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Abstract. We investigated the possibility of detecting affect from natural 
language dialogue in an attempt to endow an intelligent tutoring system, 
AutoTutor, with the ability to incorporate the learner’s affect into its 
pedagogical strategies. Training and validation data were collected in a study in 
which college students completed a learning session with AutoTutor and sub-
sequently affective states of the learner were identified by the learner, a peer, 
and two trained judges. We analyzed each of these 4 data sets with the judges’ 
affect decisions, along with several dialogue features that were mined from 
AutoTutor’s log files. Multiple regression analyses confirmed that dialogue 
features could significantly predict particular affective states (boredom, 
confusion, flow, and frustration). A variety of standard classifiers were applied 
to the dialogue features in order to assess the accuracy of discriminating 
between the individual affective states compared with the baseline state of 
neutral. 

1   Introduction 

An emerging trend in the development of intelligent virtual agents (IVAs) has 
involved the modeling of the user’s affective states, with the long-term goal of 
delivering a more engaging, adaptive, naturalistic experience [1, 2]. Over the last few 
years, a particular class of IVAs, namely intelligent tutoring systems (ITSs) with 
animated pedagogical agents [3-5], have been designed to assist learners in the active 
construction of knowledge, particularly at deeper levels of comprehension. Most of 
these systems provide one-on-one tutoring, which is known to be a powerful method 
of promoting knowledge construction [6], whereas others assist individual learners 
with a cast of animated agents that perform different functions [4, 7].  

While ITSs have typically focused on the learner’s cognitive states they can be 
endowed with the ability to recognize, assess, and react to a learner’s affective state 
[8-11]. There is some evidence that an affect sensitive ITS would have a positive 
impact on learning. For example, Kim [12] conducted a study that demonstrated that 
the interest and self-efficacy of a learner significantly increased when the learner was 
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accompanied by a pedagogical agent acting as a virtual learning companion sensitive 
to the learner’s affect. Linnerenbrink and Pintrich [13] reported that the posttest 
scores of physics understanding decreased as a function of negative affect during 
learning. Craig et al. [14] reported that increased levels of boredom were negatively 
correlated with learning of computer literacy, whereas levels of confusion and the 
state of flow (being absorbed in the learning process, [15]) were positively correlated 
with learning in an AutoTutor learning environment. AutoTutor is an intelligent 
tutoring system that helps learners construct explanations by interacting with them in 
natural language and helping them use simulation environments [9, 16]. The focus of 
this paper is on the transformation of AutoTutor into an affect-sensitive intelligent 
tutoring system [17, 18]. 

Much of the work in affect detection involves the use of bodily sensors that 
monitor facial expressions [19], gross body language [20], acoustic-prosodic vocal 
features [21-24], and physiological measures such as heart rate monitors, 
electromyography, skin conductance, etc. [25, 26]. This paper investigates a less 
frequently explored channel, namely human-computer natural language dialogue. 
There have been some investigations of emotions in human-human dialogues [21, 27] 
and human-computer dialogues [22], but the literature on automated affect detection 
is sparse. The use of dialogue to detect affect in learning environments is a reasonable 
information source to explore, as opposed to bodily sensors, because dialogue 
information is abundant in virtually all conversations and is inexpensive to collect. 

Perhaps the most relevant work investigating dialogue and emotions has been 
conducted on the program ITSPOKE [23]. ITSPOKE integrates a spoken language 
component into the Why2-Atlas tutoring system [28]. The spoken student dialogue 
turns were analyzed on the basis of lexical and acoustic features, with codings of 
negative, neutral or positive affect. The algorithms were able to reach high levels of 
accuracy in detecting affect [22].  Another interesting use of natural language 
dialogue for affect detection is provided by Carberry, Lambert, and Schroeder [29] 
who developed an algorithm to recognize doubt by examining linguistic and 
contextual features in conjunction with world knowledge. The major difference 
between these research efforts and our approach is that we are concerned with a larger 
set of affective states (boredom, confusion, delight, flow, frustration, neutral, and 
surprise) as well as a novel set of dialogue features as will be elaborated below. 

We begin this paper by describing the various information channels that are 
tracked during interactions with AutoTutor and are stored in its text log files. Next we 
describe a study used to systematically gather affect judgments (from four raters) and 
dialogue patterns while participants interacted with AutoTutor.  The data collected in 
this study served as training and testing data for the machine learning algorithms, with 
the affect judgments of each judge representing the ground truth from his or her 
perspective. Statistical analyses assessed which of the affective states could be 
predicted from the dialogue features. A variety of  machine learning algorithms were 
then applied to the features selected by the statistical methods in an attempt to assess 
the reliability in automatically detecting the learner’s affect from AutoTutor’s 
dialogue. We conclude by addressing limitations of this research and presenting 
options to alleviate some of the known problems. 
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2   AutoTutor’s Mixed-Initiative Dialogue 

The Tutoring Research Group (TRG) at the University of Memphis developed 
AutoTutor, a fully automated computer tutor that simulates human tutors and holds 
conversations with students in natural language [9, 30]. AutoTutor attempts to 
comprehend the students’ natural language contributions and then responds to the 
students’ verbal input with adaptive dialogue moves similar to human tutors. 
AutoTutor helps students learn by presenting challenging problems (or questions) 
from a curriculum script and engaging in a mixed-initiative dialogue while the learner 
constructs an answer.  

AutoTutor provides feedback on what the student types in (positive, neutral, or 
negative feedback), pumps the student for more information (“What else?”), prompts 
the student to fill in missing words, gives hints, fills in missing information with 
assertions, identifies and corrects misconceptions and erroneous ideas, answers the 
student’s questions, and summarizes topics. A full answer to a question is eventually 
constructed during this dialogue, which normally takes between 30 and 100 turns 
between the student and tutor for one particular problem or main question. 

AutoTutor’s knowledge about the topic being tutored (computer literacy in this 
study) is represented by Latent Semantic Analysis (LSA) [31] and a curriculum script 
on the material. LSA is a statistical technique that measures the conceptual similarity 
of two text sources. LSA computes a geometric cosine (ranging from -1 to 1) that 
represents the conceptual similarity between the two text sources.  

A session with AutoTutor is comprised of a set of subtopics (main questions) that 
cover specific areas of the main topics (hardware, internet, and operating systems). 
Each subtopic has an associated set of expectations, potential dialogue moves to elicit 
expectations (e.g., hints, prompts, assertions), misconceptions, corrections of 
misconceptions, and other slots in the curriculum script that need not be addressed 
here. The expectations are ideally covered by a series of turns in AutoTutor’s 
conversation with the student in an attempt to construct an answer to the current main 
question (subtopic). When an acceptable answer with the appropriate details is 
gleaned from the student’s responses, AutoTutor moves on to the next subtopic. At 
the end of each student turn, AutoTutor maintains a log file that captures the student’s 
response, a variety of assessments of the response, the feedback provided, and the 
tutor’s next move.  

As an example, the exchange below is one of the shorter tutorial dialogues between 
a college student and AutoTutor. This student was an above average student in the 
computer literacy class.  

1. AUTOTUTOR: When you turn on the computer, how is the operating system 
first activated and loaded into RAM?  [this is the main question] 

2. STUDENT: When the computer is turned on a file is automatically booted up. 
3. AUTOTUTOR: Anything else?    [this is a pump for more information] 
4. STUDENT: This file contains the operating system. 
5. AUTOTUTOR: What about storage?   [this is a hint] 
6. STUDENT: The operating system is then read into RAM and activated. 
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7. AUTOTUTOR: Right. The CPU executes instructions in ROM, which helps 
the operating system to start.   [after giving positive feedback, there is an 
assertion]  

8. STUDENT: After being read from ROM the OS is activated. 
9. AUTOTUTOR:  Right. Let’s review what we’ve just gone over. The operating 

system must first be stored on the hard disk. When you turn on the computer, 
the CPU executes instructions stored in ROM. These instructions help boot the 
operating system. The operating system is then loaded from the hard disk into 
RAM.  [after positive feedback comes a summary] 

We now briefly describe the relevant information channels that are available in 
AutoTutor’s log files of the interaction history.  The information can broadly be 
divided into five categories: temporal information, response verbosity, answer quality 
assessments, tutor directness, and the tutor’s feedback. 

2.1   Temporal Information 

The temporal information can be viewed as a combination of global and local 
temporal markers that span the period of interaction. The subtopic number indicates 
the number of main questions answered. It provides a global measure of sequential 
position within the entire tutorial session. For example, for a one-hour session 
covering three subtopics, the third subtopic would indicate that the student is 
approximately in the 40-60 minute time span. The turn on the other hand, provides a 
local measure of the number of student contributions to the current question 
(subtopic). Finally, the student response time is the elapsed time (in milliseconds 
rounded to seconds) between the verbal presentation of the question by AutoTutor 
and the student submitting an answer. 

2.2   Response Verbosity 

The verbosity of the student’s dialogue contributions is measured by the number of 
characters in the student’s response.  A qualitative classification of the student’s 
contributions is provided by AutoTutor’s Speech Act Classification system [32]. 
While the system classifies a response into a number of categories, those of interest to 
this research involved frozen expressions (e.g., I don’t know, What did you say?) 
(coded as -1) and topic related contributions (scored as a 1). 

2.3   Answer Quality 

AutoTutor relies on LSA as its primary computation of the quality of student 
contributions in student turns. The primary measure of answer quality for a given turn 
is the local good score, which measures the student’s contribution for that turn on the 
basis of its similarity to good answers (expectations). Therefore, a high local good 
score reflects progress in answering the main question. A secondary measure of 
answer quality is the global good score which involves the same assessments as the 
local parameters, with the exception that the text used for the LSA match is an 
aggregation of all of the student’s turns (1 through N) for a given subtopic. With this 
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scheme, a student’s past contributions to a subtopic (main question) are considered in 
AutoTutor’s assessment of the student’s current state. Additionally, a delta local good 
score and a delta global good score, measures changes in the local good and global 
good scores respectively.  These measure the changes in student answer quality. 

2.4   Tutor Directness 

At the end of each student turn, AutoTutor incorporates the various LSA assessments 
when choosing its next pedagogically appropriate dialogue move. When AutoTutor 
tries to get a single expectation (E) covered (e.g., The hard disc is a storage medium), 
this goal is posted and is achieved by AutoTutor presenting a series of different 
dialogue moves across turns until the expectation E is expressed. It first gives a pump 
(What else?), then a hint (What about the hard disk?), then a prompt for specific 
information (i.e., an important word, The hard disk is a medium of what?), and then 
simply asserts the information (The hard disc is a medium for storage).  After all of 
the expectations for the problem are covered a summary is provided by AutoTutor.  
Given this mechanism of encouraging the student to cover the expectations, the 
dialogue moves chosen can be ordered on a directness scale (ranging from -1 to 1) on 
the basis of the amount of information AutoTutor supplies to the learner. The ordering 
is pump < hint < prompt < assertion < summary. A pump conveys the minimum 
amount of information (on the part of AutoTutor) whereas a summary conveys the 
most amount of explicit information.  

2.5   Tutor Feedback 

AutoTutor’s short feedback (positive, neutral positive, neutral, neutral negative, 
negative) is manifested in its verbal content, intonation, and a host of other non-verbal 
conversational cues. Examples of positive and negative feedback terms include “good 
job”, “correct” and “wrong”, “no” respectively. Similar to the directness scale 
constructed above, AutoTutor’s feedback was mapped onto a scale ranging from -1 
(negative feedback) to 1 (positive feedback). 

3   Empirical Data Collection 

The training and testing of the emotion classifier needs a gold standard for 
comparison. The appropriate gold standard is undoubtedly debatable, but there needs 
to be some plausible foundation for establishing ground truth, even though any gold 
standard proposed is open to challenge. One preliminary step in this process is to 
examine how reliable humans are at classification of emotions. We investigated three 
potential measures of ground truth for emotion detection: the participants, novice 
judges, and trained judges. 

We conducted a study which consisted of 28 participants interacting with 
AutoTutor for 32 minutes on one of three randomly assigned topics in computer 
literacy: hardware, internet, or operating systems. During the interaction process a 
video of the participant’s face and a video of the screen were recorded. The judging 
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process was initiated by synchronizing the video streams from the screen and the face 
and displaying to the judge.  Judges were instructed to make judgments on what 
affective states were present in 20-second intervals at which the video automatically 
paused (freeze-framed). They were also instructed to indicate any affective states that 
were present in between the 20-second stops. 

Four sets of emotion judgments were made for the observed affective states of each 
participant’s AutoTutor session. For the self judgments, the participant watched his or 
her own session with AutoTutor immediately after having interacted with AutoTutor. 
Second, for the peer judgments, participants returned approximately a week later to 
watch and judge another participant’s session on the same topic in computer literacy. 
Finally, two additional judges (called trained judges), who had been trained on how to 
detect facial action units according to Paul Ekman’s Facial Action Coding System 
(FACS) [33], judged all of the sessions separately. The trained judges also had 
considerable interaction experience with AutoTutor. Hence, their emotion judgments 
were based on contextual dialog information as well as the FACS system. 

A list of the affective states and definitions was provided for all judges. The states 
were boredom, confusion, flow, frustration, delight, neutral and surprise. The 
selection of emotions was based on previous studies of AutoTutor [14, 34] that 
collected observational data (i.e., trained judges observing learners) and emote aloud 
protocols while college students learned with AutoTutor. 

Interjudge reliability was computed using Cohen’s kappa for all possible pairs of 
judges: self, peer, trained judge1, and trained judge2. Cohen’s kappa measures the 
proportion of agreements between two judges with correction for baserate levels and 
random guessing. There were 6 possible pairs altogether. The kappa’s were reported in 
Graesser et al. [18]: self-peer (.08), self-judge1 (.14), self-judge2 (.16), peer-judge1 
(.14), peer-judge2 (.18), and judge1-judge2 (.36). These kappa scores revealed that the 
trained judges had the highest agreement, the self-peer pair had lowest agreement, and 
the other pairs of judges were in between. It should be noted, however, that the kappa 
scores increase substantially when we focus on observations in which the learner 
declares they have an emotion, as opposed to points when they are essentially neutral.  
The kappa scores are on par with data reported by other researchers who have assessed 
identification of emotions by humans [22, 24].  More details on the collection of data 
in this study and follow up analyses are reported in Graesser el al. [18]. 

4   Results and Discussion 

It is essential to have real-time automatic affect detection in order to achieve the 
larger goal of extending AutoTutor into an affect-sensitive ITS. Therefore, we applied 
several standard classification techniques in an attempt to detect the learner’s affect 
from the various conversation features manifested through an interaction with 
AutoTutor.  

The AutoTutor log files were mined to obtain information from the various 
dialogue channels described above. Four data sets, corresponding to each of the four 
judge’s emotion judgments, were obtained by extracting the set of emotion judgments 
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for each participant (according to the judge in question) and the set of dialogue 
features for each turn that were associated with the emotion.  More specifically, the 
emotion judgment that immediately followed a dialogue move (within a 15 second 
interval) was bound to that dialogue move. This allowed us to obtain four sets of 
labeled dialogue data, each containing 1300 records, aggregated across the 28 
participants. 

4.1   Statistical Analyses 

Multiple regression analyses were conducted to determine the extent to which the 
seven affective states of interest could be predicted from the various dialogue 
features. For each of the four data sets (self, peer, trained judge1, trained judge2), 
seven multiple regression analyses were performed, one for each of the affective 
states, yielding 28 models in all. The dependent variable for each multiple regression 
analysis was an affective state and the independent variables were the set of dialogue 
features. 

The multiple regression analyses for the emotion data obtained from the trained 
judge ratings yielded statistically significant models for the affective states of 
boredom (Fself  = 5.90, R2

adj = .184; Fpeer = 8.12, R2
adj = .211; Fjudge1  = 7.92, R2

adj = 
.132; Fjudge2  = 12.30, R2

adj = .140), confusion (Fself = 7.21, R2
adj = .175; Fpeer = 1.88, 

R2
adj = .108; Fjudge1 = 2.37, R2

adj = .075; Fjudge2 = 13.73, R2
adj = .125), flow (Fjudge1 = 

14.01, R2
adj = .201; Fjudge2 = 12.21, R2

adj = .139), frustration (Fself = 5.75, R2
adj = .188; 

Fpeer = 4.53, R2
adj = .106; Fjudge1 = 10.09, R2

adj = .094; Fjudge2 = 6.44, R2
adj = .094) and 

neutral (Fself = 3.03, R2
adj = .335; Fpeer = 2.93, R2

adj = .291; Fjudge1 = 2.19, R2
adj = .026; 

Fjudge2 = 4.20, R2
adj = .090);  all models were significant at the p < .05 level and df1 = 

11, df2 = 1261. For the novice judges (self and peer), statistically significant models 
 

Table 1. Significant predictors for the multiple regression models for emotions in each data set 

Boredom Confusion Flow Frustration Neutral 
Dialogue Features 

SF PR J1 J2 SF PR J1 J2 SF PR J1 J2 SF PR J1 J2 SF PR J1 J2 

Subtopic Number  + + + + - - - -  -  - +     -  - 
Turn Number + + + + -       -     -    
Response Time     +   +    -       -  
No. Characters     -  - -   + +         
Global Good           -     - -     
Delta Global Good                      
Local Good    -     -   +    + +     
Delta Local Good                  -    
Speech Act  -    -  - -         +   + 
Directness   + +   - -             
Feedback       -   + + + -  - - + + + + 
SF: Self Judgements, PR: Peer Judgements, J1: Trained Judge1, J2: Trained Judge2 
+ or  - indicates that the feature is a positive or negative predictor in the multiple regression 
model, with a signifcance level of p < .05. 
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were discovered for boredom, confusion, frustration, and neutral, but not for flow. 
The multiple regression analyses failed to converge on significant models for the 
affective states of delight and surprise, indicating that these affective states cannot be 
predicted from the dialogue features. The signs (+, -) of the statistically significant 
standardized coefficients in the multiple regression analyses are presented in Table 1.  

A number of generalizations can be gleaned from Table 1 regarding the 
relationship between dialogue and affective states. If one considers the significant 
predictors in which the data from at least two judges agreed, a number of relationships 
surface. In particular, boredom occurs later in the session (high subtopic number), 
after multiple attempts to answer the main question (high turn number), and when 
there are more direct dialogue moves (high directness). Alternatively, confusion 
occurs earlier in the session (low subtopic number), with slower responses (long 
response time), shorter responses (less characters), with frozen expressions 
(negatively coded speech acts), and when the tutor is less direct in providing 
information. The analyses indicated that flow occurs earlier on in the session (low 
subtopic numbers), involves longer responses (more characters), and is accompanied 
by positive feedback from the tutor. Frustration was prevalent with good answers 
towards the immediate question (high local good score), but poor answers towards the 
broader topic (low global good score), and negative tutor feedback.  

4.2   Machine Learning Experiments 

The machine learning experiments focused on these significant predictors of the 
affective states, thereby reducing the number of features used to train and test the 
classifiers. In addition to potentially increasing classification accuracy by eliminating 
unrelated features, this feature selection procedure also offers significant 
computational advantages in terms of execution time, a crucial requirement for real 
time computation. 

The Waikato Environment for Knowledge Analysis [35] was used to 
comparatively evaluate the performance of various standard classification techniques 
in an attempt to detect affect from dialogue. The classification algorithms tested were 
a Naïve Bayesian classifier, a multilayer perceptron (neural network using back 
propagation for training), a nearest neighbor classifier, C4.5 decision trees, an 
additive logistic boosting classifier with a decision stump as the base learner, and 
support vector machines.  

The classification process proceeded in two phases.  In the first stage we grouped 
the four affective states of interest (boredom, confusion, flow, frustration) together 
and assessed the reliabilities of the various classification algorithms to discriminate 
among each affective state. In the second phase of the classification analyses, we were 
interested in the accuracies of detecting each of the four affective states from the base 
state of neutral.  

4.2.1   Discriminating Between Boredom, Confusion, Flow, and Frustration 
The first set of classification experiments involved evaluating the classifiers on the 
four data sets (one for each judge’s ratings) in discriminating between boredom, 
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confusion, flow, and frustration. To establish a uniform baseline (a chance value of 
25%), we randomly sampled an equal number of observations from each affective 
state category. This process was repeated for 100 iterations and the reported reliability 
statistics were averaged across these 100 iterations. Each randomly sampled data set 
was evaluated on the 6 classification algorithms using k-fold cross-validation (k = 
10). The dialogue features that were significant predictors of the multiple regression 
models listed in Table 1 were used for classification. The classification accuracies are 
presented in Table 2.  

Table 2. Comparison of various classification techniques to detect learner’s affect 

Self Peer Judge 1 Judge 2 
Classification Algorithm 

Acc Kap Acc Kap Acc Kap Acc Kap 

Additive Logistic Regression 35.0 .134 36.1 .147 47.0 .293 47.1 .295 
Multilayer Perceptron 34.8 .130 34.7 .130 45.9 .278 45.2 .269 
Naïve Bayes 35.3 .137 35.7 .142 45.9 .279 46.2 .282 
Nearest Neighbor 28.7 .050 31.7 .089 40.7 .209 40.8 .210 
C4.5 Decision Tree 31.1 .081 33.9 .119 42.0 .226 40.6 .208 
Support Vector Machines 35.8 .144 36.9 .159 49.1 .321 48.4 .312 
Acc: Classification accuracy (%), Kap: Cohen’s Kappa. Baseline rate (chance) is 25%. 

The various classification algorithms were moderately successful in detecting 
affect, with the highest performance being 49.1%, a 96.4% improvement over the 
baseline. This was obtained from the affective judgments of trained judge1, which 
had a kappa score of .321 and was comparable to inter-judge reliability scores 
achieved by actual human coders. For example, Litman and Forbes-Riley [22] report 
kappa scores of around .4 in detecting positive, negative, and neutral affect. Shafran, 
Riley, and Mohri [24] report kappa scores ranging from .32 to .42 in coding affect. 
Additionally, this kappa value is on par with the kappa scores reported earlier ([18]) 
for the trained judges (kappa = .36).   

The classification accuracies on the data based on the two trained judge’s ratings 
were on par and quantitatively higher than the accuracies in detecting affect based on 
the emotion ratings of the self and the peer. This trend is similar to that observed in 
the human judgments of emotions reported in Graesser et al. [18]. 

In order to assess class level accuracies, Table 3 lists the precision, recall, and  
F-measure scores obtained for the four affective states. The precision for class C is the 
proportion of samples that truly belong to class C among all the samples that were 
classified as class C. The recall score (sensitivity or true positive rate) provides a 
measure of the accuracy of the learning scheme in detecting a particular class. The  
F-measure provides a single metric of performance by combining the precision and 
recall. Since support vector machines constituted the most successful classifier the 
precision, recall, and F-measure scores presented in Table 3 are restricted to those 
obtained with this classifier. 
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Table 3. Detailed accuracies of the support vector machine classifier for each data set  

Self Peer Judge 1 Judge 2 Affective 
States PR RC FM PR RC FM PR RC FM PR RC FM 
Boredom .40 .25 .31 .43 .30 .35 .51 .34 .40 .42 .24 .30 
Confusion .39 .33 .36 .33 .12 .17 .45 .29 .35 .52 .37 .42 
Flow .36 .27 .31 .37 .36 .36 .58 .59 .59 .56 .58 .56 
Frustration .33 .58 .42 .36 .70 .47 .45 .74 .56 .46 .76 .57 
PR: Precision, RC: Recall, FM: F-Measure 

When the same evaluation procedures were conducted on the affect data of the 
novice judges (self and peer), the F-measure indicated that the classifier was more 
successful in detecting frustration than the other three affective states. If one considers 
data from the self reports alone, classification accuracies for boredom and flow are 
identical and lower than that of confusion. The same trend is observed on the data 
from the peer judgments, with the exception that the F-measure for confusion was 
relatively low (.17). For the data collected from the trained judges’ identification of 
emotions, classification accuracies for frustration and flow were similar and 
quantitatively higher than those for boredom and confusion. On the basis of these 
results, we conclude that support vector machines offer reasonable accuracies in 
automatically discriminating between frustration, boredom, confusion and flow. 

4.2.2   Discriminating Between the Affective States and Neutral 
Another important requirement for an emotion classifier is the ability to detect 
individual affective states from a baseline state of neutral. Therefore, additional 
analyses were conducted that assessed the reliability in detecting each of the four 
affective states (boredom, confusion, flow, and frustration) when compared to the 
neutral state.  These analyses were conducted on each of the four data sets (self, peer, 
trained judge1, trained judge2). The classification procedures were similar to the 
random selection procedure described above. Table 4 presents overall classification 
accuracies and Kappa scores for the classifier that yielded the best performance in 
detecting each of the four affective states from neutral. 

Table 4. Classification accuracies in individually detecting boredom, confusion, flow, and 
frustration from neutral 

Self Peer Judge 1 Judge 2 
Affective States 

Acc Kap Acc Kap Acc Kap Acc Kap 

Boredom 61.3 .226 60.3 .206 62.5 .251 60.8 .216 
Confusion 59.3 .187 58.1 .162 59.4 .188 61.0 .221 
Flow 50.2 .003 53.5 .070 65.9 .319 63.8 .277 
Frustration 62.1 .241 64.6 .292 71.8 .435 73.3 .466 
Acc: Classification accuracy (%), Kap: Cohen’s Kappa. Baseline rate (chance) is 50%. 
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The reliabilities of the various classification algorithms in discriminating each of 
the four affective states from neutral followed a similar trend when the four affective 
states were considered together (Table 3), with the highest accuracies achieved in 
detecting frustration from neutral. Classification accuracies for the detection of 
boredom and confusion were moderate and comparable across the data sets provided 
by each of the four judges. The classifiers, when operating on the data set consisting 
of the trained judges’ emotion ratings, were quite successful in discriminating 
between flow and the baseline state of neutral. However, classifiers trained on 
emotion judgments of the novice judges failed to detect flow from neutral, with 
classification accuracies hovering around the chance rate. 

5   Conclusion 

Emotion measurement is a field resonating with murky, noisy, and incomplete data 
compounded with individual differences in experiencing and expressing emotions. On 
the basis of the natural language dialogue features alone, our results indicate that the 
standard classifiers were moderately successful in discriminating the affective states 
of boredom, confusion, flow, and frustration from each other, as well as from the base 
line state of neutral. A comparison of the accuracies obtained from the four human 
judges (self, peer, and 2 trained judges) revealed that classification models 
constructed on the basis of the trained judges’ emotion judgments consistently 
outperformed those of the novice judges. This trend is consistent with the inter-judge 
reliability results reported by Graesser et al. [18], thus offering convergent validity for 
the phenomenon that trained judges are better than untrained peers in detecting 
emotions. However, it is still not firmly established whether the trained judges or the 
self judgments are closer to the ground truth. 

The reliability of the standard classifiers in detecting affect from dialogues 
validates any future efforts in pursuing more sophisticated classification techniques. 
For example, biologically motivated classifiers, based on the dynamic behaviors of 
neural populations involved in the olfaction processes of rabbits, have been experi-
menttally validated as powerful pattern classifiers for difficult, non-linearly separable, 
classification problems [36]. Other options to boost the accuracy of AutoTutor in 
modeling learner affect involve the use of bodily sensors that track facial features, 
posture patterns, and speech contours [17]. 

One of the known limitations of the data analyses presented in this paper is that 
each emotion judgment was analyzed only in the context of the immediately 
preceding turns of the student and tutor. Perhaps classification accuracies could be 
boosted by incorporating a broader scope of contextual information, including 
patterns of conversation that evolve over a series of turns leading up to an emotional 
experience. Future efforts will be directed towards the analysis of conversation 
features across a larger temporal resolution and number of turns.  

The dialogue channels were unable to detect the affective states of delight and 
surprise. Perhaps these affective states are simply not manifested through 
AutoTutor’s conversation features and their detection would require more 
sophisticated sensors. Delight and surprise are affective states that are generally 



 Affect Detection from Human-Computer Dialogue with an ITS 65 

expressed though animated facial features, so it may be possible to detect these 
states by means of the Facial Action Coding System; particular facial actions are 
known to be correlated with happiness (similar to delight) and surprise [33]. 

We conclude by speculating on the generalizability of the discovered 
relationships between the conversational cues and affective states. Although the 
features of dialogue we analyzed were specific to AutoTutor, a similar set of 
features would presumably be expected in any intelligent tutoring system, particu-
larly in those that advocate deeper learning.  The lower level features specific to 
AutoTutor (local good score, global good score, directness, etc.) can be generalized 
to generic categories of dialogue features, such as temporal assessments, response 
verbosity, student ability, tutor directness, and tutor feedback. We predict that these 
broad categories will replicate across most intelligent tutoring systems.  
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