form task ¢ N e, where ¢ is the sequence number of the task, and N is a set of
all signatures X that may be referred to by expression e. The (R-Atomic) rule

A Class-Based Object Calculus of Dynamic Binding 143

reduces an expression [atomic e] to the context £ with the empty value () in
the redex position, and a new thread evaluating a task task a+ 1 N e; the rule
also increments the task counter a.

Execution of an expression fork e in (R-Forkl) creates a new thread which
evaluates e; the result of evaluating expression e will be discarded by rule
(R-Thread); threads may however have side-effects, e.g. modification of object
fields. Tasks can spawn their own threads using fork; see rule (R-Fork2).

The (R-Task1) rule specifies evaluation of concurrent tasks that satisfies the
isolation property. Consider evaluation of some task task j M e’ in the context
&, where the redex position of expression €’ is a field or method access via a
signature X, i.e. ¢ = &'[X.n] for some context £ and an interface name n. If
context & is such that there is some older concurrent task task ¢ N e (i.e. i < j)
that evaluates some expression e and may refer to X (since X is declared in set
N), then the rule (R-Taskl) applies. It reduces the expression task j M e’ by
replacing X by a concrete object location o if two conditions hold: (1) e cannot
refer to X anymore (i.e. X ¢ e), and (2) there is actually some binding of X in
bind store 8. If X is in e then the rule does not apply, and the other task may
be evaluated. If no binding of X exists, the rule (R-Lookup2) applies.

Once evaluation of an expression e of task task ¢ IV e yields a value, the rule
(R-Task2) returns the empty value as the result of the whole thread. The results
of evaluating threads (except of the initial thread) are discarded by (R-Thread).

6 Related Work

Object calculi. There have been many proposals of various object calculi; we
sketch some of the most known examples below.

Abadi and Cardelli [AC95] have developed an imperative calculus of objects,
equipped with an operational semantics and typing (and subtyping); with ad-
dition of polymorphism, the calculus can express classes and inheritance. The
object calculus of Gordon and Hankin [GH98] extends Abadi and Cardelli’s im-
perative object calculus with operators for concurrency from the 7-calculus and
operators for synchronization based on mutexes. Our calculus also has a synchro-
nization abstraction built-in (the atomic construct), albeit semantically richer
than mutexes; we discuss the related work on atomicity below.

Igarashi, Pierce and Wadler [IPW99] have proposed a small calculus, Feath-
erweight Java (FJ), that provides classes, methods, fields, inheritance, and dy-
namic typecasts, with semantics closely following Java’s. The design of our cal-
culus has been inspired by FJ, e.g. we have the same rule for method calls, which
uses the call-by-value principle of the A-calculus. However, their calculus omits
interfaces and even assignment, while we have assignment and also signatures
(which are similar to Java interfaces). On the other hand, we do not model typing
and class inheritance in this paper since our focus is on the reduction semantics.

The above calculi have been developed mainly to reason about the imple-
mentation of objects, object encodings, typing, class inheritance, etc. We are
not aware of concurrent object calculi that would have constructs for dynamic

144 P.T. Wojciechowski

object rebinding similar to ours. We discuss some examples of (non-object) cal-
culi with dynamic binding in the next paragraph.

Dynamic rebinding. A lot of work on dynamic rebinding appeared in the
context of functional languages (see, e.g., work of Moreau [Mor98]), focusing ei-
ther on dynamic scoping, in which variable occurrences are resolved with respect
to their dynamic environment, or static scoping with explicit rebinding, where
variables are resolved with respect to their static environment, but additional
primitives can be used to explicitly modify these environments.

Dynamic scoping exists in most modern dialects of Lisp, e.g. MIT Scheme’s
fluid-let [MIT] construct performs dynamically-scoped rebinding of local and
global variables; once the construct’s expression has been evaluated, the values
of the variables are restored. The quasi-static scoping Scheme extension of Lee
and Friedman [LF93] has a class of variables, which are initially unresolved. The
programmer can use a rebinding primitive to specify new bindings for individual
variables. The above work is different from ours; we bind whole objects to typed
signatures, while the above work is on dynamic binding of variables in functional
languages, with a correspondingly different semantics of rebinding.

Dynamic linking of objects in object languages such as Java, refers to resolving
object components at runtime. However, once bound the code usually cannot be
rebound, which is different from our approach, which aims at studying object
re-binding. Different dynamic linking models have been described in [DLE03].

There are different applications of dynamic rebinding. For instance, Bier-
man et al. [BHS103] proposed abstraction-safe marshalling and unmarshalling
(or rebinding) values between separate programs in the A-calculus; see also the
Acute programming language [LPSWO03]. An extension of Smalltalk with dy-
namic method redefinition in the scope of classbozes is described in [BDWO03];
the dynamic rebinding feature is used here to support software evolution.

We are not aware of much discussion of concurrency issues in the context of
dynamic rebinding. The existing implementations are often not satisfactory, e.g.
the runtime support of type-safe dynamic Java classes in [MPGT00] aborts a
thread if a class update is attempted while the thread is executing a method of
that class. Our solution to this problem is to execute rebindable code fragments
and code fragments that do rebinding, as concurrent (possibly multithreaded)
atomic tasks, using the atomic construct. The semantics of the construct given
in this paper eliminates the need to abort threads while doing an update.

Atomicity. Below we sketch some work on formalizing the isolation property
(also known as atomicity in the programming language research community),
with the semantics as in transactional systems; such semantics is slightly different
than the one presented in this paper. We are not aware of any formal work on
using isolation (or atomicity) in the context of dynamic binding.

Vitek et al. [VIWHO04] have recently proposed a calculi-based model of stan-
dard database transactions. They have formalized the optimistic and two-phase
locking concurrency control strategies. Their approach to formalization of the

A Class-Based Object Calculus of Dynamic Binding 145

isolation property is similar to ours, in the sense that both specifications refer
to order (or scheduling) of concurrent actions.

There have recently been a lot of interest in developing language support for
atomicity. For example, Flanagan and Qadeer [FQO03] presented a type system for
specifying and verifying atomicity of (single threaded) methods in multithreaded
Java programs. The type system is a synthesis of Lipton’s theory of left and right
movers (for proving properties of parallel programs) and type systems for race
detection.

Harris and Fraser [HF03] have been investigating an extension of Java with
(again, sequential only) atomic code blocks that implement conditional critical
regions (CCRs). The programmer can guard a conditional region by an arbitrary
boolean condition, with calling threads blocking until the guard is satisfied. It is
also possible to terminate an execution of an atomic block and rollback, if some
condition is not satisfied.

In [Woj05], we have discussed the above implementation work in more detail,
including comparison with our approach to atomicity.

7 Conclusion

In this paper, we proposed a class-based object calculus with constructs for
dynamic rebinding of objects to signatures; signatures describe types of object
fields and methods, and can be used to call the objects. We have also discussed
properties of the bind/unbind constructs.

Dynamic object binding enables developing novel applications, such as dy-
namic service update (as in our example). However, it also makes programming
more difficult, since additional semantic properties may be required by programs.
We have discussed an example semantic property, called reference consistency,
and showed how it can be encoded using the atomic construct of our calculus
that ensures isolation.

In the future work, we would like to develop tools for automatic verification
of certain properties of dynamic binding/unbinding, based on the typed variant
of the calculus presented in this paper.

Acknowledgments. The author would like to thank Olivier Riitti and Sophia
Drossopoulou (and other members of the SLURP group) for discussions and

comments. This work was supported in part by the State Committee for Scientific
Research (KBN), Poland, under KBN grant 3 T11C 073 28.

References

[AC95] Martin Abadi and Luca Cardelli. An imperative object calculus. In Proc.
TAPSOFT ’95: Theory and Practice of Software Development, the 6th
International Joint Conference CAAP/FASE, LNCS 915, May 1995.

[BDWO03] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Classboxes: A mini-
mal module model supporting local rebinding. In Proc. JMLC *03: the Joint
Modular Languages Conference, LNCS 2789. Springer, August 2003.

146 P.T. Wojciechowski

[BHS103]

[DLEO3]
[FQO3]

[GHOS]

[HFO03]

[IPW99)
[LF93]
[Low96]
[LPSWO03]
[MIT]
[Mor98]
[MPG™00]
[Plo75)
[RWS06a]

[RWS06b)

[VIWHO4]

[Woj05]

[WRO5]

[WRS04]

Gavin Bierman, Michael Hicks, Peter Sewell, Gareth Stoyle, and Keith
Wansbrough. Dynamic rebinding for marshalling and update, with
destruct-time lambda. In Proc. ICFP ’03, August 2003.

Sophia Drossopoulou, Giovanni Lagorio, and Susan Eisenbach. Flexible
models for dynamic linking. In Proc. ESOP 03, April 2003.

Cormac Flanagan and Shaz Qadeer. A type and effect system for atomic-
ity. In Proc. PLDI ’03, June 2003.

Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus:
Reduction and typing. In Proc. HLCL’98: the 3rd Int’l Workshop on
High-Level Concurrent Languages, Elsevier ENTCS 16(3), 1998.
Timothy Harris and Keir Fraser. Language support for lightweight trans-
actions. In Proc. OOPSLA 03, 2003.

Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In Proc. OOPSLA ’99,
Nov. 1999.

Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing
variable bindings across multiple lexical scopes. In Proc. POPL 93, Jan
1993.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In Proc. TACAS ’96: Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 1055, March 1996.
James Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. Global
abstraction-safe marshalling with hash types. In Proc. ICFP ’03, 2003.
MIT. Scheme. http://wuw.swiss.ai.mit.edu/projects/scheme/.

Luc Moreau. A syntactic theory of dynamic binding. Higher-Order and
Symbolic Computation, 11(3):233-279, December 1998.

Scott Malabarba, Raju Pandey, Jeff Gragg, Farl Barr, and J. Fritz Barnes.
Runtime support for type-safe dynamic Java classes. In Proc. ECOOP
2000, LNCS 1850, June 2000.

Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. The-
oretical Computer Science, 1:125-159, 1975.

Olivier Riitti, Pawet T. Wojciechowski, and André Schiper. Service In-
terface: A new abstraction for implementing and composing protocols. In
Proc. SAC 06: the 21st ACM Symposium on Applied Computing, Track
on Dependable and Adaptive Distributed Systems, April 2006.

Olivier Riitti, Pawel T. Wojciechowski, and André Schiper. Structural
and algorithmic issues of dynamic protocol update. In Proc. IPDPS ’06:
the 20th IEEE Int’l Parallel and Distributed Processing Symposium, April
2006.

Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L. Hosking. A
semantic framework for designer transactions. In Proc. ESOP ’04, LNCS
2986, March/April 2004.

Pawel T. Wojciechowski. Isolation-only transactions by typing and ver-
sioning. In Proc. PPDP ’05: the 7th ACM-SIGPLAN Int’l Symposium on
Principles and Practice of Declarative Programming, July 2005.

Pawel T. Wojciechowski and Olivier Riitti. On correctness of dynamic
protocol update. In Proc. FMOODS ’05, LNCS 3535, June 2005.

Pawel T. Wojciechowski, Olivier Ritti, and André Schiper. SAMOA: A
framework for a synchronisation-augmented microprotocol approach. In
Proc. IPDPS °04: the 18th IEEE Int’l Parallel and Distributed Processing
Symposium, April 2004.

Tracechecks: Defining Semantic Interfaces with
Temporal Logic

Eric Bodden and Volker Stolz

Software Modeling and Verification (MOVES)
RWTH Aachen University, 52056 Aachen, Germany
{bodden, stolz}@i2.informatik.rwth-aachen.de

Abstract. Tracechecks are a formalism based on linear temporal logic
(LTL) with variable bindings and pointcuts of the aspect-oriented lan-
guage AspectJ for the purpose of verification. We demonstrate how trace-
checks can be used to model temporal assertions. These assertions reason
about the dynamic control flow of an application. They can be used to
formally define the semantic interface of classes. We explain in detail how
we make use of AspectJ pointcuts to derive a formal model of an existing
application and use LTL to express temporal assertions over this model.

We developed a reference implementation with the abc compiler show-
ing that the tool can be applied in practice and is memory-efficient.

In addition we show how tracechecks can be deployed as Javab annota-
tions, yielding a system which is fully compliant with any Java compiler
and hiding any peculiarities of aspect-oriented programming from the
user. Through annotations, the tracecheck specifications become a se-
mantic part of an interface. Consumers of such a component can then
take advantage of the contained annotations by applying our tool and
have their use of this component automatically checked at runtime for
compliance with the intent of the component provider.

1 Introduction

Existing programs, especially large-scale applications, do not only consist of
their code base and documentation. In object-oriented programs, often there
exist implicit constraints e.g. in library APIs on how methods or fields may be
used. Apart from simple constraints like that certain parameters must never
be null, there are more complex limitations that e.g. some methods may only
be invoked in special circumstances, like in a specific order. Sometimes these
constraints are already checked through assertions. But the unwary developer
may be tripped up by many more patterns which are only informally documented
and not enforced. For example in the Javab libraries, if a collection is added to
a hash set, the set does not notice changes to the elements themselves and may
hence return unsound results.

In this work we present tracechecks, a formalism which we consider well suited
to specify such temporal relations. The proposed semantic framework is based
on linear temporal logic (LTL) [17], which is widely known in the field of formal
verification, and is often used for static Model Checking [7].

W. Léwe and M. Siidholt (Eds.): SC 2006, LNCS 4089, pp. 147-162, 2006.
© Springer-Verlag Berlin Heidelberg 2006

148 E. Bodden and V. Stolz

The first step in Model Checking is usually to derive a formal semantic model
from an existing application. This model is then checked for correctness with
respect to some temporal specification (e.g. in LTL). Quite often it happens
that the semantic model is unsound or incomplete with respect to the actual
behaviour of the implementation.

Our approach is novel in the sense that we restrict ourselves to a partial
model (the one induced by a run) and use AspectJ to derive this partial model.
The primitives of our temporal logic are AspectJ pointcuts, picking out join-
points in the dynamic control flow of a Java application. That way the model
is known to match the implementation because they actually coincide at well-
defined points—the joinpoints. Section 2 gives two motivating examples where
tracechecks enforce temporal constraints on Java interfaces. In Section 3 we ex-
plain how we derive a semantic model of an existing application using AspectJ
and how LTL can be used to state temporal assertions over this model. We show
that the model is a system where transitions are triggered by pointcuts. In Sec-
tion 4 we present the syntax of tracechecks and give their semantics by example.
In particular, tracechecks can access and bind objects as the application runs,
hence providing a means of instance-based reasoning. Section 5 discusses details
about our reference implementation as well as performance and deployment is-
sues important to component-based software development. We also comment on
possible usage scenarios and conclude with a discussion of related work.

2 DMotivation

Component based software has much evolved during the last years. Where some
decades ago a piece of software often existed of few large chunks of code with
little recognizable structure, today we have programming languages and tool
support for properly maintaining independent components—modules—on their
own. This modular reasoning has lead to safer software which is easier to main-
tain and easier to evolve.

Yet, we find that modules as they are today lack important specification
features to be fully reusable, as they are frequently only syntactically defined
through their programming language interfaces. This induces a purely static
view. A feature f can be accessed through a module m if and only if f is in
the signature of m and if it can be accessed, one can usually do so at any time.
(Sometimes exceptions are used to forbid certain access patterns but we see this
as quite a cumbersome low-level solution to the problem.)

We found that this static view can lead to trouble when software is actually
run. Frequently it can happen that certain functionality is only available at
certain points in time when an application executes, or in other words: at certain
times at runtime, certain features should not be allowed to be accessed for the
sake of a safe and stable application.

For example, nothing should be written to an output stream, if the stream
has been closed before. Such errors may be documented in APIs in the form of
comments, but still the user of the output stream component has to remember

Tracechecks: Defining Semantic Interfaces with Temporal Logic 149

tracecheck(Collection c, Iterator i) {

1

2

3 sym iterator(Collection c, Iterator i) after returning (i):

4 call(Collection+.iterator ()) && target(c)

5 sym modify(Collection c) after returning:

6 (call(Collection+.add(..)) || call(Collection+.remove(..))) && target(c)
7 sym next(Iterator i) before:

8 call(Iterator .next()) && target(i)

9

10 G(iterator(c,i) —> G(modify(c) —> G(!next(i)))) {

11 throw new ConcurrentModificationException (”Collection ”+c+” modified!”);
12 }

13 }

Fig. 1. Safe iterator tracecheck

to obey this rule in order to get a safely working application. With tracechecks,
such temporal assertions can be specified right in place and can automatically
be checked at runtime. To further emphasize this dynamic view we would like to
give a code example.

2.1 Safe Iterators
As a motivation, let us start with the safe iterator-pattern, which states that:

For each Iterator i obtained from a Collection c, there must never be an
invocation of i.next() after the collection has been modified.

This pattern is actually enforced in the Javab library as follows. The Iterator
implementation contains a mechanism to track modifications of the underlying
collection by means of a modification counter. If the collection c is updated, the
modification-count obtained by the iterator ¢ on instantiation time and the cur-
rent counter of the collection disagree and lead to an exception on the next access
to the iterator. In this case, the specification has crept into the implementation
of both the iterator and the collection.

With this work we introduce tracechecks, a formalism and tool to formulate
such trace conditions and automatically check their violation at runtime. Java
interfaces and classes (as well as AspectJ aspects) can be annotated with trace-
checks to define their behaviour with respect to the execution timeline.

In our formalism the requirement from above can be specified in a modular
way through the tracecheck in Figure 1. Line 1 declares the free variables ¢ and ¢
that each collection and iterator in question will be bound to. Lines 3-9 declare
three symbols iterator, modify and next, which match the relevant joinpoints
through pointcuts. The actual formula (expressed in LTL, see below) is stated
in line 10, specifying through the outer “Globally” that this assertion should
be checked on the whole execution path (and hence for all created iterators).
For each iterator (left-hand side of the outer implication), we require of the

150 E. Bodden and V. Stolz

tracecheck(HashSet s, Collection c) {

1

2

3 sym add(HashSet s, Collection c) after returning:

4 call (HashSet+.add(..)) && target(s) && args(c))

5 sym modify(Collection c) after returning:

6 (call(Collection+.add(..)) || call(Collection+.remove(..))) && target(c)
7 sym remove(HashSet s, Collection c¢) after returning:

8 call (HashSet+.remove(..)) && target(s) && args(c))

9 sym contains(HashSet s, Collection c) before:

10 HashSet+.contains(..)) && target(s) && args(c))

11

12 G(add(s,c) —> G(modify(c) —> remove(s,c) R (lcontains(s,c)))) {

13 throw new ConcurrentModificationException (c+” modified while in ”+s);
14 }

15 }

Fig. 2. Tracecheck detecting inconsistent use of collections and hash sets

remainder of the execution that after a call to add or remove no call to i.next()
must occur. The body is executed for any instance that violates the formula. We
have successfully validated this formula in practice. All examples are available
on our project web-page http://www-1i2.informatik.rwth-aachen.de/JLO/.

2.2 Unsafe Use of HashSets

Another practical application of our framework is based on an actual bug pat-
tern observed by colleagues. When a collection is inserted into a HashSet, mod-
ifications to the contained collections influence the result of HashSet.contains-
queries. This behaviour was not anticipated and led to unexpected results. While
this is only arguably a bug but rather a mistake, the source code had to be
screened for possible uses under the wrong assumptions. In this case, the JDK
does not provide any builtin mechanism to detect such behaviour. We captured
it in the following way:

For each HashSet s that contains a Collection c, there must be no invocation
of s.contains(c) if the collection has been modified, unless the collection has
been removed from the set in between.

With tracechecks, specifying this property is done by a translation into linear
temporal logic (see Figure 2). Again, we define symbols matching the events of
interest and then specify that globally (G) adding a collection to a set implies
that from there on always the modification of this collection implies that the
removal of the collection from the set releases (R) the property “not check if ¢
is contained in s” from holding. The ¢ R ¢ indicates that either 1 should hold
on the whole path or at some point ¢ holds and in this case releases ¥ from the
obligation to hold any longer.

Tracechecks: Defining Semantic Interfaces with Temporal Logic 151

Unlike the tracechecks in those two examples, there may be application-
specific tracechecks that require understanding and analysis of the application.
The examples here shall demonstrate that in many cases tracechecks can be seen
as a formalism to extend the interface of an aspect or class (which is currently
mainly structure based) with semantic properties. Moreover those properties can
automatically be checked, leading to higher confidence in the code in question.

In the next section we explain how we use AspectJ pointcuts to obtain a trace
of the running application and present the underlying foundations for checking
LTL formulae on a finite path. In particular we clarify the relation between the
execution trace and the model of the program. We show how the pointcuts used
as propositions in our formula influence the degree of abstraction of the model
and thus the trace.

3 Introducing LTL

Linear temporal logic reasons about an infinite path in a model (usually a Kripke
structure) [7]. It is thus an extension of propositional logic. A path is a sequence
of states m = w[0]x[1]... such that each edge (w[i], 7[i+1]) is contained in the
transition relation of the model. Each state 7[i] is labelled with a set of atomic
predicates (the propositions). Although this section focuses on concrete exam-
ples, we briefly wish to point the reader to Figure 3, which gives the grammars
for tracechecks and LTL formulae.

(TRACECHECK) ::= [perthread] (ARG) = (SYMBOL)
tracecheck ((VAR DECL)) { | (LTL FORMULA)
(SYMBOL DECL)+ | ((arc))
LTL FORMULA)
éMETHOD BODY) (LTL FORMULA) ::=
! <ARG> - not ¢)
(SYMBOL DECL) ::= | X (arG) X ¢ (neXty)
sym [((vAR DECL))] | F (ARG) F ¢ (Finally ¢)
(NAME) (KIND): (POINTCUT); | G (arc) G ¢ (Globally ¢)

<KIND> ::= before |
| after | éARG && (ARG) @ ANV and 1)
| after returning [((VARIABLE))] | (arG) || (ARG) @V ¥ or 1)
| after throwing [((VARIABLE))] | (ARG) => (ARG) @ — ¥ (¢ implies V)
| (TyPE) around [((VARIABLES))| | é g <=> (ARG) ¢ <1 (¢ iff ¥)

(a) Tracecheck grammar (b) Syntax of LTL formula

(

(

E
| (ARG) U (ARG) ¢ U 4 (¢ Until)
ARG) R (ARG) ¢ R ¢ (¢ Releases 1))
(¢
(¢
(
(

Fig. 3. Tracecheck and LTL grammar

They consist of the set of Boolean operators as well as the temporal operators
Next, Finally, Globally, Until and Release, which can be used to temporally
combine propositions or sub-formulae.

152 E. Bodden and V. Stolz

x:=1; y:=1;
while (p1) {

f(x,y);
O50;ONNe’)
{ x:=1; y:=1; } I
e s
{ x:=2; y:=2; } .
} /* while */
(a) Pseudo-source (b) General model (c) Abstracted model

Fig. 4. Simple while-loop with branching

For the verification of programs, these atomic propositions could be abstracted
from each program state, i.e. the complete program state with heap, program
counter, local variables, and call stack. Usually the program counter and a pro-
jection of parts of the state would be used to limit the model to the relevant
propositions for the task at hand (cf. for example the specification language
PROMELA [15]). The model of a program is defined by the generally undecidable
set of all computation paths. We limit ourselves to reasoning about an actual
execution trace of the program to overcome the inherent limitation of Model
Checking on obtaining an appropriate model to existing source code.

Throughout the paper, the atomic propositions of our framework are point-
cut expressions that select the matching joinpoints as the states of our abstract
model. Each state is labelled with the set of active propositions, i.e. the propo-
sitions which match the current joinpoint. For example in the case of Figure
1, each state where an iterator ¢ is created for a collection ¢ would be labelled
with a superset of {iterator(c,i)}. Although our examples only use call and
if-pointcuts, any other pointcut, e.g. cflow, may be used.

3.1 Temporal Assertions

Reasoning about one such state is closely related to assertions. An assertion is
the check of a predicate over the current state of a system (identified through the
position in the source code). We can further abstract this to a model where we
retain only those states in which assertions are actually checked by a tracecheck.

As an example, consider the program in Figure 4(a). It contains two predicates
pl, p2 that decide (possibly non-deterministically if for example I/O is involved)
the number of iterations and which branch to take. Figure 4(b) shows the model
we obtain if we are interested in the variables z,y. (We do not show the edges
leading out of the loop.) Note that it contains two states labelled (1,1) or (2, 2),
but all are distinguishable from each other since they have different predecessors
and successors. Figure 4(c) shows the abstracted model obtained if we are only
interested in the values of the arguments of the method invocation f.

Temporal assertions use LTL path formulae as a means of reasoning about a
sequence of states. They allow us to specify that states have to occur in a special
order, e.g. that a call to a method f must eventually be followed by a method

Tracechecks: Defining Semantic Interfaces with Temporal Logic 153

call to g, expressed by the LTL formula F(f — Fg). The operator F is often
pronounced “Finally” because of its meaning.

Another important LTL operator is called “Globally”. It specifies that a prop-
erty should hold on every state of the model. E.g. it might be desirable to confirm
that in each state the values of the variables x,y are equal: G (z = y).

We observe some differences between the models above (where LTL formulae
have to hold on all paths) and a specific path. For the aforementioned program,
F(x = y) holds on any infinite path in both models. G(x = y) does not hold in
the general model because of the states (2,1) and (1,2). If we are evaluating a
formula at runtime, we might observe a path where these states are not visited
and the formula might hold on this run. Consequently we use a finite path
semantics, i.e. over a single finite unwinding of a model.

We conclude that the level of abstraction the model provides is essential to
its validity. By the appropriate use of pointcuts as propositions in our LTL for-
mulae unimportant intermediate states can be filtered away, hence leading to an
abstracted model as in Figure 4(c), where we filtered for method calls. Specif-
ically, the abstract model is defined through the propositions in the formula.
Hence we can now formulate the query “On all invocations of f, do z and y have
the same value?”: G (f — (z = y)). In our implementation, we would use a
call-pointcut to select the method invocation and an if-pointcut to evaluate the
predicate over the variables.

In the following, we discuss the remaining temporal operators which reason
about intervals and need a more thorough discussion.

Until, Release and Next. The binary operators “Until” and “Release” can be
considered the low-level operators of our temporal logic. The aforementioned op-
erators “Finally” and “Globally” can be expressed using “Until” and “Release”:

Fe=ttUgyp Gp=ffRy
(e UyY)=-9p R ¢ (¢ RY)=-9pU
e Uy =94V (eAX(p Ud)) pRY=9pA(eVX(pRY))

The “Until”-operator U states that a formula ¢ U % holds in a state if the
sub-formula ¢ holds from this state on until a state is reached where ¢ holds. ¥
is required to hold eventually, that is before the end of the program.

The dual operator “Release”, ¢ R v, specifies that either 1 should hold in-
definitely or that v holds up to and including the state where ¢ holds. We
already used this operator in the HashSet-example in the previous section:
G(modify(c) — remove(s,c) R —contains(s, c)).

A detailed discussion of the application of these specific operators is out of
the scope of this paper and we point the interested reader to [18].

The last temporal operator is X, the “Next”-operator. A formula X ¢ holds
if ¢ holds in the next state, e.g. we might require that after pushing the start-
button the engine should turn on through start — X running.

154 E. Bodden and V. Stolz

While LTL is only arguably an appropriate specification language, we consider
it appropriate for a prototype. In the static verification community, several other
specification languages like SUGAR [4] and FORSPEC [3] exist, which also contain
additional syntactic sugar hiding the temporal logics in the semantic layer to
make the input languages more user-friendly.

A comprehensive survey of existing verification patterns and how to express
them in various specification formalism including LTL can be found in [11]. It can
serve as a starting-point into specifying properties. The HashSet-requirement for
example can be identified as a combination of the “Universality After”-pattern
and a variant of the “Absence of P after () until R’-pattern, where P is the
contains, @ the modify and R the remove-action.

4 Tracechecks

The introductory examples show that tracechecks use an LTL formula with free
variable bindings in order to specify conditions over the dynamic execution trace.
Figure 3(a) gives the formal syntax of tracechecks. A tracecheck consists of a
declaration of free variables which can be bound during evaluation, a nonempty
list of symbol (proposition) declarations, an LTL formula declaration (cf. Figure
3(b)) and a body. The keyword perthread causes a thread-local instantiation of
the formula, if a property should be checked for each thread separately.

A definition of the formal declarative semantics of tracechecks is out of the
scope of this work and can be found in [5] where we also prove them equivalent
to our operational semantics. In the following we want to explore the semantics
by example, recalling the initial specification of the iterator requirement.

4.1 Quantification

The formula (with free variables ¢, i) can be written as:
G (iterator(c,i) — G(modify(c) — G(—next(i))))

The informal requirement specification states that the condition G(modify(c) —
G(—next(i))) should hold for each pair (i,c) of iterator and collection. With
tracechecks, quantification over objects can be expressed by quantifying over
events. Global quantification over a variable z can be modelled by wrapping
a formula (x) with a “Globally”-formula of the form G(create(z) — (z)).
Likewise, existential quantification can be modelled by “Finally”-formulae of
the form F(create(x) A ¢(x)).

Tracechecks always specify a language of valid traces. That means that we are
naturally interested in traces which violate the LTL formula of a tracecheck. A
tracecheck body is executed whenever a formula is falsified. In cases where this
falsification took place under a certain binding, this binding can be referred to
by the variables declared in the tracecheck body (cf. Figure 6, line 9).

It may happen that no such binding is available. For instance the formula
F(create(x)), which states that at some point in time, some object x is created,

Tracechecks: Defining Semantic Interfaces with Temporal Logic 155

can only be falsified at application shutdown time. If it is falsified, this means
that create(z) did not occur. Consequently, x cannot be bound. In such cases,
will be null in the tracecheck body. Future versions of our implementation will
use static analysis in order to avoid accidental unchecked use of such variables.

4.2 Annotation Style Syntax

In addition to the tracecheck syntax, our implementation offers an inlined “anno-
tation” style that can be used to deploy specifications as annotations in interfaces
of ordinary classes (cf. Section 5). For the iterator example, this allows to di-
rectly attach the formula to the iterator() method of the Collection interface as
shown in Figure 5. Note how the keywords thisMethod and thisType can be used
to refer to the member respectively type the annotation is attached to. That
way, formulae can be directly attached to the components they reason about in
a reusable way. (Like in the AspectJ semantics, pointcuts over interfaces specify
behaviour over all classes implementing that interface.)

interface Collection {

QLTL(”thisType c, Iterator i:
G(exit(call(thisMethod) && target(c)) returning(i) —>
G(exit((call(thisType+.add(..)) || call(thisType+.remove(..))) && target(c))
—> G(! entry(call(Iterator.next()) && target(i)))))
77)

Tterator iterator ();

© 0w N e o A W N =

//remaining interface code

}

=
S)

-
=

Fig. 5. Annotation style definitions in our prototype tool J-LO

Since tracechecks in annotation style have no body, if an error is detected,
the implementation issues a message to a set of user definable observers. These
may simply output an error message or apply some more sensible error handling,
depending on the property. Also, such annotations are currently not automat-
ically documented by Sun’s javadoc API documentation tool. Future versions
will likely support such a feature.

Using annotations as a means of deployment, the specification literally forms
a (semantic) part of the public interface of a class. This can be useful for several
purposes, comprising documentation, runtime checking (through our tool) but
also static verification by third party tools. In particular, the designer of an
interface, class or component can attach such semantic annotations to its code
and have them compiled into Java bytecode. People using this class or component
or implementing this interface respectively can then in a second, independent
step simply apply our tool to have their implementation instrumented to be

156 E. Bodden and V. Stolz

checked for compliance with this semantic interface. We believe that this is a
unique feature which has not been provided before in practice and that it is a
major contribition to the modular deployment of components.

4.3 History Access Through if~Pointcuts

This syntax imposes one problem: Since there is no body available, one cannot
perform any further computation on the bound values. In particular, one cannot
filter for unwanted valuations. As a solution, tracechecks implement an extended
semantics for if-pointcuts, giving them access not only to valuations at the
current joinpoint but also to variables which have been bound earlier on the
path. Figure 6 shows a tracecheck enforcing the Singleton design pattern [14].

tracecheck(Singleton sl, Singleton s2) {

1

2

3 sym create(Singleton s) after returning (s):

4 call(static Singleton Singleton+.inst ());

5 sym createAnother(Singleton s, Singleton t) after returning (s):
6 call(static Singleton Singleton+.inst()) && if(s!=t);

7

8 G(create(sl) —> XG lcreateAnother(s2,s1)) {

9 throw new SpecViolationException (" Two singletons detected:”+s1+",”+s2);
10 }

o}

Fig. 6. Tracecheck enforcing Singleton pattern

Note that the symbol createAnother gets a parameter ¢ passed in (lines 5-6),
which is not provided by the symbol itself. This raises the question what happens
when one must decide if a condition such as s # ¢ actually holds at the current
joinpoint, but one of the variables has not yet been bound. Indeed such formulae
are forbidden. In [5] we explain a static analysis based on abstract interpretation
which assures the validity of given formulae at compile time.

5 Reference Implementation

In this section we discuss some implementation details and how well tracechecks
can be used in practice. We comment on the runtime overhead and explain pos-
sible deployment outside of aspects by using annotatio