Creativity Meets Automation: Combining
Nonverbal Action Authoring with Rules
and Machine Learning

Michael Kipp

DFKI, Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
michael .kipp@dfki.de

Abstract. Providing virtual characters with natural gestures is a com-
plex task. Even if the range of gestures is limited, deciding when to play
which gesture may be considered both an engineering or an artistic task.
We want to strike a balance by presenting a system where gesture selec-
tion and timing can be human authored in a script, leaving full artistic
freedom to the author. However, to make authoring faster we offer a rule
system that generates gestures on the basis of human authored rules.
To push automation further, we show how machine learning can be uti-
lized to suggest further rules on the basis of previously annotated scripts.
Our system thus offers different degrees of automation for the author,
allowing for creativity and automation to join forces.

1 Introduction

As virtual characters move toward real applications the need for tools becomes
more pressing [I] [2]. Authoring tools do not only require intuitive user interfaces
with a steep learning curve but also a certain amount of control to allow for rich
design decisions on the part of the author.

Gesture generation is an area where automation is interesting because it is
so tedious to do by hand. On the other hand, a high level of control is desir-
able since gestures are an integral part of what you could consider the virtual
character’s personality and gesture style can add a lot in terms of fun, inter-
est and motivation to an application, even more so if multiple characters are
involved. Producing interesting gestures may be more of an art than an engi-
neering task. So, most of the time, authors have to hard-code them into the
system. Although there are systems that offer rules to generate gestures [3][4],
it often remains unclear how these rules are specified and how intuitive they are
to use for non-technical authors. We present a framework which allows direct
authoring of actions but also to define rules for automatic generation of actions
and, finally, to let the system automatically learn new rules.

The gestures in our system consist of pre-fabricated keyframe animations. It
appears that gesture generation calls for sophisticated skeleton-based procedural
animation engines where gestural movement can be controlled and situation-
ally adapted to a very fine degree [] [6]. However, in many applications, even
high-end games, procedural control of single bones is not done because it is too

J. Gratch et al. (Eds.): IVA 2006, LNAI 4133, pp. 230-242 2006.
© Springer-Verlag Berlin Heidelberg 2006

Creativity Meets Automation 231

expensive in terms of development time and performance. Instead, most real-
time applications rely on pre-fabricated keyframe animation and sophisticated
motion blending techniques [7] [4] [§]. Gesture generation here consists of se-
lecting a motion clip and synchronizing it with speech. Keyframe animation has
the further advantage that motion capture can be used which yields a very high
degree of authenticity.

This paper deals with a system where gestures can be added and generated
on different levels from full authoring control to full automation (Figure [I).
The COHIBIT system [12] allows the author to specify actions for two virtual
characters in a screenplay-like document (level 1). In a next step, the author can
write simple and intuitive gesture generation rules to exploit his or her expert
knowledge for automation (level 2). Gestures generated from these rules blend
seamlessly with the pre-authored ones, prioritizing the author’s direct choices.
In COHIBIT, before rules were introduced all actions were hand-coded (level 1)
so that a large corpus of scripts with annotated actions existed. We decided
to exploint this resource for machine learning. The system can learn new rules
based on the annotated scripts and suggests the most appropriate ones to the
author (level 3).

Level 1: Authoring actions Level 3: Learning rules
Script Script
annotated
with N
; Script Script
gclons annotated
»| With
Rules actions
Fy
Level 2: Authoring rules Corpus i
of scripts Machine Checks
Script Script » . H
annotated Learning
»| with i
Rules actions H

Fig. 1. Three different levels of control and automation when generating actions

So the rules of levels 243 automatically generate actions but many scripts
already contain hard-coded actions from level 1. As we will show, all these ac-
tions can be blended by filtering and resolving conflicts. Thus, all three levels
contribute to the final result: the gestural behavior of two virtual characters in
the COHIBIT system which is fully implemented and has been running daily in
a public exhibition Spaceﬁ since April 2006.

! http://ve.dfki.de

232 M. Kipp

In the following sections the COHIBIT system will be presented first before
proceding with how rules can be specified. Then, the automatic rule learning sys-
tem will be explained. We conclude with a technical evalution and final remarks.

2 Related Work

Automating gesture generation for virtual characters is an interdisciplinary en-
deavor combining competences from artificial intelligence, computer animation
and psychology. Cassell et al. [7] developed a rule-based system that generates
audiovisual speech, intonation, facial expression, and gesture. The gesture stroke
is synchronized with the accented syllable of the coexpressive word. Noma et al.
[4] built the Virtual Presenter where gestures can be added to a text manually
or with keyword-triggered rules. Animated gestures are synchronized with the
following word. While the number of possible gestures is very small the authors
focused on how to extract meaningful rules from the literature on public speak-
ing. A more complex generation system is the Behavior Expression Animation
Toolkit (BEAT) [3]. It gets plain text as input and first runs a linguistic analysis
on it before generating intonation, facial animation, and gestures. Gestures are
overgenerated using a knowledge base with handcrafted mappings and are then
reduced by user-defined filters.

Hartmann et al. [5] achieve expressivity in gesture synthesis system by varying
gesture frequency, movement amplitude and duration, fluidity, dynamic proper-
ties, and repetition. Noot/Ruttkay [9] are also deal with individual gesturing
style. A style consists of meaning-to-gesture mappings, motion characteristics,
and modality preferences. Combining style dictionaries yields mappings for new
cultural groups or individuals.

Kopp et al. [10] [6] present a gesture animation system that makes use of neu-
rophysiological research and generates iconic gestures from object descriptions
and site plans when talking about spatial domains, e.g. giving directions. Iconics
gestures resemble some semantic feature in the co-occurring speech.

In a different project [I1] we have presented a system that generates gestures
from statistical models of human speakers’ behavior. This approach requires a
lot of manual labour but yields character-specific result with the potential of
imitating living people.

The approach presented in this paper resembles most closely the rule-based
approaches to gesture generation. In this paper, we focus on how generation rules
can be specified easily, how generated gestures can be combined with authored
ones and how rules can be learned from a corpus of scenes where hand annotated
actions are available in large quantities.

3 System Overview

The COHIBITH system is a mixed-reality museum exhibit which features tangi-
ble interaction and two conversational virtual characters [I2]. The visitor of the

2 COnversational Helpers in an Immersive exhiBIt with a Tangible interface.

Creativity Meets Automation 233

exhibit can assemble cars with real car pieces while life-size projected characters
assist in the assembly and talk about various topics to convey educational con-
tent. The two virtual characters (one male, one female) give context-sensitive
hints how to complete the construction, make personalized comments on the
visitors’ actions, encourage the visitors to continue playing, and provide addi-
tional background information about car technology and artificial intelligence.
To enhance immersiveness of the exhibit, the characters must be as life-like as
possible displaying a varied, yet consistent nonverbal behavior. This is achieved
with a hybrid approach of authored actions and rule-based action generation.

Cameras RFIDs
World — \ _____ N Sensor
knowledge interpretation
Context — _ R Scene
knowledge Selection
Scenefiow Lbo---- - Linguistic
R processing
Scenes ne v
(“screenplay”) Tt~ Nonverbal
action
Gesture __-~""| generation
rules l
v
Character s
player
Screen Speakers

Fig. 2. Overview of the COHIBIT runtime system architecture

The COHIBIT runtime system is depicted in Figure Bl COHIBIT receives
input from cameras and RFID tags hidden in the car pieces and the workbench.
The signals are interpreted and transformed into events like user arrived, piece
X placed on field Y, user departed etc. The scene selection is an extended,
hierarchical state machine that uses the state diagram, called sceneﬂovvﬁ7 and the
scened] to select, adapt and play an appropriate scene (cf. [I3][2]). The linguistic
component transforms any generic context components that the author can use

3 In the current system, the sceneflow encompasses 174 nodes, 29 supernodes and 266
transitions.

4 The current system consists of 752 scenes.

234 M. Kipp

(e.g. name of currently moved car piece, current time or weather conditions) into
grammatically correct surface text. This component also generates a stemmed
version of the text (e.g. “went” — “go”) for later gesture rule application (see
Section H]).

The final surface text is sent to the nonverbal action generator that uses rules
to add actions to the already existing pre-authored ones and selects the best
ones (see Section [L2)). Text and actions are then sent to text-to-speech (TTS)
and animation engines which send the final output is to the output devices, i.e.
speakers and screen.

The COHIBIT system’s basic mechanism is to constantly recombine and select
pre-authored scenes. A large corpus of 752 scenes has been written allowing a
rich and varied interaction with hardly any repetitions.

3.1 Authoring Scenes and Actions

The corpus of scenes is represented in a single text document that can be written
and extended by a naive user in any kind of text processing software.

Scenes are the smallest units to be played by the system. Within each scene,
the author writes dialogue like in a screenplay or theatre script, simply by putting
the speaker’s initial up front and then type text. There are various commands
at the speaker’s disposal that can trigger nonverbal actions or query context
information from the database. See the following example:

A: [bow] Welcome [B look@other] to the car construction [B nod] world!
B: [look@visitor] [happy] Could you do us a favor? Please
take [GET current-piece def acc] from the table.
[turn2other] What’s the time?
A: [look@other] Well, [check watch] it’s around [GET time-fuzzy].
B: [nod] Thank you.

Nonverbal actions are specified within square brackets. If the action should
not be performed by the current speaker, the speaker initial can be specified in
front of the action name (for instance, “[B look@other|” in the above example).

The system has 28 different animations/actions for the two characters, in-
cluding gestures, facial expressions and body movement. Some actions are only
available for one of the characters and some actions are rarely used. Table [
shows the most frequently used actions. The gesture actions were loosely named
after the inventory defined by Kipp [11]. Actions are grouped into four channels
which facilitates conflict resolution at the filter step (Section[d.2]). The groups are:
facial expression (F), gaze (Gz), manual gesture (G), and head movement (H).

Our total corpus consists of a script with 752 scenes. These scenes contain
1781 dialogue turns and 2786 single utterances. Within these scenes 1196 actions
have already been authored. Using rules, many actions can automatically be
generated, although potential conflicts beween these generated actions and the
authored ones must then be resolved. How to do this will be shown in the next
Section. The huge number of existing actions inspired us to implement automatic
rule learning, using the existing scenes as a training corpus. This will be the topic
of Section Bl

Creativity Meets Automation 235

Table 1. Table of most frequently used actions for the two characters. The leftmost
column shows the action channel: facial expression (F), gaze (Gz), manual gesture (G),
and head movement (H). The numbers in the right half relate to corpus partitioning
and learning evaluation as discussed in Section

gesture description male character female character
pos. neg. Rir Rie pos. neg. Rir Rie

G cup show palm 29 339 47.1 9.1 43 442 53.8 6.2
F happy smile 26 156 62.5 44.4 30 212 38.9 54.5
Gz look@other look at other character 132 748 74.7 55.8 127 721 76.3 56.0
Gz look@visitor look at user 86 370 94.1 93.9 68 287 97.5 96.2
H nod head nod 51 319 38.7 5.3 58 514 41.2 22.7

G point@panel point at the display panel be- 12 140 28.6 0.0 —
hind the characters
G progressive circular metaphoric gesture 22 263 46.2 50.0 23 282 14.3 0.0

H shake head shake 13 195 62.5 0.0 19 313 27.3 14.3

G so what open arms, palm point up 43 402 36.0 12.5 — — —

Gz turn2other rotate torso toward other — — — — 20 175 16.7 14.3
character

Gz turn2visitor rotate torso toward user 24 79 78.6 66.7 24 122 64.3 33.3

G walls both hands held parallel, palms — — — — 25 341 42.1 28.1

facing each other

4 Using Rules for Automatic Action Generation

To automate the tedious hand annotation of actions we introduced an intuitive
rule mechanism based on keyword spotting. The user defines a set of rules that
operate on the utterance level. For each utterance, all applicable rules can fire
and generate actions which are stored together with any pre-authored actions
that were already there for later conflict resolution.

4.1 Rule Syntax and Usage

Action rules are IF-THEN rules with a left hand side (LHS) consisting of condi-
tions and a right hand side (RHS) consisting of effects. All conditions on the left
hand side must be true for the rule to fire, i.e. they are connected by AND oper-
ators. To implement an OR, you write a new rule with equal effects but different
conditions.

In gesture generation, for each utterance every rule is tested. If all conditions
are true the rule fires. The author can use the predicates in Table [2] to specify
the conditional side, predicates can be negated using “!” as a prefix.

On the right hand side the author specifies what happens if a rule fires. Two
commands are at the author’s disposal: gen and gen other. The first generates
a gesture for the character who utters the current utterances, the latter for the
other character (our system consists only of two characters). The arguments
for these commands specify the action name and the position. Position can be

236 M. Kipp

Table 2. Table of predicates that can be used in the conditional part (LHS) of action
generation rules

predicate description
says(‘‘foo baa’’) True if the string “foo baa” is contained in the utterance.
says([you went]) True if the word stems are found in the (stemmed) ut-

terance. In the case of [you went] the system is looking
for “you go”.

speaker (X) True if the utterance is spoken by speaker X.

begin scene True if the utterance is the first utterance in the scene.

begin turn True if the utterance is the first utterance in the turn.

question True if the utterance is a question, i.e. it ends with a “?”.

command (C, A) True if the utterance contains the command C with ar-
guments A.

word, begin or end. For word position the system remembers the match position
on the conditional side. The action is then inserted before the respective word.
This position can be modified by adding an offset like +1 or -2 behind the word
keyword. Some sample ruled? are:

says(‘‘of course’’) —— > gen(cup, begin)

says([develop]) —— > gen(progressive, word - 1)

speaker (Richie) & question —— > gen(cup, begin)

speaker(Tina) & command(picture) &

! command (picture, default.jpg) —— > gen(point@panel, word +1)

In our system, we use a set of 57 rules to automatically generate gestures. For
the 752 scenes, these rules fire 2688 times.

4.2 Combining Rules and Pre-authored Actions

The rules are interpreted at runtime and are used to generate actions on the
fly. However, scripts may also contain pre-authored gestures. The system must
decide which actions and how many actions to actually use.

After generation the system has a text utterance annotated with a consid-
erable amount of actions in-between words. Actions are selected by applying a
number of constraints. First, at any one spot only compatible actions can be
executed in parallel which is modelled using four channels: facial expression (F),
gaze (Gz), manual gesture (G), and head movement (H). The constraint is that
only actions from different channels can be performed in parallel. So a character
can look at the user (gaze channel) and make a hand gesture (gesture channel)
at the same time, whereas performing two hand gestures at the same time is not
possible in our system.

Second, we model that human authored actions are preferred over automati-
cally generated ones by assigning priority values: 2 for human authored actions,

® The samples are translated from German to English for better readability.

Creativity Meets Automation 237

1 for generated ones. To filter out an action, priority is set to -1. We then apply
constraints at three different levels to make the distribution of actions across a
scene consistent. On the scene level, a constant action rate R must be observed
where R can be specified by the developer. Action rate is measured by dividing
number of actions by the number of utterances. On the turn level, no gesture or
head move is allowed to occur twice in the same turn. On the utterance level,
conflicts between simultaneous actions are resolved by selecting the action with
the highest priority and actions with priority -1 are filtered out. The result is a
sequence of actions, containing both human authored and automatically gener-
ated ones, where the amount of activity is controlled and repetitions and conflicts
are filtered out.

5 Learning Rules from the Corpus

Our corpus has been extended over time and with the introduction of rules fewer
and fewer actions have been manually annotated. We thus have a situation where
some scenes are heavily annotated, some sparsely and some not at all. To obtain
training and test material for machine learning we must first define criteria for
finding suitable material.

5.1 Preparing the Corpus

We first defined a measure to select suitable training material. We did this using
the action rate, setting a minimal threshold to 0.3. We obtained a total Corpus
C' of 334 scenes. In a second step we disjointly divided the corpus into training
data Cirqin and test data Ciess. In Cirgin we had to define positive and negative
samples for each action. A positive sample for action A is an utterance where
A occurs. Negative samples could theoretically be all utterances where A does
not occur but we thought this might be too restrictive. Just because an action
is not annotated it does not mean that it should not be there. However, we
hypothesized that if within one scene the action A occurs, it might be that the
user has intentionally put it there and nowhere else in the scene. So we define
our negatives as all utterances u belonging to a scene S where A occurs in S
but A does not occur in u. There is still doubt of whether these negatives could
be too restrictive. However, we tried to balance the importance of positives vs.
negatives with weights (Section [@]). Table [l shows the number of positive and
negative utterance found for each speaker and action.

5.2 Learning

An important aspect of the learning task is that it is not a pure classification
task that could be resolved with standard techniques like SVMs, n-grams, neural
networks or ID3/4.5. Instead, we have to learn a set of conditions plus a position
(in the simplest version). However, we can re-formulate the problem to map it to
a classification problem but with the drawback of having fewer samples. For the
sub-case where an action is generated at the very beginning of an utterance we

238 M. Kipp

can directly apply a classification based approach (see clustering below). More-
over, since we have a hybrid approach where author and machine are supposed
to cooperate we pursue the goal of keeping all generated rules human-readable.

We consider rule learning is a two-step process. First, a rule generator system-
atically generates a number of potentially interesting rules. Then, these rules are
tested by the rule appraisal module against the positive and negative samples for
matches and false positives. The best ones, according to a weighted measure, are
selected. So the meat is obviously in the rule generator, whereas the appraisal
module allows you to tweak your results using weight parameters. Note that one
difficulty in rule learning in our case is that it is not only a question of whether
a rule fires or not but also of where the action is placed.

The rule generator runs for one action at a time. For each positive utterance for
this action the generator produces different answers to the question “what might
have caused this action to be produced here?”. We propose two mechanisms for
genrating rules: one word based, one cluster based. The word based generation
is very easy: each word in the positive utterance is seen as a potential trigger
for the action. Let the utterance be (wo, ..., Wi—1, @i, Wit1, ..., W,) Where w; are
words and a; is the action at position . Then, for each w; we generate a rule of
the form:

says(w;) --> gen(A, word - (i —j+1))

In the cluster based approach we try to identify patterns of recurring ordered
sequences of words in the positive samples of one action. This works only for
begin and end type rules. In our corpus, we noted that many actions occur
specifically at the beginning of utterances so we deemed it worth looking at this
special case in detail. A word vector vy is an ordered partial vector of vy if the
words in v; are all in vo and are ordered in the same way as the corresponding
words in ve. If you have two utterances u; and us you can define the ordered
word overlap w by

w(uy, ug) = nllalx(vector v : v is ordered partial vector of u; and us)
v

The w function gives you an overlap vector v, the number of overlapping words
is |w| which gives you a distance metric for cluster analysis. Cluster analysis
makes it possible to obtain smaller patterns with bigger generality. We applied a
simple nearest neighbor clustering algorithm to cluster similar patterns together.
The w function is trivially expanded to compare an utterance with a set of
utterances. We can improve the quality of the rules by using negation. We use
the same clustering method for pattern identification to exclude false positives
of a rule. The recognized patterns are added to the conditional side as negated
conditions.

When learning rules it is important to ignore some words that can be consid-
ered “noise” . Function words occur often but are also often relatively meaningless
in terms of generation. But because of their frequency the learning algorithm of-
ten finds patterns in function words. Therefore, we have to ignore them. Which

Creativity Meets Automation

Rule Learning Center

speaker:

= use clusters: Training Data: GDE k)

|hanmr | v | | Learn |
Cluster threshold: Rule guality:
1 2 3 4 5 6 1 2 3 4 5 6

RLULE (+3,-5,= 1,4}
RLULE (+3,-5,= 1,4}
RLULE (+3,-5,= 1,4}
RLULE (+2,-1,=14)
RLULE (+2,-1,=14)
RLULE (+2,-1,=14)
RULE (+2,-1,= 1,4}
RLULE (+2,-1,=14)
RLULE (+2,-1,=14)
RLULE (+2,-1,=14)
RLULE (+2,-1,=14)
RULE (+2,-2,=1.2)
RULE (+2,-2,=1.2)
RULE (+2,-2,=1.2)

says(Siell &1 says{"sie" = genihappy, word -2

says('Sie") &1 says("sie")= genthappy, begind

says(Siell &1 says{"sie")--= genchappy, word)

says('muss" = genihappy, hegin)

says('sagen” J--= genchappy, begin)

saysoull) &1 says{aus")--= genthappy, woard -4)

savs("gut') &1 says{"aus")--= genthappy, begin)

saysCAuta") & saysMwir') &1 savs("hemerken”) &1 says{zum") & sayvs{"heispiel) &1
says(lhly & says(ihe)--= genthappy, word -1)

says(lhy & says(ihe)--= genthappy, woard)

saysoull) &1 says{aus")--= genthappy, woard -3)

says(Autall &1 says(wir') &1 sayvs"hemerken”) &1 says{zum") & says{"heispiel') & |
says(Autall &1 says(wir') &1 sayvs"hemerken”) &1 says{zum") & says{"heispiel') & |
says(Autall &1 says(wir') &1 sayvs"hemerken”) &1 says{zum") & says{"heispiel') & |

| »

239

RLULE (+3,-7, = 1) say={"haben" }--= genfhappy, hegin)
RLULE (+3,-7, = 1) say={"haben") & | say=("sie")--= genthappy, hegin)
RULE (+2,-3, = 13 saysifAuto])--= genthappy, ward - 3)

EvAL

Corpus size=180

Training: 16 paos /94 neg

Test 9posf6E1 neg

Training Recall= 62,5 % {10 out of 16)
Training Precision = 32,3 % {10 corr, 21 false)
TestRecall= 77,8 % (¥ out of)

Test Precizion = 36,8 % (7 corr, 12 false)

[4]

< i | [»

oot | e

Fig. 3. Graphical user interface for gesture rule learning

words should be ignored is not always clear. Do you take out “and”? It might in-
dicate metaphoric gestures that represent sequence. Clearer cases are “of”, “by”
or “to”.

We implemented a graphical user interface (GUI) where the author can ex-
periment with different parameters of rule learning (Figure B). Our idea is that
rule aquisition is not a fully automatic process but rather a source for inspira-
tion for the author who may find some of the generated patterns appealing and
illuminating while others might simply be unintuitive.

In the GUI the author can select the partitioning of test/training corpus, the
speaker, the action and parameters for rule quality and clustering.

6 Evaluation

To really evaluate generated gestures one would have to set up an experiment
where the results of different approaches are judged by independent coders. Then,

240 M. Kipp

one can make a comparative analysis and draw final conclusions about each
method. While we have not made such an extensive study yet, we did a quanti-
tative analysis of the learning algorithm described above. For this, we partitioned
the corpus into training (60%) and test (40%) and then computed recall R and
precision P. Recall for an action A is defined as the number of utterances where
an action was correctly generated divided by the total number of utterances.
Precision is the number of times that rules fired correctly divided by the total
number of times that rules fired. Note that we had a very strict measure for
precision as every generated action that is at an incorrect position counts as a
false positive.

In total, we achieved a recall of 56.9% and precision of 33.7% on the training
data, and recall of 33.8%, precision of 13.6% on the test data for the male charac-
ter. For the female character, we got recall/training of 47.2%, precision/training
of 47.1%, recall/test of 32.6% and precision/test of 32.1% for the female charac-
ter. See Table [[] for detailed results for every speaker and action.

Even though the results may look low one has to reflect what can be expected.
Since the placement of actions is a rather arbitrary decision and a large number
of different placements may all be correct, we cannot expect our system to predict
precisely where an action must be placed. However, if sometimes the placement
matches exactly what the human author has done it is an indication that it is a
good rule. If it does not match the rule is not necessarily false. So recall/precision
values must be looked at sceptically. We were actually quite satisfied with the
quality of the output in terms of usability and human readability. The results
vary largely across actions, from very good (look@visitor) to zero (nod, shake).
These learned rules are meant to extend and complement existing rules, not to
replace them altogether.

A more thorough evaluation should look not only at recall and precision but at
the actions that the new, learned rules produce. However, judging these produced
gestures is a non-trivial task. What are the evaluation criteria? Are we talking
about general appropriateness of the gestures or about whether they reflect a
certain style of the character? Quality of gestures is hard to grasp. Although
first approaches exist (e.g. [5]) more research in terms of evaluation criteria is
needed before tackling this difficult task.

7 Conclusions

We presented a system for authoring nonverbal actions in a character based sys-
tem, for defining generation rules and, finally, for automatically aquiring rules by
machine learning. Authoring actions directly is done in a screenplay-like style.
Rule definition is done with simple IF-THEN rules. Rule learning relies on system-
atic rule candidate generation, based on word traversal and clustering, and rule
evaluation. Learning was shown to have a very varied quality in terms of recall
and precision but these measures are only very tentative indicators of quality.
Hence, more qualitative evaluations remain to be done.

All three mechanism are used in a hybrid approach to nonverbal action cre-
ation that allows an arbitrary mixture of creative control and economic automa-

Creativity Meets Automation 241

tion. This technique could also be used for recognizing other kinds of tags in a
text, e.g. emotions or emotion eliciting conditions [I4], dialogue acts [I5], other
multimodal actions like displaying pictures, changning light, audio clips.

Future work on this system includes more precise timing capabilities for the
generated actions, extending learning to all types of predicates, and integrating
more complex gesture types (hold gestures and multiple stroke gestures) to the
repertoire.

Acknowledgements

This work is partially funded by the German Ministry for Education and Re-
search (BMBF) as part of the VirtualHuman project under grant 01 IMB 01A.

References

1. Rist, T., André, E., Baldes, S., Gebhard, P., Klesen, M., Kipp, M., Rist, P., Schmitt,
M.: A review of the development of embodied presentation agents and their appli-
cation fields. In Prendinger, H., Ishizuka, M., eds.: Life-Like Characters — Tools,
Affective Functions, and Applications. Springer, Heidelberg (2003) 377-404

2. Gebhard, P., Kipp, M., Klesen, M., Rist, T.: Authoring scenes for adaptive, inter-
active performances. In: Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems. (2003) 725-732

3. Cassell, J., Vilhjalmsson, H., Bickmore, T.: BEAT: the Behavior Expression Ani-
mation Toolkit. In: Proceedings of SIGGRAPH 2001. (2001) 477-486

4. Noma, T., Zhao, L., Badler, N.: Design of a Virtual Human Presenter. IEEE
Journal of Computer Graphics and Applications 20 (2000) 79-85

5. Hartmann, B., Mancini, M., Buisine, S., Pelachaud, C.: Design and evaluation of
expressive gesture synthesis for embodied conversational agents. In: Proceedings
of the fourth international joint conference on Autonomous agents and multiagent
systems. ACM Press (2005)

6. Kopp, S., Tepper, P., Cassell, J.: Towards integrated microplanning of language
and iconic gesture for multimodal output. In: Proc. Int’l Conf. Multimodal Inter-
faces 2004. (2004) 97-104

7. Cassell, J., Pelachaud, C., Badler, N., Steedman, M., Achorn, B., Becket, T., Dou-
ville, B., Prevost, S., Stone, M.: Animated Conversation: Rule-Based Generation
of Facial Expression, Gesture & Spoken Intonation for Multiple Conversational
Agents. In: Proceedings of SIGGRAPH ’94. (1994) 413-420

8. André, E., Miiller, J., Rist, T.: WIP/PPP: Automatic Generation of Personalized
Multimedia Presentations. In: Proceedings of Multimedia 96, 4th ACM Interna-
tional Multimedia Conference. ACM Press, Boston, MA (1996) 407-408

9. Noot, H., Ruttkay, Z.: Gesture in style. In: Proc. Gesture Workshop 2003. Volume
2915 of LNAL, Berlin and Heidelberg, Germany, Springer-Verlag (2004) 324-337

10. Kopp, S., Sowa, T., Wachsmuth, I.: Imitation games with an artificial agent:
from mimicking to understanding shape-related iconic gestures. In: Proc. Gesture
Workshop 2003. Volume 2915 of LNCS., Berlin and Heidelberg, Germany, Springer
(2004) 436-447

11. Kipp, M.: Gesture Generation by Imitation: From Human Behavior to Computer
Character Animation. Dissertation.com, Boca Raton, Florida (2004)

242 M. Kipp

12. Ndiaye, A., Gebhard, P., Kipp, M., Klesen, M., Schneider, M., Wahlster, W.: Am-
bient intelligence in edutainment: Tangible interaction with life-like exhibit guides.
In: Proceedings of the first Confernce on INtelligent TEchnologies for interactive
enterTAINment (INTETAIN), Berlin, Heidelberg, Springer (2005) 104-113

13. Klesen, M., Kipp, M., Gebhard, P., Rist, T.: Staging exhibitions: Methods and tools
for modeling narrative structure to produce interactive performances with virtual
actors. Virtual Reality. Special Issue on Storytelling in Virtual Environments 7
(2003) 1729

14. Gebhard, P., Kipp, M., Klesen, M., Rist, T.: Adding the emotional dimension to
scripting character dialogues. In: Intelligent Agents, 4th International Workshop,
IVA 2003, Kloster Irsee, Germany, September 15-17, 2003, Proceedings. (2003)
48-56

15. Reithinger, N., Klesen, M.: Dialogue act classification using language models. In
Kokkinakis, G., Fakotakis, N., Dermatas, E., eds.: Proceedings of the 5th European
Conference on Speech Communication and Technology (Eurospeech 97). (1997)
2235-2238

	Introduction
	Related Work
	System Overview
	Authoring Scenes and Actions

	Using Rules for Automatic Action Generation
	Rule Syntax and Usage
	Combining Rules and Pre-authored Actions

	Learning Rules from the Corpus
	Preparing the Corpus
	Learning

	Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

